
HAL Id: tel-02173705
https://pastel.hal.science/tel-02173705

Submitted on 4 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical optimization using stochastic evolutionary
algorithms : application to seismic tomography inverse

problems
Keurfon Luu

To cite this version:
Keurfon Luu. Numerical optimization using stochastic evolutionary algorithms : application to seismic
tomography inverse problems. Geophysics [physics.geo-ph]. Université Paris sciences et lettres, 2018.
English. �NNT : 2018PSLEM077�. �tel-02173705�

https://pastel.hal.science/tel-02173705
https://hal.archives-ouvertes.fr

Préparée à MINES ParisTech

Numerical optimization using stochastic evolutionary
algorithms: application to seismic tomography inverse

problems

Optimisation numérique stochastique évolutionniste :
application aux problèmes inverses de tomographie

sismique

Soutenue par

Keurfon LUU
Le 28 septembre 2018

École doctorale no398
Géosciences,
Ressources Naturelles et
Environnement

Spécialité
Géosciences et
Géoingénierie

Composition du jury :

M. CAUMON Guillaume
Professeur, Université de Lorraine Rapporteur

M. TARITS Pascal
Professeur, Université de Bretagne Occidentale Rapporteur

M. BODET Ludovic
Maître de conférences, Sorbonne Université Examinateur

Mme GÉLIS Céline
Ingénieur de recherche, IRSN Examinatrice

Mme GESRET Alexandrine
Chargée de recherche, MINES ParisTech Examinatrice

M. NOBLE Mark
Maître de recherche, MINES ParisTech Examinateur

M. ROUX Pierre-François
Ingénieur, BHGE Invité

i

Acknowledgements

Tout d’abord, je tiens à remercier mes jambes pour m’avoir supporté tout au long de mon
parcours, mes bras pour toujours avoir été à mes côtés, sans oublier mes doigts sur lesquels
j’ai toujours pu compter.

Plus sérieusement, je dois mes premiers remerciements à Mark Noble, mon directeur de thèse,
qui m’a permis de travailler sur ce sujet tout en me laissant suffisamment de liberté pour me
l’approprier (il me semble que le sujet initial portait sur la localisation. . .). Je remercie également
ma co-encadrante Alexandrine Gesret pour tout le temps qu’elle m’a accordé et ses précieux
conseils durant la rédaction de ce manuscrit.

Je souhaiterais exprimer ma gratitude envers Guillaume Caumon et Pascal Tarits qui ont accepté
d’être rapporteurs de ce travail (et de lire ce manuscrit pendant leurs vacances d’été), ainsi que
Céline Gélis et Ludovic Bodet pour avoir accepté de faire partie de mon jury de thèse.

Mes sincères remerciements vont aussi à Philippe Thierry qui, en dépit de son agenda de
ministre, a trouvé du temps pour m’aider et me conseiller sur le calcul haute performance, et qui
m’a notamment permis de faire la rencontre de Skylake quand Katrina m’a laissé tomber (je
parle d’ordinateurs hein, pas taper).

Mention spéciale à tous les autres membres du Labo de Géophy : Hervé, Pierre, Véronique,
les deux gars de Magnitude Nidhal et Pierre-François, Maxime, Charles-Antoine, Yves-Marie,
Jihane, Sven, Emmanuel, Yubing, Alexandre, Hao, Julien, Michelle, Tianyou, Ahmed et en
passant par le Brésil, Tiago. Merci pour votre bonne humeur et toutes les discussions que l’on a
pu avoir pendant les (trop) nombreuses pauses café.

Que seraient ces remerciements si j’oubliais tous les membres de ma famille (de près ou de loin
généalogiquement ou géographiquement) qui m’ont connu et soutenu depuis mes premières
lignes de commande (sous DOS pour lancer des jeux, bien entendu). En particulier, je dois
beaucoup à baba mama qui ont fait beaucoup de sacrifices pour ma soeur, mon frère et moi,
et qui, malgré leurs modestes moyens, nous ont toujours encouragés et poussés à donner le
meilleur de nous.

Enfin, je voudrais dédier ce mémoire à ma femme An qui, plus que toutes les parties de mon
corps susmentionnées, n’a jamais cessé de me supporter (dans les deux sens du terme), d’être
à mes côtés et de m’encourager durant ces trois longues années. Xiexie ni wo de baobei.

ii

Résumé

La tomographie sismique des temps de trajet est un problème d’optimisation mal-posé du
fait de la non-linéarité entre les temps et le modèle de vitesse. Par ailleurs, l’unicité de la
solution n’est pas garantie car les données peuvent être expliquées par de nombreux mod-
èles. Les méthodes de Monte-Carlo par Chaînes de Markov qui échantillonnent l’espace des
paramètres sont généralement appréciées pour répondre à cette problématique. Cependant,
ces approches ne peuvent pleinement tirer parti des ressources computationnelles fournies
par les super-calculateurs modernes. Dans cette thèse, je me propose de résoudre le prob-
lème de tomographie sismique à l’aide d’algorithmes évolutionnistes. Ce sont des méthodes
d’optimisation stochastiques inspirées de l’évolution naturelle des espèces. Elles opèrent sur
une population de modèles représentés par un ensemble d’individus qui évoluent suivant des
processus stochastiques caractéristiques de l’évolution naturelle. Dès lors, la population de mod-
èles peut être intrinsèquement évaluée en parallèle ce qui rend ces algorithmes particulièrement
adaptés aux architectures des super-calculateurs. Je m’intéresse plus précisément aux trois
algorithmes évolutionnistes les plus populaires, à savoir l’évolution différentielle, l’optimisation
par essaim particulaire, et la stratégie d’évolution par adaptation de la matrice de covariance.
Leur faisabilité est étudiée sur deux jeux de données différents: un jeu réel acquis dans le
contexte de la fracturation hydraulique et un jeu synthétique de réfraction généré à partir du
modèle de vitesse Marmousi réputé pour sa géologie structurale complexe.

Mots Clés: algorithme évolutionniste, tomographie sismique, problème inverse, calcul haute
performance, intelligence artificielle

iv

Abstract

Seismic traveltime tomography is an ill-posed optimization problem due to the non-linear relation-
ship between traveltime and velocity model. Besides, the solution is not unique as many models
are able to explain the observed data. The non-linearity and non-uniqueness issues are typically
addressed by using methods relying on Monte Carlo Markov Chain that thoroughly sample
the model parameter space. However, these approaches cannot fully handle the computer
resources provided by modern supercomputers. In this thesis, I propose to solve seismic travel-
time tomography problems using evolutionary algorithms which are population-based stochastic
optimization methods inspired by the natural evolution of species. They operate on concurrent
individuals within a population that represent independent models, and evolve through stochastic
processes characterizing the different mechanisms involved in natural evolution. Therefore, the
models within a population can be intrinsically evaluated in parallel which makes evolutionary
algorithms particularly adapted to the parallel architecture of supercomputers. More specifically,
the works presented in this manuscript emphasize on the three most popular evolutionary
algorithms, namely Differential Evolution, Particle Swarm Optimization and Covariance Matrix
Adaptation - Evolution Strategy. The feasibility of evolutionary algorithms to solve seismic
tomography problems is assessed using two different data sets: a real data set acquired in the
context of hydraulic fracturing and a synthetic refraction data set generated using the Marmousi
velocity model that presents a complex geology structure.

Keywords: evolutionary algorithm, seismic tomography, inverse problem, high performance
computing, artificial intelligence

vi

CONTENTS vii

Contents

1 Introduction 1

1.1 General context . 1

1.2 Inverse problems in geophysics . 2

1.3 Overview . 5

1.4 Contributions . 7

2 Introduction to evolutionary algorithms 11

2.1 Black-box optimization . 12

2.1.1 Misfit function . 12

2.1.2 Derivative-free algorithms . 14

2.2 Evolutionary algorithms . 15

2.2.1 Differential Evolution . 17

2.2.2 Particle Swarm Optimization . 19

2.2.3 Covariance Matrix Adaptation - Evolution-Strategy 23

2.3 Sample codes . 27

2.3.1 Differential Evolution . 27

2.3.2 Particle Swarm Optimization . 28

2.3.3 Covariance Matrix Adaptation - Evolution Strategy 28

2.4 Parallel implementation . 30

2.4.1 About supercomputers . 30

2.4.2 Hybrid parallel programming . 32

2.5 Conclusion . 34

3 1D traveltime tomography 35

Abstract . 36

3.1 Introduction . 37

3.2 Theory and method . 38

viii CONTENTS

3.2.1 Particle Swarm Optimization . 38

3.2.2 Premature convergence . 39

3.2.3 Competitive Particle Swarm Optimization 40

3.3 Robustness testing . 44

3.3.1 Sensitivity analysis . 44

3.3.2 Benchmark . 46

3.3.3 Importance sampling . 46

3.4 Numerical example . 47

3.4.1 Acquisition . 47

3.4.2 Inversion results . 49

3.5 Hybrid parallel implementation . 53

3.6 Discussion and conclusion . 54

3.7 Appendice . 55

3.7.1 PSO algorithm . 55

3.7.2 CPSO algorithm . 56

3.7.3 Benchmark test functions . 57

3.7.4 Sensitivity analysis . 57

4 Refraction traveltime tomography 59

Abstract . 60

4.1 Introduction . 60

4.2 Theory and method . 62

4.2.1 Evolutionary algorithms . 63

4.2.2 Control parameter values . 67

4.3 Numerical example . 67

4.3.1 Synthetic data and parametrization . 67

4.3.2 Weighted mean model and standard deviation 68

4.3.3 Initial models . 70

4.3.4 Results . 72

4.3.5 Scalability . 77

4.4 Discussion and conclusion . 78

4.5 List of symbols . 80

CONTENTS ix

5 Neural network automated phase onset picking 81

Abstract . 82

5.1 Introduction . 83

5.2 Description . 84

5.2.1 Artificial neural network . 84

5.2.2 Attributes . 85

5.3 Methodology . 88

5.3.1 Real data set . 88

5.3.2 Attributes selection . 90

5.3.3 Training . 93

5.3.4 Skewing the training set . 94

5.3.5 Prediction . 95

5.4 Conclusion . 97

6 Conclusions and perspectives 99

6.1 Conclusions . 100

6.1.1 1D traveltime tomography . 100

6.1.2 Refraction traveltime tomography . 101

6.1.3 Neural network automated phase onset picking 101

6.2 Perspectives . 102

6.2.1 Improving parallelism and convergence: Island models 102

6.2.2 Improving phase onset picking: Bayesian neural network and neuroevolution102

6.2.3 Use of velocity model uncertainties . 103

A Eikonal equation 105

B Surface wave tomography 109

B.1 Introduction . 110

B.2 Forward problem: Thomson-Haskell propagator 110

B.2.1 Rayleigh wave in a layered medium . 110

B.2.2 Roots search . 114

B.3 Inversion . 114

B.4 Conclusion . 116

x CONTENTS

C Propagation of velocity uncertainties to locations 117

Abstract . 118

C.1 Introduction . 118

C.2 From optimization to uncertainty quantification 119

C.3 Propagation of velocity uncertainties to locations 120

C.3.1 Inversion . 120

C.3.2 Acceptable models . 120

C.3.3 Velocity models clustering . 121

C.4 Conclusion . 123

Bibliography 125

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Contents

1.1 General context . 1

1.2 Inverse problems in geophysics . 2

1.3 Overview . 5

1.4 Contributions . 7

1.1 General context

This thesis is supported by the GEOTREF project (www.geotref.com). This project is funded
by ADEME in the frame of les Investissements d’Avenir program. Partners of the GEOTREF
project are Kidova, Teranov, MINES ParisTech, ENS Paris, GeoAzur, GeoRessources, IMFT,
IPGS, LHyGes, UA, and UCP-GEC. GEOTREF is a multi-disciplinary platform for innovation
and demonstration activities for the exploration and development of high geothermal energy in
fractured reservoirs.

The initial topic of this work aimed at characterizing the seismicity induced by the hydraulic
fracturing process in the context of geothermal energy. In non-conventional hydrocarbon
reservoirs or geothermal systems, fluid is usually injected into reservoirs to improve their
permeability. This process can lead to the failure of the medium due to the changes of its
physical properties (e.g. stress, pore pressure). Populated areas must be monitored in case of
increasing seismic rate and/or magnitude. For instance, an earthquake of magnitude 3.4 has
been caused by a geothermal project in Basel (Switzerland) in 2006 (Deichmann and Giardini
(2009)).

Microseismic monitoring is currently the only method available to follow the state of the fracking
and is thus required for security reasons. In the last decades, it has been a key tool to understand
and delineate hydraulic fracture geometry (Sasaki (1998), Maxwell et al. (2002), Rothert and
Shapiro (2003), Warpinski, Wolhart and Wright (2004), Calvez et al. (2007), Daniels et al.

https://geotref.com/

2 1.2. INVERSE PROBLEMS IN GEOPHYSICS

(2007), Warpinski (2009), Maxwell et al. (2010)). It consists in locating microseismic events to
constrain the geometry of the fractures. Event locations are strongly affected by the quality of
the velocity model used and is usually disregarded in the interpretation (Cipolla et al. (2011)).
Maxwell (2009) has shown on a simple synthetic model that an error on the velocity of only a
few percent can produce a shift in an event location that can reach several hundreds of meters.
In routine microseismic monitoring, a layered velocity model is constructed from acoustic logs
that measure both compressional (P-) and shear (S-) wave velocities. The velocity model is then
calibrated using perforation shots from known locations (Eisner et al. (2009)). Finally, the quality
of the calibrated velocity model can be assessed by evaluating the errors in perforation shot
locations.

In the frame of geothermal energy, microseismic events are typically recorded by a limited
number of receivers deployed on the near-surface and can be used to image the reservoir.
Such an acquisition geometry is not ideal as the ray paths from the perforation shots to the
receivers do not correctly cover the medium traversed. Consequently, a given velocity model
that gives small perforation shot location errors is only one of the many velocity models that
can accurately relocate the shots. In addition, Gesret et al. (2015) showed that more reliable
locations of hypocenters with their associated uncertainties can be obtained by propagating the
velocity model uncertainties to the event locations. Therefore, an accurate velocity model must
be derived and its uncertainties acknowledged to enable reliable interpretation of microseismic
data.

Broadly speaking, velocity models are reconstructed through a tomographic procedure that
iteratively tries to fit a model to match the observed data. This procedure is usually called
an inversion as one wants to find the model that could have generated a given data set. In
this manuscript, I particularly emphasize on first arrival traveltime tomography that aims at
building the velocity model using the traveltimes observed from the seismic sources to all the
receivers. The methodology initially developed to solve the tomographic problem in the context
of microseismicity is applied to other tomographic problems that could potentially find an interest
in geothermal reservoir characterization. First arrival traveltime tomography is an optimization
problem and thus requires an accurate forward problem and an optimization algorithm for its
resolution.

In this introduction, I first describe the principles of inverse problems. The limitations of the
conventional methods used to solve an inverse problem in geophysics motivate the need to
develop more computer efficient algorithms.

1.2 Inverse problems in geophysics

Solving an inverse problem consists in finding the physical model that explains the data by
minimizing the misfit between the observed data and the data predicted by the model. Therefore,
it is necessary to define the physical law that accurately describes the relation between the
data and a physical model. In inversion, this operation is known as the foward modeling. Let
d = {d1; :::; dN} be a discrete vector of N data points, m = {m1; :::; md} a physical model
described by d parameters, and g the forward modeling operator such that

d = g (m) : (1.1)

The quality of the data is strongly affected by the level of noise recorded during the measurements.
In addition, mathematical models are oftenly subject to hypothesis and approximations and thus
do not exactly reproduce the true physics. Therefore, an additional term ε that accounts for both

CHAPTER 1. INTRODUCTION 3

the errors in the data and the forward modeling must be considered and Equation (1.1) can be
rewritten as

d = g (m) + ε: (1.2)

In first arrival traveltime tomography, d and m are the traveltime data and the velocity model,
respectively. First arrival traveltimes can be accurately computed by solving the Eikonal equation
that links the velocities of the propagation medium to the traveltimes under the high frequency
approximation. This approximation is only valid when the signal wavelength is negligible with
respect to the characteristic wavelength of the medium. A full and detailed presentation of the
dynamic of acoustic waves can be found in Chapman (1985), Sheriff and Geldart (1995) and
Červený (2001) and is beyond the scope of this thesis. However, a short description of the
underlying Eikonal equation is reviewed in Appendix A. The Eikonal equation is written

|∇T |2 =
1

c2
(1.3)

where |·| denotes the absolute value, ∇ the gradient operator, T the traveltime and c the velocity
of the medium. It is a partial differential equation that can be solved either analytically for simple
velocity models, or numerically by using ray-tracing (Julian and Gubbins (1977), Červený (1987),
Um and Thurber (1987)) or a finite-difference Eikonal solver (Vidale (1988), Vidale (1990),
Podvin and Lecomte (1991), Trier and Symes (1991)). In this thesis, the finite-difference Eikonal
solver proposed by Noble, Gesret and Belayouni (2014) is used to compute accurate traveltimes.

Inverse problems rely on a scalar objective function that measures the misfit between the
observed and the theoretical data to assess the quality of the model parameters, and is usually
called misfit function. The optimal model corresponds to the model that yields the global minimum
misfit function value. In other words, solving an inverse problem requires the minimization of the
misfit function E under the constraint m ∈ Ω (feasible space) such that

∀m ∈ Ω;mopt = argmin (E (m)) : (1.4)

Although other norms can be found in the literature, the misfit function is usually defined in the
least-squares sense in geophysics, following

E (m) =

»“
dobs − g (m)

”> “
dobs − g (m)

”– 1
2

(1.5)

where dobs stands for the observed data.

Misfit functions encountered in geophysical inverse problems are ill-posed and highly multi-modal
due to the non-linearity between the models and the data (Delprat-Jannaud and Lailly (1993),
Zhang and Toksöz (1998)). The non-linearity of first arrival traveltime tomography problems are
most oftenly addressed by using derivative-based (i.e. gradient) optimization methods (White
(1989), Zelt and Barton (1998), Taillandier et al. (2009), Rawlinson, Pozgay and Fishwick (2010),
Noble et al. (2010)) combined with a regularization procedure to make the problem better
posed (Hansen and O’Leary (1993), Menke (2012), Tikhonov et al. (2013)). Derivative-based
optimization methods are local optimization algorithms that iteratively update a model such that
the misfit function value decreases over time, the direction of updates being given by the gradient
of the misfit function with respect to the model parameters. Derivative-based algorithms include
the steepest descent methods (Nemeth, Normark and Qin (1997), Taillandier et al. (2009)),
the conjugate gradient methods (Luo and Schuster (1991), Zhou et al. (1995)), Gauss-Newton
methods (Delbos et al. (2006)), Quasi-Newton methods (Liu and Nocedal (1989), Nash and
Nocedal (1991)) and Newton methods (Gerhard Pratt, Shin and Hicks (1998)). Nowadays
methods can efficiently compute the gradient of the misfit function by using the adjoint state
method (Chavent (1974), Plessix (2006)).

4 1.2. INVERSE PROBLEMS IN GEOPHYSICS

As previously mentioned, one of the main challenges dealt when reconstructing a velocity model
is the non-uniqueness of the solution. Besides the unconstraining geometry inherent to typical
microseismic acquisition, additional sources of approximations and errors can contribute to the
non-uniqueness of the velocity model such as the parametrization chosen and the theory behind
the forward modeling (Tarantola (2005)). The adjoint state method applied to compute the
gradient when using derivative-based algorithms does not provide the sensitivity of the solution
to the errors and additional expensive calculations of the Fréchet derivatives are required
(Plessix (2006)). Moreover, derivative-based algorithms are local optimization methods that
make the assumption of a unique solution that presents a good trade-off between data fit and
regularization and strongly depend on the initial solution (Menke (2012)). For highly non-linear
problems such as traveltime tomography, these approaches are not suitable when it comes to
uncertainty quantification.

From a theoretical point of view, global optimization methods that sample the model parameter
space are required to appraise the uncertainties. Geophysicists usually resort to probabilistic
approaches that rely on the Bayes theorem combined with Markov Chain Monte Carlo algorithms
(MCMC, Tarantola and Valette (1982), Scales and Snieder (1997), Ulrych, Sacchi and Woodbury
(2001), Scales and Tenorio (2001)). In the Bayesian framework, the model parameters are
random variables distributed accordingly to a probability distribution. Interest of this approach
is two-fold: one can use the a priori knowledge about the parameter values to better constrain
the estimation of the model parameters (an uninformative prior distribution can be defined
otherwise); it thoroughly samples the model space and provides reliable parameter uncertainty
estimates which offers a way to tackle the non-linear and non-uniqueness issues. MCMC
algorithms have been first introduced in geophysics by Keilis-Borok and Yanovskaya (1967) and
have been widespreadly used for optimization and sampling purpose to solve various types
of geophysical inverse problem since then. Press (1968), Wiggins (1969) and Press (1970)
were the first to apply MCMC algorithms to fit Earth models to seismological data. Cary and
Chapman (1988) and Koren et al. (1991) addressed the problem of seismic waveform fitting
using MCMC methods. Zhang and Toksöz (1998) used an MCMC approach to estimate the
uncertainties of a velocity model obtained by a derivative-based optimization method. Other
than in seismic studies, they also found applications in magnetotelluric (Jones and Hutton
(1979), Jones, Olafsdottir and Tiikkainen (1983), Grandis, Menvielle and Roussignol (1999))
and electrical (Schott et al. (1999), Malinverno and Torres-Verdín (2000), Ramirez et al. (2005))
studies. A comprehensive but non-exhaustive review of their applications in geophysics can be
found in Mosegaard and Tarantola (1995) and Sambridge and Mosegaard (2002). Nonetheless,
classical MCMC algorithms can become inefficient with increasing number of parameters and
multi-modal distributions as they can be easily trapped in a local mode. Many algorithms based
on MCMC have been proposed to address its shortcomings such as the well-known Simulated
Annealing (SA, Kirkpatrick, Gelatt and Vecchi (1983)), reversible-jump Markov Chain Monte
Carlo (rj-MCMC, Green (1995)) or by using simultaneous interactive Markov Chains (Romary
(2010), Sambridge (2014), Bottero et al. (2016)). On the one hand, rj-MCMC provides an
interesting way to solve inverse problems without the requirement to fix the number of unknowns
to optimize a priori and has been first applied in geophysics by Malinverno and Leaney (2000).
Such inversion algorithms are usually qualified as transdimensional since they jump between
parameter subspaces of different dimensionality. Bodin and Sambridge (2009) applied this
algorithm to the seismic tomography problem. More recently, Piana Agostinetti, Giacomuzzi
and Malinverno (2015) solved a three-dimensional local earthquake tomography problem using
a transdimensional approach. On the other hand, interactive Markov Chains methods tackle
the sequential nature of MCMC algorithms by allowing the sampling to be done in parallel.
However, these methods are not straightforward to implement and remain sensitive to their
control parameter values which are not easy to tune.

CHAPTER 1. INTRODUCTION 5

Microseismic data are required to be processed in real-time which motivates the need to develop
and implement computationally efficient algorithms. In this thesis, I essentially work with another
class of global optimization algorithms that has been growing in popularity in the last decades
and are known as evolutionary algorithms. These methods are stochastic optimization methods
inspired by the natural evolution of species and simultaneously operate on a set of candidate
solutions called a population. Evolutionary algorithms have been quite overlooked by the
geophysical community mostly due to the computational cost as the misfit function requires to
be evaluated numerous times. Only few applications are available in the geophysical literature.
More specifically, they have been applied to solve magnetotelluric inverse problems (Shaw
and Srivastava (2007), Grayver and Kuvshinov (2016), Xiong et al. (2018)), gravity inversion
(Zhang et al. (2004), Toushmalani (2013), Pallero et al. (2015), Ekinci et al. (2016)), history
matching for reservoir characterization (Schulze-Riegert et al. (2001), Hajizadeh, Christie and
Demyanov (2010), Mohamed et al. (2010), Fernández Martínez et al. (2012)), earthquake
location (Sambridge and Gallagher (1993), Růžek and Kvasnička (2001), Han and Wang (2009)),
surface-wave inversion (Wilken and Rabbel (2012), Song et al. (2012), Poormirzaee (2016)),
and traveltime tomography (Tronicke, Paasche and Böniger (2012), Rumpf and Tronicke (2015),
Poormirzaee, Moghadam and Zarean (2015)). Nonetheless, with the rise in computational power
mainly brought by the parallel architectures of supercomputers, evolutionary algorithms are
becoming an interesting alternative to conventionally used optimization methods as they are
intrinsically parallel. Originally, evolutionary algorithms have not been designed for uncertainty
quantification. However, as stochastic algorithms, they can be run several times to explore and
sample different subspaces of the model parameter space (Sen and Stoffa (1996)).

1.3 Overview

The manuscript is organized as followed:

• In Chapter 2, I give an introduction to evolutionary algorithms in the framework of black-box
optimization. First, I introduce the concepts of black-box optimization and evolutionary
algorithms. Many evolutionary algorithms have been proposed in the literature. However,
this thesis mainly emphasizes on the three most popular and efficient evolutionary algo-
rithms, namely the Differential Evolution (DE), the Particle Swarm Optimization (PSO)
and the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). These algorithms
are thoroughly described in Chapter 2. For each method, I detail the algorithm and the
underlying equations, and try to give a more intuitive explanation about how they work. A
sample working code (written in Python) is also provided for the three methods. Finally, I
give a brief description of the hybrid parallel programming paradigm used throughout this
thesis to solve seismic tomography problems using evolutionary algorithms in reasonable
computation time;

• In Chapter 3, I principally focus on PSO for its efficiency and ease of implementation. I
present a new optimization algorithm based on PSO that tackles its main shortcoming. I
called this new algorithm Competitive Particle Swarm Optimization (CPSO). Indeed, PSO
is particularly prone to stagnation and premature convergence (i.e. convergence toward a
local minimum) like any evolutionary algorithm. Therefore, I suggest a simple yet efficient
modification of the original implementation that improves the diversity of the swarm. I
demonstrate on several benchmark test functions that CPSO is more robust in terms of
convergence and sensitivity to its parameters compared to PSO. Besides, I show on a
highly multi-modal function that CPSO can be used for rapid uncertainty quantification.

6 1.3. OVERVIEW

Estimation of the Probability Density Function is done by sampling the model parameter
space through several independent inversions. The methodology is applied to a first arrival
traveltime tomography problem using a real 3D microseismic data set acquired in the
context of induced seismicity and is compared to a conventional MCMC sampler. The
results demonstrate that CPSO is able to reach the stationary regime much faster and
provides uncertainty estimates consistent with the ones obtained with the MCMC sampler.
Finally, I analyze the scalability of CPSO for this tomographic problem by evaluating its
parallel performance. Note that the results obtained in this work have been further used in
Appendix C;

• Chapter 4 aims at studying the feasibility of evolutionary algorithms to solve a problem
of larger dimensionality (> 102). To this end, I extend the methodology introduced in
Chapter 3 to the highly non-linear and multi-modal problem of refraction tomography that
could potentially find an interest in geothermal reservoir characterization. I apply the
methodology on the Marmousi velocity model that presents a complex geological structure
and compare the performances of DE, CPSO and CMA-ES. The synthetic traveltime data
are generated considering a surface acquisition geometry that consists of two hundred
shots and four hundred receivers which results in poor ray coverage in depths. The velocity
model is parametrized using 2D cardinal B-splines. I investigate the influences of the initial
velocity models, the population size and the maximum number of iterations. Evolutionary
algorithm are stochastic optimization methods and should ideally be insensitive to the
initial population. However, I show that using a realistic initial population instead of fully
random models can significantly improves the convergence of these algorithms on the
refraction tomography problem. Finally, I assess the benefits and shortcomings of each
algorithm by performing scalability and statistical analysis over the results obtained after
several runs;

• Microseismic monitoring requires an efficient automated phase onset picking algorithm for
real-time microseismic event locations induced by hydraulic fracturing (Calvez et al. (2007)).
To a lesser extent, errors in arrival times can also contribute to errors in locations. Common
automated phase onset pickers are not designed to estimate arrival time uncertainties.
In Chapter 5, I describe an automated phase onset picking algorithm based on a multi-
attributes neural network. It is noteworthy that this chapter is the result of a project in
collaboration with ENS Paris and ENSG, the main emphasis of this thesis remains the
application of evolutionary algorithms to seismic tomography. Principles of neural networks
are merely described and only important notions required to the understanding of the
chapter are introduced. The chapter is written as a description of a computer software
implemented in Python. I describe the methodology by applying the workflow on a real
data set acquired at the laboratory scale. Optimal attributes and their parameters are
selected thanks to a scatter-plot matrix. Then, a neural network can be trained using either
a derivative-based optimizer or an evolutionary algorithm. The probability map output by
the neural network model is used to predict a phase onset, assess its error or reject a false
positive. Finally, the picker model is applied to the whole data set to predict the arrival
times and relocate the microseismic events. The results obtained are promising in terms
of accuracy and quantification of arrival time picking errors;

• In Chapter 6, I summarize the main conclusions drawn throughout this manuscript. I also
propose several prospects of improvement, such as the island models to enhance the
performance of evolutionary algorithms, using neuroevolution to find the optimal neural
network architecture, and what to do with velocity model uncertainties once quantified;

CHAPTER 1. INTRODUCTION 7

• In Appendix A, I detail the derivation of the elasto-dynamic equation to obtain the Eikonal
equation underlying the main forward modeling involved in this thesis (i.e. computation of
first arrival traveltimes);

• In Appendix B, I apply the same methodology as described in Chapter 3 to a surface
wave tomography problem. The forward modeling is first briefly detailed and consists in
estimating the frequency-dependent modal dispersion curves using the Thomson-Haskell
propagator method. Finally, I show an application to a real data set that consists of three
dispersion curves obtained by the joint use of ambient noise correlation and Multiple signal
characterization algorithm (MUSIC);

• Gesret et al. (2015) has shown that accurate hypocenter locations with more reliable
uncertainties can be retrieved by accounting for the velocity model uncertainties during
the location procedure. This is achieved by locating the events in all the velocity models
sampled which can be computationally inefficient. In Appendix C, I propose to use an
unsupervised learning algorithm (Mini-batch K-Means) to find a subset of velocity models
for the location. The methodology is applied to the velocity models sampled in Chapter 3.

1.4 Contributions

As my work mainly focuses on computation time performance, I first cleaned and optimized
the existing finite-difference Eikonal solver proposed in Noble, Gesret and Belayouni (2014). I
added several functions for parallel traveltime grid computation using OpenMP and a posteriori
ray-tracing based on the work of Podvin and Lecomte (1991). The code is originally written in
Fortran and has been wrapped into a Python package for faster prototyping. I also implemented
different evolutionary algorithms such as DE, PSO and CMA-ES, and developed CPSO, a
new evolutionary algorithm based on PSO that improves its robustness. All the evolutionary
algorithms are parallelized using MPI. The codes are available on my GitHub page as Python
packages or Fortran modules:

• FTeikPy: object-oriented module that computes accurate first arrival traveltimes in 2D and
3D heterogeneous isotropic velocity model. Available at github.com/keurfonluu/FTeikPy;

• Forlab: Fortran library I wrote that contains more that one hundred polymorphic basic
functions inspired by Matlab and NumPy. All the Fortran softwares I wrote have core
dependency to this library. Available at github.com/keurfonluu/Forlab;

• StochOPy: user-friendly routines to sample or optimize objective functions with the most
popular evolutionary algorithms, as described in Chapter 2. For completeness and out
of curiosity, MCMC sampling algorithms such as Metropolis-Hastings and Hamiltonian
Monte Carlo have been implemented in this package. A Graphical User Interface (GUI) is
available to test the different algorithms and their parameters on several benchmark test
functions. Available at github.com/keurfonluu/StochOPy;

• StochOptim: same as StochOPy (without GUI) but in Fortran. This module has been
used in Chapter 3 and Chapter 4 to solve the tomographic problems. Available at
github.com/keurfonluu/StochOptim.

https://github.com/keurfonluu/FTeikPy
https://github.com/keurfonluu/Forlab
https://github.com/keurfonluu/StochOPy
https://github.com/keurfonluu/StochOptim

8 1.4. CONTRIBUTIONS

During my thesis, I also worked with other students on other inverse problems. In the frame of
the GEOTREF project, I collaborated with the Laboratoire de Géologie at the ENS Paris and
ENSG to study the geomechanical properties of an andesite sample from la Guadeloupe. My
work consisted in relocating the acoustic emissions recorded using a conventional tri-axial cell.
Therefore, I implemented an automated neural network phase onset picker to pick the arrival
times for event relocations. In addition, I worked with a colleague on dispersion curve inversion
in the context of ambient noise surface wave tomography. I implemented the forward modeling in
Fortran and wrapped it into a Python module, the dispersion curves are inverted using StochOPy.
The computer codes used for the two collaborations have also been made available on GitHub:

• AIPycker: pythonic object-oriented module for automated phase onset picking using a
multi-attributes neural network, as described in Chapter 5. It depends on NumPy, SciPy,
ObsPy, Pandas, Matplotlib, Scikit-learn and StochOPy. It includes a GUI for manual onset
picking and neural network training through a wizard. The package is in early development
and the methodology still has to be improved. However, AIPycker is more user-friendly
and has shown superior results compared to the commercial software used at ENS Paris.
Available at github.com/keurfonluu/AIPycker;

• EvoDCinv: surface wave dispersion curve inversion using evolutionary algorithms. The
package can handle inversion of multi-modal dispersion curves and both Rayleigh and
Love waves, as described in Appendix B. Available at github.com/keurfonluu/EvoDCinv.

The results obtained presented in this manuscript have been subject to oral presentations in two
international conferences, and submitted for publication:

• Zhi Li, Keurfon Luu, Aurélien Nicolas, Jérôme Fortin and Yves Guéguen, 2016. “Fluid-
induced rupture on heat-treated andesite.” 4th International Workshop on Rock Physics;

• Keurfon Luu, Mark Noble, Alexandrine Gesret, 2016. “A competitive particle swarm
optimization for nonlinear first arrival traveltime tomography.” 2016 SEG International Expo-
sition and Annual Meeting. Society of Exploration Geophysicists. doi: 10.1190/segam2016-
13840267.1;

• François Bonneau, Keurfon Luu, Aurélien Nicolas and Zhi Li, 2017. “Toward an under-
standing of the relationship between fracturing process and microseismic activity: study at
the laboratory scale.” 2017 RING Meeting;

• Keurfon Luu, Mark Noble, Alexandrine Gesret, Nidhal Belayouni and Pierre-François
Roux, 2017. “Propagation of velocity uncertainties to Microseismic locations using a
competitive Particle Swarm Optimizer.” 79th EAGE Conference and Exhibition 2017 ;

• Keurfon Luu, Mark Noble, Alexandrine Gesret, Nidhal Belayouni and Pierre-François
Roux, 2018. “A parallel competitive Particle Swarm Optimization for non-linear first arrival
traveltime tomography and uncertainty quantification.” Computers and Geosciences 113
(August 2017). Elsevier Ltd: 81–93. doi: 10.1016/j.cageo.2018.01.016;

• Marc Peruzzetto, Alexandre Kazantsev, Keurfon Luu, Jean-Philippe Métaxian, Frédéric
Huguet and Hervé Chauris, 2018. “Broadband ambient noise characterization by joint
use of cross-correlation and MUSIC algorithm.” Geophysical Journal International 215(2):
760-779 (November 2018). doi: 10.1093/gji/ggy311;

https://github.com/keurfonluu/AIPycker
https://github.com/keurfonluu/EvoDCinv
https://doi.org/10.1190/segam2016-13840267.1
https://doi.org/10.1190/segam2016-13840267.1
https://doi.org/10.1016/j.cageo.2018.01.016
https://doi.org/10.1093/gji/ggy311

CHAPTER 1. INTRODUCTION 9

• Keurfon Luu, Mark Noble, Alexandrine Gesret and Philippe Thierry, 2018. “Toward large
scale stochastic refraction tomography: a comparison of three evolutionary algorithms.”
Geophysical Prospecting. Under review.

10 1.4. CONTRIBUTIONS

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 11

Chapter 2

Introduction to evolutionary
algorithms

Contents

2.1 Black-box optimization . 12

2.1.1 Misfit function . 12

2.1.2 Derivative-free algorithms . 14

2.2 Evolutionary algorithms . 15

2.2.1 Differential Evolution . 17

2.2.2 Particle Swarm Optimization . 19

2.2.3 Covariance Matrix Adaptation - Evolution-Strategy 23

2.3 Sample codes . 27

2.3.1 Differential Evolution . 27

2.3.2 Particle Swarm Optimization . 28

2.3.3 Covariance Matrix Adaptation - Evolution Strategy 28

2.4 Parallel implementation . 30

2.4.1 About supercomputers . 30

2.4.2 Hybrid parallel programming . 32

2.5 Conclusion . 34

Ce chapitre est une introduction aux algorithmes évolutionnistes dans le contexte de l’optimisation
dite boîte-noire. Ces algorithmes sont des méthodes stochastiques opérant sur une population
de modèles représentés par des individus, et réputés pour être plus robustes que les approches

12 2.1. BLACK-BOX OPTIMIZATION

basées sur les méthodes de Monte-Carlo en termes d’optimisation. Les algorithmes évolu-
tionnistes sont notamment très adaptés au calcul sur architecture parallèle, ce qui leur permet
de mieux tirer partie des ressources computationnelles offertes par les super-calculateurs
modernes par rapport aux méthodes de Monte-Carlo. J’introduis en premier lieu le concept
d’optimisation boîte-noire avant de parler des algorithmes évolutionnistes. Bien que de nom-
breux algorithmes évolutionnistes aient été proposés dans la littérature, je ne m’intéresserai
qu’aux trois algorithmes les plus efficaces et populaires, à savoir l’évolution différentielle (Dif-
ferential Evolution, DE), l’optimisation par essaim particulaire (Particle Swarm Optimization,
PSO), et la stratégie d’évolution par adaptation de la matrice de covariance (Covariance Matrix
Adaptation - Evolution Strategy, CMA-ES). Pour chaque méthode, je détaille l’algorithme ainsi
que les équations sous-jacentes, et j’essaie de donner une explication plus intuitive de leur
fonctionnement. Je fournis notamment un exemple de code (écrit en Python) pour chacun des
algorithmes. Enfin, j’introduis le parallélisme hybride adopté dans cette thèse pour la résolution
des problèmes de tomographie sismique par des algorithmes évolutionnistes avec des temps
de calcul raisonnables.

La PSO est plus amplement étudiée dans le Chapitre 3 avec une application sur un jeu
de données microsismiques réel. J’y propose un nouvel algorithme que j’ai appelé la PSO
Compétitive (CPSO) basé sur la PSO qui résout son principal défaut à savoir la convergence
prématurée. La même méthodologie est notamment appliquée à un problème de tomographie
des ondes de surface en Annexe B où seuls le problème direct et les données diffèrent. J’étends
ensuite l’étude à un problème de tomographie des ondes réfractées dans le Chapitre 4 dont le
but est d’analyser la faisabilité des algorithmes évolutionnistes pour la résolution d’un problème
à grand nombre de paramètres en comparant les trois algorithmes évolutionnistes (DE, CPSO,
CMA-ES) introduits dans ce chapitre.

Tous les algorithmes décrits dans ce chapitre sont disponibles en libre accès sur ma page
GitHub :

• StochOPy : routines faciles à utiliser pour échantillonner ou optimiser une fonction
d’objectif à l’aide des algorithmes évolutionnistes les plus populaires. Certains algo-
rithmes d’échantillonnage MCMC sont aussi disponibles tels que l’algorithme de Metropolis-
Hastings et le Monte-Carlo Hamiltonien. Une interface utilisateur graphique a notamment
été implémentée pour tester les différents algorithmes ainsi que leurs paramètres sur de
nombreuses fonctions de test. Disponible à l’adresse github.com/keurfonluu/StochOPy;

• StochOptim : même chose que StochOPy (sans interface graphique utilisateur) mais écrit
en Fortran. Ce module a été utilisé dans le Chapitre 3 et Chapitre 4 pour l’inversion des
deux problèmes de tomographie. Disponible à l’adresse github.com/keurfonluu/StochOptim.

2.1 Black-box optimization

2.1.1 Misfit function

An optimization problem consists in minimizing an objective function (or cost function) f (x):

min
x∈Ω

f (x) (2.1)

where Ω ⊂ Rd is the search space (or feasible space), d denoting the dimension of the problem.
It aims to find one or several candidate solutions x ∈ Ω that yield the lowest possible objective

https://github.com/keurfonluu/StochOPy
https://github.com/keurfonluu/StochOptim

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 13

V = 2000 m/s

0 20 40 60 80 100

0

20

40

60

X (m)

D
ep

th
(m

)

1000 1500 2000 2500 3000
0

0:2

0:4

0:6

0:8

1

Velocity (m/s)

N
or

m
al

iz
ed

m
is

fit

Figure 2.1: (Left) Synthetic earth model. The source and the receiver are respectively represented by the
white disk and white triangle. (Right) Misfit function for different values of velocity (V ∈ [1000; 3000] m/s).
The global minimum of the misfit function (at 2000 m/s) indicates the true velocity of the earth model.

function value f (x). In geophysics, the objective function measures the misfit between the
observed data (e.g. traveltimes) and the data generated by a physical model (e.g. velocity model),
and is thus usually referred to as the misfit function.

For instance, let us consider a simple traveltime tomography problem as depicted in Figure 2.1
(left). The earth model is characterized by a homogeneous velocity model of V = 2000 m/s. A
signal is emitted by a source point and recorded by a single receiver at a time T . In traveltime
tomography, the inputs (e.g. data) are the traveltime T and the positions of the source point and
receiver, and the unknown is the velocity V . The physical relationship that links the traveltime to
the velocity is written

T (V) =
D

V
(2.2)

where D denotes the distance between the source point and the receiver. The misfit function E
is usually defined in the least-square sense following

E (V) = |T − T (V)|2: (2.3)

Figure 2.1 (right) shows the misfit function landscape built by systematically evaluating the
function for different velocity values. The global minimum indicates the true velocity of the earth
model.

Note that the problem illustrated in Figure 2.1 is unidimensional and well-posed, and presents
a convex misfit function with a trivial solution. The velocity can be found by a simple grid
(i.e. exhaustive) search over a range of feasible velocities. This kind of search procedure
can only be achieved when dealing with few variables to optimize and is inefficient in higher
dimensions (> 5). Several other properties of a misfit function can make it difficult to solve, such
as

• multi-modality: the misfit function presents several local minima that can easily trap a local
optimization method, as shown in Figure 2.2 (left);

• non-separability: a function is said to be separable if each variable xi can be minimized
independently of the values of the other variables, a separable function can thus be
minimized by d one-dimensional optimizations, as shown in Figure 2.2 (middle);

• ill-conditioning: the condition number is the ratio of the largest to the smallest eigenvalues
of the Hessian. A problem is said to be ill-conditioned if its condition number is large

14 2.1. BLACK-BOX OPTIMIZATION

Multi-modal Non-separable Ill-conditioned

Figure 2.2: (Left) Multi-modal function with four local minima. (Middle) Non-separable function represented
by a rotated ellipsoid. (Right) Ill-conditioned function with one undetermined parameter.

(typically > 105). Ill-conditioning results in variables that exhibit significant discrepancies
in the sensitivity to their contributions to the misfit function value, as shown in Figure 2.2
(right).

Real-world optimization problems are generally ill-posed, multi-modal, non-separable and often
ill-conditioned, and require advanced optimization algorithms to be solved. In the following and
for consistency with the remainder of the manuscript, the misfit function is denoted by E and the
variables to optimize are referred to as model parameters consequently denoted by m.

2.1.2 Derivative-free algorithms

In the context of black-box optimization, no assumption is made on the misfit function such
as whether it is continuous and/or differentiable. Black-box optimization algorithms can only
query the misfit function values E (m) of any search point m of the feasible space Ω (i.e. zero
order information). Thus, the algorithms do not have access to higher order information such
as the gradient of the misfit function. However, it is still possible to approximate the gradient
by finite-difference in the case where the misfit function is computationally cheap (i.e. fast to
compute), and derivative-based optimization algorithms can thus be used in the black-box
scenario. Real-world optimization problems deal with computationally expensive misfit functions
(especially in geophysics) and numerical approximation of the gradient is not feasible in practice.

Methods taylored for black-box optimization are the derivative-free optimization algorithms.
These algorithms are called zero order methods as they only exploit the first term of the Taylor

BLACK

BOX

• Update model parameters m

• Can only access E(m)

OPTIMIZATION ALGORITHM

mE(m)

Figure 2.3: Black-box optimization. The optimization algorithm has only access to zero order information.

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 15

expansion of the misfit function (analogously, derivative-based methods are first or second
order methods). While derivative-based methods are strictly deterministic in the sense that the
solution is fully determined by the parameters and initial conditions, derivative-free methods can
either be deterministic or stochastic (i.e. randomized). Deterministic derivative-free algorithms
iteratively evaluate a set of points around the current point, and save the one that yields a
lower misfit function value than the current point. It includes Simplex or Nelder-Mead’s method
(Nelder and Mead (1965), McKinnon (1998)), pattern search (Hooke and Jeeves (1961), Torczon
(1997)) or Powell’s method (Fletcher and Powell (1963), Powell (1964)). However, similarly to
derivative-based methods, these algorithms are local optimization methods that depend on
the initial conditions. On the other hand, evolutionary algorithms are stochastic derivative-free
algorithms inspired by the natural evolution of species. This thesis mainly focuses on this type of
black-box optimization algorithm.

2.2 Evolutionary algorithms

As many more individuals of each species are born than can possibly survive; and
as, consequently, there is a frequently recurring struggle for existence, it follows
that any being, if it vary however slightly in any manner profitable to itself, under
the complex and sometimes varying conditions of life, will have a better chance of
surviving, and thus be naturally selected. From the strong principle of inheritance,
any selected variety will tend to propagate its new and modified form.

— Charles Darwin, On the Origin of Species (1859)

Natural evolution of species has been first theorized by Charles Darwin in his book On the
Origin of Species published in 1859. He states that all the species have evolved from a common
ancestor as a result of a process he called natural selection. According to Darwin’s theory of
evolution, natural selection operates following “one general law leading to the advancement of
all organic beings, namely, multiply, vary, let the strongest live and the weakest die”. Although
his theory has been well received by other scientists, it has also raised several criticisms. The
main criticism concerned the blending inheritance principle that would alter any beneficial
characteristics and thus eliminate them after several generations. Blending inheritance has
been discarded later in favor of the Mendelian inheritance discovered by Gregor Mendel in
1865 and presented in Experiments on Plant Hybridization (Mendel (1866), Hewlett and Mendel
(1966)). Following the Mendelian inheritance principle, characteristics from parents are discretely
passed to the offspring with a certain probability instead of being averaged. Modern population
genetics is based on the combination of the principles brought by Darwin’s theory of evolution
and Mendel’s principles of inheritance. All in all, evolution of populations is driven by three main
mechanisms:

• Mutation: alteration of the characteristics of each individual within a population,

• Recombination: production of offspring with characteristic combinations that differ from
those of either parent,

• Selection: pick offspring with characteristics that are beneficial and dispose of disadvanta-
geous ones.

16 2.2. EVOLUTIONARY ALGORITHMS

Evolutionary algorithms are stochastic derivative-free optimization algorithms inspired by the
natural evolution of species. The intrinsic operations are based on the genetic inheritance
principle and the natural selection mechanism proposed respectively by Gregor Mendel and
Charles Darwin. Broadly speaking, evolutionary algorithm consequently refers to all the optimiza-
tion methods that operate on a concurrent population of individuals (i.e. models) and generate
new populations through genetic operations (mutation, recombination, selection). Evolutionary
algorithms include Genetic algorithm (Holland (1973), Davis (1991)), Genetic programming
(Koza (1992), Koza (1994)), Evolutionary programming (Fogel (1993), Fogel (1999)), Evolution
strategies (Rechenberg (1973), Schwefel (1984)) and Swarm intelligence (Bishop (1989), Dorigo,
Maniezzo and Colorni (1996)). Strictly speaking, Swarm intelligence is not a class of evolu-
tionary algorithm as these methods are rather inspired by the social group behavior of certain
species. However, they still fall into the broad definition of evolutionary algorithm and are usually
considered as such. Likewise, the well-known Neighborhood algorithm (Sambridge (1999)) – at
least among the geophysical community – can also be considered as an evolutionary algorithm.

From an optimization point of view, evolution starts by selecting the fittest individuals in a
population for reproduction to form the next generation. The chances of survival of the produced
offspring depend on the quality of the characteristics they inherited from their parents. This
process is iterated until a population with the fittest individuals is found. An evolutionary algorithm
can be described by the following general template:

1. Given a parametrized distribution P (m|θ), initialize θ0,

2. For generation k = 1; 2; ::::

a. Sample n new candidates from distribution P
“

m|θk−1
”
→ m1; :::;mn,

b. Evaluate the candidates on E: E (m1) ; :::; E (mn),
c. Update parameters θk ,

in which sampling (2a.) is the mutation and recombination mechanisms that create new indi-
viduals, selection of individuals (2b.) evaluates the fitness of a new individual by assigning a
scalar misfit value, and parameters update (2c.) corresponds to the remainder of the random
phenomena that contribute to the genetic drift.

These simple mechanisms provide evolutionary algorithms interesting properties for optimiza-
tion. They have demonstrated great flexibility and adaptability to solve a given task, robust
performance and global search capabilities (Back, Hammel and Schwefel (1997)). Besides,
evolutionary algorithms seem to be particularly suitable to solve multi-objective optimization
problems as they are able to capture several Pareto-optimal solutions in a single run (Fonseca
and Fleming (1995), Fonseca and Fleming (1998), Zitzler (1999), Deb (2001)). Evolutionary algo-
rithms are also closely related to neuroevolution – a subfield of research in Artificial Intelligence
– that consists in mutating and selecting the best neural networks to solve simple tasks (Ronald
and Schoenauer (1994), Angeline, Saunders and Pollack (1994), Stanley and Miikkulainen
(2002), Kassahun and Sommer (2005)). More recently, evolutionary algorithms have been
successfully applied to train deep neural networks, a task usually reserved to derivative-based
algorithms due to its high computational cost (Such et al. (2017), Conti et al. (2017), Lehman
et al. (2017)). This has been made possible by exploiting the intrinsic parallel property of
evolutionary algorithms that enables a better handling of all the computational power provided
by modern supercomputers. This property can also find practical applications in geophysical
inverse problems which is the main emphase of this thesis.

In the last decades, many new nature-inspired algorithms have been proposed such as Bees
Algorithm (Pham et al. (2006)), Glowworm Swarm Optimization (Krishnanand and Ghose

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 17

(2006)), Cuckoo Search (Yang and Deb (2009)), Bat Algorithm (Yang (2010)), Flower Pollination
Algorithm (Yang (2012)) or Grey Wolf Optimization (Mirjalili, Mirjalili and Lewis (2014)). This has
attracted criticism among the research community whose main concern is the lack of novelty
hidden behind a metaphor and argues that researchers should rather emphasize their works on
analyzing existing algorithms (Sörensen (2015)). For instance, Weyland (2010) has shown that
Harmony Search (Zong Woo Geem, Joong Hoon Kim and Loganathan (2001)) – an algorithm
mimicking the improvisation of musicians – is simply a special case of (—+ 1)-ES (Rechenberg
(1973)) introduced about 30 years earlier. In a recent paper, Saka, Hasançebi and Geem
(2016) performed a thorougher analysis of both methods, and concluded that the two algorithms
are substancially different conceptually and operationally. Discussing who is right or wrong,
whether one should stop proposing new nature-inspired algorithms or not, is beyond the scope
of this thesis. This chapter only introduces the three most popular evolutionary algorithms,
namely Differential Evolution (DE), Particle Swarm Optimization (PSO) and Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES). In the following, if not explicitly stated, the size of
the population is denoted by n, the dimension of the problem by d and the iteration number
(i.e. generation) by k.

2.2.1 Differential Evolution

Differential Evolution (DE) is a genetic programming algorithm introduced by Price (1996) and
Storn and Price (1997). DE begins with a set of individuals called a population where each
individual is a model solution to the problem to optimize. The population is initially sampled
according to a uniform distribution. It differs from the well-known Genetic algorithm by its
mutation and crossover (i.e. recombination) mechanisms.

Mutation

Unlike Evolution strategies, DE does not sample candidate solutions using predetermined
probability distribution functions. DE perturbs a random existing population vector by adding to it
the weighted difference between two different random population vectors. This mutation process
is repeated for each individual in the population. For each target vector mk

i , DE generates a
mutant vector vki following

vki = mk−1
r1 + F

“
mk−1
r2 −mk−1

r3

”
(2.4)

where r1; r2; r3 ∈ {1; 2; :::; n} are three distinct random indices different from i , F ∈ [0; 2] is the
mutation factor that weighs the differential variation

“
mk−1
r2 −mk−1

r3

”
. Mutation is an important

process that maintains diversity within the population and prevents premature convergence.
Large mutation factor increases the search radius (i.e. diversity) at the expense of speed of
convergence. The mutation mechanism is sketched in Figure 2.4.

Crossover

In order to further increase diversity in the population of mutant vectors, the authors have
introduced a crossover mechanism (i.e. recombination). It consists in mixing information from
the current vector mk−1

i with information from the mutant vector vki to produce a trial vector uki .
Crossover is achieved by randomly picking a parameter from either the current or mutant vectors
accordingly to a binomial distribution with probability defined by the crossover rate CR ∈ [0; 1],

18 2.2. EVOLUTIONARY ALGORITHMS

mr1
k-1

vi
k

mr2
k-1

mr3
k-1

Figure 2.4: Mutation in DE on a 2D misfit function represented by the contour lines. vk
i is generated by

adding the weighted differential variation
`
mk−1

r2
−mk−1

r3

´
to the individual mk−1

r1
, with mk−1

r1
, mk−1

r2
and

mk−1
r3

three random individuals chosen in the population.

which is written

ukji =

(
vkji if rj ≤ CR or j = R

mk−1
j i otherwise

(2.5)

with j being the parameter index, rj ∼ U (0; 1) a uniform random number, R ∈ {1; 2; :::; d} a
random parameter index. The condition j = R ensures that the trial vector gets at least one
mutated parameter. Crossover is illustrated in Figure 2.5.

According to Das and Suganthan (2011), a low CR value (< 0.1) is beneficial for non-separable
functions as it results in a search that changes separately each parameter of the mutated vectors.
Nonetheless, as previously explained, real-world problems are usually non-separable and it is
recommended to set CR > 0:1.

DE was originally designed for unconstrained optimization problems. Consequently, the trial

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

r2 ≤ CR

j = R

r6 ≤ CR

mi
k-1

ui
k

vi
k

Figure 2.5: Crossover in DE for d = 8 parameters. For each parameter, the trial vector uk
i receives a

parameter from either the current or mutant vectors accordingly to a binomial distribution with probability
defined by CR.

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 19

vector resulting from crossover is likely to fall outside of the feasible space. Price, Storn and
Lampinen (2006) suggests that the most unbiased constraints handling approach is to randomly
reinitialize any infeasible solution which also helps to maintain diversity within the population.

Selection and termination

Finally, selection applies the greedy criterion to determine which individuals to preserve based
on their misfit function values. If the trial vector uki yields a lower misfit, it replaces the target
vector mk

i , otherwise, the previous model mk−1
i is retained.

The algorithm stops when the population has converged:

1. The population is unable to produce better offspring different from the previous generation;

2. The maximum number of iterations is reached.

Mutation and crossover strategies

The strategy presented in this section is default and is known as DE/rand/1/bin as only one
differential weight is added to a randomly chosen vector, and crossover is due to independent
binomial experiments. Many other strategies are available in the literature and can be classified
following the notation DE/x/y/z where

• x denotes the individual to be mutated mr1 and can be rand (randomly chosen) or best
(individual that yields the lowest misfit);

• y specifies the number of difference vectors to add to mr1 . The current variant is 1. In case
of 2, the weighted differential variation is written F (mr2 −mr3 + mr4 −mr5) with r2, r3, r4
and r5 being four random indices;

• z characterizes the crossover distribution law and can be bin (binomial) or exp (exponen-
tial).

The default strategy has demonstrated excellent performances in many real-world problems
including geophysical problems (Barros et al. (2015), Storn (2017)). Nevertheless, as well as
the differential weight, the crossover rate and the population size, the strategy has to be chosen
dependently to the problem to optimize.

2.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a nature-inspired population-based optimization algorithm.
As a Swarm intelligence algorithm, PSO is not an evolutionary algorithm strictly speaking but is
usually considered as such as collective knowledge is channeled within the population. It has
been first introduced by Kennedy and Eberhart (1995) to study the social behavior of fishes and
birds in a flock.

20 2.2. EVOLUTIONARY ALGORITHMS

PSO algorithm

In PSO, the first step is to randomly position a swarm composed of several particles in the misfit
landscape (i.e. model parameter space). Each particle represents a model and can be seen
as flying through the misfit landscape while interacting with its neighborhood to find the global
minimum of the misfit function. Neighborhood topologies are more thoroughly described in
Section 2.2.2. All along the optimization process, each particle remembers the best position it
has visited so far in addition to the best position achieved by the entire swarm. More specifically,
a particle i is defined by a position vector mk

i and a velocity vector vki which is adjusted according
to its own personal best position and the global best position of the whole swarm. The velocity
and the position of each particle are updated following

vki = !vk−1
i + ffiprkp

“
mp;i −mk−1

i

”
+ ffig rkg

“
mg −mk−1

i

”
(2.6)

mk
i = mk−1

i + vki (2.7)

where mp;i and mg are respectively the personal best position of particle i and the global best
position of the population, rkp and rkg are uniform random number vectors drawn at iteration k,
! is an inertia weight, ffip and ffig are two acceleration parameters that respectively control the
cognition and social interactions of the particles. Principle of PSO is illustrated in Figure 2.6.

mg

mi
k-2

mi
k-1

mp,i

mi
k

vi
k

Figure 2.6: Principle of PSO on a 2D misfit function represented by the contour lines. Particle velocity vk
i

is constructed by adding three weighted terms: the previous velocity vk−1
i that acts as an inertial term,

the cognition term
“

mp;i −mk−1
i

”
that accounts for the particle’s personal knowledge, and the sociability

term
“

mg −mk−1
i

”
that involves the knowledge of the entire swarm.

The inertia weight ! has been introduced by Shi and Eberhart (1998) to help the particles
to dynamically adjust their velocities and refine the search near a local minimum. Another
formulation using a constriction coefficient based on Clerc (1999) to insure the convergence of
the algorithm can be found in the literature. However, Eberhart and Shi (2000) showed that the
inertia and constriction approaches are equivalent since the parameters are connected.

Empirical works have concluded that the performance of PSO is sensitive to its control param-
eters, namely the swarm size n, the maximum number of iterations kmax, !, ffip and ffig . Yet,

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 21

these studies have provided some insights on the initialization of some parameters (Van Den
Bergh and Engelbrecht (2006)). Eberhart and Shi (2000) empirically found that ! = 0:7298 and
ffip = ffig = 1:49618 are good parameter choices that lead to convergent behavior.

The swarm size and the maximum number of iterations have to be carefully chosen depending
on the problem and the computer resources available. These two parameters are related since
a smaller swarm requires more iterations to converge, while a bigger swarm converges more
rapidly. In real-world optimization problems, the computation cost is mainly dominated by the
forward modeling. Therefore, the optimization is usually stopped when a predefined number of
forward modelings (i.e. computations of misfit functions) is performed. The desired number of
forward modelings is controlled by both the swarm size and the maximum number of iterations.
Trelea (2003) has studied the effect of the swarm size on several benchmark test functions in 30
dimensions. He found that a medium number of particles (≈ 30 particles) gives the best results
in terms of number of misfit function evaluations. Too few particles (≈ 15 particles) gives a very
low success rate while too many particles (≈ 60 particles) results in much more misfit function
evaluations than needed although it increases the success rate. Piccand, O’Neill and Walker
(2008) came to the same conclusion with problems of higher dimensions (up to 500).

Constraints handling

Empirical studies have shown that the particles are prone to go beyond the search space
boundaries early throughout the optimization process. This behavior can raise several possible
problems such as

• Infeasible optimal solution: as personal best positions are pulled outside of the search
space, the global best position is pulled outside of the feasible space as well;

• Wasted effort: if particles fail to find a better solution outside, they are eventually pulled
back into the feasible space;

• Divergence: particle’s velocity increases drastically as the particle is distant from its
personal best and global best.

Several strategies that act directly upon the velocity have been proposed to address this behavior.
For instance, the velocity vector can be clamped to lie in [−Vmax;Vmax] to keep the particle
from moving too far from the model parameter space (Clerc and Kennedy (2002), Van Den
Bergh and Engelbrecht (2006)). However, Angeline (1998) showed that velocity clamping is
not sufficient to properly control the step size. Besides, the optimal clamping threshold Vmax is
problem-dependent. Another factor that can potentially influence the performance of PSO is
how velocities are initialized. Engelbrecht (2012) demonstrated that particles tend to leave the
search space independently of the velocity initialization approach and that the best approach is
to initialize particles to zero.

Therefore, it may be required to constrain the particles to stay within the feasible space by
repairing infeasible solutions. Several approaches are available in the literature of evolutionary
algorithms, such as:

• Random: this approach is the most common and simply consists in resampling each
parameter of a solution that violates the feasible space boundaries, as shown in Figure 2.7
(left);

22 2.2. EVOLUTIONARY ALGORITHMS

Random SetOnBoundary Shrinking

mi
k-1

mi
k

mi
k-1

mi
k

mi
k-1

mi
k

Figure 2.7: Constraints handling approaches: Random, SetOnBoundary and Shrinking.

• SetOnBoundary : any solution outside of the feasible space is reset on the bound of the
parameters it violates, as shown in Figure 2.7 (middle);

• Shrinking: the infeasible solution is set on the intersection of the line joining the parent
position to the child position and the violated boundary, as shown in Figure 2.7 (right).

Random approach explicitly maintains diversity within the population and is the one used in
DE (Section 2.2.1). However, it cannot be applied to PSO as it disrupts particle dynamics and
can potentially lead to divergent behavior. The SetOnBoundary and Shrinking approaches are
alike but only the latter preserves the particle’s initial trajectory. Padhye, Mittal and Deb (2015)
showed that Shrinking approach is the most versatile method for PSO.

Neighborhood topologies

In the presented PSO, each particle is connected to every other particle in the swarm following a
star topological structure. This variant of PSO is known as gbest (global best) PSO. It has been
shown that the structure of a social network strongly affects the communication and performance
within a social group (Bavelas (1950)). Likewise, performance of PSO is strongly affected by the
topology defining the interactions between the particles within a swarm. The most commonly
used topologies are

• Star (known as gbest PSO): the swarm is fully connected and every particle communicates
with every other particles in the swarm. Each particle is thus attracted by the best position
ever visited by the swarm. Information is more rapidly spread within the swarm which
results in faster convergence compared to other topologies but with higher chance of
premature convergence;

• Ring (known as lbest PSO): each particle is connected to its K adjacent neighbors.
Therefore, each particle is attracted by the best particle in its neighborhood instead of the
global best. This topology has the advantage to explore different regions of the search
space simultaneously at the cost of slower convergence;

• Wheel : a single particle is connected to every other particles which are only connected to
that one;

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 23

RingStar RandomWheels

Figure 2.8: Topologies of PSO: Star, Ring, Wheels and Random.

• Random: for n particles, n random symmetrical connections are assigned between each
pair of particles.

The aforementioned topologies are illustrated in Figure 2.8. Kennedy (1999) has studied these
topologies and concluded that the star topology performed better than the others. A more recent
study compared other topologies and also came to the conclusion that gbest PSO converges
faster but with lower diversity (Figueiredo and Ludermir (2014)).

2.2.3 Covariance Matrix Adaptation - Evolution-Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) (Hansen, Müller and Koumout-
sakos (2003)) is considered as the state-of-the-art method for stochastic numerical optimization
and is derived from the natural gradient. It is a second-order method similar to Quasi-Newton
methods (yet randomized) that has been designed to approximate the contour lines of the
objective function by adapting the covariance matrix of a multivariate gaussian distribution to the
landscape of the misfit function. It belongs to the class of Evolution strategies (ES) that has been
introduced in the early seventies (Rechenberg (1973)). First ES were designed to perform the
search without self-learning of the parameter dependencies and have been gradually improved
over time which has led to the CMA-ES.

Mutation: sampling

In CMA-ES, a population consists of – models called offspring sampled from a multivariate
gaussian distribution, following

∀i ∈ [1; –] ;mk
i ∼ m̄k−1 + ffk−1N

“
0;Ck−1

”
(2.8)

where N
“

0;Ck−1
”

denotes a multivariate gaussian distribution with zero mean and covariance
matrix Ck−1, m̄k−1 is the mean vector of the distribution and ffk−1 is the step size. The de-
fault population size grows logarithmically with dimensionality following – = 4 + 3 log d and is
recommended to be much larger for multi-modal misfit functions.

The performance of ES depends on the adjustments of their internal parameters and no
improvement in the search can be expected otherwise (Beyer et al. (2002)). In ES, mutation is
regarded as the main operator and its distribution should be adapted during the optimization
process to favor the production of better offspring in the next generations. In CMA-ES, the
mutation distribution is constantly adjusted by moving its mean and adapting its covariance
matrix.

24 2.2. EVOLUTIONARY ALGORITHMS

Selection and recombination: moving the mean

The – newly sampled offspring are evaluated on the misfit function and ranked according to their
values. Then, the mean vector is moved toward the weighted mean formed by the recombination
of the — best individuals selected among the – offspring, following

m̄k = m̄k−1 +
—X
i=1

!i
“

mk
i :– − m̄k−1

”
; with

—X
i=1

!i = 1; !1 ≥ !2 ≥ ::: ≥ !— > 0 (2.9)

where i :– denotes the index of the i th best individual offspring, and the weights ω = {!1; :::; !—}
control the influence of each selected individual (higher for better ranked parents). The number
of parents — is usually set to –=2.

Adaptation of the covariance matrix

First, consecutive moves of the mean m̄k−m̄k−1

ffk−1 are tracked in time using an evolution path pkc
(i.e. the path the population takes over a number of generations), and reads

pkc = (1− c) pk−1
c +

q
c (2− c)—eff

m̄k − m̄k−1

ffk−1
(2.10)

where c = d
d+4 and —eff = 1P—

i=1
!2
i

act as normalization coefficients. The CMA-ES adapts the

covariance matrix of the mutation distribution by performing two critical updates, namely the
rank-one and the rank-— updates. The rank-one update reinforces the likelihood of steps in the
vicinity direction of the evolution path pkc while the rank-— update exploits information from the
distribution of the current population by computing a covariance matrix as a weighted sum of
covariances of the consecutive steps of the — selected parents, which is written

Ck =
“

1− c1 − c—
X

!i
”

Ck−1 + c1 pkcpkc
>| {z }

rank-one update

(2.11)

+ c—

–X
i=1

!i
ffk−1

“
mk
i :– − m̄k−1

” “
mk
i :– − m̄k−1

”>
| {z }

rank-— update

(2.12)

with c1 ≤ 1 and c— ≤ 1 being the learning rates, and the first term that accounts for the information
from the previous covariance matrices decaying exponentially with time. The principle of CMA-ES
is illustrated in Figure 2.9.

Step size control

The adaptation of the covariance matrix does not control the overall scale of the distribution, only
the directions and lengths of its principal axis. Therefore, a second evolution path pkff inherited
from Hansen and Ostermeier (1996) is considered to cumulate the lengths of the consecutive
step sizes, following

pkff = (1− cff) pk−1
ff +

q
cff (2− cff)—effCk−1−

1
2

m̄k − m̄k−1

ffk−1
(2.13)

where cff = —eff +2
d+—eff +3 is a relaxation coefficient that decays the contribution of previous steps with

time. This second evolution path contains information on the correlations between consecutive

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 25

+ +
+ +

C
k-1

C
k

C
k

m
k-1

m
k-1

m
k

m
k

Figure 2.9: Principle of CMA-ES on a 2D misfit function represented by the contour lines. The population
should move toward the upper right corner. (Left) Sample of – = 20 offspring distributed accordingly to
N
`
m̄k−1;Ck−1

´
. (Middle) — = 10 best individuals selected to update the mean and covariance matrix.

(Right) Mutation distribution for the next generation. Adapted from Hansen (2011).

steps. If the consecutive steps are parallel correlated, it means that they are going into the
same direction which could have been done with fewer but longer steps. If they are anti-
parallel correlated, they are canceling each other out. Therefore, consecutive steps must have
no correlation between them to improve the mutation process. Geometrically, it means that
consecutive steps should be perpendicular to each other (see Figure 2.10).

Thus, the length of the second evolution path pkff is compared to its expected length upon random
selection which removes the correlations between consecutive steps as they are uncorrelated
under random selection, which reads

ffk = ffk−1

0@ cff
dff

0@
‚‚‚pkff

‚‚‚
E [‖N (0; I)‖] − 1

1A1A (2.14)

with dff ≈ 1 being a damping parameter. If the actual evolution path is longer than expected due
to parallel correlation, the step size is increased. On the other hand, if the actual evolution path
is shorter than expected, the step size is decreased.

+ + +

pσ
k

pσ
k

pσ
k

Anti-parallel correlation No correlation Parallel correlation

Figure 2.10: Step size adaptation in CMA-ES. The lengths of each single step size are comparable. (Left)
Anti-parallel correlation: the consecutive steps cancel each other out resulting in a short cumulation path.
(Middle) No correlation: the consecutive steps are perpendicular and the length of the cumulation path is
ideal. (Right) Parallel correlation: the consecutive steps are pointing to the same direction resulting in a
long cumulation path. Adapted from Hansen (2011).

26 2.2. EVOLUTIONARY ALGORITHMS

Termination criterions

In CMA-ES, the optimization process is stopped when one of the following termination criterion
is met:

1. NoEffectAxis: stop if adding a 0.1-standard deviation vector in any principal axis direction
of the covariance matrix does not change the mean;

2. NoEffectCoord : stop if adding 0.2-standard deviations to any single parameter does not
change the mean;

3. ConditionCov : stop if the condition number of the covariance matrix exceeds 1014;

4. EqualFunValues: stop if the range of the best misfit function values of the last 10 + 30d=–
generations is zero;

5. TolX : stop if the standard deviation of the gaussian distribution and ffpc are smaller than
TolX for all parameters. By default, TolX is set to 10-12 times the initial ff;

6. The maximum number of iterations is reached.

Termination criterions 1 to 5 can be useful to restart an independent optimization process with
twice the population size (Auger and Hansen (2005)).

Constraints handling

The standard approach for constraints handling consists in penalizing the misfit function values
of infeasible models. Hansen (2010) describes a constraints algorithm where each evaluated
model is guaranteed to lie within the feasible space. The misfit of an infeasible model m is
calculated by evaluating the misfit of the closest feasible model mfeas (i.e. on the boundary of
the feasible space) to which is added a penalty term weighted and scaled parameter wise that
depends on the distance to the feasible space. For each parameter, the weights are written

∀i ∈ [1; d] ; ‚i =
2‹fit

ff2 × 1
d diag (C)

(2.15)

where ‹fit is the median of the interquartile range of the unpenalized misfit function values from
the last 20 + 3d=– generations.

In order to prevent the mean from moving too far away from the feasible space, for each
parameter, the weight ‚i is multiplied by a factor 1:1max(1;—eff=(10d)) if the mean is outside of the
feasible space and its distance to the bound is larger than 3× ff√Ci i ×max

“
1;
√
d=—eff

”
(as the

distance to the optimum on the sphere function is proportional to ff
√
d=—eff). Finally, the misfit

function of the infeasible model m is penalized according to

E (m) = E
“

mfeas
”

+
1

d

dX
i=1

‚i

“
mfeas
i −mi

”2

‰i
(2.16)

in which ‰i = exp
“

0:9
“

log (Ci i)− 1
d diag (log (C))

””
scales the distance for each parameter with

respect to the covariance matrix.

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 27

2.3 Sample codes

In the following, I provide sample codes written in Python for the three evolutionary algorithms
described in this chapter. For consistency with the notation adopted, a population of models is
denoted by M, n and d respectively represent the population size and the dimensionality, kmax
is the maximum number of iterations, E is the misfit function to minimize, m_min and m_max are
the lower and upper boundaries of the model parameter space, respectively. The sample codes
extensively use the vectorization capability of NumPy for faster sequential computation.

import numpy as np

Parameters

n = 10 # Population size

d = 5 # Number of dimensions

kmax = 2000 # Maximum number of iterations

Misfit function to minimize (here Rosenbrock)

E = lambda x: 100*np.sum((x[1:]-x[:-1]**2)**2)+np.sum((1-x[:-1])**2)

m_min = np.full(d, -5.12) # Lower boundary

m_max = np.full(d, 5.12) # Upper boundary

2.3.1 Differential Evolution

Parameters

F = 0.9 # Differential weight

CR = 0.5 # Crossover probability

Initialize variables

M = np.random.uniform(m_min, m_max, (n, d)) # Initialize models

pfit = np.array([E(m) for m in M]) # Initialize model misfits

mg = M[np.argmin(pfit)] # Initialize global best model

Repeat until stopping criterion is met

k = 1 # Initialize iteration number

converge = False # Initialize stopping criterion

while not converge:

k += 1

Mutation

idx = [[j for j in range(n) if j != i] for i in range(n)]

r = np.transpose([np.random.choice(i, 3, replace = False) for i in idx])

V = M[r[0]] + F * (M[r[1]] - M[r[2]])

Recombination

r1 = np.random.rand(n, d)

irand = np.random.randint(d, size = n)

mask = np.eye(d, dtype = bool)[irand]

mask = np.logical_or(mask, r1 <= CR)

U = np.where(mask, V, M)

28 2.3. SAMPLE CODES

Selection

fit = np.array([E(m) for m in U]) # Evaluate misfit functions

idx = fit < pfit # Locate improved individuals

pfit[idx] = fit[idx] # Update model misfits

M[idx] = U[idx] # Update population

mg = M[np.argmin(pfit)] # Update global best model

Test convergence (here only maximum number of iterations)

converge = k == kmax

2.3.2 Particle Swarm Optimization

Parameters

w = 0.729 # Inertia weight

c1 = 1.49618 # Cognition parameter

c2 = 1.49618 # Sociability parameter

Initialize variables

V = np.zeros((n, d)) # Initialize velocities

M = np.random.uniform(m_min, m_max, (n, d)) # Initialize models

pfit = np.array([E(m) for m in M]) # Initialize personal best misfits

pbest = np.array(M) # Initialize personal best models

mg = M[np.argmin(pfit)] # Initialize global best model

Repeat until stopping criterion is met

k = 1 # Initialize iteration number

converge = False # Initialize stopping criterion

while not converge:

k += 1

r1 = np.random.rand(n, d)

r2 = np.random.rand(n, d)

V = w*V + c1*r1*(pbest-M) + c2*r2*(mg-M)# Update velocities

M = M + V # Update models

fit = np.array([E(m) for m in M]) # Evaluate misfit functions

idx = fit < pfit # Locate improved particles

pfit[idx] = fit[idx] # Update personal best misfits

pbest[idx] = M[idx] # Update personal best models

mg = M[np.argmin(pfit)] # Update global best model

Test convergence (here only maximum number of iterations)

converge = k == kmax

2.3.3 Covariance Matrix Adaptation - Evolution Strategy

Parameters

xmean = np.random.uniform(m_min, m_max) # Initial mean

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 29

sigma = (m_max - m_min) / 3. # Step size

Selection strategy parameters

mu = int(0.5 * n) # Number of parents

weights = np.log(mu + 0.5) - np.log(np.arange(1, mu+1))

weights /= np.sum(weights)

mueff = np.sum(weights)**2 / np.sum(weights**2)

Adaptation strategy parameters

cc = (4. + mueff / d) / (d + 4. + 2. * mueff / d)

cs = (mueff + 2.) / (d + mueff + 5.)

c1 = 2. / ((d + 1.3)**2 + mueff)

cmu = min(1. - c1, 2. * (mueff - 2. + 1. / mueff) / ((d + 2.)**2 + mueff))

damps = 1. + 2. * max(0., np.sqrt((mueff - 1.) / (d + 1.)) - 1.) + cs

Initialize dynamic (internal) strategy parameters and constants

pc = np.zeros(d)

ps = np.zeros(d)

B = np.eye(d)

D = np.ones(d)

C = np.eye(d)

invsqrtC = np.eye(d)

chind = np.sqrt(d) * (1. - 1. / (4. * d) + 1. / (21. * d**2))

Repeat until stopping criterion is met

eigeneval = 0 # Initialize eigeneval

n_eval = 0 # Initialize n_eval

k = 1 # Initialize iteration number

converge = False # Initialize stopping criterion

while not converge:

k += 1

Generate lambda offspring

arx = np.array([xmean + sigma * np.dot(B, D*np.random.randn(d))

for i in range(n)])

arfitness = np.array([E(m) for m in arx])

n_eval += n

Sort by fitness and compute weighted mean into xmean

arindex = np.argsort(arfitness)

xold = np.array(xmean)

xmean = np.dot(weights, arx[arindex[:mu]])

Cumulation

ps = (1. - cs) * ps \

+ np.sqrt(cs * (2. - cs) * mueff) \

* np.dot(invsqrtC, xmean - xold) / sigma

hsig = np.linalg.norm(ps) / np.sqrt(1. - (1. - cs)**(2.*n_eval/n)) \

/ chind < 1.4 + 2. / (d + 1.)

pc = (1. - cc) * pc \

+ hsig * np.sqrt(cc * (2. - cc) * mueff) \

30 2.4. PARALLEL IMPLEMENTATION

* (xmean - xold) / sigma

Adapt covariance matrix C

artmp = (arx[arindex[:mu]] - np.tile(xold, (mu, 1))) / sigma

C = (1. - c1 - cmu) * C \

+ c1 * (np.outer(pc, pc) + (1. - hsig) * cc * (2. - cc) * C) \

+ cmu * np.dot(np.dot(artmp.transpose(), np.diag(weights)), artmp)

Adapt step size sigma

sigma *= np.exp((cs / damps) * (np.linalg.norm(ps) / chind - 1.))

Diagonalization of C

if n_eval - eigeneval > n / (c1 + cmu) / d / 10.:

eigeneval = n_eval

C = np.triu(C) + np.triu(C, 1).transpose()

D, B = np.linalg.eigh(C)

idx = np.argsort(D)

D = D[idx]

B = B[:,idx]

D = np.sqrt(D)

invsqrtC = np.dot(np.dot(B, np.diag(1./D)), B.transpose())

Test convergence (here only maximum number of iterations)

converge = k == kmax

2.4 Parallel implementation

Evolutionary algorithms operate on a set of concurrent models represented by individuals within
a population, and are therefore intrinsically parallel. They have been used to solve geophysical
inverse problems since the early nineties (Sambridge and Drijkoningen (1992), Boschetti, Dentith
and List (1996)). However, due to the large number of forward modelings required to solve
a given optimization problem, these algorithms turned out to be impractical and have been
disregarded in favor of derivative-based approaches that are computationally more efficient.
Nevertheless, with the rise in computational power mainly brought by modern supercomputers
that we have witnessed in the recent years, evolutionary algorithms are becoming an interesting
alternative as the forward modelings can be performed in parallel. In this thesis, I principally
exploit this characteristics of evolutionary algorithms to solve seismic tomography problems in
reasonable computation time.

2.4.1 About supercomputers

In order to better understand the parallel programming paradigms introduced in Section 2.4.2, it
is essential to first describe the different elements involved in a supercomputer. Nowadays su-
percomputers are systems made of Symmetric Multi-Processor machines (SMP) interconnected
to each other to form a unified computing resource. A SMP machine is a hardware system
composed of two or more identical processors connected to a shared main memory. A diagram
of a SMP machine is sketched in Figure 2.11 followed by a brief definition of the different terms
related to supercomputers.

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 31

CORE #0 CORE #1

CORE #2 CORE #3

CACHE MEMORY (L3)

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

CORE #0 CORE #1

CORE #2 CORE #3

CACHE MEMORY (L3)

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

L
1
/2

 C
A

C
H

E

SOCKET #0 SOCKET #1

RANDOM ACCESS MEMORY (RAM)

Figure 2.11: Diagram of a SMP machine made of 2 multi-core CPUs. A supercomputer is composed of
several interconnected SMP machines.

• Process: a process is an independent program with its own memory space that runs on a
computer;

• Thread : a thread is a child process tied to a parent process and runs on a shared memory
space. A process may have several threads (at least one thread);

• Core: a core is a logical processing unit that can independently execute process threads;

• CPU: CPU stands for Central Processing Unit and is also called processor. The CPU is
the physical chip that executes the instructions of a process. A CPU may have several
cores and is connected on a socket to the computer motherboard;

• Random Access Memory (RAM): the RAM is the main memory of a computer that stores
the data currently used by different processes on a machine. A shared memory typically
refers to a block of RAM that can be accessed by different process threads. A distributed
memory refers to a computer system where each process has its own local memory and
message passing is required to exchange data between processes;

• Cache memory : the cache memory is a smaller memory which copies and stores frequently
used main memory data and instructions. The cache memory is closer to the CPU and
CPU can access faster to cached data than data in the RAM. Modern CPUs have several
levels of cache organized hierarchically (L1, L2, L3). On the one hand, the L1 and L2
levels of cache are tied to and only accessible by a single core. On the other hand, cores
on the same chip are all connected to the shared L3 cache memory.

On a supercomputer made of several SMP nodes, parallel programming can be achieved using
different paradigms that describe how different processes interact with each other. The next
section describes the parallel programming paradigm that will be used throughout this thesis to
efficiently solve seismic tomography problems using evolutionary algorithms.

32 2.4. PARALLEL IMPLEMENTATION

2.4.2 Hybrid parallel programming

Theoretically, parallel programming simply consists in using more than one core to execute
a program. In practice, it requires the parallel programming paradigm that describes the
interactions between each process to be specified. Two libraries are most often used depending
on the paradigm adopted:

• On a shared memory architecture, OpenMP is the standard library which allows multi-
threaded execution of a process. OpenMP is principally employed for loop parallelization
(with no dependencies) and can only be used for shared memory programming;

• On a distributed memory architecture, message passing is needed to exchange data
between each process, in particular with the Message Passing Interface library (MPI). In the
message passing paradigm, a master-slave scheme is commonly adopted where a master
process sends new task data to slave processes. Besides, MPI is applicable to a wider
range of problems than OpenMP and can be run on both shared and distributed memory
architectures. However, its main performance bottleneck is the speed of communication
between each process (e.g. the bandwidth and latency of the network between the SMP
nodes).

Modern supercomputers combine features of both shared and distributed memory systems, and
parallel programming can be achieved using a hybrid paradigm where the memory is shared
at the node level and distributed above. More specifically, MPI can be employed for message
passing between multi-threaded processes and OpenMP for loop parallelization inside each
process. The hybrid parallel scheme is considered in this thesis as it offers greater flexibility and
is particularly adapted to the tomographic problems to solve.

Only independent tasks where the order of execution does not matter can be parallelized. In
evolutionary algorithms, the individuals within a population are independent and their misfit
function values can therefore be evaluated in parallel. In my implementation, p processes are
spawned using MPI each in charge of evaluating the misfit function values of n=p models. A
master process is responsible for the population update and manages the distribution of the
models to the slave processes that send back only the misfit function values to the master, as
depicted in Figure 2.12. Such implementation requires the population size n to be a multiple of
the number of available cores for maximum efficiency to avoid idle cores.

It is noteworthy that asynchronous implementations of DE and PSO exist where the individuals
of a generation are updated one after the other. However, such implementation is not straightfor-
ward to parallelize and only the synchronous implementations (i.e. simultaneous update of a
population) of DE and PSO are considered in this manuscript.

In addition, the computation of the misfit function can also be parallelized depending on the
problem to solve. For instance, in traveltime tomography problems such as described in Chapter
3 and Chapter 4, the forward modeling consists in computing a traveltime grid for each source
(i.e. shot) using an Eikonal solver. Obviously, the sources are independent and the traveltime
grids can be computed in parallel. Within the framework of hybrid parallel programming, t
process threads for each MPI process are created using OpenMP to parallelize the computation
of the traveltime grids, as shown in Figure 2.13. In the surface wave tomography problem
described in Appendix B, the computation of the dispersion functions for each frequency is
parallelized using OpenMP.

CHAPTER 2. INTRODUCTION TO EVOLUTIONARY ALGORITHMS 33

Check

convergence

SOLUTION

R
A

N
K

 #
4

No

Yes

Update models

E(m1) E(m2) E(m3) E(m4) E(m5)

M
A

S
T

E
R

 (
#
0

)

MASTER (#0)

R
A

N
K

 #
3

R
A

N
K

 #
2

R
A

N
K

 #
1

R
A

N
K

 #
0

Figure 2.12: Parallel computation of the misfit function values using MPI. A population of models is
generated by a master process that evenly scatters the models over the slave processes for concurrent
misfit function evaluations. The misfit function values are finally sent back to the master process to assess
convergence or to update the model population otherwise.

Sum the residuals

over all the sources

E(m)

T
H

R
E

A
D

 #
4

Source 1 Source 2 Source 3 Source 4 Source 5

T
H

R
E

A
D

 #
3

T
H

R
E

A
D

 #
2

T
H

R
E

A
D

 #
1

T
H

R
E

A
D

 #
0

m = [m1, … , md]
⊤

Model parameter

Physical model

Forward modeling

Compute misfit

Figure 2.13: Parallel computation of the traveltime grids using OpenMP. A model vector m defined by
d parameters is transformed into a physical velocity model that can be used by an Eikonal solver. The
computation of the traveltime grids for each source is scattered over the threads with OpenMP.

34 2.5. CONCLUSION

2.5 Conclusion

I introduced the principals of evolutionary algorithms in the context of black-box optimization. In
its broader sense, evolutionary algorithm refers to all the optimization methods that operate on
a concurrent population of independent models which makes them intrinsically parallel. Many
evolutionary algorithms that try to mimic phenomena observed in the nature (e.g. evolution,
social behavior) have been proposed. Yet, I chose to focus on the three most popular and
efficient algorithms known in the literature, namely Differential Evolution (DE), Particle Swarm
Optimization (PSO) and Covariance Matrix Adaptation - Evolution Strategy (CMA-ES). In this
chapter, I gave a comprehensive description of these algorithms along with sample computer
codes written in Python. Because the main interest of evolutionary algorithms in this thesis is
their intrinsic parallelisms, I also described the hybrid parallel programming paradigm that will be
used throughout this thesis.

The next chapters are devoted to the application of evolutionary algorithms to seismic tomog-
raphy problems within the hybrid parallel programming framework. PSO is more extensively
studied in Chapter 3 for its efficiency and ease of implementation. I present a new optimization
algorithm based on PSO that I called Competitive Particle Swarm Optimization (CPSO) which
improves its robustness. The same methodology is applied to a surface wave tomography
problem in Appendix B with only a different forward modeling and data set. In Chapter 4, the
study is broadened to a refraction tomography problem that aims at analyzing the feasibility of
evolutionary algorithms to solve a problem in larger dimensions by comparing the performances
of the three algorithms described hereinabove.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 35

Chapter 3

1D traveltime tomography

Contents

Abstract . 36

3.1 Introduction . 37

3.2 Theory and method . 38

3.2.1 Particle Swarm Optimization . 38

3.2.2 Premature convergence . 39

3.2.3 Competitive Particle Swarm Optimization 40

3.3 Robustness testing . 44

3.3.1 Sensitivity analysis . 44

3.3.2 Benchmark . 46

3.3.3 Importance sampling . 46

3.4 Numerical example . 47

3.4.1 Acquisition . 47

3.4.2 Inversion results . 49

3.5 Hybrid parallel implementation . 53

3.6 Discussion and conclusion . 54

3.7 Appendice . 55

3.7.1 PSO algorithm . 55

3.7.2 CPSO algorithm . 56

3.7.3 Benchmark test functions . 57

3.7.4 Sensitivity analysis . 57

36

Dans ce chapitre, je m’intéresse principalement à l’optimisation par essaim particulaire (PSO)
pour son efficacité et sa simplicité d’implémentation. J’y présente un nouvel algorithme
d’optimisation basé sur la PSO qui résout son principal défaut. J’ai nommé cet algorithme
la PSO Compétitive (Competitive Particle Swarm Optimization, CPSO). En tant qu’algorithme
évolutionniste, la PSO est particulièrement sujette au problème de stagnation et de conver-
gence prématurée (c’est-à-dire convergence vers un minimum local). Je propose donc une
modification de l’algorithme original simple mais efficace qui permet d’améliorer la diversité
de l’essaim. Je démontre sur plusieurs fonctions de test que la CPSO est plus robuste que la
PSO en termes de convergence et de sensibilité à ses paramètres. De plus, je montre sur une
fonction multi-modale que la CPSO peut être utilisée pour une quantification rapide des incerti-
tudes. L’estimation de la densité de probabilité a posteriori est effectuée par échantillonnage
de l’espace des paramètres du modèle après plusieurs inversions indépendantes. La méthode
est appliquée à un problème de tomographie des temps de première arrivée avec des données
réelles 3D de microsismicité acquises dans le contexte de la sismicité induite, et comparée à
un échantillonneur conventionnel de type Monte-Carlo par Chaînes de Markov (Markov Chain
Monte Carlo, MCMC). Les résultats démontrent que la CPSO est capable d’atteindre un régime
stationnaire beaucoup plus rapidement et permet d’obtenir des incertitudes cohérentes avec
celles obtenues par un échantillonneur MCMC. Enfin, j’analyse la scalabilité de la CPSO sur ce
problème de tomographie en évaluant ses performances parallèles. Les résultats obtenus dans
ce chapitre ont notamment été utilisés dans l’Annexe C pour propager les incertitudes liées aux
modèles de vitesse aux localisations des évènements microsismiques.

Ce chapitre est écrit sous la forme d’un article publié et a notamment fait l’objet d’une présenta-
tion sous forme de poster à la SEG 2016 (Dallas) :

• Keurfon Luu, Mark Noble, Alexandrine Gesret, 2016. “A competitive particle swarm
optimization for nonlinear first arrival traveltime tomography.” 2016 SEG International Expo-
sition and Annual Meeting. Society of Exploration Geophysicists. doi: 10.1190/segam2016-
13840267.1;

• Keurfon Luu, Mark Noble, Alexandrine Gesret, Nidhal Belayouni and Pierre-François
Roux, 2018. “A parallel competitive Particle Swarm Optimization for non-linear first arrival
traveltime tomography and uncertainty quantification.” Computers and Geosciences 113
(August 2017). Elsevier Ltd: 81–93. doi: 10.1016/j.cageo.2018.01.016.

Abstract

Seismic traveltime tomography is an optimization problem that requires large computational
efforts. Therefore, linearized techniques are commonly used for their low computational cost.
These local optimization methods are likely to get trapped in a local minimum as they critically
depend on the initial model. On the other hand, global optimization methods based on MCMC
are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm
Optimization (PSO) is a rather new global optimization approach with few tuning parameters that
has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good
distribution of the workload. However, while it can traverse several local minima of the evaluated
misfit function, classical implementation of PSO can get trapped in local minima at later iterations
as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape
from local minima with a simple implementation that improves the diversity of the swarm. The
model space can be sampled by running the optimizer multiple times and by keeping all the

https://doi.org/10.1190/segam2016-13840267.1
https://doi.org/10.1190/segam2016-13840267.1
https://doi.org/10.1016/j.cageo.2018.01.016

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 37

models explored by the swarms in the different runs. A traveltime tomography algorithm based
on CPSO is successfully applied to a real 3D data set in the context of induced seismicity.

Keywords: microseismic, traveltime tomography, particle swarm optimization, uncertainty quan-
tification, high performance computing

3.1 Introduction

Tomographic inversion schemes aiming at reconstructing the subsurface structures from seismic
traveltime data are widely used (e.g. Rawlinson, Pozgay and Fishwick (2010)). The obtained
wave propagation velocity distribution is usually a starting point for further analysis at various
scales, from near surface to global scale. For a reliable and quantitative interpretation of the
tomographic solution, an accurate velocity model with its associated uncertainties are required.

In spite of the fact that the inversion for the velocities is a totally non-linear problem, very often it
is solved with iterative linearized approaches that minimize a misfit function. The misfit function
usually measures the difference between observed and computed traveltimes as a function of the
velocity model parameters. The linearization makes the implicit assumption of a unique solution
which is chosen thanks to a regularization procedure that reduces the solution non-uniqueness
(Menke (2012)). This is generally achieved by imposing the solution to be somehow similar or
close to an initial a priori model.

The data-model (traveltimes-velocities) relationship can be highly non-linear and requires the
use of global optimization methods. In addition, the linearized approaches are not really
adapted to provide reliable uncertainties. From a theoretical point of view, to address these
two issues, methods based on Markov Chain Monte Carlo (MCMC) that sample the velocity
model parameter space are required, such as reversible-jump MCMC (Green (1995), Bodin
and Sambridge (2009)), Parallel Tempering (Sambridge (2014)), or Interactive MCMC (Bottero
et al. (2016)). These global optimization methods can be applied to non-smooth and non-
convex functions as they are derivative-free and produce results independent of the initial model.
However, they cannot be parallelized and turn out to be prohibitive in terms of computation time.

Another class of global optimization methods has shown growing interest in the last decades.
These methods, known as evolutionary algorithms (EA), are inspired by the natural evolution of
species and have demonstrated very good convergence rates. While MCMC methods sample
the model parameter space by perturbing iteratively a single model, EA work with a population
of simultaneous models that evolve toward better models through stochastic processes. This
simultaneous evaluation of independent models implies that it is straightforward to parallelize and
thus can significantly reduce the computation time. EA include Genetic Algorithm (Sambridge
and Drijkoningen (1992), Whitley (1994)), Differential Evolution (Storn and Price (1997), Barros
et al. (2015)), and Covariance Matrix Adaptation - Evolution Strategy (Hansen, Müller and
Koumoutsakos (2003), Grayver and Kuvshinov (2016)).

In this work, we propose to overcome the non-linearity using a rather new EA known as
Particle Swarm Optimization (PSO) for its ease of implementation and the low number of control
parameters required. PSO has been introduced to study birds flocking and fish schooling
(Kennedy and Eberhart (1995)). While it has been extensively used in other engineering
domains (e.g. biomedical, signal processing. . .) for years, PSO has been fairly ignored by the
geophysical community until recently. In seismics, PSO has been applied in history matching
for reservoir characterization (Mohamed et al. (2010), Fernández Martínez et al. (2012)),
traveltime tomography (Tronicke, Paasche and Böniger (2012), Rumpf and Tronicke (2015),
Poormirzaee, Moghadam and Zarean (2015)), and surface wave tomography (Wilken and Rabbel

38 3.2. THEORY AND METHOD

(2012), Poormirzaee (2016)). Yet, PSO may suffer from premature convergence, in particular for
functions with complex landscape. Therefore, we propose and describe a simple modification of
PSO to tackle premature convergence and improve its robustness. Although PSO is mainly used
as a global optimization method, we show that our implementation not only demonstrates better
convergence rates, but also samples correctly the model parameter space, allowing more reliable
uncertainty quantification. We apply the method on a real 3D microseismic example and sample
the model parameter space which allows us to derive reliable velocity model uncertainties.

3.2 Theory and method

Geophysical inverse problems are underdetermined optimization problems that can be solved
by either linear or non-linear techniques (Tarantola and Valette (1982)). Calculated data dcalc

are generated by applying the forward modeling operator g , most often non-linear, on the model
vector m = [m1; : : : ; md]>, with d the number of parameters defining the model

dcalc = g (m) : (3.1)

Inverse problems consist in determining the model vector m that minimizes the misfit between
the observed data dobs and the calculated data dcalc

e (m) = dobs − dcalc = dobs − g (m) : (3.2)

Given an error vector e (Equation (3.2)), the misfit function is usually defined with an ‘p-norm.
In geophysical inverse problems, even though other norms can be found in the literature, the
‘2-norm is often used

‖e (m)‖2 =

»“
dobs − g (m)

”> “
dobs − g (m)

”– 1
2

: (3.3)

The non-linearity can be addressed by global optimization methods that explore the model
parameter space. In this section, we first describe the PSO algorithm before introducing a more
robust implementation based on PSO that tackles its shortcomings.

3.2.1 Particle Swarm Optimization

For consistency in the notation, the so-called position vector usually denoted by x in the literature
is denoted by m. Consequently, we only speak in terms of models instead of position vector.

In PSO, the first step is to generate a swarm composed of several models in the model parameter
space. The initial models can either be defined a priori or generated given a random distribution
(usually uniform). Each model is represented by a particle that interacts with its neighborhood to
find the global minimum of the misfit function. Kennedy (1999) has studied several neighborhood
topologies and concluded that the global best topology (all the particles are connected to each
other) performed better than the others. Thus, we here only consider the global best topology
where the neighborhood of each particle is the entire swarm.

At iteration k , a particle i is defined by a model vector mk
i and a velocity vector vki and is adjusted

according to its own personal best model and the global best model of the whole swarm. The
velocity vector controls how a particle moves in the model parameter space and is initialized to
zero (Engelbrecht (2012)). The velocity and the position of each particle are updated following

vki = !vk−1
i + ffiprkp

“
mp;i −mk−1

i

”
+ ffig rkg

“
mg −mk−1

i

”
(3.4)

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 39

mk
i = mk−1

i + vki (3.5)

where mp;i and mg are respectively the personal best model of particle i and the global best
model of the swarm, rkp and rkg are uniform random number vectors drawn at iteration k , ! is an
inertia weight, ffip and ffig are two acceleration parameters that respectively control the cognition
and social interactions of the particles.

The inertia weight ! has been introduced by Shi and Eberhart (1998) to help the particles
to dynamically adjust their velocities and refine the search near a local minimum. Another
formulation using a constriction coefficient based on Clerc (1999) to insure the convergence of
the algorithm can be found in the literature. However, Eberhart and Shi (2000) showed that the
inertia and constriction approaches are equivalent since the parameters are connected.

Empirical studies have concluded that the performance of PSO is sensitive to its control pa-
rameters, namely the swarm size n, the maximum number of iterations kmax, !, ffip and ffig . Yet,
these studies have provided some insights on the initialization of some parameters (Van Den
Bergh and Engelbrecht (2006)). Eberhart and Shi (2000) empirically found that ! = 0:7298 and
ffip = ffig = 1:49618 are good parameter choices that lead to convergent behavior. Although
these parameters have shown good results in previous studies, be aware that they can also
be tuned according to the optimization problem. The sensitivity of PSO to these parameters is
analyzed in Section 3.3.1. Unless explicitly stated, we set ! = 0:7298 and ffip = ffig = 1:49618.

The swarm size and the maximum number of iterations have to be carefully chosen dependently
on the problem and the computer resources available. These two parameters are related since
a smaller swarm requires more iterations to converge, while a bigger swarm converges more
rapidly. In real-world optimization problems, the computation cost is mainly dominated by the
forward modeling. Therefore, the optimization is usually stopped when a predefined number of
forward modelings (i.e. computations of misfit function values) is performed. The desired number
of forward modelings is controlled by both the swarm size and the maximum number of iterations.
Trelea (2003) has studied the effect of the swarm size on several benchmark test functions in 30
dimensions. He found that a medium number of particles (≈ 30 particles) gives the best results
in terms of number of misfit function evaluations. Too few particles (≈ 15 particles) gives a very
low success rate while too many particles (≈ 60 particles) results in much more misfit function
evaluations than needed although it increases the success rate. Piccand, O’Neill and Walker
(2008) came to the same conclusion with problems of higher dimensions (up to 500).

In the original PSO, the global best position of the swarm is updated in a synchronous fashion. In
other words, mg is updated at the end of an iteration once the misfit functions of the entire swarm
have been evaluated. Carlisle and Dozier (2001) has shown that PSO yields better performance
when the particles are evaluated asynchronously (i.e. mg is evaluated after each individual misfit
evaluation). Synchronous PSO is intrinsically parallel and performs well if the individual misfit
function evaluations require the same amount of time, while a parallel asynchronous PSO is not
straightforward but could reduce wasted CPU cycles (Schutte et al. (2004), Koh et al. (2006)).
This work only deals with optimization problems with constant misfit computation time, therefore
only the synchronous PSO is considered. The algorithm is described in Algorithm 3.3.

3.2.2 Premature convergence

The classical implementation of PSO suffers from premature convergence and stagnation as it
can be trapped in a local minimum, particularly when the evaluated misfit function has a complex
landscape. The swarm is said to have stagnated when the particles keep moving in the close
vicinity of the global best mg as particles momentum have faded. We illustrate this statement
with the 2D Rastrigin function.

40 3.2. THEORY AND METHOD

The Rastrigin function is a highly multi-modal function commonly used to benchmark global
optimization methods due to its complex landscape containing several local minima. The function
is usually defined in [−5:12; 5:12]d and its global minimum lies in (0)d , d being the number of
dimensions.

While PSO is able to find the global minimum with n = 10 particles, we apply PSO on the 2D
Rastrigin function with n = 5 particles in order to illustrate the premature convergence (Figure
3.1). The particles are initialized uniformly in the model parameter space. At iteration 73, PSO
has converged prematurely and is trapped in the local minimum (2; 0). At this state, particles
inertia have almost vanished and the swarm is stagnating.

3.2.3 Competitive Particle Swarm Optimization

To address premature convergence and stagnation state, Van Den Bergh (2001) proposed to
restart the whole swarm anew. Evers and Ben Ghalia (2009) enhanced the method by adapting
the search space at each restart. However, after restarting the whole swarm, the particles may
either converge to the same/equivalent or even a worse solution. Therefore, we propose hereby
a Competitive PSO (CPSO) to avoid such situations. The idea is to improve the diversity of the
swarm by renewing part of the population and keeping the “best” particles only. “Worst” particles
are reset, allowing a better exploration of the model parameter space. The newly generated
particles will try to look for a better minimum while the “best” particles keep searching around
the current global best position. If the newest particles find a better minimum, the swarm will
gather around the new global best, otherwise they will come back to the current global best until
being reset again. We call a reset a “competition”. Competition is triggered only when premature
convergence is detected. Van Den Bergh (2001) proposed several methods to detect such state:

• Cluster analysis: a percentage of the particles is at a specified Euclidean distance from
the global best;

• No improvement of the misfit function: the misfit function does not improve significantly
over the last iterations;

• Swarm maximum radius: the distance of the farthest particle from the global best reaches
a certain threshold.

We find that the latter works better in our case. Thus, at the iteration k , competition is triggered
if the swarm maximum radius ‹k is smaller than a threshold ". This condition is written as

‹k = max
1≤i≤n

0@
‚‚‚mk

i −mg

‚‚‚
‖mmax −mmin‖

1A < " =
log (1 + 0:003n)

max (0:2; log (0:01kmax))
(3.6)

where ‖·‖ denotes the Euclidean norm. The expression of " has been empirically1 determined
and works well for competition triggering since it prevents the swarm from stagnating for too
long in a local minimum for any swarm size n. In order to preserve the convergence property

1Van Den Bergh (2001) found that a constant swarm maximum radius threshold " = 10−6 produced acceptable
results on a test set of benchmark functions. However, we noticed poor performance with bigger swarm size since
the threshold was hardly achieved (i.e. no competition is triggered). We decided to define the threshold as a function
of the swarm size n and chose a logarithmic scale to limit the growth of the threshold " with bigger swarm size which
would otherwise trigger too much competitions. The denominator acts as a scaling factor that squeezes the threshold
when the maximum number of iterations kmax is big which allows competition triggering even when kmax is small. The
different parameters have been empirically tweaked to obtain good performance on several benchmark functions
(mainly Rastrigin and Rosenbrock) with different combinations of swarm sizes and numbers of iterations.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 41

−4
−2
0

2

4

m
2

Initialization Iteration 25

−4 −2 0 2 4

−4
−2
0

2

4

m1

m
2

Iteration 50

−4 −2 0 2 4
m1

Iteration 73

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

m
is

fit

Figure 3.1: Illustration of the premature convergence of PSO on the 2D Rastrigin function with n = 5
particles. The 5 particles are uniformly distributed in the model parameter space. Then, the particles
converge toward the local minimum (2; 0). From iteration 73, the swarm is trapped in the local minimum.

42 3.2. THEORY AND METHOD

0 0:2 0:4 0:6 0:8 1
0

0:2

0:4

0:6

0:8

1

k=kmax

ff
(k
)

‚ = 0:75

‚ = 1

‚ = 1:25

Figure 3.2: Logistic function with different values of competitivity parameter ‚. Increasing ‚ improves the
exploration ability (i.e. diversity) of the swarm as more particles are reset. Decreasing ‚ results in faster
convergence with higher chance of entrapment in a local minimum.

of PSO, the proportion of particles to reset should decrease over time. Therefore, we define
the proportion of particles to reset at iteration k by a logistic function ff (k) (Equation (3.7))
parametrized such that it decreases non-linearly with the iteration number. We introduce a
competitivity parameter ‚ ∈ [0; 2] that controls the position of its inflection point, following

ff (k) =

„
1 + e

1
0:09

`
k

kmax
−‚+0:5

´«−1

(3.7)

with kmax the maximum number of iterations. The logistic function is shown in Figure 3.2 for
different values of ‚. The parameters of the logistic function have been empirically2 tweaked
in a way that at early iterations, the swarm is competitive and many particles are reset; at later
iterations, we let the swarm stagnate in the last minimum found to refine the solution. ‚ is a
problem-dependent parameter. Although we found that ‚ = 1 works well in most problems,
the parameter can be tuned for faster convergence. A high value of ‚ increases competitivity
between particles, resulting in slower convergence. Low competitivity is recommended for
unimodal functions (e.g. Spherical function). When ‚ = 0 (no competition), CPSO actually
behaves like the original PSO since zero particle are reset for any iteration number. The
algorithm is presented in Algorithm 3.4. The competitivity parameter ‚ is set to 1 from now on.

We apply CPSO on the previous example (Figure 3.3). Premature convergence is detected at
iteration 74 and competition is triggered. A particle finds a better local minimum at iteration 81
which allows the whole swarm to escape from the local minimum and to finally gather around
the true global minimum. The global minimum is finally found at iteration 186 (the misfit value is
lower than a specified threshold).

Figure 3.4 displays the global best misfit value as a function of the iteration number. The black

2In the initial form of the equation (Luu, Noble and Gesret (2016)), the number of particles to reset was decreased
linearly with time. It was not ideal as several particles were still reset even at the end of the optimization when we
would prefer refining the current solution. We chose a logistic function as it allows to model the expected behavior.
The different parameters have been visually tweaked in order that the logistic function tends to 1 at early iterations
and to 0 at later iterations.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 43

−4
−2
0

2

4

m
2

Iteration 74 Iteration 81

−4 −2 0 2 4

−4
−2
0

2

4

m1

m
2

Iteration 116

−4 −2 0 2 4
m1

Iteration 186

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

m
is

fit

Figure 3.3: Example of competition triggering. Three particles are redistributed uniformly in the model
parameter space. At iteration 81, one particle has found the central mode which allows the swarm to
escape from the previous local minimum. Finally, the swarm has found the global minimum.

44 3.3. ROBUSTNESS TESTING

50 100 150 200

10−5

10−2

101

Iteration number

G
lo

ba
lb

es
tm

is
fit

Figure 3.4: Global best misfit as a function of iteration number. Competition triggering is marked by
the black cross (iteration 74). Only one reset has been required for the swarm to escape from a local
minimum and eventually find the global minimum.

cross marks the iteration when competition has been triggered. The algorithm has required only
1 reset (iteration 74) to be able to find the global minimum.

In this example, CPSO has been able to find the global minimum while PSO fails most of the
time with a swarm size of 5 particles. Even though only 1 reset was required for the particles to
escape from a local minimum, it should be pointed out that the competition triggering mechanism
does not guarantee the swarm to always find a better minimum at each reset, it only improves its
chance to escape by improving the diversity of the swarm. The next sections are dedicated to the
analysis of the robustness of CPSO with respect to its tuning parameters in higher dimensions.

3.3 Robustness testing

3.3.1 Sensitivity analysis

We analyze the sensitivity of both PSO and CPSO with respect to the variation of the inertia
weight !, and the two acceleration parameters ffip and ffig on the Rastrigin function in 5, 10
and 20 dimensions. We vary ! in the range [0; 1]. In order to facilitate the analysis, we set
ffip = ffig = ffi and vary ffi in the range [0; 3]. The swarm size is set to 5 times the dimension. For
each couple of parameters (!; ffi), 50 trials of 1000 iterations each are performed. The sensitivity
with respect to a couple of parameters (!; ffi) is characterized by the success rate (SR) defined
as the percentage of trials that yield a misfit lower than a specified threshold. The results of the
sensitivity analysis are summarized in Figure 3.5.

PSO performs well for a wide range of ! and ffi with a narrow region of high SR. This means that
! has to be chosen dependently on the parameter ffi. On the other hand, the high SR region
is much wider for CPSO which is therefore more flexible in the choice of ! and ffi. Notice that
the control parameters recommended by Eberhart and Shi (2000) (! = 0:7298 and ffi = 1:49618)
are included in the high SR region. Additional results on the Rosenbrock function are shown in
Appendix 3.7.4.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 45

0

0:5

1

1:5

2

2:5

3

ffi

d = 5, fmin = 1 d = 10, fmin = 10 d = 20, fmin = 30

0 0:2 0:4 0:6 0:8 1
0

0:5

1

1:5

2

2:5

3

!

ffi

0 0:2 0:4 0:6 0:8 1
!

0 0:2 0:4 0:6 0:8 1
!

0 20 40 60 80 100

SR (%)

Figure 3.5: Results of the sensitivity analysis to parameters ! and ffi for PSO (top) and CPSO (bottom) on
the Rastrigin function in 5, 10 and 20 dimensions. The swarm size is set to 5 times the dimension and the
goal to achieve is indicated by fmin. CPSO is more flexible in the choice of these parameters as the high
SR region is wider than for PSO.

46 3.3. ROBUSTNESS TESTING

3.3.2 Benchmark

We compare the performances of PSO and CPSO on six classical benchmark test functions
(Appendix 3.7.3) in d = 30 dimensions. Most of the test functions are either unimodal, multi-
modal or dynamic. Therefore, these benchmark functions are a rather good proxy for assessing
the reliability of an optimization method. For both PSO and CPSO, we use n = 30 particles and
a maximum of kmax = 2000 iterations. The global minimum misfit is 0 for all the functions tested.
The minimum, median and maximum misfit values over 100 independent trials are presented in
Table 3.1. We recall that the results have been obtained using synchronized particles.

Table 3.1: Results of the benchmark of PSO and CPSO with n = 30 particles in d = 30 dimensions on six
benchmark test functions. The global minimum misfit is 0 for all the functions.

Function PSO CPSO

Min. Median Max. Min. Median Max.

Ackley 1.377E-13 2.814 9.539 9.766E-13 2.092E-10 1.502
Griewank 0 2.951E-02 0.244 0 1.232E-02 8.096E-02
Quartic (noise) 4.538E-03 1.639E-02 7.131E-02 3.081E-03 9.060E-03 1.888E-02
Rastrigin 32.83 68.16 135.31 12.93 28.85 50.74
Rosenbrock 1.472E-02 18.36 81.30 6.537E-03 18.77 83.06
Styblinski-Tang 56.54 141.4 226.2 1.074E-03 56.54 113.1

For Quartic (noise) and Rosenbrock (unimodal functions), PSO and CPSO yield similar perfor-
mances. For the four other functions tested, CPSO has outperformed PSO since the minimum,
median and maximum misfit values are lower. While PSO fails to recover the global minimum
for the highly multi-modal functions Rastrigin and Styblinski-Tang, CPSO shows rather good
performances with median misfit much lower compared to PSO. These benchmarks indicate
that CPSO is a more robust optimizer than PSO given the same parameters.

3.3.3 Importance sampling

Inversed models obtained through optimization are usually subject to uncertainties introduced
by errors in data measurements, in the forward modeling and by the use of a finite number of
parameters to describe the model. Therefore, the solution of an optimization problem is not
unique as several models can explain the observed data. Uncertainties can be quantified by
accounting for all sources of errors in a Bayesian framework and by generating acceptable
models that fit the data equally well in terms of misfit function. The posterior Probability Density
Function (PDF) is given by the Bayes theorem following

P
“

m
˛̨̨

dobs
”
∝ P (m)P

“
dobs

˛̨̨
m
”

(3.8)

where the first term P (m) is the prior PDF and contains all the information we know about the
model m prior to the measurement of data dobs . The likelihood P

“
dobs

˛̨̨
m
”

links the model to
the observed data considering that a model that does not explain exactly the data is acceptable
to a certain extent, and is written

P
“

dobs
˛̨̨

m
”
∝ exp (−E (m)) (3.9)

Assuming theoretical normally distributed errors, E is the misfit function and is expressed as

E (m) =
1

2

“
dobs − g (m)

”>
Σ−1

“
dobs − g (m)

”
(3.10)

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 47

where Σ is the covariance matrix (diagonal for independent observations) that accounts for data
measurement and modeling errors Tarantola (2005).

Ideally, the model parameter space needs to be explored as a whole by estimating P
“

m
˛̨̨

dobs
”

for each model m. However, it is not feasible when the number of parameters to estimate is
large. Therefore, importance sampling is usually performed through Markov Chain Monte Carlo
(MCMC) that generates models distributed according to the PDF when the number of iterations
tends toward infinity. We show how to use CPSO to obtain a rather good approximation of
P
“

m
˛̨̨

dobs
”
.

A single run of PSO does not provide a proper sampling of the model parameter space since it
is designed to rapidly locate and exploit a single minimum. Sen and Stoffa (1996) suggests to
perform several independent runs of a global optimizer with different starting solutions to sample
different parts of the model parameter space. Figure 3.6 (top) shows 100000 models sampled
after 50 runs of 200 iterations of PSO and CPSO on the 2D Rastrigin function. The whole model
parameter space is correctly sampled for both PSO and CPSO with particles mainly focused on
the central part of the function corresponding to low misfit values (i.e. high probability).

We estimate the distributions for the 100000 previously sampled models by multiple runs of PSO
and CPSO with gaussian kernels as shown in Figure 3.6 (bottom). Even though PSO detects
the principal modes, it fails at identifying the central mode as the principal one. For each run,
PSO seems to converge prematurely in different local minima without being able to escape from
it. On the other hand, CPSO successfully samples the 9 principal modes and the central mode
is correctly identified. Therefore, the frequency distribution from multiple runs of CPSO directly
provides a rather good approximation of the PDF with no further computation.

In this section, we have demonstrated the robustness of CPSO as a global optimizer compared to
classical implementation of PSO, but also as a more reliable method for uncertainty quantification.
We now apply CPSO on a real first arrival traveltime tomography.

3.4 Numerical example

In this section, we apply the CPSO tomography algorithm on a real data set recorded in the
context of induced seismicity.

3.4.1 Acquisition

Tomography is a geophysical inverse problem that consists in retrieving the background velocity
model from observed first arrival traveltimes of seismic waves recorded at a set of receivers.
The geometry used for the acquisition is represented in Figure 3.7 (left) in a relative Cartesian
coordinate system. The monitoring network consists of two wireline arrays of forty 3C-receivers
that were deployed in two different vertical wells (white triangles) ranging between 50 and
750 meters depth and regularly spaced every 15 meters. Fifteen perforation shots have been
performed along two horizontal wells (green circles) at a depth of 1050 meters. For each of the
fifteen perforation shots, almost all 80 first P-wave and approximately 40 S-wave arrivals could
be picked. The average P- and S- wave picking uncertainties are estimated to be around 1 ms
and 4 ms, respectively.

Acoustic logs for both P- and S- waves have been acquired in one well using a sonic wireline
tool. These acoustic logs have been used to derive a layered velocity model consisting of 15
layers (Figure 3.7 (right)) that will serve as a reference model.

48 3.4. NUMERICAL EXAMPLE

−4
−2
0

2

4

m
2

PSO CPSO

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

m
is

fit

−4 −2 0 2 4

−4
−2
0

2

4

m1

m
2

−4 −2 0 2 4
m1

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

P
D

F

Figure 3.6: (Top) 100000 models sampled after 50 runs of PSO and CPSO on the 2D Rastrigin function
with 5 particles and 200 iterations. The low misfit part of the function is correctly explored by the particles.
Similar results can be obtained with more particles. (Bottom) Frequency distributions of 100000 models
sampled by multiple runs of PSO and CPSO on the 2D Rastrigin function. PSO fails at identifying the
central mode as the principal one while CPSO correctly identified the 9 central modes.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 49

0
150 300 450 600

200
400

600
800

0

300

600

900

1200

X (m)
Y (m)

D
ep

th
(m

)
Shots Stations

2 4 6

0

300

600

900

1200

Velocity (km/s)

D
ep

th
(m

)

P-wave

S-wave

Figure 3.7: (Left) 3D acquisition geometry with perforation shot locations (green circles) and receiver
locations (white triangles). (Right) Acoustic logs and 1-D reference calibrated velocity models for P-wave
(blue) and S-wave (green).

The acquisition geometry is poorly constrained and requires the solution to be represented in
terms of PDF through a Bayesian formulation. We also expect to obtain greater uncertainties for
the S-wave velocity model since we have fewer arrival times associated to S-waves.

3.4.2 Inversion results

The velocity model is parametrized with 15 layers based on the reference model, and we invert
for the P-wave velocity Vp, the ratio Vp=Vs and the interface depth of each layer. Therefore, the
model consists of 45 unknown parameters. The lower and upper boundaries of each layer
parameter are summarized in Table 3.2.

Traveltimes are calculated using an Eikonal solver that generates traveltime grids for each
perforation shot (Noble, Gesret and Belayouni (2014)). We run the CPSO algorithm 50 times to
sample the model parameter space sufficiently for uncertainty quantification with different swarm
sizes (16, 32, 64 and 128 particles). A run is stopped when 200 iterations are performed. The
four tomographies lasted respectively 1.8 minutes, 3.6 minutes, 7.2 minutes and 14.3 minutes
using a total of 96 cores out of 104 (four sockets platform made of 4 Intel R© Xeon R© Platinum 8164
CPU, 26 cores @ 2.00 GHz each). To allow comparison with MCMC, we also run a Monte Carlo
tomography that consists of 1 million models sampled using the Metropolis-Hastings algorithm
which lasted 1.3 hours using 15 cores for the parallelization of the forward problem.

Figure 3.8 represents the evolution of the misfit with respect to the iteration number for Monte
Carlo tomography (left) and the four CPSO tomographies (right). It shows that despite the 45
parameters to invert, a swarm size of n = 16 was actually enough to recover a good velocity
model. We can also notice that increasing the swarm size allows the swarm to converge faster
which was expected. Besides, Monte Carlo tomography required more than 10000 iterations to
reach its stationary regime, while CPSO tomographies needed less than 100 iterations (i.e. less
than 1600 concurrent misfit function evaluations in the best case) to converge. In terms of
optimization performance, this means a gain of 2 orders of magnitude compared to MCMC.

50 3.4. NUMERICAL EXAMPLE

Table 3.2: Lower and upper boundaries of each layer parameter. Particles are uniformly initialized in the
search space.

Layer # Vp (m/s) Vp/Vs Depth (m)

Min. Max. Min. Max. Min. Max.

1 2500 5000 1.5 2.2 90 110
2 2500 5000 1.5 2.2 172 192
3 2500 5000 1.5 2.2 273 305
4 3000 5500 1.5 2.2 340 360
5 2500 5000 1.5 2.2 450 480
6 2500 5000 1.5 2.2 530 550
7 2500 5000 1.5 2.2 580 600
8 3500 6500 1.5 2.2 650 670
9 3000 6000 1.5 2.2 690 710
10 4000 7000 1.5 2.2 750 775
11 3500 6500 1.5 2.2 790 810
12 3000 6000 1.5 2.2 840 860
13 3500 7000 1.5 2.2 900 920
14 3500 6500 1.5 2.2 960 980
15 3500 6500 1.5 2.2 1200 1200

100 101 102 103 104 105 106
0

1000

2000

3000

4000

Iteration number

M
is

fit

MCMC

50 100 150 200

Iteration number

CPSO

16

32

64

128

Figure 3.8: (Left) Energy (or misfit) of the Markov Chain as a function of the iteration number. The
algorithm required more than 10000 iterations to reach equilibrium. (Right) Global best misfits for the
best models with respect to the iteration number for different swarm sizes. In the four cases, the misfit
function values are equivalent at the last iteration.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 51

2 4 6 8

0

300

600

900

1200

P-Velocity (km/s)

D
ep

th
(m

)
16 particles

2 4 6 8

P-Velocity (km/s)

32 particles

2 4 6 8

P-Velocity (km/s)

64 particles

2 4 6 8

P-Velocity (km/s)

128 particles

1 2 3 4 5

0

300

600

900

1200

S-Velocity (km/s)

D
ep

th
(m

)

1 2 3 4 5

S-Velocity (km/s)
1 2 3 4 5

S-Velocity (km/s)
1 2 3 4 5

S-Velocity (km/s)

Acoustic Mean Best

2

1.5

1

0.5

0

P
D

F

Figure 3.9: P- and S- wave velocity models obtained with 16 particles, 32 particles, 64 particles and 128
particles. The acoustic logs are represented in black, the best velocity models in green, the mean velocity
models in blue, and the density plots in gray scale, darker colors indicating higher probabilities. Results
are remarkably similar in the four cases.

The best and mean models are respectively represented in green and blue in Figure 3.9. The
mean model is calculated as the weighted sum of all the models sampled and is written as

v̂ =

P
i P
“

mi

˛̨̨
dobs

”
viP

i P (mi | dobs)
(3.11)

where vi is the continuous velocity model transformed from the parameters mi. The velocity
models obtained from the different tomographies are remarkably similar and seem consistent
with the acoustic logs for both P- and S- waves.

The velocity uncertainties are represented by the density plots, darker colors indicating higher
probabilities. We display in Figure 3.10 the marginal probabilities at three different depths (300,
600 and 900 meters). The marginal probabilities are narrow at 300 and 600 meters depth
which corresponds to the constrained region where the receivers are deployed, and are almost
uniform at 900 meters depth (below the receivers). Also, the marginal probabilities obtained
for the S-wave velocity models are thicker than those of P-wave velocity models as we have
fewer arrival time picks associated to S-waves. These marginal probabilities are consistent
with the acquisition geometry and the ray coverage between the sources and the receivers
and are in agreement with the ones obtained with a MCMC sampler. Besides, the velocity
uncertainties obtained for the four tomographies do not differ much from each other, which means
that uncertainty quantification in first arrival traveltime tomography using CPSO is relatively
insensitive to the swarm size.

52 3.4. NUMERICAL EXAMPLE

2 4 6 8
0

0:5

1

1:5

2

P-Velocity (km/s)

P
D

F

300 m

2 4 6 8

P-Velocity (km/s)

600 m

2 4 6 8

P-Velocity (km/s)

900 m

1 2 3 4 5
0

0:5

1

1:5

2

S-Velocity (km/s)

P
D

F

1 2 3 4 5

S-Velocity (km/s)
1 2 3 4 5

S-Velocity (km/s)

MCMC 16 32 64 128

Figure 3.10: Marginal probabilities at 300, 600, and 900 meters depth obtained with different swarm sizes
(16, 32, 64, 128 particles) and MCMC. Probabilities are narrow at 300 and 600 meters depth where the
receivers are deployed, and wide at 900 meters below the receivers. Marginal probabilities obtained with
CPSO are in agreement with the ones obtained with MCMC.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 53

0 5 10 15
−40

−20

0

20

40

Shot number

Lo
ca

tio
n

er
ro

r(
m

)
Errors in X

0 5 10 15

Shot number

Errors in Y

0 5 10 15

Shot number

Errors in Z

16 32 64 128 Reference

Figure 3.11: Location errors in X, Y and Z directions for the four best velocity models obtained with
different swarm sizes (16, 32, 64, 128 particles). The black crosses represent the location errors in the
reference model. The shots are accurately relocated in the Y and Z directions but the mean absolute
location error in the X direction is about 10 meters.

Finally, we relocate the fifteen perforation shots using an hybrid approach in the four best velocity
models obtained with different swarm sizes, and in the calibrated reference velocity model as
well. First, we perform a grid search over the hypocenter parameter space. Then, we refine the
search around the solution found by the grid search using CPSO. Figure 3.11 represents the
location errors for each perforation shot in the X, Y and Z directions. In the reference model,
we observe a mean absolute location error of 10, 7 and 12 meters in the X, Y and Z directions,
respectively. In our four velocity models, the fifteen shots are accurately relocated in the Y and Z
directions with a mean absolute error of 2 and 3 meters. Yet, the mean absolute location error in
the X direction is about 10 meters. This may be due to the poor ray coverage in this direction
and by the fact that we did not take into account a potential anisotropy in the medium.

All in all, the locations obtained from our four velocity models are more accurate, especially in
depth, which indicates that velocity models obtained from CPSO tomography can be reliably
used in microseismic monitoring.

3.5 Hybrid parallel implementation

In the last decades, High Performance Computing (HPC) has gain growing interest in geophysics
as it provides an integrated solution to solve large scientific and engineering problems. Today’s
supercomputers are systems made of Symmetric Multi-Processor machines (SMP) and therefore
combine features of shared and distributed memory architectures (Rabenseifner, Hager and
Jost (2009), Drosinos and Koziris (2004)). This allows multi-level hybrid parallel programming
where message passing model (MPI) is employed between processes (or ranks), and shared
memory model (OpenMP) is used for each process.

Non-linear traveltime tomography is a heavy computational problem that requires a lot of forward
modeling (i.e. computation of traveltimes). In our microseismic example, a traveltime grid is
computed for each perforation shot. Each grid can be computed independently which allows a
first level of parallelism. Besides, unlike MCMC methods usually applied in geophysical problems,

54 3.6. DISCUSSION AND CONCLUSION

1 13 26 52 104
1

13
26

52

104

of cores

S
pe

ed
up

CPSO

Ideal

1 13 26 52 104
0

0:2

0:4

0:6

0:8

1

of cores

P
ar

al
le

le
ffi

ci
en

cy

Figure 3.12: Parallel performance of CPSO on a real tomography problem. (Left) Speed up. (Right)
Parallel efficiency.

EA such as PSO have the advantage to evaluate concurrently a population of models, which
add another level of parallelism. In our hybrid parallel implementation, we evenly distribute the
particles to the MPI processes. Therefore, our implementation requires the swarm size to be a
multiple of the number of available cores for maximum efficiency to avoid idle cores. For each
process, given a velocity model defined by the particle, the computation of the traveltime grids
for each perforation shot is scattered over the threads with OpenMP.

We evaluate the parallel performance of our implementation on our real tomography example
by calculating the speed up and parallel efficiency for different number of cores. The speed
up is defined as the ratio of sequential computation time to parallel computation time. Parallel
efficiency is the ratio of speed up to the number of cores. Ideally, speed up and parallel efficiency
should equal the number of cores and 1, respectively. We solve our tomography problem
with 104 particles and 100 iterations on the 104 cores of a four sockets SMP machine (each
processor having 26 cores), and perform 5 runs using 1, 13, 26, 52 and 104 cores with only 1
OpenMP thread, which corresponds to a strong scaling analysis. Results of parallel performance
are reported in Figure 3.12.

Overall, increasing the number of cores reduces the computation time. However, speed up is not
ideal (72 at 104 cores) and parallel efficiency decreases almost linearly with increasing number
of cores. Therefore, the algorithm becomes less efficient by adding more and more cores. This
is due to communication overhead and/or overhead implied by parallel decomposition of the
algorithm. An asynchronous parallel implementation could improve PSO scalability and allow
close to ideal parallel performance (Koh et al. (2006), Venter and Sobieszczanski-Sobieski
(2006), Mussi, Nashed and Cagnoni (2011)).

3.6 Discussion and conclusion

With the rise in computational power that we have witnessed in the recent years – in particular
with the emergence of multi-core machines – it is important to implement algorithms that are able
to handle efficiently all the available CPU resources. EA such as PSO are global optimization
methods that evaluate simultaneously a set of independent solutions, implying a straightforward
parallelization of these algorithms.

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 55

In this paper, we have introduced a new algorithm based on PSO for non-linear first arrival
traveltime tomography that we called CPSO. We have demonstrated its robustness in finding
a good fitting solution on several benchmark test functions, and even in appraising reliably
uncertainties when run multiple times. CPSO has been successfully applied to a real 3D
microseismic example in the context of induced seismicity with reliable uncertainties indicating
which parts of the velocity models are well constrained. The velocity models sampled by multiple
runs of CPSO can be used to propagate velocity uncertainties to microseismic event locations.
Indeed, Gesret et al. (2015) showed that more accurate locations with more reliable uncertainties
can be obtained by taking into account both traveltime picking and velocity errors.

We have shown that CPSO is less sensitive to its main tuning parameters in addition to the
swarm size. Unfortunately, there is no rule-of-thumb for this parameter as the swarm size
is highly dependent on the problem (i.e. the dimension, the landscape). In our tomography
example, we have shown that 16 particles are enough in spite of the number of unknowns to
invert (45 parameters). Increasing the swarm size improves the speed of convergence as it
enhances the exploration capability of the swarm, yet it does not improve much the final model.

In our implementation, we have parallelized the computation of the forward problem at two levels:
the individuals are evaluated simultaneously among different MPI processes, and the traveltime
grids of each perforation shot are calculated concurrently by different OpenMP threads. Another
approach of parallelization are the island models where the EA are parallelized themselves
(Gong and Fukunaga (2011), Gong et al. (2015)). In other words, the initial population is
divided into subpopulations that evolve independently on a subset of cores (the islands) with
a periodical exchange of individuals (migration). It has been shown that island model EA
yield better performance as each population follows a different evolution path (Whitley, Rana
and Heckendorn (1999)). The migration process is analogous to the exchange of states in
Parallel Tempering and Interactive MCMC. One can also consider that each subpopulation
evolves following different stochastic processes, which has led to hybrid island model based
evolutionary algorithms. The advantage of these algorithms is that by combining different EA,
the shortcomings of one can be compensated by another.

In our tomography algorithm, we assumed that the picking errors were known. In practice,
observation picking uncertainties are usually poorly determined. Malinverno and Briggs (2004)
addressed this issue with a Hierarchical Bayesian formulation that assigns the measurement
errors as unknowns of the inverse problem, which allows the algorithm to infer the level of noise
that fit the data the best. Our algorithm can be extended to such formulation with very little
modification.

CPSO can also be applied to other geophysical inversion problems that require a global optimiza-
tion method (e.g. earthquake location, estimation of focal mechanism, inversion of dispersion
curves). The competitivity concept introduced in this paper can, as well, be adapted to other EA
that suffer from premature convergence such as Differential Evolution.

3.7 Appendice

3.7.1 PSO algorithm

Detailed PSO algorithm is summarized in Algorithm 3.3 where V = [v1; :::; vn] ∈ Rn×d and
M = [m1; :::;mn] ∈ Rn×d respectively denote particle velocities and model matrices, pf it ∈ Rn is
the vector of particle personal best misfits, and Pbest = [mp;1; :::;mp;n] ∈ Rn×d is a vector that
contains the personal best models of every particles. The algorithm is stopped when:

56 3.7. APPENDICE

1. The global best model changes less than a specified threshold "1 and its misfit function
value is lower than a threshold "2;

2. The maximum number of iterations is reached.

Table 3.3: PSO algorithm.

Pseudocode Comment

1: V← 0 . Initialize velocities
2: M ∼ U (mmin;mmax) . Initialize models
3: pf it ← E (M) . Initialize personal best misfits
4: Pbest ←M . Initialize personal best models
5: mg ← argmin (E (Pbest)) . Initialize global best model
6: repeat
7: for i = 1 to n do
8: vi ← !vi + ffiprp (mp;i −mi) + ffig rg (mg −mi) . Update velocity
9: mi ← mi + vi . Update model
10: if E (mi) < pf it;i then
11: pf it;i ← E (mi) . Evaluate misfit function
12: Pbest;i ← mi . Update personal best model
13: end if
14: end for
15: mg ← argmin (E (Pbest)) . Update global best model
16: until stopping criterion is met

3.7.2 CPSO algorithm

Algorithm 3.4 describes CPSO competition triggering with " the swarm maximum radius threshold
as defined in Equation (3.6). The maximum swarm radius ‹k at iteration k is evaluated right after
the update of the swarm global best model (line 15 of Algorithm 3.3). The “worst” particles can
be determined using a quickselect method that finds only the nkw individuals yielding the highest
misfit values. Note that reset particle personal best misfits are set to +∞ instead of their true
misfits to avoid extra misfit computations that would deteriorate parallel performance.

Table 3.4: CPSO competition triggering algorithm.

Pseudocode Comment

1: if ‹k < " then
2: for i = 1 to n do
3: if mi is worse then
4: vi ← 0 . Reset velocity
5: mi ∼ U (mmin;mmax) . Reset model
6: pf it;i ← +∞ . Reset personal best misfit
7: Pbest;i ← mi . Reset personal best model
8: end if
9: end for
10: end if

CHAPTER 3. 1D TRAVELTIME TOMOGRAPHY 57

3.7.3 Benchmark test functions

Several test functions used to benchmark global optimization methods are summarized in Table
3.5, together with their application ranges, minimum positions and values.

Table 3.5: Benchmark test functions.

Function Range Solution Minimum

Ackley 20 + e − 20e

−0:2

s
1
d

dP
i=1

x2
i

− e

1
d

dP
i=1

cos(2ıxi)

[-32.768,32.768] (0)d 0

Griewank 1 +
dP
i=1

x2
i

4000
−

dQ
i=1

cos
“
xi√
i

”
[-600,600] (0)d 0

Quartic (noise)
dP
i=1

ix2
i + rand (0; 1) [-1.28,1.28] (0)d 0

Rastrigin 10d +
dP
i=1

`
x2
i − 10 cos (2ıxi)

´
[-5.12,5.12] (0)d 0

Rosenbrock
d−1P
i=1

“
100
`
xi+1 − x2

i

´2
+ (1− xi)

2
”

[-5.12,5.12] (1)d 0

Styblinski-Tang 1
2

dP
i=1

`
x4
i − 16x2

i + 5xi
´
+ 39:16599d [-5,5] (−2:903534)d 0

3.7.4 Sensitivity analysis

We conducted the same sensitivity analysis as in Section 3.3.1 on the Rosenbrock function
in 5, 10 and 20 dimensions. The Rosenbrock function is a classical benchmark function that
presents a very flat valley similar to what can be observed in traveltime tomography. The results
are shown in Figure 3.13. For both PSO and CPSO, the high SR region is comparable to the
one obtained on the Rastrigin function, which means that a couple (!; ffi) lying in this region
can be used for different type of functions. Yet, since the high SR region is wider, CPSO is less
sensitive to the choice of the couple (!; ffi).

58 3.7. APPENDICE

0

0:5

1

1:5

2

2:5

3

ffi

d = 5, fmin = 2 d = 10, fmin = 8 d = 20, fmin = 20

0 0:2 0:4 0:6 0:8 1
0

0:5

1

1:5

2

2:5

3

!

ffi

0 0:2 0:4 0:6 0:8 1
!

0 0:2 0:4 0:6 0:8 1
!

0 20 40 60 80 100

SR (%)

Figure 3.13: Results of the sensitivity analysis to parameters ! and ffi for PSO (top) and CPSO (bottom)
on the Rosenbrock function in 5, 10 and 20 dimensions. The swarm size is set to 5 times the dimension
and the goal to achieve is indicated by fmin.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 59

Chapter 4

Refraction traveltime tomography

Contents

Abstract . 60

4.1 Introduction . 60

4.2 Theory and method . 62

4.2.1 Evolutionary algorithms . 63

4.2.2 Control parameter values . 67

4.3 Numerical example . 67

4.3.1 Synthetic data and parametrization . 67

4.3.2 Weighted mean model and standard deviation 68

4.3.3 Initial models . 70

4.3.4 Results . 72

4.3.5 Scalability . 77

4.4 Discussion and conclusion . 78

4.5 List of symbols . 80

Dans le Chapitre 3, je me suis intéressé à l’application d’un algorithme évolutionniste à un
problème de tomographie des temps de première arrivée en milieu tabulaire. Cette paramétri-
sation permet de représenter un modèle de vitesse avec un faible nombre de paramètres à
inverser. Cependant, ce type de paramétrisation n’est pas adapté pour décrire des milieux
géologiques plus complexes, et des paramétrisations moins parcimonieuses sont nécessaires
pour caractériser ces milieux. Les algorithmes évolutionnistes sont connus pour être sujets au
fléau de la dimension (curse of dimensionality en anglais), c’est-à-dire qu’ils perdent en efficacité
avec la dimension de l’espace de recherche qui augmente (> 102). Ce chapitre s’intéresse
à la faisabilité des algorithmes évolutionnistes pour l’optimisation d’un problème mal-posé à

60 4.1. INTRODUCTION

grand nombre de paramètres. J’applique les trois méthodes décrites dans le Chapitre 2 au
problème non-linéaire et multi-modal de tomographie des ondes réfractées sur le modèle de
vitesse Marmousi qui présente une structure géologique complexe. Les données de temps de
trajet synthétiques sont générées en considérant une géométrie d’acquisition stationnaire en
surface. Elle consiste en 200 sources et 400 récepteurs résultant en une faible illumination
du modèle de vitesse en profondeur. Le modèle de vitesse est paramétrisé par des courbes
B-splines cardinaux 2D. J’examine notamment l’influence des modèles de vitesse initiaux, la
taille de la population et le nombre maximal d’itérations. En tant que méthodes d’optimisation
stochastiques, les algorithmes évolutionnistes doivent être idéalement insensibles à la popula-
tion initiale. Cependant, je montre que leur convergence sur un problème de tomographie des
ondes réfractées peut être nettement améliorée en définissant une population initiale ayant un
sens physique. Enfin, j’évalue les avantages et inconvénients de chacun des algorithmes testés
à l’aide d’analyses statistiques des résultats de convergence et d’une analyse de scalabilité.

Ce chapitre est écrit sous la forme d’un article soumis :

• Keurfon Luu, Mark Noble, Alexandrine Gesret and Philippe Thierry, 2018. “Toward large
scale stochastic refraction tomography: a comparison of three evolutionary algorithms.”
Geophysical Prospecting.

Abstract

The main goal of this study is to assess the potential of evolutionary algorithms to solve highly
non-linear and multi-modal tomography problems (such as first arrival traveltime tomography)
and their abilities to estimate reliable uncertainties. Classical tomography methods apply
derivative-based optimization algorithms that require the user to determine the value of several
parameters (such as regularization level and initial model) prior to the inversion as they strongly
affect the final inverted model. In addition, derivative-based methods only perform a local search
dependent on the chosen starting model. Global optimization methods based on Markov Chain
Monte Carlo that thoroughly sample the model parameter space are theoretically insensitive
to the initial model but turn out to be computationally expensive. Evolutionary algorithms are
population-based global optimization methods and are thus intrinsically parallel, allowing these
algorithms to fully handle available computer resources. We apply three evolutionary algorithms
to solve a refraction traveltime tomography problem, namely the Differential Evolution, the
Competitive Particle Swarm Optimization and the Covariance Matrix Adaptation - Evolution
Strategy. We apply these methodologies on a smoothed version of the Marmousi velocity model
and compare their performances in terms of optimization and estimates of uncertainty. By
performing scalability and statistical analysis over the results obtained with several runs, we
assess the benefits and shortcomings of each algorithm.

Keywords: evolutionary algorithms, global optimization, uncertainties, non-linear inversion,
tomography

4.1 Introduction

Building a macro-velocity model is a key step in seismic imaging. Generally speaking, first arrival
traveltime tomography based on direct, diffracted or refracted waves is applied to invert for a
velocity model that explains the observed data. Such obtained velocity models are often used

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 61

as background models in migration or as initial models in Full Waveform Inversion (FWI) whose
results depend on the quality of the velocity models. First arrival traveltime tomography is a
typical non-linear and ill-posed problem encountered by the geophysical community. Acquisition
aperture is often limited and the sources and receivers are located only at the surface which
causes the resolution of velocity to decrease and error to increase with depth. To assess properly
resolution and errors, a reliable estimation of uncertainties is mandatory.

In spite of its non-linearity, many refraction tomography methods apply a derivative-based
optimization method to solve the linearized problem iteratively (White (1989), Zelt and Barton
(1998), Zhang and Toksöz (1998)). The linearization makes the implicit assumption of a
unique solution obtained by a regularization procedure, and only allows to obtain a local
solution dependent on the initial solution (Menke (2012)). The level of damping required by the
regularization procedure has to be determined prior to the inversion by the user and strongly
influences the inversion result. From a computational point of view, derivative-based methods are
very attractive since the gradient can be efficiently calculated using the adjoint-state method (e.g.
Taillandier et al. (2009), Noble et al. (2010)) making them suitable for large scale optimization
problems (i.e. 3D velocity models containing millions of parameters whatever the type of
parametrization).

Besides, derivative-based approaches are under gaussian hypothesis and require additional
computation to quantify uncertainties by assessing the quality of the inverted solution using
bootstrapping or evaluation of the sensitivity kernel for example. On the one hand, derivative-free
methods based on Markov Chain Monte Carlo (MCMC) that sample the velocity model parameter
space provide reliable estimates of uncertainty. These methods can be applied to non-smooth
and non-convex functions and produce results independent of the initial model. Although these
algorithms are sequential, each Markov chain can be run in parallel either independently or
interactively (Sambridge (2014), Bottero et al. (2016)). Other recent studies have proposed
methods to parallelize MCMC based algorithms (Neiswanger, Wang and Xing (2013), Goudie et
al. (2017)). However, some approaches such as interactive MCMC are not straightforward to
implement. On the other hand, evolutionary algorithms (EA) are global optimization methods
inspired by the natural evolution of species that are intrinsically and straightforwardly parallel as
they operate on a population of models. Each model is represented by an independent individual
within a population that can be evaluated in parallel.

Global optimization methods have been successfully applied to various inversion problems in
geophysics such as earthquake location (Sambridge and Gallagher (1993), Billings (1994),
Růžek and Kvasnička (2001)), surface wave dispersion curve inversion (Socco and Boiero
(2008), Song et al. (2012), Wilken and Rabbel (2012)), history matching (Mohamed et al. (2010),
Mohamed et al. (2012)), or traveltime tomography (Bodin and Sambridge (2009), Tronicke,
Paasche and Böniger (2012), Bottero et al. (2016), Belhadj et al. (2018)). However, few studies
have applied this kind of methods to solve a typical refraction tomography problem due to the
higher dimensionality and multi-modality of the problem. Indeed, the curse of dimensionality
that inherently affects all global optimization algorithms can exponentially increase the number
of local minima with the number of model parameters which makes them not suitable for large
scale optimization. Boschetti, Dentith and List (1996) applied a genetic algorithm on a synthetic
refraction tomography problem and tackled the curse of dimensionality by adopting a multi-
scale strategy (Bunks et al. (1995)) that iteratively increases the dimensionality of the search
space. Improta et al. (2002) applied an hybrid scheme based on a Monte Carlo approach
and the simplex optimization technique to derive an initial background velocity model from first
arrival traveltime data. Rumpf and Tronicke (2015) used a particle swarm optimizer to solve the
tomographic problem and quantify uncertainties using a 1D layer-based model parametrization.
More recently, Ryberg and Haberland (2018) directly applied a bayesian MCMC formalism
to invert refraction data and parametrized the velocity model using Voronoi tesselation and

62 4.2. THEORY AND METHOD

triangulated meshes. To our knowledge, no study has been published on the application of EA
to the seismic tomography problem for a large number of model parameters.

In this work, we propose to study the feasibility of a medium to large scale (300 parameters)
stochastic refraction tomography by comparing three EA, namely the Differential Evolution
(DE, Storn and Price (1997)), the Competitive Particle Swarm Optimization (CPSO, Luu et al.
(2018)) and the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES, Hansen, Müller and
Koumoutsakos (2003)). These three EA are becoming more and more popular in the geophysical
community because their implementations are straightforward, they require less tuning, they
are by nature parallel algorithms and their convergence rates is much higher compared to
classical global optimization methods (Angeline (1998), Mohamed, Christie and Demyanov
(2010)). These algorithms were originally designed for optimization and are now used to quantify
uncertainties (Fernández Martínez et al. (2012), Tronicke, Paasche and Böniger (2012), Rumpf
and Tronicke (2015)). Luu et al. (2018) showed on a simple real data example that CPSO does
sample properly the velocity model parameter space to provide reliable estimates of uncertainty,
results were similar to those obtained by MCMC at a much lower computational cost. It is worth
mentioning that EA like any global optimizers do not guarantee to find the global minimum.
Nevertheless, they are global in the sense that they are less dependent on their initial conditions.
The main objective of this work is to evaluate the performances and robustness of the three
EA to solve a medium to large scale highly non-linear tomography problem. The ability of DE
and CMA-ES to quantify uncertainties are compared to CPSO. First, we briefly describe the
three algorithms before showing the practical implementations for refraction tomography and
applying them to reconstruct a smoothed version of the Marmousi velocity model. We choose a
2D cardinal B-splines parametrization to obtain a smooth and realistic velocity model. Finally,
we perform a scalability analysis to assess the parallel performance of each algorithm on our
problem.

4.2 Theory and method

Many geophysical problems are underdetermined optimization/sampling problems that can be
solved using either local or global algorithms (Tarantola and Valette (1982)). An optimization
problem consists in minimizing the objective function E under the constraint mmin ≤ m ≤ mmax

(feasible space). In other words, we want to find the optimal model mopt so that

mopt = argmin (E (m)) ; mmin ≤ m ≤ mmax: (4.1)

In geophysical inverse problems, the objective function measures the difference between the
experimental data and the synthetic data calculated by a theoretical (often numerical) model,
and is hence usually referred to as the misfit function. Let us define the discrete data vector dobs .
For a model m, the misfit can be measured by the well-known root-mean-square (RMS) error
written

E (m) =

»
1

N

“
dobs − g (m)

”>
CD
−1
“

dobs − g (m)
”– 1

2

(4.2)

with N the number of data points, CD the data covariance matrix that accounts for the noise
present in the observed data, and g (m) the data calculated by the forward operator g – often
non-linear – on the model m. The non-linearity can be addressed by global optimization methods
that explore the model parameter space. In this paper, we focus on evolutionary algorithms
where the misfit function value of each model within the population can be independently
evaluated.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 63

4.2.1 Evolutionary algorithms

Evolutionary algorithms (EA) are population-based stochastic optimization methods that present
mechanisms inspired by the natural evolution of species such as mutation, recombination and
selection. A candidate model to the optimization problem is represented by an individual with
its misfit determining the quality of the model. EA are intrinsically parallel as each individual is
independent and their misfit values can be evaluated concurrently. This property allows EA to
benefit from all the computational resources available.

In this section, we describe the three evolutionary algorithms that will be used to solve the
refraction tomography problem, namely the Differential Evolution, the Competitive Particle Swarm
Optimization and the Covariance Matrix Adaptation - Evolution Strategy. As EA are nature-
inspired optimization algorithms, they may present some discrepancies in the vocabulary. For
the sake of consistency, we speak in terms of models, population, parameters and iterations to
respectively designate candidate solutions, ensemble of candidate solutions, variables of solution
vectors and successive solution updates. Besides, unless explicitly stated, the population size is
denoted by n, the dimensionality by d , the iteration number by superscript k and the subscript i
refers to the individual i of the population.

Differential Evolution

Differential Evolution (DE) is a genetic programming algorithm introduced by Storn and Price
(1997). It has shown excellent performances in many real-world problems including geophysical
problems (Storn (2017)). DE starts by generating a population of models uniformly distributed in
the model parameter space. For each target model mk

i , DE generates a mutant model vki by
adding the weighted difference between two population models to a third model such that

vki = mk−1
r1 + F

“
mk−1
r2 −mk−1

r3

”
(4.3)

where r1; r2; r3 ∈ {1; 2; :::; n} are three distinct random indices different from i , F ∈ [0; 2] is the
mutation factor that weighs the differential variation

“
mk−1
r2 −mk−1

r3

”
. This operation is called

mutation. In order to increase diversity within the population of mutant models, crossover has
been introduced to produce a trial model uki following

ukji =

(
vkji if rj ≤ CR or j = R

mk−1
j i otherwise

(4.4)

with j being the parameter index, rj ∼ U (0; 1) a uniform random number, R ∈ {1; 2; :::; d} a
random parameter index and CR ∈ [0; 1] the crossover rate that controls the likelihood to receive
a parameter from a mutant model with the condition j = R ensuring that it gets at least one
mutated parameter. Finally, selection applies the greedy criterion to determine which models
to preserve based on their misfit function values. If the trial model uki yields a lower misfit, it
replaces the target model mk

i , otherwise, its previous value is retained. The variant presented in
this section that will be used in this paper is known as DE/rand /1/bin as only one differential
weight is added to a randomly chosen model, and crossover is due to independent binomial
experiments (Storn and Price (1997)). The mutation and crossover mechanisms are illustrated
in Figure 4.1.

64 4.2. THEORY AND METHOD

mr1
k-1

vi
k

mr2
k-1

mr3
k-1

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

r2 ≤ CR

j = R

r6 ≤ CR

mi
k-1

ui
k

vi
k

Figure 4.1: (Left) Mutation in DE on a 2D misfit function represented by the contour lines. vk
i is generated

by adding the weighted differential variation
`
mk−1

r2
−mk−1

r3

´
to the individual mk−1

r1
, with mk−1

r1
, mk−1

r2
and

mk−1
r3

three random individuals chosen in the population. (Right) Crossover in DE for d = 8 parameters.
For each parameter, the trial vector uk

i receives a parameter from either the current or mutant vectors
accordingly to a binomial distribution with probability defined by CR.

Competitive Particle Swarm Optimization

Particle Swarm Optimization (PSO) has been introduced by Kennedy and Eberhart (1995) to
study the social behavior of fishes and birds. It belongs to the EA subclass of Swarm intelligence
where collective knowledge is channeled within the population. In PSO, the first step is to
generate a population randomly distributed in the model parameter space. Each model is
represented by a particle that interacts with its neighborhood to find the global minimum of the
misfit function.

At iteration k , a particle i is defined by a model vector mk
i and a velocity vector vki and is adjusted

according to its own personal best model and the global best model of the whole population.
The velocity vector controls how a model moves in the model parameter space and is initialized
to zero (Engelbrecht (2012)). The velocity and the position of each model are updated following

vki = !vk−1
i + ffiprkp

“
mp;i −mk−1

i

”
+ ffig rkg

“
mg −mk−1

i

”
(4.5)

mk
i = mk−1

i + vki (4.6)

where mp;i and mg are respectively the personal best model of particle i and the global best
model of the population, rkp and rkg are uniform random number vectors drawn at iteration k, !
is an inertia weight, ffip and ffig are two acceleration parameters that respectively control the
cognition and social interactions of the particles. Principle of PSO is illustrated in Figure 4.2.

The classical implementation of PSO suffers from premature convergence and stagnation as
it can be trapped in a local minimum, particularly when the evaluated function has a complex
landscape. Therefore, Luu et al. (2018) proposed a Competitive PSO (CPSO) to help the models
to escape from a local minimum whenever the population stagnates. The idea is to improve the
diversity of the population by renewing part of the population and keeping the “best” models only.
“Worst” models are reset, allowing a better exploration of the model space. A reset is called a
“competition” and is triggered whenever premature convergence is detected. The population is
considered to be stagnating when its maximum radius ‹k is lower than a threshold " following

‹k = max
1≤i≤n

0@
‚‚‚mk

i −mg

‚‚‚
‖mmax −mmin‖

1A < " =
log (1 + 0:003n)

max (0:2; log (0:01kmax))
(4.7)

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 65

mg

mi
k-2

mi
k-1

mp,i

mi
k

vi
k

Figure 4.2: Principle of PSO on a 2D misfit function represented by the contour lines. Particle velocity vk
i

is constructed by adding three weighted terms: the previous velocity vk−1
i that acts as an inertial term,

the cognition term
“

mp;i −mk−1
i

”
that accounts for the particle’s personal knowledge, and the sociability

term
“

mg −mk−1
i

”
that involves the knowledge of the entire swarm.

where ‖·‖ denotes the Euclidean norm, and kmax is the maximum number of iterations. Besides,
a competitivity parameter ‚ ∈ [0; 2] is introduced to control the proportion of models to reset
following

ff (k) =
1

1 + e
1

0:09

`
k

kmax
−‚+0:5

´ : (4.8)

The logistic function defined in Equation (4.8) has been tweaked so that the population is
competitive at early iterations and many models are reset; at later iterations, the population
stagnates in the last minimum found to refine the solution. CPSO has demonstrated better
convergence rates compared to classical implementation of PSO, and is more robust to the
choice of its control parameters.

Covariance Matrix Adaptation - Evolution Strategy

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) (Hansen, Müller and Koumout-
sakos (2003)) is considered as the state-of-the-art method for stochastic numerical optimization
and is derived from the natural gradient. It is a second-order method similar to Quasi-Newton
methods yet randomized, that has been designed to approximate the contour lines of the ob-
jective function by adapting the covariance matrix of a multivariate gaussian distribution to the
objective function topography. It belongs to the class of Evolution strategies that has been
introduced in the early seventies (Rechenberg (1973)). In CMA-ES, a population consists of –
models called offspring sampled from a multivariate gaussian distribution :

∀i ∈ [1; –] ;mk
i ∼ m̄k−1 + ffk−1N

“
0;Ck−1

”
(4.9)

where N
“

0;Ck−1
”

denotes a multivariate gaussian distribution with zero mean and covariance
matrix Ck−1, m̄k−1 is the mean vector of the distribution and ffk−1 is the step size. Then, —

66 4.2. THEORY AND METHOD

+ +
+ +

C
k-1

C
k

C
k

m
k-1

m
k-1

m
k

m
k

Figure 4.3: Principle of CMA-ES on a 2D misfit function represented by the contour lines. The population
should move toward the upper right corner. (Left) Sample of – = 20 offspring distributed accordingly to
N
`
m̄k−1;Ck−1

´
. (Middle) — = 10 best individuals selected to update the mean and covariance matrix.

(Right) Mutation distribution for the next generation. Adapted from Hansen (2011).

models are selected as parents among the model offspring that yield the lowest misfit function
values, and recombined to form the mean of the distribution for the next iteration, following

m̄k = m̄k−1 +
—X
i=1

!i
“

mk
i :– − m̄k−1

”
; with

—X
i=1

!i = 1; !1 ≥ !2 ≥ ::: ≥ !— > 0 (4.10)

where i :– denotes the index of the i th best model offspring. The CMA-ES then adapts the
covariance matrix of the distribution by performing two critical updates, namely the rank-one and
rank-— updates, and reads

Ck =
“

1− c1 − c—
X

!i
”

Ck−1 + c1 pkcpkc
>| {z }

rank-one update

(4.11)

+ c—

–X
i=1

!i
ffk−1

“
mk
i :– − m̄k−1

” “
mk
i :– − m̄k−1

”>
| {z }

rank-— update

(4.12)

with c1 ≤ 1 and c— ≤ 1 being the learning rates. The first term accounts for the information
from the previous covariance matrices whose contributions decay exponentially with time. The
rank-one update reinforces the likelihood of steps in the vicinity direction of the evolution path
pkc (sum of consecutive steps of the mean in the previous iterations) while the rank-— update
exploits information from the distribution of the current population.

The adaptation of the covariance matrix does not control the overall scale of the distribution, only
the directions and lengths of its principal axis. Thus, the step size is also independently adapted
by comparing the length of a second evolution path pkff (sum of consecutive step lengths) to its
expected length upon random selection, which is written

ffk = ffk−1

0@ cff
dff

0@
‚‚‚pkff

‚‚‚
E [‖N (0; I)‖] − 1

1A1A (4.13)

where cff < 1 is the time horizon of the evolution path and dff ≈ 1 is a damping parameter.
Therefore, the step size is decreased whenever it is too short, and increased whenever it is too
long. The principle of CMA-ES is illustrated in Figure 4.3.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 67

4.2.2 Control parameter values

EA are designed to be easy to use with few control parameters that are robust and easy
to choose. In addition to the population size and the maximum number of iterations, DE is
controlled by two main user parameters, namely the mutation factor F and the crossover rate
CR. CPSO is controlled by four parameters, namely the inertia weight !, the cognition and
sociability parameters ffip and ffig , and the competitivity parameter ‚. From a user point of
view, CMA-ES requires only two parameters to be set by the user, namely the initial mean
and the step size, the remaining parameters introduced are usually fixed independently of the
problem. Empirical studies have shown that performances of EA are sensitive to the input control
parameters, especially DE and CPSO. However, these studies have provided some insights
on the initialization of these parameters (Iwan et al. (2012), Van Den Bergh and Engelbrecht
(2006), Eberhart and Shi (2000)).

In practice, we followed these guidelines that turn out to be very robust and summarize in Table
4.1 the parameter values for each EA. Note that this table only shows one parameter for CMA-ES
(i.e. the initial step size) as the choice of the initial mean is explained in Section 4.3.3. In general,
an algorithm is stopped when the misfit value threshold or the maximum number of iterations
specified by the user are reached. In the following, we choose the latter stopping criterion to
allow the algorithms to sample around the final solution.

Table 4.1: Default control parameter values.

Symbol Value

DE
Mutation factor F 0.9
Crossover rate CR 0.5

CPSO
Inertia weight ! 0.7298
Cognition ffip 1.49618
Sociability ffig 1.49618
Competitivity ‚ 1

CMA-ES
Initial step size ff mmax−mmin

3

4.3 Numerical example

4.3.1 Synthetic data and parametrization

In this paper, we invert for the Marmousi velocity model using the three EA presented in Section
4.2.1. The Marmousi velocity model was designed to be geologically realistic yet complex with
strong vertical and lateral velocity variations (Versteeg (1994)). Therefore, reconstructing this
velocity model by tomographic methods is challenging. We smooth the original model using
a gaussian filter with a 50 meters standard deviation in both directions to generate synthetic
traveltimes considering a stationary acquisition geometry that consists of two hundred shots
and four hundred receivers spaced every 50 and 25 meters, respectively. The maximum offset
reaches 10 km just for the end shots, so we expect to retrieve the velocities fairly accurately
down to a depth of approximately 1 km that corresponds to 1/10 of the maximum offset. Beyond
this depth, accuracy of the retrieved velocity model will decrease more and more with depth.

68 4.3. NUMERICAL EXAMPLE

We parametrize the velocity model using a cubic cardinal B-spline surface (order 4). Such
a representation reduces the number of unknowns and provides by nature a smooth velocity
model which thus avoids introducing an additional regularization term. A B-spline surface is a
parametric surface defined by nz × nx control points P ∈ Rnz×nx , its orders kz and kx respectively
corresponding to functions of degree kz − 1 and kx − 1. Any B-spline surface of order (kz ; kx)
can be expressed as a linear combination of B-splines of order (kz ; kx) following

S (u; v) =
nzX
i=1

nxX
j=1

Pi jB
kz
i (u)Bkxj (v) ; u; v ∈ [0; 1] (4.14)

where the B-spline basis functions Bkzi and Bkxj can be calculated with de Boor’s recursion
(Boor (1972)). In our refraction tomography problem, P is a set of control points that contains
the velocity information of the model. The velocity model is finally interpolated on a finer 120
by 400 cartesian grid (i.e. grid spacing of 25 meters) and traveltimes are calculated using a
2D Eikonal solver (Noble, Gesret and Belayouni (2014)) that generates traveltime grids for
each shot location. Such a grid spacing offers a good trade-off between computation time
and traveltime accuracy for this data set. It should be mentioned that because of the B-spline
parametrization, we will only be able to retrieve the long wavelengths of the velocity model.
Therefore, in order to facilitate the comparison, we generate a low-frequency target velocity
model by further smoothing the original model using a gaussian filter with respectively a 200
and 75 meters standard deviation in X and Z directions.

Figure 4.4 shows the velocity model used to generate the travaltime data (top), the low-frequency
target velocity model that will be used to compare the results (middle), and the ray density map
for this acquisition geometry (bottom). The ray density map exhibits some area that are not
illuminated (e.g. between 4 and 7 km at 2 km depth, and the lower corners of the velociy model).
High uncertainties should thus be expected in these areas. The data being noise-free, we set
the data covariance matrix in Equation (4.2) to CD = I with I the identity matrix.

4.3.2 Weighted mean model and standard deviation

Because refraction tomography is an ill-posed and highly multi-modal problem, the solution is
not unique and the global minimum is not guaranteed to be found by an evolutionary optimizer,
especially in high dimensions. Typically, tomographic solutions are appraised using several
statistical measures, in particular the mean and the standard deviation (Bodin and Sambridge
(2009), Bodin et al. (2012)). The mean velocity model is usually considered as a reference
model while the standard deviation is interpreted as an error map, under the assumption that
each model parameter is normally distributed. In this study, the weighted mean velocity model
obtained by averaging all the models sampled is also considered alternatively to the best velocity
model. In addition, the associated errors (i.e. standard deviation) are estimated to assess the
ability of an EA to quantify uncertainties.

A single run of EA does not provide a proper sampling of the model parameter space since
they are designed to rapidly locate and exploit a single minimum. Sen and Stoffa (1996) (in
Section Multiple MAP estimation) suggests to perform several independent runs of a global
optimizer with different starting solutions to sample different parts of the model parameter space.
Assuming that the posterior density distribution P

“
m
˛̨̨

dobs
”

can be approximated using all the
models sampled by several runs, the mean model is calculated as the weighted sum of all the
models sampled and is written as

v̂ =

P
i P
“

mi

˛̨̨
dobs

”
viP

i P (mi | dobs)
(4.15)

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 69

0

1

2

3

D
ep

th
(k

m
)

2

2.5

3

3.5

Ve
lo

ci
ty

(k
m

/s
)

0

1

2

3

D
ep

th
(k

m
)

2

2.5

3

3.5

Ve
lo

ci
ty

(k
m

/s
)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

Distance (km)

D
ep

th
(k

m
)

0

100

200

300

400

500

R
ay

de
ns

ity

Figure 4.4: Marmousi velocity model. (Top) Velocity model used to generate the traveltime data. (Middle)
Low-frequency target velocity model. (Bottom) Ray density map.

70 4.3. NUMERICAL EXAMPLE

where vi is the 2D cartesian velocity model interpolated from the B-spline grid defined by the
model parameters mi. More specifically, the contribution of each model is weighted by its
posterior probability. Because bad fitting models have very low probability, their contributions to
the mean are nil. Likewise, the unbiased standard deviation reads

σ =

vuut N

N − 1

P
i P (mi | dobs) (vi − v̂)2P

i P (mi | dobs)
(4.16)

with N the total number of models.

From a formal point of view, the estimation of uncertainties should be obtained by computing the
density plots or ideally the quantiles based on the marginals. Even if EA are very efficient in
terms of CPU resources, we still end up with a very large number of models (i.e. the number of
independent runs times the number of iterations times the population size), and these quantities
can become prohibitive to calculate. The standard deviation is a pragmatic approach to quantify
uncertainties. It is also in agreement with the mean.

4.3.3 Initial models

From a general point of view, global optimization methods are ideally insensitive to the initial
models under the condition that the algorithm is run for a very large number of iterations (e.g.
Bodin and Sambridge (2009) required 1 million iterations for a velocity model parametrized with a
small number of unknowns). Whenever using EA, initial models are usually randomly generated
in the model parameter space, which ideally should not influence the output of the optimization.
However, refraction tomography is a highly non-linear and multi-modal optimization problem.
While DE, CPSO and CMA-ES have been designed to deal with premature convergence,
random velocity models may contain strong local velocity heterogeneities that can mislead the
optimization process and require more iterations to ensure convergence. Therefore, one can
help the search by introducing more realistic initial models (yet randomized).

In order to investigate the influence of the initial models on the quality of the inverted models,
we run 20 inversions of 5000 iterations using CPSO with a population size of 26 individuals
and different types of model initializations, namely fully random, homogeneous and vertically
increasing gradient velocity models. The velocity model is parametrized by a cardinal B-spline
grid of 8 by 13 (d = 104) i.e. 8 and 13 spline nodes are regularly spaced every 429 m in the Z
direction and every 833 m in the X direction, respectively. Such parametrization offers a good
trade-off between the vertical resolution and the dimensionality of the problem. For each type of
model initialization, the velocities of the B-spline nodes are randomly initialized according to a
uniform distribution which is more explicitly described in Table 4.2.

Table 4.2: Initialization of the velocities of the B-spline nodes for each type of model initialization. The
initialization procedures are independently applied to every model in the population.

Method Description

Random Velocities are randomly sampled from U (1500; 5000).
Homogeneous Velocities are all equal to a single random value sampled from

U (1500; 5000).
Gradient Velocity at the surface is sampled from U (1500; 3250). Velocity at the

bottom is sampled from U (3250; 5000). Velocities for intermediate nodes
are linearly interpolated between surface and bottom velocity nodes.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 71

0 1000 2000 3000 4000 5000

10−2

10−1

100

Iteration number

A
ve

ra
ge

R
M

S
(s

) Random

Homogeneous

Gradient

2 3 4 5

0

1

2

3

Velocity (km/s)

D
ep

th
(k

m
)

0.6

0.4

0.2

R
M

S
(s

)

Figure 4.5: (Left) Average RMS over 20 runs as a function of iteration number. When using random
vertically increasing gradient initialization, the optimizers converge faster toward low RMS velocity models.
(Right) Example of 100 random vertically increasing gradient velocity models, the color scale indicating
their RMS values. For CMA-ES, the model that yields the lowest RMS is chosen as the initial mean vector
(red).

We recall that the B-spline grid is interpolated on a 120 by 400 cartesian grid for the computation
of traveltimes. The influence of the population size with dimensionality will be further studied in
the next section. Figure 4.5 shows the average evolution of the RMS over the 20 runs for the
different types of initializations (left) and example of 100 random vertically increasing gradient
1D profiles (right). Initializing the models with increasing gradient velocity models allows the
optimizers to start the search in a lower RMS space than the two other types of initializations.
The model that yields the lowest RMS will serve as the global best model for DE and CPSO,
while it will be used as the initial mean of the gaussian distribution for CMA-ES.

Figure 4.6 displays the mean velocity model obtained for the three different types of initialization.
While the shallow structure of the weighted mean velocity models fit the target velocity model,
the optimizers are not able to retrieve the strong refractor at 2.5 km depth when using fully
random and homogeneous initial models. On the other hand, the mean velocity model for
gradient initialization fits well the long wavelengths of the target velocity model at all depths.

Random

1 2 3 4 5

0

1

2

Velocity (km/s)

D
ep

th
(k

m
)

X = 1000 m

1 2 3 4 5
Velocity (km/s)

X = 4000 m

1 2 3 4 5
Velocity (km/s)

X = 7000 m

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

Distance (km)

D
ep

th
(k

m
)

Homogeneous

1 2 3 4 5
Velocity (km/s)

X = 1000 m

1 2 3 4 5
Velocity (km/s)

X = 4000 m

1 2 3 4 5
Velocity (km/s)

X = 7000 m

0 1 2 3 4 5 6 7 8 9 10

Distance (km)

2 2:5 3 3:5

Velocity (km/s)

Gradient

1 2 3 4 5
Velocity (km/s)

X = 1000 m

1 2 3 4 5
Velocity (km/s)

X = 4000 m

1 2 3 4 5
Velocity (km/s)

X = 7000 m

0 1 2 3 4 5 6 7 8 9 10

Distance (km)

Figure 4.6: 1D profiles (top) and 2D models (bottom) for different initializations. (Left) Fully random.
(Middle) Homogeneous. (Right) Vertically increasing gradient. The mean velocity model (blue) fits the
long wavelengths of the target velocity model (black) at all depths for gradient initialization. The results
have been obtained using CPSO.

72 4.3. NUMERICAL EXAMPLE

Note that the results presented were obtained using CPSO only. However, comparable results
and conclusions can be obtained with DE or CMA-ES as the initial population starts in a better
search space which allows the algorithms to converge faster.

4.3.4 Results

In the previous section, we investigated the influence of the initialization by inverting for a 8
by 13 B-spline grid (d = 104) and obtained a very low resolution mean velocity model. In this
section, we invert for a velocity model of higher resolution parametrized by a 15 by 20 B-spline
grid (d = 300) i.e. 15 and 20 spline nodes are regularly spaced every 214 m in the Z direction
and every 526 m in the X direction, respectively. We investigate the influences of the population
size n (26, 52 and 104) and the maximum number of iterations kmax (10000 and 20000).

We use a parallel hybrid implementation where the computation of the misfit function values is
distributed to the MPI processes and the computation of the traveltime grids for each shot is
scattered over the threads with OpenMP. Our implementation requires the population size to
be a multiple of the number of available cores for maximum efficiency to avoid idle cores. The
inversions are performed using 520 cores (26 Symmetric Multi-Processor machines with two
sockets made of 2 Intel R© Xeon R© CPU E5-2640, 10 cores @ 2.40 GHz each).

For each EA, we conduct three different experiments consisting of 50 independent runs with
different population sizes and maximum numbers of iterations. The parameters and the compu-
tation times per run for all the experiments on the supercomputer are reported in Table 4.3. The
first experiment principally aims to determine which algorithm is the most robust with smaller
population. For the second and third experiments, we fix the number of forward modelings per
run to determine whether it is better to have a larger population or to perform more iterations
given the same computation time. Indeed, the computation time is the main limiting factor
when dealing with real-world problems and is directly proportional to the population size and
the maximum number of iterations. For all the experiments, the population is initialized using
increasing gradient velocity models as previously described in Table 4.2.

Table 4.3: Parameters and computation times per run (in hours). MPI and OMP respectively indicate the
number of processes and threads used for each experiment.

Experiment 1 Experiment 2 Experiment 3

Parameter
Population size 26 52 104
Number of iterations 10000 20000 10000
MPI / OMP 26 / 20 52 / 10 104 / 5

Computation time
DE 0.21 0.75 0.75
CPSO 0.20 0.74 0.74
CMA-ES 0.38 1.27 1.26

Figure 4.7 displays the average evolution of the RMS and its standard deviation with respect to
the iteration number for the 50 independent runs. The RMS standard deviation corresponds to
the repeatability of an algorithm and illustrates how the initial populations affect the final solutions.
Generally, increasing the population size improves the repeatability of the algorithms (lower
RMS deviation). Increasing the population size from 26 to 52 noticeably improves their speeds
of convergence. However, increasing the population size from 52 to 104 does not improve much

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 73

0 5000 10000 15000 20000

10−2

10−1

Iteration number

A
ve

ra
ge

R
M

S
(s

)

0 5000 10000 15000 20000

10−4

10−3

10−2

Iteration number

R
M

S
de

vi
at

io
n

(s
)

DE n=26 DE n=52 DE n=104
CPSO n=26 CPSO n=52 CPSO n=104
CMA-ES n=26 CMA-ES n=52 CMA-ES n=104

Figure 4.7: Evolution of average RMS (left) and RMS deviation (right) with respect to iteration number for
the 3 experiments with the 3 EA.

their convergence behaviors. On the other hand, more iterations allow the algorithm to slowly
refine the solutions. Indeed, CPSO and CMA-ES were able to reach misfits comparable to the
ones obtained with a smaller population but with twice more iterations. These results shows
that larger population improves the speed of convergence but is not necessarily required when
considering the computation time. Indeed, performing more iterations can also improve the
convergence of the algorithms. Nonetheless, experiment 2 for CPSO produces worse solutions
in terms of repeatability than in experiment 3.

From an optimization point of view, CMA-ES clearly outperforms both DE and CPSO for its
robustness and speed of convergence as it is able to reach lower RMS even with a smaller
population size of 26. In the following, we only discuss the results for experiment 3 but similar
conclusions can be drawn with the other experiments. Figures 4.8 and 4.9 respectively display
the vertical and horizontal velocity profiles of the target, the mean and best models at different
locations and depths. For each EA, the best velocity models are of higher frequency yet none
of them, even for CMA-ES, match the target velocity model in depth (below 1000 m). All the
best velocity models are probably trapped in a local minimum due to the non-linearity and high
dimensionality of the problem. On the other hand, despite their lower resolutions, the mean
velocity models obtained by the three EA fit the long wavelengths of the target velocity model
at all depths. This can be explained by the beneficial effect of sampling and averaging many
models in the ensemble similarly to MCMC based methods (Bodin and Sambridge (2009)).

We also display in Figures 4.10 and 4.11 the cross-sections of the differences between the
target velocity model and the mean velocity models for each method. CMA-ES exhibits worse
results compared to DE and CPSO with higher absolute errors in both the vertical and horizontal
cross-sections. CPSO seems to perform slightly better than DE since the average errors are
closer to zero. More generally, the model fit for the three algorithms deteriorates with increasing
depth which is consistent with the acquisition geometry on surface.

We show in Figure 4.12 the mean velocity models for experiment 3 and the associated uncer-
tainties. We superimpose over the results the main structure and the ray coverage of the target
velocity model to quality control the results. All the mean velocity models are fairly consistent
with the target structure, except for DE that underestimates the velocity below 2.5 km depth.
Nonetheless, when considering the associated relative standard deviations, only CPSO is in
agreement with the target ray coverage. Indeed, high uncertainties are retrieved in areas that
are not illuminated by the rays, while both DE and CMA-ES produce low uncertainties in these

74 4.3. NUMERICAL EXAMPLE

0

1

2

D
ep

th
(k

m
)

X = 1000 m X = 3000 m X = 5000 m X = 7000 m

D
E

X = 9000 m

0

1

2

D
ep

th
(k

m
)

C
P

S
O

2 3 4 5

0

1

2

Velocity (km/s)

D
ep

th
(k

m
)

2 3 4 5
Velocity (km/s)

2 3 4 5
Velocity (km/s)

2 3 4 5
Velocity (km/s)

2 3 4 5
Velocity (km/s)

C
M

A
-E

S

Error Target Mean Best

Figure 4.8: Comparison of vertical profiles between the target (black), the mean (blue) and the best
(green) velocity models at different locations for the 3 EA. The errors are indicated in gray shade.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 75

1

2

3

Ve
lo

ci
ty

(k
m

/s
)

DE CPSO

Z
=

0
m

CMA-ES

1

2

3

Ve
lo

ci
ty

(k
m

/s
)

Z
=

25
0

m

2

3

Ve
lo

ci
ty

(k
m

/s
)

Z
=

50
0

m

2

3

4

Ve
lo

ci
ty

(k
m

/s
)

Z
=

10
00

m

0 2 4 6 8
2

3

4

5

Distance (km)

Ve
lo

ci
ty

(k
m

/s
)

0 2 4 6 8
Distance (km)

0 2 4 6 8
Distance (km)

Z
=

20
00

m

Error Target Mean Best

Figure 4.9: Comparison of horizontal profiles between the target (black), the mean (blue) and the best
(green) velocity models at different depths for the 3 EA. The errors are indicated in gray shade.

76 4.3. NUMERICAL EXAMPLE

-1 -0.5 0 0.5 1

0

1

2

Velocity (km/s)

D
ep

th
(k

m
)

X = 1000 m

-1 -0.5 0 0.5 1
Velocity (km/s)

X = 3000 m

-1 -0.5 0 0.5 1
Velocity (km/s)

X = 5000 m

-1 -0.5 0 0.5 1
Velocity (km/s)

X = 7000 m

-1 -0.5 0 0.5 1
Velocity (km/s)

X = 9000 m

DE CPSO CMA-ES

Figure 4.10: Vertical cross-sections of the difference between the target and mean velocity models.

-1

-0.5

0

0.5

1

Ve
lo

ci
ty

(k
m

/s
)

Z = 0 m Z = 250 m

0 2 4 6 8
Distance (km)

Z = 500 m

0 2 4 6 8
-1

-0.5

0

0.5

1

Distance (km)

Ve
lo

ci
ty

(k
m

/s
)

Z = 1000 m

0 2 4 6 8
Distance (km)
Z = 2000 m

DE CPSO CMA-ES

Figure 4.11: Horizontal cross-sections of the difference between the target and mean velocity models.

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 77

0

1

2

3

D
ep

th
(k

m
)

D
E

0

1

2

3

D
ep

th
(k

m
)

C
P

S
O

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

Distance (km)

D
ep

th
(k

m
)

2 2.5 3 3.5
Velocity (km/s)

0 1 2 3 4 5 6 7 8 9 10

Distance (km)

C
M

A
-E

S

2 4 6 8 10
Relative standard deviation (%)

Figure 4.12: Inversion results for experiment 3. Weighted mean velocity models and associated uncer-
tainties for (top) DE, (middle) CPSO and (bottom) CMA-ES. The main structure and the ray coverage of
the target velocity model are superimposed over the results.

areas. Such a discrepancy is due to the better repeatability of DE and CMA-ES compared to
CPSO. Indeed, great repeatability means that each independent run has produced a final model
with comparable misfit value. The lower repeatability obtained by CPSO indicates that it also
samples models of lower misfit values similarly to MCMC based methods. Therefore, despite
being less repeatable, CPSO can be used to approximate the posterior density distribution, and
thus is more reliable to quantify uncertainties compared to the other algorithms.

4.3.5 Scalability

EA are intrinsically parallel as they can simultaneously evaluate the quality of the models
in a population. However, their parallel performances are mainly limited by the fraction of
computational load that is not parallel (Amdahl (1967)). In our implementation, data management,
generation of new populations and internal variable initializations and updates are all performed
sequentially, only the evaluations of the models (i.e. computations of the misfit function values)
are parallelized.

We evaluate the scalability of each algorithm on three refraction tomography problems of different
dimensionality with various B-spline grids, namely a 10 by 15 grid (d = 150), a 15 by 20 grid
(d = 300) and a 20 by 30 grid (d = 600). The population size is fixed to 104. As the algorithms
are mainly CPU-bounded, we perform a strong scale analysis and measure the sequential and
parallel computation time using one core only. We evaluate the parallel performance of each
optimizer by calculating the theoretical speed up and parallel efficiency that can be achieved by
the algorithms. The theoretical speed up S can be described by Amdahl’s law stating that the
computation can be decomposed into sequential and parallel tasks and the speed up is only

78 4.4. DISCUSSION AND CONCLUSION

200 400 600 800 1000

200

400

600

800

1000

of cores

S
pe

ed
up

200 400 600 800 1000
0

0:2

0:4

0:6

0:8

1

of cores

P
ar

al
le

le
ffi

ci
en

cy

DE d=150 DE d=300 DE d=600
CPSO d=150 CPSO d=300 CPSO d=600
CMA-ES d=150 CMA-ES d=300 CMA-ES d=600

Figure 4.13: Maximum parallel performances of DE, CPSO and CMA-ES on a refraction tomography
problem with a population size of 104. (Left) Speed up. (Right) Parallel efficiency.

limited by the time required by the sequential part, following

S (p;N) ≤ 1

1− p + p
N

(4.17)

where p denotes the parallel fraction of the computation and N the number of cores working in
parallel. The theoretical parallel efficiency is the ratio of the theoretical speed up to the number
of cores. An algorithm is considered to be embarassingly parallel if the speed up equals the
number of cores and the parallel efficiency is 1. The results of the scalability analysis are shown
in Figure 4.13.

The theoretical speed up and parallel efficiency that can be achieved by DE and CPSO are
almost ideal. However, parallel performance of CMA-ES strongly degrades with increasing
processing power and dimensionality. This discrepancy is tied up with the fact that both CPSO
and DE have an internal time complexity on the order of O (nd), while CMA-ES has a time
complexity on the order of O `nd3

´
due to the eigenvalue decomposition of the covariance

matrix. While DE and CPSO seem to have an ideal scalability, in practice, this is not true as
good scalability is harder to achieve with increasing number of cores due to the communication
overhead and/or overhead implied by the parallel decomposition of the algorithms that are not
accounted for in Amdahl’s law.

4.4 Discussion and conclusion

The main goal of this paper is to study the feasibility of EA to solve the highly non-linear and
multi-modal refraction tomography problem in high dimensions. With the rise in computational
power, it is important to implement algorithms that are able to handle efficiently all the available
CPU resources. The methodology presented is promising in terms of computational cost as EA
are intrinsically parallel and are well adapted to supercomputers. We applied and compared
three EA to solve the refraction tomography problem, namely the Differential Evolution (DE),
the Competitive Particle Swarm Optimization (CPSO), and the Covariance Matrix Adaptation -
Evolution Strategy (CMA-ES).

While global optimization methods should ideally be insensitive to the initial models, we showed
that using realistic models (i.e. random increasing gradient) as initial population helps the EA to

CHAPTER 4. REFRACTION TRAVELTIME TOMOGRAPHY 79

start the search in a space of lower misfit which significantly improves the convergence of EA.
The main advantage of using EA for refraction tomography lies in the fact that this initialization
procedure does not require the user to explicitly specify a good starting model and works well
even with uninformative but realistic feasible space boundaries. In our paper, we set the lower
and upper boundaries to 1500 and 5000 m/s, respectively.

From a pure optimization point of view, CMA-ES clearly outperforms both DE and CPSO,
being more robust in terms of repeatability and able to reach lower misfits even with a smaller
population size. However, it comes at the cost of poor scalability with increasing dimensionality
mainly due to the eigenvalue decomposition to adapt the covariance matrix. Akimoto, Auger and
Hansen (2014) proposed a modification of CMA-ES called VDCMA that uses a diagonal matrix
D and a principal rotation vector v to parametrize the covariance matrix following

C = D
“
I + vv>

”
D> (4.18)

where I is the identity matrix. Such parametrization reduces its internal time complexity from
O `nd3

´
to O (nd) which should improve its scalability and feasibility for problems of larger

dimension. On the other hand, DE and CPSO both exhibit good scalability but converge more
slowly as larger population sizes and/or more iterations are required. Among the three methods
tested, CPSO is the least repeatable algorithm.

Because of the multi-modal nature of refraction tomography, although the three EA are able to
converge toward models that explain the data, the final inverted models fit the target velocity
model at shallow depths only. Nevertheless, as stochastic algorithms, each run of EA explores
different subspaces of the model parameter space. Therefore, one can use different statistical
estimates to reconstruct the velocity model and appraise uncertainties. We demonstrated that
the weighted mean velocity model over all the models explored by every runs of an EA is able
to approximate the long wavelengths of the target velocity model. However, only CPSO was
able to produce uncertainties consistent with the target ray coverage. This can be explained by
the lower repeatability of CPSO implying that it samples subspaces of lower likelihood as well,
similarly to MCMC based methods.

In this study, we investigated the influences of the population size and the maximum number of
iterations. We tested different population sizes lower than the dimensionality (n < d). The curse
of dimensionality implies an exponential growth of local optima. The different tests performed
showed that increasing either the population size or the number of iterations both improve the
convergence of the algorithms. Therefore, we would recommend to use larger populations
instead of performing more iterations, especially since we can parallelize the individuals but
not the iterations. However, although using a population larger than the number of dimensions
(n > d) is common in problems of low dimensionality, we do not believe that increasing the
population size to that extent would help EA to find the global minimum in acceptable time, but
would rather deteriorate their performances (Chen, Montgomery and Bolufé-Röhler (2015)). In
our experience, at least in solving tomographic problems, the population size should be set
logarithmically with the dimensionality. Besides, more thorough analysis should be carried out
on the different control parameters of EA. Indeed, we used the default parameter values that
have been empirically tweaked in the literature with optimization in mind (i.e. good convergence
and repeatability). For better estimates of uncertainty, these parameters should be tweaked
to decrease the repeatability of the algorithms as we speculate that good repeatability is not
beneficial for sampling. Nonetheless, in our case, default parameters for CPSO indeed perform
well for sampling and uncertainty quantification.

The methodology is not limited to refraction tomography only and can be easily applied to
crosshole tomography or stereotomography with no modification. Extension to a 3D tomographic
problem is also straightforward.

80 4.5. LIST OF SYMBOLS

4.5 List of symbols

Table 4.4: Symbol definitions.

Symbol Definition

Inverse problem
m Vector of model parameters

mmin;mmax Vectors of model parameter space boundaries
dobs Vector of observed data
CD Data covariance matrix
g Forward operator linking model parameters to data
E Misfit function
n Population size
d Dimensionality, number of parameters to optimize

k, kmax Iteration number and maximum number of iterations
DE

vi Vector of mutant model parameters
ui Vector of trial model parameters

CPSO
vi Velocity vector

mp;i Vector of personal best parameters of model i
mg Vector of global best parameters of the population

rp, rg Vectors of uniform random numbers
‹, " Swarm maximum radius and threshold
ff Proportion of models to reset

CMA-ES
–, — Numbers of offspring and parents
ffk Step size at iteration k

m̄, C Mean vector of and covariance matrix of multivariate gaussian distribution
c1, c— Learning rates
pc , pff Evolution paths
cff, dff Horizon and damping parameters

Mathematical notation
U Uniform distribution
N Multivariate gaussian distribution
E [·] Expected value
i Lower case subscript i denotes the individual number
j Lower case subscript j denotes the parameter index
k Lower case superscript k denotes the iteration number

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 81

Chapter 5

Neural network automated phase
onset picking

Contents

Abstract . 82

5.1 Introduction . 83

5.2 Description . 84

5.2.1 Artificial neural network . 84

5.2.2 Attributes . 85

5.3 Methodology . 88

5.3.1 Real data set . 88

5.3.2 Attributes selection . 90

5.3.3 Training . 93

5.3.4 Skewing the training set . 94

5.3.5 Prediction . 95

5.4 Conclusion . 97

Dans les chapitres précédents, les jeux de données que j’ai utilisés consistaient en des temps
d’arrivée déjà pointés manuellement par un opérateur ou calculés synthétiquement. Le moni-
toring microsismique nécessite un algorithme de pointé automatique des phases efficace pour
permettre la relocalisation en temps réel des évènements microsismiques induits par la frac-
turation hydraulique (Calvez et al. (2007)). À moindres mesures, les erreurs sur les temps
de trajet contribuent aux erreurs sur les localisations. Les algorithmes de pointé automatique
classiques n’ont pas été conçus pour estimer ces erreurs. Dans ce chapitre, je décris un
prototype d’algorithme de pointé automatique des phases basé sur un réseau de neurones

82

(artificiel) multi-attributs. Il est important de rappeler que les réseaux de neurones ne sont
pas le sujet principal de cette thèse. Le principe des réseaux de neurones est introduit en
début de chapitre, et je me contente de présenter brièvement quelques notions importantes
pour la compréhension de la méthodologie. Le chapitre est présenté comme une description
d’un logiciel écrit en Python. Je décris la méthodologie en l’appliquant à un jeu de données
réelles acquis au Laboratoire de Géologie de l’ENS Paris. Les attributs optimaux ainsi que
leurs paramètres sont sélectionnés à l’aide d’une matrice de nuages de points. Un réseau de
neurones peut ensuite être entraîné en utilisant soit une méthode de gradient, soit un algorithme
évolutionniste. À partir de la carte de probabilité produite par le modèle de réseau de neurones
entraîné, il est alors possible de prédire les temps d’arrivée, d’estimer les incertitudes du pointé
et de rejeter les faux positifs. Une fois validé, le modèle entraîné peut enfin être appliqué à
l’ensemble du jeu de données pour pointer les temps d’arrivées et relocaliser les évènements
microsismiques. Les résultats obtenus sont prometteurs en termes de précision et d’estimation
des erreurs de pointé.

Dans le cadre du projet GEOTREF, j’ai collaboré avec une étudiante du Laboratoire de Géologie
de l’ENS Paris et un ingénieur de l’ENSG sur l’étude des propriétés géomécaniques d’un
échantillon d’andésite issu de la Guadeloupe. Mon travail consistait à relocaliser les émissions
acoustiques générées à l’aide d’une cellule triaxiale. Le logiciel décrit dans ce chapitre a été
utilisé dans ce cadre et est notamment disponible en libre accès sur GitHub :

• AIPycker : module orienté objet pour le pointé automatique des phases à l’aide d’un
réseau de neurones multi-attributs. Il utilise les librairies NumPy, SciPy, ObsPy, Pan-
das, Matplotlib, Scikit-learn et StochOPy (cf. Chapitre 2). Il comprend notamment une
interface utilisateur graphique pour le pointé manuel et l’entraînement d’un réseau de
neurones par l’intermédiaire d’un assistant. Le module est à un stage préléminaire de son
développement et la méthodologie peut encore être améliorée. Cependent, AIPycker est
plus facile à utiliser et a montré des résultats supérieurs à ceux obtenus à l’aide du logiciel
commercial utilisé au Laboratoire de Géologie de l’ENS Paris. Disponible à l’adresse
github.com/keurfonluu/AIPycker.

Les résultats issus de cette collaboration ont aussi fait l’objet de deux présentations orales en
conférences :

• Zhi Li, Keurfon Luu, Aurélien Nicolas, Jérôme Fortin and Yves Guéguen, 2016. “Fluid-
induced rupture on heat-treated andesite.” 4th International Workshop on Rock Physics;

• François Bonneau, Keurfon Luu, Aurélien Nicolas and Zhi Li, 2017. “Toward an under-
standing of the relationship between fracturing process and microseismic activity: study at
the laboratory scale.” 2017 RING Meeting.

Abstract

Phase onset picking is a key step in microseismic monitoring as accurate traveltimes are
required to reliably locate microseismic events induced by the fracturing process. We introduce
the package AIPycker to automatically identify and pick seismic trace phase onsets using a
multi-attributes based neural network. AIPycker is written in Python 3 and consists of several
object-oriented modules that correspond to each step of the processing workflow. It depends on
several popular Python packages such as NumPy, ObsPy and Scikit-learn. Optimal attributes

https://github.com/keurfonluu/AIPycker

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 83

and their parameters can be easily selected using a scatter-plot matrix. Then, a neural network
is trained using either a derivative-based optimizer or an evolutionary algorithm. We use the
probability map output by a neural network model to predict a phase onset, assess its error
or flag it as a false positive. We test the methodology and the numerical implementation of
AIPycker by applying the workflow on a real data set acquired at the laboratory scale. The
predicted phase onsets are finally validated by relocating the events with results consistent
with the observations for this type of experiment. Attributes selection, neural network training
and prediction on unknown data set can all be performed either using the available modules or
through an intuitive Graphical User Interface.

Keywords: microseismic, automated phase picking, neural network, signal processing

5.1 Introduction

Microseismic monitoring is one of the main tools to estimate hydraulic fracture geometry and
failure mode. It consists in detecting and locating very small events induced by the fracturing
process (Cipolla et al. (2011)). The location problem is usually solved by first arrival traveltime
inversion (Lomax, Michelini and Curtis (2009), Maxwell (2009)), therefore accurate arrival times
are required to avoid misinterpretation of resulting hypocenter locations. Nowadays seismic
networks can produce very large volumes of data, thus manual arrival time picking is not feasible
in real-time monitoring.

In the last decades, many algorithms have been proposed to automatically identify and pick
phase onsets. Most of these methods are based on the computation of a characteristic function
that acts as an energy detector either by using sliding windows such as short-time/long-time
average ratio (Allen (1982), Baer and Kradolfer (1987)), modified Coppen’s method (Sabbione
and Velis (2010)), using higher order statistics (Saragiotis, Hadjileontiadis and Panas (2002),
Küperkoch et al. (2010), Baillard et al. (2014)), waveform cross-correlation (Molyneux and
Schmitt (1999), De Meersman, Kendall and Baan (2009)), or auto-regressive methods like
Akaike Information Criterion (Maeda (1985), Sleeman and Eck (1999)). An extensive review of
many algorithms and their parameters has been carried out by Akram and Eaton (2016).

Another approach to automated phase onset picking is to adopt a data-driven learning scheme
using a neural network where picking is treated as a pattern recognition problem. The use of
neural networks for phase onset picking is not novel and have been applied since the early
nineties (Veezhinathan and Wagner (1990), McCormack, Zaucha and Dushek (1993), Dai
and MacBeth (1997)), yet they only started to draw attention recently within the geophysical
community with the advent of machine learning and artificial intelligence that we have witnessed
in the last years. Veezhinathan and Wagner (1990) first described a first-break picking method
with a selection of attributes. Murat and Rudman (1992) introduced a multi-attributes neural
network to determine whether each half-cycle of a seismic trace is a phase onset with false
positives rejection based on a confidence level. McCormack, Zaucha and Dushek (1993) fed
a neural network using a rasterized seismic trace as input. Dai and MacBeth (1997) used the
absolute value of the full waveform with a sliding window of 40 samples to feed a multi-layer
perceptron. Hart (2003) demonstrated the importance of using the cross-entropy cost function
to be able to interpret the output of a neural network in terms of probability. Gentili and Michelini
(2006) trained a neural tree that adapts its network architecture for P- and S- phase picking. More
recently, Maity, Aminzadeh and Karrenbach (2014) showed the robustness of an automated
neural network onset picker on signals with low signal-to-noise ratio, and Akram, Ovcharenko
and Peter (2017) applied the concept of weight-based saliency to select an optimal model.
Nevertheless, no automated phase onset picking software based on neural network has been

84 5.2. DESCRIPTION

made available so far.

In this paper, we introduce an Application Programming Interface (API) as a package, AIPycker,
written in Python 3 for neural network automated phase onset picking. Its core relies on popular
Python packages such as NumPy and SciPy for fast numerical computations, ObsPy for reading
seismic traces, Pandas for output data handling, and Matplotlib and Seaborn for graphical
outputs (Jones, Oliphant and Peterson (2001), Oliphant (2006), Hunter (2007), Beyreuther et
al. (2010), McKinney (2010)). It also interfaces with Scikit-learn (Pedregosa et al. (2012)) as
well as a custom package for neural network classification. Throughout the development of
AIPycker, we emphasized on the runtime performance, usability and consistency by writing user-
friendly pythonic functions with detailed documentations. AIPycker includes both object-oriented
modules that can be used for scripting and a Graphical User Interface (GUI) for manual onset
picking and neural network training. In the following, we first briefly describe the concept of
(artificial) neural network and present several useful attributes. Then, we explain and validate
the methodology by using AIPycker on a real data set acquired at the laboratory scale.

5.2 Description

AIPycker is a multi-attributes phase onset automated picker using a neural network that consists
of several modules corresponding to each step of the workflow presented in Section 5.3. In this
section, we mainly describe the principle of neural networks and the three attributes that will be
used throughout this paper.

5.2.1 Artificial neural network

An artificial neural network is an ensemble of interconnected processing units (called neurons)
that return a response given an input signal. They are usually organized in layers with at least
an input layer and an output layer. There may be one or more intermediate layers – called
hidden layers – between the input and the output layers. The number of hidden layers and their
structures are to be specified by the user depending on the desired level of complexity between
the input features and the outputs. Each neuron is passed through an activation function to
produce an output signal that serves as an input feature for the neurons in the next layer. Neural
networks classify data by fitting a decision boundary that correctly separates the trained class
from the other classes.

Onset picking is a binary classification problem where the samples of a given seismic trace are
either labeled phase onset (class 1) or not phase onset (class 0). For the sake of simplicity, we
refer to all the samples that are not phase onsets as noise samples. Most automated phase
onset pickers are based on the computation of an attribute for each sample with the onset
determined by an extremum of the attribute function. This kind of onset pickers can actually be
seen as a simple neural network with a single input feature, no hidden layer, and activated by a
linear function as shown in Figure 5.1 (left). Therefore, several attributes can naturally be fed
into a neural network to train an automated phase onset picker. We display in Figure 5.1 (right)
an example of neural network based picker with four attributes as input features, one hidden
layer and one output.

The memory of a neural network is stored in the neural weights that are simultaneously optimized
(i.e. trained) by minimizing the cross-entropy cost function (Nielsen (2015)) defined as

E = −
mX
i=1

yi log (h„ (xi)) + (1− yi) log (1− h„ (xi)) (5.1)

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 85

x1 Model

Input
layer

Output
layer

x1

x2

x3

x4

Model

Hidden
layer

Input
layer

Output
layer

Figure 5.1: (Left) Attribute based automated picker seen as a neural network. (Right) Example of
multi-attributes onset picker based on a neural network with four input features, one hidden layer and one
output.

where m is the number of input data xi , yi ∈ {0; 1} is its corresponding label (i.e. class), and
h„ denotes the activation function. The activation function is applied to determine the output
response of a neural network by mapping the values between specific ranges using linear or
non-linear functions. Neural networks are optimization problems that can thus be solved using
either derivative-based algorithms with the gradient computed by the backpropagation method,
or derivative-free algorithms. In our package AIPycker, a neural network can be trained using
derivative-based methods such as L-BFGS or stochastic gradient as we provide compatibility
with the popular Scikit-learn classifiers, it can also be trained using evolutionary algorithms such
as Differential Evolution (Storn and Price (1997)), Competitive Particle Swarm Optimization (Luu
et al. (2018)) or Covariance Matrix Adaptation - Evolution Strategy (Hansen and Ostermeier
(1996)) through a custom neural network classifier derived from Scikit-learn.

5.2.2 Attributes

In this section, we present three attributes that can be applied to discriminate phase onsets
from noise samples. It is important to note that we do not claim these attributes to be the most
suitable attributes for neural network automated phase onset picking. However, these attributes
are easy to use as they only require the user to specify the sliding window length and have
demonstrated good results on different data sets. Many other attributes are available in the
literature and can be easily implemented by the user with few modifications to the codes. The
attributes presented in this section are already available in the initial release of AIPycker. In
the following, a seismic trace is represented by a time serie x = {x1; x2; :::; xn} of length n, k
represents a sample index, and xi :j denotes a slice of the time serie from sample i to sample j .

Signal-to-noise ratio

The signal-to-noise ratio (SNR) is an attribute that acts as an energy detector. It is a modification
of the energy ratio with the noise window at sample k starting from the first sample of the seismic

86 5.2. DESCRIPTION

trace, following

SNR(k) =
RMS (xk:k+∆t)

RMS (x1:k)
(5.2)

where ∆t is a time window and RMS is the root-mean-square value defined as

RMS (x) =

vuut1

n

nX
i=1

x2
i : (5.3)

Figure 5.2 shows the SNR attribute for an example trace. As the SNR attribute is computed as
the ratio of a postsample and presample windows, the phase onset is characterized by the index
of the maximum of the function.

−0:2
−0:1

0

0:1

0:2

A
m

pl
itu

de

200 400 600 800 1000
0

0:2
0:4
0:6
0:8
1

Time (samples)

S
N

R

Figure 5.2: SNR attribute. (Top) Example trace. (Bottom) SNR attribute with ∆t = 50 samples. The
vertical line corresponds to the phase onset given by the global maximum of the SNR attribute. Attribute
values are normalized.

Akaike Information Criterion

Onset picking based on the Akaike Information Criterion (AIC, Akaike (1974)) has been used in
many picking algorithms (Leonard (2000) Zhang, Thurber and Rowe (2003)). The AIC function
is based on the principle that seismic signals are non-stationary and can be divided into two
locally stationary time series each fitted by an auto-regressive model (Sleeman and Eck (1999)).
The AIC function computed using the estimated auto-regressive model order provides the fitness
of the model. The index that yields the global minimum of the AIC function indicates the optimal
onset that separates the seismic trace into noise and signal time series. Maeda (1985) estimated
the AIC function directly from the seismic trace without using auto-regressive models following

AIC(k) = k log (var (x1:k)) + (n − k − 1) log (var (xk+1:n)) (5.4)

with k ranging through all the samples of the seismic trace. As the phase onset corresponds
to the global minimum of the AIC function, the phase is difficult to identify if the seismic trace
contains several arrivals. Therefore, a time window for which the AIC function will be estimated

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 87

must be specified in order to correctly identify the first-break onset (Zhang, Thurber and Rowe
(2003)). Ideally, the time window should span from the noise part to the signal part of the seismic
trace. Following Sedlak et al. (2008), we estimate the AIC function on a time window defined
by k ∈ [1; t + ∆t] where t corresponds to the time that yields the maximum absolute amplitude
of the signal (i.e. x(t) = max (|x|)) and ∆t defines the time delay from t. Basically, we expect
the beginning of the trace to be non-informative which is thus unchanged. On the other hand,
t + ∆t should correspond to the end of the informative part of the seismic trace which removes
undesired local minima in the AIC function. Figure 5.3 shows the AIC and the windowed AIC
(AIC-W) functions for the example seismic trace. The first-break onset is a local minimum of the
AIC function while it corresponds to the global minimum of the AIC-W function.

−0:2
−0:1

0

0:1

0:2

A
m

pl
itu

de

0
0:2
0:4
0:6
0:8
1

A
IC

200 400 600 800 1000
0

0:2
0:4
0:6
0:8
1

Time (samples)

A
IC

-W

Figure 5.3: AIC attribute function. (Top) Example trace. The shaded area indicates the time window with
∆t = 200 samples. (Middle) AIC function. (Bottom) Windowed AIC function with ∆t = 200 samples. The
vertical line corresponds to the phase onset given by the global minimum of the AIC-W function. Attribute
values are normalized.

Kurtosis

The kurtosis is a higher-order statistics that has been applied to identify phase onsets (Saragiotis,
Hadjileontiadis and Panas (2002), Küperkoch et al. (2010), Baillard et al. (2014)). In statistics,
the kurtosis is a measure of the heaviness of the tails of a distribution and is zero for a gaussian
distribution. Seismic waves generate non-gaussian wavefields presenting high values that
appear in the tails of the distributions. Therefore, the kurtosis rapidly increases in the presence
of seismic signal and can be used to accurately pick phase onsets. We follow Baillard et al.

88 5.3. METHODOLOGY

(2014) and calculate the kurtosis over a sliding window of ∆t samples following

F1(k) =
m̂4(k)

m̂2(k)2
− 3 (5.5)

in which m̂d is the central statistic moment of order d defined as

m̂d(k) =
1

∆t

∆tX
i=1

(xk−i+1 − x̄k)d (5.6)

with x̄k the mean of the time window xk−∆t+1:k .

Baillard et al. (2014) applied a succession of transformations to the initial characteristic function
F1 to identify the strongest onsets. The first transformation consists in removing all the negative
slopes that represent the transition from coherent signal to noise, which is written

F2(k + 1) = F2(k) + ‹(k)× dF1(k); with

8>>>>><>>>>>:
F2(1) = F1(1)

dF1(k) = F1(k + 1)− F1(k)

‹(k) = 1; if dF1(k) ≥ 0

‹(k) = 0; otherwise

: (5.7)

We do not apply the next transformations suggested as the final characteristic function presents
narrow peaks. Instead, we integrate F2 with a sliding window and compute the squared variance.
The Kurtosis attribute is defined as

Kurtosis(k) = var
“

F2k−∆t
2

:k+ ∆t
2

”2
: (5.8)

We display in Figure 5.4 the different transformations to obtain the Kurtosis attribute for the
example seismic trace. The first-break onset corresponds to the global maximum of the attribute.

5.3 Methodology

In this section, we describe the general workflow to train a neural network for automated phase
onset picking by applying the methodology on a real data set. The workflow is summarized in
Figure 5.5. The study of the best attributes, network architecture or input training hyperparame-
ters is beyond the scope of this paper as we believe that it mostly depends on the data set. The
values of all these parameters can be controlled and are left to the user in our package.

5.3.1 Real data set

Synthetic data sets with gaussian noise usually do not exhibit enough discrepancies between
traces to validate the robustness of an automated picking algorithm. We make the original choice
to test and validate our implementation by applying the methodology on a real data set acquired
at the laboratory scale.

The acquisition has been performed on a cylindric sample of andesite from la Guadeloupe using
a conventional tri-axial cell installed in the Laboratoire de Géologie at the ENS Paris (Brantut,
Schubnel and Guéguen (2011), Nicolas et al. (2016)). The sample has a diameter and length of
4 cm and 8 cm, respectively. Sixteen piezoelectric transducers (PZT) with a sampling rate of 10
MHz are directly glued onto the sample surface. Twelve PZTs are sensitive to P-waves and four

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 89

−0:2
−0:1

0

0:1

0:2
A

m
pl

itu
de

0
0:2
0:4
0:6
0:8
1

F
1

0
0:2
0:4
0:6
0:8
1

F
2

200 400 600 800 1000
0

0:2
0:4
0:6
0:8
1

Time (samples)

K
ur

to
si

s

Figure 5.4: Kurtosis attribute function. (Top) Example trace. (Middle) Kurtosis statistics F1 and removal of
negative slopes F2. (Bottom) Kurtosis attribute with ∆t = 40 samples. The vertical line corresponds to
the phase onset given by the global maximum of the Kurtosis attribute. Attribute values are normalized.

• Seismic traces

• Manual picks

INPUT DATA

PRE-PROCESSING

• Mean removal

• Lowpass filter

ATTRIBUTES SELECTION

• Data transformation

• Data normalization

DATA PREPARATION

DATA SPLITTING

Training set

Cross-validation

set

Test set

MODEL FITTING

Neural network

classifier training
Model

Hyperparameters tuning: assessing the

performances of several trained models

Best model

Assessing performance of the best model
PICKER

MODEL

Figure 5.5: Neural network automated phase onset picking workflow.

90 5.3. METHODOLOGY

P9

S10

P11

S12

P13

P6

P7

P8

P1

S2

P3

S4

P5

P14

P15

P16

D
e

p
th

(m
m

)

0

15

30

-15

-30

270 180 900 0

Angle (°)

P1

S2

P3

S4

P5

P6

P7

P8

P14

P15

P16

Figure 5.6: The acquisition geometry consists of sixteen piezoelectric transducers.

PZTs to S-waves. However, all the S-waves and 1 P-wave receivers were not working properly.
Events are automatically detected based on an amplitude threshold that triggers the recording.
The acquisition geometry used for the experiment is sketched in Figure 5.6.

The whole data set consists of 1145 events detected for a total of 18320 seismic traces to pick.
We pre-process each seismic trace by removing the mean and applying a lowpass filter with a
cut-off frequency of 1 MHz to remove the noise. The snippet below shows an example code to
pre-process the data using AIPycker with X refering to the input data array.

preprocess = [

PreProcessor("demean"),

PreProcessor("lowpass", sampling_rate = 1e7, cutoff = 1e6),

]

for p in preprocess:

X = p.transform(X)

We manually picked the first-break onsets for 300 seismic traces with different signal-to-noise
ratios in order to build our input data set. Figure 5.7 shows a sample data for one event.

The data set is finally split into three subsets:

• the training set (150 traces) to model output values;

• the cross-validation set (75 traces) to tune the input training hyperparameters so as to
obtain an unbiased model;

• the test set (75 traces) to assess the performance of the final selected model by measuring
the error between the true and the predicted classes.

Note that we arbitrarily manually picked 300 seismic traces. More or fewer manual picks may be
sufficient for the training depending on the data set to predict.

5.3.2 Attributes selection

Feature extraction and selection is a key and common step in machine learning and consists
in determining a subset of features that have a predictive value. In neural network automated

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 91

-0.07

0.00

0.07 Receiver 1 Pick = 17.09 us

-0.07

0.00

0.07 Receiver 2

-0.07

0.00

0.07 Receiver 3 Pick = 13.45 us

-0.07

0.00

0.07 Receiver 4

-0.07

0.00

0.07 Receiver 5 Pick = 13.95 us

-0.07

0.00

0.07 Receiver 6 Pick = 15.11 us

-0.07

0.00

0.07 Receiver 7 Pick = 12.66 us

-0.07

0.00

0.07 Receiver 8 Pick = 84.91 us

-0.07

0.00

0.07 Receiver 9

-0.07

0.00

0.07 Receiver 10

-0.07

0.00

0.07 Receiver 11

-0.07

0.00

0.07 Receiver 12 Pick = 11.04 us

-0.07

0.00

0.07 Receiver 13 Pick = 11.81 us

-0.07

0.00

0.07 Receiver 14 Pick = 15.09 us

-0.07

0.00

0.07 Receiver 15 Pick = 13.52 us

-0.07

0.00

0.07 Receiver 16 Pick = 14.52 us

Figure 5.7: Sample data for one event. Receivers 2, 4, 9, 10 and 11 were not working properly. The
vertical lines indicate the manual picks.

onset picking, the features are the attribute function values for a given sample. Even though
an attribute that is not predictive should be automatically weighted out during the training, it
is important from a computational point of view to only select predictive attributes to help the
training and avoid unnecessary computation of non-predictive attributes during the prediction.

The training set is composed of 150 seismic traces with various signal-to-noise ratios so as to
train a model capable of predicting the phase onset on any seismic trace. In order to account
for all the possible signal types in the training, we also randomly pick a sample different from
the manually picked phase onset for each trace of the training set in order to characterize noise
samples.

Attributes and their parameters (such as the window length) must be selected so that their
values can accurately distinguish a first-break onset from a noise sample. This task can be
done visually by displaying the distributions of the attribute values for the two classes (phase
onset and noise sample) through a scatter-plot matrix. Scatter plots are useful to visualize the
distributions and correlations between each pair of features. In the following, we select the
AIC-W, the Kurtosis and the SNR attributes as input features of the neural network, respectively
using window lengths of 200, 40 and 50 samples. The attributes for the whole data set are then
independently normalized following

xnorm =
x− xmin

xmax − xmin
(5.9)

where x is the attribute vector to normalize, xmax and xmin its maximum and minimum values,
respectively. We show in Figure 5.8 a scatter-plot matrix for the three attributes applied to
the training set. The distributions of the phase onsets and the noise samples for the selected
attributes do not overlap significantly, which means that they are predictive for this data set.

In AIPycker, the user can specify the attributes to use by declaring a list of Attribute objects
with their window lengths n_len (in samples). An attribute-features extractor can finally be
initialized by passing the list to an object TraceFeatures. Attributes and their parameters can
be selected by displaying a scatter-plot matrix simply calling the method scatter_matrix.

92 5.3. METHODOLOGY

0.0

0.5

1.0

AI
C

-W

0.0

0.5

1.0

Ku
rto

si
s

0.0 0.5 1.0
AIC-W

0.00

0.25

0.50

0.75

1.00

SN
R

0.0 0.5 1.0
Kurtosis

0.0 0.5 1.0
SNR

Noise Pick

Figure 5.8: Scatter-plot matrix for AIC-W, Kurtosis and SNR. The diagonal shows the KDE plots for each
individual attribute, the lower and upper off-diagonals respectively display the pairwise hexagonal binning
plots and scatter plots of the attributes.

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 93

−0:1
0

0:1
A

m
pl

itu
de

200 400 600 800 1000
0

0:2
0:4
0:6
0:8
1

Time (samples)

P
ro

ba
bi

lit
y

Error PDF CDF Predicted True

Figure 5.9: (Top) Example trace. (Bottom) Predicted probability map. The manually picked and predicted
phase onsets are indicated by the green and blue vertical lines, respectively. The prediction error is
shown in blue shade.

features = [

Attribute("aicw", n_len = 200),

Attribute("kurtosis", n_len = 40),

Attribute("snr", n_len = 50),

]

tf = TraceFeatures(features)

tf.transform(X, y)

tf.scatter_matrix()

5.3.3 Training

Once the attributes and their parameters have been selected, a neural network can be trained
by optimizing the neural weights to minimize the cross-entropy cost function (Equation (5.1). Our
neural network is composed of three input features and a single hidden layer of 5 neurons, and
is trained using an evolutionary algorithm (CPSO with a population size of 50 and 500 iterations)
with hyperbolic tangent as activation function (LeCun et al. (1998)). The trained model maps the
input attributes to an output probability (between 0 and 1) to belong to a given class. In other
words, for each seismic trace, the output probability map can be used to determine whether a
sample is a noise sample or a phase onset, and assess the prediction error in the latter case. We
simply define the phase onset as the sample that yields the maximum probability. A predicted
phase onset is flagged as false positive (i.e. rejected) if its probability is lower than a threshold
specified by the user. In order to assess the prediction error, we compute the cumulative function
(CDF) of the probability map and define the error as the half-distance between the samples that
yield 0.16 and 0.84 on the CDF (similarly to one standard deviation for a gaussian distribution).

94 5.3. METHODOLOGY

We evaluate the performance of a model using the root-mean-square metric following

RMS
“

tpred
”

=

vuut 1

N

NX
i=1

“
tmani − tpredi

”2
(5.10)

where tpred =
n
tpred1 ; :::; tpredN

o
is a vector containing the phase onsets predicted by the model

trained, and tman = {tman1 ; :::; tmanN } is the target vector of manual picks. The hyperparameters
of the neural network (such as its architecture) should be tuned to achieve a low RMS on the
cross-validation set only. The performance of the chosen model can finally be assessed on the
test set.

As we previously mentioned, AIPycker is compatible with Scikit-learn neural network classifier
MLPClassifier. We also provide a custom neural network classifier that can be trained using
an evolutionary algorithm. A phase onset picker is initialized by passing both the classifier
and the list of attributes to an object AIPicker and trained using the method fit. The model
performance can be measured by the RMS metric (Equation (5.10)) with the method score.

clf = MLPClassifier(hidden_layer_sizes = (5,),

max_iter = 500,

solver = "lbfgs",

activation = "tanh")

picker = AIPicker(classifier = clf, features = features)

picker.fit(X, y)

picker.score(X, y)

In this code snippet, y is an array of manual pick indices. Note that any classifier that has a
predict_proba method can be used as input classifier of AIPicker.

5.3.4 Skewing the training set

In neural network based phase onset picking, a single noise sample is usually picked (here
randomly) for each seismic trace in the training set so as to account for all types of signal.
However, such a balanced data set (1 noise sample for 1 phase onset) is not representative of a
seismic trace. Indeed, a seismic trace contains very few phase onsets, every other samples
can be considered as noise. Therefore, we recommend to purposely skew the training set by
introducing more noise samples than phase onsets. In addition, we duplicate the phase onsets
to rebalance the data set in order to avoid overfitting of the major class (i.e. noise samples)
during the training. To demonstrate the influence of the number of noise samples on the training,
we train 20 neural networks for different numbers of noise samples using two attributes only,
namely the Kurtosis and the SNR. Figure 5.10 displays the mean decision boundaries in the
attribute space along with their standard deviations in gray shade. The lower standard deviations
in the last two plots shows that increasing the number of noise samples stabilizes the decision
boundary, and thus helps constraining the training of a neural network. On the other hand, this
procedure also increases the training time as we artificially increased the size of the training set.
We empirically found that a ratio of 9 noise samples for 1 manual pick is a good compromise
between decision boundary constraining and training time.

Note that we used a single hidden layer with 5 neurons, more complex decision boundaries
(convex or closed) can be obtained by adding more hidden layers and/or neurons.

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 95

0 0:2 0:4 0:6 0:8 1
0

0:2

0:4

0:6

0:8

1

SNR

K
ur

to
si

s
Ratio 1:1

0 0:2 0:4 0:6 0:8 1

SNR

Ratio 4:1

0 0:2 0:4 0:6 0:8 1

SNR

Ratio 9:1

Noise Pick Decision boundary

Figure 5.10: Influence of the number of noise samples on the decision boundary (black). The standard
deviations are represented in gray shade.

5.3.5 Prediction

The trained neural network can finally be used to predict the phase onsets on the whole data set.
We set the threshold at a sufficiently high level (0.8) to reject false positives. We show on Figure
5.11 the result of the prediction for one event that has not been manually picked (i.e. not used
for the training). All the predictions are accurate and picking uncertainties are consistent with
the waveform. We should note that the five seismic traces associated to the non-working PZTs
have not been picked which demonstrates the ability of our neural network automated onset
picker to reject false positives.

-0.11

0.00

0.11 Receiver 1 Pick = 16.80 us

-0.11

0.00

0.11 Receiver 2

-0.11

0.00

0.11 Receiver 3 Pick = 14.50 us

-0.11

0.00

0.11 Receiver 4

-0.11

0.00

0.11 Receiver 5 Pick = 19.00 us

-0.11

0.00

0.11 Receiver 6 Pick = 14.60 us

-0.11

0.00

0.11 Receiver 7 Pick = 12.30 us

-0.11

0.00

0.11 Receiver 8 Pick = 13.30 us

-0.11

0.00

0.11 Receiver 9

-0.11

0.00

0.11 Receiver 10

-0.11

0.00

0.11 Receiver 11

-0.11

0.00

0.11 Receiver 12 Pick = 16.00 us

-0.11

0.00

0.11 Receiver 13 Pick = 17.70 us

-0.11

0.00

0.11 Receiver 14 Pick = 17.20 us

-0.11

0.00

0.11 Receiver 15 Pick = 16.80 us

-0.11

0.00

0.11 Receiver 16 Pick = 17.50 us

Figure 5.11: Prediction of phase onsets for one event. The vertical lines indicate the predicted picks
along with the picking errors in green shade. The seismic traces recorded by receivers 2, 4, 9, 10 and 11
have been rejected by the trained neural network.

96 5.3. METHODOLOGY

In AIPycker, prediction on unknown data set can simply be performed by using the method
transform of an already trained picker model AIPicker.

picks = picker.transform(X)

To validate the phase onsets predicted by our picker, we relocate the acoustic emissions recorded
during the failure of the rock sample. The evolution of the velocity within the rock sample is
measured using an active seismic acquisition. Every 5 minutes during the experiment, a 250
V high frequency signal is pulsed on each PZT while the other receivers are recording. Arrival
times are known with an accuracy of 0.1 microseconds, which leads to an accuracy on velocity
of the order of 5 per cent (Figure 5.12 (left)). Location is a non-linear inverse problem consisting
in minimizing the misfit function

E (m) =
1

2

nX
i=1

“
tobsi − tcalci (m)

”2

ff2
i

(5.11)

where m = {x; y ; z; t0} represents the hypocenter parameters, n = 16 is the number of receivers,
tobsi and tcalci (m) denote respectively the observed (i.e. picked) and calculated traveltimes at
receiver i , and ffi is the associated picking error. For each receiver, we compute accurate
traveltime grids using an Eikonal solver (Noble, Gesret and Belayouni (2014)), and relocate the
acoustic emissions using an evolutionary optimizer (Differential Evolution with population size of
10 and 100 iterations). Results of the location are shown in Figure 5.12 (right) with the color
scale indicating the relative origin time. Most of the events are localized along two fracture plans
which is consistent with what is usually observed in this type of experiment. The origin times of
the events indicate how the two plans were formed. The fracture starts from the lower left corner
and propagates toward the upper right corner of the sample. An auxiliary plan is formed at the
end of the experiment starting from the lower right to the upper left corner of the sample.

0 500 1000 1500
3800

4000

4200

4400

4600

4800

Time (s)

P
-w

av
e

ve
lo

ci
ty

(m
/s

)

−20 −10 0 10 20

−40

−20

0

20

40

X (mm)

D
ep

th
(m

m
)

0

200

400

600

800

1000
O

rig
in

tim
e

(s
)

Figure 5.12: (Left) Evolution of the acoustic wave velocity during the experiment. (Right) Acoustic event
locations. The color scale indicates the relative origin time.

CHAPTER 5. NEURAL NETWORK AUTOMATED PHASE ONSET PICKING 97

5.4 Conclusion

Phase onset picking is a common and important task encountered in microseismic monitoring
as it can be used for earthquake location or traveltime tomography. Even though neural network
has been used for automated picking since the early nineties, it has only recently gained in
popularity within the geophysical community with the advent of artificial intelligence. AIPycker
has been designed to provide a unified framework for automated phase onset picking based
on a neural network. Given a data set, optimal attributes and their parameters (e.g. window
length) can easily be selected based on a scatter-plot matrix. In this paper, we only presented
three attributes that worked well for our example, but other attributes are available in AIPycker.
We also proposed to purposely skew the data set to better constrain the training by introducing
more noise samples than manual picks. In addition, the probability map outputs by a neural
network model is used to predict a phase onset with its associated picking error, or to reject a
pick if its probability is lower than a threshold specified by the user. We applied the workflow on
a real data set acquired at the laboratory scale to validate the methodology and its numerical
implementation in AIPycker. Even though we only showed results on a passive data set, it
should be mentioned that AIPycker can be used in active seismic as well. The initial version
of AIPycker only handles single channel data set (e.g. vertical component) and thus is only
able to identify one phase. However, extension to 3-C data set is straightforward and will be
introduced in a future update of AIPycker. The presented methodology can also be run through
a Graphical User Interface (GUI) that allows the user to manually pick phase onsets, train a
neural network picker following a training wizard, and predict on a data set using an already
trained picker. However, the GUI is more limited in functionalities compared to the API (e.g. fewer
hyperparameters to tune, no custom attributes).

98 5.4. CONCLUSION

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 99

Chapter 6

Conclusions and perspectives

Contents

6.1 Conclusions . 100

6.1.1 1D traveltime tomography . 100

6.1.2 Refraction traveltime tomography . 101

6.1.3 Neural network automated phase onset picking 101

6.2 Perspectives . 102

6.2.1 Improving parallelism and convergence: Island models 102

6.2.2 Improving phase onset picking: Bayesian neural network and neuroevolution102

6.2.3 Use of velocity model uncertainties . 103

Durant cette thèse, je me suis intéressé aux méthodes d’optimisation numérique dites évolution-
nistes. Ces méthodes sont des approches stochastiques qui s’inspirent de la théorie de Darwin
et le principe d’hérédité mendélienne. De manière analogue à l’évolution naturelle des espèces,
les algorithmes évolutionnistes opèrent sur une population (de modèles) où les individus se
reproduisent/coopèrent pour trouver la solution optimale d’un problème d’optimisation. La to-
mographie sismique des temps de première arrivée est un problème d’optimisation mal-posé
et multi-modal du fait de la relation non-linéaire entre les données du problème (les temps
d’arrivée) et les modèles physiques (le modèle de vitesse). Une autre difficulté rencontrée
lors de la résolution de ce problème inverse est la non-unicité de la solution dans le sens où
plusieurs modèles de vitesse peuvent expliquer les temps observés. Les méthodes de Monte
Carlo par Chaînes de Markov sont le plus souvent employées pour résoudre les problèmes de
non-linéarité et de non-unicité. Cependant, en tant qu’algorithmes séquentiels, ces méthodes
ne sont pas capables de tirer partie de l’intégralité des ressources computationnelles fournies
par les super-calculateurs modernes. Dans ce manuscrit, je me suis proposé de résoudre le
problème de tomographie sismique à l’aide d’algorithmes évolutionnistes car intrinsèquement
parallèles et donc très adaptés à l’architecture des super-calculateurs. Dans un second temps,

100 6.1. CONCLUSIONS

j’ai décrit un algorithme de pointé automatique des temps d’arrivée, nécessaires en tomographie
sismique, à l’aide d’un réseau de neurones multi-attributs.

6.1 Conclusions

During this thesis, I have taken an interest in evolutionary numerical optimization methods.
These methods are stochastic approaches inspired by Darwin’s theory of evolution and Mendel’s
principles of inheritance. Analogously to natural evolution of species, evolutionary algorithms
operate on a population (of models) where the individuals breed/cooperate to find the optimal
solution for a given optimization problem. Seismic first arrival traveltime tomography is an
ill-posed and multi-modal optimization problem due to the non-linear relationship between the
data (i.e. arrival times) and the physical models (i.e. velocity model). Another issue encountered
in inverse problems is the non-uniqueness of the solution as many other velocity models can
explain the observed arrival time data. Methods based on Markov Chain Monte Carlo are usually
applied to address both the non-linearity and non-uniqueness issues. Given that these methods
are sequential algorithms, they cannot fully handle the computational resources provided by
modern supercomputers. In this manuscript, I proposed to solve the seismic tomography
problem by using evolutionary algorithms as they are intrinsically parallel and thus well suited to
supercomputer architectures. Secondly, I described an algorithm to automatically pick the arrival
times required in seismic tomography by using a multi-attributes neural network.

6.1.1 1D traveltime tomography

In Chapter 3, my work was mainly focused on applying PSO on a 1D first arrival traveltime
tomography problem. I chose PSO for its robustness and ease of implementation. I showed on
a 2D highly multi-modal function that PSO suffers from premature convergence and therefore
proposed a new evolutionary algorithm based on PSO that I called Competitive PSO (CPSO).
CPSO has been designed to address premature convergence by reinitializing the worse perform-
ing particles to improve the diversity of the swarm. I carried a thorough analysis and compared
the performance of both algorithms on several benchmark test functions. CPSO outperformed
PSO and appeared to be less sensitive to the choice of its control parameter. CPSO has also
demonstrated to be more reliable for rapid uncertainty quantification. I applied CPSO on a real
tomographic problem in the context of hydraulic fracturing and compared the results with the
ones obtained using a conventional MCMC sampler. I performed four inversions using CPSO
with different swarm sizes. In all cases, CPSO has been able to reach the stationary regime
much faster and the uncertainties estimated by CPSO are consistent with the ones obtained
with MCMC. Besides, for this specific problem, a smaller swarm showed similar performance
compared to a bigger swarm which invalidates some conclusions that can be found in the
geophysical literature (e.g. a swarm size of 300 particles is used to relocate microseismic events
in Lagos, Sabbione and Velis (2014)). Finally, I assess the parallel performance of CPSO
on this tomographic problem by performing a strong scale analysis. Speed up and parallel
efficiency were not ideal due to the communication overhead and/or overhead implied by parallel
decomposition of the algorithm. An asynchronous parallel implementation would be required to
improve its scalability and obtain close to ideal parallel performance.

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 101

6.1.2 Refraction traveltime tomography

In Chapter 4, I extended the study to the highly non-linear and multi-modal problem of refraction
tomography in 2D by comparing the performances of DE, CPSO and CMA-ES. The aim of this
comparison is to assess the feasibility of evolutionary algorithms to solve a real-world problem
in high dimension (typically > 102 parameters). First, I generated synthetic traveltimes on the
Marmousi velocity model that presents a complex geology structure considering a stationary
surface acquisition. The geometry of the acquisition consists of two hundred shots and four
hundred receivers which results in poor ray coverage in depth. I chose to parametrize the velocity
model using 2D cardinal B-splines that provide a smooth and sparse model. I investigated
the influences of the initial velocity models, the population size and the maximum number of
iterations. Ideally, evolutionary algorithms as stochastic methods should be rather insensitive to
the initial population. Therefore, I tested several types of initialization using random and more
physical models. Random increasing gradient initial population demonstrated to significantly
improve the convergence of evolutionary algorithms on the refraction tomography problem. The
retained initialization procedure only requires the user to specify the lower and upper boundaries
of the feasible space. I then applied each algorithm on the same problem but using a 15 by 20
B-spline grid (i.e. 300 parameters), and assessed their benefits and shortcomings by statistically
analyzing their performances and scalabilities. From a pure optimization point of view, CMA-ES
clearly outperformed both DE and CPSO at the expense of poor parallel scalability. On the other
hand, DE and CPSO demonstrated comparable parallel performances, yet CPSO appeared to
be less robust in terms of repeatability. Nevertheless, CPSO turned out to be the only method
able to retrieve uncertainties consistent with the target ray coverage.

6.1.3 Neural network automated phase onset picking

In Chapters 3 and 4, traveltime data were either already manually picked by an operator or
synthetically generated. In microseismic monitoring, an efficient automated phase onset picking
algorithm is required for real-time microseismic event locations induced by hydraulic fracturing.
In Chapter 5, I described an automated phase onset picking algorithm based on a multi-attributes
neural network. It is noteworthy that this chapter is the result of a project in collaboration with
ENS Paris and ENSG, the main emphase of this thesis remains the application of evolutionary
algorithms to seismic tomography. Nonetheless, the relevancy of this chapter is two-fold: (1)
automated phase picking is an important step when dealing with traveltimes; (2) evolutionary
algorithms are inherently related to neural networks, in particular to neuroevolution. The chapter
is written as a description of a computer software implemented in Python called AIPycker. The
acquisition has been performed on a cylindric sample of andesite from la Guadeloupe using
a conventional tri-axial cell installed in the Laboratoire de Géologie at the ENS Paris. The
methodology is based on several selected attributes able to distinguish a phase onset sample
from a noise sample. Optimal attributes and corresponding parameters can be selected using
a scatter-plot matrix. In this chapter, I only retained three attributes namely SNR, AIC-W and
Kurtosis. In order to better constrain the decision space, I proposed to skew the training set
by purposely introducing more noise samples than onset samples which are then duplicated
to rebalance the data set. In AIPycker, a neural network can be trained either by a derivative-
based method or an evolutionary algorithm. The probability map output by the trained neural
network model indicates the likelihood of a sample to be a phase onset. The phase onset is
chosen as the sample that yields the maximum probability and is flagged as false positive if
its probability is lower than a confidence threshold specified by the user. The error associated
to the predicted phase onset is also estimated using the probability map as the half-distance
between the samples that yield 0.16 and 0.84 on the CDF. Finally, the picker model is applied to

102 6.2. PERSPECTIVES

the whole data set to predict the arrival times. The results are promising in terms of accuracy
and estimated picking errors. The microseismic events relocated using the picked arrival times
are also consistent with what is usually observed in this type of experiment.

6.2 Perspectives

6.2.1 Improving parallelism and convergence: Island models

Throughout this manuscript, the computation of the forward problem has been parallelized at
two levels: (1) the models represented by different individuals within a population have been
evenly spread accross several MPI processes for concurrent evaluation; (2) the traveltime grids
for each seismic source have been calculated simultaneously on several OpenMP threads. Note
that the different runs required for uncertainty quantification have been performed sequentially
due to the lack of computer resources. However, the runs are independent and can be easily
parallelized given more computation power.

Migration is a mechanism of population genetics that is usually not considered in basic evolu-
tionary algorithms. It consists in transfering individuals that carry the genetic variations from one
population to another. This mechanism can be reproduced for optimization purpose through
the so-called island models. In island models evolutionary algorithms, the initial population
is divided into subpopulations that evolve independently on a subset of cores (the islands)
with a periodical exchange of individuals (Gong and Fukunaga (2011), Gong et al. (2015)).
The migration process is comparable to the exchange of states introduced in some algorithms
based on MCMC such as Parallel Tempering (Sambridge (2014)) and Interactive MCMC (Ro-
mary (2010)). Likewise parallel MCMC algorithms, island model evolutionary algorithms have
demonstrasted better performance as each population follows a different evolution path which
naturally improves diversity within the whole population (Whitley, Rana and Heckendorn (1999)).
Within the island model framework, the subpopulations can evolve following different stochastic
processes (i.e. different parameters and/or algorithms) which has led to hybrid island model
based evolutionary algorithms. The main interest of this hybrid approach is that the combination
of different evolutionary algorithms can compensate their individual shortcomings.

6.2.2 Improving phase onset picking: Bayesian neural network and neuroevolu-
tion

In Chapter 5, I described an algorithm for automatic phase onset picking based on a neural
network. My initial idea was to use a Bayesian neural network to quantify the errors associated to
the neural weights (Neal (1992), Neal (1996)). In Bayesian neural networks, the final probability
map is the product of the probability maps from all the models sampled. I sampled the neural
weights using a Hamiltonian Monte Carlo sampler (Duane et al. (1987), Neal (2011)) to
significantly reduce the number of models required to correctly approximate the PDF as the
gradient can be efficiently calculated using the backpropagation algorithm. However, many
models were still required for a correct approximation of the PDF which results in a non-
reasonable computation time for the given task. However, implementing the methodology using
a lower level language (e.g. C or Fortran) and/or parallelize the computation of the probability
map using General-purpose GPU would drastically reduce the computation time.

The neural network implemented in this manuscript is the simplest form of neuroevolution where
only the neural weights are adjusted using an evolutionary algorithm (Ronald and Schoenauer

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 103

(1994)). Recent developments in neuroevolution have led to algorithms capable of evolving
both the neural weights and the network structure. These algorithms are known as TWEANN
(Topology and Weights Evolving Artificial Neural Network) and include NeuroEvolution of Aug-
menting Topologies (NEAT, Stanley and Miikkulainen (2002)), Evolutionary Acquisition of Neural
Topologies (EANT, Kassahun and Sommer (2005), Siebel and Sommer (2007)) and Covariance
Matrix Adaptation with Hypervolume Sorted Adaptive Grid Algorithm (CMA-HAGA, Rostami and
Neri (2017), Shenfield and Rostami (2017)). Automated neural network onset picking algorithms
that can be found in the geophysical literature all deal with predetermined network architectures.
Therefore, applying TWEANN on phase onset picking is certainly an interesting prospect for
improvement.

6.2.3 Use of velocity model uncertainties

Evolutionary algorithms are optimization algorithms designed to rapidly locate and sample
a single (hopefully good) mode. I introduced a methodology to quantify uncertainties using
evolutionary algorithms by analyzing all the models sampled by different runs. In Chapter 5,
I showed that only CPSO was able to recover uncertainties consistent with the ray coverage.
However, the estimated velocity model uncertainties have not been used so far. In the context
of hydraulic fracturing, Gesret et al. (2015) described a methodology to obtain more accurate
locations with reliable uncertainties by accounting for uncertainties associated to velocity models.
This is done by locating the microseismic events in all the velocity models sampled and summing
the resulting PDFs. I further improve the methodology and suggest to perform a cluster analysis
using unsupervised learning algorithms to find a reliable subset of representative velocity models
for the location, as described in Appendix C.

In addition, I recommend not to use the mean model from several runs of CPSO as such but to
further refine the solution using a derivative-based algorithm with the solution as prior model
mprior following the misfit function

E (m) =
“

dobs − g (m)
”>

ΣD
−1
“

dobs − g (m)
”

+ (m−mprior)
>ΣM

−1 (m−mprior) (6.1)

where ΣD and ΣM are respectively the data and model covariance matrices (Tarantola (2005)).
Typically, the regularization procedure applied when using derivative-based optimization algo-
rithms treats the model covariance matrix as a constant damping coefficient that needs to be
tuned by the user. Nevertheless, I believe that better results can be obtained by using the
uncertainties estimated by CPSO to directly define the model covariance matrix. Note that this
idea is not specific to CPSO and the mean model and uncertainties obtained by conventional
MCMC samplers (Ryberg and Haberland (2018), Belhadj et al. (2018)) can theoretically be used
as well.

104 6.2. PERSPECTIVES

APPENDIX A. EIKONAL EQUATION 105

Appendix A

Eikonal equation

First arrival traveltimes can be accurately computed by solving the Eikonal equation that links
the velocities of the propagation medium to the traveltimes. In this appendix, I derive the Eikonal
equation from the elasto-dynamic equation by applying the high frequency approximation that
consists in considering that the signal wavelength is neglectable with respect to the characteristic
wavelength of the medium. A full and detailed understanding of the dynamic of acoustic waves
can be found in Chapman (1985), Sheriff and Geldart (1995) and Červený (2001) and is beyond
the scope of this thesis.

The theory is based on the elasto-dynamic equation in an isotropic and homogeneous medium
that links the strain to the stress applied, written as

@2u

@t2
− (–+ —)∇ (∇ · u)− —∇2u = 0 (A.1)

where u = u (x; t) is the displacement vector field, – and — are Lamé’s parameters, ∇ =
(@x ; @y ; @z) denotes the gradient operator and ∇· the divergence operator.

Helmholtz’s theorem states that any vector field can be decomposed into the gradient of a scalar
field Φ with zero curl and the curl of a vector field Ψ with zero divergence following

u = ∇Φ +∇×Ψ (A.2)

with ∇× (∇Φ) = 0 and ∇ · (∇×Ψ) = 0. Therefore, we decompose the displacement vector
field into a longitudinal wavefield up and a transverse wavefield us :

u = up + us with

(
∇× up = 0

∇ · us = 0
(A.3)

where up and us respectively represent the compressional wave (P-) and shear wave (S-)
displacement fields as depicted in Figure A.1.

Substituting Equation (A.3) into (A.1), we obtain

@2up
@t2

+
@2us
@t2

!
− (–+ —)∇ (∇ · up)− —

“
∇2up +∇2us

”
= 0: (A.4)

The gradient of the divergence of the compressional vector field up can be expressed as

∇ (∇ · up) = ∇× (∇× up)| {z }
0

+∇2up = ∇2up: (A.5)

106

S-waves: ground motion is perpendicular to wave direction

P-waves: ground motion is parallel to wave direction

Direction of wave propagation

Figure A.1: Displacements for P- and S- waves (adapted from levee.wustl.edu/seismology/book/).

Regrouping the terms dependent on up and us , the elasto-dynamic equation (A.1) is rewritten

@2up
@t2

− (–+ 2—)∇2up

!
+

@2up
@t2

− —∇2us

!
= 0: (A.6)

The vector fields up and us are independent, thus the two terms of the sum both equal zero,
following 8<:

@2up
@t2 − (–+ 2—)∇2up = 0

@2up
@t2 − —∇2us = 0

: (A.7)

Writing cp =
q
–+2—
 and cs =

q
—
 , we obtain the wave equation for the two wavefields, following

8<:
1
c2
p

@2up
@t2 = ∇2up

1
c2
s

@2us
@t2 = ∇2us

(A.8)

where cp and cs are P- and S- wave velocities, respectively. Let us consider the wave equation
with no source term in the frequency domain, written as

− !2

c2 (x)
u (x; !) = ∇2u (x; !) : (A.9)

The solution of the wave equation in the frequency domain is written

u (x; !) = S (!)A (x; !) e i!T (x) (A.10)

where S (!) is the wave signature, A (x; !) is the wave amplitude with !T (x) its phase that
depends on the frequency ! and the traveltime T (x).

According to the high frequency approximation Ansatz (Sheriff and Geldart (1995), Červený
(2001)), the amplitude A (x; !) can be written in the form of a Taylor expansion in 1

i!

A (x; !) =
+∞X
n=0

An (x)

(i!)n
: (A.11)

http://levee.wustl.edu/seismology/book/

APPENDIX A. EIKONAL EQUATION 107

Substituting the approximation (A.11) and the solution (A.10) into the wave equation (A.9), we
obtain

− !2

c2 (x)

+∞X
n=0

An (x)

(i!)n
=− !2 (∇T (x))2

+∞X
n=0

An (x)

(i!)n

+ i!
+∞X
n=0

2∇T (x) · ∇An (x) +∇2T (x)An (x)

(i!)n

+
+∞X
n=0

∇2An (x)

(i!)n
: (A.12)

The equality holds at all frequencies and we have thus the equality for all the coefficients of
the expansion. By performing trivial factorizations and simplifications, we obtain the following
system of equations8>>>>>>>><>>>>>>>>:

(i!)2 (∇T (x))2 = 1
c(x)2

(i!)1 2∇T (x) · ∇A0 (x) +∇2 (x)A0 (x) = 0

(i!)0 2∇T (x) · ∇A1 (x) +∇2 (x)A1 (x) +∇2A0 (x) = 0

:::

(i!)−n 2∇T (x) · ∇An+1 (x) +∇2 (x)An+1 (x) +∇2An (x) = 0

: (A.13)

The first equation that corresponds to the zero order of the Taylor expansion only involves the
traveltime and is known as the Eikonal equation which is written for the P- and S- wavefields8<:|∇T |

2 = 1
c2
p

|∇T |2 = 1
c2
s

: (A.14)

108

APPENDIX B. SURFACE WAVE TOMOGRAPHY 109

Appendix B

Surface wave tomography

Contents

B.1 Introduction . 110

B.2 Forward problem: Thomson-Haskell propagator 110

B.2.1 Rayleigh wave in a layered medium . 110

B.2.2 Roots search . 114

B.3 Inversion . 114

B.4 Conclusion . 116

Dans ce chapitre annexe, j’applique la méthodologie décrite dans le Chapitre 3 au problème de
tomographie des ondes de surface. La connaissance du modèle de propagation des ondes de
cisaillement est une donnée importante aussi bien en géotechnique qu’en géophysique car elle
fournit une information sur les propriétés mécaniques d’un sol. Ce modèle est généralement
reconstruit par un procédé d’inversion des courbes de dispersion des ondes de surface. Ce
chapitre annexe décrit le problème direct pour générer des courbes de dispersion étant donné
un milieu tabulaire, suivi d’une application sur données réelles.

Ces travaux ont fait l’objet d’une publication en tant que co-auteur :

• Marc Peruzzetto, Alexandre Kazantsev, Keurfon Luu, Jean-Philippe Métaxian, Frédéric
Huguet and Hervé Chauris, 2018. “Broadband ambient noise characterization by joint
use of cross-correlation and MUSIC algorithm.” Geophysical Journal International 215(2):
760-779 (November 2018). doi: 10.1093/gji/ggy311;

Les résultats présentés dans cette publication ont été obtenus avec un logiciel que j’ai développé
en Python disponible en libre accès sur ma page GitHub :

• EvoDCinv: inversion des courbes de dispersion des ondes de surface par des algorithmes
évolutionnistes. Ce module permet l’inversion de courbes de dispersion multi-modales des
ondes de Rayleigh et/ou Love. Disponible à l’adresse github.com/keurfonluu/EvoDCinv.

https://doi.org/10.1093/gji/ggy311
https://github.com/keurfonluu/EvoDCinv

110 B.1. INTRODUCTION

B.1 Introduction

The knowledge of the shear wave propagation medium is valuable in geotechnics and geophysics
as it directly provides information on the mechanical properties of the subsurface. It is usually
reconstructed by inverting the dispersion curves of surface waves. Several methods using either
active or passive sources are available to acquire dispersion data such as Spatial autocorrelation
(SPAC, Aki (1957)), Frequency-wavenumber method (FK, Capon, Greenfield and Kolker (1967)),
Spectral analysis of surface waves (SASW, Nazarian et al. (1983)), Multi-channel analysis
of surface waves (MASW, Park, Miller and Xia (1999)), Refraction microtremor (Re-Mi, Louie
(2001)) or Ambient noise correlation (ANC, Shapiro and Campillo (2004)). This short appendix
presents the forward modeling to compute synthetic dispersion curves given a layered earth
model, and a real application in which the dispersion curves obtained by the joint use of cross-
correlation and Multiple signal characterization algorithm (MUSIC, Schmidt (1986), Goldstein
and Archuleta (1987)) are inverted. The same methodology as described in Chapter 3 is applied.
The description of the acquisition technique is beyond the scope of this thesis.

B.2 Forward problem: Thomson-Haskell propagator

The forward modeling consists in estimating the frequency-dependent dispersion curves for all
the modes of a surface wave given a layered earth model. Each layer is characterized by its
P- and S- wave velocities, density and thickness. Following the works of Thomson (1950) and
Haskell (1953), the dispersion equation derived from the wave equation is elegantly written in
the form

det|T (!; c)| = 0 (B.1)

where T (!; c) is the so-called Thomson-Haskell matrix and depends on the frequency ! and
the phase velocity c. The resulting Thomson-Haskell method evaluates a transfer matrix for
each layer and propagates the solution from the top (free surface) to the bottom (half-space).
In this appendix, we are only interested in Rayleigh waves, but it should be mentioned that the
theory also applies for Love waves.

B.2.1 Rayleigh wave in a layered medium

This section aims to demonstrate the Thomson-Haskell matrix formalism as described in Buchen
and Ben-Hador (1996). Surface, interface and radiation conditions can be expressed in terms of
displacement-stress state vectors yi (z) for each layer i eventually used to form the Thomson-
Haskell propagator matrices. In the following, P- and S- wave velocities in layer i are respectively
denoted by cp;i and cs;i , the layer thickness by di , the total number of layers by N and the
half-space by L = N + 1.

State vectors

Let us rewrite the Helmholtz’s decomposition of the displacement vector u (Equation (A.3))
introduced in Appendix A, following

u = up + us with

(
up = ∇Φ

us = ∇×Ψ
(B.2)

APPENDIX B. SURFACE WAVE TOMOGRAPHY 111

where up and us respectively denote the P- and S- displacement wavefields. We recall that
∇ = (@x ; @y ; @z). In the following, we consider a motion in the plane (x; z), hence @y = 0.

The P-wave displacement field up associated to the scalar potential Φ is expressed by

up = ∇Φ =

8>><>>:
@xΦ

@yΦ = 0

@zΦ

: (B.3)

The vector potential Ψ is orthogonal to the direction of displacement of particles, hence Ψx =
Ψz = 0. Therefore, the S-wave displacement field us associated to the vector potential Ψ reads

us = ∇×Ψ =

8>><>>:
@yΨz − @zΨy = −@zΨy

@zΨx − @xΨz = 0

@xΨy − @yΨx = @xΨy

: (B.4)

As the components of us only depend on Ψy , we drop the dependence on y in the notation and
write Ψ instead of Ψy . Combining Equations (B.2), (B.3) and (B.4), the total displacement field
in each layer of the medium is written(

uix = @xΦi − @zΨi

uiz = @zΦi + @xΨi

: (B.5)

We express the wavefield by means of the Helmholtz potential and decompose it into an upgoing
(U) and a downgoing (D) wavefield, following8<:Φi =

“
AUi e

−kriz + ADi e
kriz
”

cos (kx − !t)
Ψi =

“
BUi e

−ksiz + BDi e
ksiz
”

sin (kx − !t)
(B.6)

in which ri =
r

1− c2

c2
p;i

and si =
r

1− c2

c2
s;i

, k is the wavenumber, AUi , ADi , BUi and BDi denote the

amplitudes of the upgoing and downgoing P-wave and SV-wave, respectively.

A first system of equations that will be used to define the state vector for layer i is obtained by
substituting Equation (B.6) into (B.5), following8<:u

i
x = −k sin (kx − !t)

“
AUi e

−kriz + ADi e
kriz − siBUi e−ksiz + siB

D
i e

ksiz
”

uiz = −k cos (kx − !t)
“
riA

U
i e
−kriz − riADi ekriz − BUi e−ksiz − BDi eksiz

” : (B.7)

The second system of equations is given by the components of the vertical stress field ffixz and
ffizz . The Hooke’s law with Lamé’s parameters – and — for an isotropic medium is written

ffi j = 2—"i j + –"kk‹i j (B.8)

where the strain tensor is expressed by

"i j =
1

2
(@jui + @iuj) : (B.9)

Therefore, the vertical stress field reads(
ffixz = 2—i"xz

ffizz = (–i + 2—i) "zz + –"xx :
(B.10)

112 B.2. FORWARD PROBLEM: THOMSON-HASKELL PROPAGATOR

After differentiating Equation (B.10) using Equation (B.9) and performing trivial simplifications,
we obtain a second system of equations defined by8>>>>><>>>>>:

ffixz = —ik
2 sin (kx − !t)“

2riA
U
i e
−kriz − 2riA

D
i e

kriz − `s2
i + 1

´
BUi e

−ksiz − `s2
i + 1

´
BDi e

ksiz
”

ffizz = —ik
2 cos (kx − !t)“`
s2
i + 1

´
AUi e

−kriz +
`
s2
i + 1

´
ADi e

kriz − 2siB
U
i e
−ksiz + 2siB

D
i e

ksiz
” : (B.11)

The final system formed by Equations (B.7) and (B.11) can be rewritten in a matrix form as a

function of the state vector yi (z) =
h
Ui
x(z) Ui

z(z) Σi
xz Σi

zz

i>
according toh

uix ; u
i
z ; ff

i
xz ; ff

i
zz

i>
= Si MiPiEi (−z)ai| {z }

yi (z)

(B.12)

with8>>><>>>:

Si =

2666664
−k sin (kx − !t) 0 0 0

0 −k cos (kx − !t) 0 0

0 0 k2 sin (kx − !t) 0

0 0 0 k2 cos (kx − !t)

3777775

Mi =

2666664
1 0 0 0

0 1 0 0

0 0 —i 0

0 0 0 —i

3777775

Pi =

2666664
1 1 −si si

ri −ri −1 −1

2ri −2ri − `s2
i + 1

´ − `s2
i + 1

´
s2
i + 1 s2

i + 1 −2si 2si

3777775

Ei (z) =

2666664
ekriz 0 0 0

0 e−kriz 0 0

0 0 eksiz 0

0 0 0 e−ksiz

3777775
ai =

h
AUi ADi BUi BDi

i>

: (B.13)

Boundary conditions

1. Stress-free surface (i = 0): ff0
xz = ff0

zz = 0

y0(0) =
h
U0
x(0) U0

z(0) 0 0
i>

(B.14)

2. Continuity of displacement and stress at layer interfaces (i = 1; :::; N):

yi (di) = yi+1(0) (B.15)

3. Radiation conditions in half-space (i = L):

aL =
h
AUL 0 BUL 0

i>
(B.16)

APPENDIX B. SURFACE WAVE TOMOGRAPHY 113

Propagator matrices

We introduce a layer matrix Qi = MiPi and we rewrite the displacement-stress state vector as

yi (z) = QiEi (−z)ai : (B.17)

The layer propagator (or transfer) matrix Ti (z) is expressed by

Ti (z) = QiEi (z)Q−1
i : (B.18)

We have for any depths z1 and z2 within the same layer(
yi (z1) = QiEi (−z1)ai

yi (z2) = QiEi (−z2)ai
(B.19)

and we can also show that (
Ti (z1)Ti (z2) = Ti (z1 + z2)

T−1
i (z) = Ti (−z)

: (B.20)

Isolating ai in yi (z2) and substituting it into yi (z1), we obtain

yi (z1) = QiEi (−z1)Ei (−z2)−1Q−1
i yi (z2) (B.21)

= QiEi (−z1)Q−1
i| {z }

Ti (−z1)

QiEi (−z2)−1Q−1
i| {z }

Ti (z2)

yi (z2) (B.22)

= Ti (z2 − z1)yi (z2): (B.23)

It follows that
yi (0) = Ti (di)yi (di): (B.24)

The continuity condition of displacement and stress at layer interfaces (Equation (B.15)) leads to
the Thomson-Haskell recursion which is written

yi (0) = Ti (di)yi+1(0) (B.25)

with solution

y1(0) =

NY
i=1

Ti (di)

!
yL(0): (B.26)

The dispersion relation is obtained by applying the stress-free surface and radiation conditions
to the state vectors y1 and yL, which leads to a matrix equation of the form

U>

NY
i=1

Ti (di)

!
V| {z }

T(!;c)

aL = 0 (B.27)

where T (!; c) is the Thomson-Haskell matrix, U and V are the free-surface and the half-space
boundary matrices, respectively. The Rayleigh dispersion equation is finally obtained by solving
the system which is homogeneous and has a non-trivial solution only when the determinant is
zero, following

det|T (!; c)| = 0: (B.28)

114 B.3. INVERSION

B.2.2 Roots search

For a given frequency !, the Rayleigh dispersion equation (B.28) has a finite number of non-
trivial solutions only for specific values of phase velocity c . Many techniques have been proposed
to find the roots of the dispersion function, the most frequently used being the propagator matrix
methods. Each root corresponds to a modal curve that only exists within a limited phase velocity
domain [Vmin; Vmax] such that (

Vmin = min1≤i≤L (cR;i)

Vmax = max1≤i≤L (cs;i)
(B.29)

where cs;i denotes the S-wave velocity of layer i and cR;i the Rayleigh wave velocity estimated
by considering each layer as a homogeneous half-space, following

cR;i =
0:87 + 1:12�i

1 + �i
cs;i (B.30)

with �i =
1−2c2

s;i=c
2
p;i

2(1−c2
s;i=c

2
p;i)

being the Poisson’s ratio. The first and slowest mode is called the

fundamental mode and only exists above a cut-off frequency corresponding to the frequency
at which the phase velocity equals the maximum S-wave velocity max1≤i≤L (cs;i). Because the
dispersion function oscillates rapidly especially at high frequencies, a root-bracketing method
combined with a bisection algorithm is commonly applied to search the roots of the function in
spite of the slow convergence of the method (Socco and Strobbia (2004)). In this appendix, we
typically deal with problems with low frequency ranges and thus employ a simple grid search
with a fine grid size. The roots are then found by interpolating between all the pairs of adjacent
grid points with a sign change. Although this approach is less robust, the computation of
the dispersion function can be parallelized for each frequency. Figure B.1 shows the modal
dispersion curves for a three-layer velocity model with an example of dispersion function that
presents numerous roots.

B.3 Inversion

Surface wave tomography is a non-linear optimization problem mostly solved by a linearized
iterative least-squares approach (Socco and Strobbia (2004)). In this section, we solve this
inverse problem by means of several runs of CPSO to thoroughly sample the model parameter
space. The data consists of three manually picked modal dispersion curves (fundamental, first
and second) which have been obtained by a joint use of ANC and MUSIC algorithm. The
description of this technique is beyond the scope of this thesis.

We consider a velocity model parametrized by nine layers. The forward modeling (i.e. Thomson-
Haskell method) requires the P- and S- wave velocities, the density and the thickness of each
layer. However, surface waves are mainly sensitive to S-wave velocities, hence the P-wave
velocities and the density are usually assumed a priori to reduce the number of model parameter
unknowns to optimize. Consequently, we only invert for the S-wave velocities and thicknesses of
each layer. The lower and upper search boundaries are summarized in Table B.1.

For the inversion, we apply the same methodology as described in Chapter 3. We run the
CPSO algorithm 20 times to sample the model parameter space sufficiently for uncertainty
quantification with a swarm size of 50. We set the maximum number of iterations to 500 and
CPSO control parameters to their default values (i.e. ! = 0:7298, ffip = ffig = 1:49618, ‚ = 1).
The 500000 models have been sampled in 15 minutes using a total of 100 cores out of 104 (four

APPENDIX B. SURFACE WAVE TOMOGRAPHY 115

2 4 6 8 10

500

600

700

800

900

1000

Frequency (Hz)

P
ha

se
ve

lo
ci

ty
(m

/s
)

Dispersion curves

−1 0 1

500

600

700

800

900

1000

det |T|

P
ha

se
ve

lo
ci

ty
(m

/s
)

Dispersion function (5 Hz)

Figure B.1: (Left) Modal dispersion curves for a three-layer model (500 m at 500 m/s, 300 m at 1000 m/s,
half-space at 500 m/s). The vertical line (green) indicates a slice at 5 Hz. (Right) Dispersion function at 5
Hz. The positions of the roots (i.e. zeros) correspond to the phase velocities for the different modes. The
dispersion function is clipped between -1 and 1.

Table B.1: Lower and upper boundaries of each layer parameter. The last layer corresponds to the
half-space with infinite thickness.

Layer # Vs (m/s) Thickness (m)

Min. Max. Min. Max.

1 100 2000 50 250
2 100 2000 50 250
3 100 2000 50 250
4 100 2000 50 250
5 1000 3000 50 250
6 1000 3000 50 250
7 1000 3000 500 3000
8 1000 3000 500 3000
9 3400 3600 - -

116 B.4. CONCLUSION

0:5 1 1:5 2 2:5 3

1000

1500

2000

2500

3000

3500

Frequency (Hz)

P
ha

se
ve

lo
ci

ty
(m

/s
)

Dispersion curves

1 2 3

0

1000

2000

3000

4000

5000

S-Velocity (km/s)

D
ep

th
(m

)

Inverted models

Acoustic

Mean

68% CI 25

30

35

40

45

R
M

S
(m

/s
)

Figure B.2: (Left) Picked (red) and inverted dispersion curves. (Right) Inverted mean velocity profile (red)
along with the acoustic log provided by Storengy (black). The velocity models sampled by the different
runs of CPSO are represented in the background with the color scale indicating their RMS values. The
dashed lines (red) delimit the 68% confidence interval.

sockets platform made of 4 Intel R© Xeon R© Platinum 8164 CPU, 26 cores @ 2.00 GHz each).
The results of the inversion are shown in Figure B.2. The mean velocity model is consistent
with the acoustic log provided by Storengy between 230 and 1190 meters and indicates the
presence of a rapid layer between 550 and 800 meters. The three inverted modal curves exhibit
a good fit with the picked dispersion curves.

B.4 Conclusion

We have described an application of evolutionary algorithms (here CPSO) to another seismic
tomography problem. The real case numerical example presented hereinabove shows that the
same methodology as adopted in Chapter 3 can be applied to invert surface wave dispersion
curves to obtain an accurate shear wave velocity model. Because the dispersion functions are
calculated in parallel, this methodology also benefits from the computational resources provided
by a supercomputer using a hybrid parallelization approach (OpenMP + MPI).

APPENDIX C. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS 117

Appendix C

Propagation of velocity uncertainties
to locations

Contents

Abstract . 118

C.1 Introduction . 118

C.2 From optimization to uncertainty quantification 119

C.3 Propagation of velocity uncertainties to locations 120

C.3.1 Inversion . 120

C.3.2 Acceptable models . 120

C.3.3 Velocity models clustering . 121

C.4 Conclusion . 123

Plusieurs facteurs peuvent contribuer aux erreurs de localisation des évènements microsis-
miques dont les erreurs de pointé des temps d’arrivée, une géométrie d’acquisition peu con-
traignante et une mauvaise connaissance du milieu de propagation. Il est possible de localiser
les hypocentres et d’estimer leurs incertitudes de manière plus fiable en propageant les erreurs
liées au modèle de vitesse qui peuvent être obtenues en échantillonnant l’espace des modèles
de vitesse. Pour ce faire, les évènements microsismiques sont relocalisés dans l’ensemble des
modèles de vitesse échantillonnés, ce qui est inefficace d’un point de vue computationnel. Je
propose dans ce chapitre annexe une analyse par partitionnements des modèles échantillonnés
à l’aide de la CPSO dans le Chapitre 3. L’analyse par partitionnements permet de définir un
sous-ensemble de modèles pour la propagation des incertitudes du modèle de vitesse aux
localisations microsismiques.

Ce chapitre annexe correspond au résumé étendu (mis à jour) soumis pour une présentation
orale à la conférence internationale EAGE 2017 (Paris) :

118 C.1. INTRODUCTION

• Keurfon Luu, Mark Noble, Alexandrine Gesret, Nidhal Belayouni and Pierre-François
Roux, 2017. “Propagation of velocity uncertainties to Microseismic locations using a
competitive Particle Swarm Optimizer.” 79th EAGE Conference and Exhibition 2017.

Abstract

Microseismic location uncertainties are mainly due to arrival time picking errors, poorly con-
strained acquisition geometry and the lack of knowledge of the wave propagation medium.
More reliable locations of hypocenters with their associated uncertainties can be obtained by
propagating velocity model uncertainties which can be obtained by sampling the velocity model
space. We propose to use a Competitive Particle Swarm Optimizer (CPSO) to sample the
model space by running the algorithm multiple times and keeping all the models that explain the
observed data. Then, we perform a cluster analysis on all the acceptable models to define a
reliable subset of models to propagate the velocity uncertainties to the microseismic locations.
The algorithm is illustrated on a real 3D data set in the context of hydraulic fracturing.

C.1 Introduction

Microseismic monitoring is one of the main tools to estimate hydraulic fracture geometry and
failure mode. It consists in detecting and locating very small events induced by the fracturing
process (Cipolla et al. (2011)). Despite the fact that large volumes of data are being acquired,
our understanding of the relation between microseismicity and fracture geometry is still very
poor. Very precise location of seismicity is the first step to better understand and delineate
hydraulic fracture geometry.

Among many factors such as traveltime picking errors or poorly constrained acquisition geome-
tries that contribute to microseismic location errors, the largest contribution is due to the lack
of knowledge of the velocity model. Gesret et al. (2015) showed that more reliable locations
of hypocenters with their associated uncertainties can be obtained by propagating the velocity
model uncertainties to the event locations.

The calibration/inversion for the velocities is a totally non-linear problem and requires the use
of global optimization methods. Concerning the estimation of the velocity model uncertainties,
from a theoretical point of view, methods based on Markov Chain Monte Carlo (MCMC) that
sample the velocity model space are required. However, these algorithms cannot be parallelized
and turn out to be prohibitive in terms of computational time. This limitation can be overcome
by implementing an Evolutionary Algorithm (EA). EA are algorithms for global optimization
inspired by biological evolution that evaluate simultaneously a set of independent models. This
simultaneous evaluation of independent models implies that it is straightforward to parallelize
and thus can significantly reduce the computation time.

In this appendix, we briefly describe a new EA that samples the model space and enables
us to derive reliable velocity model uncertainties in a real 3D microseismic example. We then
perform a cluster analysis on the sampled velocity models that allows us to propagate the
velocity uncertainties to the hypocenter locations.

APPENDIX C. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS 119

−4 −2 0 2 4

−4
−2
0

2

4

m1

m
2

MCMC

−4 −2 0 2 4
m1

PSO

−4 −2 0 2 4
m1

CPSO

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

P
D

F

Figure C.1: (Left) 2D Rastrigin PDF sampled by MCMC. Comparison of the sampling capability of (middle)
PSO and (right) CPSO on the 2D Rastrigin function.

C.2 From optimization to uncertainty quantification

Our tomography algorithm lies on a new method based on Particle Swarm Optimization (PSO,
Kennedy and Eberhart (1995)). In PSO, a swarm composed of several individuals – called
particles – is initialized in the model space. At each iteration k, the position of the particle i
(i.e. model) is updated following

vki = !vk−1
i + ffiprkp

“
mp;i −mk−1

i

”
+ ffig rkg

“
mg −mk−1

i

”
(C.1)

mk
i = mk−1

i + mk
i (C.2)

where vki and mk
i are respectively the velocity (displacement) and position vectors, mp;i and mg

are the personal best position of particle i and the global best position of the swarm, rkp and rkg
are uniform random number vectors drawn at iteration k, ! is an inertial coefficient, ffip and ffig
are two constants that respectively control the cognition and social interactions of the particles.
However, PSO suffers from premature convergence as it can get trapped in a local minimum.
We propose to use a Competitive PSO (Luu et al. (2018)) that improves the diversity of the
swarm by detecting when the algorithm converges prematurely and by resetting the state of bad
fitting particles.

In typical geophysical inverse problems, several models may explain the data very well in terms
of misfit function values. This non-unique aspect of the solution is principally caused by the use
of a finite number of parameters to describe the earth, and also by the presence of noise in
the data. One approach to characterize the non-uniqueness of the solution is to represent the
solution in terms of Probability Density Function (PDF). The posterior PDF is usually estimated
through Monte Carlo importance sampling or approximated by running global optimization
methods multiple times (Sen and Stoffa (1996)).

In order to demonstrate the reliability of CPSO for sampling the PDF compared to classical
PSO, we run both algorithms multiple times on the highly multi-modal 2D Rastrigin function. We
perform 100 runs for each case and sample the model space with a total of 100000 samples, each
run starting with different initial models. The resulting posterior density distributions produced
by a Kernel Density Estimator (KDE) are shown in Figure C.1 along with the distribution from a
MCMC sampler.

Even though PSO detects the principal modes, it fails at identifying the central mode as the
principal one. For each run, PSO seems to converge prematurely in different local minima

120 C.3. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS

0
150

300
450

600
200

400
600

800

0

300

600

900

1200

X (m)
Y (m)

D
ep

th
(m

)
Acquisition geometry

Shots Stations

2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

P-Velocity (km/s)

D
ep

th
(m

)

Inversion result

Acoustic

Mean

Best

0

0.5

1

1.5

2

P
D

F

Figure C.2: (Left) 3D acquisition geometry. (Right) P-wave velocity model obtained from CPSO tomogra-
phy. The 95 percent confidence intervals are represented by the grey lines.

without being able to escape from it. On the other hand, CPSO successfully samples the 9
principal modes and the central mode is correctly identified. Therefore, by running CPSO multiple
times, we are able to sample the most significant part of the PDF. The practical consequence is
that CPSO is a more reliable method for uncertainty quantification.

C.3 Propagation of velocity uncertainties to locations

C.3.1 Inversion

We apply the CPSO tomography algorithm on a real data set recorded in the context of hy-
draulic fracturing. The acquisition geometry is represented in Figure C.2 (left) with the green
circles being the perforation shots and the white triangles the receivers. The velocity model is
parametrized with 15 layers based on the acoustic log, and we invert for the Vp velocities, the
Vp=Vs ratios and the interface depths of each layer. We run the inversion for the 45 parameters
with 32 particles. A run is stopped when 200 iterations are performed. We run the CPSO
algorithm 50 times to sample the model space sufficiently for uncertainty quantification (320000
models sampled). The whole tomography lasted 3.6 minutes using a total of 96 cores out of
104 (four sockets platform made of 4 Intel R© Xeon R© Platinum 8164 CPU, 26 cores @ 2.00 GHz
each). The resulting density plots for the P-wave velocity along with the mean and best models
are shown in Figure C.2 (right).

C.3.2 Acceptable models

Let us define the theoretical relationship between the traveltime and the velocity model v, the
coordinates of the sources s and the receivers r, by

tcalc (s; r; v) = tcalc (v) (C.3)

with source and receiver locations being considered as constants. Traveltimes are calculated
using an Eikonal solver Noble, Gesret and Belayouni (2014) that generates accurate traveltime
grids using a finite-difference scheme.

APPENDIX C. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS 121

The velocity model space is sampled by running the CPSO tomography algorithm multiple times.
Among all the models visited by the swarm, many models that lie within the uncertainties can be
considered acceptable. We assume that the residuals (for P- or S- waves) follow a gaussian
distribution with zero mean and variance ff2, which reads

tobsi − tcalci ∼ N
“

0; ff2
”
: (C.4)

Therefore, the standard deviation S of the errors is the root-mean-square-error (RMSE) and
follows a X 2 distribution with N degrees of freedom (N being the number of P- or S- wave
observations), following

NS2

ff2
=
N 1
N

PN
i=1

“
tobsi − tcalci

”2

ff2
=
NRMSE2

ff2
∼ X 2

N : (C.5)

Given a confidence interval (1− ¸) 100%, we define the ensemble of acceptable models as

V =

(
v | X 2

¸
2
;N ≤

NRMSE2

ff2
≤ X 2

1−¸
2
;N

)
: (C.6)

C.3.3 Velocity models clustering

In order to propagate the velocity model uncertainties to the microseismic locations, the PDF of
the event location should be summed over a subset distributed accordingly to the PDF of the
velocity model. As previously mentioned, the solution is not unique and many models can explain
the data. Thus, defining a reliable subset of velocity models for the propagation is a difficult task.
We propose to use an unsupervised clustering algorithm to automatically find structures in the
acceptable models and consequently determine a subset of representative velocity models for
the propagation. Given a data set (mathbf m1; : : : ; mathbf mN), the clustering problem consists
in minimizing the sum of the distances between the models in the data set and the centroids of
clusters to which they are assigned, according to

J (c;µ) =
NX
i=1

D (mathbf mi ; —ci) =
NX
i=1

dX
j=1

!j (mi ;j − —ci ;j)2 (C.7)

where d is the number of parameters describing a model mathbf mi , c = (c1; : : : ; cN) and
µ = (µ1; : : : ;µK) are respectively the indices and centroids of clusters to which the models are
assigned, D is a function that computes the weighted distance between a model and a cluster
centroid, !j is the weight associated to the parameter j which can be useful to ignore some
parameters that are not informative (e.g. the parameters associated to the first and last layers).
Most of the unsupervised clustering algorithms require the number of clusters K to be set prior
to the clustering. One of the simplest method to determine the optimal K is to calculate the
percentage of variance explained for a given number of clusters. The optimal K is chosen so
that adding another cluster does not improve the explained variance. Many other methods have
been developed to determine the right number of clusters, yet the discussion of the best method
is beyond the scope of this appendix. Given the large number of models and dimensions, we
use the Mini-batch K-Means algorithm (Sculley (2010)) with a batch size of 20% to clusterize
our acceptable models. The parameters are normalized before the clustering.

Figure C.3 (left) shows the percentage of explained variance as a function of the number of
clusters. The optimal number of clusters is around K = 120 with 98% of the variance being
explained. Therefore, we propagate the uncertainties associated to the velocity models by
relocating the fifteen perforation shots in the 120 centroid models. The P-wave centroid models

122 C.3. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS

20 40 60 80 100 120 140
0

20

40

60

80

100

clusters

Va
ria

nc
e

ex
pl

ai
ne

d
(%

)
”Elbow” method

2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

P-Velocity (km/s)

D
ep

th
(m

)

Example of centroids

Model 1
Model 2

Figure C.3: (Left) “Elbow” method to determine the optimal number of clusters K. (Right) P-wave centroid
models of the two most populated clusters.

for the two most populated clusters are shown in Figure C.3 (right). The two models are similar
in the constrained zone where the receivers are deployed and differ below with an alternation of
fast an slow layers.

For a given hypocenter location l, we write the new PDF as

P
“

l
˛̨̨

tobs ;µ
”
∝ 1

N

KX
i=1

N—iP
“

tobs
˛̨̨

l;µi
”
P (l) (C.8)

where N—i is the number of models assigned to cluster i , P
“

tobs
˛̨̨

l;µi
”

is the likelihood that
links the event location and the centroid (i.e. velocity model) to the observed traveltimes tobs ,
P (l) describes all the information we know about the location prior to the measurements of the
traveltimes. The PDFs of the location for two shots resulting from the propagation in the 120
centroid models is represented in Figure C.4. The true locations are included in the 68 percent
confidence intervals which demonstrates the reliability of our tomography algorithm velocity
model uncertainty quantification.

100 150 200 250

600

650

700

750

X (m)

Y
(m

)

100 150 200 250

950

1000

1050

1100

1150

X (m)

D
ep

th
(m

)

600 650 700 750

950

1000

1050

1100

1150

Y (m)

D
ep

th
(m

)

Figure C.4: 68 percent confidence intervals built from the new PDF for the perforation shot 6. The true
locations are marked by the black crosses.

APPENDIX C. PROPAGATION OF VELOCITY UNCERTAINTIES TO LOCATIONS 123

C.4 Conclusion

In this appendix, we demonstrated the robustness of CPSO in quantifying uncertainties. We
obtained more accurate microseismic locations with reliable uncertainties by propagating the
velocity uncertainties. The cluster analysis of the acceptable models not only allows us to define
a subset of velocity models, but can potentially speed up the location computation time as it
determines the correct number of clusters required to sufficiently represent the sampled PDF.

124 C.4. CONCLUSION

BIBLIOGRAPHY 125

Bibliography

Akaike H. A New Look at the Statistical Model Identification. IEEE Transactions on Automatic
Control 1974;19:716–23.

Aki K. Space and time spectra of stationary stochastic waves, with special reference to mi-
crotremors. Bull Earth Res Inst 1957;35:415–56.

Akimoto Y, Auger A, Hansen N. Comparison-based natural gradient optimization in high dimen-
sion. In. Proceedings of the 2014 Conference on Genetic and Evolutionary Computation -
Gecco ’14. New York, New York, USA: ACM Press, 2014, 373–80.

Akram J, Eaton DW. A review and appraisal of arrival-time picking methods for downhole
microseismic data. Geophysics 2016;81:KS71–91.

Akram J, Ovcharenko O, Peter D. A robust neural network-based approach for microseismic
event detection. In. SEG Technical Program Expanded Abstracts 2017. Society of Exploration
Geophysicists, 2017, 2929–33.

Allen R. Automatic phase pickers: Their present use and future prospects. Bulletin of the
Seismological Society of America 1982;72:S225–42.

Amdahl GM. Validity of the single processor approach to achieving large scale computing
capabilities. In. Proceedings of the April 18-20, 1967, Spring Joint Computer Conference on -
Afips ’67 (Spring). New York, New York, USA: ACM Press, 1967, 483.

Angeline PJ, Saunders GM, Pollack JB. An evolutionary algorithm that constructs recurrent
neural networks. IEEE transactions on Neural Networks 1994;5:54–65.

Angeline PJ. Evolutionary optimization versus particle swarm optimization: Philosophy and
performance differences. Lecture Notes in Computer Science: Evolutionary Programming VII
1998;1447:601–10.

Auger A, Hansen N. A Restart CMA Evolution Strategy With Increasing Population Size. 2005
IEEE Congress on Evolutionary Computation 2005;2:1769–76.

Back T, Hammel U, Schwefel H-P. Evolutionary computation: comments on the history and
current state. IEEE Transactions on Evolutionary Computation 1997;1:3–17.

Baer M, Kradolfer U. An automatic phase picker for local and teleseismic events. Bulletin of the
Seismological Society of America 1987;77:1437–45.

Baillard C, Crawford WC, Ballu V et al. An Automatic Kurtosis-Based P- and S-Phase Picker
Designed for Local Seismic Networks. Bulletin of the Seismological Society of America

126

2014;104:394–409.

Barros T, Ferrari R, Krummenauer R et al. Differential evolution-based optimization procedure
for automatic estimation of the common-reflection surface traveltime parameters. Geophysics
2015;80:WD189–200.

Bavelas A. Communication Patterns in Task-Oriented Groups. The Journal of the Acoustical
Society of America 1950;22:725–30.

Belhadj J, Romary T, Gesret A et al. New parameterizations for Bayesian seismic tomography.
Inverse Problems 2018;34:065007.

Beyer H-G, Beyer H-G, Schwefel H-P et al. Evolution strategies – A comprehensive introduction.
Natural Computing 2002;1:3–52.

Beyreuther M, Barsch R, Krischer L et al. ObsPy: A Python Toolbox for Seismology. Seismologi-
cal Research Letters 2010;81:530–3.

Billings SD. Simulated annealing for earthquake location. Geophysical Journal International
1994;118:680–92.

Bishop JM. Stochastic searching networks. In. Artificial Neural Networks, 1989., First Iee
International Conference on (Conf. Publ. No. 313). IET, 1989, 329–31.

Bodin T, Salmon M, Kennett BLN et al. Probabilistic surface reconstruction from multiple data
sets: An example for the Australian Moho. Journal of Geophysical Research: Solid Earth
2012;117:1–13.

Bodin T, Sambridge M. Seismic tomography with the reversible jump algorithm. Geophysical
Journal International 2009;178:1411–36.

Boor C de. On calculating with B-splines. Journal of Approximation Theory 1972;6:50–62.

Boschetti F, Dentith MC, List RD. Inversion of seismic refraction data using genetic algorithms.
Geophysics 1996;61:1715–27.

Bottero A, Gesret A, Romary T et al. Stochastic seismic tomography by interacting Markov
chains. Geophysical Journal International 2016;207:374–92.

Brantut N, Schubnel A, Guéguen Y. Damage and rupture dynamics at the brittle-ductile transition:
The case of gypsum. Journal of Geophysical Research 2011;116:B01404.

Buchen PW, Ben-Hador R. Free-mode surface-wave computations. Geophysical Journal Inter-
national 1996;124:869–87.

Bunks C, Saleck FM, Zaleski S et al. Multiscale seismic waveform inversion. Geophysics
1995;60:1457–73.

Calvez JHL, Craven ME, Klem RC et al. Real-Time Microseismic Monitoring of Hydraulic
Fracture Treatment: A Tool To Improve Completion and Reservoir Management. SPE
Hydraulic Fracturing Technology Conference 2007:7.

Capon J, Greenfield RJ, Kolker RJ. Multidimensional maximum-likelihood processing of a large
aperture seismic array. Proceedings of the IEEE 1967;55:192–211.

Carlisle A, Dozier G. An Off-The-Shelf PSO. Population English Edition 2001;1:1–6.

Cary PW, Chapman CH. Automatic 1-D waveform inversion of marine seismic refraction data.

BIBLIOGRAPHY 127

Geophysical Journal International 1988;93:527–46.

Chapman C. Ray theory and its extensions: WKBJ and Maslov seismogram. Journal of
Geophysics 1985;58:27–43.

Chavent G. Identification of Functional Parameters in Partial Differential Equations., 1974.

Chen S, Montgomery J, Bolufé-Röhler A. Measuring the curse of dimensionality and its effects on
particle swarm optimization and differential evolution. Applied Intelligence 2015;42:514–26.

Cipolla C, Maxwell S, Mack M et al. A Practical Guide to Interpreting Microseismic Measurements.
SPE North American Unconventional Gas Conference and Exhibition 2011:1–28.

Clerc M, Kennedy J. The particle swarm - explosion, stability, and convergence in a multidimen-
sional complex space. IEEE Transactions on Evolutionary Computation 2002;6:58–73.

Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm
optimization. In. Proceedings of the 1999 Congress on Evolutionary Computation-Cec99
(Cat. No. 99th8406). Vol 3. IEEE, 1999, 1951–7.

Conti E, Madhavan V, Such FP et al. Improving Exploration in Evolution Strategies for Deep
Reinforcement Learning via a Population of Novelty-Seeking Agents. 2017.

Červený V. Ray tracing algorithms in three-dimensional laterally varying layered structures. In.
Seismic Tomography. Dordrecht: Springer Netherlands, 1987, 99–133.

Červený V. Seismic Ray Theory. Cambridge: Cambridge University Press, 2001.

Dai H, MacBeth C. The application of back-propagation neural network to automatic picking
seismic arrivals from single-component recordings. Journal of Geophysical Research: Solid
Earth 1997;102:15105–13.

Daniels JL, Waters GA, Le Calvez JH et al. Contacting More of the Barnett Shale Through an In-
tegration of Real-Time Microseismic Monitoring, Petrophysics, and Hydraulic Fracture Design.
In. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2007.

Das S, Suganthan PN. Differential Evolution: A Survey of the State-of-the-Art. IEEE Transactions
on Evolutionary Computation 2011;15:4–31.

Davis L. Handbook of genetic algorithms. 1991.

De Meersman K, Kendall J-M, Baan M van der. The 1998 Valhall microseismic data set: An
integrated study of relocated sources, seismic multiplets, and S-wave splitting. Geophysics
2009;74:B183–95.

Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, 2001.

Deichmann N, Giardini D. Earthquakes Induced by the Stimulation of an Enhanced Geothermal
System below Basel (Switzerland). Seismological Research Letters 2009;80:784–98.

Delbos F, Gilbert JC, Glowinski R et al. Constrained optimization in seismic reflection tomogra-
phy: a Gauss-Newton augmented Lagrangian approach. Geophysical Journal International
2006;164:670–84.

Delprat-Jannaud F, Lailly P. Ill-posed and well-posed formulations of the reflection travel time
tomography problem. Journal of Geophysical Research: Solid Earth 1993;98:6589–605.

Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents.

128

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 1996;26:29–41.

Drosinos N, Koziris N. Performance comparison of pure MPI vs hybrid MPI-OpenMP paral-
lelization models on SMP clusters. 18th International Parallel and Distributed Processing
Symposium, 2004 Proceedings 2004;00:15–24.

Duane S, Kennedy A, Pendleton BJ et al. Hybrid Monte Carlo. Physics Letters B 1987;195:216–
22.

Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm opti-
mization. In. Proceedings of the 2000 Congress on Evolutionary Computation. Cec00 (Cat.
No.00TH8512). Vol 1. IEEE, 2000, 84–8.

Eisner L, Duncan PM, Heigl WM et al. Uncertainties in passive seismic monitoring. The Leading
Edge 2009;28:648–55.

Ekinci YL, Balkaya Ç, Göktürkler G et al. Model parameter estimations from residual gravity
anomalies due to simple-shaped sources using Differential Evolution Algorithm. Journal of
Applied Geophysics 2016;129:133–47.

Engelbrecht A. Particle swarm optimization: Velocity initialization. In. 2012 Ieee Congress on
Evolutionary Computation. IEEE, 2012, 1–8.

Evers GI, Ben Ghalia M. Regrouping particle swarm optimization: A new global optimization algo-
rithm with improved performance consistency across benchmarks. In. 2009 Ieee International
Conference on Systems, Man and Cybernetics. IEEE, 2009, 3901–8.

Fernández Martínez JL, Mukerji T, García Gonzalo E et al. Reservoir characterization and
inversion uncertainty via a family of particle swarm optimizers. Geophysics 2012;77:M1–M16.

Figueiredo EM, Ludermir TB. Investigating the use of alternative topologies on performance of
the PSO-ELM. Neurocomputing 2014;127:4–12.

Fletcher R, Powell MJD. A Rapidly Convergent Descent Method for Minimization. The Computer
Journal 1963;6:163–8.

Fogel DB. Applying evolutionary programming to selected traveling salesman problems. Cyber-
netics and systems 1993;24:27–36.

Fogel DB. An overview of evolutionary programming. In. Evolutionary Algorithms. Springer,
1999, 89–109.

Fonseca CM, Fleming PJ. An overview of evolutionary algorithms in multiobjective optimization.
Evolutionary computation 1995;3:1–16.

Fonseca CM, Fleming PJ. Multiobjective optimization and multiple constraint handling with
evolutionary algorithms. I. A unified formulation. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans 1998;28:26–37.

Gentili S, Michelini A. Automatic picking of P and S phases using a neural tree. Journal of
Seismology 2006;10:39–63.

Gerhard Pratt, Shin C, Hicks. Gauss-Newton and full Newton methods in frequency-space
seismic waveform inversion. Geophysical Journal International 1998;133:341–62.

Gesret A, Desassis N, Noble M et al. Propagation of the velocity model uncertainties to the
seismic event location. Geophysical Journal International 2015;200:52–66.

Goldstein P, Archuleta RJ. Array analysis of seismic signals. Geophysical Research Letters

BIBLIOGRAPHY 129

1987;14:13–6.

Gong Y, Fukunaga A. Distributed island-model genetic algorithms using heterogeneous pa-
rameter settings. In. 2011 Ieee Congress of Evolutionary Computation (Cec). IEEE, 2011,
820–7.

Gong YJ, Chen WN, Zhan ZH et al. Distributed evolutionary algorithms and their models: A
survey of the state-of-the-art. 2015;34:286–300.

Goudie RJB, Turner RM, De Angelis D et al. MultiBUGS: A parallel implementation of the BUGS
modelling framework for faster Bayesian inference. 2017:1–19.

Grandis H, Menvielle M, Roussignol M. Bayesian inversion with Markov chains-I. The magnetotelluricone-
dimensional case. Geophysical Journal International 1999;138:757–68.

Grayver AV, Kuvshinov AV. Exploring equivalence domain in nonlinear inverse problems using
Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling. Geophysical
Journal International 2016;205:971–87.

Green PJ. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model
Determination. Biometrika 1995;82:711.

Hajizadeh Y, Christie MA, Demyanov V. History matching with differential evolution approach;
a look at new search strategies. In. SPE Europec/Eage Annual Conference and Exhibition.
Society of Petroleum Engineers, 2010.

Han D-x, Wang G-y. Application of Particle Swarm Optimization to Seismic Location. 2009 Third
International Conference on Genetic and Evolutionary Computing 2009:641–4.

Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation
2003;11:1–18.

Hansen N, Ostermeier A. Adapting arbitrary normal mutation distributions in evolution strategies:
the covariance matrix adaptation. In. Proceedings of Ieee International Conference on
Evolutionary Computation. IEEE, 1996, 312–7.

Hansen N. Errata / Addenda for A Method for Handling Uncertainty in Evolutionary Optimization
With an Application to Feedback Control of Combustion. IEEE Transactions on Evolutionary
Computation 2010;13:180–97.

Hansen N. The CMA evolution strategy: A tutorial. 2011;102:1–34.

Hansen PC, O’Leary DP. The Use of the L-Curve in the Regularization of Discrete Ill-Posed
Problems. SIAM Journal on Scientific Computing 1993;14:1487–503.

Hart DI. Automated Picking of Seismic First-Arrivals with Neural Networks. In. 2003, 13–30.

Haskell NA. The dispersion of surface waves on multilayered media. Bulletin of the seismological
Society of America 1953;43:17–34.

Hewlett PS, Mendel G. Experiments in Plant Hybridisation. Biometrics 1966;22:636.

Holland JH. Genetic Algorithms and the Optimal Allocation of Trials. SIAM Journal on Computing
1973;2:88–105.

Hooke R, Jeeves TA. "Direct Search” Solution of Numerical and Statistical Problems. Journal of

130

the ACM 1961;8:212–29.

Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering
2007;9:90–5.

Improta L, Zollo A, Herrero A et al. Seismic imaging of complex structures by non-linear
traveltime inversion of dense wide-angle data: application to a thrust belt. Geophysical
Journal International 2002;151:264–78.

Iwan M, Akmeliawati R, Faisal T et al. Performance Comparison of Differential Evolution and Parti-
cle Swarm Optimization in Constrained Optimization. Procedia Engineering 2012;41:1323–8.

Jones AG, Hutton R. A multi-station magnetotelluric study in southern Scotland – II. Monte-Carlo
inversion of the data and its geophysical and tectonic implications. Geophysical Journal
International 1979;56:351–68.

Jones AG, Olafsdottir B, Tiikkainen J. Geomagnetic induction studies in Scandinavia. III Magne-
totelluric observations. Journal of Geophysics Zeitschrift Geophysik 1983;54:35–50.

Jones E, Oliphant T, Peterson P. SciPy: Open Source Scientific Tools for Python. 2001.

Julian B, Gubbins D. Three-dimensional seismic ray tracing. Journal of Geophysics 1977;43:95–
114.

Kassahun Y, Sommer G. Efficient reinforcement learning through Evolutionary Acquisition of
Neural Topologies. In. ESANN. 2005, 259–66.

Keilis-Borok VI, Yanovskaya TB. Inverse seismic problems (structural review). Geophys J
1967;13:223–33.

Kennedy J, Eberhart R. Particle swarm optimization. In. Proceedings of Icnn’95 - International
Conference on Neural Networks. Vol 4. IEEE, 1995, 1942–8.

Kennedy J. Small worlds and mega-minds: effects of neighborhood topology on particle swarm
performance. In. Proceedings of the 1999 Congress on Evolutionary Computation-Cec99
(Cat. No. 99th8406). Vol 3. IEEE, 1999, 1931–8.

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science 1983;220:671–
80.

Koh B-I, George AD, Haftka RT et al. Parallel asynchronous particle swarm optimization.
International Journal for Numerical Methods in Engineering 2006;67:578–95.

Koren Z, Mosegaard K, Landa E et al. Monte Carlo estimation and resolution analysis of seismic
background velocities. Journal of Geophysical Research: Solid Earth 1991;96:20289–99.

Koza JR. Genetic Programming II, Automatic Discovery of Reusable Subprograms. MIT Press,
Cambridge, MA, 1992.

Koza JR. Genetic programming as a means for programming computers by natural selection.
Statistics and computing 1994;4:87–112.

Krishnanand KN, Ghose D. Glowworm swarm based optimization algorithm for multimodal
functions with collective robotics applications. Multiagent and Grid Systems 2006;2:209–22.

Küperkoch L, Meier T, Lee J et al. Automated determination of P -phase arrival times at regional
and local distances using higher order statistics. Geophysical Journal International 2010,

BIBLIOGRAPHY 131

DOI: 10.1111/j.1365-246X.2010.04570.x.

Lagos SR, Sabbione JI, Velis DR. Very fast simulated annealing and particle swarm optimization
for microseismic event location. In. SEG Technical Program Expanded Abstracts 2014.
Society of Exploration Geophysicists, 2014, 2188–92.

LeCun Y, Bottou L, Orr GB et al. Efficient BackProp. In. Vol 75. 1998, 9–50.

Lehman J, Chen J, Clune J et al. Safe Mutations for Deep and Recurrent Neural Networks
through Output Gradients. 2017, DOI: 10.1145/3205455.

Leonard M. Comparison of Manual and Automatic Onset Time Picking. Bulletin of the Seismo-
logical Society of America 2000;90:1384–90.

Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Mathe-
matical Programming 1989;45:503–28.

Lomax A, Michelini A, Curtis A. Earthquake location, direct, global-search methods. 2009:2–449.

Louie JN. Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor
arrays. Bulletin of the Seismological Society of America 2001;91:347–64.

Luo Y, Schuster GT. Wave-equation traveltime inversion. Geophysics 1991;56:645–53.

Luu K, Noble M, Gesret A et al. A parallel competitive Particle Swarm Optimization for non-linear
first arrival traveltime tomography and uncertainty quantification. Computers & Geosciences
2018;113:81–93.

Luu K, Noble M, Gesret A. A competitive particle swarm optimization for nonlinear first arrival
traveltime tomography. In. SEG Technical Program Expanded Abstracts 2016. Society of
Exploration Geophysicists, 2016, 2740–4.

Maeda N. A Method for Reading and Checking Phase Time in Auto-Processing System of Seis-
mic Wave Data. Zisin (Journal of the Seismological Society of Japan 2nd ser) 1985;38:365–
79.

Maity D, Aminzadeh F, Karrenbach M. Novel hybrid artificial neural network based autopicking
workflow for passive seismic data. Geophysical Prospecting 2014;62:834–47.

Malinverno A, Briggs VA. Expanded uncertainty quantification in inverse problems: Hierarchical
Bayes and empirical Bayes. Geophysics 2004;69:1005–10016.

Malinverno A, Leaney S. A Monte Carlo method to quantify uncertainty in the inversion of
zero-offset VSP data. In. SEG Technical Program Expanded Abstracts 2000. Society of
Exploration Geophysicists, 2000, 2393–6.

Malinverno A, Torres-Verdín C. Bayesian inversion of DC electrical measurements with uncer-
tainties for reservoir monitoring. Inverse Problems 2000;16:1343–56.

Maxwell S, Urbancic T, Steinsberger N et al. Microseismic Imaging of Hydraulic Fracture
Complexity in the Barnett Shale. In. SPE Annual Technical Conference and Exhibition.
Society of Petroleum Engineers, 2002.

Maxwell SC, Rutledge J, Jones R et al. Petroleum reservoir characterization using downhole
microseismic monitoring. Geophysics 2010;75:75A129–37.

Maxwell SC. Microseismic Location Uncertainty. CSEG Recorder 2009;34:41–6.

McCormack MD, Zaucha DE, Dushek DW. First-break refraction event picking and seismic data

https://doi.org/10.1111/j.1365-246X.2010.04570.x
https://doi.org/10.1145/3205455

132

trace editing using neural networks. Geophysics 1993;58:67–78.

McKinney W. Data Structures for Statistical Computing in Python. In. Proceedings of the 9th
Python in Science Conference. 2010, 51–6.

McKinnon KIM. Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point.
SIAM Journal on Optimization 1998;9:148–58.

Mendel G. Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in
Brunn 4: 3 1866;44.

Menke W. Geophysical data analysis: Discrete inverse theory. Elsevier/Academic Press,
2012:293.

Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf Optimizer. Advances in Engineering Software
2014;69:46–61.

Mohamed L, Calderhead B, Filippone M et al. Population MCMC methods for history matching
and uncertainty quantification. Computational Geosciences 2012;16:423–36.

Mohamed L, Christie M, Demyanov V. Comparison of Stochastic Sampling Algorithms for
Uncertainty Quantification. SPE Journal 2010;15:31–8.

Mohamed L, Christie MA, Demyanov V et al. Application of Particle Swarms for History Matching
in the Brugge Reservoir. In. SPE Annual Technical Conference and Exhibition. Society of
Petroleum Engineers, 2010.

Molyneux JB, Schmitt DR. First-break timing: Arrival onset times by direct correlation. Geo-
physics 1999;64:1492–501.

Mosegaard K, Tarantola A. Monte Carlo sampling of solutions to inverse problems. Journal of
Geophysical Research: Solid Earth 1995;100:12431–47.

Murat ME, Rudman AJ. Automated first arrival picking: a neural network approach. Geophysical
Prospecting 1992;40:587–604.

Mussi L, Nashed YS, Cagnoni S. GPU-based asynchronous particle swarm optimization. In.
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation -
Gecco ’11. New York, New York, USA: ACM Press, 2011, 1555.

Nash SG, Nocedal J. A Numerical Study of the Limited Memory BFGS Method and the Truncated-
Newton Method for Large Scale Optimization. SIAM Journal on Optimization 1991;1:358–72.

Nazarian S, Stokoe II, Kenneth H et al. Use of spectral analysis of surface waves method for
determination of moduli and thicknesses of pavement systems., 1983.

Neal RM. Bayesian training of backpropagation networks by the hybrid Monte Carlo method.
Dept of Computer Science, University of Toronto, Tech . . . 1992:1–21.

Neal RM. Bayesian Learning for Neural Networks. New York, NY: Springer New York, 1996:341.

Neal RM. Handbook of Markov Chain Monte Carlo. Brooks S, Gelman A, Jones G, et al. (eds.).
Chapman; Hall/CRC, 2011:113–62.

Neiswanger W, Wang C, Xing E. Asymptotically Exact, Embarrassingly Parallel MCMC. 2013:1–
16.

Nelder JA, Mead R. A Simplex Method for Function Minimization. The Computer Journal

BIBLIOGRAPHY 133

1965;7:308–13.

Nemeth T, Normark E, Qin F. Dynamic smoothing in crosswell traveltime tomography. Geophysics
1997;62:168–76.

Nicolas A, Fortin J, Regnet J-B et al. Brittle and semi-brittle behaviours of a carbonate rock:
Influence of water and temperature. Geophysical Journal International 2016;206:438–56.

Nielsen MA. Neural networks and deep learning. Determination press USA, 2015.

Noble M, Gesret A, Belayouni N. Accurate 3-D finite difference computation of traveltimes in
strongly heterogeneous media. Geophysical Journal International 2014;199:1572–85.

Noble M, Thierry P, Taillandier C et al. High-performance 3D first-arrival traveltime tomography.
The Leading Edge 2010;29:86–93.

Oliphant T. A guide to NumPy. USA: Trelgol Publishing, 2006.

Padhye N, Mittal P, Deb K. Feasibility Preserving Constraint-Handling Strategies for Real
Parameter Evolutionary Optimization. 2015.

Pallero J, Fernández-Martínez J, Bonvalot S et al. Gravity inversion and uncertainty assess-
ment of basement relief via Particle Swarm Optimization. Journal of Applied Geophysics
2015;116:180–91.

Park CB, Miller RD, Xia J. Multichannel analysis of surface waves. Geophysics 1999;64:800–8.

Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: Machine Learning in Python. Journal
of Machine Learning Research 2012;12:2825–30.

Pham DT, Ghanbarzadeh A, Koç E et al. -The Bees Algorithm—A Novel Tool for Complex
Optimisation Problems. In. Intelligent Production Machines and Systems. Elsevier, 2006,
454–9.

Piana Agostinetti N, Giacomuzzi G, Malinverno A. Local three-dimensional earthquake to-
mography by trans-dimensional Monte Carlo sampling. Geophysical Journal International
2015;201:1598–617.

Piccand S, O’Neill M, Walker J. On the scalability of particle swarm optimisation. In. 2008 Ieee
Congress on Evolutionary Computation (Ieee World Congress on Computational Intelligence).
IEEE, 2008, 2505–12.

Plessix R-E. A review of the adjoint-state method for computing the gradient of a functional with
geophysical applications. Geophysical Journal International 2006;167:495–503.

Podvin P, Lecomte I. Finite difference computation of traveltimes in very contrasted velocity mod-
els: a massively parallel approach and its associated tools. Geophysical Journal International
1991;105:271–84.

Poormirzaee R, Moghadam RH, Zarean A. Inversion seismic refraction data using particle swarm
optimization: a case study of Tabriz, Iran. Arabian Journal of Geosciences 2015;8:5981–9.

Poormirzaee R. S-wave velocity profiling from refraction microtremor Rayleigh wave dispersion
curves via PSO inversion algorithm. Arabian Journal of Geosciences 2016;9:673.

Powell MJD. An efficient method for finding the minimum of a function of several variables without
calculating derivatives. The Computer Journal 1964;7:155–62.

Press F. Earth models obtained by Monte Carlo Inversion. Journal of Geophysical Research

134

1968;73:5223–34.

Press F. Earth models consistent with geophysical data. Physics of the Earth and Planetary
Interiors 1970;3:3–22.

Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global optimiza-
tion. Springer Science & Business Media, 2006.

Price K. Differential evolution: a fast and simple numerical optimizer. In. Proceedings of North
American Fuzzy Information Processing. IEEE, 1996, 524–7.

Rabenseifner R, Hager G, Jost G. Hybrid MPI/OpenMP Parallel Programming on Clusters
of Multi-Core SMP Nodes. In. 2009 17th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing. IEEE, 2009, 427–36.

Ramirez AL, Nitao JJ, Hanley WG et al. Stochastic inversion of electrical resistivity changes
using a Markov Chain Monte Carlo approach. Journal of Geophysical Research: Solid Earth
2005;110:1–18.

Rawlinson N, Pozgay S, Fishwick S. Seismic tomography: A window into deep Earth. Physics of
the Earth and Planetary Interiors 2010;178:101–35.

Rechenberg I. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. 1973.

Romary T. Bayesian inversion by parallel interacting Markov chains. Inverse Problems in Science
and Engineering 2010;18:111–30.

Ronald E, Schoenauer M. Genetic Lander: An experiment in accurate neuro-genetic control. In.
International Conference on Parallel Problem Solving from Nature. Springer, 1994, 452–61.

Rostami S, Neri F. A fast hypervolume driven selection mechanism for many-objective optimisa-
tion problems. Swarm and Evolutionary Computation 2017;34:50–67.

Rothert E, Shapiro SA. Microseismic monitoring of borehole fluid injections: Data modeling and
inversion for hydraulic properties of rocks. Geophysics 2003;68:685–9.

Rumpf M, Tronicke J. Assessing uncertainty in refraction seismic traveltime inversion using a
global inversion strategy. Geophysical Prospecting 2015;63:1188–97.

Růžek B, Kvasnička M. Differential Evolution Algorithm in the Earthquake Hypocenter Location.
Pure and Applied Geophysics 2001;158:667–93.

Ryberg T, Haberland C. Bayesian inversion of refraction seismic traveltime data. Geophysical
Journal International 2018;212:1645–56.

Sabbione JI, Velis D. Automatic first-breaks picking: New strategies and algorithms. Geophysics
2010;75:V67–76.

Saka M, Hasançebi O, Geem Z. Metaheuristics in structural optimization and discussions on
harmony search algorithm. Swarm and Evolutionary Computation 2016;28:88–97.

Sambridge M, Drijkoningen G. Genetic algorithms in seismic waveform inversion. Geophysical
Journal International 1992;109:323–42.

Sambridge M, Gallagher K. Earthquake hypocenter location using genetic algorithms. Bulletin of
the Seismological Society of America 1993;83:1467–91.

Sambridge M, Mosegaard K. Monte Carlo Methods in Geophysical Inverse Problems. Reviews

BIBLIOGRAPHY 135

of Geophysics 2002;40:1009.

Sambridge M. Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter
space. Geophysical Journal International 1999;138:479–94.

Sambridge M. A Parallel Tempering algorithm for probabilistic sampling and multimodal opti-
mization. Geophysical Journal International 2014;196:357–74.

Saragiotis CD, Hadjileontiadis LJ, Panas SM. PAI-S/K: A robust automatic seismic P phase arrival
identification scheme. IEEE Transactions on Geoscience and Remote Sensing 2002;40:1395–
404.

Sasaki S. Characteristics of microseismic events induced during hydraulic fracturing experi-
ments at the Hijiori hot dry rock geothermal energy site, Yamagata, Japan. Tectonophysics
1998;289:171–88.

Scales JA, Snieder R. To Bayes or not to Bayes? Geophysics 1997;62:1045–6.

Scales JA, Tenorio L. Prior information and uncertainty in inverse problems. Geophysics
2001;66:389–97.

Schmidt R. Multiple emitter location and signal parameter estimation. IEEE transactions on
antennas and propagation 1986;34:276–80.

Schott J-J, Roussignol M, Menvielle M et al. Bayesian inversion with Markov chains-II. The
one-dimensional DC multilayer case. Geophysical Journal International 1999;138:769–83.

Schulze-Riegert R, Axmann J, Haase O et al. Optimization Methods for History Matching of
Complex Reservoirs. In. SPE Reservoir Simulation Symposium. Society of Petroleum
Engineers, 2001.

Schutte JF, Reinbolt JA, Fregly BJ et al. Parallel global optimization with the particle swarm
algorithm. International Journal for Numerical Methods in Engineering 2004;61:2296–315.

Schwefel H-P. Evolution strategies: A family of non-linear optimization techniques based on
imitating some principles of organic evolution. Annals of Operations Research 1984;1:165–7.

Sculley D. Web-scale k-means clustering. Proceedings of the 19th international conference on
World wide web WWW 10 2010:1177.

Sedlak P, Hirose Y, Enoki M et al. Arrival Time Detection in Thin Multilayer Plates on the Basis
of Akaike Information Criterion. Journal of Acoustic Emission 2008;26:182–8.

Sen MK, Stoffa PL. Bayesian inference, Gibbs’ sampler and uncertainty estimation in geophysical
inversion. Geophysical Prospecting 1996;44:313–50.

Shapiro NM, Campillo M. Emergence of broadband Rayleigh waves from correlations of the
ambient seismic noise. Geophysical Research Letters 2004;31.

Shaw R, Srivastava S. Particle swarm optimization: A new tool to invert geophysical data.
Geophysics 2007;72:F75–83.

Shenfield A, Rostami S. Multi-objective evolution of artificial neural networks in multi-class medi-
cal diagnosis problems with class imbalance. In. 2017 Ieee Conference on Computational
Intelligence in Bioinformatics and Computational Biology (Cibcb). IEEE, 2017, 1–8.

Sheriff RE, Geldart LP. Exploration Seismology. Cambridge University Press (ed.). Cambridge:

136

Cambridge University Press, 1995.

Shi Y, Eberhart RC. A modified particle swarm optimizer. In. 1998 Ieee International Confer-
ence on Evolutionary Computation Proceedings. Ieee World Congress on Computational
Intelligence (Cat. No.98TH8360). IEEE, 1998, 69–73.

Siebel NT, Sommer G. Evolutionary reinforcement learning of artificial neural networks. Interna-
tional Journal of Hybrid Intelligent Systems 2007;4:171–83.

Sleeman R, Eck T van. Robust automatic P-phase picking: an on-line implementation in the
analysis of broadband seismogram recordings. Physics of the Earth and Planetary Interiors
1999;113:265–75.

Socco L, Strobbia C. Surface-wave method for near-surface characterization: a tutorial. Near
Surface Geophysics 2004;2:165–85.

Socco LV, Boiero D. Improved Monte Carlo inversion of surface wave data. Geophysical
Prospecting 2008;56:357–71.

Song X, Tang L, Lv X et al. Application of particle swarm optimization to interpret Rayleigh wave
dispersion curves. Journal of Applied Geophysics 2012;84:1–13.

Sörensen K. Metaheuristics-the metaphor exposed. International Transactions in Operational
Research 2015;22:3–18.

Stanley KO, Miikkulainen R. Evolving neural networks through augmenting topologies. Evolu-
tionary computation 2002;10:99–127.

Storn R, Price K. Differential Evolution – A Simple and Efficient Heuristic for global Optimization
over Continuous Spaces. Journal of Global Optimization 1997;11:341–59.

Storn R. Real-world applications in the communications industry - when do we resort to Differ-
ential Evolution? In. 2017 Ieee Congress on Evolutionary Computation (Cec). IEEE, 2017,
765–72.

Such FP, Madhavan V, Conti E et al. Deep Neuroevolution: Genetic Algorithms Are a Competitive
Alternative for Training Deep Neural Networks for Reinforcement Learning. 2017.

Taillandier C, Noble M, Chauris H et al. First-arrival traveltime tomography based on the
adjoint-state method. Geophysics 2009, DOI: 10.1190/1.3250266.

Tarantola A, Valette B. Inverse Problems = Quest for Information. Journal of Geophysics
1982;50:159–70.

Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for
Industrial; Applied Mathematics, 2005:1816–24.

Thomson WT. Transmission of elastic waves through a stratified solid medium. Journal of applied
Physics 1950;21:89–93.

Tikhonov AN, Goncharsky AV, Stepanov VV et al. Numerical methods for the solution of ill-posed
problems. Springer Science & Business Media, 2013.

Torczon V. On the Convergence of Pattern Search Algorithms. SIAM Journal on Optimization
1997;7:1–25.

Toushmalani R. Gravity inversion of a fault by Particle swarm optimization (PSO). SpringerPlus

https://doi.org/10.1190/1.3250266

BIBLIOGRAPHY 137

2013;2:315.

Trelea IC. The particle swarm optimization algorithm: Convergence analysis and parameter
selection. Information Processing Letters 2003;85:317–25.

Trier J van, Symes WW. Upwind finite-difference calculation of traveltimes. Geophysics 1991;56:812–
21.

Tronicke J, Paasche H, Böniger U. Crosshole traveltime tomography using particle swarm
optimization: A near-surface field example. Geophysics 2012;77:R19–32.

Ulrych TJ, Sacchi MD, Woodbury A. A Bayes tour of inversion: A tutorial. Geophysics
2001;66:55–69.

Um J, Thurber C. A fast algorithm for two-point seismic ray tracing. Bulletin of the Seismological
Society of America 1987;77:972–86.

Van Den Bergh F, Engelbrecht AP. A study of particle swarm optimization particle trajectories.
Information Sciences 2006;176:937–71.

Van Den Bergh F. An analysis of particle swarm optimizers. 2001.

Veezhinathan J, Wagner D. A neural network approach to first break picking. In. 1990 Ijcnn
International Joint Conference on Neural Networks. IEEE, 1990, 235–40 vol.1.

Venter G, Sobieszczanski-Sobieski J. Parallel Particle Swarm Optimization Algorithm Accel-
erated by Asynchronous Evaluations. Journal of Aerospace Computing, Information, and
Communication 2006;3:123–37.

Versteeg R. The Marmousi experience: Velocity model determination on a synthetic complex
data set. The Leading Edge 1994;13:927–36.

Vidale J. Finite-difference calculation of travel times. Bulletin of the Seismological Society of
America 1988;78:2062–76.

Vidale J. Finite-difference calculation of traveltimes in three dimensions. Geophysics 1990;55:521–
6.

Warpinski N, Wolhart S, Wright C. Analysis and Prediction of Microseismicity Induced by
Hydraulic Fracturing. SPE Journal 2004;9:24–33.

Warpinski N. Microseismic Monitoring: Inside and Out. Journal of Petroleum Technology
2009;61:80–5.

Weyland D. A Rigorous Analysis of the Harmony Search Algorithm. International Journal of
Applied Metaheuristic Computing 2010;1:50–60.

White DJ. Two-Dimensional Seismic Refraction Tomography. Geophysical Journal International
1989;97:223–45.

Whitley D, Rana S, Heckendorn RB. The island model genetic algorithm: On separability, popula-
tion size and convergence. Journal of Computing and Information Technology 1999;7:33–47.

Whitley D. A genetic algorithm tutorial. Statistics and Computing 1994;4:65–85.

Wiggins RA. Monte Carlo inversion of body-wave observations. Journal of Geophysical Research
1969;74:3171–81.

Wilken D, Rabbel W. On the application of Particle Swarm Optimization strategies on Scholte-

138

wave inversion. Geophysical Journal International 2012;190:580–94.

Xiong J, Liu C, Chen Y et al. A Non-linear Geophysical Inversion Algorithm for the MT Data
Based on Improved Differential Evolution. Engineering Letters 2018;26.

Yang X-S, Deb S. Cuckoo search via Lévy flights. In. Nature & Biologically Inspired Computing,
2009. Nabic 2009. World Congress on. IEEE, 2009, 210–4.

Yang X-S. A new metaheuristic bat-inspired algorithm. In. Nature Inspired Cooperative Strategies
for Optimization (Nicso 2010). Springer, 2010, 65–74.

Yang X-S. Flower pollination algorithm for global optimization. In. International Conference on
Unconventional Computing and Natural Computation. Springer, 2012, 240–9.

Zelt CA, Barton PJ. Three-dimensional seismic refraction tomography: A comparison of two
methods applied to data from the Faeroe Basin. Journal of Geophysical Research: Solid
Earth 1998;103:7187–210.

Zhang H, Thurber C, Rowe C. Automatic P-wave arrival detection and picking with multiscale
wavelet analysis for single-component recordings. Bulletin of the Seismological Society of
America 2003;93:1904–12.

Zhang J, Toksöz MN. Nonlinear refraction traveltime tomography. Geophysics 1998;63:1726–37.

Zhang J, Wang C, Shi Y et al. Three-dimensional crustal structure in central Taiwan from gravity
inversion with a parallel genetic algorithm. Geophysics 2004;69:917–24.

Zhou C, Cai W, Luo Y et al. Acoustic wave-equation traveltime and waveform inversion of
crosshole seismic data. Geophysics 1995;60:765–73.

Zitzler E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
TIK-Schriftenreihe 1999;30:1–122.

Zong Woo Geem, Joong Hoon Kim, Loganathan G. A New Heuristic Optimization Algorithm:
Harmony Search. SIMULATION 2001;76:60–8.

LIST OF FIGURES 139

List of Figures

2.1 (Left) Synthetic earth model. The source and the receiver are respectively rep-
resented by the white disk and white triangle. (Right) Misfit function for different
values of velocity (V ∈ [1000; 3000] m/s). The global minimum of the misfit function
(at 2000 m/s) indicates the true velocity of the earth model. 13

2.2 (Left) Multi-modal function with four local minima. (Middle) Non-separable func-
tion represented by a rotated ellipsoid. (Right) Ill-conditioned function with one
undetermined parameter. 14

2.3 Black-box optimization. The optimization algorithm has only access to zero order
information. 14

2.4 Mutation in DE on a 2D misfit function represented by the contour lines. vki is
generated by adding the weighted differential variation

“
mk−1
r2 −mk−1

r3

”
to the

individual mk−1
r1 , with mk−1

r1 , mk−1
r2 and mk−1

r3 three random individuals chosen in
the population. 18

2.5 Crossover in DE for d = 8 parameters. For each parameter, the trial vector uki
receives a parameter from either the current or mutant vectors accordingly to a
binomial distribution with probability defined by CR. 18

2.6 Principle of PSO on a 2D misfit function represented by the contour lines. Particle
velocity vki is constructed by adding three weighted terms: the previous velocity
vk−1
i that acts as an inertial term, the cognition term

“
mp;i −mk−1

i

”
that accounts

for the particle’s personal knowledge, and the sociability term
“

mg −mk−1
i

”
that

involves the knowledge of the entire swarm. 20

2.7 Constraints handling approaches: Random, SetOnBoundary and Shrinking. . . . 22

2.8 Topologies of PSO: Star, Ring, Wheels and Random. 23

2.9 Principle of CMA-ES on a 2D misfit function represented by the contour lines.
The population should move toward the upper right corner. (Left) Sample of
– = 20 offspring distributed accordingly to N

“
m̄k−1;Ck−1

”
. (Middle) — = 10 best

individuals selected to update the mean and covariance matrix. (Right) Mutation
distribution for the next generation. Adapted from Hansen (2011). 25

140 LIST OF FIGURES

2.10 Step size adaptation in CMA-ES. The lengths of each single step size are com-
parable. (Left) Anti-parallel correlation: the consecutive steps cancel each other
out resulting in a short cumulation path. (Middle) No correlation: the consecutive
steps are perpendicular and the length of the cumulation path is ideal. (Right)
Parallel correlation: the consecutive steps are pointing to the same direction
resulting in a long cumulation path. Adapted from Hansen (2011). 25

2.11 Diagram of a SMP machine made of 2 multi-core CPUs. A supercomputer is
composed of several interconnected SMP machines. 31

2.12 Parallel computation of the misfit function values using MPI. A population of
models is generated by a master process that evenly scatters the models over
the slave processes for concurrent misfit function evaluations. The misfit function
values are finally sent back to the master process to assess convergence or to
update the model population otherwise. 33

2.13 Parallel computation of the traveltime grids using OpenMP. A model vector m
defined by d parameters is transformed into a physical velocity model that can
be used by an Eikonal solver. The computation of the traveltime grids for each
source is scattered over the threads with OpenMP. 33

3.1 Illustration of the premature convergence of PSO on the 2D Rastrigin function with
n = 5 particles. The 5 particles are uniformly distributed in the model parameter
space. Then, the particles converge toward the local minimum (2; 0). From
iteration 73, the swarm is trapped in the local minimum. 41

3.2 Logistic function with different values of competitivity parameter ‚. Increasing
‚ improves the exploration ability (i.e. diversity) of the swarm as more particles
are reset. Decreasing ‚ results in faster convergence with higher chance of
entrapment in a local minimum. 42

3.3 Example of competition triggering. Three particles are redistributed uniformly in
the model parameter space. At iteration 81, one particle has found the central
mode which allows the swarm to escape from the previous local minimum. Finally,
the swarm has found the global minimum. 43

3.4 Global best misfit as a function of iteration number. Competition triggering is
marked by the black cross (iteration 74). Only one reset has been required for the
swarm to escape from a local minimum and eventually find the global minimum. . 44

3.5 Results of the sensitivity analysis to parameters ! and ffi for PSO (top) and CPSO
(bottom) on the Rastrigin function in 5, 10 and 20 dimensions. The swarm size is
set to 5 times the dimension and the goal to achieve is indicated by fmin. CPSO
is more flexible in the choice of these parameters as the high SR region is wider
than for PSO. 45

3.6 (Top) 100000 models sampled after 50 runs of PSO and CPSO on the 2D Rastrigin
function with 5 particles and 200 iterations. The low misfit part of the function
is correctly explored by the particles. Similar results can be obtained with more
particles. (Bottom) Frequency distributions of 100000 models sampled by multiple
runs of PSO and CPSO on the 2D Rastrigin function. PSO fails at identifying the
central mode as the principal one while CPSO correctly identified the 9 central
modes. 48

LIST OF FIGURES 141

3.7 (Left) 3D acquisition geometry with perforation shot locations (green circles) and
receiver locations (white triangles). (Right) Acoustic logs and 1-D reference
calibrated velocity models for P-wave (blue) and S-wave (green). 49

3.8 (Left) Energy (or misfit) of the Markov Chain as a function of the iteration number.
The algorithm required more than 10000 iterations to reach equilibrium. (Right)
Global best misfits for the best models with respect to the iteration number for
different swarm sizes. In the four cases, the misfit function values are equivalent
at the last iteration. 50

3.9 P- and S- wave velocity models obtained with 16 particles, 32 particles, 64
particles and 128 particles. The acoustic logs are represented in black, the best
velocity models in green, the mean velocity models in blue, and the density plots
in gray scale, darker colors indicating higher probabilities. Results are remarkably
similar in the four cases. 51

3.10 Marginal probabilities at 300, 600, and 900 meters depth obtained with different
swarm sizes (16, 32, 64, 128 particles) and MCMC. Probabilities are narrow at
300 and 600 meters depth where the receivers are deployed, and wide at 900
meters below the receivers. Marginal probabilities obtained with CPSO are in
agreement with the ones obtained with MCMC. 52

3.11 Location errors in X, Y and Z directions for the four best velocity models obtained
with different swarm sizes (16, 32, 64, 128 particles). The black crosses represent
the location errors in the reference model. The shots are accurately relocated in
the Y and Z directions but the mean absolute location error in the X direction is
about 10 meters. 53

3.12 Parallel performance of CPSO on a real tomography problem. (Left) Speed up.
(Right) Parallel efficiency. 54

3.13 Results of the sensitivity analysis to parameters ! and ffi for PSO (top) and CPSO
(bottom) on the Rosenbrock function in 5, 10 and 20 dimensions. The swarm size
is set to 5 times the dimension and the goal to achieve is indicated by fmin. . . . 58

4.1 (Left) Mutation in DE on a 2D misfit function represented by the contour lines. vki
is generated by adding the weighted differential variation

“
mk−1
r2 −mk−1

r3

”
to the

individual mk−1
r1 , with mk−1

r1 , mk−1
r2 and mk−1

r3 three random individuals chosen in
the population. (Right) Crossover in DE for d = 8 parameters. For each parameter,
the trial vector uki receives a parameter from either the current or mutant vectors
accordingly to a binomial distribution with probability defined by CR. 64

4.2 Principle of PSO on a 2D misfit function represented by the contour lines. Particle
velocity vki is constructed by adding three weighted terms: the previous velocity
vk−1
i that acts as an inertial term, the cognition term

“
mp;i −mk−1

i

”
that accounts

for the particle’s personal knowledge, and the sociability term
“

mg −mk−1
i

”
that

involves the knowledge of the entire swarm. 65

4.3 Principle of CMA-ES on a 2D misfit function represented by the contour lines.
The population should move toward the upper right corner. (Left) Sample of
– = 20 offspring distributed accordingly to N

“
m̄k−1;Ck−1

”
. (Middle) — = 10 best

individuals selected to update the mean and covariance matrix. (Right) Mutation
distribution for the next generation. Adapted from Hansen (2011). 66

142 LIST OF FIGURES

4.4 Marmousi velocity model. (Top) Velocity model used to generate the traveltime
data. (Middle) Low-frequency target velocity model. (Bottom) Ray density map. . 69

4.5 (Left) Average RMS over 20 runs as a function of iteration number. When using
random vertically increasing gradient initialization, the optimizers converge faster
toward low RMS velocity models. (Right) Example of 100 random vertically
increasing gradient velocity models, the color scale indicating their RMS values.
For CMA-ES, the model that yields the lowest RMS is chosen as the initial mean
vector (red). 71

4.6 1D profiles (top) and 2D models (bottom) for different initializations. (Left) Fully
random. (Middle) Homogeneous. (Right) Vertically increasing gradient. The mean
velocity model (blue) fits the long wavelengths of the target velocity model (black)
at all depths for gradient initialization. The results have been obtained using CPSO. 71

4.7 Evolution of average RMS (left) and RMS deviation (right) with respect to iteration
number for the 3 experiments with the 3 EA. 73

4.8 Comparison of vertical profiles between the target (black), the mean (blue) and
the best (green) velocity models at different locations for the 3 EA. The errors are
indicated in gray shade. 74

4.9 Comparison of horizontal profiles between the target (black), the mean (blue) and
the best (green) velocity models at different depths for the 3 EA. The errors are
indicated in gray shade. 75

4.10 Vertical cross-sections of the difference between the target and mean velocity
models. 76

4.11 Horizontal cross-sections of the difference between the target and mean velocity
models. 76

4.12 Inversion results for experiment 3. Weighted mean velocity models and associated
uncertainties for (top) DE, (middle) CPSO and (bottom) CMA-ES. The main
structure and the ray coverage of the target velocity model are superimposed over
the results. 77

4.13 Maximum parallel performances of DE, CPSO and CMA-ES on a refraction
tomography problem with a population size of 104. (Left) Speed up. (Right)
Parallel efficiency. 78

5.1 (Left) Attribute based automated picker seen as a neural network. (Right) Example
of multi-attributes onset picker based on a neural network with four input features,
one hidden layer and one output. 85

5.2 SNR attribute. (Top) Example trace. (Bottom) SNR attribute with ∆t = 50 samples.
The vertical line corresponds to the phase onset given by the global maximum of
the SNR attribute. Attribute values are normalized. 86

5.3 AIC attribute function. (Top) Example trace. The shaded area indicates the time
window with ∆t = 200 samples. (Middle) AIC function. (Bottom) Windowed AIC
function with ∆t = 200 samples. The vertical line corresponds to the phase onset
given by the global minimum of the AIC-W function. Attribute values are normalized. 87

LIST OF FIGURES 143

5.4 Kurtosis attribute function. (Top) Example trace. (Middle) Kurtosis statistics F1

and removal of negative slopes F2. (Bottom) Kurtosis attribute with ∆t = 40
samples. The vertical line corresponds to the phase onset given by the global
maximum of the Kurtosis attribute. Attribute values are normalized. 89

5.5 Neural network automated phase onset picking workflow. 89

5.6 The acquisition geometry consists of sixteen piezoelectric transducers. 90

5.7 Sample data for one event. Receivers 2, 4, 9, 10 and 11 were not working properly.
The vertical lines indicate the manual picks. 91

5.8 Scatter-plot matrix for AIC-W, Kurtosis and SNR. The diagonal shows the KDE
plots for each individual attribute, the lower and upper off-diagonals respectively
display the pairwise hexagonal binning plots and scatter plots of the attributes. . 92

5.9 (Top) Example trace. (Bottom) Predicted probability map. The manually picked
and predicted phase onsets are indicated by the green and blue vertical lines,
respectively. The prediction error is shown in blue shade. 93

5.10 Influence of the number of noise samples on the decision boundary (black). The
standard deviations are represented in gray shade. 95

5.11 Prediction of phase onsets for one event. The vertical lines indicate the predicted
picks along with the picking errors in green shade. The seismic traces recorded
by receivers 2, 4, 9, 10 and 11 have been rejected by the trained neural network. 95

5.12 (Left) Evolution of the acoustic wave velocity during the experiment. (Right)
Acoustic event locations. The color scale indicates the relative origin time. 96

A.1 Displacements for P- and S- waves (adapted from levee.wustl.edu/seismology/book/).106

B.1 (Left) Modal dispersion curves for a three-layer model (500 m at 500 m/s, 300 m
at 1000 m/s, half-space at 500 m/s). The vertical line (green) indicates a slice at
5 Hz. (Right) Dispersion function at 5 Hz. The positions of the roots (i.e. zeros)
correspond to the phase velocities for the different modes. The dispersion function
is clipped between -1 and 1. 115

B.2 (Left) Picked (red) and inverted dispersion curves. (Right) Inverted mean velocity
profile (red) along with the acoustic log provided by Storengy (black). The velocity
models sampled by the different runs of CPSO are represented in the background
with the color scale indicating their RMS values. The dashed lines (red) delimit
the 68% confidence interval. 116

C.1 (Left) 2D Rastrigin PDF sampled by MCMC. Comparison of the sampling capability
of (middle) PSO and (right) CPSO on the 2D Rastrigin function. 119

C.2 (Left) 3D acquisition geometry. (Right) P-wave velocity model obtained from
CPSO tomography. The 95 percent confidence intervals are represented by the
grey lines. 120

C.3 (Left) “Elbow” method to determine the optimal number of clusters K. (Right)
P-wave centroid models of the two most populated clusters. 122

http://levee.wustl.edu/seismology/book/

144 LIST OF FIGURES

C.4 68 percent confidence intervals built from the new PDF for the perforation shot 6.
The true locations are marked by the black crosses. 122

LIST OF TABLES 145

List of Tables

3.1 Results of the benchmark of PSO and CPSO with n = 30 particles in d = 30
dimensions on six benchmark test functions. The global minimum misfit is 0 for
all the functions. 46

3.2 Lower and upper boundaries of each layer parameter. Particles are uniformly
initialized in the search space. 50

3.3 PSO algorithm. 56

3.4 CPSO competition triggering algorithm. 56

3.5 Benchmark test functions. 57

4.1 Default control parameter values. 67

4.2 Initialization of the velocities of the B-spline nodes for each type of model initial-
ization. The initialization procedures are independently applied to every model in
the population. 70

4.3 Parameters and computation times per run (in hours). MPI and OMP respectively
indicate the number of processes and threads used for each experiment. 72

4.4 Symbol definitions. 80

B.1 Lower and upper boundaries of each layer parameter. The last layer corresponds
to the half-space with infinite thickness. 115

RÉSUMÉ

La tomographie sismique des temps de trajet est un problème d’optimisation mal-posé du fait de la non-linéarité entre
les temps et le modèle de vitesse. Par ailleurs, l’unicité de la solution n’est pas garantie car les données peuvent être
expliquées par de nombreux modèles. Les méthodes de Monte-Carlo par Chaînes de Markov qui échantillonnent l’espace
des paramètres sont généralement appréciées pour répondre à cette problématique. Cependant, ces approches ne
peuvent pleinement tirer parti des ressources computationnelles fournies par les super-calculateurs modernes. Dans cette
thèse, je me propose de résoudre le problème de tomographie sismique à l’aide d’algorithmes évolutionnistes. Ce sont des
méthodes d’optimisation stochastiques inspirées de l’évolution naturelle des espèces. Elles opèrent sur une population de
modèles représentés par un ensemble d’individus qui évoluent suivant des processus stochastiques caractéristiques de
l’évolution naturelle. Dès lors, la population de modèles peut être intrinsèquement évaluée en parallèle ce qui rend ces
algorithmes particulièrement adaptés aux architectures des super-calculateurs. Je m’intéresse plus précisément aux trois
algorithmes évolutionnistes les plus populaires, à savoir l’évolution différentielle, l’optimisation par essaim particulaire, et la
stratégie d’évolution par adaptation de la matrice de covariance. Leur faisabilité est étudiée sur deux jeux de données
différents: un jeu réel acquis dans le contexte de la fracturation hydraulique et un jeu synthétique de réfraction généré à
partir du modèle de vitesse Marmousi réputé pour sa géologie structurale complexe.

MOTS CLÉS

algorithme évolutionniste, tomographie sismique, problème inverse, calcul haute performance, intelligence
artificielle

ABSTRACT

Seismic traveltime tomography is an ill-posed optimization problem due to the non-linear relationship between traveltime
and velocity model. Besides, the solution is not unique as many models are able to explain the observed data. The
non-linearity and non-uniqueness issues are typically addressed by using methods relying on Monte Carlo Markov Chain
that thoroughly sample the model parameter space. However, these approaches cannot fully handle the computer
resources provided by modern supercomputers. In this thesis, I propose to solve seismic traveltime tomography problems
using evolutionary algorithms which are population-based stochastic optimization methods inspired by the natural evolution
of species. They operate on concurrent individuals within a population that represent independent models, and evolve
through stochastic processes characterizing the different mechanisms involved in natural evolution. Therefore, the models
within a population can be intrinsically evaluated in parallel which makes evolutionary algorithms particularly adapted to
the parallel architecture of supercomputers. More specifically, the works presented in this manuscript emphasize on the
three most popular evolutionary algorithms, namely Differential Evolution, Particle Swarm Optimization and Covariance
Matrix Adaptation - Evolution Strategy. The feasibility of evolutionary algorithms to solve seismic tomography problems
is assessed using two different data sets: a real data set acquired in the context of hydraulic fracturing and a synthetic
refraction data set generated using the Marmousi velocity model that presents a complex geology structure.

KEYWORDS

evolutionary algorithm, seismic tomography, inverse problem, high performance computing, artificial intelligence

	Introduction
	General context
	Inverse problems in geophysics
	Overview
	Contributions

	Introduction to evolutionary algorithms
	Black-box optimization
	Misfit function
	Derivative-free algorithms

	Evolutionary algorithms
	Differential Evolution
	Particle Swarm Optimization
	Covariance Matrix Adaptation - Evolution-Strategy

	Sample codes
	Differential Evolution
	Particle Swarm Optimization
	Covariance Matrix Adaptation - Evolution Strategy

	Parallel implementation
	About supercomputers
	Hybrid parallel programming

	Conclusion

	1D traveltime tomography
	Abstract
	Introduction
	Theory and method
	Particle Swarm Optimization
	Premature convergence
	Competitive Particle Swarm Optimization

	Robustness testing
	Sensitivity analysis
	Benchmark
	Importance sampling

	Numerical example
	Acquisition
	Inversion results

	Hybrid parallel implementation
	Discussion and conclusion
	Appendice
	PSO algorithm
	CPSO algorithm
	Benchmark test functions
	Sensitivity analysis

	Refraction traveltime tomography
	Abstract
	Introduction
	Theory and method
	Evolutionary algorithms
	Control parameter values

	Numerical example
	Synthetic data and parametrization
	Weighted mean model and standard deviation
	Initial models
	Results
	Scalability

	Discussion and conclusion
	List of symbols

	Neural network automated phase onset picking
	Abstract
	Introduction
	Description
	Artificial neural network
	Attributes

	Methodology
	Real data set
	Attributes selection
	Training
	Skewing the training set
	Prediction

	Conclusion

	Conclusions and perspectives
	Conclusions
	1D traveltime tomography
	Refraction traveltime tomography
	Neural network automated phase onset picking

	Perspectives
	Improving parallelism and convergence: Island models
	Improving phase onset picking: Bayesian neural network and neuroevolution
	Use of velocity model uncertainties

	Eikonal equation
	Surface wave tomography
	Introduction
	Forward problem: Thomson-Haskell propagator
	Rayleigh wave in a layered medium
	Roots search

	Inversion
	Conclusion

	Propagation of velocity uncertainties to locations
	Abstract
	Introduction
	From optimization to uncertainty quantification
	Propagation of velocity uncertainties to locations
	Inversion
	Acceptable models
	Velocity models clustering

	Conclusion

	Bibliography

