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Chapter 1

Drug-target interaction prediction as a guide
for therapeutic research

Abstract: The overall process of drug development is currently estimated to require on average about 1.8
billion US dollars over nearly 13 years. With the technological breakthrough of high-throughput screening
technologies in past decades, increased availability of substantial amounts of bio-activity data enable the use
of statistical approaches, especially machine learning. This chapter provides an overview of the rational
drug discovery process, put in its historical context. Moreover, this chapter motivates the development of
bio-activity prediction approaches, and reviews the prospects and challenges in bio-activity data analysis.
Finally, it overviews the contributions of the thesis work in this research area.

Résumé: On estime actuellement que le processus de développement de médicaments nécessite environ 1,8
milliard de dollars américains sur environ 13 ans. Avec la percée des technologies de criblage à haut débit
au cours des dernières décennies, la disponibilité d’une quantité substantielle de données de bioactivité pour
la recherche thérapeutique a motivé la tendance actuelle à utiliser des outils informatiques, en particulier
l’apprentissage statistique à l’ère de la science des données. Ce chapitre fournit une vue d’ensemble du
processus de découverte de médicaments replacé dans son contexte historique, passe en revue les perspectives
et les défis de l’analyse des données de bioactivité chimique et résume les contributions du travail de cette
thèse dans ce domaine de recherche.

7



CHAPTER 1. INTRODUCTION 8

1.1 Introduction to therapeutic research

1.1.1 Historical perspectives on drug discovery

A drug is, in essence, any substance with curative or preventive properties with regards to human and animal
diseases.

For centuries, drugs were natural products, discovered by chance with no known mechanism of action,
and not always industrially synthesizable. Drug discovery was essentially driven by serendipity. In other
words, the discovery of drugs was a "happy accident".

Historically, the observation of micro-organisms by van Leeuwenhoek with the first microscope in 1670
and their connection with diseases allowed Pasteur to raise the idea of a drug as a molecule with a biological
mechanism of action. Indeed, at the beginning of the twentieth century, Ehrlich stated in "Principle of
Chemotherapy" that a convenient dose of a chemical can interfere with the growth of the microorganisms
causing a disease.

This "principle" became a reality in the 1930s when Fleming discovered penicillin. Following this discovery,
significant efforts in synthesising or isolating compounds similar to penicillin lead to the development of
antibiotic families. Starting from the 1950s, the understanding of the expressed human genome, aided with
seminal progress in cell and molecular biology, enabled rational drug design. In this new paradigm, biologists
formulate rational assumptions about an appropriate mechanism explaining diseases. Thus, drug discovery
became less serendipitous and more systematic since we now focus on associating diseases with specific
proteins of biological pathways in order to target them with organic compounds. Finding diseases-associated
targets and their ligands is the goal of rational drug discovery.

Finally, following the AIDS epidemic in the 1980s, a considerable research effort resulted in the devel-
opment of combinatorial chemistry, enabling the synthesis of large and relatively diverse sets of organic
compounds to be assayed for activity against specific diseases.

Nowadays, even if chance still plays a significant role in drug development, recent technologies and
discovery breakthroughs enable to rationalise the drug discovery process. The work presented in this thesis
is essentially intended to improve the rational drug discovery process.

We introduce rationalised drug design in the next section.

1.1.2 The modern drug discovery process

The current paradigm in rationalised drug design is to associate a disease to one or several molecular targets,
usually proteins called target proteins, or therapeutic targets, involved in biological pathways necessary to
the disease development. Therefore, targets are identified by a fundamental understanding of the disease
after long-term study and are usually validated by in-vitro/in-vivo experiments such as gene-knocking.

The goal of the drug discovery process is then to identify a small molecular compound that binds the
target protein in such a way that it alters the disease development. This small molecule must also be able
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to reach the protein target through the organism without triggering undesired deleterious side-effects.
A sketch of the drug discovery process is displayed in Fig. 1.1. Once a protein responsible for the disease

and a ligand molecule have been identified (the hit), usually thanks to in vitro assays, the process is still
complex. Indeed, long and costly pre-clinical and clinical assays are performed at the final stage of the
development, in order to prove the effect of the drug and satisfy the regulatory agencies requirements. The
overall process of drug development was estimated in 2003 to require between 4 to 7 years and a billion US
dollars on average [1]. Single-drug development is now estimated to require about 1.8 billion US dollars over
about 13 years on average [2].

Figure 1.1. Scheme of the rational drug discovery and development process (picture from [3])

The five main steps of the drug discovery process are listed below.

• Identification of the protein target: In the cell, a large number of biological pathways made of
cascades of reactions involving proteins such as transcription factors, receptors, or enzymes lead to the
observed phenotype.

Once a protein target has been identified, its inhibition or activation by interaction with a small organic
compound is expected to disturb one of several pathways and reverse the disease phenotype. For
instance, aspirin is known to inhibit the activity of the cyclo-oxygenases COX-1 and COX-2 involved
in the inflammatory response pathway.

According to the above definition, any protein could in principle be targeted. Based on drugs currently
available, the druggable genome is restricted mainly to a few families of proteins. Indeed, half of the
known human’ targets are G protein-coupled receptor (GPCRs), a family of cell membrane proteins
involved in signal transduction. Ion channels, i.e. membrane proteins that regulate the flow of ions
across membranes, constitute the second largest group of known drug targets.

• Identification of "hits": A second step is to identify a small molecular compound that inhibits (or
activates) the protein target, and alters its function and that of the downstream pathway. In general,
a molecule that binds to a protein and modulates its function is called a ligand. In the context of drug
identification, the compounds initially identified as active against the target are referred to as hits.
Note that, in this manuscript, we will use the terms "molecule" and "compound" to refer to chemical
substances.

Furthermore, we often mention the "interaction" between a ligand and its target. In terms of "activity",
it is a continuous value quantifying the target activity alteration triggered by the ligand, as evaluated
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by a biological assay. For instance, the activity of a ligand against an enzymatic target is measured as
the concentration at which it decreases the catalytic action of the target by 50%, which is also called
IC50. This aspect is further discussed in Section 1.3.

In practice, hits are often identified via high-throughput screening (HTS) experiments. These are large
assays which are conceived with a simple readout, to allow massive parallel screening of hundreds
of thousands of drugs in a day. HTS experiments were enabled by technological breakthroughs in
miniaturisation and robotics that perform the bio-assays in parallel, as well as combinatorial chemistry
for the generation of large molecular libraries built from elementary blocks.

In the pharmaceutical industry, a "classical" HTS campaign usually consists in the screening of 1-2
million compounds. It is usually followed by a dose-response assay to assess the level of bio-activity of
drug candidates by evaluating their modulation of the target activity. Identified "hits" are also screened
in a so-called orthogonal assay, where another mechanistically different screening technology is used to
weed out compounds that happen to interfere with the screening technology.

• Characterisation of the hits: A good level of bio-activity is not enough, and clinical candidate
molecules must meet a set of different criteria. Any potential drug must have an excellent biological
profile (in particular low toxicity) and excellent pharmacokinetic properties. Instead of pharmacoki-
netic, experts mainly use the terms Absorption, Distribution, Metabolism, Elimination (ADME) which
characterise the ability of a hit to reach its target protein and then be safely eliminated by the body.
Indeed, the accumulation of foreign substances is likely to be toxic and lead to deleterious side effects.

The structures of hits are then optimised in order to fulfil the required toxicity properties without losing
the activity. Overall, converting a hit molecule into a drug candidate is a complex multidimensional
optimisation process. At the end of this optimisation, the candidate molecule is called a lead.

• Synthesis: Once a lead is identified, finding a way to synthesise it at the industrial scale is a challenging
problem. When the lead is a natural product, extraction from its natural source might limit the
quantities available. Thus, synthesising the molecule from commercially available molecule building
blocks is often preferable, although many molecules are also synthesised by biotechnologies.

• Clinical validation: The next step consists in validation of the drug in three stages of clinical trials,
whose results are judged by the legal agencies (the Food and Drug Administration -FDA- in the USA
and European Agency for the Evaluation of Medical Products -EMEA- in Europe).

In phase I, the drug is tested on healthy volunteers (or sometimes in patients who have no therapeutic
alternative), to assess its toxicity in humans. Phase II aims at testing various doses of the drug to
estimate the therapeutic dose. Phase III is a double-blind assay, which aims at comparing the efficiency
of the new drug to that of a placebo, or of a reference treatment. Each of these three phases usually
requires several years.

Despite all the advances in understanding diseases, and technological breakthroughs, this rational drug
discovery process has limited success, and only a few tens of new drugs reach the market every year.
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The main bottleneck of the drug design process is the toxicity issue. Most of the hits identified by HTS
fail to become approved drugs because of unexpected side effects and toxicity, which are in part due to
unexpected interactions of the drug with off-target proteins. While HTS helps to increase the number of
tested molecules to identify hits, it is not possible to conduct bio-assays at the human proteome scale [4, 5].
In addition, more than 6 million drug-like compounds are commercially available, but the drug-like molecule
space is estimated to be around 1060 [6]. Randomly exploring this space is out of reach even by HTS, and
identifying a molecule in such a vast space relies mainly on human expertise. Overall, HTS experiments
are expensive, time-consuming, and require advanced laboratories with access to chemical and biological
libraries. This aspect of HTS allows large pharmaceutical companies to take a monopolistic position.

In that context, computational approaches appear as promising ways to facilitate the tedious task of drug
discovery. In particular, the word "chemoinformatics" appears in 1998 [7] as "the application of computational
techniques to the field of chemistry". In other words, chemoinformatics can be defined as the application
of informatics to chemical problems [8]. It entails two main issues: the numerical description of molecules,
prior knowledge about the problem at hand, and algorithms to analyse databases and search for compounds
of interest. The thesis presented in this manuscript mainly tackles these two issues.

Large databases of molecules, proteins and recorded bio-activities are freely available and maintained.
Indeed, tens of millions of compounds are recorded in databases together with their known bio-activities [9,
10], in which about 9,000 FDA-approved small drug molecules are present [11]. In addition, about 550,000
reviewed protein records are available, including 20,244 human proteins [12] with nearly 2,700 known to be
targeted by either approved or experimental drugs [9, 12].

Chemoinformatics algorithms can explore this knowledge and provide in silico screening methods that
help and guide the drug discovery process. The topic of this thesis is devoted to in silico screening methods.

We introduce basic concepts in computational approaches for molecular bioactivity prediction in the next
section.

1.2 Molecular bioactivity prediction to assist the modern drug
discovery process

The identification of therapeutic targets relies on the overall knowledge about the considered disease. Several
approaches have been developed to assist target identification. Differential gene expression analysis (which
can also be transcribed into differential biological pathway expression analysis) aims at detecting genes whose
levels of expression are the most perturbed in the patients compared to healthy controls. Such differential
analysis can also be performed on other types of data qualifying gene "activities" such as copy number
variation, mutation status, or epigenetic factors like methylation. In chapter 5, we will provide and example
of how such data can be fruitfully combined in the context of breast cancer.

Once the target is identified, a panoply of computational methods have been proposed to help identify
ligands.



CHAPTER 1. INTRODUCTION 12

1.2.1 Computational approaches for molecular bioactivity prediction

One of the main methods is "docking" [13, 14, 15]. This technique is a 3D-structure based approach in
which the binding energy between a small molecule and the target protein is estimated according to a set of
molecular mechanics equations that model the physical interactions between the protein binding pocket and
the ligand. Docking methods are usually composed of two algorithms, a search algorithm positioning the
ligand within the pocket, and a scoring function that evaluates the strength of the interaction. This score is
then used to rank the molecules.

The application of docking is limited by the fact that the 3D-structure of the target is required, which is
usually not the case for many important protein targets such as membrane receptors. These 3D-structures
are obtained experimentally by either X-ray crystallography which requires a crystallised form of the protein,
or Nuclear magnetic resonance which is essentially limited to proteins of small sizes. Therefore, in practice,
docking cannot be applied at a large scale in the protein space, although it can be used at large scale in the
chemical space.

More generally, in order to be applicable at the proteome scale, prediction methods need to be independent
from 3D-structural data. Another approach is to develop more integrative approaches, taking into account
widely available data such as target protein sequences, drug chemical structures, and known drug-target
network information.

Such a methodology is primarily inspired by the field of machine learning (ML). Given a learning data
set, machine learning methods discover some underlying rule about the data and provide a "model" (or a
"predictor") that can be subsequently used. More precisely, if n examples (or equivalently data points, or
observations, or samples) are given, these n points {x1, . . . ,xn} form the data set. All data points are
described by p-dimensional vectors xi ∈ Rp, i ∈ {1, . . . , n}. The p attributes describing the data samples are
called features, or equivalently descriptors, variables or attributes.

In the case where the predicted output is a real value (for instance, the affinity of an interaction), the ML
predictor is called a regression model. For a categorical predicted output (for example, a binary statement:
interaction or not-interaction), the ML predictor is called a classification model, or simply a classifier.

Fortunately, the amount of data and information produced by chemical research has grown large enough so
that applying ML methods to predict interactions between chemicals and proteins at a genome scale becomes
possible. "Drug-target interaction" (DTI) prediction, or equivalently drugs "virtual screening" (VS), can be
viewed as the classification of protein/molecule couples as interacting or non-interacting pairs.

For the purposes of this thesis, I extensively trained in machine learning and felt the need to synthesise
this knowledge in order to mobilise it quickly and easily. The machine learning concepts required throughout
this thesis are introduced in appendix A.
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1.2.2 Virtual screening assists the drug discovery process at various stages

Both docking and statistical approaches can directly help the drug discovery process at each of its stages.
However, in this thesis, we did not perform docking studies, because we only considered methods that did
not required the 3D structure of the protein. This choice is justified in our case, since the goal is to make
large scale predictions in the chemical and biological spaces, to address the questions of drug specificity, drug
repositioning, or target identification.

We introduce in the following how searching the chemical space using automation and algorithms helps
to discover novel molecules, reactions and mechanisms by guiding the intuition of the human expert [16].
Examples of such applications are given in chapter 5.

First, they can help to identify compounds that would bind to the considered therapeutic target. Such
methods are called ligand-based drug virtual screening approaches, or Quantitative Structure-Activity Re-
lationship (QSAR) methods [17]. These approaches use a set of compounds for which the activity has been
experimentally measured, and they relate the structure of molecules to their biological activities.

The current trend is to predict ligand-protein interactions in the spirit of chemogenomics, which can be
thought of as a generalisation of the ligand-based approach where the prediction models for several targets
are learned simultaneously [18]. In chemogenomics, prediction of the drug biological activity for one target
is expected to benefit from the activities also known for other molecules and other targets.

Taking place before the experimental high-throughput screening, drug virtual screening can help to
eliminate the unlikely drug-target pairs and to test only potentially active combinations, thus reducing the
cost and time required for HTS. Virtual screening can be seen as a virtual wet-lab experiment that can test
at low cost a colossal number of arbitrarily dissimilar compounds, including molecules which have not been
synthesised yet.

Some contributions [19] focused on sampling the chemical space as efficiently as possible, in order to
reduce both cost and time of the hit generation process itself. To this end, they quantitatively identified
parts of the chemical space in which the biological property of interest is especially unknown, based on
the disagreement between an ensemble of predictors. From a complete other perspective, Swamidass et
al. [20] even proposed an economic modelling to improve the efficiency of expensive and time-consuming
HTS experiments, by explicitly encoding costs and utility in an economic framework.

Overall, virtual screening has been reported to be useful in practice. For instance, it helped to discover
of a novel inhibitor of AmpC β-lactamase [21]. Others have shown that a VS approach improved the hit
rate of a high-throughput screening experiment from 0.021% to 34.8% [22].

Second, computational approaches can also help in the optimisation of a hit molecule to increase its
activity. Quantitative Structure-Property Relationship (QSPR) tackles the problem by predicting biological
activities of compounds, i.e. their affinity value to a given protein via docking analysis. The predicted activ-
ities are used to rank compounds. Indeed, if the 3D-structure of the target is known, docking experiments
may be a more efficient way to score the interaction between molecules against the considered protein binding
pocket. Analysis of the docking poses can also help optimisation of the hits structures in order to favour
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stabilising interactions.

Third, drug virtual screening can be used to predict drug likeliness (identified as the main bottleneck in
the drug discovery process), which refers to the pharmacokinetics, toxicity properties, or the ADME criteria.

The work by Lipinski et al. [23] proposed the so-called ’rule of five’, which links physical properties
of molecules to their ability to become a drug [23]. These rules are commonly used as a filter to remove
compounds from the pipeline. Similar rules have been derived in the context of toxicity relying on the
detection of chemical groups known to cause toxicity.

However, undesired side effects of drugs are more generally due to binding with proteins other than the
intended target, called "off-targets" proteins. Identification of these off-targets is thus crucial to prevent the
potential side-effects, since compounds interacting with only one target protein are exceptional [24]. Indeed,
a ligand for a protein is expected to have high probability to bind to proteins of the same family, but it
may also bind to other evolutionary distant proteins if convergent evolution occurred at the binding sites.
Experimental approaches devoted to identification of all potential off-target is clearly out of reach, because
this would require to design experimental assays for all possible proteins.

Thus, genome-wide virtual screening, which consists of predicting the interaction of a set of molecules
against the entire proteome, tackles the problem of drug specificity, which is related to side-effect prediction,
through the prediction of "off-targets". Indeed, many studies, like the work of Zhou et al.[25], showed strong
correlation between drug side-effects and predicted targets. This is critical since side-effects are the main
cause of failure in the drug development process, and of market withdrawal.

Fourth, virtual screening can also be used for drug repurposing (or repositioning) and off-target effect
identification.

Indeed, although unexpected effects caused by off-target interactions are often unwanted and harmful,
they can sometimes be beneficial and have led to new therapeutic indications for drugs. A well known
example is Sildenafil (known as Viagra), initially developed to treat angina, but which was found to extend
penile erection in human volunteers, leading to a change in the therapeutic indication of the drug [26].

Many drug candidates fail in latest phases of clinical trials. In the same time, there are already thousands
of FDA-approved drugs on the market. Therefore, the prediction of their overall protein target profile to
propose new indications could result in saving lot of time [27, 28]. In particular, Zhou et al. [25] present
some successful examples of drugs repurposing via the prediction of off-targets, both in common and rare
diseases. Some studies have also focused on prioritising small molecule as candidates for drug repositioning
using machine learning [29]. Up to now, we described how virtual screening, as computational algorithms

that identify the properties of molecules, can help to perform more cost-effective research in combination
with experimental work.

Fifth, from the opposite point of view, molecular design approaches perform a reverse search of chemical
space. They start from a desired property and search for a molecular structure expected to fulfil this
requirement. In the last two years, a substantial research effort has been devoted to develop generative
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models for "in silico" building of drug-like compounds with a desired property [30]. We introduce and discuss
these models in more details in appendix E.

In this section, we presented the main situations in which computational approaches may assist pharma-
ceutical research. In the next section, we present the main bottlenecks encountered in this context.

1.3 Challenges in molecular bioactivity prediction

In this section we discuss important issues in chemogenomics that we later tackle in this manuscript.

Data availability

Even if more than 100 million small molecules are recorded in molecular databases [9] (discovered in living
systems or synthesised by chemists), the number of small molecules that could be synthesised is much greater
(recall that the chemical space is infinite, and that the size of the pharmacologically relevant space is about
1060 [6]). However, only a relatively small portion of the chemical space of molecules has been explored and
assayed, so that available biological properties are limited.

Machine learning, and in particular deep learning (see appendix A.8), tend to benefit from the increasing
amount of available data in public databases such as the ChEMBL [10] and PubChem [9] databases.

One of the main issues in predicting biological activity of a given molecule is its similarity to molecules
for which the desired property is known. This aspect is considered in detail in chapter 4.

Furthermore, the ability to perform prediction over the pharmacologically relevant space is related to the
generalisation properties to unseen data of the algorithm that is used. In the context of statistical approaches,
regularisation methods are usually considered in order to improve the generalisation of machine learning
models. We define these methods in more detail in appendix A.1, and we often refer to them throughout
this manuscript. In addition, other approaches can be considered to help the prediction on unexplored sub-
spaces, such as "semi-supervised" approaches that try to leverage both labelled and unlabelled data. It is
also possible to consider data augmentation methods that expand available data using natural or artificially
generated data, via an appropriate noise or other manipulations of the original data. In this thesis work, we
are to investigate these approaches too.

Data diversity

The diversity of the synthesised chemical subspace is restrained, but also biased because pharmaceutical
studies are conducted with different intentions than sampling the chemical space uniformly. Indeed, drug
discovery projects usually focus on molecules close to the known active molecules, for legitimate reasons such
as costs, synthetic feasibility and availability in a chemical library [31].
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In particular, Cleves et al. [32] showed that active ligands of a specific target that are highly similar in
terms of structure are patented in a narrow time span, whereas more structurally dissimilar ligands tend to
be discovered years later.

Consequently, this sampling bias in the chemical space is present in the databases and may lead to over-
estimate the performance of methods which use them for training and testing, a problem usually mentioned
as the inductive bias.

However, even if the predictive power is limited by the data statistics, it does not mean that methods
based on the available chemical data cannot be used in practice. However, we must care about the validation
procedures and benchmark data sets to evaluate and compare properly different methods. In particular, it
is likely that many reference datasets used in the chemoinformatics literature, distort predictions evaluation
because the train and test samples are too similar (for example, when the same scaffolds are shared by the
active compounds in the training and test set). In this case, the model performance is biased to specific
regions of the molecular space, leading to an insufficient evaluation of the generalisation ability.

This bias is considered with special care in chapter 4 of this manuscript.

Qualitative interactions and quantified interactions

As already mentioned in Section 1.1.2, drug-target interactions are actually continuous experimental values,
but there is no rational and no consensus on a threshold activity value to assume an interaction for "real".

In most cases, the "IC50" molecular value is considered. In most studies about drug identification,
molecules with IC50 values of 1µM or lower are accepted as active. However, recorded activity values tend
to be rather above micromolar concentrations, and the threshold is usually relaxed to 10µM to increase the
number of interactions available to train models, which comes with the cost of considering noisy data.

Since "negative" results are unappealing and high IC50 values are not desirable, activities over 100µM
are usually not reported in databases. As a consequence, there are very few instances of "true negatives"
that can be used as negative training instances. This lead us to discuss the next issue of chemogenomics.

"Negative" interactions are actually unknown interactions

One problem in DTI prediction lies in the scarcity of known drug-protein interactions compared to the
myriad of unknown interactions.

If the unknown interactions are let "unknown", the problem of DTI prediction falls in the framework of
Positive-unlabelled learning (PU learning). PU learning consists in finding new positive examples from a
collection of positive and unlabelled examples, from which a prediction model is built.

This field has been mainly explored for text classification problems, in which positively annotated docu-
ments are mixed with a few negatively annotated documents, and many unlabelled other texts.
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Three types of approaches can be employed in such situations. First, one-class classifier can be used [33].
However, the one-class classifier was found not to perform as well as binary classification-based methods for
text classification document [34, 35]. Second, some approaches focus on identifying, with near certainty, a few
negative examples from the unlabelled data, so that standard machine learning classification methods can be
applied [36]. Third, other approaches directly apply slightly modified standard methods while considering
the unlabelled data points as negative, in order to transform a PU-learning problem into a classification
problem.

Because molecules are expected to interact with a restricted number of proteins compared to the overall
protein diversity, most studies consider that protein/molecule couples for which no interaction is recorded
do not interact (hereafter called "negative interactions"). In this case, the number of negative interactions is
dramatically larger than that of positive interactions, because the number of known positive pairs is more
limited.

This issue is generally mentioned as the class imbalance problem, which means that there are many
more negative samples (negative DTI) than positive samples (known positive DTI). Class imbalance has a
significant impact on the choice of the prediction method, but also on the metric and evaluation procedure
used (as presented in appendix A.2).

Then, a widely accepted solution is to randomly select a subset of unknown interactions as "negative"
interactions (i.e. "non-interactions") to recover a balanced problem. This strategy assumes that the ratio of
interacting to non-interacting pairs is so low that random selection would yield a high quality set of negatives,
i.e. where very few negatives would be in fact unknown positives.

However, with this solution, the information contained in the unlabelled data points that were not used
is lost. Some algorithms, like the bias-SVM algorithm, can to a certain extent deal with such imbalanced
data [37, 38], and use larger training sets. We tackle the issue of negative interactions in chapter 4 and
chapter 8.

Most classifiers predictions are not chemically or biologically interpretable

Most chemogenomic methods are predictive but do not provide any clue about the mechanisms of the
interactions, or about which feature mainly guided the prediction, which does not favour easy interpretation
of the results. A challenging issue in recent chemogenomics research is to identify the underlying associations
between drug chemical substructures and protein functional involved in ligand-protein interactions.

In particular, ML methods typically suffer from the confirmation bias [39], which refers to tendency of
humans to confirm a hypothesis by searching for a correlation of the hypothesis with the outcome. The
confirmation bias is related to the non-causal bias, which refers to the case in which there is correlation but
no causal relation. Even if a model achieve good predictions, detected correlations may not be physically
founded which may lead to false conclusions.
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In the case of virtual screening, the hypothesis assuming that molecules similar to known active molecules
are also active can be confirmed if one only look at the high performance of the models built on this
hypothesis. But this hypothesis is, in general, wrong due to the well-known "activity cliffs", which refers
to the fact that a small modification in the molecular structure or the protein binding pocket can strongly
change the nature of the interaction. In addition, highly different molecules may bind to the same protein,
either in the same or in different binding pockets [40].

Among others, Yamanishi et al. [41] investigated this problem by applying the Sparse Canonical Corre-
spondence Analysis (SCCA) to DTI prediction, as presented in more details in the dedicated Section 3. Ran-
dom Forests also allow, to a certain extent, interpretation of the predictions, based on the most often selected
features. finally, in the context of deep learning-based models, attention mechanisms (cf. appendix A.8.2)
also enable the interpretation of individual predictions, as presented in more details in section 7.2.

Most methods do not allow integration of heterogeneous data types

Different data sources are likely to contain heterogeneous and thus partly independent information about the
prediction task. Thus, integrating these complementary data sources is expected to increase both the quality
and the coverage of DTI predictions. However, most VS methods do not allow to integrate heterogeneous
data in a direct manner.

These aspects are discussed both in the context of kernel-based methods in section 2.2 and appendix B,
and in the context of deep learning in chapter 8.

Databases do no distinguish direct and indirect interactions

Different relationships can describe drug-target pairs. For instance, their interaction may be direct or
indirect. In addition, one could also consider the following three types of drugs modes of action: activation,
inhibition or (just) binding. Therefore, types of DTIs can represent various drug-target relationships and
drug modes of action. Besides, interactions recorded for example in the DrugBank database sometimes refer
to indirect interactions via intermediate partners, although this is not specified (we found such examples
in the cystic fibrosis project 5.1, and ignored these indirect interaction for training the prediction models).
Therefore, knowing the type of interaction that has been recorded could be useful when they are used to build
a prediction model, but also to understand the underlying drug’s mechanism of action. Indeed, depending
on the effect that is searched, one might want to activate or inhibit a protein, and therefore, known DTIs for
this target might be used as positives or negatives, which obviously has a considerable impact on the model
that is trained [42].

Predicting the type of DTIs corresponds to solve a multi-class classification problem, instead of a two
classes (active/non active) problem. For such questions, the MATADOR database [43] is particularly suited
as it specifies the type of each recorded interaction. To our knowledge, only the work of Wang and Zeng [42],
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who used Boltzmann machine as predictors, addressed this type of concerns (see chapter 2).

DTI prediction is not directly transposable in terms of biological assays

As already mentioned in Section 1.1.2, HTS projects are typically performed in multiple stages. First, a
single dose screen is executed to identify "hits", which are active compounds at a high dose. The second stage
evaluates the potency of a small subset of hits by a more accurate "dose-response" experiment to identify
the "true" hits. Those are finally sent for further analysis. This will be illustrated in chapter 5, in the triple
negative breast cancer project.

The majority of the molecule library, as much as 99% [44], is dropped after the first stage and then is
not further characterised. Most of it is expected to be inactive. However, some of these compounds may be
potent in the drug-response stage.

Even if ranking DTI according to prediction scores helps identifying the most probable negatives, de-
veloping tools that are tuned to send only accurate hits for the "dose-response" experiments is of great
interest.

"Active learning" deals with those situations where unlabelled data is abundant and labelling is expensive.
Given a set of labelled points and a set of unlabelled points, active learning seeks to find the samples to be
labelled in order to build, at a lower cost, the most efficient classifier to further assign labels to all points
with high confidence. Active learning is therefore particularly suited for addressing the HTS hits selection
issue, as already investigated in multiple studies [45, 46, 47, 48].

Another original approach has been reported by Joshua Swamidass’ team. They argue that the selection
of hits which should be sent to the dose-response stage is essentially economic. Indeed the experimental
design itself implies an economic constraint: resource limitation is the only reason justifying that all com-
pounds are not tested in the second stage. Neglecting the local economic context may, therefore, lead to
irrational experimental strategies. By closely working with the Broad Institute’s HTS team, they developed
an economic model to improve the efficiency of expensive and time-consuming HTS experiments [20].

To conclude, collaboration with experimental scientists is essential to produce useful DTI predictions
tools that enable more efficient discovery.

1.4 Contributions of the thesis

The thesis is conceived following two lines of approaches intended to address proteome-wide drug virtual
screening from the methodological standpoint of machine learning.

In this domain, global performances of baseline methods on available drug-target interaction prediction
datasets are high. However, they are averaged over all tasks, masking poor performance on the most
challenging, although critical tasks.
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A long-term objective of this study is to thereafter propose an ML approach for drug-target interaction
(DTI) prediction, with a particular focus on hard drug-target interaction prediction settings. Overall, this
manuscript is divided in three parts and appendices.

In part I (which contains the present Introduction chapter), chapter 2 gives some insight about how
compounds and proteins are represented to be handled by ML algorithms, and about publicly available
databases and toolkits used for DTI prediction. The machine learning basics required in this thesis can be
found in appendix A. These are imperative prerequisites before starting investigating drug virtual screening
with this type of approaches.

Then, the organisation of the thesis follows the two methodological lines of approaches, respectively
presented in part II and part III.

Part II (chapters 3, 4, 5): The first line of ideas to perform DTI prediction at the proteome level is to
build ML approaches that can leverage the molecule and protein descriptors and similarity measures that
are defined based on expert knowledge. We refer to such expert-based attribute vectors as "data-blinded
features", because they are defined a priori, and independently from the ML algorithm. Note that the choice
of data-blinded features can be task-specific, since toxicity prediction and DTI prediction may benefit from
different expert-based descriptors.

Chapters 3 and 4, focus on proposing computationally attractive data-blinded approaches for drug-target
interaction prediction at the proteome level. In particular, it is well-known that kernel methods have found
many successful applications where the input data are discrete and structured, including strings (e.g. protein
sequences) and graphs (e.g. molecular graphs) [49]. Based on kernels, many off-the-shelf kernel machines are
available to solve proteome-wide DTI prediction. Our observations lead us to propose the NN-MT algorithm,
a multitask SVM for chemogenomics, usually limited in practice by computational times, that is trained on
a dataset of a size similar to those used by single-task methods. Chapter 3 presents the main ML algorithms
used in chemogenomics, and chapter 4 is devoted to the NN-MT algorithm which mainly consists in our
publication on this topic [50] in the PlosOne Computational Biology journal.

Chapter 5 illustrates how drug virtual screening assists real-life applications to guide therapeutic research.
Contributions in this field can be numerous: they can identify drug candidates for known therapeutic tar-
gets, identify the target and the mechanism of action of drugs discovered by phenotypic tests, anticipate
potential side effects by identifying secondary protein targets or suggest repositioning of known drugs in
new therapeutic indications. More precisely, we discuss our contributions in a couple of drug repositioning
studies for triple negative breast cancer and for cystic fibrosis, two life threatening diseases. In particular, we
perform a systematic analysis to characterise some identified bio-active compounds either by their molecular
structures or mechanism of actions (i.e. based on their protein target interaction profile, either known or
predicted). We managed to point out, with strong evidences for both projects, drug repositioning paths that
are unrelated to those currently used to treat the patients. These projects were developed in collaboration
with clinicians and biologists, and they may open new therapeutic strategies for these severe diseases.
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Part III (chapters 6, 7, 8): The second line of ideas to perform proteome-wide virtual screening is
to build ML approaches that extract relevant data-specific numerical descriptors directly on the molecular
graph and the protein sequence, while fitting the model weights to predict interactions. We call "data-driven
features" such numerical descriptors extracted from the raw data in an end-to-end fashion. In the literature,
we find the nomenclature "representation learning"[51] which refers, to our knowledge, to the approaches
that learn representations, either on data-blinded or data-driven features, while fitting the prediction model.
In particular, models that consist of stacked fully connected neuron layers (see appendix A.8) perform
representation learning on data-blinded features.

In chapter 6, we first discuss the neuron network modules that encode protein sequences and molec-
ular graphs directly from the supervised prediction task. Besides, we review the dynamic field of graph
convolutional neuron network which turns to be a promising field of research to reinforce molecular graph
representation learning. In parallel, in appendix C, we provide a historical perspective of graph representation
learning, in particular, for chemoinformatics purposes.

In chapters 7 and 8, we start by a critical evaluation of the most relevant studies that investigated
representation learning and data-driven feature encoders for drug virtual screening. This critical overview
lead us to investigate two main directions to boost data-driven DTI prediction approaches. First, we ex-
plored modifications of the neuron network architecture to extract pairwise data-driven features. Second,
we examined several ways to combine heterogeneous data sources. In other words, we intensively discuss
data-driven feature extraction approaches for DTI prediction by a range of experiments on chemoinformatics,
proteomics and chemogenomics datasets. From our observations, we propose a data-driven approach to use
for proteome-wide drug virtual screening and guide promising directions to boost this field of research.

The results of chapters 7 and 8 contain the results of a manuscript currently in preparation.

Finally, in IV, we discuss the most promising direction, from our point of view, to enhance proteome-wide
DTI prediction. In addition, we also discuss, as perspectives and in appendix E, the popular and promising
field of inverse drug design. Although we did not perform experiments in this domain, we thought that it
was important to expose this recent and active field of research which finds applications in DTI, and more
generally in the prediction of molecule properties. These approaches start from the desired property and
search for a molecular structure fulfilling this requirement. After introducing the main multiple ways to
automatically generate organic compounds with the desired biological properties, we conclude by a brief
comparison of these approaches.



Chapter 2

Computational representation and storage of
molecules and proteins

Abstract: In order to guide the drug discovery process with statistical approaches, we need to define three
critical aspects: (i) the mathematical representation of molecules (and proteins), or equivalently, the measure
of similarity between them; (ii) the model linking molecular and protein features to the predicted properties
(for example the ability to bind to a protein target, the toxicity and the pharmacokinetics); (iii) the access to
large learning data sets, which is a prerequisite for machine learning methods. In this chapter, we examine
and discuss the mathematical description of proteins and molecules as well as the freely available databases
and gold-standard datasets for a variety of chemoinformatics tasks. We review machine learning models
separately in appendix A.

Résumé: Afin de guider le processus de découverte de médicaments avec des approches statistiques, nous
devons définir au préalable trois aspects essentiels: (i) la représentation mathématique des molécules (et des
protéines), ou de manière équivalente, la mesure de la similarité entre les molécules (et des protéines); (ii)
le modèle statistique permettant de prédire des propriétés (comme par exemple, la capacité de liaison à une
protéine cible, la toxicité et la pharmacocinétique de molécules); (iii) l’accès à de grands ensembles de base
de données d’apprentissage, ce qui est un préalable indispensable aux méthodes d’apprentissage statistiques.
Dans ce chapitre, nous passons en revue les descriptions numériques de protéines et de molécules ainsi que
les bases de données disponibles librement et les jeux de données de référence pour une variété de tâches liées
à la chimio-informatique. Nous introduisons séparément les modéles statistiques dans l’appendice A.
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The definition of protein and molecule descriptors or similarity measures, and the access to large learning
datasets are necessary prerequisites before exploring drug virtual screening. The knowledgeable reader can
skip this chapter. Indeed, for each of the studies that we report in this thesis, we start by briefly introducing
all the required material.

Over the past decades, both computational chemistry, interested in predicting various properties or
activities of molecules [52, 53], and computational biology, interested in the prediction of various structural
or functional properties of proteins [54, 55] have designed descriptors and similarity measures to build various
representations of the genomic and chemical spaces.

2.1 Numerical encoding for molecules and proteins

Computationally manipulating and analysing proteins or small molecules poses the problem of representing
these data as vectors or, in other words, defining a set of binary or real-valued descriptors for these data
and stack them to form a vector. This process of converting raw data into something more suitable for an
algorithm is called featurisation.

The representation of the data must be suitable in a sense that it should contain information that is rel-
evant to the considered prediction problem, in order to help the algorithm mapping the input representation
to its output. The choice of representation for a specific problem is not trivial and is, in practice, the main
control stick for an increase in performance.

2.1.1 Molecule numerical descriptors

The problem of explicitly representing molecules as finite-dimensional vectors have a long history in chemoin-
formatics and a multitude of molecular descriptors have been proposed [56]. These descriptors include
physicochemical properties of the molecules, such as its solubility, descriptors derived from the 2D structure
of the molecule, such as fragment counts or structural fingerprints, or descriptors extracted from the 3D
structure.

In particular, the molecular featurisation should reflect the intrinsic physical and chemical properties so
that a machine learning model can learn a relationship between these properties and a prediction task (in
our case, interaction with a target in particular).

To be accurate, a molecular system should be modelled by solving the Schrödinger equation for the
molecular electronic Hamiltonian, representing the molecule by a set of nuclear charges and the corresponding
coordinates of the atomic positions in the 3D space. However, we expect a statistical model to benefit from
representations that expose more easily and specifically the physical and chemical properties of interest.
Note that it might also require less computational power.

In practice, molecular descriptors are derived from three types of information: the molecular structure
(for instance, ECFP descriptors [57]), the interaction with the environment (the log solubility, for instance)
and experimental data (drug-induced phenotypes, for instance; but that requires the molecules to be available
or synthesised and tested before any predictions can be made).
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Although more than a thousand different types of molecular descriptors can be found in the literature [58,
59], the most popular molecular descriptors are fingerprints. They are binary vectors of a given size, typically
taken in the range of 100–1000, in which each dimension represents presence (1) or absence (0) of a particular
property. Such fingerprints are usually structural fingerprints, and represent compounds by their structural
fragments and functional groups.

Historically, the first substructures to be used were listed by hand. Nowadays, substructures are labelled
paths built directly from the graph by a depth-first search. More precisely, the depth-first search yields a list of
all the paths of a certain length, usually lower than 10, emanating from one starting node. In particular, there
are the so-called keys-based fingerprints which report the presence or absence of predefined substructures in
compounds (MACCs fingerprints [60], pharmacophore fingerprints [61] and others), and circular fingerprints
which represent structural properties of compounds which are not pre-defined (ECFPs [57]).

As mentioned in Section 1.2, molecular compounds are mainly represented by a string notation (mainly
SMILES [62] or InChI [63]) or by a graphical representation of the Lewis formula. We present in Section 2.3.3
several available tools to generate molecular feature vectors from such standard representation.

Several studies focused on comparing molecular descriptions. Duan et al. [64] and Bender et al. [65]
reported that the best fingerprints to retrieve a protein-ligand interaction depends on the protein target.
They also reported that different fingerprints retrieve different active compounds for a given target. All
together, these observations show that molecular descriptors best represent different properties of compounds.

In particular, Alberga et al. [66] emphasised the importance of multi-fingerprint consensus strategies
to increase the confidence in predictions. In general, combining multiple types of fingerprint descriptors
provided the best performance, and feature selection approaches were reported to be efficient [64, 65, 67, 66].

Indeed, it is not obvious that different fingerprints capture independent space dimensions [67]. To unveil
the intrinsic correlation existing among fingerprints, one can keep only one fingerprint type of a set of
correlated fingerprints [66], by comparing the Tanimoto similarity profile of a million of compounds described
with these fingerprints, and setting a bottom threshold of correlation.

When used individually, ECFP4 fingerprints have been reported to perform the best [65] and are widely
used for virtual screening.

2.1.2 Protein numerical descriptors

Protein descriptors are usually based on different types of information.
First, we can describe a protein sequence based on its composition reflecting the occurrence frequencies of

different amino acid combinations. Second, descriptors can be derived from the distribution of physicochemi-
cal properties along the sequence (for instance, hydrophobicity, van der Waals volume, polarity, polarizability,
charge, secondary structure and solvent accessibility). Third, topological properties are also often consid-
ered. They characterise amino acids according to their connectivity, geometrical characteristics (shape, size,
atomic positions in space, secondary structures, flexibility and solvent accessibility of proteins for instance).
Fourth, functional characteristics can also be taken into account (presence/absence of functional sites for
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instance).

We present in section 2.3.3 several available tools to derive descriptors from protein sequences. In
particular, a web server [68] is freely available for deriving structural and physicochemical features of proteins
and peptides from amino acid sequences.

Ong et al. [69] compared the efficiency of 10 commonly used sets of descriptors (AAC, DC, autocorrelation,
CTD, QSO, Pse-AAC and others -presented in Section 2.3.3-) for the prediction of functional families using
support vector machines. They reported that combining the descriptors provide the best results, although
none of them performed significantly better than the others individually.

Up to now, we introduced numerical representations of molecules and proteins in the form of feature
vectors.

However, in the case of drug virtual screening, molecules and proteins are often handled based on sim-
ilarity measures following the idea that similar targets may interact with similar compounds. We discuss
molecule and protein similarity measures in the next section.

2.2 Similarity measures for molecules and proteins

Kernel methods (see appendix A.5), or more generally "similarity based" methods, is a class of algorithms
that offer an efficient strategy to solve the problem of data representation.

In these methods, vector representation of data is not required, as long as a similarity measure between
them is defined. More formally, instead of converting each protein (resp. molecule) into a p-dimensional
vector, with p potentially large, kernel methods can manipulate data only through a function K, called a
kernel, that compares any proteins pair (resp. molecules pair) and returns a real number. The use of valid
kernels, which must be a symmetric and positive definite matrix, ensures the equivalence between the use
of kernels, on the one hand, and the use of explicit vector representations in possibly infinite dimensional
spaces, on the other hand (see appendix A.5).

In the next three subsections, we review relevant work focusing on the definition of valid kernels for
proteins and small molecules, to illustrate the possibilities offered by kernels to implicitly describe the
"protein" and "chemical" spaces. More than an illustration, we needed to explore the potentialities of molecule
and protein similarity measures when using kernel methods for chemogenomics in chapter 4.

2.2.1 Protein similarity measures

String-based similarity measures

The most straightforward representation of a protein is its sequence of amino acids, which takes the form
of a string over an alphabet of 20 letters. Based on this description, one can attempt to define a list of
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descriptors to characterise various features of protein sequences, and compute the inner products between
the resulting vectors to obtain a kernel.

The string kernel, developed for text data, was used to define a protein sequence similarity measure. The
string kernel, developed by Lodhi et al. [70], considers a document as a long sequence. The feature space
is generated by the set of all (non-contiguous) substrings of k symbols. The more substrings two instances
have in common, the more similar they are considered to be (the higher their inner product).

Following this idea, Leslie et al. [71] built the spectrum kernel as a similarity measure for protein sequences.
It uses as descriptors the set of all possible subsequences of amino acids of a fixed length k. If two protein
sequences contain many of the same k-length subsequences (k-mers), their "inner product" under the k-
spectrum kernel is to be large. Several variants of this kernel have been proposed.

The mismatch kernel [72] first added the biologically important idea of mutagenicity by allowing some
degree of mismatching between k-mers.

A later study [73] extended this idea via the notion of probabilistic profiles, which define position-
dependent mutation neighbourhoods along protein sequences for inexact matching of k-mers in the data.
This kernel was called the profile kernel. From a machine learning point of view, the use of probabilistic
profiles can be viewed as a semi-supervised approach, because it computes a position-dependent profile
representation of each sequence through iterative heuristic alignment with all recorded proteins.

These descriptors could be relevant to detect homologous proteins, which are likely to contain similar
proportions of the various k-mers or to predict biological properties that depend on short motifs of amino
acids, such as structural or binding motifs. However, proteins are synthesised linearly by the ribosome, an
organelle responsible for translation of the genetic information into proteins in the cytoplasm. Therefore,
protein amino acids sequences are expected to be related to their 3D folding only up to a certain extent.
For instance, it is known that some proteins, called "chaperone", assist the covalent folding of other proteins.
The 3D conformation of proteins assembled by chaperones proteins may not be related to the “natural” free-
energy minimisation of the linear amino acids sequence occurring in the cytoplasm. Hence these descriptors
may become limited when it comes to predict properties linked to the 3D structure of the protein.

Physico-chemical descriptors-based similarity measures

Alternatively, researchers have built kernel based on a set of physicochemical properties descriptors [74, 75].
As mentioned in Section 2.1, these descriptors are interesting to encode information about the variations
of physicochemical properties along the sequence, e.g., to detect elements of local structures, called the
secondary structure of the protein, such as helices or extended sheets.

Evolutionary-based similarity measures

In order to define more biologically relevant kernels, others used the notion of similarity for protein sequences
developed by the computational biology community, namely the similarity based on local alignment score.
Indeed, the notion of local alignments has emerged as a powerful approach to detect evolutionary relationships
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between sequences. Besides, the measure of the best local alignment with the Smith-Waterman (SW)
algorithm [76] or its fast heuristics BLAST, PSI-BLAST [77] and FASTA [78] are still the methods of choice
to compare the sequence of two proteins.

Liao and Noble [79] first used the SW score to define a kernel, called the pairwise kernel. It is, however,
not a valid kernel because it is not positive definite.

Saigo et al. [80] introduced a kernel called the Local Alignment kernel (LAkernel) that mimics the
behaviour of the SW score. While the SW score only keeps the contribution of the best local alignment
between two sequences to quantify their similarity, the LAkernel sums up the contributions of all possible
local alignments.

It is important to note that these kernels, being based on sequence similarity, compare proteins from
the evolutionary point of view. They seem relevant for drug virtual screening because a local similarity of
sequence may correspond to a local similarity of binding pockets.

3D conformations-based similarity measures

Finally, when available or predicted, one can represent a protein by its 3D structure, which is likely to
contain more information related to physical interactions with other proteins or ligands. While kernels for
sequences have attracted more considerable attention so far, several groups have attempted to map protein
3D structures by building kernels between structures.

First, Dobson et al. [55] explicitly represented each structure by a vector made of carefully chosen features
(such as secondary structure content, amino acid propensities or surface properties).

Alternatively, Keiser et al. [81] provided a statistical method to compare proteins based on the known
structures of their set of ligands. This approach can be seen as a way to describe proteins by 3D-binding
pockets through the negative image of their ligands 3D configurations.

Finally, others [82] have shown that a kernel derived from a measure of structure superpositions is
an efficient way to relate the structure of a protein to its function. Hoffman et al. [83] then defined a
kernel between two binding pockets by aligning their atoms in the 3D space and comparing the resulting
configurations with a convolution kernel. They observed pockets alignments even when the corresponding
proteins shared no sequence similarities, which highlights the relevance of 3D description for DTI prediction
when available.

2.2.2 Graph-based chemical similarity measures

Since the 2D chemical graph is available for all molecules, it is practical to use this representation to describe
molecules. A chemical graph can be interpreted as a labelled undirected graph where the atom types are
the vertex labels and the bond types (single, double, triple) are the edge labels. Additional information
can be easily added to this graph description. For instance, labels to model electronic properties such as
electrostaticity, polarity and molecular orbitals can be assigned to atoms.
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Sub-graph decomposition-based similarity measures

Comparing graphs through their decomposition into a set of subgraphs is an idea successfully developed in
the graph kernel literature [84].

In the chemoinformatics literature, the most used representation of molecules is the fingerprint feature
vector representation [85, 86] as mentioned in section 2.1.

Several similarity measures between fingerprints can be built, including the straightforward inner product.
However, the Tanimoto similarity measure, defined as the ratio between the number of substructures shared
by the two graphs over the number of all substructures considered, is widely used in chemoinformatics. This
similarity measure is also a valid kernel [87].

Other kernels related to the Tanimoto kernel have been proposed. The MinMax kernel [87] extended
the Tanimoto kernel by considering the frequencies of the substructure whereas the Tanimoto kernel is only
based on their presence.

Graph walks-based similarity measures

As an alternative, several groups have investigated strategies to define kernels between molecules that do
not require the explicit computation of vector representations, by directly working on the chemical graph.

In particular, Kashima et al. [88] and Gärtner et al. [89, 90] proposed simultaneously to represent the
2D structure of a molecule by an approximately infinite-dimensional vector of linear fragment counts. These
kernels handle huge but still finite dimensional feature spaces and have parameters to constrain this dimen-
sionality burden.

Kashima’s marginalised kernel is the inner product of the count vectors averaged over all possible labelled
paths, defined as random walks on graphs. The exponential and geometric kernels between graphs proposed
by Gärtner et al. [49] only take into account the vertex labels at both ends of linear fragments, and use
depth-first search to build the labelled paths. Compared to the marginalised kernel, it might not be optimal
when contiguous labels are essential, as in chemical compounds.

Mahé et al. [91] extended the marginalised kernel by preventing random paths from going backwards.
Additionally, they proposed a trick to increase the dimension of the feature space, to make the fragments
more specific, while increasing the computational speed of the kernel. The trick is based on the Morgan
index, which is well known in the chemoinformatics literature. It corresponds to a procedure which seeks
to find a canonical 2D representation of a molecule, by successively adding information of adjacent nodes
to each node. By increasing the label specificity, this procedure shortens the computation time, as the
number of common label paths between graphs decreases while the relevance of the labels increase. These
modifications lead to better prediction of various physicochemical properties prediction tasks.

Several groups also extended the substructures extracted from the molecular graphs beyond linear frag-
ments. For instance, Horvath et al. [92] considered kernels based on cyclic fragments and Gärtner et al. [49]
suggested the use of tree fragments instead of linear fragments. This idea was later extended by Mahé and
Vert [93]. These kernels were again defined as the inner product between vectors counting cyclic-patterns
or tree-patterns inside graphs. A subtree is a subgraph with an underlying tree structure (no cycles, but
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a designated root node). However, Mahé et Vert noticed that the subtree kernel was outperformed by the
MinMax kernel defined by Swamidass et al. [93] on several physicochemical prediction tasks.

3D structure-based similarity measures

As molecules are in fact 3D objects, it would be natural to define kernels based on the 3D structure of
molecules. Mahé et al. [94] design a kernel focused on the detection of 3D pharmacophores. These are
any three-dimensional arrangement of atoms, or a group of atoms, representing putative configurations
responsible for the biological property of interest. In this study, 3D structures of molecules were described
by a graph in which node labels are atom labels involved in pharmacophores, and edge labels are the
Euclidean distance between the atoms they connect.

Jacob et al. [95] applied the 3D pharmacophore kernel on the virtual screening of G-Protein Coupled
Receptor (GPCR), a super-family of proteins including many therapeutic targets. However, it did not
perform as well as the 2D kernel based on Tanimoto measure of similarity.

Swamidass et al. [96] consider similarity measures between histograms of pairwise distances between atom
types. For instance, the CO histogram is the histogram of the distances between all pairs of carbon and
oxygen atoms in the molecule. Once again, 3D information is only brought by considering the 3D Euclidean
distance between atoms.

Azencott et al. [97] defined 3D kernels by using graph approximation and other techniques from compu-
tational geometry to characterise the 3D surfaces of small molecules.

Both studies also concluded that Tanimoto based 2D kernels outperformed their designed 3D kernels. This
observation can be either explained by the fact these kernels were not suited for the considered problems,
or by the fact that the 3D information can be inferred from the 2D structures. Indeed, when the active
conformation is not known, i.e. when the 3D structure that the molecule adopts in the context of the
predicted property is unknown, using another conformation might be less efficient and represent a stronger
hypothesis, than just encoding the molecule by its 2D structure.

Historical review of similarity measures for graph data

Deriving a similarity measure from graphs is a large and popular field. Indeed, graphs appear in a variety
of situation, from social network analysis to programming language automatic debugging. The research for
efficient and scalable kernels for graph data lead to several seminal works that we introduce here. Note that
we refer to the following works later in the manuscript, in section 6.2 and appendix D, when comparing
recent developments in graph representation learning to kernel methods.

Early work in the field of graph kernels was based on graph (random) walks or paths [90], and graph
similarities were assessed based on the number of matching pairs of random walks or paths in two graphs.
Remind that a walk is a sequence of consecutive nodes in a graph (i.e. consecutively connected by an edge)
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and a path is a walk that consists of distinct nodes only. As mentioned earlier in this chapter, such method
has been proposed for chemoinformatics by Kashima et al. [88] and Mahé et al. [91].

Others have proposed kernels based on shortest paths [98] on graphs, by assessing graphs’ similarity
based on the number of pairs of identical shortest paths in two graphs (i.e. starting from the same source
and ending at the same labels, and having the same length).

A drawback of the random walk and shortest path approaches is their high computational cost, which
corresponds to O(n2) and O(n4) respectively (with n being the maximum number of vertices of two graphs).

Later, graph kernels based on counting limited-sized subgraphs were proposed. This includes the so-called
graphlet kernel [84], which represent graphs as counts of all types of subgraphs of size k ∈ {3, 4, 5}. Authors
also provided efficient computation scheme based on sampling or exploitation of the low maximum degree
of graphs, for unlabelled graphs only. Similarly, cyclic pattern kernel [99] counts pairs of matching cyclic
patterns in two graphs, and subtree kernel [49] counts pairs of matching tree patterns in two graphs.

More recent developments in graph kernels have emphasised scalability. In particular, one of the most
successful general graph kernels is the Weisfeiler-Lehman (WL) kernel [100] and its variants [101, 102, 103,
104].

The WL kernel is based on the well known 1-dimensional Weisfeiler-Leman graph isomorphism heuristic,
used for deciding whether two graphs are isomorphic.

First, note that assessing graph similarity based on isomorphism is not a priori a trivial task because it
is computationally expensive or even intractable on first hand. Indeed, the subgraph isomorphism checking
problem (analogue of graph isomorphism checking for two graphs of different sizes) is an NP-complete
problem, unsolvable in polynomial time. In addition, a similarity measure based on graph isomorphism must
also encode inexact matching of graphs.

The principle of the WL algorithm is to generate features at each node, through an iterative relabelling,
or colouring scheme, by aggregating over the multiset of labels (or equivalently colours) in its neighbourhood.
At each iteration, the algorithm can terminate by concluding that the two graphs are not isomorphic by
checking that the number of vertices with a specific label is different in both graphs.

The WL kernel does not use of the isomorphism checking operation at each step, but only the node
relabelling procedure. Indeed, the WL kernel between two graphs is computed as the sum of (any) graph
kernels between these two graphs, at each relabelling iteration. Thus, the WL kernel uses standard graph
kernel, but on modified graphs, in which the neighbourhood substructures are summarised into the vertices
labels.

Variants of the WL kernel proposed procedures to speed-up the computation time [102], a streaming
version [103], and more importantly, an approach to handle continuous node and edge labels [104].

However, the discriminative power of the 1-WL has been well characterised [105]. The WL algorithm is
known not to be able to distinguish all isomorphic graph. For instance, the WL algorithm gives the same
"colour" to all nodes in a graph consisting of a triangle or a 4-cycle.
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Therefore, the WL algorithm was generalised to k-set of vertices leading to a more powerful graph
isomorphism heuristic. The neighbourhood of a k set t = {t1, . . . , tk} is obtained by replacing a vertex tj
from t by a vertex from V (G) \ {tj}: N (t) = {t1, . . . , tj−1, r, tj+1, . . . , tk} such that r ∈ V (G) \ {tj}. In
fact, the k-WL algorithm is the generalisation of the 1-WL algorithm on k-sets, with the previously defined
notion of the neighbourhood. Therefore, it takes more global structural properties into account instead of
local properties. A kernel based on the k-WL algorithm has been recently proposed [106].

In this subsection, we discussed how to define a chemical similarity based on the chemical graph.
However, predicting biological of pharmacological properties of molecules based on their chemical struc-

tures may however not be the optimal representation.
Yamanishi et al. [107] reported that pharmacological similarity between drugs is more correlated with the

drug target profiles similarities, than with chemical structure similarity. Thus, the pharmacological similarity
information should be a more useful source for drug–target identification than the chemical structure. A
promising approach is, therefore, to use pharmacological information to compute a similarity measure within
the drug-like chemical space. Examples of such similarity measures are reviewed in the next section.

2.2.3 Other chemical similarity measures

Side effect-based similarity measures

Firstly proposed by Campillos et al. [26], the use of side-effect similarity for drug-virtual screening is based on
the assumption that drugs with similar side-effects are likely to interact with similar sets of target proteins.
Indeed, drugs with similar in-vitro protein binding profiles tend to cause similar side effects [26], implying
a direct correlation between target binding and side-effect similarity, and hence, the possibility to predict
off-targets.

The use of side-effects as descriptors of compounds has given state-of-the-art performances when applied
to DTI prediction [26, 108]. Using a correlation analysis approach, Yamanishi et al. [108] observed that side
effect based descriptors of drug-like molecules were more correlated with their mechanism of action than with
their chemical structure. They built side-effect-based feature vectors for molecules such that each element
of the vector encodes for the presence or absence of each of the considered side-effect terms.

Side-effect terms can be obtained from dedicated databases, such as the SIDER or the JAPIC databases.
The adverse event reporting system (AERS) is another promising resource to obtain pharmacological in-
formation. It routinely collects adverse drug event reports from patients, clinicians and pharmaceutical
companies for all approved drugs and biological products. The advantages of using the AERS-based phar-
macological similarity stem from the availability of this source of information for a much larger number of
drugs, compared with side-effects databases. In particular, this post-marketing safety surveillance program
is intended to identify unexpected drug targets [109].

Nevertheless, such descriptions require detailed side-effect information, so that these descriptors are
applicable only to marketed drugs for which this information is available. To tackle this issue, several
methods have been proposed to predict side effects from chemical structures [110]. However, this is limited
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by the previous observation that chemical structure and pharmacological effects are only partially related.
This observation explains why there still are drug-target interactions that cannot be explained nor predicted
by algorithms based on side-effect descriptors.

Drug induced phenotype-based similarity measures

Drug-induced phenotypes are also expected to be useful data for structure-independent prediction of target
proteins for drug candidate compounds. Recent advances in transcriptomic technologies (e.g., DNA-chips
and RNA-seq) have enabled to measure the expression profiles of all human genes at low cost, and several
databases containing gene expression data have been constructed worldwide [111]. The measure of gene
expression profile on several cultured human cell lines after drug exposure is one way to assess drug-induced
phenotypes.

Some studies [107, 112] have shown the interest of using such data for DTI predictions. However, deriving
DTI from drug-induced phenotype alone can be difficult, due to the complexity, variability and sparsity of
data currently available [112]. Therefore, such pharmacological and network-based similarity measures are
mostly used to improve the performance of computational methods based on physical descriptors.

Phenotypic characterisation of molecules can also be established based on the Anatomic Therapeutic
Chemical (ATC) classification system. Cheng et al. [113] proposed a probabilistic model that builds an ATC
semantic hierarchy-based similarity measure in order to infer interactions between molecule and proteins.

Drug-target interaction network-based similarity measures

Finally, Laarhoven et al. [114] showed that DTI network-based similarity measures could perform as well
as structure-(resp. sequence)-based similarity measures for chemicals (resp. proteins) on DTI prediction.
They defined interaction profiles of drugs (resp. target). These profiles are binary vectors whose elements
correspond to the lists of considered proteins (resp. drugs). An element equals 1 if the corresponding protein
(resp. drug) is a target for the drug (resp. protein), and 0 otherwise.

Based on the assumption that two drugs interacting with similar known targets are expected to also
interact with similar new targets, they defined a kernel on interaction profiles, called the Gaussian Interaction
Profile (GIP) kernel. This kernel is a radial basis function (RBF) kernel applied to the profile feature vectors.
They showed that the topology of drug-target interaction networks, as a source of information, is capable of
predicting interacting pairs with high accuracy.

However, Laarhoven et al. obtained the best results for DTI prediction by using a combination of
structure-based (resp. sequence-based) and DTI network-based similarity measures for the molecules (resp.
proteins) [114].

In a later work, they extended this similarity measure to compounds for which no interaction is known [115].
More precisely, they defined the interaction profile of a new compound as the weighted sum of the profiles
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of the drug compounds in the training data. The weights are the chemical similarity between the new drug
and drugs in the training set.

Before exploring in chapters 3 and 4 how various representations of molecules and proteins serve to
perform drug-target interaction prediction, in the next section, we discuss another prerequisite for machine
learning methods: publicly available databases and gold standard datasets. These are of great importance,
because they constitute the main material that can be used to train and test models.

2.3 Data and toolkits for drug virtual screening

In this section, we introduce the databases, gold standard datasets and packages most useful for DTI pre-
diction.

All of them are considered in this thesis.

2.3.1 Publicly available databases

Molecular and bio-activity databases

Several bio-activity databases are freely available online. Some provide quantitative measurements such
as the IC50, EC50, Ki and potency (in particular the PubChem [9], ChEMBL [10] and BindingDB [116]
databases), while others report binary information on activities or interactions between molecules and pro-
tein pairs, like the DrugBank [117] or KEGG [118] databases. In databases recording binary information,
interactions are usually not tagged as being direct or indirect.

In particular, the largest bio-activity database is the PubChem database [9] which includes around 230
million bio-activity data for around 320 million compounds and substances. It is mainly composed of three
databases, namely the PubChem Substance, PubChem Compound, and PubChem BioAssay.

The PubChem Substance displays the information (such as features, activities, cross-links to other
databases) about any chemical substances provided by individual contributors such that several substances
entries, and IDs may refer to the same compound.

Thus, the PubChem Compound database combines all records representing the same substance into a
unique compound entry (with a unique ID) using an automated process.

Bioactivities are available in the PubChem BioAssay database by bioassays unique entries and are mainly
retrieved from HTS experiments. However, the PubChem data are not curated.

The ChEMBL database [10] is the second largest bioactivity database, containing around 15 million
experimentally derived bioactivities, and is manually curated by experts. Binding affinity data, selectivity,
efficacy and ADMET properties of molecules are recorded in the ChEMBL database. Moreover, ChEMBL
associates a confidence score ranging from 0-9 to recorded activity data reflecting the specificity of both
target and assay type.

https://pubchem.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/pcsubstance
https://www.ncbi.nlm.nih.gov/pccompound
https://www.ncbi.nlm.nih.gov/pcassay
https://www.ebi.ac.uk/chembl
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Interestingly, ChEMBL distinguishes interactions into three different types based on the curated assay
results: “Single Protein”, “Protein Family” and “Protein Complex”. Indeed, compounds do not always act
on individual targets and may target a protein complex.

The DrugBank database [117] is another widely considered bio-activity database. Although much smaller
than PubChem and ChEMBL, it provides high-quality information regarding the approved and experimental
drugs along with their targets. It contains around 17,000 curated drug-target associations with high-quality
standards.

More precisely, DrugBank covers almost all aspects of drugs as a manually curated bio-medical resource
with high-quality standards. In addition, it contains drugs enzymes and transporters, as well as information
about their identification, pharmacology, interactions with foods and other drugs, clinical trials, pharma-
coeconomics, taxonomy and databases cross-links. Targets sequences are provided, but most importantly,
information about protein targets are given via the link to the UniProt database [12].

The data obtained from DrugBank is often used for novel large-scale VS methods.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) database [118] is another well-maintained bio-
activity database. Moreover, it also comprises functional hierarchies of biological events as well as disease
information.

The KEGG database is organised into several sub-databases. More importantly, the KEGG DRUG
database provides information for approved drugs, their chemical structure and their targets. The KEGG
PATHWAY database is a knowledge base about biological systems, by providing an extensive network and
functional hierarchies of biological events, as well as the components (molecules and proteins) involved in
the pathways at all levels.

The REACTOME database [119] is another widely used curated and peer-reviewed pathway database
providing intuitive tools for the visualisation, interpretation and analysis of biological pathway knowledge.

Other bio-activity databases are often mentioned in the literature: the BindingDB [116], the STITCH [120],
the Chemical Entities of Biological Interest (ChEBI [121]) and the ZINC [122] databases.

BindingDB contains over 1 million experimentally measured binding affinities of protein-ligand interac-
tions. It is built form scientific papers, patents and other biological and chemical databases.

The STITCH database has the particularity to report predicted interactions with confidence scores (ob-
tained from text-mining of the literature). STITCH also reports data from experimentally validated inter-
actions from ChEMBL, PDB, curated datasets from other databases, and results from HTS experiments. It
contains over 1.6 billion interactions.

The ChEBI database comprises around 55,000 entries and incorporates an ontological classification to
describe properties of chemical structures and to detail relationships between them.

The ZINC database comprises around 100 million entries of commercially-available compounds and has
the particularity to report the 3D representations (modelled with ChemAxon’s JChem package and Omega
application of OpenEye Scientific Software) that can be used in docking-based virtual screening studies.

http://www.drugbank.ca
http://www.kegg.jp/
http://www.reactome.org/
http://www.bindingdb.org/validation_sets/
http://stitch.embl.de/
https://www.ebi.ac.uk/chebi
http://zinc15.docking.org/
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Protein databases

The Universal Protein Resource (UniProt) database [12] is the main resource for protein data. As a central
hub organising a vast amount of information from several protein resources, UniProt is a comprehensive
protein knowledge base organised into four primary data sources: UniProtKB, UniRef, UniParc, and Pro-
teomes.

Most importantly, UniProtKB is the central resource of UniProt. It includes over 500,000 non-redundant,
manually curated and annotated by experts (based on the experimental information extracted from the
literature) protein sequences from the original Swiss-Prot database. It also comprises a hundred million
computationally unreviewed and redundant protein sequences computationally derived from high throughput
sequencing data of DNA, and automatically annotated from the original TrEMBL database.

UniParc provides a complete set of known sequences, in a non-redundant manner, retrieved from publicly
available sequence sources (so around 200 million sequences in total). UniRef comprises clustered sets of
sequences from UniProtKB and UniParc records. Finally, the "Proteomes" database comprises the sets
of expressed proteins for any species whose genome was completely sequenced. In total, around 10,000
proteomes of well-studied model organisms (and around 150,000 other proteomes) are recorded.

The Protein DataBank [123] (PDB) is another primary resource for genomic data. It results from a
worldwide consortium and comprises curated and annotated three-dimensional structure of proteins, nucleic
acids, and complex assemblies (currently for a total of around 140,000 structures). It has been mainly
obtained by X-Ray crystallography, but also includes NMR spectroscopy data and a small amount of electron
microscopy data.

The sc-PDB [124] database is derived from the PDB database and comprises atom descriptions of the
proteins, their ligand and more importantly the atom descriptions of ligand binding sites. It contains around
16,000 binding sites for around 5,000 proteins and 6,000 ligands.

The Pfam [125] database and the "Structural Classification of Proteins extended" (SCOPe) [126] are
both providing hierarchical classifications of proteins. The Pfam database comprises a large collection of
curated protein families based on sequence alignment. The SCOPe classifies proteins based on a hierarchy of
3D-structures. The top levels ("fold" and "class’) describe geometrical relationships based on specific arrange-
ments of secondary structures and chain topologies, while lower levels (including "family" and "superfamily")
are determined regarding the evolutionary relationships of protein domains.

Finally, the Interpro [127] and CATH [128] resources also provide a structural and functional grouping
of proteins.

2.3.2 Gold standard datasets

Gold standard, or benchmarking datasets are available from the literature and used to adjust parameters,
evaluate the performances and, most of all, compare the performances of computational methods.

http://www.uniprot.org
https://www.wwpdb.org/
http://bioinfo-pharma.u-strasbg.fr/scPDB/
http://pfam.xfam.org/
https://scop.berkeley.edu/
https://www.ebi.ac.uk/interpro/
www.cathdb.info
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One of the first gold-standard dataset for virtual screening was built from the Kegg Drug database
by Yamanashi et al. [129]. It is composed of four classes of drug-target interactions in humans involving
enzymes, ion channels, G-protein-coupled receptors (GPCRs) and nuclear receptors.

In particular, the GPCRs form a large protein family with around 800 members. They are involved in
various signal transduction pathways, and are well known drug targets. Ion channels constitute the second
largest group of drug targets. Enzymes are catalytic proteins accelerating biochemical reactions. There
are many drugs targeting enzymes (for example, aspirin targets the COX1 and COX2 enzymes). Finally,
nuclear receptors form a sub-group of transcription factors which regulate the expression of genes by binding
to promoter regions in DNA.

The number of known drugs targeting enzymes, ion channels, GPCRs and nuclear receptors are 445, 210,
223 and 54 respectively. The numbers of targets in these data sets are respectively 664, 204, 95 and 26. This
corresponds to a number of known interactions of 2926, 1476, 635 and 90 respectively, at the time of the
original article.

This dataset has been used as benchmarking dataset for a decade [129, 130, 131, 114, 132, 133, 134, 18,
135, 136], but the number of interactions it contains is notably low comparatively the known interactions
recorded in the DrugBank and most of all in the ChEMBL database.

Simultaneously, other benchmarking datasets have been considered, like the DUD-E and Merck Challenge
datasets, even though they have been much less used than the Yamanishi dataset.

The DUD-E dataset [137] contains 22 886 ligands and their affinities against 102 targets retrieved from the
ChEMBL database while curating challenging decoys, i.e. interactions with low experimental probabilistic
evidence.

The Merck Kaggle Challenge dataset provides 164 024 compounds for 15 biologically relevant targets.

More recently, Wu et al. [138] proposed MoleculeNet, a collection of curated chemical benchmark data
sets for a total of around 700 000 compounds retrieved from publicly available databases. The list of data
sets and their quantitative description can be found in Table. 2.1. We introduce some of them qualitatively
in the following (see the paper for a full description; see the README files of each dataset provide links to
obtain further details):

• QM7/QM7b, QM8, QM9 (regression): provide quantum mechanic properties of molecules such as
geometric, energetic, electronic and thermodynamic properties as well as electronic spectra and ex-
cited state energy (determined using density functional theory -DFT- and multiple quantum mechanic
methods).

• ESOL, FreeSolv, Lipophilicity (regression): report respectively water solubility data, hydration free
energy in water and octanol/water distribution coefficient for common organic small molecules.

• PDBbind (regression): reports the binding affinities for 3D bio-molecular complexes (the 3D repre-
sentation of drug-protein interaction is reported). This dataset is directly built from the PDBbind
database.

http://dude.docking.org
https://www.kaggle.com/c/MerckActivity/data
http://moleculenet.ai/
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/qm7b.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/qm8.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/qm9.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/ESOL.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/FreeSolv.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/lipophilicity.zip
http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/pdbbind_v2015.tar.gz
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• PCBA (classification): reports measured biological activities of small molecules generated by high-
throughput screening from the PubChem BioAssay database. It is The "big data" dataset in Molecu-
leNet collection. It contains 128 bioassays binary results for a total of more than 437,000 compounds.
Interested readers can search for the assay IDs on the PubChem website.

• maximum unbiased validation -MUV- (classification): also built from PubChem BioAssay. It provides
randomly distributed sets of active compounds optimised to minimise the influence of dataset bias
on validation results (based on a refined nearest neighbour analysis). We introduced this bias in
Section 1.3.

• HIV (classification): includes binary bioactivity measurements of 41 913 compounds against the inhi-
bition of HIV replication. Initially, the results were placed into three categories: confirmed inactive
(CI), confirmed active (CA) and confirmed moderately active (CM). Authors combined the last two
labels, making a binary classification task between inactive (CI) and active (CA and CM). See AIDS
Antiviral Screen Data website for more details.

• Tox21 (classification): generated by the Tox21 Data Challenge community in 2014 to evaluate the per-
formances of different computational methods for toxicity prediction. This dataset contains qualitative
toxicity measurements for around 8000 compounds on 12 different targets, including nuclear receptors
and stress response pathways. Refer to the website for more information about the tasks.

• ToxCast: toxicology data including around 600 in vitro high-throughput screening experiments for more
than 8,000 compounds from the same initiative as Tox21. Refer to the website for more information
about the bioassays.

• SIDER: the SIDER database links 1427 marketed drugs with adverse drug reactions (ADR), grouped
into 27 system organ classes. Refer to the website for details on ADRs.

https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/pcba.zip
https://pubchem.ncbi.nlm.nih.gov/search/#collection=bioassays
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/muv.zip
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/hiv.zip
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/tox21.zip
https://tripod.nih.gov/tox21/challenge/data.jsp
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/toxcast.zip
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://s3-us-west-1.amazonaws.com/deepchem.io/datasets/molnet_publish/sider.zip
http://sideeffects.embl.de/se/?page=98
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Category Dataset Data Type Task Type # Tasks # Compounds

Quantum Mechanics

QM7 SMILES, 3D coordinates Regression 1 7160
QM7b 3D coordinates Regression 14 7210
QM8 SMILES, 3D coordinates Regression 12 21786
QM9 SMILES, 3D coordinates Regression 12 133885

Physical Chemistry
ESOL SMILES Regression 1 1128
FreeSolv SMILES Regression 1 642
Lipophilicity SMILES Regression 1 4200

Biophysicics

PCBA SMILES Classification 128 437929
MUV SMILES Classification 17 93087
HIV SMILES Classification 1 41127
PDBBind SMILES, 3D coordinates Regression 1 11908
BACE SMILES Classification 1 1513

Physiology

BBBP SMILES Classification 1 2039
Tox21 SMILES Classification 12 7831
ToxCast SMILES Classification 617 8575
SIDER SMILES Classification 27 1427
ClinTox SMILES Classification 2 1478

Table 2.1. MoleculeNet dataset collection description.

Due to the large amount of data recorded in this dataset collection, MoleculeNet is the benchmark dataset
of choice for chemoinformatics. Note that it has also been integrated into the DeepChem open-source library,
which implements a variety of deep learning approaches and functionalities for chemoinformatics.

2.3.3 Freely available libraries and toolkits

Chemoinformatics requires to numerically handle physical objects, namely proteins and molecules. In partic-
ular, we need to inter-translate molecules and proteins between different representations, construct descrip-
tors, compute pairwise similarities, and apply the various statistical model. To this end, available python
libraries and toolkits are very useful.

In this subsection, we focus on the libraries we used for this work, and we also introduce the main libraries
and toolkits considered in the literature.

For numerically manipulating chemical molecules, we mainly used the RDkit library [139] in Python.
Generally speaking, RDkit is an open source chemoinformatics toolkit available for Python, Java, C++ and
C#. RDKit can handle and inter-convert a wide range of molecular representations, mol2 and SMILES
representations. Most of all, RDkit can generate a wide range of atomic and molecular descriptors: for
instance, a variety of structural fingerprints, topological and physicochemical descriptors (like for instance,
solubility, hydrophobicity, partial charges). Interestingly, it can also generate 3D conformers from a 2D

https://github.com/deepchem/deepchem
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molecular representation.
We also used the ChempCPP [140] toolkit which provides practical command line functions to com-

pute similarities between molecules. In particular, the kernel functions that can be computed include the
marginalised graph kernel and its extension between labelled graphs [88, 91], the tree subgraph based ker-
nel [93] and pharmacophore kernel [94].

Furthermore, the OpenBabel, Dragon, Daylight, CDK (Chemistry Development Kit) and OpenEye toolk-
its are widely encountered in the literature. Only OpenBabel, OpenEye and CDK are open sources. They
all mostly provide the same functionalities as RDKit, such as the generation of several types of molecular at-
tributes, the conversion between various chemical formats, the generation of 3D conformers and substructure
searching. Moreover, note they can be used in Python and C++.

To compute protein similarities based on sequence local alignment, we considered the LAkernel soft-
ware [141] (see section 2.2). We also considered BLAST (Basic Local Alignment Search Tool) which is a
prevalent sequence alignment tool that finds local similarities between protein sequences.

The main toolkit used for deriving protein attributes from protein sequence which is widely mentioned
in the literature is the PROFEAT (Protein Feature Server) web server. However, when we intended to use
it, we noticed that the PROFEAT package and web server seem not fully working. We considered instead
the iFeature [142] and ProtR [143] web servers and packages.

Such toolkits provide feature analysis algorithms, but more interestingly, feature extraction algorithms.
They can extract protein descriptors from protein sequences based on commonly used structural and physic-
ochemical features of amino acids. In particular, they can generate 11 protein level feature groups includ-
ing amino acid composition (AAC), dipeptide composition (DC), autocorrelation descriptors, "composition,
transition and distribution" descriptors (CTD), quasi-sequence-order descriptors (QSO), pseudo-amino acid
composition descriptors (Pse-AAC), amphiphilic pseudo-amino acid composition descriptors (Am-Pse-AAC),
topological descriptors at atomic level and total amino acid properties. In general, these descriptors encode
the fraction of each amino acid type and amino acid pair type within a protein as well as the distribution of
amino acid properties along the sequence. They also encode the composition, transition and distribution of
attributes (including hydrophobicity, normalised van der Waals volume, polarity, and polarisability) along
the sequence. In addition, the ProtR package enables to derive descriptors for proteochemometric modelling,
which includes more than twenty classes of 2D and 3D molecular descriptors, and BLOSUM matrix-derived
descriptors.

See the PROFEAT manual and ProtR documentation for more details.

For machine learning methods, we mainly used the scikit-learn library [144] which is a well-maintained
and viral free software machine learning library for Python. We broadly used machine learning shallow
algorithms and auxiliary functions (for instance for computing performance scores) implemented in the
scikit-learn library.

Also, we used the Tensorflow library [145] and the Keras library [146] (itself implementing on top of
Tensorflow) to implement deep learning algorithms. Tensorflow is a cross-platform open source software

chemcpp.sourceforge.net/html/index.html
http://members.cbio.mines-paristech.fr/~jvert/software/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://bidd2.nus.edu.sg/prof/manual/PROFEAT.2.descriptors.pdf
https://cran.r-project.org/web/packages/protr/vignettes/protr.html
https://scikit-learn.org/stable/
https://www.tensorflow.org/
https://keras.io/
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library for numerical computation using data-flow graphs. Its functioning is efficient for distributed training.

Finally, let us introduce the PyDTI python package. This package implements state-of-the-art meth-
ods [114, 134] for DTI prediction and provide a command line interface to compare methods to each other
with the gold standard Yamanishi datasets. As presented in chapter 4, we incremented on this package by
adding a benchmark dataset based on the Drugbank database and the approach we developed [50].

In the next chapter, we investigate machine learning approaches for drug-target interaction prediction
with expertise-based extracted representations.

https://github.com/bplaye/PyDTI
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Chapter 3

Drug virtual screening with expert-based rep-
resentations

Abstract: Drug virtual screening has focused many research efforts from many points of view, indicating
its important role in drug discovery. It benefited mostly from methodological advances in machine-learning
algorithms, and from considerable efforts to design relevant and efficient numerical molecular and protein
descriptors, as well as similarity measures. Indeed, most of the methods that predict molecular bio-activities
rely on the assumption that similar molecular structures share similar biological properties. In this chapter,
we recall the main virtual screening frameworks, and review state-of-the-art feature-based and similarity-
based approaches for chemogenomics. This critical appraisal is to guide the development of SVM-based
chemogenomics approaches in the next chapter.

Résumé: Le criblage virtuel de médicaments a été abordé à partir de nombreux points de vue et a con-
centré de nombreux efforts, ce qui témoigne de son importance. Ce domaine a principalement bénéficié
des avancées méthodologiques en matière d’algorithmes d’apprentissage statistique, mais surtout des efforts
considérables déployés pour concevoir des descripteurs numériques chimiques et protéiques pertinents et ef-
ficaces, ainsi que des mesures de similarité. En effet, la plupart des méthodes permettant de prédire les
bio-activités moléculaires reposent sur l’hypothèse que des structures moléculaires similaires partagent des
propriétés biologiques similaires. Dans ce chapitre, nous rappelons les principaux cadres qui structurent les
approches de criblage virtuel, ainsi que les meilleures approches en chimiogénomique basées sur des descrip-
teurs numériques ou basées sur des mesures de similarité. Cette revue critique guidera le développement
d’approches de chimiogénomique dans le chapitre suivant.

42
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3.1 Drug virtual screening frameworks

One of the pioneer drug virtual screening approaches is the Similarity Ensemble Approach methodology [147]
(SEA). Ligands (resp. targets) bio-activities are directly predicted based on their similarity to other ligands
(resp. targets) with the desired bio-activity.

Interestingly, most of current approaches are still based on the same intuition. Very recent methods [66,
148] (with the term "new approach" in their title) still rank drug targets of a query compound according to
the sum of similarities with the target’s ligands. Such a naive approach reaches high predictive performances
by exploiting, in a consensus-like approach, a large collection of high quality experimental bio-activity data
(notably in the ChEMBL database). However, this may be due, at least in part, to the inductive bias
mentioned in Section 1.3.

More sophisticated ML-based approaches have been successfully applied to drug virtual screening.
Currently, machine learning methods for virtual screening can be categorised into two global frameworks:

ligand-based and chemogenomics. We will not consider docking, a receptor-based approach that uses the
3D structure of the protein, because it does not rely on machine learning approaches. It is in fact related to
vast domain of molecular modelling approaches, that also include molecular mechanics and dynamics.

3.1.1 Ligand-based and chemogenomic frameworks

First, ligand-based approaches, such as Quantitative Structure Activity Relationship (QSAR) (refer to [149]
for a recent review on QSAR), build a model function that predicts the affinity of any molecule for a given
target, based on the affinities of known ligands for this target. They are efficient to study the affinity of
molecules against a given protein target, but they are not suitable to study the specificity of a molecule
against a large panel of proteins. This would indeed require, for each of the considered proteins, that the
binding affinities of multiple ligands were available.

Second, chemogenomic approaches [18] can be viewed as an attempt to fill a large binary interaction
matrix where rows are molecules and columns are proteins, partially filled with the known protein-ligand
interactions available in public databases. In the chemogenomic framework, drug specificity prediction is
formulated as a classification problem, where the goal is to distinguish protein-ligand pairs that bind from
those that do not. In other words, the aim is to predict “interacting” or “not interacting” labels for all pairs,
but not to predict the strength of the interaction, which would correspond to a regression problem.

Furthermore, while ligand-based (resp. target-based) virtual screening predicts targets (resp. ligands) for
individual molecules (resp. proteins), the chemogenomics approach adopts a cross-target view, and attempts
to simultaneously screen the chemical space against whole families of proteins. In other words, chemoge-
nomics mines the entire space of small molecules for interactions with the biological space, i.e. the set of all
proteins or at least of protein families. The lack of known ligands for a given target can then be leveraged
by known ligands for similar targets.
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From a broader perspective, ligand-based and chemogenomic frameworks refer respectively to singletask
and multitask frameworks that we introduce in the next section.

3.1.2 Singletask and multitask frameworks

In the context of DTI prediction, a singletask method consists in predicting protein targets for a given
molecule m. In this setting, the specificity of m is studied by learning a model function fm(p) that predicts
whether molecule m interacts with protein p, based on known protein targets for m. This means that a
new model function is learned for each molecule. We refer to this setting as ligand-based ST. Conversely, a
singletask method could learn a model function fp(m) that predicts whether protein p interacts with molecule
m, based on all ligands known for protein p. We call this the target-based ST setting.

In contrast, multitask methods predict whether p and m interact by training a model based on all known
interactions, including those involving neither m nor p. The task of predicting ligands for protein p is then
solved not only based on the data available for this task (i.e. known ligands for this protein), but also based
on the data available for the other tasks (i.e. known ligands of any other proteins). The main issue is to
define how the data available in all tasks can be used to make the predictions for a given task.

Therefore, chemogenomics can be viewed as a multitask prediction problem, where the tasks correspond
to the predictions of ligands for individual proteins. Thus, we can measure similarity between tasks based
on protein similarity measures.

Such approaches are of particular interest when few interactions are known for a given ligand or protein,
as is often the case when looking for secondary targets at the size of the human proteome. However, even
within the multitask framework, the prediction on orphan proteins (for which no ligand is known) and
proteins for which the only known ligands are very dissimilar to the molecule in the databases, remains
difficult. Therefore, our studies focused more particularly on these critical cases.

3.2 Feature-based and similarity-based approaches for chemoge-
nomics

Chemogenomics can be categorised into three main approaches depending on the description of the input
data: feature-based, similarity-based and representation learning-based approaches. In this section, we
first introduce the feature-based and similarity-based frameworks and then discuss related state-of-the-art
approaches for DTI prediction. Representation learning based approaches are the topic of Chapter 6 and
are therefore not introduced here.

3.2.1 Definitions of feature-based and similarity-based approaches

In feature-based approaches, instances (i.e. compounds, or targets, or compound-target pairs) are represented
by a numerical "data-blinded" features vector (as opposed to "data-driven" features that are end-to-end
calculated from molecular graphs and protein sequences). Data-blinded features are either handcrafted
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or extracted automatically based on human expertise. These descriptors reflect non exhaustively various
types of physicochemical, structural, topological, geometrical. properties of the corresponding instance. The
feature vectors of labelled (active or inactive) instances are then fed into a machine learning algorithm to
build a predictive model for the drug-target interactions.

As previously discussed in Section 2.1, molecules are often described with structural fingerprint vectors
that encode the presence and absence of structural properties. Proteins are usually described by their
physical and chemical properties, and by sub-sequence distributions or functional attributes.

An advantage of feature-based methods is that they can lead to interpretable results by associating the
prediction to some of the input features.

Similarity-based methods consider as input data the similarity between instances. We introduce these
models in appendix A.5. They rely on the assumption that similar compounds (resp. protein), regarding
structure, topology or physical properties etc., have similar functions and bio-activities and, therefore, have
similar targets (resp. ligands). This assumption can however be wrong in the context of virtual screening,
because a tiny change in the molecular structure or protein sequence can sometimes lead to complete loss of
interaction.

As discussed in Section 2.2, molecular similarities are usually calculated by searching for common molec-
ular substructure and isomorphism of their molecular graphs, while protein similarities are mainly calculated
by sequence alignment.

One advantage of similarity-based methods (also called kernel methods), is to project input instances
into a new feature space with an arbitrarily high number of dimensions, according to the Mercer theorem
(see appendix A.5), which increases the predictive power of classical linear algorithms.

This also allows integrating heterogeneous data, by combining, in the same model, different similarity
matrices associated with different types of data. Since it is a valuable direction of research, we discuss
multi-kernel learning for DTI prediction in appendix B.

3.2.2 State-of-the-art in feature-based and similarity-based approaches for chemoge-
nomics

Various chemogenomics methods have been proposed in the last decade [129, 135, 131, 130, 107, 109, 150,
151, 114, 115, 132, 152, 153, 133, 136]. They mostly rely on the assumption that "similar" proteins are
expected to bind "similar" ligands. They differ by (i) the descriptors used to encode proteins and ligands or
the similarities between these objects, (ii) the ML algorithm that is used to learn the model and make the
predictions.

Pairwise kernel approach

Jacob and Vert [18] first used the powerful kernel framework to provide efficient ways to combine protein
and ligand representations into a joint chemical and biological space. The most simple way to represent a
(protein,molecule) pair is to concatenate both descriptor vectors into a single vector. Then, it is easy to
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show that the kernel, defined on the joint space obtained by concatenating the vectors, is the sum of both
kernels [18].

However, a better integration of the protein and the molecule descriptors can be introduced by consid-
ering, instead of the simple concatenation of vectors, the tensor product between the protein and ligand
vectors. The descriptors of the resulting vectors are all possible products between protein descriptors and
molecule descriptors. Hence, this representation allows encoding the joint presence of protein and ligand
features, which encodes richer information about the interaction mechanism. It can be shown with classi-
cal algebra, that the kernel associated with a tensor product of the chemical and the protein spaces is the
Kronecker product of individual kernels, which is usually called the tensor product kernel [18].

Any machine learning algorithm performing prediction in the joint space allows targets with few known
ligands to benefit from the ligands known for similar proteins, which at the extreme, allows to make predic-
tions for orphan targets (proteins with no known ligand). The information-sharing process depends strongly
on ligands and protein similarity measure. Such approaches have been successfully applied to DTI prediction
[135, 95].

Although SVM-based and kernel RLS-based methods yield to accurate predictors, they are, however,
black boxes. All the data modelling power is used to learn the decision boundary, although the posterior
probability distribution of the data is not directly learned. In addition, the SVM decision function based
on support vectors ignores representative examples that are far from the decision boundary. Consequently,
the output of an SVM, especially for data points that are far from the decision boundary, is not always
accurate. This may be problematic in drug virtual screening, where ranking active compounds at the top of
the prediction list can be more important than learning a single decision boundary between two classes.

Note however that a heuristic has been developed to compute probabilities from SVM prediction [154].

Bipartite Local Model approach

Another useful approach, known as the bipartite local model (BLM), has been developed by Beackley and
Yamanishi [131]. In a first step, for each drug-target pair, they compute two independent singletask pre-
dictions, one from the ligand-based point of view, and a second from the target-based point of view. In a
second step, they combine the two predictions to compute a final prediction for the considered pair. The
originality of this method lies in the formalisation of bipartite graph inference as a set of independent local
supervised learning problems.

This bipartite network approach was extended by Mei et al. [132] to orphan molecules and proteins.
Their method is called BLM-NII in the original paper. Indeed, since orphan compounds have no known
interactions, all the elements of their interaction profile vector, which is the binary vector specifying the
presence or absence of interaction with every targets, equals 0. The authors addressed this issue using the
weighted profile methods to derive an interaction profile that is used as label information to train the local
model. More precisely, they defined the interaction profile of a new drug compound as the weighted sum of
the profiles of the drug compounds in the training data. The weights correspond to the chemical similarity
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between the new drug and drugs in the training set.

Within the bipartite local approaches, Laarhoven et al. [114] defined a kernel on interaction profiles, called
the Gaussian Interaction Profile (GIP) kernel. This kernel is a radial basis function (RBF) kernel applied to
the interaction profile feature vectors of drugs (resp. targets). They reported that the best results for DTI
prediction on the gold-standard Yamanishi dataset are obtained by using a combination of structure-based
(resp. sequence-based) and interaction profile-based similarity measures for the molecules (resp. proteins).

In a later work [115], they extended this similarity measure to compounds for which no interaction is
know via the procedure of Mei et al. [132] to build interaction profiles of compounds and proteins with no
known interactions, and named this method WNN-GIP [115].

The bipartite network approach addresses the central issue of the Kronecker product approach, that is
to say, the computational burden triggered by the very high dimension of the Kronecker product of the two
spaces. However, the information-sharing process of the bipartite network approach may be less effective.
Bleackley and Yamanishi have however shown that both approaches lead to similar performances on the
Yamanishi dataset [131].

Matrix factorisation

Matrix factorisation (MF) approaches decompose the interaction matrix that lives in the (protein, molecule)
space into the product of matrices of lower rank, living in the two latent spaces of proteins and molecules.

The main idea of Matrix Factorisation is to project the data into a low-dimensional representation space,
named ’pharmacological space’, that is used to make predictions. The low-dimensional representations of
drug compounds and target proteins in the pharmacological space are used to calculate the interaction
scores. Yamanishi et al. [129] first proposed this kind of approach by projecting drugs and targets into a
pharmacological space based on the eigenvalue decomposition of the graph-based similarity matrix.

The most recent and efficient MF-based approach, named Neighbour Regularised Logistic Matrix Fac-
torisation [136] (NRLMF), consider more specifically Logistic Matrix Factorisation [155]. A specific feature
of the NRLMF method is that it integrates a neighbourhood regularisation method, which allows taking into
account only the nearest neighbours to predict a given (protein, ligand) interaction. They display excellent
performances and are also computationally efficient. Note that the NRLMF approach is also generalised to
orphan molecules and proteins, by computing latent representations of orphan molecules and proteins as a
weighted sum of the latent representation of their neighbours.

As being one of the most recent papers considering similarity-based predictor for DTI prediction while
providing a comparison with state-of-the-art methods implemented into a python library, we display in Ta-
ble 3.1 the results reported in the original paper [136]. We observe that the proposed method NRLMF out-
performs some of the other state-of-the-art methods on the Yamanishi benchmark dataset. Therefore, this
method is used in the next chapters as "state-of-the-art", to compare the proposed approaches for drug
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virtual screening.
However, this gold-standard dataset is a relatively small dataset (see Section 2.3) and does not allow to

truly compare the proposed approaches, as the performances are extremely good, almost reaching the upper
limit. Thus, we build a larger gold-standard dataset that is more suitable to compare methods in more
realistic situations, as presented in chapter 4.

ROCAUC
Dataset BLM-NII WNN-GIP KBMF2K NRLMF
Nuclear Receptor 0.905± 0.023 0.901± 0.017 0.877± 0.023 0.950± 0.011
GPCR 0.950± 0.006 0.944± 0.005 0.926± 0.006 0.969± 0.004
Ion Channel 0.981± 0.002 0.959± 0.003 0.961± 0.003 0.989± 0.001
Enzyme 0.978± 0.002 0.964± 0.003 0.905± 0.003 0.987± 0.001
Avg. 0.942 0.917 0.974

AUPR
Dataset BLM-NII WNN-GIP KBMF2K NRLMF
Nuclear Receptor 0.659± 0.039 0.589± 0.034 0.534± 0.050 0.728± 0.041
GPCR 0.524± 0.024 0.520± 0.021 0.578± 0.018 0.749± 0.015
Ion Channel 0.821± 0.012 0.717± 0.020 0.771± 0.009 0.906± 0.008
Enzyme 0.752± 0.011 0.706± 0.017 0.654± 0.008 0.892± 0.006
Avg. 0.689 0.633 0.634 0.819

Table 3.1. The AUC and AUPR obtained on the gold-standard Yamanishi dataset (results from [136]). BLM-NII [132] is the
extension of the bipartite local model introduced in the previous paragraph. WNN-GIP [115] is a very similar methods that
makes use of the Gaussian interaction kernel introduced in the previous paragraph. KBMF2K [133] is a probabilistic matrix
factorisation approach (we introduce in the next paragraph).

Probabilistic Matrix Factorisation

The Bayesian equivalent of matrix factorisation, namely "Probabilistic Matrix Factorisation" (PMF), has
also been successfully applied to DTI prediction.

In particular, Gonen et al. [133] projected drug compounds and target proteins into a unified subspace,
using the kernels calculated from chemical and genomic data, respectively. The contribution of Gonen. et
al. is that matrices are defined as random variables, which leads to a probabilistic inference. Later work by
Gonen and Kaski extends the method to multiple side information sources expressed as different kernels [134].

Another study from Bahar et al. [156] applies PMF directly to the interaction matrix describing the
bipartite interaction network. Such drug-target pair inferences, independent of 2D/3D structure comparison,
implies that the latent variables defined by the factorisation capture some patterns of drugs that are relevant
for the DTI prediction problem. Following Laarhoven et al. [114], this work shows that DTI network-based
similarity measures can perform as well as structure-base (resp. sequence-based) similarity measures for
chemicals (resp. proteins) on DTI prediction.
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Random Forest

Some studies [157, 158] considered the Random Forest (RF) algorithm [159] (see appendix A.4).
RF was found slightly less efficient than SVM for DTI prediction [157]. However, it is difficult to draw a

final conclusion, because this work does not use molecule and protein descriptors that could be considered
entirely relevant by the community.

Shallow artificial networks

Shallow artificial networks are artificial neuron networks with a maximum of one hidden layer. One of the
most interesting works in shallow neuron networks for DTI prediction is the study of Swamidass et al. [160].
They developed the Influence Relevance Voter (IRV) method, a low-parameter neuron network that refines
a k-nearest neighbour classifier, by non-linearly combining the influences of chemical’s neighbours in the
training set.

IRV uses a pre-processing step during which all the neighbours of a test molecule are identified, and a
processing step during which information from each neighbour is fed into a neuron network to produce a
prediction.

The IRV method outperforms basic SVM regarding ranking metrics. In addition, its output predictions
have a probabilistic semantic.

More recently, another shallow neuron network type, named Restricted Boltzmann machines [161] (RBM),
have been successfully applied to DTI detection. An RBM is a two-layer graphical model that can be used
to learn a probability distribution over input data [161].

When applied to DTI prediction, Wang and Zeng [42] built a specific RBM for each target, with the same
number of hidden units and the same definitions of visible units. This means that the RBMs for all targets
use the same parameters between hidden and visible layers. Moreover, they segregated direct and indirect
interactions by adding edge properties to their network, and by using data of the Matador database[43]. The
proposed method was compared only with a simple logic-based approach, and it performed better.

Ensemble methods and meta-classifiers

Recently, He et al. [162] presented a gradient boosting machine learning method for DTI prediction which
outperformed the KronRLS approach on the Davis dataset (68 drugs for 442 targets) and the Kiba dataset
(2116 drugs for 229 targets). Although they said to use various sources of features, they only considered
similarity based descriptors for both molecules and targets. Such boosting algorithm is an ensemble model,
which trains a ensemble of "weak learners" (trainable in parallel to reduce the training time) to achieve a
good accuracy.

From a general perspective, the machine learning Kaggle Challenges winners are mainly ensemble of
predictors. For many prediction problems, ensemble approaches were reported to outperform any of their
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individual predictors, in particular for DTI prediction [151]. Ensembles of predictors make their final predic-
tion by combining the prediction of several predictors. Combining predictions refers to averaging in the case
of a regression problem, and "majority voting" or "highest probability selection" in the case of a classification
problem.

A general solution for combining several predictors is to consider a meta-predictor performing the final
prediction, based on the prediction scores of individual predictors. For instance, Zhang et al. [163] considered
an SVM as meta-classifier for DTI prediction, i.e. a SVM classifier making its final prediction by processing
as input the prediction scores of bases classifiers working on the input data features (weighted profile, GIP,
LapRLS et Network Inference in this study).

Sparse Canonical Correspondence Analysis

Yamanishi et al. [41] investigated the problem of prediction interpretability by considering the Sparse Canon-
ical Correspondence Analysis (SCCA) for DTI prediction.

It is the sparse extension of CCA, obtained by adding a constraint on the learned weights. CCA considers
weighted linear combinations of molecule and protein descriptors and seeks the weights maximising the
correlation between molecule and proteins descriptors and the output (interacting/ non interacting). This
method did not outperform SVM with the Kronecker product of the genomic and chemical spaces, but it
can identify the underlying associations between drug chemical substructures and protein functional sites
which are involved in the predicted drug-target interactions, and therefore, provides interpretable results.

Multi-kernel learning

To conclude, we mention the "Multi-Kernel Learning" (MKL) framework. Although promising, it has not
been widely exploited in the context of virtual screening [164, 165, 166, 167].

The interested reader can find a brief survey of multi kernel learning for DTI prediction in appendix B.
Note however that we do not use such approaches later in this thesis. Nevertheless, we refer to multi-kernel
learning all along the remaining of the manuscript, since we think it it is a valuable direction of research to
enhance drug virtual screening.

Conclusions on previous contributions in DTI prediction

Drug specificity prediction enables to address the main bottleneck of the drug design process which is
the toxicity of promising compounds. Indeed, adverse drug reactions, also called side effects, range from
mild to fatal clinical events and significantly affect the quality of care. Among other causes, side effects
occur when drugs bind to proteins other than their intended target. Moreover, experimentally testing drug
specificity against the entire proteome is out of reach so that there is a need for chemogenomics approaches,
i.e. proteome-wide drug-target interaction prediction. Chemogenomics is also a very valuable tool for drug
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repositioning, since a side-effect in a pathology can be a therapeutic effect in another, as will be discussed
in chapter 5.

To this end, various chemogenomics methods have been proposed in the last decade [129, 135, 131, 130,
107, 109, 150, 151, 114, 115, 132, 152, 153, 133, 136].

However, most of previous studies in the field of predicting interactions between proteins and molecules
were restricted to proteins belonging to the same family, such as kinases or GPCRs [168, 129, 95, 114, 115,
132, 152, 153, 133, 136]. A few studies were devoted to larger scales in the protein space, such as [151] which
however did not consider settings relevant to the prediction of drug specificity, that is to say, druggable
proteome-wide prediction.

In this perspectives, we formalise and solve, in the next chapter, the problem of proteome-wide drug-
target interaction prediction with Support Vector Machines (SVM), a successful algorithm for learning a
classification or a regression rule from labelled examples [169].

Moreover, we build several benchmark datasets for chemogenomics, and propose NN-MT, a multitask
Support Vector Machine (SVM) algorithm that is trained on a limited number of data points, in order to
solve the computational issues or proteome-wide SVM for chemogenomics.



Chapter 4

An efficient kernel-based approach for proteome-
wide drug virtual screening

Abstract: Since we are interested in drug specificity prediction, we formulate the study of drug-target
interaction prediction at the proteome scale. We build several benchmark datasets, and propose NN-MT, a
multi-task Support Vector Machine algorithm that is trained on a limited number of data points, in order to
solve the computational issues of proteome-wide SVM for chemogenomics. We compare NN-MT to different
state-of-the-art methods, and show that its prediction performances are similar or better, at an efficient
calculation cost. Compared to its competitors, the proposed method is particularly efficient to predict (protein,
ligand) interactions in the difficult double-orphan case, i.e. when no interactions are previously known for
the protein nor for the ligand. The NN-MT algorithm appears to be a good default method providing state-
of-the-art or better performances, in a wide range of prediction scenario that are considered in this chapter:
proteome-wide prediction, protein family prediction, test (protein, ligand) pairs dissimilar to pairs in the
train set, and orphan cases. The work described in this chapter has been published as joint study [50] with
Chloé-Agathe Azencott and Véronique Stoven in the PlosOne Computational Biology journal.

Résumé: Puisque nous nous intéressons à la prédiction de la spécificité des médicaments, nous formulons
l’étude de la prédiction de l’interaction médicament-cible à l’échelle du protéome. Dans ce chapitre, nous
construisons plusieurs jeux de données de référence et proposons NN-MT, un algorithme multi-tache basé
sur un nombre limité de points de données, afin de résoudre les problèmes de calcul de l’application de SVM
à l’échelle du protéome pour la chimiogénomique. Nous montrons que NN-MT est une bonne méthode par
défaut offrant des performances de pointe ou meilleures, dans un large éventail de scénarios de prédiction pris
en compte dans ce chaptire : la prédiction à l’échelle du protéome, de la famille de protéines, et dans le case où
les paires (protéine, ligand) de test sont dissemblables des paires dans le jeux de donnée d’entrainement. Les
travaux présentés dans ce chapitre ont été publiés sous la forme d’un article [50] co-signé avec Chloé-Agathe
Azencott et Véronique Stoven.

52
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The goal of this chapter is to investigate the application of multitask Support Vector Machines (SVM)
to the prediction of drug specificity, by predicting interactions between the drug of interest and the entire
druggable proteome. To this end, we evaluate our multitask SVMs based methods and state-of-the-art
approaches in several key scenario that explore the impact of the similarity between the query (protein,
molecule) pair and the training data on the prediction performance, a point that is rarely discussed in the
literature. We also explore their applicability to orphan settings, a situation often encountered large scale
studies, and where single-task methods are not applicable.

Predecessors of our approach include Support Vector Machine (SVM) [135], kernel Ridge Linear Regres-
sion (kernelRLS) [129, 114, 115, 131, 132], and matrix factorisation (MF) [133, 153, 136].

We first discuss how to generate negative training examples, and we optimise protein and molecule kernels
in the spaces of drug-like molecules and druggable proteins. Our observations lead us to propose the NN-
MT algorithm, a multitask SVM for chemogenomics that is trained on a limited number of data points: for
a query (protein, molecule) pair (p∗,m∗), the training data is composed of (1) all intra-task (protein, ligand)
pairs defined by pairs (p,m) with either p = p∗ or m = m∗; (2) a limited number of extra-task (protein,
ligand) pairs, defined by pairs (p,m) with p 6= p∗ and m 6= m∗, chosen based on the similarity of p and m
to p∗ and m∗, respectively; and (3) randomly picked negative examples (about ten times more than positive
training pairs).

While the applicability of multitask approaches can be limited in practice by computational times, our
approach only requires training on a dataset of size similar to those used by single-task methods. We evaluate
the performance on various assembled datasets in which the protein and/or the ligand are orphan.

In a second phase, we compare the NN-MT algorithm to state-of-the-art approaches in drug-target
interaction prediction [114, 115, 132, 152, 153, 133, 136]. We used and updated the PyDTI package [136],
adding an implementation of NN-MT together with key cross-validation schemes and a DrugBank-based
dataset built in the present study. Based on all other experiments performed in the present chapter, this
benchmark study concludes that NN-MT is a good default method providing state-of-the-art or better
performances, in a wide range of prediction scenario that can be encountered in real-life studies: proteome-
wide prediction, protein family prediction, test (protein, ligand) pairs dissimilar to pairs in the train set, and
orphan cases.

Finally, we illustrate the suitability of NN-MT to study the specificity of drug-like molecules in real-life
situations by applying it to suggest secondary targets for 36 recently withdrawn drugs. In 9 cases, we were
able to link the first ranked predicted secondary target to the side effect responsible for the withdrawal of
the drug.

All codes and all the datasets that were built are available at https://github.com/bplaye/efficient_

MultiTask_SVM_for_chemogenomics/. The updated PyDTI package is available at https://github.com/

bplaye/PyDTI/.

https://github.com/bplaye/efficient_MultiTask_SVM_for_chemogenomics/
https://github.com/bplaye/efficient_MultiTask_SVM_for_chemogenomics/
https://github.com/bplaye/PyDTI/
https://github.com/bplaye/PyDTI/
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Furthermore, the numerical values of performance associated to the performances plots on this chapter
can be found in Supporting Information of the original paper[50].

4.1 Materials and methods

Our contributions in the present study belong to the category of methods that we briefly review in the
following.

4.1.1 Kernel methods for chemogenomics

Intuitively, SVMs seeks to find the optimal hyperplane separating two classes of data points. In addition
to the choice of kernels, SVMs requires an important regularisation parameter classically called C. This
parameter controls the trade-off between maximising the margin (i.e. the distance separating the hyperplane
and the classes distributions) and classification errors on the training points. A deeper intuition on how
SVM works and how this regularisation parameters plays its role is given in appendix A.5. Additionally,
although SVMs can be solved from vector representations of the data, they can also be solved using the
"kernel trick", based only on the definition of a kernel function K which gives the similarity value K(x, x′)
between all pairs of data points x and x′, without needing an explicit representation of the data. Many
kernels have been proposed for molecules and for proteins, and an overview of such kernels is presented in
the Material and Methods section.

In chemogenomics, our goal can be viewed as finding the optimal hyperplane that separates the pairs
(m, p) of molecules and proteins that interact from those that do not interact. This classification task can
be solved using an SVM with a kernel Kpair defined on (ligand, protein) pairs. Given N example pairs,
solving the SVM in the space of (m, p) pairs using the Kpair kernel corresponds to finding the optimal αi
coefficients such that (cf. appendix A.5):

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjKpair((mi, pi), (mj , pj)) (4.1a)

subject to αi ≥ 0,∀i = 1, . . . , N (4.1b)
N∑
i=1

αiyi = 0 (4.1c)

A general method to build a kernel on such pairs is to use the Kronecker product of the molecule and
protein kernels [170]. Given a molecule kernel Kmolecule and a protein kernel Kprotein, the Kronecker kernel
Kpair is defined by:

Kpair((m, p), (m′, p′)) = Kmolecule(m,m′)×Kprotein(p, p′)

Thus, the Kronecker kernel Kpair captures interactions between features of the molecule and features of
the protein that govern their interactions.If Kmolecule is a n× n matrix and Kprotein is a p× p matrix, their

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204999#sec031
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Kronecker product Kpair has size np× np. In the context of chemogenomics, this can correspond to a very
large size, leading to intractable computations. However, one interesting property of the Kronecker kernel is
that calculating its values on a data set of (m, p) pairs does not require storing this entire matrix since it is
sufficient to store Kmolecule(m,m′) and Kprotein(p, p′).

Therefore, solving the SVM (equation 4.1) only requires calculation of the Kmolecule and Kprotein kernels
according to equation 4.1.1.

Once the αi coefficients have been determined, the ability of a given (m, p) pair to interact is predicted
based on:

f((m, p)) = sign
(

np∑
i=1

αiyiKmolecule(m,mi).Kprotein(p, pi) + b

)
This equation illustrates why the use of such a kernel can be viewed as a multitask method. Indeed, in a

single-task approach where one task corresponds to the prediction of ligands for a given protein p, the ability
of molecule m to bind protein p would be estimated by:

f(m) = sign
(

n∑
i=1

αiyiKmolecule(m,mi) + b

)
where the mi molecules are ligand and non-ligand molecules known for protein p.

In the multitask framework, f((m, p)) evaluates the ability of m to bind to protein p using mi molecules
that are all ligand or non-ligand molecules known for all proteins pi. However, the contribution of the labels
yi of ligands for pi proteins that are different from p to calculate f((m, p)) is weighted by Kprotein(p, pi). In
other words, the more similar two tasks (i.e. the corresponding proteins) are, the more known instances for
one of the task will be taken into account to make predictions for the other task.

Such kernel-based multitask approaches have been successfully applied to biological problems, including
the prediction of protein-ligand interactions[171, 18, 135, 112].

4.1.2 Protein kernels

We used sequence-based kernels since they are suitable for proteome-wide approaches, unlike kernels relying
on the 3D structure of the proteins or on binding pocket descriptions. Numerous studies have already been
devoted defining descriptors of proteins based on amino-acid sequence [172, 71, 72, 80, 73]. We considered
three sequence-based kernels: the Profile kernel [73], the SWkernel, and the LAkernel.

The Profile kernel uses as protein descriptors the set of all possible subsequences of amino acids of a
fixed length k, and considers their position-dependent mutation probability. This kernel is available at
http://cbio.mskcc.org/leslielab/software/string_kernels.html.

We also used two kernels that rely on local alignment scores. The first one is directly based on the Smith-
Waterman (SW) alignment score between two proteins [76] and is called the SWkernel in the present paper.
SW scores were calculated with the EMBOSS Water tool available at http://www.ebi.ac.uk/Tools/psa/

http://cbio.mskcc.org/leslielab/software/string_kernels.html
http://www.ebi.ac.uk/Tools/psa/emboss_water/
http://www.ebi.ac.uk/Tools/psa/emboss_water/
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emboss_water/. We built a kernel based on the SW score matrix by subtracting its most negative eigenvalue
from all diagonal values.

We also used the Local Alignment kernel (LAkernel) [80] which mimics the behavior of the SW score.
However, while the SW score only keeps the contribution of the best local alignment between two sequences
to quantify their similarity, the LAkernel sums up the contributions of all possible local alignments, which
proved to be efficient for detecting remote homology [80]. This kernel is available at http://members.cbio.

mines-paristech.fr/~jvert/software/.

Kernel hyperparameters values. The Profile kernel has two hyperparameters: the size k of the amino
acid subsequences that are searched and compared, and the threshold t used to define the probabilistic
mutation neighbourhoods. We considered k ∈ {4, 5, 6, 7} and t ∈ {6, 7.5, 9, 10.5}. The SWkernel also has
two hyperparameters: the penalties for opening a gap (o) and for extending a gap (e). We considered
o ∈ {1, 10, 50, 100} and e ∈ {0.01, 0.1, 0.5, 1, 10}. The LAkernel has three hyperparameters: the penalties for
opening (o) and extending (e) a gap, and the β parameter which controls the importance of the contribution
of non-optimal local alignments in the final score. We considered o ∈ {1, 20, 50, 100}, e ∈ {0.01, 0.1, 1, 10},
and β ∈ {0.01, 0.5, 0.05, 0.1, 1}. All kernels hyperparameters were optimised by cross-validation (see Sec-
tion 4.1.4). All protein kernels were centered and normalised.

In the last part of the chapter, we also consider kernels on proteins based on their family hierarchy.
Indeed, the most important classes of drug targets have been organised into hierarchies established on the
sequence and the function of the proteins within these families (GPCR [173], kinases [174] and ion channels
[175]). As in [135], the hierarchy kernel is built based on the number of common ancestors shared by two
proteins in the hierarchy. More precisely, Khierarchy(t, t′) = 〈φ(t), φ(t′)〉, where φ(t) is a binary vector for
which each entry corresponds to a node in the hierarchy and is set to 1 if the corresponding node is part of
t’s hierarchy and 0 otherwise.

4.1.3 Molecule kernels

Many descriptors have been proposed for molecules, based on physico-chemical and structural properties
[87, 88, 91, 97]. To measure the similarity between molecules, we considered two state-of-the-art kernels
based on molecular graphs that represent the 2D structure of the molecules, with atoms as vertices and
covalent bonds as edges. Both kernels compute similarities between molecules via the comparison of linear
fragments found in their molecular graphs. They are available at http://chemcpp.sourceforge.net/.

The first one, called the Marginalized kernel[91], calculates the similarity between two molecules based
on the infinite sets of random walks over their molecular graphs.

The second kernel, called the Tanimoto kernel, uses a description of molecules by vectors whose elements
count the number of fragments of a given length. The similarity between molecules is based on the Tanimoto
metric [87].

http://www.ebi.ac.uk/Tools/psa/emboss_water/
http://www.ebi.ac.uk/Tools/psa/emboss_water/
http://www.ebi.ac.uk/Tools/psa/emboss_water/
http://members.cbio.mines-paristech.fr/~jvert/software/
http://members.cbio.mines-paristech.fr/~jvert/software/
http://chemcpp.sourceforge.net/
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Kernel hyperparameters values. The Marginalized kernel has two hyperparameters: the stopping prob-
ability (while building a path) q in {0.01, 0.05, 0.1, 0.5}, and the Morgan Index (MI) in {2, 3, 4}. For both
kernels, hyperparameters were selected by cross-validation (see Section 4.1.4). The Tanimoto kernel has one
hyper-parameter: the length d of the paths, which we considered in {2, 4, 6, 8, 10, 12, 14}. All molecule
kernels were centered and normalised.

4.1.4 Evaluation of prediction performance

When hyperparameters had to be selected, we used a nested cross validation (Nested-CV) scheme [176]. It
consists in a (K-1) folds cross validation (inner-CV) nested in a K folds cross validation (outer-CV). At each
step of the outer-CV, the inner-CV is repeated for all considered values of the hyperparameters. The values
leading to the best prediction performance are retained as optimal. We used K=5, a classical value in CV.

We also considered leave-one-out cross-validation (LOO-CV ), for which the number of folds is the number
of available points in the dataset. The LOO-CV scheme is particularly useful when the number of samples
is small. It was used in the present paper when the size of the considered dataset was too small to perform
5-fold-CV .

We estimated prediction performance using two scores that are classically employed to judge the quality
of a classifier in case of drug-target interaction prediction. The first one is the area under the Receiver
Operating Characteristic curve [177] (ROCAUC). The ROC curve plots true positive rate as a function of
false positive rate, for all possible thresholds on the prediction score. Intuitively, the ROCAUC score of a
classifier represents the probability that if a positive and a negative interaction are each picked at random
from the dataset, the positive one will have a higher positive score than the negative one. The second
one is the area under the Precision-Recall curve [178] (AUPR). It indicates how far the prediction scores
of true positive interactions are from false positive interactions, on average. Although we used both the
ROCAUC and AUPR scores, since negative interactions are actually unknown interactions in protein-ligand
interaction datasets, the AUPR is considered a more significant quality measure of the prediction method
than the ROCAUC. Indeed, it emphasises the recovery of the positive samples and penalises the presence of
false positive examples among the best ranked points.

4.1.5 Datasets

Many publicly available databases such as KEGG Drug [118], DrugBank [11], or ChEMBL [10] can be
used to build a learning dataset of protein-ligand interactions. We chose to build all the datasets used
in the present chapter from the DrugBank database v4.3, because it contains FDA-approved drugs, or
drug candidate molecules. This allowed optimise and test our models on drug-like molecules, on which they
intend be applied. In addition, we assumed that the list of human proteins appearing as targets for molecules
of DrugBank can represent a relevant "druggable" human proteome on which we could train models that
predicting the specificity of drug-like molecules.
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We built a first learning dataset called S, based on Version 4.3 of the DrugBank [11]. We selected all
molecules targeting at least one human protein, and having a molecular weight between 100 and 600 g.mol−1,
a range in which most small molecule marketed drugs are found [23]. This leads to a dataset composed of
3 980 molecules targeting 1 821 proteins, and including 9 536 protein-ligand interactions that correspond to
the positive training pairs. All other protein-ligand pairs are unlabeled because no interactions were recorded
for them in the database. Most of these pairs are expected not to interact, but a small number of them are
in fact missing interactions. However, we considered that all unlabeled pairs as negative examples, allowing
the predictor to re-classify some of these pairs as positive examples.

We built several other datasets using exactly the same training pairs as those in S, but 5-folded in various
ways. Datasets S1, S2, S3, and S4 are folded so as to correspond to random, orphan protein, orphan ligand,
and double orphan prediction situations. The construction of these four datasets is detailed in Section 4.2.2,
where they are used. Datasets S′1, S′2, S′3, and S′4 are also folded to mimic the same situations, but with
the additional constraint that proteins and ligands were clustered based on their similarities, and each fold
contains only one cluster of proteins and of ligands. The goal is to test the performance of the method in
situations similar to those of S1, S2, S3, and S4, but with the added difficulty that the test set (one fold)
and the train set (the 4 other folds) contain pairs that have low similarities. This setting is relevant when
considering proteome-wide predictions: many of the proteins to consider may not have close neighbours
among the proteins for which the most information (i.e. ligands) are known. The construction of these four
datasets is detailed in Section 4.2.3, where they are used.

We also built a dataset called S0 by keeping only molecules and proteins in S which are involved at least
in two interactions, in order to compare the prediction performance of the proposed methods with those
of ligand-based and target-based approaches. Indeed, these two single-task approaches require at least two
data points, one used as train, and one as test. Consequently, when a LOO-CV scheme is used, no ligand
and no protein are orphans in S0. S0 contains 5 908 positive interactions and was used in Sections 4.2.4
and 4.2.5. In addition, we randomly generated four sets of 5 908 negative interactions involving proteins and
ligands found in the positive interactions, while ensuring that each protein and each ligand are present in
the same number of positive and negative interactions. Then, we assessed performance by computing the
mean and standard deviation of the AUPR scores over test sets including the positive interactions set and
one of the negative interactions sets.

Finally, we built three protein family datasets by extracting from S0 all protein-ligand interactions involv-
ing respectively only G-Protein Coupled Receptors (GPCR set), ion channels (IC set), and kinases (Kinases
set). These datasets were used to evaluate performance of our method within a family of proteins, and
compare it to those of single-task approaches. They were extracted from S0 (and not from the larger dataset
S) since again, these comparisons used the LOO-CV scheme, which requires at least two data points per
protein and per molecule.

Table 4.1 gives some statistics about the datasets, including the distribution of targets per drug and the
distribution of ligands per protein.
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S S0 GPCR IC Kinases

number of interactions 9 536 5 908 1 735 1 603 847
number of proteins 1 821 788 85 140 143
number of molecules 3 980 1 180 482 295 577
number of targets per drug (mean/median) 5.2/2 7.5/3 20.3/6 5.9/3 11.5/4
number of targets per drug (min – max) 1− 136 2− 82 1− 86 1− 67 1− 136
number of ligands per protein (mean/median) 2.4/1 5.0/3 3.6/3 5.4/3 1.5/7
number of ligands per protein (min – max) 1− 70 2− 48 1− 31 1− 26 1− 18

Table 4.1. Dataset statistics

4.2 Results and discussion

4.2.1 Kernel selection and parametrisation

The goal of this section is to choose a protein kernel and a molecule kernel that we will use throughout
the remainder of this study. We assumed that kernels optimised on a large dataset of interactions between
drug-like molecules and druggable human proteins such as dataset S would be good default kernels for the
prediction of drug candidates specificity. Therefore, we optimised kernels on dataset S (the largest dataset
built in the present study), and used the best-performing couple of kernels in the remainder of the paper.

The set of (protein, ligand) pairs in S were randomly 5-folded, and we performed a nested 5-fold-CV ex-
periment in order to evaluate the six possible kernel combinations and their best hyperparameters.

Kernels Tanimoto Marginalized

LAkernel
AUPR = 0.938± 0.001 AUPR = 0.930± 0.001
Tanimoto: d = 14 Marginalized: q = 0.1, MI=4
LAkernel: o = 20, e = 1, β = 1 LAkernel: o = 20, e = 1, β = 1

SWkernel
AUPR = 0.878± 0.002 AUPR = 0.868± 0.002
Tanimoto: d = 6 Marginalized: q = 0.1, MI=2
SWkernel: o = 100, e = 0.01 SWkernel: o = 50, e = 10

Profile
AUPR = 0.941± 0.001 AUPR = 0.935± 0.001
Tanimoto: d = 8 Marginalized: q = 0.1, MI=2
Profile: k = 5, t = 7.5 Profile: k = 4, t = 6

Table 4.2. Best nested 5-fold-CV AUPR for each kernel combination, together with optimal hyperparameters.

Table 4.2 gives the best prediction performance for the six combinations of protein and molecule kernels,
together with the corresponding hyperparameters. All protein kernels gave the best AUPR when coupled to
the Tanimoto kernel. The Marginalized kernel obtained good performance only when coupled to the Profile
kernel. Overall, the Profile kernel (k = 5, t = 7.5) associated to the Tanimoto kernel (d = 8) gave the best
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performance. Therefore, in what follows, we only consider these two kernels, and call MT the MultiTask
SVM that uses their Kronecker product.

We also considered one-class SVM using the same kernels [33]. However, the performance of one-class
SVM were clearly lower than those of KronSVM. The AUPR scores of one-class SVM were in the range of
0.6 for all considered kernels when those of KronSVM were in the range of 0.9. Therefore, we did not further
consider one-class SVM.

It is worth noting that the SW-kernel gave the worst performance, although it is used in many studies
[129, 114, 132, 109]. Overall, the good performance of the six multitask methods observed on S is consistent
with previously reported results [132, 151]. However, S was built from the DrugBank, which is mostly fuelled
by application-specific screens of either related proteins or related small molecules. Therefore, (protein,
ligand) pairs of the test sets will usually have close pairs in the train set (i.e. pairs involving the same or
similar proteins and ligands), which will facilitate the prediction. The performance in real-case prediction
of drug specificity is expected to be lower than that obtained on S, since at the proteome scale, some of the
test (protein, ligand) pairs will be far from all pairs of the train set. This will be particularly true in the
case of new drugs and therapeutic targets, as already pointed by [168].

The question of interest is now to which extent the proposed MT method is effective to make predictions
on more challenging situations that are relevant in the context of drug specificity prediction. Therefore, in
the following, we study the evolution of MT’s performance in more realistic settings where the protein, the
molecule, or both, are orphan, or where the tested (protein, ligand) pair has low similarity with the pairs
belonging to the train set.

4.2.2 Performance of multitask approaches in orphan situations

The goal of this section is to evaluate the performance of MT in cases where the queried (protein, molecule)
pairs contain proteins and/or molecules that are not in the training set, as proposed by [168]. For that
purpose, all the pairs of dataset S were used and 5-folded as follows in order to create four cross-validation
data sets :

• S1: randomly and balanced in positive and negative pairs;

• S2 (corresponding to the “orphan ligand” case): (protein, molecule) pairs in one fold only contain
molecules that are absent from all other folds; prediction on each test set (each fold) is performed
using train sets (the four other folds) in which no the ligands of the test set are absent.

• S3 (corresponding to the“orphan protein” case): (protein, molecule) pairs in one fold only contain
proteins that are absent from all other folds; prediction on each test set is performed using train sets
in which no the proteins of the test set are absent.

• S4 (corresponding to the“double orphan” case): (protein, molecule) pairs in one fold only contain
proteins andmolecules that are both absent from all other folds. Prediction on each test set is performed
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using train sets in which no the proteins and the ligands of the test set are absent. The folds of S4

were built by intersecting those of S2 and S3. Thus, S4 contains 25 folds and not 5.
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Figure 4.1. nested 5-fold-CV performance of the MT method on the S1 − S4 datasets.

Fig 4.1 shows the nested-CV ROCAUC and AUPR scores obtained by the MT method on the S1-S4

datasets. As expected, the best scores are obtained for S1, and the worst for S4, since in S4, no pairs of the
train set contain the protein or the ligand of the tested pair to guide the predictions. The loss of performance
between the random and the double orphan settings is about 0.12 both in ROCAUC and AUPR. However,
the performance on the S4 dataset remains well above those of a random predictor. These results confirm that
MT chemogenomics can make predictions for (protein, ligands) pairs made of unseen proteins and unseen
ligands, even in datasets containing very diverse types of proteins. This confirms previous observations
made on less diverse datasets [168]. It is important to point that single-task approaches would not be able
to provide any prediction on the S4 dataset.

The scores obtained in the S2 and S3 datasets are intermediate between those observed on S1 and S4.
This was to be expected, as in these datasets, the algorithm can rely on training pairs containing either
the same proteins (S2) or the same ligands (S3) as the test set. The ROCAUC and AUPR scores are both
slightly better for S3 than for S2, which suggests that predicting ligand for new protein targets is easier
than predicting targets for new compounds, as already noticed in [168]. We also observed similar behaviours
when replacing the SVM with a kernel ridge regression (see Fig 4.2) and hence did not further consider this
algorithm.
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Figure 4.2. Scores of MT SVM chemogenomics on datasets S1 − S4, obtained with the 5-fold CV scheme.

Overall, our results suggest that the performance of MT is driven by known (protein, molecule) pairs that
are similar to the query pair, in the sense that they share either their protein or their molecule. In the next
section, we will evaluate how the actual similarity between query and train pairs influences the prediction
performance of this multitask algorithm.

4.2.3 Impact of the similarity of the training examples to the test set

To evaluate the impact on performance of the dissimilarity between training and test pairs, we re-folded the
pairs of S following the "clustered cross-validation" approach [179]. More precisely, we clustered proteins
(resp. ligands) into 5 clusters by hierarchical clustering [180]. We then built four cross-validation datasets,
S′1−S′4, generated based on folds similarly as S1−S4, but with the added constraint that all pairs in a given
fold are made of proteins from a single protein cluster and ligands from a single ligand cluster. Therefore,
test pairs are more dissimilar from train pairs than in the S1 − S4 datasets, which makes the problem more
difficult.

Overall, all the pairs of dataset S were 5-folded as follows in order to create four cross-validation data
sets :

• S′1: randomly and balanced in positive and negative pairs, each fold containing proteins and ligands
belonging to the same cluster;

• S2’ (corresponding to the “orphan ligand” case): (protein, molecule) pairs in one fold only contain
molecules that are absent from all other folds; prediction on each test set (each fold) is performed
using train sets (the four other folds) in which no the ligands of the test set are absent, with the
additional constraint that each fold contains proteins and ligands belonging to the same cluster.

• S′3 (corresponding to the “orphan protein” case): (protein, molecule) pairs in one fold only contain
proteins that are absent from all other folds; prediction on each test set is performed using train sets in
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which no the proteins of the test set are absent, with the additional constraint that each fold contains
proteins and ligands belonging to the same cluster.

• S′4 (corresponding to the “double orphan” case): (protein, molecule) pairs in one fold only contain
proteins andmolecules that are both absent from all other folds. Prediction on each test set is performed
using train sets in which no the proteins and the ligands of the test set are absent, with the additional
constraint that each fold contains proteins and ligands belonging to the same cluster. The folds of S4

were built by intersecting those of S2 and S3 and S4. Thus, S4 contains 25 folds and not 5.
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Figure 4.3. nested 5-fold-CV performance of the MT method on the S′1 − S′4 datasets.

We used the same kernels as for the MT method. Fig 4.3 shows the prediction performance of MT on
these new cross-validation folds. For all the datasets, we observed a strong decrease in prediction scores with
respect to those obtained on the corresponding S1 − S4 datasets.

This suggests that good performance on a query pair (p∗,m∗) is driven by the presence in the training
set of pairs made both of proteins similar to p∗ and of molecules similar to m∗, even if the query pair (p∗,m∗)
is a double orphan, as in S4. Our results also suggest that it is more important to train on pairs similar to
the double orphan query pair (p∗,m∗), as in S4, than on data containing, for example, p∗ itself, but paired
only with molecules quite dissimilar to m∗, as in S′2.

In the most difficult case of S′4, the performance is even lower than that of a random predictor, which
would display an ROCAUC of 0.5. This is somewhat intriguing. One explanation could be that, when the
data points are randomly dispatched in the folds used to build the train and test sets, this value is of 0.5
can be considered as a baseline.

In the case of S’4, the folds are built using clustered protein-ligand pairs, so that the data distribution
in the test set (one of the clusters/folds) may be different from the data distribution in the train set (the
remaining samples). This explains why a machine-learning algorithm like MT is unable to learn a model
that is relevant for the test set. In other words, the baseline performance expected when systematically
learning on differently distributed data might be worse than that observed by a random predictor.
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These results suggest that pairs in the training set that are very dissimilar to the query pair do not help
making more accurate predictions. In other words, although the kernels used in multitask approaches mod-
ulates how information available in one task is shared for training other tasks (the further the tasks are, the
less information is shared), using information from distant tasks seems to degrade performance. This insight
is interesting since the MT algorithm requires calculating the Kronecker kernel on all (protein, molecule)
pairs, which is computationally demanding. Therefore, the next two sections evaluate whether removing
distant pairs from the training set can improve computational efficiency without degrading performance.

4.2.4 Multitask approaches on reduced training sets

Based on the insight that MT prediction is driven by training examples that are close to the query data,
we propose to build training tests of reduced sizes by removing training examples distant from the query.
The goal of this section is also to compare the prediction performance of the MT method trained on these
reduced data sets to that of the simpler and faster single-task method, since there would be no point in using
the more complex MT method if a single-task method performs better. Because this study is motivated by
ligand specificity prediction, we chose to focus on comparisons with the ligand-based ST method rather than
target-based ST.

In what follows, n+ (resp. n−) will refer to the number of positive (resp. negative) examples in the train
set.

In all the following experiments, we used the LOO-CV scheme because intra-task and extra-task pairs
can only be defined for each pair separately, which prevents from using K-fold-CV schemes. In addition, in
single-task approaches, the size of the training set was relatively small in most cases (see datasets statistics
in Section 4.1), which does not allow to fold the data. We checked that the LOO-CV scheme did not trigger
a bias, as sometimes observed [168] (results not shown).

Because prediction of a given (protein, ligand) interaction can only be made by single-task if the pair
partners are present in at least another pair of the train set, in the following experiments, we used the S0

dataset in which all ligands and all proteins are involved in at least two known interactions, as explained in
Section 4.1.5.

Training on intra-task positive examples

The goal of this section is to compare the prediction performance of the MT method trained on a reduced
data set (of size similar to that employed in single-task methods) to those of single-task methods. Since
ligand-based ST can only use intra-task positive examples, the only positive training pairs we use for the
MT method are the intra-task pairs as well. Note that MT still gets more training examples than ligand-
based ST, since pairs formed with the query protein and a different ligand are also included. By reducing
the training set size, the computational times required by the MT method are now similar to those of the
single-task method. In the following, we call MT-intra this variant of MT. For each test ligand, we build
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the negative training examples by randomly selecting a number n− of proteins that do not interact with the
ligand in S0. We vary n− from 1 to 100× n+.

Fig 4.4 shows the LOO-CV AUPR of MT-intra and ligand-based ST on S0, for increasing values of the
n−/n+ ratio. For both methods, the AUPR score increases with the number of negative pairs in the train
set, before decreasing for large numbers of negative pairs. A good trade-off for both computational and
predictive performance seems to be in the range of 10 times more negative points than positive points. We
therefore set n−/n+ to 10 for the remaining experiments of this section.

The AUPR scores of MT-intra outperform those of the ligand-based ST method. Interestingly, the
performance of the MT-intra with a n−/n+ ratio of 10 is close to 0.96 which outperforms the AUPR score
of 0.93 obtained with MT (see Section 4.2.2). This indicates that including in the train set pairs displaying
low similarity to the tested pair degrades both the computational time and the quality of the prediction of
MT.
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Figure 4.4. Performance of single-task and MT-intra as a function of the n−/n+ ratio.

Adding similar extra-task positive examples

The results from Section 4.2.3 suggest to explore the performance of the MT-intra method when trained
on various datasets including extra-task pairs close to the tested pair, in addition to the intra-task pairs.
Therefore, we built train sets made of:

• the train set of MT-intra

• n+
e closest extra-task positive pairs with respect to the tested pair (n+

e ∈ {1, 5, 10, 50}).

• n−e closest extra-task negative pairs with respect to the tested pair, so that the n−e /n+
e ratio varies

from 1 to 10.
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We call NN-MT (for Nearest Neighbour MT) the resulting variant of MT. We also considered a similar
approach in which the extra-task pairs were chosen at random rather than according to their similarity to
the test pair. We refer to this method as RN-MT (for Random Neighbour MT).

We report the LOO-CV performance of NN-MT and RN-MT on Fig 4.5. Fig 4.5(a) shows that, while
adding to the train set 0 to 50 nearest neighbour extra-task positive pairs with respect to the tested pair,
the prediction performance of NN-MT slightly and monotonously increases. Fig 4.5(b) shows that the
performance of RN-MT also slightly increases (although not monotonously) when random extra-task pairs
are added. However, its best performance remains under that of NN-MT. Finally, using a high n−e /n+

e ratio
did not improve the performance. This is an interesting observation, since limiting the size of the train set
is computationally favourable.
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Figure 4.5. AUPR as a function of the n−e /n
+
e ratio for increasing numbers random extra-task points in the

train set. (a): NN-MT. (b): RN-MT. The blue horizontal line corresponds to MT-intra (which is trained only on intra-task
pairs).

Taken together, these results show that NN-MT outperforms not only MT-intra, but also the more
computationally demanding MT method trained in the LOO-CV setting in Section 4.2.2. AUPR scores for
(protein, ligand) pairs involving non-orphan ligands and non-orphan proteins are expected to be very high
(around 0.96).

However, predicting the specificity of a given ligand requires the ability to make predictions for proteins
that are far from the known targets. In these cases, the high prediction scores obtained in this section might
not hold. Therefore, in the next section, we study the performance of NN-MT when the test pairs are far
from the train set.

4.2.5 Impact of the distance of the intra-task examples to the query pair

The goal of this section is to evaluate the performance of the MT-intra and NN-MT proposed methods, and
to compare them to those of the ligand-based ST method, when the similarity between the test pair and the
training data varies.



CHAPTER 4. A KERNEL-BASED APPROACH FOR CHEMOGENOMICS 67

Training on dissimilar intra-task positive examples

We first evaluated the performance of ligand-based ST and MT-intra when the similarity between the test
pair and the training data varies. To do so, we computed the percentiles of the molecules (respectively
proteins) similarity distribution in S0.

For each test pair (p∗,m∗), the training set only included the positive intra-task pairs (p,m) such that
Kprotein(p, p∗) andKmolecule(m,m∗) is lower than a percentile-based threshold θ. We then added n− random
intra-task negative pairs. We did not apply a similarity constraint to negative pairs, since, unlike the positive
pairs, they are available in large numbers and at all distances from the tested pairs.

Fig 4.6 reports the LOO-CV AUPR scores of ligand-based ST and MT-intra for varying values of θ
(20th, 30th, 50th, and 80th percentiles) and of the n−/n+ ratio (from 1 to 50).
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Figure 4.6. AUPR scores as a function of the n−/n+ ratio, for percentile-based threshold θ ranging from 20%
to 80%. (a): MT-intra method. (b): ligand-based ST method.

Fig 4.6(a) shows that, as expected, the performance of MT-intra increases when the similarity of the
tested pair to the train set increases from the 20th to the 80th percentiles (AUPR of 0.67 to 0.77). However,
the performance is still much lower than when the closest pairs are allowed in the training set (AUPR of
0.96, see Section 4.2.4). Fig 4.6(a) also suggests that a n−/n+ ratio of 10 is again an appropriate choice, as
when all intra-task positive example are used (see Section 4.2.4). We therefore set n−/n+ to this value for
the remaining experiments of this section.

Fig 4.6(b) shows that ligand-based ST behaves similarly to MT-intra: the AUPR score increases from 0.70
to 0.75 for ligand-based ST when threshold θ increases from the 20th to the 80th percentiles. These values
again remain much under the AUPR score of 0.93 observed when all intra-task pairs are used. Although
modest, the performance of MT-intra remains above those of ligand-based ST for all tested thresholds of
similarity (except θ = 20) between the tested pair and pairs of the train set.
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Adding similar extra-task positive examples

We then explored to which extent adding extra-task (protein, ligand) pairs to the training set of the MT-
intra method improves the prediction scores.

Applying the same percentile-based similarity constraint to the intra-task positive pairs, we compared
the performance of NN-MT and RN-MT when respectively adding n+

e nearest neighbours or random extra-
task positive to the training set. We did not apply a similarity constraint to the extra-task pairs, since the
principle underlying multitask methods is precisely to learn from extra-task data, which is particularly critical
when the intra-task pairs of the train set are scarce or far from the tested pair, as illustrated by the poor
performance of ligand-based ST in the previous section. A number n−e of nearest neighbours (respectively
random) negative extra-task pairs were also added for NN-MT (respectively RN-MT).

Figs 4.7(a) and (b) report the LOO-CV AUPR of NN-MT, as a function of n−e /n+
e (ratio of negative over

positive extra-task pairs) and for a number of extra-task positive pairs varying from 0 to 50, respectively
for percentile similarity constraints θ of 20 and 80. The blue horizontal line (for n+

e = 0) corresponds to
the performance of the MT-intra methods. Fig 4.7(a) and (b) show that adding extra-task pairs to the
train set dramatically improves performance. The AUPR score reaches values above 0.85, independently of
θ, suggesting that when no close intra-task pairs are available, performance is driven mainly by extra-task
training pairs, confirming our observations in Section 4.2.3. Moreover, when the number of extra-task pairs
increases, the performance of NN-MT increases, then tends towards that of RN-MT, and then degrades at
larger values of n+

e because too many dissimilar extra-task pairs are included in the training set. This implies
that only a limited number of the closest extra-task pairs is required to reach optimal performance. Adding
the same number of negative extra-task pairs (n−e /n+

e =1) provides the best AUPR, which again limits the
size of the required training set. Unsurprisingly, the best AUPR in the absence of the closest intra-task pairs
(around 0.87 for θ = 0.80) is still lower than when all available intra-task pairs are used (AUPR=0.93, see
Section 4.2.4). Note that, although the performance of MT-intra can be biased when considering similarity
thresholds of 20th and 80th percentile, because the corresponding sizes of the train sets might be different,
this is not the case for the NN-MT method because the prediction is driven by extra-task pairs.

On the contrary, Fig 4.7(c) and (d) show that the performance does not improve when the extra-task
training pairs are chosen at random, and therefore, are on average further from the test pair. It might even
degrade when the number of extra-task pairs becomes large. Finally, Fig 4.8 shows that, for all similarity
thresholds, the performance of the MT-intra and RN-MT methods are similar, and far beyond that of the
NN-MT method.

In conclusion, in settings where (protein, ligand) pairs similar to the test pair are available, our results
suggest the best prediction performance are obtained using the NN-MT method trained with 10 times more
negative intra-task pairs than positive ones, 1 to 5 extra-task nearest neighbour positive pairs, and the same
number of extra-task negative pairs. The computational time will be reasonably comparable to that of ligand-
based ST, and performance should be high enough (AUPR above 0.85) to guide experimental evaluations for
drug specificity prediction.
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(a) NN-MT, θ = 0.20
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(b) NN-MT, θ = 0.80
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(c) RN-MT, θ = 0.20
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(d) RN-MT, θ = 0.80

Figure 4.7. AUPR score of NN-MT and RN-MT as a function of the n−e /n
+
e ratio, for a number of extra-task positive

pairs n+
e varying from 0 to 50, and for percentile-based similarity threshold θ of 20 and 80 applied to the intra-task positive

pairs. (a): NN-MT, θ = 0.20. (b): NN-MT, θ = 0.80. (c): RN-MT, θ = 0.20. (d): RN-MT, θ = 0.80.
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Figure 4.8. AUPR score as a function of percentile-based similarity θ, for n−/n+=10, a number of extra-task positive
pairs n+

e =10 and a ratio of n−e /n+
e =1 for extra-task pairs.

Adding dissimilar extra-task positive examples.

While we previously argued that the point of multitask approaches is to leverage similar extra-task data to
improve prediction performance, ligand specificity studies can require the prediction of interactions between
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proteins and ligands for which very little similar extra-task data is available. We therefore repeated the
experiments from the previous section, but this time applying the percentile-based similarity constraint to
both intra-task and extra-task positive pairs of the train set. We report the corresponding LOO-CV AUPR
on Fig 4.9.

We observe that the performance of NN-MT remains overall low (best AUPR score of 0.75 for θ = 0.80).
Adding dissimilar extra-task positive pairs fails to improve the scores obtained when only intra-task positive
pairs are included in the training set. Hence, if neither close intra-task nor close extra-task positive pairs are
available, no method can provide performance good enough for the purpose of drug sensitivity prediction.
These interactions would have to be experimentally tested if they are critical in the context of a drug’s
development program.

These observations were expected given that adding random extra-task training pairs, possibly far from
the tested pair, did not improve performance of the MT-intra method (see Section 4.2.5).
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(b) NN-MT, θ = 80
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(c) RN-MT, θ = 20
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(d) RN-MT, θ = 80

Figure 4.9. AUPR scores of the NN-MT and RN-MT multi-task methods as a function of the n−e /n
+
e ratio, for

a number of extra-task positive pairs n+
e varying from 1 to 50. (a): NN-MT, θ = 0.20. (b): NN-MT, θ = 0.80. (c): RN-MT,

θ = 0.20. (d): RN-MT, θ = 0.80. The two methods are trained with intra-task and extra-task examples that are both dissimilar
to the tested pair (percentile-based similarity thresholds θ of 20 and 80).
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Taken together, our results show that the proposed NN-MTmethod is the most appropriate for predicting
the specificity of a molecule. Indeed, it outperforms all its comparison partners independently of the number
of known (protein, ligand) interacting pairs involving the same or similar ligands or proteins as the query
pair. In addition, it requires much fewer training pairs than the classicalMT approach, and its computational
time is therefore close to that of a single-task method. Finally, in the most challenging setting where no
similar intra-task nor extra-task training data is available, it performs significantly better than random, in
a context where ligand-based ST could not make any prediction.

The results we have presented so far address the issue of using kernel methods with SVM in the context
of proteome-wide specificity prediction, at a tractable computational cost thanks to the choice of a reduced
learning dataset, without loss in prediction performance. Reducing datasets to the most informative data
points is also the underlying idea of active-learning methods [181]. In the latter, the goal is to guide step
by step which data points are needed (i.e. have to be observed and labelled) to best improve the prediction
performance. These methods are used when acquiring data is the limiting factor. By essence, their goal is
also to reduce the size of the data sets that are used.

However, another key issue corresponds to study the specificity of a molecule within a family of related
proteins. Indeed, when a new drug candidate is identified against a given therapeutic target, proteins
belonging to the same family are important off-target candidates. This corresponds to the setting where
similar training pairs are available, since proteins of the same family are similar in terms of sequence.

In the next section, we therefore assess whether the proposed NN-MT method, initially dedicated and
tuned in proteome-wide prediction problems, also provides good performance for molecule specificity predic-
tion within a family of proteins.

4.2.6 Specificity prediction within families of proteins

We considered three families of proteins because they gather a wide range of therapeutic targets, and have
also been considered in other chemogenomics studies, thus providing reference prediction scores: G-Protein
Coupled Receptors (GPCRs), ion channels (IC), and kinases. All the (protein, molecule) pairs involving
GPCRs, ICs, or kinases that were present in the dataset S described in Section 4.1.5 were used to build the
three corresponding family datasets.

We compared the performance of the MT-intra method (trained using only positive pairs involving the
protein or the ligand of the tested pair) to those of the NN-MT and RN-MT methods, in order to evaluate
the interest of the multitask approach in family studies. We considered two versions: one in which the Profile
protein kernel is used, as in the above sections, and another in which a family-based hierarchy kernel is used
(Section 4.1.2), because a sequence-based kernel may not be optimal to study the specificity of the molecule
within a family of proteins [135, 95]. The corresponding methods are called MT-intra-family, NN-MT-family,
and RN-MT-family.
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As in the above section, each (protein, ligand) test pair is considered in turn in a LOO-CV scheme. We
used a learning dataset containing: all positive intra-task positive pairs, ten times more random negative
intra-task pairs (this value was found adequate in previous sections), a varying number of positive extra-
task pairs (nearest neighbours for NN-MT or NN-MT-family, random for RN-MT or RN-MT-family), and a
number of negative extra-task pairs so that the ratio of n−e /n+

e varies from 1 to 20.

G-Protein Coupled Receptor family

Fig 4.10 shows that all methods perform very well, with AUPR scores above 0.95. Including extra-task
positive pairs in the train set improves the AUPR score, even when added randomly. This indicates that,
contrary to studies in larger scales in the protein space, in family studies, extra-task pairs are always close
to the tested pair because they belong to the same family. However, the performance reached when adding
positive nearest-neighbour extra-task pairs remains above those reached when adding positive random extra-
task pairs, as observed in the larger scale studies presented above. Overall, adding 10 to 50 extra-task
positive pairs to the train set, and around 10 times more random negative extra-task pairs leads to the best
performance.

The best AUPR scores of the NN-MT and the NN-MT-familymethods are close (0.96 and 0.97). Although
the best scores of the NN-MT-family method are slightly above those of NN-MT, one should note that the
family GPCR kernel is based on a GPCR hierarchy that was established using known GPCR ligands.
Therefore, the results obtained by the NN-MT-family might be biased, which is not the case for those
obtained by the NN-MT.

Ion Channel family

The conclusions obtained above in the GPCR family also hold in the IC family, as shown in Fig 4.11. Again,
all methods perform very well, reaching AUPR scores above 0.97. As for the GPCR family, adding 10 to 50
extra-task positive pairs to the train set, and around 10 times more random negative extra-task pairs leads
to the best performance.

Kinase family

In the kinase family, the results are somewhat different from those obtained on IC and GPCRs. The NN-
MT and RN-MT methods both outperform the MT-intra method that is trained using only intra-task pairs,
as shown in Figs 4.12(b) and (d). Again, 10 to 50 extra-task pairs, with a n−e /n+

e ratio in the range of 1 to
5 leads to the best results, with AUPR scores in the range of 0.93. Unexpectedly, the NN-MT-family and
RN-MT-family methods, which both use the kinase family hierarchy kernel, tend to perform not as well
when extra-task pairs are added to the training set, than when only the intra-task pairs are used, as shown
in Figs 4.12(a) and (c). In addition, their best AUPR scores reaches 0.90, which is lower than those of the
NN-MT and RN-MT methods which are in the range of 0.93. These observations may reflect the fact that
the kinase family gathers proteins that are relatively more diverse than GPCRs and IC. For example, one can
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(a) NN-MT-family (family hierarchy kernel)
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(b) NN-MT (sequence kernel)
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(c) RN-MT-family (family hierarchy kernel)
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Figure 4.10. AUPR score of the considered multitask methods on the GPCR family as a function of the
n−e /n

+
e ratio, for a varying number n+

e of extra-task positive pairs. (a): NN-MT-family (family hierarchy kernel). (b): NN-
MT (sequence kernel). (c): RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel). The blue horizontal line
corresponds to the MT-intra method trained only on intra-task pairs.

distinguish Tyrosine kinases and Serine/Threonine kinases, or globular protein kinases and receptor protein
kinases. This diversity is illustrated by the organisation of the kinome in some 50 distinct sub-families [174].
In this context, the sequence kernel that was optimised in proteome-wide studies might better capture the
degree of similarity between two kinases than the hierarchy kernel does.

Overall, the above results on the IC, GPCR and kinase families indicate that the proposedNN-MTmethod
leads to the best results when the train set includes all positive intra-task pairs, 10 times more random
negative intra-task pairs, a small number of nearest neighbours positive extra-task pairs (in the range of
10) and around 5 times more random negative extra-task pairs. These conditions are very similar to those
leading to the best prediction scores when ligand specificity is studied on large scale in the protein space.
Even if the performance of NN-MT on family datasets is better than those reached by other methods on
similar datasets [132, 135], they remain in the same order of magnitude.
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(a) NN-MT-family (family hierarchy kernel)
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(b) NN-MT (sequence kernel)
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(c) RN-MT-family (family hierarchy kernel)
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(d) RN-MT (sequence kernel)

Figure 4.11. AUPR of the multitask methods on the IC family. (a): NN-MT-family (family hierarchy kernel). (b):
NN-MT (sequence kernel). (c): RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel). The blue horizontal
line corresponds to the MT-intra method trained only on intra-task pairs.

4.3 Illustration of the method on withdrawn drugs

One important application of the NN-MT method is to guide pharmaceutical companies in the choice of the
best hit molecules early in the drug development process and to avoid deleterious side effects for patients.

In order to test the interest of the proposed method in this context, we considered a list of 174 drugs
that were withdrawn in at least one country between 1960 and 2009 [182, 183].). Of these, 64 molecules had
a DrugBank ID, among which 45 were present in our dataset S. We analysed the target predictions made
by the NN-MT method on these 45 molecules, to determine whether they could be related to the side effects
that lead to drugs withdrawal.

In three cases, the protein target responsible for the side effects were known and present in the dataset.
In six cases, withdrawal was attributed to major hepatic or renal toxicity (i.e. metabolic toxicity) or severe
but nonspecific side effects, which are not a priori attributable to unknown targets. We studied in more
details the 36 remaining drugs (list in Table 4.3), and considered only their predicted target of highest score,
according to the NN-MT method. In one case, the best prediction was confirmed, and in eight cases, we
found a direct link between the cause of withdrawal and the best predicted target. These nine examples
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(a) NN-MT-family (hierarchy family kernel)
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(b) NN-MT (sequence kernel)
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(c) RN-MT-family (hierarchy family kernel)
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Figure 4.12. AUPR score of the multitask methods within the kinase family. (a): NN-MT-family (family hierarchy
kernel). (b): NN-MT (sequence kernel). (c): RN-MT-family (family hierarchy kernel). (d): RN-MT (sequence kernel). The
blue horizontal line corresponds to the MT-intra method trained only on intra-task pairs.

are shortly discussed in the following. Among 174 withdrawn drugs between 1960 and 2009, we considered
the following list of 36 drugs having a DrugBank ID, and for which the side-effect responsible of withdrawal
could be due to unknown secondary targets.

name year country DrugBank id
Alosetron 2000 US DB00969
Adderall 2005 Canada DB00182

Cerivastatin 2001 US DB00439
Cloforex 1969 Germany DB00631

Dexfenfluramine 1997 European Union, UK, US DB01191
Propoxyphene 2010 Worldwide DB00647
Zimelidine 1983 Worldwide DB04832
Dofetilide 2004 Germany DB00204
Encainide 1991 UK, US DB01288
Etretinate 1989 France DB00926
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Fenfluramine 1997 European Union, UK, US, India,
South Africa, others

DB00574

Fenoterol 1990 New Zealand DB01288
Levomethadyl 2003 US DB01227
Metipranolol 1990 UK, others DB01214
Minaprine 1996 France DB00805
Astemizole 1999 US, Malaysia, Multiple Nonspec-

ified Markets
DB00637

Oxyphenbutazone 1984-1985 UK, US, Germany, France,
Canada

DB03585

Bithionol 1967 US DB04813
Pergolide 2007 US DB01186
Phenacetin 1975 Canada DB03783
Phenformin 1977 France, Germany US DB00914

Phenolphthalein 1997 US DB04824
Diethylstilbestrol 1970s DB00255

Phenylpropanolamine 2000 Canada, US DB00397
Prenylamine 1988 Canada, France, Germany, UK,

US, others
DB04825

Remoxipride 1993 UK, others DB00409
Rimonabant 2008 Worldwide DB06155
Rofecoxib 2004 Worldwide DB00533

Rosiglitazone 2010 Europe DB00412
Sertindole 1998 European Union DB06144
Sibutramine 2010 Australia, Canada, China, the

European Union (EU), Hong
Kong, India, Mexico, New
Zealand, the Philippines, Thai-
land, the United Kingdom, and
the United States

DB01105

Sparfloxacin 2001 US DB01208
Tegaserod 2007 US DB01079
Terfenadine 1997-1998 France, South Africa, Oman,

others, US
DB00342

Thalidomide 1961 Germany DB01041
Valdecoxib 2004 US DB00580

Table 4.3: List of 36 considered withdrawn drugs
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Rimonabant (DrugBank ID DB06155) was an anti-obesity drug acting as an antagonist of the cannabinoid
receptor CNR1 (Uniprot ID P21554), withdrawn due to serious psychiatric effects. Its best predicted target
is acetylcholinesterase (Uniprot ID P22303). The interaction between Rimonabant and acetylcholinesterase
was absent from DrugBank, but this prediction is confirmed in the DrugCentral database (DrugCentral ID
4150), showing that Rimonabant inhibits acetylcholinesterase with an IC50 value of 4.6 µM . Although in
this particular case, the known target CNR1 might be, at least in part, responsible for the psychiatric side
effects [184], the fact that the best prediction was confirmed is an interesting result.

Two molecules were withdrawn because of teratogenicity risk: Diethylstilbestrol (DB00255) and Thalido-
mide (DB01041). This is consistent with the first predicted target DNA polymerase alpha catalytic domain
POLA1 (Uniprot ID P09884) for the former, and DNA polymerase epsilon subunit 3 POLE3 (Uniprot ID
Q9NRF9) for the latter.

Etretinate (DB00926) was withdrawn because of birth defect risks, while its best predicted target is
steryl-sulfatase STS (Uniprot ID P08842), an enzyme that converts sulfated steroid precursors to estrogens
during pregnancy [185].

Four molecules were withdrawn for cardiac toxicity : Dextropropoxyphene (DB00647), Rosiglitazone
(DB00412), Prenylamine (DB04825), and Dexfenfluramine (DB01191). The first predicted target for the
two former are involved in the metabolism of NO, a key molecule for the fine tuning of cardiac function. For
Dextroproxyphene, the predicted SDF2 target (Uniprot ID Q99470) plays a critical role in the activation
of NO production [186], and for Rosiglitazone, the predicted DDAH1 target (Uniprot ID O94760) has a
role in NO production regulation [185]. Prenylamine was withdrawn for cardiac arrythmia while its best
predicted target is the calcium-activated potassium channel KCNMB3 (Uniprot ID Q9NPA1), which plays
a critical role in the the cardiac excitation-contraction coupling [187]. Dexfenfluramine was withdrawn for
heart attack and stroke risks while its best predicted target is PI3K (Uniprot ID P48736), a kinase involved
in many aspects of heart homeostasis [188].

Finally, Zimelidine (DB04832) is a serotonin reuptake inhibitor that was used as antidepressant, and
withdrawn because of severe central and peripheral neuropathy. The best predicted target is sodium- and
chloride-dependant GABA transporter 2 SLC6A14 (Uniprot ID Q9NSD5), involved in the transport of the
key neurotransmitter GABA [189], which could be related to the observed side effects.

To summarise, for the 36 withdrawn molecules in S for which side effects could have been caused by
unidentified secondary targets, we made the very stringent choice to consider only the top predicted target
according to NN-MT.

The top predicted target could be confirmed for one molecule, and a direct link between the predicted
target and the side effect responsible for drug withdrawal could be found for eight molecules. We do not
claim that these observations constitute a validation test set of our the predictions (this was performed with
the cross-validation schemes used on the various datasets studied in the above sections). However, they
illustrate that in 9 cases out of 36, the function of the top predicted target alone could have helped to foresee
potential side effects, and to conceive additional experiments to better evaluate the interest of these drug
candidates before entering drug development phases.
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For the remaining 27 molecules, no direct link was found between the best predicted target and the
side effects that caused drug withdrawal. These side effects might have been indirectly related to the best
predicted target, but a full analysis of the corresponding pathways for these 27 examples was out of the
scope of this paper. They might also have been related to predicted targets of lower ranks, which we did not
consider.

Such restrictions in the analysis of the results would of course not be employed in real applications, which
would help to better foresee potential deleterious drug candidates.

4.4 Discussion: comparison to other methods

We compare now the prediction performances of the proposed NN-MT method to those of two state-of-
the art methods: a recent Matrix Factorisation method called Neighbourhood Regularised Logistic Matrix
Factorisation (NRLMF ) [136], and the Kronecker (kernel) Regularised Least Square regression method
KronRLS (a kernel-based method, as NN-MT ) [114, 115].

The KronRLS and NRLMF methods were published based on their prediction performance on four
protein family datasets, Nuclear Receptors (NR), GPCR, Ion channels (IC), and Enzymes (E) that contained
respectively 90, 636, 1476 and 2926 interactions [129].

The KronRLS method uses a kernel Kmolecule for molecules that is defined by:

Kmolecule = 1
2(KSIMCOMP +KGIP,m) (4.2)

where KSIMCOMP is a structure similarity kernel [86], and where KGIP,m is a Gaussian kernel that
compares the interaction profiles of molecules against the proteins of the dataset [114]. For proteins, the
kernel Kprotein is defined by:

Kprotein = 1
2(Ksequence +KGIP,p) (4.3)

where Ksequence is a protein sequence similarity kernel also based on the Smith-Waterman score [76], and
KGIP,p is a Gaussian kernel that compares the interaction profile of proteins against the molecules of the
dataset.

A specific feature of the NRLMF method is that it integrates a neighbourhood regularised method which
allows to take into account only the K nearest neighbours to predict a given (protein, ligand) interaction (in
practice, the authors recommend K=5).

We performed benchmark experiments on these family datasets using the PyDTI package. This package
initially contained the KronRLS, a variant of it called KronRLS-WNN [132] that generalises to orphan
cases, and the NRLMF methods, and the kernel matrices Kprotein and Kmolecule calculated for the four
family datasets. In all experiments, we compare the intrinsic performances of the algorithms: the similarity
measures used are the same for all methods. More precisely, the three methods used the kernels available in
PyDTI: the structure-based KSIMCOMP for molecules, and a kernel Ksequence based on the Smith-Waterman
score. In addition, KronRLS also used the KGIP,m kernel, leading to the Kmolecule kernel for molecules
defined in eq. 4.2, and the KGIP,p kernel, and to the Kprotein kernel for proteins defined in eq. 4.3. The
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two other methods do not use the KGIP kernels because they do not take into account information about
interaction profiles.

We also performed benchmark experiments on a dataset gathering more diverse protein and ligands. To
this end, we used the DrugBank-based dataset S0 described in Section 4.1.5) containing 5 908 interactions.

Because KronRLS and NRLMF could not make predictions on S0 at a manageable computational cost
in the LOO-CV scheme, we randomly sampled 2 000 of the 5 908 interactions of this data set to create a
smaller test data set called S0,2000. We still used all of S0 (minus the test example) for training.

We calculated the Tanimoto and Profile kernels optimised in the present study (see Section 4.2.1), and
these matrices were uploaded in PyDTI so that the three considered methods could used them. In addition,
since KronRLS also use the KGIP,m and the KGIP,p kernels, we described all molecules and proteins in S0

by their interaction profile. We calculated the KGIP,m and KGIP,p kernels on S0 and uploaded these kernels
in PyDTI. Only KronRLS used these additional kernels. All cross-validation experiments were performed
building test sets from S0,2000 and using all remaining data points in S0 for training.

Table 4.4 presents the performance of the three considered methods on the protein family datasets.

Method / Dataset NR GPCR IC E

KronRLS 0.75± 0.14 0.9± 0.03 0.96± 0.01 0.96± 0.01
NN-MT 0.89± 0.09 0.95± 0.02 0.97± 0.01 0.97± 0.01
NRLMF 0.96± 0.04 0.96± 0.02 0.98± 0.01 0.98± 0.0

Table 4.4. AUPR scores and standard deviations in 10-fold-CV , test sets balanced in positive and randomly chosen negative
samples

Globally, the performance of all methods are high and close, with AUPR scores above 0.9 in most of the
cases. On average, the NRLMF and NN-MT methods are on par and lead to the best results. These results
are consistent with those reported in [136].

Method / Dataset S0,2000

KronRLS 0.91± 0.02
NN-MT 0.95± 0.01
NRLMF 0.96± 0.01

Table 4.5. AUPR scores and standard deviations in 10-fold-CV , test sets balanced in positive and randomly chosen negative
samples

Table 4.5 confirms the tendencies observed in Table 4.4. Although the performances are slightly lower
on this more diverse S0,2000 dataset than on the family datasets, they remain high, with NRLMF and
NN-MT keeping the best AUPR scores.



CHAPTER 4. A KERNEL-BASED APPROACH FOR CHEMOGENOMICS 80

As discussed in Sections 4.2.1 and 3, various prediction methods lead to such high performances because,
in the protein family or S0,2000 datasets, predictions are averaged over test pairs in which the protein and/or
the molecule might be orphan, or not. These averaged results hide less favourable situations, typically double
orphan samples. Because these cases are common and important when predicting specificity of a new drug
candidate at the proteome scale, we would like to stress that comparing methods in orphan cases is a more
stringent and relevant test. In such cases, the performance are expected to be more modest and the methods
might not rank in the same order.

Therefore, we ran the three methods using a LOO-CV scheme on double orphan (protein, molecule) pairs
on the same datasets. We considered the LOO-CV scheme as it is particularly convenient to test double
orphan drug-target interactions. In these experiments, for each tested (p, m) pair, interactions involving
the considered protein or the molecule are ignored in the train set. The LOO-CV schemes were balanced in
positive and randomly chosen negative pairs.

In order to better explore the performance of the considered methods in this double-orphan setting, we
used two versions of the two kernel-based methods, initially introduced for KronRLS . More precisely, in
[115], the authors proposed an approach called WNN (weighted nearest neighbour) that, for each orphan
molecule m (resp. protein), an interaction profile is computed by summing the weighted profiles of non
orphan molecules in the dataset. The weighting depends on the similarity between the orphan molecule
and all other non orphan molecules. This predicted profile is used in the training to predict labels to all
(protein, m) pairs of the dataset. Thus, in the first version of KronRLS [114], all the labels of (protein,
m) pairs involving the orphan molecule m were set to 0. Based on this WNN procedure some of these non
interactions might be re-qualified as true interaction before training the predictor. In other words, the WNN
algorithm can be viewed as a mean to de-orphanise molecules or proteins in order to help the predictions
on such cases. In the following, we will call KronRLS-WNN the KronRLS method ran with the WNN
algorithm. Using the PyDTI package, we also considered a version of NN-MT in which the WNN algorithm
is the implemented, and call it NN-MT-WNN in the following.

Method / Dataset NR GPCR IC E

KronRLS-WNN 0.78± 0.03 0.83± 0.01 0.78± 0.01 0.84± 0.0
KronRLS 0.55± 0.01 0.62± 0.01 0.64± 0.0 0.56± 0.0
NRLMF 0.19± 0.03 0.15± 0.0 0.26± 0.01 0.23± 0.0
NN-MT 0.72± 0.04 0.76± 0.01 0.72± 0.01 0.66± 0.0
NN-MT-WNN 0.77± 0.05 0.85± 0.0 0.79± 0.01 0.84± 0.0

Table 4.6. AUPR scores and standard deviations on double orphan LOO-CV , balanced number of positive and randomly
chosen negative test samples

Table 4.6 presents the results of the double-orphan benchmark on the family datasets. Surprisingly, in
these double-orphan experiments, the NRLMF method has very modest results and does not perform as well
as the other methods. We think it may be due to an undetected implementation issue.
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The results of NN-MT remain well above the random performance of 0.5, but not the KronRLS method.
The WNN algorithm dramatically improves the performance of KronRLS , and to a lesser extent those of
NN-MT , and overall, the NN-MT-WNN algorithm leads to the best performance in most cases.

Method / Dataset S0,2000

NRLMF None
KronRLS-WNN 75.6± 0.43
KronRLS 0.4979± 0.0071
NN-MT 0.60± 0.01
NN-MT-WNN 0.85± 0.01

Table 4.7. AUPR scores and standard deviations on double orphan LOO-CV , balanced number of positive and randomly
chosen negative test samples

Table 4.7 presents the results of the double-orphan benchmark S0,2000 dataset. We did not run the
NRLMF method in this experiment, because it was computationally too intensive in this LOO-CV , and
because it already gave very poor results on the easier family dataset. Moreover we shortened the train set of
KronRLS and KronRLS-WNN methods by considering only the thousand molecules (resp. proteins) closest
to the molecule (resp. protein) of the test sample. Thus, the computation time was reduced to some hours
instead of months which made those methods computationally reasonable.

Overall, the scores are lower on this dataset than on the family datasets because S0,2000 is a more diverse
dataset on which predictions are more difficult, in general, than on the family datasets. However, the same
tendency is observed: NN-MT performs better than KronRLS , and when the WNN algorithm is used,
NN-MT-WNN performs better than KronRLS-WNN .

Overall, the results of these benchmarks show that the NN-MT method present state-of-the-art or better
results on the protein family datasets and the more diverse DrugBank-based dataset. In the general case,
it appears to be a good default method in terms of performance, number of parameters and computational
efficiency, which are important issues for non expert users.

In the specific double-orphan case, only the two kernel-based methods NN-MT and KronRLS lead to
performance well above those of a random predictor. The WNN algorithm, proposed in [115] improves the
performance of KronRLS and of NN-MT , but resulting NN-MT-WNN method lead to the best performance.

Finally, it is interesting to compare the computational complexities of the methods as a function of
the number of hyper-parameters that they contain. Indeed, these hyper-parameters need to be optimised
by cross-validation, leading to heavy computational issues in the case of the large-scale datasets used in
proteome-wide chemogenomics. As can be seen in the PyDTI package, NRLMF has 5 regularisation pa-
rameters, KronRLS has 2 hyper-parameters (decay parameter T and the weight parameter used to combine
kernels; the regularisation parameter and the bandwidth of the GIP kernel are fixed), and NN-MT has 1
hyper-parameter (regularisation parameter C for SVM). In practice, the optimisation of NRLMF in the
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LOO-CV scheme was out of reach, requiring several days of calculation while the other methods required
hours, which represents a limitation of this method. This could explain in part the very low performances
displayed by NRLMF in the double-orphan experiment. In addition, the double-orphan case was not consid-
ered in [136], and therefore, we do not have any performance reference for this case. In this setting, latent
vectors describing proteins and ligands are both estimated from non-orphan neighbours, and interaction
prediction may fail in this situation, and contribute to the poor performance observed. However, we did
cross-validate NRLMF parameters in the double-orphan setting in the case of the family NR dataset (the
smallest dataset used in this section). This allowed a modest increase in AUPR score from 0.14 to 0.19
(reported in Table 4.6). Therefore, even if the NRLMF method had been optimised on the other datasets,
we do not expect that this would have changed the overall conclusion that this method is not suitable for
handling orphan cases.

4.5 Conclusion

The present chapter tackles prediction of ligand specificity on large scale in the space of proteins. More
precisely, our goal was to propose a method to explore the specificity of molecules with state-of-the-art or
better performance over a wide range of prediction situations: at the proteome or protein family scales,
on average or in specific situations such as tested pairs far from the train set, or such as orphan proteins
and ligands. In other words, the aim was to propose a robust default method, applicable to many types of
studies, thus avoiding development of ad hoc complex and specific methods to non expert users. We chose to
formulated it as a problem of predicting (protein, ligand) interactions within a multitask framework based on
SVM and Kronecker products of kernels on proteins and molecules. Within the kernel-based SVM methods
tested in the Results section, we showed that the NN-MT method fulfils these requirements. In particular,
NN-MT outperforms both the multitaskMTmethod and the corresponding single-task kernel-based methods,
while it also keeps a computational cost close to that of single-task approaches. The NN-MT algorithm fulfils
these requirements, leading to the best prediction performance for the three tested settings which cover most
of the prediction situations that would be encountered in real-case studies.

To summarise the main characteristics of the proposed NN-MT method (detailed in Sections 4.2.1, 4.2.4
and 4.2.5), we suggest to predict each (protein, ligand) interaction using the Profile kernel for proteins (with
subsequences length k of 5 and threshold equalled to 7.5) and the Tanimoto kernel for molecules (with length
of path 8), with a train set including:

• all positive intra-task pairs (i.e. all known interactions involving the protein or the ligand of the test
pair), and around ten times more randomly chosen intra-task negative pairs.

• a small number of the closest positive extra-task pairs (i.e. a number similar to that of intra-task
positive pairs), and a similar number of randomly chosen negatives extra-tasks pairs.

This should provide good default parameters to use the NN-MT method in a straightforward manner for
users that are not familiar with machine learning approaches.
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We used the DrugBank database to build several datasets that illustrate various prediction contexts
and that we made available online to the community for future benchmarking studies. We also updated
the PyDTI package [136] with an implementation of NN-MT together with several cross-validation schemes
and our DrugBank-based dataset. This allowed us to compare the NN-MT method to recent approaches
developed on drug-target interaction prediction [114, 115, 132, 152, 153, 133, 136]. In the context of wide-
scale prediction of molecule specificity, the DrugBank-based dataset is more relevant that the family datasets
that have been widely used. Indeed, it contains a set of proteins that can be viewed as a relevant druggable
proteome to train and test computational models for drug specificity prediction.

The benchmark study comparing NN-MT to the matrix factorisation NRLMF and the kernel-based
KronRLS algorithms on family and DrugBank-based datasets showed that, all methods displayed high per-
formances, NRLMF and NN-MT leading to the best results. However, on the more demanding double-orphan
tests performed on the same datasets, NRLMF performed much poorer than the kernel-based NN-MT and
KronRLS algorithms. In this orphan case, the WNN algorithm makes it possible not only to significantly
improve the performance of KronRLS , but also that of NN-MT , the NN-MT-WNN algorithm leading to
the best results.

To conclude, this chapter suggests that including only similar samples to the tested sample forces the
algorithm to adjust the hyperplane to segregate positive and negative sample distributions in a better way.
In the future, it might be relevant to consider a weighted-sample SVM in order to integrate such behaviour
in a more continuous way, by decreasing the error importance on train samples depending on their distance
to the tested sample.

From another perspective, recent developments within the relatively old Artificial Neural Networks field
resulted in significant improvement in some popular yet challenging fields such as computer vision [51],
speech recognition & translation [190] and bioinformatics [191, 192].

In the case of drug-target interaction prediction, the first noticeable breakthrough was when a deep
learning algorithm won the Kaggle Merk Virtual Screening Challenge. This drew considerable attention to
employing deep learning techniques for virtual screening. Therefore, we explore this avenue in the next Part
of this manuscript.

In between, we discuss in the next chapter another aspect of drug virtual screening as crucial as developing
state-of-the-art approaches for chemogenomics. Indeed, we illustrate, in a couple of studies, how drug-target
interaction prediction can be interfaced with therapeutic research as a guide for deciphering underlying
biological mechanisms of candidate drugs.



Chapter 5

Two applications of drug virtual screening to
assist pharmaceutical research

Abstract: As introduced in Section 1.2, drug virtual screening is a valuable tool for guiding drug research
throughout the drug design process. In particular, drug-target interaction prediction is a useful tool for
deciphering the underlying biological mechanisms of a drug, which can help to identify deleterious side-effects
as well as other characteristics of a drug. We were involved in three drug repositioning studies dedicated to
triple negative breast cancer or cystic fibrosis diseases. In this chapter, we introduce two of these projects
and summarise our contribution. For each of the two projects, we highlight, with strong evidences, side
therapeutic paths unrelated to those used to treat the patients currently.

Résumé: Comme présenté dans la section 1.2, le criblage virtuel de médicaments est un outil utile pour
orienter la recherche thérapeutique tout au long du processus de conception de médicaments. En particulier,
la prédiction d’interaction médicament-cible est un outil utile pour déchiffrer les mécanismes biologiques
sous-jacents d’un médicament, ce qui peut aider à identifier les effets secondaires néfastes ainsi que d’autres
indications du médicament. Au cours des trois dernières années, nous avons participé à trois études de
repositionnement de médicaments visant à faire face au cancer du sein triple négatif ou à la mucovisidose.
Dans ce chapitre, nous présentons deux de ces projets et résumons notre contribution. En particulier, pour
chacun des deux projets, nous mettons en évidence des voies thérapeutiques non liées à celles utilisées pour
traiter les patients actuellement.

84
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In this chapter, we present two "real-life" applications of chemogenomics in which we have been involved:
cystic fibrosis and triple negative breast cancer, two life threatening diseases. In both cases, better under-
standing of disease mechanisms at the molecular levels are needed, and there is an urgent need to improve
the clinical management of patients. This includes better stratification to allow precision medicine, identifi-
cation of the mechanism of action of drugs currently used to understand there limitations and identify new
therapeutic targets and drugs. In both cases, these studies were undertaken in collaboration with biologists
and medical doctors involved in clinical research, so that potential results could benefit from translational
clinical research, in order to reach the patients. Indeed, for the cystic fibrosis project, we collaborate with
clinicians and biologists from University Paris V and Hopital Necker-Enfants Malades. For the triple negative
breast cancer project, we collaborate with clinicians and biologists from Institut Curie.

5.1 Drug virtual screening for cystic fibrosis research

5.1.1 Introduction

Cystic Fibrosis (CF) is the most common genetic disease among Caucasians, affecting approximately one in
3500 birth[193], and one person in 25 is an asymptomatic heterozygote carrier. It is an autosomal recessive
genetic disease caused by mutations in the 250-kb CFTR gene, located in chromosome 7, structured in 27
exons, and coding for the Cystic Fibrosis Transmembrane Regulator protein (CFTR) [194].

CFTR belongs to the ATP Binding Cassette (ABC) superfamily of proteins, and shares their overall
structural organisation consisting of two trans-membrane (TM) domains each consisting of six helices, two
Nucleotide Binding Domains (NBDs), one Regulatory domain R situated between the first NBD and the
second TM, with several consensus sequences for phosphorylation by the AMPc dependent protein kinase A
(PKA) and protein kinase C (PKC) [195].

CFTR is a chloride ion transporter situated at the apical membrane of several polarised epithelia [196].
However, CFTR is also a transporter for larger other organic anions such as glutathione [197] or thio-
cyanate [198], and is involved in many other cellular functions (probably not all discovered) via its interac-
tions with various protein partners.

Default in ion transport reduces airway surface liquid hydration, which prevents efficient mucociliary
clearance, one of the basic immune defence mechanisms of the respiratory tract [199]. CF lung disease
is characterised by chronic infections of Haemophilus influenza, Staphylococcus aureus, and Peudomonas
aeroginosa. These infections cause progressive destruction of pulmonary tissue, ultimately leading to respi-
ratory insufficiency, reduced quality and expectancy of life [200]. These infections are in turn responsible for
chronic inflammation of airways, which participates to tissue damage.

Although respiratory failure is responsible for 80% of CF deaths, the disease is also associated with
other symptoms [201]. In particular, exocrine pancreatic insufficiency occurs in the majority of CF patients.
Indeed, thickened secretions from the pancreas, an organ responsible for secretion of digestive juices, lead
to difficulties in digestion and absorption of nutrients. The endocrine function of the pancreas may also be
affected, and some patients develop diabetes [202]. In addition, some patients also develop liver disease due
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to biliary fibrosis that may progress to cirrhosis and portal hypertension [203].

However, the link between deficient chloride channel and the overall physiopathology of CF is not fully
understood. In particular, it has been established that CF is characterised by chronic inflammation even in
absence of infection [204], which cannot be related to CFTR chloride channel function in a direct manner.
Similarly, other abnormal cellular phenotypes observed in CF such as increased oxydative stress, cell pro-
liferation [205, 206]), proteostasis, and autophagy [207] do not appear to be related to a defect in chloride
conductance. These remarks are consistent with the fact that, pathways enriched in genes differentially ex-
pressed in airways cells of CF versus control patients include inflammatory response, cell growth, proliferation
and death, and immune cell trafficking pathways [208].

Life expectancy of CF patients has dramatically improved thanks to early diagnosis, and better health
care based on nutrition support, and on limiting and treating lung damage: the median age of survival
increased from 6 months in 1960 to around 40 years in 2010 [209]. However, management of CF mainly
remained symptomatic until very recently, and deciphering the links between the gene defect and all the
resulting molecular perturbations is critical in order to understand the overall physiopathology of the disease,
and identify new potential therapeutic targets.

5.1.2 Impact of mutations in the CFTR gene on the function of CFTR protein

The CFTR gene is 230.000 base pairs long and encodes the 1480 amino acid long CFTR protein.

Figure 5.1. Schematic view of CFTR functioning (illustration from [210])

Schematically, the R domain of CFTR is proposed to partly block dimerisation of the two NBDs, which
keeps the channel closed. Phosphorylation of R is accomplished by activation of other surface receptors
that are coupled to adenyle cylase, leading to a local elevation in cAMP concentration and activation of
PKA. Then, PKA phosphorylates the R domain, causing structural changes that remove R from its steric-
interfering position and allows dimerisation of the NBDs [211] (see Fig. 5.5, discussed below). Finally, ATP
binding at the NBDs initiates channel opening, while ATP hydrolysis and subsequent ADP release closes
the channel [212].
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More than 1700 mutations have been observed in CF, and the Cystic Fibrosis Genetic Analysis Con-
sortium maintains a mutation database available for the research community. However, a small number of
mutations are more frequent than others and have been studied in more details. In particular, the three more
frequent mutations occur in the NBD1 domain: ∆F508 (deletion of F508), G542X and G551D mutations
are found in approximately 80%, 3% and 2% mutated alleles, all other mutations representing the other 25%
mutations. The phenotypic or functional impact of mutations have been grouped into five classes [213]:

1. class 1: protein production mutations include nonsense and splice mutations interfering with the pro-
duction of CFTR protein.

2. class 2: protein processing mutations that cause a perturbation of the 3D structure of CFTR that
cannot complete its full maturation and insertion in the membrane.

3. class 3: gating mutations block the gate in the closed position even in presence of ATP, so that chloride
ions cannot go through.

4. class 4: conduction mutations change the shape inside the tunnel so that chloride ions cannot move
through easily.

5. class 5: insufficient protein mutations result in a reduced amount of CFTR protein at the membrane
surface. This can be due to insufficient protein production, an insufficient number of functional proteins
at the surface, or proteins that degrade too quickly.

In the case of the three most frequent mutations, the ∆F508 mutant belongs to class 2, G542X to class 1,
and G551D belongs to class 3.

5.1.3 Therapies for the rescue of CFTR processing or activation

Besides the progress in patients’ symptoms management, three molecules have been progressively approved
by the FDA since 2012. These molecules tend to target the basic defect in CF, i.e. mutated CFTR, and were
identified by phenotypic HTS screens based on improving chloride channel transport in human CF bronchial
cells. In particular, this screen did neither allow to identify the mechanism by which chloride current were
increased, nor prove that this mechanism involved CFTR. Collectively, these three drugs are called "CFTR
modulators", although their effects fall in two categories.

Ivacaftor (Kalydeco, VX-770, DrugBank ID DB08820, PubChem ID 16220172) is a "potentiator" of
CFTR, which means that it activates its chloride channel function by increasing the probability of channel
opening (or gating) in patients with impaired gating mechanism. This is typically the case for the G551D
mutation, and more generally, for patients with class 3 mutations.

Lumacaftor (VX-809, DrugBank ID BD09280, PubChem ID 46199646) and tezacaftor (VX-661, Drug-
Bank ID DB11712) are "CFTR correctors" that partially correct the folding, processing, and maturation
defects of CFTR towards the cell surface, increasing the amount (mutated) CFTR at the membrane. These
drugs are indicated for class 2 mutations such as ∆F508 which, when present at the membrane, do present
some residual activity.

http://www.genet.sickkids.on.ca/
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In the case most frequent case of patients bearing the ∆F508 mutation, a combination of ivacaftor and
lumacaftor, called Orkambi, can be administrated, in order to both increase the quantity of protein present
at the surface of the cell, and activate its function. Orkambi leads to an improvement of 10% in the FEV1
(forced expiration vital capacity) in about 30% of the patients, but more modest responders in terms of
FEV1 tend to benefit from reduced inflammation [214], infections, antibiotic use, hospitalisation rate, and
better quality of life [215].

Various studies have tackled the question of how these drugs act at the molecular level. In human CF
model of cell lines, lumacaftor has been shown to increase the amount of functional ∆F508 CFTR present at
the cell surface by 34% [216]. In cultured human bronchial epithelial cells, lumacaftor improved trafficking
of ∆F508 CFTR from 14% [217]. The precise mechanism for better maturation of this CFTR mutant is
not known, and in particular, it has not been demonstrated that lumacaftor directly binds to ∆F508 CFTR
to promote its maturation. Ivacaftor is believed to directly bind to CFTR, causing opening of the wild
type and G551D CFTR via a non-conventional phosphorylation-dependent but ATP-independent mecha-
nism (remember that G551D CFTR cannot hydrolyse ATP), possibly by direct binding to phosphorylated
CFTR [218]. However, there is not direct evidence for such mechanism. Even more, ivacaftor may activate
the function of different classes of mutants through different mechanisms. In particular, class 2 mutants like
∆F508 CFTR, and class 3 mutants like G551D CFTR might be activated by different routes.

Overall, the molecular mechanisms by which these three newly approved drugs (available for french
patients over 12 years old since about 3 years) modulate CFTR are not fully understood, and could result
from indirect interactions with CFTR.

In addition, their role as CFTR modulators does not account for some of the benefits observed in patients
with otherwise limited FEV1 increase and improvement in CFTR function, such as reduction in inflammation
and infection episodes [219], better nutritional status and quality of life. For example, lumacaftor was found
to stimulate phagocytosis and killing of Peudomonas aeroginosa by macrophage [220], which cannot be
related in a direct manner solely to improvement in CFTR trafficking.

These observations suggest that ivacaftor, lumacaftor and tezacaftor might also act through off-target
proteins, and that these interactions might account for some of the patients’ clinical benefits.

In line with this idea, a recent article showed that ivacaftor binds to several GPCR receptors that are
expressed in the central nervous system: 5-HT2C serotonin receptor, the β3-adrenergic receptor, and δ-opioid
receptor, and it was postulated that this could contribute to the benefit on patients’ mood, observed under
ivacaftor therapy [221].

However, other targets might still have to be discovered.

To summarise the above discussion: (i) the mechanisms of action of CFTR modulators are not known,
neither with respect to how they rescue CFTR processing and function, nor with respect to some of their
other clinical benefits, and (ii) there are strong presumptions that the overall effects of CFTR modulators
rely on their interactions with unidentified target proteins.



CHAPTER 5. TWO APPLICATIONS OF DRUG VIRTUAL SCREENING 89

In addition, besides these presumptions, drugs are in general expected to interact with more than a
single target [25], although designing experiments aiming at testing interactions between these drugs and
other human proteins is not feasible on a large scale.

In this context, we undertook in silico approaches to predict interactions between ivacaftor, lumacaftor
and tezacaftor and human proteins, in order to guide future biological experiments involving the most
probable target proteins. We display the Lewis formula of the three compounds in Fig. 5.2.

(a) Ivacaftor (b) Lumacaftor (c) Tezacaftor

Figure 5.2.

Finally, we would like to mention that, besides the question of mechanism of action, other questions
about CFTR modulators remain open, although they are of critical clinical interest. In particular, cystic
fibrosis patients take many different drugs to manage various pathological aspects of their disease, and these
drugs may lead to deleterious interactions with CFTR modulators if that target similar (or antagonist)
molecular mechanisms, as discussed below. Identification of CFTR modulator targets could help to explain
and anticipate these effects, and to optimise patients treatments in order to avoid these effects, which is one
aspect of precision medicine.

In addition, it is anticipated that CFTR modulators should be taken life-long by patients who are
clinically improved by these drugs. There is today no idea about what long-term side-effects those patients
might develop, which is somewhat worrying considering the young age at which patients will start these
therapies. Identification of CFTR modulators targets may also provide very important clues to answer this
question.

5.1.4 Prediction of protein targets using chemogenomics for CFTR new mod-
ulators

Various chemogenomics methods have been proposed in the last decade, as discussed in detail previously. We
used a multi-task learning algorithm [169] based on SVM with kernels. For proteins, we used the sequenced-
based Local Alignment kernel (LA kernel). For small molecules (the ligands), we used the random walks
kernel on the graph defined by the structure of molecules. As discussed earlier, this chemogenomics approach
was shown to display state-of-the-art prediction performance [50].
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More precisely, we trained our model with all known protein-molecule interactions available at the Drug-
Bank database, involving a human protein and a small organic molecule, many of them being marketed
drugs or molecules that were studied in the context of drug development. We made this choice because: (i)
we were looking for human protein targets (not bacterial or virus targets) belonging to available the human
“druggable” proteome, (ii) ivacaftor, lumacaftor and tezacaftor being drug molecules, a model trained with
protein target information available for drug-like molecules was probably well suited to make predictions for
other drug molecules like CFTR modulators, and (iii) one important long-term goal for this project is to
identify known marketed drugs that could be repositioned in cystic fibrosis, to allow shorter development
time.

Overall, the prediction model was trained based on 2570 proteins, 4834 molecules, corresponding to
around 13,000 interactions available at DrugBank v5.1. Note that we considered an more recent version of
the DrugBank database than the one we used in the previous study in chapter 4. Cross-validation studies
showed that most of the known interactions had prediction scores above 0.9, whereas the distribution of
unknown interactions had little overlap and corresponded to interactions of much lower scores (see fig. 5.3).

Figure 5.3. Distribution of known and unknown interaction prediction probabilities observed by cross-validation.

Then, we used this model to predict the probabilities of interaction of ivacaftor, lumacaftor and tezacaftor
for the 2570 considered human proteins. We did not take into account any known targets for the three drugs,
which means that we considered them to be orphan drugs. Indeed, CFTR is the only target reported for
these drugs at DrugBank, although it has not been proven that any of them does interact directly with
CFTR. Note that the only proven direct interactions (besides the proteins serum carriers albumine and
Alpha-1-acid glycoprotein 1), at least to our knowledge, are those of ivacaftor with the GPCRs mentioned
above, but these interactions are not updated yet in DrugBank. This lead, for the three molecules, to a
ranked list of proteins with decreasing binding probability for binding. For each molecule, we analysed the
top-ranked proteins based on the available literature on CFTR and cystic fibrosis, to select a short list of
proteins that were expected to be realistic off-target candidates. These analyses aimed at guiding future
experimental work devoted to confirm or infirm these predictions.
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We limited the analyses to predicted interactions with very high scores, above 0.9, except for tezacaftor
for which we considered scores down to 0.8 because overall, the prediction scores for this molecule were lower
than for the two others. These thresholds were consistent with the distribution scores obtained for known
interactions by cross validation (as shown in Fig. 5.3). With these criteria, 10 to 25 protein targets were
shortlisted for each molecule. This number is relevant since, although a given molecule is expected to have
more than one protein target in the cell, it is however expected to have only a small number of targets with
respect to the 2570 considered human proteins. We report the predicted targets for each of the three drugs
in Table 5.1.

highly predicted targets (targeting probability higher than 0.9)
for ivacaftor, lumacaftor and tezacaftor NR1I2 -PXR-, PPARG, F2, CDK2, MAPK14
for ivacaftor and lumacaftor only CHECK1, PTGS2, SRC, ESR1, PTGS1
for lumacaftor and tezacaftor only BACE1, PTPN1, NOS2
for ivacaftor and tezacaftor only TNF, ACHE, ALOX5, AR

for ivacaftor only
AHR, HSP90AA1, PIM1, GSK3B, CALM1, MAPK10,
ADRA2A, ADRA2B, ADRA2C, ADRA1A, ADRA1B

for lumacaftor only KDR, PPARA, RXRA, F10
for tezacaftor only ADRB2, KCNH2

Table 5.1. Predicted targets for ivacaftor, lumacaftor and tezacaftor.

We will not discuss all predictions, although most of them appeared extremely interesting in the context
of biology of CF (this is out of the scope of this manuscript). We will restrain our analysis to predictions
for which we could find strong evidence in the literature, and which appeared the most promising in terms
of potential drug repositioning could be foreseen. In particular, these predictions are discussed in the light
of current knowledge in CF.

Somewhat unexpectedly, the three molecules were found to share many of their best-ranked targets. This
suggests that, besides their roles as CFTR modulators, they may share some other targets and mechanisms
of action that contribute to the clinical benefit observed in patients, or share common metabolism pathways.
Some of the best-predicted targets for which we found direct or indirect evidence in the literature, are
discussed below.

Among the best ranked proteins, NR1I2 (also known as Pregnane X Receptor, PXR) and AHR (Aryl
Hydrocarbon Receptor) are two nuclear receptors involved in detoxification of endogenous or exogenous
toxic compounds. They are both characterised by a ligand-binding domain, and a DNA-binding domain,
that, after translocation to the nucleus, controls the expression of the targeted genes. In particular, they
bind to the regulatory regions of the CYP3A4 gene, encoding for a member from the cytochrome P450
family of major drugs phase I metabolising enzymes. We found several papers reporting that ivacaftor (and
its metabolites) and lumacaftor, but not tezacaftor, are strong inducer of CYP3A4 expression [222]. The
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three compounds induce the expression of CYP1A2, another gene from the cytochrome P450 family that is
targeted by NR1I2 [223]. Taken together, these results are consistent with our predictions that the three
CFTR modulators could be ligands for NRI12 and/or AHR. In the present case, the predicted interactions are
related to the metabolism pathways that process the drugs, and not to their mechanism of action. However,
there are strong evidence in the literature that the corresponding high scored predicted interactions with
NR1I2 and/or AHR could be true, and these interactions would provide the precise molecular mechanism
phase I metabolising for these drugs.

These results have strong clinical implications, since they explain some drug-drug interactions that have
been reported. Among others, administration of ibuprofen (an anti-inflammatory drug commonly used in CF)
together with lumacaftor/tezacaftor lead to sub-therapeutic concentration of ibuprofen, and one hypothesis
it could be due to activation of CYP enzymes [224]. Similarly, strong drug-drug interactions were reported
between ivacaftor and rifampin, an antibacterial drug commonly used to fight lung infections in CF. The
authors also speculated that the two drugs might have reduce each other’s concentration in blood, leading
to sub-therapeutic levels [225]. Even more, one paper reported that lumacaftor might reduce the plasma
concentration of ivacaftor, when the two molecules are co-administrated, which could limit the clinical effect
of this drug combination [222].

Taken together, our predictions and the above observations indicate that one should avoid concomitant
administration of ivacaftor/lumacaftor and other drugs that would either be inducers (via binding to NI1I2
or AHR) or substrates of CYP enzymes.

TNFα is another highly ranked target for the three modulators, particularly for ivacaftor and tezacaftor.
TNFα is a cell signalling protein (a cytokine) involved in systemic inflammation, and TNFα gene is known
to modulate CF disease severity [226]. We were not able to find any published work that explicitly confirmed
direct interaction between CFTR modulators and TNFα. However, the Bioassay database, available at the
pubchem database, indicates that ivacaftor was found active in Biossay AID 624479, an HTS screen for
identification of small molecule antagonists for the TNFα/NFkB signalling pathway. NFkB is one of the
downstream transcription factors activated by TNFα, leading to expression of a series of pro-inflammatory
cytokines such as IL2, IL6, or IL8, and to anti-apoptotic factors and cell cycles regulators, leading to cell
survival and proliferation. These two phenotypes (inflammation and proliferation) are well documented in
CF, as mentioned above.

In addition, a paper tested the interest of the anti-inflammatory drug Sulindac in CF cells [227]. They
studied the interest of this drug by following its effect on inhibition of the TNFα/NFkB signalling pathway,
using a reporting gene whose expression is correlated to the activity of the promoters targeted by NFkB (in
fact, they used a biological system similar to that of Biossay AID 624479). They also followed the expression
level of IL8. In fact, they happen to also test lumacaftor, which indeed lead a decrease in the reporter
gene signal, and to a decrease in IL8 expression. This means that lumacaftor does inhibit the TNFα/NFkB
signalling pathway. However, this was not their interest in their study, and although this result was evident
in their figures and tables, they did not make any comment or analysis. This does not prove that lumacaftor
in a direct inhibitor of TNFα, but we can conclude that it, at least, inhibits one of the proteins in the
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TNFα/NFkB cascade.
Finally, various papers report that pro-inflammatory cytokines from this pathway are up regulated in

CF [219], and that IL8 and IL6 levels are reduced upon treatment with ivacaftor [228]. Overall, these results
indicate that some of the known molecular effects of ivacaftor (and potentially of lumacaftor and tezacaftor)
that are not explained by CFTR modulation, could arise from a mechanism involving inhibition of TNFα
pathway (TNFα/NFκB can be found in figure 5.4), potentially by direct interaction with TNFα.

If confirmed, this could have strong implications in CF. First, it could reveal that dysregulation of the
TNFα/NFκB pathway could be the causing mechanism for the intrinsic inflammation observed in the airways
of CF patients, even in absence of infection. The link between CFTR mutation and dysregulation of this
pathway is not be explained yet, although some studies have shown that activation of the TNFα/NFκB
and inhibition of CFTR function are correlated [229]. They suggest that an increase in TNFα levels could
be a cellular response in an attempt to favour processing of ∆F508-CFTR. Second, hyper-activation of this
pathway is also observed in other inflammatory diseases such as rheumatoid polyarthritis, and therefore,
TNFα antagonists are available on the market, and might be stronger and more specific inhibitors than the
three CFTR modulator molecules. They would undoubtedly be interesting candidates for repositioning in
CF. Indeed, while it is not clear whether inhibition of TNFα alone would be a good strategy in CF, since
it would both reduce inflammation and ∆F508-CFTR processing, a bi-therapy with CFTR modulators and
TNFα inhibitors would allow increase of expression and function of ∆F508-CFTR, while decrease chronic
inflammation, one of the most deleterious symptoms in CF.

These results urged our collaborator to undertake experiments to evaluate our prediction of TNFα as a
target for CFTR modulators. Direct interaction between CFTR modulators will be tested on purified TNFα
by mass spectroscopy, in the laboratory of Professor Olivier Laprevote. In addition, this interaction will also
be assayed by native gel electrophoresis in the laboratory of Professeur Isabelle Sermet-Gaudelus. In both
cases, the principle will be to search for conversion of the trimer active form of TNFα into a dimer form,
as observed in presence of other small molecules inhibitors of TNFα [230]. In addition, they will undertake
transcriptomic experiments on primary culture of CF patients airways epithelial cells, in order to further
study the effect of TNFα activation or inhibition on ∆F508-CFTR processing (with, and without CFTR
correctors), and on downstream cytokines.

Other interesting predictions are the high scores predicted for interaction of ivacaftor with adrenergic
receptors, in particular with α1-, α2-, and β2-adrenergic receptors (respectively ADRA1, ADRA2, and
ADRB2). Adrenergic receptors (ADRs) form a family of G-coupled receptors involved in signal transduction
of various cellular functions such as smooth muscle contraction and relaxation.

As mentioned above, it has been shown that ivacatfor binds to the β3-adrenergic receptor (ADRB3),
an information that was not used in our chemogenomics predictions, since we considered all three CFTR
modulators as orphan proteins. ADRB2 and ADRB3 display high sequence similarities (41 % sequence
identity, and above 70 % sequence similarity, being in fact two isoforms expressed in different tissues), and
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Figure 5.4. TNFa/NFkB pathway.

are known to share some ligands. For example, according the the Unipro entries of ADRB2 and ADRB3
(respectively P07550 and P13945) Amitriptyline, Amphetamine, Arbutamine, Bopindolol, Mephentermine,
Propanolol, and many other molecules bind both to ADRB2 and ADRB3. This allows to conclude that our
prediction of ADRB2 as a target for ivacaftor is highly realistic.

Consistent with this conclusion, many papers underline the functional links between ADRs and CFTR. In
particular, it was shown that ADRB2, the major adrenergic receptor isoform expressed in airway epithelia,
colocalises with CFTR at the apical membrane, and forms a macromolecular complex involving CFTR-
EBP50-ADRB2 through PDZ-based interactions.

Figure 5.5. Scheme of the functional interaction of ADRB2 and CFTR (picture from [211]).

Thus, CFTR physically and functionally interacts with ADBR2, and stimulation of the later by agonists
ligands increases CFTR chloride channel activity in airway epithelial cells (a scheme of the interaction is
reported in Fig. 5.5). Assembly of the complex is regulated by PKA-dependent phosphorylation, and deletion
of the regulatory R domain of CFTR abolishes PKA regulation of complex assembly [211]. Conversely, it
was proven that antagonists of ADRB2 inhibit CFTR chloride secretion [231]. Interestingly, a study reports
that ivacaftor activates CFTR function, provided that it is not already maximally activated by ADRB
agonists [232].
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Taken together, these results (and many others not discussed here) strongly suggest that, besides being
a ligand for ADRB3, ivacaftor might also be an agonist ligand for ADRB2, and potentially other adrenergic
receptors. This could highlight its mechanism of action, at least in the case of the most common ∆F508
mutant (and other mutants displaying some remaining activity), and would have considerable clinical impli-
cations. Indeed, many CF patients receive ADRB broncho-dilatators agonists such as albuterol, and chronic
or excess of such treatment was found to reduce by an amount of 60% the activation of wild-type or ∆F508
mutant[233]. This could explain, at least in part, why half of CF patients receiving ivacaftor do not bene-
fit from FEV1 improvement. It would be interesting to analyse whether there exists some anti-correlation
between broncho-dilatator treatment and absence of response to ivacaftor. It would also mean that the mech-
anism of action of ivacaftor could be different for mutants that retain some activity (like the most frequent
mutant ∆F508, R117H or A455E) and for mutants that are processed to the membrane, but inactive because
unable to hydrolyse ATP, like the G551D mutant. Indeed, the the case of the G551D mutant, although not
directly proven, a series of experiments tended to prove that activation of G551D-CFTR by ivacaftor could
be the result of direct interaction between these two partners [234].

Taken together, our results and the above observations strongly suggest the mechanism by which ivacaftor
activates the function of ∆F508-CFTR could be binding and activation of ADRB2, leading to activation of
CFTR through the protein complex shown in Fig. 5.5.

If this is confirmed, it would be of considerable relevance in CF. First, since many CF patients already
receive ADRB2 agonist broncho-dilatators as part of their daily medication, one could wonder whether these
patients do benefit from ivacaftor therapy, or do not because the function of their mutated CFTR is already
maximally activated through this route. This could explain part of the 70% patients who do not improve
CFTR function and FEV1 under this therapy. This is an assumption that our clinician collaborators in Ho-
pital Necker will evaluate by analysing the record of their CF patients receiving ivacaftor. For all ∆F508 pa-
tients, one interesting question would be to wonder which of the two combinations, i.e. lumacaftor/ivacaftor
or lumacaftor/ADRB2 agonists(broncho-dilatator), would be the best choice in terms of ∆F508-CFTR ac-
tivation and safety profile (side-effects, drug-drug interaction). In addition, since ADRB2 agonist molecules
are also available as oral drugs. Therefore, it would also be interesting to investigate whether they would
be more effective to activate ∆F508-CFTR that the nebulized broncho-dilatators, and whether they would
be better choices for activation of ∆F508-CFTR in organs other than the lung, but also affected by CF (for
example, the digestive track).

Finally, among other predictions of interest for CF, we will briefly comment those involving protein
kinases. As can be seen in Table 5.1, several kinases were predicted with very high scores as ligands for one
or several of the three CFTR modulators: MAPK14 and MAPK10, CDK2, CHECK1, SRC, and GSK3B.
Remember that we used a very high threshold of 0.9 in score, which means that at lower (although still high)
scores, these and other kinases are predicted ligands for one or several or the three considered molecules.
There are so many publications that underline cross-talks between CFTR and kinases (see [235]), that it
is out of the scope of this manuscript to make a comprehensive review. However, we can mention that
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these links are related to many phenotypes and symptoms of CF, at the cellular or clinical levels, including:
autophagy, inflammation, CFTR maturation and proteolysis, cell proliferation and so on. However, we would
like to shortly mention some of the papers (among many others) providing the most convincing clues about
potential interactions between our best predicted kinases and CFTR modulators. For SRC, refer to [236].
For MAPK kinases, refer to [237]. For kinase inhibitors in general, see [238].

It would therefore be of great interest to perform experiments dedicated to study the target profile of
CFTR modulators at the human kinome level (around 500 kinases), or at least against some of the most
promising kinase subfamilies such as MAP, the SRC, and the GSK3B kinases. Some companies such as
Discoverex offer these services for a few thousand of euros to a few tens of thousand of euros, depending
on the number of tested molecules and kinases, based on the so-called Kinomescan test. We think that
gathering some money to perform such tests is an important issue in CF research. Indeed, kinases are
extensively studied proteins, because they are involved in many diseases such as cancer. Therefore, many
drugs are already available against various kinases, and some of them may also be candidate for repositioning
in CF.

5.1.5 Conclusion and perspectives

Overall, chemogenomics predictions allow to propose highly realistic protein targets for CFTR modulators.
Our predictions also highlight that the global effects (beneficial or limiting) of these drugs might result from
several mechanisms of action involving diverse targets, in addition to CFTR (although their direct interaction
with this protein is not clearly demonstrated).

They will guide future experiments to better decipher the complex mechanisms of action of CFTR
modulators, which illustrates one of the contributions expected from chemogenomics approaches, as stated
in introduction of this manuscript. Indeed, our predictions allowed to understand otherwise known biological
facts that were not interpretable without guiding the intuition with the predicted targets. More generally,
these results allow to analyse available literature in a more comprehensive manner.

On longer terms, identification of new therapeutic targets in CF (such as adrenergic receptors, kinases or
TNFα) can also help to build a systems biology view of the disease, and better understand the link between
the mutated CFTR gene and the defect in the chloride channel, to the overall complex physiopathology of
CF.

We would like to add that, our predictions appeared convincing enough to CF experts to be the starting
point of a wide collaboration involving in silico approaches based on systems biology and machine-learning
approaches, and experimental approaches based on ad hoc experiments (devoted to predictions evaluation)
and omics approaches of CF. This collaboration includes computational biologists from our group, from
Institut Curie and from Institut Imagine, together with experimental biologists from Universite Paris 5 and
Institut Imagine. Our results are also the starting point of a wider project involving clinicians from Hopital
Necker in Paris, from the Oslo University Hospital, and from the Val d’Hebron hospital in Barcelona. This
project is currently under evaluation of the european ERACoSysMed call for translational medicine.
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5.2 Virtual screening for triple-negative breast cancer

5.2.1 Introduction

Institut Curie occupies a leading position in breast cancer research and treatment. The incidence of breast
cancer is 54.000 in France each year, and one out of eight women will develop this cancer. Various classifica-
tions are used in breast cancer, but an important classification is based on the receptors that are expressed
at the surface of cancer cells, because they condition therapeutic strategy.

In practice, the presence of three receptors is searched: progesterone receptor (PR), estrogen receptor
(ER), and the human epidermal growth factor receptor 2 (HER2). The growth of PR and ER-positive
tumours are fuelled respectively by progesterone and estrogen hormones, and therefore, hormonal therapy is
used to decrease the level of these hormones. Two cancers out of three are positive for at least one of these
two hormone receptors. In HER2-positive breast cancer, HER2 promotes the growth of cancer cells, and
specific targeted therapy using antibodies are very effective. One cancer out of five is HER2+.

Unfortunately, 10 to 20% of breast cancers express none of these receptors, and are consequently called
triple negative breast cancers (TNBC). These cancers tend to be aggressive, and have a poorer prognosis
than the others. No specific drugs are available for them, precisely because they do not express a known
protein target, and TNBC is probably a heterogeneous disease because cancers are classified as TNBC by
default.

Therefore, there is an urgent need to find new drugs for these cancers, and to identify their biological
characteristics. In a context where searching and developing a new drug is a very long and expensive process,
one alternative, that we explored in this project, was again to favour new therapies against TNBC among
marketed drugs.

The group of Prof. Fabien Reyal is very active in TNBC research, and performs experimental screens on
TNBC cell lines to search for molecules able to kill these cancer cells. In particular, they screened 12 TNBC
and two control cell lines using two complementary phenotypic assays: a fluorescent cytotoxicity assay [239],
and luminescent cell viability assay [240]. More precisely, they screened 800 FDA-approved molecules, in
addition to 80 kinase inhibitors, 33 phosphatase inhibitors, and 53 protease inhibitors, because these three
classes of proteins are known to be potential cancer drug targets. A second goal was to identify markers
for drug sensitivity or resistance, in order to define which patients, among TNBC patients, would benefit
from potentially identified drugs. This would also allow to stratify TNBC patients into coherent sub-groups,
based on these new biological markers.

Hit molecules were defined as molecules leading to less than 10% of viable cells in the viability test, or
90% of killed cells in the cytotoxicity test. With these criteria, the biologists identified 114 active molecules
in the viability test, and 119 active molecules in the cytotoxicity test. A total of 94 molecules were common
to the two sets, and were chosen as primary hits.

Although 966 molecules could be studied in these two preliminary assays, more extensive tests had to be
undertaken to better characterise hits. In particular, it was necessary to perform dose-response experiments,
which was possible for a maximum of 80 molecules, given the time, budget and human resources for the
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project.

Our role in the project was first to help select 80 molecules out of the 94 hits.
Reducing the number of hits from 94 to 80 did not appear to be a strong challenge. The most simple idea

was to measure pair-wise similarities between the 94 hits, and search for highly similar pairs of molecules that
could be considered as "doublons". Although we are aware that subtle structural differences might sometimes
strongly modulate the activity of a molecule, this appeared to be a reasonable strategy. Indeed, at this stage,
the idea was to select hits that span the chemical space of active molecules as much as possible, in order
to cover the larger possible panoply of underlying mechanisms, and identify the wider possible spectrum of
TNBC subtypes.

Therefore, we computed the pairwise distance between the 94 identified molecules, based on their chemical
graph, and manually checked whether or not the molecules forming the closest pairs shared enough chemical
similarity. In particular, we used the Marginalised kernel to assess molecular similarities, computed via the
Chemcpp package (cf section 2.3.3), to assess the structural distance between molecules.

We identified 14 pairs of very high similarity and considered that, in a context where all molecules could
not be further tested, one of the two molecules in each of these pairs could be considered as redundant and
removed from the hits (two examples of such very similar pairs are displayed in figure 5.6).

Figure 5.6. Examples of pairs of very high similarity

This allowed to reduce the number of hits to further analyse to the desired number of 80.
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5.2.2 Characterisation of the hits

Our goal was to further characterise the hits, based on their chemical structure, targets (known or predicted),
and mechanism of action, in order to help select the most promising compounds to be sent for further costly
analysis.

Also, it was essential to identify the mechanism of action of the 80 molecules in order to point at potential
biological markers to be used for stratifying patients and predict the response to treatment. For each hit
molecule, some targets could be known or not. And, among the known targets (if several), the one that
was responsible of the activity in TNBC could be different from that responsible of the activity against the
disease for which the drug was initially marketed. It was also interesting to identify whether the mechanisms
of action of hits were similar, or at least, related to a limited number of pathways. This would help better
characterise TNBC, and understand how they differ from the three other breast cancer types, besides the
default of expression in PR, ER, and HER2.

In essence, the aim was to understand why the 80 hits were active against the twelve TNBC cell lines,
and identify potential protein targets that would be of interest for TNBC biomarkers.

Characterisation of hits molecular structure

To establish whether the hits shared some common structural characteristics, we clustered the 966 initially
considered molecules with the ward-linkage agglomerative clustering algorithm (cf. appendix A.6), based on
the molecular distance defined by the Marginalised kernel. The same clustering was repeated on the hit
molecules only.

We determined the number of clusters based on the silhouette score, which compares the average intra-
cluster distance with the inter-cluster distance. The silhouette score can vary from −1 (inter-cluster distance
is 0) to 1 (average intra-cluster distance is 0). By comparing the molecules within the different clusters for
all possible number of clusters, we determined that the optimal number of clusters was 5. Indeed, adding
more clusters was only creating clusters containing a few molecules whose silhouette scores were below 0.
The optimal number of 5 clusters was found both for the 966 molecules and the 80 hits.

Analysing the position of hits within the clusters of the 966 molecules, we found that the hits were spread
over the 5 clusters. In addition we found that the 5 clusters obtained with the hits clustering had a one
by one correspondence with those obtained with the 966 tested molecules. Therefore, the hits appeared
representative of the chemical diversity of all tested molecules, and were not restricted to a specific family of
molecular structures. This did not allow to identify particular molecular scaffolds of interest or mechanisms
of action. However, it indicated that various options were potentially at hand for TNBC, and that TNBC
was probably a diverse group of tumours [241], reflected by the fact that could be sensitive to different types
of molecules.

Since it was not possible to derive comprehensive information from the structures of hit molecules, we
then tackled the question of identifying potential common mechanisms of action shared by molecules that
are active against TNBC.
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Characterisation of hits mechanism of action based on their protein target profiles

We studied whether the 80 hits were enriched in particular mechanisms of action, compared to those of the
966 tested molecules. More precisely, we described the hit molecules by their protein target profiles in order
to identify clusters, similarly to the clustering performed on the chemical structures.

To this end, we searched for the known targets of the 966 molecules based in several available databases [117,
118], but also from pharmaceutical companies information, and literature search. We collected 785 unique
targets, and observed that 20% of the molecules were orphan, 30% were associated with a single target, and
the mean number of known targets per molecules was about 3. Among these 785 targets, 170 proteins were
targets known for the 80 hit molecules.

Thus we described each molecule by a binary vector of length 785, corresponding to the total number of
targets. Each element was set to 1 if the corresponding protein was a target for the considered molecule,
and other-wise to 0. This lead to a large number of orthogonal molecules, because most molecules did not
share any target (most of them had only 1 or 2 known targets), in addition to the fact that 20% of molecules
were orphans. In such situation, it is not possible to use the Euclidean or the Jaccard distance to cluster
molecules.

To address this issue, one idea is to use independent biological data that would allow to increase hits
targets promiscuity, so that it would be possible to measure distances between sets of proteins. We used
the protein-protein interaction (PPI) network available at the STRING database that records interactions
between proteins, including direct (physical) and indirect (functional) associations recovered from computa-
tional prediction, knowledge transfer between organisms, and interactions aggregated from other (primary)
databases [242]. This allowed to assess the similarity between proteins based on the diffusion kernel [243]
computed on the PPI. This kernel assesses the similarity between two proteins based on the length of the
shortest path bridging their two nodes.

From this similarity between proteins, we defined a symmetric similarity measure between molecules as:

sim(m1,m2) = max
k∈{1,2}

[ 1
|target_set(mk)|

∑
i∈target_set(mk)

max
j∈target_set(ml∈{1,2}, l6=k)

(Kdiff (i, j))].

In the above equation, target_set(mk) refers to the set of protein targets of molecules mk and Kdiff refers
to the above mentionned diffusion kernel on the PPI network of the STRING database. The underlying idea
was to measure molecule similarity using their target profiles more smoothly than with the direct one-to-one
correspondence computed by the Euclidean distance between the target binary profile.

Clustering of molecules with the ward-linkage agglomerative clustering algorithm (cf. appendix A.6)
based on this similarity measure lead to completely different clusters from those obtained with the structural
similarity measure. More importantly, most of the molecules felt in a single and non-informative cluster,
in which all molecules were as far from each other, than from the other clusters. This cluster did not bear
comprehensive information about any associated mechanism of action, probably because of too many orphan
molecules, or/and too many molecules whose targets are isolated in the PPI network. Thus, the similarity
measure defined from the PPI network did not address the issue of lack of information.
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At this stage, the conclusion was that the mechanisms of action were diverse (at least, based on the
known targets), and it was not possible to cluster molecules based only on targets information.

Characterisation of hits mechanism of action via pathway enrichment analysis

Since the hit targets did not allow to identify key mechanisms of action that trigger TNBC sensitivity to
drugs, we searched for potential enriched biological pathways. In other words, we searched whether the hits
targets preferentially belonged to some biological pathways that would be critical for TNBC survival. As
mentioned above, the number of targets per hit was very low (on average, between 0 and 2), and therefore,
we chose to add high score predicted targets to the target profiles of hit molecules before performing pathway
enrichment analysis.

Predictions were performed for the 966 tested molecules at the druggable human proteome scale, using
the method we have proposed in [50]. More precisely, we built ten classifiers based on ten different training
sets that comprised all the known human targets in the DrugBank database v.4, and an equally sized set of
unknown interactions as negative samples. The final probability of a drug-target interaction was equal to
the mean probability of interaction over the ten classifiers.

We defined a minimum probability threshold above which a predicted interaction was considered as "real".
Similarly as in the cystic fibrosis project, we chose a threshold of 0.9, since this was the mean probability
observed when predicting known targets by cross-validation. This lead to add around ten targets per hit
molecule, corresponding a "reasonable" number of targets per drug, i.e. in the range that is typically expected
for drug-like organic compounds [24]. The resulting in 1137 known and predicted protein targets for the 966
tested molecules. From these, 298 corresponded to the 80 hit molecules (we recall that they had 170 known
targets).

This finally defined two lists of proteins that will be used for pathway enrichment analysis: a "reference"
list comprising the 1137 known and predicted targets for the 966 tested molecules, and a "highlighted" list
comprising the 298 known and predicted protein for the 80 hit molecules.

Pathway enrichment analysis aims at identifying whether a highlighted list of proteins (or genes) contains
subgroups of proteins belonging to the same biological pathways (such as "cell cycle", "apoptosis", or "DNA
repair"), in a quantity above than the expected one when randomly picking proteins in a reference set.
Biological pathways are defined as a set of genes related to a specific biological function.

Results are usually provided as a real number for each pathway, corresponding to a p-value of a statistical
test, based on the probability of observing the subset of highlighted genes from this pathway "just by chance".
The smaller the p-value, the more unlikely it would have been to find the same number of proteins from the
considered pathway, when proteins are picked randomly in the reference list. When the p-value of a pathway
is below a threshold, we can assert that this pathway is enriched, or equivalently, that the list of highlighted
proteins from this pathway is "enriched". The likeliness is assessed for each pathway by the p-value of a
statistical (hypergeometric distribution) test, corrected by the Benjamini-Hochberg procedure for multiple
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testing. A typical threshold value is around 0.05, meaning that when the p-value of a pathway is below this
threshold, there is less than 5% chance that the highlighted list of proteins would be enriched in proteins
from this pathway by chance.

In general, pathway enrichment analysis helps to interpret the data in terms of the biological processes
and pathways information that they contain.

We used the pathways recorded in the Reactome database [119]. Reactome defines a deep hierarchy of
pathways, allowing an analysis of biological functions at different levels of granularity. Therefore, we searched
for enriched pathways, i.e. for pathways whose proteins would be over-represented in the highlighted list, at
each hierarchy level of the Reactome database, with respect to the reference list of 785 proteins targeted by
the 966 tested molecules. Besides, we used binomial instead of hypergeometric statistical tests. Indeed, since
several hit molecules can target the same proteins, we considered the binomial distribution that describes,
similarly as hypergeometric distribution, the number of times an event occurs in a given number of trials,
but with replacement. Then, we considered enriched pathways at a p-value threshold of 0.05.

Among the 30 Reactome pathways at the top level of the hierarchy, the enriched pathways were, by
decreasing order of p-values: signal transduction, metabolism, neuronal system, and cell cycle. We report, in
tables 5.2, 5.3, 5.4, and 5.5, the over-represented pathways at all hierarchical levels for each of the 4 top-level
enriched pathways.

Hierarchical level Reactome pathway p-value

level 1

Signaling by GPCR 1.78 ∗ 10−20

Signaling by Hedgehog 2.469 ∗ 10−2

Signaling by Leptin 2.508 ∗ 10−2

Signaling by ERBB4 2.970 ∗ 10−2

MAPK family signaling cascades 3.474 ∗ 10−2

Signaling by SCF-KIT 4.095 ∗ 10−2

Signaling by ERBB2 4.659 ∗ 10−2

Signaling by FGFR 4.665 ∗ 10−2

Signaling by EGFR 4.665 ∗ 10−2

level 2

GPCR ligand binding 3.422 ∗ 10−25

GPCR downstream signaling 1.125 ∗ 10−18

Gastrin-CREB signalling pathway via PKC and MAPK 3.663 ∗ 10−9

Regulation of KIT signaling 1.201 ∗ 10−2

Hedgehog ’off’ state 2.467 ∗ 10−2

SHC1 events in ERBB2 signaling 2.760 ∗ 10−2

SHC1 events in EGFR signaling 2.760 ∗ 10−2

GRB2 events in ERBB2 signaling 2.760 ∗ 10−2

GRB2 events in EGFRsignaling 2.760 ∗ 10−2

RAF/MAP kinase cascade 2.760 ∗ 10−2



CHAPTER 5. TWO APPLICATIONS OF DRUG VIRTUAL SCREENING 103

SHC1 events in ERBB4 signaling 2.760 ∗ 10−2

MAPK1/MAPK3 signaling 2.861 ∗ 10−2

Downstream signal transduction 4.259 ∗ 10−2

Signaling by FGFR4 4.659 ∗ 10−2

Signaling by FGFR4 4.665 ∗ 10−2

Signaling by FGFR1 4.665 ∗ 10−2

Signaling by FGFR3 4.665 ∗ 10−2

Signaling by FGFR2 4.665 ∗ 10−2

level 3

Class A/1 (Rhodopsin-like receptors) 3.313 ∗ 10−27

G alpha(z) signalling events 1.531 ∗ 10−10

alpha(z) signalling events 5.08 ∗ 10−7

RHO GTPases activate IQGAPs 9.115 ∗ 10−4

VEGFR2 mediated cell proliferation 3.595 ∗ 10−2

RAF/MAP kinase cascade 2.760 ∗ 10−2

Signalling to ERKs 3.474 ∗ 10−2

Inactivation, recovery and regulation of the phototransduction cascade 4.659 ∗ 10−2

Downstream signaling of activated FGFR3 4.665 ∗ 10−2

Downstream signaling of activated FGFR2 4.665 ∗ 10−2

Downstream signaling of activated FGFR1 4.665 ∗ 10−2

Downstream signaling of activated FGFR4 4.665 ∗ 10−2

level 4

Amine ligand-binding receptors 9.660 ∗ 10−54

PI3K Cascade 6.517 ∗ 10−4

Peptide ligand-binding receptors 2.143 ∗ 10−2

FRS-mediated FGFR1 signaling 2.760 ∗ 10−2

FRS-mediated FGFR1 signaling 2.760 ∗ 10−2

FRS-mediated FGFR2 signaling 2.760 ∗ 10−2

FRS-mediated FGFR2 signaling 2.760 ∗ 10−2

RAF/MAP kinase cascade 2.760 ∗ 10−2

RAF/MAP kinase cascade 2.861 ∗ 10−2

RAF/MAP kinase cascade 2.861 ∗ 10−2

Signalling to RAS 3.474 ∗ 10−2

level 5

Dopamine receptors 8.560 ∗ 10−21

Serotonin receptors 4.919 ∗ 10−12

Adrenoceptors 4.303 ∗ 10−10

Muscarinic acetylcholine receptors 1.489 ∗ 10−8

PI3K Cascade 6.517 ∗ 10−4

RAF/MAP kinase cascade 2.760 ∗ 10−2

PKB-mediated events 2.819 ∗ 10−2

ARMS-mediated activation 2.861 ∗ 10−2
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Frs2-mediated activation 2.861 ∗ 10−2

level 6
RAF/MAP kinase cascade 2.760 ∗ 10−2

PKB-mediated events 2.819 ∗ 10−2

Table 5.2: Over-represented Reactome pathways in the 80 hits, associated with the signal transduction
pathway.

Hierarchical level Reactome pathway p-value

level 1
Metabolism of lipids and lipoproteins 3.550 ∗ 10−4

Biological oxidations 1.764 ∗ 10−3

Inositol phosphate metabolism 9.794 ∗ 10−4

level 2
Synthesis of IP3 and IP4 in the cytosol 9.794 ∗ 10−3

Phase 1-Functionalization of compounds 2.861 ∗ 10−2

Purine metabolism 4.259 ∗ 10−2

level 3
Acetylcholine regulates insulin secretion 9.794 ∗ 10−3

Cytochrome P450-arranged by substrate type 4.659 ∗ 10−2

Table 5.3. Over-represented Reactome pathways in the 80 hits, associated with the metabolism pathway.

Hierarchical level Reactome pathway p-value
level 1 Potassium Channels 3.945 ∗ 10−4

level 3
Acetylcholine Binding And Downstream Events 4.25 ∗ 10−2

GABA receptor activation 4.659 ∗ 10−2

level 4 Activation of Nicotinic Acetylcholine Receptors 4.259 ∗ 10−2

level 5
CREB phosphorylation through the activation of CaMKK 3.021 ∗ 10−2

Postsynaptic nicotinic acetylcholine receptors 4.259 ∗ 10−2

level 6 Activation of CaMK_IV 3.745 ∗ 10−3

Table 5.4. Over-represented Reactome pathways in the 80 hits, associated with the neuronal system pathway.
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Hierarchical level Reactome pathway p-value
level 1 Cell Cycle, Mitotic 7.493 ∗ 10−3

level 2
Mitotic G2-G2/M phases 1.561 ∗ 10−2

M Phase 4.659 ∗ 10−2

level 3
G0 and Early G1 1.323 ∗ 10−2

G2/M Transition 1.561 ∗ 10−2

Mitotic Metaphase and Anaphase 2.861 ∗ 10−2

level 4
Centrosome maturation 2.861 ∗ 10−2

Mitotic Anaphase 2.861 ∗ 10−2

level 5
Separation of Sister Chromatids 2.861 ∗ 10−2

Recruitment of mitotic centrosome proteins and complexes 2.861 ∗ 10−2

Table 5.5. Over-represented Reactome pathways in the 80 hits, associated with the cell cycle pathway.

We observed a small number of enriched pathways at lower levels of the hierarchy. This facilitated
analysis, but most of all, it means that only a limited number of pathways is intended to govern TNBC cell
lines sensitivity to drugs, based on our data.

Three of the best enriched pathways are notoriously associated to cancer in general: "signal transduction",
"metabolism" and "cell cycle". Indeed, TNBC tumours are expected to share some biological characteristics
which are shared by most tumours. The "signal transduction" key word covers a large variety of sub-
pathways whose function is to induce a cellular response (usually in terms of expression of specific genes)
to an extracellular signal such as a growth factor or a cytokine. For example, FGFR signalling pathways
are well known targets for various cancer types (for a review, see [244]), and in our results, we found several
FGFRs signalling pathways to be enriched at levels 1, 2, 3, and 4. Similarly, the RAF/MAPK pathways and
signalling cascades are known targets for cancer [245], and were found enriched at levels 1, 2, 3, 5 and 6. Other
pathways are somewhat intriguing, such as the dopamine receptors, serotonine receptors, adrenoreceptors or
muscarinic acetylcholine receptors pathways, but we will come back to these in the following.

The "metabolism" pathways are also clearly linked to cancer in many ways, as recently reviewed in [246],
as well as "cell-cycle" [247].

We will not further discuss the results from these three top-level pathways, because they are not specific
to TNBC. Their presence simply means that TNBC do share some common biological features with other
cancers (except for the intriguing pathways mentioned above, to which we will return), which is expected,
and that TNBC can be sensitive to some of the classical cytotoxic drugs used in many types of cancers.
However, this does not correspond to our goal in the present project, which was to identify specific targets
for TNBC, opening ways for specific (not cytotoxic-based) therapies.

Among the four most enriched pathways, the "neuronal system" pathways was unexpected in the context
of TNBC, and attracted our attention. In particular, level 1 of "neuronal system" is enriched with "potas-
sium channels", and the active molecules whose known targets contributed to enrichment of this pathway
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are: Chlorepromazine, Pimozide, and Thioridazine. Indeed, these three molecules share a common target:
the potassium voltage-gated channel subfamily H member 2, KCNH2, also called Kv11.1, ERG1, HERG, or
EAG1 (among many other names). In addition, six other active molecules contributed to this pathway, based
on high probability prediction of targeting the KCNH2 channel: Fluphenazine, Trifluoperazine, Fluvastatin,
Paroxetine, Nebivolol, and Perphenazine. These molecules are used as antipsychotic drugs (Perphenazine,
Pimozide, Thioridazine, Fluphenazine, Trifluoperazine), antilipemic (Fluvastatin), anti-depressant (Paroxe-
tine) or anti-hypertension drugs (Nebivolol). To evaluate the interest of KCNH2 as a drug target for TNBC,
as suggested by the above results, we undertook extensive bibliographic search. In the following, we present
how potassium channels play a role in cancer, and how they can relate the above drugs to their effect on
TNBC cell lines.

In living cells, transmembrane ionic gradients determine membrane excitability, which regulates important
cellular events including generation and transmission of neuronal electrical signals [248]. However, ion
channels are also associated with cellular migration and proliferation [248]. In particular, potassium (K+)
channels can control the switch from epithelial to mesenchymal phenotype (called epithelial–mesenchymal
transition; EMT), leading to enhanced migratory and invasive capabilities in cancer. Among them, KCNH2
is abundantly expressed in various human cancers, and uncontrolled gain or loss of activity of its encoded
protein Kv11.1 is often linked with tumour initiation and progression.

Regarding TNBC, Breuer et al. [249] showed that activation of Kv11.1 by NS1643 (a molecule known
to activate this channel) inhibits tumour growth in mice, after injection of MDA-MDB-231 TNBC cells,
and that NS1643 suppresses the EMT transition in this TNBC cell line. They conclude that Kv11.1 activa-
tors could be relevant therapeutic targets for TNBC. Dookeran et al. [250] showed that 2-pores potassium
channels (encoded by the KCNK genes) had distinct expression patterns in TNBC with respect to hormonal-
dependant breast cancers, and pointed that these channels could be novel biomarkers for clinical diagnosis
and therapeutic targets for TNBC. Panaccione et al. [251] showed that basal-like breast carcinoma, a sub-
type of TNBC, is driven by SOX10+/CD133+ cells, that express neural stem cell-specific markers and share
molecular similarities with cancer stem cells of neural crest origin. These specific markers included potassium
calcium-activated channel subfamily N member 4 (KCNN4). As a last example, Zhang et al. [252] showed
that intermediate-conductance calcium-activated potassium (SK4) channels are involved in the proliferation,
apoptosis, migration and EMT processes of TNBC cells.

It is not possible to review here all relevant literature, but overall, there is a significant amount of recent
evidence that potassium channels play a key role in breast cancer progression and dissemination (tumours in
which these channels are under-expressed or under-activated tend to be more aggressive), and that they could
be used as biomarkers for prognosis. In particular, our results, together with other studies, indicate that small
molecule activators of the Kv11.1 channel represent a novel therapeutic strategy to inhibit tumour growth
and metastasis in TNBC. In this context, the fact that FDA-approved drugs used in clinic as antipsychotic
also activate this channel would considerably accelerate their development against TNBC.
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At this point, we would like to go back to the above mentioned point, that a few unexpected transduction
pathways were found enriched in proteins that are targeted by the 80 hit molecules, namely dopamine
receptors, serotonine receptors, adrenoreceptors or muscarinic acetylcholine receptors pathways. Analysis
of the molecules targets which led to the enrichment of these pathways showed that, in fact, the active
antipsychotic drugs discussed above, all known or predicted agonists of potassium channels, do also target
these receptors. This explains the presence of the corresponding pathways enriched in the "transduction
pathways". Interestingly, the DrugBank database indicates that the mechanisms of action of Thioridazine
and Chloropromazine, as antipsychotic drugs, depend on their interaction with the above receptors (as for
Pimozide, Fluphenazine and Trifluoroperazine), and that its ability to bind to the product of KCNH2 is
stated as of "unknown pharmacological action". Therefore, their mechanism of action in psychotic diseases
would be different from that in TNBC. This means that drugs repositioning would, in this case, involve
proteins considered as "off-targets" with respect to their primary indication.

To conclude this discussion, we would like to underline that, even if we found many references that
already raised the hypothesis of potassium channels as targets for TNBC, we did not use this information
in the present study. In addition, although the biological assays identified a few hits molecules known to
target potassium channels, our chemogenomics predictions allowed to raise the "signal" related to KCNH2
by predicting it as a target for other active molecules. In other words, chemogenomics allowed to analyse
results of the biological tests in a comprehensive manner. It also allowed to attract our attention on papers
that formulated the same hypothesis, based on totally independent studies. This reinforces the interest of
pursuing the idea of potassium channel pathways as targets for TNBC, which to our knowledge, has not
been exploited yet in clinical research.

Many more drugs are reported at DrugBank to bind to KCNH2 gene product than those tested in the
present project. Interestingly, most of these drugs are labelled as "unknown pharmacological action" with
regards to this target, which opens many opportunities for future research focused on these drug candidates
in TNBC.

Characterisation of hits mechanism of action via drug response assays

In the previous section, the goal was to identify critical pathways associated with TNBC, based on the
pathways that are enriched in proteins that are known or predicted to be targeted by the 80 hit molecules.
Another way to identify the key pathways is to analysed which pathways of TNBC cells are experimentally
affected (up- or down- regulated) upon exposure to drugs.

Our biologist collaborators have planed to perform such studies in the future. The idea was to identify
differentially expressed pathways upon exposure the hit molecules. However, it was totally out of reach to
perform such experiments on the 80 hits, and at this stage of the project, there were no argument to tell
which were the "best" promising hits, on which we could choose to perform transcriptomic experiments.
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Therefore, we chose to work on publicly available large databases that gather the results of transcriptomic
experiments performed on various cancer cell lines upon exposure to many drugs. The goal was to identify
pathways whose expression correlate with response upon exposure to a given drug (sensitive or resistant).

Even if these databases did not consider any of our 80 hits, key pathways involved in response of TNBC
to other drugs could provide independent experimental data to evaluate the candidate pathways identified
by our in silico analysis. In particular, if TNBC were found sensitive to other drugs whose response can be
predicted based on some of the pathways we proposed above, this would increase their interest in terms of
biomarkers and therapeutic targets.

5.2.3 Identification of cancer biomarkers and drug mechanism of actions via
drug response assays

Several public databases for drug-cell line sensitivity are available. Some of the most popular are the Cancer
Cell Line Encyclopedia [253] (CCLE) and the Genomics of Drug Sensitivity in Cancer [254] (CGP).

Unfortunately, these databases are not consistent. Indeed, Haibe-Kains et al. [255] reported poor correla-
tions between their biological data, meaning that the same cell lines can have strongly different drug-response
curves for the same drugs in different databases. Indeed, it is particularly difficult to standardise the experi-
mental protocols and analysis methodologies, and it is also hard to compare databases due to importance of
the "batch effects" that sometimes appear as the dominant "signal". These "batch effects" are, for example,
the number of cells seeded per well, the drug concentration range that was examined, analytical tools to
calculate sensitivity values and many other experimental details.

Others have reported substantial agreement between the CCLE and the CGP dataset [256]. In particular,
they observed a Pearson correlation larger than 0.5 for 67% of comparable compounds. From our point of
view, these observations do not fully meet the concerns about data reliability.

Materials

Despite this significant issue, we chose to focus our study on the CGP dataset published by the Sanger
institute because it is a very rich and well maintained database, which provides clear and rigorous information
about the files that are provided. This also avoided the reproducibility problem of using several databases.

This database comprises 957 cell lines from 55 cancer types, including 11 over the 12 TNBC cell lines
considered in our project. The CGP database comprises 250 molecules for which we recovered their known
targets from the Drugbank and Kegg databases, in addition to those recorded in the database itself. We also
predicted proteome-wide targets with the approach presented in chapter 4 [50].

Among the available data, we kept only those for which the area under the drug-response curve was
available, and for which we could retrieve the molecular structure and external ID identifier. Indeed, the area
under the drug-response curve is the better quantitative measure of drug sensitivity than IC50, in particular
because it is more consistent across databases [257]. This lead to a dataset comprising 95 compounds and
608 cell lines.

http://www.cancerrxgene.org/
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Methods: data types and encoding

To identify biomarkers of drug-cell line sensitivity, we performed a systematic analysis of a wide range of
data types (gene expression, gene mutation status, gene copy number variation) and featurization (how the
different data types are encoded).

Data encoding is a core component of any machine-learning, since the prediction performances highly
depend on the features that describe the data. Moreover, in the present study, we need to focus on feature
selection, because our primary goal is to identify biomarkers or therapeutic targets, i.e. identify features
that are the most related to drug-cell line sensitivity, in order to both achieve high prediction scores and
provide interpretable results. Therefore, we also tested to describe the data with information about gene
sets or pathways instead of individual genes, since it results in much smaller feature vectors.

In the following, we enumerate the different types of molecular descriptors that we considered and give
their corresponding number of features in parentheses.

We considered (i) binary structural fingerprint (2901), (ii) the probability of targeting each protein in the
human proteome (16724), (iii) the binary profile of targeted proteins. A protein was considered as "targeted"
if its probability is higher than a threshold. We varied this threshold between 0.7 and 1 (corresponding
respectively to 127 and 278 features, i.e. 127 and 278 proteins targeted by at least one molecule). We also
featurized molecules with (iv) the probability of targeting Reactome pathways (674), where the probability
of targeting a pathway is equal to the maximum probability of targeting one protein in this pathway.

The last type of features allow describing molecules based on more global mechanisms of action than
protein targets, and is easier to relate to biomarkers than structural chemical features. Note also that such
description would have been very sparse without performing DTI prediction. Indeed, most molecules of
this dataset had only one or two known targets, as in the case of the 966 molecules (see previous section),
although such drug-like molecules are expected to interact with more proteins (see section 1.2).

For cell line descriptors, we considered: (i) gene expression at the mRNA level (17419), (ii) Reactome
pathways expression (674), where a pathway expression is defined by the mean of expression of the genes
belonging to this pathway. Also, we considered (iii) gene mutation binary status (19100) and (iv) gene
pathways mutation binary status (674), where a gene pathway is defined as mutated if at least one of its
genes set is mutated. Finally, we considered (v) gene copy number variation -CN- (45149), or alternatively
(vi) "discretised CN" (45149), which takes values in -1,0,1,2. In particular, "discretised CN" is set to -1 if
CN is less than 2, 0 if CN is 2, 1 is CN is between 3 and 6, 2 if CN is greater than 6. Therefore, "discretised
CN" is coarsening the information in copy number variation which may make the model easier to train.

Besides, describing cell lines with features at the pathway expression level rather that an the gene
expression level, or gene pathway mutation level instead of the gene mutation level, may make the model
easier to train and to interpret.

All descriptors and outputs were standardised (cf appendix A.1).



CHAPTER 5. TWO APPLICATIONS OF DRUG VIRTUAL SCREENING 110

Methods: feature pre-selection

For each considered type of features (both for molecules and cell lines), we tested various feature pre-selection
methods, with the hope to build sparser and more interpretable models.

We pre-selected features based on (1) internal variability, that is to say, the features whose variance was
higher than a threshold. This threshold is defined by the inflexion point in the curve displaying variance of
the considered features when these features are sorted by decreasing order of variance.

Alternatively, we pre-selected (2) cancer-related features, that is to say, features corresponding only to the
609 cancer-related genes referenced in the Sanger GeneCensus file. This means that only proteins encoded
by these genes were kept in the target profiles encoding molecules, and only expression, mutation or CN
of these genes were kept to encode cell lines. This corresponds to a knowledge-based pre-selection method,
with the underlying idea that we expect stronger and more relevant signal to arise from genes known to
be involved in cancer. Note however that this might filter out genes that would be specifically involved in
TNBC, and not more generally in cancer, or genes not yet known to be involved in cancer.

Also, we pre-selected (3) features which were statistically correlated with the output, via an F-test with
p-values below 5% and corrected for multi-testing by Bonferonni method.

Alternatively, we pre-selected (4) features whose correlation with the output is higher than a threshold.
As above, this threshold is defined by the inflexion point in the curve displaying correlation of the considered
features when these features are sorted by decreasing order of correlation.

Finally, we considered to pre-select (5) the most "dependent" features, that is to say, the features whose
mutual information [258] with the output is higher than a threshold. Again, this threshold is defined by by
the inflexion point in the curve displaying mutual information of the considered features when these features
are sorted by decreasing order of mutual information. Mutual information and correlation are similar notions,
but using mutual information enables to consider non-linear relationships between features and outputs.

To summarise, the idea was to examine feature pre-selection methods from different perspectives: inter-
nal variability, cancer relatedness, correlation and mutual information with the output (i.e. drug-cell line
sensitivity).

Methods: prediction of cell-line sensitivity to drugs

We tested two predictors, ElasticNet and RandomLasso, which themselves also perform feature selection
while fitting the data. These methods were ran with or without pre-selection of features.

ElasticNet [259, 260] refers to the linear regression with combined L1 and L2 norms as regularisers (cf.
appendix A.3). ElasticNet has two hyperparameters to control the amount of L1 and L2 regularisation. The
L2 regularisation is intended to overcome the main limitation of the lasso, which is to select randomly one
feature over a set of highly correlated features, by assigning equal weights to correlated features [176].

RandomLasso [261] is a procedure based on the lasso estimator. It has been shown to make the lasso
internal feature selection more stable. Indeed, RandomLasso refers to the repeat of the following procedure:
(1) bootstrap data (drawn with replacement n samples among the N samples in the training set). (2) scale
the features with random scaling weights drawn from independent trials of a fair Bernoulli random variable of

http://cancer.sanger.ac.uk/cosmic/download
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parameter s. (3) fit a lasso model on the dataset resulting from the bootstrap and feature scaling steps. After
repeating r times this procedure, each feature is assigned to a value of importance, which is the frequency
at which it has been selected. A threshold t of importance is then used to select the top-ranked features
that are finally used as input of a Ridge regression to perform the final prediction. RandomLasso has five
hyperparameters: n, s, r, t and λ the regularisation parameter of the lasso. Importantly, steps 1 and 2 aim
at subsampling training data sets with different statistics.

We determined the optimal hyperparameters by nested cross-validation on the considered dataset.

Methods: evaluation procedure

We evaluated the performance of the predictors via 5-fold cross-validation with the mean Pearson correlation
between the predictions and the known drug response. Considering this metric instead of classic MSE is
relevant here, since we want to recover the drug-cell line sensitivity profiles more than the exact values of
this sensitivity.

Most importantly, we searched the triplet (features types, pre-selection method -including no pre-selection-
, prediction model) leading to the best performance in drug sensitivity prediction, while selecting as few fea-
tures as possible, for sake of biological interpretability. Indeed, in the context of a future clinical application,
it would be difficult to interpret a large number of features in terms of biomarkers or drug targets. This
explained why we considered sparse predictors (ElasticNet and RandomLasso), and features pre-selection
methods.

Results and discussion: identification of the best cell-sensitivity prediction model

First, we tested the prediction approaches in the singletask framework. We either predicted the sensitivities
of all cell lines for each drug (i.e. we predicted the cell lines sensitivity profiles of drugs, called prediction
of drug profile in the following), or the sensitivity of each cell line to all the drugs (i.e. we predict the drug
sensitivity profiles of each cell line, called prediction of cell line profiles in the following).

In a nutshell, for these two singletask problems, and for all types of features, RandomLasso was found
more potent than ElasticNet, both in terms of predicting performance and number of selected features.
For example, in the case of predicting drug profiles with mRNA expression features for cell lines, ElasticNet
reached a Pearson correlation of 0.45 with 500 features, whereas RandomLasso reaches the same performance
but with ten times fewer features. The same behaviour was observed for predicting cell lines profiles with
structural descriptors for drugs. Notably, in this case, we observed that RandomLasso reaches the best
performance for a small number of features in the order of a dozen, which makes RandomLasso suitable for
biomarker identification.

For the problem of cell-line prediction profile (which is our problem in the present TNBC project), the
most efficient encoding for molecules was the structural descriptors (calculated by the RDkit python package),
resulting in an average Pearson correlation of 0.5 for around 30 selected features with the RandomLasso
procedure. The second best molecular encoding is the probability to target the Reactome pathways, which



CHAPTER 5. TWO APPLICATIONS OF DRUG VIRTUAL SCREENING 112

reaches a Pearson correlation of 0.36 for around 16 selected features. Recall that this performance was
reached by using drug-target predictions. In addition, these features allow biological interpretation of the
selected features in terms of mechanism of action, and therefore in terms of identification of new bio-markers
or therapeutic targets, which is not the case of structural descriptors.

For the problem of predicting drug profiles, the best prediction results were obtained with mRNA ex-
pression features for cell lines, reaching a Pearson Correlation of 0.45 for around 50 features. This number
of features is too high to identify a biomarker, even if the prediction performance reached are comparatively
good. However, they could be used as signatures for drugs. In other words, for each drug, cell-line sensitivity
could be predicted based on the expression of around 50 genes (the list of 50 genes depends on the cell line).
Note that a similar number of genes have been proposed as gene signature for the relapse risk in breast can-
cer (in general, not only for TNBC) [262]. Overall, our prediction performance in the problem of predicting
drug profile reached the state-of-the-art obtained on a similar dataset by other authors in terms of Pearson
correlation, although they used an ElasticNet [263]. Encoding of cell lines with copy number variation and
binary mutation status descriptors lead to models with lower prediction performance, since they reached a
Pearson Correlation scores of 0.13 with about 30 features. This lower performance is somewhat expected in
the present problem, since copy numbers are features that are "further" from the mechanism of drug-target
interaction, than mRNA data.

In addition to the choice of features, feature pre-selection had a significant impact on the performance.
In particular, when predicting cell line profiles with structural features for drugs, or with features based on
the probability of targeting Reactome pathways, feature pre-selection based on feature-output correlation
allowed the RandomLasso to both reach significantly higher performance and select fewer features. This is
of particular interest in the TNBC project, since our main purpose is to build prediction models that are
both predictive and biologically interpretable.

Second, we also considered a multitask approach to the problem of predicting cell lines sensitivity to
drugs. This consists in predicting the drug and cell line profiles simultaneously, i.e. to model drug response
for all drugs and all cell lines at the same time. In this approach, we expect that sharing information
between similar drugs and similar cell lines may improve prediction performance, as observed earlier in this
manuscript, in the context of chemogenomics, where information is shared between molecules and proteins.
In addition, an efficient multitask approach would allow the prediction of sensitivity for new drugs (i.e. in the
present case orphan drugs in terms of cell-line sensitivity information), which is of great practical interest.

We first tested "cluster-MT", which consists of clustering tasks (tasks are drugs in the problem of predict-
ing drug profiles, or cell lines in the problem of predicting cell line profile) based on their features before run-
ning MT-RandomLasso (or MT-ElasticNet) on each of the clusters. The choice of running MT-RandomLasso
per clusters was guided by the idea to share information only between close tasks. We observed that the
cluster-MT approach lead to identical performances as the singletask approaches, but selected significantly
more features than the best singletask approaches, which leads to less interpretable models.

We also considered to use task-specific information in two ways. First, we considered to describe a (drug,
cell line) pair by "xmoli,cellj = xmoli + xprotj + kron(xmoli , xprotj )", where xmoli refers to the descriptor
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vector of molecule i, xprotj refers to the descriptor vector of cell line j and "kron" refers to the Kronecker
product between two vectors. However, such a multitask approach was impracticable in our case because
of the dimension of the feature vectors, even after feature pre-selection. Second, we considered to describe
a (drug, cell line) pair by the Kronecker product of the molecule and cell line kernels (RBF kernel based
on the above mentioned molecule and cell line descriptions). However, such an approach does not allow to
perform feature selection.

Overall, we conclude that, in the context of bio-marker or target identification and for the problem of
predicting TNBC drug profiles based on drug sensitivity assays with linear models, we recommend to use
singletask approaches (one task is one cell line) with RandomLasso and feature pre-selection (although the
pre-selection method leading to the best results depends on the features used to encode molecules).

As perspectives regarding approaches for drug-cell line sensitivity prediction, we steer the interested
reader to the following work [263] which proposed a relevant two stages linear approach to identify biomarkers
based on drug response data from multiple data sources, and to [264, 265], which defined a non-linear
approach for biomarkers identification.

Indeed, we can reasonably expect that drug response relies on multiple pathways or multiple mechanisms
that may involve the interaction of multiple targets such that linear methods do not have the capacity to
reveal clearly these interactions. Note that some have recently proposed efficient sparse linear models taking
into account two-way interactions of features in high dimensional space [266].

Results and discussion: identification of TNBC drug-sensitivity biomarkers

We now go back to our initial question, i.e. the identification of bio-markers or therapeutic targets for TNBC.
First, recall that the CGP database comprises 11 of the 12 TNBC cell lines that we initially considered in
our project, and therefore, spans enough diversity in TNBC cells to be relevant in our project.

Based on the results presented in the previous section, we predicted the cell line profile via a RandomLasso
with drugs encoded by the probability to target Reactome pathways, with and without feature pre-selection
based on statistical correlation with the output. Indeed, as discussed above, for cell line profile prediction,
these drug features led to the second best prediction score, and allowed biological interpretation of the
selected features. We recall that this encoding of molecules was enabled thanks to proteome-wide DTI
interaction prediction.

The pathways that are mostly selected by the RandomLasso on average for the TNBC cell lines, with
and without feature pre-selection, are given respectively in table 5.7 and table 5.6.

More precisely, table 5.7 and table 5.6 provide, by decreasing order, the pathways that the RandomLasso
most frequently selected, on average over the 11 TNBC cell lines contained in the CGP dataset. In other
words, the top classified pathways are those who mainly contribute to the prediction of TNBC cell lines drug
sensitivity. We will not analyse all the information contained in Table 5.7 and Table 5.6, but we will focus
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of the results that can be related to those obtained with the 80 hits from the Curie project.

Reactome Pathways score
Iron uptake and transport 0.45359
Cell cycle 0.43277
Sphingolipid metabolism 0.4230
Mitotic prometaphase 0.39695
Cell cycle mitotic 0.36613
Glycosphingolipid metabolism 0.33881
Latent infection of homo sapiens with mycobacterium tuberculosis 0.33745
Tryptophan catabolism 0.33523
Chylomicron mediated lipid transport 0.33372
RIG_I MDA5 mediated induction of IFN alpha beta pathways 0.29468
Termination of O_glycan biosynthesis 0.29040
Chemokine receptors bind chemokines 0.28036
Cytochrome P450 arranged by substrate type 0.27795
O_linked glycosylaton of Mucins 0.27790
Endogeneous sterols 0.276727
DNA repair 0.27440
Tandem pore domain potassium channels 0.270181
Transport of organic anions 0.26777
Peptide ligand binding receptors 0.266136
Initial triggering of complement 0.263045
Activted TAK1 mediates P38 MAPK activation 0.25754
Class I MHC mediated antigen processing presentation 0.2575
MTORC1 mediated signalling 0.25668

Table 5.6. Reactome pathways most frequently selected by the RandomLasso, averaged over the 11 TNBC cell lines, without
feature pre-selection.

Reactome Pathways score
DNA repair 0.8020
Chylomicron mediated lipid transport 0.78386
P38MAPK events 0.78363
Glycoprotein hormones 0.67627
Defensins 0.64172
Digestion of dietary carbonhydrate 0.64090
Purine ribonucleoside monophosphate biosynthesis 0.61881
Norepinephrine neurotransmitteur release cycle 0.60877
Mitochondrial protein import 0.59063
Inwardly rectifying K_channels 0.56104
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Presynaptic nicotinic acetylcholine receptors 0.5595
Collagen formation 0.55831
O_linked glycosylation of Mucins 0.55695
IL_3_5 AND GM_CSF signalling 0.54568
Complement cascade 0.53986
Hemostasis 0.51545
Signalling by NGF 0.49672
Termination of O_glycan biosynthesis 0.49281
Formation of ATP by chemiosmotic coupling 0.49204
NCAM1 interactions 0.47813
ADP signalling through P2RY12 0.46590
Citric acid cycle, TCA cycle 0.4440
Amine derived hormones 0.43186
Transport to the Golgi and subsequent modification 0.42586
Cell-cell communication 0.42568
Signalling by ERBB4 0.41709
Glucuronidation 0.4130
Respiratory electron transport 0.39754
Nucleotide like Purinergic receptors 0.39731
Transmission across chemical synapses 0.39440
Neurotransmitteur receptor binding and downstream transmission in the postsynaptic cell 0.39263
Ionotropic activity of Kainate receptors 0.39036
Androgen biosynthesis 0.38836
Endosomal sorting complex required for transport ESCRT 0.36954
Signalling by SCF_KIT 0.33795
Transport of mature transcript to cytoplasm 0.3260
TRAF6 mediated IRF7 activation 0.31836
Interactions of VPR with host cellular proteins 0.31759
Prostacyclin signalling through prostacyclin receptor 0.31368
ER phagosome pathway 0.31336
Purine catabolism 0.31295
Cytokine signalling in immune system 0.30504
Activation of IRF3_IRF7 mediated by TBK1 IKK EPSILON 0.30381
Negative regulators of RIG_I_MDA5 signalling 0.29954
Respiratory electron transport, ATP synthesis by chemiosmotic coupling and heat produc-
tion by uncoupling proteins

0.29927

IRAK2 mediated activation of TAK1 complex upon TLR7 8 OR 9 stimulation 0.29722
Transport of mature mRNA derived from an intronless transcript 0.29654
Class I MHC mediated antigen processing presentation 0.29540
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TRAF3 dependent IRF activation pathway 0.29204
Deadenylation of mRNA 0.29004
IL_2 signalling 0.28295
Antigen processing cross presentation 0.28068
Base excision repair 0.27181
Regulation of RHEB GTPASE activity by AMPK 0.27168
Resolution of AP sites via the multiple nucleotide patch replacement pathway 0.26677
DNA strand elongation 0.26668
Base free sugar phosphatase removal via the single nucleotide replacement pathway 0.26104
Processive synthesis on the lagging strand 0.25954
Resolution OF AP sites via the single nucleotide replacement pathway 0.25618
Factors involved in megakaryocyte development and platelet production 0.25386
TRAF6 mediated induction of TAK1 complex 0.25304
Signaling by ILS 0.25231
Energy dependent rgulation of MTOR by LKB1 AMPK 0.25118

Table 5.7: Reactome pathways most frequently selected by the RandomLasso, averaged over the 11 TNBC
cell lines, with feature pre-selection.

Before analysing the results shown in the two tables, let us make a few remarks about the molecules of
the CGP dataset and of the Institut Curie dataset.

First, none of the molecules in the CGP dataset was common to the 966 molecules tested in Institut
Curie by our collaborators. In addition, the CGP dataset contains mainly drugs that were studied in the
context of cancer, while our collaborators chose to test many families of drugs, not necessarily used in cancer.
Indeed, it is precisely on purpose because the idea was to find drugs with other primary indications (i.e.
not toxic as many antitumoral drugs are), to be repositioned specifically in TNBC. Therefore, not only were
the molecules different in the two datasets, but in addition, they are expected to target different families of
proteins. Therefore, there is considerable bias between the two sets of molecules, both in terms of structure
and known mechanisms of actions. Consequently, one can expect that cancer-related pathways (in general,
not specifically in TNBC) might be selected prevalently by the RandomLasso, because the drugs in the CGP
dataset target mainly known cancer-related proteins, as shown in table 5.8.

In most cases, the molecules in the CGP dataset target well-known cancer-related kinases and their
associated pathways, such as the PI3K, JAK2, mTOR, RTK, MAPK, and other well known cancer pathways
such as p53, mitosis, cytoskeleton, apoptosis, or DNA repair. Importantly, none of the CGP molecules had
a potassium channel or a receptor involved in neuronal signal transduction as known target.

That being said, let us first analyse Table 5.6, which presents the top ranked pathways when no pre-
selection is performed before the RandomLasso (i.e. 674 Reactome pathways are classified). Interestingly,
the pathway "tandem pore domain potassium channels" is found at position 17 over 674, in a context where
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none of the molecules had any potassium channel as known target. This means that this pathway appears
because it contains proteins that were predicted as targets for some of the molecules. Therefore, we searched
for which proteins of this pathway had the best prediction scores for the CGP molecules. For all molecules,
the best predicted target in this pathway was one of the KCNK proteins. This is very interesting, since,
as mentioned in the analysis of the 80 hits from Intitut Curie, breast cancer subtypes (including TNBC)
are known to display specific expression patterns of the KCNK genes, which was suggested to be used as
biological markers [250].

Feature pre-selection kept only 94 over 674 pathways. Among them, table 5.7 shows the pathways that are
the most frequently selected by the RandomLasso. Notably, the "inwardly rectifying potassium channels"
appear in position 10, which again, underlines the interest of potassium channels in TNBC. "Inwardly
rectifying potassium channels" are encoded by the KNCJ family of genes, also named GIRK genes, and
many references point at their role in some types of cancers. In particular, according to the Human Genome
Atlas databases, KCNJ3 (or GIRK1) was found particularly abundant in breast cancer, and to a lesser
extent, in renal cancer, but not in other cancer localisation. However, other KCNJ genes are also expressed
in breast cancer, including TNBC [267], and over-expression of KCNJ3 was suggested to serve as a biomarker
of poorer outcome in breast cancer, independent of the hormonal receptor status [268].

Taken together, and despite the fact that the data from CGP and from Institut Curie are only very
loosely related (in addition to being totally independent datasets), we still could find some clues in the CGP
data indicating the interest of potassium channels as protein targets for TNBC. We are aware that the results
obtained with RandomLasso on the CGP data deserve to be analysed at length and that RandomLasso’s
selected pathways can not be taken at face value. But we want to highlight here that a large bundle of
evidence from independent data and analysis converges towards the identification of the same therapeutic
direction.

Conclusion

Overall, the analysis performed on the TNBC project led us to point at potassium channels as potential drug
targets in TNBC, in agreement with other authors cited above. We would like to recall that such conclusions
could not have been drawn without prediction of protein targets using our chemogenomic approach. The
fact that consistent observations were obtained based on the data of Institut Curie, the CGP dataset, and
other authors based on totally different studies and approaches, are strong arguments to be confident in this
suggestion for future research directions in TNBC. More importantly, since marketed molecules targeting
potassium channels are available, this offers opportunities for drug repositioning in TNBC, potentially in
combination with classical chemotherapy.

Drug name known mechanism of action
CP466722 Genome integrity
TG101348 other
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JW-7-24-1 other
PIK-93 PI3K signaling
TPCA-1 other
ZSTK474 PI3K signaling
QL-X-138 other
XMD13-2 other
GSK2126458 PI3K signaling
OSI-027 TOR signaling
PHA-793887 cell cycle
NPK76-II-72-1 mitosis
KIN001-244 PI3K signaling
PI-103 PI3K signaling
UNC0638 chromatin histone methylation
KIN001-102 PI3K signaling
AT-7519 cell cycle
CAY10603 chromain histone acetylation
BMS345541 other
BIX02189 other
QL-XI-92 RTK signaling
BX-912 PI3K signaling
Foretinib RTK signaling
Tubastatin A chromain histone acetylation
I-BET-762 chromatin, other
NG-25 other
CUDC-101 chromain histone acetylation
QL-XII-47 other
YM201636 other
AR-42 chromain histone acetylation
Ispinesib Mesylate mitosis
5-Fluorouracil DNA replication
WZ3105 other
MPS-1-IN-1 mitosis
GSK1070916 mitosis
CX-5461 other
KIN001-236 other
TAK-715 JNK and p38 signaling
KIN001-260 other
BHG712 RTK signaling
CAL-101 PI3K signaling
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XMD14-99 RTK signaling
KIN001-266 other
EKB-569 EGFR signaling
Masitinib RTK signaling
LY317615 other
OSI-930 RTK signaling
Y-39983 cytoskeleton
XL-184 RTK signaling
AS605240 PI3K signaling
FR-180204 ERK MAPK signaling
GSK690693 PI3K signaling
STF-62247 other
YM155 apoptosis regulation
GSK429286A cytoskeleton
Phenformin metabolism
UNC0638 chromatin histone methylation
T0901317 other
NSC-207895 p53 pathway
VX-11e ERK MAPK signaling
KIN001-055 other
AC220 RTK signaling
JQ1 chromatin, other
CH5424802 RTK signaling
PFI-1 chromatin, other
Linifanib RTK signaling
Tivozanib RTK signaling
BMS-708163 other
MP470 RTK signaling
BMS-536924 IGFR signaling
Ruxolitinib other
GW-2580 RTK signaling
SN-38 DNA replication
CP724714 EGFR signaling
Zibotentan other
EX-527 other
Tamoxifen other
Piperlongumine other
JNJ-26854165 p53 pathway
EHT 1864 cytoskeleton
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AG-014699 Genome integrity
TW 37 apoptosis regulation
UNC1215 other
(5Z)-7-Oxozeaenol other
CCT007093 other
SB 505124 other
PF-4708671 TOR signaling
CHIR-99021 WNT signaling
BMS-708163 other
selumetinib ERK MAPK signaling
XAV939 WNT signaling
Bleomycin DNA replication
Afatinib EGFR signaling
IOX2 other
PLX4720 ERK MAPK signaling

Table 5.8: List of the considered molecules associated with their known mechanism of actions as recorded in
the CGP database.
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Chapter 6

End-to-end encoding of molecular graphs and
protein sequences

Abstract: Along with the rise of deep learning approaches, recent studies have focused on designing models
to automatically learn, in an end-to-end fashion, numerical representations of molecules and proteins. This
is intended to make the feature extraction more flexible and more data specific. In this chapter, we first
discuss deep learning methods to extract data-driven descriptors on protein sequences and molecular SMILES
strings. As molecules form naturally undirected graphs, we also examine data-driven feature encoders on such
graphs. In particular, we offer a general framework for graph representation learning and survey the variety
of dedicated available approaches.

Résumé: Parallèlement à la montée en puissance des approches d’apprentissage profond au cours de la
dernière décennie, les dernières études sont principalement consacrées à la conception de modèles permettant
d’apprendre automatiquement, de manière intégrale, les représentations numériques de molécules et de pro-
téines. Cela a pour but de rendre la représentation des données plus flexible et plus spécifique aux données et
à leurs labels. Dans ce chapitre, nous abordons d’abord les méthodes d’apprentissage profond pour extraire
les descripteurs de données séquentiels tel que les séquences protéiques et les chaînes SMILES de molécules.
Comme les molécules peuvent être vu naturellement comme des graphes non dirigés, nous examinons égale-
ment les méthodes d’apprentissage de représentation sur de tels graphes. En particulier, nous proposons
un cadre général pour l’apprentissage de la représentation sur graph et étudions la diversité des approches
disponibles dédiées.
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All methods for drug-target interaction prediction previously discussed rely on "data-blinded" features
or "data-blinded" similarity measures. The term "data-blinded" refers to the fact that the features or the
similarity measures are either handcrafted or automatically extracted from the input data P(x) based on
human expertise, but are not guided by the labelled data P(x, y) themselves.

For the majority of ML applications, machine learning prediction performance strongly relies on these
extracted features, and on the ability of ML models to identify the relevant features and combine them for
the prediction.

However, humans may fail at identifying these features. Indeed, such a process may not be sufficient
in cases where humans fail themselves to execute the task or to identify the features of the problem. It is
actually the case in many bioinformatics tasks. Therefore, recent advances in machine learning algorithms
belong to the family of representation learning or feature learning methods.

The goal of representation learning [269] is to extract a representation of the labelled data, that is
optimised to best solve a machine-learning task, rather than to rely on expert-based data-blinded features.
In the case of supervised learning, the representation is learnt in an end-to-end manner, which refers to the
joint optimisation of the feature vector and of the prediction model itself.

In particular, deep learning models, or equivalently "deep Artificial Neuron Networks" (ANN) [51, 270],
are particularly suitable for end-to-end learning. They became increasingly popular in the past few years [190,
191, 192]. We discuss general aspects of representation learning via deep learning and deep neuron networks
in appendix A.8.

In addition, within the representation learning framework, we name "data-driven features" the numerical
descriptors that are extracted from the raw input data in an end-to-end fashion. In the specific case of
chemogenomics, data-driven features refer to the descriptors that are extracted directly on the molecular
graphs and protein sequences in an end-to-end manner (i.e. so that the learnable feature is optimised through
the minimisation of the error of the supervised prediction task). However, models that consist of stacked
fully connected neuron layers (see appendix A.8) perform representation learning on data-blinded features,
so that we are to name these approaches as data-blinded.

In this chapter, we discuss how neuron network modules can extract numerical attributes on molecular
graphs and protein sequences. The material reviewed in this chapter is thus essential to explore the use of
data-driven features for drug virtual screening in the next chapters.

6.1 End-to-end encoding of sequences

In this section, we introduce data-driven feature extractors for chemoinformatics and proteomics. That is,
how one may encode a learnable attribute vector from SMILES representation of molecular graphs (sec-
tion 6.1.2) and protein sequences (section 6.1.1).

We begin this introduction by data-driven feature extraction on protein sequences.
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6.1.1 End-to-end encoding of protein sequences

In this section, our goal is to numerically encode protein sequences in the context of proteome-wide drug-
target interaction prediction. Indeed, the protein sequence is a description of the protein which is available
over the entire human proteome.

Representation learning on protein sequence appears natural because of its sequential nature, which is
particularly suited for dedicated neuron network architectures such as convolutional neuron networks and
recurrent neuron networks (see appendix A.8.2).

When encoding a sequence of amino acids with neuron network-based encoders, we still require to define
attributes for amino acids.

An obvious solution is to use the so-called one-hot encoding, where amino acids of the protein sequence
are encoded by a binary vector of the length 20 (one bit for each natural amino acid), containing a single
one and 19 zeros.

A second and richer encoding is to use a "sequence profile", encoding each amino acid by a mutation
probability profile which is the position-dependent probability that the current amino acid get mutated in
each other amino acids. Such mutation probability profiles are conventionally generated by running sequence
alignment algorithm like PSI-BLAST [77] against a reference database. In particular, the use of mutation
profiles was found to be helpful in the case of secondary structure prediction [271].

Note that we can also consider additional structural or physical amino acid properties to complete amino
acid attribute vectors. However, this knowledge is not available for the overall proteome, and we should rely
on available predictors to obtain this information for all proteins.

We now focus on the encoding of sequences of amino acids (i.e. protein sequences).
First, one can consider protein sequences as sentences of words [272] that can be encoded via natural

language processing techniques such as word2vec [273]. Note that although Word2vec is an unsupervised
method, it is trained using an auxiliary prediction task, which is either (i) the continuous bag-of-words: the
task is to predict a word from the context, or (ii) the skip-gram : the task is to predict the context based on
a word. More precisely, word2vec learns a small linear model for each word to solve the auxiliary prediction
task, and the fitted weights of the word-specific models are the learnt representation of the words.

In the case of protein sequences, words are n-grams amino acids, each shifted by m amino acid (typically,
n is three and m is one).

Another approach to encode proteins are specialised neuron network architectures like convolutional
neuron networks (CNN) and recurrent neuron networks (RNN), in particular Long Short-Term Memory cells
(LSTM) and bi-directional LSTM (bi-LSTM), have been successfully designed and trained on proteomic data
to achieve state-of-the-art performance in various prediction problems [274, 275, 276, 277, 278, 279]. These
neuron network architectures are introduced in appendix A.8.2.

In this perspective, the work of Jurtz at al. [279] is of significant interest as it demonstrates the interest
of the CNN and LSTM neuron network architectures for representation learning on protein sequences.
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We now discuss these neuron network architectures for learning a protein sequence representation.
First, one-dimensional convolutional layers can efficiently process protein sequences by detecting local

patterns. Indeed, CNN filters provide a learnable bank of sequence motifs.
Second, bi-directional LSTM (or RNN in general) layers can integrate local information both forward

and backwards in the sequence, to encode local and contextual information. The local information could
be the amino acid type if the bi-LSTM is built on the original description of amino acids, or amino acid
patterns if the bi-LSTM is built on a convolutional layer.

Moreover, when predicting protein-level properties, it is reasonable to assume that individual sub-parts
of its input sequence may contain most of the predictive information. In this case, it can be beneficial to
add an attention weighting mechanism, which is a learnable neuron module that is trained to pass the most
relevant sub-parts of the input (see appendix A.8.2). Moreover, since an attention mechanism highlights
elements with the most task-specific relevant information, it naturally helps to visualise and understand
what part of the protein sequence leads to the decision of the model.

In practice, all these neuron modules (convolutions, bi-LSTM, attention mechanism) can be combined.
For instance, in the case of the prediction of sub-cellular localisation, Jurtz at al. [279] showed that an
attention mechanism on top of an encoder made of a convolutional layer followed by a bi-directional LSTM
performs better than the same encoder without the attention mechanism, which in turn performs better
than an encoder made of successive convolutional or LSTM layers.

Intuitively, the bi-LSTM can integrate the patterns detected by the convolutional layer locally, both
forward and backwards. Then, the attention function focuses on identifying what parts of the sequence
trigger the subcellular localisation, based on the contextual patterns learnt by the convolution-biLSTM
layers.

To conclude this section, we introduce one of the earliest re-branding [280] of artificial neuron networks
for protein property prediction based on protein sequence.

This study questioned the efficiency of multitask learning for several protein properties (secondary struc-
tures, physical properties and so on). They encoded protein sequences with a single standard RNN that is
shared between tasks, and they used task-specific fully connected layers taking as input the same data-driven
encoding of protein sequences, for prediction. They report that training the protein sequence encoder on
multiple task was not efficient, except for the tasks with fewer data which benefited from multitask learning.

Interestingly, they created an "artificial task" to pre-train the protein sequence encoder, inspired by the
field of natural language processing. This task consists in separating artificial proteins (generated by random
juxtapositions of amino acids) and "real" proteins from the Swiss-Prot database. With this pre-training, the
encoder learns to represent amino acid patterns in naturally occurring protein sequences, i.e. to encode amino
acids into a semantically meaningful space. This strategy enhanced prediction performance.
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6.1.2 End-to-end encoding of SMILES molecular representation

As proteins, molecular compounds can also be encoded into a one dimensional representation, like the
SMILES or the InCHl representations introduced in Section 2.1.

In this case, each character of the SMILES (or InCHl) is typically one-hot encoded. That is to say, each
character is represented by a vector full of zeros except a one at the position of the corresponding character
corresponds to.

A first attempt to process SMILES is the work of Wan et al. [281, 282]. It is inspired from natural
language processing (NLP) techniques. They proposed to adapt the word-embedding approach to DTI pre-
diction. More precisely, they considered an unsupervised representation learning procedure named word2vec,
introduced in 6.1.1, to encode molecular SMILES.

First, they derived compound substructures from the Morgan algorithm to define chemical "words",
so that compounds are "sentences" of these chemical words [282]. "Words" feature vectors, learnt via the
word2vec algorithm, can be simply summed up to obtain the associated "sentence" feature vector.

Thus, intuitively, this approach builds latent representations such that molecules with co-occurring func-
tional groups are close in the latent space. Note that this has been visually checked [282]. Moreover, this
method showed equally good or slightly better performance compared to the standard ECFPs and other rep-
resentation learning-based approaches, on large-scale ChEMBL bio-activity data [281, 282]. This indicates
the efficiency of the word-embedding approach, at least for the considered tasks.

From another perspective, SMILES2vec [283] and variants [284] considered a recurrent neuron network
on the SMILES representation of molecules. Such naive approach shows the potential of deep learning in
extracting relevant features, even without carefully constructed features and without hyper-parameter selec-
tion with Bayesian optimisation (see appendix A.8.4). Indeed, depending on the dataset, they outperform,
or underperform, an FNN trained using data-blinded features [283, 284].

As already noticed in Section 2.1, one molecule can have various SMILES representations, since they
depend both on the atom where the enumeration starts, and the path followed along the 2D graph of the
molecular structure.

Although this is often mentioned as a drawback, it can be used as data augmentation. Indeed, multiples
SMILES of a same molecule can be seen as several views of the same molecule. In particular, using various
SMILES representation may reduce overfitting in the training step. During the testing step, SMILES aug-
mentation can be used via an ensemble learning strategy by proposing a "majority voting scheme" (mean or
max, for instance) based on the predictions associated with the different SMILES views of the same molecule.
Kimber et al. [285] observed a synergistic effect of the multiplicity of SMILES views to improve data-driven
feature-based models.

Finally, Dalke et al. [286] proposed an enhanced unequivocal SMILES syntax named DeepSMILES.
DeepSMILES relies mainly on the modifications on the branch and ring encodings in the SMILES, with the
hope to improve the performance of machine learning models that encode SMILES strings in an end-to-end
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fashion.

Independently, Zang et al. [284] considered recurrent neuron networks directly on SMILES representations
of molecules, but within a semi-supervised learning framework. To tackle the gap between the amount of
available data and the amount of data usually required by deep learning networks, they proposed to train
the RNN encoder on two tasks: one molecular biological property (supervised) and one auto-encoding
(unsupervised) prediction task. This can also be viewed as a transfer learning approach. Indeed, the
self-recovery task serves as an auxiliary task to augment the main supervised prediction task. In this
model, the total loss allows a trade-off, controlled by λ, between the supervised and unsupervised tasks:
Lsemi = Lunsup + λLsup.

Interestingly, they noticed that the performance is robust to changes in architectures and in range of
λ. Their semi-supervised approach exhibited significantly higher performance on a solubility prediction
task, than an approach based on a pioneering form of graph convolutional neuron networks by Duvenaud
et al. [287] (we introduce this work in appendix C.3). However, the performance reached by the latter is
surprisingly low, and we think this is due to the choice of the datasets whose size is unusually small.

Graph convolutional neuron networks are neuron network modules that directly extract descriptors on
undirected graphs, such as molecular graphs.

Approaches based on data-driven features extracted on SMILES proved to be competitive with these
graph-based representation learning models which directly process the molecular graph [288, 289]. How-
ever, molecular graph-based representation learning models, appear as a more valuable extension of method
repertoire, because of their flexibility and because they offer, a priori, a larger room for improvements.

In the next section, we introduce such graph convolutional networks (GCN), and present the main recent
developments dedicated to the improvement of their expressivity and flexibility.

6.2 End-to-end encoding of undirected graphs: applications to
molecular graphs

As discussed in Section 2.1, molecules are usually represented via their molecular graphs.
A molecular graph is an undirected graph G = (V, E), where V is the set of vertices (or nodes), and E the

set of edges. Nodes correspond to atoms and edges correspond to covalent bonds. Thus, molecular graphs
belong to the family of attributed undirected graph, since nodes are attributed with atom properties (like
atom type category, but also any physicochemical and topological properties), and edges are attributed with
bond properties (like bond type, but also topological properties, for instance).

In the following, we use the word "attribute" to describe the original feature vector of nodes and edges.
We use the terms "embedding" or "representation" to refer to the feature vectors of nodes and edges that are
extracted by GCNs. We note that each node i has an attribute vector xi and each edge (i, j) has an attribute
vector xij . Regarding the learnt representation, we write hi and hij the node and edge embeddings. N (i)
refers to the neighbouring nodes of node i.
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In this section, our goal is to defined learnable molecular graph encoders to be used for drug virtual
screening in the next chapters. These encoders can extract data-driven features from the labelled data, so
that we do not need to refer to the chemists’ expertise to design handcrafted or calculated data-blinded
features, as discussed in sections 2.1 and 2.2. Indeed, such learnable encoders of molecular graphs are
trainable in an end-to-end manner, which means that the representation is extracted in order to optimise
the prediction on a particular prediction task. Performance improvements can thus be expected from these
approaches, compared to data-blinded approaches.

We provide a historical perspective on graph representation learning, in particular for chemoinformatics,
in appendix C.

In this chapter in particular, we present a general framework for node and graph representation learning.
To our knowledge, only few papers [290, 291] proposed a general overview for graph convolutional network
(GCN), or simply graph neuron network (GNN). Among these, Hamilton et al. [292, 291] proposed a general
algorithm for graph convolutional networks. The general framework of graph convolutional neuron network
that we introduce in this section is greatly inspired from their work, but we also consider more recent
developments from other studies to re-write this general algorithm.

6.2.1 Graph convolutional neuron networks

We present the general framework of graph convolutional neuron networks in Alg. 1.

Algorithm 1 Graph convolutional neuron network (GCN): at each iteration, each node aggregates infor-
mation from its local neighbours. As this process iterates, nodes incrementally gain more information from
further part of the graph while encoding local graph topology and distribution of attributes.
Require: (i) Graph G(V, E); (ii) input features xv,∀v ∈ V; (iii) depth K; (iv) learnable and differentiable

aggregating functions AGGREGATE(l)
graph and AGGREGATE

(l)
node, ∀l ∈ 1, . . . , L; (v) neighbourhood

function N : v → 2V .
Goal: compute a graph-level representation: m.
h0
i ← xi, ∀i ∈ V.

for l = 1 . . . L do
for i ∈ V do

h(l)
i ← AGGREGATE

(l)
node({h

(l−1)
i } ∪ {h(l−1)

j ,∀j ∈ N (i)})
end for
m(l) ← AGGREGATE

(l)
graph({h(l)

i , ∀v ∈ V })
end for
m← COMBINEgraph({m(l), ∀l})

Such an approach is spatial and convolutional because it iteratively updates a node representation with
a function inputting its spatial neighbourhood, in a manner similar to the receptive field of a convolutional
kernel in computer vision (see appendix A.8.2).
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In other words, the node representation is iteratively updated based on the local nodes’ representa-
tions. Therefore, the learnt representation simultaneously encodes the topological structure of each node’s
neighbourhood, as well as the distribution of node features in the neighbourhood. We expect the extracted
structural properties to reveal both the node’s local role in the graph, as well as its global role, thanks to
the iteration of the update.

Note that it is also possible to consider, at each iteration, several neighbourhood sizes by simply dupli-
cating and applying the AGGREGATE(l)

node function to several r-hop neighbourhood. The latter is defined
as all nodes reachable by paths of length r [293].

Furthermore, this algorithm is applicable both in transductive (test data are observed during training)
and inductive (test data are not observed during training) settings, since we can apply alg. 1 to new unseen
nodes and graphs after it has been fitted on the training data.

Overall, the main drawback of Alg. 1 lies in its computational and memory cost caused by recursive
expansion of neighbourhoods. To address this issue, graph convolutional networks have been interpreted
as integral transforms of embedding functions under probability measures [294], that can be more cheaply
computed via Monte-Carlo approaches. Alternatively, Hamilton et al. [291] proposed to sub-sample the
nodes to be updated, to address the memory bottleneck issue.

Another drawback of this algorithm is that it is not conceptually new. Indeed, it is strongly related to the
1-WL algorithm which is well known in the graph mining community. More precisely, it is a differentiable
and parametric generalisation of the 1-WL algorithm on graphs. We propose a fundamental analysis of graph
neuron networks in appendix D.

Furthermore, recall that such models are mostly trained in an end-to-end manner. This refers to the fact
the weights are adjusted based on the back-propagation of the prediction error of a particular prediction
task.

More precisely, in the case of node classification, a softmax function taking as input the final node
embeddings h(L) returns node-specific probability vectors.

In the case of edge prediction, the probability p(Aij) of an edge between nodes i and j can be computed
via p(Aij) = σ((h(L)

i )Th(L)
j ).

In the case of graph-level prediction, a fully connected neuron network (FNN), or Multi-Layer Perceptron
(MLP) or simply Deep neuron Network (DNN), is usually connected to the graph-level representation to
perform the prediction.

The flexibility and representation power of the GCN general formulation in Alg. 1 relies on the aggregation
functions. They update node-level representations based on the nodes in their neighbourhood and compute
a graph-level representation based on every node representations.

We discuss in the following the modifications that have been proposed in the literature to enhance
the performance of end-to-end graph representation learning. In particular, we discuss the most relevant
dedicated aggregation functions. This is critical to explore the use of such GCNs for drug virtual screening
in the following chapters.
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6.2.2 Aggregation functions for graph convolutional networks

The AGGREGATE(l)
graph function computes a graph-level representation at step l based on the node repre-

sentations {h(l)
v }v∈V . The AGGREGATE(l)

node function updates the node-level representation h(l)
i based on

the representations in the neighbourhood {h(l)
j }j∈N (i).

Note that both AGGREGATE functions must be order-invariant transformations because, in the general
case, there is no injective node ordering for graphs. However, some algorithms approximate injective node
ordering for a particular set of graphs. In the case of molecules, the well known "Morgan algorithm" performs
such ordering, but not in an end-to-end fashion. Therefore, we focus on order-invariant AGGREGATE
functions.

Second, these functions must also handle different sized neighbourhoods and maintain the weight-sharing
property of CNNs.

Thus, both can be considered as multi-set functions, i.e. functions operating on a set of vectors and which
output a vector assembling the information of the vectors in the set.

In the following, we introduce in details the aggregation functions that we found the most relevant in the
graph representation learning literature.

In this literature, authors use several gold standard benchmark datasets for graph representation learn-
ing [291, 295]. We can mention (i) a paper subject category prediction task, performed on a large citation
dataset (302,424 nodes with an average degree of 9.15), (ii) a dataset made of Reddit posts for prediction of
the community to which they belong (232,965 nodes with an average degree of 492), and (iii) the Protein-
Protein Interaction (PPI) network on which protein class is predicted (2373 nodes, with an average degree
of 28.8, 50 features per node , 121 labels for each node ). Note that the PPI dataset is inductive since 20
PPI networks are used for training, two for testing and two for validation.

Transductive datasets are also considered like the (i) "Cora dataset" (2708 nodes, 5429 edges, 7 classes
and 1433 features per node), (ii) the Citeseer dataset (3327 nodes, 4732 edges, 6 classes and 3703 features
per node), (iii) the Pubmed dataset (19717 nodes, 44338 edges, three classes and 500 features per node).

All of these datasets are composed of graphs much larger than molecular graphs and they correspond
to the prediction of node-level labels. Thus, most of the following approaches were evaluated on settings
completely different from the one we are interested in.

Simple aggregation

An obvious multi-set function is the sum (or mean) function. Indeed, the classical way of building a graph-
level representation is to sum over the node representations [287, 296, 297, 288, 289, 298]:

m(l) ←
∑
i∈V

h(l)
i

In this case, the sum function captures the distribution of each node features in a single value.
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Similarly, [298] passes node features through a shared hidden layer before summation, to explicitly transfer
the node-level representation into a graph-level representation. In the following, W refers to a learnable
weight matrix and σ to any activation function (see appendix A.8).

m(l) ←
∑
i∈V

σ(W(l)
graph · h

(l)
i )

Equivalently, node neighbourhood can also be aggregated by summing their representations. However, in
the case of neighbourhood aggregation, the representations necessarily pass through a shared hidden layer
before the summation (otherwise, we do not learn any convolutional functions to process the graph).

h(l+1)
i =

∑
j∈N (i)

σ(W(l)
1 · h

(l)
j )

Alternatively, as in [299], we can normalise incoming messages from neighbours with parameters αij (fixed
or learnable):

h(l+1)
i = σ(W(l)

0 · h
(l)
i +

∑
j∈N (i)

αijW(l)
1 · h

(l)
j ) (6.1)

A second obvious multi-set function is max-pooling, first proposed by [291]. Again, each vector in the set
usually passes through a shared layer before an element-wise max-pooling operation is applied to aggregate
information across the set. With max-pooling, the model can directly learn the absence or presence of specific
features within the set. It is thus efficient for prediction tasks relying on the presence of key elements.

AGGREGATE
(l)
graph = max

i∈V
({σ(W(l)

pool · h
(l)
i )}i∈V)

Edge type-based aggregation

The AGGREGATE(l)
node function can also take the edge attributes as input if they exist, like in the case of

molecules [300, 301, 302, 303, 304, 305].

For instance, some studies have considered to sum over edge type-specific standard multi-set func-
tions [301, 304, 305] as below

h(l+1)
i = W(l)

0 · h
(l)
i +

∑
j∈N (i)

Ne∑
k=0

Ãijk
|N (i)|W

(l)
k · [h

(l)
j ,xij ]

where Ne is the number of edge types, N is the number of nodes, Ã is the augmented adjacency matrix
(Ã ∈ RN∗N∗Ne) where each vector Ãij. is a zero vector if there is no edge between nodes i and j, or encode
the edge type in a one-hot encoding fashion otherwise.

Note that Shang et al. [305] have reported significant better performance on gold standard chemoinfor-
matics datasets (Tox21, or HIV) with this procedure, compared to the weave module-based GCN of Kearnes
et al. [300] presented in appendix C.3, which also consider edge attributes.
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Other works [302, 303, 301] also proposed to update edges attributes similarly to node attributes, hoping
for more expressive GCN. For instance, Gaidya et al. [301] proposed the following edge convolutional layer:

h(l+1)
ij = σ(W(l)

edge.[h
(l)
ij ,h

(l)
i ,h

(l)
j ])

where h(l)
ij is the latent representation of the edge between nodes i and j at step l.

LSTM-based aggregation

Hamilton et al.[291] also proposed an LSTM-based multi-set function. The LSTM has the advantage of
being more expressive than summing or pooling. However, an LSTM learns an order dependent function
whereas a multi-set function must not be order-dependent. Therefore, in this study, they applied several
LSTMs to random permutations of the vectors in the set.

In the original study [291], they found that such LSTM-based aggregators performed better than the
sum-based aggregator on different benchmark datasets for graph representation learning. Note however that
the observed difference in performance is about one or two points, or even less, while the accuracy is in the
range of 0.80 to 0.95 depending on the dataset. In the following, this method is called GraphSAGE, as in
the original paper.

Interestingly, an LSTM-based order-invariant multi-set function has been defined and named attL-
STM [306]. It is introduced in appendix A.8.2. It is an iterative way to build a learnable linear combination
of the vectors in the set. It was first used for aggregating representation vectors in the work of Altae et
al. [307].

Aggregation capturing the distribution of the learned features

Kearnes et al. [308] proposed to design a graph-level description by concatenating the distribution of each
feature of the node representations. More precisely, they encoded the distribution of each individual features
by a n-bits histogram. In other words, the distribution of each feature is approximated by "n" values, each
value corresponding to a frequency to which the feature falls within a small range (a bin). This introduces
the idea of directly capturing the distribution of each learned feature.

Attention mechanisms-based aggregation

Powerful aggregation functions have been designed based on attention mechanisms. In particular, Lee et
al. [309] proposed a survey about attention models for graph representation learning.

Attention mechanisms are particularly relevant in the case of graphs, since some prediction tasks may
rely only on some parts of the graph. In addition, large graphs can be complex and noisy. An attention
mechanism can highlight elements with the most task-relevant information, and therefore, can help to improve
the signal-to-noise ratio. Another benefit of attention mechanisms is that they allow dealing with unordered
and variable sets of any size, focusing on the most relevant parts of the input to make decisions. It is also
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computationally efficient, since it is a parallelizable operation across the vectors of the set. Importantly, it
can also be used to interpret individual predictions. Indeed, the attention weights, specific to each sample,
highlight the most relevant elements for the dedicated prediction. We discuss more lengthily attention
mechanisms in appendix A.8.2.

In the context of graph representation learning, there are three prominent ways to define attention
mechanism-based AGGREGATE functions.

Attention mechanism-based AGGREGATE(l)
node function

Velickovic et al. [295] were the first to consider rigorously an attention mechanism to design a neigh-
bourhood aggregation function for graph representation learning (see Fig. 6.1). More precisely, the multi-set
function they defined is:

h(l+1)
i ← σ(

∑
j∈N (i)

αijW(l) · h(l)
j )

The attention weights αij are defined by:

α
(l)
ij =

exp(LeakyRelu(a(l)T .CONCAT [W.h(l)
i ,W.h(l)

j ]))∑
k∈N (i) exp(LeakyRelu(a(l)T .CONCAT [W.h(l)

i ,W.h(l)
k ]))

The LeakyRelu function is defined by: f(x) = x if x > 0 or 0.01x otherwise. It is an activation function
like the Relu function but with non-zeros outputs for negative inputs, which allows non-zero gradient when
the unit is not active. Thus, the gradient can flow even through inactive neurons, which prevents from the
so-called "dead" neurons.

Intuitively, a shared linear transformation parameterised by W is first applied to each node latent repre-
sentation h(l)

i and h(l)
j , ∀j ∈ N (i). Then, the term a(l)T .CONCAT [W.h(l)

i ,W.h(l)
j ]) computes the attention

score of node j based on the similarity between a learnable query vector a, and the concatenation of the
transformed embeddings CONCAT [W.h(l)

i ,W.h(l)
j ]. Finally, the soft-max function computes the attention

weights based on the attention scores. This is meant to enforce the attention weights to be close to zero or
one, such that it passes the information coming only from relevant neighbours. Importantly, all operations
are differentiable.

Note that the authors actually execute K simultaneous attention-based aggregations, since it was found
to stabilise the learning process of attention mechanism [310]. The aggregation then results from the con-
catenation of the K attention-based aggregation functions:

h(l+1)
i ← CONCATk[σ(

∑
j∈N (i)

αijW(l)
k .h

(l)
j )]

The authors named this method GAT. They obtained, compared to the GraphSAGE approach, slightly
better performances on the transductive datasets (from two to three points, depending on the metric), and
much better on the inductive dataset (from 77 to 97% in F1score).
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Figure 6.1. GAT: graph neuron networks with attention in [295]

Recently, Shanthamallu et al. [311] quantitatively assessed that the distribution of attention weights
for any node obtained by GAT is almost always uniform, in the case of gold standard dataset for graph
representation learning. This means that the attention mechanism is not suitable in these cases, since its
selects all neighbours as relevant. Intuitively, this behaviour is relevant for nodes with few neighbours, since
it is, in this case, more reasonable to use all the available information. However, when the neighbourhood
is populated with an adversarial node (i.e. a node that cannot be characterised as part of any consistent
community in the graph), we expect the attention mechanism to prioritise only relevant neighbours, by
assigning a comparatively low weight to the adversarial nodes.

Thus, authors proposed two additional regularisation terms to the original GAT formulation (with their
own hyper-parameter to control their contribution). One enforces a uniform attention weight distribution
for each node. A second prevents a node with a high degree to arbitrarily participate in the update of all its
neighbours, which is particularly important for noisy or adversarial nodes.

These modifications do not address all the concerns raised, as they do not help more to prioritise relevant
neighbours. They avoid adversarial nodes with high degrees to have an inadequate strong influence. In
addition, even though they have exhibited slightly higher performance than GAT on gold standard datasets
(such as citation or social network datasets), such modifications do not affect molecular graph representation
learning, since nodes in molecular graphs have degrees (atoms’ valence) in the same range. However, it
provides an interesting discussion of the GAT model.

Self-attention mechanism-based AGGREGATE(l)
graph

Li et al. [312] considered a self-attention mechanism (see appendix A.8.2) to build a graph-level repre-
sentation, which automatically selects the most relevant nodes for the graph-level task.

In the following equation, the tanhW1,b1 layer transforms the concatenation of final node embeddings
h(L)
i and original features xi into a feature vector to be added to the graph representation, and the σW0,b0

layer acts as a learnable gate filtering the information conveyed by the tanhW1,b1 layer.

m =
∑
i∈V

σ(W0.CONCAT (h(L)
i ,xi) + b0)� tanh(W1.CONCAT (h(L)

v ,xi) + b1)

Attention mechanism-based walks for graph-level encoding
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From another perspective, Lee at al. [313] used L-length walks guided by an attention mechanism to
build graph-level embeddings.

The walks process the graph, i.e. they integrate the node attributes (x1, . . . ,xL) covered by the walk to
build a latent representation of the walk. The walks capture the structure of the graph, while adaptively and
selectively roaming the graph nodes thanks to an attention mechanism that selects the most task-specific
relevant neighbouring node to roam next. In particular, they use an LSTM-based model with a built-in
attention mechanism, trained with reinforcement learning.

To build a graph-level embedding, they deploy z LSTMs simultaneously from various parts of the graph,
yielding to z walk-level representations {s1, . . . , sz}. A second attention mechanism is then used to determine
the relevance of the walk αi before these are combined to form a graph-level embedding: m =

∑z
i=1 αisi.

Furthermore, such strategy can also be used to define an AGGREGATE(l)
node function, like in the Deep-

Walk paper [314] and node2vec paper [315]. These papers used biased random walks to learn to select
surrounding nodes, and therefore, define a more selective notion of node’s neighbourhood than the 1-hop
neighbourhood.

Virtual super node for graph-level encoding

Several authors [316, 317, 318] proposed to learn a graph-level embedding by creating a virtual “supernode”,
that is connected to all other nodes via a particular type of edge. This virtual node is updated like real
nodes, and the final representation of this virtual node is used as the graph representation. Note however
that the virtual node is usually not used as a neighbour when updating real node representations. This
method does not seem natural and did not exhibit striking performance improvements.

However, Ishiguro et al. [319] showed that a virtual super node, used to update real nodes’ latent represen-
tations, improved the representation power of a wide variety of existing GNNs. Intuitively, such supernode
allows a pair of distant nodes to communicate through the supernode in one hop. However, it can lead to
"over-smoothing" of the information. Hence, they equipped the supernode with a trainable gated message
passing mechanism to regulate the information that warps through the feature space of the supernode, and
to deliver appropriate messages to real nodes in the original graph.

Hierarchical pooling for graph-level encoding

A much more promising approach to define a suitable AGGREGATEgraph function is based on differential
hierarchical pooling, which has been proposed simultaneously by several groups [320, 321, 301]. It allows
for the graph convolutional architecture to iteratively operate on coarser representations of a graph. To
be precise, such procedure actually replaces both the AGGREGATEgraph and COMBINEgraph functions,
since it results directly in a final graph-level representation (see fig 6.2).

This idea is motivated by the design of an analogue of the pooling operation for images, which was shown
to be of crucial importance for CNN success in the field of image processing. Indeed, one of the limitations of
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current graph convolutional networks is that they are inherently flat, since they only propagate information
across the edges of the graph, without reducing the size of the graph.

Because of the topological structure of graphs, the definition of a “patch” to be pooled is not straightfor-
ward. Depending on the graph and the hierarchy level, we may need to pool varying numbers of nodes and
edges. In other words, the pooling strategy needs to generalise across graphs with different nodes, edges,
and graph structures during inference. To this end, the patches to be pooled are obtained via a differentiable
clustering-like approach.

We present now the work of Ying et al [320].

Formally, at each step l, we are given a graph adjacency matrix Al ∈ Rnl∗nl and a node representation
matrix Hl ∈ Rnl∗fl , where nl is the number of nodes in the graph and fl the dimension of the nodes latent
representation at step l. For all l, nl and fl are hyper-parameters of this approach.

For the next step l + 1, we differentially cluster the nl nodes of the graph at step l in order to build a
new coarsened graph containing nl+1 < nl nodes, with weighted adjacency matrix Al+1 ∈ Rnl+1∗nl+1 and
clustered node embeddings Xl+1 ∈ Rnl+1∗fl+1 . Typically, fl+1 = fl ∀l. Thus, the pooling strategy requires
to learn, at each depth l, a cluster assignment matrix Sl ∈ Rnl∗nl+1 via a standard graph convolutional layer.
In Sl, each row corresponds to one of the nl nodes (or clusters) at layer l, and each column corresponds to
one of the nl+1 clustered nodes at the next layer l + 1. Intuitively, Sl provides a soft assignment of each
node at layer l to a cluster in the next layer l + 1. In particular, Sl is defined as:

Sl = row-wise softmax(GraphConv(l+1)
pool (Al, Xl))

. The GraphConv function refers to the update of encoding for all nodes in the graph, following for instance
eq. 6.1.

Then, the coarse graph adjacency matrix Al+1 and clustered node embedding matrix Xl+1 are defined
as:

Al+1 = STl AlSl ∈ Rnl+1∗nl+1

Xl+1 = STl Al ∈ Rnl+1∗fl

Finally, Xl+1 is in turn updated into Hl+1 via a graph convolutional layer:

Hl+1 = GraphConv
(l+1)
update(Al+1, Xl+1)

.
This process is repeated L times, based on a series of L GraphConvupdate and GraphConvpool layers

operating on coarser versions of the input graph (see Fig 6.2).
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Figure 6.2. Graph neuron networks with hierarchical pooling in [320]

Note that Al+1 is a real matrix that represents a fully connected edge-weighted graph. Therefore, to
enforce hard assignment clustering at each step, two additional losses are added to the prediction loss:
LLP = ||Al − SlS

T
l ||F and LE = 1

n

∑n
i=1H(Si) (H is the entropy function). LLP encodes the intuition

that nearby nodes should be pooled together. LE enforces the cluster assignment matrix to trigger a hard
clustering (i.e. enforce each node to be mostly assigned to a single cluster, and very little assigned to the
other clusters).

Regarding performance, the original paper [320] reports that this hierarchical pooling GCN outperformed
GraphSAGE [291] by seven points on graph prediction gold standard datasets (in a context where other
studies usually reported improvement of a single point).

A slightly different cluster-wise node aggregation scheme has been proposed by Porrello et al. [321]. This
approach first selects, for each cluster, a number of candidate nodes (set to five in this study) whose feature
vectors are aggregated via a standard convolution. Ultimately, the concept remains the same.

6.2.3 Graph-level representation combination for graph convolutional networks

To conclude this section, we discuss the COMBINEgraph function. Recall that the COMBINEgraph

function aggregates the molecular embedding m(l) at all steps l, to build the final graph-level representation
m.

In most cases, the last graph-level embedding m(L) is set directly as the graph-level representation m.
Furthermore, graph convolutional networks rarely consider more than two layers so that combining graph-

level embeddings at different levels is relatively not a concern. Kipf et al. [322] reported that considering
more than two layers performs worse with their model. Although deeper models can in principle access to
more information, some of the information may be “washed out” by too many aggregations.

Some studies alternatively considered either the sum [287, 298] or the concatenation [295] of the {m(l)}s
to define a final graph-level representation m. The concatenation stores explicitly sub-graph information at
different granularity. Indeed, the aggregation process (at every nodes), after l iterations, learns the topology
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as well as the distribution of node features in the l-hop neighbourhood. It also allows the network to skip
the last layers if they appear to be harmful for the prediction.

A smoother COMBINEgraph function has been proposed by Xu et al. [323]. The authors proposed to
flexibly adjust (i.e. learn) the molecular embedding m depending on nodes and tasks, by carefully selecting
intermediate representations m(l), and potentially combining a few.

More precisely, they considered three possibilities of intermediate representations combination. First, a
concatenation of linear transformation of the intermediate representations: CONCATl[{σ(W.m(l))}l]. This
is not node adaptive as it uses the same transformation for all nodes. Second, an element-wise max-pooling
of intermediate representations. It is adaptive and it does not introduce any additional parameters to learn.
Third, a biLSTM-attention module processing the sequence (m(1), . . . ,m(L)) which is node adaptive, but
may overfit on small graphs due to its relatively high complexity.

Their result shows, on average, one point improvement over state-of-the-art graph convolutional net-
works (GraphSAGE [324] and GAT [295]) on graph prediction gold standard datasets. For the intermediate
representation combination, max-pooling or biLSTM-att performed better on small and large graphs data
respectively (by only a single point, however).

6.2.4 Conclusion for our studies

In this chapter, we got "fully" empowered, to explore representation learning on molecular graphs and protein
sequences for drug virtual screening.

Among the works we surveyed, the GAT and hierarchical pooling approaches appeared the most promis-
ing. First, they resulted in performance improvements higher than those reported in other studies, which
usually show very little performance increase (one or two points maximum) on graph prediction gold standard
datasets. Second, the concepts on which they rely appear particularly relevant to our problem.

The GAT AGGREGATEnode function seems particularly powerful since it aggregates neighbouring infor-
mation after identifying the most suitable task-specific neighbours at each node. However, we are concerned
that this could be a smoke screen in the case of molecular graphs, since they are small graphs for which all
atoms are supposedly relevant.

The hierarchical pooling strategy seems particularly relevant since it is the graph analogue of the pooling
operation for images, which was shown to be of crucial importance for CNN success in image processing.
However, we are concerned that this could be not particularly suitable for molecular graph. Indeed, they are
small enough so that iterative convolutional node updates, followed by a simple summation of graph nodes to
build a graph-level embedding could equivalently encode and hierarchically agglomerate graph substructures
of different sizes.

In the next chapter, we start by an organised critical review of the works on drug-target interaction
prediction with deep learning-based feature encoders. Based on the analysis of this review, we raise issues
and openings to enhance data-driven approaches for chemogenomics. Finally, in chapter 8, we investigate
the identified promising directions in the chemoinformatics, proteomics and chemogenomics frameworks.



Chapter 7

Deep-learning based features encoders for drug
virtual screening

Abstract: Recent developments in deep learning models are expected to be highly competitive with existing
drug virtual screening approaches. Indeed, they resulted in significant improvement in some popular yet
challenging fields such as computer vision and speech recognition & translation. As introduced in the previous
chapter, representation learning on molecules and proteins can be performed either on top of expert-based
features or on the molecular graph and protein sequence. Therefore, in this chapter, we first survey multi-
layer perceptron to derive abstract features from expert-based features. In a second phase, we review more
promising approaches that consist of using dedicated neural architectures, that we introduced in the previous
chapter, to directly extract descriptors automatically on molecular graphs and protein sequences. Finally, we
conclude this chapter by drawing a critical summary of our survey.

Résumé: Les développements récents des méthodes d’apprentissage en profondeur sont attendus pour être
très compétitifs par rapport aux approches existantes de criblage virtuel de médicament. En effet, ces méth-
odes sont à l’origine d’améliorations significatives dans certains domaines, à la fois populaires et difficiles,
tels que la vision par ordinateur et la reconnaissance de la parole. Comme cela a été présenté dans le
chapitre précédent, l’apprentissage de la représentation de molécules et de protéines peut s’effectuer soit sur
des descripteurs extraits par les experts, soit directement sur la base des données brutes. Par conséquent,
dans ce chapitre, nous examinons d’abord le perceptron multicouche afin d’obtenir des attributs abstraits à
partir des attributs basés sur l’expertise. Dans une seconde phase, nous passons en revue des approches plus
prometteuses consistant à utiliser des architectures neuronales dédiées, que nous avons présentées au chapitre
précédent, pour extraire les descripteurs automatiquement sur les graphes moléculaires et les séquences pro-
téiques. Enfin, nous concluons ce chapitre en faisant un résumé critique de notre enquête.

139
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Before introducing previous works on representation learning for drug virtual screening, we recall the two
main concepts differentiating DTI prediction approaches.

On the one hand, there are ligand-based approaches [325, 326, 327], taking molecular features as input
to predict interactions with one protein, or a relatively small number of proteins (i.e. multitask ligand-based
virtual screening). On the other hand, chemogenomics approaches take protein-ligand pairs as input to
predict DTI interactions. When trained on a wide range of proteins and ligands, such approaches can make
proteome-wide predictions [328, 329, 281, 330].

In addition, methods also differ on the molecular and protein features used. Some considered data-blinded
features, or equivalently "a priori" expert-based features [325, 326, 328, 329, 327]. In practice, they can be
recovered via available toolkits (toolkits are presented Section 2.3.3). Others are data-driven, i.e. they use
feature extractors to learn abstract representations of the molecular graphs and protein sequences in an
end-to-end manner [281, 330].

In the first section of this chapter, we discuss methods based on feed forward neuron networks with
data-blinded features as input (Section 7.1). Such approaches perform representation learning at a "high
level" of initial description, since, in this case, feed forward neuron networks do not process the raw data (i.e.
molecular graph and protein sequences) but pre-defined data-blinded features. In the second subsection, we
thus discuss more appealing representation learning approaches for drug virtual screening that are directly
built from the molecular graphs and the protein sequences.

In the second section of this chapter, we keep on investigating the approaches based on end-to-end data-
driven learnt representations, but in the chemogenomics framework, since we are mostly interested into
proteome-wide drug-target interaction prediction.

Finally, we summarise shortly the conclusions we can draw from the review of the literature.

7.1 Deep learning-based feature encoders for ligand-based drug
virtual screening

7.1.1 Feed-forward neuron networks on expert-based features for ligand-based
drug virtual screening

The striking arrival of deep neuron networks into the field of DTI prediction occurred during the virtual
screening Merk challenge. The Merk company offered a high-quality QSAR dataset. The winners considered
an ensemble approaches made of FNN, RF, SVM and others, since ensemble approaches are usually beneficial.
However, their success relied mostly on the use of FNN.

After the indisputable success of FNN in the virtual screening Merk challenge, further studies carefully
evaluated the performance of FNN while studying the effect of hyper-parameters and the multitask aspect
of this approach. In particular, the winners of the Merk QSAR challenge proposed some studies [331, 332]
investigating FNN for virtual screening.
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In the first study [331], they employed multitask FNN to predict the activities of around 140,000 com-
pounds against 19 target assays from the PubChem database. They use around 3000 structural and physic-
ochemical descriptors generated by the DRAGON toolkit. Moreover, they simplified the QSAR affinity
prediction problem to a classification problem (interaction or not interaction). They showed that multitask
neuron networks, i.e. an FNN with 19 output units (one per bio-assay), outperformed random forest, gradient
boosted decision tree ensemble and logistic regression methods, as well as singletask FNN on most tasks.
We emphasise that multitask FNN only performed slightly better in most cases, even when compared with
singletask FNN. They also observed no significant performance gain from feature selection.

A second study [332] analysed the effect of hyper-parameters of FNN: the number of layers (from one
to four), the number of neurons per hidden layer (from 100 to 4500, the learning schedule parameters, the
type of activation or the regularisation hyper-parameters. Note that we introduce and discuss deep neuron
network hyper-parameters in appendix A.8.4. While still considering the same molecular descriptors, they
consider an extended dataset of 30 bio-assays (tasks) with around 130,000 unique compounds. Although they
tested Bayesian optimisation for task-specific hyper-parameter selection (see appendix A.8.4), they reported
that the use of a single set of hyper-parameters for all tasks could perform as well as optimised parameters
on each task. The authors [331, 332] also reported that the performance of the singletask FNNs increase
with the amount of training data. These observations motivated further studies to understand the efficiency
of multitask learning with FNNs.

First, Ramsundar et al. [333] considered a pyramidal multitask FNN (i.e, each layer has fewer neurons
than the previous layer) to predict the interactions of around 1.6 million compounds, encoded by struc-
tural fingerprints, against 259 targets. They showed that a pyramidal architecture maintained performance
while reducing the number of parameters. The authors also reported that pyramidal multitask deep neu-
ron networks result in significant improvement over standard machine-learning algorithms, namely logistic
regression, random forest and singletask FNN (they did not test SVM-based models). More importantly,
they noticed that the amount of shared bio-active compounds between tasks is moderately correlated with
multitasking performance improvement, and that the biological class of the targets is not. Moreover, they
found that adding more training data still improved the multitask model, which suggests that the multitask
performance could still be improved with more data.

Later, Xu et al.’s work [334] studied the effect of multitask learning in the same setting as Dahl et
al. [332]. They reported that multitask learning is only beneficial for two tasks sharing a large pool of
input compounds with correlated or anti-correlated bio-activities. In many cases, the improvement is not
observed by an increase of prediction performance, but by an increased speed of convergence. In the case of
uncorrelated activities, a negative transfer has been observed.

In other words, within ligand-based drug virtual screening, multitask learning has been reported as a
panacea whereby merely increasing the number of tasks improves performance [333]. Other studies have
reported evidence of negative transfer in drug discovery [334]. Thus, choosing the right support tasks to
match a particular target task may be crucial for positive transfer learning.
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Other recently published studies reported more contrasting results.
Korotcov et al. [335] compared FNN-based and SVM-based approaches taking as input ECFP6 finger-

prints for the prediction of several chemical endpoints comprising biological activity, solubility and ADME
properties. They reported that FNN performed better than the SVM approach, but only for some metrics.

Furthermore, Bajorath et al. [336] compared FNN to data-blinded approaches for the prediction of 100,000
compounds against 53 different targets. Their results did not show any superiority of the deep learning
approach regarding performance. To explain this disappointment, the authors blamed the relatively small
size of the datasets, which is unsuitable to demonstrate the full potential of FNNs, although the dataset was
composed of 100,000 samples.

Other FNN applications in chemoinformatics

FNN have been widely used and reported to outperform state-of-the-art methods in numerous VS stud-
ies [331, 332, 334, 333, 328, 330, 337]. Furthermore, FNN have also been successfully considered for the
prediction of other molecular properties.

Among them, the Tox21 challenge [338] proposed several prediction tasks related to molecular toxicity,
either in terms of interaction with nuclear receptor signalling pathways, or regarding phenotypes such as
cellular stress and so on. The multitask FNN (i.e. an output neuron per task) outperformed singletask FNN,
because the task datasets shared a large pool of molecules. Moreover, it also overtook the performance
obtained with an ensemble approach wrapping an SVM based on the Tanimoto kernel with structural fin-
gerprints and an RF-based model. They also notice that some of the abstract features learnt by the FNN
correspond to well-known toxicophores.

However, these results should be contrasted. Very recently, Karim et al. [339] reported efficient toxicity
prediction using simple feature selection combined with a shallow neuron network (SNN). In this study, they
considered several toxicity datasets with some thousands of recorded compounds. As input features, they
calculated around 1,500 chemical descriptors such as "atom counts"," solubility", "path counts", "ring counts",
"topological charge", or "topological distance matrix". These features were ranked on the basis of the Gini
index (see appendix A.4), and they selected only the n top-ranked features (n in the order of ten). Finally,
they used a simple shallow neuron network with only 1 hidden layer of 10 neurons to perform the prediction.
In the singletask framework, they reported better performance with this SNN procedure compared to the
direct use of an FNN, for 1 minute of CPU time computation instead of 10 minutes of GPU time for the
FNN.

Other studies successfully used FNN for therapeutic classification [340], or modelling drug-like molecules [341].

At this stage of the discussion, representation learning on data-blinded features with FNN appears as a
reliable baseline for chemoinformatic prediction tasks, as well as SVM with the Tanimoto similarity measure
on molecular fingerprints.
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We now investigate data-driven feature extraction with graph neuron networks.

7.1.2 End-to-end feature extraction with graph neuron networks for ligand-
based drug virtual screening

Contrasted performance of graph neuron networks in chemoinformatic problems

First, the pioneering work on graph neuron networks of Duvenaud et al. [287] (see appendix C.3) showed
slightly improved performance compared to models using standard descriptors, for molecular solubility and
photovoltaic efficiency datasets. However, the prediction of biological activity did not benefit from their
data-driven feature extraction approach.

Another major study in the field, by Kearnes et al. [308] (see appendix C.3), explicitly concluded that
standard graph convolutional networks do not consistently outperform standard data-blinded descriptors-
based models. However, they presented their work as a valuable extension of method repertoire and a proof
of concept, i.e. a new flexible and efficient framework with room for improvements.

In the study of Rodriguez et al. [342], the authors compared RF, FNN and SVM taking as input ECFP4
descriptors to graph convolutional networks-based model [287] on a PubChem-based dataset containing
three assays (one assay per protein target) and more than 100,000 compounds. They report that FNN and
graph convolutional networks slightly under-perform SVM and RF, by few points of ROCAUC score in the
worst case. However, no standard deviation are displayed.

Other studies have reported that graph neuron networks-based methods reached state-of-the-art perfor-
mance for some chemoinformatics tasks.

Hop et al. [343] reported that graph convolutional neuron networks outperformed an RF-based model
taking as input the concatenation of 101 RDKit descriptors and the 384-bit wide ECFP4 fingerprint. They
even show the mean, standard deviation and p-value of the statistical test of the difference of performance.
However, such RF-based model has not been reported to be state-of-the-art. Moreover, the prediction
tasks considered are not related to protein interactions. The authors considered the prediction of acid-base
dissociation constant, human intrinsic clearance (i.e. the rate at which the human body eliminates the drug)
and thermodynamic solubility.

Another study [344] explicitly showed that an FNN-based model taking as input data-driven features
seemed to perform better than the same model on data-blinded features, which in turn performs as well as
the KronRLS. However, the authors did not display standard deviations. They considered several DTI data
sets (Davis, Metz, KIBA and Toxcast) containing between around 30,000 interactions to 530,000 interactions.

Despite this controversial success, several studies investigated GCN for multitask ligand-based virtual
screening. It is a typical promising direction to address the lack of bio-activity data for each individual
targets (i.e. tasks).
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Performance of graph neuron networks for multi-target ligand-based virtual screening

Among recently published studies, one has focused rigorously on the multitasking aspect of ligand-based
DTI prediction with graph neuron network [345]. More specifically, they studied the choice of source tasks
for positive transfer learning. Note that the choice of source tasks is conceptually similar to the bias-variance
trade-off. Indeed, selecting closely related tasks may help to build a robust local data-driven representation,
but is unlikely to generalise. In contrary, considering very dissimilar tasks enables to learn regularised
representation and is unlikely to yield a strong local performance.

They considered 48 prediction tasks for molecules, taken from the MolNet collection of datasets. Some
of the prediction tasks are interaction with specific targets, some are related to basic chemical properties
such as molecular solubility. Regarding the ML models, they considered a data-driven approach in which
the molecular graph encoder is the weave module by Kearnes et al. [308] (see appendix C.3), and the
molecular level embedding is built by an attLSTM [306] (see appendix A.8.2). This encoder is used to learn
a molecule-level representation for all input data, but task-specific fully connected layers are used to perform
task-specific predictions. It corresponds to the "hard sharing multitask" framework (see appendix A.8.3 for
an introduction to multitask with neuron networks).

To analyse multitask performance with respect to singletask performance, they quantitatively assess the
similarity sij between any pairs of tasks i and j as the difference between MT and ST final performances:
Si,j = LMT

i,j −LSTi , where LMT
ij is the performance obtained while training the molecular graph encoder jointly

on tasks i and j, and LSTi is the performance obtained while training the molecular graph encoder only on
task i. They did not include higher order effects by considering more than two tasks simultaneously. Based
on that similarity measure between tasks, they build two task similarity matrices. One when using data-
driven features (graph convolutional networks), and the other when using data-blinded Morgan fingerprints.
The former gave a richer (i.e. more diverse) similarity matrix than the latter. The authors argued that the
greater representation flexibility afforded by graph convolutional neuron networks may allow capturing a
richer task information landscape.

Furthermore, in both cases, the task similarity matrices can be understood based on some underlying
physicochemical properties. Indeed, they observed that basic physical property prediction tasks benefited
more from co-training with other basic property prediction tasks, than with biological tasks to which they are
less obviously related. Reciprocally, the biological prediction tasks are more likely to benefit from features
that express steric interactions which are less relevant for the prediction of basic physical properties.

Finally, they reported that actively selecting source tasks is better for transfer learning than random
selection of source tasks. Nevertheless, the singletask approach provided the best performance for most of
the hold out tasks (90% of the tasks). These results put into perspectives multitask learning for ligand-based
drug virtual screening.

Another significant study [346] proposed a rigorous comparison of various methods for multitask ligand-
based DTI prediction. In particular, they compared SVM with the Tanimoto similarity measure on different
kinds of fingerprints, RF, FNN, GCN [287, 308], SMILES-LSTM [283] and kNN. The benchmark dataset was
composed of 500,000 compounds and 1000 assays from the ChEMBL database. It is essential to consider
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a dataset with many bio-assays, as deep learning can express its full power in this case, allowing hidden
representations to be shared among prediction tasks. In particular, in this dataset, few ligands were known
per target (i.e. task) and assays with few measurements are likely to benefit from the data of similar assays.

In addition, they assessed performances by cluster cross-validation to address the sampling bias issue (see
section 1.3). Indeed, compounds are usually synthesised by chemists as series of molecules deriving from a
common scaffold by adding various functional groups. However, we are mostly interested into evaluating
bioactivity of compounds dissimilar to the recorded ones, so that cluster-cross validation is suited.

More precisely, they considered nested cluster cross-validation, to avoid the hyper-parameter selection
bias of deep learning approaches. Indeed, deep learning networks require many hyper-parameters, and
their optimisation requires "early stopping" in order to avoid overfitting (i.e., stopping the training if the
performance evaluated on validation data, different from the final test data, decreases for some successive
training epochs).

Based on this rigorous comparison settings, they reported that FNNs significantly outperform the other
tested methods, although by only one point, for all prediction tasks and all types of fingerprints. In particular,
they found that FNNs are significantly better than graph convolutional networks [287, 308] (see appendix C.3)
or SmilesLSTM [283] (see section 6.1.2), for almost all feature types. Moreover, the second best method
is SVM which also performs better than graph convolutional networks [287, 308] or SmilesLSTM [283].
Interestingly, even the SmilesLSTM [283] has a higher average ROCAUC score than the two graph-based
representation learning approaches [287, 308].

However, we report, in figure 7.1, the performance plot of the original paper. We observe that the
performances are in fact almost all the same. No p-values are reported.

Figure 7.1. Results as reported in [346].

Recall that we are to draw some conclusions from the literature at the end of this chapter. At this
stage, we can certainly doubt the performance of standard graph neural networks for ligand-based virtual
screening. However, GCNs remain, a priori, appealing thanks to the remaining large room of improvement
that we discussed in chapter 6.
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7.2 Molecular graph and protein sequence encoders for chemoge-
nomics

We now focus on recent studies which evaluated data-driven feature extractors of molecular graphs and
protein sequences, in the context of proteome-wide drug-target interaction prediction.

In the chemogenomics framework, data-driven approaches rely on the automatic encoding of protein and
molecule representations, respectively built from a protein sequence encoder (typically RNN or 1D CNN)
and molecular graph or SMILES encoder (graph neuron network). The two data-driven representations are
combined to build a pairwise latent representation that is then fed into a feed-forward neuron network to
predict the affinity between the molecule and the protein.

In the following, we refer to this neuron network architecture as the "chemogenomic neuron network", or
simply, the "chemogenomic network".

The following works mostly discuss neuron architectures to efficiently combine the learnt protein and
molecule representations.

As a first natural attempt to combine the molecule and protein learnt representations, one can propose
to concatenate them. Thus, any type of protein sequence and molecular graph encoders that we introduced
in the previous chapter can be used.

For instance, Ozturk et el. [347] used the following architecture: (i) three convolutional layers on SMILES
repreŝentations to encode compounds, (ii) three convolutional layers on protein sequences to encode proteins,
and (iii) three fully connected layers on the concatenation of the molecule and protein encodings, in order
to predict the affinity value between the tested molecule and protein.

Regarding the performance assessment, the authors considered the Davis and Kiba datasets, both con-
taining selectivity assays in the kinase protein family. Hence, note that this study focuses on DTI prediction
within a single protein family. The Davis dataset contains interactions between 442 proteins and 68 ligands
and the Kiba dataset contains interactions between 467 targets and 52 498 drugs.

The authors compared their data-driven method to Simboost (a gradient boosting machine-based method,
cf. section 3.2.2) and KronRLS (cf. section 3.2.2). Importantly, they did not compare to standard FNN,
which led to state-of-the-art performances in many studies [346, 308, 342]. In addition, they did not compare
to methods shown to outperform KronRLS, in particular, the NRLMF approach [136] (cf. section 3.2.2).

They obtained better or similar performance compared to Simboost and KronRLS in terms of MSE.
When discretising the datasets (they set the threshold of pKd value, distinguishing actives from inactives,
to 7), their method performed the best, in terms of AUPR, for both datasets, but significantly better only
for the KIBA dataset.

From another point of view, Gao et al. [348] did not consider the direct concatenation of learned molecule
and protein representations as the input of an FNN to predict the binary interaction of a molecule-protein
pair.



CHAPTER 7. DEEP-LEARNING FOR DRUG VIRTUAL SCREENING 147

Instead, they first projected atom and amino acid representations on the same space following: A =
tanh(PTUD) where U is a learnable projection matrix, P ∈ RHp∗Lp (Hp amino acids’ representation of
dimension Lp along the protein sequence) and D ∈ RHd∗Ld (Hd atoms’ representation of dimension Ld).
Then, they defined attention weights for amino acids and atoms following: [αp]i = max1≤j≤Ld Ai,j and
[αd]j = max1≤i≤Lp Ai,j . The final protein-level and molecule-level representations are given by: hprot =
P · softmax(αp) and hmol = D · softmax(αd). Thus, the learnable projection on a shared space enabled
to learn to select information of task-specific relevant atoms (whose representation encodes its neighbouring
substructure) and amino acids (whose representation encode its neighbouring sub-sequence).

Then, a "siamese network" is used to compute the interaction probability. A siamese network is a couple
of identical MLPs, each taking the projected representations hmol or hprot as inputs and outputting their
similarity value. The similarity value is interpreted in this context as the interaction probability.

Attention mechanism can be used to interpret individual predictions. In this study, they used docking
to "confirm" the top-ranked predicted interactions. Indeed, they checked that the interacting parts of the
protein and the molecule highlighted by the attention mechanism are indeed involved in the interaction via
the docking pose.

To conclude, we introduce now the work of Tsubaki et al. [349] inspired from the previous work [348].
Among recently published studies considering the chemogenomic network, this work is of significant interest.

In this study, the molecular graph feature extractor is a standard graph convolutional neuron network
(see Section 6.2), and the protein feature extractor is a convolutional network on sequences. The molecular
graph-level representation hmol is learnt by summing over the atom level representations. No protein-level
representation hprot is learnt directly from the abstracted amino acid representations h(aa)i .

Indeed, the protein level representation hprot is learnt via an attention mechanism whose weights are learnt
via the similarity between a learnable linear transformation (parameterised by Winter and binter) of the
graph-level and amino acid-level representations: hprot =

∑
i=1 αiz(aa)i in which αi = softmax(zTmolz(aa)i),

zmol = σ(Winterhmol + binter) and z(aa)i = σ(Winterh(aa)i + binter).
Again, this attention mechanism allows interpretation of individual predictions. Indeed, the weight αi

on each amino acid of index i indicates what part of the protein sequence was necessary for the prediction.
As in [348], interpretability was tested by comparing the interacting parts of the protein found by the
attention mechanism, and those observed when docking the ligand into the binding pocket of its target.
However, regarding performance, the authors did not justify this choice by comparing the performance to
those obtained without the attention mechanism.

Concerning performance assessment, the authors used two datasets built based on the DrugBank database.
First, a human data set with around 3,500 positive interactions between about 1,000 unique compounds and
850 unique human proteins. Second, a C.elegans dataset containing around 4,000 positive interactions be-
tween 1,434 unique compounds and 2,504 unique C.elegans proteins. They compared the performance of
their data-driven approach to an approach based on SVM with fingerprint-RBF kernel, on various test "pos-
itive:negative" ratios (1:1, 1:3 and 1:5). Indeed, much more negative than positive interactions are recorded,
and considering more negative interactions in the test set correspond to a more realistic setting in the context
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of proteome-wide DTI prediction.
For the human-specific dataset, the precision score is always higher for SVM (around 5 points better),

but conversely, the ROCAUC is always higher for the data-driven approaches (from 1 to 5 points better).
Overall, the reached ROCAUC varied in the range of 0.91 to 0.97. For the recall score, SVM suffers more
from an imbalanced positive:negative ratio than the data-driven approach. In conclusion, one method or the
other performs better depending on the metrics that is considered.

Unexpectedly, when comparing to the state-of-the-art techniques on the gold standard Yamanishi dataset,
they do not provide the performance results. However, they do display a bar plot (reported in Fig. 7.2) albeit
with no standard deviation. One cannot distinguish the performance of the KBMF2K [134] (introduced in
section 3) and that of their method.

Moreover, the Yamanishi dataset is relatively small so that it is not suited to evaluate fairly deep learning
models. In addition, we wonder why the authors compared to the KBMF2K and kronRLS methods while
they have been shown to be outperformed by NRLMF on the Yamanishi dataset.

Figure 7.2. ROCAUC scores of various methods designed for DTI prediction on the gold standard Yamanishi dataset as
reported in [349]. All baseline methods are introduced in section 3

To conclude this chapter, we now draw conclusions from the above review. This critical summary is
meant to drive us to investigate the most promising directions for improving chemogenomic data-driven
approaches.

7.3 Summary and perspectives

Regarding algorithmic consideration, some early works [322, 287] showed that graph convolutional networks
extract structural features in a similar fashion as standard ECFP procedures [287], and both similarly as the
1-WL algorithm [322]. Thus, conceptually speaking, graph neuron networks are not a new way to process
graphs. However, GCNs extract structural features in a differentiable and data-driven formulation.

Others [350, 351] emphasise that GCNs can, at best, be as discriminative as the 1-WL (in terms of the
ability to distinguish non-isomorphic graphs with the extracted features). We discuss in more details the
algorithmic analysis of graph convolutional networks in appendix D.

The flexibility of GCN alone is expected to enhance their representation power, and therefore, to enable
them to overtake state-of-the-art performance.
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From another perspective, when visualising the extracted features [345, 352], it seems that GCN enable
greater representational flexibility than standard fingerprints. For instance, Fare et al. [345] observed that
the 2D projection of data-driven fingerprints clearly discriminated active and inactive compounds, whereas
standard ECFP failed to discriminate between the two groups in this 2D chemical space.

However, such linear projection is not sufficient to justify the superiority of data-driven features over
standard expert-based data-blinded features. Indeed, data-driven features have been extracted so that they
can be classified by a classical linear logistic regression, whereas expert-based data-blinded features are meant
to be processed non linearly via SVM or MLP before performing predictions.

Furthermore, the performance improvements of data-driven approaches are very contrasted in chemoin-
formatics.

In the case of chemoinformatics prediction tasks, several authors [287, 308] observed that GCN do not
consistently outperform standard descriptor-based models. Others [344, 343] also emphasised that FNN with
data-blinded features performs the best, including with respect to graph neuron networks.

In the particular case of multitask ligand-based virtual screening, only Ramsundar et al. [333] reported
that multitask FNN outperforms other approaches, and that adding more training data was still improving
the multitask model. Others [331] showed that multitask FNN performed slightly better than singletask
FNN only for some tasks. This was confirmed by Xu el al. [334] which showed that positive transfer learning
is conditioned by sharing a significant amount of input data whose labels are correlated.

In general, others [335, 336, 339, 342] stated that FNN performs better than data-blinded methods only
for some metrics and datasets.

All ligand-based virtual screening studies reported that standard GNNs did not significantly outper-
form data-blinded feature-based methods, and FNN in particular [342, 346]. Moreover, hard-sharing the
parameters of GNN over multiple ligand-based screening tasks was reported inefficient in most cases [345].

In the chemogenomics framework, the combination of standard molecular graph and protein sequence
encoders (CNN or RNN) was reported to be competitive with data-blinded approaches such as FNN and
SVM-based approaches [348, 349]. Moreover, these authors did not discuss their choice of neuron architecture.
Furthermore, only one study [347] reported that their method significantly overtook the others, on a dataset
devoted to a single protein family.

When looking at the numbers, we find that whatever method is reported as the best, the differences in
terms of performance are very small. We are far from the striking gap of performance obtained by deep
learning-based models in the image processing and natural language processing fields. Moreover, the datasets
considered in the studies that we discussed are very heterogeneous, and recent promising developments in
GCN have not been evaluated in chemoinformatics, and in particular, in chemogenomics.

Overall, we cannot rely on the literature to conclude whether graph neuron networks and related very
recent developments can lead to significant improvements for chemogenomics. At this stage, we can seriously
doubt the potential of graph neuron networks to extract relevant features from molecular graphs and of CNN
or RNN to extract more relevant features from protein sequences, compared to expert-based features.
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In the next chapter, we stress out the most promising directions to improve data-driven extraction on
molecular graphs and protein sequences, and we investigate them experimentally on various chemoinformat-
ics, proteomics and chemogenomics datasets.



Chapter 8

Evaluation of end-to-end extracted representa-
tions for chemogenomics

Abstract: Based on the critical appraisal of the literature in the previous chapter, we state that recent de-
velopment in deep learning methods did not exhibit the same sticking improvements in the field of chemoin-
formatics as in the field of computer vision. In the meantime, a considerable number of publications staged
such methods for chemoinformatics prediction tasks, or attempted to empower graph representation learning.
In this chapter, we discuss the suitability of deep learning methods for chemogenomics, and more specifically,
we challenge a variety of promising neuron modules to encode molecular graphs and protein sequences. To
test and discuss very recent developments highlighted in previous chapters, we conduct several experiments
on chemoinformatics, proteomics and chemogenomics datasets.

Résumé: D’après l’évaluation critique de la littérature réalisée au chapitre précédent, les progrès récents en
matière de méthodes d’apprentissage en profondeur n’ont pas montré les mêmes progrès dans le domaine de
la chimio-informatique que dans le domaine de la vision par ordinateur. Entre-temps, un nombre consid-
érable de publications ont exhibé de telles méthodes pour des tâches de prédiction de chimioinformatique, ou
tenté d’empuissanter l’apprentissage de la représentation sur graphe. Dans ce chapitre, nous discutons de
l’adéquation des méthodes d’apprentissage en profondeur pour la chimiogénomique et, plus spécifiquement,
nous mettons au défi diverses approches prometteuses fondées sur l’apprentissage de la représentation à par-
tir du graphe moléculaire et de la séquence protéique. Pour tester et discuter des développements très récents
mis en évidence dans les deux chapitres précédents, nous avons mené plusieurs expériences sur des bases de
données de chimioinformatique, protéomique et chimiogénomique.
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8.1 Improving end-to-end extracted representation

In this section, we explore how to improve molecular graph and protein sequence representation learning.
Recall that all evaluation metrics and procedures are introduced in appendix A.2 if necessary. Besides, deep
learning is broadly introduced in appendix A.8.

8.1.1 Graph convolutional network architecture

Within the graph neuron network framework defined in section 6.2, many efforts were devoted in the last two
years to design flexible and relevant aggregation functions. These aggregation functions update nodes rep-
resentation from neighbouring nodes, and build a graph-level representation from node-level representations
(see Alg. 1).

From our point of view, these efforts were necessary, since the "classical" summation on a shared hidden
layer relied on the ability of the network to learn graph-level representations from a flat message passing
process. Even if such a simple approach can theoretically efficiently encode topological information combined
with attribute distributions, it is always relevant to design a neuron architecture which enforces the learning
of some desired property.

From our point of view, the "minimal" GNN formulation corresponds to the GNN algorithm defined
in section 6.2, in which the AGGREGATE(l)

graph and COMBINEgraph are simply the sum function, and
AGGREGATE

(l)
node is the standard update function:

h(l+1)
i = σ(h(l)

i W(l)
0 +

∑
j∈N (i)

h(l)
j W(l)

1 )

where h(l)
j is the vector representation of node j at step l, N (i) is the 1-hop neighbourhood of node i, and

(W(l)
0 , W(l)

1 ) are learnable weights.
In practice, if the architecture of the GNN itself is essential, fine modifications proposed in section 6.2

of the minimal GNN should be effective. Alternatively, if the fine-tuning of the model parameters via
backpropagation is a paramount, the performance for the minimal GNN should go a long way, since a simple
neuron network architecture should already perform the best.

Preliminary work

We initially tested the prominence of the graph neuron network architecture on several gold standard
chemoinformatics datasets gathered in the MolNet collection (cf. section 2.3). We first compared the
minimal GNN and an SVM-based model (baseline) performances via a 5-fold nested-cross validation.

We used the RDKit Python library to extract Morgan fingerprints (analogue of ECFP4 structural fin-
gerprints), and considered the Tanimoto similarity measure to build a positive-definite similarity matrix
between molecules, based on these fingerprints.
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Regarding the original description of atoms required by graph neuron networks, the work of Coley et
al. [298] showed that considering diverse structural and physicochemical atom features results in improved
performances. Therefore, we used RDKit to define the following atom descriptors (see Coley et al. [298]
for a detailed description): "atom identity", "number of hydrogens", "number of heavy neighbours", "formal
charge", "is in ring", "is aromatic", "polar surface area", "partial charge", "chirality tag".

The entire neuron architecture comprises an FNN on the graph-level representation learnt by the GNN.
We implemented this neuron network with the TensorFlow library. Furthermore, we identified the best
hyper-parameters by recording the performance on a set of train/validation/test data splits for each dataset,
and manually exploring hyper-parameter spaces, since a grid-search or random-search would have required
too much computation time. More precisely, we separately optimised a set of architecture hyper-parameters,
a set of learning hyper-parameters, and a set of regularisation hyper-parameters (see appendix A.8.4 for
a complete description of these hyper-parameters). In the following, we enumerate the optimised hyper-
parameters and the range of values that we considered. The architecture parameters are the dimension
of the latent representation, or equivalently the number of convolutional filters ([10, 1000]), the number
of update steps or equivalently the number of convolutional layers ([[2, 5]]), and the number of neurons is
the last hidden fully connected layers which processes the graph-level embedding ([10, 1000]). The learning
parameters are the batch size ([1, 100]), the initial learning rate ([10−5, 10−2]), and the learning rate decay
factor ([0.8, 0.99]). The regularisation parameters are the probability of dropout ([0., 0.9]) and weight decay
([10−4, 10−1]). We set the number of epochs to 100, and we also considered early stopping such that the
training stops if the performance (ROCAUC score for classification tasks or MSE for regression tasks) on
the validation set does not increase in ten successive epochs. In practice, the training was always stopped
early.

For the learning hyper-parameters, we observed that the convergence of the network heavily depended
on the initial learning rate, which must be set between 10−4 and 10−3. Ultimately, we set the batch size to
10, the learning rate decay factor to 0.9, the number of convolutional filters and number of neurons in the
final hidden layer to 100, the number of convolutional layers to 3, the dropout probability to 0.3 and the
weight decay to 0. Overall, we found that, for all hyper-parameters, a wide range of values around those
mentioned lead to the same best performance.

Indeed, the training is not sensitive to small variations of hyper-parameters as long as the number of
trainable weights (i.e. width and depth) of the network is large and monitored enough (i.e. limited and
regularised).

Table 8.1 shows the mean performance (and its standard deviation), for the membrane permeability
dataset and some of the Tox21 prediction tasks. In the case of the Tox21 datasets, we used the AUPR
score to measure the performance, and we used the MSE for the membrane permeability dataset. The
performances are displayed in the format "mean score±score standard deviation".
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Tox21: 0 Tox21: 1 Tox21: 2 Tox21: 3
Membrane
Permeability

SVM 0.7413± 0.0941 0.8007± 0.0957 0.8498± 0.0311 0.7673± 0.0882 0.2298± 0.0745
minimal
GNN

0.7357± 0.1004 0.7457± 0.1275 0.8343± 0.0351 0.7352± 0.0792 0.2761± 0.1318

Table 8.1. AUPR (MSE for the membrane permeability dataset) performance on some benchmark chemoinformatics prediction
tasks

The results reported in Table 8.1 are typical of those we obtained on the other datasets of the MolNet
collection. In particular, the minimal GNN is competitive and reaches slightly lower performance than
ECFP-Tanimoto SVM. Note that similar observations have been reported with other standard formulations
of GNN [308].

Again, from our point of view, the weak point in the minimal formulation of GNN seemed to be the sum
operator used to build a graph-level representation from the learnt representations of each atom. Indeed,
this summation captures the distribution of features over the atoms in a single value and without prioritising
relevant atoms. Therefore we tested several strategies to enhance the graph-level representation.

First, we tested the concatenation of the graph-level representations m(l) built after each update steps
to build the final graph-level representation m, in order to guide the network to encode molecules with
information of substructures of various sizes. We refer to this concatenation as jumping connections, similarly
to [323], since it is equivalent to connect the final graph-level representation to the output of each hidden
layers of the graph encoder.

Second, we alternatively defined the graph-level embedding by the deciles of the distribution of each
feature in the learnt representation of the atoms. Thus, if the dimension of the nodes’ latent representation
is d, the dimension of the graph-level representation is 10×d. This strategy encodes the distribution of each
feature of the node latent representation.

Third, we proposed a self-attention mechanism, similar to [312] introduced in section 6.2, to build the
graph-level representation in order to help to select relevant contribution of each atom. In this formulation,
the graph-level embedding m is defined based on the final atom-level representation h(L)

i for each node i (�
stands for element-wise multiplication):

m =
∑
i∈V

σ(Watt ∗ h(L)
i + batt)�Relu(W ∗ h(L)

i + b)
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Tox21: 0 Tox21: 3 Membrane Permeability

minimal GNN 0.7476± 0.0646 0.7168± 0.0685 0.2535± 0.0511
GNN with jumping connections 0.7385± 0.085 0.7316± 0.0855 0.3006± 0.2031

GNN with
decile-based

graph-level representation
0.727± 0.0706 0.7199± 0.0528 0.2826± 0.1284

GNN with
self attention-based

graph-level representation
0.7297± 0.0692 0.7176± 0.0549 0.3149± 0.1218

Table 8.2. AUPR (MSE for the membrane permeability dataset) performance on some chemoinformatics tasks for some GNN
formulations

We can summarise the results in table 8.2 by observing that the proposed modifications did not con-
sistently improve the performance of the minimal GNN for these chemoinformatic tasks. Although the
differences are not statistically significant, we even notice that the minimal GNN performs better than its
proposed modifications for some tasks. This means that the proposed modifications potentially make the
training more difficult by making the optimisation landscape more rugged.

This preliminary work was undertaken before a colossal amount of studies on GNN were published
in the last two years. They proposed a variety of modifications to GNN that we reviewed in section 6.2.
Furthermore, some of the modifications that we proposed here can be found in the recent literature [308, 323].
However, our preliminary work could not conclude on the efficiency of more sophisticated graph neuron
network architectures.

Therefore, in the last section 8.2, we examine the interest of the most relevant improvements on GCNs
in the context of DTI prediction.

Before that, we explore , in another preliminary work, another promising direction to enhance end-to-end
feature extraction.

8.1.2 Multitask learning for end-to-end feature extraction

Since deep neuron networks require a large amount of data to reach their full potential, a promising direction
of research is to consider multitask learning (in particular transfer learning).

In addition to trigger implicit data augmentation, multitask learning is expected to prevent artificial
neuron networks from overfitting. Indeed, learning a representation on multiple tasks may lead to a molecular
representation which generalises better to other tasks and, in general, to new unseen data.

However, considering multitask neuron networks brings its own issues. For instance, we must question
which tasks are intended to help each other, how to assess the closeness of tasks, and more generally, how to
design a neuron architecture and a learning schedule to efficiently share knowledge between loosely-related
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prediction tasks.
For example, even though molecular solubility might not be related to some molecular biological prop-

erties, such as protein interactions, we can expect that positive transfer learning can occur between the
PubChem bio-assay data and the DrugBank data, because they may rely on common mechanisms since they
both concern molecular bio-activities.

To get a bigger picture, we introduce multitask learning for neuron networks in appendix A.8.3, and for
the general case in appendix A.7.

Preliminary work.

In order to test the prominence of multitask learning and get experience in data-driven feature extraction on
protein sequences, we investigated multitask learning for a collection of tasks corresponding to the prediction
of some protein property.

Among the considered datasets, we first discuss (i) the "CellLoc" dataset [279], labelling 5917 proteins
with one of the twelve sub-cellular localisation. Also, we consider (ii) the "SCOPe" dataset [126] processed
from the SCOPe database and classifying 13963 proteins over seven types of 3D fold (alpha proteins, beta
proteins, alpha and beta proteins, multi-domain proteins, membrane and cell surface proteins and peptides,
small proteins). Finally, we use (iii) the "Secondary Structure" dataset [279] which is composed of 4388
proteins in which all amino acids are assigned to one of the eight possible protein secondary structures.
They are all imbalanced multi-class classification tasks, but the two former consider proteins as a whole,
whereas the latter labels individual amino acids. Note that the SCOPe and secondary structure prediction
tasks are explicitly related since they both characterise protein folding, but at different level (respectively,
at the sequence-level and amino acid-level).

We first compared singletask neuron network-based encoders and SVM performances via 5-fold nested
cross-validation. We used the local alignment kernel to build the protein kernels (centred and normalised)
as mentioned in section 2.2. Furthermore, we needed to define original descriptors for amino acids, in order
to process the sequence with convolutional or recurrent neuron networks. We described each amino acid by
its type in a one-hot encoding fashion. We implemented convolutional neuron layers and LSTM with the
TensorFlow library. Again, we separately optimised three sets of hyper-parameters (architecture, learning
and regularisation hyper-parameters) by recording the performance via nested cross-validation on a few folds
for each dataset, such that we manually explored the hyper-parameter space.

We tested two types of neuron architecture on protein sequences: stacked convolutional layers (CNN)
and a convolutional layer stacked with a biLSTM layer (conv-biLSTM), as motivated in section 6.1. In the
following, we detail the optimised hyper-parameters, and the range of values we considered are given in
parentheses. The architecture parameters are the number of convolutional filters ([10, 1000]), the size of the
convolutional filter receptive field ([6, 12]), the convolution stride ([2, 6]), the number of convolutional layers
for the CNN architecture ([[2, 5]]), and the number of neurons in the last hidden fully connected layer which
processes the sequence-level embedding ([10, 1000]). The learning and regularisation hyper-parameter spaces
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were explored identically to the previous section.
After parameter tuning, we did not observe any statistically significant difference between the performance

of CNN and conv-biLSTM on the three datasets. Again, we also observed that the performance is not
sensitive to small variations of hyper-parameters (i.e. the performance does not significantly vary when
hyper-parameters remain in the same order of magnitude). Surprisingly, small CNN networks (about ten
filters and two layers) already reached relatively high performance. Finally, we chose the CNN architecture
as protein sequence encoder, since a conv-biLSTM requires more time to train. In addition, we set the batch
size to 5, the learning rate decay factor to 0.99, the number of filters to 20 and 40 respectively in the first
and second convolutional layers, the filter size to 6, the stride to 3, the dropout to 0.2 and the weight decay
to 0.01.

To investigate multitask learning, we also tested training the protein encoder (CNN) jointly on the SCOPe
and secondary structure datasets (following the hard-sharing strategy, as discussed in appendix A.8.3).

In table 8.3 we display the mean performance (and its standard deviation) on the three considered
datasets. The performances are displayed in the format "mean score±score standard deviation".

CellLoc SCOPe Secondary Structure

SVM
(baseline)

ROCAUC: 0.9728± 0.0615
AUPR: 0.8448± 0.0238

ROCAUC: 0.9609± 0.00476
AUPR: 0.8683± 0.0095

NA

CNN
singletask

ROCAUC: 0.9281± 0.0088
AUPR: 0.6313± 0.0041

ROCAUC: 0.8635± 0.0121
AUPR: 0.5928± 0.0242

ROCAUC: 0.7652± 0.0055
AUPR: 0.344± 0.002

CNN
multitask

NA
ROCAUC: 0.8776± 0.0022
AUPR: 0.6143± 0.0123

ROCAUC: 0.7597± 0.0037
AUPR: 0.3328± 0.0023

Table 8.3. Performances obtained on three benchmark protein datasets

First, the ROCAUC scores appear too high to fairly compare methods, and therefore, we focus on the
AUPR scores. The SVM approach significantly outperforms the CNN approach. This could be expected,
since we could not find in the literature any study showing competitive performance of deep learning models
compared to methods based on state-of-the-art protein kernels for such small datasets. Nevertheless, the
performance reached by the SVM-based method is extremely high. We think it is due to the fact that
the LAkernel is particularly suited for these prediction task. Indeed, this kernel compares very efficiently
proteins from the evolutionary point of view, which is particularly suited for predicting secondary structure
of protein folding and sub-cellular localisation.

Furthermore, we could expect that deep learning methods may benefit from multitask learning, since
training a neuron network encoder on multiple tasks is an implicit data augmentation. Moreover, recall that
the SCOPe and secondary structure prediction tasks are explicitly related since they both characterise protein
folding, but at different level. However, the co-training of the protein sequence encoder on the SCOPe and
secondary structure datasets did not yield to an improvement of performance, although these two tasks are
strongly related. A similar observation was made in the NLP field [353]. Parameter hard-sharing multitask
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is likely to be too restrictive and therefore, is probably efficient in few specific cases.
That being said, task-specific layers are too parameter-inefficient, so that sparse sharing or parameter-

efficient modules are necessary (cf appendix A.8.3). At the same time, training all tasks simultaneously
might not be the best choice for loosely-related tasks. More adaptive training strategies, such as curriculum
learning introduced in the next section, seem more promising in this situation.

With the intention to boost data-driven approaches for virtual screening in the chemogenomics framework,
the two preliminary works, reported in this first section, blazed a trail.

Therefore, we investigate in the next section the efficiency of curriculum learning and various relevant
modifications of the neuron network architecture for chemogenomics.

8.2 Improving end-to-end extracted representations for chemoge-
nomics

In this section, we explicitly investigate end-to-end data-driven approaches for chemogenomics.
The data-driven approach relies on the neuron architecture that we called "chemogenomic neuron net-

work". Recall that it consists of an FNN taking as input the combination of molecular and protein data-driven
representations extracted by end-to-end learnable molecular graph and protein sequence encoders.

8.2.1 Materials

We use the DrugBank database version 5.1.0 to build two druggable proteome-wide drug-target interaction
prediction datasets. In the first dataset DBH, we only kept interactions including human proteins and their
ligands, whereas in the second one DBEC, we only kept interactions including Escherichia Coli proteins and
their ligands.

DBEC is composed of 592 molecules targeting a total of 314 proteins, and including 874 protein-ligand
interactions that correspond to the positive training pairs. DBH is composed of 4834 molecules targeting a
total of 2561 proteins, and including 13070 protein-ligand interactions. In both datasets, the vast majority
of the targets and drugs are involved in only one or two known interactions.

As we later examine curriculum learning to augment the performance on these datasets, we also consider
a PubChem-based and the protein sub-cellular localisation datasets already introduced earlier.

We pre-processed the PubChem datasets included in the MolNet dataset collection (see section 2.3.2) to
keep the bioassays composed of a maximum of common molecules. The resulting dataset consists in a total
of 439, 863 unique molecules and 90 binary classification tasks (bioassays). For each bioassay, molecules are
labelled as active, inactive or unknown. When a molecule is labelled as unknown for a bioassay (because it
has not been experimentally tested), the prediction error for the corresponding task and molecule is set to
zero.
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The sub-cellular localisation dataset [279] is a multi-class classification problem, labelling 5917 human
proteins with one of the twelve sub-cellular localisation considered classes.

8.2.2 Methods

Methods: the chemogenomic neuron network

Based on our preliminary works, we used stacked 1D convolutional layers as the protein sequence encoder,
in which each amino acid is one-hot encoded according to the amino acid type.

To encode molecular graphs, we used graph neuron network as defined in section 6.2. We first used the
minimal formulation of graph neuron networks defined earlier in this chapter. In a second step, we are to test
promising architecture modifications. To encode atoms and bonds of molecular graph, we again used RDKit.
We described atoms with the following features (refer to Coley et al. work [298] for further details): "atom
identity", "number of hydrogens", "number of heavy neighbours", "formal charge", "is in ring", "is aromatic",
"polar surface area", "partial charge", "chirality tag". The chemical bond description contains: "bond type",
"is in ring", "is aromatic", "is conjugated".

As for the preliminary work, we optimised three sets of hyper-parameters (architecture, learning and
regularisation hyper-parameters) by recording the performance on multiple train/validation/test data splits
to explore hyper-parameter spaces manually, since a grid-search or random-search would have required too
much calculation time. In the following, we detail the optimised hyper-parameters and the range of values
we considered are given in parentheses.

The architecture hyper-parameters are the number of filters both for the graph and sequence encoders
([10, 1000]), the number of layers for both the protein and molecule encoders ([[2, 5]]), the convolutional
filter size for the sequence encoder ([6, 12]), the convolutional stride for the sequence encoder ([2, 6]), and
the number of neurons in the last hidden fully connected layer which processes the pairwise-level encoding
([10, 1000]).

The learning hyper-parameters are the batch size (([1, 100])), initial learning rate ([10−5, 10−2]) and
learning rate decay factor ([0.8, 0.99]).

The regularisation hyper-parameters are the probability of dropout ([0., 0.9]) and the weight decay
([10−4, 0.1]). We set the number of epochs to 100, and we also considered early stopping such that training
stops if the performance (AUPR score) on the validation set does not increase in ten successive epochs. In
practice, training was always stopped early.

After exploring the hyper-parameter spaces, we set, for both datasets, the number of filters to 100, the
number of convolutional layer to 3, the stride to 3, the filter size to 8, the weight decay and dropout to 0,
batch size to 20, initial learning rate to 10−3, learning rate decay factor to 0.9 and number of neurons in the
last prediction layer to 100. Again, we also found that training was not sensitive to relatively small variations
of hyper-parameters. In particular, adding a small quantity of dropout (until 0.5) leads progressively to a
longer training and a loss of training performance, whereas it did not significantly improve the performance
on the validation and test data.
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Furthermore, we repeated training and testing procedures of GNN three times for DBEC and two times
for DBH (because the training was computationally too expensive), and kept only the best achieved perfor-
mance. Indeed, we noticed that the performance of the chemogenomic neuron network varied significantly
depending on the initial random seed.

Reference state-of-the-art methods

Based on the conclusions of the review of the literature in chapters 3 and 7, we compared the chemogenomic
neuron network to three state-of-the-art approaches considered as baselines: feed-forward neuron networks
-FNN- (see appendix A.8.2), SVM (see appendix A.5) and the NRLMF approach (see section 3.2.2). We
used the Keras library to implement the neuron network models.

The FNN approach requires numerical feature vectors as input. We extracted 1021-dimensional structural
Morgan fingerprint vectors (analogue of ECFP4) with the RDKit library for each molecule. We extracted
1920-dimensional feature vectors (sequence composition, topological and physical properties) for each protein
sequence via the protR library (see section 2.1).

We manually optimised the hyper-parameters of FNN (number of layers, number of neurons in each
layer, learning and regularisation hyper-parameters) on a fixed train/validation/test data split. Notably, we
did spend little time in fine-tuning these hyper-parameters, compare to those of the chemogenomic neuron
network.

Finally, we set the number of neurons to 2000, 1000 and 100 for the successive three stacked fully
connected layers, weight decay and dropout probability to 0 (no regularisation), the initial learning rate to
10−3, the batch size to 100, the learning rate decay to 0.9, the number of epochs to 100 and early stopping
patience to 20. The early stopping patience is the number of successive epochs, for which the performance
on the validation data decreased, required to stop training.

The SVM and NRLMF approaches take as input molecule and protein kernel matrices. We used the
local alignment kernel, presented in section 2.2, to build the protein kernels (centred and normalised). We
used the RDKit Python library to extract Morgan fingerprints (analogue of ECFP4 structural fingerprints,
see Section 2.1) and consider the Tanimoto metric to build the kernel matrix on molecules based on these
fingerprints. The (protein, molecule) pairwise kernel is defined as the Kronecker product of the protein
and molecule kernels as motivated in chapter 4. The regularisation hyper-parameter of SVM was auto-
matically optimised when assessing the performance via 5-fold nested cross-validation. We set the five
hyper-parameters of NRLMF to their default value, as stated in the original paper [136].

Methods: evaluation procedure

We evaluated the performance by 5-fold nested cross-validation. Although we recorded the ROCAUC, F1-
score, accuracy and AUPR scores for each test fold, we predominantly refer to the AUPR. The AUPR is
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considered as a more significant quality measure than the ROCAUC when negative interactions are in fact
unknown interactions (which is the case in DTI prediction), and when there are more negative samples than
positive ones in the test set (which is also the case in DTI prediction).

Indeed, it emphasises on the recovery of the positive samples and penalises the presence of false positive
examples among the best-ranked samples. Therefore, we used AUPR as the evaluation metric for the hyper-
parameters optimisation and in the early stopping procedure used in deep learning approaches.

We also evaluated each method in various settings. First, we considered the S1, S2, S3, and S4 settings
that correspond to random, orphan ligand, orphan protein and double orphan prediction scenarios, as in
section 4 (motivations are detailed in section 1.2 and 4, as well as in Pahikkala et al. paper [168]). Note
that the folds of S4 were built by intersecting those of S2 and S3, so that there are 25 folds in the S4 setting
instead of 5. Independently, we considered scenarios in which the "positive:negative" sample ratio in the test
set is 1:1, 1:2 or 1:5. These scenarios evaluate whether methods remain robust when predicting interactions
at the proteome level (i.e. when there are much more non-interacting pairs than interacting ones).

8.2.3 Results and discussion: comparison of the chemogenomic neuron network
to baselines

We first compared the performance of standard chemogenomic neuron network (CN) to those of the consid-
ered baselines. Performances are reported in tables 8.4, 8.5, 8.6 and 8.7. The performances are displayed in
the format "mean score±score standard deviation".

Also, figures 8.1 and 8.2 displays the ROCAUC and AUPR performance obtained on the DBEC and
DBH datasets for a "positive:negative" test samples ratio set to 1 : 5.
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(a) ROCAUC scores (b) AUPR scores

Figure 8.1. ROCAUC and AUPR performance on DBEC for the four settings with a test and train sample positive:negative
ratio set to 1:5

(a) ROCAUC scores (b) AUPR scores

Figure 8.2. ROCAUC and AUPR performance on DBH for the four settings with a test and train sample positive:negative
ratio set to 1:5



CHAPTER 8. END-TO-END FEATURE EXTRACTION FOR CHEMOGENOMICS 163

ra
w

(S
1)

or
ph

an
pr
ot
ei
ns

(S
2)

or
ph

an
m
ol
ec
ul
es

(S
3)

do
ub

le
or
ph

an
(S

4)
1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

SV
M

75
.1

4
±

1.
7

74
.9

5
±

2.
04

74
.9

9
±

1.
76

54
.9

7
±

4.
33

56
.5
±

4.
29

56
.6

7
±

4.
44

74
.0

3
±

3.
8

73
.8

9
±

3.
78

74
.1

4
±

3.
72

53
.8

4
±

8.
86

54
.4

6
±

8.
43

53
.0

6
±

9.
63

N
R
LM

F
78
.8
±

3.
68

78
.8

8
±

2.
73

78
.4

1
±

2.
69

65
.0

5
±

7.
1

64
.9

6
±

6.
32

65
.4
±

4.
9

77
.1

9
±

1.
65

77
.2

1
±

2.
06

77
.3

8
±

1.
81

65
.2
±

7.
26

64
.5

9
±

6.
26

63
.6

1
±

6.
51

FN
N

75
.9

2
±

1.
17

74
.6

3
±

1.
04

74
.8

8
±

1.
52

58
.2

5
±

5.
34

55
.1

2
±

4.
67

54
.8

9
±

4.
98

74
.6

7
±

2.
38

75
.5

2
±

2.
4

73
.9

6
±

3.
15

56
.0

3
±

9.
22

55
.9

1
±

8.
07

54
.6

8
±

8.
12

ch
em

og
en

om
ic

ne
ur
on

ne
tw

or
k

77
.1
±

1.
83

76
.5
±

0.
89

76
.7

4
±

0.
85

61
.9
±

4.
41

59
.6

4
±

8.
55

64
.2

5
±

4.
0

73
.4

9
±

3.
99

74
.0

4
±

4.
91

74
.9

1
±

3.
98

59
.2

3
±

9.
5

58
.4
±

8.
74

58
.6

2
±

9.
1

T
ab

le
8.

4.
R
O
C
A
U
C

sc
or
es

on
th
e
D
B
E
C

da
ta
se
t
in

th
e
fo
ur

se
tt
in
gs

an
d
fo
r
a
te
st

sa
m
pl
e
po

si
tiv

e:
ne

ga
tiv

e
ra
tio

s
in

{1
:1
,1

:2
,1

:5
}

ra
w

(S
1)

or
ph

an
pr
ot
ei
ns

(S
2)

or
ph

an
m
ol
ec
ul
es

(S
3)

do
ub

le
or
ph

an
(S

4)
1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

SV
M

81
.7

5
±

1.
75

73
.2

5
±

2.
4

61
.5

5
±

3.
11

59
.6

2
±

5.
55

45
.8

9
±

6.
73

28
.9

5
±

7.
66

80
.7

9
±

2.
37

72
.0

2
±

3.
06

60
.9

6
±

3.
73

58
.5

2
±

9.
21

43
.3

7
±

9.
15

24
.4
±

8.
8

N
R
LM

F
82
.5

6
±

2.
82

73
.8

9
±

2.
98

59
.8

9
±

4.
35

67
.5

6
±

7.
04

53
.1

8
±

8.
12

35
.6

2
±

8.
07

81
.4

9
±

1.
48

72
.3

5
±

2.
2

60
.0

6
±

2.
73

67
.9

3
±

8.
63

52
.9

7
±

8.
7

34
.5
±

9.
75

FN
N

79
.8

2
±

0.
98

68
.0

7
±

2.
35

51
.5

5
±

2.
55

61
.9

2
±

5.
11

42
.2

4
±

5.
27

24
.2

6
±

3.
91

78
.5

7
±

2.
22

68
.1

4
±

3.
43

49
.3

4
±

3.
11

60
.0

4
±

8.
83

43
.5

5
±

9.
84

22
.9

7
±

6.
59

ch
em

og
en

om
ic

ne
ur
on

ne
tw

or
k

79
.0

4
±

2.
24

66
.5
±

2.
51

49
.0

8
±

4.
31

60
.7

9
±

6.
24

45
.1

1
±

8.
65

28
.3

8
±

5.
81

76
.2

3
±

2.
23

64
.6

1
±

4.
78

46
.1

4
±

4.
92

61
.9

7
±

8.
72

45
.8

1
±

8.
5

27
.0
±

6.
96

T
ab

le
8.

5.
A
U
P
R

sc
or
es

on
th
e
D
B
E
C

da
ta
se
t
in

th
e
fo
ur

se
tt
in
gs

an
d
fo
r
a
te
st

sa
m
pl
e
po

si
tiv

e:
ne
ga
tiv

e
ra
tio

s
in

{1
:1
,1

:2
,1

:5
}

ra
w

(S
1)

or
ph

an
pr
ot
ei
ns

(S
2)

or
ph

an
m
ol
ec
ul
es

(S
3)

do
ub

le
or
ph

an
(S

4)
1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

SV
M

74
.6
±

0.
57

74
.6
±

0.
55

74
.6

2
±

0.
54

50
.2

6
±

3.
05

49
.8

8
±

3.
06

49
.8

8
±

2.
95

75
.1

6
±

1.
51

75
.2

8
±

1.
76

75
.1

4
±

1.
69

49
.7

9
±

1.
61

50
.2

5
±

1.
84

50
.5
±

1.
68

N
R
LM

F
82
.9

8
±

0.
55

83
.0

6
±

0.
65

83
.1

2
±

0.
63

65
.1

8
±

1.
36

65
.1

8
±

1.
28

65
.2

3
±

1.
2

59
.4

9
±

0.
96

59
.5

6
±

0.
81

59
.6
±

0.
93

50
.3

7
±

1.
48

50
.2

9
±

1.
55

50
.4

7
±

1.
35

FN
N

90
.3

9
±

0.
42

90
.6

5
±

0.
46

90
.4

5
±

0.
52

74
.7

4
±

0.
4

74
.0

8
±

2.
29

74
.2

5
±

1.
96

83
.0

6
±

1.
48

83
.5

2
±

1.
52

82
.9
±

1.
8

69
.1

2
±

2.
3

69
.1

7
±

1.
99

68
.7

9
±

1.
69

ch
em

og
en

om
ic

ne
ur
on

ne
tw

or
k

88
.6

7
±

1.
59

88
.2

1
±

1.
47

88
.2

1
±

2.
23

81
.5
±

1.
47

80
.8

3
±

2.
7

80
.2

8
±

1.
4

85
.7

6
±

1.
5

85
.4
±

2.
02

85
.7

6
±

2.
23

73
.3

4
±

5.
89

71
.2

1
±

5.
53

73
.6

8
±

4.
87

T
ab

le
8.

6.
R
O
C
A
U
C

sc
or
es

on
th
e
D
B
H

da
ta
se
t
in

th
e
fo
ur

se
tt
in
gs

an
d
fo
r
a
te
st

sa
m
pl
e
po

si
tiv

e:
ne

ga
tiv

e
ra
tio

s
in

{1
:1
,1

:2
,1

:5
}

ra
w

(S
1)

or
ph

an
pr
ot
ei
ns

(S
2)

or
ph

an
m
ol
ec
ul
es

(S
3)

do
ub

le
or
ph

an
(S

4)
1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

1:
1

1:
2

1:
5

SV
M

78
.3

4
±

0.
44

66
.8

5
±

0.
68

48
.9

9
±

0.
5

50
.3

5
±

2.
64

33
.4

6
±

2.
33

16
.8

2
±

1.
54

78
.2
±

1.
77

66
.8

6
±

2.
12

48
.6

6
±

2.
74

49
.8

4
±

1.
7

33
.2

6
±

1.
64

16
.8

1
±

1.
02

N
R
LM

F
86
.1

4
±

0.
45

78
.7

3
±

0.
75

66
.9

3
±

1.
06

68
.1

9
±

1.
55

53
.6

8
±

1.
72

34
.7

5
±

1.
65

61
.8

8
±

0.
99

45
.9

3
±

0.
72

26
.4

2
±

0.
52

50
.4

5
±

1.
31

33
.7

1
±

1.
25

16
.9

9
±

0.
8

FN
N

91
.4

5
±

0.
45

86
.5
±

0.
44

75
.9

1
±

0.
49

78
.1

6
±

0.
44

66
.0

2
±

1.
86

49
.1

3
±

2.
58

85
.6

9
±

1.
05

78
.1

5
±

1.
18

64
.0

6
±

1.
6

71
.4

6
±

2.
02

57
.9

3
±

2.
7

38
.6

1
±

2.
29

ch
em

og
en

om
ic

ne
ur
on

ne
tw

or
k

88
.7

4
±

1.
68

80
.2

9
±

2.
65

65
.4

6
±

4.
53

81
.8

2
±

1.
9

70
.3

9
±

3.
66

47
.6

8
±

4.
38

86
.0
±

1.
85

77
.0

2
±

3.
41

62
.2

2
±

4.
66

72
.2

6
±

6.
42

55
.9

8
±

7.
67

38
.4

8
±

7.
5

T
ab

le
8.

7.
A
U
P
R

sc
or
es

on
th
e
D
B
H

da
ta
se
t
in

th
e
fo
ur

se
tt
in
gs

an
d
fo
r
a
te
st

sa
m
pl
e
po

si
tiv

e:
ne

ga
tiv

e
ra
tio

s
in

{1
:1
,1

:2
,1

:5
}



CHAPTER 8. END-TO-END FEATURE EXTRACTION FOR CHEMOGENOMICS 164

To summarise the results, we can first notice that the "best" method depends on the dataset and the
setting. On DBEC, the four methods are competitive, but the NRLMF method performs slightly better in
all cases, and even significantly better in the S2 and S4 settings. Overall, since DBEC is a relatively small
dataset, it favours to the NRLMF and SVM-based approaches (not involving deep learning), which perform
the best in the various settings.

On the larger dataset DBH, deep learning-based approaches significantly outperform NRLMF and SVM.
FNN performs the best in the S1 setting, whereas CN seems slightly better for the S2, S3 and S4 settings.
Moreover, the SVM-based approach is not robust on the S2 and S4 settings for both datasets. Most of all,
on the DBH dataset, the SVM-based approach fails to leverage the information in the training data, as its
performance is that of a random classifier.

Overall, CN and FNN appear as the best default choice, since they seem the most robust to a panel of
settings. In particular, CN outperforms other methods on the S2, S3 and S4 settings for the DBH dataset.

Regarding the datasets, we observed that the performance reached on the DBH are 10 points higher
than those reached on DBEC, which was expected since there are much more data (more information) to
train the models in DBH than in DBEC.

Furthermore, all methods appear equivalently robust to an imbalanced test set. Indeed, when changing
the "positive:negative" ratio in the test set from 1 to 5, all methods lost about twenty points of AUPR on
S1, and up to 30 points on S2, S3, and S4.

The performance reached for a ratio of 1:5 humbles, while it is the most realistic scenario when evaluating
the interactions at the proteome level. However, we expect that a relatively large number of drug-like
molecules interact with more than one protein [24], whereas most of the molecules in the database have one
or two known targets. This means that a significant amount of false predicted positives are expected to
correspond to real interactions.

Regarding the settings, the best scores are obtained for S1, the worst for S4, and the scores obtained in
the S2 and S3 datasets are intermediate between those observed on S1 and S4. This was to be expected
since no pairs of the training set contain the protein or the ligand of the tested pair to guide the predictions
in S4, whereas the models can rely on training pairs containing either the same proteins in S2 or the same
ligands in S3.

The loss of performance between the raw (S1) and the double orphan (S4) settings is about 10 points of
ROCAUC and 20 points of AUPR. More importantly, the prediction on S4 varies more depending on the
test folds than in the other settings. This can be understood as a consequence of the small size of the test
set in the S4 setting (any test fold is 1/25th of the total amount of data whereas they represent 1/5th in the
other settings), resulting into test sets of various difficulties.

Interestingly, the performance reached by all models is better for S3 than for S2, which suggests that
predicting ligand for new protein targets is more laborious than predicting targets for new compounds.
Therefore, there is relatively more loss of information for orphan proteins than for orphan molecules. We
think it is due to the sampling bias discussed in section 1.3.
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To conclude this first phase of the current study, note that we also considered several "positive:negative"
samples ratios in the train set, as all approaches may benefit from more negative training data. Recall that
such "negative" training data are unknown interactions, so that we must not use of all of them to train the
models. Moreover, it would be hardly computationally tractable.

Before discussing our results, note that we did not weight the sample loss to correct for the imbalance
proportions of labels in the training set in the case of deep learning-based approaches. Indeed, we found
that it damaged their final performance on the test set.

The SVM and NRLMF methods did not benefit from an increasing number of negative samples in the
train set, whereas deep learning-based methods, as expected, did strongly benefit from an increasing number
of training samples. More precisely, increasing the number of negative samples in the training set, up to
five times the number of positive sample, increased the performance of CN and FNN by about ten points of
AUPR (only two points of ROCAUC) for the DBH dataset, and by twenty points of AUPR (ten points of
ROCAUC) for the smaller DBEC dataset. We also observed that CN benefits slightly less than FNN from
an increasing number of negative in the training set. Overall, we tested four "positive:negative" train sample
ratios (1:1, 1:2, 1:5 and 1:10). The performance of CN and FNN did increase between a ratio of 1:5 and 1:10
in some cases, meaning the neuron network-based models may still benefit more from more training negative
samples.

In the following, we tested several changes in the "standard" chemogenomic neuron network discussed in
the two preliminary works described earlier in this chapter.

For each of the modifications, we explored the associated hyper-parameter spaces to find the best reach-
able solution. To this end, we measured 5 times the performance on a single train/validation/test split for
the S1, S2, S3 and S4 settings, since an evaluation of all of these modification by nested cross-validation was
neither computationally feasible for us, nor relevant. The mean and standard deviation of the performance
we obtained are reported in Table 8.8, and are discussed below. The performances are displayed in the
format "mean score±score standard deviation".

8.2.4 Evaluation of graph convolutional network architectures

In this section, we investigate promising modifications to the standard GNN formulation for chemogenomic
virtual screening. We only considered the modifications that appeared the most relevant, both in terms of
intuition and performance improvements, as discussed in section 6.2.

Among proposed AGGREGATE(l)
node functions, the GAT function proposed by Velickovic et al. [295] (see

section 6.2) seemed the most promising to us. Indeed, it resulted in significant performance improvement,
and is intuitively relevant since it is intended to prioritise relevant neighbours via a multi-head attention
mechanism at each node update.

We also assayed the "wbond" function that takes into account the bond attributes for the aggregation,
in order to test whether bond attributes can bring representation power and flexibility. Here, the "wbond"
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AGGREGATE
(l)
node function refers to (as in Coley et al. [298]):

h(l+1)
i = σ(W(l)

0 · h
(l)
i +

∑
j∈N (i)

W(l)
1 · [h

(l)
j ,xij ])

where h(l+1)
i is the representation of atom i at step l+1, [h(l)

j ,xij ] is the concatenation of the representation
h(l)
j of atom i at step l and the bond attribute vector xij between atoms i and j, and W(l)

0 ,W(l)
1 are learnable

parameters.
For both of them, we varied the number of convolutional filters (in {10,20,50,100,1000}) and the keeping

probability of dropout (in {0,0.3,0.6}). We also tested several numbers of attention heads (in {1,5,10})
for the GAT function. Besides, we used the original implementation provided by the authors of the GAT
method.

None of these two modifications lead to significant performance improvement for the four settings, as
reported in Table 8.8.

Although the GAT function led to substantial improvements in gold standard datasets of graph repre-
sentation learning (see section 6.2), it does not in chemogenomics. This may be due to the the fact that
molecular graphs are small, and that all atoms of molecules are informative when learning an end-to-end
molecule encoding. In the case of the "wbond" function, the standard GNN may already leverage bond
information based on the nodes attributes and degrees (i.e., based on the topology of the graph).

Independently, we tested several options to replace the summation, in the minimal GNN, that builds the
graph-level representation from node representations. From the simplest to the most sophisticated, we tested
the max function [350, 323], jumping connections [323] and hierarchical differential pooling [320, 321, 301],
all discussed in Section 6.2.

When used as the AGGREGATE(l)
graph function, the sum function captures the distribution of node

features in a single value. Alternatively, the max function is expected to capture representative elements in
the node features’ distributions, with no additional parameters to learn. This is relevant for molecular bio-
activity prediction, as bio-activity may rely on representative elements such as pharmacophores or functional
groups. The chemogenomic neuron network, whose GNN’s AGGREGATE(l)

graph function is set to the max
function, is mentioned as "CN-MaxAgg" in Table 8.8. Note that even if the sum function can theoretically
capture representative elements, in particular when the dimension of the feature vector is high, the max
function enforces capturing representative elements, which may improve the performance.

Regarding the COMBINEgraph function, we tested to concatenate graph-level representations after
each update step m(l) in order to build the final graph-level representation m. We expect that it could help
learning by skipping deleterious layers and by representing molecules via substructures of different sizes.
The chemogenomic neuron network, whose GNN’s COMBINEgraph function is set to the concatenation
function, is mentioned as "CN-ConcatCombine" in Table 8.8. Note that the sum function can, theoretically,
adopt the same behaviour if the dimension of the feature vector is high enough, and if the network learns to
store information in different locations in the feature vector at each update step.

The hierarchical pooling procedure introduces in section 6.2, which takes the role of both theAGGREGATE(l)
graph

and COMBINEgraph functions, seems particularly relevant as it is the analogue of the pooling operator
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in image processing. Indeed, it reduces the spatial information step by step by differentially coarsening the
input graph after each node update step, until the graph is reduced to a single node. The chemogenomic
neuron network whose GNN is based on hierarchical pooling is mentioned as "CN-pool" in Table 8.8. Again,
note that a naive sum over node feature vectors can mimic the same behaviour, but the hierarchical pooling
procedure is expected to enforce learning the graph-level representation in a hierarchical fashion and, hence,
to improve encoding.

For all of these modifications of the molecular graph encoder, we varied the quantity of dropout ({0,0.3,0.6}).
In the case of hierarchical pooling, that we implemented based on Ying et al. [320], we also varied the di-
mension of the nodes embedding (i.e. the number of convolutional filters) and the quantity of dropout when
building the soft assignment matrices.

None of these modifications led to substantial performance improvements for the four settings on the
DBEC dataset.

Intuitively, this means that, in the case of small chemical compounds, the sum function has the same repre-
sentation power than the max for theAGGREGATE(l)

graph function and concatenation for the COMBINEgraph

function. Therefore, in the case of small molecular graphs, the sum function can capture representative ele-
ments in the graph (as well as the max function) and can learn to store information of subgraphs of different
sizes (as well as the concatenation function), if these strategies are relevant for DTI prediction. Regarding the
hierarchical pooling, it seems that standard GNN can also leverage information of substructures of different
sizes in a hierarchical manner. Indeed, the iteration of the nodes update is already providing neighbouring
information to each node in a hierarchical manner.

8.2.5 Evaluation of protein sequence network architectures

Up to now, we only explored the modification of the neuron network architecture encoding molecular graphs.
However, the performance bottleneck could be related to the protein sequence encoder rather than the
molecular graph encoder.

Therefore, we examined a protein sequence encoder that consists of a biLSTM layer on top of a convolution
layer, instead of stacked convolution layers. Indeed, the bi-LSTM can locally integrate the detected patterns
by the convolutional layer to provide local contextual information, both forward and backwards, whereas
stacked convolutional layers process protein sequences by detecting local patterns, patterns of patterns and
so on.

We varied the dimension of the amino acid learnt representation ({10, 50, 100, 500}) and the amount of
dropout ({0., 0.1, 0.3, 0.6}) to search for the best performance.

Finally, the best reached performance was identical to those obtained while using stacked convolutional
layers (cf. table 8.8 at the row named "CN-biLSTM"). At this stage, we conclude that encoder architecture

refinements does not appear as a promising direction to enhance DTI prediction with the chemogenomic
framework.
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8.2.6 Evaluation of the neuron architecture combining end-to-end extracted
representations of molecules and proteins

We now propose to investigate the use of an attention mechanism to combine molecular graph and protein
sequence representations, as in [348, 349], compared to a standard concatenation.

We first implemented the attention mechanism proposed by Tsubaki et al [349] which resulted in a
significant decrease of performance for the four settings. This might be due to the fact that this attention
mechanism is highly non-convex, since it relies on the dot product of the two learnt representations, resulting
in a rugged optimisation landscape.

Therefore, we turned to a self-attention mechanism that compute the pairwise representation hpair based
on the concatenation [hprot,hmol] of the protein hprot and molecule hmol learnt representations, following:

hpair = σ(Watt · [hprot,hmol] + batt)� [hprot,hmol]

. As reported in Table 8.8 (at the row named "CN-pairwiseAtt"), this did not result in performance im-
provement, meaning that such soft attention mechanism does no provide better representation power. It is
most likely that the self-attention mask "σ(Watt · [hprot,hmol] + batt)" produces a uniform attention weight
distribution in most cases.

Up to now, we only explored modifications of the neuron network architecture to encode (protein,molecule)
pairs from their raw representation. We conclude that searching for more sophisticated architectures is not
the right direction to enhance drug virtual screening with the chemogenomic neuron network, at least as
observed on our DrugBank-based benchmark dataset.

In other words, since the performance does not seem limited by the representation power of the chemoge-
nomic neuron network architecture, the bottleneck seems to be related to data featurisation, diversity and
quantity.

In particular, a feed forward neuron network on top of data-blinded features is highly competitive.
Therefore, we evaluate the simultaneous use of data-blinded and data-driven features in the next section.

8.2.7 Evaluation of the combination of data-blinded and data-driven features

Since FNN outperforms the chemogenomic neuron network in some settings, we tested a model architecture
that can differentially leverage two forms of inputs using appropriate neuron network components: (i) the
expert-based features and (ii) the raw data (molecular graph and protein sequence). Intuitively, such a
network should benefit from the best of both forms of representation, and assess the degree with which each
representation is efficient for each individual interactions. Therefore, it is expected to perform better than
the two type of representations (i.e. data-blinded and data-driven) taken separately.

Similarly to Paul et al. work [354], we consider an MLP to learn an abstract representation from expert-
based features.
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In the following discussion, we considered the same data-blinded features that we used as input of the
FNN-based model.

Furthermore, there are several possibilities of neuron network architectures to integrate multiple views
of protein and molecule, in particular, data-blinded and data-driven features, into a final pairwise represen-
tation. We considered the two architectures displayed in Fig 8.3.

The architecture in Figure 8.3a combines in one step the four data representations extracted from: (i) the
molecular graph, (ii) the data-blinded molecule features, (iii) the protein sequence and (iv) the data-blinded
protein features. Regarding the multi-layer perceptron which processes molecule and protein data-blinded
features (MLPfea in fig. 8.3a) and the one processing the concatenation of the four representations (MLPpair

in fig. 8.3a), we explored the hyper-parameter spaces by varying the number of layers (from 1 to 3), the
number of hidden units (in {10,100,200,1000,2000}) while promoting pyramidal architectures [333] and the
quantity of dropout (in {0,0.3,0.6,0.9}).

To rule out the possibility of an implementation error, we performed two sanity checks. First, we checked
that we recover the performance obtained by an MLP with data-blinded features when we set to one the
dimension of the data-driven features (i.e. we silent the protein sequence and molecular graph encoders while
keeping the same implementation). Similarly, we also checked that we recover the performance obtained with
data-driven features while silencing MLPfea and MLPpair in the same manner.

The performance reached by such a model is significantly lower than that obtained individually by the
chemogenomic neuron network and an FNN with data-blinded features. A possible explanation is that
simultaneous training of the MLPfea and MLPpair networks with molecular graph and protein sequence
encoders is an ill-conditioned non-convex optimisation problem.

To address this issue, we first separately pre-trained the pairs of neuron modules encoding data-blinded
and data-driven features before re-training them together on the same training data. With this procedure,
we could only retrieve the performance reached when considering the data-driven representation alone, even
when increasing the width and depth of MLPpair. Therefore, such architecture fails to positively leverage
the information contained in data-driven and data-blinded features.
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(a) Direct combination of the molecule and protein data-
blinded and data-driven features into a pairwise represen-
tation.

(b) Hierarchical combination of the pairwise data-driven
and data-blinded representations.

Figure 8.3. Two types of chemogenomic neuron networks combining data-driven and data-blinded features.

To further explore joint optimisation of neuron modules for data-driven and data-blinded feature extrac-
tion, we considered the architecture in figure 8.3b. It combines the pairwise data-driven and data-blinded
representations such that data-driven and data-blinded representations are combined only through a single
relatively small layer. Typically, MLPpair−pair (cf. Figure 8.3b) is composed of a single hidden layer of 50
hidden neurons. In the following, we call this model the CN -feaMLP approach.

We varied the neuron architecture and dropout probability of MLPfea−pair similarly as for MLPfea,
and the ones of MLPraw−pair and MLPpair−pair similarly as for MLPpair, in the architecture displayed in
Fig. 8.3a.

The performance of such a network are reported in Table 8.8 at the row named CN -feaMLP . Re-
markably, this approach significantly outperformed the standard chemogenomic neuron network for the S1

setting, while performing similarly on the others. More precisely, the best-reported performance on the S1

setting is the one reached by an FNN using only data-blinded features as input, so that we can expect that
the architecture in fig. 8.3b benefits from the best of data-driven and data-blinded features.

To further challenge this approach, we assessed the performance on the four settings via a 5-fold nested
cross-validation with a test and train "positive:negative" ratio of 1:5. The performance on DBEC and DBH
are reported in figure 8.4 next those reached by the baselines.

In the case of theDBEC dataset, the CN -feaMLP model outperforms both the standard chemogenomic
neuron network and the FNN-based model on S1 and S2, and performs similarly, yet slightly better, for the
S3 and S4. However, the performance is still significantly lower than that of NRLMF, on this small dataset.
Therefore, we conclude that the NRLMF approach should be used on relative small datasets.
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On the DBH dataset, the CN -feaMLP model outperforms the standard chemogenomic neuron network
model for the S1, but it does not overtake the FNN approach. For S2, S3 and S4, the CN -feaMLP approach
reaches slightly better performance than both the standard chemogenomic neuron network and the FNN-
based model.

Therefore, for relatively large datasets like DBH (that are widely available our-days), we advocate for
the use of the CN -feaMLP model. Moreover, we believe that more efforts should be done in the future in
integrating multiple description views of molecules and proteins in the same model.

(a) DBEC dataset (b) DBH dataset

Figure 8.4. AUPR scores obtained via 5-fold nested cross-validation for the four settings. The performance of CNN -feaMLP

must be compared to the others (the baselines).

In the next subsection, we explore another relevant "data-oriented" direction to enhance the performance
of the chemogenomic neuron network: transfer learning for implicit data augmentation.

8.2.8 Evaluation of curriculum learning for chemogenomics

We now investigate the efficiency of transfer learning in the context of chemogenomics.
First, recall that the chemogenomics formulation of proteome-wide DTI prediction is a form of multitask

learning since, in this framework, we predict interactions for a wide variety of molecules and proteins.
Moreover, pre-training or co-training molecular and protein encoders on separated larger prediction tasks

(even unsupervised ones) may enhance DTI prediction performances by leveraging the information in more
massive datasets.

Co-training refers to parameter hard-sharing, soft-sharing or partial-sharing (see appendix A.8.3) in which
we train several prediction tasks simultaneously, while task-specific neuron encoders share information in
order to enable them to learn a richer set of features. As we saw in our preliminary work, such multitask
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co-training procedures may be hard to tune and relevant only for closely related tasks.

Pre-training refers to the so-called "curriculum learning" procedure in which the model is first trained on
a large dataset (called the source dataset) to learn a rich set of data-driven features, which is useful to make
predictions in large training data.

Next, this pre-trained model is fine-tuned by re-training the weights on the smaller dataset of interest
(named the target dataset). In such a procedure, the model fits the input data distribution of the large
source dataset and fine-tunes its weights in a second phase to adapt to the dataset of interest, rather than
learning all the weights from scratch on this target dataset.

Alternatively, it is also possible to "freeze" (i.e. do not retrain) the pre-trained molecule and protein
encoders, and train only the last layers that take as input the extracted representations from the pre-
trained encoders. In the case where the source and target datasets are related "enough", this could improve
predictions on the target dataset.

For instance, Paul et al [355] performed such transfer learning in chemoinformatics in the case of organic
solar cell screening.

Before discussing our results, we start with general observations about implementation of curriculum
learning with the chemogenomic neuron network.

First, we performed a sanity check to challenge our implementation of curriculum learning. More precisely,
we checked that a pre-trained model reaches immediately best reachable performance when re-using the pre-
trained network on the same train and test data, with or without freezing all the layers.

Second, we found that curriculum learning made often the training much shorter, in terms of the number
of training epochs in the second phase. Indeed, pre-trained encoders are expected to be closer to the optimal
solution than encoders whose weights are randomly initialised.

Third, we considered to pre-train and load per block three sub-networks of the chemogenomic neuron
network: (i) the protein sequence encoder, (ii) the molecular graph encoder, and (iii) the prediction sub-
network, i.e. the stacked fully connected layers outputting the interaction prediction from the learnt pairwise
data-driven representation. Furthermore, we varied the number of layers and neurons in the prediction
sub-network in order to search for the best architecture when freezing one or the two encoders. Indeed, an
MLP may need a relatively large width and depth to differentially leverage the representations extracted by
pre-trained frozen encoders.

In a first attempt, we considered to pre-train the three parts of the chemogenomic neuron network (the
protein sequence encoder, the molecular graph encoder and the prediction sub-network) on the DBH dataset
in order to use it for prediction on the DBEC dataset. This led to a loss of performance on S1 (0.2 of AUPR
instead of 0.4).

Interestingly, we noticed that the bottleneck was the protein encoder pre-trained on DBH. Indeed,
pre-training on DBH and freezing the protein sequence encoder, while training the molecular graph encoder
and prediction sub-network from scratch, led to the loss of performance mentioned above. In contrary, when
pre-training and freezing the molecular graph encoder while training "from scratch" the protein sequence
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encoder and the prediction sub-network, we obtained similar or better performance than with direct training
of the chemogenomic neuron network, as shown in table 8.8 at the row named "curriculum learning". In
particular, the performance obtained on S1 and S3 were significantly better. This means that DTI prediction
with the chemogenomic neuron network may benefit from a molecular graph encoder pre-trained on larger
datasets.

The two prediction tasks (DBH and DBEC) are formally identical, but they differ because their data
have different characteristics. Indeed, DBEC contains E. Coli proteins and their ligands, whereas DBH
contains human proteins and their ligands. Therefore, the two datasets may present critical statistical
differences regarding protein sequences distribution. However, both datasets deal with small organic drug-
like molecules, so that a molecular graph encoder pre-trained on the DBH dataset is also suitable to predict
DTI on the DBEC dataset.

When we pre-trained the encoders without freezing them in the second phase, and use an initial learning
rate in the second phase one order of magnitude lower than the one used to train directly the chemogenomic
neuron network (i.e. initial learning rate set to 10−4 instead of 10−3), the performance was lower than the one
obtained when training the chemogenomic neuron network from scratch. In particular, the average AUPR
is 0.3 instead of 0.4 on S1. This means that encoders’ weights pre-trained on DBH, in particular those of
the protein encoder, are not suitable starting points for fine-tuning on DBEC.

To investigate these conclusions, we selected large and complex chemical and protein datasets to pre-train
the encoders.

The PubChem dataset is an excellent choice for pre-training a graph neuron network encoder for molecules
since it contains the information about hundreds of bioactivities for hundreds of thousands of molecules. To
our knowledge, there is no such evident choice for protein datasets. We considered the sub-cellular localisation
dataset [279], containing six thousand proteins labelled with one of the twelve sub-cellular localisation.

Thus, we considered pre-training only two parts of the chemogenomic neuron network, (i) the protein
sequence encoder and (ii) the molecular graph encoder, on the PCBA and CellLoc datasets respectively, in
order to use them for prediction on the DBEC dataset. When pre-training the molecular graph and protein
sequence encoders on the PCBA and CellLoc datasets respectively, and used them as frozen to fit a model on
the DBEC dataset, we recovered the performance reached by direct training of the chemogenomic neuron
network on DBEC. More precisely, we recovered a performance of 0.4 in AUPR only with a prediction
neuron sub-network with three hidden layers of 1000, 500 and 100 hidden neurons each. However, we
obtained 0.28 of AUPR with a prediction neuron sub-network made of a single hidden layer of 100 hidden
units. This means that the prediction sub-network needs to be complex enough to leverage the information
in the representations extracted by the pre-trained encoders. In other words, these pre-trained encoders are
informative with respect to the DBEC prediction task, but not as suited as encoders trained on the DBEC
prediction task itself.

To challenge curriculum learning for DTI prediction with the chemogenomic neuron network, we evaluated
the pre-training of the molecular graph encoder on DBH and PCBA via 5-fold nested cross-validation with a
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test and train "positive:negative" ratio of 1:5 on the four settings. The performance onDBEC are reported in
figure 8.5 next to those reached by the baselines. The final model obtained when pre-training the molecular
graph encoder on the PCBA (resp. DBH) dataset is called CN -currPCBA (resp. CN -currDBH) in
Fig.8.5

Pre-training the molecular graph encoder on PCBA yielded to similar performance than direct train-
ing on DBEC for the four settings. We thus confirmed the observations previously made on a single
train/validation/test split for the four settings.

Interestingly, pre-training the molecular graph encoder on DBH resulted in a better model than the one
trained from scratch on S1, S2 and S3 for the DBEC dataset. Although the proteins involved in DBH and
DBEC follow different statistics, these two prediction tasks are indeed strongly related.

Future studies could consider larger source datasets. For instance, we could consider an unsupervised
learning task as a source task such as a reconstruction task like in auto-encoders [322, 280] (predicting the
original input from the hidden representation), or an adversarial task [356] (distinguishing real data from
fake data, such as non-valid molecules or randomly generated protein sequences).

Figure 8.5. AUPR scores obtained via 5-fold nested cross-validation performance for the four settings on the DBEC dataset.
The performance of CNN -currPCBA and CNN -currDBH is to be compared to the others (the baselines).
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8.3 Conclusions

First, we emphasise that a singletask feed-forward neuron network taking as input standard molecular
fingerprints and protein sequence descriptors is a good default method for prediction of DTI on relatively
large datasets likeDBH. Indeed, a standard FNN reached state-of-the-art performances on theDBH dataset
although we did not fine-tune the FNN architecture or select the most relevant task-specific data-blinded
descriptors (proteochemometric descriptors [143]).

Based on our study and the review of the literature in chapter 7, we state that FNN should be considered
as a reference simple method that leads to state-of-the-art performance, and to which future chemoinformatic
studies should be compared.

When using such models to guide pharmaceutical research, more efforts should be involved in the design
and selection of suitable descriptors. Furthermore, in the case of FNN, recall that multitask learning was
reported to be only beneficial for two tasks when they share a large pool of input compounds with correlated
or anti-correlated bio-activities.

In the present work, we report that the chemogenomic neuron network is competitive with FNN models,
particularly in orphan settings like S2, S3 and S4, for which we found that the chemogenomic neuron network
reached the best performance.

We conclude from our observations that a promising future research direction is to integrate heteroge-
neous sources of data such as various bioactivity datasets, and independently, multiple molecule and protein
attribute views. Multiplying data sources is expected to enable the integration of chemical knowledge that
covers a larger sub-space of the chemical space, while improving the signal to noise ratio.

About data sources integration, we investigated in this work two promising direction. That is, the
combination of data-blinded and data-driven features in a single neuron network and curriculum learning
with larger source datasets. Integrating data-blinded and data-driven features in the same network yield
to substantial improvements so that we recommend, in the future, to involve more efforts in the design of
neuron network to integrate multiple views of molecules and proteins in the same model. In contrary, we
report that curriculum learning did not result in strong performance improvement on the relatively small
DBEC dataset, meaning that a promising direction to improve the chemogenomic neuron network is at first
to specifically vary data views rather than increasing the amount of auxiliary data.

Furthermore, we conclude that the latest algorithmic development about graph convolutional network
did not prove to enhance DTI prediction with the chemogenomic neuron network. Indeed, we observed
that both promising modifications of the molecular graph encoder and pairwise representation encoder do
not yield to significant superior performance. Our result, in addition to the literature review in chapter 7,
strongly suggest to qualify the current trend of graph neuron network, and more generally of end-to-end
representation learning, for chemoinformatics. Moreover, we encourage further studies to justify more the
design of their approaches, most of all compared to state-of-the-art baselines, i.e. NRLMF and FNN.



CHAPTER 8. END-TO-END FEATURE EXTRACTION FOR CHEMOGENOMICS 177

Nevertheless, GNN is a very dynamic field and new developments might lead to improvements in chemoge-
nomics.

In practical applications of DTI prediction, we suggest to consider an ensemble learning strategy (majority
voting or max voting, see section 3), combining the predictions of NRLMF, FNN and the chemogenomic
neuron networks, since they individually perform the best on different types of the problems.

The reachable performance depends greatly on the test "positive:negative" sample ratio. Nevertheless,
several strategies are conceivable to determine the probability threshold up to which we can consider pre-
diction interactions as highly probable (see section 5).

Besides, neuron network-based models were not efficient on the small dataset DBEC on which shallow
methods performed the best. In particular, NRLMF appeared to be the method of choice in this case.
Nevertheless, we think that most models should be evaluated on relatively large datasets, with thousands
of recorded interactions, since the publicly available databases now reach this size. In particular, evaluating
new methodologies on small datasets scrambled the examination of new methodologies, like in [349].

To conclude, the most promising research directions for improving DTI prediction in chemogenomics
is, from our point of view, the integration of heterogeneous data sources, since the latest most relevant
algorithmic development did not prove to enhance DTI prediction power. To this end, multi-kernel learning,
in particular, was reported to be efficient for DTI prediction [165, 167].
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Chapter 9

Short-term perspectives for chemogenomics

Abstract: The problem of predicting drug-target interactions has been addressed from multiple points of
view with relative success, when looking at the achieved performance. However, it is still a challenging
problem. Indeed, only a relatively small portion of the chemical space of molecules has been explored and
assayed so that the data statistics limit the predictive power of machine-learning algorithms. In this final
chapter, we introduce potential ways of improving drug virtual screening. We first discuss the use of 3D
dimensional data with data-driven representation learning approaches. Indeed, such 3D information, when
it is available, is expected to engender more plausible predictions. Second, we debate the integration of
heterogeneous data sources with deep neuron networks. Integrating different types of features within a hybrid
setting is expected to increase both the quality and the coverage of DTI predictions since different features
complement each other to produce a complete picture.

Résumé: Le problème de la prédiction d’interactions entre des médicaments et des cibles a été abordé à
partir de multiples points de vue avec un succès relatif. Cependant, c’est toujours un problème qui n’est pas
bien résolu. En effet, seule une partie relativement petite de l’espace chimique des molécules a été explorée
et testée, de tel façon que la statistique des données disponibles limitent le pouvoir prédictif des algorithmes
d’apprentissage statistique. Dans ce dernier chapitre, nous présentons des pistes pour l’amélioration du
criblage virtuel de molécule. Nous discutons d’abord de l’utilisation de données 3D avec des approches
d’apprentissage de représentation. En effet, ces informations 3D, partiellement disponibles, devraient résulter
en des prédictions plus plausibles. Deuxièmement, nous débattons de l’utilisation de données hétérogènes dans
le cadre d’apprentissage de la représentation. L’intégration de différents types de descriptions des données
devrait permettre d’améliorer à la fois la qualité et la couverture des predictions d’intéraction entre molécule
et protéine. En effet, différents types de descriptions peuvent se complèter pour produire un modèle plus
global.
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In this chapter, we will shortly present a few ideas that we suggest to explore for future researches
in drug-target interaction prediction, conceived from our experience during this thesis. These suggestions
mainly concern the use of new types of data together with representation learning in the context of deep
learning.

9.1 Representation learning for drug-target interaction prediction
with 3-dimensional data

In principle, one would expect methods that handle information in the 3D space to improve the prediction
performances, since binding of a ligand into the pocket of a protein is an event that occurs in the 3D
space. We will not consider here 3D information about the protein, because this is not available proteome-
wide, as already mentioned. However, considering 3D conformers of the ligand may be useful, since the
conformation of the bound ligand bears information about the complex that is not available from the protein
sequence or from the 2D graph of the ligand molecule. Nevertheless, as discussed in chapter 2, the "active"
conformation (i.e. the conformation of the bound ligand) is usually unknown, and attempts to use the most
stable conformer (which might not be the active conformer) did not perform better than methods based on
2D descriptors [96, 97].

Therefore, one could describe molecules based on an ensemble of conformers, with the underlying idea
that the active conformation could be close to one of the sampled conformers. Then, it may be relevant to
investigate the extension of graph convolutional networks to several 3D conformers of the same molecule..

However, considering molecular conformers comes with two essential problems: conformer evaluation (how
to choose a conformer, or a set of conformers relevant to the prediction at hand) and conformer combination
(managing the high correlation between different conformers). The former problem can be solved using
various molecular modelling programs, which contain tools that can generate as many conformers as needed,
by systematically sampling rotamers around all rotatable bond (for example via the program Omega from
the suite of OpenEye programs).

Then, using conformers for a DTI prediction task can be formalised as a multiple instance learning
problem. In this framework, each sample is a bag of instances. In our case, each molecule is a bag of
multiple possible conformers.

Each conformer can be describe by a same 2D undirected graphs, but whose atoms’ and bonds’ descriptors
encode 3D information (inter-atomic distance for instance).

A naive solution to build a bag-level (i.e. molecule-level) representation could be to concatenate or average
the learnt representation of individual conformers. However, it is clearly not an ideal solution as only one
instance (one conformation), or few instances, may contain the information for the prediction task.

A solution could be to add an attention mechanism after the encoding step to guide the network to learn
what graph-instance representation (what conformer) to focus on.

To handle the correlation information among different graph conformers, we could investigate passing
some information across different graphs during the learning process.
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Another idea could be to treat all graph conformers simultaneously, by taking each conformer as a channel
(analogously with image RGB channels) in a molecule tensor representation.

Several studies have been published on multiple-instance learning with neuron networks.
In Tibo et al. [357], authors define a "bag-layer" to aggregate the numerical descriptions of the multiple

instances of a bag. First, the bag-layer projects each instance representation zi into the same k-dimensional
space via hi = σ(W.zi + b), using a weight matrix W ∈ Rk∗m, a bias vector b ∈ Rk, and an activation
function σ (such as ReLU, tanh, or linear). Then, the bag-level representation g(z1, . . . , zn) results from the
aggregation of the instance representation following g(z1, . . . , zn) = aggregate(h1, . . . , hn), where aggregate
is an element-wise aggregation function (such as max or average).

From another perspective, Jiang et al. [358] proposed to learn a single representation from multiple
graphs, via an adversarial learning architecture. In this study, they used the same encoder to encode several
graph instances of the same sample. The concatenation of these encoded representations is then fed into
an MLP to solve a supervised learning task. The encoder is trained to simultaneously solve the supervised
learning task and to fool a discriminator network which aims at recovering the original graphs corresponding
to each encoded representation. The goal of this adversarial task is to force the encoder to generate a
consistent representation across different graphs of the same bag in a common subspace.

In the next subsection, we introduce another interesting direction to increase chemical information in
order to improve both the quality and the coverage of DTI predictions.

9.2 Integration of heterogeneous data sources

One of the most stimulating promising direction in chemogenomics is the integration of various types of infor-
mation, in particular large-scale omics data (e.g. transcriptomics, interactomics, epigenomics, metabolomics
or functional genomics), as input of the model. It is expected to increase both the quality and the coverage of
DTI predictions by integrating different types of features that complement each other to produce a complete
picture of the physical and biological phenomena that are related to drug-target interactions. For example,
differential mRNA expression after incubation in presence of a drug with respect to incubation with no drug
provide a list of differentially expressed genes that can be used as descriptors of the drug, in combination
with structural features and drug target profiles. This additional information can compensate for unknown
targets, or can help reveal, in the case of the considered cell line, which target drives the mechanism of
action, thus guiding feature selection algorithms.

Computationally speaking, the generation of attribute vectors with the standardisation of the information
is a critical issue since chemical data and all omics data have different structures.

Besides, feature selection methods, that aim at eliminating irrelevant and redundant features, are also of
crucial importance since omics data are extensive, and since the raw feature vectors produced by ensemble
methods are also usually quite large. Indeed, too many features increase the computational cost and may
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decrease the performance because of high dimensional issues, or correlation of features.

We survey multi-kernel learning for DTI prediction in appendix B. It is a powerful and efficient method
to combine multiple heterogeneous views (i.e. data sources) for chemogenomics. This method would be well
suited to the integration method proposed here.

To our knowledge, a study explored combinations of heterogeneous views in the representation learning
framework [359]. This study tackles the question of modelling brain connectivity patterns, and we have not
seen any attempts in the domain of DTI prediction.

The authors used a variational auto-encoder -VAE- (see appendix A.8.2) to learn a latent representation
from the original features, such that the similarities between instances based on each views guide the rep-
resentation learning. More precisely, they used an additional loss term based on the side-views to take into
account the similarity between samples, and guide the learning of the intermediate latent representations.

To detail this example, let us note hi the latent representation of the instance i and sij =
∏K
k=1 s

k
ij the

total similarity value between instances i and j based on the K side views, such that view-specific similarities
skij are typically defined with the RBF function skij = exp(γ||zkj −zki ||2) (zki is the descriptor vector of sample
i in the kth side-view). Then, the total loss is simply:

L = LV AE + λ

N∑
i=1

N∑
j>i

sij ||hj − hi||22

Managing heterogeneous data types by manipulating similarities between samples instead of attribute
vectors is particularly convenient, since it fixes the issue of the standardisation of the information. However,
it is not integrated into the representation learning framework directly.

Much works remain to be done.
Even though large amount of data are generated every year, publicly available chemical and biological

data still face the problem of data scarcity (consistency of the panel of properties measured for a panel of
samples), and quality (consistency of measures between databases). This is particularly critical, since the of
quality of deep learning models significantly depends on the quality of the input data [360].



Chapter 10

Conclusion

In this thesis, we have explored how machine learning methods can be adapted to study drug specificity as
a problem of predicting interactions between drugs and proteins at the proteome scale.

In the first chapter, we explained how computational approaches for drug specificity prediction could
assist the drug discovery process. Indeed, they can identify drug candidates for known therapeutic targets,
identify the target, and the mechanism of action of active molecules discovered by phenotypic tests, an-
ticipate potential side effects or drug-drug interactions by identifying secondary protein targets, or suggest
repositioning of known drugs in new therapeutic indications.

In the second chapter of the manuscript, we discussed the numerical representation of molecules and
proteins, since it is a crucial prerequisite for machine learning methods. We also introduced available toolkits
and databases that are considered throughout the manuscript.

In the second part of the manuscript, we first reviewed methodological advances in machine learning
algorithms for drug virtual screening, based on expert-based extracted descriptors or similarity measures
(chapter 3).

More precisely, we first discussed the main frameworks in drug-target interaction prediction: docking,
ligand-based and the chemogenomics frameworks. Then, we reviewed data-blinded approaches whose input
feature vectors are either handcrafted in an ad hoc manner, or calculated by toolkits that were designed
based on chemists expertise.

This allowed us to propose NN-MT in chapter 4, a multitask Support Vector Machine algorithm that is
trained on a limited number of data points, in order to solve the computational issues of proteome-wide SVM
for chemogenomics. We showed that the prediction performances of NN-MT are, at an efficient calculation
cost, similar or better than various state-of-the-art methods. NN-MT was particularly efficient when pre-
dicting (protein, ligand) interactions in the most difficult double-orphan case, i.e. when no interactions are
previously known for the protein and for the ligand. The NN-MT algorithm appears to be an appropriate
default method providing state-of-the-art or better performances, in a wide range of prediction scenarios :
proteome-wide prediction, protein family prediction, test (protein, ligand) pairs dissimilar to pairs in the
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train set, and orphan cases.
However, predicting drug-target interactions is still a challenging problem. Indeed, only a relatively small

portion of the chemical space of molecules has been explored and assayed so that the data statistics limit
the predictive power of machine learning algorithms. In this perspective, we thus emphasise that machine
learning methods should be evaluated and optimised toward unexplored chemical subspaces, and should
particularly focus on the double orphan prediction case.

In chapter 5, we present our contributions to two collaborative projects with medical applications: cys-
tic fibrosis and triple negative breast cancer. The cystic fibrosis project illustrates how chemogenomics
approaches can propose realistic targets for drugs identified by phenotypic tests, and how analysis of the
predicted targets can explain and predict drug-drug interactions. At a fundamental level, it shows how
chemogenomics can help identify molecular mechanisms at the origin of the disease symptoms, and explain
the relations between the pathways perturbations. Most of all, it shows how target predictions provides
comprehensive interpretation of biological results reinforcing the interest of the corresponding experimental
results. This project is also a striking example of how chemogenomics can guide future experiments, and
even in our case, suggest a whole research program in translational medicine based on drug repositioning.

The triple negative breast cancer project also illustrates the interest of chemogenomics to propose targets
for drugs identified by phenotypic tests. It also illustrates how different types of data can be used to
complement chemogenomics results. In this case, independent biological data were not integrated within
the prediction step, but used to help analysis of the predictions and identify the most promising biological
pathways to be targeted in TNBC. It again illustrates how prediction of targets can help interpretation of
biological experiments and help them "make sense". These results were obtained at the very end of this PhD,
and we hope that we will soon be able to publish them, and that they will be the starting point of a specific
research project with our biologist collaborators. More particularly, we hope that understanding how some
marketed drugs for psychotic diseases might target a key potassium channel in TNBC, could pave the way
a new translational medicine in drug repositioning.

In other words, drug virtual screening is a tool that provides an entry point to the understanding of
biological phenomena, and diseases in particular. Indeed, drug virtual screening is a creative force that
provides different visions and proposes other research directions.

In the third part of this manuscript, we surveyed and investigated end-to-end feature extraction of
molecules and proteins based on deep learning for drug-target interaction prediction.

We first defined neuron network-based encoders to extract data-driven features on molecular graphs and
protein sequences, so that the data representation itself is learnt from the raw description in order to max-
imise prediction performance. Furthermore, we notably provided a historical review of graph representation
learning for chemoinformatics in appendix C. This allowed us to offer a general view of graph convolutional
neuron network, i.e. neuron network-based encoder of undirected graphs.

Based on this critical appraisal, we investigated the latest developments in graph representation learn-
ing, and point out critical issues that question the efficiency of data-driven approaches for chemogenomics.
Although machine learning topics covered in the present thesis, and their applications in virtual screening
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are not exhaustive, we can conclude that the current research in the neuron network architecture for en-
coding molecular graphs and protein sequences does not seem a promising direction to improve drug virtual
screening in the chemogenomics framework. Indeed, we tested a variety of recent promising neuron network
architectures for molecular graph and protein sequence encoders as part of the chemogenomic network. None
of them enhanced the performance of the chemogenomic network on a benchmark dataset built from the
DrugBank database.

In contrast, based on our results, integration of heterogeneous data sources appeared more encouraging.
Indeed, we reported that integration of data-blinded and data-driven features, and more generally of different
data views, is a promising direction to boost the chemogenomic network, as well as the integration of
heterogeneous data sets. Besides, we reported that feed-forward neuron networks applied to expert-based
descriptors are competitive and even yield to the best performance in the raw setting (S1) of proteome-
wide DTI prediction. Moreover, remember that we did not fine tune this model, and most importantly,
we did not considered the most relevant expert-crafted descriptors for the DTI prediction task, such as
proteochemometric descriptors [143], which leaves some space for improvement and reinforces the interest of
this approach.

Our main contributions in this work was to discuss and tackle proteome-wide drug target interaction
prediction from multiple perspectives. In particular, we experimented and developed with success SVM-
based and deep learning-based approaches for proteome-wide DTI prediction.

In chapter 9, we proposed some perspectives to improve drug-target interaction predictions with non-
linear methods. Indeed, many interesting perspectives that were not covered in the present thesis remain to
be explored.

In particular, the use of 3D dimensional data for data-driven representation learning could provide some
relevant descriptors for the DTI prediction problem, since the binding of a ligand into the pocket of a protein
is an event that occurs in the 3D space.

Again, we think that the most promising perspectives to enhance performances rely more on mixing
heterogeneous data. Indeed, all data sources are expected to be noisy (missing data, experimental noise) but
with different noise pattern, and to cover different sub-parts of the chemical space. Therefore, combining
data sources may have a regularisation effect as well as provide information from a wider sub-part of the
chemical space.

To use multiple views of chemical data (chemical structure, bioassay signatures, side-effects profiles,
drug-induced phenotypes, pharmacophore patterns) in an integrated framework, multi-view learning [361] is
a branch in machine learning that studies how to combine different and heterogeneous views of a sample.

Alternatively, within the paradigm of kernel-based learning, if a kernel is defined for each view of the data,
multi-kernel learning has been shown relevant for chemical and genomic data fusion [362, 54, 166, 167, 165].
In particular, Olayan et al. [165] significantly outperformed state-of-the-art approaches because they relied
on a fusion of similarity measures to describe molecules and proteins, but not on algorithmic refinements.
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It should be emphasised that one important contribution of this thesis is to propose an extensive review
of methods for drug virtual screening, with efforts to structure the considerable amount of recently published
works. In chapter 3 we reviewed and organised drug virtual screening approaches based on expert-based
features. Later in chapter 7, we reviewed and organised data-driven feature-based approaches for virtual
screening. Moreover, we proposed a general survey of graph convolutional network. In particular, we critically
appraised and structure the variants of spatial graph convolutional networks in section 6.2. Moreover,
in appendix C, we proposed a historical perspective on graph representation learning. Furthermore, in
appendix D, we surveyed and draw conclusions from the few available studies on the fundamental analysis
of graph neuron networks. Finally, in appendix B, we introduce the most prominent works considering multi
kernel learning for DTI prediction, since we think it is a valuable direction of research. These reviews on
some basic but also some recent and advanced topics, aimed at providing a "self consistent" manuscript for
the reader. We hope that these review contributions could help new comers in these fields to find their way
in an abundant literature that does not always help to embrace a global overview.

Finally, all along this thesis, we considered computational approaches that predict candidate drugs’
targets and mechanisms of actions in the intention to assist the drug discovery process. In the same objective,
the reverse operation is of great interest. It consists in proposing ligands for specific targets, or more
generally, proposing organic compounds with the desired biological and pharmacokinetics profiles. Automatic
generation of molecules with specific properties is a very dynamic field which has undergone very important
developments in the last two years. Although we did not tackle this question, because it is very promising
and popular topic, it seemed crucial to us to review current progresses in this field. Thus, we propose, in
appendix E, a review of the field that is organised to answer, in different ways, the following questions: how
to generate molecules in silico, how to bias the generation process towards specific properties, and how to
evaluate and compare molecular generative approaches. We conclude this survey by a brief comparison of
the reviewed methods. To our opinion, it is also a contribution of this thesis that we let in appendix E for
the interested reader.

As a concluding and somewhat provocative remark, we found that much exciting work can be done to
interface drug-target interaction prediction and therapeutic research. Competing for minor (meaningless
?) performance improvements through algorithmic considerations must not be the ultimate goal of virtual
screening.
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Appendix A

Machine learning in brief

In this appendix, we introduce all the machine learning notions that are required to understand this thesis
work.

More precisely, we first give a general perspective on machine learning and on supervised learning in
particular. Then, we briefly introduce linear models, tree-based models and kernel-based models. Following
this, deep learning models are introduced and discussed at length. Note we also consider the framework of
multitask learning in the context of linear-based, kernel-based and deep learning models.

We do not aim at providing an extensive discussion, but intuitively present the methods to which we
refer in the main manuscript. Interested readers can refer to the following textbooks [363, 176].

A.1 Machine learning basics

Given enough data, machine learning is about algorithms and processes providing an efficient framework to
discover the underlying structure of the data.

More precisely, we consider n examples (or, equivalently, data points, or observations, or samples)
{x1, . . . ,xn} that form the data set.

All data points are described by p-dimensional vectors xi ∈ Rp, i ∈ {1, . . . , n}. The p attributes describing
data samples are called features, or equivalently descriptors, variables or attributes. In the general case, we
note X the space where the data points live.

In the rest of the appendix, when mentioning the structure of the data, we refer to the native latent
organisation of the data, for example the spatial, sequential, tree-like, or graph-like organisation.

A.1.1 Supervised learning

In the case of supervised learning, the aim is to learn a rule which assigns labels to the data. Thus, each
data point is assigned to a label (or equivalently a target, or outcome). In other words, the goal of supervised
learning is to use the data set to define a function f : X → Y where Y denotes the space where the targets
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live. Y can be either qualitative (or categorical) or quantitative. f can be viewed a predictor, but is often
called a model. Let us note {y1, . . . , yn} the labels assigned to each {x1, . . . ,xn}.

In the case of classification, each sample is assigned to a class. f is then called a classifier. In particular,
in the case of binary classification, there are two available classes, and yi ∈ {0, 1} ∀i. In the case of a
regression problem, each sample is assigned to d-dimensional real vectors to be predicted with the rule-
discovery algorithm: yi ∈ Rd ∀i. f is then called a regression model.

The predictor f is chosen depending on the assumptions made on the data. Typically, a predictor is
composed of weights which are learnt in order to minimise the errors made by f when predicting labels for
unseen samples (plus some additional constraints that we discuss later).

In particular, the weights are learned on a subset of the data called the training set, and we assess the
prediction performances of the learned function on another subset of the data called the test set. Thus,
the training and tests set must not overlap, in order to avoid overestimation of the prediction performance.
Evaluation procedures and metrics are introduced in appendix A.2.

Moreover, predictors often require tuning a set of values of internal variables called hyper-parameters.
Changes in the values of hyper-parameters can considerably improve or impair learning. The selection of
optimal values usually relies on systematic grid search or random search (see appendix A.2). The development
of automatic hyper-parameter selection algorithms is an active area of investigation and we introduce this
domain in the context of deep learning in appendix A.8.4.

For example, one of the most intuitive machine learning algorithms is the k-nearest-neighbour method (k-
NN), where the predicted output value for a given point relies on the label values of its k "nearest neighbours"
data points, where k is an integer. In the case of classification, the prediction is determined by the most
common class of the k nearest points. In the case of regression, the output value is determined by the average
of the output values of the k nearest points. The hyper-parameters of such approaches are the metric chosen
to compute distances between sample points, and the number of considered neighbours k.

Linear methods refer to approaches which compute the outcome yi of data points xi based on a linear
combination of its p-features, such that yi =

∑p
j=1 wj .xij where wj are weights to be optimised. Linear

methods are introduced in appendix A.3.
Kernel methods are a class of algorithms which use a kernel function. A kernel is a similarity function

which takes two data points as inputs and outputs their similarity. In kernel theory, considering a specific
kernel is equivalent to considering a transformation of the input data into a higher-dimensional representation
space where the problem is expected to be easier to solve. We give more detail on kernel methods in
appendix A.5. The best known members of this class of algorithm are support vector machine (SVM), kernel
ridge regression (KRR) and Gaussian Processes (GP).

Tree-based methods are made of tree-structured decision-making algorithms called decision trees. Decision
trees are made of a root node (starting point of the tree), branches with intermediate nodes, and terminating
leaf nodes. Each node represents a decision point such as "is feature fi bigger than or strictly lower than
a specific value". The branches exiting a node are the mutually exclusive decisions from the nodes criteria.
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The final leaf nodes are assigned to a predicted label depending on how it flowed from the root node to a
leaf node, that is, on how it fulfilled the criteria at each encountered node. Tree-based methods are detailed
in appendix A.4.

Last but not least, artificial neuron networks (ANN) are built with computational neurons which somehow
mimic the functioning of biological neurons. Indeed, a computational neuron receives an input from other
neurons, much like dendrites, linearly combines them, and emits an output to other neurons if the results
reaches some threshold. ANNs are introduced and discussed in their dedicated appendix A.8.

A.1.2 Other machine learning settings.

We introduce here a non-exhaustive list of machine learning settings that we consider in the main manuscript.
Unsupervised learning (detailed in appendix A.6) corresponds to the case where no labels are assigned

to the data points. The goal of unsupervised learning is problem specific. For example, we can seek for
groups of data points among their overall distribution, which is called clustering. We may seek to estimate
the distribution of the data, which is called density estimation. Last but not least, we might need to project
the data in a lower dimensional space (for visualisation purposes for instance) which is called dimensionality
reduction.

Dimensionality reduction may also be useful for extracting few informative features to ease interpretation.
Indeed, specific issues emerge in high dimensional spaces (hundreds or thousands of dimensions), referred to
as the curse of dimensionality, that do not occur in low-dimensional settings. For instance, we might model
behaviours that are locally smooth, but the number of local regions in the space (for example, in which
the prediction function is constant) increase with the space dimension. Therefore, the number of required
parameters may increase with the number of dimensions.

Semi-supervised learning is the setting where only a subset of the data points used for training is labelled.
In this case, the unlabelled data can be used to improve a predictor, for example to better estimate the data
distribution.

The goal of reinforcement learning is to find a succession of actions that maximise a reward (a "score").
Data are coming online with no labels (like in the unsupervised learning setting), and the algorithm seeks
to optimise itself to maximise a reward through a process of trial and error. Reinforcement learning models
have to deal with the trade-off of exploration-exploitation, that is respectively, exploring new actions and
exploiting actions close to those known as best ones.

Multi-instance learning is a setting in which samples are instances grouped into bags. In other words, only
the bags are independent objects. For example, a set of sub-image of a global large image is a bag (the single
entity is the large image composed of instances which are sub-images). In the case of chemoinformatics,
the set of the most likely 3D-conformations of a molecule is a bag of instances, and the single entity is the
molecule.
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Multi-view learning is a setting where the samples are described by heterogeneous sets of features which
are different views of the data. For instance, a cell line can be described by different views like mRNA-level
gene expression, mutation status, methylation status, CN variation and so on. Molecules can be described
from different views, like their molecular graph, targets profile, secondary effect profile, ATC code profile
and so on. In practice, considering simultaneously heterogeneous descriptions of samples in a single model
can be a significant issue.

Active learning is a setting in which the data points from the training set are added one by one, in such
a way that each new data point best improves the prediction model being built. This setting is used when
it is expensive (in some way) to label data point that are necessary to train the model. This situation is
encountered in pharmacological companies. For example, when learning a rule to predict ligands for a protein
target, active learning can help to reduce the number of wet lab experiments by guiding which interactions
should be tested. A typical active learning strategy is the "Query by Committee" (QBC) strategy that
uses an ensemble of machine learning models to make predictions. Such a procedure automatically samples
regions of the chemical space where most machine learning models fail to accurately predict a given chemical
property [19].

A.1.3 Feature pre-processing and engineering

In most cases, machine learning approaches’ performances strongly rely on designing relevant features to
describe the data. The design of handcrafted or automatically extracted features is usually referred to as
featurisation.

On the other hand, representation learning [269] finds a data-driven appropriate representation of data, in
order to perform a given machine learning task, rather than to rely on expert-based data-blinded features. In
the case of supervised learning, the representation is often learnt in an end-to-end manner, which refers to the
joint optimisation of the feature encoder and the prediction model itself. Deep learning-based representation
learning is introduced in appendix A.8.

Also, feature pre-processing and feature engineering are often the main levers to significantly increase the
models’ performances, more than the choice of an algorithm.

A common pre-processing method is standardisation which involves enforcing each feature distribution
over the available data to be a Gaussian with zero mean and unit variance. This is achieved by removing
the empirical mean value of each feature and by dividing by its empirical standard deviation. Many machine
learning estimators may misbehave if features are not standardised. Indeed, if a feature has a variance that
is orders of magnitude larger than others, it might dominate the objective function and make the estimator
unable to learn from other features correctly. If there are too many outliers that influence the mean and
variance, we can standardise the input using the median instead of the mean, and "3rd quantile - 1rst quantile"
value instead of the variance.

Furthermore, standardisation of the output labels yi is also important when there are several outputs, so
that they have the same influence on model evaluation.
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Normalisation, another widely used pre-processing procedure, is the process of scaling individual samples
to have unit norm. It can be useful when using machine learning algorithms that consider the distance
between samples, like the widely used SVM algorithm (see appendix A.5).

Feature selection consists in selecting a restricted number of features that are essential for the problem
at hand. It is useful to increase the predictive power of the model and to reduce the computation cost. In
particular, when the number of features is much higher than the number of instances, this issue is of vital
importance. Multiple strategies can be considered depending on the problem. They often select features
based on:

• the most varying features.

• the features most correlated to the output.

• transforming the data to a new space whose dimension is smaller, while keeping the variance of the
data as much as possible.

• using feed-forward selection procedure: adding features one by one, selecting those which triggered the
largest improvement of model performance.

• using univariate statistical test: only consider features which are not independent from the output,
according to a cut-off criterion. Some tests look for linear dependency, such as chi2-test for classification
and F-test for regression. Others look for non-linear dependency, such as mutual information-based
test.

• using an embedded feature selection model like lasso or ElasticNet. Models based on matrix factorisa-
tion also learn a compact representation of the data.

• computing feature importance, for example via bagging procedures like the randomised lasso or bagging
trees, and consider only features whose importance is above a given threshold.

Another feature pre-processing is feature engineering which includes any kind of manual modification and
creation of new features. All are, of course, problem dependent. For instance, some continuous features can
gain predictive power when binarised. As in the case of the prediction of metro usage, the days of the week
could be split into weekdays and weekends and the hour of the day could be binarised into working hours
and not working hours. Time (or more generally periodic features) is also likely to benefit from a periodic
transformation x 7→ sin( 2πx

T ) (where T is the period). In the case of hours of the day, it is x 7→ sin( 2πx
24 ).

Lastly, missing feature values can be imputed through multiple strategies if they represent an issue. When
there are few missing values, the naive approach is to replace a missing feature by the mean, the median or
the most frequent values of this feature in the dataset.
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A.1.4 Model complexity: bias-variance trade-off and regularisation

To conclude this brief introduction to machine learning approaches, we introduce the notion of bias-variance
trade-off.

The overall prediction error made by a model is composed of three components: the model bias, model
variance and irreducible errors (remaining after the two others).

In particular, the mean squared error of the prediction ŷ compared to the ground truth y, MSE =
E(ŷ−y)2, can be rewritten as MSE = Var(ŷ)+Bias2(ŷ). This is referred to as the bias-variance decomposition,
and illustrates that there is a trade-off between bias and variance.

In statistics, bias is the difference between the expected value of an estimator ŷ and the actual value
being estimated y: E (ŷ − y). Model bias is the error from incorrect assumptions, leading to missing the
underlying relationships between inputs and outputs. High bias can cause underfitting: the model makes
too many mistakes on the training data. A too simple model is likely to have a high bias.

In statistics, the variance of an estimator ŷ is its deviation from the expected value of an estimator E(ŷ):
E (ŷ − E(ŷ)). Model variance is the error coming from the sensitivity to small fluctuations in the training set.
These fluctuations come from the noise, or simply outliers or missing data in the training data (measurement
uncertainties for instance). High variance can cause overfitting: the model makes few mistake on the training
data, but cannot generalise well on unseen data. A too complex model is likely to have a high variance.

In summary, increasing model complexity towards overfitting decreases the bias and increases the vari-
ance. Conversely, decreasing model complexity towards underfitting increases the bias and decreases the
variance. Model complexity is related to model flexibility and often relies on the number of parameters.
Overfitting can be observed when the performance of a model on train set continues to improve with model
complexity, while the performance on unseen test data plateaus or declines. This behaviour is illustrated in
Fig. A.1.

Figure A.1. Bias-variance trade-off. (picture from [364])
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In most cases, the training set represents only a small portion of the overall possible data points of the
consider problem, and it is critical that the selected model has good generalisation properties. Therefore,
the best parameters and hyper-parameters are selected based on their prediction performance on unseen test
data.

To improve generalisation, model complexity is usually penalised by adding a contribution to the empirical
error which quantifies the model complexity. This allows to decrease model prediction error on unseen data
and model complexity simultaneously. An additional hyper-parameter λ often control this trade-off such
that the total loss function can be written as: total error = empirical error+ λ ∗ complexity penalisation.

Among equally performing models, we favour simpler models (still not likely to underfit), because they are
easier to use (lower computational complexity), easier to train (lower space complexity), easier to interpret,
and tend to generalise better. Moreover, the widely accepted Occam’s razor principle suggests that simple
explanations are more plausible.

In the next sections, we introduce common procedures to select models leading to the best performance
and common metrics to assess the performances.

A.2 Evaluation metrics and procedures for supervised learning

A.2.1 Model evaluation

Let us first define the terms: model evaluation discusses the metrics used to assess the performance of a
model, while model selection discusses the process which selects the best model.

Performance metric for regression problems

In the following, we recall the most widely used metrics for assessing performances on a regression task. In
the following ypred refers to the predicted values and ytrue to the actual true values.

• explained variance: quantifies how much of labels variance can be recovered by the model. The best
score is 1.0, lower values are worse.

explained variance(ytrue, ypred) = 1− V ar(ytrue − ypred)
V ar(ytrue)

• mean squared error (MSE): sums over the data points the squared differences between predicted and
the actual outputs. Best value is zero, higher values are worse.

MSE(ytrue, ypred) = 1
nsamples

∑
i

(ytruei − ypredi2)
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• mean squared log error: similar to MSE but the predicted values far from the real values are less
penalising the performance.

log-MSE(ytrue, ypred) = 1
nsamples

∑
i

(log(1 + ytruei )− log(1 + ypredi ))2

• R2 score, also called "coefficient of determination": considers the distance between the predicted and
the true values, relatively to the distance between the true values and their mean. Therefore, a constant
model that always predicts the mean value of the output, disregarding the input features, would get a
R2 score of 0.0. The best possible score is 1.0, and it can be negative.

R2(ytrue, ypred) = 1−
∑
i(ytruei − ypredi )2∑

i(ytruei −mean(ytrue))2

Performance metric for a classification problem

A common way of assessing the performance of a classification problem is via its confusion matrix. In the case
of binary classification, defined by a positive labelled class P and a negative labelled class N, the confusion
matrix is defined by:

True Class
Predicted class Number of True Negatives (TN) Number of False Negatives (FN)

True class Number of False Positives (FP) Number of True Positives (TP)

TP is the number of times a positive sample is correctly predicted. TN is the number of times a negative
sample is correctly predicted. FP is the number of times a positive sample is incorrectly predicted. FN is
the number of times a negative sample is incorrectly predicted.

From the test theory point of view, false positives can also be named type I errors (or false alarms) and
false negatives can also be called type II errors (or misses).

From the confusion matrix, we can define a set of metrics to evaluate a classifier.

• Accuracy: is the fraction of correctly predicted samples among all samples in the training set. Best
value is 1, and lower is worse.

Accuracy = TP + TN

TP + FN + FP + TN
∈ [0, 1]

Selecting the model with the best accuracy may result in high bias, especially when there are not the
same number of samples from each class.

• MCC: is the equivalent of the accuracy metric, but it is corrected for unevenly distributed data. Best
value is one, and lower is worse.

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)

∈ [−1, 1]

However, MCC still depends on reliable labelling of the data.
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• Precision: refers to the fraction of the correctly predicted positive samples (TP) among all positively
predicted ones (overlook the number of FN)

Precision = TP

TP + FP
∈ [0, 1]

However, precision does not inform us on whether we have missed occurrences of the positive class,
which would be reflected by the number of false negatives. Therefore, a very high precision might be
associated to limited accuracy.

• Recall: denotes the fraction of correctly positive predicted samples among all true positive samples.

Recall = TP

TP + FN
∈ [0, 1]

However, it overlooks the number of false positives. Indeed, the simple strategy which consists in
always predicting the positive class give perfect recall for that class, because the misclassified points
are only captured by the number of false positives.

• F1 statistic: is the harmonic mean of precision and recall (equal weights to precision and recall), in
order to consider both the FPs and FNs. Furthermore, a significant imbalance between precision and
recall results in a lower F1 score. In other words, it is necessary to have both good precision and
good recall to have a good F1 score. The harmonic mean of any data is always upper-bounded by its
arithmetic mean. Thus, the F1 score addresses precision and recall shortcomings simultaneously.

F1 = 2× precision× recall
precision + recall

All the metrics defined above measure the performance of a classifier at a selected "classification score"
threshold. Indeed, most models assign each data point to a probability, or a classification score, relatively to
each class. The higher the score between a sample and a class, the more likely the sample belongs that class.
To claim what samples belong to what classes, we must define a threshold such that a sample is assigned
to a specific class if the classification score is above this threshold. For instance, when a classifier outputs
probabilities, this threshold is usually 0.5 in binary classifiers.

However, the generalisation of the performance over the whole threshold spectrum is relevant, especially
to fairly compare the performance of multiple methods. For that purpose, we mainly consider the two
following metrics:

• Area under Receiver-Operator Characteristic curve (ROC curve). The ROC curve is a 2D plot in which
the horizontal and the vertical axes correspond respectively to FPs rate -number of FP among all true
negatives- and the TPs rate -recall-. Each point in the curve reports the FP rate and recall, measured
at different arbitrarily selected classification score thresholds.

By definition, a good model should have a ROC curve localised in the high left corner. A good model
should then maximise the area under the ROC curve (ROCAUC). 1 is the best performance, and lower
is worse.
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Note that two models with the same accuracy but different ROCAUC would mean that the model with
higher ROCAUC is more accurate for high probability of positiveness and models are equivalent when
considering a positiveness threshold of 0.5.

• Area under the Precision-Recall curve (PR curve). The Precision-Recall curve is a 2D plot where
the horizontal and the vertical axes correspond respectively to the precision rate and the recall rate.
Each point in the curve reports the precision and recall, measured at different arbitrarily selected
classification score thresholds.

By definition, a good model should have a PR-curve localised in the high right corner. A good model
should then maximise the area under the curve; 1 is the best performance, lower is worse.

A high AUPR (area under the PR curve) score means that, when considering samples with a high
probability of positiveness, there are few FP, and TP are recovered. In other words, the probability
of positiveness (respectively negativeness) of TP (respectively TN) is higher than the one of FP (resp.
FN).

In the case of highly imbalanced datasets (for example, the number of negative examples greatly exceeds
that of positive examples), the AUPR score gives a more realistic picture of the performance. Indeed, a
large change in the number of false positives can have a small impact on the false positive rate used in the
ROCAUC score, whereas precision is sensitive to a large number of negative examples as it compares them
to true positives rather than true negatives.

Despite these differences between AUPR and ROCAUC, Davis et al.[365] found an important connection
between the ROC space and the PR space. They proved that a curve (associated with a model) dominates
in the ROC space if and only if it dominates in the PR space. Conversely, they showed that algorithms that
optimise the ROCAUC score are not guaranteed to optimise the AUPR score.

Furthermore, they explained why it is incorrect to linearly interpolate between points to build the PR
curve. Indeed, precision does not necessarily change linearly with Recall since FP replaces FN in the
denominator of the Precision metric compared to the Recall metric. Based on the proven connection between
the ROC space and the PR space, the interpolation of the convex hull in the ROC space (which is the best
curve that can be built from a set of ROC points) to the PR space provides the best curve in the PR space,
and therefore, an appropriate interpolation.

Among all previously defined classification metrics, we can wonder what is (are) the most relevant one(s)
for virtual screening of drugs.

Considering several metrics provides a general idea about the biological relevance of the results of the
new method and its added value over the previous approaches.

However, there is no consensus on the best metrics, and most studies use different evaluation metrics.
As a result, it is often difficult to compare the performances of methods proposed in different studies.

In the case of hit discovery, reducing the number of false positive is of major importance, in order to
reduce the number of experimental tests. Hence, the precision and the PR curves are suitable measures of
performance. However, DTI prediction is a retrieval problem which seeks to find positive points among the
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set of negative points, but non-interacting drug-target pairs could be pairs for which interaction has not
been experimentally proven yet.

Therefore, focusing on avoiding false discoveries could be counterproductive because the aim is to find new
interactions among the "non-interacting pairs". Thus, finally, evaluating the performance of DTI classifiers
from different angles remains the best choice even if a particular attention may be put on the AUPR score.

Note that more specific ways to measure DTI prediction performance have been proposed in the literature.
For instance, some authors attempted to retrieve the DTI prediction made on a given database in other
databases or by literature search. An alternative (and costly) way is also to directly test the prediction
in-vitro.

A.2.2 Model selection

At first sight, it seems logical to merely divide the available data into two parts to fairly assess and compare
performances of several models: one is the training set used to adjust the weights of the model, the other is
the test set used to assess the performance we can expect on unseen data. Indeed, a model might work for
the training set, but fail to predict on unseen data (see generalisation issues in appendix A.1). Therefore,
models’ performance is assessed on data which have not been used for training.

However, data should be used in a more efficient way, as they can be scarce or difficult to obtain.
Moreover, performance measures are reliable only when the test samples are representative of the whole
population. Assessing performances on a particular sub-part of the data may bias the estimation of the
performance. Thus, there exists several methods to make the best from the available data: these methods
divide the data into several train and test sets in such a way that all samples are used as validation data
once.

In particular, cross-validation (CV) is a method which splits the available data into k separate folds. We
then successively train k-times on (k-1) folds and validate on the remaining one (see Fig. A.2). Therefore,
it estimates the performance on all the available data, while never testing the model on training data. The
final performance is the mean of the estimated performances measured on the different folds.

Figure A.2. Cross-Validation with k = 4. (picture from [364])
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The problem of choosing an appropriate k arises. Considering a to large k may result in highly variable
performances, since some of the small folds may contain easily predictable points while others may contain
difficult predictable points. In contrary, considering small k may result in inaccurate models as a too small
fraction of the available data is used for training.

The specific case of k = N , where N is the number of samples in the dataset, is called leave-one-out
cross-validation (LOO-CV) and may require burdensome computations. However, it is interesting when the
number of labelled data is scarce.

Usually, k is set to 5 (at each step, 80% of the available data are used to fit the model, 20% for evaluation),
or to 10 (90% for fitting, 10% for evaluating).

In parametrised models, we often chose the parameter which gave, on average, the best performances on
all folds of the cross-validation scheme. However, this best parameter may not be suited for new unseen data
if the folds are biased compared to new data.

In this case, nested cross-validation is suitable. It consists in considering an inner CV nested in an outer
CV scheme. It consists in a (k-1) folds cross-validation (inner-CV) nested in a k folds cross-validation (outer-
CV). At each step of the outer-CV, the inner-CV is repeated for all considered values of the hyper-parameters.
The values leading to the best prediction performance are retained as optimal, and the performance is finally
assessed on the outer test fold, which represent the new data unseen when optimising the parameter.

Bootstrap is another widely used procedure to split the data into training and testing set. This method
builds training sets with slightly different statistics by randomly sampling with replacement from the available
data. For each training set, the samples which have not been picked form the testing set. Typically, training
sets are sampled a hundred times.

In the next sections, we introduce machine-learning algorithms and procedures.

A.3 Linear models

Linear models correspond to the class of approaches that build a linear relationship between the inputs and
the outputs. In the case of regression, the outputs are learnable linear combination of input features. In
the case of classification, the outputs are learnable linear combination of input features transformed into a
probability of belonging to each class.

This section is by no means an exhaustive discussion on linear models, but an intuitive introduction.
Interested readers can refer to the following textbook [176].

A.3.1 Linear regression

Let us consider the problem in which we want to linearly model the relationship between Y ∈ Rd andX ∈ Rp.
Let w ∈ Rp be a weight vector and σ2 > 0. We make the following assumption:

Y | X ∼ N (w>X,σ2),
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which can be rewritten as:
Y = w>X + ε, ε ∼ N (0, σ2)

Note that if there is an offset w0 ∈ Rp such that Y = w>X +w0 + ε, one can redefine a weighting vector

w̃ ∈ Rp+1 such that Y = w̃>
(
X

1

)
+ ε.

Let the dataset D = {(x1, y1), · · · , (xn, yn)} be independent (a data point yi is independent of the other
{yj}j 6=i given xi and a model w) and identically distributed (yi | xi ∼ N (w>wi, σ2),∀i).

Based on this assumptions, the conditional distribution of all outputs given all inputs is a product of
independent terms:

p(y1, · · · , yn|x1, · · · , xn; w, σ2) =
n∏
i=1

p(yi|xi; w, σ2).

Typically, the logarithm is used to transform the product into a sum. In addition, an optimisation problem
is usually set as a minimisation problem. Therefore, we consider the so-called associated log-likelihood of
the data which is written as:

−l(w, σ2) = −
n∑
i=1

log p(yi|xi) = n

2 log(2πσ2) + 1
2

n∑
i=1

(yi −w>xi)2

σ2

Indeed, the model w (or more precisely, the model weight vector) is usually obtained by maximising the
"likelihood", that is, adjusting the weights w so that the output probabilities p(yi|xi) correspond to the true
labels yi. Minimising the log-likelihood with respect to w can be reformulated as:

ŵ = argminw
1

2n
∑n
i=1 (yi −w>xi)2 = argminw

1
2n‖y−Xw‖2.

Thus, optimising a linear regression model is equivalent to minimising the classical sum of square errors.

The function f : w 7→ 1
2n‖y−Xw‖2 is equivalent to 1

2n (y>y − 2w>X>y + w>X>Xw). By definition,
this function is strictly convex if and only if its Hessian matrix is invertible. In such a case, ŵ can be directly
obtained by setting the gradient of f to 0:

∇f(w) = 1
n

X>(Xw− y) = 0 ⇐⇒ X>Xw = X>y ⇐⇒ ŵ = (X>X)−1X>y

To ensure that (X>X)−1 is invertible, we pre-process the data matrix X to avoid numerical issues.
However, this pre-processing does not guarantee that the resulting data matrix is well-conditioned, for
example if it is a low rank matrix (i.e. some features are co-linear).

We can also derive σ2 by minimising the −l(w, σ2) with respect of σ2 by setting ∇σ2 l(w, σ2) to zero. It
results in the classical "empirical variance" of a linear model:

σ̂2 = 1
n

∑n
i=1 (yi −w>xi)2.
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A.3.2 Logistic regression

Logistic regression linearly models the relationship between Y ∈ {0, 1} and X ∈ Rp, i.e. segregates the two
classes with a linear decision boundary.

First, let Us naively model the conditional outputs by a Bernoulli distribution:

yi|xi ∼ Bernoulli(θi), ∀i

with the parameter θi = σ(w>xi), where w is a weight vector. The sigmoid function σ, displayed in
figure A.3, takes values in [0, 1] and is defined by: ∀z ∈ R, σ(z) = 1

1+e−z .

Figure A.3. Sigmoid function. (picture from [366])

Note that the sigmoid function is just transforming a linear combination of the inputs into a probability
value (i.e. between 0 and 1). Thus, a sample xi is assigned to the class 1 (resp. 0) if its linear combination
wTxi is positive (respectively negative) because its associated probability σ(wT .xi) is above (respectively
below) 0.5.

The sigmoid function has also convenient computational properties. In particular, ∀z ∈ R, σ(−z) =
1− σ(z), and σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z).

As in the regression case, the weights w are optimised to minimise the negative log-likelihood on a dataset
of i.i.d. random variables D = {(x1, y1), · · · , (xn, yn)}, which is given by

l(w) =
n∑
i=1

yi log σ(w>xi) + (1− yi) log σ(−w>xi)

However, unlike linear regression, there is no closed-form solution. Therefore, gradient descent based algo-
rithm are typically used to find the optimum weights.

A.3.3 Regularised models

As introduced in appendix A.1, the more variables in the model, the more complex it is, and the more likely
it overfits the training data. Thus, controlling model complexity usually benefits to the performance on
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unseen data. In the case of linear models, as in many cases, regularisation (e.g. reducing model complexity)
is performed by adding to the cost function L a penalty term on the model complexity:

Lregularised = Lnot−regularised + λ ∗ complexity (A.1)

In a nutshell, λ > 0 favours less complex models by trading bias in exchange of smaller variance. The
hyper-parameter λ is usually set by cross-validation (see appendix A.2).

Ridge penalty

Among regularised models, the so-called "Ridge" estimator penalises model complexity by minimising adding
the L2 norm of the model weights to the loss. Such a penalty shrinks the value of the weights as it enforces
small absolute values. If all weights are small, the modelled function is smooth, potentially improving better
the generalisation properties. In particular, correlated variables get similar weights. However, it does not
ensure that the resulting model is sparse.

In particular, the Ridge regression estimator is defined as:

ŵridge = arg min
w
||y − wT .X||22 + λ||w||22 ⇔ ŵridge = arg min

w
||y − wT .X||22 such that ||w||22 ≤ 1

The ridge regression estimator has an analytical solution: ŵridge = (XTX + λI)−1XT y.

Lasso penalty

Both the standard linear regression and the Ridge regression can use all available features, which can render
the solution hard to interpret. Moreover, we can often often assume that only a subset of key features are
necessary to explain data outcome.

Building a model on a sparse selection of essential features is enabled by the Lasso penalty (L1 regulari-
sation). The Lasso regression estimator is defined as:

ŵlasso = arg min
w
||y − wT .X||22 + λ||w||1 ⇔ ŵlasso = arg min

w
||y − wT .X||22 such that ||w||1 ≤ 1

Unlike the Ridge estimator, there is no explicit solution. We can however transform the Lasso optimisation
problem into a quadratic problem which can be solved by standard gradient descent-based algorithms.

To intuitively understand why the Lasso estimator provides a sparse solution, we can look at the feasible
set, which is the set where the parameters are enforced to live. The feasible set triggered by ||w||2 ≤ 1
(Ridge) is a ball, the feasible set triggered by ||w||1 ≤ 1 (Lasso) is a square. The feasible sets of the Lq

norms (e.g. ||w||qq =
∑n
i=1 w

q
i ) for different values of q are displayed in figure A.4.
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Figure A.4. Boundaries of the feasible set associated with the constraint ||w||q ≤ 1 for different values of q. (picture from
[364])

In the case of the L1 feasible set, we can observe that the projection of the unconstrained minimum on
the feasible set is likely to "hit" a corner of the square, where only one feature has a weight not equal to zero
(see Fig. A.5), which explains why the obtained solution is sparse.

Figure A.5. Comparison of the Lasso-estimator and the Ridge-estimator. (picture from [364])

Data structure-based penalty

In the case where data have a latent structure, we can also enforce the model to fit this structure by penalising
the model accordingly.

In particular, when the variables are partitioned into predefined groups of variables that are known
or expected to work together (being active or inactive together), we can define a penalty of the form∑K
k=1
√
pk||wk||2 to enforce this structure into the model. Here, K is the number of groups and pk is

the number of features in each group. An example of such partition in a biological problem can be genes
belonging to the same biological pathway.

Another example is node classification for graph-structured data, where we can enforce two neighbouring
nodes to have similar labels by adding the following penalty to the model: wTLw (where L is the Laplacian
of the graph).
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Finally, in the case of a multi-output prediction task for which all prediction tasks are assumed to use
of the same subset of features (although with different weights), we can consider the following penalty to
enforce the corresponding multitask sparse solution: ||w||21 =

∑
i

√∑
j w

2
ij .

A.4 Tree based models

Tree-based models are distinct from the previously discussed models in that they are non-parametric. This
means that the model is not simply a mathematical function with a fixed form, and that the size of the
model changes depending on the size of the data. Non-parametric methods could be said to "let the data
talking".

This section is an introduction on tree-based models, and interested readers can refer to the following
textbooks [176].

A.4.1 Decision Tree

Let us consider a dataset D = {(xn, yn)}Nn=1.

Decision trees are based on hierarchically structured decision-making nodes. To learn a decision tree, we
need to choose the rules for defining splitting criteria (i.e. decision criteria at every node), stopping growing
the tree, and pruning the tree depending on a cost-complexity trade-off.

Splitting criteria

When growing a tree, all nodes are split according to the "best" possible splits at each step (i.e. tree depth).
A split relies on a feature value fi such that, a sample (whose feature vector is x) is assigned to one of the
children node if xi < fi, or otherwise to the other children node.

The quality of a split is assessed by a score that evaluates the reduction in uncertainty, e.g. the variance
of sample label values falling in the two children nodes. Thus, the best split is the one that minimises this
uncertainty.

In the case of classification, both the classification error or the entropy can be considered. The classifi-
cation error is 1 − maxk(p̂k), where p̂k is the proportion of training instances from class k, and quantifies
the minimum probability that a training point is to be misclassified. The entropy −

∑
k p̂k log2(p̂k) is a

measure of lack of information and thus, quantifies the information gain provided by a split. However, the
Gini impurity criterion (i.e.

∑K
k=1 p̂k(1− p̂k)) is usually considered. It is a measure of how often a randomly

chosen sample would be incorrectly labelled if it was randomly labelled according to the distribution of labels
in the subset.
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Stopping criteria

Furthermore, a strategy deciding when to stop growing a tree is required.
Two strategies are usually considered:

• setting the Maximum Tree Depth. This is the maximum number of nodes from the root node of the
tree. Once the maximum depth of the tree is met, splitting and adding new nodes is stopped. Deeper
trees are complex and likely to overfit the training data.

• setting the Minimum Node Records. This is the minimum number of training samples that a given
node is responsible for. Below this minimum, we must stop splitting and adding new nodes. Nodes
that account for too few training patterns are expected to be too specific and are likely to overfit the
training data.

Pruning criteria

Note we can we also prune the tree afterwards using cost-complexity pruning strategies which aim at finding
an efficient sub-tree, in order to balance model complexity and classification performance. Thus, it can be
seen as a form of regularisation.

Decision trees are easily interpretable as they can be displayed graphically and mimic human decision
making. In addition, they naturally handle quantitative variables and multi-class problems.

However, they are known to exhibit poor predictive accuracy in general. Intuitively, a decision tree
has a low bias since the conditions that are checked at each node becomes multiplicative, so that the tree
is continuously narrowing down on the data. In other words, the tree is likely to be highly tuned to the
training set. A decision tree also has a high variance, since small changes in input variable values might
result in very different tree structure. Forests of decision trees fitted on the data with different statistics are
usually considered to fix this high variance issue.

A.4.2 Bagging trees

In the bagging trees algorithm, different trees are fitted on different subsets of the original data built by
sampling data points with replacement from the original data. In other words, the bagging procedure
considers many predictors by bootstrapping the data (randomly sub-sample with replacement the dataset
several times).

Bagging is efficient when used with a low bias and high variance base estimator, which is the case of
decision trees, as mentioned before. Indeed, by averaging such estimators, we get a smoother version (low
variance), still centred around the true density (low bias).
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A.4.3 Random Forest

In practice, bagging alone is typically not enough. In order to get a better reduction in variance, aggregated
models need to be uncorrelated, so that they make "different errors". Bagging usually results in highly
correlated models that make the same errors, and therefore, it does not reduce the variance of the combination
of the base predictors.

The idea behind random forests is improving the variance reduction of bagging by reducing the correlation
between the trees, without increasing the bias too much. Variance reduction is achieved during the tree-
growing process through random selection of the input variables: before each split, q (out of the p available)
input variables are selected at random as candidates for splitting. A value of q = √p is typically chosen.

In other words, the decorrelation of the individual trees is two-fold. First, the training set is sampled
(with replacement) to create M bootstrapped training sets of size N used in an ensemble model. This is
known as bagging, e.g. bootstrapping and aggregating. Secondly, each learner is fitted on a random subset
of the available features.

The final prediction is obtained by aggregating the predictions of individual trees. This implies averaging
predictions for a regression problem, averaging probability prediction for a classification problem. In practice,
this method has excellent predictive power.

Note that bagging trees and random forests are useful when using a large number of trees (several
hundreds). They are thus computationally intensive, especially when the number of features is large.

Finally, let us more formally discuss the intuition behind the fact that both bagging and sampling features
reduce the variance of predictions of the ensemble model.

First, recall that,

Var[X + Y ] = E[(X + Y )2]− E[X + Y ]2

= E[X2 + 2XY + Y 2]− EX2 − 2E[X]E[Y ]− E[Y ]2

= Var[X] + Var[Y ] + 2Cov[X,Y ]

We can then decompose the variance of the aggregated prediction 1
M

∑M
i fi of M base learners on xi following:

Var
[ 1
M

∑
i

fi

]
= 1
M2

∑
i

Var[fi] + 2 1
M2

∑
i

∑
j 6=i

Cov(fi, fj).

We can consider that each learner has the same variance σ2. The covariance between the prediction of two
base learners i and j can be written as Cov(fi, fj) = ρσ2 ∀(i, j) s.t. i 6= j where ρ is a positive real number
quantifying the correlation between any two learners (on average, all pairs of learners are considered to be
correlated the same way). Then,

Var
[ 1
M

∑
i

fi

]
= σ2

M
+ ρ(M − 1)

M
σ2.

Thus, the variance σ2 of individual learners is reduced by a ratio of M/(1 + ρ(M − 1)). Moreover, the
less the learners are correlated (e.g., the lower ρ), the more the variance of the ensemble model is reduced.
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A.5 Similarity based models

Kernel methods have been widely considered for the last 15 years and have been found extremely successful
in numerous applications and enjoy great popularity in the machine-learning community [169, 33, 367].

Beyond this success, kernel methods have a two-fold motivation. First, data are not often described easily
with real numbers, and kernel methods enable line fitting algorithm without any assumptions regarding the
type of data, since the predictor takes as input the pairwise similarity matrix, with the constraint of being
positive definite. Second, a kernel corresponds to a specific and potentially non-linear transformation of the
input data, and kernel methods are particularly efficient when transforming the data into a space where
the prediction problem is easier to solve. In addition, there is a total modularity between the choice of the
algorithm and the choice of similarity, i.e. kernel. Importantly, kernel methods rely on a strong and well
established mathematical theory, which is a competitive property compared to random forests and deep
learning algorithms.

The main issue of this framework is its poor scalability. Indeed, kernels are n ∗ n matrices, n being the
number of samples. Improving the scalability of kernel methods is an active area of research.

This section aims at introducing the only main results on kernel methods needed for this thesis. The
mathematical proofs are not to be reported, and interested readers may refer to a more exhaustive presen-
tation [176].

A.5.1 Kernels and Reproducing Kernel Hilbert Space

In a mathematical language, a valid kernel K, known as positive definite kernel, is a symmetric positive
definite functional X ∗ X → R. It can be viewed merely as a similarity measure. For instance, the simplest
p.d. kernel for vector x ∈ Rd is K(x, x′) = 〈x, x′〉Rd .

"Symmetric" and "positive definite" refer to the following properties:

K is symmetric ⇔ ∀(x, x
′
) ∈ X 2, K(x, x

′
) = K(x

′
, x);

K is positive definite ⇔ ∀(x1, · · · , xN ) ∈ XN and (a1, · · · , aN ) ∈ RN ,
N∑
i=1

N∑
j=1

aiajK(xi, xj) ≥ 0.

The Aronszajn theorem states that there is an equivalence between a valid kernel and a transformation φ
from the original space X to a Hilbert space Hφ(X ), such that K is the scalar product in this Hilbert space.

K is a valid kernel on X ⇔∃ a mapping φ : X → φ(X ) and a Hilbert space Hφ(X ) such that

∀x, x′ ∈ X : K(x, x′) = 〈φ(x), φ(x′)〉Hφ(X)

In addition, a p.d. kernel is uniquely linked with a Hilbert space of functions HK , generally called a
Reproducing Kernel Hilbert Space (RKHS).
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The RKHS HK is the continuous space of functions from X to R.

HK ⊂ RX is a RKHS ⇔ ∀x ∈ X ,

∣∣∣∣∣F : HK → R
f → f(x)

is continuous

The terms "reproducing kernel" refers to the fact that the point-wise evaluation of any function f ∈ HK
at any x ∈ X can be written as the projection of f on Kx : t ∈ X → K(t, x) ∈ R.

K : X 2 → R is called a reproducing kernel of HK if

∣∣∣∣∣∣∣∣
H contains all function of the form:
∀x ∈ X ,∀f ∈ HK , f(x) =< f,Kx >HK

with: ∀x ∈ X , Kx : t→ K(x, t)

A.5.2 Kernel trick

The kernel trick states that any algorithm processing finite-dimensional vectors that are expressed only in
terms of pairwise inner products, can be applied to potentially infinite-dimensional vectors in the feature
space of a p.d. kernel, by replacing each inner product evaluation by a kernel evaluation.

It is intuitive because a kernel is precisely the inner product in its associated feature space. This trick
has important practical applications as shown below.

Two straightforward, practical and handy application of the kernel trick is the kernel-based centring and
normalisation operations operated in the feature space. First, note that the mean of data points x1, . . . , xn

in the feature space is: µ = 1
n

∑n
i=1 φ(xi). Thus, centring the data in the feature space be expressed only in

terms of kernels, as shown below:

KC
i,j =< φ(xi)− µ, φ(xj)− µ >h

=< φ(xi), φ(xj) >h − < µ, φ(xi) + φ(xj) >h + < µ, µ >h

= Ki,j −
1
n

n∑
k=1

(Ki,k +Kj,k + 1
n2

n∑
k,l=1

Kk,l) since µ = 1
n

n∑
i=1

φ(xi)

Therefore, the kernel KCenter of the data centered in the feature space is:

KCenter = K − UK −KU + UKU where Ui,j = 1
n

for 1 ≤ i, j ≤ n

= (I − U)K(I − U)

Normalising the data in the feature space can also be expressed only in terms of kernels, as shown in below:

KNorm
i,j =< φ(xi)/||φ(xi)||h, φ(xj)/||φ(xj)||h >h

= 1√
< φ(xi), φ(xi) >h< φ(xj), φ(xj) >h

< φ(xi), φ(xj) >h

= K(xi, xj)√
K(xi, xi)K(xj , xj)
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A.5.3 Representer Theorem

The Representer theorem states that the solutions to a wide range of optimisation problems have the form
of a sum of kernel functions.

More formally, let X be a set endowed with a valid kernel K and HK its corresponding RKHS. Let S
be a finite set of data points: S = {x1, · · · , xn} ⊂ X . Let Ψ : Rn+1 → R be a function of n + 1 variables,
strictly increasing for the last variable. In these conditions, the representer theorem states that any solution
to the following optimisation problem:

min
f∈HK

Ψ(f(x1), · · · , f(xn), ||f ||HK )

has a solution of the form:

∀x ∈ X , f(x) =
n∑
i=1

αiK(xi, x).

In the case of machine-learning, the typical form of Ψ is (L being a loss function):

min
f∈HK

1
n

n∑
i=1
L(yi, f(xi)) + λ||f ||2HK .

Then, if f is the solution to this classic optimisation problem:

f(xj) =
n∑
i=1

αiK(xi, xj) = [Kα]j

||f ||2HK =
n∑
i=1

n∑
j=1

αiαjK(xi, xj) = αTKα

The representer theorem is rather intuitive, because if f ∈ HK then ∀x, f(x) =< Kx, f >HK , so that,
for a finite subset of points (x1, · · · , xn), the orthogonal part of f with respect to Kxis is useless to explain
the data.

Furthermore, minimising ||f ||HK has a regularisation effect because it penalises non-smooth solutions.
Besides, thanks to the representer theorem, we know that the solution lies in a subspace of dimension n (n
is the number of data point), even if the feature space is of infinite dimension.

A.5.4 Kernel Ridge regression

Let us write the input space X , and the output space Y ⊂ R. We consider an RKHS HK and its associated
kernel K on X .

Kernel Ridge Regression (KRR) optimisation problem is defined as:

f̂ = argmin
f∈HK

1
n

n∑
i=1

(yi − f(xi))2 + λ||f ||2HK (A.2)

The Representer theorem gives the form of the solution: f̂ =
∑n
i=1 αiK(xi, x). Thus, we can rewrite the

KRR optimisation problem as:

argmin
α∈Rn

1
n

(Kα− Y )T (Kα− Y ) + λαTKα (A.3)
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It has a unique closed form solution as:
α = (K + λI)−1Y (A.4)

Note that if we choose the linear kernel K(x, y) = xT y, the solution of KRR is equivalent to that of the
standard ridge regression.

Furthermore, we can also choose other loss functions for regression, like the Huber loss, which is less
sensitive to outliers.

A.5.5 Large Margin Classifier (general framework for classification with ker-
nels)

In the case of binary classification Y ∈ {−1, 1}, the margin between the predictions f(x) and the actual
labels y is defined as yT .f(x). A general class of loss functions for binary classification can be derived by
non-increasing functions of the margin:

L(f(x), y) = ϕ(yf(x)), with ϕ non-increasing (A.5)

Fig A.6 displays typical margin-based loss functions for classification.

Figure A.6. Margin-based loss functions ϕ for classification. (picture from [368])

An intuitive large margin-based classifier is the Kernel Logistic Regression (KLR) optimisation problem,
that is written as:

f̂ = argmin
f∈HK

1
n

n∑
i=1

log(1 + e−yif(xi)) + λ||f ||2HK (A.6)
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The representer theorem states that the form of the solution is: f̂ =
∑n
i=1 αiK(xi, x). Thus, we can rewrite

the KLR optimisation problem as:

argmin
α∈Rn

J(α) = 1
n
log(1 + e−yi[Kα]i) + λ

2α
TKα (A.7)

This problem has no closed form solution, but is a smooth convex optimisation problem so that it can be
solved efficiently by many numerical methods.

A.5.6 Support Vector Machines (SVM)

SVM is an extremely popular algorithm. It belongs to kernel large margin classifiers. Its associated loss is
the "Huber loss" (see Fig. A.6).

Let us consider a set of labelled samples S = {(x1, y1), . . . , (xN , yN )} where (xi, yi) ∈ X ×{−1,+1}. For
example, the data points xi represent molecules, and their labels yi are equal to +1 for compounds that bind
to a given protein and −1 for compounds that don’t.

In the simplest case where the two classes of data points are linearly separable, Support Vector Machines
[169] (SVM) is an algorithm that learns to separate these two classes based on the optimal hyperplane
separating the two classes.

Such hyperplane H is defined by a normal vector w and a constant b such that: ∀x ∈ H, 〈w, x〉+ b = 0.
Among the infinity of possible separating hyperplanes, the optimal hyperplane maximises the "margin". This
margin is defined as the closest distance from the hyperplane to any of the data points. It can be shown that
the search for this optimal hyperplane can be formulated by the optimisation problem stated in eq. A.8.

argmin
w,b

||w||2 (A.8a)

subject to yi〈w, xi〉+ b ≥ 1,∀i = 1, . . . , N. (A.8b)

Indeed, the solution of this problem is the hyperplane maximising its distance to the closest data points,
equal to 2/||w||2. The constraint (yi〈w, xi〉+b ≥ 1 ∀i) states that the hyperplane separated perfectly negative
from positive samples.

Then, the decision function f classifies any new point x depending on its position to the hyperplane, i.e.
based on the sign of f(x) = 〈w, x〉+ b.

The optimisation problem in eq. A.8 is strictly convex and admits a unique solution. The Lagrangian
associated to the optimisation problem leads to the equivalent dual problem stated in eq. A.9, in which the
coefficients αi are known as the Lagrange multipliers associated to the constraints yi〈w, xi〉+ b ≥ 1).

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyj〈xi, xj〉 (A.9a)

subject to αi ≥ 0,∀i (A.9b)
N∑
i=1

αiyi = 0 (A.9c)
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In practice, this quadratic problem can be solved efficiently using a dedicated algorithm, known as
Sequential Minimal Optimisation (SMO) [154].

When the optimum α∗ is met, the decision function allowing predictions for any new point x depends on
its position with respect to the hyperplane :

f(x) = sign
(

N∑
i=1

α∗i yi〈x, xi〉+ b∗

)
(A.10)

However, the two classes of data points may not be linearly separable. In such situations, kernel methods
are widely-used sets of techniques that allow adapting linear methods to non-linear models. Let us consider
a semi-definite positive kernel function K : X × X → R. The Mercer theorem states that there exists a
non-linear function φ : X → H that maps data points in X into a high dimensional feature Hilbert space H,
where K can be expressed as a scalar product: k(x1, x2) = 〈φ(x1), φ(x2)〉H.

In practice, H is often Rd. Although the two classes of data points might not be linearly separable in
X, they might become linearly separable in the high dimensional space H where the SVM is solved. Since
the images of the data point φ(xi) are used only in scalar products, the principle of kernel trick is that
finding the αi coefficients to solve the SVM can be done by replacing all occurrences of the scalar product
〈φ(xi), φ(xj)〉H by the kernel function k(xi, xj) (see eq. A.11)

α∗ = argmin
α

N∑
i=1

αi −
1
2

N∑
i,j=1

αiαjyiyjk(xi, xj) (A.11a)

subject to αi ≥ 0,∀i (A.11b)
N∑
i=1

αiyi = 0 (A.11c)

In other words, finding the separating hyperplane in H does not require explicit definition of the nonlinear
mapping function φ or calculation of the image vectors φ(xi).

Then, the label of a new data point x is predicted by a function f(x) defined as:

f(x) = sign
(

N∑
i=1

α∗i yik(x, xi) + b∗

)
(A.12)

In the case where the two classes of points are not linearly separable even while considering a non-
linearly transformation of the data via a specific kernel, we need to allow some of the training points to
be misclassified, i.e. to be on the side of the separating hyperplane corresponding to points affected to the
opposite label.

To this end, we introduce penalty terms εn(∀n = 1, . . . N), also called slacked variables, defined by:
εn = 0 for data points that are in the correct margin boundary and εn = |yn− (〈w, xn〉+ b)| for misclassified
points.
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Points on the decision boundary have εn = 1, and misclassified points would be penalised by εn > 1,
proportionally to their distance to the separating hyperplane. Thus, the penalty terms can be written as
εn = max(0, 1− yn(〈w, xn〉+ b)).

Then, the exact classification constraints of equation A.8b are replaced by yi〈w, xi〉 + b ≥ 1 − εi. In
addition, the penalty terms must satisfy εn ≥ 0 ∀n = 1, . . . N .

The new objective function displayed in eq. A.13 aims both at maximising the margin and minimising
the penalty terms, i.e. minimising the number of misclassified points.

argmin
w,b,ε

||w||2+C
N∑
i=1

εi (A.13a)

subject to yi〈w, xi〉+ b ≥ 1− εi,∀i = 1, . . . , N, (A.13b)

εi ≥ 0, i = 1, . . . , N. (A.13c)

The parameter C in the objective function of equation A.13a introduces a trade-off between maximisation
of the margin, expressed by the term 1

2 ||w||
2, and classification error on the training set, expressed by the

penalty terms. This parameter is usually determined by cross-validation.
As for the separable case, SVM in the non-separable case can also be solved in the dual space using a

kernel instead of feature vectors.

A.6 Unsupervised learning

Unsupervised learning is the setting in which no labels are assigned to the data points. In this case, we can
seek for groups of data points within their overall distribution, which is called clustering. On another hand,
we can also estimate the distribution of the data, which is called density estimation. Also, we can project
the data on a lower dimensional space (dimensionality reduction).

This section is only a brief introduction and interested readers can refer to the following textbook [176].

A.6.1 Dimensionality reduction

Dimensionality reduction is a well-developed area. There are numerous techniques and variants. Some
of the most popular ones are the Principal Component Analysis (PCA), Non-negative matrix factorisation
(NMF), auto-encoder and more recently t-Distributed Stochastic Neighbour Embedding (t-SNE) and U-map.
Auto-encoders use artificial neural networks that we present in appendix A.8.2.

There is no way to map high-dimensional data into a low dimensional space such that all the structure of
the data is preserved. None of these techniques is better than the others, but they are complementary: PCA
and NMF try to preserve the linear structure, t-SNE tries to preserve topology (neighbourhood structure);
U-map tries to preserve both the proximity of objects like t-SNE but also the remoteness of objects.
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Principal component analysis

PCA is the classic and historical method for dimensionality reduction. It linearly projects the data on a
lower dimensional space such that the variance of the projected data is maximised. It is a linear projection
because the vectors of the basis of this space are linear combinations of the basis of the original space.
Equivalently, this linear projection also minimises the average projection cost, i.e. the mean squared distance
between data points in the original space and their projection to the principal space.

By definition, PCA is a variance maximising exercise. Hence, it requires the data to be centred and
standardised before we can apply it correctly.

Let us consider the projection of the data on a vector u1. We define the following optimisation problem:

Find u1 ∈ Rd such that Var(xTu1) is maximal, with ||u1|| = 1.

As the data is centered i.e. ( 1
N

N∑
n=1

xn = 0) the empirical variance is

Var(xTu1) = 1
N

N∑
n=1
{uT1 xn − uT1 x̄}2 = uT1 Su1 ,

where S = 1
N

∑N
n=1(xn − x̄)(xn − x̄)T is the data covariance matrix.

The optimisation problem can be rephrased as: the vector u1 is optimised such that the variance of the
projected data is maximised under the constraint that ||u1|| = 1. The Lagragian problem associated with
this optimisation problem is:

u1 = arg max
u1

uT1 Su1 + λ1(1− uT1 u1)

If we set the derivative of the objective function of the Lagrangian problem, it results in:

∇u1

(
uT1 Su1 + λ1(1− uT1 u1)

)
= 0⇔ Su1 = λ1u1 ⇔ uT1 Su1 = λ1

Therefore, the variance of the projected data is maximum when we projection direction u1 is the eigen-
vector associated with the largest eigenvalue λ1 of the empirical variance matrix. By induction, it generalises
to the projection on a space of dimension M by considering the eigenvectors associated with the M largest
eigenvalues.

In other words, the M dimensional vector space resulting from the PCA projection is defined by the M
eigenvectors of M largest eigenvalues of the data covariance matrix.

A.6.2 Clustering

There is also a wide variety of complementary clustering approaches. We focus now on two simple methods
used in this thesis, namely the K-means and hierarchical clustering methods.
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K-means clustering

For a set of observed data points xi ∈ Rp i ∈ {1, ..., n}, the K-means algorithm clusters the data by minimising
the distortion J(µ, z) defined by:

J(µ, z) =
n∑
i=1

K∑
k=1

zki ‖xi − µk‖2 (A.14)

The µk ∈ Rp, k ∈ {1, ...,K} are the centre of K clusters (K being a hyperparameter), and zki are indicator
variables associated to xi such that zki = 1 if xi belongs to the cluster k, and zki = 0 otherwise. Thus, the
distortion quantifies the distance between each data point and the centre of its cluster.

It is a non-convex objective function, and therefore, it has the problem of initialisation. Usually, centres
are initialised by uniformly sampling among the data points. The optimisation proceeds with an alternating
minimisation, as shown below.

Algorithm 2 K-means algorithm
Require:
Set of observations: xi ∈ Rp, i ∈ {1, ..., n}; cluster centre vectors: µk ∈ Rp, k ∈ {1, ...,K}; indicator
variables zki associated with xi such that zki = 1 if xi belongs to the cluster k, and zki = 0 otherwise.
Objective: Identify K clusters minimising the distortion J(µ, z) =

∑n
i=1
∑K
k=1 z

k
i ‖xi − µk‖2..

repeat
Step 1 : minimisation of J with respect to z: zki = 1 if ‖ xi − µk ‖2= mins ‖ xi − µs ‖2.
In other words, we associate each xi to the neerest cluster
Step 2 : we minimise J with respect to µ: µk =

∑
i
zki xi∑
i
zk
i

.
µk is obtained by setting to zero the k-th coordinate of the gradient of J with respect to µ, which is:

∇µkJ = −2
∑
i

zki (xi − µk)

until Convergence (e.g. J < ε with ε > 0)

Hierarchical clustering

Agglomerative Hierarchical clustering is another clustering algorithm. It starts with n clusters (each data
point being its cluster) and merges them successively two by two. More precisely, we need a criteria to
define which are the two closest clusters in order to successively merged them step by step. Several inter-
cluster distances are usually considered. Single linkage considers the inter-cluster distance as the distance
between the closest points of the two clusters. Average linkage considers the inter-cluster distance as being
the distances between all observations of the cluster pair. Ward linkage merges the two clusters for which the
resulting cluster’s internal sum of distance (internal compactness) is minimum. In other words, this strategy
merges clusters to minimise the intra-cluster variance, similarly to the K-means objective function.
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Evaluation of clustering

Clustering quality can be assessed by several means. When it is possible, clustering quality can be assessed
qualitatively by manually checking if the clusters make sense.

There are also scores to assess clustering quality like the silhouette score. It compares the average intra-
cluster distance with the inter-cluster distance. Indeed, a "good" clustering is expected to find compact
clusters different from each other. The silhouette score can vary from −1 (inter-cluster distance is 0) to 1
(average intra-cluster distance is 0).

A.7 Multitask learning

A.7.1 The singletask and multitask learning frameworks

In singletask learning, a model makes predictions for one specific question, for instance predicting interactions
between ligands and a given protein. Multitask learning addresses multiple questions simultaneously within
one model. For example, a multitask drug virtual screening model predicts interactions between ligands
with several proteins. The idea behind multitask learning is to improve the performance of all tasks, by
leveraging and exploiting some shared knowledge.

Multitask learning has several advantages. First, it improves generalisation performance by leveraging
the domain-specific information contained in the training samples of related tasks [369]. Uncorrelated tasks
might even improve generalisation by acting as a source of noise. Second, sharing data between related
tasks allows to increase the train set available for each task. Thus, it is expected to increase the statistical
power. While these mechanisms (data augmentation and regularisation) were identified using artificial neuron
networks [370], they are believed to apply to the whole multitask framework.

A.7.2 Tasks similarity

In general, tasks are intended to help each other when they are related in some ways. Tasks can be related
intuitively, like when a task’s output gives a direct information about another task (for example, predicting
whether a name is present in a sentence or not can be an auxiliary task for name error detection [371]).

Beyond such a qualitative discussion, it is important to quantitatively assess task similarity, which is an
ill-defined concept. To this end, similar tasks can be theoretically defined as tasks generated from a fixed
probability distribution p(y|x) [372]. It is a very strong assumption and we expect multitask learning to
work for more loosely related tasks. Besides, several definitions of "task relatedness" has been proposed but
none can be used directly in practice or does not encode all possibilities of task relatedness [353]. In the
most general case, we can assess that two tasks are related when solving them jointly with a multitask model
leads to better performance than solving the two tasks individually with two singletask models.

When task descriptors are available, tasks similarities can be evaluated by comparing their descrip-
tors [373, 374]
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A.7.3 Transfer learning

In the literature, we often find the similar yet distinct terms multitask and transfer learning. Multitask
learning shares knowledge between tasks in order to improve prediction performances of all tasks, whereas
transfer learning refers to transferring knowledge from a source task to a target task. In other words, the
knowledge sharing in transfer learning aims at improving learning of the target task only. In particular, neg-
ative transfer (resp. positive transfer) may occurs when knowledge sharing decreases (respectively increases)
the performances on the target task.

Transfer learning and multitask learning can both be sub-divided into two main categories [375]: "parameter-
based" and "representation-based" (or equivalently "feature-based") transfer learning. Note that there is an-
other subcategory of transfer learning referred to as "instance-based transfer learning", which considers the
data as the medium for sharing knowledge. More precisely, specific data from the source task are selected
to improve the model fitted on the target task [376].

A.7.4 Feature-based multitask and transfer learning without tasks descriptors

Feature-based transfer learning considers the data description as a medium to share knowledge. It is also
called representation-based transfer learning, because it usually relies on learning a common feature represen-
tation of data for all tasks. Multitask lasso [377] (see appendix A.3), as well as shallow [369] and deep [378]
neuron networks fall into this category.

Multitask lasso [379] is commonly considered as a baseline for multitask feature-based multitask learning.
It assumes that tasks are related in that their outputs mainly depend on a common sparse set of features.
We introduced multitask linear models in appendix A.3. To benefit from knowledge sharing with MT lasso
while allowing task-specific models to rely on task-specific features, Jalali et al. [380] proposed a combination
of block-wise sparse regularisation and task-wise sparse regularisation. More precisely, they decomposed the
matrix of tasks’ feature weights into two matrices, one shared by all tasks, and one task-specific, respectively
regularised with l1/l2 norm (MT lasso) and l1 norm (ST lasso).

A.7.5 Parameter-based multitask and transfer learning without task descrip-
tors

Parameter-based transfer learning links different tasks by using a task-related penalty term on the model
parameters. In other words, the models of similar tasks are assumed to have similar parameters. Thus, this
approach only applies to parametric models.

One of the most widely used approaches in this category is the "low-rank" matrix approach [381], which
assumes that some task-specific models have co-linear weights. In the case of p data features, m tasks and n
samples, the "low-rank" matrix approach seeks to find the minimum rank solution W ∈ Rn∗m of the linear
matrix equations AW = B, where A ∈ Rp∗n and B ∈ Rp∗m.
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This problem is NP-hard in general, and various approaches have been proposed to solve it approximately.
One widely used approach entails regularising a standard objective function by the trace norm of the model
parameters ||W ||∗, defined as the sum of the singular values of W . In particular, Pong et al. [381] proposed
a reformulation that can be efficiently solved.

When dealing with tasks without known descriptors, we can assume tasks are related following a hierar-
chical tree structure [382, 383] (or any intended structure, like a graph structure [384]). Such approach can
be considered both for linear [382] and non-linear [385] models.

Note that parameter-based transfer learning can also be performed by using Bayesian priors on model
parameters, either by assuming that all models are sampled from an identical prior [386, 387], or by learning
the latent hierarchy within the tasks [388].

A.7.6 Parameter-based multitask and transfer learning with task descriptors

In some cases, tasks descriptors are available, so that they can be used to compare tasks and to monitor
information sharing between the tasks. For instance, in the case of drug-target interaction prediction, ligand-
based virtual screening considers that each target interaction prediction defines a task. Therefore tasks can
be describe by the associated protein sequence descriptors (see section 2.1).

A naive multitask approach with task features consists in clustering tasks based on their descriptors, and
to fit cluster-wise models [389, 372].

Kernel methods offer a rich framework for multitask learning with task descriptors.
A preeminent approach is to use the Kronecker product of instance-specific and task-specific kernels [170,

135]. The resulting kernel lives in the space of the Kronecker product of the instance and task specific spaces.
Using vanilla kernel methods (like vanilla SVM) with such a (instance-task) pairwise kernel offers an efficient
and straightforward multitask approach.

Note this approach falls in the general multitask framework in which multitask convex problems are
reformulated as singletask convex problems, as demonstrated in [390]. Indeed, they show that the following
multitask optimisation problem (where J(u) is the penalty term for task similarity, and m and n are the
numbe of tasks and samples)

1
mn

∑
l∈Nm

∑
j∈Nn

L(yjl, fl(xj)) + λJ(u)

is equivalent to the following singletask formulation

1
n

∑
j∈Nn

L(yj , f(xj)) + λ||f ||2

In the case of a linear model, we note fl(xj) = uTl xj and J(u) = uTEu, where ul are the model parameters
for a task l and E captures the similarity between the tasks. The reformulation of the multitask problem uses
a linear transformation of the data x∗ = Bl.x, where x∗ lives in the (sample, task) feature space. Extension
to the non-linear case involves the representer theorem.
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Besides, the Kronecker product of the instance and task kernels correspond to the following linear trans-
formation:

Bl ∈ R(L∗dT )∗dI =


Bl0

...

BlK


where dI is the dimension of the feature space of instances, dT is the dimension of the feature space of tasks
and Blk = ΦlkIdI where Φl,k is the kth feature of task "l".

A.8 Deep learning

Before introducing the deep learning, we should emphasise that it is the result of recent developments within
the relatively old Artificial neuron Networks (ANN) framework. "Relatively" old because ANN appeared in
the late 50s as one of the first AI algorithms ever considered.

The recent re-branding of ANN derives from several developments: hype (the impressive achievements
of deep learning technologies, popularised by Google’s AlphaGo, for instance, have raised the interest of
researchers) and significant improvement in some popular yet challenging fields such as computer vision [51],
speech recognition & translation [190] and bioinformatics [191, 192]. Such performance improvements were
possible due to progress in two main areas: big data computational management, and computing power
(primarily in the form of clusters of CPUs/GPUs (central/graphics processing units). Other crucial devel-
opments that enhanced the deep learning paradigm and ANN modelling are the answer to the vanishing
gradient problem in backpropagation [324], and regularisation techniques [391, 392, 393]. These aspects are
discussed in the following appendix A.8.4.

Note the successes of neuron networks have led to the development of various programming libraries.
Leading examples are PyTorch, Caffe, Lasagne but most of all Keras and TensorFlow have become the
most popular. These two latter are Python-based and therefore relatively easy to use for bioinformaticians.
Moreover, their active community ensures that the latest neuron network algorithmic development and
architectures are available for users. Keras is in fact a wrapper for TensorFlow and others, much easier to
use than TensorFlow, whereas this latter is more flexible and slightly more up-to-date.

This section introduces the main results on artificial neuron networks relevant for this thesis. We direct
interested readers to the following textbooks for an exhaustive presentation [394].

In the next sections, we introduce the deep learning framework and some extremely useful neuron archi-
tectures.

A.8.1 Introduction to Artificial neural networks

Artificial neurons

The core component of artificial neuron networks is the artificial neuron. An artificial neuron computes a
weighted average of its inputs (mimicking synaptic weights) and applies a linear or nonlinear function called

http://pytorch.org/
http://caffe.berkeleyvision.org
https://lasagne.readthedocs.io/en/latest/
https://keras.io/
https://www.tensorflow.org
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activation function, analogously to neuronal cells, to this weighted average (see FigureA.7).

Figure A.7. A computational neuron. The ωi is the weight associated with each input neuron xi. φ is the activation function.
(picture from [395])

Activation functions

The most common activation functions are the sigmoid, hyperbolic tangent (tanh) and Rectified Linear
Unit (ReLU) (see Figure A.8). The sigmoid function was originally used as a continuous and differentiable
approximation of the Heaviside function. The Heaviside function outputs a signal when its input signal is
above a given threshold. A computational neuron with a sigmoid activation function is also called a gate, since
it outputs a signal if the weighted average of the inputs is positive and is silent otherwise (like the Heaviside
function). The hyperbolic tangent is another classical non-linear transformation used in ANN whose output
is either a positive or a negative signal, which the main difference with the sigmoid function. However, due
to the issue of disappearing gradients occurring when considering the sigmoid and tanh activation functions,
the ReLU has become the most widely used activation function. Indeed the gradient of sigmoid and tanh
functions tapers off to zero on both extremes of its activation, whereas the gradient of Relu is either 0 or 1,
meaning that it never saturates on both extremes.
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Figure A.8. The three most commonly used activation functions: sigmoid, tanh and ReLU. The Heaviside function, also
called the step function, is drawn for comparison.

Multi-layer neuron networks

In ANNs, the computational neurons are connected into complex architectures, and organised into layered
networks in which sets of neurons are partitioned into layers. Within a layer, each neuron is connected such
that it receives its inputs from some or all neurons of the preceding layer, and gives its output to the next
layer (from left to right in Figure A.9). The layered network can be considered "deep" as soon as there are
several hidden layers. "Deep" models are to be contrasted with to "shallow" models. Linear models and
kernel-based models like SVM (see appendices A.3 and A.5) are considered as shallow models. Indeed, linear
models are a generalised form of weighted averages (as performed by a single neuron without any activation
function), and kernel models are linear models on a transformation of the input space operated by the chosen
kernel (see appendix A.5).
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Figure A.9. An artificial neuron network made of an input layer with 3 input units, 2 hidden layers each made of 4 hidden
units and an output layer made of a single output unit. (picture from [396])

The data descriptors are directly fed into the input layer. Then, the outputs of the input layer pass
through intermediate layers call hidden layers performing successive non-linear transformations of the input
data.

The predictions are generated at the final layer, called the output layer. The output layer may contain
multiple nodes so that an ANN can natively perform multitask prediction.

When training neuron networks, we minimise a "loss" function describing the discrepancy between the
prediction ŷ of the neuron network from the true outcome y, as a function of the parameters. More precisely,
we minimise the risk, which is the expectation of the loss. Since the true distribution of the data P (x, y) is
usually unknown, the weights of a neuron network are adjusted via the minimisation of the empirical risk,
an approximation of the risk over the training data: 1

N

∑N
i=1 L(f(xi), yi) (N refers to the number of samples

in the data).

The most common loss functions are:

• for a regression problem: the mean square error loss function is commonly used to assess the error and
optimise the neuron network: MSE = 1

N

∑N
i=1(yi − ŷi)2. No activation function is considered to get

a final unbounded real value ∈ R at the final layer.

• for a binary classification problem: the binary cross-entropy loss function is used as the loss function:
Hbinary = 1

N

∑N
i=0 yilog(p(yi)) + (1 − yi)log(1 − p(yi)). Intuitively, log(p(yi)) is added to the loss if

sample i is positive, and [1− log(p(yi))] if sample i is negative, which penalises wrong prediction. The
sigmoid activation function is used for the output units, since it provides a probability value, and thus,
a real value ∈ [0, 1].

• a multi-class classification problem: the cross-entropy is used as the loss function, as a generalisation
of binary cross-entropy to M classes: H = −

∑N
i=1 yilog(yi) where yi is the probability distribution of

true labels (typically a one-hot vector), and p(yi) is the probability distribution of the predicted labels.
A softmax function is applied over output neurons so that the final output units are a probability
vector (all outputs summing to one).
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For a given task and its associated loss function, parameters for each layer (named the "weights" of the
network) are optimised by the back-propagation algorithm. More precisely, the derivatives of the empirical
risk over all the parameters are calculated by the back-propagation algorithm based on a chain rule, and
used in a gradient descent based algorithm [397].

In practice, for each layer l, the gradient of the loss function L is computed on local weightsW (l), ∂L
∂W (l) =

∂L
∂s(l)

.X(l)T (to update them subsequently), and the gradient on the local input X(l), ∂L
∂X(l) = ∂L

∂s(l)
·W (l)T

to pass the error back to the previous layer. In the above definition, ∂L
∂s(l)

= ∂L
∂σ(l) .

∂σ(l)

∂s(l)
is the gradient of

the scores s(l) = W (l)x(l) + b(l) without activation. Note that ∂L
∂σ(l) = ∂L

∂x(l+1) since σ(l) = x(l+1). Finally,
∂σ

(l)
i

∂s
(l)
i

= ∂σ
(l)
i (1− σ(l)

i ) for the sigmoid function and ∂σ
(l)
i

∂s
(l)
i

= 1
σ

(l)
i
>0 for ReLU for instance.

Then, based in the input data, deep neuron networks adapt the weights between two neurons by min-
imising the derivatives of the local loss for all input features, in order to correct for the prediction error made
at the output layer. Training a deep neuron network usually requires a large amount of labelled data.

Deep learning pros and cons

At this stage, we can highlight the two main benefits of the deep learning framework:

1. it is particularly suited for multitask learning, since it inherently builds relationships between multiple
prediction tasks by sharing hidden units among the tasks. We discuss multitask learning in the context
of artificial neuron networks in appendix A.8.3.

2. it builds complex features from raw input data in a hierarchical manner, via successive non-linear
transformations. Providing higher-level abstractions over the input samples, it might identify unknown
structures in the data. Indeed, deep learning algorithms learn a transformation of the data at multiple
levels, creating a new representation of the data better suited to learn a particular prediction model.
This is considered to be the main reason why deep learning yielded to performance improvements in
many fields.

.
Deep learning suffers in practice from two major drawbacks:

1. the overfitting issue: the computational power of such algorithms is so large that they overfit on the
training data easily. Solutions to the overfitting issue are discussed in appendix A.8.4. Indeed, it is well
known that neuron networks with at least one hidden layer can implement any Boolean function and
approximate, arbitrarily well, any continuous function defined on a compact set, given enough hidden
units [398, 399]. It can be easily justified in the case of a binary network in which neurons are equipped
with the Heaviside activation function. Indeed we can enforce a neuron in the hidden layer to fire for
each input individually, as in a look-up table. This also generalises to networks with sigmoid neurons
or other activation functions, but it is trickier to show since we cannot isolate inputs like a look-up
table. In the literature, this property is referred to as the universal approximation property. It means
that a deep neuron network can fit any training data, but it does not mean that it is to generalise well
to make predictions on new data points.
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2. the black-box question: the learning process cannot be easily understood. In bioinformatics, the ability
to provide predictions that are biologically interpretable is crucial in order to link these predictions
with current knowledge, or to suggest new insights into the underlying biological processes. Besides,
there is no mathematical theoretical result to prove or falsify the efficiency of deep learning-based
algorithms. Moreover, as it is challenging to understand the behaviour of deep neuron networks, it is
hard to understand what went wrong when the network fails. This concern is discussed appendix A.8.5.

In the following sections, we introduce some extremely widespread deep learning architectures and discuss
how they perform representation learning.

A.8.2 Deep neuron networks useful architectures

Feed-forward Neuron Network

The most common deep neuron network architecture is the stacked fully connected layers or Feed Forward
neuron Network (FNN) or Multi-Layer Perceptron (MLP) or simply Deep neuron Network. All these terms
are found in the literature and refer to the same architecture.

It is the "traditional" deep neuron network represented in Figure A.9. In such a network, each neuron
at a layer l takes as input all neuron outputs from layer l − 1 and thus, directs its output to all neurons
at layer l + 1 (which is what "fully connected" refers to). The original data are subjected to non-linear
transformations across several layers such that, when optimised, each intermediate (hidden) representation
is meant to capture abstract transformed features of the original data. In this sense, such a network is a
form of representation learning model, because the architecture is optimised to transform the original data
into another representation that is more efficient for a given task (as discussed previously in Section A.8.1).

FNN is mainly used when data are structured (each input has a feature vector), but are not structurally
arranged neither spatially nor chronologically. (e.g. features are not related in time or space). Indeed, since
each neuron at layer l takes as input all the neurons in layer l− 1, each neuron at layer l processes the layer
l − 1 as a whole. In the case where the data features are spatially arranged (like graphs, or images which
are 2D grids of pixels etc.), Convolutional neuron Networks (CNN, see Section A.8.2) are a relevant neuron
architecture to exploit such data structure. Recurrent neuron Networks (RNN, see Section A.8.2) however,
are meant to handle time, and more generally, sequentially structured data.

Moreover, FNN has the significant drawback in requiring a large amount of parameters. Indeed, if the
layers l−1 and l have both 100 neurons, the connections between the two already require 10,000 parameters.
CNN and RNN also have the advantage of reducing the number of free parameters while exploiting the
spatial or sequential arranged of the data.

Recurrent neuron Network

Recurrent neuron Network (RNN) is a particular form of neuron network architecture which uses many
copies of the same neuron modules (or cell). Recurrent neuron network approaches can also be viewed as
message-passing algorithms, as they propagate a signal along a sequence based on the local input and the
previous output signal. The RNN model can then exploit the sequential structure of the data.
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From a general point of view, an RNN is made of the same neuron module, that is repeatedly applied
on the concatenation of the local inputs xi with the output at the previous step hi−1 to generate the
local output hi. More precisely for the classic RNN, hi is computed as presented in Figure A.10 by hi =
tanh(W.(xi, hi−1) + b). The same neuron, and therefore the same learnable parameters W and b are used
on every input i.

Figure A.10. The repeated module in a standard RNN contains a single layer: hi = tanh(W.(xi, hi−1) + b). (picture from
[400])

An RNN takes each input one by one, and therefore, it can take a variable length list of inputs. For
instance, an RNN can work on sentences in which word i is represented by the input xi. The RNN can
produce an output hi for each word xi and a chain output si (see Figure A.11).

Figure A.11. RNN generating both positional hi and sequence si outputs. (picture adapted from [400])

Note that RNN directionally treats the data so that the hi value is based on xi and on the preceding hi−1

(from left to right in Fig. A.11). However, in some cases, data are sequentially ordered with no preferential
direction, like protein sequences. In such cases, a bidirectional RNN allows processing the input sequence
forwards and backwards (see Figure A.12). Then, the predictions hi are based on what came before and also
after the current position i. More precisely, the final output hi is usually the concatenation of the forward
RNN output hfi and the backward RNN output hbi .
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Figure A.12. Bidirectional RNN. (picture adapted from [400])

In the last few years, RNNs have been successfully applied to a variety of problems: speech recognition,
image captions and so on [401, 402, 283]. This impressive success is mainly due to a special kind of RNN
called Long short-term memory (LSTM) network. LSTM is a kind of recurrent neuron network whose
building block is capable of efficiently storing contextual information over different positional length scales.
In theory, classic RNN is capable of handling such “long-term dependencies”, since it takes as input the
previous output hi−1 which is supposed to convey information from previous positions. However, classic
RNN fails to convey such “long-term dependencies” in practice, due to the vanishing gradient problem. In
other words, the standard RNN cell fails to convey long-term dependencies mainly because it is equipped
with a single tanh layer, so that an update is "forgotten" after several other updates of the layer. To address
this issue, LSTM is conceived to connect previous information to the present task. We often talk about the
"RAM" effect of LSTM to refer to that property.

Figure A.13. The repeated module of LSTM. σ and tanh refer to the neuron network layers and + and × refer to point-wise
operation. (picture adapted from [400])

The LSTM module can be found in Figure A.13. The core idea of LSTM is to use a cell state vector Ct
that runs straight down the entire chain to convey long term information. In the following, we first describe
how this cell state Ct is updated (into the light blue dashed square in Fig. A.13), and then how the output
ht is computed (into the light violet dashed square in Fig. A.13).
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The cell state is updated at each step based on linear interactions:

ft = σ(Wf .[ht−1, xt] + bf ) used to compute Ĉt = ft × Ct−1 (A.15a)

it = σ(Wi.[ht−1, xt] + bi) and C̃t = tanh(WC .[ht−1, xt] + bC) used for Ct = Ĉt + it × C̃t (A.15b)

Eqs. A.15a erase some part of the cell state Ct−1 by applying a gate based on the concatenation of the
current input xt and previous output ht−1 (a sigmoid layer can be considered as a gate as it mostly returns
point-wise zeros or ones). Eqs. A.15b add filtered (by a gate it) modification C̃t, to the cell state Ĉt−1. Both
the update C̃t and the gate it are based on the concatenation of the current input xt and previous output
ht−1.

The output ht is computed based on the current cell state Ct passing through a tanh layer and filtered
by a sigmoid gate ot, taking as input the concatenation of the current input xt and previous output ht−1.

ot = σ(Wo.[ht−1, xt] + bo) (A.16a)

ht = ot × tanh(Wh.[Ct] + bh) (A.16b)

All parameters ((Wf ,bf ),(Wi,bi),(WC ,bC),(W0,b0),(Wh,bh)) are adjusted via back-propagation, which is
computationally heavy. To address this issue, an increasingly popular variant of LSTM called the Gated
Recurrent Unit (GRU) was introduced (see Figure A.14). Most importantly, it combines the forget and
input gates (respectively ft and it) into a single update gate. In addition, GRU merges the cell state Ct and
hidden state ht. The resulting model is less complex and in practice easier to train than standard LSTM
while preserving the "RAM" property.

Figure A.14. Gated Recurrent Unit. (picture from [400])

Convolutional Neuron Network

A Convolutional neuron Network (CNN) is a widely used neuron network architecture on data with a spatial
structure. A CNN can be viewed as a message passing-like algorithm, similar to RNN, since it learns to
propagate locally detected information to hierarchically build a global representation of the input.

In signal processing, a convolution over two functions f and g is defined as (f ∗ g)(x) =
∑
a f(a)g(x− a).

Therefore, we can think of convolution as sliding one function on top of another, multiplying and adding at
each point.
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Convolutional networks use convolutional units, which are neuron modules operating on patches of the
input, and sliding over the input to detect patterns locally on the data. This is similar to a mathematical
convolution.

Convolutions are used in many domains such as audio and image processing. For instance, in image
processing, images are two-dimensional arrays of pixels (the features of an image are the pixels values). A
convolution on an image refers to the operation of sliding an n*n pixel grid function on the input image and
computing a new pixel value for each pixel (see Fig. A.15). The new pixel value results from the weighted
value of the local pixel and its neighbours, based on the weight given by the "convolutional filter". In the
literature, the function sliding and operating on local patches of the input is called a "kernel" or a "filter" and
aims at detecting patterns locally over the entire input. The patch on which the kernel operates is called
the "receptive field".

Figure A.15. A kernel computing a new pixel value for an input image based the weighted sum of its local grid pixel values,
while sliding over the image. (picture from [403])

For instance, a 3*3 edge detection kernel can be defined by :


−1 −1 −1
−1 8 −1
−1 −1 −1

 Indeed, its absolute output

value is more significant when the central pixel is opposed to the side pixels. However, it gives approximately
zero when the central pixel and side pixels are similar.

In the case of convolutional neuron networks, convolutional units are learnable filter functions (σ(W.x+b))
operating on local receptive fields which learn the filter weights themselves. In other words, it locally learns
feature patterns as it slides over the data. More generally, a convolutional unit usually operates a set of
filters in parallel, getting the same input but then trained to detect different patterns. In the case of 2D
images, one neuron might detect edges, and another might detect blue-red colour contrasts and so on.

In practice, the convolutional unit is copied and applied simultaneously over the data instead of being
slid over the data. Therefore, a convolution layer is filled with multiple copies of a single convolutional unit
(see Fig. A.16).

Furthermore, a convolutional network is usually made of several stacked convolutional layers. Thus, more
generally, the convolutional unit of layer l operates locally on the output of layer l − 1, detecting patterns
of the patterns detected at layer l − 1 etc. Such a neuron architecture thus builds more and more abstract
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representations of the original data.

In addition to extracting local patterns over the spatial arrangement of the input, convolutional layers re-
duce the total number of free parameters compared to FNN by using the same convolutional unit, preventing
overfitting. Also, highly-efficient parallelised convolution implementations on GPUs brought a widespread
usage.

A convolutional layer is usually followed by a "pooling layer" which aggregates neighbour detected patterns
(see Fig. A.16). In addition to improving the signal to noise ratio, it contributes to greatly reduce the number
of parameters, again preventing overfitting. Moreover, since we are interested into encoding the original
image, aggregating neighbour detected patterns enables to forget the localisation of these patterns. The two
main aggregation functions are the max and mean functions.

Figure A.16. A 2D convolutional neuron network with a first convolutional layer (whose convolutional unit is A - a bunch
of neurons in parallel, getting the same inputs and detecting different patterns-) followed by a max pooling layer and a second
convolutional layer (whose neuron is B) to finally build a global representation F of the input. (picture from [400])

To conclude this introduction on CNN, let us discuss some basic yet primordial technical details. We can
vary some parameters to modify the behaviour of a convolutional layer. First, we can play with the number
of filters, i.e. the number of patterns a single convolutional layer detects simultaneously. We can play on the
filter size, i.e. the size of the receptive field on which the filter operates (for images, it is the size of the grid
kernel). We can control how the filter convolves around the input volume by defining the stride value, i.e.
defining the sliding step size in all directions. Finally, we can define the padding strategy, i.e. the strategy
to operate the convolution filters on the edges of the input data. Most frequently, we fill the missing value
in the receptive field at the edges with zeros, but others strategies are possible depending on use case.

Auto-Encoder Networks

Auto-encoders are introduced here and used in Section E.



APPENDIX A. MACHINE LEARNING IN BRIEF 230

The auto-encoder is a neuron network which aims at encoding the input data into a low-dimensional
representation, and then decodes this latent representation to reproduce the input signal as well as possible.
Encoding and decoding are performed via neuron layers. A classical auto-encoder network is shown in
Figure A.17. However, an encoder/decoder based on convolutional or recurrent or both architectures is also
conceivable, as the network performs a contraction of the input data before a reconstruction. Auto-encoders
are part of a family of unsupervised methods used for dimensionality reduction, visualisation and also in the
semi-supervised setting when labelled data are scarce. Indeed, an auto-encoder learns to encode unlabelled
data by building a supervised prediction task which is the reconstruction of the original input.

Figure A.17. One the simplest auto-encoder architectures. (picture from [363])

In practice, however, an auto-encoder can quickly learn to compress the data by assigning to each instance
a single and isolated latent representation. The latent space may not be continuous, and so does not allow easy
interpolation, since the decoder has no idea how to deal with the non-encoded regions of the latent space. This
model cannot be used as a generative model, as we may need to encode a continuous representation in order
to sample realistic instances from the latent space randomly. To extrapolate new instances, the uncovered
parts of the latent space must be filled. A recent yet extremely popular neuron network auto-encoder,
called Variational Auto-Encoder [404], achieves this by constraining the encoding network to generate latent
vectors following a probability distribution on the latent space (usually a Gaussian distribution). Indeed,
as each instance is not only represented by a single vector but by a wide distribution of vectors in the VAE
framework, the latent space is more populated. Moreover, as the latent space is more populated while being
constrained, it enforces similar instances to share a similar encoding, i.e. to be represented by overlapping
distributions.

The VAE corresponds to a "classical" auto-encoder network except that the encoder in the VAE does not
directly encode the latent representation of the input, but encodes the parameters of the distribution from
which the latent representation is then drawn.

From a probabilistic model point of view, a variational auto-encoder models the observed data x as a
latent representation z of instances living in a latent space (see Figure A.18).
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Figure A.18. The graphical model of the variational auto-encoder[404]. We note pθ(z|x) and qΦ(x|z). x is the observed
random variable although it is assumed to be generated from an unobserved latent space z. N is the number of samples.

Following the graphical model in fig. A.18, we can write the joint probability of the model as p(x, z) =
p(x|z)p(z). It is a generative model since we can sample an instance xi ∼ p(x|zi) after sampling from the
latent distribution zi ∼ p(z).

Regarding inference in this model, the goal is to infer a proper latent representation z for given observed
data x, or in other words, to calculate the posterior p(z|x) = p(x|z)p(z)

p(x) . However, p(x) =
∫
p(x|z)p(z)dz is not

computationally tractable as it needs to be evaluated over all configurations of latent variables. Variational
inference approximates the posterior p(z|x) with a family of distributions qλ(z|x) parameterised by λ. As
discussed in the following, in practice, we want to model p(z) ∼ N (0, I). Therefore, the approximation q

of p(z|x) is considered Gaussian, and λ refers to the mean and covariance matrix of the latent variables for
each data point λxi = (µxi , σ2

xi). λi=1,..,N is found by minimising the KL divergence between p(z|x) and its
approximation qλi(z|x):

λ∗ = argmin
λ

[KL(qλ(z|x)||p(z|x))] = argmin
λ

E[log(qλ(z|x))]− E[log(p(x|z)] + log(p(x)) (A.17)

As log(p(x)) is still intractable but constant and the KL≥ 0 (following the Jensen inequality), E[log(qλ(z|x))]−
E[log(p(x|z)] is a lower bound of KL(pλ(z|x)||p(z|x)). Then, minimising KL(pλ(z|x)||p(z|x)) can be approx-
imated by the maximisation of the so-called Evidence Lower BOund (ELBO), in eq. A.18, which is tractable.

ELBO(λ) = E[log(qλ(z|x))]− E[log(p(x|z)] (A.18)

In practice, the approximate posterior qθ(z|x, λ) is parameterised with an inference network (or encoder)
with parameters θ that takes as input data xi, and outputs λi (parameter of the distribution from which
we then draw zi). The likelihood p(x|z) is also parameterised with a generative network (or decoder) with
parameters φ that take the latent representation z as inputs, and outputs parameters to the data distribution
pφ(x|z). The parameters θ and φ are typically the weights and biases of neuron networks. The weights are
adjusted to maximise the ELBO using stochastic gradient descent. Note that back-propagation cannot flow
through a random node, i.e. through the sampling operation z ∼ N (µ,Σ). The so-called "reparameterisation
trick" solves this issue. It introduces a new parameter ε which re-parameterises z in a way that allows
back-propagation: z = µ + Lε, ε ∼ N (0, I), Σ = LTL. From this point of view, z is not sampled from
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qφ(z|x), but z is a function that takes parameter (ε, (µ,L)). (µ,L) come from the encoder and therefore, the
encoder’s weights can be adjusted by backpropagation via the partial derivatives w.r.t. (µ,L). ε is now the
"source of randomness", and there is no need for taking its derivatives to train the encoder.

From a neuron network based auto-encoder point of view, we can recover the same loss function easily.
The VAE network is trained by minimising the loss function defined as the reconstruction error arising from
encoding z by x, and decoding x from z plus a loss that enforces the latent representation to follow a unit
Gaussian distribution. More precisely, L =

∑N
i=1 li where

li(λ,Φ) = −Ez∼pλ(z|xi)[log(qΦ(xi|zi))] +KL(pλ(zi|xi)||p(z)) (A.19)

Eq. A.18 and A.19 are equivalent (see [404]). Eq. A.19 provides helpful intuition of the representative power
of the VAE. The first term −Ez∼pλ(z|xi)[log(qΦ(xi|zi))] is the reconstruction loss after the encoding and
decoding process. With no limits the values vectors µ and σ can take, the encoder can learn representations
which are still spread over the latent space. However, we want to push similar samples to be encoded
similarly in order to enable smooth interpolation. The second term forces pθ(z|xi) to be similar to unite
Gaussian N (0, I) by minimising the KL divergence between pθ(z|xi) and p(z) ∼ N (0, I). Therefore, this loss
encourages the encoder to distribute all representations around the centre of the latent space. Optimising
the two together results in an appropriate representation for the decoder, yet densely packed near the origin
of the latent space.

Note that a generalisation of the VAE, called β-VAE [405], has been proposed. It introduces a parameter
β on top of the second term KL(pλ(zi|xi)||p(z)). Then β > 1 puts an extra-weight on the Gaussian
regularisation, and enforces the features in the latent representation to be independent (i.e. a disentangled
representation). In other words, by decreasing the size of the available latent space, it enforces the latent
components to correspond to features that hold different information.

Another popular generative model is the Adversarial Autoencoder (AAE). It is a classical deterministic
auto-encoder, but it is regularised to force the distribution of the latent representation q(z) to match a
tractable prior p(z). More precisely, AAE is an auto-encoder trained jointly with a separate network (called
"discriminator" network) which predicts whether a given sample came from the latent space of the encoder
q(z), or from an a priori distribution p(z). In other words, an AAE optimises alternatively the loss of
the auto-encoder and the adversarial loss. It optimises both the discriminator weights and the generator
weights, to fool the discriminator into mixing randomly sampled z ∼ p(z) and latent z ∼ q(z) produced by
the generator.

Commonly, the discriminator network compares and tries to discriminate the latent vector z ∼ p(z) with
a vector sampled from q = N (0, I). Thus, AAE applies the adversarial scheme to the basic idea of VAE.

Generative Adversarial Networks (GANs) [406] are another type of adversarial deterministic auto-encoders.
They are also very popular neuron network-based generative models. Similarly to AAE, a GAN has two
networks trained in competition: a generator G, generating instances from pure noise pretending they are
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genuine, and a discriminator D trained to discriminate authentic samples from forgeries. Both models train
in alternation: the generator generates synthetic data from sampling a noise space and competes against the
discriminator to mislead it. This scheme can be formalised as a game-theoretic optimisation problem:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z)))].

A schematic view of GAN is in Figure A.19.

Figure A.19. Schematic view of the Generative Adversarial Network. (picture from [406])

Intuitively, a GAN is expected to sample from the original data distribution if the generator has learned
to fool a well-trained discriminator, since any imperfections could have been amplified and used by the
well-trained discriminator.

Though a simple model, it is not straightforward to make a GAN converge as it suffers from several issues.
The most typical one is the discriminator overwhelming the generator during training. This issue is referred
as "mode collapse", and several improvements have been proposed to prevent this undesired behaviour. For
instance, Salimans et al. [407] proposed to use mini-batch, and Arjovsky et al. [408] proposed "WGAN" which
considers as loss function an approximation of the Earth Moving distance between the empirical distribution
and the generator distribution.

Despite similar mathematical structure and similar results in terms of likelihood, current state of the
art suggests that GANs are better in generating images, which is currently the most common application of
both AAE and VAE [409].

Generative deep neuron networks is an active research topic of deep learning in chemoinformatics, be-
cause it is expected to enable generating molecules with some desired physical and biological properties (as
discussed in appendix E).
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Attention Mechanism

Motivations
Attention mechanisms were found extremely powerful techniques to enable neuron networks to focus on a

subset of the information they are given. Indeed, in the case of large and noisy data, only a part of the input
data may be relevant for the learning task. In such a case, an attentional interface can highlight elements
with the most relevant information, in order to improve the signal to noise ratio. Attention can be used on
top of CNN or of RNN layers.

Attention mechanisms were first applied on conversational modelling [410], translation [411] and voice
recognition [412]. In the particular case of automatic translation, attention mechanisms are of major im-
portance since the order of words differs for different languages, which means that direct translation of a
sequence of words into the corresponding sequence of words is expected to fail.

Note that standard neuron layers can, in theory, learn to focus on a part of its input, by adjusting its
weights accordingly. However, in practice, all weights tend to get values in the same range, mostly because
the weights are usually regularised by a L2 penalty (see Section A.8.4). Moreover, a deep neuron network is
known to be able to approximate any function [398, 399], but its optimisation is not convex and adjusting
the neuron network architecture to smooth the optimisation landscape is meant to facilitate learning.

In addition to performance benefits, an attention mechanism can guide the interpretation of network
decision making by analysing the attention weights over the input set.

General definition
Attention mechanism is defined as a function f : Q × XN → [0, 1]N that maps each of the objects in

the input set XN to a relevance score, or attention weights, based on a query q whose set Q is of the same
dimension as X. Usually, these weights αi result from the softmax function applied on a function g assessing
the similarity between the query vector q and the input xi: αi = exp(g(q,xi))∑

j
exp(g(q,xj))

. Typically, g is the dot

product g(q, xi) = qT .xi, or a more general dot product like g(q, xi) = qT .Watt.xi, where Watt is a learnable
weight matrix. Note that the query and other parameters, like Watt, are typically learned via stochastic
gradient descent together with the weights of the network. In the case of LSTM, in which each input xi
is associated with a hidden state si and output state hi, we can derive similar attention mechanisms like:
g(q, si, hi) = qT .tanh(Watt.[si, hi]).

Then, the attention mechanism outputs a weighted combination of the input
∑
i(αi + 1) � xi, where

� refers to the element-wise product. The "+1" operation, often removed, helps the network to learn
more robust attention maps by avoiding vanishing gradients caused by consecutive layer-by-layer multiplica-
tions [413, 414]. Indeed, a neuron assigned consecutively to a null attention weight may become dead since
it cannot adjust to the loss.



APPENDIX A. MACHINE LEARNING IN BRIEF 235

Similarly, "self-attention mechanism" refers to an attention mechanism for which the query vector is built
based on the input itself, or even on the set of all inputs, usually via a sigmoid layer: q = σ(Watt.x+ batt).
Intuitively, it relies on the input to compute the query used to focus on some of the input.

attLSTM
In particular, an attention mechanism is an order-invariant operation.
A notable application is a module [306] named attLSTM. We refer to this module in section 6.2. It allows

learning a representation for an unordered set of inputs. For instance, we can use this algorithm to learn a
graph-level representation based on the unordered set of its nodes’ representations.

In essence, it is an iterative way to build set-level representation q∗ as a learnable sum over the set of
input feature vectors {xi}.

At each step t, it uses the output q∗t−1 (the temporary set-level representation at step t − 1) as a state
for an LSTM to generate a temporary query qt so that (no input in the LSTM):

qt = LSTM(q∗t−1, 0).

Then, the temporary query is used to build an attention mechanism on the learnable transformation of the
original feature vectors

zit = σ(W (t).xi + b(t)), ∀i.

So that:
rt =

∑
i

αitzi with αit = exp(eit)∑
j exp(ejt)

where et,i = dot(qt, zi).

The update of the output is the concatenation of the temporary query qt and attention based weighted sum
rt:

q∗t = concat(qt, rt).

At the first step of the algorithm, there is no former state, so that q∗0 is a learnable query vector.

A.8.3 Multitask with deep neuron networks

Singletask and multitask learning have already been discussed in appendix A.7. In a nutshell, singletask
models make predictions for one specific question (for instance the interaction of ligands with a single protein),
whereas multitask models address multiple questions simultaneously (interaction of ligands with multiple
proteins). We focus here on the multitask in the context of neuron networks. Since training deep neuron
networks require a relatively large amount of data, multitask learning is expected to have a substantial
positive impact on the achievable performances.

Multitask deep learning with ANN: hard-sharing

First, we must highlight that ANNs are inherently multitask models. Indeed, a final output layer with "n"
neurons can make predictions for "n" different tasks. In such a case, all layers except the last one are shared
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by the "n" tasks, which means that all neurons of the output layer use the same final abstract representation.
In addition, all task prediction errors are simultaneously used to adjust the weights of the network encoding
the input data into the abstract representation, whereas output units are optimised on individual tasks. This
may have a regularisation effect and help the network to generalise better.

A few studies [308, 333, 334], using FNN to predict molecular activities in two hundred biological assays,
have shown some efficiency of such multitask learning in the context of DTI prediction. The benefits of
multitask learning appear to be stronger for specific tasks. Similarly, other studies noticed the benefits of
multitask learning is highly task dependent [308]. Ramsundar et al. [333] noticed that a multitask FNN
model exhibits better performances for tasks sharing many active compounds with the others. Xu et al.’s
work [334] showed, in the case of QSAR approaches, that the more two tasks can benefit from each other, the
more the compounds in the training data of the first task are similar to compounds from the test data of the
second task (similar in terms of molecular structures and bio-activities). If bio-activities are uncorrelated, a
negative transfer between the tasks has been observed.

Note that forcing two task-specific networks to share the same encoding layers is quite a strong assump-
tions, and it may be relevant only in the case of extremely related tasks (like predicting interactions for two
proteins of the same family).

To consider a less stringent sharing of layers, we can restrict the number of shared layers only to some
of the initial layers [415] (see Fig. A.20). In the literature, this MT strategy is referred to as "parameter
hard-sharing" since some neuron network layers are directly shared between tasks.

The hard-sharing strategy results in non-smooth regularisation. Moreover, it quickly breaks down if tasks
are not closely related, or require sharing information at different levels. A smoother sharing is preferable
in most cases.

Figure A.20. Sketch of the parameter hard-sharing framework for multitask learning with deep neuron networks. (picture
from [353])
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Multitask deep learning with ANN: soft-sharing

"Soft-sharing" is a similar approach introducing a softer inter-task knowledge transfer. All tasks are inferred
with their individual neuron networks, but task-specific weights are encouraged to be similar layer-wise (see
Fig. A.21).

For instance, for each layer l and each pair of tasks (t, t′), we can add to the loss the layer-specific distance
between task-specific weights : ||W l

t −W l
t′ ||2. [416] Note that, it does not force the representations to be

similar, but rather encourage the extracted features to be similar. Also, it appears to be more efficient to
consider decreasing weights sharing with layer depth l, allowing more and more abstract representations to
differ between tasks [353].

Figure A.21. Sketch of the soft-sharing framework for multitask learning with deep neuron networks. (picture from [353])

Multitask soft-sharing was successfully applied to several object recognition and detection tasks on images
by Rozantsev et al. [417]. In this study, authors managed to leverage abundant annotated data from a source
task to train a classifier in a sparse target task, by soft-sharing the encoding layers between task-specific
networks. They also show that the soft-sharing approach outperformed hard-sharing one.

Multitask deep learning with ANN: partial-sharing

The above approaches force all neurons in each layer, i.e. all representations at every depth, to be at least
softly shared between tasks. This strategy can work for strongly related tasks, i.e. tasks which can use the
same abstract representation. In the case of loosely related tasks, we can still expect a positive transfer
by considering smoother approaches which would let the architecture express both task-shared features and
task-specific features. In other words, the network would learn a general representation on different tasks,
while providing the ability to learn task tailored features to avoid underfitting.

Some approaches consider neuron modules to transfer layer-wise knowledge between task-specific net-
works.

Misra et al. [378] defined a cross-stitch network which proposes a layer-wise re-weighting of the output of
each task-specific network, to control the flow of information transfer between two tasks. It can be viewed as
an extension of soft-sharing to learnable soft-sharing. Indeed, it leverages at each layer the knowledge of the
other task by learning a linear combination of the output of the previous layer of both tasks (see Fig. A.22).
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Importantly, the information sharing weights are trainable and allow the model to learn what to share.

Figure A.22. Cross-stitch network in [378]. Note they only place cross-stitch units after pooling and fully-connected layers.

Ruder et al. [418] extended this work by combining tensor factorisation and the cross-stitch network to
learn what layers should be shared in a flexible fashion and how. In other words, they define an architec-
ture that separates at each layer task-specific and shareable representations, in order to learn disentangled
representations and improve the learning success and robustness.

Alternatively to transferring information based on direct re-weighting, many alternatives has been pub-
lished to share partial knowledge between prediction task.

For instance, Xiao et al. [419] defined a neuron network module, inspired by GRU, to share layer-wise
information between two tasks.

Also, Liu et al. [420] consider a single shared network which learns a global representation for all tasks.
Then, for each task, a task-specific soft attention mask is learnt at each layer of the shared network, to
automatically determine the task-specific features among global features. This allows the learning of both
task-shared and task-specific features in an end-to-end manner. Furthermore, sharing a pool of global
features with automatic task-specific feature combinations allows partial information sharing, with far fewer
parameters than the previous multitask architectures which use an explicit separation of tasks.

In this section, we have only considered multitask models via layer-wise knowledge sharing. Meyerson et
al. [421] explored the effect of reordering shared layers in a multitask framework.

More precisely, they reported that parallel ordering limits the potential of deep multitask learning, because
of the strong constraint it imposes on how each layer is used. Indeed, it may be more difficult for deeper
layers to represent features for all tasks, since tasks feature hierarchies may not match, particularly when
more and more tasks are added to the model. Moreover, layers used at different depth by different tasks
may learn more general features than layers trained at a fixed depth.

Beyond these results and observations, this study suggests to go beyond layer-wise information sharing,
by designing neuron modules which may capture recurrent modularities in latent representations at several
depths.
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A.8.4 Considerations about the training of deep neuron networks

In this section, we introduce practical aspects of deep neuron networks optimisation. Deep neuron networks
are known for their high performances, but also for their large number of hyper-parameters and tendency to
overfit. In particular, the optimisation of a ANN is non-convex. Therefore, the choice of hyper-parameters
has a huge impact on how the parameter space is spanned, and on the optimisation landscape itself.

ANN hyperparameters

We can divide ANN hyper-parameters into three categories: hyper-parameters for the architecture, for the
learning process, and for regularisation.

Architecture hyperparameters
Architecture parameters refer mainly to the number of layers and hidden units in the case of FNN and

RNN, and the convolution parameters for CNN (see appendix A.8.2). In the case of CNN, we can play with
(i) the number of filters (i.e. the number of patterns a single convolutional layer detects simultaneously),
(ii) the filter size (i.e. the size of the receptive field on which the filter operates), (iv) the stride value (i.e.
defining the sliding step size of the convolutional filters in all directions) and (v) the padding strategy (i.e.
the strategy to operate the convolution filters on the edges of the input data).

A bunch of other parameters can also be considered as architecture parameters, such as weight initialisa-
tion procedure. Some of these hyper-parameters have default values working for a wide range of applications.
In particular, Glorot weight initialisation [393] and gradient optimisation techniques (e.g. Adam [422]) have
a significant influence on the overall performance. Note that combining ensembles of 5–10 models initialised
with different random seeds usually leads to a substantial increase in performance. Deep learning net-
works are also robust to architecture-related parameters, which means that a large range of values usually
corresponds to the best performance.

Note, however, that the architecture must be deep and wide enough to model the data, while avoiding
being too complex to avoid overfitting.

Regularisation hyper-parameters.
In order to reduce the overfitting issue, deep neuron networks consider a collection of methods with

their corresponding hyper-parameters. The most important ones being weight decay, dropout [391], batch
normalisation [392] and early stopping.

Weight decay refers to the traditional L2 penalty on the weights.
Dropout is a simple yet highly effective method to control overfitting in the case of artificial neuron

networks. Dropout refers to the withdrawal of some neuron units according to a certain probability, at
each iteration of the training phase. Therefore, the network learns with missing neurons, which increases its
generalisation properties.

Batch normalisation re-parameterises the hidden unit activation, in order to increase convergence speed,
but it also renders the output stochastic, creating a regularising effect.
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Early stopping refers to the idea of stopping the training when the network starts overfitting, i.e. when
the performance on a validation set starts to decrease. In this case, the performance of deep neuron networks
must be evaluated with nested-cross validation.

Learning process hyper-parameters
The essential hyper-parameters to tune in order to reach high performances are related to the learning

schedule. Learning is the process by which the weights are adjusted. The main algorithm for training a
neuron network is stochastic gradient descent with respect to the errors at the output layer. Recall that
stochastic gradient descent can be computed efficiently using the back-propagation algorithm, a straightfor-
ward application of the chain rule.

Stochastic gradient descent is a gradient-based algorithm updating the weights for each batch of instances.
It requires two parameters: learning rate and batch size. The learning rate controls how much the weights are
adjusted with respect the loss gradient, while the batch size defines the number of samples that is propagated
through the network at each optimisation iteration. Both parameters are coupled. A bigger batch size gives
a more averaged direction for the update step, and a higher learning rate increases the size of the update
step in the optimisation landscape.

The learning rate is a sensitive parameter that needs to be tuned carefully. Indeed, a learning rate that
is too high is likely to trigger gradient explosion, or at least lead to an unstable model, but a learning rate
that is too small may not consistently update the weights. In practice, we often exponentially decrease the
learning rate during the training over the epochs so that the learning rate at epoch t is: lrt = lr0 ∗ e( − β.t)
(where the decay factor β is a hyper-parameter to be tuned). Similarly, we can reduce the learning rate
when the training error reaches a plateau for few consecutive epochs. Reducing the learning rate during
training enables to start training by spanning the parameter space with a large optimisation walk to find a
"global optimal subspace" at first, and to keep on optimising the weights with a smaller optimisation walk
in a second phase in order to find a local optimum inside the global optimal subspace.

ANN hyper-parameters selection

Deep neuron network optimisation is a strongly non-convex optimisation problem. Therefore, tuning the
hyper-parameters of a deep net is not trivial.

In most cases, the ANN hyper-parameter space is explored manually based on the user’s experience. Ran-
dom search, Bayesian optimisation or reinforcement learning are considered to explore the hyper-parameter
space automatically.

Some [423] investigated how to adapt learning hyper-parameters (optimiser, batch size, learning rate,
architecture parameters) for producing loss functions that are easier to train (less hilly), in order to produce
solutions with better generalisation properties.

Random search
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In practice, hyper-parameters are usually semi-automatically optimised via random search. Indeed,
random search is preferable to grid search as it evaluates each parameter more diversely for the same amount
of computation. We then better assess the effect of any latent parameter on the optimisation landscape. A
toy example is shown in Figure A.23.

Figure A.23. Random Search better explores the effect of important parameters on the landscape than grid search. (picture
from [424])

Bayesian optimisation
However, more sophisticated techniques than random search can be proposed to tune the hyper-parameters

of a deep neuron network. Bayesian optimisation [191, 425, 426, 427] is widely used for deep network hyper-
parameter optimisation. Note that even more sophisticated approaches combining reinforcement learning
with deep learning was used to tune a neuron network [428].

Bayesian Optimisation is a very general framework for finding the global optimum of a non-convex,
expensive-to-evaluate objective. It is a gradient-free strategy for the global optimisation of any black-box
function. More precisely, given a function f , Bayesian Optimisation constructs a probabilistic surrogate based
on previously evaluations, to propose new inputs on which to estimate f based on a predefined acquisition
function and the probabilistic surrogate, in the intention of finding its optimum.

Different models can be used as surrogates to model the objective function landscape. The most common
are Gaussian Processes, Random Forest and Bayesian neuron networks (standard neuron network except that
the weights are now probability distributions from which values are sampled when requested). Gaussian
Processes provide a flexible way of finding analytic approximations, but are costly for high dimensional
problems. RFs are more scalable but display better prediction performance for categorical input data and
classification tasks. Recently, BNNs have gained attention since they retain the flexibility of GPs at a
computational cost comparable to RFs.

Likewise, a collection of acquisition functions were studied. One of the earliest and most widely applied
is the so-called "expected improvement" function and variants, which quantify the improvement expected by
the evaluation of a new point in the parameter space. Each acquisition function proposes hyper-parameters
to control the exploration-exploitation trade-off. Indeed, the acquisition function should favour exploration
of the entire parameter space when the general location of the optimum has not been determined, and favour
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exploitation otherwise.

A.8.5 Interpretability and understanding of deep neuron networks

Deep learning methods are often criticised for being impermeable black-box algorithms, which means that it
is difficult to track how they solve a task, compared to other ML algorithm. This is a multifaceted question
that requires a careful consideration [429, 430].

Is model interpretability an issue?

First, we expect machine learning methods to learn rules that are, plausibly, too difficult for us because we
do not know their underlying rules. This is the case in the fields of material design, bioinformatics and more
specifically chemoinformatics. A machine-learning model that could "implicitly discover" such unknown laws
are to be always a computational black box.

Secondly, even in the case of known rules, ML models do not, in general, represent knowledge which
directly maps to forms that scientists are familiar with. For instance, an artificial neuron network model
could learn a "simple" law like the ideal gas law pV = nRT , given a good architecture and enough data.
But the translation of connection weights into the formula is strongly non-trivial. This introduces the third
point.

Indeed, in the case of neuron networks, a certain degree of opacity is inevitable. As suggested by the
intuition of the universal approximation theorem (see appendix A.8), training can be viewed as a way of
storing the training data in the synapses of the network. It is not an address-based storage like in a hard-disk,
but more a spread form of storage since each training example makes a small contribution to each synaptic
weight. Therefore, it is fundamentally different from both the equation-based form of storage and digital
storage.

Fourth, understanding and controlling is a fundamental desire of human nature. However, we must admit
that most of the objects we use and trust every day are black boxes. Most of us do not know how our cars,
computers and so on, work in detail. We rely on the fact that there are some "scientists" somewhere who
"know" how these objects function, how to repair them ... In the case of health-care, we trust our doctors
although we know they have a fragmented, and thus a reduced, understanding of diseases and cures. In any
case, every one of us has no clue of how his brain works, but we still trust it blindly (when we do not think
about it).

Finally, and more importantly in the case of drug discovery, we must point out that the FDA adminis-
tration already authorised some therapies based on machine learning. Indeed, the regulatory agencies are
prone to authorise black box machine-learning algorithms, as soon as they were proved to be as (or even
more) reliable as a panel of the best human experts. In other words, one must prove that when the algorithm
takes the wrong decision, a human expert would have also been wrong.
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That being said, it is of significant interest to look for tools and tricks to get some insight on the rules
learnt by modern machine learning techniques, in order to expand our understanding, especially in the field of
chemistry and biology. It could also help practitioners to debug or even design models more effectively, as well
as improve trust and transparency, to unleash the adoption of machine-learning methods in decision-making
domains.

To this end, we are to (not exhaustively) introduce tools and tricks studied to understand the functioning
of deep learning algorithms [431].

Overcoming black-boxness in deep learning

First, it is possible to open the black box of an artificial neuron network, by studying the behaviour of each
neuron under all kinds of inputs.

In chemoinformatics for instance, Preuer et al. [432] related individual neuron activations with presence
or absence of well-known toxicophores (chemical groups found in toxic molecules) calculated for the same
molecules by looking at the correlation (via a Mann–Whitney U-Test and Bonferoni correction) between
these toxicophores and the activation of individual neurons after their training.

This kind of approach is prohibitively time consuming, and can only be performed in favourable circum-
stances, typically in the case of relatively small networks and when expert knowledge can recover the learnt
features.

To gain insight on which original features drive the final prediction, a simple yet usually efficient technique
is "masking". By comparing the original performance to the one obtained when masking (i.e. set to zero)
parts of the original features, we gain a quantitative insight on the masked features relevance.

In the case of neuron networks operating on graphs, Ying et al. [433] proposed a method to identify
important sub-graph structures and a small subset of features that play a crucial role in the prediction.
Similar to the idea of the "masking" strategy, they considered an optimisation task that maximises the
mutual information between the prediction of the full model and the prediction of the same model operating
on a simplified sub-graph with removed edge and node features. In other words, the objective is similar to
denoising the computation graph to keep edges and features that have the highest mutual information with
the prediction.

Furthermore, understanding the internal operations of deep neuron networks fundamentally ties to un-
derstanding the data it operates on. Indeed, in the case of classification for instance, the classes are quite
tangled at the input layer. However, the next hidden layers have learned to transform the data into new
representations in which the classes are more and more separated, because the model has been trained to
distinguish the classes.

Thus, understanding the internal functioning of a deep neuron network can be performed relatively
well by visualising the internal representations using dimensionality reduction techniques (see appendix A.6
for a brief introduction to dimensionality reduction). Visualising high-dimensional representations using
dimensionality reduction is a broadly applicable technique for inspecting models in deep learning.
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In the field of chemoinformatics, Hirohara et al. [352] reported that the representation learnt via rep-
resentation learning on SMILES in a end-to-end manner provided a richer chemical space than standard
ECFPs. Indeed, they projected the same set of compounds represented by either the "learnt fingerprints" or
standard ECFPs on a 2D space with multidimensional scaling. On this projection, they observed that the
former clearly discriminated active and inactive compounds in 2D representation, whereas ECFP failed to
discriminate the two groups in this 2D chemical space.

Finally, another interesting understanding of the deep neuron networks is the reliability of individual
predictions.

One way to address this issue is using "snapshot ensemble" [434]. This approach derives a set of predictors
(i.e. snapshots) with comparable predictive power on average, that however generate slightly different predic-
tions for a given instance. Then, the variability across the predictions are harnessed to compute confidence
intervals and assess the reliability of the predictions.

Today, interpretation and fundamental understanding of deep neuron networks has become a field in itself,
and many sophisticated methods have been proposed to tackle this question [435, 436, 437, 438, 439, 440, 441].



Appendix B

Multi-kernel learning for drug virtual screen-
ing

Mixing heterogeneous data is a promising approach to enhance performances. Indeed, different data sources
are likely to contain different, and thus partly independent but complementary, information about the task at
hand. Moreover, data sources are expected to be all noisy (missing data, experimental noise etc.), but with
different noise patterns. Therefore, combining heterogeneous data may provide regularisation and implicit
information augmentation.

Indeed, a variety of biological and molecular data sources are available. In particular, chemical structure,
bioassay signatures, drug-induced phenotypes and pharmacophore patterns are widely available for drug-like
compounds. Protein geometrical and topological structures, associated GO terms, pathway profile, gene
expression, gene methylation profiles and so on, are available for protein targets.

Kernel methods give an efficient framework to integrate various data sources and perform predictions
simultaneously with multiple kernels. Indeed, by defining a kernel for each data type, combining such data
type-specific kernels allows to integrate various data types.

For instance, we can expect a kernel based on "drug-induced phenotypes" to complement the missing
bio-activity knowledge in DTI database. Besides, it could be relevant to consider molecular kernels building
a similarity value by comparing molecular graph linear fragment of size 5 and 8, as different length-scale of
sub-graph may be involved in the interactions with different proteins.

Most of the published studies on DTI prediction have never been beyond the simple static sum of
kernels [115, 114, 130, 132, 109, 107, 112, 442, 113, 134]. These works have reported that a kernel method
working on a static linear combination of different kernels outperforms performances obtained with individual
kernels.

Learning the weights of such a linear combination of kernels is expected to enhance the information
brought by data type combination. Therefore, more sophisticated methods, referred to as Multi-Kernel
Learning (MKL) methods, have been successfully applied to various bioinformatics tasks [362, 54]. In the
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general case, these methods usually formulate a single optimisation procedure that simultaneously finds the
SVM classification solution as well as the weights on the individual data types [443]. Interested readers can
refer to the following articles [443, 444, 445, 446].

However, such MKL methodology did not show evidence of its efficiency in many contexts. In particular,
Noble et al. [362] have shown, on protein Gene Ontology (GO) term prediction from protein sequences, that
a simple unweighted sum of kernels can provide remarkably robust classification performance. A weighted
kernel combination method was found relevant only in the case of a large collection of kernels in which some
were "clearly" less relevant than the others for the task at hand. In particular, the optimisation of the kernel
coefficients is more efficient when there is a noisy kernel. They also report that the weights associated with
each kernel cannot be used to interpret the importance of each data source, since a wide range of kernel
weights can result in the best performances.

In the case of drug target interaction prediction, different ways of performing multi-kernel learning have
been investigated. We review here the two most popular, "similarity network fusion" and "kernel alignment".

Similarity network fusion

Similarity Network Fusion (SNF) [447] non-linearly combines similarity measures into a single fused similarity,
while selecting the most relevant non-redundant similarities. More precisely, it iteratively updates each
similarity matrices with information from the others, using K-nearest neighbours, such that they are more
similar to the others. The SNF method can capture common and complementary information across different
similarity measures. In particular, SNF fuses kernels such that weak similarities disappear in the face of
strong similarities, helping to reduce the noise. SNF has been successfully applied in the context of virtual
screening [164, 165].

In particular, Olayan et al. [165] recently proposed an approach using similarity network fusion to build
a DTI heterogeneous graph, which seemed to significantly outperform previous methods. Based on the DTI
heterogeneous graph, they built a set of (only) 12 features to predict the interaction score of drug-target
pairs with a random forest classifier.

The DTI heterogeneous graph is a weighted graph made of two types of nodes representing molecules
and proteins. The edge between two drug nodes or two protein nodes represents their similarity. A drug
and a protein are linked by an edge (weighted by one) if they are known to interact. Over this DTI graph,
they defines paths from a drug D to a protein target T as walks with more than one edge and without loops.
They limited the length of paths to three, such that there are six possible paths from D to T: (D-D-T), (D-T-
T), (D-D-D-T), (D-D-T-T), (D-T–D-T) and (D-T-T-T). For computational reasons, they also restricted all
paths between D and T to pass only through the 5-nearest neighbours of D and only through the 5-nearest
neighbours of T.

Then, they defined six features based on the six types of paths linking D to T, and six features based
on the six types of paths linking T to D (therefore, a total of 12 features for each each D-T pair). For each
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path p of a specific type of path, they associated a value obtained by multiplying all weights of the edges of
the path. Then, the single feature corresponding to a specific type of path is the sum (or max) of the set of
values calculated as before.

In a nutshell, this methodology only relies on the product of similarity measures to describe molecules
and proteins with little algorithmic refinement, similarly to early approaches. Thus, its predictive power is
mostly due to the consideration of multiple kernels.

Kernel alignment

Another widely considered MKL method for DTI prediction [166, 167] is a linear combination of kernels
whose weights are computed via "kernel alignment" with a kernel comparing instances via their output
values. Kernel alignment between two kernels returns of a real value assessing how much the two kernels are
similar (i.e. assessing if instances similar for one kernel are still similar for the other one). Thus, the idea
is to learn a linear combination of kernels which is maximally aligned to the response kernel, which can be
viewed as the "ideal ground truth" kernel, and then use the learned mixture kernel as the input kernel for
training a prediction model.

In the context of DTI prediction, two significant studies discussed the use of kernel alignment [166, 167].
Nascimento et al. [166] defined an MKL named KronRLS-MKL based on kernel alignment. They com-

puted two sets of kernel weights, separately for molecule and protein kernels. Also, they considered various
protein kernels (based on PPI, sequence, interaction profile, GO) and molecule kernels (structural and in-
teraction profile).

They fairly compared performances in different settings considering a widely used benchmark dataset
(Yamanishi dataset) with others MKL approaches: an unweighted sum of kernels, another MKL method
based on kernel alignment, and an MKL approach relying on Bayesian matrix factorisation taking as input
a linear combination of kernels [448]. Their method exhibited state-of-the-art performances. However, the
optimised kernel weights within the kernel combination approximately correspond to the mean of the kernels,
showing that such a sophisticated method is almost equivalent the naive approach of kernel summation.

Later, Cichonska et al. [167] extended MKL based on kernel alignment to pairwise kernels. In particular,
they derived a formulation of kernel alignment for kernels resulting from the Kronecker product of two kernels,
without requiring the explicit computation of multiple huge pairwise kernels resulting from the Kronecker
product. Additionally, they proposed a formulation of a regularised least-squares model, with multiple
pairwise kernels resulting from the weighted sum of Kronecker products, again, without explicit construction
of any massive pairwise matrices. They report slightly better performances than KronRLS-MKL. Thus, they
provide a state-of-the-art MKL approach that is computationally efficient, regarding processing and memory
requirements, and which fully exploits the information contained in the space of pairs.
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Meta-predictors

Another approach to combine heterogeneous data type comes from the meta-predictor framework introduced
in section 3. The idea is to train different classifiers on different feature spaces, and combine the predictions.
However, instead of averaging and considering the maximum of the prediction scores, a classifier trained on
the output scores learns the best association between the prediction made on different feature spaces. Such
an approach has been successfully applied to chemical properties prediction [449, 450].

Partial conclusions

Finally, we think that they are two main issues for applying MKL to DTI predictions.
First, we can imagine that some protein-compound interactions are more easily recovered thanks to the

structure-based similarity, and that others are better retrieved thanks to pharmacological-based similarities.
In a kernel setting, this means that some samples may be best classified with one kernel and others using
another kernel. To tackle this issue, Noble et al. [451] built a method based on latent variable modelling, in
which the learned kernel weights in the linear combination of kernels depends on the samples.

The second main issue results from the sparsity of some of the available data types. For instance, side
effects data is available only for FDA approved drugs, and drug-induced phenotypes are only available for a
subset of them. Facing the same issue, Noble et al. [362] considered three alternatives to tackle missing data
in some feature spaces. The first strategy replaces the row and column of kernels corresponding to missing
entries with all zeros, which is meant to ignore the kernel with missing data for the corresponding samples.
The second makes each missing example similar only to itself by the same kind of process. The third one
makes each missing example similar to every other missing examples, but different from all non-missing
examples. All missing examples are then placed in a single orthogonal dimension subspace infinitely distant
from the other data. However, no strategy can rescue a significant amount of missing data.



Appendix C

An historical perspective on graph representa-
tion learning

Representation learning on molecular graph is an extremely active field whose applications are very diverse:
social network analysis, gene-gene or protein-protein or drug-drug interaction graph analysis and, more
generally, analysis of any type of data with a graph structure.

In the following, we propose a historical perspective on graph representation learning.

C.1 Graph shallow embeddings

As presented in Hamiton et al.’s review [292], shallow embedding methods were first proposed to perform
graph representation learning. More precisely, matrix factorisation [452, 453, 454, 455] and random walk [314,
315] based methods were considered.

In the case of shallow methods, an embedding matrix Z ∈ Rd×|V | containing the d-dimensional represen-
tation vectors for all nodes is optimised directly. More precisely, the optimisation loss is given by:

L =
∑

(vi,vj)∈V 2

l(DEC(zi, zj), sG(vi, vj)) (C.1)

where zi is the embedding vector of node vi, l is a distance measure, DEC and sG are similarity measures
on node embeddings and node topology respectively.

Typically, in the case of matrix factorisation, sG(vi, vj) = Ai,j , . . . , A
k
i,j (A being the adjacency matrix of

the graph) and DEC(zi, zj) = ||zi−zj ||2 or DEC(zi, zj) = zTj zi. Thus in the case of matrix factorisation, the
"topological similarity measure" sG between two nodes reflects their connectivity given by the power of the
adjacency matrix Ak, k ∈ N∗ [452] (others also consider more general topological similarity measures [453]).

Alternatively, the "topological similarity measure" sG(vi, vj) can be encoded via the probability of reaching
node vj by a random walk of fixed length starting from vi. Thus, nodes have similar embeddings if they
tend to co-occur on short random walks which is a more flexible measure of node topological similarity than
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the adjacency matrix. With this topological similarity measure, the embeddings z is intended to encode the
statistics of random walks. In particular, we can define

DEC(vi, vj) = ez
T
i zj∑

vk∈V e
zT
i
zk
≈ pG,T (vj |vi)

where pG,T (vj |vi) is the probability of visiting vj of a length-T random walk starting at vi in graph G.

These shallow embedding approaches have the significant drawback of training different embedding vec-
tors for each node independently. Indeed, no parameters are shared between nodes in the encoder. Moreover,
these are not transductive approaches, i.e. they can only generate encodings for nodes that are present during
the training phase.

To address these issues, a neuron network auto-encoder was proposed [291] as shown in Fig C.1. In this
approach, each node vi is associated with a neighbourhood vector si ∈ R|V |, which corresponds to ith row
in the matrix Si,j = sG(vi, vj) (sG typically defined as before). Such a general auto-encoder is trained by
minimising the reconstruction loss: L =

∑
vi∈V ||DEC(zi)− si||22.

Figure C.1. si ∈ R|V | summarises vi’s similarities with all other nodes in the graph. The si vector is then fed through a deep
auto-encoder to reduce its dimensionality, producing the low-dimensional zi embedding. (picture from [292])

This approach has the benefit of sharing encoding parameters between nodes. However, as the size of
the auto-encoder is fixed for training, it cannot cope with evolving graphs, nor can generalise across graphs
with a different number of nodes.

Addressing this issue resulted in the design of encoders that rely on a node’s local neighbourhood, and
so not on the entire graph. Such encoders have been split artificially into two frameworks, the "message
passing" and "neighbourhood aggregation" frameworks, although both are strongly related. The "neighbour-
hood aggregation" framework can be further sub-divided into two approaches, the "spectral" and "spatial"
approaches. The intuition behind these frameworks is to generate an embedding for a node by aggregating
information from its local neighbourhood.

In the next section, we first introduce the "message passing" framework [317, 316, 312, 303] (also referred
to as Graph neuron Network or GNN).
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Since the spatial approach of the "neighbourhood aggregation" framework is the most widespread frame-
work nowadays, it is introduced in the main text in Section 6.2.

C.2 Graph neuron networks

The seminal paper considering message passing for graph representation learning based on neuron network
is the work of Gori et al. [317]. They presented the first Graph neuron Network (GNN) as a extension of
recurrent neuron networks for graph-structured data.

Indeed, GNNs consist of an iterative process, which propagates the node states to each neighbouring
node until equilibrium. Thus node representations are updated depending on the graph topology of the
data. More precisely, in this seminal paper [317], at each step t, they propose the following update rule for
each node i (h(t)

i is the latent representation of node i at step t and xi is its original description, N (i) is the
1-hop neighbourhood of node i):

h(t+1)
i =

∑
j∈N (i)

HW (h(t)
j ,xi,xj) (C.2)

The function HW is an arbitrary function modelled by a neuron network with weights W . Eq. C.2 is
repeatedly applied until the embeddings converge, which is ensured when HW is a contraction map [317].
The final encoding of each node is computed following zi = g(h(T )

i ), where T is the final message passing
step and g is an arbitrary differentiable function modelled by a neuron network.

This seminal work on GNN was extended by Sarselli et al. [316]. They proposed the same kind of update
rules with the same optimisation strategy but discuss various parameterisations of HW and g based on
multi-layer perceptrons (MLPs).

Later on, this work was extended by Li et al. [312] who proposed, in the case of directed graphs, the use
of a Gated Recurrent Unit -GRU- (see appendix A.8.2) per edge type to pass information from each node
to its children nodes. In addition to performance improvement, the use of GRU removes the need to run
Eq. C.2 until convergence which was the main drawback of this approach. In particular, the message passing
rule of Li et al.’s work [312] is defined in the following:

h(t)
i = GRU(h(t−1)

i ,
∑

j∈N (i)

W.h(t−1)
j )

Finally, Gilmer et al. [303], discuss a more abstract message passing rule, considering models of the form
in eq. C.3, in which q is a differentiable function that computes the incoming “messages” from neighbours
and U is a differentiable “update” function. We see that we recover the general framework introduced in
section 6.2.

h(t)
i = U(h(t−1)

i ,
∑

j∈N (i)

q(h(t−1)
i ,h(t−1)

j )) (C.3)

In the past few years, we have seen an explosion of papers considering graph neuron networks for many
applications or proposing an analysis and further improvements. Note however that most of them refer to
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Graph Convolutional Neuron Networks (GCN) rather than Graph Neuron Networks (GNN). Indeed, the
GNN framework, presented before [317, 316, 312, 303], considers graphs as specific scaffolds for a "message
passing" algorithm (based on an RNN-like module).

Although separated in the literature, GCN are conceptually strongly related to GNN as they rely on
node representation updates based on neighbourhood representation. Indeed, in the case of spatial graph
convolution networks, we can generalise the concept of stride and receptive field for images as the following:
(i) the stride of the convolution is the shortest distance between the nodes whose attributes are updated via
neighbour aggregation (it is usually set to 1 in the case of small graphs like molecules); (ii) the receptive
field of a node i is the set of nodes {i} ∪ {j}j∈N (i) where the neighbourhood N (i) of i can be defined as the
n-hop neighbourhood of i (e.g. all nodes whose maximum distance from i is n) or by a random walk of fixed
length starting from i. Thus message passing-based GNN are GCN for which the stride is set to 1 and the
size of the receptive field is set as the 1-hop neighbourhood of nodes.

In the following appendix section, we conclude this historical perspective by discussing the specific works
on molecular graph embedding.

C.3 Pioneering work on molecular graph representation learning

In parallel with early developments of graph convolutional networks (GCN), few seminal works focused
specifically on the representation of molecular graphs, although we noticed it was often a pretext to work
with small graphs.

Most of these approaches were tested on benchmark dataset obtained from the MoleculeNet collection
(introduced in section 2.3).

None of the following approaches stands out from the others and from more standard fingerprint-based
approaches (multi-task DNN, random forest, SVM and logistic regression methods), with regards to pre-
dictive performance. In other words, the state-of-the-art performances reached by the following neuron
networks-based approaches do not yet exhibit competitive advantages with respect to fingerprint-based ap-
proaches. Further discussions on the efficiency of these approaches for biological activity prediction can be
found in Section 7.

However, in a chronological perspective, we aim now at introducing and discussing conceptually the
seminal works on molecular graph representation learning.

C.3.1 Graph neuron network and graph convolutional network seminal studies

Duvenaud et al. work [287]

The pioneering work on neuron networks for molecular graphs is the neuron fingerprint algorithm by Du-
venaud et al. [287] published at NIPS 2015. It is the first recent paper to our knowledge that introduced
data-driven feature encoding for molecules.
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They performed convolutional operations on graphs to build differentiable graph features (more precisely
fingerprint-like features) called "neuron fingerprints". More interestingly, they exhibited the relationship
between their differentiable neuron fingerprint and classic ECFPs [57]. The algorithm for building the so-
called neural fingerprint can be found in alg. 3. Also, conceptual similarities with the automatic data-blinded
extraction of ECFPs are discussed in alg. 3. In essence, this algorithm smoothly and differentially extracts
fingerprints directly based on the molecular graphs and their labels, justifying the data-driven nomenclature
and hoping for more specificity and flexibility.

Conceptually, alg. 3 is a particular case of GNN whose node updating rule is simply summing the
neighbour embeddings. Note also the graph-level embedding is not obtained though consecutive pooling
operations like in the case of convolutions of images but is computed after every node update by summation
of the nodes’ representation.

Neural fingerprints have three benefits compared to the data-blinded ECFPs (state-of-the-art finger-
prints): interpretability, parsimony and predictive performance on some chemical property prediction tasks
(few points however). Nevertheless, they noticed that the learnt fingerprints are strongly correlated to ECFPs
while being more computationally costly.

Algorithm 3 Neural fingerprint algorithm in [287]

Require: Graph G(V, E); input features xv,∀v ∈ V; depth L; learnable weight matrices (W(l)
0 ,W(l)

1 ) ∀l ∈
1, . . . , L
initialisation of graph-level representation: m = 0.
initialisation of node-level representation: h(0)

v = xv ∀v ∈ V
for layer: l = 1 . . . L do

for atom: i ∈ V do
v← h(l−1)

i +
∑
j∈N (i) h(l−1)

i (sum of atom and neighbours feature vectors instead of concatenation
in ECFP)

h(l)
i ← σ(vT .W(l)

0 ) (instead of hard encoding of graph substructure by a hash function as in ECFP,
the encoding based on the activation via the sigmoid function is smooth and differentiable)

r ← softmax(h(l)T
i .W(l)

1 ) (update of the molecule-level encoding)
m += r

end for
end for

Niepert et al. work [456]

Another early work on molecular representation learning is the study of Niepert et al. [456], which has
the benefit to be pedagogical. Conceptually, this study generalises the work of Duvenaud et al. [287] by
introducing a stride bigger than one and a receptive field bigger than 1-hop-neighbourhood. Indeed, the
local receptive field around a node of interest can be seen as a subgraph composed of the current node and
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a relevant subset of context nodes in the neighbourhood.
Regarding the algorithm, their approach consists of 3 steps. First, they determine the nodes of the graph

for which an abstract representation is learnt via a random walk procedure (in the case the graph is too big,
we can avoid considering every node to stay scalable). In a second step, a neighbourhood is created for these
nodes by extracting the k closest nodes via a breath-first search and normalising these. In a third step, the
obtained graph local sequences are fed into a conventional 1D convolutional neuron network for prediction.

The main drawback which makes this approach unsatisfying is the normalisation step of the neighbour-
hood which requires a node ordering procedure. Indeed, the normalisation step requires the definition of a
node ordering for the nodes in the neighbourhood such that similarly ranked nodes have similar structural
roles. Such a node ordering procedure is a generalisation of the classical "graph canonisation problem" which
aims at defining a unique mapping from the graph representation to vector -i.e. ordered- representation
such that nodes with similar structural roles are positioned similarly in the vector representation. It is
an NP-hard problem, so they use efficient approximation techniques suitable for restrained sets of graphs.
The requirement of a node ordering as a pre-processing step prevents the approach from being learnable
end-to-end.

Kearnes et al. work [300]

The work of Kearnes et al. [300] is also seminal in the field of molecular graph representation learning.
Compared to previous approaches, one of the main interests of this paper is to carefully discuss the original

attributes of nodes and edges. They also point out the importance that the molecular representation must
be independent of any atom ordering (as well as neighbourhood aggregation).

More importantly, they present a method for graph-level representation learning that captures the dis-
tribution among the graph nodes of each learned feature. More precisely, their method models each feature
distribution by an approximated frequency histogram of n bins (n being a parameter). Thus the graph level
representation of this approach is of size "n×dimension of node representation".

The node embeddings are updated via a message-passing-like algorithm by neuron modules which, in
essence, perform neighbourhood aggregation (the model is displayed in Fig C.2). Also, edge feature vectors
are considered and updated.



APPENDIX C. AN HISTORICAL PERSPECTIVE ON GRAPH REPRESENTATION LEARNING 255

Figure C.2. Atom and bond representation update in [300]. This module takes matrices Ak and Pk (containing atom and
bond features, respectively) and combines A→ A, P → P , P → A and A→ P operations to yield a new set of atom and bond
features (Ak+1 and Pk+1, respectively). A→ A and P → P modules are learnable ReLU layers (output = ReLU(W.input+b)).
P → A and A→ P modules are the sum of the transformation of each input by a ReLU layer.

Coley et al. work [298]

Coley et al. [298] also produced a significant work in the field of molecular graph representation. Compared
to previously presented approaches, their main contribution is showing the efficiency of using relevant atomic
and bond featurisation as primary attributes.

Their approach is conceptually a GNN. Their encoder is, in essence, based on neighbourhood aggregation
but has the particularity to build and aggregate a graph level representation after each node updates, like
in the case of the neural fingerprints of algorithm 3. The algorithm they considered in this study is reported
in alg. 4. Unlike to the neuron fingerprints, atom embeddings are not updated just by summing those of the
neighbours but via a learnable linear combination of the neighbours passing through a nonlinear activation.

This study also holds an exciting discussion on the visualisation of molecular embeddings. They use
"masking" (see appendix A.8.5) to identify what initial part of the molecules is essential for the relevancy of
the prediction.

They also discussed transfer learning with alg. 4. Indeed, the authors first pre-trained the encoder network
weights on a chemoinformatics prediction task and then re-trained the overall network on a new loosely-
related chemoinformatics task. However, they observed relatively little improvement. Then they also tried
hard-sharing multitask learning (see appendix A.8.3). It resulted in worse performance than in the singletask
setting. They conclude that future work should focus on making MT beneficial by working on the model
architecture (improving flexibility after the convolution layer for instance), on loss weighting (to account for
the sample size), or on a more suitable learning schedule. We discuss such aspects in appendix A.8.3.
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Algorithm 4 Graph convolutional network in [298]
Require: Graph G(V, E); input features xv,∀v ∈ V and xvv′ ,∀vv′ ∈ E ; depth L; learnable weight matrices

(W(l)
emb,W

(l)
up,b(l)

emb,b
(l)
up) ∀l ∈ 1, . . . , L

initialisation of graph-level representation: m = 0.
initialisation of node-level representation: h(0)

v = xv ∀v ∈ V
for layer: l = 0 . . . L do

for atom: v ∈ V do
f (l)
v = softmax(W(l)

emb.h
(l)
v + b(l)

emb)
h(l+1)
v =

∑
v′∈N (v)(W

(l)
up.(h(l)

v′ ,xvv′)+b(l)
up). (Bond attributes xvv′ are not updated and thus persist

throughout this convolution process)
end for
m +=

∑
v∈V f (l)

v

end for

Other works explored frameworks different from the one of convolutional networks to build a learnable
graph representation.

C.3.2 Approximate inference on undirected graphs

The work of Dai et al. [296] considered the framework of approximate inference on undirected graphs. Indeed
a molecular graph is by essence an attributed undirected graph. In addition to the nodes of the molecular
graph, they added a latent (i.e. unobserved) node to each atom nodes in the undirected graph. Thus atoms
i have an attribute vector xi and a latent state vector hi. They described the latent state not only by a
vector but by a distribution.

The goal is to compute the posterior distributions p(hi|xi) (probability of hidden state on atom i with
attributes xi).

Exact computation of the latent state can only be performed in the case that the graph has a tree
structure via message passing, but in most cases, embedding distributions are approximated by mean field
approximation or the junction tree algorithm. In practice, approximation by mean field means we approx-
imate p(hi|xi) with a product of independent components that we write µi = f̃W(xi, {µj}j∈N (i)). In this
paper, they parameterise f̃ by an ANN layer. Finally, the molecule-level representation is given by the
sigmoid transformation of the sum of node embeddings: φ(x) = σ(

∑
i µi) ∈ Rd.

Thus we observe the latent embedding framework with mean field approximation is conceptually strictly
equivalent to the spatial message passing-like algorithm. Indeed, each nodes vector features are updated
based on the aggregation of their neighbourhoods.

Note they also propose an approximation based on the "loopy belief propagation" algorithm which is
another widely used variational inference technique.
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(a) An Undirected Graph
(b) Associated Direct Acyclic Graphs.

Figure C.3. Decomposition of a molecular graph into DAGs. (picture from [297])

C.3.3 RNN on directed acyclic graphs

Baldi et al. [297] explored the framework of message passing on directed acyclic graphs (DAGs). Again,
molecules naturally form undirected graphs (UG). Thus this method appears a priori unsatisfying but we
introduce it here as exploratory perspective.

Let us set that molecules have |V | atoms. In this framework, they build |V | DAGs per molecule by
choosing each atom successively as a terminal node and directing all edges to the selected terminal node
while leaving the derived graph acyclic (see Fig. C.3 for example). Then, an RNN is applied on each DAG,
i.e. a learnable neuron module passes the information from leaf nodes to the root node.

Finally, the feature vectors obtained at the N terminal nodes of the N DAGs are collected into one
molecular feature vector by summation. This molecular representation is injected into a final neuron layer
for prediction (molecular solubility in this paper).

This method has the inconvenience to build |V | DAGs (and run an RNN on each) from an undirected
graph G = (V,E). Hence, it requires some heuristics and is non-natural. The need to consider an RNN
approach on DAG built from a UG is not justified, compared to considering a CNN approach directly on
the UG.

Later, Baldi et al. [457] showed that graph convolution based approach performs generally better than
the DAG-RNN method even though both types of approaches reach comparable results on almost all data
sets. Theoretically, anything that can be computed using one of the approach can also be obtained using
the other, as a consequence of the universal approximation theorem of neuron networks [398, 399].

C.3.4 Convolutional neuron networks on Lewis formula images

To conclude, we would like to introduce a neuron network approach operating on other molecular represen-
tation than the molecular graph or 1D representation encoding the graph (like SMILES).

In particular, Goh et al. [458] worked directly on 80*80 pixel pictures in greyscale representation of
molecular graphs, as shown in chemical databases. Then, standard CNNs on images can be applied to build
a prediction model.

Again, this approach is adapted from another field, and so it is not designed intentionally for encoding
graphs. Although not satisfying a priori, the benefit of this approach is its minimal amount of feature
engineering and required chemical knowledge. However, it brings others issues from applying CNN on
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images, such as "data augmentation" for example. Authors reported that this approach exhibits similar
performance, on some chemoinformatics prediction tasks, to an approach based on conventional ECFP4
fingerprints using multitask DNNs [458], in other words, state-of-the-art performances.



Appendix D

Analysis of graph representation learning

Some recent works proposed a fundamental analysis of graph neuron networks.
These works can help the design of more efficient neuron architectures, as the field of GNN is mostly

driven by intuition and experimental trial-and-error. In addition, the number of "different" graph neuron
network can be arbitrarily extended by slight architecture modifications, as presented in Section 6.2.

Furthermore, there is a fundamental and practical question we would like to address: is the choice of the
architecture predominantly crucial or, is it thanks to the learning of model parameters that GNN can reach
high accuracy?

Intuitive discussion

First, the iterative update of node representations renders the features of neighbouring nodes similar, thus
easing the prediction task, since the diversity of node representation is reduced. However, it also brings the
issue of over-smoothing. If a GNN is deep (i.e. composed of many node updates), the node embeddings may
be over-smoothed, and nodes may become indistinguishable.

These gives an intuition on why the early work of Kipf et al. [322] found that the best performances are
reached by a network with no more than two layers. Note also that, intuitively, message passing-based GNN
assumes that nearby vertices on a graph tend to share the same label.

Analogy with the 1-WL algorithm

Some other fundamental works [350, 351, 322] showed the analogy between graph neuron networks and the
Weisfeiler-Leman (WL) graph isomorphism test. They show that a GNN using the standard update rule in
alg. 1 can at best reach the discriminative power of the WL test.

Recall that state-of-the-art kernels based on the WL algorithm have also been proposed (see section 2.2).
Let us briefly recall the 1-dimensional Weisfeiler-Leman graph isomorphism heuristic [106] presented in

Section 2.2. The 1-WL algorithm generates node representation through an iterative relabelling scheme.
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Indeed the 1-WL algorithm summarises the substructures present in a graph through iterative update of
nodes labels (or colouring) by aggregating over the labels of nodes in the direct neighbourhood.

Hence, explicitly, a graph convolutional network is a differentiable and adaptive formulation of the 1-
WL algorithm [322]. Indeed, GNNs are trained in an end-to-end fashion together with the parameters
of the prediction sub-network, expecting greater adaptability and generalisation compared to the kernel
counterpart.

On top of this observation, Xu et al. [350] emphasise that classical GNN is as expressive as the 1-WL
algorithm, when an injective and expressive function models the aggregation function.

Indeed, GNN are built by neighbourhood aggregation. Thus, a discriminative GNN should, by definition,
never map two different neighbourhoods to the same representation. Hence, its aggregation function must
be injective. In particular, representative power refers here [350] to the discriminative power, i.e. the ability
to distinguish all pairs of graph topology in the input set. We think this notion of representative power is
limited, because it should also refer to the ability to encode "smoothly" the similarity between non-isomorphic
attributed graphs. However, we agree that this aspect is much harder to assess theoretically.

They recall that multi-layer perceptrons (MLPs) can model and learn universal injective functions, based
on the universal approximation theorem [398, 399].

They also highlight that mean- and max-pooling operations are order invariant multi-set functions, but
are not injective. Indeed, the mean captures the distribution of elements in the multi-set, but not the exact
multi-set. This would perform well if the mean structural information is more important than the exact
structure of the graph, for the considered prediction task. The mean is also powerful when node features
are diverse and rarely repeat. In practice, this is why it is competitive with regards to other aggregation
functions. Max-pooling does not capture the exact structure neither, but may be suitable for tasks requiring
the identification of key elements, rather than keeping the exact structure. This may be the case for molecular
bioactivity, which mainly relies on some pharmacophore or functional groups.

In the same perspective, Moris et al. [351] emphasise that GCNs can, at best, be as discriminative as the
1-WL, and therefore cannot be more powerful at distinguishing non-isomorphic sub-graph. Regarding this
aspect, the power of 1-WL has been characterised [105], and some of its limitations are known. For instance,
they are not capable of capturing simple graph-theoretic properties like triangle counts (which is essential
in the case of social network analysis for instance).

Therefore, the authors proposed a GCN based on the k-WL algorithm, which is more expressive than the
1-WL algorithm. The k-WL is a generalisation of the 1-WL which updates tuples (of size k) of nodes instead
of individual nodes. Hence, this variant performs message passing between subgraphs, rather than between
individual nodes. This higher-order form of message passing can capture key coarse-grained structures that
are not identifiable at the node level. They named k-GCN the GCN based on the k-WL algorithm.

They tested k-GCN on three benchmark datasets and k-GCN barely shows 1 point of performance
improvement with regard to those obtained by kernel-based methods. Their analysis was interesting, but
the datasets they considered did not reveal its relevancy.
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Analogy with kernels

An important work on GCN has been done by Lei et al. [459]. They show that the feature map generated
by variants of standard GCNs lie in the same Hilbert space of popular graph kernels.

In this paper, they derived neuron network-based update rules for GCN that theoretically ensure that
the final output state belongs to the RKHS of some kernels (the NN modules are actually derived based on
the kernels). These update rules are not those considered in standard GCNs, but are remarkably similar
and can even appear more sophisticated than those of standard GCNs.

However, they do not compare performance of their GCNs to those of other prevalent GCNs (like graph-
SAGE [291] and GAT [295]) on benchmark datasets.

Partial conclusion

We have analysed the characteristics and the representation power of GCN from different perspectives. In
essence, a standard GCN is a differentiable and parametric generalisation of the 1-WL algorithm on graphs.
Besides, the WL algorithm was also used to build state-of-the-art graph kernels. Although a better flexibility
is expected by standard GCN, the representation power, in terms of distinguishing different graph topology,
is not expected to be enhanced compared to state-of-the-art graph kernel-based methods.

This fundamental discussion on GCN is modest. It can guide our intuition but we cannot conclude on the
potential of GCN to overtake kernel-based methods. We cannot neither conclude on the practical question
that we asked at the beginning of this appendix. This is partly why we investigated intensively the recent
developments on GCNs for DTI prediction in chapter 8.



Appendix E

Inverse Drug Design via automatic molecule
generation

As mentioned in Section 1.2, computational approaches are expected to assist and guide the drug discovery
process.

Inverse drug design (or equivalently de novo drug design) offers a relatively new way of probing the
chemical space before wet-lab experiments. It has gathered an extraordinary research effort the past two
years [460, 461, 462, 463, 464, 465, 466, 467, 468, 469], and continues to be appealing [470, 471]. To our
knowledge, the only review available on inverse drug design is the one of Sanchez et al. [30], published a year
ago and "already outdated".

Inverse drug design inverts the classic objective of standard ML methods for drug design. While ML
methods are usually used to learn a function mapping molecular compounds to the property of choice, inverse
drug design starts from the desired property and searches for molecular structures fulfilling this requirement.

Note that inverse drug design can be performed with standard approaches that map molecular structures
to chemical and biological properties. Indeed, predicting molecular properties of a large initial library of
molecules (randomly chosen or built based on expert intuitions) can be seen as a greedy approach for inverse
drug design.

An early approach for inverse drug design uses evolutionary strategies to explore and map the chemical
space [472, 473]. They consider structural fingerprints as "genotypes" that can be perturbed ("mutated") to
improve an objective function value ("fitness" of the "genotypes"). The exploration of the space of parameters
involves heuristics and procedures inspired by natural evolution.

Today, inverse design approaches usually rely on deep generative models which are a particular class
of deep learning methods modelling the underlying probability distribution of both structure and property,
in a non-linear fashion. In the following sections, we introduce the neuron architectures of chemical deep
generative models, discuss the procedure to bias the generative process toward desired chemical properties,
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and finally, propose a comparison of the methods introduced in this appendix.
This survey does not aim at explaining all the tools to perform inverse drug design but is restrained to a

broad conceptual introduction. The interested reader may train in deep learning and reinforcement learning
to be able to investigate the following approaches.

E.1 Generative models

First, recall that a generative model attempts to determine a joint probability distribution of observing both
the molecular representation x and the physical property y (p(x, y)). We immediately see that p(x, y) can
be used for inverse design by conditioning on the property y (p(x|y)).

Generative models based on deep learning can non-linearly link the molecule description x and the
physical property y, while performing representation learning.

Deep generative models can be built based on three neuron network architectures: auto-encoders (AE),
variational auto-encoders (VAE), and generative adversarial networks (GAN). These methods are introduced
in appendix A.8.2.

Recurrent neuron networks (RNN), introduced in appendix A.8.2, are also often used to build generative
models for SMILES strings, but also per molecular graphs.

E.2 Molecule generation approaches

In this section, we introduce some of published works on automatic molecule generation that we organise
depending on the numerical description of chemicals they consider: a vector of features (fingerprints), a
SMILES string or an undirected graph.

E.2.1 Molecular fingerprint generation

Few works [474, 475] proposed to generate compounds in the form of structural fingerprint vectors. In
particular, Karudin et al. [475] implemented VAE taking as input the Molecular ACcess System (MACS)
fingerprints. The same authors proposed later to train a standard auto-encoder jointly with a discriminator
network, such that the encoder both minimises the reconstruction error and maximises the discrimination
error (to generate reasonable fingerprints, i.e. fingerprints which correspond to realistic molecules).

As there is no direct way to recover a molecule from a continuous structural fingerprint vector, compounds
are often retrieved by searching for the closest molecule, in terms of fingerprints, in a large database. For this
reason, encoding and decoding SMILES representation of molecules seems more suitable without entailing
additional difficulties.
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E.2.2 SMILES generation

Most of the studies about inverse molecular design [460, 461, 476, 477, 478, 479, 480, 481, 482] worked with
the SMILES representation of molecules since it is particularly convenient.

Indeed, encoding SMILES strings via RNN and CNN is as straightforward as it is efficient (see Sec-
tion 6.1). Also, decoding or generating SMILES can be performed easily with RNNs.

Indeed, an RNN can be used to estimate the probability distribution of the next state st in a sequence
based on the previous state st−1. More precisely, in the case of a SMILES string, st corresponds to the
SMILES character at position t. The RNN typically output a probability vector , as a proxy to p(st|st−1),
whose elements sum to one and whose dimension is the size of the dictionary of possible characters in a
SMILES string. Typically, the probability that the character st at position t is the kth character in the
SMILES dictionary follows p(st = k|st−1) = exp(ykt−1)∑

k
exp(yk

t−1)
where ykt−1 is the kth value of the output vector of

the (t− 1)th RNN cell [460].
The RNN is typically trained to recover the successive characters of millions of SMILES taken from a

large database of molecules, such as ChEMBL.

E.2.3 Graph generation

As already mentioned in this manuscript, SMILES representation is dependent on the canonicalisation
method used, meaning that similar structures have different SMILES strings.

Thus, recent works have focused on building models to generate undirected graphs directly.

First, Jaakkola et al. [483, 468] presented the junction tree VAE (JT-VAE) which is a two-stage approach
based on VAE. In the first stage, the JT-VAE generates a junction tree whose role is to represent the
scaffold of subgraph components (building blocks automatically extracted from the training set using tree
decomposition) and their relative arrangements in a hierarchical manner. In the second stage, the sub-graphs
are assembled into a coherent molecular graph based on the tree structure defined in the first step.

This approach can leverage structure at different scales (atoms, chemical substructure etc.) which enables
macro-molecule generation, such as proteins. Also, such a tree-structured generative process might benefit
from a reduced complexity but also a good predictive performance.

Simultaneously, several authors proposed similar approaches that decompose the graph generation process
into a sequence of node and edge generation processes. This sequential generation is conditioned on the graph
structure generated so far [470, 464, 471, 467, 484]. Indeed, after each step of graph expansion (addition
of nodes and/or edges), a GCN is typically used to update nodes attribute so that each node attributes
contains the information about the current graph structure.

For instance, You et al. [471] formulated an iterative graph generation process as a general decision
process M = (S,A, P,R), where (i) S = {st} stands for the set of states st that consists of all possible
intermediate graphs, (ii) A = {at} is the set of actions that trigger modifications on the current graph at
each time step t, (iii) P stands for the transition probabilities p(st+1|st, . . . , s0, at) (typically modelled by
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RNN) that specifies the possible outcomes of carrying out an action at (i.e. monitor the modification of a
graph at each time step) and finally (iv) R(st) is a reward function that specifies the reward of each state
st (in order to optimise the transition probability model). The procedure to generate a graph can thus
be described by a sequential trajectory ((s0, a0, r0), . . . , (sn, an, rn)), where sn is the final generated graph.
The reward R can typically guide the generation toward realistic chemical graphs and graphs with desired
properties.

Alternatively, Li et al. [467] designed a sequential process which generates one node at a time and
edges one by one. In essence, their graph generation process relies on three graph neuron network modules
(fadd node, fadd edge and fnodes) that provide probabilities for each structure building event, which are, (i)
add a new node (fadd node), (ii) add a new edge (probabilities provided by fadd edge), and (iii) pick one node
to connect to the new node generated after (i) (fnodes).

Finally, some have proposed to generate graph directly all at once [465, 463].
First, Simonovsky et al.[465] used a VAE made of a graph neuron network (encoder) and an MLP

(decoder). The MLP decoder is a probabilistic graph decoder whose final layer outputs a probabilistic
fully-connected graph G = (A,E, F ) of a predefined maximum size directly all at once so that all variables
(A,E, F ) are assumed independent. A is the predicted adjacency matrix which contains both node and edge
probabilities, and E and F are respectively the edge and node probabilistic attribute tensors. The existence
of nodes and edges is modelled with Bernoulli variables, whereas node and edge categorical attributes are
multinomial variables and node and edge continuous attributes are modelled with Gaussian variables.

A more recent study proposed molGAN [463] (see fig. E.1) which combines a GAN network, composed
of a generative network and a discriminator network [485] (cf. appendix A.8.2), with a reward network. The
generative network is an MLP that takes as input a D-dimensional vector sampled from a standard normal
distribution and outputs two continuous and dense objects: the atom type tensor F ∈ RN∗T and bond type
tensor E ∈ RN∗N∗Y (where N is the number of atoms, T the number of atom’s category and Y the number
of edge’s category). Thus the graph is generated all at once. Note that the adjacency matrix is implicitly
defined by the bond type tensor E.
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Figure E.1. The molGAN approach [463]

In such an approach, the generator is trained to full the discriminator that is optimised to distinguish
generated molecules from real molecules taken in the ChEMBL database. Therefore, the generator is trained
to generate realistic molecules. Simultaneously, the generator is trained to maximise the reward outputted
by the reward network.

In the next subsection, we discuss in more details several strategies to bias the generation process toward
realistic molecules and to perform goal-oriented inverse drug design.

E.3 Biasing the molecule generation process

In this subsection, we introduce several approaches for guiding chemical generative models towards molecules
with desired chemical or biological properties, such as drug-likeliness or a high affinity with a target protein.

E.3.1 Guiding molecular generators via overfitting

An early work [486] adopted a simple guiding strategy which consists in retraining a pre-trained auto-encoder
a dozen times only with the molecules (initially in the database) known to fulfil to the desired the property.
In other words, this procedure overfits a generative model on molecules with a desired feature to enforce
generating molecules with the same feature.

This strategy appears to be relevant only for properties concerning a large amounts of available or
predicted molecules.

E.3.2 Guiding molecular generators via incorporation of the property in the
input

A second direct attempt to guide the molecular generation process with auto-encoders is to concatenate
the information of the considered property to each input graph and to each latent representation (or even
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to every layer), such that both the encoder and the decoder are encouraged to exploit information in the
label [465, 487, 488].

However, when it comes to generating new objects with the desired property, authors have proposed to
first sample the latent representation and then pass the latent vector concatenated with the desired property
through the decoder.

This process implies the independence of the latent representation and the property of interest, which is
inconsistent in most cases.

More powerful guiding strategies, based on Bayesian optimisation or reinforcement learning have also
been proposed.

E.3.3 Guiding molecular SMILES generators’ latent encoding via Bayesian op-
timisation

When using variational auto-encoders, a strategy to generate compounds with a desired property is to
automatically optimise, typically via Bayesian optimisation, the continuous latent representation so that the
latent representation corresponds to a molecule with the property of interest. Indeed, Bayesian optimisation
algorithms optimise objective functions over continuous domains. They build a surrogate for the objective
function and quantify the uncertainty in that surrogate, using machine learning techniques such as Gaussian
processes, to sample the input space and quickly find an optimum (see appendix A.8.4).

One of the first approaches for inverse drug design [460] used this strategy. The authors used a VAE
to encode and decode SMILES representation of molecules. The encoder was a CNN, and the decoder was
made of fully connected layers followed by successive Gated Recurrent Unit (GRU) layers. They used black
box Bayesian optimisation to optimise the latent representation so that it corresponds to a molecule with
the desired biological property. In the following, we call this approach VAE-BO.

Later on, Hernadez et al. [461] proposed a slight improvement of this approach: they considered "con-
strained" Bayesian optimisation to generate more realistic molecules. In addition to optimising the latent
molecular representation to maximise the probability to match a biological property, this approach learns
what part of the latent space is "forbidden" because it encodes unrealistic molecules.

E.3.4 Guiding molecular generators via reinforcement learning

Alternatively, most of the current works consider reinforcement learning (RL) to guide generative processes.
Typically, RL strategies use a reward network that treats the generator as an agent which must learn

how to take actions (add characters to a SMILES string or expand/terminate a molecular graph) within a
task (SMILES or graph generation) in order to maximise some reward (chemical properties).

Introduction to reinforcement learning

RL optimisation is meant to guide a generator G (or a "policy network π" in the RL nomenclature), with
parameter Θ, that takes as input the previous state st−1 and estimates the probability distribution p(at|st−1)
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of the next action at. The next action at is then sampled from p(at|st−1). We note A = (a1, a2, . . . , aT ) the
sequence of actions (called "an episode" in the RL nomenclature), T the number of steps of the generative
process, and r(·) a scoring function that rates the desirability of an action or a full episode A. The major
issue in the case of chemical generation is that it can assign rewards only once the molecule (SMILES or
graph) is completed. Therefore, we cannot easily define a reward r(at|st−1) which acts as a measurement of
how good it was to take an action at a particular state.

If both actions and states are generated by the agent itself, the learning is referred to as "on-policy", and
as "off-policy" otherwise. The strategy defined above belongs to the on-policy framework, whose policy is a
neuron network G with parameter Θ. On-policy RL can be performed in "value-based RL" or "policy-based
RL".

Value-based RL strategy consists in optimising the policy πΘ to return an action at by maximising
the expected return based on the previous state st, defined by J(Θ) = E[r(at)|st−1,Θ] (where r(at) is the
reward associated with action at). Hence, this strategy considers action-level rewards, instead of episode-level
rewards, to optimise πΘ.

In the case of SMILES generation, we can typically use Monte Carlo Tree Search (MCTS) [489] which
simulates several possible completions for SMILES by constructing a search tree generated by a rollout
procedure. Based on the tree, we can score a partial SMILES by weighting the evaluated rewards of several
possible completions based on their likeliness. In other words, the space of SMILES strings is represented
as a search tree where the ith level corresponds to the ith SMILES character, and each node corresponds to
one symbol, so that a path from the root to a terminal node corresponds to a complete SMILES string. The
rollout procedure, which evaluates the likeliness of the next SMILES character based on the partial SMILES,
is typically an RNN pre-trained on a extensive database of SMILES strings.

Alternatively, policy-based RL directly optimise the stochastic policy πΘ according to some scoring
function r(·) defined at the episode level. Several objective functions can be considered to optimise the
policy via gradient-based methods.

For instance, the augmented episodic likelihood objective function optimises the episodic log likelihood of
the policy log[pπΘ(A)] to maximise the episodic reward r(A) and to anchor the policy πΘ to an a priori policy
πprior (pre-trained on large databases to learn both the syntax and distribution of molecular structure). In
this case, the objective function is defined by

J(Θ) = −[log[pπprior (A)]− log[pπΘ(A)]]2 + αr(A)

where α is a scalar controlling the trade-off between the two components (i.e. r(A) and log[pπprior (A)] −
log[pπΘ(A)]).

Another popular policy gradient method is the REINFORCE [490] algorithm which weights the reward
of episodes by their likeliness, without referring to a prior policy. Its associated cost function is :

J(Θ) = −r(A)
T∑
t=0

log[pπΘ(at, st)].
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In practice, for automatic molecule generation, RL is either used to guide a pre-trained generator [471,
467, 463, 476, 477, 478] or to guide a generator to be trained jointly with a GAN [479, 480, 481, 482, 491, 463].

Guiding pre-trained generators via reinforcement learning

First, some authors [471, 467, 463, 476, 477, 478] proposed to explore the chemical space by combining RL
and an RNN-based generator (to generate either SMILES [476, 477, 478] or graphs [471, 467, 463]). We use
the acronym RNN-RL to refer to this type of approaches.

Such approaches are composed of two phases. In the first one, a generative network (or an "agent"
in the RL nomenclature) and a molecular property prediction network are trained separately. They are
jointly trained in the second phase. The trained generative model is used to produce novel chemically
feasible molecules. The predictive model predicts the properties of each generated molecule and evaluates
the agent’s behaviour by assigning a numerical reward to individual generations.

Typically, the reward is the predicted probability value (between 0 and 1) to fit the desired biological
property, or "-1" for unrealistic molecules.

In particular, in the case of SMILES generation, Yang et al. [476] first proposed to train the agent, made
of stacked GRU layers, following a value-based RL strategy (and thus used MCTS, as previously mentioned),
to guide the SMILES generation towards realistic and property-oriented compounds.

Later on, Olivecrona et al. [477] considered a similar agent pre-trained on the ChEMBL database. How-
ever, they re-trained the agent in the second phase in an on-policy fashion (with the REINFORCE objective
function defined above) and standard gradient descent optimiser.

Finally, Popova et al. [478] pointed out that regular RNNs such as LSTM or GRU, are unable to gen-
erate valid SMILES efficiently because of their inability to count (valence for all atoms, ring opening and
closure, bracket sequences with several bracket types for instance). Therefore, they proposed to use memory-
augmented RNN like "Stack-RNN". Such memory-augmented RNN defines an additional differentiable neu-
ron module on top of the standard GRU cell in which continuous vectors are inserted and removed. This
is intended to learn to store meaningful long-range inter-dependences. They assessed the efficiency of the
stack-RNN in their study. Indeed, the agent with the stacked memory generated molecules such that 95% of
them were valid (only 86% for the agent without the stacked memory) and 14% were "similar" to molecules
in the original ChEMBL training data set (twice more for the agent without the stacked memory). They
used the fingerprint-based Tanimoto metric and a minimum similarity threshold set to 0.85 to assess drug
similarity.

Guiding generative adversarial networks via reinforcement learning

To address the challenge of goal-directed generation of valid molecules, others [479, 480, 481, 482, 491]
combined reinforcement learning and adversarial training. The adversarial approach is meant to keep the
generation of molecules similar to the initial distribution of data (to generate realistic molecules), while
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reinforcement learning guides the generation process to maximise some reward associated to the desirable
properties. In the following, we use the acronym GAN-RL to refer to this approach.

GAN-RL contains three key elements: a discriminative network (a binary classifier that determines
whether a molecule is likely to come from the initial distribution or not), a reinforcement component (quan-
tifies the interest of a generated molecule) and a generator network (generates molecules). The generator
is trained by maximising the following objective function: L(Θ) = λLGAN + (1 − λ)LRL where λ ∈ [0, 1]
regulates the trade-off between the two components (i.e. the GAN loss and the RL loss).

Compared to RNN-RL approaches, whose generation process is limited by the pre-training of the gener-
ator, GAN provides a convenient generative method to sample new molecules. However, GANs often suffer
from mode collapse when the generator ends up exploiting repetitive patterns, or when the discriminator
overwhelms the generator, which prevents the generator from improving its capacity. As introduced in
appendix A.8.2, several tricks have been developed to partly address this issue.

In the case of SMILES generation, a series of studies [479, 480, 481] have explored the combination of
GAN and RL.

Later studies [482, 491] proposed several improvements, such as more powerful generator network to
prevent the discriminator model from overcoming the generator during training. More precisely, they used
GRU cells equipped with an external memory that are trained in an end-to-end manner, to account for short
and long-term dependencies (similar to the stack-RNN of Popova et al. [478]).

Finally, the major study of Kipf et al. [463] explored the combination of GAN and RL to generate
undirected molecular graphs all at once. The second main difference with the previously mentioned GAN-
RL approaches is that they use a different RL gradient policy than REINFORCE. Indeed, due to the
high dimensional action space when generating full graphs, they found that a stochastic policy πΘ(s) =
pΘ(at|st−1) (a parametric probability distribution with parameter Θ) trained with REINFORCE converges
poorly. Therefore, they used a deterministic policy, πΘ(s) = a, modelled by a reward neuron network (a
graph neuron network [304]) and used the appropriate Deep Deterministic Policy Gradient (DDPG) [492].

Their approach follows two phases. The reward network is trained independently in the first phase. The
generator, an MLP which outputs two continuous tensors (i.e. the atom types and bond types tensors),
is also trained independently in the first phase to fool a discriminator (a graph neuron network based
on [304]) which tries to segregate molecular graphs taken in the ChEMBL database from those generated
from random noise. In the second phase, the discriminator is trained using the WGAN loss [485] while the
generator, parameterised by Θ, optimises a linear combination of the WGAN objective and the RL objective:
L(Θ) = λLWGAN + (1− λ)LRL (λ ∈ [0, 1] regulates the trade-off between the two components).

Again, optimising the WGAN objective aims at guiding the generator toward realistic molecules, whereas
the RL objective is meant to maximise some reward to guide the generator toward molecules with the desired
properties. Interestingly, they observed that setting λ = 0 (only the RL objective in the second phase)
resulted in the "best" generative models in terms of validity (ratio of the number of valid molecules over all
generated molecules), novelty (ratio of the set of valid molecules that are not in the original training dataset
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over the total number of valid molecules), and uniqueness (ratio of the number of unique molecules over valid
molecules). This means that pre-training the generator in the first phase to fit the distribution of realistic
molecules, and then to retrain it with RL only, led to the best model. This crucial observation sharply put
into perspective the efficiency of GAN to generate realistic molecules compared to RNN-RL models, such as
the one proposed by Popova et al.[478].

In the next subsection, we compare the methods introduced in this appendix.

E.4 Evaluation of molecule generators

Before attempting to compare the approaches we have introduced so far, we discuss several metrics that can
be used.

E.4.1 Metrics for de novo drug design models.

Validity, novelty and uniqueness

Several studies [463, 469, 493] have compared methods based on validity, novelty and uniqueness.
Validity is the ratio between the number of valid compounds (syntactically correct) over all generated

molecules. It quantifies the ability to generate realistic molecules.
Novelty is defined as the ratio between the set of valid samples that are not in the training dataset over

the total number of valid samples. It quantifies the ability to explore unknown parts of the chemical space.
Uniqueness measures the ratio between the number of unique samples and valid samples. It quantifies

the degree of variety during sampling. Another similar measure is the internal diversity measure [493] which
is defined as the following: Div(G) = 1− 1

|G|2
∑
m1,m2∈G Tanimoto(m1,m2) where G is the set of generated

molecules and Tanimoto is the fingerprint-based Tanimoto similarity measure between molecules.

Diversity of the generated molecules

To quantify the diversity of generated molecules relatively to the original data set used to train the generative
model, some [469] proposed to use the KL divergence between the distribution of generated molecules and
the original distribution in the training set. This measure assesses if the set of generated molecules is as
diverse as the training set.

Another similar metric is the nearest neighbour similarity (NNS) [493] which is defined as the average of
the Tanimoto similarity Tanimoto(·, ·) between fingerprints of a molecule mG from the generated set G and
its nearest neighbour molecule mR in the training dataset R:

SNN(G,R) = 1
|G|

∑
mG∈G

max
mR∈R

Tanimoto(mG,mR)

.
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Frechet ChemNet Distance

Furthermore, Preuer et al [494] proposed the Frechet ChemNet Distance (FCD) which is another measure
of how close the distributions of generated compounds is to the distribution of molecules in the training set.

Interestingly, as molecular descriptors, they considered the molecular representation encoded by the
ChemNet multitask deep neuron network [354] trained to predict the biological activities of drugs. It incor-
porates a wide variety of important chemical and biological features into a single vector representation.

The FCD compares the generated distribution G with the training distribution R via the descriptors
obtained from the ChemNet network following:

FCD(G,R) = ||µG − µR||2 + Tr(ΣG + ΣR − 2(ΣGΣR)1/2)

where µG, µR are mean vectors and ΣG, ΣR are covariance matrices of the activations of the ChemNet’s
encoding layer on the sets G and R respectively.

They showed that this metric is relevant by considering training datasets biased on purpose (toward low
synthetic accessibility, low drug-likeness, ligands of a given protein family, etc...), and by showing that FCD
can catch all biases to judge whether created molecules are consistent or not with respect to these biases.

Biological relevance of the molecules

Finally, since the goal of inverse drug design is to automatically generate small compounds with desired
properties, we can use a score that reflects how well a molecule fulfils the required properties.

Such properties can be biological properties but also properties to judge whether molecules are reasonable
or not such as (i) the quantitative estimate of drug-likeness (QED) [495] which is an empirical measure of
drug-likeness, (ii) the water-octanol partition coefficient (logP) which measures how a molecule partitions
between water and octanol, and (iii) the Synthetics Accessibility Score (SAS) [496] which estimates whether
a molecule is synthetisable based on known reactions. Note that SAS follows the distribution from the
commercially available compounds, which is not a well-defined concept [497].

In the last part of this chapter, we report the comparison of the chemical generative models introduced
above.

E.4.2 Brief comparison of de novo drug design models.

First, we observed that most current molecular generation applications use the ZINC or ChEMBL databases.
The ZINC database records about 35 million compounds, whereas the ChEMBL is cleaner but records "only"
a couple of million of compounds (see Section 2.3.1).

Regarding generative models of SMILES-based representation of molecules, Polykovskiy et al. [493]
showed that the VAE-based[460] model outperforms AAE[488] and GAN-RL[480] architectures on the Fréchet
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ChemNet distance metric. This suggests that the VAE describes the chemical space better than other models.
They also observed that all models generate valid molecules, meaning that they successfully learn SMILES
syntax.

Another study [476] showed that RNN-RL models [476, 478] are significantly faster than VAE-BO based
methods [460] at generating valid SMILES strings. Moreover, the improved RNN-RL method [478] exhibited
impressive performance. They showed that 95% of all generated structures were valid and less than 0.1% of
generated structures were identical to those in the training data set.

Regarding generative models that output graphs all at once, the study of Kipf et al. [463] compared
molGAN to other methods via the validity/novelty/uniqueness metrics. Among related works, they consid-
ered a GAN-RL method [480] and a VAE-BO method [460] both working on SMILES strings and another
graph-based generative model using VAE [465].

First, molGAN outperforms the GAN-RL method (which is very similar to molGAN) handling SMILES
for the three objective scores. This means that it should be easier to optimise a molecular graph predicted as
a single sample than to optimise an RNN model that outputs a sequence of characters. Moreover, molGAN
achieves both high validity and novelty scores, which is not the case of all the other methods. However,
molGAN’s uniqueness is lower than that of all other baselines because of the collapse mode of GAN.

To conclude, we recommend the use of the improved RNN-RL method of Popova et al. [478]. The
molGAN approach appears promising but it must be corrected for mode collapse. Note also that both
studies recommend to fit the generator on a large database of molecules (to learn to generate realistic
molecules), and then to retrain the generator with RL only (to bias the generator towards compound with
the desired property), instead of optimising both objectives simultaneously.
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RÉSUMÉ

Le processus de découverte de médicaments a un succès limité malgré tous les progrès réalisés. En effet, on estime

actuellement que le développement d’un médicament nécessite environ 1,8 milliard de dollars américains sur environ

13 ans. Nous nous concentrons dans cette thèse sur des approches statistiques qui criblent virtuellement un grand

ensemble de composés chimique contre un grand nombre de protéines. Leurs applications sont polyvalentes: elles

permettent d’identifier des candidats médicaments pour des cibles thérapeutiques connues, d’anticiper des effets sec-

ondaires potentiels, ou de proposer de nouvelles indications thérapeutiques pour des médicaments connues. Cette thèse

est conçue selon deux cadres d’approches de criblage virtuel : les approches dans lesquelles les données sont décrites

numériquement sur la base des connaissances des experts, et les approches basées sur l’apprentissage automatique de

la représentation numérique à partir du graphe moléculaire et de la séquence protéique. Nous discutons ces approches

et les appliquons pour guider la découverte de médicaments.

MOTS CLÉS

criblage virtuel de médicament, bio-informatique, apprentissage statistique.

ABSTRACT

The rational drug discovery process has limited success despite all the advances in understanding diseases, and tech-

nological breakthroughs. Indeed, the process of drug development is currently estimated to require about 1.8 billion US

dollars over about 13 years on average. Computational approaches are promising ways to facilitate the tedious task of

drug discovery. We focus in this thesis on statistical approaches which virtually screen a large set of compounds against

a large set of proteins, which can help to identify drug candidates for known therapeutic targets, anticipate potential side

effects or to suggest new therapeutic indications of known drugs. This thesis is conceived following two lines of ap-

proaches to perform drug virtual screening: data-blinded feature-based approaches (in which molecules and proteins are

numerically described based on experts’ knowledge), and data-driven feature-based approaches (in which compounds

and proteins numerical descriptors are learned automatically from the chemical graph and the protein sequence). We

discuss these approaches, and also propose applications of virtual screening to guide the drug discovery process.

KEYWORDS

drug virtual screening, bioinformatics, machine learning.
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