
HAL Id: tel-02188146
https://pastel.hal.science/tel-02188146

Submitted on 18 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of geostatistical models using stochastic
partial differential equations

Ricardo Carrizo Vergara

To cite this version:
Ricardo Carrizo Vergara. Development of geostatistical models using stochastic partial differential
equations. Geophysics [physics.geo-ph]. Université Paris sciences et lettres, 2018. English. �NNT :
2018PSLEM062�. �tel-02188146�

https://pastel.hal.science/tel-02188146
https://hal.archives-ouvertes.fr


Préparée à MINES ParisTech

Development of geostatistical models using Stochastic
Partial Differential Equations

Soutenue par

Ricardo Carrizo Vergara
Le 18 décembre 2018

École doctorale no432

Sciences des Métiers de
l’Ingénieur

Spécialité

Géostatistique et Probabi-
lités Appliquées

Composition du jury :

Hermine BIERMÉ
Professeur, Université de Poitiers Présidente

Annika LANG
Professeur associée, Chalmers Univer-
sity of Technology

Rapporteuse

Josselin GARNIER
Professeur, École Polytechnique Rapporteur

Finn LINDGREN
Chaire de statistique, University of Edin-
burgh

Examinateur

Nicolas DESASSIS
Chargé de recherche, MINES ParisTech Encadrant

Denis ALLARD
Directeur de recherche, INRA Co-directeur de thèse

Hans WACKERNAGEL
Directeur de recherche, MINES Paris-
Tech

Directeur de thèse





i

“He1who loves practice without theory is like
the sailor who boards ship without a rudder
and compass and never knows where he may
cast.”

Leonardo da Vinci

1It also applies for a “she”... and for any other human being...
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Abstract

This dissertation presents theoretical advances in the application of the Stochastic Partial Differential Equa-
tion (SPDE) approach in Geostatistics. This recently developed approach consists in interpreting a region-
alised data-set as a realisation of a Random Field satisfying a SPDE. Within the theoretical framework of
Generalized Random Fields with a mean-square analysis, we are able to describe with a great generality the
influence of a linear SPDE over the covariance structure of its potential solutions. A criterion of existence
and uniqueness of stationary solutions for a wide-class of conveniently defined linear SPDEs has been ob-
tained, together with an expression for the related spectral measures. This result allows to encompass a great
variety of already known relationships between stationary covariance models and SPDEs. It also allows
us to obtain new stationary covariance models that are easily related to SPDEs, and to propose SPDEs for
some already known covariance models such as the Stein model and the J�Bessel model. We apply these
results to construct spatio-temporal covariance models having non-trivial properties. By analysing evolution
equations presenting an arbitrary fractional temporal derivative order, we have been able to develop non-
separable models with controllable non-symmetric conditions and separate regularity over space and time.
We present results concerning stationary solutions for physically inspired SPDEs such as the advection-
diffusion equation, the Heat equation, some Langevin equations and the Wave equation. We also present
developments on the resolution of a first order evolution equation with initial condition. We then study a
method of non-conditional simulation of stationary models within the SPDE approach, following the reso-
lution of the associated SPDE through a convenient PDE numerical solver. This simulation method, whose
practical applications are already present in the literature, can be catalogued as a spectral method. It consists
in obtaining an approximation of the Fourier Transform of the stationary Random Field, using a procedure
related to the classical development on Fourier basis, and for which the computations can be efficiently ob-
tained through the use of the Fast Fourier Transform. We have theoretically proved the convergence of this
method in suitable weak and strong senses. We show how to apply it to numerically solve SPDEs relating the
stationary models developed in this work, and we present a qualitative error analysis in the case of the Matérn
model. Illustrations of models presenting non-trivial properties and related to physically driven equations
are then given.
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Résumé

Ces travaux présentent des avancées théoriques pour l’application de l’approche EDPS (Équation aux Dérivées
Partielles Stochastique) en Géostatistique. On considère dans cette approche récente que les données région-
alisées proviennent de la réalisation d’un Champ Aléatoire satisfaisant une EDPS. Dans le cadre théorique
des Champs Aléatoires Généralisés avec une analyse en moyenne-quadratique, nous avons décrit avec une
grande généralité l’influence d’une EDPS linéaire sur la structure de covariance de ses éventuelles solu-
tions. Un critère d’existence et d’unicité des solutions stationnaires pour une classe assez large d’EDPSs
linéaires a été obtenu, ainsi que des expressions pour les mesures spectrales reliées. Ce résultat nous per-
met de rassembler dans un cadre unifié un grand nombre de liens déjà connus entre modèles de covariance
stationnaires et EDPSs. Il nous permet en outre d’obtenir de nouveaux modèles de covariance stationnaires
immédiatement reliés à des EDPSs, et de proposer des EDPSs pour des modèles de covariance déjà con-
nus comme le modèle de Stein et le modèle J�Bessel. Nous appliquons ces résultats à la construction de
modèles de covariance spatio-temporels présentant des propriétés intéressantes. À travers l’analyse des équa-
tions d’évolution comprenant un opérateur différentiel temporel d’ordre fractionnaire arbitraire, nous avons
développé des modèles non-séparables ayant des conditions d’asymétrie et de régularités spatiale et tem-
porelle séparées contrôlables. Nous présentons des résultats concernant des solutions stationnaires pour des
EDPSs issues de la physique, telle que l’équation d’advection-diffusion, l’équation de la chaleur, quelques
équations de Langevin, et l’équation d’onde. Nous présentons aussi des développements pour la résolution
des modèles d’évolution de première ordre ayant une condition initiale. Puis, nous étudions une méthode de
simulation non-conditionnelle pour des modèles stationnaires dans le cadre de l’approche EDPS. Pour cela,
nous nous inspirons de la résolution de l’EDPS associée moyennant une méthode de résolution numérique
des EDP choisie de manière appropriée. Cette méthode de simulation, dont son application pratique est déjà
présente dans la littérature, peut être considérée comme une méthode spectrale. Elle consiste à obtenir une
approximation de la Transformée de Fourier du Champ Aléatoire stationnaire par une procédure intimement
reliée au développement classique en base de Fourier, et pour laquelle nous pouvons obtenir des méthodes
de calcul efficaces grâce à la Transformée de Fourier Rapide. Nous avons démontré théoriquement la con-
vergence de cette méthode dans aux sens faible et forte dans des conditions appropriées. Nous montrons
comment appliquer cette méthode pour la résolution numérique des EDPSs reliant les modèles stationnaires
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développés dans ces travaux, et nous présentons une analyse qualitative de l’erreur pour le cas du modèle
Matérn. Des illustrations de modèles présentant des propriétés non-triviales et reliés à des équations de la
physique sont alors présentées.
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Chapter 1

Introduction

1.1 Geostatistics and Stochastic Calculus

The stochastic modelling of natural phenomena can be done following methodologies grounded on many
different approaches1. Let us consider two approaches in particular: the approach of Stochastic Analysis
or Stochastic Calculus, and the approach of Geostatistics. Within the first approach, the modelling of a
particular phenomenon is often done by following a physically-based model imposed to the phenomenon,
usually expressed through a differential equation. This differential equation is then stochastized in some
sense, that is, some random mathematical objects are added in the equation or the deterministic objects are
interpreted as random mathematical objects. These objects may describe, for example, a noise acting as a
source term or as a force vector field, the structure of irregular media or geometries, an initial or boundary
condition which we do not know in detail, etc. The resulting differential equation is then called a Stochastic
Differential Equation (SDE), and when the problem is treated in a spatial context with dimension higher
than 1, it is called a Stochastic Partial Differential Equation (SPDE). The branch of mathematics which
rigorously formalizes these notions and studies its properties and rules of use is called Stochastic Calculus or
Stochastic Analysis, and it is a sub-branch of Probability Theory. Its main mathematical tool is the Stochastic

1We understand by stochastic modelling of a natural phenomenon any mathematical modelling of a natural phenomenon
grounded on the consideration that we do not know how this phenomenon behaves and that we do not know how, or we do not
want to describe it with full precision. The objective is then to describe grosso-modo the behaviour of the variables involved, to
recover their main general characteristics and to describe roughly their variability. The modelling is done by describing the be-
haviour of the unknown quantities through random mathematical objects defined in Probability Theory, more precisely, random
variables, whose behaviour is determined by probability laws. The precision level with which the natural phenomenon is studied in
a stochastic context depends on the needs and objectives of the user of the model. The criterion to select such a precision level is
then, left to the freewill of who makes the model and why does this person wants it. We understand by a random phenomenon any
phenomenon for which we do not exactly know how it behaves. In the last rigorous sense, every natural phenomenon is a random
phenomenon, but in practice, we call deterministic phenomenon every natural phenomenon which we know and understand how it
behaves up to some precision level which is sufficient for our objectives and needs. Hence, the determinism or stochasticism of a
natural phenomenon is not really a property of the phenomenon but of our knowledge about it.

1
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Process. Stochastic Calculus provides then a rigorous framework to treat mathematically the intuition of a
SPDE and to apply it to model natural phenomena.

On the other hand, we have the geostatistical approach2. In principle, this approach does neither con-
sider a physical model that the studied variable must follow, nor some kind of differential equation it must
satisfy. This approach is based on Data Analysis, studying data-values of variables changing over the space
and/or time. A typical methodology consists in interpreting the obtained data-values as the evaluation of
a realisation of a Random Function. The variability of the studied variable is then described statistically
through a selected covariance function, variogram or another mathematical tool determining the Random
Function. The selected model must, in some sense, fit the data obtained during the study of a particular
case of a natural phenomenon. Once the model is selected, it is then used to treat the unknown quantities of
the phenomenon: prediction at a future time or at a non-sampled location, or the general behaviour of the
variability of the variable along the space-time, etc.

These two approaches differ in their inspiration but coincide in the mathematical tools used. A Stochastic
Process and a Random Function are exactly the same thing: both are a family of random variables indexed
by a non-empty set3. The difference relies rather on the way to describe it or to determine it. Stochastic
Analysis does it by imposing a SPDE the Random Function must satisfy. Geostatistics does it by imposing a
covariance structure that the Stochastic Process must follow. Under suitable mathematical conditions, both
approaches determine completely this mathematical object. From these considerations, a question arises
somewhat naturally: are these approaches related? Is it equivalent to fix a covariance structure the Random
Function must follow or to fix a SPDE that it must satisfy?

The answer is, roughly speaking, yes. In this dissertation we will get into the details of this answer and
we will address other questions arising from this issue. In an intuitive way, we can remark the following
fact: Geostatistics has always described the increments of the studied variable with respect to changes in the
spatial or temporal components. These increments are modelled as random quantities described statistically
through the specification of their laws, moments or mutual dependences structures. On the other hand, in
a typical deterministic modelling context the increments of a studied variable are described infinitesimally
through a differential equation. Hence it also describes the increments with respect to changes on the spatial
or temporal components, or with respect to others variables of interest. It is not very surprising then that the
stochastized version of such a differential equation would describe the variability of the variable in a similar

2In what concerns this paragraph, we can use as synonyms, Geostatistics, Spatial Statistics, Spatio-temporal Statistics, Time-
Series Analysis, etc. In general, any branch of Statistics for which its methodology of study considers the place where and/or the
moment when the data-value was obtained as an important and determinant information, in addition to the data-value itself.

3Some authors restrain the term stochastic process to the cases where the indexation set represents a time-interval or an ordered
set. The concept of Random Function is then more general, usually used when the indexation set is the space or the space-time.
Another typical terminology which involves both concepts is the term Random Field. We have decided not to make a strong
distinction between these terms, since, mathematically, they present no difference in principle: what changes is only the indexation
set, which will be always specified.
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way as Geostatistics does: through an interpretation of the increments as random quantities, but controlling
the statistical behaviour of these increments through a differential equation imposing a particular behaviour
to the infinitesimal increments. Hence, it is reasonable to think that both methodologies are connected and
may be equivalent under some suitable hypotheses.

In the last decade a new geostatistical modelling paradigm based on these considerations (either explic-
itly or implicitly) has been developed. It is called the SPDE Approach. It has arisen from the needs of the
statistical community and not from the probabilist community. It consists in interpreting the studied variable
as the realisation of a Random Function which satisfies some SPDE. Although this kind of modelling has
always been done in Stochastic Analysis, it has not necessarily been grounded on the need of conveniently
fitting a stochastic model to a data-set, nor by the need of interpreting statistical techniques in an analyst way.
This approach has allowed many theoretical and practical developments. From the practical point of view, it
allows the analysis of geostatistical models through the use of numerical tools used in the analysis of Partial
Differential Equations (PDEs). PDE numerical solvers such as the Finite Element Method (FEM) or spec-
tral methods can now be used to inspire new simulation and statistical inference methods of geostatistical
models. All the imaginable benefits of the world of Numerical Analysis are then applicable in Geostatistics.
In particular, the computing time for simulations and inference methods has been notably reduced thanks
to the fast computing performance of PDE numerical solvers in some contexts. From the theoretical view-
point, this approach has allowed the introduction of new geostatistical models related to SPDEs which can
be added to the already known valid covariance models. In some cases, these models can present a tradi-
tional physical meaning, and hence, the parameters of classical geostatistical covariance models can carry
a traditional physical interpretation. A classical geostatistical parameter such as the scale, which describes
roughly the spatial or spatio-temporal range, defined as the distance below which the correlation is signifi-
cant enough, can be interpreted as a damping parameter. Other parameters, now considered as parameters
of the associated SPDE rather than of the covariance model itself, can be also physically interpreted. This
is the case for example of a velocity vector, a diffusivity coefficient or an anisotropic diffusivity matrix, a
curvature coefficient, or a wave propagation velocity.

In the next sections we will enter into the details and precisions of such a paradigm, giving the adequate
bibliographical sources of the statements claimed in this section.

1.2 The SPDE Approach in Geostatistics: state-of-the-art

The term SPDE Approach was first used in the seminal discussion paper by Lindgren et al. (2011). The
selection of such a terminology arises from the point of view of a statistical community which did not
necessarily face their problems using concepts and methodologies associated to Stochastic Calculus. Hence,
it was worth being called a new approach in geostatistical analysis. In this paper, the authors considered a
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SPDE over the Euclidean space Rd of the form

pκ2 �∆qα2 U �W, (1.1)

where κ ¡ 0, α ¡ d
2 , ∆ is the Laplacian operator andW is a Gaussian White Noise. The operator pκ2�∆qα2

is fractional pseudo-differential operator which can be defined through the Fourier Transform. Then, they
exploited the theoretical link between this equation and the stationary covariance function

ρphq � 1

p2πqd{22α�1κ2α�dΓpαqpκ|h|q
α�d{2Kα�d{2pκ|h|q, h P Rd, (1.2)

where Kα� d
2

denotes the modified Bessel function of the second kind of order α� d
2 ¡ 0. The members of

this class of covariance models are called Matérn models orK�Bessel models. The function (1.2) is actually
the only possible covariance function which a stationary solution to Eq. (1.1) can follow. This theoretical
result was obtained in Whittle (1963). Before entering into the details of the exploitation of this theoretical
link done in Lindgren et al. (2011) and in reasons as to why this idea has been so beneficial and fertile, let us
make a little historical analysis of similar theoretical relationships between covariance models and SPDEs.

The idea of obtaining covariance models arising from solutions of SPDEs is actually quite old. Rigor-
ously speaking, it can be said that the probabilist community has always done this. Since the very beginning
of the theory of Stochastic Processes and Stochastic Calculus, the covariance function has been an important
mathematical tool which characterises roughly the stochastic processes involved4. However, they do not
necessarily use this mathematical tool as a basis of model construction or modelling methodology. From the
statisticians standpoint, most techniques are grounded on this mathematical tool, such as kriging, simulation
methods, conditional simulations and inference methods based on the analysis of the second moments of
the random variables involved such as variographic analysis or likelihood methods in square-integrable con-
texts. Within the statistical objectives, many authors have obtained and described covariance models from
the resolution of stochastic differential equations. The earlier works we have found in this aim are those of
Heine and Whittle. Heine (1955) presents formulas of stationary covariance functions describing solutions
to some SPDEs involving hyperbolic, parabolic, and other type of second order differential operators in spa-
tial dimension 2. In Whittle (1954) the author is inspired by a typical time-series interpretation, analysing
the increments of a random process with respect to constant gaps in the temporal domain, adding indepen-
dent innovation terms. The analogue idea is then applied to the spatial case with symmetric second-order
gaps in two dimensions. It is then concluded that such a model follows a stochastic Laplace equation with

4Kolmogorov and Prokhorov referred to the correlation function (Kolmogorov & Prokhorov, 1992). Without using a particular
name for it, Doob presents this concept in the framework of real Gaussian Processes where it plays a determinant role since, together
with the mean function, it determines completely the Random Function (Doob, 1953, Chapter II, Section 3). Itô also refers to the
Khintchine’s covariance function referring to Khintchine (1934), and he also refers to the covariance distribution in the case of
Generalized Random Processes (Itô, 1954).
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damping (Eq. (1.1) with α � 2). In Whittle (1963), the author generalizes these results. He develops a gen-
eral framework where stationary Random Functions are related to some SPDEs, showing the link between
Eq. (1.1) and the Matérn model and presenting other examples such as spatio-temporal models related to
diffusion equations with damping. Later, Vecchia (1985) proposed models obtained from SPDEs involv-
ing operators which are compositions of operators exposed in Heine (1955) and in Whittle (1963), defining
spectral densities following products of diverse spectral densities. Gay & Heyde (1990) proposed models
based on solutions of SPDEs involving fractional Laplacian operators without damping parameters (κ � 0 in
Eq. (1.1)). These models are said to have a long-range dependence covariance structure, and they have been
worked out in great detail in Kelbert et al. (2005) and in the works of members of the Granada school (Anh et
al., 1999; Angulo et al., 2000; M. Ruiz-Medina et al., 2003). In Anh et al. (1999) examples of such fractional
models are exposed, and their regularity is analysed through the use of the Reproducing Kernel Hilbert Space
associated to the covariance structure, presenting also a SPDE these models must satisfy. In Kelbert et al.
(2005), the authors obtain models associated to fractional forms of the stochastic Heat equation. A summary
exposition of this kinds of models can be found in M. Ruiz-Medina et al. (2003). Fontainebleau’s school of
Geostatistics also provided advances in this framework. In the doctoral thesis Dong (1990), different covari-
ance structures of univariate and multivariate geostatistical models are obtained from the analysis of PDEs,
particularly the cases of the Poisson equation and other equations arising from Hydrogeology. In Jones &
Zhang (1997) stationary covariance spatio-temporal models issued from some SPDEs are developed, which
allow the construction of non-separable models. Examples of the stochastic diffusion equation with damping
and associated generalizations in spatial dimension 2 are presented. More recently, Lim & Teo (2009) and
Bolin & Lindgren (2011) proposed covariance models which are associated to more general forms of the
SPDE (1.1), and hence presented as generalizations of the Matérn Model.

It is then concluded that the idea of obtaining new covariance models from SPDEs is not a new idea but
rather an already well established practice in the statistical community. However, the exploitation of these
models taking advantage of this explicit link between their covariance structures and a SPDE is a quite new
practice. Bibliographical sources can be found where this link is exploited in the backwards sense as it has
been done in Lindgren et al. (2011). That is, a SPDE is fitted to data using classical statistical techniques.
The earlier work we have found considering the explicit notion of fitting a SPDE to a data-set is in Jones
(1989). In this work, the author proposes to fit a SPDE to aquifer data by considering the example of Eq.
(1.1) with α � 2. He presents the SPDE, makes reference to the relation with a Matérn model following
the results obtained in Whittle (1963), and then fits the model to a data-set using classical likelihood-based
statistical methods. The relation with the SPDE is almost anecdotal. Jones fitted a SPDE without never
really considering the SPDE itself, but using its related covariance model and applying typical statistical
techniques. In the conclusion of its work, Jones also states that this method was somewhat a “brute force”
method due to the high computational cost of likelihood based algorithms.

From these considerations we can identify the real major contribution of the work Lindgren et al. (2011).
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The approach in this paper is on the opposite direction as the one in Jones (1989). The authors begin
considering the Matérn covariance model, which is particularly popular among the statistical community.
They then present the connection with the SPDE (1.1) obtained in Whittle (1963), and then they forget the
related covariance function and work with discretized versions of the SPDE, which are provided by the FEM.
Hence, the approach consists in considering that the Random Function follows a particular SPDE which
determines its covariance structure and then work with that SPDE, rather than with the covariance function
itself. It turns out that this method presents real advantages in the case of the Matérn model (1.2) with
integer values of α. The authors show that when applying the FEM to discretize the linear SPDE (1.1), the
matrix involved in the numerical method can be identified as the precision matrix (that is, the inverse of the
covariance matrix) of the approximated Random Function evaluated at the nodes of the triangulation mesh,
which in this case is sparse. The sparsity of the matrices involved in the FEM approximation is theoretically
justified by the Markovian behaviour of the Matérn model for integer values of α. This consideration allows
to immediately work with a sparse precision matrix completely determined by the FEM triangulation, hence
avoiding inverting the covariance matrices as it is done in usual geostatistical techniques. This has allowed to
reduce considerably the computational time of geostatistical techniques which require the precision matrix,
such as non-conditional and conditional simulations, Bayesian inference methods, kriging, etc. Precisely, the
authors show that the complexity of the computations are reduced from OpN3q to OpN 3

2 q in 2D, N being
the number of sampling points. This method provides then a methodology for handling large to very large
(¡ 106) data sets. As stated in Jones (1989), such an amount of data sets could not be treated satisfactorily
with classical likelihood based methods.

The SPDE approach has then set a new paradigm for geostatistical modelling. The Matérn model, which
enjoyed a considerable popularity within the statistical community even before the introduction of the SPDE
approach (see the conclusive expression “use the Matérn model" in Stein (1999, page 14)), is equipped now
with new treatment techniques which makes it even more attractive for practical applications. Thanks to
the fast computation treatment provided by this technique, the SPDE approach has been widely used for
analysing large data sets, in particular in environment or climate science (Bolin & Lindgren, 2011; Cameletti
et al., 2013; Huang et al., 2017; Mena & Pfurtscheller, 2017). Some authors even consider that it is no longer
really necessary to explicitly use the covariance function when analysing some geostatistical models right
now, since we can now count on a SPDE which implicitly imposes a covariance structure and whose numer-
ical resolution provides more practical treatment techniques. We refer to Simpson et al. (2012) for such a
discussion, together with a comparison of the computational benefits when using SPDE approach techniques
with respect to other classical geostatistical techniques. In addition, since the positive-definiteness restric-
tion on a covariance function makes the construction of new models intricate, the SPDE approach allows to
implicitly construct models through the specification of SPDEs. This has allowed, for example, the develop-
ment of non-stationary models (Fuglstad et al., 2013). Generalizations of the Matérn model to more general
manifolds as in the case of the sphere representing the planet Earth can now easily be obtained through the
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resolution of suitable SPDEs defined over the sphere; see the application section in Lindgren et al. (2011) for
the details on this approach, and see Lang et al. (2015) for a theoretical analysis of Gaussian Random Fields
related to SPDEs over the sphere, together with practical simulation methods. It is interesting to contrast
this SPDE-based construction of covariance models with other more classical techniques of constructing
positive-definite functions over the sphere, framework which presents special theoretical issues. We refer
to Porcu et al. (2016) and White & Porcu (2018) for the difficulties and advances within this classical geo-
statistical approach, considering covariance functions over the sphere cross time. The SPDE approach has
also inspired the development of other PDE-solver based methods with efficient performances for a wider
class of models. We refer to Sigrist et al. (2015) for the study of a stochastic form of the advection-diffusion
equation with damping, using Fourier Analysis methods in space and a strict resolution of the SPDE in time
to perform efficient simulation techniques based on the Fast Fourier Transform. See Liu et al. (2016) for
the case of approximations of Matérn models over the space using bivariate splines, approach which allows,
in particular, to easily consider extensions to non-stationary models. Finally, we refer to Bolin & Kirchner
(2017) for adaptations of the FEM to the cases of Matérn models with non-integer parameter α.

We finally remark that the SPDE approach has allowed to consider particular physical meanings for some
parameters of the developed models. We consider for instance the already mentioned case of the advection-
diffusion equation worked out in (Sigrist et al., 2015), where the SPDE involves parameters defining a
damping number, a velocity vector, and an anisotropic diffusion matrix. We remark also the work M. D. Ruiz-
Medina et al. (2016) which allows to obtain new spatio-temporal covariance models related to SPDEs with
fractional regularities on time and defined over bounded sets in space. The approach consists in the resolution
of a deterministic version of a fractional PDE (without random source terms) considering a random initial
condition. The solution Random Field and its covariance are expressed through their developments in a
convenient orthonormal basis of functions, and the models are treated using wavelet-based methods. Such
models involve, for example, fractional versions of the Heat equation with fractional temporal derivatives
and a fractional spatial Laplacian operator.

1.3 Objectives

This new approach relating Geostatistics and the analysis of SPDEs open many doors in both theoretical and
practical aspects. When this PhD project was conceived, the main general questions that were aimed to be
worked out were the following ones:

1. How can we obtain new covariance models from the analysis of SPDEs, in order to add them to the
catalogue of valid available models? How can we describe the main properties of these models such
as its variance, range and regularity from the analysis of the parameters of the associated SPDE?
Which of these new models are related to classical physically driven PDEs, and hence with parameters



8 CHAPTER 1. INTRODUCTION

describing for example transport, diffusions and wave propagation phenomena, among other possibil-
ities? How can we apply conveniently this approach in order to obtain models in a spatio-temporal
context with non-trivial properties?

2. Once the link between a geostatistical model and a SPDE is established, how can we exploit this link
in order to obtain ad-hoc treatment techniques of the geostatistical model? In particular, which PDE
numerical solver approach is more convenient to use for solving a SPDE in order to obtain an adapted
framework for simulations and statistical inference methods?

3. How can we relate well-known geostatistical models to particular classes of SPDEs, and hence allow-
ing to treat these models with techniques issued from the SPDE approach?

These three questions are very generic and they lead to many different research works involving more
specific questions. In this dissertation we have mainly worked out the theoretical issues which appear when
facing these questions, mainly for questions 1 and 2. Let us present the issues and objectives of this work in
this aim. Since all the chapters in this dissertation present suitable introductory and discussion sections with
plenty of details and bibliographical sources, in this section we will not give many bibliographical sources
for our statements. All of them are treated more deeply further.

Question 1 proposes the challenge of relating explicitly the resolution of SPDEs with the construction
of covariance models. Hence, here we have to study and exploit the connection between the framework of
Stochastic Analysis and Geostatistics introduced roughly in Section 1.1. The question is rather how does
the SPDE impose a particular behaviour to the covariance of a stochastic process. This requires us to
enter into the details of Stochastic Calculus and the resolution and well-posedness of SPDEs. Hence, the
technical details which appear in the theory of stochastic processes and in Stochastic Analysis are present.
In particular, the well-posedness of a SPDE is a crucial question. The definition of a differential operator
acting on a stochastic process is one of the first basic issues in Stochastic Calculus, since many of the most
important stochastic processes do not have a regular behaviour. Even if such operation is well-defined, the
questions about the existence and uniqueness of solutions to some SPDEs, including in which sense we
interpret these potential solutions, are determinant. In some situations there are no solutions to a SPDE,
hence there are no covariance models at all to be concerned about. In other cases there exist many different
solutions, so there may be many possible covariance models whose associated Random Fields satisfy the
equation, hence the covariance structure is not completely determined by the equation. If we are in the case
of uniqueness of a solution, we still have to verify, in general, if such a solution has a covariance structure:
it could be a stochastic process with no square-integrable evaluations. Only after all these issues have been
tackled, we can really consider the covariance model which the solution to the SPDE follows. Finally, by
imposing a particular square-integrable multi-dimensional law which the process must follow (Gaussian, for
instance), we can really say that in such a context posing the SPDE and fixing the corresponding covariance
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model are equivalent methodologies.

It is then necessary to select a convenient framework between the possible ones already present in
Stochastic Analysis to work with. This is not an immediate selection to do and a naive choice may not
be very adapted to the objectives of this dissertation. We could try, as a first tentative, to use a typical main-
stream framework in Stochastic Calculus as the one based on a particular stochastic process: the Brownian
motion (or the White Noise, which is its derivative). Such a framework is the basis of Itô Calculus and other
similar approaches of Stochastic Calculus involving stochastic integrals. This framework often deals with the
analysis of filtrations, martingales and Markovian behaviours, and it is usually inspired by a strictly temporal
framework. However, a geostatistician who just starts entering into the technical details of Stochastic Anal-
ysis may be a little bit surprised by the general need of basing the whole theory on this particular stochastic
process or on the already mentioned concepts. In principle, a geostatistician is not particularly interested in
specific technical conditions such as a martingale behaviour or measurability along a particular direction of
the axes using filtrations. Such kind of properties are rather characteristics of particular stochastic processes
which the geostatistician has no reason to impose to a model in a first sight. Even Markovian models are not
theoretically preferred in principle. In practice, they are quite popular for practical reasons such as allowing
fast computations through the specification of sparse precision matrices, as already mentioned in Section
1.2. Although this motivation is quite important, in the general sense there is no other reason to restrict our
work to a Markovian model5. At the end of the day, the data-set and the simplicity of the model are the main
criteria determining which kind of model is preferable for a particular situation.

Concerning the definition of Stochastic Differential Equations, an interesting methodological question
arises. If the aim of Stochastic Calculus is to do Calculus with Random Functions, where does the need
of fixing a basis stochastic process, such as Brownian motion or White Noise, come from? If classical
deterministic calculus and analysis of PDEs are not based on a particular function but rather on the concepts
of continuity, differentiability, integration and other related concepts, why does Stochastic Calculus need to
be based on a particular stochastic process? The answer is simple: it does not. Indeed, all we need is a good
definition of differential operators acting on a stochastic process. This includes the correct specification of
these operations, the class of stochastic processes that they can be applied to, and to which class of stochastic
processes belongs the result of these operations. The necessity of fixing a particular stochastic process as
basis, or to restrict the work to processes presenting martingale or Markovian behaviour is not really present.
The construction of a stochastic integral, which is a tool often used to solve SPDEs, does not really require to
be based on Brownian Motion, nor does it necessitate a process presenting a Markovian behaviour or being
a martingale over the time. All we really need to define a stochastic integral is a Random Measure and a
precise Integration Theory with respect to this measure.

It is then necessary to focus in other, maybe less mainstream but also simpler theories of stochastic calcu-
5For instance, geostatistical techniques do not require the concept of causality, even when working in a temporal context. Hence,

the notion of the future depending on the past in a particular manner is not really necessary.
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lus. First of all, the typical geostatistical framework works with the covariance structure, and hence a square-
integrability condition must be imposed to the processes. The so-called mean-square theory (Sobczyk, 1991)
seems to be the most adapted to geostatistical purposes. Here the convergence and equalities of the random
variables are all considered in a mean-square sense. Hence, the connection with the covariance structure
framework in Geostatistics is immediate. In addition, one can construct Stochastic Differential Equations
without imposing the right side to be a typical model such as a White Noise. Instead, one only interprets the
equation as a PDE with Random Functions involved. Hence, this framework is not based on any particular
stochastic process, for instance, not on White Noise6. Finally, the definition of a differential operator acting
on an arbitrary stochastic process poses more sophisticated theoretical issues. These are often worked out by
interpreting the differential equation as an integral equation. However, another option which is simpler, is to
use the more sophisticated theory of Generalized Random Fields, that is, Random Distributions, the stochas-
tic version of the Theory of Distributions. In this theory many operations such as differential operators and
the Fourier Transform can be applied freely, and even some pseudo-differential operators interpreted as frac-
tional forms of classical differential operators can be applied under suitable conditions. We will thus see that
this framework is perfectly adapted to the analysis and treatment of linear SPDEs over the space or space-
time and for the description of the covariance structure of Random Fields. This framework also allows to put
in the same bag Random Functions, Random Measures and Random Distributions and to work with them in a
unified context. For instance, for the analysis of stationary Generalized Random Fields, the freedom we gain
when considering the Fourier Transform of a stationary Random Field as an orthogonal Random Measure
allows us to obtain a quite special treatment in this context and to well-define, analyse and solve a wide-class
of linear SPDEs, with a simple description of the covariance model following immediately. This is thus, the
framework which we decided to choose in this dissertation: Generalized Random Fields in a mean-square
analysis context. The mathematical tools needed to develop this framework are exposed in Chapters 2 and
3. Its application to analyse stationary solutions for a wide-class of linear SPDEs is presented in Chapter 4
and in Chapter 5 we apply it to develop spatio-temporal covariance models presenting non-trivial properties
and being related to physically driven SPDEs.

Concerning Question 2, in this dissertation we deal with the problem of choosing a suitable PDE solver
numerical method which can be easily adapted to the developments presented in this dissertation. In the liter-
ature the main methods are the Finite Element Method and spectral methods. Both kinds of methods present
advantages and disadvantages, mainly considering its versatility to treat wide classes of SPDEs, and hence
wide classes of possible covariance models in a geostatistical framework. Considering the developments in
this dissertation, we concluded that the most adapted method for non-conditional simulation of stationary
models related to SPDEs is the one based on a spectral method based on the approximation of the Fourier
Transform of the Random Field. This method is closely related to the development on the Fourier basis,

6Along this dissertation we will see that the White Noise, while not a cornerstone, has many special properties which makes it
meritorious of our attention, either for theoretical or practical purposes.
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although it is not exactly the same method. This method is not new (Pardo-Iguzquiza & Chica-Olmo, 1993;
Lang & Potthoff, 2011), although in the literature there is no theoretical proof for its performance. Within
our framework we have been able to prove theoretically the convergence of the numerical method to the the-
oretical solution of the associated SPDE in convenient weak and strong senses. We have been able then, to
apply it to illustrate approximations of the models presented in Chapters 4 and 5, specially those presenting
non-trivial properties and related to physically driven SPDEs. These developments are presented in Chapter
6. We do not enter on the problem of developing adapted inference methods and conditional simulations for
the SPDE Approach.

Regarding Question 3, on the relation of known geostatistical models with particular SPDEs, we do not
present general explicit advances in this dissertation. Implicitly, in Chapter 4 we develop a framework where
it is easy to relate a stationary covariance model to a SPDE when we know the spectral measure of the
Random Field and if it has the form of a density with respect to another spectral measure. This has allowed
us to obtain new relationships between some known covariance models and some type of SPDE which we
will specify further. However, the problem of relating a general geostatistical model to a convenient SPDE
has not been tackled. In the conclusive Chapter 7 we show indices for advances in this aim, which are also
embedded in our Generalized Random Fields framework with a mean-square approach.

1.4 Organisation of this dissertation

This dissertation is organised in five main chapters. The first two chapters are mainly expositions of mathe-
matical tools used in this dissertation. The other three chapters are devoted to new results and applications
with geostatistical purposes.

In Chapter 2 we introduce the main deterministic mathematical tools which are required on the formalism
of the SPDE approach. It consists of an exposition of Measure Theory over the Euclidean space and of
Distribution Theory. We present the notion of a complex locally finite random measure over the Euclidean
space. We remark the special cases of slow-growing, compactly supported and finite measures. We recall
the classical Riesz Representation Theorem which allows to characterize locally finite and finite measures
as continuous linear functionals over convenient spaces of continuous functions, and we present analogue
results for the cases of slow-growing and compactly supported measures. We remark also the important case
of measures concentrated on subsets of the Euclidean space. We present the most important definitions and
results of Distribution Theory in a tempered framework. We then show how differential operators and the
Fourier Transform are applicable in this context. We present the concepts of tensor products of distributions
and operators, and we recall important results such as the Exchange Formula for the Fourier Transform and
the Nuclear Theorem.

In Chapter 3 we present in detail the stochastic tools used both in classical geostatistical frameworks and
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in this dissertation. We present the classical framework of Random Functions, with all necessary notions to
relate geostatistical analysis with basic theories of PDEs, such as the definitions of continuity, differentiabil-
ity and integrability in a mean-square context. We then introduce the stochastized version of the deterministic
tools presented in Chapter 3, that is, Random Measures and Generalized Random Fields or Random Distribu-
tions. We define those tools in the context of the mean-square theory, where the main characteristics of these
objects are determined by the characteristics of the covariance structure. For instance, a Random Measure
is defined as being determined by a covariance measure. The cases of finite, slow-growing and compactly
supported Random Measures are related to analogue properties for the covariance measure. We present the
important case of orthogonal Random Measures. We show how to define integrals of deterministic functions
with respect to Random Measures within this framework. We then present the theory of Generalized Ran-
dom Fields. We show the main important aspects which allow to properly deal with differential operators
and the Fourier Transform on Random Fields with a huge generality. We present the definition of a stationary
Generalized Random Field and we recall the important result relating them with slow-growing orthogonal
Random Measures through the Fourier Transform. This result is widely used. We then present our definition
of a SPDE, and we show how linear SPDEs impose deterministic PDEs to the covariance structures of the
involved fields. We also give a brief but enlightening way to construct bivariate geostatistical models through
the SPDE approach. The final two sections of this chapter are devoted to explain the theoretical issues that
arise in Stochastic Analysis and the differences and similarities between the framework used in this disserta-
tion and other typical approaches to Stochastic Calculus. We present the differences between mean-square
theories and sample-paths theories, which are determinant on the cases of Random Functions and Random
Measures. We also present the theoretical issues that arise when trying to define multiplications between
GeRFs and hence when trying to define non-linear SPDEs or SPDEs involving a multiplicative noise. We
show that this issue is also related to the classical problem of the non-canonical definition of a stochastic
integral of general stochastic processes with respect to Random Measures. These theoretical issues push us
to restrict our work to the cases of linear SPDEs involving deterministic operators.

In Chapter 4 we generalize the results in Whittle (1963) regarding stationary solutions for a wide class of
linear SPDEs. Within the framework of stationary Generalized Random Fields, we obtain conditions under
which there exist strict stationary solutions and under which there is a unique solution. The criteria consists in
a suitable integrability condition between the symbol function defining the operator and the spectral measure
of the source term. We present the particular case of a White Noise source term and we show that it can
be considered as a fundamental case since, under suitbale conditions, the covariances of the solutions with
more general source term can be related to the one of the White Noise source term case through convolution.
These results allow to recover and encompass stationary models already present in the literature. They also
give a direct enlightening on the problem of relating stationary models to SPDEs. We recall the Matérn
model, the Matérn model without scale parameter, and Markovian stationary models. We present examples
of SPDEs related to the J-Bessel covariance model and the Stein model (Stein, 2005). We end this chapter
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with a remark concerning the associated deterministic PDEs. This framework can be used to analyse the
means of the Random Fields involved in a SPDE without necessarily supposing a constant or zero mean as
it is done in a stationary framework.

In Chapter 5 we present new spatio-temporal covariance models which we obtained within this SPDE
approach. We begin by recalling the special issues and difficulties in the framework of spatio-temporal
Geostatistics. We recall the concepts of separability, symmetry, spatial and temporal traces and margins in
a classical geostatistical framework, and we show how to properly define these notions in the framework
of Generalized Random Fields. We present then new stationary spatio-temporal covariance models associ-
ated to evolution equations presenting a fractional derivative order in time and an arbitrary operator defined
through a symbol in space. We present sufficient conditions for existence and uniqueness of a stationary so-
lution regardless of the source term and the imaginary part of the spatial symbol function. We then describe
the spectral measures associated to these models and we show how we can easily control the separability,
the symmetry, and the separate spatial and temporal regularity of the model. We give more details in the
cases of first order and second order evolution models. We describe the covariance of the spatial traces of
these models in symmetric cases. We point out already existent particular cases of these models which are
present in the literature, such as the case of the advection-diffusion equation (Sigrist et al., 2015) and some
Langevin’s equations (Hristopulos & Tsantili, 2016). We then introduce the Evolving Matérn models, which
are spatio-temporal stationary solutions to these evolution equations which follow a Matérn spatial covari-
ance model. We also obtain interesting results on the existence and uniqueness of stochastic forms of the
Heat and Wave equations. In the case of the Wave equation, we show that there exists a great variety of
stationary models which satisfy spatio-temporally its homogeneous form, and which can be chosen to follow
an arbitrary spatial covariance behaviour. We call these kinds of models Waving models. The last section
of the chapter is devoted to the study of first order evolution models satisfying an initial condition. The
results, presented informally, generalize well-known results on the analysis of such type of spatio-temporal
PDEs and SPDEs, which involve for instance the advection-diffusion equation, Langevin’s equations and the
Heat equation with a fractional Laplacian operator. The problem is solved considering solutions in a suitable
space of tempered distributions for which an initial condition makes sense. Under suitable assumptions, it is
claimed that the solution of this initial value problem converges asymptomatically spatio-temporally as the
time flows to the spatio-temporal stationary solution (in the geostatistical sense) associated to a first order
evolution model, already studied in this chapter.

In Chapter 6 we present a method of simulation of approximations of the models developed in this
dissertation. It is a well-known simulation model based on the spectral representation of stationary Random
Fields, taking advantage of the computational benefits of the Fast Fourier Transform. This method has
already been introduced by Pardo-Iguzquiza & Chica-Olmo (1993) in a geostatistical context and by Lang
& Potthoff (2011) as an efficient numerical method for solving suitable SPDEs. This method turned out
to be perfectly adapted to the approach presented in this dissertation. We present the theoretical basis of
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the methods and we have been able to theoretically prove the convergence of the method when increasing
the approximation order. The convergence is considered in suitable mean-square weak and strong senses.
We show how to apply this method to the resolution of SPDEs of the form presented in Chapter 4, to
numerically solve the initial value problem related to first order evolution models, and to simulate Waving
models. We implement this method in a particular convenient setting. We show a qualitative error analysis of
the simulated approximations by comparing the average over 50 independent realisations with the theoretical
variogram in the case of the Matérn model. We then illustrate simulations of different type of models,
presenting advection effects, different regularities along different directions, and non-symmetric behaviour
inspired by the developments done in Chapter 5. We also present illustrations of first order evolution models
with random initial condition and of Waving models. We finish with final words on the advantages and
disadvantages of this simulation method.

We finish with the conclusive Chapter 7 where we summarize the obtained results and we present possible
future courses of research within the SPDE approach, which are closely related to the issues exposed in this
dissertation.



Chapter 2

Theoretical Framework: Deterministic
Tools

SUMMARY

In this chapter we present the main non-stochastic mathematical tools that will be used in this
dissertation. It is basically a recall on Measure Theory for the Euclidean space and Distribution
Theory. It can be considered as a special chapter of this dissertation which does not deal
with strictly speaking geostatistical concepts. Hence, some geostatisticians who do not often
use these theories may find this exposition useful. Some of the notions and terminologies we
use here are not broadly used in classical treaties of these theories or they are presented in a
different way as we do. Hence, even if the reader knows well these theories, we suggest anyway
to make at least a fast reading of this chapter.

Section 2.1 deals with Measure Theory for the Euclidean space. Here the concept of locally
finite or Radon complex measure over Rd is presented and exploited. We present the defini-
tion of complex measures as set functions. The vector space of complex measures over Rd is
described. The space of finite complex measures is also presented, together with the concept
of measure of total variation. We recall the construction of the Lebesgue integral with respect
to positive and complex measures. We introduce the space of slow-growing complex measures
which will be of great importance in this dissertation. We recall the classical Riesz Represen-
tation Theorem which states that any continuous linear functional over the space of compactly
supported continuous functions is a complex Radon measure. Variants of the Riesz Repre-
sentation Theorem are also presented, including the cases of compactly supported measures,
finite measures and slow-growing measures as continuous linear functionals over the spaces of
continuous functions, continuous functions vanishing at infinity and fast-decreasing continuous

15
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functions respectively. We finish this section with an exposition of measures concentrated on
subsets of the Euclidean space, where we remark measures concentrated on the Sphere, on the
Hyperplane ty � xu and on the spatio-temporal cone.

Section 2.2 deals with Schwartz’s Distribution Theory. We restrain ourselves to the case
of tempered distributions. We introduce the Schwartz space and its dual space of tempered
distributions. Some examples of such distributions are given. We present examples of operations
which can be defined for tempered distributions, all of them defined through an adjoint. We
give the most important examples: differential operators, multiplication with multiplicators of
the Schwartz space, convolution with fast-decreasing distributions and the Fourier Transform,
together with its famous multiplication-convolution exchange formula. We recall the concept of
tensor product for the cases of functions, measures, tempered distributions and linear operators
over tempered distributions. Finally, we recall the important Nuclear Theorem. Some comments
on other spaces of distributions are also given.

Since we have used some notions and terminologies which are different to standard ones, many
claims presented in this section are not easily findable in the literature in the way we state them,
even if they could seem obvious for some specialists. In these cases, we always give a proof in
Appendix A or a convenient reference.

2.1 Measures over the Euclidean space

In this section we recall some concepts and results of Measure Theory for the Euclidean space Rd, with
d P N�. We will always work with Borel measures, that is, our measurable space will always be pRd,BpRdqq,
with BpRdq being the Borel σ�algebra of Rd.

Some definitions and terminologies that we have chosen to use in this work differ with classical termi-
nologies that can be found in most bibliographical sources. This choice is done mainly for practical reasons.
We will sometimes make reference to some treaties or articles using the same mathematical objects as we do
but with different names for those. We will specify the details when necessary. Some of the results presented
in this section are not easily findable in the literature, mainly because of this different usage of terminology.
For some of them, as Theorems 2.1.5 and 2.1.6, we are not aware about if they are new or not, but we did
not find a source where they are stated in the way we needed. We give, of course, proofs of those and to any
other result which is not immediately easy to find in the literature. We think, however, that these results are,
if not evident, at least intuitive for a Measure Theoretician or for an Analyst.

We refer to Knapp (2005, Chapter 6) for a general description of positive Borel measures over the Eu-
clidean space, and to Rudin (1987, Chapter 6) for a general theory of complex (finite) measures over abstract
measurable spaces. Here we make a general compendium of the main ideas on those and other bibliograph-
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ical sources, with no restriction to finite complex measures. Sources based on the other way of defining
measures over Rd, that is, by using the Riesz Representation Theorem as basis are also recommendable,
for which we remark the student-oriented Demengel & Demengel (2000) or the classical (and polemical)
Bourbaki (1965). This approach is also discussed in Section 2.1.4.

2.1.1 Locally finite complex measures as set functions

We begin by giving our definition of a Radon complex measure, or a locally finite complex measure over
Rd. The term Radon measure is mainly used for measures defined over more abstract measurable spaces
with extra properties required for the measure, namely, inner and outer regularity. However, in the case
of the Euclidean space with its Borel σ�algebra, the property of being locally finite is equivalent to being
Radon. See Knapp (2005, Theorem 6.2), the author using the term Borel measure for what we would call
here a positive locally finite measure. Hence, in this context it is not necessary to make a distinction between
the adjectives Radon and locally finite. We will set-up the next convention: all measures defined over the
Euclidean space used in this work are supposed to be Radon, and so locally finite, unless explicitly stated
otherwise. We will then drop the adjectives Radon or locally finite unless it is useful to recall them.

We denote by BBpRdq the collection of all bounded Borel subsets of Rd.

Definition 2.1.1. A locally finite complex measure (from now on, a complex measure, or simply a measure)
over Rd is a function µ : BBpRdq Ñ C such that for every countable collection of mutually disjoint bounded
Borel sets pAnqnPN � BBpRdq such that

�
nPNAn P BBpRdq, it holds that

µ

�¤
nPN

An

�
�
¸
nPN

µpAnq. (2.1)

This definition is not a traditional one. Most bibliographical sources require the measure to be defined
over the whole σ�algebra of Borel sets and not just over the bounded Borel sets. Some authors use the term
pre-measure for this mathematical object, at least in the positive case (see C. Rogers, 1970, Definition 5 in
Chapter 1). Indeed, that name is often used when the function µ is not defined over the whole σ�algebra of
subsets of the space but rather over a ring or over a δ�ring of subsets of the space1. However, the stronger
requirement that µ must be defined over the whole σ�algebra BpRdq produces problems when trying to
define a complex measure over unbounded sets, since in those cases expressions of the form8�8� ip8�
8q may arise, even for very basic and useful measures (the Lebesgue measure, for instance). Actually, it
can be proven that if we define a complex set function satisfying (2.1) for every arbitrary countable partition

1If X is a non-empty set, a ring of subsets of X is a collection of subsets of X stable under finite unions and under set
differences. A δ�ring of subsets of X is a ring of subsets of X stable under countable intersections. Every σ�algebra is a δ�ring,
but the converse is of course not true in general. The collection BBpRdq forms a δ�ring but not a σ�ring. See Rao (2012, Chapter
1) for an introduction to measure theory using these notions.



18 CHAPTER 2. THEORETICAL FRAMEWORK: DETERMINISTIC TOOLS

of any Borel set, this measure is necessarily a finite measure, notion that will be explained later (see Rudin,
1987, chapter 6). Definition 2.1.1 allows thus to bypass this problem since we are not concerced on what
happens over unbounded Borel sets. Some authors use this notion of complex measure, often inspired by the
manipulation of complex measures in Distribution Theory; see for example Schwartz (1966, Chapter I, §1).

The property related to Eq. (2.1) is called the σ-additivity property. We remark that the series in
(2.1) must be absolutely convergent, since

�
nPNAn is still the same set for every rearrangement of the

family pAnqnPN. We denote by M pRdq the space of locally finite complex measures over Rd. This space
is a complex vector space with the sum pµ � νqpAq :� µpAq � νpAq and with the scalar multiplication
pαµqpAq :� αµpAq, for all µ, ν P M pRdq, α P C, and A P BBpRdq. If a measure µ satisfies µpAq P R for
every A P BBpRdq, it is said to be real. If a measure µ satisfies µpAq ¥ 0 for every A P BBpRdq, it is said
to be positive. We denote by M�pRdq the space of all positive measures over Rd.

If µ P M pRdq, its reflection measure µ̌ is defined as µ̌pAq :� µp�Aq for every A P BBpRdq, where
�A :� tx P Rd : �x P Au. It is straightforward that µ̌ is a well-defined measure. A measure µ is said
to be even if µ � µ̌ and odd if µ̌ � �µ. Its conjugate measure µ is defined as µpAq :� µpAq for every
A P BBpRdq, and it is a well-defined measure. The real part of µ is the real measure µR :� µ�µ

2 , and the
imaginary part of µ is the real measure µI :� µ�µ

2i , satisfying µ � µR � iµI . A measure µ is said to be
Hermitian if µ � µ̌, that is, if its real part is even and its imaginary part is odd.

We introduce the next important definition.

Definition 2.1.2. Let µ P M pRdq. Its measure of total variation is defined as the measure |µ| P M�pRdq
defined for every A P BBpRdq by

|µ|pAq :� sup

" ¸
nPN

|µpEnq|
�� pEnqnPN � BpRdq partition of A

*
. (2.2)

The measure of total variation |µ| is actually, as its name states, a measure, which is in addition positive.
It is also the smallest positive measure satisfying |µ|pAq ¥ |µpAq| for all A P BBpRdq. Those claims can be
proven following Rudin (1987, Theorems 6.2 and 6.4). It can thus be concluded that |µ|pAq   8 for every
A P BBpRdq. It is clear that if µ P M�pRdq, then |µ| � µ. If µ P M pRdq is a real measure, we define its
positive part as the positive measure µ� � |µ|�µ

2 , and its negative part as the positive measure µ� � |µ|�µ
2 ,

satisfying then µ � µ� � µ�. This decomposition of real measures is also called the Jordan decomposition
(Rudin, 1987, Section 6.6). Using the positive and negative parts of the real and imaginary parts of a complex
measure µ, it is easy to see that µ can be decomposed in four positive measures µ�R, µ

�
R, µ

�
I , µ

�
I P M�pRdq

through µ � µ�R � µ�R � ipµ�I � µ�I q. If µ P M pRdq and A P BBpRdq, we say that A is a null set of µ, or a
µ�null set, if |µ|pAq � 0. This definition can also be extended to unbounded Borel sets.

We give now our definition of a measure of finite total mass.
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Definition 2.1.3. A measure µ P M pRdq is said to be a finite measure, or to have a finite total mass if its
domain can be extended to BpRdq maintaining the σ�additivity property:

 µpAq P C for all A P BpRdq,

 for every countable collection of mutually disjoint Borel sets pAnqnPN � BpRdq, the σ� additivity
property (2.1) holds.

We denote by MF pRdq the space of complex finite measures over Rd, and M�
F pRdq the set of all positive

finite measures over Rd. It is immediate that MF pRdq is a complex vector space. It is also clear that for a
positive measure µ P M�pRdq, being a finite measure is equivalent to having µpRdq   8. For a complex
measure, an analogue condition is required to the measure of total variation, as the next Proposition states.

Proposition 2.1.1. Let µ P M pRdq. Then, µ P MF pRdq if and only if |µ| PM�
F pRdq.

Since we have used non-traditional definitions of measure and finite measures, this result is not easily
findable in the literature in the exact way we state it. We then give a proof of Proposition 2.1.1 in Appendix
A.1. From Proposition 2.1.1, it is straightforward that the reflection, the conjugate, the imaginary and real
parts, and the positive and negative parts (in the real case) of a finite measure are also finite measures. We can
also conclude that the Jordan decomposition of a finite measure µ consists of four positive finite measures
µ�R, µ

�
R, µ

�
I , µ

�
I P M�

F pRdq, having µ � µ�R � µ�R � ipµ�I � µ�I q. If µ is a finite measure, the positive real
value |µ|pRdq is called the total variation of µ.

We finish this section with two basic but essential examples of measures over Rd:

 The Lebesgue measure, denoted by Leb, which satisfy to be the unique measure in M pRdq that gives
to every set of the form ra1, b1s � ... � rad, bds, with �8   aj ¤ bj   8 for all j P t1, ..., du,
the value Lebpra1, b1s � ... � rad, bdsq �

±d
j�1 |bj � aj |. It is also the unique measure in M�pRdq

which is invariant under translations2 and which gives the value 1 to the hyper-cube r0, 1sd. Hence,
the Lebesgue measure is the formalisation of the intuitive notion of area in R2 or the volume in R3. It
is not a finite measure.

 The Dirac measure at x P Rd, denoted by δx, which is the measure that for every A P BBpRdq gives
the value δxpAq � 1 if x P A, and δxpAq � 0 if x R A. It is a positive finite measure. If x � 0, the
Dirac measure at x is simply denoted by δ.

2.1.2 Reminders on Lebesgue integrability

In this section we recall some notions of Lebesgue integrability over the Euclidean space. As the reader
probably knows, the Lebesgue integral can be defined on quite abstract measure spaces. The recall made

2That is, that for everyA P BBpRdq, LebpA�hq � LebpAq for all h P Rd, whereA�h denotes the set tx P Rd
�� x�h P Au.
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here is restricted to integration over the Euclidean space, and it is presented mainly to clarify the language,
notions and results that will be used further in this work, with special emphasis on the construction of
the Lebesgue integral. We do not give any proof of the claims presented in this section, since they are
either broadly known, or straightforward from well-known results. There are many classical bibliographical
sources about this subject. We suggest for example Rudin (1987). Fast and effective introductions can be
found in Donoghue (1969, Chapter 5) and in L. Rogers & Williams (2000, Chapter 2, §1), the latter with a
probabilistic approach. This section can be skipped by a reader already familiar with this theory.

We consider the measurable space pRd,BpRdqq. A not-necessarily Radon positive measure over this
space, is a set function µ : BpRdq Ñ r0,8s satisfying the σ�additivity property (2.1) for every countable
mutually disjoint family of Borel sets. Such a measure can take infinite (positive) values over bounded Borel
sets, and it has necessarily the property µpAq ¤ µpBq if A � B. If A P BpRdq is such that µpAq � 0, we
say that A is a null set of µ, or a µ�null set.

We will first focus on integration of positive extended-real valued functions. A positive extended-real
valued function f : Rd Ñ r0,8s is said to be measurable if f�1pBpr0,8sqq � BpRdq, that is, if the pre-
image of every Borel subset of r0,8s is a Borel subset of Rd. The set of positive extended-real functions
is a cone stable under multiplication, maximum and minimum, and point-wise monotone convergence. A
particular class of measurable positive extended-real valued functions are the so-called simple functions,
which are measurable functions taking a finite number of values. A simple function f : Rd Ñ r0,8s can be
expressed as a finite linear combination of indicators functions of Borel sets:

f �
¸
jPJ

aj1Aj , (2.3)

with Aj P BpRdq and aj P r0,8s for all j P J , with #pJq   8, where #pJq denotes the cardinality of the
index set J . If f is a function of this form, its Lebesgue integral with respect to a positive not-necessarily
Radon measure µ is defined as »

Rd
fpxqdµpxq �

¸
jPJ

ajµpAjq. (2.4)

This expression can take infinite positive values, even when µ is in M�pRdq and f takes finite values, since
one of the involved Borel sets could be not bounded. For a positive extended-real measurable function f , it
is known that we can always construct a sequence of positive simple functions that converges monotonically
(increasing) point-wise to f . The Lebesgue integral of a positive extended-real measurable function f is
then defined as follows: if pfnqnPN is a sequence of positive simple functions monotonically point-wise
convergent to f , we define »

Rd
fpxqdµpxq :� lim

nÑ8

»
Rd
fnpxqdµpxq. (2.5)

This limit always exists (it can be infinite). This limit does not depend on the choice of the sequence of
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simple functions converging to f . The Lebesgue integral with respect to µ defines a linear mapping over the
cone of positive measurable functions. When the limit (2.5) is a finite positive real number we say that the
function f is integrable with respect to µ. The Lebesgue integral is monotonic in the following sense: if
f, g are two positive extended-real measurable functions such that f ¤ g, and µ is a positive not-necessarily
Radon measure, then »

Rd
fpxqdµpxq ¤

»
Rd
gpxqdµpxq. (2.6)

Let us right now consider the case of a complex function f : Rd Ñ C. We say that f is measurable
if f�1pBpCqq � BpRdq. Every continuous complex function is a measurable function. The space of all
complex measurable functions is a complex vector space stable under complex conjugation, multiplication,
maximum and minimum in the case of real functions, and under point-wise limits. The space of measur-
able complex functions is actually the sequential completition of the space of continuous complex functions
equipped with the topology of point-wise convergence. Every complex measurable function f can be decom-
posed in four positive measurable functions f�R , f

�
R , f

�
I , f

�
I through f � f�R � f�R � ipf�I � f�I q. We can

take, for instance, f�R � maxtf�f2 , 0u, f�R � �mintf�f2 , 0u, f�I � maxtf�f2i , 0u, f�I � �mintf�f2i , 0u,
with f being the complex conjugate of f . We remark that with this decomposition, |f | � f�R�f�R�f�I �f�I .
If µ is a positive not-necessarily Radon measure, we say that f is integrable with respect to µ if |f | is in-
tegrable with respect to µ, which holds if and only if all the four positive functions f�R , f

�
R , f

�
I , f

�
I are

integrable with respect to µ. In such a case, the Lebesgue integral of f with respect to µ is defined as»
Rd
fpxqdµpxq :�

»
Rd
f�R pxqdµpxq�

»
Rd
f�R pxqdµpxq�i

�»
Rd
f�I pxqdµpxq �

»
Rd
f�I pxqdµpxq



. (2.7)

We finally consider the case where µ P M pRdq and f is a measurable complex function. In such a case, we
say that f is integrable with respect to µ if |f | is integrable with respect to |µ|. Using the decomposition of
µ in four positive measures, µ � µ�R � µ�R � ipµ�I � µ�I q, it is immediate that f is integrable with respect
to µ if and only if all the positive measurable functions f�R , f

�
R , f

�
I , f

�
I are integrable with respect to each

one of the positive locally finite measures µ�R, µ
�
R, µ

�
I , µ

�
I . In such a case, the Lebesgue integral of f with

respect to µ is defined as»
Rd
fpxqdµpxq :�

»
Rd
fpxqdµ�Rpxq�

»
Rd
fpxqdµ�Rpxq�i

�»
Rd
fpxqdµ�I pxq �

»
Rd
fpxqdµ�I pxq



. (2.8)

In an analogous way, a positive extended-real measurable function f is said to be integrable with respect to
a complex measure µ P M pRdq if it is integrable with respect to |µ|, which is equivalent to require that f
is integrable with respect to each one of the four measures µ�R, µ

�
R, µ

�
I , µ

�
I . In such a case, the Lebesgue

integral of f with respect to µ is defined through the expression (2.8). When the measure µ is the Lebesgue
measure, the integral of a function f in any of the aforementioned cases, if well-defined, is denoted by
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³
Rd fpxqdx.

In all the mentioned cases for f and µ, if the Lebesgue integral of f with respect to µ is well-defined, the
following inequality holds: ����»

Rd
fpxqdµpxq

���� ¤ »
Rd
|fpxq|d|µ|pxq. (2.9)

Let A P BpRdq, f be a function and µ a measure in any of the aforementioned cases. If the function 1Af

is integrable with respect to µ, the Lebesgue integral of f with respect to µ over A is defined by»
A
fpxqdµpxq :�

»
Rd

1Apxqfpxqdµpxq. (2.10)

If f is a measurable positive extended-real function and µ is a positive not-necessarily Radon measure,
the expression (2.10) is always well-defined independently of the integrability condition (it can be infinite).
In such a case, the application A P BpRdq ÞÑ ³

A fpxqdµpxq is actually a positive not-necessarily Radon
measure, called the multiplication between f and µ, and it is denoted by fµ.

If µ is a measure in any of the aforementioned cases, and f is a measurable function, complex or positive
extended-real, such that for every compact subset K of Rd the function 1Kf is integrable with respect to
µ, we say that f is locally integrable with respect to µ. In such a case, the Lebesgue integral (2.10) is
well-defined for every bounded Borel set A, and the application A P BBpRdq ÞÑ

³
A fpxqdµpxq is a measure

in M pRdq, which is also called the multiplication between f and µ and it is denoted by fµ. Every locally
bounded measurable function f (that is, such that }f}8,A :� supxPA |fpxq|   8 for every bounded set
A � Rd) is locally integrable with respect to every measure µ P M pRdq, and thus fµ P M pRdq. This holds
in particular if f is a continuous function. We also remark that if f is any measurable function and µ is any
measure of the aforementioned cases, if f is integrable with respect to µ, the multiplication fµ is a finite
measure. In particular, every measurable and bounded complex function f is integrable with respect to every
finite measure µ, and thus the multiplication fµ is a finite measure for which it holds that |pfµqpRdq| �
| ³Rd fpxqdµpxq| ¤ }f}8|µ|pRdq, where }f}8 denotes de supremum norm of f , }f}8 :� supxPRd |fpxq|.
In order to fix some notation and terminology, when ν � fµ is the multiplication between a function f and a
measure µ, we note this fact also as dνpxq � fpxqdµpxq, and we say that ν has a density f with respect to µ.
In the case where µ is the Lebesgue measure, we rather denote this by dνpxq � fpxqdx, and we simply say
that ν has a density, without necessarily specifying that the density is with respect to the Lebesgue measure.

We recall two important results from Integration Theory.

Theorem 2.1.1 (Monotone Convergence Theorem). Let µ be a positive measure over Rd, Radon or not.
Let pfnqnPN be a sequence of positive extended-real measurable functions which is monotonically increasing.
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Let f be the point-wise limit fpxq � limnÑ8 fnpxq (which is also measurable). Then,

lim
nÑ8

»
Rd
fnpxqdµpxq �

»
Rd
fpxqdµpxq. (2.11)

Theorem 2.1.2 (Lebesgue’s Dominated Convergence Theorem). Let pfnqnPN be a sequence of complex
measurable functions over Rd which is point-wise convergent to a measurable complex function f . Let µ be
a complex measure over Rd and suppose that there exists a positive function g integrable with respect to µ
such that |fn| ¤ g for all n P N. Then, f is integrable with respect to µ and

lim
nÑ8

»
Rd
fndµpxq �

»
Rd
fpxqdµpxq. (2.12)

This Theorem is also applicable for point-wise converging sequences of positive extended-real valued
functions which are bounded by a positive extended-real measurable function integrable with respect to
µ. The condition of point-wise convergence can also be relaxed to have point-wise convergence outside a
µ�null set.

We finally recall the definitions and notations of the Lebesgue spaces. Given a measure µ over Rd,
Radon or not, we denote by L 1pRd, µq or L pRd, µq the set of all complex3 measurable functions which
are integrable with respect to µ. For p P r1,8q the set L ppRd, µq denotes the space of all complex
measurable functions f such that |f |p is integrable with respect to µ. We denote by L8pRd, µq the
space of all complex measurable functions f such that there exists C ¥ 0 such that |fpxq| ¤ C for
all x P RdzD where D P BpRdq is a µ�null set. The spaces L ppRd, µq with p P r0,8s are com-
plex vector spaces. The associated quotient spaces of those spaces with respect to the equivalence re-
lation of equality outside a µ�null set are denoted by LppRd, µq. Hence the spaces LppRd, µq are not
spaces of functions but rather of equivalence classes of measurable functions. For p P r1,8q, the spaces
LppRd, µq are endowed with the norm }f}LppRd,µq :� �³

Rd |fpxq|pd|µ|pxq
� 1
p for any f representing its

equivalence class of functions. For p � 8, LppRd, µq is endowed with the norm of the essential supre-
mum, }f}L8pRd,µq :� inftC ¥ 0

�� |fpxq| ¤ C for all x outside a µ�null setu. For every p P r1,8s, the
so-constructed topological vector space LppRd, µq is a Banach space, that is, a complete normed space. For
p � 2, it is a Hilbert space, with the inner product defined through pf, gqL2pRd,µq :� ³Rd fpxqgpxqd|µ|pxq,
being f, g two any representatives of their equivalence classes. When the measure µ is the Lebesgue mea-
sure, we drop the “µ” in the notation of the associated Lebesgue spaces and their norms, denoting them
simply as L ppRdq, LppRdq and } � }LppRdq.

3Some authors also include the extended-real measurable functions. We do not.
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2.1.3 Slow-growing measures

We introduce now another space of measures which plays a particular role in the theory of stationary Ran-
dom Fields. In contrast to the case of locally finite measures and finite measures, this definition cannot be
immediately extended to more abstract measurable spaces.

Definition 2.1.4. Let µ P M pRdq. We say that µ is a slow-growing measure if there exists a strictly positive
polynomial p : Rd Ñ R�� such that the measure 1

pµ is finite, or equivalently, if there exists N P N such that»
Rd

d|µ|pxq
p1� |x|2qN   8. (2.13)

The equivalence stated in Definition 2.1.4 comes from the fact that for every polynomial p : Rd Ñ C
there exist N P N and C ¡ 0 such that |ppxq| ¤ Cp1� |x|2qN for all x P Rd. We denote by MSGpRdq the
set of slow-growing complex measures over Rd. It is immediate that it is a complex vector space, and that
the inclusion MF pRdq � MSGpRdq holds, since for every finite measure it suffices to set N � 0 in (2.13).
If µ is a slow-growing measure, its reflection, its conjugate, its imaginary and real parts, and its positive and
negative parts in the real case are also slow-growing. We denote by M�

SGpRdq the set of all positive slow-
growing measures. The Jordan decomposition of a slow-growing measure µ consists then of four positive
slow-growing measures µ�R, µ

�
R, µ

�
I , µ

�
I P M�

SGpRdq, having µ � µ�R � µ�R � ipµ�I � µ�I q .

Let f : Rd Ñ C be a polynomially bounded measurable function and let µ P MSGpRdq. Then, the
multiplication fµ is a slow-growing measure. To see this, consider Nf P N such that p1 � |x|2q�Nf f is
bounded and Nµ P N such that p1�|x|2q�Nµµ is finite. As every bounded measurable function is integrable
with respect to any finite measure, we obtain»

Rd

d|fµ|pxq
p1� |x|2qNf�Nµ ¤

»
Rd

|fpxq|
p1� |x|2qNf

d|µ|pxq
p1� |x|2qNµ   8, (2.14)

from which we conclude that fµ is a slow-growing measure, as it can be seen by setting N � Nf �Nµ in
Eq. (2.13).

2.1.4 Measures as linear functionals over spaces of continuous functions

In this section we recall some classical results which identify spaces of complex measures as members of the
dual of some vector spaces of continuous functions. Hence, we present the Riesz Representation Theorem
and some of its variants.

We denote by CpRdq the space of all complex continuous functions over Rd and CBpRdq the space of
all bounded complex continuous functions over Rd. Let us first recall the definition of support of a function
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and of a measure.

Definition 2.1.5. Let f : Rd Ñ C be a function. Its support is defined as the closure of the set where f is
not null:

supppfq :� tx P Rd : fpxq � 0u. (2.15)

If µ P M pRdq, its support is defined as the complementary of the largest open set where the total variation
is null:

supppµq �
�¤

tO � Rd : O is open and |µ|pOq � 0u
	c
. (2.16)

The support of a function or a measure is always a closed set. It is, roughly speaking, the set where the
function or the measure is not null. A function or a measure is said to be compactly supported if its support
is a compact set. This definition is also applicable to extended-real functions and to positive not-necessarily
Radon measures. It is immediate that |µ|psupppµqcq � 0 and thus |µ|psupppµqq � |µ|pRdq. It is also easy to
see that if f is a measurable complex (or positive extended-real) function, its Lebesgue integral with respect
to any measure µ, Radon or not, satisfies, when the integral is well-defined,»

Rd
fpxqdµpxq �

»
supppfq

fpxqdµpxq �
»

supppµq
fpxqdµpxq �

»
supppfqXsupppµq

fpxqdµpxq. (2.17)

It follows that in the case where supppfqXsupppµq � H, then fµ � 0. The same applies if |µ|psupppfqq �
0 or if f is null over supppµq.

Let us introduce the next spaces of continuous functions:

 CcpRdq, the space of compactly supported continuous functions:

CcpRdq � tϕ P CpRdq
�� supppϕq is compactu. (2.18)

 C0pRdq, the space of continuous functions vanishing at infinity:

C0pRdq � tϕ P CpRdq
�� lim
|x|Ñ8

ϕpxq � 0u. (2.19)

 CFDpRdq, the space of fast-decreasing continuous functions, that is, functions that decrease faster
than any polynomial:

CFDpRdq � tϕ P CpRdq
�� }p1� |x|2qNϕ}8 � sup

xPRd
|p1� |x|2qNϕpxq|   8 @N P Nu. (2.20)

We remark that CcpRdq � CFDpRdq � C0pRdq � CpRdq. Each one of these sets are complex vector
spaces, and each one of them will be endowed with a particular topology which makes them complete
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locally convex topological vector spaces (see Appendix D). Their dual spaces will be identified with spaces
of measures. We recall that for a general complex topological vector space E, its dual is the space of all
continuous linear functionals over E, and it is denoted by E1. If T P E1, its action over an element x P E,
that is T pxq, (T is a function from E to C) is more comfortably denoted by xT, xy, to highlight the fact that
T is linear.

The topologies these spaces will be endowed with are not all trivial. The space C0pRdq will be endowed
with a norm which makes it a Banach space. The spaces CFDpRdq and CpRdq will be endowed with a
metric topology which makes them Fréchet spaces. The spaceCcpRdqwill be endowed with a more technical
topology which makes it a Hausdorff locally convex topological vector space.

We start with the space CcpRdq. The topology defined in this space is rather technical and it will be
explained in detail in a footnote4. Most authors do not make it explicit, but rather describe it roughly through
the description of the convergent sequences on this space5. A sequence pϕnqnPN � CcpRdq converges to 0

in CcpRdq, denoted by ϕn
CcÑ 0, if (and only if) }ϕn}8 Ñ 0 and if there exists a compact K � Rd such that

supppϕnq � K for all n P N. If ϕ P CcpRdq, a sequence pϕnqnPN � CcpRdq is said to converge to ϕ in
CcpRdq, denoted by ϕn

CcÑ ϕ if ϕn � ϕ CcÑ 0. Another way of describing the topology of CcpRdq is through
the characterisation of the continuous linear functionals defined over it. A linear functional T : CcpRdq Ñ C
is continuous if (and only if) for all compact K � Rd there exists CK ¡ 0 such that

|xT, ϕy| ¤ CK}ϕ}8, @ϕ P CcpRdq such that supppϕq � K. (2.22)

4The topology of CcpRdq is defined in order to make it a Hausdorff complete locally convex topological vector space. Its
topology can be fully determined through the specification of the associated family of semi-norms. This family will be indexed by
the set of all decreasing to zero sequences of strictly positive real numbers. Let pεnqnPN � R�

� be such a sequence. The associated
semi-norm is defined as

ppεnqnPNpϕq � sup
nPN

t sup
|x|¥n

|ϕpxq|

εn
u, @ϕ P CcpRdq. (2.21)

It is difficult to find authors presenting this topology in this way. What we have done here is just a copy-paste of the description
of the topology of the classical space of smooth and compactly supported functions in Distribution Theory, DpRdq, as done in
Schwartz (1966, Chapter III), and restrain the definition of the semi-norms to the case of non-differentiable functions. It can be
proven that CcpRdq equipped with this topology is, as expected, complete. Theorem I in Schwartz (1966, Chapter III, §1) states that
DpRdq is complete, and the same arguments can be used to prove that CcpRdq with this topology is complete. Another approach to
prove the completeness of CcpRdq is by considering that it is the strict inductive limit of Banach spaces; see Reed & Simon (1980,
Section V.4) for an introduction of this concept and its properties. In this same source and section, the authors present in Example 1
the analogue to our space CcpRdq, in the case d � 1, there denoted by κpRq.

5In a general topological space, the description of the convergent sequences in the space does not suffice to define the topology.
This would hold, for example, over a metrizable topological space. The spaceCcpRdq is an example of a non-metrizable topological
vector space, whose topology cannot be completely determined by its convergent sequences. A generalization of the concept of
sequence is the concept of net, which can be used to describe completely the continuous functions over a topological space, and
hence to describe topologies defined from a family of functions desired to be continuous. See (Reed & Simon, 1980, Section IV.2).
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We remark that any function in CcpRdq is integrable with respect to any measure µ P M pRdq, since����»
Rd
ϕpxqdµpxq

���� �
�����
»

supppϕq
ϕpxqdµpxq

����� ¤ }ϕ}8|µ|psupppϕqq   8. (2.23)

We conclude that the integral with respect to any µ P M pRdq defines a linear functional over CcpRdq, which
can be seen by setting CK � |µ|pKq for a corresponding compact set K � Rd in Eq. (2.22). We present
the famous Riesz Representation Theorem for Radon measures, which states the converse: any continuous
linear function over CcpRdq can be represented by a measure in M pRdq.
Theorem 2.1.3 (Riesz Representation for locally finite complex measures). M pRdq � C 1

cpRdq, that is,
every measure µ P M pRdq defines a continuous linear functional T over CcpRdq through the integral

xT, ϕy �
»
Rd
ϕpxqdµpxq, @ϕ P CcpRdq. (2.24)

Conversely, for every continuous linear functional T : CcpRdq Ñ C there exists a unique µ P M pRdq such
that (2.24) holds.

This Theorem is quite remarkable and powerful. It allows to completely describe a measure by its action
over continuous functions with compact support rather than over sets, which in some cases simplifies the
analysis. It also gives a criterion for discriminating when a set function or a linear functional over some
vector spaces of functions actually defines a measure, allowing to use freely the properties and operations
well-defined for measures. But maybe the most important consequence is that this Theorem provides a
framework where an Integration Theory can be constructed using tools of topological vector spaces and
relate them to Distribution Theory. Indeed, some authors define a Radon Measure as a continuous linear
functional over CcpRdq and then construct the Integration Theory over Borel sets. This is the approach
described in Bourbaki (1965). A student-oriented exposition of this approach can be found in Demengel &
Demengel (2000). Other sources which take advantage of this vector space oriented theory are Schwartz
(1966) and Trèves (1967, Chapter 21).

Theorem 2.1.3 is usually presented in a more general setting than the measure space pRd,BpRdqq. In-
deed, an analogue result holds for more abstract measurable spaces, namely, when Rd is replaced by a locally
compact Hausdorff topological space, and it is endowed with its Borel σ�algebra. The representation is done
using Radon measures in the strict sense: locally finite, inner and outer regular measures. A proof of the
positive version of this Theorem, that is, that every positive linear functional can be represented by a posi-
tive Radon measure, dropping the continuity condition, can be found in a general form in Donoghue (1969,
Chapter 5) or in Reed & Simon (1980, Theorem IV.18). A proof of the case of complex measures over R,
whose arguments also hold for the case over Rd stated as in Theorem 2.1.3, can be found in (Reed & Simon,
1980, Section V.4, Example 1), with a reference to other developments done in the book. There, a simple
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argument considering that CcpRdq is an inductive limit of Banach spaces is presented. The authors then
conclude that its dual is the space of locally finite complex measures (called Baire measures in this source).
See also the comments on (Reed & Simon, 1980, Theorem IV.18) and its related results.

Consider right now a case with a simpler topology. Consider the space C0pRdq. We endow it with
the topology induced by the supremum norm } � }8. C0pRdq with this norm is a Banach space. Since
C0pRdq � CBpRdq, any function in C0pRdq is Lebesgue integrable with respect to any finite measure
µ P MF pRdq, and it is immediate that the integral defines a bounded (and hence continuous) linear functional
over C0pRdq.
Theorem 2.1.4 (Riesz Representation for finite measures). MF pRdq � C 1

0pRdq, that is, every finite mea-
sure µ P MF pRdq defines a continuous linear functional T over C0pRdq through the integral

xT, ϕy �
»
Rd
ϕpxqdµpxq, @ϕ P C0pRdq. (2.25)

Conversely, for every continuous linear functional T : C0pRdq Ñ C there exists a unique µ P MF pRdq such
that (2.25) holds.

For a proof, we suggest the one presented in Rudin (1987, Theorem 6.19). This Theorem is also usually
presented in the more general setting of a locally compact Hausdorff topological space. This Theorem is
also often presented before the generic Riesz Representation Theorem 2.1.3 since the topology over C0pRdq
is easier to describe than the one of CcpRdq.

We present now two variants of the Riesz Representation Theorem, for which we have not found proofs
in the literature. They are almost a direct application of the previous Theorems, in an adequate way.

Let us consider the space CpRdq. We endow this complex vector space with the topology of uniform
convergence over compact sets, that is, a sequence pϕnqn P CpRdq is said to converge to 0 in CpRdq, noted
ϕn

CÑ 0 if for every K � Rd compact, }ϕn}8,K :� supxPK |ϕnpxq| Ñ 0 as n Ñ 8. This topology is
equivalent to the one induced by the metric:

pϕ, φq ÞÑ
¸
NPN�

1

2N

}ϕ� φ}8,BN p0q
1� }ϕ� φ}8,BN p0q

, (2.26)

where Brpxq � Rd denotes the open ball of radius r ¥ 0 centred at x. Using standard methods of basic
analysis, it is easy to prove that CpRdq endowed with this metric is a complete metric space (actually a
Fréchet space).

Let us right now describe a particular class of complex measures. We denote by McpRdq the space of
all complex compactly supported measures in M pRdq. It is a complex vector subspace of M pRdq. The
local finiteness of the measures in M pRdq guarantees that McpRdq �MF pRdq. We denote by M�

c pRdq the
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space of all positive compactly supported measures over Rd. It is straightforward that the measure of total
variation, the reflection, the conjugate, the imaginary and real parts, and the positive and negative parts (in the
real case) of a compactly supported measure are also compactly supported measures. We also conclude that
the Jordan decomposition of a compactly supported measure µ consists of four positive compactly supported
measures µ�R, µ

�
R, µ

�
I , µ

�
I P M�

c pRdq, having µ � µ�R � µ�R � ipµ�I � µ�I q.
Every function ϕ P CpRdq is locally bounded. This implies that ϕ is integrable with respect to any

measure µ P McpRdq, since����»
Rd
ϕpxqdµpxq

���� �
�����
»

supppµq
ϕpxqdµpxq

����� ¤ }ϕ}8,supp pµq|µ|psupppµqq   8. (2.27)

This suggests that we can obtain an analogue to Riesz Representation Theorem for the dual of the space
CpRdq.

Theorem 2.1.5 (Representation for compactly supported measures). McpRdq � C 1pRdq, that is, every
compactly supported measure µ P McpRdq defines a continuous linear functional T over CpRdq through
the integral

xT, ϕy �
»
Rd
ϕpxqdµpxq, @ϕ P CpRdq. (2.28)

Conversely, for every continuous linear functional T : CpRdq Ñ C there exists a unique µ P McpRdq such
that (2.28) holds.

We give a proof of this Theorem in Appendix A.2.1. We remark that this Theorem can be generalized
to more abstract measurable spaces, provided that the arguments used to prove it hold also for those spaces:
analogues to Lemmas A.2.2 and A.2.3 must be verified. This holds for example, over every separable locally
compact metric space, using Radon measures in the strict sense of the term.

We finally consider the case of the space CFDpRdq. We equip this space with the following topology: a
sequence of functions pϕnqnPN � CFDpRdq converges to 0, denoted by ϕn

CFDÑ 0, if for all N P N we have
that }p1 � |x|2qNϕn}8 Ñ 0. This is equivalent to require that the sequence pϕnqnPN is such that ppϕnqnPN
converges uniformly to 0 for every polynomial p : Rd Ñ C. We say that a sequence pϕnqnPN � CFDpRdq
converges to ϕ P CFDpRdq, denoted by ϕn

CFDÑ ϕ, if ϕn � ϕ
CFDÑ 0. This topology over CFDpRdq is

induced by the metric

pϕ, φq ÞÑ
¸
NPN

1

2N
}p1� |x|2qN pϕ� φq}8

1� }p1� |x|2qN pϕ� φq}8 . (2.29)

The space CFDpRdq equipped with this metric is a complete metric space, which in addition is Fréchet6.
6This is not complicated to conclude using standard arguments. For instance, the same arguments used to prove the completeness

of the Schwartz space S pRdq can be used to prove the completeness of CFDpRdq. See Definition 2.2.1 in Section 2.2.1 and the
references therein.
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We remark that every function ϕ P CFDpRdq is Lebesgue integrable with respect to any slow-growing
measure µ P MSGpRdq. Indeed, let µ be a slow-growing measure and let N P N such that p1� |x|2q�N |µ|
is a finite measure. Then p1� |x|2qNϕ P CBpRdq (it is actually in CFDpRdq too), from which we obtain����»

Rd
ϕpxqdµpxq

���� � ����»
Rd

p1� |x|2qNϕ
p1� |x|2qN dµpxq

���� ¤ }p1� |x|2qNϕ}8��p1� |x|2q�Nµ��pRdq   8. (2.30)

We have then an inspiration for an analogous to Riesz Representation Theorem for the case of the space
CFDpRdq.

Theorem 2.1.6 (Representation for slow-growing measures). MSGpRdq � C 1
FDpRdq, that is, every slow-

growing measure µ P MSGpRdq defines a continuous linear functional T overCFDpRdq through the integral

xT, ϕy �
»
Rd
ϕpxqdµpxq, @ϕ P CFDpRdq. (2.31)

Conversely, for every continuous linear functional T : CFDpRdq Ñ C there exists a unique µ P MSGpRdq
such that (2.31) holds.

We give a proof of Theorem 2.1.6 in Appendix A.2.2. Since this Theorem uses the multiplicative struc-
ture of the components of a vector in Rd, used to define polynomials, it cannot be generalized to more
abstract measure spaces without a suitable adaptation, in contrast to the cases of Theorems 2.1.3, 2.1.4 and
2.1.6.

We summarize the duality and inclusion relationships. We put the dual of every space below itself:

CcpRdq � CFDpRdq � C0pRdq � CpRdq
M pRdq �MSGpRdq �MF pRdq �McpRdq.

(2.32)

Taking advantage of the new interpretation of a measure µ as a continuous linear functional, we will
often use the notation

xµ, fy :�
»
Rd
fpxqdµpxq, (2.33)

when f is a measurable complex function integrable with respect to µ. We will use conveniently both the
linear functional notation or the fully integral notation, depending on which one is more convenient to write
or more explicit for communicating the desired message. In the same spirit, along this work we will use
conveniently both interpretations of a measure µ as a linear functional over a space of continuous function
or as a set function.
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2.1.5 Measures concentrated on subsets

In this section we focus on measures which are, in some sense, null outside some particular Borel subset and
thus it is not necessary to treat them outside of it.

Definition 2.1.6. Let µ P M pRdq, and let A P BpRdq. We say that µ is concentrated on the set A if for all
B P BBpRdq, AXB � Hñ µpBq � 0.

The σ�additivity allows to easily conclude that µ is concentrated on A if and only if µpAXBq � µpBq
for all B P BBpRdq. It is also true that µ is concentrated on A if and only if |µ| is concentrated on A, claim
which can be concluded by analysing the definition of the total variation measure (2.2). The relationship
between a set on which µ is concentrated and the support of µ is not immediate to describe. Of course,
any measure is concentrated on its support. It is also immediate that a measure µ is concentrated on any
Borel set A such that supppµq � A, and if A is a closed set, then µ is concentrated on A if and only if
supppµq � A. Nevertheless, there are examples of measures which are concentrated on sets strictly included
in their supports. Take for instance, µ � °nPN�

1
n2 δ 1

n
, which is a finite measure. Then, µ is concentrated on�

nPN�t 1
nu, but supppµq � t0u Y�nPN�t 1

nu.
The main interest of this definition is that now we are able to consider measures concentrated on subsets

of Rd which can have null Lebesgue measure. The main example is the Dirac measure at a point x P Rd,
δx, for which supppδxq � txu. It is particularly interesting to define measures which are concentrated on
sub-manifolds of Rd which have dimension smaller than d. When working on the one dimensional Euclidean
space R, sub-manifolds of dimension 0 would be for example point-sets, and hence measures concentrated
on these sub-manifolds are linear combinations (possibly countable, if local finiteness is provided) of Dirac
measures. In higher dimensions we can still use Dirac measures, but other more interesting measures can
appear since there exist sub-manifolds of higher dimensions, like for example curves.

We give some examples of these kinds of measures. We will extensively use the Riesz Representation
Theorem 2.1.3, since describing a measure concentrated in a sub-manifold is usually easier by describing its
action on continuous functions with compact support rather than its action over Borel sets.

Example 2.1.1. Consider the two dimensional Euclidean space R2. Consider the sphere of radiusR ¡ 0 cen-
tred at the origin, which we will denote by BBp2q

R p0q. We can travel across this set with a typical parametriza-
tion of the curve, using the mapping γ : r0, 2πq Ñ R2 defined through γpθq � R pcospθq, sinpθqq. A mea-
sure µν P M pRdq concentrated on the sphere BBp2q

R p0q can then be defined through a measure over R,
ν P M pRq, by

xµν , ϕy �
»
r0,2πq

ϕpγpθqqdνpθq, @ϕ P CcpRdq. (2.34)

Since
���³r0,2πq ϕpγpθqqdνpθq��� ¤ }ϕ}8,BBp2q

R p0q|ν|pr0, 2πqq   8, µ is a continuous linear functional over

CpRdq (cf. Eq. (A.6)) and thus µν is a well-defined compactly supported measure (Theorem 2.1.5). We
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remark that this definition depends on the measure ν and on the selected parametrization γ. When using
the already specified parametrization γ and when the measure ν is of the form dνpθq � p2πRq�1dθ, the
measure µν defined through (2.34) is called the uniform measure over the sphere BBp2q

R p0q. It is a positive
finite measure with total mass equal to 1, that is, a probability measure. This concept is naturally generalized
to the d�dimensional case using polar coordinates and the surface of the d � 1-sphere, 2Rd�1 πd{2

Γpd{2q . We

will denote by µBB
pdq
R p0q

unif the uniform measure supported on BBpdq
R p0q � Rd. �

More generally, consider A � Rd a Borel sub-manifold of dimension m   d. Let us suppose, for
simplicity, that A is homeomorphic to a subset D of Rm, and hence we can use a parametrization of A given
by a continuous mapping γ : D � Rm Ñ A � Rd that defines an homeomorphism between D and A (γ
is bijective with continuous inverse). Since γ is continuous, D is a Borel subset of Rm. We then consider a
measure ν P M pRmq and we define

xµν , ϕy :�
»
D
ϕpγpθqqdνpθq, @ϕ P CcpRdq. (2.35)

This defines a continuous linear functional over CcpRdq. Indeed, let K � Rd be a compact set. Since γ is an
homeomorphism, γ�1 is continuous. Hence, the set γ�1pAXKq is bounded since γ�1pAXKq � γ�1pKq
and γ�1pKq is compact. We conclude that for all ϕ P CcpRdq such that supppϕq � γ�1pA XKq it holds
that

|xµ, ϕy| �
����»
D
ϕpγpθqqdνpθq

���� �
�����
»
γ�1pAXKq

ϕpγpθqqdνpθq
����� ¤ }ϕ}8 |ν|pγ�1pAXKqqlooooooooomooooooooon

 8
. (2.36)

Hence, µν defines a continuous linear functional over CcpRdq (Eq. (2.22)). From Riesz Representation
Theorem 2.1.3, we obtain that µν is a well-defined measure in M pRdq, and it is concentrated on A.

Example 2.1.2. This is the MOST IMPORTANT example of this section. Consider the space of doubled
dimension Rd � Rd p� R2dq. Consider the hyperplane ty � xu :� tpx, yq P Rd � Rd

�� y � xu, which
is a sub-manifold of dimension d. Let µ P M pRdq. We then define a measure over Rd � Rd, denoted by
µδty�xu, as

xµδty�xu, ϕy �
»
Rd
ϕpx, xqdµpxq, @ϕ P CcpRd � Rdq. (2.37)

The measure µδty�xu defined in this way is then concentrated on the hyperplane ty � xu. For this type of
measures, a two-dimensional integral is reduced to a one-dimensional one, since we have»

Rd�Rd
ϕpx, yqdpµδty�xuqpx, yq �

»
Rd
ϕpx, xqdµpxq, (2.38)

for every ϕ P CcpRd � Rdq. This kind of measure can also be described in a quite simple way through its
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action to (some) Borel subsets of Rd � Rd. Indeed, if we consider subsets of Rd � Rd of the form A � B

with A,B P BBpRdq, then
µδty�xupA�Bq � µpAXBq. (2.39)

This can be shown by approaching the indicator function 1A�Bpx, yq � 1Apxq1Bpyq by a suitable sequence
of functions in CcpRd�Rdq. See Lemma A.2.2 in Appendix A.2, applicable when A and B are open, which
is enough to completely characterize the measure. This also allows to conclude, using typical results of
Measure Theory, that Eq. (2.38) also holds for any measurable ϕ such that x ÞÑ ϕpx, xq is integrable with
respect to µ.

We can actually prove the stronger condition that every measure in M pRd � Rdq which is concentrated
on ty � xu can be expressed in the form (2.39) for some measure µ P M pRdq. Indeed, if ν P M pRd �Rdq
is concentrated on ty � xu, we can define µpAq :� νpA�Rdq for all A P BBpRdq. Since ν is concentrated
on ty � xu, it follows that

µpAq � νpA� Rdq � ν
�
pA� Rdq X ty � xu

	
� ν ppA�Aq X ty � xuq � νpA�Aq,

hence µpAq P C since A is bounded. The σ�additivity of µ follows immediately from the σ�additivity of
ν. µ is then a well-defined measure. If A,B P BBpRdq, then

µpAXBq � ν ppAXBq � pAXBqq � ν pty � xu X ppAXBq � pAXBqqq � ν pty � xu X pA�Bqq � νpA�Bq.
(2.40)

We consider the next result which relates the characteristics of µ to those of µδty�xu. The proof of this
Proposition is presented in Appendix A.3.1.

Proposition 2.1.2. Let j designating “c”, “F” or “SG”. Then, µδty�xu P MjpRd � Rdq if and only if
µ P MjpRdq.

The kind of measure exposed in this example will be used to describe orthogonal Random Measures, a
stochastic tool which is a key concept in the study of Random Fields, specially in a stationary framework. We
finally remark that if µ is the Lebesgue measure, the associated measure µδty�xu is more often denoted by
δpy�xq (or δpx� yq). This measure of two variables plays a central role in the theory of Partial Differential
Equations since it is used to define Green’s functions. �

Example 2.1.3. Let c ¡ 0. Consider the subset of Rd � R, Cc :� tpx, tq P Rd � R
�� |t| � c|x|u, which

we call a spatio-temporal cone. Even if Cc is not strictly speaking a manifold, we can still define measures
concentrated on Cc using the same principle as in (2.35). Consider two measures µ1, µ2 P M pRdq. We
define the measure µC

c

pµ1,µ2q P M pRd � Rq as

xµCcpµ1,µ2q, ψy :�
»
Rd
ψpx, c|x|qdµ1pxq �

»
Rdzt0u

ψpx,�c|x|qdµ2pxq, @ψ P CcpRd � Rq. (2.41)
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Let K � Rd � R be a compact set. Let Kd � Rd and K1 � R compacts such that K � Kd � K. If
ψ P CcpRd � Rq is such that supppϕq � K, then����»

Rd
ψpx, c|x|qdµ1pxq

���� � ����»
Kd

ψpx, c|x|qdµ1pxq
���� ¤ |µ1|pKdq sup

xPKd
|ψpx, c|x|q| ¤ |µ1|pKdq}ψ}8. (2.42)

The same principle is applied to the integral with respect to µ2 in (2.41). This proves that µC
c

pµ1,µ2q is a
continuous linear functional over CcpRd�Rq and hence a well-defined measure. Integration with respect to
such a measure transforms a d� 1� dimensional integral into two d�dimensional integrals, having»

Rd�R
ψpx, tqdµCcpµ1,µ2qpx, tq �

»
Rd
ψpx, c|x|qdµ1pxq �

»
Rdzt0u

ψpx,�c|x|qdµ2pxq, (2.43)

for every ψ P CcpRd � Rq. This kind of measure can also be described through its action over some Borel
subsets of Rd � R. Consider the sets of the form A � B with A P BBpRdq and B P BBpRq. Then, it holds
that

µC
c

pµ1,µ2qpA�Bq �
»
A
δc|x|pBqdµ1pxq �

»
Azt0u

δ�c|x|pBqdµ2pxq. (2.44)

The same arguments used in Example 2.1.2 to prove the analogue relation (2.39) can be used to prove (2.44).
Similarly, we can prove that every measure in M pRd � Rq concentrated on Cc can be expressed in the form
(2.44) for some pair of measures µ1, µ2 P M pRdq. Indeed, if ν P M pRd � Rq is concentrated on the cone,
we take µ1pAq � νpA�R�q and µ2pAq � νpA�R�� q for every A P BBpRdq. With the same arguments as
in Example 2.1.2, it can be proven that µ1 and µ2 are well-defined measures in M pRdq and that they satisfy
(2.44) for µC

c

pµ1,µ2q � ν. It also follows that expression (2.43) is still valid for every measurable ψ such that
the mappings x ÞÑ ψpx, c|x|q and x ÞÑ ψpx,�c|x|q are integrable with respect to µ1 and µ2 respectively.

We have, in addition, an analogous to Proposition 2.1.2. The proof of this Proposition is presented in
Appendix A.3.2.

Proposition 2.1.3. Let j designating “c”, “F” or “SG”. Then, µC
c

pµ1,µ2q P MjpRd � Rq if and only if both
µ1 and µ2 are in MjpRdq.

The name spatio-temporal cone makes reference to the use of the set Cc in the study of some physical
phenomena in a spatio-temporal context. As it will be seen in Chapter 5, this set plays an important role
when analysing solutions to the homogeneous Wave equation. �

2.2 Distributions

The Theory of Distributions is a mathematical theory developed by Laurent Schwartz in the middle of the
20th century whose main aim is to rigorously define the derivative of a large class of objects, such as any ar-
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bitrary continuous function or Radon measures. In this framework the main objects are not functions which
can be evaluated at points of the space, but rather objects that act over test-functions belonging to convenient
functional spaces, describing how the variable acts on a region of the space rather than in a singular point.
Such objects are called Distributions or sometimes also Generalized Functions. The development of this
theory has allowed enormous advances in many branches of theoretical and applied mathematics. Borrow-
ing words from (Demengel & Demengel, 2000, Preface): “...this theory is so revolutionary in its concept as
Einstein’s Relativity Theory in Physics”. The freedom in the manipulation of the new objects has allowed
to well-pose and analyse equations arising from Physics, Engineering, Signal Analysis and other fields. Re-
garding Probability Theory and Statistics, it provides a framework where calculus with Stochastic Processes
or Random Functions can be rigorously treated, and hence the analysis of SPDEs is possible. We will present
this last application of Distribution Theory in Section 3.4 of Chapter 3.

There are plenty of treaties and bibliographic sources concerning the Theory of Distributions and its
associated issues. The Bible of this theory is the classical Schwartz’s treaty (Schwartz, 1966). A source with
a little less depth but with an effective and clear exposition is Donoghue (1969). The exposition presented in
Reed & Simon (1980) is also remarkable. Here the authors present the basis of modern Functional Analysis,
together with the main concepts of Topology, which allows them to compile a coherent and clear presentation
passing through the most important details of the theory of locally convex topological vector spaces. The
exposition of the so-called tempered distributions, done in Reed & Simon (1980, Section V.3 and Appendix),
is presented before the exposition of general distributions, and it stands out for its compactness, clarity,
and also because of the inclusion of quite deep and important results such as the Regularity Theorem, the
Nuclear Theorem and the development on the Hermite basis. Another introductory source on Theory of
Distribution, which is non-specialist oriented and less technical can be found in Richards & Youn (1995).
This source is recommendable for an easier understanding of the theory and its basic results, but it is also
remarkable because of its Chapter 7, where a very interesting symmetric definition of the multiplication
and convolution of distributions in a more general framework than the classical ones is exposed with an
astonishing simplicity. We finally suggest a special last bibliographic source, which gives a fast and effective
introduction to Distribution Theory with geostatistician objectives: the Appendix A in the Geostatistics’s
classical opus Matheron (1965).

In this work we focus on tempered distributions, which is a framework in which differential operators
and the Fourier Transform can be used freely. In section 2.2.5 we make some comments on more general
spaces of distributions. The definitions and results presented in this section will be used extensively in this
dissertation.

All along this work we will extensively use the convenient multi-index notation for differential operators
and vector powers. If α P Nd, we denote by |α| � α1 � ...� αd. For differential operators over Rd, we use
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the notation:

Dα :� B|α|
Bxα1

1 ...Bxαdd
. (2.45)

For a vector x � px1, ..., xdq P Rd, the symbol xα denotes the real number determined by

xα :� xα1
1 xα2

2 ... xαdd . (2.46)

We will sometimes work with spaces of double dimensions, that is, over spaces of the form Rd � Rm �
Rd�m with d,m P N�, where the first variables in Rd may play a different role that the second vari-
ables in Rm. In such a case the first components will be denoted by the letter x and the second com-
ponents by the letter y. If α P Nd and β P Nm, its concatenation multi-index is denoted by pα, βq :�
pα1, ..., αd, β1, ..., βmq P Nd � Nm � Nd�m. Hence, in such a case Dpα,βq denotes the differential oper-
ator over Rd � Rm: B|α|�|β|

Bxα11 ...Bxαdd Byβ11 ...Byβdd
. For the power, we will have, of course, px, yqpα,βq � xαyβ �

xα1
1 xα2

2 ... xαdd yβ11 yβ22 ... yβdd , for px, yq P Rd � Rm. Sometimes, we will also write α ¤ β for α, β P Nd,
meaning αj ¤ βj for all j P t1, ..., du.

We make explicit a terminological convention which is quite necessary in this work since we are going
to use concepts from Distribution Theory and from Probability Theory: all along this dissertation, we will
always use the word “distribution” referring to a Generalized Function, and NEVER to the “probability dis-
tribution” of a random variable, term widely used in Statistics and Probability. For the latter mathematical
object, we use the word “law”.

2.2.1 Tempered distributions

We denote by C8pRdq the space of smooth complex functions over Rd. We introduce the following space
of smooth functions.

Definition 2.2.1. The Schwartz space, denoted by S pRdq, is defined as the space of smooth fast-decreasing
complex functions over Rd. Explicitly,

S pRdq :� tϕ P C8pRdq �� }xαDβϕ}8   8, @α, β P Ndu. (2.47)

Equivalently, the Schwartz space can be defined as the space of complex smooth functions such that all
of its derivatives are in CFDpRdq. Typical examples of members of this space are Gaussian functions, that
is, functions of the form ϕpxq � be�a|x|2 with a ¡ 0 and b P C. A function in S pRdq will be often called a
test-function.
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The Schwartz space is equipped with a topology determined by the metric

pϕ, φq ÞÑ
¸

α,βPNd

1

2|α|�|β|�2

}xαDβpϕ� φq}8
1� }xαDβpϕ� φq}8 , ϕ, φ P S pRdq. (2.48)

This topology can be described equivalently using semi-norms of the form ϕ ÞÑ }p1 � |x|2qNDβϕ}8 with
N P N and β P Nd, similarly to the case of the space CFDpRdq (see Eq. (2.29)) but with differentiable
functions. It is known that S pRdq equipped with this topology is a complete locally convex metric space,
hence it is a Fréchet space; see Reed & Simon (1980, Theorem V.9) or the arguments in Donoghue (1969,
Chapter 28). We can thus speak about continuous linear functionals over S pRdq.

Definition 2.2.2. A tempered distribution is a continuous linear functional over the Schwartz space, T :

S pRdq Ñ C, that is, a member of the dual space of S pRdq. This dual space, denoted by S 1pRdq is called
the space of tempered distributions.

We present a general criterion for verifying if a linear functional is a tempered distribution, which comes
immediately from Theorem D.0.1. Let T : S pRdq Ñ C be a linear functional. Then, T P S 1pRdq if and
only if there exists C ¡ 0 and N P N such that

|xT, ϕy| ¤ C
¸

α,βPNd
|α|,|β|¤N

}xαDβϕ}8, @ϕ P S pRdq. (2.49)

Let us present some important examples of tempered distributions.

Example 2.2.1. Let f : Rd Ñ C be a polynomially bounded measurable function. Then, the linear
functional defined through the integral

xf, ϕy :�
»
Rd
fpxqϕpxqdx, ϕ P S pRdq, (2.50)

defines a tempered distribution. This is easy to verify using the criterion (2.49). This holds in particular
for polynomially bounded continuous functions. It can also be proven that any function in the Lebesgue
spaces f P LppRdq, with p P r1,8s, defines a tempered distribution through the integral (2.50). Hence, in
all of this cases the function f can be identified with a temperate distribution. In this work we will use the
common abuse of language of saying that the function f is a tempered distribution. �

Example 2.2.2. Let µ be a slow-growing measure. The linear functional defined through the integral

xµ, ϕy �
»
Rd
ϕpxqdµpxq, ϕ P S pRdq, (2.51)
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defines a tempered distribution, which can be seen directly from Eq. (2.30). Hence, every measure µ P
MSGpRdq determines a tempered distribution. As in the case of functions, we will simply say that µ is
a tempered distribution. It follows that every finite measure and every compactly supported measure is
also a tempered distribution. It can be proven that a positive measure µ P M�pRdq defines a tempered
distribution if and only if it is slow-growing. Some non-positive non-slow-growing measures in M pRdq can
also determine tempered distributions but not exactly through the Lebesgue integral but rather by taking a
limit of Lebesgue integrals (See Schwartz, 1966, Theorem VII, Chapter VII and the comments therein). �

The space of tempered distributions can then be seen as an abstract space where usual objects such as
some kinds of functions and measures are included. Of course, there are many other types of objects in this
class. The main motivation of this space is to have a unified class where typical operations of calculus and
Fourier Analysis can be applied without formal problems.

Let T P S 1pRdq. If xT, ϕy P R for every real function ϕ P S pRdq, T is said to be real. The
complex conjugate of T , denoted by T , is defined as the distribution determined by xT , ϕy :� xT, ϕy for
all ϕ P S pRdq. Following criterion (2.49) it is immediate that T P S 1pRdq . The real part of T is
defined as TR :� T�T

2 , and its imaginary part is defined as TI � T�T
2i . Both TR and TI are real tempered

distributions, and it holds that T � TR � iTI . If ϕ : Rd Ñ C is any function, its reflection, denoted by
ϕ̌ is the function defined as ϕ̌pxq � ϕp�xq for every x P Rd. The reflection of the tempered distribution
T , denoted by Ť , is defined through xŤ , ϕy � xT, ϕ̌y for every ϕ P S pRdq and we can also conclude that
Ť P S 1pRdq. If T satisfies Ť � T , it is said to be even. If it satisfies Ť � �T , it is said to be odd. If it
satisfies Ť � T , that is, if its real part is even and its imaginary part is odd, it is said to be Hermitian. The
reader can verify that all the definitions given in this paragraph coincide with the corresponding classical
definitions when T is a function or a measure.

Let us present a topology that we will sometimes use for the space of tempered distribution S 1pRdq.
Since this space is a dual space, there are many possible topologies that it can be endowed with (see Trèves,
1967, Chapter 19). We are going to use the simplest one: the so-called weak-star, or weak-�, topology,
which is no other but the topology of point-wise sequential convergence7. A sequence of tempered distribu-

tions pTnqnPN is said to converge to T P S 1pRdq in the weak-� topology, denoted by Tn
S

1
σÑ T , if for every

ϕ P S pRdq, xTn, ϕy Ñ xT, ϕy.

7To be more precise, the weak-� topology on S 1pRdq is the one determined by the family of semi-norms:

pϕ1,...,ϕN pT q :� sup
jPt1,...,Nu

|xT, ϕjy|, T P S 1pRdq, (2.52)

for every finite family of test-functions pϕjqjPt1,...,Nu � S pRdq. This topology is not metric, and the description of convergence
sequences is not sufficient to completely describe the topology.
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2.2.2 Operations on Tempered distributions

In this section we will define some linear operations that are defined for tempered distributions and which
generalize classical operations in calculus and Analysis.

We begin by giving a criterion to determine when a linear operator over the Schwartz space L : S pRdq Ñ
S pRdq is continuous. Such a linear operator is continuous if and only if for every α, β P Nd there exists
C ¡ 0 and N P N such that

}xαDβLpϕq}8 ¤ C
¸

α1,β1PNd
|α1|,|β1|¤N

}xα1Dβ1ϕ}8, @ϕ P S pRdq. (2.53)

Similarly to criterion (2.49), this criterion is obtained directly from Theorem D.0.1. We define now a class
of linear operators over the space of tempered distributions. The members of this class are said to be defined
through an adjoint.

Definition 2.2.3. Let L : S pRdq Ñ S pRdq be a continuous and linear operator over the Schwartz space.
Its adjoint operator, denoted by L�, is the linear operator over the space of tempered distributions L� :

S 1pRdq Ñ S 1pRdq defined through,

xL�T, ϕy :� xT,Lϕy, @T P S 1pRdq, ϕ P S pRdq. (2.54)

In other words, the adjoint operator simply does L�T � T � L for every T P S 1pRdq. It is immediate
that L�T is in S 1pRdq since it is a linear functional which is the composition of continuous linear mappings,
hence it is continuous. It is also straightforward that L� is sequentially8 continuous with the weak-� topology.

Most linear operators defined over S 1pRdq used in practice (and theory) are defined in this way. Those
operators are very convenient since they are completely defined through an action on test-functions, for
which many traditional linear operators are defined.

Let us remark two simple examples of operators defined in this way. The first is the reflection operator
T P S 1pRdq ÞÑ Ť , defined as in Section 2.2.1. By definition, it is clear that the reflection operator on
S 1pRdq is the adjoint of the reflection operator over S pRdq, ϕ P S pRdq ÞÑ ϕ̌. Another example is the
translation operator. Let h P Rd. The translation by h of a function ϕ : Rd Ñ C, denoted by τhϕ, is the
function τhϕ : Rd Ñ C defined as τhϕpxq :� ϕpx� hq for all x P Rd. The translation by h defines a linear
operator from S pRdq to S pRdq and it is also continuous9. The translation by h for tempered distributions
is defined as the adjoint of the translation by �h for test-functions. Explicitly, if T P S 1pRdq, we define

8It is, actually, continuous. See the discussion after Example 1 in Reed & Simon (1980, Section V.3).
9A few technical arguments using Taylor’s expansion and convexity, as it is done in the case of Lemma A.4.3 in Appendix A.4.2

can be used to prove this claim.
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its translation by h, denoted by τhT , as the distribution defined through xτhT, ϕy � xT, τ�hϕy for every
ϕ P S pRdq. Then, τh : S 1pRdq Ñ S 1pRdq is a continuous linear operator. Using a change of variable in
the integral defining the linear functional, the reader can verify that this definition coincides with the classical
definition of translation when T is a function or a measure.

We remark that S pRdq � S 1pRdq in the sense of distributions since every test-function can also deter-
mine a tempered distribution following Example 2.2.1. Hence, the adjoint operator L� is also defined for test-
functions. It must not be mistaken, however, with the initial operator L. The case where L can be identified
with L� is the case of so-called self-adjoint operators, which are operators satisfying xφ,Lϕy � xLφ, ϕy
for all couple of test-functions ϕ, φ P S pRdq. For example, the reflection operator is self-adjoint, while the
translation operator is not.

We present now the most important examples of linear operators over the space of tempered distributions
which are defined in this way.

Differentiation

Let α P Nd and let Dα its associated differential operator. Dα : S pRdq Ñ S pRdq is linear and continuous,
which is easy to obtain following criterion (2.53). Its adjoint can then be defined through the expression
(2.54). Nevertheless, it is more important to directly define Dα over the space of tempered distributions and
then to identify its pre-adjoint, which is not necessarily the operator Dα for test-functions.

Definition 2.2.4. The differential operator over the space of tempered distributions Dα : S 1pRdq Ñ
S 1pRdq is defined through

xDαT, ϕy :� p�1q|α|xT,Dαϕy, @T P S 1pRdq, ϕ P S pRdq. (2.55)

In other words, Dα is the adjoint of the operator p�1q|α|Dα defined over the Schwartz space. This
definition is inspired by the integration by parts formula. The reader can verify, for example, that if f P
C |α|pRdq is a polynomially bounded function with polynomially bounded derivatives, then the functionDαf

in the classical sense satisfies xDαf, ϕy � p�1q|α|xf,Dαϕy for all ϕ P S pRdq. Hence, the derivative Dα is
a generalization of the classical notion of the derivative for enough regular functions, and it can be applied to
any tempered distributions any number of times. This allows to formally differentiate complicated objects.
For instance, any function as presented in the Example 2.2.1 can be differentiated any number of times.
Slow-growing measures can also be differentiated any number of times. The objects which are obtained
after applying this operator are not necessarily, of course, functions or measures, but they are well-defined
tempered distributions. Actually, it is true that every tempered distribution is the derivative of large enough
order of a polynomially bounded continuous function (Reed & Simon, 1980, Theorem V.10).
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We give an example of application: the classical example of the Heaviside function on R, which is the
indicator function of the positive real line, 1R� . This function is of course not differentiable at 0. However,
its derivative in distributional sense is the Dirac measure at 0, d

dxp1R�q � δ. The Dirac measure can also be
differentiated, obtaining the tempered distribution ϕ P S pRq ÞÑ �dϕ

dx p0q.
We finally remark that differential operators of even order are self-adjoint, while differential operators of

odd order are not.

Multiplication with OM pRdq

Let us introduce the next space of functions:

Definition 2.2.5. The space of multiplicators of the Schwartz space, denoted by OM pRdq is defined as
the space of all complex smooth functions such that all of their derivatives of all orders are polynomially
bounded. Explicitly,

OM pRdq :� tf P C8pRdq �� @α P Nd DC ¡ 0 DN P N such that |Dαfpxq| ¤ Cp1� |x|2qN @x P Rdu.
(2.56)

If f P OM pRdq and ϕ P S pRdq, then fϕ P S pRdq. Moreover, the application ϕ ÞÑ fϕ is a continuous
linear operator from S pRdq to S pRdq. This can be seen by applying criterion (2.53) together with the
polynomials bounding the derivatives of f . It can actually be proven that if f is a measurable function, then
the multiplication by f , ϕ ÞÑ fϕ over S pRdq, is a continuous linear operator from S pRdq to S pRdq if
and only if f P OM pRdq (Reed & Simon, 1980, Problem 23 in Chapter V). We remark, in addition, that
OM pRdq �MSGpRdq � S 1pRdq.

The multiplication with f P OM pRdq over the space of tempered distributions S 1pRdq is defined as the
adjoint operator of the multiplication with f over the Schwartz space S pRdq. Explicitly, if T P S 1pRdq and
f P OM pRdq, the multiplication fT P S 1pRdq is defined as the distribution which satisfies

xfT, ϕy :� xT, fϕy, @ϕ P S pRdq. (2.57)

It follows that the multiplication with f is a self-adjoint operator.

It is not immediate to generalize the notion of multiplication, that is, to define ST for two arbitrary
tempered distributions T and S, while maintaining good topological properties and the analogies to the case
of continuous functions. It is actually, a kind of weakness of the Theory of Distributions: the lack of a
multiplicative algebra of spaces of distributions. See (Schwartz, 1954) for a discussion in the case generic
distributions (not necessarily tempered). The particularity of the space OM pRdq is that members of this
space can be multiplied with any tempered distribution. However, it is possible to define products between
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less regular functions with members in more restricted subspaces of S 1pRdq. For instance, we know (cf.
Section 2.1.3) that every polynomially bounded measurable function can be multiplied with any distribution
in MSGpRdq, obtaining as a result a member of MSGpRdq � S 1pRdq. However, some “nice properties” of
the multiplication which we would like to hold are lost10. Some generalizations can be found in Shiraishi &
Itano (1964) and the references therein. Other ways of describing multiplicative products between tempered
distributions which will be sharply pointed out in Section 2.2.3 can be found in Richards & Youn (1995,
Chapter 7).

Convolution with O1
cpRdq

In this section we restrain ourselves to the convolution between a tempered distribution and a distribution
of fast decreasing behaviour. This concept is entirely described in Schwartz (1966, Chapter VII, §5), but a
simpler exposition, which is the one we will follow, can be found in Trèves (1967, Chapter 30).

We recall that for two complex valued functions over Rd, ϕ, φ, which by simplicity are supposed to be
in S pRdq, their convolution product is defined as

pϕ � φqpxq :�
»
Rd
ϕpx� yqφpyqdy. (2.58)

The convolution product is commutative. It is also true that for functions ϕ, φ in the Schwartz space, its
convolution is also in S pRdq (Donoghue, 1969, Chapter 29). If Dα is a differential operator, it is well-
known that Dαpϕ � φq � Dαϕ � φ � ϕ �Dαφ.

If T P S 1pRdq, its convolution with a test-function ϕ P S pRdq is defined as the function

x P Rd ÞÑ pT � ϕqpxq :� xT, τxϕ̌y. (2.59)

It can be proven that this function is in C8pRdq. Moreover, it is actually in OM pRdq (Trèves, 1967, Theorem
30.2). In particular, T � ϕ is a tempered distribution. If Dα is a differential operator, then it holds that
DαpT � ϕq � DαT � ϕ � T �Dαϕ. The next definition is the one stated in Trèves (1967, Definition 30.1).

Definition 2.2.6. Let T P S 1pRdq. We say that T is of fast decreasing behaviour if for all N P N there
exists MN P N and there exists a finite family of continuous functions pfαqαPNd,|α|¤MN

� CpRdq such that
p1� |x|2qNfα P C0pRdq for all α P Nd with |α| ¤MN , and such that

T �
¸

|α|¤MN

Dαfα, (2.60)

where the derivatives are taken in the distributional sense.
10For instance, the Exchange Formula of the Fourier Transform, which will be presented in Section 2.2.2 could fail.
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The space of distributions of fast decreasing behaviour over Rd is denoted by O1
cpRdq and it is also

often called the space of convoluters of tempered distributions. If S P O1
cpRdq and ϕ P S pRdq, then

S � ϕ P S pRdq, and it can be proven that the application ϕ ÞÑ S � ϕ is a continuous linear operator from
S pRdq to S pRdq (Trèves, 1967, Theorem 30.1).

Let S P O1
cpRdq. The convolution with S is the linear operator defined over S 1pRdq as the adjoint of

the convolution with Š over S pRdq. Explicitly,

xT � S, ϕy :� xT, Š � ϕy, @T P S 1pRdq, ϕ P S pRdq. (2.61)

The convolution T � S is then a well-defined tempered distribution. It also holds that if Dα is a differential
operator, then DαpT � Sq � DαT � S � T �DαS. The reader can verify that the definition of convolution
following Eq. (2.61) coincides with the classical one when T and S are convolable functions.

Fourier Transform

The Fourier Transform is the raison d’être of the Schwartz space and of tempered distributions: these spaces
are created in order to apply the Fourier Transform to more general objects than in the classical framework
of functions in L2pRdq, while maintaining all of its interesting properties. In this section we make precise
the convention of the Fourier Transform we use in this work and we recall its main properties.

Let ϕ P S pRdq. Its Fourier Transform is defined as the function

F pϕqpξq :� 1

p2πq d2

»
Rd
e�iξ

T xϕpxqdx, ξ P Rd. (2.62)

The Fourier Transform is a linear and continuous bijective operator from S pRdq to S pRdq. Its inverse
operator is the Inverse Fourier Transform and it is determined by

F�1pϕqpξq :� 1

p2πq d2

»
Rd
eiξ

T xϕpxqdx, ξ P Rd. (2.63)

Of course, F�1 also defines a continuous linear operator from S pRdq to S pRdq. See Donoghue (1969,
Chapter 29). We will mainly use the letter ξ to describe the variables in the space Rd after applying a Fourier
Transform. This space is called the frequency space.

Definition 2.2.7. The Fourier Transform over S 1pRdq is defined as the adjoint operator of the Fourier
Transform over S pRdq. Explicitly,

xF pT q, ϕy :� xT,F pϕqy, @T P S 1pRdq, ϕ P S pRdq. (2.64)
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This definition is inspired by the transfer formula, which states that for ϕ, φ P L2pRdq it holds that
xF pϕq, φy � xϕ,F pφqy. This allows then to define the Fourier Transform for a quite large class of objects,
such as polynomially bounded functions, not necessarily integrable or in L2pRdq, and for slow-growing
measures, not necessarily finite. We give as typical examples, F p1q � p2πq d2 δ and, with more generality,
F pxαq � p2πq d2 i|α|Dαδ, with α P Nd. We remark that if T P S 1pRdq, then F pT q is real if and only if T is
Hermitian.

The classical property of the Fourier Transform of a derivative also holds for tempered distributions,
and with more interest than in the classical case since now all objects are differentiable. Thus, F pDαT q �
piξqαF pT q for all T P S 1pRdq and for all α P Nd. Here we have denoted by piξqα the function ξ P
S pRdq ÞÑ piξqα which is in OM pRdq.

Another important property of the Fourier Transform is the Exchange Formula between the convolution
and the multiplication. For two test-functions ϕ, φ P S pRdq, it holds that F pϕ � φq � p2πq d2 F pϕqF pφq
(Donoghue, 1969, Chapter 29). For distributions it is a little bit more restrictive since we cannot multiply
or convolute arbitrary tempered distributions at will, but it holds for the cases seen in this section. It can
be proven that the Fourier Transform is a bijective linear operator from OM pRdq to O1

cpRdq: the Fourier
Transform exchanges the space of multiplicators with the space of convoluters (Trèves, 1967, Theorem
30.3). If T P S 1pRdq, S P O1

cpRdq and f P OM pRdq, then

F pT � Sq � p2πq d2 F pT qF pSq ; F pfT q � p2πq� d
2 F pT q �F pfq. (2.65)

Some generalizations of this formula will be pointed-out in section 2.2.3.

We finally recall an important result of Fourier Analysis in the classical case of functions in L1pRdq.

Theorem 2.2.1 (Riemann-Lebesgue Lemma). Let f : Rd Ñ C be a function in L1pRdq. Then, F pfq P
C0pRdq.

See Donoghue (1969, Chapter 30) for a proof. Obviously, this also applies when considering the Inverse
Fourier Transform F�1.

2.2.3 Tensor products

In this section we recall the definitions of tensor products of functions, measures, distributions and linear
operators over S pRdq and S 1pRdq. The latter case is the only case which is not easily findable in the
literature in the way we state it here. For the rest, we just follow usual terminologies and results.
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Tensor product of Functions and Measures

Let f : Rd Ñ C and g : Rm Ñ C be two functions. The tensor product between the functions f and g is
the function pf b gq : Rd�Rm Ñ C defined through pf b gqpx, yq � fpxqgpyq for all x P Rd and y P Rm.

If µ P M pRdq and ν P M pRmq, the tensor product between the measures µ and ν is a measure over
Rd � Rm, denoted by µ b ν, which satisfies that pµ b νqpA � Bq � µpAqνpBq for every A P BBpRdq
and B P BBpRmq. A typical result from Measure Theory guarantees that there is a unique measure µb ν P
M pRd � Rmq satisfying this condition. The next Proposition also holds.

Proposition 2.2.1. If µ P M pRdq and ν P M pRmq, then |µb ν| � |µ| b |ν|.

A proof of this Proposition is presented in Appendix A.4.1. From this Proposition it is straightforward
that the tensor product between finite (respectively, slow-growing, respectively compactly supported) mea-
sures is a finite (respectively, slow-growing, respectively compactly supported) measure.

Tensor product of distributions

Let T P S 1pRdq and S P S 1pRmq. The tensor product between the distributions T and S is the tempered
distribution T b S P S 1pRd � Rmq defined through

xT b S, ψy :� xT, x ÞÑ xS, ψpx, �qyy, @ψ P S pRd � Rmq. (2.66)

It can be proven that this definition determines a unique tempered distribution in S 1pRd�Rmq (Richards &
Youn, 1995, Theorem A in Chapter 7). In addition, the following “Fubini’s Theorem” holds:

xS, y ÞÑ xT, ψp�, yqyy � xT b S, ψy � xT, x ÞÑ xS, ψpx, �qyy. (2.67)

In Schwartz (1966, Chapter IV) this result is presented in the case of generic distributions. We remark that
if ψ P S pRd � Rmq is of the form ψ � ϕ b φ, with ϕ P S pRdq and φ P S pRmq, then the tensor product
satisfies xT b S, ϕb φy � xT, ϕyxS, φy.

Let us make a special comment about this product: it can be used to give a more general definition of the
convolution and the multiplicative product of distributions than the one presented in Section 2.2.2. We will
detail the case of the convolution since it is not necessary to introduce new definitions to do it. The definition
of the convolution between two generic distributions, as presented in Schwartz (1966, Chapter VI) is based
on the idea of tensor products. For the specific case of multiplications between tempered distributions, we
suggest the more recent and didactic Richards & Youn (1995, Chapter 7).
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In the case of functions, one can show that, if f P L1pRdq and g P L1pRdq for instance, then»
Rd
pf � gqpxqϕpxqdx �

»
Rd

»
Rd
fpxqgpyqϕpx� yqdxdy, @ϕ P S pRdq. (2.68)

This inspires a criterion of convolvability of two arbitrary tempered distributions. Two tempered distributions
S, T P S 1pRdq are said to be S 1�convolvable (Dierolf & Voigt, 1978) if the application

ϕ P S pRdq ÞÑ xT b S, px, yq ÞÑ ϕpx� yqy (2.69)

defines a tempered distribution. In that case, this distribution is called the convolution between T and
S. In Richards & Youn (1995, Chapter 7) a general description about the convolvability of two tempered
distributions is done. In this same source, the tensor product is used to define a multiplication criterion
between two tempered distributions, based on the idea of localization. This concept uses similar notions to
those considered in the Example 2.1.2 of measures supported on the hyperplane ty � xu, applied to the
case of distributions. Within this framework, the authors prove that the multiplicability of two tempered
distributions is a necessary and sufficient condition for the convolvability of their Fourier Transforms, and
an Exchange Formula for the Fourier Transform, similar to (2.65), is stated in the case where convolvability
and multiplicativity are satisfied (Richards & Youn, 1995, Theorem 7.6). See Richards & Youn (2000) for a
briefer exposition about this theory of localization, multiplication and convolution of distributions, and the
associated Exchange Formula for the Fourier Transform.

Tensor product of linear operators

We consider now two linear and continuous operators defined through an adjoint, L�1 : S 1pRdq Ñ S 1pRdq
and L�2 : S 1pRmq Ñ S 1pRmq. The objective of this section is to present the definition of the tensor product
between L�1 and L�2 , denoted by L�1 b L�2 , which is a linear and continuous mapping from S 1pRd �Rmq to
S 1pRd�Rmq. The intuitive meaning of this operator is that it applies the operator L�1 to the first component
of its argument and the operator L�2 to the second one.

We will first consider the definition of the tensor product of linear operators on the space of test-functions.
We denote by Id the identity operator from S pRdq to S pRdq and Im its analogue for Rm.

Definition 2.2.8. Let L1 : S pRdq Ñ S pRdq be linear and continuous. We define the mapping L1 b Im :

S pRd � Rmq Ñ S pRd � Rmq as

L1 b Impψq :� px, yq ÞÑ L1pψp�, yqqpxq, @ψ P S pRd � Rmq. (2.70)

Let us clarify how this operator acts on a test-function ψ P S pRd�Rmq. For a function ψ and for a fixed



2.2. DISTRIBUTIONS 47

y P Rm, the function ψp�, yq is clearly in S pRdq. The operator L1 is applied to that function, and the result
is evaluated at x. Hence, this operator follows the intuition of applying L1 to the first component of ψ, while
doing nothing to the second one. It is not obvious that this procedure defines a function in S pRd � Rmq,
nor that the operation is linear and continuous.

Proposition 2.2.2. The operator L1 b Im : S pRd � Rmq Ñ S pRd � Rmq is well-defined and it is linear
and continuous.

Although Proposition 2.2.2 may seem intuitive, its proof is not easily findable in the literature without
entering into deep and sophisticated theories of tensor products and Kernels. We give in Appendix A.4.2
a proof of this Proposition which is more accessible given the notions introduced in this work, but also
probably longer than what it could be if we were using more sophisticated theories. We remark that the
main difficulty is rather topological than algebraical. The definition of the operator L1 b Im over the space
S pRdq b S pRmq of finite linear combinations of tensor products between functions in S pRdq and in
S pRmq is straightforward. A density argument could guarantee that the definition can be extended to the
whole space S pRd � Rmq, but for this the continuity of the operator must be verified.

If L2 : S pRmq Ñ S pRmq is linear and continuous, the construction of the operator IdbL2 : S pRd�
Rmq Ñ S pRd � Rmq is done similarly to Definition 2.2.8. We thus define L1 b L2 easily.

Definition 2.2.9. Let L1 : S pRdq Ñ S pRdq and L2 : S pRmq Ñ S pRmq be linear and continuous
operators. We define the tensor product between L1 and L2 as the linear and continuous operator L1bL2 :

S pRd � Rmq Ñ S pRd � Rmq defined through

pL1 b L2qpψq � pId b L2q ppL1 b Imq pψqq , ψ P S pRd � Rmq. (2.71)

Hence, L1 b L2 is just the composition between Id b L2 and L1 b Im. It is clear that for two test-
functions ϕ P S pRdq and φ P S pRmq it holds that pL1 b L2qpϕ b φq � L1ϕ b L2φ. An argument using
the density of S pRdq bS pRmq in S pRd �Rmq guarantees11 that Definition 2.2.9 does not depend on the
order in which the composition is done, that is, L1bL2 � pL1bImq � pIdbL2q � pIdbL2q � pL1bImq.

From this the way of defining the tensor product of two operators defined through an adjoint, L�1 :

S 1pRdq Ñ S 1pRdq and L�2 : S 1pRmq Ñ S 1pRmq, is quite intuitive.

Definition 2.2.10. Let L1 : S pRdq Ñ S pRdq and L2 : S pRmq Ñ S pRmq be two continuous linear
operators. Let L�1 and L�2 be the adjoint operators of L1 and L2 respectively. The tensor product between

11An argument using the development of functions in S pRdq on the base of Hermite functions can be used to conclude the
density of S pRdq bS pRmq in S pRd � Rmq. See Reed & Simon (1980, Appendix to V.3). An analogue result also holds for the
space S 1pRdq bS 1pRmq, which is sequentially dense in the space S 1pRd � Rmq with the weak-� topology.
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L�1 and L�2 is defined as the adjoint of the operator L1 b L2:

L�1 b L�2 :� pL1 b L2q�. (2.72)

This definition, although intuitive, is a little bit artificial since we have avoided the notion of defining
the operators acting on each component of its argument, as we did in Definition 2.2.8. Nevertheless, it can
be proven that such a definition would be equivalent. This can be seen by considering that for tempered
distributions in S 1pRd�Rmq of the form T bS, with T P S 1pRdq and S P S 1pRmq, the operator L�1 bL�2
does simply pL�1 b L�2qpT b Sq � L�1T b L�2S. The equivalence can thus be concluded using density
arguments12. We will omit those details and we will just work with Definition 2.2.10.

2.2.4 Nuclear Theorem

We present here a particular Theorem which is valid for the space of tempered distributions and which has
important consequences on the theory of Generalized Stochastic Processes.

Let K : S pRdq�S pRmq Ñ C be a bilinear form. We say that K is separately continuous if for every
ϕ P S pRdq, the mapping φ P S pRmq ÞÑ Kpϕ, φq is continuous and hence an element of S 1pRmq, and in
a symmetric way, if for every φ P S pRmq the mapping ϕ P S pRdq ÞÑ Kpϕ, φq is in S 1pRdq.

Theorem 2.2.2 (Nuclear Theorem for tempered distributions). Let K : S pRdq � S pRmq Ñ C be a
separately continuous bilinear form. Then, there exists a unique tempered distribution T P S 1pRd � Rmq
such that

xT, ϕb φy � Kpϕ, φq, @ϕ P S pRdq, φ P S pRmq. (2.73)

We suggest Reed & Simon (1980, Theorem V.12) and the comments in Appendix to section V.3 of this
source for a proof. A general description of spaces which satisfy a similar result, namely, Nuclear spaces,
can be found in Trèves (1967, Part III).

2.2.5 Comments on other spaces of distributions

The Theory of Distributions has been developed using a space of test-functions more restrictive than the
Schwartz space. It is the space of compactly supported smooth functions over Rd, denoted by DpRdq. This
space is endowed with a suitable topology which makes it to be a complete Hausdorff locally convex topo-
logical vector space, similarly to the case of the space CcpRdq. Its dual D 1pRdq is the space of distributions,
in the generic sense, and the Theory of Distributions in the broadest sense uses this space. Here, every

12Cf. footnote 11.
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continuous function is identified with a member of D 1pRdq, not just the polynomially bounded ones. Analo-
gously, every measure in M pRdq, being or not slow-growing, determines a member in D 1pRdq. Differential
operators as defined in Section 2.2.2 are also defined for any distribution in D 1pRdq and hence, any contin-
uous function and any complex measure over Rd can be differentiated any number of times. Multiplication
with any smooth function, not necessarily a member of the space OM pRdq is also possible. The convo-
lution is more restricted, being the space of so-called distributions with compact support13 the only space
of distributions whose elements can be convoluted with any distribution in D 1pRdq. Tensor products and
thus convolutions in more general cases, as presented in section 2.2.3 are also immediately extended to this
space. The Nuclear Theorem 2.2.2 also holds for this space, result which is known as the Schwartz’s Kernel
Theorem (Trèves, 1967, Theorem 51.7). The Fourier Transform, however, is just defined for tempered dis-
tributions, and hence all Fourier Analysis techniques to solve and treat PDEs are restricted, in principle, to
the tempered framework.

Another commonly used space is the space of smooth functions denoted by E pRdq, which is actually
nothing but the space C8pRdq. The notation E pRdq is used when it is understood that the space is endowed
with the topology of uniform convergence on compact sets of the derivatives, similarly to the case of the
space CpRdq described in Section 2.1.4 but with smooth functions. Its dual E 1pRdq is actually the space of
distributions with compact support, and it is a subspace of the space of tempered distributions. A Nuclear
Theorem analogue to Theorem 2.2.2 can also be obtained (Trèves, 1967, Theorem 51.6 and Corollary). We
summarize the inclusion relationships between spaces of test-functions and distributions:

DpRdq � S pRdq � E pRdq“ � ”E 1pRdq � S 1pRdq � D 1pRdq. (2.74)

Other inclusions which are useful to retain are the ones related to spaces of measures:

DpRdq � CcpRdq“ � ” C 1
cpRdq �M pRdq � D 1pRdq,

S pRdq � CFDpRdq“ � ” C 1
FDpRdq �MSGpRdq � S 1pRdq.

(2.75)

And the simplest but maybe the most important one for many applications:

S pRdq � L2pRdq � S 1pRdq. (2.76)

We claim that all of these inclusions are dense when the corresponding spaces are endowed with a suitable
topology (see Proposition C.1.1 in Appendix C for the case of S pRdq � CFDpRdq, the other cases are
well-known in Distribution Theory).

13The support of a distribution can be defined analogously to the definition of support of a measure (2.16), using test-functions
supported on open sets. See Donoghue (1969, Chapter 29).
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Chapter 3

Theoretical Framework: Stochastic Tools

SUMMARY

In this chapter we present the stochastic tools that will be used in the next chapters. It is
basically a framework where Random Functions, Random Measures and Random Distributions
can be defined starting from specified mean and covariance structures. We explain how to do
Stochastic Calculus with these objects and how to pose and analyse some linear SPDEs. All this
framework is embedded in the so-called mean-square analysis, where the random variables are
supposed to be square-integrable and the convergences are considered in a mean-square sense.

In Section 3.2 we recall the classical geostatistical framework of square-integrable Random
Functions. We recall the concepts of mean and covariance functions. We recall the concepts
of stationarity, positive-definite functions and spectral measures. We study the mean-square
regularity of Random Functions, and we present the definitions of continuity, differentiability
and integrability with respect to deterministic measures.

In Section 3.3 we present our concept of Random Measure. We define it as a stochastic process
indexed by the bounded Borel sets being determined by mean and covariance measures. We
present the construction of the stochastic integral of deterministic functions with respect to
Random Measures. We give our definitions of finite, slow-growing and compactly supported
Random Measures. We present the interpretation of Random Measures as linear functionals
over spaces of continuous functions, following an analogy to Riesz Representation Theorems
in the deterministic case. We also present the notion of a Random Measure concentrated on
a subset. We finally introduce the class of orthogonal Random Measures and we recall its
relationship with stationary Random Functions.

In Section 3.4 we present the theory of Generalized Random Fields or Random Distributions,

51
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which is the stochastic analogue of the Theory of Distributions. We define them as stochastic
processes indexed by the Schwartz space determined by mean and covariance distributions.
We show how to apply linear operators defined through an adjoint over Generalized Random
Fields, and we explain how this operators modify the mean and covariance structures. We recall
the definition of a stationary Generalized Random Field, its main properties and its relationship
with slow-growing orthogonal Random Measures.

In Section 3.5 we present the class of SPDEs which will be considered in the next chapters.
We always consider SPDEs defined through a deterministic operator. We make the distinction
between satisfying a SPDE strictly, in law, and in a second-order sense. We specify how a linear
SPDE determines the mean and covariance structure of a model, translated on linear PDEs to
be satisfied by the mean and the covariance.

In Section 3.6 we give comments about how the SPDE framework can be used in multivariate
Geostatistics, particularly in the case of bivariate models. We give a brief overview of the
concept of a bivariate model in a generalized sense, introducing the cross-covariance. We show
the relationships that two processes must satisfy in order to be equal in a convenient sense, and
we present how to apply this condition when the variables in the model are related through a
SPDE. We give a necessary and sufficient condition for a general linear SPDE to be satisfied
strictly, which is stated through PDEs that the means, the covariances and the cross-covariance
must satisfy.

In Section 3.7 we make some comments about other frameworks of Stochastic Analysis beyond
the mean-square theory. We present the issues involved when trying to define Random Func-
tions and Random Measures in a stricter sense than the mean-square sense. We remark the
impossibility of defining convenient orthogonal Random Measures. We remark that, contrarily
to the case of Random Functions and Random Measures, the case of Random Distributions can
be worked out in a stricter framework without problems, due to the Bochner-Minlos Theorem,
applicable to the case of tempered distributions since the Schwartz space is Nuclear.

We end in Section 3.8 with some comments about stochastic integrals of Random Functions
with respect to Random Measures and how some non-linear SPDEs can be defined through
them. This framework is not used in the rest of this dissertation. We present the classical Itô
Integral and we explain the typical issue of the non-canonical way of defining a stochastic inte-
gral. We show that this issue is related to the structure of the cross-covariance Kernel between
the Random Function to be integrated and the reference Random Measure. We show why these
notions are important in order to pose non-linear SPDEs or SPDEs with multiplicative noise
and we give some examples of such SPDEs, together with a brief explanation of their issues and
some related theories already developed in the literature in order to treat them.



3.1. GENERAL INTRODUCTION 53

3.1 General introduction

In this chapter we introduce the stochastic objects which we will work with along this dissertation. We
keep in mind the following almost correct idea: what has been defined in the deterministic world, has its
counterpart in the stochastic world. Hence, we will be able to work with Random Functions, Random
Measures and Random Distributions, all of them defined through a mean and a covariance structure. The
intuition in mind is that a SPDE is just a PDE with random objects involved, and doing Stochastic Calculus is
simply doing calculus with Random Functions and their generalizations. Reasons about why we have used
the “almost correct” expression in this paragraph are commented in Section 3.7.

We keep our loyalty to the tradition of the Fontainbleau school. Hence, we do not specify the laws of
the random variables involved1. Indeed, the developments in this chapter are done, in principle, without
any regard to the laws of the random variables involved, besides the fact that we require them to be square-
integrable. This tradition is based on the historical development of Geostatistics, which has been developed
as a framework to deal with unique phenomena. We will sometimes, however, make references to the
framework of Gaussian processes.

From now on, we will always work with a fixed arbitrary probability space pΩ,A,Pq. All random vari-
ables we use are supposed to be defined over this space. We will work with complex stochastic processes,
that is, families of complex random variables indexed by a non-empty set T , pXtqtPT with some characteris-
tics to be described. The existence of such a mathematical entity is guaranteed by Kolmogorov’s Theorem,
which provides an enough general mathematical framework to work with. We refer to Appendix B for a
statement of this Theorem and its application to construct the objects introduced in this chapter.

None of the results presented in this chapter is essentially new. We give proofs for some of them which
may be difficult to find in the literature in the way we state them. Which may be considered as new, is the
compendium of different applications of the mean-square approach to Stochastic Calculus that can be found
in the literature. Here we focus our exposition in a mean-square based framework in order to simplify its
potential application in geostatistical analysis.

3.2 Random Functions: the classical geostatistical framework

A real Random Function over Rd, also called a Stochastic Process indexed by Rd, is a family of real
random variables indexed by the Euclidean space pZpxqqxPRd . We suppose that all of the random variables
are square-integrable: Zpxq P L2pΩ,A,Pq for all x P Rd. In such a case, the mean and covariance structures
of Z can be studied. The mean function is the function mZ : Rd Ñ R defined by mZpxq � EpZpxqq. The
covariance function is the function CZ : Rd � Rd Ñ R defined by CZpx, yq � CovpZpxq, Zpyqq. The

1Note of the author: I am not only an apprentice of the Bellifontaine school, I am also a Chilean: I cannot care about the law.
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covariance function must be a positive-definite Kernel: a function (of two-variables) C : Rd � Rd Ñ R
is said to be a positive-definite Kernel if for every finite collections of complex numbers and points in the
space, pλ1, ..., λN q P CN and px1, ..., xN q � pRdqN , with N P N�, it holds that

Ņ

j,k�1

λjCpxj , xkqλk ¥ 0. (3.1)

Every positive-definite Kernel can be used as a covariance function of a square-integrable stochastic pro-
cess. This is a consequence of Kolmogorov’s Theorem; see Appendix B. The definition of CZ implies that
CZpx, xq ¥ 0 for all x P Rd and that it is symmetric: CZpx, yq � CZpy, xq. The Cauchy-Schwarz inequality
implies that CZ satisfies |CZpx, yq| ¤

a
CZpx, xqCZpy, yq.

The typical methodology in geostatistical analysis of unique phenomena consists in supposing that a
variable varying spatially or spatio-temporally is the realisation of a Random Function for which its covari-
ance and mean functions are to be selected to model the phenomenon. The mean is often selected to be
null or constant, although any arbitrary function can be used as a mean function of a Random Function.
The choice of the covariance function is more determinant and intricate since it has to satisfy the Kernel
positive-definiteness condition (3.1). Geostatisticians usually work with a sort of catalogue of well-known
positive-definite Kernel functions that can be used as covariance functions and for which their properties are
well studied and mastered. The selection of the covariance function, usually refereed in a broader sense as
selection of the model, is done by diverse techniques of statistical inference such as variographic analysis
or likelihood maximisation. Typical treaties on this practice are Chilès & Delfiner (1999) and Wackernagel
(2003).

3.2.1 Stationarity

LetZ � pZpxqqxPRd be a real square integrable Random Function. We say thatZ is second order stationary
(from now on, simply stationary) if its mean function is constant and if its covariance function depends only
on the gap x � y of the variables. Hence, mZpxq � mZ P R, and there exists a function ρZ : Rd Ñ R
such that CZpx, yq � ρZpx� yq for all x, y P Rd. The stationarity condition is equivalent to require that the
mean functionmZ is invariant under translations and that the covariance functionCZ is invariant under equal
translations on both of its components. Explicitly, mZpxq � mZpx� hq and CZpx, yq � CZpx� h, y � hq
for all x, y, h P Rd.2 When Z is stationary, its associated function ρZ is called the stationary covariance
function or simply its covariance function if stationarity is clear in context and it is not mistaken with CZ .

2This is not the typical and strict definition of stationarity of Random Functions. In a more traditional terminology, a Random
Function is said to be stationary or strictly stationary, if its finite-dimensional laws are invariant under translations. Hence, it is not
only the first and second order structures that are invariant under translations but the whole probability law. Since we work with the
covariance as the main tool, we will always use the concept of stationarity only referring to its second order sense.
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The function ρZ must be a positive-definite function3, also called a function of positive-type. This means
that ρZ satisfies that for every finite family of complex numbers and points in the space, pλ1, ..., λN q P CN

and px1, ..., xN q P pRdqN with N P N�, it holds that4

Ņ

j,k�1

λjρZpxj � xkqλk ¥ 0. (3.2)

This implies that ρZp0q ¥ 0 and that ρZ is even: ρZphq � ρZp�hq for all h P Rd. The Cauchy-Schwarz
inequality implies that |ρphq| ¤ ρp0q for all h P Rd.

A practical description of real and continuous positive-definite functions is given by the well-known
Bochner’s Theorem: a real5 and continuous function ρ : Rd Ñ R is positive-definite if and only if it is the
Fourier Transform of a positive even and finite measure µ P M�

F pRdq:

ρphq � 1

p2πq d2

»
Rd
e�ih

T ξdµpξq. (3.3)

If Z is a stationary Random Function and if ρZ is its covariance distribution, the measure µZ that satisfies
ρZ � F pµZq is called the spectral measure of Z. Bochner’s Theorem has a crucial importance in both
Probability Theory and Geostatistics. Probabilists use it (in a more general version) to show the existence of
convenient probability measures over abstract spaces, starting from well-defined positive-definite functions
over those spaces. Geostatisticians use it mainly to obtain new covariance models to add to their catalogue,
since defining a finite measure over the Euclidean space is not a complicated task to do, while the direct
construction of different classes of positive-definite functions may be intricate. In this work we focus on the
geostatistician application of this theorem. See Donoghue (1969, Chapter 37) for an exposition and proof of
this theorem.

Stationary Random Functions are basic tools for the geostatistical modelling since they provide a suitable
statistical methodology for unique phenomena: even if we suppose that we analyse a single realisation of
the Random Function, stationarity guarantees that the behaviour of the variable will be similar in every
part of the analysed region, and thus it provides, intuitively, an analogue to the independent and identically

3The reader must not confuse a positive-definite function with a positive-definite Kernel. This terminological distinction is crucial
when remarking the difference between a stationary covariance model and a non-stationary one. The term positive-definite Kernel
designates always a function of two variables, like the covariance function CZ . The term positive-definite, without the mention
“Kernel”, always refers to a function of one variable, like ρZ , used to describe stationary models. This terminology selection is the
most appropriated given its current use in the literature. We will use an analogue terminology for the cases of Random Measures
and Generalized Random Fields

4Some authors require the function ρZ to satisfy that the quadratic form (3.2) is strictly positive, unless the complex numbers
involved are all null. We do not require that stronger condition. If the function ρZ satisfies this stronger requirement, it will be said
to be strictly positive-definite.

5Bochner’s Theorem does not really require the function to be real but complex, and thus the associated measure needs not to be
even. Of course, it must remains positive and finite.
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distributed random variables framework of classical statistical methodologies.

We give four important examples of stationary covariance models over Rd which are widely used in the
practice of Geostatistics. We present them together with their associated spectral measures. All of them are
presented in their isotropic version, that is, the covariance function ρZ depends only on the Euclidean norm
of its argument.

 The Gaussian model:

ρZphq � σ2e�|
h
a
|2 ; dµZpξq � σ2ad

2
d
2

e�
a2

4
|ξ|2dξ, (3.4)

with σ2, a ¡ 0.

 The Exponential model:

ρZphq � σ2e�|
h
a
| ; dµZpξq �

σ22
d
2 Γpd�1

2 q
a
?
π

dξ

p 1
a2
� |ξ|2q d�1

2

, (3.5)

with σ2, a ¡ 0. Γ denotes the Gamma function.

 The Matérn model (also called K-Bessel model):

ρZphq � 1

p2πqd{22α�1κ2α�dΓpαqapκ|h|q
α�d{2Kα�d{2pκ|h|q ; dµZpξq � dξ

p2πq d2 apκ2 � |ξ|2qα
,

(3.6)
with κ, a ¡ 0 and α ¡ d

2 . Kα� d
2

denotes the modified Bessel function of the second kind of order

α� d
2 ¡ 0. This model is actually a generalization of the Exponential model.

 The J�Bessel model:

ρZphq � σ2

κ|h| d2 � 1
J d

2
�1pκ|h|q ; µZ � σ2µ

BBpdq
κ p0q

unif , (3.7)

where σ2, κ ¡ 0 and Jd{2�1 denotes the Bessel function of the first kind of order d{2 � 1. We recall

that µBB
pdq
κ p0q

unif denotes the uniform measure on the d� 1-sphere of radius κ (see Example 2.1.1).

3.2.2 Regularity of Random Functions and operations

Within this framework of Random Functions it is already possible to enter into the domain of Stochastic
Calculus and to consider some kinds of SPDEs. To do this, the stochastic analogues of continuity, integrals
and derivatives must be specified. All of these concepts are defined in the deterministic world through
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limits of things. In the stochastic framework, since there are many possible ways in which a sequence of
random variables may converge, we need to specify the sense in which the limits are considered. Since
the main tool of geostatistical analysis is the covariance function, the most adapted framework is the so-
called mean-square analysis, where the limits are taken in the sense of L2pΩ,A,Pq. Here we are going to
present the basic notions and concepts of this framework. This is not exactly the most traditional way of
exposing Stochastic Calculus: usually a stronger or different mode of convergence is required, considering
for example an almost-surely continuity for Random Functions, the existence of a continuous modification
(typical requirement for Brownian Motion for instance, see Øksendal (2003, Definition 2.2.2)), or simply
that the Random Functions have sample paths which are always, strictly speaking, continuous functions. We
give comments on other approaches of Stochastic Calculus in Section 3.7.

A sufficient and simple exposition about the mean-square analysis can be found in Sobczyk (1991, Part
II, Chapter 14 and Part III, Section 21.1). The exposition presented here follows similar principles. Other
approaches to Stochastic Calculus can be also found in this same treaty.

Continuity and Integrals

Let us begin with the concept of continuity. Let Z � pZpxqqxPRd be a Random Function. Z is said to
be mean-square continuous or, more simply from now on, continuous, if both its mean and covariance
functions are continuous. This definition is equivalent to the following one: Z is a continuous Random
Function if for every convergent sequence of points in the space pxnqnPN � Rd, xn Ñ x P Rd, it holds that

Zpxnq L
2pΩqÑ Zpxq (Sobczyk, 1991, Definition 2.2 and Theorem 2.2).

For a real continuous Random Function many mathematical operations are possible. Let us remark one:
the classical Riemann Integral. We are going to present it in detail since the concepts presented here will
be used further in this dissertation. Let K � Rd be a compact set. The Riemann Integral of a continuous
function in the deterministic case is constructed using a limit of Riemann sums. We are going to make
explicit the same procedure. Consider a family of non-empty Borel subsets of Rd , pV N

j qjPt1,...,Nu,NPN� ,
with the following properties:

 �N
j�1 V

N
j � K for all N P N�.

 V N
j X V N

k � H for all N P N� and for all j, k P t1, ..., Nu such that j � k.

 max
jPt1,...,Nu

diampV N
j q Ñ 0 as N Ñ8.

Here diampAq denotes the diameter of the set A. Hence, pV N
j qjPt1,...,Nu,NPN� is a class of subsets such

that for a fixed N the collection pV N
j qjPt1,...,Nu is a partition of K, and such that the size of every set in the

partition converges to 0 as N grows. For simplicity, we will give a name to this kind of class of sets: it will
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be called a Riemann sequence of partitions of K. The typical example when defining Riemann sums is by
taking rectangles of smaller and smaller size covering K. Let us consider in addition, for every set V N

j , an
arbitrary point xNj P V N

j . The collection pxNj qjPt1,...,Nu,NPN� will be said to be a collection of tag points of
pV N
j qjPt1,...,Nu,NPN� . We define the integral of Z over K as the limit in the sense of L2pΩ,A,Pq:

»
K
Zpxqdx :� lim

NÑ8

Ņ

j�1

|V N
j |ZpxNj q, (3.8)

where |V N
j | � LebpV N

j q denotes the Lebesgue measure of the set V N
j .

Rather than verifying if the integral (3.8) is well-defined, we will use this idea to define a more general
integral of continuous Random Functions. Note that the definition of a Riemann sequence of partitions of K
can be extended immediately to every K P BBpRdq.

Definition 3.2.1. Let Z be a real continuous Random Function over Rd. Let µ P M pRdq and let A P
BBpRdq. The integral of Z with respect to µ over A is defined as the limit in L2pΩ,A,Pq:

»
A
Zpxqdµpxq :� lim

NÑ8

Ņ

j�1

µpV N
j qZpxNj q, (3.9)

where pV N
j qjPt1,...,Nu,NPN� is a Riemann sequence of partitions ofA and pxNj qjPt1,...,Nu,NPN� is a collection

of tag points of pV N
j qjPt1,...,Nu,NPN� .

The following result guarantees that the previous definition is consistent, and it describes some properties
of the integral.

Proposition 3.2.1. Let Z be a real continuous Random Function over Rd, µ P M pRdq and A P BBpRdq.
Then, the integral

³
A Zpxqdµpxq is well-defined as a random variable in L2pΩ,A,Pq and it does neither

depend on the choice of the Riemann sequence of partitions ofA nor on the choice of its tag points. Moreover,
if A,B P BBpRdq, and µ, ν P M pRdq, the following expressions for the mean and the covariance of the
integral hold:

E
�»

A
Zpxqdµpxq



�
»
A
mZpxqdµpxq, (3.10)

Cov
�»

A
Zpxqdµpxq,

»
B
Zpxqdνpxq



�
»
A

»
B
CZpx, yqdµpxqdνpyq. (3.11)

A proof of this Proposition is presented in Appendix A.5. Notice that Definition 3.2.1, which is inspired
by the classical construction of Riemann sums, is also related to the construction of the Lebesgue integral for
a continuous function. Indeed, the sum in (3.9) can be interpreted as the Lebesgue integral of the Random
Simple Function ZN pxq �

°N
j�1 ZpxNj q1V Nj pxq with respect to µ over A, and one can prove that ZN pxq Ñ



3.2. RANDOM FUNCTIONS: THE CLASSICAL GEOSTATISTICAL FRAMEWORK 59

Zpxq in the sense of L2pΩ,A,Pq for every x P A. Hence, the integral can be interpreted also as a limit
of integrals of simple functions converging, in a mean-square-point-wise sense to Z. Another, maybe more
interesting way of interpreting this integral is, rather than approaching the function Z by simple functions,
is by approaching the measure µ by a linear combination of punctual masses: µN �

°N
j�1 µpV N

j qδxNj . The
sequence of measures pµN qNPN� converges in some sense to the measure µ. Therefore, we can expect that
the limit of the integrals is the integral of the limit6.

Extensions of Definition 3.2.1 to the case of not bounded sets are possible, thereby obtaining a notion of
a continuous Random Function integrable with respect to µ. We will make precise this idea in Section 3.3.

Derivatives

Let Z be a real Random Function over Rd. A broadly used notion of differentiability of Z is the next
one: Z is mean-square continuously differentiable if its mean function is continuously differentiable
and its covariance function is two-times continuously differentiable. It can be proven that this definition
is equivalent to the next one: Z � pZpxqqxPRd is mean-square continuously differentiable if for every
x P Rd, for every normal vector v P Rd, and for every converging-to-zero sequence of positive real numbers
phnqnPN P p0,8q, the limits of the form limnÑ8

Zpx�vhnq�Zpxq
hn

converge in the sense of L2pΩ,A,Pq to
a random variable Yvpxq, and the so defined Random Functions pYvpxqqxPRd are continuous. This can be
concluded from the developments in Sobczyk (1991, Section 14.3).

If Z is mean-square continuously differentiable and if BZ
Bxj is the partial derivative with respect to the

j�th component on Rd, we have the expressions for the mean and the covariance:

m BZ
Bxj
� BmZ

Bxj ; C BZ
Bxj
� B2CZ
BxjByj . (3.12)

Hence, the derivative of the mean is the mean of the derivative, and the covariance of the derivative is the
corresponding double derivative of the covariance (we recall that the covariance CZ is a function of two
vectorial variables). The definition of the derivative of arbitrary order N P N is done analogously, with
the mean mZ required to be in CN pRdq and with the covariance CZ required to be in C2N pRd � Rdq.
Considering the multi-index notation, the generalization of Eq. (3.12) is in such a case

mDαZ � DαmZ ; CDαZ � Dpα,αqCZ , (3.13)

for α P Nd with |α| ¤ N .

When Z is stationary with zero-mean, the differentiability condition is equivalent to require that the sta-

6This holds, for example, when approaching measures of compact support in the sense of the weak-� topology in the space
McpRdq which, as we have seen, is the dual of the space of continuous functions CpRdq (Theorem 2.1.5).
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tionary covariance function ρZ is twice differentiable, with the same analogue for higher orders of derivation.
In such case, we have

ρDαZ � p�1q|α|D2αρZ . (3.14)

An important point to notice in the stationary case is the relation between the mean-square regularity of
Z and the growing behaviour of its spectral measure µZ . Using the relation between ρZ and the spectral
measure µZ , ρZ � F pµZq (Eq. (3.3)), it is not hard to conclude using a typical application of Dominated
Convergence Theorem that ρZ is N�times continuously differentiable if and only if the multiplication mea-
sure |ξ|NdµZpξq is finite. Hence, the slower µZ increases at infinity, the more regular ρZ (and thus the
Random Function Z) is. For example, the Gaussian model (3.4) is infinitely differentiable since its spec-
tral measure has a density which decreases faster than any polynomial. The J�Bessel model (3.7) is also
infinitely differentiable since its spectral measure is compactly supported. The Matérn model (3.6) has the
particularity that the parameter α controls its regularity: using polar coordinates, one verifies that the covari-
ance of the Matérn model is 2N�times differentiable, and thus Z is N�times mean-square differentiable,
if and only if α ¡ d�N

2 . This control of regularity available for the Matérn model is one of the reasons of its
popularity; see for instance the comment “use the Matérn model” in Stein (1999, page 14) and an example
of application in this spirit in Minasny & McBratney (2005). We finally remark that the Exponential model
(3.5) is not mean-square differentiable. This can be concluded by considering that the Exponential model is
a particular case of the Matérn model with α � d�1

2 . However, it is, of course, continuous, and it is one of
the most used models in practice.

The notions exposed in this section are actually sufficient to develop a rich enough Stochastic Calculus
and to well-pose and solve some SPDEs. See the examples discussed in Chilès & Delfiner (1999, Section
8.3), and the developments in Sobczyk (1991, Chapter III). Nevertheless, the strong restriction of differ-
entiability constrains us to a rather limited framework both in the theory of Stochastic Analysis and in the
practice of Geostatistics. Indeed, many models used in practice are non-differentiable. Hence it is not clear
how they could be related to a differential equation with differential operators acting on them. In addition,
most of the well-known SPDE-based models (mainly the Matérn model) are related to a SPDE which is not
properly defined in the framework of Random Functions: they involve a differential operator (or something
like that) applied over an insufficiently differentiable Random Function. This issue is also present in the
domain of Stochastic Calculus based on Brownian Motion: as the reader probably knows, the sample paths
of Brownian Motion are continuous but nowhere differentiable, and many of the most interesting processes
used in this theory present also this condition. There is thus a need for working with things that are more
general than a function, where the objects can be differentiated freely. Having in mind the theory presented
in Section 2.2, we know in which direction we should be heading to. We will describe this theory in Section
3.4. We remark the discussion on this subject proposed in Chilès & Delfiner (1999, Chapter 8), where all of
these issues are commented, presenting also interesting applications of the regular framework presented on
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this section in Hydrogeology7.

3.3 Random Measures

A Random Measure can be defined in many different ways. The definition that we are going to use is inspired
in a mean-square analysis as we did in the case of Random Functions. Hence, we interpret the σ�additivity
condition in a mean-square sense. We will also restrict our work to the case where the covariance Kernel
determines a covariance measure. The bibliographical source which exposes a theory of Random Measures
in the most similar way as we do here is Rao (2012). We will not follow strictly its terminology, but the main
idea is the same. We give some comments on other ways of approaching the Random Measure Theory in
Section 3.7.

3.3.1 Formal definitions

We begin with a first generic definition. We will not actually use this concept as main tool of analysis due
to some issues that will be exposed later. Nevertheless, it is worth being presented and discussed. The name
selected for this object is strictly restricted to this dissertation and it is not inspired by the literature8.

Definition 3.3.1. A L2�generic complex random measure (simply, a Generic Random Measure) over
Rd is a complex stochastic process indexed by the bounded Borel sets M :� pMpAqqAPBBpRdq such that for
every countable collection of mutually disjoint bounded Borel sets pAnqnPN � BBpRdq such that

�
nPNAn P

BBpRdq, it holds that

M

�¤
nPN

An

�
a.s.�

¸
nPN

MpAnq, (3.15)

where the series in (3.15) is taken as a limit in L2pΩ,F ,Pq.

We will call the property (3.15) the L2� σ�additivity condition. We remark that this additivity condi-
tion is not strict as in the sense of the deterministic Definition 2.1.1.

Let M be a Generic Random Measure over Rd. Consider the set function mM : BBpRdq Ñ C, de-
fined as mM pAq � EpmM pAqq. An immediate implication of the L2� σ�additivity condition (3.15) is
that the function mM is in M pRdq. We call mM the mean measure of M . Consider now the function
KM : BBpRdq � BBpRdq Ñ C, defined through KM pA,Bq � CovpMpAq,MpBqq. KM is called the
covariance bi-measure Kernel of M . The choice of the name is important. Using the L2� σ�additivity,

7Chapter 8 in Chilès & Delfiner (1999) has been, unfortunately, dropped out of the latest editions of this book. The reference is
then, particularly, to the 1999’s edition.

8We do not suggest it neither.
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one can verify that KM is what some authors call a bi-measure (Horowitz, 1977; Morse, 1955; Rao, 2012):
for any fixed B P BBpRdq, the set application A P BBpRdq ÞÑ KM pA,Bq is in M pRdq, and correspond-
ingly, for any fixed A P BBpRdq, the set application B P BBpRdq ÞÑ KM pA,Bq is also in M pRdq.
This Kernel must be a positive-definite bi-measure Kernel, that is, for every finite collection of bounded
Borel sets pAjqjPt1,...,Nu � BBpRdq and for every finite collection (of the same size) of complex numbers
pλ1, ..., λN q P CN , N P N�, it must hold that

Ņ

j,k�1

λjKM pAj , Akqλk ¥ 0. (3.16)

Let us explain now why we have added the adjective “generic” in Definition 3.3.1. It would be expected
that this Kernel determines a sort of covariance measure, CM P M pRd � Rdq, which satisfies CpA �
Bq � KM pA,Bq for A,B P BBpRdq. The theoretical problem that arises is that this does not hold at all:
the covariance bi-measure Kernel does not necessarily determine a measure in M pRd � Rdq.9 This is a
remarkable consideration which holds particularly in the case of measures. As we shall see later, in the case
of Random Distributions this issue is not present thanks to the Nuclear Theorem.

We remark that this is not actually a real theoretical problem: even if the bi-measure Kernel does not
determine a measure, an Integration Theory with respect to the associated Generic Random Measure can be
anyway developed, with remarkable results. The construction of the associated integral is grounded on the
concept of integral with respect to a vector valued measure, that is, a measure taking values in a Banach
space. Indeed, the Generic Random Measure M according to definition 3.3.1 is nothing but a σ�additive
function taking values in the Hilbert space L2pΩ,A,Pq. The integral with respect to such a measure is
called the Dunford-Schwartz Integral. The related theory can be found in its general deterministic form in
Dunford & Schwartz (1958, Chapter III and Section IV.10). We refer to (Rao, 2012, Chapter 2) for the
associated stochastic theory. We thus conclude that even if a Generic Random Measure does not have a
strictly speaking covariance measure describing its second order structure, it can be anyway manipulated as
a measure in a satisfactory manner. The real issue is rather practical or methodological, and it concerns for
example the practice of geostatsticians: it is far simpler and intuitive to define a Random Measure starting
from a covariance measure, than using the more generic but complicated concept of covariance bi-measure
Kernel.

We will thus avoid all of these issues and we will work with the following definition of Random Measure.

9In Rao (2012, Chapter 2, Example 2) the author presents sophisticated arguments which implicitly prove that the positive-
definite bi-measure Kernel of the form

KM pA,Bq �
¸
nPN

νnpAqνnpBq, (3.17)

with νnpAq �
³
p0,2πq e

inx1Apxqdx, does not determine a measure in M pRd �Rdq. We say implicitly because the author does not
show explicitly the Kernel in the form (3.17), but he rather works with the associated Generic Random Measure.
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Definition 3.3.2. A L2�Complex Random Measure over Rd (from now on simply a Random Measure) is
a Generic Random Measure M such that there exists a measure CM P M pRd � Rdq such that

CM pA�Bq � CovpMpAq,MpBqq, @A,B P BBpRdq. (3.18)

It is possible to give necessary and sufficient conditions for a covariance bi-measure Kernel to actually
determine a measure in the way of Definition 3.3.2. The extra requirement is that the associated potential
measure must have finite total variation over bounded Borel subsets of Rd � Rd. See Horowitz (1977)
for the associated result in the case of finite measures in more general measure spaces. The case of non-
finite measures can be proven following similar arguments restricting the analysis to bounded sets. Another
approach may be based on convenient extension theorems, which can be used to prove the existence and
uniqueness of a complex measure which extends the domain of a complex measure of local bounded variation
defined over the ring of sets of the form A�B, A,B P BBpRdq. See for example Takahashi (1966) for such
an extension theorem. Kupka (1978) also provides an extension theorem which may be useful in this aim.
We omit the details since this issue is beyond the scope of this dissertation. We also claim, without proof,
that if KM is positive, that is, KM pA,Bq ¥ 0 for all A,B P BBpRdq, then it does determine a covariance
measure on M�pRd�Rdq10, although such a requirement excludes some useful covariance models such as
the J�Bessel model.

We focus hence, once and for all, on Random Measures as in Definition 3.3.2. Let M be a Random
Measure over Rd. The measure CM P M pRd � Rdq satisfying (3.18) is called the covariance measure
of M . Analogously to covariance functions, this measure must satisfy a positive-definiteness condition
associated to condition (3.16). We will make it explicit. We say that CM P M pRd�Rdq defines a positive-
definite Kernel if for every finite collection of bounded Borel sets pAjqjPt1,...,Nu � BBpRdq and for every
finite collection (of the same size) of complex numbers pλ1, ..., λN q P CN , N P N�, it holds that

Ņ

j,k�1

λjCM pAj �Akqλk ¥ 0. (3.19)

Hence, if a Random Measure model is needed for describing some phenomenon, a geostatistician needs to
fix a mean measure and a covariance measure defining a positive-definite Kernel, analogously to the case of
Random Functions. Then, classical geostatistical tools such as Kriging and simulations follow immediately.

Let M be a Random Measure over Rd. Its complex conjugate is defined as the Random Measure
MpAq :�MpAq for every A P BBpRdq. M can be decomposed into its real and imaginary parts, denoted

10This can be concluded using the same arguments presented in Dellacherie & Meyer (1978, Chapter III, No 74) for the case of
probability measures, restricting the analysis over bounded sets and then extending. We remark that this holds only when working
with Radon measures, which satisfy inner and outer regular conditions and are defined over Borel sets, which is our case. For
instance, Rao (2012, Chapter 3, Example 2) provides a counterexample considering non-Borel sets.
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by MR and MI respectively, determined by MRpAq � MpAq�MpAq
2 and MIpAq � MpAq�MpAq

2i for every
A P BBpRdq. M is said to be real if MIpAq a.s.� 0 for all A P BBpRdq, or equivalently, if for every
A P BBpRdq, the random variable MpAq is almost surely a real random variable. The reflection measure of
M is the Random Measure defined as M̌pAq :� Mp�Aq for every A P BBpRdq. If for every A P BBpRdq,
it holds that MpAq a.s.� M̌pAq, we said that M is even, and if it holds that MpAq a.s.� �M̌pAq, we say that it
is odd. Finally, if M satisfies that for every A P BBpRdq, MpAq a.s.� M̌pAq, M is said to be an Hermitian
Random Measure.

In Section 3.2 we have restricted our framework to real Random Functions, while in the case of Random
Measures we have allowed the use of complex random variables. We have done this because along this
dissertation many of the Random Measures used are complex, although with a special condition: they are
obtained as a result of a complex operation applied to a real stochastic process. In a general framework of
complex square-integrable stochastic processes, the covariance Kernel is not sufficient to fully-characterise
the second-order structure of the process: the cross-covariance structure between the real and imaginary
parts must also be specified (see Section 3.6). Hence, the theoretical model of a geostatistician is not com-
plete by only setting the covariance Kernel. Nevertheless, if the complex stochastic process is actually the
result of a complex operation applied to a real stochastic process, the covariance Kernel paradigm still works,
being the real and imaginary parts of the complex process determined implicitly by the complex operation
and the real covariance Kernel of the real stochastic process. This will be clarified later when analysing the
spectral behaviour of stationary Random Functions. In this dissertation we always work with real stochas-
tic processes as basis, but we will sometimes apply complex operations on them such as, for example, the
Fourier Transform.

We make a last remark. We have not defined the stochastic analogous to the total variation measure,
nor the Jordan decomposition of the Random Measure (see Section 2.1.1). In more generality, we have
not defined positive Random Measures. We are not going to do that. Reasons for this choice will be com-
mented in Section 3.7. We can always, however, work with the total variation measure and with the Jordan
decomposition of the mean and covariance measures.

3.3.2 Examples

The first two examples of Random Measures presented here will be widely used along this dissertation. The
third one is rather presented to show to the reader the kinds of distinct areas of Stochastic Analysis that can
be included within this framework.

Example 3.3.1 (White Noise). This is the most important example of a Random Measure used in this
work11. Let W � pW pAqqAPBBpRdq be a Random Measure. We say that W is a White Noise if its mean

11It would not be very bold to say that it is the most important example of all times... until now at least...
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measure mW is null and if its covariance measure CW is determined by

CW pA�Bq � LebpAXBq. (3.20)

Hence CW is the measure supported on the hyperplane ty � xu, CW � δpx � yq (Example 2.1.2). It is
easy to prove that CW defines a positive-definite Kernel. A particularity of this measure is that if A and
B are two disjoint Borel sets with equal Lebesgue measure (for example, take A a bounded rectangle and
B be an enough distant translation of A), then the random variables W pAq and W pBq are non-correlated
with the same variance. Hence, it is a particularly useful tool for modelling variables with stationary erratic
behaviour. It is widely used, for example, in Signal Analysis and it is a basis of all standard developments
in Stochastic Calculus and its applications12. Other interesting properties of White Noise will be presented
further in this work. �

Example 3.3.2. Let Z be a real continuous Random Function over Rd, and let µ P M pRdq. We define for
every A P BBpRdq, the random variable

pZµqpAq :�
»
A
Zpxqdµpxq, (3.21)

where the integral is defined as in Definition 3.2.1. The so-defined stochastic process ppZµqpAqqAPBBpRdq
will be called the multiplication between Z and µ. From Proposition 3.2.1, it follows immediately that the
multiplication Zµ is a Random Measure over Rd, with mean measure given by mZµ � mZµ P M pRdq
and covariance measure given by CZµ � CZpµ b µq P M pRd � Rdq. Hence, we are able to define a
stochastic analogue of the multiplication of a continuous function with a measure. When the measure µ is
the Lebesgue measure, we say simply that the multiplication measure Zpxqdx is Z. Hence, every continuous
Random Function defines a Random Measure. �

Example 3.3.3. We remark the example of Point Processes, which we will describe roughly. Consider
pXnqnPN a sequence of Rd�valued random variables. We suppose this sequence is such that almost-surely
for every bounded set A � Rd the quantity of random variables in the family pXnqnPN that belongs to A is
finite. We define then the random variables

P pAq �
¸
nPN

δXnpAq, A P BBpRdq. (3.22)

An almost-surely σ�additivity condition follows immediately from the definition of P , and the local finite-

12Maybe the reader knows that the most popular branches of Stochastic Calculus are not exactly based on the White Noise but
rather on Brownian Motion. Actually, both can be equivalently used as basis for the same developments: the White Noise is just the
derivative of Brownian motion, in a generalized sense. See Section 3.8. See for example Holden et al. (2009), where a Stochastic
Calculus is developed starting from White Noise rather than Brownian motion, and the same concepts arise from any of the two
starting concepts.
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ness guarantees that the random variable (3.22) is well-defined. This kind of process is called a Point Process,
and it is of crucial importance in Probability Theory and its applications. Although we are not going to focus
on this concept in this work, it is worth emphasizing that it can be included in our analysis without ma-
jor technical difficulties13. If we suppose that for every set A P BBpRdq the random variable P pAq is in
L2pΩ,A,Pq, Eq. (3.22) defines a Random Measure according to Definition 3.3.2, and we can describe its
mean and covariance measures. These measures depend of course on the dependence structure of the family
pXnqnPN. For instance, when the point process is a homogeneous Poisson process, its covariance measure is
the same as the covariance measure of the White Noise. Although in the framework of Point Processes the
covariance bi-measure Kernel and the mean measure are not the most important or determinant tools, they
can at any rate be used to characterise some properties of the behaviour of the process. For instance, some
authors develop inference and extrapolation methods for Point Processes using the structure of their first two
moments. See for example, Gabriel (2014); Gabriel et al. (2017).�

3.3.3 Integrals

Analogously to the deterministic framework, integrals of (deterministic) measurable functions with respect
to Random Measures can be defined without major difficulties. The approach is the same the one of the
Lebesgue integral described in Section 2.1.2. Here we follow the exposition in Rao (2012, Section 2.2).

Let M be a Random Measure. Let f : Rd Ñ C be a simple function of the form f � °N
j�1 aj1Aj , with

pajqjPt1,...,Nu � C and pAjqjPt1,...,Nu � BBpRdq. Then, its Integral with respect to M is defined as

»
A
fpxqdMpxq �

Ņ

j�1

ajMpAjq. (3.23)

Let f : Rd Ñ C be measurable and let pfnqnPN be a sequence of simple functions such that fn Ñ f

point-wise and |fn| Ñ |f | point-wise monotonically increasing. If the sequence of random variables�³
Rd fnpxqdMpxq

�
nPN P L2pΩ,A,Pq is a Cauchy sequence, we say that f is integrable with respect to

M . We define in such a case the integral of f with respect to M as»
Rd
fpxqdMpxq :� lim

nÑ8

»
Rd
fnpxqdMpxq, (3.24)

where the limit is taken in the sense of L2pΩ,A,Pq. In such a case, standard arguments prove that the limit
does not depend on the sequence of simple functions pfnqnPN approaching f . It can also be proven that this
integral acts linearly on f , and that analogue results to Dominated Convergence Theorem and Monotone
Convergence Theorem hold. See the comments in Rao (2012, Definition 2.2).

13We can, for example, study SPDEs having a point process as a source term.
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Proposition 3.3.1. Let M be a Random Measure over Rd with mean measure mM and covariance measure
CM . Let f be a measurable complex function over Rd. If f P L 1pRd,mM q and fbf P L 1pRd�Rd, CM q,
then f is integrable with respect to M . If f and g are two complex measurable functions satisfying these
requirements, then

E
�»

Rd
fpxqdMpxq



�
»
Rd
fpxqdmM pxq, (3.25)

Cov
�»

Rd
fpxqdMpxq ,

»
Rd
gpxqdMpxq



�
»
Rd�Rd

fpxqgpyqdCM px, yq. (3.26)

See Appendix A.6 for a proof.

A measurable function f : Rd Ñ C is said to be locally integrable with respect to M if for every
compact set K � Rd the function 1Kf is integrable with respect to M . It is immediate from Proposition
3.3.1 that this holds when f is locally integrable with respect to mM and f b f is locally integrable with
respect to CM . In such a case we define the multiplication between the function f and the Random Measure
M , denoted by fM , as the Random Measure defined by

pfMqpAq :�
»
Rd

1ApxqfpxqdMpxq, @A P BBpRdq. (3.27)

From Proposition 3.3.1 it is immediate that

mfM � fmM ; CfM � pf b fqCM . (3.28)

3.3.4 Finite, slow-growing and compactly supported Random Measures

As seen in Section 2.1.1, the concept of a finite measure can be defined equivalently through an extension-
domain to the whole σ�algebra of Borel sets requirement, or through a finite total variation measure. Here
we are going to take an easy way out and we will just determine the finiteness of a Random Measure through
a finiteness condition of its mean and covariance measures.

Definition 3.3.3. Let M be a Random Measure over Rd with mean measure mM and covariance measure
CM . We say that M is a finite Random Measure if mM P MF pRdq and CM P MF pRd � Rdq.

Let M be a finite Random Measure. It is immediate from Proposition 3.3.1 that every measurable
and bounded function is integrable with respect to M . It follows also that a characterisation analogue to
Definition 2.1.3 can be done: the indexation set of the stochastic process pMpAqqAPBBpRdq can be extended
almost-surely uniquely to the set of all Borel sets, obtaining a square-integrable process pMpAqqAPBpRdq for
which the mean-square-σ�additivity condition (3.15) holds for every arbitrary countable partition of Borel
sets. Indeed, this follows immediately from the integrability with respect to M of the functions of the form
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1A with A P BpRdq.14

Let us consider the case of a continuous Random Function Z. As we have seen in Example 3.3.2,
it defines a Random Measure through the application A P BBpRdq ÞÑ

³
A Zpxqdx. We say that Z is an

integrable Random Function if this measure is a finite Random Measure, condition obtained when its
mean function mZ is integrable with respect to the Lebesgue measure over Rd and its covariance function
CZ is integrable with respect to the Lebesgue measure over Rd�Rd. Following the same spirit, we can define
a continuous Random Function integrable with respect to an arbitrary deterministic measure µ P M pRdq.

We introduce in a natural way the definition of a slow-growing Random Measure.

Definition 3.3.4. LetM be a Random Measure over Rd. We say thatM is a slow-growing Random Measure
if there exists a strictly positive polynomial p : Rd Ñ R�� such that 1

pM is a finite Random Measure, or
equivalently, if there exists N P N such that p1� |x|2q�NM is a finite Random Measure.

It is immediate from the definition of a finite Random Measure 3.3.3 that M is slow-growing if and
only if mM P MSGpRdq and CM P MSGpRd � Rdq. Indeed, the finiteness of 1

pM , with p : Rd Ñ R��
being a strictly positive polynomial implies the finiteness of 1

pmM and p1
p b 1

pqCM . It is also immediate that
any polynomially bounded measurable function is locally integrable with respect to a slow-growing Random
Measure M .

The definition of the support of a Random Measure will be quite intuitive, although the typical subtleties
of almost-surely defined properties are involved.

Definition 3.3.5. Let M be a Random Measure over Rd. Its support is defined to be the complement of the
largest open set where the measure M has L2-norm equal to zero:

supppMq :�
�¤

tO � Rd : O is open and Ep|MpOq|2q � 0u
	c
. (3.29)

A Random MeasureM is said to be compactly supported if its support is a compact set. Using standard
arguments, one proves that a Random Measure M is compactly supported if and only if mM P McpRdq
and CM P McpRd � Rdq. It can also be concluded that supppMq is always contained inside the union
between supppmM q and the complementary of the largest open set O � Rd such that |CM |pO � Oq � 0.
It is immediate that any locally bounded measurable function is integrable with respect to any compactly
supported Random Measure M .

14We remark that we have catalogued Definition 3.3.3 as an easy way out since we have avoided the statement of an equivalence
between the finiteness ofmM andCM and the properties described in this paragraph. Indeed, it would have been more sophisticated
to define a finite Random Measure as a Random Measure whose indexation domain can be extended to the whole system of Borel
sets of Rd, similarly to Definition 2.1.3, and then conclude that the mean and covariance measures are finite. We ignore if such an
implication holds.
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3.3.5 Interpretation as linear functional

Let us right now remark the interpretation of M as a linear functional over spaces of continuous functions,
analogously to the case of deterministic measures explained in Section 2.1.4. From now on, we will some-
times use the notation xM,fy to denote the integral of a measurable function f with respect to a Random
Measure M , when f is integrable with respect to M .

It is straightforward from the results on Section 3.3.4 that every function ϕ P CcpRdq (respectively in
CFDpRdq, in C0pRdq, in CpRdq) is integrable with respect to any Random Measure over Rd (respectively,
with respect to any slow-growing Random Measure, with respect to any finite Random Measure, with respect
to any compactly supported Random Measure). We will focus on the general case of the space CcpRdq.

If M is a Random Measure over Rd, we can then define a square-integrable stochastic process indexed
by the set CcpRdq through the integrals, pxM,ϕyqϕPCcpRdq. The mean and covariance of this process are then
described through

EpxM,ϕyq � xmM , ϕy ; CovpxM,ϕy, xM,φyq � xCM , ϕb φy. (3.30)

for very ϕ, φ P CcpRdq. The following statement can be concluded.

Proposition 3.3.2. The mapping M : CcpRdq Ñ L2pΩ,A,Pq defined through Mpϕq :� xM,ϕy for every
ϕ P CcpRdq determines a continuous linear functional.

The proof of this Proposition can be found in Appendix A.7. This proof is grounded on the continuity of
mM and CM interpreted as continuous linear functionals over CcpRdq and CcpRd�Rdq respectively (Riesz
Representation Theorem 2.1.3). We remark that the converse is not true: a continuous linear mapping from
CcpRdq Ñ L2pΩ,A,Pq does not necessarily define a Random Measure in the sense of Definition 3.3.2.
Instead, it would be expected to define a Generic Random Measure in the sense of Definition 3.3.1. We do
not enter in those details15.

An analogue to Proposition 3.3.2 can be concluded for slow-growing Random Measures, finite Measures
and compactly supported Measures using the spaces CFDpRdq, C0pRdq and CpRdq respectively. A sketch
of proof of this is presented in the proof of Proposition 3.3.2.

We conclude that we can interpret a Random Measure M both as a set-function or as a continuous linear
functional over CcpRdq. Passing from one to the other version is done using typical procedures of Measure
Theory. If we start from the linear functional version, we obtain the set-function version by taking a point-
wise limit of functions in CcpRdq to indicator functions. The convergence of the related random variables

15It is the lack of a Nuclear Theorem similar to Theorem 2.2.2 for the case of the space CcpRdq which does not allow us to
conclude that M determines a Random Measure. The same problem arises in the cases of the spaces CFDpRdq, C0pRdq and
CpRdq.
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is always interpreted in the sense of L2pΩ,A,Pq. The inverse is done through the definition of the integral
presented in Section 3.3.3.

The last remark we do is that we can now, without difficulties, define a Random Measure concentrated
on a subset of Rd, and describe integrals through expressions analogue to Eq. (2.35).

Definition 3.3.6. Let M be a Random Measure over Rd and let A � BpRdq. We say that M is concentrated
on A if for every set B P BBpRdq such that AXB � H, it holds that MpBq a.s.� 0.

It is immediate that a Random Measure is concentrated on a set A P BpRdq if and only if mM is
concentrated on A and CM is concentrated on A � A. The procedures explained in Section 2.1.5 can be
applied in this stochastic framework without technical difficulties. Hence, Random Measures concentrated
on the sphere, on the hyperplane ty � xu or on the spatio-temporal cone (Examples 2.1.1, 2.1.2 and 2.1.3)
are constructed analogously to the deterministic case.

3.3.6 Orthogonal Random Measures and relationship with stationary Random Functions

In this Section we introduce an important class of Random Measures which is, actually, what justifies all the
material presented up to now in this section.

Definition 3.3.7. Let M be a Random Measure over Rd. We say that M is an orthogonal Random Measure
if its mean measure is null and if its covariance measure is concentrated on the hyperplane ty � xu.

Let M be an orthogonal Random Measure and let CM P M pRd � Rdq be its covariance measure.
Following Example 2.1.2, there exists a unique measure νM P M pRdq such that CM pA�Bq � νM pAXBq
for every A,B P BBpRdq. We emphasize this fact using the notation introduced in Example 2.1.2, CM �
νMδ

ty�xu. Since CM defines a positive-definite Kernel, 0 ¤ CM pA�Aq � νM pAq for every A P BBpRdq,
and hence νM is a positive measure. This measure νM P M�pRdq is called the weight of the orthogonal
Random Measure M . It follows that

CovpMpAq,MpBqq � νM pAXBq, @A,B P BBpRdq. (3.31)

Hence, an orthogonal Random Measure produces non-correlated values when evaluated at disjoint Borel
sets. If we consider ϕ, φ P CcpRdq, it follows from Eq. (2.38) and from Proposition 3.3.1 that

CovpxM,ϕy, xM,φyq �
»
Rd
ϕpxqφpxqdνM pxq. (3.32)

Hence, the covariance between the action of M over two functions in CcpRdq is the inner product on
L2pRd, νM q of the two involved functions. If the functions ϕ and φ have disjoint supports, it follows that
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xM,ϕy and xM,φy are not correlated. Following an approximation argument, we conclude from Eq. (3.32)
that a measurable function f : Rd Ñ C is integrable with respect to M if and only if f P L 2pRd, νM q. We
remark, finally, that if two functions f, g P L 2pRd, νM q are orthogonal with respect to the inner-product of
L2pRd, νM q, then the random variables xM,fy and xM, gy are uncorrelated, regardless of their supports.

From Proposition 2.1.2, it follows that an orthogonal Random Measure is slow-growing if and only
if νM P M�

SGpRdq, finite if and only if νM P M�
F pRdq, and compactly supported if and only if νM P

M�
c pRdq.
The following result also holds for orthogonal Random Measures. Its proof is presented in Appendix

A.8.

Proposition 3.3.3. Let M be an orthogonal Random Measure over Rd with weight νM . Let us suppose that
M is Hermitian. Then, νM is an even measure, and the real and imaginary parts of M are uncorrelated real
Random Measures with the following covariance measures:

CMR
pA�Bq � νM pAXBq � νM pAX p�Bqq

2
; CMI

pA�Bq � νM pAXBq � νM pAX p�Bqq
2

,

(3.33)
for all A,B P BBpRdq.
Example 3.3.4. The White Noise over Rd, W , is an orthogonal Random Measure whose weight is the
Lebesgue Measure, dνM pxq � dx. Hence, every function integrable with respect to the White Noise is
necessarily a function in L2pRdq. Since the Lebesgue measure is slow-growing, the White Noise is a slow-
growing orthogonal Random Measure. It is not a finite Random Measure. �

The main importance of orthogonal Random Measures is their relationship with stationary Random
Functions. We recall that relationship in the following Proposition.

Proposition 3.3.4. Let Z be a real stationary Random Function with zero mean, with spectral measure µZ .
Then, Z is the Fourier Transform of a finite Hermitian orthogonal Random Measure M whose weight is
νM � p2πq d2µZ:

Zpxq � 1

p2πq d2

»
Rd
e�ix

T ξdMpξq. (3.34)

The Hermitian condition in this Proposition comes from the fact that Z is real. This is a well-known
result which simplifies considerably the theoretical and practical treatment of stationary Random Functions.
We will not give a proof of this result, since we will actually work with a more general version which will be
presented in Section 3.4.3, where the finiteness condition can be replaced by a slow-growing condition. We
remark that we could have used the Inverse Fourier Transform in this result without changing the covariance
structure of M : we would obtain the reflection M̌16.

16The reflection of an orthogonal Random Measure with even weight measure has the same covariance measure that the non-
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3.4 Generalized Random Fields

In this section we present the stochastic version of the Theory of Distributions. The idea is analogue to the
stochastic version of functions and measures: the Random Distribution is determined by a mean distribution
and a covariance distribution, and the linearity and continuity conditions are always interpreted in a mean-
square sense. We then show that this notion provides a generalization of the notion of Random Function and
Random Measure where differential operators of arbitrary order can be freely applied. Hence, linear SPDEs
in a quite general and useful framework can be well-posed and analysed.

This theory is actually quite old. The first important treaty on this subject is Gelfand & Vilenkin (1964,
Chapter III). Due to its earlier work (Gelfand, 1955), Gelfand is often considered as the first author to
introduce the concept of Generalized Stochastic Process and its related theory. Other authors also worked on
this theory at the time. We note for instance the work by Itô in the case of stationary Generalized Stochastic
Processes on the real line (Itô, 1954). Since these early developments, many authors have based their works
on this theory. It is in particular the case of Y. A. Rozanov (1982), where the author develops a theory of
Markov Random Fields based on the concept of Generalized Random Field. (Matheron, 1965, Chapter X)
presents an interesting geostatistically-oriented exposition of Random Distributions. Although this theory is
widely used in Probability Theory and Stochastic Analysis, not many authors from the statistical community
deal with this concept and take advantage from this theory in order to construct new geostatistical models or
develop adapted inference methods. We point out the exceptions of Kelbert et al. (2005) and Angulo et al.
(2000), although these authors prefer to restrain their analysis to the case of Hilbert spaces, usually focusing
on stochastic processes indexed by convenient Sobolev spaces.

We present here the theory in a tempered framework, always restricted to a mean-square analysis. We
do not base our work on the remarkable Bochner-Minlos Theorem in this subject. Some comments on this
theorem and related developments are given in Section 3.7. Our framework is based on the simple fact that
we can define a stochastic process of square-integrable random variables indexed by the Schwartz space with
linearity and continuity conditions, following desired mean and covariance structures. See Appendix B for
the proof of this claim, based on the classical Kolmogorov Existence Theorem.

3.4.1 Formal definitions

Random Distributions, also referred as Generalized Random Fields, are stochastic processes indexed by a
space of test-functions, satisfying some linearity and continuity conditions. We are going to use the Schwartz
space S pRdq as space of test-functions, working thus in a tempered framework. We also restrain ourselves
to the case of real Generalized Random Fields as basis. Any complex Generalized Random Field that could

reflected orthogonal Random Measure. This is the situation in Proposition 3.3.4 since the spectral measure µZ is supposed to be
even.
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appear in this work will be the result of a complex operation applied over a real Generalized Random Field.

Definition 3.4.1. A real mean-square-tempered Random Distribution (also called Random Distribution,
Generalized Stochastic Process, Generalized Random Function, or, to set a unique terminology, Generalized
Random Field, and abbreviated GeRF) over Rd is a real and continuous linear operator from S pRdq to
L2pΩ,A,Pq.

Let us make this definition more explicit. A mapping Z : S pRdq Ñ L2pΩ,F ,Pq is a real GeRF if

 Zpϕ� φq a.s.� Zpϕq � Zpφq and Zpλϕq a.s.� λZpϕq for all ϕ, φ P S pRdq and λ P C.

 If ϕ P S pRdq is a real test-function, Zpϕq is an almost-surely real random variable.

 If pϕnqnPN � S pRdq is a sequence of test-functions such that ϕn
SÑ 0, then Zpϕnq L

2pΩqÑ 0.

Thus, Z can be interpreted as a stochastic process indexed by the Schwartz space, pZpϕqqϕPS pRdq, with a
real, linear and mean-square continuous behaviour. Since both S pRdq and L2pΩ,A,Pq are metric spaces,
the sequential continuity guarantees the continuity of Z. In order to emphasize that Z works as a continuous
linear functional, we will from now on explicitly write

xZ,ϕy :� Zpϕq, (3.35)

for every ϕ P S pRdq.
Since the random variables pxZ,ϕyqϕPS pRdq are all in L2pΩ,A,Pq, a mean and a covariance structure

can be described. For instance, let us consider the mean function mZ : S pRdq Ñ C defined as

mZpϕq � EpxZ,ϕyq. (3.36)

Since Z is real and linear, mZ is also real and linear. If pϕnqnPN � S pRdq is a sequence such that ϕn
SÑ 0,

we argue by Hölder inequality that

|mZpϕnq| ¤
a
Ep|xZ,ϕny|2q Ñ 0,

and thus mZ is a continuous real linear functional, so it is a real tempered distribution: mZ P S 1pRdq. We
call mZ the mean distribution of Z. We write thus xmZ , ϕy :� mZpϕq for all ϕ P S pRdq.

Let us now define the application KZ : S pRdq �S pRdq Ñ C through

KZpϕ, φq � Covp xZ,ϕy , xZ, φy q. (3.37)
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We callKZ the covariance Kernel ofZ. By definition of the covariance, the applicationKZ is a sesquilinear
form. In addition, it is a positive-definite Kernel. Indeed, let pϕ1, ..., ϕN q P S pRdqN and pλ1, ..., λN q P
CN , with N P N�. By the sesquilinearity, we argue that

Ņ

j,k�1

λjKZpϕj , ϕkqλk �
Ņ

j,k�1

KZpλjϕj , ϕkλkq

� KZ

�
Ņ

j�1

λjϕj ,
Ņ

k�1

ϕkλk

�

� Cov

�
xZ,

Ņ

j�1

λjϕjy, xZ,
Ņ

k�1

λkϕky
�

� Var

�
xZ,

Ņ

j�1

λjϕjy
�
¥ 0.

(3.38)

We remark that the vector space structure of S pRdq allows us to describe the positive-definiteness of the
covariance KernelKZ in a simpler way: a sesquilinear formK : S pRdq�S pRdq Ñ C is a positive-definite
Kernel if and only if Kpϕ,ϕq ¥ 0 for all ϕ P S pRdq.

Let us right now fix φ P S pRdq, and consider the linear functional over S pRdq, ϕ ÞÑ KZpϕ, φq. Let

pϕnqnPN � S pRdq such that ϕn
SÑ 0. Since Z is continuous, xZ,ϕny L

2Ñ 0, and using the Cauchy-Schwarz
inequality we obtain that

|KZpϕn, φq| ¤
a
VarpxZ,ϕnyqVarpxZ, φyq Ñ 0.

Hence, ϕ ÞÑ KZpϕ, φq is a continuous linear functional, thus it is in S 1pRdq. Doing the same procedure
with the linear functional φ ÞÑ KZpϕ, φq, ϕ P S pRdq being fixed, one concludes that it is also in S 1pRdq.
Hence, the bilinear form

pϕ, φq ÞÑ KZpϕ, φq (3.39)

defines a separately continuous form on S pRdq � S pRdq. By the Nuclear Theorem 2.2.2, there exists a
unique tempered distribution CZ P S 1pRd � Rdq such that

xCZ , ϕb φy � KZpϕ, φq, @ϕ, φ P S pRdq. (3.40)

This tempered distribution is called the covariance distribution of Z, and it satisfies, of course,

xCZ , ϕb φy � CovpxZ,ϕy, xZ, φyq, @ϕ, φ P S pRdq. (3.41)

We say also that CZ defines a positive-definite Kernel. In general, a distribution C P S 1pRd�Rdq is said to
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define a positive-definite Kernel if

xC,ϕb ϕy ¥ 0, @ϕ P S pRdq. (3.42)

Since we have supposed that Z is a real GeRF, it also follows that CZ is a real distribution in S 1pRd �Rdq.
With a few basic but tedious computations, one proves that CZ is also symmetric in the sense that

xCZ , ϕb φy � xCZ , φb ϕy, @ϕ, φ P S pRdq. (3.43)

We remark that in this case, the Nuclear Theorem has allowed us to identify the covariance Kernel with
a covariance distribution in its own right, contrarily to the case of Random Measures exposed in Section 3.3.
More comments about this are given in Section 3.7. Hence, in order to model the variable of a phenomenon
as a distribution, a mean and a covariance distribution (of two-variables) must be set, analogously to the case
of Random Functions.

Example 3.4.1 (Random Functions with polynomially bounded mean and covariance). Let mZ : Rd Ñ
R be a continuous polynomially bounded function and let CZ : Rd � Rd Ñ R be a polynomially bounded
continuous function which is a positive-definite Kernel. Let pZpxqqxPRd be a real Random Function with
covariance function CZ and with mean function mZ . We can thus define the generalized version of Z by
defining for every ϕ P S pRdq:

xZ,ϕy �
»
Rd
Zpxqϕpxqdx. (3.44)

Following Proposition 3.2.1 we conclude that for every ϕ P S pRdq this integral is well-defined. Indeed,
the random function x P Rd ÞÑ ϕpxqZpxq is integrable since both functions x P Rd ÞÑ ϕpxqmZpxq and
px, yq P Rd � Rd ÞÑ ϕpxqϕpyqCZpx, yq are integrable over their respective domains. We obtain thus a
stochastic process indexed by the Schwartz space pxZ,ϕyqϕPS pRdq, and it is not hard to prove that it defines
a real GeRF. The covariance distribution of Z, also noted CZ P S 1pRd � Rdq is determined by

xCZ , ψy �
»
Rd�Rd

CZpx, yqψpx, yqdxdy, @ψ P S pRd � Rdq. (3.45)

An analogue result holds for the mean function. Thus, the generalization of the continuous Random Function
Z, that is, its interpretation as a Random Distribution, is done analogously to the interpretation of continuous
functions as a distribution in the deterministic case: using its integral. In addition, we can verify that the
criteria of positive-definiteness of CZ interpreted as a distribution is equivalent to the classical definition
for continuous functions. We make the statement in the general continuous, not-necessarily polynomially
bounded case.

Proposition 3.4.1. Let CZ : Rd �Rd Ñ R be a continuous function. Then, it is a positive-definite Kernel if
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and only if »
Rd�Rd

CZpx, yqϕpxqϕpyqdpx, yq ¥ 0 @ϕ P DpRdq. (3.46)

We give a sketch of proof of this Proposition in a footnote17. In general, we will say that a continuous
Random Function with continuous polynomially bounded mean and covariance functions is a GeRF. Con-
versely, we will say that a GeRF over Rd is a continuous Random Function if both its mean and covariance
distributions are continuous functions. �

Example 3.4.2 (Slow-growing Random Measures). Let M be a slow-growing Random Measure over Rd,
with mean measure mM P MSGpRdq and covariance measure CM P MSGpRd �Rdq. Since every function
in the Schwartz space decreases faster than any polynomial, it follows that for every ϕ P S pRdq, the
multiplication measures ϕmM and pϕ b ϕqCM are finite measures, and hence ϕ is integrable with respect
to M (Proposition 3.3.1). We consider then

xM,ϕy �
»
Rd
ϕpxqdMpxq, @ϕ P S pRdq. (3.47)

The so-defined process pxM,ϕyqϕPS pRdq is then a GeRF, due to the linearity of the integral and to the fact
that mM P MSGpRdq � S 1pRdq and CZ P MSGpRd � Rdq � S 1pRd � Rdq. Its covariance distribution
thus CM , interpreted as a tempered distribution:

xCM , ψy �
»
Rd�Rd

ψpx, yqdCM px, yq, @ψ P S pRd � Rdq. (3.48)

An analogue result holds for the mean measure. Hence, here again the procedure is done analogously to the
deterministic case. The interpretation of a slow-growing Random Measure as a GeRF is done through the
associated integral. We keep thus this idea and we will simply say that a slow-growing Random Measure is
a GeRF. Conversely, we say that a GeRF over Rd, Z, is a slow-growing Random Measure if both its mean
and covariance distributions are slow-growing measures. �

3.4.2 Operations with GeRFs

In this section we explain how to apply some continuous linear operators defined for tempered distributions
to a GeRF. The definition is actually straightforward: for an operator defined through an adjoint, we can pass

17Sketch of proof of Proposition 3.4.1: for the necessity, express the integral as a limit of convenient Riemann sums (using
partitions of supppϕq � supppϕq in rectangles and fixing the middle points as tag points, for instance). One verifies that the sums
obtained have the form of a quadratic form which are always positive due to the positive-definiteness of CZ , and thus the integral is
positive as a limit of positive numbers. For the sufficiency, if we consider px1, ..., xN q P pRdqN and pλ1, ..., λN q P CN arbitrary, we
can consider N sequences of functions in DpRdq, pϕ1

nqnPN, ..., pϕ
N
n qnPN such that ϕjn Ñ δxj in the sense of C 1pRdq � McpRdq

for every j P t1, ..., Nu. One verifies then that the sums
°
j,k ωjxCZ , ϕ

j
n b ϕknyωk are positive and that they converge to the

associated quadratic form
°
j,k ωjCZpxj , xkqωk, which is then positive. �
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the action of the operator to the test-function, and hence apply it without problems.

We will slightly change the notations in a way that is not standard at all. Rather than using the notation
presented in Section 2.2.2, where L denotes a continuous linear operator from S pRdq to S pRdq and L�

denotes its adjoint, we will use the following inverted notation: L is going to be a linear and continuous
operator from S 1pRdq to S 1pRdq which will be always supposed to be defined through an adjoint, and we
will note L� : S pRdq Ñ S pRdq its pre-adjoint, that is, the continuous linear operator for which pL�q� � L.
The motivation of this usage if that in this dissertation we will mainly work with operators applied to GeRFs
and tempered distributions, and hence it is better to keep for them the letter L without any � symbol on it.

Consider then L : S 1pRdq Ñ S 1pRdq be a continuous linear operator defined through an adjoint. Let
L� : S pRdq Ñ S pRdq be its pre-adjoint. Let Z be a real GeRF. We define then the GeRF LZ as

xLZ,ϕy :� xZ,L�ϕy, @ϕ P S pRdq. (3.49)

The operation is well-defined algebraically speaking since L�ϕ is in S pRdq for every ϕ P S pRdq. The
continuity of LZ as a linear mapping from S pRdq to L2pΩ,A,Pq is guaranteed by the continuity of Z and
L�. Hence, pxLZ,ϕyqϕPS pRdq is a well-defined GeRF. We notice that it is not necessarily real since the
operator L may be a complex operator.

Let us make explicit the mean and the covariance distributions of LZ. For the mean, we obtain for every
ϕ P S pRdq,

xmLZ , ϕy � EpxLZ,ϕyq � EpxZ,L�ϕyq � xmZ ,L�ϕy � xLmZ , ϕy. (3.50)

For the covariance, consider ϕ, φ P S pRdq arbitrary. Then,

xCLZ , ϕb φy � CovpxLZ,ϕy, xLZ, φyq � CovpxZ,L�ϕy, xZ,L�φyq
� xCZ ,L�ϕb L�φy � xCZ ,L�ϕb L�pφqy
� xCZ , pL� b L�qpϕb φqy � xpLb LqCZ , ϕb φy.

(3.51)

Here we have used the definition of the tensor product operator LbL and its pre-adjoint L�bL�, following
Section 2.2.3. L denotes the complex conjugate of L, which does LpT q � LpT q for every T P S 1pRdq. L�
is the complex conjugate of L�, with an analogous definition. We conclude that for LZ we have

mLZ � LmZ ; CLZ � pLb LqCZ . (3.52)

We will make explicit the application of the operators presented in Section 2.2.2 to stochastic objects.
In these examples, Z denotes a real GeRF over Rd with mean distribution mZ P S 1pRdq and covariance
distribution CZ P S 1pRd � Rdq.
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Example 3.4.3 (Derivatives). Let α P Nd be a multi-index and let Dα : S 1pRdq Ñ S 1pRdq be the
differential operator associated. The derivative of Z is then simply the GeRF defined through

xDαZ,ϕy :� p�1q|α|xZ,Dαϕy, @ϕ P S pRdq. (3.53)

Hence, a GeRF can be differentiated any number of times. It is thus the appropriate tool to well-pose linear
SPDEs. The mean and covariance distributions of DαZ satisfy

mDαZ � DαmZ ; CDαZ � Dpα,αqCZ . (3.54)

Hence, we have obtained the generalized form of Eq. (3.14) of the case of Random Functions. �

Example 3.4.4 (Multiplication with OM pRdq). Let f P OM pRdq (deterministic). The multiplication be-
tween Z and f is the GeRF defined through

xfZ, ϕy :� xZ, fϕy, @ϕ P S pRdq. (3.55)

The mean and covariance distributions of fZ are simply

mfZ � fmZ ; CfZ � pf b fqCZ . � (3.56)

Example 3.4.5 (Convolution with O1
cpRdq). Let S P O1

cpRdq (deterministic). The convolution between Z
and S is the GeRF defined through

xZ � S, ϕy :� xZ, Š � ϕy, @ϕ P S pRdq. (3.57)

A few computations which will be omitted prove that the mean and covariance distributions of Z � S are

mZ�S � S �mZ ; CZ�S � pS b Sq � CZ . � (3.58)

Example 3.4.6 (Fourier Transform). The Fourier Transform of Z is simply the GeRF defined through

xF pZq, ϕy :� xZ,F pϕqy, @ϕ P S pRdq. (3.59)

The mean and the covariance distributions of F pZq are

mF pZq � F pmZq ; pF bF�1qpCZq. (3.60)

Here we have used that F � F�1. An analogue definition and result holds for the Inverse Fourier Trans-
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form. It also holds, of course, that F�1pF pZqq � Z. Finally, the Exchange formula

F pZ � Sq � p2πq d2 F pSqF pZq (3.61)

holds for every deterministic S P O1
cpRdq, for which we recall that F pSq P OM pRdq. �

3.4.3 Stationary GeRFs

We now provide more details about stationary GeRFs with their main properties. In order to introduce this
concept intuitively, consider first of all the case of a real continuous stationary Random Function pZpxqqxPRd
with covariance function (Kernel) CZ and with stationary covariance function ρZ . From the inequality
|ρZphq| ¤ ρZp0q, it follows that ρZ is continuous and bounded and hence it defines a tempered distribution
in S 1pRdq. CZ is also continuous and bounded hence it defines a tempered distribution in S 1pRd�Rdq. The
mean function of Z is a constant so it also defines a tempered distribution in S 1pRdq. It follows (Example
3.4.1) that Z defines a GeRF, and hence, any stationary Random Function can be interpreted as a tempered
Random Distribution. Recalling that CZpx, yq � ρZpx � yq, the covariance distribution of Z (also noted
CZ) satisfies

xCZ , ϕb φy �
»
Rd�Rd

CZpx, yqϕpxqφpyqdpx, yq �
»
Rd�Rd

ρZpx� yqϕpxqφpyqdpx, yq, (3.62)

for every ϕ, φ P S pRdq. With a change of variable and Fubini’s Theorem one obtains

xCZ , ϕb φy �
»
Rd
ρZpuq

»
Rd
ϕpu� yqφ̌pyqdy du �

»
Rd
ρZpuqpϕ � φ̌qpuqdu. (3.63)

Inspired by this, we give a more general definition of a stationary GeRF.

Definition 3.4.2. Let Z be a real GeRF over Rd with mean distribution mZ and covariance distribution CZ .
We say that Z is a second order stationary GeRF (from now on, stationary GeRF) if its mean distribution
is a constant function and if there exists a tempered distribution ρZ P S 1pRdq such that

xCZ , ϕb φy � xρZ , ϕ � φ̌y. (3.64)

The distribution ρZ stated in Definition 3.4.2 is called the stationary covariance distribution of Z.
When the stationarity is clear in context and CZ does not intervene in the exposition, we call it simply the
covariance distribution of Z. Since CZ is a real distribution, it follows that ρZ is also a real distribution. We
remark that ρZ is an even distribution: ρ̌Z � ρZ . This can be concluded from the symmetry of CZ stated in
Eq. (3.43), the commutativity of the convolution product, and from �ϕ � φ̌ � ϕ̌ � φ.
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The stationarity condition stated in Definition 3.4.2 implies, and actually is implied by a translation
invariant property of its second order structures, analogously to the case of Random Functions. Indeed, it
can be proven that a GeRF Z is stationary if and only if for every h P Rd it holds that τhmZ � mZ and
pτh b τhqCZ � CZ , with τh being the translation operator. See the arguments in Matheron (1965, Chapter
X, Section 2).

The fact that CZ defines a positive-definite Kernel also implies a positive-definiteness condition for the
distribution ρZ that we will specify in general. A distribution ρ P D 1pRdq, that is, not necessarily tempered,
is said to be a positive-definite distribution or a distribution of positive-type if

xρ, ϕ � ϕ̌y ¥ 0, @ϕ P DpRdq. (3.65)

In Definition 3.4.2 we have imposed ρZ to be in S 1pRdq. The following theorem, which is a generalization
of Bochner’s Theorem, known as the Bochner-Schwartz Theorem, guarantees that we have lost nothing
with this restriction.

Theorem 3.4.1 (Bochner-Schwartz). Let ρ P D 1pRdq. Then, ρ is a real18 positive-definite distribution if and
only if ρ P S 1pRdq and ρ is the Fourier Transform of an even positive slow-growing measure µ P M�

SGpRdq:
ρ � F pµq.

See Donoghue (1969, Chapter 42) for a proof. Hence, from this Theorem we conclude that if Z is
a stationary GeRF with stationary covariance distribution ρZ , there exists a unique even measure µZ P
M�

SGpRdq such that
ρZ � F pµZq. (3.66)

The measure µZ which satisfies (3.66) is called the spectral measure of Z. Since both the distribution ρZ
and the measure µZ are even, it follows that ρZ � F pµZq � F�1pµZq. We conclude quite easily the
generalization of Proposition 3.3.4.

Theorem 3.4.2. Let Z be a real, zero mean, stationary GeRF over Rd with spectral measure µZ . Then, Z
is the Fourier Transform of an Hermitian slow-growing orthogonal Random Measure MZ whose weight is
proportional to its spectral measure, νMZ

� p2πq d2µZ . Conversely, the Fourier Transform of any Hermitian
slow-growing orthogonal Random Measure MZ over Rd with weight νMZ

is a real zero-mean stationary
GeRF over Rd with spectral measure µZ � p2πq� d

2 νMZ
.

This theorem is quite old and well-known. It can be found in Matheron (1965, Chapter X, Section 3),
and in Itô (1954) for dimension d � 1. Anyway, with the framework exposed until now, the proof of this

18Again, this Theorem does not actually require the distribution to be real. The related measure must not necessarily be even, but
it has to be positive and slow-growing.
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theorem is quite straightforward: we have just to analyse the covariance distribution of F�1pZq. We make
explicit the calculation since it is simple and beautiful.

CovpxF�1pZq, ϕy, xF�1pZq, φyq � CovpxZ,F�1pϕqy, xZ,F�1pφqyq
� xCZ ,F�1pϕq bF�1pφqy
� xρZ ,F�1pϕq � ˇ

F�1pφqy
� xρZ , p2πq

d
2 F�1pϕφqy

� p2πq d2 xF�1pρZq, ϕφy
� xp2πq d2µZ , ϕφy � xp2πq

d
2µZδ

ty�xu, ϕb φy.

(3.67)

Here we have used the definition of F�1, the relation ˇ
F�1pφq � F�1pφq, the Exchange Formula for the

Inverse Fourier Transform (it holds analogously to the case of the Fourier Transform), and the Bochner-
Schwartz Theorem 3.4.1. Hence, we conclude that

CF�1pZq � p2πq
d
2µZδ

ty�xu. (3.68)

This proves that F�1pZq is a slow-growing orthogonal Random Measure with weight p2πq d2µZ . Conversely,
starting from an Hermitian slow-growing orthogonal Random MeasureMZ , the result is straightforward con-
sidering that MZ defines a GeRF through the well-defined integrals xMZ , ϕy for all ϕ P S pRdq (Example
3.4.2), and hence F pMZq is well-defined as a GeRF. The stationarity of F pMZq is proven following a
computation similar to (3.67).

We note that the Hermitian condition in Theorem 3.4.2 is a consequence of Z being real. We could
have used the Inverse Fourier Transform to state the Theorem without changes in the covariance structure
of MZ : we would obtain the reflection of the Random Measure in 3.4.2, which has the same covariance
measure since µZ is even, analogously to the case of Proposition 3.3.4. We also note that we could have
stated a similar theorem without the assumption of Z being zero-mean. In this case, Z would be the Fourier
Transform of a slow-growing Random Measure whose mean measure is proportional to Dirac measure, and
its covariance measure still, of course, concentrated on the hyperplane ty � xu.

Example 3.4.7 (White Noise). Consider the White Noise over Rd, W . As we have seen in Example 3.3.1,
the covariance measure of W is CW � δty�xu � δpy � xq. Hence,

xCW , ϕb φy �
»
Rd
ϕpxqφpxqdx �

»
Rd
ϕp0� xqφp�xqdx � xδ, ϕ � φ̌y. (3.69)

Hence, W is a stationary GeRF with stationary covariance distribution ρW � δ. Since δ is not a function,
the White Noise cannot be interpreted as a Random Function, but only as a Random Measure or as a GeRF.
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From the relation µW � F pρW q, it follows that the spectral measure of the White Noise is proportional to
the Lebesgue measure: dµW pξq � p2πq� d

2 dξ. Let us describe the orthogonal Random Measure associated
to the White Noise MW � F pW q. Using formula (3.68) (which also holds for the Fourier Transform), one
concludes

CF pW q � p2πq
d
2µW δ

ty�xu � p2πq d2 pp2πq� d
2 Lebqδty�xu � δty�xu � CW . (3.70)

Hence, the Fourier Transform of a White Noise is a White Noise. This is a particularly interesting property of
the White Noise arising from the relation between its covariance measure and the inner-product on L2pRdq.
Another property related with this is that the White Noise is, up to a multiplicative constant, the only station-
ary orthogonal Random Measure. This can be concluded considering that every locally finite measure over
Rd which is invariant under translations is proportional to the Lebesgue measure. Hence, the weight mea-
sure of a stationary orthogonal Random Measure must be proportional to the Lebesgue measure to satisfy
the invariance under translation imposed by the stationarity. From this it also follows that the White Noise
is the only slow-growing orthogonal Random Measure such that its Fourier Transform is also an orthogonal
Random Measure, up to a multiplicative constant. �

3.5 Stochastic Partial Differential Equations

The notion of SPDE presented here is not the most general conception of such a concept. The main difference
between our definition and others that can be found in Stochastic Analysis and its applications, is that we
require the involved operator to be a deterministic operator. Other branches of Stochastic Analysis do not
require that, and the cases where the operator is also a random object are numerous. We mention for instance
the concept of stochastic homogenezation, which arises when dealing for example in problems of diffusion
in random media; see Armstrong et al. (2017) for an exposition of this theory and its applications. SPDEs
determined by a multiplicative noise are also excluded. We restrain our work to deterministic operators and
hence a SPDE will be simply a PDE with Generalized Random Fields involved.

We call a SPDE over Rd an equation of the form

LU � X, (3.71)

where both U and X are GeRFs over Rd, and L : D � S 1pRdq ÞÑ S 1pRdq is a mapping defined over a
subset of the space of tempered distributions such that its action over GeRFs is well-defined19. We do not

19Important remark: here we have done an explicit and shameless abuse of language. Since the operator L is not necessarily a
differential operator, this equation is not a SPDE, stricto sensus. We will nevertheless maintain this abuse of language anyway. The
main motivation of doing this is (like almost every motivation on terminology selection), a social one: the term SPDE Approach
was forged when working in a framework where the stochastic equations used did not involve strictly speaking differential operators
(namely, in the case of the SPDE related to the Matérn model, Eq. (1.1)), but it was anyway popularised with the term SPDE. We
decided to maintain this popular name. If the reader is not satisfied with this usage, we suggest to consider that the letter P in SPDE
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suppose, for instance, that L is linear, nor continuous, but we will assume that it is well-defined for GeRFs
without entering at this stage in further details. The GeRF X in equation (3.71) is called the source term.
As it may be expected, we will fix the source term and try to find a GeRF U which satisfies (3.71).

We need more precisions about this concept, namely, in which sense do we interpret the equality (3.71).
We will use the following terminology: for a fixed source term X , we say that a GeRF U satisfies (3.71)
strictly if

xLU,ϕy a.s.� xX,ϕy, @ϕ P S pRdq. (3.72)

In the language of stochastic processes, this is equivalent to require that the process pxLU,ϕyqϕPS pRdq is a
modification of the stochastic process pxX,ϕyqϕPS pRdq. When working with Random Functions or Random
Measures, we use an analogue definition replacing ϕ with points in the space (or more precisely, with Dirac
measures at points in the space) or with indicator functions of bounded Borel sets, respectively.

The strict sense (3.72) is the strongest notion of SPDE we will use in this work. However, in some cases
we will work with weaker conditions. We say that a GeRF U satisfies (3.71) in law if for every finite vector
of test-functions pϕ1, ..., ϕN q P S pRdqN , N P N�, we have

pxLU,ϕ1y, ..., xLU,ϕNyq law� pxX,ϕ1y, ..., xX,ϕNyq, (3.73)

where the equality law� means an equality in law of the random vectors involved, that is, that they have the
same probability law over RN . In such a case, we write

LU law� X. (3.74)

This notion of SPDE is only useful to describe the behaviour of the law of the stochastic process U when
it is supposed to satisfy Eq. (3.71). It does not describe any kind of equality between the random variables
involved as in equation (3.72). Indeed, if we suppose U to satisfy (3.71) in law, we do not even impose any
equality conditions between the random variables obtained when evaluating U and X over test-functions:
both processes can even be independent and still satisfy (3.73).

An even weaker but useful condition is the following one: a GeRF U satisfies (3.71) in the second-order
sense, if both LU and X have the same mean and covariance distributions, explicitly if

mLU � mX ; CLU � CX . (3.75)

In such a case, we write
LU 2nd o.� X. (3.76)

stands for "Pseudo-", and L can be called a pseudo-differential operator.
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This notion is even weaker than the solution in law since it only involves the first two moments. In some
cases both conditions are equivalent, for example for Gaussian processes.

Let us consider right now the well-defined and specified case where L is a linear operator defined through
an adjoint. If U satisfies Eq. (3.76), then from equations (3.52) and (3.75), we conclude that mU and CU
must satisfy the following deterministic PDEs:

LmU � mX ; pLb LqCU � CX . (3.77)

The lesson of this section lies on this equation: in the second order framework, the SPDE relating X to
U leads to usual PDEs relating the means and the covariance structures. Hence, the problem of describing
covariance models through a SPDE is related to a problem involving deterministic PDEs.

We recall that if condition (3.77) holds, this does not imply a strict equality between LU and X . If this
stronger equality is desired, one must analyse the cross-covariance relationship between LU and X . We
will specify this notion in Section 3.6.

3.6 SPDEs and bivariate models

We now relate the SPDE approach to an important branch of Geostatistics: multivariate Geostatistics. Al-
though we are not going to explicitly enter in the framework of multivariate models in this work, we will
show in this section that the SPDE Approach can be used as an inspiration to describe cross-covariances
models in a quite simple way. We will introduce the notion of a bivariate geostatistical model in the context
of GeRFs. The classical case of Random Functions follows immediately.

Let X and Y be two real GeRFs over Rd. We call the cross-covariance Kernel between X and Y the
application KX,Y : S pRdq �S pRdq Ñ C defined through

KX,Y pϕ, φq � CovpxX,ϕy, xY, φyq, ϕ, φ P S pRdq. (3.78)

Following the same arguments as in Section 3.4.1, one concludes that KX,Y defines a separately continuous
sesquilinear form. From the Nuclear Theorem 2.2.2 there exists a unique distribution CX,Y P S 1pRd �Rdq
such that

xCX,Y , ϕb φy � KX,Y pϕ, φq @ϕ, φ P S pRdq. (3.79)

The distribution CX,Y is called the cross-covariance distribution between X and Y . This distribution is
real since both X and Y are supposed to be real GeRFs. An analogue definition holds for the covariance
Kernel and distribution in the reverse sense Y,X , that is, KY,X and CY,X . By definition of the covariance
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and the reality of CY,X , it holds that

xCX,Y , ϕb φy � xCY,X , φb ϕy � xCY,X , φb ϕy, @ϕ, φ P S pRdq. (3.80)

In this context there is also a positive-definiteness condition that CX,Y must satisfy, but it is not a condi-
tion inCX,Y alone but on the whole system of bi-variate distributionsCX , CX,Y , CY,X , CY . Specifically, any
random vector of the form pxX,ϕy, xY, φyq, with ϕ, φ P S pRdq, must have a positive-definite covariance
matrix, and hence it must hold that

xCX , ϕb ϕy � xCX,Y , ϕb φy � xCY,X , φb ϕy � xCY , φb φy ¥ 0, @ϕ, φ P S pRdq. (3.81)

The linearity of the distributions involved allows us to conclude that an analogue equation holds for every
possible (finite-dimensional) random vector consistent in evaluations of the GeRFs X and Y over arbitrary
test-functions20. A system of four distributions CX , CX,Y , CY,X , CY P S 1pRd � Rdq that satisfies (3.81)
and (3.80) is called a valid system of cross-covariances. This is the required condition that a geostatistician
must have in mind when selecting a model (that is, selecting covariances and cross-covariances distributions)
in a bivariate framework. If we consider for any ϕ, φ P S pRdq the complex number λϕ,φ P C to be such
that |λϕ,φ| � 1 and such that λϕ,φxCX,Y , ϕ b φy � |xCX,Y , ϕ b φy|, one proves by using �λϕ,φϕ instead
of ϕ in Eq. (3.81) and using the relationship (3.80), that a system of distributions CX , CX,Y , CY,X , CY P
S 1pRd � Rdq is a valid system of cross-covariances if and only if

|xCX,Y , ϕb φy| ¤ xCX , ϕb ϕy � xCY , φb φy
2

, @ϕ, φ P S pRdq. (3.82)

This criterion does not use CY,X since it is completely determined by CX,Y from (3.80).

The cross-covariance distribution CX,Y describes thus the interactions between the processes X and Y
beyond their own covariance structures. For example, CX,Y � 0 implies that the GeRFs X and Y are
uncorrelated, and hence independent if we assume them to be real Gaussian processes. If we choose CX,Y
appropriately, we can guarantee that both GeRFs are equal, in the sense that one is a modification of the
other. More precisely, two real GeRFs X and Y satisfy xX,ϕy a.s.� xY, ϕy for all ϕ P S pRdq if and only if

mX � mY and CX � CY � CX,Y . (3.83)

The necessity is straightforward. The sufficiency arises immediately from the analysis of Ep|xX,ϕy �
xY, ϕy|2q. With this fact in mind, it is straightforward to obtain a necessary and sufficient condition for

20More precisely, set ϕ �
°N
j�1 λjϕj and φ �

°M
k�1 ωkφk, with pϕ1, ..., ϕN q P S pRdqN , pφ1, ..., φM q P S pRdqM ,

pλ1, ..., λN q P CN and pω1, ..., ωM q P CM . Eq. (3.81) gives then the variance of
°N
j�1 λjxX,ϕjy �

°M
k�1 ωkxY, φky, and

hence the possible quadratic forms of the associated random vector pxX,ϕ1y, ..., xX,ϕNy, xY, φ1y, ..., xY, φMyq.
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a GeRF U to satisfy strictly the SPDE (3.71) expressed through the first and second order structures of U
and the source term X . A GeRF U satisfies Eq. (3.71) strictly if and only if

mLU � mX and CLU � CX � CLU,X . (3.84)

Hence, when L is linear and defined through an adjoint, we obtain that U satisfies (3.71) strictly if and only
if the following PDEs hold:

LmU � mX ; pLb LqCU � CX � pLb IqCU,X , (3.85)

where I : S 1pRdq Ñ S 1pRdq denotes the identity operator. This expression can be obtained following the
same procedure as in (3.51). Hence, the SPDE is fully described by the determination of the covariances and
cross-covariances of the GeRFs U and X , which follow suitable PDEs.

These results show the intimate relationship between the SPDE Approach and multivariate Geostatistics.
Indeed, we can describe a bivariate model either classically by setting a system of cross-covariances distri-
butions, or instead with the SPDE Approach, by setting a model for one variable and then choosing a SPDE
relating the two GeRFs. From this fact arises an idea worth to be discussed: the real interest of the SPDE
Approach is in multivariate Geostatistics. Indeed, more interesting than having a particular SPDE for a given
model, is to have a SPDE relating two different variables of interest directly. This approach allows to dis-
criminate between different bivariate covariance models based for example on traditional physical models,
where the variables involved are related through a PDE. Cokriging techniques can then be adapted by taking
advantage of the relationship defined by the specified SPDE. This approach has already been worked out in
Dong (1990), where estimation methods for variables related through PDEs are developed, with applications
to the Poisson equation and to PDEs from Hydrogeology.

3.7 A general comment on Random Functions, Measures and Distributions

In this section we make some general comments regarding the stochastic framework presented above and we
compare it to other approaches that can be found in the literature.

In this chapter we have defined Random Functions, Measures and Distributions in order to well-define
classical operations of PDE analysis on them. We have restrained ourselves to a mean-square analysis,
where all random variables are square-integrable and all convergences involved are interpreted in the sense
of L2pΩ,A,Pq. This has an important implication: we have never worked with, strictly speaking, continuous
functions, measures or distributions. Indeed, the sample-paths of the processes involved are not required to
satisfy themselves any particular regularity property. Let us be explicit.

Consider our probability space pΩ,A,Pq. Consider, first of all, a real and continuous Random Function
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pZpxqqxPRd according to the terminology fixed in Section 3.2.2. As every stochastic process, Z can be
interpreted as a function Z : Ω � Rd Ñ R, for which the functions x P Rd ÞÑ Zpω, xq for a fixed ω P Ω

are called the sample-paths of Z. Although we have supposed the mean and covariance functions to be
continuous, this does not imply that the sample-paths are continuous functions. Hence, the interpretation
that we use of this process as a continuous random function is rather special: we do not guarantee that
our function will have continuous realisations in general, but we continue to manipulate it as a continuous
function. This works quite well in order to define integrals, limits, derivatives in a regular case, and with
a little more generality, to define linear operations. However, some non-linear operations that we do with
deterministic continuous functions are not necessarily well-defined in this mean-square framework. For
instance, calculating the maxima of a Random Function over a bounded subset of Rd is not necessarily
a well-defined operation without supposing extra regularity conditions on the sample-paths of the process.
The typical approach in Stochastic Calculus is to use processes which have a modification with almost-surely
continuous sample-paths. In this stricter framework, properties of boundedness of the Random Functions, for
example, are usually better described than in a mean-square analysis. We refer to Sobczyk (1991, Chapter
II) for a general exposition of both the mean-square approach and the almost-surely continuous sample-
path approach. We refer to (Øksendal, 2003, Chapter 2) for the concept of modification with almost-surely
continuous sample-paths.

The case of Random Measures is not better. Actually, a theory of mean-square-Random Measures, where
the σ�additivity is considered in the sense of L2pΩ,A,Pq is not a quite standard framework. Although
the concepts necessary to describe it and to establish an associated Integration Theory are an immediate
application of the Dunford-Schwartz integral (Dunford & Schwartz, 1958), the only big treaty we could find
which works completely in this framework is the recent Rao (2012). It is easier to find authors who work
with Random Measures in a stricter sense. If pMpAqqAPBBpRdq is a process, it is required that the function
M : Ω � BBpRdq Ñ C must be such that Mpω, �q defines a measure for every ω P Ω. A huge literature
can be found for this stricter framework. See for instance the recent big treaty Kallenberg (2017) and the
references therein. An older bibliographical source which is rather at the beginnings of such a theory is
Morando (1969). This theory may seem more intuitive to work with since any realisation of the process is
actually a measure for which all the concepts and developments of the deterministic Measure Theory can
be applied, including in particular, the concepts of measure of total variation and Jordan decomposition.
Nevertheless, it turns out that this theory is so strict that many typical models of Random Measures are
excluded. For instance, Gaussian orthogonal Random Measures cannot satisfy such a restriction, unless
their weight measures are sums of punctual masses (Horowitz, 1986). Hence, the Gaussian White Noise is
outside this framework, and in general, every Gaussian stationary Random Field whose spectral measure has
a density is also excluded. Moreover, even without the Gaussian hypothesis, it can be proven that in order
to construct an orthogonal Random Measure which follows this strict definition of Random Measure, the
process must be a Point Process (Kingman, 1967). Hence, the notion of an orthogonal Random Measure
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acting “continuously” over the measurable space is lost. In order to not lose this important concept, we
did not consider this framework, and we decided to restrain ourselves to the mean-square analysis where
linear operations such as integrals and evaluations at bounded Borel sets work fine. However, we have lost
in general the concept of a Random Measure of Total Variation bounding any arbitrary Random Measure
(See for example Øksendal, 2003, Exercise 2.17). We do not know if a less restrictive condition such as
having a modification which is almost-surely a measure, analogously to the idea of having an almost-surely
continuous modification in the case of Random Functions, provides a more exploitable framework. We
ignore if an associated theory has already been developed.

The case of Random Distributions is quite special. Although we have defined the linearity and continuity
of a GeRF pxZ,ϕyqϕPS pRdq just in a mean-square sense, a framework with a strict distributional behaviour
can be constructed. Let us be precise. Consider a distribution mZ P S 1pRdq and a distribution CZ P
S 1pRd � Rdq defining a positive-definite Kernel. Consider the measurable space pS 1pRdq,BpS 1pRdqqq,
where BpS 1pRdqq denotes the Borel σ�algebra of S 1pRdq equipped with the weak-* topology. Let us set
this measurable space as our probabilisable space pΩ,Aq � pS 1pRdq,BpS 1pRdqqq. It can be proven, at
least in a Gaussian framework21, that there exists a unique probability measure over pΩ,Aq, denoted by
PmZ ,CZ , such that the application Z : pω, ϕq P Ω�S pRdq ÞÑ xω, ϕy defines a Gaussian process with mean
mZ and covariance CZ . To be precise, for every ω P Ω � S 1pRdq, Zpω, �q is simply the distribution ω, and
for all ϕ P S pRdq the random variable Zp�, ϕq, which we will denote by xZ,ϕy, satisfies

E
�
e�ixZ,ϕy

	
:�
»

S 1pRdq
e�ixω,ϕydPmZ ,CZ pωq � e�ixmZ ,ϕy�

1
2
xCZ ,ϕbϕy. (3.86)

Hence, the random variables pxZ,ϕyqϕPS pRdq are Gaussian since their characteristic functions are the ones
associated to the Gaussian law, following given mean and covariance structures. This result is known as
the Bochner-Minlos Theorem, which is actually a generalization of Bochner’s Theorem, since it involves a
“Fourier Transform” of a finite measure over the space S 1pRdq, and whose result is a positive-definite con-
tinuous functional over S pRdq. In conclusion, a strictly speaking Random Distribution can be constructed,
as a process following desired mean and covariance structures and whose realisations are tempered distribu-
tions. Hence, every well-defined operation over tempered distributions from the deterministic world can be
applied to such a process. A relatively simple proof of the Bochner-Minlos Theorem can be found in Holden
et al. (2009, Appendix A), stated in the particular case where mZ � 0 and CZ is the covariance of the
White Noise, although the authors mention that the right side of (3.86) can be replaced with any continuous
positive-definite functional over S pRdq whose evaluation at 0 equals 1. In particular, CZ can be taken to be
any distribution defining a positive-definite Kernel.

21The Gaussianity condition is actually not needed. The only necessary mathematical tool is the definition of a continuous
positive-definite functional over S pRdq such that its evaluation at 0 equals 1. A Gaussian functional provides easily such a func-
tional, but there are other options. For example, we can construct functionals associated to characteristic functions of the form (B.6)
presented in Appendix B.
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This difference between the case of Random Distributions and the cases of Random Functions and Ran-
dom Measures relies on the lack of a Nuclear Theorem such as Theorem 2.2.2. Indeed, the Bochner-Minlos
Theorem is actually stated in a more general framework where the probability space Ω is the dual of a Nu-
clear space. A Nuclear space is, very roughly speaking, a space where a Nuclear Theorem such as 2.2.2
holds. The theory of Nuclear spaces was developed by Alexandre Grothendieck while searching for a gen-
eral class of spaces where an analogue to the Nuclear Theorem applies (Grothendieck, 1955). See Trèves
(1967, Part III) for a deep exposition of the theory of Nuclear spaces and its relation with Nuclear Theorems.
Minlos then developed an extension to Bochner’s Theorem considering a Fourier Transform over Nuclear
spaces to show the existence of convenient probability measures over these spaces. It turns out that the
nuclearity of a space is actually a necessary condition to obtain such a result as Bochner-Minlos Theorem
(Cartier, 1963). The spaces of test-functions E pRdq,S pRdq and DpRdq are Nuclear spaces, for which there
is a Nuclear Theorem and the Bochner-Minlos Theorem applies to define a probability measure over their
dual spaces. It is known that infinite dimensional Banach spaces are not nuclear (Trèves, 1967, Corollary 2
to Proposition 50.2), and hence this procedure fails to determine a probability measure on the dual of such
spaces. In particular, Hilbert spaces do not satisfy this property.

We conclude this section with a final argument to support our use of a mean-square analysis in this work.
We do not need to have processes with sample-paths determining, strictly speaking, functions, measures
or distributions: we only need things which act like that in some particular useful way and for which the
operations involved in the SPDEs considered in this work are well-defined. This always holds in our mean-
square framework even if the things are not necessarily functions, measures or distributions, since we can
anyway apply the linear operators described in this chapter in complete analogy to the deterministic case.
However, we must confess that we can do like this only because we restrain ourselves to SPDEs defined
through linear deterministic operators: if we would like to consider non-linear or non-deterministic operators,
for example taking extrema of continuous Random Functions, or working with linear SPDEs involving a
multiplicative noise, then a stricter framework with more conditions on the sample-paths is needed.

3.8 Comments on stochastic integrals and non-linear SPDEs

We conclude this chapter with comments on stochastic integrals and more general theories of SPDEs than
the framework used in this work. This section is quite apart from the rest of this dissertation and it can
be skipped in a first reading. Here we will sometimes make some claims without giving proofs, since this
subject goes beyond the scope of this dissertation.

We have defined integrals of Random Functions with respect to deterministic measures (Section 3.2.2)
and of deterministic functions with respect to Random Measures (Section 3.3.3). What we have not done,
which is a crucial difference between our approach and other branches of Stochastic Calculus, is the defini-
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tion of a stochastic integral of a Random Function with respect to a Random Measure. Such a definition is
actually the starting point of Itô calculus and other approaches. The key issue is that there is not a canonical
way to define such an integral. We could follow, for example, an approach defining the integral through a
Riemann sequence of partitions of the domain, together with associated tag points, and take a limit in some
sense. However, it turns out that in general such a limit depends on the selection of the Riemann sequence
of partitions and on the selection of the tag points. We will detail this issue. See Øksendal (2003, Chapters
2 and 3) for a complete exposition of the Itô integral over R�. Here we present just the main facts without
deep precision nor proofs.

Let us first of all explain in broad terms the framework of Itô Calculus over R in its most basic form. It
is based on Brownian Motion, a particular Gaussian Random Function over R, but we will actually present
it in our way. Consider a real Gaussian White Noise over R, pW pAqqAPBBpRq. If we define the Random
Function B :� pBptqqtPR as Bptq :� W pr0, tsq if t ¥ 0 and Bptq :� �W ppt, 0qq if t   0, it can then be
proven that B is a zero-mean continuous Random Function whose derivative in distributional sense is W 22.
The covariance function of B is given by CBpt, sq � minpt, sq if t, s ¥ 0, CBpt, sq � maxpt, sq if t, s   0,
and CBpt, sq � 0 otherwise. Hence, B is a centred Brownian Motion. What is referred to as an integral
with respect to a White Noise in this dissertation (Section 3.3.3) is named integral with respect to Brownian
Motion in Itô calculus.

Basic Itô Calculus fix W as the Random Measure with respect to which we make the integrations.
It also describes the class of Random Functions that can be integrated with respect to W in some sense.
The definition of the Itô Integral is actually quite simple. Consider a Random Function pZptqqtPR which
we suppose can be integrated with respect to W (Øksendal, 2003, Definition 3.14). Consider I � R� a
bounded interval. The Itô Integral of Z with respect to W over I is simply the integral obtained as a typical
limit of Riemann sums using a Riemman sequence of partitions of I consistent in subintervals, and using
as tag points the left limits of the intervals in the partition. The result is a Random Variable denoted by³
I ZptqdBptq. The limit is defined in the sense of L2pΩ,A,Pq, and Z must have some conditions for this

limit to be well-defined. The selection of the left limit is crucial since the limit depends upon the tag points.
Another example of stochastic integral in this aim is the Stratonovich integral, which defines the stochastic
integral in the same analogous way but considering as tag points the middle-points of the intervals in the
partition. Both definitions differ in general, and actually, any change in the choice of the tag points may
produce a change in the resulting limit, obtaining another form of a stochastic integral. The typical example

22 In a general deterministic framework, a primitive in distributional sense of a complex measure over R is always a function with
locally bounded variation (Schwartz, 1966, Theorem II, Chapter II), which can be chosen to be right-continuous and with left-limits
(a càdlàg function). Indeed, if µ P M pRq, then the function F : R ÞÑ C defined as F ptq � µpr0, tsq1R�ptq � µppt, 0qq1R�

�

ptq

is a càdlàg function which satisfies �
³
R F ptqϕ

1ptqdt �
³
R ϕptqdµptq for all ϕ P DpRq. As a sketch of proof, consider for

instance ϕ P DpRq such that supppϕq � R�, the general case following similarly. Using Fubini’s Theorem and integration
by parts, one concludes that �

³
R� µpr0, tsqϕ

1ptqdt � �
³
R�

³
R� 1r0,tspsqdµpsqϕ

1ptqdt �
³
R� �

³
R� 1rs,8qptqϕ

1ptqdtdµpsq �³
R� ϕpsqdµpsq. The stochastic analogue (with µ interpreted as a Random Measure) is presented in full detail in Proposition C.2.1

in Appendix C.
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of this situation is obtained when trying to integrate a Brownian Motion B with respect to its own derivative
which is a White Noise. Rather than exposing it right now, we will later explain in our way this dependence
on the tag points. The non-uniqueness in this definition pushes the authors to chose between a particular
kind of integral, which is often done following practical considerations. We refer to (Øksendal, 2003, end of
Chapter 3) for a discussion on this selection.

Let us remark, however, a particular case of stochastic integration where this problem does not actu-
ally arise. Let A P BBpRdq. Let pV N

j qjPt1,...,Nu,NPN� be a Riemann sequence of partitions of A, and
let pxNj qjPt1,...,Nu,NPN� be any collection of tag points of pV N

j qjPt1,...,Nu,NPN� . Consider the case where
pZpxqqxPRd is a zero-mean continuous Random Function with covariance functionCZ and pMpAqqAPBBpRdq
is a zero-mean Random Measure with covariance measure CM , independent of Z. Hence, the cross-
covariance structure between Z and M is null. In this case, we claim without giving a proof that the limits
of the form

lim
NÑ8

Ņ

j�1

MpV N
j qZpxNj q (3.87)

exist with the limit being taken in the sense of L1pΩ,A,Pq, and the result does neither depend on the choice
of the Riemann sequence of partitions of A, nor on the choice of its tag points. The result is then a uniquely
defined integrable random variable with zero-mean that we may write

³
A ZpxqdMpxq. It can be verified

that the application A ÞÑ ³
A ZpxqdMpxq defines a Random Measure in a L1-sense, with the σ�additivity

satisfied in the sense of the first moment. If we suppose more conditions, for example that M and Z are
Gaussian processes, the limit can also be taken in the sense of L2pΩ,A,Pq, obtaining a Random Measure for
which we can study the covariance structure. Following similar arguments as in Lemma A.5.2 in Appendix
A.5, one can show that the covariance Kernel is of the from pA,Bq ÞÑ ³

A�B CZpx, yqdCM px, yq.
The difference between the well-defined integral

³
A ZpxqdMpxq and the issues exposed at the beginning

of this section is the independence condition. In general, if Z and M have a dependence relationship,
which could be described through a cross-covariance Kernel, then new things may arise. Consider the
measure-function cross-covariance Kernel KM,Z : BBpRdq � Rd Ñ C defined through KM,ZpA, xq �
CovpMpAq, Zpxqq. Then, the mean of (3.87) would be, if well-defined, the limit

lim
NÑ8

Ņ

j�1

KM,ZpV N
j , xNj q. (3.88)

This would define, roughly speaking, a sort of integral of the measure-function Kernel with respect to himself.
It is not clear if this limit is always well-defined, and it is known that in some cases where it is actually well-
defined, the limit depends on the selection of the tag points. The counterexample is the already mentioned
case which shows that the Itô integral and the Stratonovich integral differ. Consider A � R� measurable
and bounded with positive Lebesgue measure. Let M � W be a White Noise over R, and let Z � B be
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its primitive centred at 0, which is a Brownian Motion. The cross-covariance Kernel satisfies for t ¥ 0,
KW,BpA, tq � CovpW pAq, Bptqq � CovpW pAq,W pr0, tsqq � LebpA X r0, tsq. If we want to define the
integral of B with respect to W over A, we could try it through a Riemman sequence of partitions of A,
defining a Riemann sum as in (3.87). Consider the case where such a partition is made through intervals
with tag points being their left limits, i.e. V N

j �
�
xNj , x

N
j�1

	
, then

lim
NÑ8

¸
j

KW,BpV N
j , xNj q � lim

NÑ8

¸
j

Lebp�xNj , xNj�1

�X �0, xNj �q � 0, (3.89)

while by taking the middle points of the intervals as tag points, writing V N
j �

�
aNj , b

N
j

	
and xNj �

bNj �aNj
2 ,

one obtains

lim
NÑ8

¸
j

KW,BpV Nj , xNj q � lim
NÑ8

¸
j

Lebp�aNj , bNj �X �0, pbNj � aNj q{2
�q � lim

NÑ8

¸
j

bNj � aNj
2

� LebpAq
2

¡ 0.

(3.90)

This shows that the difference in the results when choosing different tag points, and hence the difference
between Itô and Stratonovich Integrals is grounded on the structure of the cross-covariance Kernel. It is
KM,Z and only KM,Z (in this mean-square analysis framework) the mathematical object which determines
this distinction. An interesting question that arises is if there are other cases, besides the trivial case of
non-correlation, where the cross-covariance Kernel would admit a definition of a stochastic integral without
ambiguity. For instance, when the Kernel KM,Z is a tensor product between a measure and a continuous
function, or a finite sum of such kinds of Kernels, the stochastic integrals may be uniquely defined, provided
that we have a valid system of cross-covariances. In such cases, a framework where Random Functions can
be integrated without problems with respect to Random Measures may be developed.

The interest of defining stochastic integrals uniquely and with enough generality does not only come
from a mathematical curiosity. In fact, it can be conceived as a subset of the problem of defining the product
of two different Generalized Random Fields, and thus a way to define particular classes of non-linear SPDEs
or SPDEs presenting a multiplicative noise. Indeed, maintaining always the analogy with the deterministic
framework, the multiplication of two distributions is not always well-defined, but there is a meaning, for
example, when one distribution is a measure and the other is a continuous function (using the definition of
multiplication measure such as stated in Section 2.1.2). Hence, it is natural to wonder if such a multiplication
between Random Measures and Random Functions can be defined through a stochastic integral and if we
can use this definition to interpret some products which appear in some SPDEs. The same idea may be
applied if one of the GeRFs has a behaviour similar to a member of the class OM pRdq. An example of
SPDE that could be included within this framework is the Diffusion equation with random diffusivity over
the space-time Rd � R:

BU
Bt � divpH∇Uq � X, (3.91)
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where X is a GeRF over Rd � R and H is a positive-definite matrix of GeRFs over Rd. div and ∇ are
the divergence and gradient spatial operators respectively. This is an example of a linear equation with
a multiplicative noise. Even in the deterministic case, the meaning of the multiplication H∇U must be
specified, requiring conditions on H and/or on the solution U . For example, if H is a matrix of measures,
∇U may be a vector of continuous functions, the resulting multiplication being a vector of measures. Even
if this multiplication is well-defined, the source termX must also satisfy compatibility conditions if we want
Eq. (3.91) to make sense. For example, if H∇U is a vector of measures, X must have the behaviour of a
derivative of a measure. All of these problems get worse when entering into the stochastic world, where even
if H defines a matrix of Random Measures and ∇U defines a vector of continuous Random Functions, their
product, i.e. the associated vector of stochastic integrals, is not uniquely defined and a convenient framework
must be selected. Requiring in addition that X is a White Noise, which is a common practice in Stochastic
Analysis, impose even more theoretical problems to this analysis. The same problem is still present if we
require H to be a deterministic object but we require X to be a White Noise.

Other SPDEs presenting multiplicative noise can be found in (Holden et al., 2009). In this treaty, the
authors base their work on the concept of the Wick product, which allows them to define a sort of multiplica-
tive product between stochastic processes with great generality. However, this product does not necessarily
follow any analogy with the product of objects in the deterministic case: this product can only be interpreted
for stochastic objects, and the realisations of such objects may not possibly be interpreted as functions, mea-
sures or distributions, but rather as averaging values over a space of random variables. We refer to the
introduction in Holden et al. (2009) for a discussion on this approach and its theoretical benefits. However,
it is not obvious how to relate this approach to the practice of Geostatistics, since the covariance structure is
not a basic tool of this framework, and moreover the interpretation of the realisations of the involved random
objects as regionalized variables is unclear or lost.

Consider now an example of a non-linear SPDE, the Kardar-Parisi-Zhang (KPZ) Equation (Kardar et al.,
1986), which is a space-time SPDE of the form

BU
Bt � ν∆U � λ

2
|∇U |2 �W, (3.92)

where ν, λ are parameters, ∆ denotes the (spatial) Laplacian operator, and |∇U |2 denotes the squared-
Euclidean norm of the (spatial) gradient of U . Hence, in this equation terms of the form p BUBxj q2 appear,
requiring to give a definition of the multiplication of the derivatives of U with themselves. In order to
define such a multiplication we could require, for instance, U to be a continuously differentiable Random
Function, hence the multiplication of its derivatives is immediate to define. However, the presence of the
White Noise at the right side requires that the behaviour of the left side must be a measure which is not
determined by a continuous function, hence this regularity restriction to U may not work to define a solution
to (3.92). This equation has been an inspiration for an intense work in the SPDE community. The analysis of
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a well-defined solution to the KPZ equation in the case of spatial dimension 1 has been done by M. Hairer
in (Hairer, 2013). The ideas used to define such a solution inspired the development of a more general
and sophisticated framework to treat SPDEs which presents some forms of multiplicative products between
Random Distributions, called the Theory of Regularity Structures (Hairer, 2014). The development of this
theory made Hairer be one of the winners of the Fields Medal in 2014.

The problems exposed in this section are then typical, and somewhat basic23 theoretical issues which are
presented in the theory of SPDEs in the wide-sense, which engender a huge need for rather sophisticated
theories. In general, it is unclear how to relate the already existing theories to the framework of Geostatis-
tics. For these reasons, in this dissertation we deal only with linear SPDEs defined through a deterministic
operator. This framework is at the same time rich and simple enough to allow us to develop and study new
interesting geostatistical models without entering into the issues exposed in this section.

23Basic in the sense that they are problems at the basis of the theory, not in the sense that they are easy to deal with...



Chapter 4

Stationary Solutions for a class of SPDEs:
existence, uniqueness and examples

SUMMARY

In this chapter we present a result concerning the existence and uniqueness of stationary
solutions to a wide class of linear SPDEs. This result encompasses many of the most important
cases of stationary models related to SPDEs presented in the literature. It can be considered
then, as a review, as a generalization and as a simplification.

In Section 4.1 we present the motivations of these developments and the questions that are
tackled.

In Section 4.2 we present the class of linear operators which will determine the class of
SPDEs considered in this chapter. It consists in operators acting over the space of tempered
distributions such that their Fourier Transforms are slow-growing measures. These operators
are defined through the Fourier Transform and a symbol function, which is an Hermitian mea-
surable polynomially bounded function. We describe the action of such a class of operators,
which are proven to maintain the stationarity.

In Section 4.3 the main result of this chapter is presented, which is Theorem 4.3.1. We first set
the class of considered SPDEs, which consists of linear SPDEs involving an operator defined
through a symbol and a stationary source term. Then, we present Theorem 4.3.1, which states
that the existence of a stationary solution to a SPDE in our class is equivalent to a slow-growing
behaviour requirement of the multiplication between the squared-norm of the reciprocal of the
symbol function and the spectral measure of the source term. The uniqueness of such a solution
is equivalent to a never-null requirement for the symbol function. We make some remarks con-
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cerning similar well-known results in the literature, the characterisation of some cases where
existence and uniqueness is assured regardless of the source term, characterisations of station-
ary solutions to homogeneous cases, and some possible extensions.

In Section 4.4 we remark the case where the source term is a White Noise, which deserves to
be considered as a fundamental case. We present Theorem 4.4.1 which states, under suitable
conditions, that the covariance distribution of the solution of a general SPDE can be expressed
as the convolution between the covariance of the source term and the covariance of the solution
with a White Noise source term.

In Section 4.5 we present some examples of applications which are known in the literature and
we propose some SPDEs for well-known models whose relation to some SPDEs are not broadly
known. We review the popular Matérn model with its typical associated SPDE. We present
the case of Matérn models without range parameter. We present the case of stationary Markov
Random Fields according to Rozanov’s Theory. We also show some examples where we propose
some SPDEs for well-known models. We give a SPDE which describes non-exhaustively the
J�Bessel model. Finally, we propose a SPDE whose unique stationary solution follows a Stein
model in a spatio-temporal context.

We finally make a remark about the associated deterministic problem in Section 4.6. We
discuss roughly some differences between the approach developed in this chapter and some
typical approaches in the theory of PDEs. We also state, in the stochastic context, a result on
existence and uniqueness of solutions with non-zero mean and stationary centred form.

The proof of every statement is presented in Appendix A.

4.1 Motivation

The SPDE approach in Geostatistics has been popularised in the last decade since the apparition of the
seminal paper of Lindgren et al. (2011). In this work, the authors exploit an already known link between
the Matérn model and a particular class of SPDEs (Whittle, 1963). The authors also notably remarked an
important fact: the Matérn fields are not necessarily the only solutions to the related SPDEs, but rather
the only stationary solutions. Indeed, for some cases of the involved class of SPDEs, deterministic (or
even random) solutions to the associated homogeneous problem can be added, and hence the solution is not
unique. We will specify those details further in Example 4.5.1.

The questions that arise are then the next ones: when do stationary solutions to some particular classes
of SPDEs exist? When does exist a unique stationary covariance model that the solutions to such SPDEs
must follow? Can we fully characterise the covariance structure of these models by taking advantage from
the fact that they solve a particular SPDE?
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In this section we answer these questions. For this purpose, we restrain ourselves to a particular class of
linear SPDEs which are particularly adapted to treat the problem of stationary solutions, and which gives an
enough rich and general framework to encompass many well-known results relating stationary covariance
models to SPDEs. The results presented in this chapter will be a basis for further developments in this
dissertation. It will allow us, in particular, to construct new stationary models with non-trivial properties and
to verify when do stationary solutions to some important physically driven SPDEs exist.

All along this chapter we suppose that all of the random objects have null mean, except in Section 4.6.
If X and Y are two GeRFs, the notation “X � Y ” means that X is a modification of Y . We will anyway
recall this particular equivalence meaning when we feel it is necessary, in order to avoid any confusion.

4.2 A class of linear operators

Let us consider the next subspace of tempered distributions:

V 1pRdq :� tT P S 1pRdq ��F pT q PMSGpRdqu � F�1pMSGpRdqq. (4.1)

It is immediate that V 1pRdq is a vector subspace of S 1pRdq. The choice of this space has been done on
purpose: it was conceived considering the fact that the Fourier Transform of a stationary GeRF is a slow-
growing Random Measure (Theorem 3.4.2). Hence, it is expectable that this space will be quite useful when
working with stationary Random Fields. We remark from the Bochner-Schwartz Theorem 3.4.1 that every
positive-definite distribution is in V 1pRdq. Actually, since a slow-growing measure can be decomposed in
four positive slow-growing measures (see Section 2.1.3), V 1pRdq is the complex span of the cone of positive-
definite distributions.

We will define a class of linear operators which can be applied over distributions on V 1pRdq. Let g :

Rd Ñ C be a polynomially bounded measurable function. We define the operator Lg : V 1pRdq Ñ V 1pRdq
as

LgpT q � F�1pgF pT qq, @T P V 1pRdq. (4.2)

Let us analyse this definition. First, since F pT q P MSGpRdq and g is measurable and polynomially
bounded, the multiplication gF pT q is a well-defined slow-growing measure (Section 2.1.3). Its Inverse
Fourier Transform F�1pgF pT qq � LgpT q is well-defined in the sense of distributions and it is an element
of V 1pRdq. The operator Lg is thus well-defined. It is also immediate, that it is a linear operator. Due to
the properties of the Fourier Transform, the operator Lg is real if and only if g is an Hermitian function. An
Hermitian polynomially bounded measurable function g : Rd ÞÑ C will be from now on said to be a symbol
function over Rd. In such a case, the associated operator Lg defined through (4.2) will be said to be an
operator defined through a symbol, and we will say that g is the symbol of Lg. We remark that every differ-
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ential operator Dα, with α P Nd, is an operator defined through a symbol. Indeed, by using the property of
the Fourier Transform with respect to derivation, F pDαT q � piξqαF pT q for T P S 1pRdq, it follows that
Dα � Lg for gpξq � piξqα, ξ P Rd. Other examples of such operators will be worked out in Section 4.5 and
further in this dissertation.

Let us now consider the application of Lg over a stationary GeRF Z over Rd. We have the following
property:

Proposition 4.2.1. Let Z be a real stationary GeRF over Rd with covariance distribution ρZ and spectral
measure µZ . Let g be a symbol function over Rd and let Lg be its associated operator. Then, LgZ is a
real stationary GeRF over Rd with covariance distribution ρLgZ � L|g|2ρX and spectral measure µLgZ �
|g|2µZ .

See Appendix A.9 for a proof. Hence, operators of the form Lg maintain the stationarity, and are
applicable to any real stationary GeRF without restriction. We remark that the expression of the spectral
measure µLgZ � |g|2µZ is particularly simple while in general the expression of the covariance ρLgZ �
L|g|2ρZ may be more complicated since L|g|2 may not be an operator simple to deal with. It turns out that
in this framework it will be easier to work with spectral measures rather than with the covariances. For
simplicity, from now on every even measure in M�

SGpRdq will be said to be a spectral measure over Rd.

4.3 Associated SPDEs: an existence and uniqueness Theorem

Let g be a symbol function over Rd. Let X be a stationary GeRF over Rd. Consider the following SPDE
which involves X as source term:

LgU � X. (4.3)

We recall that with our notation, Eq. (4.3) means that the equality must be strict (see Section 3.5), meaning
that LgU is a modification of X . The question that arises is to establish under which conditions there exists
a stationary GeRF U solution to (4.3) or not, whether it is unique and, when solutions exist, whether we can
characterize their covariance structures.

In order to obtain conditions about the resolvability of Eq. (4.3), let us first of all analyse sufficient
conditions to solve the weaker equation

LgU
2nd o.� X. (4.4)

From Proposition 4.2.1, it follows that if U is a solution to (4.4), then the next PDE must hold:

L|g|2ρU � ρX . (4.5)
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Equivalently, the next expression relating the spectral measures must be satisfied:

|g|2µU � µX . (4.6)

Eq. (4.6) is a multiplicative equation, so it is more immediate to treat. Such a problem is called in Distribution
Theory a division problem. We can argue that there exists a stationary solution to (4.4) if there exists a
spectral measure solution to (4.6). Intuitively, we could require µU to be the multiplication between |g|�2 and
µX . This multiplication can always be done, the result |g|�2µX being in general a positive not-necessarily
Radon measure. It is even since µX is even and g is Hermitian. Hence, a possible criterion of existence of a
stationary solution to (4.3) is to require the measure |g|�2µX to be in M�

SGpRdq. The next Theorem states
that actually, this condition is necessary and sufficient for the existence of a strict stationary solution to (4.3),
and provides in addition a criterion to determine when the solution is unique, together with the specification
of its spectral measure.

Theorem 4.3.1. Let X be a real stationary GeRF over Rd with spectral measure µX . Let g be a symbol
function over Rd and let Lg be its associated operator. Then, there exist real stationary solutions to the
SPDE (4.3) if and only if there exists N P N such that»

Rd

dµXpξq
|gpξq|2p1� |ξ|2qN   8. (4.7)

In such a case, there is a unique up to a modification real stationary solution to (4.3) if and only if |g| ¡ 0.
If this holds, the unique real stationary solution U to (4.3) has spectral measure

µU � |g|�2µX . (4.8)

The proof of this theorem relies, roughly speaking, in the correct definition of the application of an
operator of the form F�1p1

gF p�qq over X . Since 1
g is not necessarily polynomially bounded, such an

operator is not necessarily of the form (4.2) and hence it cannot be in general applied to any stationary
GeRF. The details of the proof are presented in Appendix A.10. We make the following remarks:

Remark 4.3.1. When N � 0 in (4.7), i.e. if |g|�2 is integrable with respect to the measure µX , the measure
µU is finite and the solution U is thus a mean-square continuous random function. This case was studied in
Whittle (1963), restricted to the SPDE in the second-order sense (4.4). In his same work, Whittle mentioned
that solutions corresponding to non-finite measures µU still make sense in some framework, the theory of
which was at that time not completely available. Our work can be seen as one possible answer to this note.

Remark 4.3.2. A sufficient condition for existence and uniqueness of a strict stationary solution to (4.3),
regardless of the source termX , is to require that |g| is inferiorly bounded by the inverse of a strictly positive
polynomial. Indeed, in such a case 1

g is a symbol function, and hence L 1
g

is an operator defined through a



100 CHAPTER 4. STATIONARY SOLUTIONS FOR A CLASS OF SPDES

symbol. The operator Lg : V 1pRdq Ñ V 1pRdq is actually bijective, with inverse operator L�1
g � L 1

g
. This

implies that Eq. (4.3) can be solved explicitly by setting simply U � L 1
g
X . U is then the unique stationary

solution and its spectral measure is given by (4.8), following Proposition 4.2.1. We shall henceforth refer to
this condition as the Polynomially Bounded Reciprocal condition on g, abbreviated as the PBR condition on
g. We will also say that g has a PBR, in such a case.

Remark 4.3.3. When the measurable set g�1pt0uq � tξ P Rd | gpξq � 0u is non-empty, the non-uniqueness
is due to the existence of stationary solutions to the homogeneous problem

LgUH � 0. (4.9)

Indeed, for a spectral measure µUH over Rd concentrated on g�1pt0uq, its associated stationary random field
satisfies strictly Eq. (4.9), since µLgUH � |g|2µH � 0. Thus, if existence is provided, the sum of any
stationary solution to (4.3) with a non-trivial independent stationary solution to (4.9) is also a stationary
solution to (4.3). This remark is an inspiration for describing stationary solutions to homogeneous problems,
and we will use it extensively.

Remark 4.3.4. Theorem 4.3.1 has been stated under the polynomially bounded condition on g in order to
freely apply Lg to any stationary GeRF. However, if we restrict the domain of definition of Lg, we can
include some new SPDEs, valid for more restricted classes of stationary GeRFs. For instance, let us suppose
that U is a stationary Random Function following a Gaussian covariance, with the same parameters as in Eq.
(3.4). Then, it is clear that U satisfies a SPDE of the form

F�1pgF pUqq �W, (4.10)

with g being the function

gpξq � p2πq d4 2
d
4

σa
d
2

e
a2

8
|ξ|2 , ξ P Rd. (4.11)

This function is not polynomially bounded, hence the potential associated operator Lg cannot be applied
to any arbitrary stationary GeRF, as well as it cannot be applied to any arbitrary distribution in V 1pRdq.
However, it can be applied to a Random Function with this Gaussian covariance, obtaining as a result a
White Noise.

4.4 A fundamental case: White Noise source term

In this section we will present a result concerning the particular case of equation (4.3) when the source term
X is a real White Noise W . We will see that the covariance structure of the solution in the cases with other
source terms can be related to the solution of the White Noise case in a convenient way. This can be seen
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as a special and important property of the White Noise, which can be added to all the properties given in
Examples 3.3.1, 3.3.4 and 3.4.7. We recall that W is a stationary GeRF with covariance distribution ρW � δ

and with spectral measure dµW pξq � p2πq� d
2 dξ.

We then focus on the equation
LgU �W. (4.12)

Theorem 4.3.1 allows to conclude that there exist stationary solutions to (4.12) if and only if the measure
p2πq� d

2 |gpξq|�2dξ is in M�
SGpRdq. Let us suppose this holds. From Proposition 4.2.1, every stationary

solution (4.12) must have a covariance distribution satisfying

L|g|2ρU � ρW � δ. (4.13)

It turns out that solutions to the deterministic equation (4.13) can be seen as Green’s Functions of the operator
L|g|2 , concept which is used in the theory of PDEs in order to obtain fundamental solutions to some class of
PDE. These fundamental solutions are used to construct solutions to more general forms of the PDE, usually
through a convolution. From this typical application of the theory of Green’s Functions arises the idea that
a solution to the more general case L|g|2ρU � ρX may be expressed as a convolution between ρX and the
solution to (4.13). It is then expected that such a solution would be the covariance distribution of the more
general SPDE (4.3). The next result presents some cases where this idea holds regardless of the source term
X .

Theorem 4.4.1. Let X be a real stationary GeRF over Rd with covariance distribution ρX . Let g be a
symbol function over Rd satisfying at least one of the following requirements:

1. 1
g P OM pRdq;

2. there exists N P N such that F
�p1� |x|2q�N |g|�2

� P L1pRdq.

Let Lg be the associated operator. Then, there exists a unique stationary solution to the SPDE (4.3), and its
covariance distribution is given by

ρU � ρWU � ρX , (4.14)

where ρWU denotes the covariance distribution of the unique stationary solution to (4.12).

The proof of this Theorem can be found in Appendix A.11. It is based on the idea that when there exists
a stationary solution to (4.3), the measure µU :� |g|�2µX is slow-growing and it is the multiplication of
|g|�2 and µX . Since |g|�2 is, up to a multiplicative constant, the spectral measure of a solution to (4.12),
the convolution relation comes from an application of an Exchange Formula of the Fourier Transform, if the
convolvability between the Fourier Transforms of |g|�2 and µX is satisfied. We make the following remarks.
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Remark 4.4.1 (Remark of academic honesty). A result on Distribution Theory which we found very lately
(while writing this manuscript, a few weeks before its delivery) is the one stated in Richards & Youn (1995,
Example 3, Section 6, Chapter 7). Using suitable and not-quite-traditional-but-intuitive definitions of the
multiplicativity and convolvability between tempered distributions, the authors state that any continuous and
polynomially bounded function is multiplicable (in their sense of multiplication) with any finite measure,
and hence their Fourier Transforms are convolvable, satisfying the Exchange Formula. Hence, with just a
few more arrangements, a more general and simpler form of Theorem 4.4.1 can be stated as follows:

Let X be a real stationary GeRF over Rd with covariance distribution ρX . Let g be a symbol function
over Rd such that |g|�2 is continuous and polynomially bounded. Let Lg be its associated operator. Then,
there exists a unique stationary solution to the SPDE (4.3), and its covariance distribution is given by ρU �
ρWU � ρX , where ρWU denotes the covariance distribution of the unique stationary solution to (4.12).

Conditions 1 and 2 actually imply that |g|�2 is continuous and polynomially bounded (see the arguments
in the proof of Theorem 4.4.1 in Appendix A.11). Hence, this statement is more general than Theorem 4.4.1.

The reason why we have decided to present this result in the weaker form of Theorem 4.4.1 is founded
on two motivations: first, we do not know in detail the theory of multiplication and convolution presented in
Richards & Youn (1995), hence we cannot really justify the result; second, and more important, the result
regarding the multiplicavility between polynomially bounded continuous functions and finite measures is not
proven in the book Richards & Youn (1995), it is left as an exercise. Since we have not done this exercise,
we do not feel with the right to state the result in its general form.

We remark however a curiosity: the continuity condition is imposed to |g|�2 and not to g. Hence, g may
have an irregular behaviour. The continuity of |g|�2 cannot be immediately dropped out, since the Exchange
Formula of the Fourier Transform does not hold in general for the multiplication (in our sense) between
a measurable polynomially bounded function and a slow-growing measure. As counter-example, consider
the function f � 1t0u and the Dirac measure δ. Then fδ � δ, so F pfδq � p2πq� d

2 , but F pfq � 0 in
distributional sense, and hence F pfq �F pδq � 0.

Remark 4.4.2. The conditions on g are imposed, as already said, to obtain a condition regardless of the
source term X , and hence ρX can be any positive-definite distribution. If ρX is in a particular class of
positive-definite distributions, then other less restrictive conditions may be required on g in order to obtain
an analogue result to Theorem 4.4.1. In particular, it could be argued that, as long as ρWU exists and it
is convolvable with ρX , an analogue result may hold. This can be studied, for example, in a classical
framework of convolvability between functions.

It can be thus concluded that the case with a White Noise source term is of big importance in the analysis
of the covariance structures of solutions to Eq. (4.3). The connection with the concept of Green’s Function
and fundamental solutions to PDEs justifies the use of the expression “fundamental case” in this context.
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Because of this, many of the examples of geostatistical models related to SPDEs presented in this dissertation
will be studied mainly using a White Noise source term.

4.5 Examples

The framework presented in this chapter encompasses many models already developed in the literature. In-
deed, the only things that our analysis has provided is the formalization and generalization of the idea of
defining a stationary covariance model whose spectral measure has a density with respect to other spectral
measure, and a way to relate this covariance model to a particular class of SPDEs. We refer to some biblio-
graphical sources where similar approaches have been applied to construct models, all of them considering
also an associated SPDE.

 Whittle (1963) for the general case where the spectral measure of the solution µU is finite (Remark
4.3.1).

 Heine (1955) describing models associated to second order differential operators in dimension 2 and
Vecchia (1985) for models obtained from compositions of such type of operators.

 Anh et al. (1999) and Gay & Heyde (1990) for cases associated to fractional Laplacian operators, and
(Kelbert et al., 2005) for their generalization used to describe fractional forms of the Heat equation.

 Bolin & Lindgren (2011) and Lim & Teo (2009) for more general forms of the Matérn model.

 Jones & Zhang (1997) for examples on a spatio-temporal context.

In this section we will detail some of those examples and we will also present relations of some known
geostatistical models with SPDEs which are not present in the literature. Other examples will be detailed
further in this dissertation.

Example 4.5.1 (Matérn Model). As a first example, we start with the well-known and increasingly popular
Matérn model (See Eq. (3.6)). The relationship between the Matérn Model and the SPDE over Rd

pκ2 �∆qα2 U �W, (4.15)

with κ ¡ 0, α P R has been established a long time ago (Whittle, 1963) and recently revisited and exploited
in Lindgren et al. (2011). This relationship can be easily re-obtained from Theorem 4.3.1. Indeed, the
operator pκ2 �∆qα2 is nothing but an operator of the form (4.2) with symbol function gpξq � pκ2 � |ξ|2qα2 .
This function satisfies the PBR condition, and hence there exists a unique stationary solution to (4.15).
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Following Eq. (4.8), the spectral measure of this solution is

dµWU pξq �
dξ

p2πq d2 pκ2 � |ξ|2qα
. (4.16)

If α ¡ d
2 , the measure µWU is finite, and it is exactly the spectral measure of the Matérn Model (Eq. (3.6),

with a � 1). When α ¤ d
2 , we still obtain a unique stationary solution, defined as a GeRF. We refer to this

model as the generalized Matérn Model. The associated covariance distribution ρWU � F pµWU q is called the
generalized Matérn covariance.

We remark that g is actually a function in OM pRdq, and so does its reciprocal. Hence, the operator
pκ2 � ∆qα2 is actually a bijective operator from S 1pRdq to S 1pRdq, not only in V 1pRdq. In particular, g
satisfies condition 1 in Theorem 4.4.1. Hence, for any real stationary GeRF X , the SPDE

pκ2 �∆qα2 U � X (4.17)

has a unique stationary solution whose covariance is the convolution between ρX and the generalized Matérn
covariance.

We finally remark that, for example, for α � 2, the functions of the form fpxq � aeκv
T x, x P Rd, with

a P R and v P Rd with |v| � 1, are solutions to the homogeneous equation associated to Eq. (4.15). We can
also make the parameters a and v be random variables, so we would obtain a Random Function solution to
such homogeneous equation. However, those solutions are not stationary (they are not even tempered). This
is the importance of the stationarity assumption in the researched solutions, as it was pointed out in Lindgren
et al. (2011). �

Example 4.5.2 (Matérn Model without range parameter). The condition κ ¡ 0 in the Matérn SPDE
defined in Eq. (4.15) can be relaxed. Setting κ � 0, we obtain a fractional Laplacian operator p�∆qα2 ,
which is an operator of the form Lg with symbol function gpξq � |ξ|α for α ¡ 0. Let us thus consider the
SPDE

p�∆qα2 U �W. (4.18)

In Theorem 4.3.1, the existence condition (4.7) requires that there exists N P N such that the integral³
Rdp1 � |ξ|2q�N |ξ|�2αdξ is finite. Because of the singularity at the origin, this is only possible if α   d{2.

In this case, the spectral measure of a particular stationary solution to the SPDE (4.18) is

dµU pξq � 1

p2πq d2
dξ

|ξ|2α . (4.19)

The associated covariance distribution is its Fourier Transform, which is the locally integrable function (see
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Donoghue, 1969, Chapter 32):

ρU phq � 1

π
d
2

Γpd2 � αq
Γpαq

1

|h|d�2α
, h P Rd. (4.20)

The function ρU in (4.20) is not defined at h � 0. It is not continuous, but it is still positive-definite in
distributional sense. The associated GeRF cannot thus be interpreted as a mean-square continuous Random
Function. This is an example of the kinds of covariance structures we obtain when working with non-
finite spectral measures. Such models are said to have a long-range dependence behaviour. They have been
studied in Anh et al. (1999) and in Gay & Heyde (1990), in which the SPDE (4.18) is specified with a slightly
different definition of the operator p�∆qα2 .

We remark that the symbol function gpξq � |ξ|α has a zero at the origin. Hence, the uniqueness condition
does not hold. The stationary solution associated to the covariance (4.20) is not the unique possible solution.
To describe all possible stationary solutions, we follow Remark 4.3.3 and we consider spectral measures
which are supported at the origin, i.e., which are proportionals to the Dirac measure µUH � aδ, with a ¡ 0.
The associated covariance distributions are then constant positive functions, and thus the associated GeRFs
are random constants, that is, Random Functions of the form UHpxq � A, for all x P Rd, with A being
a centred random variable with variance p2πq� d

2 a. In other words, the only stationary solutions to the
homogeneous equation p�∆qα2 UH � 0 are random constants.

Another consequence of the fact that g equals zero at the origin is that Theorem 4.4.1 cannot be applied
since |g|�2 is not continuous. If it is desired to describe the covariance of a potential stationary solution to
a SPDE of the form p�∆qα2 U � X through a similar principle, a convolvability condition between ρX and
the covariance (4.20), when it exists, must be satisfied. �

Example 4.5.3 (Markov Models). Let p : R� Ñ R�� be a strictly positive polynomial over R�. We
consider the SPDE over Rd

p
1
2 p�∆qU �W, (4.21)

where the operator p
1
2 p�∆q is of the form (4.2) with symbol function gpξq � p

1
2 p|ξ|2q. Since p is strictly

positive, the PBR condition holds. Hence, the SPDE (4.21) has a unique stationary solution with spectral
measure

dµWU pξq �
1

p2πq d2
dξ

pp|ξ|2q . (4.22)

This is a measure whose density is the reciprocal of a strictly positive and isotropic polynomial. Rozanov’s
Theorem (Y. A. Rozanov, 1982, Section 3.2.3) allows to conclude that this model is an isotropic stationary
Markov Random Field (MRF). In Rozanov’s Theory, a MRF is, roughly speaking, a GeRF such that for
every domain of Rd, evaluations of the random field on the interior of the domain are independent upon
evaluations on the interior of the complement of the domain, conditionally to the behaviour of the random



106 CHAPTER 4. STATIONARY SOLUTIONS FOR A CLASS OF SPDES

field on a neighbourhood of the boundary of the domain. By evaluations, we mean the action of the GeRF
over test-functions whose supports are included in the interior of the corresponding set. Rozanov’s Theorem
states that every stationary MRF has a spectral measure whose density is the inverse of a strictly positive
polynomial. Thus, in the case of isotropic models, MRFs satisfy equation (4.21). An anisotropic model can
be obtained by applying an anisotropy matrix to ξ in Eq. (4.22). See Y. A. Rozanov (1982) for a complete
theory of MRFs which also uses the theory of GeRFs, or J. A. Rozanov (1977) for a shorter exposition which
also includes the relation of MRFs with some SPDEs.

Note that g satisfies condition 1 in Theorem 4.4.1. Hence, for any real stationary GeRF X , there exists a
unique stationary solution to the SPDE

p
1
2 p�∆qU � X, (4.23)

whose covariance is the convolution between ρX and the covariance of the MRF solution to Eq. (4.21). �

Example 4.5.4 (The J-Bessel Model). Let U be a real Random Function over Rd following the J-Bessel
model (See Eq. (3.7), we will follow the same parametrization). Since its spectral measure is proportional to
the uniform measure over the d�1-sphere of radius κ ¡ 0, BBpdq

κ p0q, it follows that for any symbol function
g which equals 0 over BBpdq

κ p0q, U satisfies LgU � 0. This is immediate following Remark 4.3.3 since in
such a case µU is concentrated on g�1pt0uq. In particular, the J�Bessel model satisfies the homogeneous
SPDE

pκ2 �∆qU � 0, (4.24)

case for which the associated symbol function is gpξq � κ2 � |ξ|2. We remark that this is not the unique
homogeneous SPDE that is satisfied by the J�Bessel model since there are many symbol functions which
are 0 over the d �1-sphere. In addition, this equation is not only restricted to the J�Bessel model: any
stationary GeRF with spectral measure concentrated on BBpdq

κ p0q also satisfies it. However, since the Fourier
Transform of a distribution invariant under rotations is also invariant under rotations, any stationary GeRF
with isotropic covariance and satisfying (4.24) follows a J�Bessel covariance model. We remark that
SPDE (4.24) does not tell us anything about the variance of U , nor the extra isotropic condition. Hence,
more restrictions on U must be required in order to fix its variance. �

Example 4.5.5 (The Stein Model). Here we present a spatio-temporal example. We work on Rd � R with
d being the spatial dimension. The variable ξ P Rd denotes a variable of the spatial frequency domain,
and ω P R denotes a variable of the temporal frequency domain. Rather than starting from a SPDE and
describing its potential solution we make the procedure backwards: we start with a known covariance model
and we propose a SPDE that a GeRF following this model must satisfy, similarly to what we have done in
Example 4.5.4.
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Let us consider the spectral measure over Rd � R proposed in Stein (2005):

dµU pξ, ωq � 1

p2πq d�1
2

dξdω

pbps2 � ω2qβ � apκ2 � |ξ|2qαqν , (4.25)

with a, b ¡ 0, s2 � κ2 ¡ 0, and α, β, ν P R, satisfying that β ¥ 0 if s2 � 0 and α ¥ 0 if κ2 � 0. This is
always a well-defined spectral measure over Rd�R, being finite when α, β, ν ¡ 0 and 1

βν � d
αν   2 (Stein,

2005), case in which the associated Random Function is said to follow a Stein covariance model. When
(4.25) is not finite, we say that the associated GeRF follows a generalized Stein covariance model. Except
for some particular values of the parameters, there is no closed-form expression for the covariance.

We then consider the spatio-temporal symbol function

gpξ, ωq � pbps2 � ω2qβ � apκ2 � |ξ|2qαqν{2, pξ, ωq P Rd � R. (4.26)

With the conditions required on the parameters, this symbol function satisfies the PBR condition, hence
any SPDE involving the associated operator Lg has a unique stationary solution. The form of g allows us
to write its associated operator in terms of fractional second-order differential operators. Using a spatio-
temporal White Noise, W (i.e., with spectral measure dµW pξ, ωq � p2πq�pd�1q{2dξdω), a corresponding
SPDE for the Stein model is �

b

�
s2 � B2

Bt2

β
� a �κ2 �∆

�α�ν{2
U �W. (4.27)

Hence, the unique stationary solution to Eq. (4.27) follows a generalized Stein covariance model.

When κ, s, a, b ¡ 0 and α, β, ν are not null, the symbol function (4.26) satisfies condition 1 in Theorem
4.4.1. Hence, for any stationary GeRF X , the SPDE�

b

�
s2 � B2

Bt2

β
� a �κ2 �∆

�α�ν{2
U � X (4.28)

has a unique stationary solution whose covariance is the convolution between ρX and the covariance of the
generalized Stein model.

We finally remark that the models proposed in Kelbert et al. (2005, Section 3) are Stein models in the
particular cases where s � 0 and β � 1. In such cases, the SPDE (4.27) may be re-written using first-order
temporal differential operators. �
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4.6 Remark: the deterministic problem

In this section we make a simple remark about the deterministic problem associated to Eq. (4.3) and Theorem
4.3.1. It can be considered as a non-geostatistical analysis, but it can also be applied to describe the means
of non-centred GeRFs related through a SPDE of the form (4.3), analysis that we will also do.

Considering that Theorem 4.3.1 has been obtained following the idea that F pUq acts as a slow-growing
measure over Rd, it is quite intuitive that we can obtain the following deterministic result. We will use lower
case letters to denote deterministic distributions.

Proposition 4.6.1. Let f P V 1pRdq. Let g be a symbol function over Rd and let Lg be its associated operator.
Then, there exist solutions in V 1pRdq to the equation

Lgu � f (4.29)

if and only if 1
g is locally integrable with respect to F pfq and the multiplication measure 1

gF pfq is slow-
growing. If this holds, there is a unique solution in V 1pRdq to (4.29) if and only if |g| ¡ 0. In such a case,
the solution is given by

u � F�1

�
1

g
F pfq



. (4.30)

The proof of this result is very similar to the proof of Theorem 4.3.1 and it is presented in Appendix
A.12. We can also state analogous remarks to those proposed for Theorem 4.3.1:

 There exist solutions in the space F pMF pRdqq if and only if |g|�1 is integrable with respect to F pfq.

 If g satisfies the PBR condition, the solution is unique regardless of the source term f since Lg is
bijective.

 The non-uniqueness when g�1pt0uq � H is explained through the existence of solutions in V 1pRdq
to the homogeneous problem when f � 0, which can be obtained by using a slow-growing measure
concentrated on g�1pt0uq.

 More general results can be stated if we require some extra conditions on f .

The motivation to state this remark is to make a sort of comparison between the analysis we have done
in this chapter and more typical analysis presented in the theory of deterministic PDEs. In the deterministic
case, there are often many possible solutions to a proposed PDE, and one manner of selecting one of the
possible solutions is by imposing a condition to the behaviour of the solution at the boundary of the working
domain. For example, an initial condition is often used in the case of Ordinary Differential Equations or
spatio-temporal PDEs, and in the case of spatial PDEs, Dirichlet or Neumann type conditions are usually a
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basis of analysis for existence and uniqueness. These conditions are often inspired by our “knowledge” of
some physical conditions in a particular phenomenon. For instance, the initial condition requirement is based
on the idea that we “can know”, at least up to some precision, the present or past state of a system, while
we “cannot know” the future state. Dirichlet conditions are used when we “know” the values of the interest
variable at the boundary of the domain, and Neumann conditions are used when we do not necessarily know
the values of the variable at the boundary but rather we “know” some other physical condition acting on it,
like an impermeability condition. At the end of the day, all of these considerations are used in order to fix a
subspace of possible solutions where there may be a unique solution to the PDE and hence to work with this
solution. In this chapter we have done something different. The reason why we selected a particular solution
of the PDE was not founded on physical considerations but rather on a statistical methodology consideration,
namely, that the studied variable can be described by a stationary geostatistical model. Hence, the only
assumption we do about the variable is that it behaves in a “similar manner” all along the domain. This
was the inspiration of the use of the space V 1pRdq as a basis. We have not imposed boundary conditions
but rather the condition of belonging to the space V 1pRdq, which imposes some conditions on the increasing
behaviour and on the regularity of the solution. We do not know if this approach is better, in some sense,
than the classical approach of using boundary conditions and solving Cauchy problems. What we do know
is that our proposition is fairly more adapted to traditional geostatistical methodologies. At the end of the
story, the practice and contrast with data in some contexts and the exploitability and utility of the selected
model are the only criteria to discriminate between one model and another, or between one methodology and
another.

We finally present the following result which is an immediate consequence of Theorem 4.3.1 and Propo-
sition 4.6.1. Here the GeRFs are not supposed to have zero mean. We omit the proof.

Theorem 4.6.1. LetX be a real GeRF over Rd with mean distributionmX P V 1pRdq and such thatX�mX

is a stationary GeRF with spectral measure µX . Let g be a symbol function over Rd and let Lg be its
associated operator. Then, there exits a real GeRF U solution to (4.3) with mean distribution mU P V 1pRdq
and such that U �mU is stationary if, and only if, there exist N1, N2 P N such that»

Rd

d |F pmXq| pξq
|gpξq|p1� |ξ|2qN1

  8 and
»
Rd

dµXpξq
|gpξq|2p1� |ξ|2qN2

  8. (4.31)

If this holds, up to a modification, there is a unique such a solution if and only if |g| ¡ 0. In such a case, it
holds that

mU � F�1

�
1

g
F pmXq



and µU � |g|�2µX , (4.32)

where µU denotes the spectral measure of the stationary GeRF U �mU .
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Chapter 5

Spatio-temporal models driven from
evolution equations

SUMMARY

In this chapter we focus on spatio-temporal geostatistical models which can be obtained
through the SPDE approach.

In Section 5.1 we give a general introduction to space-time Geostatistics. We recall the most
important concepts in classical space-time geostatistics and we give a brief exposition of al-
ready existing methodologies to construct space-time covariance models. We recall the con-
cepts of separability and symmetry. We present the formalism of spatio-temporal Generalized
Random Fields. We present the generalized concepts of separability and symmetry. We give
simple criteria to determine if a stationary spatio-temporal GeRF is separable or symmetric
through requirements on its spectral measure. We also present the analogue of spatial and tem-
poral margins. In particular, we focus on the case where a stationary spatio-temporal GeRF
can be considered as having a continuous point-wise meaning in time.

In Section 5.2 we present new stationary space-time covariance models which can be related to
spatio-temporal SPDEs. The general setting consists of equations involving a temporal differ-
ential operator of arbitrary real positive order and a spatial operator defined through a symbol.
We give conditions when there exists a unique stationary solution to those equations regardless
of the source term and of the imaginary part of the symbol, and we specify the associated spec-
tral measure. The separability, symmetry and time regularity is easily described through the
properties of the spatial symbol function and the temporal derivative order. We remark the
cases of first and second order evolution models for which the spatial covariance structure is
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described. The subsections in this chapter are devoted to present particular examples with both
physical and statistical interest. We present two examples of already known geostatistical mod-
els grounded on physical considerations, namely through an advection-diffusion equation with
damping, and through a Langevin equation. We present the case of Evolving Matérn models,
which are spatio-temporal GeRFs following a Matérn covariance model in space. We study the
existence of stationary solutions to the stochastic Heat Equation, where we obtain the result
that there exist stationary solutions to the Heat equation with White Noise source term only for
spatial dimension higher than 2. We study models related to the stochastic Wave equation. We
show that we can construct spatio-temporal models solving the homogeneous Wave equation
and following an arbitrary spatial covariance structure. These models are called Waving mod-
els. We also show that there are no stationary solutions to the Wave equation with White Noise
source term.

In Section 5.3 we present informally the resolution of a Cauchy problem involving a first
order evolution equation with a particular initial condition. We start by solving the associ-
ated deterministic problem under the requirement that the spatial Fourier Transforms of the
source term and of the initial condition must be slow-growing measures. The solution has
a càdlàg-in-time representation. Under more restrictive conditions on the source term and
on the spatial symbol function, we claim that the solution is spatio-temporally asymptotically
convergent as the time flows to the unique tempered solution to the first order evolution equa-
tion whose spatio-temporal Fourier Transform is a slow-growing measure. We then present the
stochastic analogue, which is done in complete similarity by using GeRFs whose spatial Fourier
Transforms are slow-growing Random Measures. In the case with stationary source term and
initial condition, we claim that the solution of the Cauchy problem converges spatio-temporally
asymptotically to the unique stationary solution to the first order evolution SPDE as the time
flows. Under suitable conditions, if the initial condition follows a suitable spatial covariance
behaviour, the solution follows this same stationary space-time model. We give some examples
using separable stationary source terms. In the particular case of a white in time and coloured
in space source term, a Markovianity in time structure is described.

The proofs of the statements presented in Sections 5.1 and 5.2 are given in Appendix A. The
complete formalisation of the claims proposed in Section 5.3 is presented in Appendix C.

In this chapter we work in a spatio-temporal context. We will always work over the space-time Euclidean
domain Rd�R, where d P N� denotes the spatial dimension. The variables in the initial (or physical) space-
time will be denoted by px, tq P Rd�R, while variables in the frequency space-time domain will be denoted
by pξ, ωq P Rd � R. We suppose that all the random objects in this chapter have zero mean.
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5.1 Generalities on spatio-temporal geostatistical models

5.1.1 Classical spatio-temporal models

A classical spatio-temporal geostatistical model is a real Random Function Z indexed by the space-time
Rd�R, pZpx, tqqpx,tqPRd�R � L2pΩ,A,Pq. Its covariance function is then a positive-definite Kernel function
CZ : pRd�Rq�pRd�Rq Ñ R. In principle, there is no mathematical difference in considering a covariance
over Rd � Rd or over pRd � Rq � pRd � Rq: we have just added an extra dimension. Hence, classical
spatial geostatisical models can be extended to the spatio-temporal case without technical issues. All results
we have presented in the previous chapters of this dissertation can be applied to the spatio-temporal case,
simply replacing Rd with Rd � R; we specify the notions in the case of spatio-temporal GeRFs in Section
5.1.2. Nevertheless, in practice one needs to find models which are particularly adapted to the case of
spatio-temporal phenomena. Namely, it is often expected to use models which behave differently when
evolving over time than when changing the space variables. The covariance structure should then reflect
these differences. It is also expected that the covariance models involve parameters which can control the
statistical properties of the model when changing over time, over space, or over the whole space-time. The
difficulty is then, to find valid covariance models, that is, functions which do satisfy the positive-definiteness
condition, and still being manipulable enough in order to easily control the parameters of the space-time
interactions. Hence, new subtleties arise in the field of spatio-temporal Geostatistics which must be taken
into account.

A basic construction of a valid spatio-temporal covariance model is done through the concept of sepa-
rability. A spatio-temporal Random Function Z is said to be separable or to have a separable covariance if
there exists a spatial covariance CZS : Rd�Rd Ñ R and a temporal covariance CZT : R�RÑ R such that

CZppx, tq , py, sqq � CZS px, yqCZT pt, sq, @px, yq P Rd � Rd,@pt, sq P R� R. (5.1)

When Z is a stationary separable Random Function, the stationary covariance function can be expressed as

ρZph, uq � ρZS phqρZT puq, (5.2)

for a spatial stationary covariance function ρZS and a temporal stationary covariance function ρZT . This kind
of covariance is one of the most basic construction of valid covariance functions over the space-time. It is ob-
tained, for example, when there exist two independent Random Functions, one over the space pZSpxqqxPRd ,
the another over the time pZT ptqqtPRd , such that Zpx, tq � ZSpxqZT ptq.

Separability is an oversimple construction which often fails to reflect the variability of a variable which
varies over the space-time. Nevertheless, it is a good starting point to construct more complicated models.
An immediate extension is given by considering a so-called product-sum model (see for example, De Iaco et
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al., 2001), which is given by a finite sum of separable models:

CZppx, tq, py, sqq �
Ņ

j�1

CZS ,jpx, yqCZT ,jpt, sq, (5.3)

for finite collections of spatial and temporal covariance functions pCZS ,jqjPt1,...,Nu and pCZT ,jqjPt1,...,Nu
respectively. The case of stationary models follows immediately.

Other more popular class of non-separable stationary covariance models is the Gneiting class of covari-
ance models (Gneiting, 2002). A stationary covariance of this class is constructed through a continuous
completely monotone function fS : R� Ñ R� and a positive function fT : R� Ñ R� with completely
monotone derivative, by

ρZph, uq � σ2

fT p|u|2q d2
fS

� |h|2
fT p|u|2q



, @ph, uq P Rd � R, (5.4)

for some σ2 ¡ 0. The spatial and temporal behaviours of the covariance can be easily described through
the specification of fS and fT . Hence, this construction proposes a general and flexible way of constructing
non-separable models.

Other methodology for obtaining non-separable models with a practical parametrization is through the
specification of a convenient spectral measure, as it is done for example in the case of the Stein model
presented in Example 4.5.5. As mentioned, this controls easily the spatial and temporal regularities of the
covariance structure.

Although the Gneiting and Stein classes of covariance models are rich enough to describe some statis-
tical properties of a spatio-temporal variable, both of them have a limitation: they are symmetric or fully-
symmetric models. In a symmetric model, the direction of the time evolution is ignored, obtaining equal
covariance values if we look either forward or backward in time. More precisely, a spatio-temporal Random
Function Z is said to be spatio-temporally symmetric if its covariance function satisfies

CZppx, tq, py, sqq � CZppx, sq, py, tqq � CZppy, tq, px, sqq � CZppy, sq, px, tqq, (5.5)

for all px, yq P Rd�Rd and for all pt, sq P R�R. Although the equalityCZppx, tq, py, sqq � CZppy, sq, px, tqq
comes from the definition of covariance, the stronger equality (5.5) is an extra requirement. In the stationary
case, the symmetry is translated into the condition for the stationary covariance function:

ρZph, uq � ρZp�h, uq � ρZph,�uq � ρZp�h,�uq, @ph, uq P Rd � R. (5.6)

Separable models and product-sum models are always symmetric. It is known that symmetric models fail to
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describe the variability of a variable submitted to transport phenomena, as can be the case of atmospheric and
environmental variables. A well-known example of a non-symmetric stationary model is the one induced by a
transport phenomenon according to a constant velocity profile determined by a velocity v P Rd. For example,
if CZ : pRd � Rq � pRd � Rq Ñ R is a symmetric covariance function, then the transported covariance
CZv : pRd � Rq � pRd � Rq Ñ R defined through CZvppx, tq, py, sqq � CZppx � vt, tq, py � vs, sqq is a
non-symmetric covariance. If Z is stationary, the associated transported covariance is also stationary. This
and other examples of non-symmetric covariance models induced by a transport phenomenon can be found
in Ailliot et al. (2011).

Besides the transport approach of constructing covariance models, in the literature there are few propo-
sitions of non-symmetric covariances, often lacking in generality and/or simplicity. Stein (2005) proposes a
construction based on the derivatives of a convenient particular non-symmetric covariance Kernel. Zhang &
Zhang (n.d.) propose a not-so-simple construction of non-symmetric models with Matérn spatial and tem-
poral margins based on a convenient analogy with the conditional probability density functions of a suitable
random vector.

To finish this section, we recall a somewhat obvious and already implicitly introduced but important con-
cept in the case of stationary Random Functions. If Z is a spatio-temporal real stationary Random Function
with covariance function ρZ , then for every t P R, the spatial Random Function Zp�, tq is a stationary spatial
Random Function. Zp�, tq is said to be a spatial trace of Z. All spatial traces of Z are stationary with same
stationary spatial covariance function given by ρZS phq � ρZph, 0q for all h P Rd. The covariance ρZS is
called the spatial margin of the covariance ρZ . Analogously, for every x P Rd, the temporal Random Func-
tion Zpx, �q is called a temporal trace of Z, and all the temporal traces of Z are stationary temporal Random
Functions with same covariance function given by ρZT puq � ρZS p0, uq for all u P R. ρZT is said to be the
temporal margin of the covariance function ρZ .

We refer to Gneiting et al. (2006) for a more general discussion on spatio-temporal covariance models.

5.1.2 Spatio-temporal GeRFs

A generalized spatio-temporal geostatistical model is a real GeRF Z over Rd�R. Its covariance distribution
CZ is then a real distribution belonging to S 1ppRd � Rq � pRd � Rqq defining a positive-definite Kernel.
The covariance structure in the stationary case is described through a positive-definite even distribution
ρZ P S 1pRd � Rq and a positive even spectral measure µZ P M�

SGpRd � Rq.
Let us set some notations, mostly chosen for ease of reading. We use the letters ϕ and φ to denote spatial

test-functions (functions defined over Rd), θ for temporal test-functions (defined over R), and ψ for spatio-
temporal test-functions (defined over Rd � R). We denote by F the spatio-temporal Fourier Transform,
which is applicable to distributions in S 1pRd�Rq. We denote by FS and FT the spatial and the temporal
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Fourier Transforms, respectively, which applied to a spatio-temporal test-function ψ P S pRd � Rq are
defined as:

FSpψqpξ, tq :� 1

p2πq d2

»
Rd
e�iξ

T xψpx, tqdx ; FT pψqpx, ωq :� 1?
2π

»
R
e�iωtψpx, tqdx. (5.7)

Using typical arguments which prove the continuity and bijectivity of F (see Donoghue, 1969, Chapter
30), one can prove that both the spatial and temporal Fourier Transforms are continuous bijective endomor-
phisms over S pRd � Rq. The spatial and temporal Inverse Fourier Transforms, denoted by F�1

S and F�1
T

respectively, are defined as in (5.7) without the minus sign in the exponentials. If T P S 1pRd � Rq, its
spatial and temporal Fourier Transforms are defined respectively through their applications to a test-function
ψ P S pRd � Rq by

xFSpT q, ψy :� xT,FSpψqy ; xFT pT q, ψy :� xT,FT pψqy. (5.8)

Hence, FS and FT are simply the adjoints of the respective spatial and temporal Fourier Transforms over
S pRd�Rq, and we also have that both FS and FT are continuous bijective endomorphisms over S 1pRd�
Rq. The Inverse spatial and temporal Fourier Transforms, denoted by F�1

S and F�1
T respectively, are defined

analogously.

We will use the following notation concerning tensor products. The symbol b will be reserved to denote
spatio-temporal tensor products, that is, tensor products between two objects, one defined over the space and
the other over time. Explicitly, if S P S 1pRdq and T P S 1pRq, then S b T P S 1pRd � Rq. The same idea
applies for the tensor product between spatial test-functions (resp. measures) with temporal test-functions
(resp. measures): if ϕ P S pRdq and θ P S pRq, then ϕ b θ P S pRd � Rq (resp., if µS P MSGpRdq and
µT P MSGpRq, then µS b µT P MSGpRd � Rq). We will always follow the spatio-temporal writing order:
we write the spatial object on the left side of the tensor product b and the temporal on the right side. The
symbol b will be reserved for objects acting over the same space, that is, both acting over Rd, over R, or
over Rd � R. For instance, if Z is a spatio-temporal GeRF, ϕ1, ϕ2 P S pRdq and θ1, θ2 P S pRq, then we
have the expression

CovpxZ,ϕ1 b θ1y, xZ,ϕ2 b θ2yq � xCZ , pϕ1 b θ1q b pϕ2 b θ2qy. (5.9)

In the next sections we explain the concepts of separability, symmetry, and spatial and temporal margins
in the case of a spatio-temporal GeRF.
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Separability

A GeRF over Rd�R, Z, is said to be separable if there exists CZS P S 1pRd�Rdq and CZT P S 1pR�Rq
such that

xCZ , pϕ1bθ1qbpϕ2bθ2qy � xCZS , ϕ1bϕ2yxCZT , θ1bθ2y, @ϕ1, ϕ2 P S pRdq, θ1, θ2 P S pRq. (5.10)

When Z is separable, we denote it by Z � ZS bZT , ZS and ZT representing1 two GeRFs over Rd and over
R respectively, with covariances CZS and CZT respectively. In the stationary case, separability is equivalent
to require that the stationary covariance distribution ρZ P S 1pRd �Rq is the spatio-temporal tensor product
of two positive-definite even distributions, ρZS P S 1pRdq, and ρZT P S 1pRq:

ρZ � ρZS b ρZT . (5.12)

Consequently, the spectral measure µZ P M�
SGpRd�Rq can also be expressed as the spatio-temporal tensor

product of a spatial spectral measure µZS P M�
SGpRdq and a temporal spectral measure µZT P M�

SGpRq,

µZ � µZS b µZT . (5.13)

A typical separable model which can be found in the literature is the so-called white in time and coloured in
space noise, which is a real spatio-temporal stationary stationary GeRF with an arbitrary spatial covariance
distribution ρZS and a White Noise in time covariance ρWT

� δ P S 1pRq. Such a model is denoted by
ZS bWT . See the use of this terminology for example in Sigrist et al. (2015).

1We remark what do we mean withZS andZT representing two GeRFs rather than just being GeRFs. For simplicity we consider
the framework of Gaussian GeRFs. If ZS is a real Gaussian GeRF over Rd with covariance CZS , and ZT is a real Gaussian GeRF
over R with covariance CZT independent of ZS , then it is possible to define a GeRF over Rd � R (or at least its action over
test-functions in S pRdq bS pRq), say Z, through the expression

xZ,ϕb θy � xZS , ϕyxZT , θy, @ϕ P S pRdq,@θ P S pRq. (5.11)

In such a case, Z is called the tensor product between ZS and ZT , and hence can be denoted by Z � ZS bZT . Z has a covariance
structure given by equation (5.10), but Z is not necessarily Gaussian. However, one can always construct a Gaussian GeRF over
Rd�R having covarianceCZ , regardless of the initial spatial and temporal GeRFs ZS and ZT . In such a case, the Gaussian random
variables of the form xZ,ϕ b θy have, in principle, nothing to do with the random variables xZS , ϕy and xZT , θy. Moreover, if
we consider Z to be a Gaussian GeRF over Rd � R with covariance given by (5.10), it is not clear at all if we can construct two
GeRFs ZS and ZT , Gaussian or not, such that (5.11) holds. Hence, in this dissertation the notation Z � ZS bZT , when applied to
GeRFs, is merely symbolic and it does not mean that Z is the tensor product between two GeRFs: it rather symbolizes a separability
condition on the covariance structure of Z, and not on Z itself. The same issue is present in the case of Random Functions and
Random Measures.
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Symmetry

A real GeRF Z over Rd � R is said to be symmetric if

xCZ , pϕ1 b θ1q b pϕ2 b θ2qy � xCZ , pϕ1 b θ2q b pϕ2 b θ1qy
� xCZ , pϕ2 b θ1q b pϕ1 b θ2qy
� xCZ , pϕ2 b θ2q b pϕ1 b θ1qy,

(5.14)

for all test-functions ϕ1, ϕ2 P S pRdq and θ1, θ2 P S pRq. In the stationary case, the symmetry is equivalent
to have for the covariance ρZ P S 1pRdq:

xρZ , ϕb θy � xρZ , ϕb θ̌y � xρZ , ϕ̌b θy � xρZ , ϕ̌b θ̌y, @ϕ P S pRdq, θ P S pRq. (5.15)

Because of the properties of the Fourier Transform with respect to reflections, we obtain that a real stationary
GeRF over Rd � R is symmetric if and only if its spectral measure µZ P M�

SGpRd � Rq satisfies

dµZpξ, ωq � dµZpξ,�ωq � dµZp�ξ, ωq � dµZp�ξ,�ωq, (5.16)

condition which is more explicitly expressed through

µZpA�Bq � µZpA� p�Bqq � µZpp�Aq �Bq � µZpp�Aq � p�Bqq, @A,B P BBpRdq, (5.17)

or through,
»
Rd�R

ψpξ, ωqdµZpξ, ωq �
»
Rd�R

ψpξ,�ωqdµZpξ, ωq �
»
Rd�R

ψp�ξ, ωqdµZpξ, ωq �
»
Rd�R

ψp�ξ,�ωqdµZpξ, ωq,
(5.18)

for all ψ P S pRd�Rq. Hence, when Z is stationary and symmetric, its spectral measure is not only even in
the sense of a measure over Rd � R, having µ̌Z � µZ , but it is also invariant under partial reflections of the
space and time components. We say that such a measure over Rd � R depends on the temporal frequency
variable only through its absolute value. The usage of this characterization of µZ is inspired by the case
where µZ has a density, say dµZpξ, ωq � fµZ pξ, ωqdξdω. Indeed, in such a case, if µZ satisfies (5.18),
then fµZ satisfies fµZ pξ, ωq � fµZ pξ,�ωq � fµZ pξ, |ω|q almost everywhere. The usage of the expression
“depending on the temporal variable only through its absolute value” can be justified in more general cases
using disintegration expressions of spatio-temporal measures. We will not enter into these details in this
dissertation.

It turns out that an easy manner to obtain non-symmetric models is through the specification of a spec-
tral measure over Rd � R not depending on its temporal frequency variable only through its absolute
value. For instance, if we define a positive even and integrable function fµZ : Rd � R Ñ R� such that
fµZ pξ, ωq � fµZ pξ,�ωq for some values pξ, ωq in a set of non-null Lebesgue measure, then its spatio-
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temporal Fourier Transform provides a non-symmetric stationary covariance function. In Section (5.2) we
provide non-symmetric stationary covariance models, whose non-symmetry can be verified immediately
through this criterion.

Spatial and Temporal Margins

In the case of a spatio-temporal GeRF Z, the spatial and temporal traces or margins are not immediate to
describe since we cannot always evaluate at a fixed point x P Rd or t P R. An approach fixing a spatial
test-function ϕ P S pRdq and then analysing the structure of the associated temporal GeRF xZ,ϕ b �y can
always be done, as well as in the other sense fixing a temporal test-function θ P S pRq. We will not enter into
these details. We will rather present a case which is a kind of middle ground between the case of Random
Functions and GeRFs, in the context of spatio-temporal stationary GeRFs.

Let Z be a real stationary GeRF over Rd � R, and consider its spectral measure µZ P M�
SGpRd � Rq.

In the case of a continuous stationary Random Function, µZ is finite. In the case of a general GeRF, µZ is
slow-growing, not necessarily finite. We say that µZ is temporally integrable if it satisfies

µZpA� Rq   8, @A P BBpRdq. (5.19)

When µZ is temporally integrable, the covariance distribution ρZ has a continuous meaning in time. Let us
explain this notion. Since µZ is temporally integrable, its temporal Fourier Transform FT pµZq, which is a
tempered distribution over Rd � R, can be identified with a measure-function Kernel, FT pµZq : BBpRdq �
RÑ C, defined through

FT pµZqpA, uq � 1?
2π

»
A�R

e�iuωdµZpξ, ωq, A P BBpRdq, u P R. (5.20)

Equivalently, FT pµZq can be identified with a distribution-function Kernel, FT pµZq : S pRdq � R Ñ C
through

FT pµZqpϕ, uq � 1?
2π

»
Rd�R

e�iuωϕpξqdµZpξ, ωq, ϕ P S pRdq, u P R. (5.21)

A typical application of Dominated Convergence Theorem allows to conclude that for every ϕ P S pRdq,
the function u P R ÞÑ FT pµZqpϕ, uq is continuous. Since ρZ � F pµZq � FSpFT pµZqq, one may define
for every u P R the spatial distribution ρuZ P S 1pRdq:

ρuZ � FSpFT pµZqp�, uqq, (5.22)
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whose explicit expression is

xρuZ , ϕy � FT pµZqpFSpϕq, uq � 1?
2π

»
Rd�R

e�iuωFSpϕqpξqdµZpξ, ωq, @ϕ P S pRdq. (5.23)

The following fact follows from Fubini’s Theorem: there exists a family of spatial tempered distributions
pρuZquPR � S 1pRdq such that:

 for all ϕ P S pRdq, the function u P R ÞÑ xρuZ , ϕy is continuous.

 for all ϕ P S pRdq and for all θ P S pRq, it holds that

xρZ , ϕb θy �
»
R
xρuZ , ϕyθpuqdu. (5.24)

In general, any spatio-temporal tempered distribution ρZ P S 1pRd�Rq satisfying these conditions is known
as a continuous-in-time distribution, and the family of spatial distributions pρuZquPR � S 1pRdq is known
as the continuous-in-time representation of ρZ .

When a spatio-temporal real stationary GeRF Z has a temporally integrable spectral measure, it can be
proven that Z itself has a continuous meaning in time. This can be seen intuitively from the fact that its
covariance distribution ρZ is continuous in the time component. Let us explain this formally. We say that Z
is continuous in time or that it has a continuous-in-time representation if there exists a family of spatial
GeRFs pZtqtPR such that

 for all ϕ P S pRdq, the Random Function t P R ÞÑ xZt, ϕy is continuous in mean-square.

 for all ϕ P S pRdq and for all θ P S pRq, it holds that

xZ,ϕb θy �
»
R
xZt, ϕyθptqdt. (5.25)

We obtain the following result.

Proposition 5.1.1. Let Z be a real stationary GeRF over Rd � R such that its spectral measure µZ is
temporally integrable. Then, Z has a continuous-in-time representation, pZtqtPR. Moreover, if ρZ is the
stationary covariance distribution of Z and pρuZquPR is its continuous-in-time representation, then it holds
that

CovpxZt, ϕy, xZs, φyq � xρt�sZ , ϕ � φ̌y, @ϕ, φ P S pRdq,@t, s P R. (5.26)

The proof of this result is given in Appendix A.13. Hence, we are able to evaluate the spatio-temporal
GeRF Z at time locations, as it would be a temporal function, without technical issues. Every member of the
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family pZtqtPR is called a spatial trace of Z. It is not hard to conclude from Proposition 5.1.1 that for every
t P R, the spatial GeRF Zt is a stationary real GeRF over Rd, with covariance distribution ρt�tZ � ρ0

Z and
hence, as expected, all spatial traces have the same spatial covariance structure, given by ρ0

Z . We denote by
ρZS :� ρ0

Z and we call it the spatial margin of the covariance distribution ρZ . The spectral measure of the
spatial traces can be obtained by evaluating (5.20) at 0, obtaining the measure defined through

µZS pAq :� 1?
2π
µZpA� Rq, @A P BBpRdq. (5.27)

Hence, we obtain the spectral measure of the spatial traces of Z through the temporal integration of its
spectral measure. It follows that ρZS � FSpµZS q. We write generically ZS representing any spatial trace of
Z.

It is also concluded from Proposition 5.1.1 that for every ϕ P S pRdq, the continuous Random Function
t ÞÑ xZt, ϕy is stationary. Its covariance function, denoted by ρϕZT , is given by ρϕZT puq � xρuZ , ϕ � ϕ̌y for all
u P R. We call ρϕZT the ϕ�temporal margin of the covariance distribution ρZ . If we change ϕ with another
test-function φ P S pRdq, the covariance ρφZT is in general a different distribution. An equality is anyway
present when φ is a translation of ϕ. We do not enter in details about the spectral measures associated to
these temporal margins.

When µZ is temporally integrable, it is possible to prove that the Fourier Transform of Z, say MZ �
F pZq, which is a slow-growing orthogonal Random Measure, is also temporally integrable in the sense that
the random variables of the form MZpA�Rq, with A P BBpRdq, are well-defined square-integrable random
variables. This notion can be extended immediately to every spatio-temporal Random Measure. We do not
enter in details.

We finally remark that this procedure can be done analogously in the other sense, by using spatio-
temporal spectral measures spatially integrable, obtaining a stationary GeRF which is continuous in space.

5.2 Evolution equations: new stationary spatio-temporal models

In the most general sense, any spatio-temporal PDE or SPDE deserves to be called an evolution equation.
However, in this section we will restrict this name to a particular class of SPDEs which involves an operator
which is the sum of a temporal differential operator of arbitrary order (including fractional operators), and a
purely-spatial operator defined through a symbol. We will also restrict our analysis to stationary models, in
order to apply the results of Chapter 4.

We consider thus SPDEs over Rd � R of the form:

BβU
Btβ � LgU � X, (5.28)
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where X is a real stationary spatio-temporal GeRF, β ¡ 0 and g : Rd Ñ C is a spatial symbol function. We
denote by gR the real part of g and gI the imaginary part of g. For this class of SPDEs, we study in detail
several examples of physical and statistical interest. They involve for example Langevin-type equations,
advection, diffusion and wave propagation phenomena.

First of all, for β ¡ 0, we specify the definition of the fractional differential operator Bβ
Btβ :

Bβ
Btβ :� F�1

T ppiωqβFT p�qq. (5.29)

Hence, Bβ
Btβ is nothing but an operator defined through a symbol (Eq. (4.2)), specifically through the symbol

function over R:
ω ÞÑ piωqβ :� |ω|βei sgnpωqβ π

2 . (5.30)

The function (5.30) is Hermitian, continuous and bounded by a polynomial for every β ¡ 0, so it is indeed
a well-defined symbol function. Similar definitions of a fractional differential operator can be found in
Mainardi et al. (2007). We call a fractional order evolution model every real spatio-temporal stationary
solution of the SPDE (5.28) with β R N. For β P N, (5.29) coincides with a classical differential operator.
The corresponding stationary solutions are called β-th order evolution model.

The spatio-temporal symbol function of the operator involved in (5.28) is the function

pξ, ωq P Rd�R ÞÑ piωqβ�gpξq � |ω|β cos

�
βπ

2



�gRpξq�i

�
sgnpωq|ω|β sin

�
βπ

2



� gIpξq



. (5.31)

Theorem 4.3.1 allows us to conclude that there exists stationary solutions to (5.28) if and only if the measure

dµU pξ, ωq � dµXpξ, ωq
|piωqβ � gpξq|2 , (5.32)

is slow-growing. We will focus on the result stated on Remark 4.3.2 and look at for conditions on g such that
(5.31) satisfies the PBR condition and thus to have a unique stationary solution regardless of the source term
X . The next proposition, proven in Appendix A.14, allows us to identify the cases where the PBR condition
holds regardless of the imaginary part gI .

Proposition 5.2.1. Let gR : Rd Ñ R be an even and polynomially bounded measurable function. Then,
the spatio-temporal function defined through (5.31) satisfies the PBR condition for every odd polynomially
bounded measurable function gI : Rd Ñ R if and only if gR satisfies the PBR condition and gR cospβπ2 q ¥ 0.

We suppose that the conditions on gR in Proposition 5.2.1 hold. Let us study the properties of this kind
of model. For simplicity, we restrict ourselves to the cases where X is a separable model X � XS bXT .
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The spectral measure of the unique stationary solution to (5.28) is then

dµU pξ, ωq � dµXS pξqdµXT pωq
|ω|2β � 2|ω|β

�
gRpξq cos

�
βπ
2

	
� sgnpωqgIpξq sin

�
βπ
2

		
� |gpξq|2

. (5.33)

A separable model is obtained when gI � 0 and gR is a constant function. Otherwise, the model is not
separable. The function sgn in (5.33) allows to identify the cases where the spectral measure does not depend
on the argument ω only through |ω| and thus the symmetry of the model can be controlled. A symmetric
model is then obtained when β is an even integer or when the function gI is null. A non-symmetric model
is obtained otherwise. In this case the non-symmetry can be parametrized by controlling the function gI .
This fact is what gives importance to Proposition 5.2.1 since in the cases considered in this Proposition the
function gI can be controlled freely. The mean-square temporal regularity of the associated random field
depends on the parameter β, as it can be seen by analysing the temporal-integrability of the measure µU .
Thus, this model allows a practical control of the separability, symmetry and regularity conditions.

The covariance structure of a spatial trace of this model can be described if the measure µU is temporally-
integrable, that is, if

³
R |piωqβ � gpξq|�2dµXT pωq   8. Let us restrict ourselves to the case where X is a

White Noise in time, X � XS bWT , i.e. dµXpξ, ωq � dµXS pξqdµWT
pωq � dµXS pξqp2πq�

1
2dω. In that

case, the measure µU is temporally-integrable when β ¡ 1
2 . The spectral measure of the spatial traces can

be obtained by calculating the corresponding integral. We study the spatial structure in the case gI � 0. The
general case with gI � 0 is much more technical and we have not found simple and enlightening expressions
for the spatial covariance behaviour, so it is not presented in this dissertation. The spectral measure of a
spatial trace US is then

dµUS pξq �
1

2π

»
R

dω

|ω|2β � 2|ω|βgRpξq cos
�
π
2β
�� g2

Rpξq
dµXS pξq (5.34)

� |gRpξq|
1
β
�2

πβ

» 8
0

θ
1
β
�1

θ2 � 2θ sgnpgRq cos
�
π
2β
�� 1

dθloooooooooooooooooooooomoooooooooooooooooooooon
�Iβ

dµXS pξq, (5.35)

where we have used the parity of the function with respect to ω and then used the change of variable ω �
p|gRpξq|θq

1
β . The integral Iβ does not depend on ξ since gR does not change in sign. This integral can be

computed (see for instance Gradshteyn & Ryzhik, 2014, 3.252.12). In particular, I1 � I2 � π{2. Then, the
spatial traces of the solution satisfy the spatial SPDEd

πβ

Iβ
L
|gR|1�

1
2β
US

2nd o.� XS . (5.36)
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This model has a continuous point-wise meaning when the function |gR|
1
β
�2 is integrable with respect to the

measure µXS , case in which the measure µU is a finite measure.

Condition 1 in Theorem 4.4.1 does not hold when β R N since the symbol function (5.31) is not smooth.
The case β P N can be worked out supposing some regularity conditions on g. We present the corresponding
analysis for the cases β P t1, 2u. We are not going to focus on condition 2 in Theorem 4.4.1. We remark that
if the statement that we have considered in Remark 4.4.1 holds, then it is sufficient to consider g continuous
satisfying conditions in Proposition 5.2.1 to obtain a convolution result such as in Theorem 4.4.1. Indeed, in
such a case, the function pξ, ωq ÞÑ |piωqβ � gpξq|�2 is continuous and polynomially bounded.

A first order evolution model is a stationary solution of Eq. (5.28) when β � 1. Let us set X � W ,
the spatio-temporal White Noise. The spectral measure is then

dµWU pξ, ωq �
1

p2πq d�1
2

dξdω

pω � gIpξqq2 � g2
Rpξq

. (5.37)

From this we obtain that its covariance is of the form

ρWU ph, uq � FS

�
ξ ÞÑ 1

p2πq d2
eiugIpξq�|u||gRpξq|

2|gRpξq|

�
phq. (5.38)

This model can then be seen as a mixture of (complex) exponentials. For ease of reading, we have used a
functional notation for the variables ph, uq in (5.38), but ρWU is not necessarily a function. Generally, it is a
tempered distribution, and it depends on gR if this distribution can be identified with a continuous function
or not. A continuous function is obtained when |gR|�1 is an integrable function. The spatial margin of ρWU
is obtained by setting u � 0 in (5.38). We see that it does not depend on gI . Thus, Eq. (5.36) can be used to
describe the spatial behaviour of the model for the case XS �WS , including the cases where gI � 0.

A similar analysis can also be done easily for the case X � XS bWT , a coloured in space and White
in time noise. For that, it is enough to replace the term dξ in (5.37) with p2πqd{2dµXS pξq. The covariance
ρXSbWT
U in such a case is given by

ρXSbWT
U ph, uq � FS

�
ξ ÞÑ eiugIpξq�|u||gRpξq|

2|gRpξq| dµXS pξq
�
phq. (5.39)

Setting u � 0, the covariance of a spatial trace is simply

ρXSbWT
US

phq � FS

�
ξ ÞÑ 1

2
|gRpξq|�1dµXS pξq



phq, (5.40)

from where we obtain immediately that the spatial traces follow the SPDE in second-order sense (c.f. Eq.
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(5.36)) ?
2L|gR|� 1

2

2nd o.� XS (5.41)

We thus obtain a particular description which holds for first order evolution models: the spatial behaviour
is completely described by gR, while the spatio-temporal non-symmetry is described by gI . This does not
necessarily hold for other values of β, as it will be shown for the case β � 2.

Condition 1 in Theorem 4.4.1 can be applied if gR, gI and 1{gR are in OM pRdq, since in this case the
reciprocal of the spatio-temporal symbol function pξ, ωq ÞÑ iω � gpξq is in OM pRd �Rq. We obtain in that
case that the covariance of the solution with an arbitrary source term X is the convolution ρWU �ρX , with ρWU
given by (5.38).

A second order evolution model is a stationary solution of Eq. (5.28) when β � 2. Consider again
X � W . Since gR satisfies conditions in Proposition 5.2.1, in particular gR   0. The spectral measure is
then

dµWU pξ, ωq �
1

p2πq d�1
2

dξdω

pω2 � gRpξqq2 � g2
I pξq

, (5.42)

and the covariance distribution ρWU is the Fourier Transform of µWU . To simplify the notation, consider the
complex spatial function γ : ξ ÞÑ C defined through

γpξq �
c
|gpξq| � gRpξq

2
� i
c
|gpξq| � gRpξq

2
, @ξ P Rd. (5.43)

The function γ is never null since gR   0. Let us denote by γR and γI the real and imaginary parts of γ
respectively. The covariance ρWU is then

ρWU ph, uq � FS

�
ξ ÞÑ e�p|γIpξq|�iγRpξqq|u|

p2πq d2 8|γIpξq|2
�

1

|γIpξq| � iγRpξq �
ei2γRpξq|u|

|γIpξq| � iγRpξq �
ei2γRpξq|u| � 1

iγRpξq
��

phq.
(5.44)

The term pei2γRpξq|u| � 1q{iγRpξq is interpreted to be equal to 2|u| when γRpξq � 0, which corresponds to
gIpξq � 0. This covariance distribution is a continuous function if the function |γI |�1|γ|�2 is integrable
over Rd, which is equivalent to require that the function |g|�1p|g| � gRq� 1

2 is integrable over Rd. Contrarily
to the case of first order evolution models, this model is always symmetric and the covariance structure of
the spatial traces depends on both gR and gI , as it can be seen by evaluating (5.44)) at u � 0. Thus, Eq.
(5.36) does not hold for gI � 0. The spectral measure of a spatial trace is

dµWUS pξq �
dξ

p2πq d2 2
?

2|gpξq|
a
|gpξq| � gRpξqq

, (5.45)
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from which we obtain that a spatial trace US satisfies the spatial SPDEb
2
?

2Lb|g|
?
|g|�gR

US
2nd o.� WS , (5.46)

where WS is a spatial White Noise. An analogue expression is obtained in the case X � XS bWT , by
replacing WS by XS in (5.46)) and dξ by p2πqd{2dµXS pξq in (5.42)) and (5.45)). When X is a general
spatio-temporal stationary GeRF, a sufficient condition to apply Theorem 4.4.1 is that gR, 1{gR and gI are in
the space OM pRdq. In this case, the only stationary solution to the SPDE (5.28) with β � 2 has a covariance
of the form ρU � ρWU � ρX , where ρWU is given by (5.44)).

We now present some particular models inspired by physical and statistical literature. In some cases
Proposition 5.2.1 can be applied. In other cases, there is no uniqueness and sometimes not even existence of
stationary solutions.

5.2.1 Some examples from the literature

We present two briefs examples of models which are inspired by physical consideration and have been used
to define geostatistical models.

Example 5.2.1 (Advection-diffusion equation.). Sigrist et al. (2015) propose estimation methods and sim-
ulation algorithms for the unique stationary solution of the SPDE over Rd � R:

BU
Bt � κ

2U � vT∇U � divpΣ∇Uq � XS bWT , (5.47)

where κ ¡ 0 is a damping parameter, v P Rd is a velocity vector and Σ is a symmetric positive-definite
matrix controlling non-isotropic diffusion. WT is a temporal White Noise and XS represents a stationary
spatial random field. This equation, known as the advection-diffusion equation, is a particular first order
evolution model. Its spatial symbol function is

gpξq � κ2 � ξTΣξ � ivT ξ,

for which conditions in Proposition 5.2.1 are satisfied. Without advection (v � 0), this equation was studied
in Whittle (1963) in a non-generalized framework. Sigrist et al. (2015) consider a Matérn Model for XS ,
with smoothness parameter equals to 1, corresponding to α � 2 in (3.6) when d � 2. The spatial behaviour
of this model is described by the SPDE (5.36) for β � 1.

Example 5.2.2 (A Langevin Equation). Using linear response theory, Hristopulos & Tsantili (2016) pro-
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pose stationary random fields which are solutions to the following Langevin equation

BU
Bt �

D

2kdη0

�
1� η1k

2∆� νk4∆2
�
U �W, (5.48)

with D, k, η0 ¡ 0, η1, ν ¥ 0. The parameter ν is called the curvature coefficient. For simplicity, let
C � D{p2kdη0q. For this first order evolution model, the spatial symbol function is

gpξq � C
�
1� η1k

2|ξ|2 � νk2|ξ|4� ,
which satisfies conditions of Proposition 5.2.1. Hence, (5.48) has a unique stationary solution, whose spectral
measure can be obtained using the general expression of first order evolution model in (5.37). Hristopulos
& Tsantili (2016) provide expressions of the related covariance structures, which are functions for d ¤ 3,
and which can be obtained through formulas similar to (5.38) in combination with the Fourier Transform of
radial functions. The spatial behavior of this model can be described following equation (5.36), with spatial
White Noise source term, XS �WS .

5.2.2 Evolving Matérn model

In the most general term, we call Evolving Matérn model every spatio-temporal GeRF such that its spatial
traces follow Matérn covariance models. In the case of stationary solutions to Eq. (5.28), evolving Matérn
models can be obtained by adequately controlling g, X or both. In this section we focus on stationary
solutions to equations of the form

BβU
Btβ � sβapκ

2 �∆qα2 U �W, (5.49)

where W is as usual a spatio-temporal White Noise, κ2, a ¡ 0, α P R, and sβ is a parameter that takes the
value 1 or �1 depending conveniently on β in order to obtain conditions in Proposition 5.2.1 for gpξq �
sβapκ2 � |ξ|2qα2 . There is then a unique stationary solution to (5.49). Its spectral measure is

dµU pξ, ωq � 1

p2πq d�1
2

dξdω

|ω|2β � 2|ω|βapκ2 � |ξ|2qα2 | cos
�
βπ
2

	
| � a2pκ2 � |ξ|2qα

. (5.50)

Following Eq. (5.36), when β ¡ 1
2 the spatial traces of this model follow the spatial SPDEd
πβ

Iβ
a

1� 1
2β pκ2 �∆q

α
2

�
1� 1

2β

	
US

2nd o.� WS , (5.51)
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where WS is a spatial White Noise. Direct identification between (5.51) and the SPDE (4.15) in Exam-
ple 4.5.1 indicates that the spatial covariance is a Matérn covariance. It has a functional meaning when
α p1� 1{p2βqq ¡ d{2. Explicit expressions of the covariance can be obtained using expressions of the
Fourier Transform of radial functions (Donoghue, 1969, chapter 41).

In particular, for β � 1, we get

ρU ph, uq � 1

p2πq d2 |h| d�2
2

» 8
0
J d�2

2
p|h|rqe

�apκ2�r2qα2 |u|

2apκ2 � r2qα2 r
d
2 dr, (5.52)

where Jb denotes the Bessel function of the first kind of order b. This model has also been proposed in
Jones & Zhang (1997), in which an approach similar to our framework was followed for first order evolution
equations. This is a symmetric non-separable model which can be identified as a mixture of a J�Bessel
model in space with an exponential model in time.

Notice that in this case β � 1 we can add a non-null imaginary part gI to the symbol function without
changing the spatial behaviour, thereby generating non-symmetric evolving Matérn models. This can be
concluded from our development explained above concerning first order evolution models. However, in such
a case the expression (5.52) no longer applies.

For β � 2, one gets

ρU ph, uq � 1

p2πq d2 |h| d�2
2

» 8
0
J d�2

2
p|h|rqe

�?apκ2�r2qα4 |u|p1�?apκ2 � r2qα4 |u|q
4a
?
apκ2 � r2q 3α4

r
d
2 dr. (5.53)

This covariance is a mixture of J�Bessel model in space and a Matérn model in time since the spectral
measure (5.42) has the form of a Matérn spectral measure in ω (we recall that gR   0 for β � 2 and gI � 0).
This covariance has a functional meaning for α ¡ 2d

3 . Notice that this mixture property between a J�Bessel
model in space and a Matérn model in time does not hold for β R t1, 2u, the spectral measure (5.50) having
not the form of a Matérn spectral measure in the variable ω.

Notice that both gR and 1{gR are in OM pRdq. Thus, for β P t1, 2u Theorem 4.4.1 can be applied. In
these cases, the covariance of the solution to an equation of the form (5.49) with an arbitrary source term X

is the convolution between (5.52) for β � 1 (respectively (5.53) for β � 2) and ρX .

Some classes of models which are evolving Matérn models can be found in the literature. For instance,
for the cases β P N these models are Stein models. See the correspondences between Eq. (4.25) and Eq.
(5.50) in those cases, considering the temporal scale parameter s � 0. The advection-diffusion equation ex-
posed in Example 5.2.1 also provides evolving Matérn models. The Langevin equation presented in Example
5.2.2 provides evolving Matérn models when the curvature coefficient ν equals 0 and η1 ¡ 0.
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We finally remark that we also obtain evolving Matérn models when replacing W in Eq. (5.49) with a
coloured in space and white in time noise,XSbWT , withXS following a Matérn model with scale parameter
κ. Another example of evolving Matérn model is the Waving Matérn model, which will be exposed in Section
5.2.4.

5.2.3 Heat equation

We now consider the stochastic Heat (or Diffusion) Equation over Rd � R

BU
Bt � a∆U � X, (5.54)

where a ¡ 0 is the diffusivity parameter. It is a first order evolution model with spatial symbol function
gpξq � a|ξ|2. In this case, the spatio-temporal symbol function pξ, ωq ÞÑ iω � a|ξ|2 is not strictly positive,
the origin being the only zero of g. From Theorem 4.3.1, there is no uniqueness of stationary solutions,
if they exist. Following Remark 4.3.3, since the only zero point of the symbol function is the origin, the
stationary solutions to the homogeneous problem

BUH
Bt � a∆UH � 0 (5.55)

must have spectral measures supported on the origin, hence proportional to the Dirac measure. We conclude
that the only stationary solutions to the homogeneous Heat Equation are random constants (c.f. Example
4.5.2).

Because of the singularity at the origin of the function |g|�2, the existence condition (4.7) does not
always hold. Existence needs to be checked for each source term X . Let us first consider the case where the
source term is a spatio-temporal White Noise. Equation (5.54) becomes

BU
Bt � a∆U �W. (5.56)

Using Theorem 4.3.1, one concludes (see Appendix A.15.1) that there exist stationary solutions to the
stochastic Heat equation (5.56) only for spatial dimensions d ¥ 3. In addition, in these cases, the solutions
can only be conceived as GeRFs and never as continuous Random Functions. When d � 3, computations
reported in Appendix A.15.2 show that the covariance structure of a particular solution is described by

ρWU ph, uq �
1

p2πq d�1
2

π

2a|h| erf

�
|h|

2
a
a|u|

�
. (5.57)

Since the covariance (5.38) is not defined at |h| � |u| � 0, it must be interpreted in a suitable distributional
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sense which is also explained in Appendix A.15.2. A spatial trace of the stationary GeRF associated to
(5.57), US , can be described evaluating this covariance in u � 0 with h � 0. We obtain that US satisfies the
spatial SPDE ?

2p�∆q 12US 2nd o.� WS , (5.58)

where WS is a spatial White Noise. In other words, US is a Matérn model without range parameter as
presented in Example 4.5.2 (see Eq. (4.18)).

When X is an arbitrary source term, Theorem 4.4.1 cannot be applied for spatial dimensions smaller
than 3. For d � 3, a convolvability condition between ρX and (5.57) must be satisfied. Nevertheless, the
existence of a solution can be ensured independently of the existence of solutions with White Noise source
term by imposing some sufficient conditions on µX such that the existence criterion (4.7) in Theorem 4.3.1
holds. For example, one could require µX to be concentrated on the complementary of some neighbourhood
of the origin.

5.2.4 Wave equation and Waving models

As a final example we consider the stochastic wave equation

B2U

Bt2 � c
2∆U � X, (5.59)

where X is a real stationary random field and c ¡ 0 is the wave propagation velocity. This is a second order
evolution model with spatial symbol function gpξq � c2|ξ|2. The null-set of the associated spatio-temporal
symbol function pξ, ωq ÞÑ �ω2 � c2|ξ|2 is the spatio-temporal cone Cc � tpξ, ωq P Rd � R | |ω| � c|ξ|u
(see Example 2.1.3). As a consequence, uniqueness of a potential stationary solution does not hold.

We call a Waving model any spatio-temporal real stationary GeRF solution to the homogeneous Wave
equation

B2UH
Bt2 � c2∆UH � 0. (5.60)

Following Remark 4.3.3, the spectral measure of such a model must be concentrated on Cc. Following Eq.
(2.41), if µUH is the spectral measure of a stationary solution to (5.60), then µUH is of the form

xµUH , ψy �
»
Rd
ψpξ, c|ξ|qdµ1pξq �

»
Rdzt0u

ψpξ,�c|ξ|qdµ2pξq, @ψ P S pRd � Rq, (5.61)

for some measures µ1, µ2 P M�pRdq. Since µUH must be slow-growing, then µ1, µ2 P M�
SGpRdq (Propo-

sition 2.1.3), and since µUH must be even, it turns out that µ1 and µ2 are equal over Rdzt0u and both are
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even. Hence, there exists an even measure µUSH P M�
SGpRdq, i.e. a spatial spectral measure, such that

xµUH , ψy �
?

2π

»
Rd

ψpξ, c|ξ|q � ψpξ,�c|ξ|q
2

dµUSH
pξq, @ψ P S pRd � Rq. (5.62)

Hence, all stationary solutions of (5.60) have a spectral measure of the form (5.62), and conversely, every
measure of the form (5.62), with µUSH being a spatial spectral measure, is a spectral measure over Rd �
R whose associated stationary GeRFs are solutions to (5.60). The factors

?
2π and 1

2 are included for
convenience. Another way of expressing measures of this form is through the disintegration language:

dµUH pξ, ωq �
?

2πd

�
δ�c|ξ| � δc|ξ|

2



pωqdµUSH pξq. (5.63)

The associated covariance distribution over Rd � R is its Fourier Transform, which is

ρUH ph, uq � FS

�
ξ ÞÑ cospc|ξ||u|qdµUSH pξq

	
phq. (5.64)

By setting u � 0, it follows that the covariance of a spatial trace is the spatial Fourier Transform of µUSH ,
and hence µUSH is the spectral measure of the spatial traces, describing then the spatial behaviour of the
solution UH . We conclude that a Waving model can follow any arbitrary spatial covariance model, which
can be chosen freely by fixing the spatial spectral measure µUSH . In addition, if this spatial spectral measure
is finite, the associated Waving model is a continuous Random Function over Rd � R, since in such a case
the measure (5.63) is finite.

We consider as example the case of Waving Matérn models, which are Waving models which follow a
Matérn model in space. Hence, their spectral measures must be of the form (5.62), with dµUSH being of the
form

dµUSH
pξq � dξ

p2πq d2 apκ2 � |ξ|2qα
, (5.65)

with a, κ ¡ 0 and α P R. The associated covariance is

ρph, uq � FS

�
ξ ÞÑ cospc|ξ||u|q

p2πq d2 apκ2 � |ξ|2qα

�
phq. (5.66)

Let us now go back to the existence of stationary solutions to (5.59) in a non-homogeneous form. Con-
sider the case X �W , i.e.

B2U

Bt2 � c
2∆U �W. (5.67)

Since the function pξ, ωq ÞÑ p�ω2 � c2|ξ|2q�2 is not locally integrable, by applying Theorem 4.3.1 we
conclude that there are no stationary solutions to the stochastic wave equation (5.67). Hence, we cannot
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apply Theorem 4.4.1 to relate the covariance of a possible stationary solution of (5.59) to the covariance of
the solution with White Noise source term. The existence of a stationary solution to (5.59) must be then
studied for every particular case of X . Notice however that the existence is guaranteed when the support of
the spectral measure of the source term µX and the spatio-temporal cone Cc are separated by neighbourhoods.

5.3 Further developments on first order evolution models

In this section we discuss informally the particular case of first order evolution models satisfying a particular
initial condition. The resolution of an associated Cauchy problem in a general case provides spatio-temporal
geostatistical models which are in general non-separable, non-symmetric, and non-stationary. Under suitable
conditions, we are able to prove an asymptotic convergence to a spatio-temporal stationary solution when
the time flows enough.

The formal definitions and proofs of the statements proposed in this section are presented in Appendix
C.

5.3.1 The deterministic problem

We will follow a more typical approach in analysis of PDEs and SPDEs. We will first of all consider the
deterministic problem of finding a solution to the Cauchy problem over Rd � R�:$&%

BU
Bt � LgU � X

U
��
t�0

� U0

. (5.68)

Here X is a distribution over Rd � R and U0 is a distribution over Rd, both of them belonging to suitable
subspaces of tempered distributions. g : Rd Ñ C is a continuous spatial symbol function with real part gR
and imaginary part gI for which we suppose in addition that gR ¥ 0. The fact that we require an initial
condition to be satisfied implicitly requires that the solution must have a functional meaning in time, or at
least at a neighbourhood of t � 0. This condition is obtained by requiring suitable conditions on X .

We require X to be in the subspace of tempered distributions such that their spatial Fourier Transforms
are slow-growing measures over Rd�R�. U0 is also required to be such that its (spatial) Fourier Transform
is a slow-growing measure over Rd. We apply then a spatial Fourier Transform to (5.68), and we obtain the
transformed Cauchy problem $&%

BV
Bt � gV � Y

V
��
t�0

� V0

, (5.69)

where Y � FSpXq is a slow-growing measure over Rd�R� and V0 � FSpU0q is a slow-growing measure
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over Rd. In such a case we can prove the existence of a unique solution V to (5.69), which is a slow-growing
measure over Rd � R� and which can be described in a particular convenient way which will be specified
further. For now, we remark that in a classical case where Y and V0 are sufficiently regular functions (for
example in S pRd � Rq and S pRdq respectively), the solution to (5.69) is given by

V pξ, tq � e�tgpξqV0pξq �
» t

0
e�pt�sqgpξqY pξ, sqds, (5.70)

and the solution to (5.69) is the inverse spatial Fourier Transform of V . Supposing that the function ξ ÞÑ
e�tgpξq is integrable for every t ¡ 0, the solution can be expressed through the Duhamel’s Formula:

Upx, tq � pΦt � V0qpxq �
» t

0

�
Φt�s

pRdq� Y p�, sq


pxqds, (5.71)

where
Φupxq � p2πq

d
2 FSpξ ÞÑ e�ugpξqqpxq, @u ¡ 0. (5.72)

In (5.71), the symbol
pRdq� denotes a spatial convolution between the spatial function Φt�s and the spatial

function Y p�, sq. We remark that Φ0 can be interpreted as the Dirac measure at 0. The regular case of formula
(5.71) is actually restrictive and it does not include very interesting cases. For instance, in the stochastized
version of the PDE, we are interested in the cases where Y behaves as a measure, for example when using
a White Noise. Hence, our requirement that Y must be a slow-growing measure over Rd � R� is more
adapted. We will nevertheless be inspired by expression (5.71) in order to find a solution in our more general
approach.

We recall that a function f : R Ñ C is said to be càdlàg if it is right-continuous with left-limits. We
recall that for every measure µ over R there exists a unique càdlàg function f such that fp0q � µpt0uq
and which is a distributional primitive of µ (see footnote 22 in Chapter 3). Since in problem (5.69) we
expect a solution whose derivative has the behaviour of a slow-growing measure, it is not surprising that the
solution V may have a functional càdlàg meaning in time. Indeed, consider V the slow-growing measure
over Rd � R� solution to (5.69). It can be proven that it has a càdlàg-in-time representation. By this we
mean the following: there exists a family of slow-growing measures over Rd, pVtqtPR� � MSGpRdq such
that

 for all ϕ P CFDpRdq, the function t P R� ÞÑ xVt, ϕy is càdlàg.
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 for all ϕ P CFDpRdq and for all θ P CFDpR�q,2 we have

xV, ϕb θy �
»
R�
xVt, ϕyθptqdt. (5.73)

It can be shown that the members in the family pVtqtPR� can be expressed as

Vt � e�tgpV0 � Y p� � t0uqq �
»
r0,ts

e�pt�sqgY p� � dsq. (5.74)

Considering that Y is a slow-growing measure over Rd�R�, expression Y p� � t0uq denotes a spatial slow-
growing measure. We can express (5.74) in a more explicit way through the action of Vt over every bounded
Borel set A P BBpRdq through

VtpAq �
»
A
e�tgpξqdpV0 � Y p� � t0uqqpξq �

»
A�r0,ts

e�pt�sqgpξqdY pξ, sq, (5.75)

or equivalently through its action on a spatial test-function ϕ P CFDpRdq through

xVt, ϕy �
»
Rd
e�tgpξqϕpξqdpV0 � Y p� � t0uqqpξq �

»
Rd�r0,ts

e�pt�sqgpξqϕpξqdY pξ, sq. (5.76)

Finally, the solution of (5.69) is simply the inverse spatial Fourier Transform of V , U � F�1
S pV q. It can

also be shown that there exists a càdlàg-in-time representation of U , which consists in a family of spatial
tempered distributions in the space V 1pRdq (See the definition in Chapter 4), pUtqtPR� , such that

 for all ϕ P S pRdq, the function t P R� ÞÑ xUt, ϕy is càdlàg.

 for all ϕ P S pRdq and for all θ P CFDpR�q, we have

xU,ϕb θy �
»
R�
xUt, ϕyθptqdt. (5.77)

This family is simply obtained through Ut � F�1
S pVtq, for all t P R�. Hence, we can write

Ut � F�1
S

�
e�tgpV0 � Y p� � t0uqq �

»
r0,ts

e�pt�sqgY p� � dsq
�
, @t P R�. (5.78)

We remark that, differently to the regular case of functions (5.71), we cannot simply express Ut as a spatial
convolution of distributions, since we are not aware if an Exchange Formula holds for the multiplication

2We denote by CFDpR�q the space of continuous functions defined over R� with fast decreasing behaviour. That is, the
continuous functions θ : R� Ñ C such that for every N P N we have suptPR�

��p1 � t2qNθptq
��   8.
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between the spatial function ξ ÞÑ e�tgpξq and any arbitrary slow-growing measure. This holds, for example,
when g is such that ξ ÞÑ e�tgpξq P OM pRdq for all t P R�, case in which we can use an Exchange Formula
at least on expression e�tgpV0 � Y p� � t0uqq. It is not clear if we can do so in the case of expression³
r0,ts e

�pt�sqgp�qY p� � dsq, even with this extra supposition on g.

5.3.2 Asymptotic behaviour

We consider now the slightly more restrictive case where X in (5.68) is required that both its spatial Fourier
Transform and its spatio-temporal Fourier Transform are slow-growing measures over the whole space Rd�
R. Hence, Y � FSpXq P MSGpRd � Rq and in addition X P V 1pRd � Rq, the space of spatio-temporal
tempered distributions whose spatio-temporal Fourier Transform is in MSGpRd � Rq. In such a case, we
can analyse the equation

BU
Bt � LgU � X (5.79)

simply through the analysis of the spatio-temporally Fourier Transformed problem

piω � gpξqqMU �MX , (5.80)

where we have denoted by MX � F pXq and MU � F pUq. Let us suppose that there exists a positive
constant κ ¡ 0 such that gR ¥ κ. If we consider solutions to (5.79) which are in V 1pRd�Rq we can simply
follow the approach of Proposition 4.6.1, and argue that there exists a solution U P V 1pRd � Rq if and only
if 1
iω�gpξqMX P MSGpRd � Rq. We can apply Proposition 5.2.1 for β � 1 to argue that this holds in this

case since gR ¥ κ. The solution is also unique since the spatio-temporal symbol function iω� gpξq is never
null. We will denote this solution by U8, which we know it is given by

U8 � F�1

�
1

iω � gpξqMX



(5.81)

The question that arises is if there is any relation between this solution U8 P V 1pRd � Rq and the solution
to the Cauchy problem (5.68). The answer is yes, and it is described through a spatio-temporal asymptotic
convergence. Under the already proposed extra requirements for X , if U is the solution to (5.68), it can be
proven that for every ε ¡ 0 and for every ϕ P S pRdq, there exists tε,ϕ P R� such that

|xU8 � U,ϕb θy|   ε, @θ P S pRq such that supppθq � Rd � rtε,ϕ,8q and
»
R�
|θptq|dt � 1. (5.82)

Hence, the solution U8 describes how the solution U behaves spatio-temporally after enough time. This
convergence does not depend on the initial condition U0 used in the Cauchy problem (5.68).
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In the case where MU is temporally integrable, which is the case when»
A�R

1

iω � gpξqdMXpξ, ωq   8 ,@A P BBpRdq, (5.83)

it can be proven that U8 has a continuous-in-time representation pU8
t qtPR� � V 1pRdq. If we consider the

case where the initial condition to the Cauchy problem (5.68) is set to be U0 � U8
0 , then it can be proven

that the solution U equals U8 over Rd � R�.

5.3.3 Stochastized version

We consider now a stochastized version of problem (5.68), with analogue conditions to the deterministic
case. Namely, X is now a real GeRF over Rd � R such that its spatial Fourier Transform Y � FSpXq
is a slow-growing Random Measure over Rd � R�. We suppose also that U0 is a real GeRF over Rd such
that its (spatial) Fourier Transform V0 � FSpU0q is a slow-growing Random Measure over Rd. The strict
solution to this problem is constructed with complete analogy to the deterministic case. Let us explain it
roughly. It can be shown that the problem has a unique solution U , which is a GeRF over Rd � R such that
its spatial Fourier Transform is a slow-growing Random Measure over Rd�R�. It can also be proven that U
has a càdlàg-in-time representation, that is, there exists a family of GeRFs over Rd, pUtqtPR� with analogue
properties to the continuous-in-time representation of a GeRF presented in Section 5.1.2, but requiring the
associated random functions t ÞÑ xUt, ϕy to be càdlàg in mean-square rather than continuous, for every
ϕ P S pRdq. All members of the family pUtqtPR� satisfy that their (spatial) Fourier Transforms are slow-
growing Random Measures over Rd. For V � FSpUq, which is a slow-growing Random Measure over
Rd�R�, we also obtain a càdlàg-in-time representation through Vt � FSpUtq. The stochastic interpretation
of expressions (5.75) and (5.76) are well-defined as stochastic integrals, and we can obtain the associated
covariances expressions.

Since we have supposed that Y � FSpXq is a slow-growing Random Measure over Rd � R�, its
covariance measure CY is in MSGppRd � R�q � pRd � R�qq. Analogously, since V0 � FSpU0q is also
a slow-growing Random Measure, we have CV0 P MSGpRd � Rdq. For simplicity, let us suppose that U0

and X are independent. Let V be the solution of the stochastic transformed problem (5.69), for which it can
be proven it is a slow-growing Random Measure. Then, the covariance of V , CV , which is in MSGppRd �
R�q � pRd � R�qq, can be described, for example, by analysing the random variables of the form (5.76),
obtaining for two spatial test-functions ϕ, φ P CFDpRdq and for two time locations t, s P R�,

CovpxVt, ϕy, xVs, φyq �
»
Rd�Rd

e�tgpξq�sgpηqϕpξqφpηqdCV0�Y p��t0uqpξ, ηq �»
pRd�r0,tsq�pRd�r0,ssq

�
e�pt�uqgpξq � e�tgpξq1t0upuq

	�
e�ps�vqgpηq � e�sgpηq1t0upvq

	
ϕpξqφpηqdCY ppξ, uq, pη, vqq.

(5.84)
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It turns out that the covariance measure CV can be also expressed through a family of spatial covariance
measures pCpt,sq

V qpt,sqPR��R� � MSGpRd � Rdq, which satisfies:

 for all ϕ, φ P CFDpRdq and for all t P R�, the function s P R� ÞÑ xCpt,sq
V , ϕb φy is càdlàg.

 for all ϕ, φ P CFDpRdq and for all s P R�, the function t P R� ÞÑ xCpt,sq
V , ϕb φy is càdlàg.

 for all ϕ, φ P CFDpRdq and for all θ1, θ2 P CFDpR�q, it holds that

xCV , pϕb θ1q b pφb θ2qy �
»
R��R�

xCpt,sq
V , ϕb φyθ1ptqθ2psqdpt, sq. (5.85)

The family pCpt,sq
V qpt,sqPR��R� is of course determined by expression (5.84) through

xCpt,sq
V , ϕb φy � CovpxVt, ϕy, xVs, φyq, @ϕ, φ P CFDpRdq, (5.86)

which we may write similarly as expression (5.74):

C
pt,sq
V � pe�tg b e�sgqCV0�Y p��t0uq

�
»
r0,ts�r0,ss

�
e�pt�uqg � e�tg1t0upuq

	
b
�
e�ps�vqg � e�sg1t0upvq

	
dCY pp�, duq � p�, dvqq.

(5.87)
The solution U can also be expressed through a càdlàg-in-time representation, defining the family pUtqtPR�
through Ut � F�1

S pVtq for every t P R�. The covariance structure of U is described by a distribution CU
over pRd�R�q� pRd�R�q, which can also be described by a family pCpt,sq

U qpt,sqPR��R� � V 1pRd�Rdq.
This family is defined by

xCpt,sq
U , ϕb φy � xCpt,sq

V ,F�1
S pϕq bF�1

S pφqy, (5.88)

hence, it holds that

xCU , pϕb θ1q b pφb θ2qy �
»
R��R�

xCpt,sq
U , ϕb φyθ1ptqθ2psqdpt, sq

�
»
R��R�

xCpt,sq
V ,F�1

S pϕq bF�1
S pφqyθ1ptqθ2psqdpt, sq,

(5.89)

for every ϕ, φ P S pRdq and θ1, θ2 P CFDpR�q.
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5.3.4 Asymptotic convergence to the stationary solution

We consider now a particular case for X and U0 for which we obtain a stochastic analogue result to the
convergence when the time flows long enough to a convenient solution of the equation (5.79).

LetX be a real stationary GeRF over Rd�R such that its spatial Fourier Transform is a Random Measure
over Rd � R. Of course, the spatio-temporal Fourier Transform of X , say MX � F pXq, is also a Random
Measure (Theorem 3.4.2), but the requirement that its spatial Fourier Transform is also a Random Measure
is an extra supposition. Examples of such GeRFs are separable models between any spatial stationary GeRF
and a temporal continuous stationary Random Function, or a coloured in space and white in time noise.

From Proposition 5.2.1 it can be concluded that if we suppose that gR ¥ κ for some κ ¡ 0, there exists
a unique stationary solution to the SPDE (5.79). Let us call U stat this stationary solution, which is given by

U stat � F�1

�
1

iω � gpξqF pXq


� F�1

�
1

iω � gpξqMX



. (5.90)

Consider now U to be the solution to the stochastic Cauchy problem (5.68), where U0 is a real stationary
GeRF over Rd independent of X . We remark that in such a problem only the values that X takes over
Rd �R� intervene, and not the values over the negative time. Then, the following fact about the asymptotic
convergence for large enough t is obtained: for all ε ¡ 0 and for all ϕ P S pRdq, there exists tε,ϕ P R� such
that

E
���xU � U stat, ϕb θy��2	   ε, @θ P S pRdq such that supppθq � rtε,ϕ,8q and

»
R�
|θptq|dt � 1.

(5.91)

Hence, the solution U is arbitrarily close in a mean-square sense to the stationary solution U stat for large
enough times.

5.3.5 Some examples. Time Markovianity.

In order to show some particular examples, we will consider the case with the requirement presented in
Section 5.3.4. We will always suppose that there exists κ ¡ 0 such that gR ¥ κ.

Consider U0 a spatial real stationary GeRF with spectral measure µU0 . Let X be a spatio-temporal
real stationary GeRF with separable form X � XS bXT (we recall that this is not a tensor product stricto
sensus), whereXS represents any spatial real stationary GeRF with spectral measure µXS andXT represents
a temporal real stationary GeRF which can be either a continuous Random Function over time or a White
Noise in time, hence with spectral measure µXT either finite or either proportional to the Lebesgue measure.
We suppose U0 and X independent. If U stat is the unique stationary solution to (5.79), its spectral measure
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is
dµUstatpξ, ωq �

dµXS pξqdµXT pωq
|iω � gpξq|2 , (5.92)

and in this case, this spectral measure is always temporally integrable. The spectral measure of the spatial
traces of U stat is given by

µUstatS
pAq � 1?

2π

»
A

»
R

dµXT pωq
|iω � gpξq|2dµXS pξq, @A P BBpRdq. (5.93)

Consider the solution U to the stochastic Cauchy problem (5.68). The analysis of its covariance struc-
ture is easier through the analysis of the covariance structure of V � FSpUq which is the solution to the
stochastic transformed problem (5.69). V has a continuous-in-time representation pVtqtPR� with the covari-
ance structure given by (5.84). In our case V0 � FSpU0q is orthogonal, as well as the spatial behaviour of
Y � FSpXq 2nd o.� FSpXSqbXT . In addition, with our suppositions Y p��t0uq is null almost-surely, since
its acts as a continuous Random Function or as a White Noise in time. We obtain thus the next expression
for the covariance structure of V for every pair pt, sq P R� � R� and every ϕ, φ P S pRdq:

CovpxVt, ϕy, xVs, φyq � p2πq
d
2

»
Rd
e�tgpξq�sgpξqϕpξqφpξqdµU0pξq

� p2πq d2
»
Rd

»
r0,ts�r0,ss

e�pt�uqgpξq�ps�vqgpξqϕpξqφpξqdCXT pu, vqdµXS pξq.
(5.94)

Here CXT denotes de covariance distribution of XT , which under our assumptions, is either a continuous
temporal stationary covariance function, with dCXT pu, vq � ρXT pu�vqdudv, or the covariance distribution
of a temporal White Noise, CXT � δpu � vq � Leb δtu�vu. The solution U has a continuous-in-time
representation pUtqtPR� given by Ut � F�1

S pVtq, and hence

CovpxUt, ϕy, xUs, φyq � p2πq
d
2

»
Rd
e�tgpξq�sgpξqF�1

S pϕqpξqF�1
S pφqpξqdµU0pξq

� p2πq d2
»
Rd

»
r0,ts�r0,ss

e�pt�uqgpξq�ps�vqgpξqF�1
S pϕqpξqF�1

S pφqpξqdCXT pu, vqdµXS pξq.
(5.95)

As stated in the previous section, the solution U converges to the stationary solution U stat as t becomes
large enough.

In some particular cases, it holds that if we consider a stationary initial condition U0 following the
spatial spectral measure (5.93), the covariance structure of the solution U is stationary with the same spectral
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measure as U stat, given by (5.92). This is the example where XT �WT . In such a case, equation (5.94) is

CovpxVt, ϕy, xVs, φyq

� p2πq d2
»
Rd
e�tgpξq�sgpξqϕpξqφpξqdµU0

pξq

� p2πq d2
»
Rd

»
r0,t^ss

e�ptgpξq�sgpξqq�2ugRpξqϕpξqφpξqdudµXS pξq.

� p2πq d2
»
Rd
e�tgpξq�sgpξqϕpξqφpξqdµU0

pξq

� p2πq d2
�»

Rd

e�ipt�sqgIpξq�|t�s|gRpξq

2gRpξq ϕpξqφpξqdµXS pξq �
»
Rd

e�ptgpξq�sgpξqq

2gRpξq ϕpξqφpξqdµXS pξq
�
,

(5.96)

where we have solved the temporal integral and used the expression t ^ s � t�s�|t�s|
2 . We remark the

similarities between the “time stationary term”

p2πq d2
»
Rd

e�ipt�sqgIpξq�|t�s|gRpξq

2gRpξq ϕpξqφpξqdµXS pξq, (5.97)

which depends only on the gap t� s, and the expression of the stationary covariance (5.39). The asymptotic
convergence to the stationary covariance model determined by (5.92) can be simply obtained in this case by
analysing expression (5.96) and remarking that the first and third terms tend to 0 as t, sÑ8. It is also more
obvious to see that if we chose the right model for U0 through the identification µU0 �

µXS
2gR

, the solution
follows a stationary model whose covariance is the same as in (5.39).

The case X � XS bWT presents also another particularity. Let us consider, for simplicity and rigor-
ousness, that all the real GeRFs involved are Gaussian. Let us write MXS � FSpXq. The orthogonality in
time of XT � WT induces a Markovianity in time, in the classical sense of Markovianity. Precisely, if U is
the solution to the stochastic Cauchy problem (5.68), and pUtqtPR� is its continuous-in-time representation,
then for any s ¡ 0, the GeRFs pUtqt¥s are independent to the GeRFs pUtqtPr0,sq, conditionally to the GeRF
Us. To see this, we can consider the solution to the transformed problem V � FSpUq, represented through
its continuous-in-time representation pVtqtPR� , for a ∆t ¡ 0, and for any ϕ P S pRdq through

xVt�∆t, ϕy �
»
Rd
e�pt�∆tqgpξqϕpξqdV0pξq �

»
Rd�r0,t�∆ts

e�pt�∆t�sqϕpξqdpMXS bWT qpξ, sq

� xVt, e�∆tgϕy �
»
Rd�pt,t�∆ts

e�pt�∆t�sqϕpξqdpMXS bWT qpξ, sq.
(5.98)

Since Y �MXS bWT is an orthogonal Random Measure, and the expression xVt, e�∆tgϕy only considers
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integrations with respect to Y up to the time t, then the expression»
Rd�pt,t�∆ts

e�pt�∆t�sqϕpξqdpMXS bWT qpξ, sq

is uncorrelated with xVt, e�∆tgϕy, and hence they are independent in this Gaussian framework. The temporal
Markovianity of the solution U is obtained immediately through the relation Ut � F�1

S pVtq for every
t P R�. We remark however, that we have been able to prove this Markovian structure only when X

has a White Noise in time covariance structure. Indeed, since we have required X to be stationary, and
that FSpXq is an orthogonal Random Measure, its temporal covariance structure must be such that it is a
stationary orthogonal Random Measure, and the unique covariance structure which satisfies this is the one
of the White Noise (see Example 3.4.7), up to a multiplicative constant.
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Chapter 6

Simulations

SUMMARY

In this chapter we present a method of non-conditional simulation of general stationary GeRFs.
This method is based on a convenient approximation of the Fourier Transform of the field. We
show that this method is immediately adapted to the models already presented in this disserta-
tion. Taking advantage of numerical algorithms such as the Fast Fourier Transform, efficient
simulation methods can be achieved. This method is not new, and it has been already applied
to obtain efficient simulations of stationary Random Fields related to SPDEs, although a theo-
retical proof of its performance lacks in the literature.

In the introductory Section 6.1 we describe roughly and without technical details some method-
ologies of simulation of Random Fields within the SPDE approach. They consist in using nu-
merical solvers for PDEs applied in a stochastic framework. We describe roughly the Finite
Element Method, together with its advantages and issues. We also mention spectral methods,
that is, methods based on the development of the Random Field in a suitable basis of orthonor-
mal functions. We then present the motivations which lead us to select the method presented in
this chapter. They rely mainly on its adaptability to the models presented in this dissertation
and to the capacity of simulating general classes of models over large grids with an efficient
computing time.

In Section 6.2 we present the theoretical foundations of the method. In the case of a stationary
GeRF, we show that this method provides approximations which converge in a weak sense to the
desired solution. We are also able to prove a mean-square-uniformly-on-compacts convergence
in the case of continous Random Functions. We show how to apply this method in the cases of
SPDEs presented in this dissertation. We are able to prove convergence of the approximation
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under suitable conditions. We also show how to apply this method to obtain simulations of first
order evolution models and Waving models.

In Section 6.3 we present the implementation of this method together with the technical details
that must be considered. We propose a qualitative error analyse in the case of the Matérn
model, for which the mean-square-uniformly-on-compacts convergence of the covariances is
theoretically proven. We propose illustrations of different types of models that can be easily
simulated with this method. In particular, cases with different forms of advections, asymmetries,
and separated regularities along different directions are illustrated. We show illustrations of
first order evolution models, together with the theoretical asymptotic convergence exposed in
Section (5.3). We also present illustrations of a Waving model following a Matérn covariance
in space.

We finish in Section 6.4 with some final words. We discuss the advantages and disadvantages
of this method, together with propositions to improve it.

The proofs of the theoretical results are presented in Appendix A.

6.1 Introduction

Within the SPDE approach, the simulation of a Random Field related to a SPDE can be performed through
the use of numerical solvers to PDEs. Such an approach is performed by considering a suitably discretized
or approximated version of the PDE and its solution, restricting the space of possible solutions to spaces of
finite dimension. The application to the stochastic framework is done simply by replacing the deterministic
functions with Random Functions of GeRFs, which finally consists in simulating a suitable random vector.

The most popular method used within the SPDE approach in Geostatistics is the FEM. This method
considers an approximation of the solution of the PDE expressed as a finite linear combination of suitable
functions defined over the space. These functions are determined by a triangulation of the working domain,
usually consisting in a mesh of triangular elements with associated nodes an edges. There are many biblio-
graphical sources on this method, both for the deterministic framework of PDEs and the stochastic one. We
suggest Zienkiewicz et al. (2013) and Braess (2007) as treaties on this practice in the deterministic case. In
the probabilist community, this method is widely used to analyse approximations of solutions to SPDEs. See
Stefanou (2009) for a general review and Barth & Lang (2012) for application examples. We will not enter
into the technical details of this method. However, we remark its main advantages within the needs of the
geostatistical community, together with its limitations when trying to apply it to more general cases.

In the geostatistical community, the use of this method was popularised by Lindgren et al. (2011), in
which the main interesting properties while solving the equation associated to the Matérn model are pre-
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sented. As mentioned in the introductory chapter, when the Matérn model has a Markovian behaviour
(α P N in Eq. (4.15), applying Rozanov’s Theorem presented in Example 4.5.3), the precision matrices
obtained when applying the FEM are sparse, condition which allows a fast computational treatment of the
model. Another particularity of the FEM, which holds regardless of the Markovianity of the Random Field,
is that the values obtained by the approximation at the nodes of the triangulation mesh are given immediately
by the method. Hence, when facing a particular data base with values located at arbitrary points in the space,
the FEM can be easily adapted for inference and conditional simulation methods by identifying the sampling
location points with nodes in the triangulation mesh. Inference methods and conditional simulations can be
then performed, the required precision matrices being already obtained once the SPDE is discretized.

Although the FEM presents many advantages, it is not immediately adapted to more general models
related to SPDEs which do not involve classical differential operators. For instance, Lindgren et al. (2011)
apply the method for the Matérn model only for integer values of α. Other values with fractional regularities
must be treated differently through suitable adaptations. In the commentary section of Lindgren et al. (2011),
the authors propose to approximate the target Random Field in the case of fractional α by a suitable Markov
Random Field, with a spectral density defined by the inverse of a suitable strictly positive polynomial deter-
mined in order to obtain an appropiate approximation. In Bolin & Kirchner (2017) a method of adaptation of
the FEM to cases of the Matérn model with fractional regularity parameter is proposed, performed through
a rational approximation of the SPDE. The methodology allows to obtain simulation and inference methods
maintaining the computational benefits of the Markovian case. In general terms, this method needs ad-hoc
adaptations when facing different types of SPDEs. Hence, the generality of this method is limited. For non-
Markovian models, the sparse condition on the precision matrices is also lost in general, needing an extra
special treatment. The necessity of suitable adaptations are more intricate when considering spatio-temporal
PDEs, specially if they involve fractional operators of different orders in time and space, as the models
presented in Chapter 5.

Another approach of numerical resolution of PDEs, and hence to SPDEs in a stochastic framework is
done through spectral methods. The term spectral has different meanings depending on the community. In
the geostatistical community, the term spectral is often used for methods of simulations or inference based
on a suitable utilisation of the spectral measure of a stationary Random Field. See the usage, for instance, in
Chilès & Delfiner (1999, Section 7.5.3), Lantuéjoul (2013, Section 15.2.3), and Emery et al. (2016). In the
PDE community, the term is used for methods of numerical resolution of PDEs based on the development
of the functions in a basis of linearly independent functions generating the space of possible solutions, often
taken to be a complete orthonormal basis with respect to the interior product of a suitable Hilbert space to
which the theoretical solution belongs. The solution, the source term and other functions involved in the
PDE can be formally developed in this basis through an infinite (countable) linear combination. The typical
approach is to truncate the infinite development at a large enough finite order, obtaining a development on
a subspace of finite dimension of the original vector space, generated by a finite sub-basis of the original
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infinite basis. The coefficients associated to each orthonormal function are then determined by the PDE, and
can be obtained solving linear systems in the case of linear PDEs, analogously to the FEM. The convergence
of these approximations to the theoretical solution, when it exists, are considered in the sense of the norm
of the associated Hilbert space. The initial basis of orthogonal functions can be selected in many ways.
One possible approach is to select them considering the geometry of the domain where the PDE is analysed.
Typical approaches are, for example, to chose an orthonormal basis of the space L2pDq for a domain D �
Rd. Spaces of the form L2pD,λq, with λ being a suitable positive measure over the domain D are also
considered, the resulting functions in the basis being usually identified with convenient polynomials such
as Chebyshev polynomials or Hermite polynomials. Sobolev spaces are also used when facing fractional
differential operators or in contexts where the solution has a fractional differentiability order. When working
in particular geometrical settings, ad-hoc basis of functions can be selected. For example when considering
PDEs defined over the unitary sphere in Rd, BBpdq

1 p0q, the spherical harmonic functions are often used (Dai
& Xu, 2013). Another interesting approach is to select a basis of functions which is not independent of the
operator involved on the PDE. For instance, when facing an equation involving different forms of the Laplace
operator over bounded domains, a typical approach consists in considering the basis of eigenfunctions of
minus the Laplacian �∆; see for instance the developments in M. D. Ruiz-Medina et al. (2016). We refer
to Gottlieb & Orszag (1977) for a simple introduction on spectral methods in a deterministic framework,
presenting applications to typical PDEs and showing the advantages and disadvantages that such a method
may present in particular contexts. We refer to Canuto et al. (2006) for a deeper exposition.

In a stochastic framework, spectral methods (in the PDE sense) are widely used in the probabilist com-
munity to analyse approximations of solutions to specific SPDEs. See for instance Kærgaard (2013) for a
source with an explicit theoretical background plus applications, and Bréhier et al. (2016) for the study of the
resolution of specific space-time SPDEs with this approach. In Lang et al. (2015) applications for the case
of differential equations defined over the sphere can be found. In the geostatistical community this approach
has not been widely exploited, at the best of our knowledge. Some examples using a wavelet basis can be
found in M. D. Ruiz-Medina et al. (2016). An important example of spectral method is obtained when using
the Karhunen-Loève expansion of a stochastic process, where the basis of orthonormal functions is taken to
be adapted to the covariance model of the process; see Loève (1978, Chapter XI) and Yaglom (1987, Chapter
4, Section 26.1).

The question that arises is how to discriminate between the already existent simulation methods based on
PDE solvers and identify which ones are more easily adaptable to the framework presented in this disserta-
tion. The FEM lacks in generality for cases with complicated operators involved, needing ad-hoc adaptations.
A spectral method (in the PDE sense) requires to fix a particular basis of functions which may be useful in
some particular settings, but that could be less adapted to different kinds of equations.

In this chapter we have decided to apply an already existent method which may be catalogued as a
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spectral method both in the geostatistical and PDE sense. It is intimately related to the oldest spectral
method: the one consisting in the development of a periodic and square-integrable over a rectangle function
in the Fourier basis. It is not, however, exactly this method. As mentioned, in a usual spectral method the
basis of orthonormal functions is fixed, and the approximation is done by truncating the development of the
target function up to some large enough order. In contrast, the method presented here changes the basis
of functions when changing the approximation order. We remark that this is also the case when doing an
approximation through the FEM. This method is based on the approximation of the Fourier Transform of a
stationary Random Field, which is an orthogonal Random Measure. Under suitable arrangements which will
be specified in this chapter, we can obtain an easily computable form of a Discrete Fourier Transform, and
hence apply the Fast Fourier Transform algorithm (FFT) (Cooley & Tukey, 1965) to obtain a fast simulation
even for large simulation grids.

This method is not new at all. We refer to Pardo-Iguzquiza & Chica-Olmo (1993) for a detailed exposition
of the method considering a geostatistical approach, that is, done under the context and needs of geostatistical
simulations and applications. A general description of this method is also presented in Chilès & Delfiner
(1999, Section 7.5.3), where adequate bibliographical sources concerning the details of this method are
presented. In Lang & Potthoff (2011) this method is also presented in the context of the numerical resolution
of SPDEs. The equations considered therein are almost of the same form as the ones we presented in Chapter
4. The differences rely on our use of complex symbol functions and arbitrary stationary source terms, while
in Lang & Potthoff (2011) the exposition of the method is restricted to positive symbol functions and White
Noise source terms. In practice, these restrictions do not really pose a real problem: it can be proven that
by using positive symbol functions we obtain the same desired covariance structures for the solutions (the
final spectral measure is determined by |g|), and for many applications and interesting models, such as those
presented in Chapter 5, the restriction to the case of a White Noise source term is not an issue. Nevertheless,
even if this method is old, in the literature there is a lack of theoretical justifications of the convergence of
the approximations to the target model to be simulated. Pardo-Iguzquiza & Chica-Olmo (1993) compare
experimental variograms obtained from the simulations with theoretical models with satisfactory results.
Lang & Potthoff (2011) illustrate the convergence to theoretical covariance expressions when increasing the
approximation order in the case of a Matérn covariance model. However, none of these sources presents a
rigorous mathematical proof of some form of convergence of the method when increasing the approximation
order.

The framework of GeRFs exposed in this dissertation has allowed us to prove the theoretical convergence
of this method in quite general cases. When the Random Fields are interpreted as GeRFs, we are able to
prove the convergence to the target solution in a mean-square-S 1pRdq-weak-� sense, which is probably the
weakest form of convergence which may be achieved without using more general theories. Under suitable
conditions, we have been able to prove a mean-square-uniformly-on-compacts convergence in the case of
stationary Random Functions. This implies that the covariance functions of the approximations converge
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uniformly on compacts to the covariance function of the target Random Function. This convergence is more
adapted to geostatistical needs than other kinds of convergences in the sense of Hilbert spaces obtained when
applying typical spectral methods, since a point-wise convergence guarantees, for instance, that the variance
of the Random Field will be well-approximated when considering large enough approximation orders. It also
allows us to prove the convergence of the approximation when considering continuous non-differentiable
Random Functions, case in which, for instance, typical spectral methods based on the Fourier basis may fail
to approximate the solution (See Deitmar, 2005, Chapter 1).

The attractiveness of this method relies mainly on two aspects: first, it is computationally fast thanks
to the orthogonal structure of the Fourier Transform of a stationary Random Field and the application of
the FFT algorithm; second, it is general and immediately adaptable to the context of SPDEs presented in
this dissertation. Indeed, this method, as it will be seen, is ad-hoc for cases of equations of the form (4.3),
and hence it allows us to simulate approximations of quite general and interesting Random Fields, whether
if its associated SPDE involves a classical differential operator or not, contrarily to the case of the FEM.
We are thus able to illustrate 2D-versions of the models developed in Chapter 5 without technical issues or
adaptability needs.

We could refer to Pardo-Iguzquiza & Chica-Olmo (1993) and to Lang & Potthoff (2011) for the imple-
mentation details. However, it seems more convenient to present them in our way and within the context of
this dissertation, so the theoretical proofs and practical implementation issues will be exposed with more clar-
ity. We will thus, present all the technical details of this method and its implementation. For spatio-temporal
models, we adapt this method to obtain simulation techniques of first order evolution models inspired by
the developments in Section 5.3 in Chapter 5. The method is a generalization of the methodology proposed
in Sigrist et al. (2015) in the case of the advection-diffusion equation (Example 5.2.1), which consists in a
Fourier Analysis-based spectral method in space using FFT, with an explicit resolution of the equation over
time. We also present the adaptation of this method to simulate Waving models.

6.2 A Spectral Method based on the Fourier Transform

The method we present here is not exactly based on the development of the stochastic process on the Fourier
basis but rather on an approximation of its Fourier Transform. We will see that both approaches are intimately
related but they are not exactly the same. We restrict ourselves to stationary Random Fields. In such a case,
the Fourier Transform of the process is an orthogonal Random Measure, finite if the process is a Random
Function, and slow-growing if the process is a GeRF. The approach is then to approximate this Random
Measure and then apply a Fourier Transform which can be expressed in a convenient discretized manner.
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6.2.1 Theoretical foundations of the method

Let us consider our definition of a Riemann sequence of partitions of a bounded Borel set of Rd which we
introduced in Section 3.2.2. Such a sequence consists of a collection of bounded subsets of Rd satisfying
suitable properties. Rather than recalling the details, we will give now a definition of a Riemannn sequence
of partitions growing to the whole space Rd. A sequence of finite collections of bounded Borel subsets of
Rd, pV N

j qjPt1,...,Nu,NPN� , is said to be a Riemann sequence of partitions growing to Rd if

 V N
j X V N

k � H, for all j, k P t1, ..., Nu such that j � k, for all N P N�,

 max
jPt1,...,Nu

diampV N
j q Ñ 0 as N Ñ8,

 for all K � Rd compact, there exists N0 P N such that for all N ¥ N0, K � �N
j�1 V

N
j .

Hence, this sequence forms partitions of bounded subsets of Rd whose union grows to the space Rd as N
grows, and such that the size of each set in the partition decreases to 0 as N grows. For every N P N�,
we denote by DN :� Rdz�N

j�1 V
N
j . The sequence of sets pDN qNPN� decreases to H as N grows, in the

sense that
�
NPN� DN � H. To the sequence of partitions pV N

j qjPt1,...,Nu,NPN� , we associate an arbitrary
sequence of finite collections of points in Rd, pξNj qjPt1,...,Nu,NPN�1, satisfying ξNj P V N

j and called the tag
points of pV N

j qjPt1,...,Nu,NPN� . We denote by `N :� maxjPt1,...,Nu diampV N
j q for every N P N�. Hence

p`N qNPN� is a sequence of positive real numbers which converges to 0. For every N P N�, we will consider
an additional tag point dN P DN , which will play an auxiliary role. The definition of a Riemann sequence
of partitions growing to any other unbounded Borel set of Rd is completely analogous.

Consider now a (deterministic) measure over Rd, µ P M pRdq. We can consider an approximation of µ
by defining:

µN �
Ņ

j�1

µpV N
j qδξNj . (6.1)

For every N P N�, µN is a finite measure (it is actually compactly supported), and it is easy to prove (see
Lemma A.5.1, using supppϕq as A) that for any ϕ P CcpRdq, xµN , ϕy Ñ xµ, ϕy as N grows. Hence, the
sequence of measures pµN qNPN� converges to µ in the sense of the weak-� topology on the space M pRdq �
C 1
cpRdq.

Let us consider now the stochastic case. We consider the case of a real stationary GeRF over Rd, Z
with stationary covariance distribution ρZ and spectral measure µZ . Following Theorem 3.4.2, its Fourier
Transform, which will be denoted by MZ � F pZq, is a complex Hermitian slow-growing orthogonal
Random Measure. We are going to interpret MZ both as a Random set-function (considering the random

1In this context, we will use the notation ξ for the variables in Rd since the Riemann sequence of partitions will be actually
constructed over the frequency space.



150 CHAPTER 6. SIMULATIONS

variables of the form MZpAq for A P BBpRdq) and as a linear functional (considering the random variables
xMZ , ϕy for every ϕ integrable with respect to MZ).

For every N P N� let us consider the complex Random Measure defined as

MZN �
Ņ

j�1

MZpV N
j qδξNj . (6.2)

MZN is compactly supported, hence it is a finite complex Random Measure. In addition,MZN is orthogonal.
Indeed, let us considerA,B P BBpRdq. SinceMZ is an orthogonal Random Measure with weight p2πq d2µZ ,
and since the class of sets pV N

j qjPt1,...,Nu forms a partition, we conclude that

CovpMZN pAq,MZN pBqq �
Ņ

j�1

Ņ

k�1

δξNj
pAqδξNk pBqCovpMZpV N

j q,MZpV N
k qq

�
Ņ

j�1

Ņ

k�1

δξNj
pAqδξNk pBqp2πq

d
2µZpV N

j X V N
k q

� p2πq d2
Ņ

j�1

δξNj
pAqδξNj pBqµZpV

N
j q

� p2πq d2
Ņ

j�1

δξNj
pAXBqµZpV N

j q � p2πq
d
2

�
Ņ

j�1

µZpV N
j qδξNj

�
pAXBq.

(6.3)
Hence MZN is an orthogonal Random Measure with weight νZN � p2πq

d
2
°N
j�1 µZpV N

j qδξNj .

Since bothMZ andMZN are slow-growing, we can analyse the random variables of the form xMZ , ϕy�
xMZN , ϕy for any ϕ P S pRdq. Hence, we can compare their respective Inverse Fourier Transforms. We
define

ZN pxq � F�1pMZN qpxq �
1

p2πq d2
Ņ

j�1

MZpV N
j qeix

T ξNj , x P Rd. (6.4)

ZN is a complex Random Function, and since it is the Fourier Transform of a finite Random Measure, it
is continuous. If we want it to be a real Random Function, we need to choose conveniently the collection
pV N
j qjPt1,...,Nu,NPN� and the tag points pξNj qjPt1,...,Nu,NPN� in order to makeMZN be an Hermitian Random

Measure. In such a case, ZN is a real stationary Random Function. We will require the Hermitian condition
on MZN in the implementation Section 6.3, but here we will simply work with the complex2 stationary

2Without much detail, we can define a complex continuous stationary Random Function over Rd as a Random Function which
is a Fourier Transform of a complex finite orthogonal Random Measure. A complex continuous stationary Random Function has
a spectral measure which is positive and finite but not necessarily even, and a continuous stationary covariance function which is
positive-definite, neither necessarily real nor even but always Hermitian.
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Random Function ZN . From (6.3) we conclude that the spectral measure of ZN is

µZN �
Ņ

j�1

µZpV N
j qδξNj . (6.5)

The covariance function of ZN is then

ρZN phq �
1

p2πq d2
Ņ

j�1

µZpV N
j qeih

T ξNj . (6.6)

The next result states that the Random Functions pZN qNPN� approach Z in some sense.

Proposition 6.2.1. Let Z be a real stationary GeRF over Rd with spectral measure µZ . Let MZ � F pZq.
Let pZN qNPN� be the sequence of Random Functions over Rd defined through (6.4) for an arbitrary Riemann
sequence of partitions growing to Rd, pV N

j qjPt1,...,Nu,NPN� and for arbitrary tag points pξNj qjPt1,...,Nu,NPN� .
Then, ZN converges to Z in a mean-square-S 1pRdq-weak-� sense, that is,

E
�
|xZ,ϕy � xZN , ϕy|2

	
Ñ 0, as N Ñ8,@ϕ P S pRdq. (6.7)

Proposition 6.2.1 is proven in Appendix A.16. The result stated in this Proposition gives us an idea of
how to construct Random Fields which converge to a desired GeRF in a weak sense. It is then expected
that if we require more conditions on Z, stronger forms of convergence may arise, which may be useful to
describe. In this aim, let us suppose now that Z is a real continuous stationary Random Function, and let
us follow the same procedure as in the generalized case. The Fourier Transform of Z, MZ , is now a finite
Random Measure, and the random variables MZpRdq and MZpDN q have finite variance.

Theorem 6.2.1. Let Z be a real stationary continuous Random Function over Rd with Fourier Transform
MZ � F pZq. Let pZN qNPN� be the sequence of Random Functions over Rd defined through (6.4) for an
arbitrary Riemann sequence of partitions growing to Rd, pV N

j qjPt1,...,Nu,NPN� and for arbitrary tag points
pξNj qjPt1,...,Nu,NPN� . Then, ZN converges to Z in a mean-square-uniformly on compacts sense, that is,

sup
xPK

E
�
|Zpxq � ZN pxq|2

	
Ñ 0, as N Ñ8,@K � Rd compact. (6.8)

It is not hard to conclude that Theorem 6.2.1 implies that the sequence of covariance functions pρZN qNPN�
converges to ρZ uniformly on compact sets. We give a proof of Theorem 6.2.1 in Appendix A.17. In
such proof, the following vanishing bound for the mean-square-uniformly on compacts convergence (6.8) is
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proven:

sup
xPK

E
�
|Zpxq � ZN pxq|2

	
¤ 1

p2πq d2

�
4`2NµZpRdq sup

xPK
|x|2 � µZpDN q

�
, @K � Rd compact. (6.9)

Hence, the rate of convergence of ZN to Z is determined by the selection of the Riemann sequence of
partitions pV N

j qjPt1,...,Nu,NPN� and by “how fast µZ decays at infinity”. Indeed, the two elements which
determine the rate of convergence are `N and µZpDN q. The term µZpDN q depends on the decreasing
behaviour of µZ at infinity, and as we have seen in Section 3.2.2, this is closely related with the regularity
of the Random Function Z. The less regular Z is, the slower the term µZpDN q goes to 0. We remark
also that all Random Functions in pZN qNPN� are smooth in mean-square, since their Fourier Transforms are
compactly supported Random Measures. Hence, it is expected that approximation methods based on this
Theorem work better for regular Random Functions Z.

Remark 6.2.1. The Random Function ZN is periodic. This follows immediately from the fact that the
functions of the form eix

T ξNj are all periodic. Hence, when doing computational implementations of this
method, one must be aware of simulating over a domain of Rd where it is assured that an undesired periodic
behaviour will not be present.

Remark 6.2.2. ZN does not have the same variance as Z. Its variance is always smaller since

VarpZpxqq � VarpZN pxqq � 1

p2πq d2
�
µZpRdq � µZN pRdq

�

� 1

p2πq d2

�
µZpRdq � µZp

N¤
j�1

V Nj q
�

� 1

p2πq d2 µZpDN q ¥ 0.

(6.10)

The rate of convergence of the difference of the variances is then determined by µZpDN q. In cases where Z
is not sufficiently regular, the differences between the variances may be considerably high, generating issues
for some statistical purposes. We propose two options to construct an approximation of Z which has the
same variance as Z:

 through the addition of the stationary Random Function

RN pxq �MZpDN qe
ixT dN

p2πq d2
� F�1 pMZ pDN q δdN q , (6.11)

the stationarity of this function being guaranteed since MZpDN qδdN is an orthogonal Random Mea-
sure, which can be proved using the same arguments as in (6.3);
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 through a convenient normalization. Precisely, if we set σ2
Z :� VarpZpxqq � ρZp0q and

σ2
ZN

:� VarpZN pxqq � ρ2
ZN
p0q � 1

p2πq d2
Ņ

j�1

µZpV N
j q �

1

p2πq d2
µZ

�
N¤
j�1

V N
j

�
, (6.12)

we consider the sequence of stationary Random Functions p σZσZN ZN qNPN� .

Proposition 6.2.2. Both sequences of Random Functions pZN �RN qNPN� and p σZσZN ZN qNPN� converge to
Z in a mean-square-uniformly on compacts sense, and all of the Random Functions in the sequences have
the same variance as Z.

A proof for Proposition is given in Appendix A.18. In such a proof we obtain also the following bounds for
the mean-square-uniform on compacts convergence:

sup
xPK

E
�
|Zpxq � pZN pxq �RN pxqq|2

	
¤ 2

p2πq d2

�
2`2NµZpRdq sup

xPK
|x|2 � µZpDN q

�
, @K � Rd compact

(6.13)
and

sup
xPK

E

�����Zpxq � σZ
σN

ZN pxq
����
2
�

¤ 2

p2πq d2

�
��
������
b
µZpRdq �

gffeµZp
N¤
j�1

V Nj q
������
2

�
�

4`2NµZpRdq sup
xPK

|x|2 � µZpDN q

��� , @K � Rd compact.

(6.14)

The bound (6.13) is larger than the bound (6.9), with the addition of p2πq� d
2µZpDN q. The bound (6.14) is the

largest of the three. This implies that even if we have corrected the variance, the approximation is worse than
originally in the sense of the mean-square-uniform convergence of compact sets, and hence other properties
of the target Random Function such as its regularity or the practical range may be worse reproduced.

Remark 6.2.3. Consider the classical approach of developing a square-integrable function over the interval
r0, 2πs in its Fourier basis. Such an approach consists in approximating a function f P L2pr0, 2πsq by trun-
cating the development of f on the basis of functions of the form p eixn?

2π
qnPZ. The expression of a truncated

expansion is given by

fN �
Ņ

n��N

1

2π
pf, eixnqL2pr0,2πsqe

ixn, (6.15)

for some N P N. We remark some similarities with respect to Eq. (6.4) for d � 1. The big difference is that
in the case of the Fourier basis the distances between the associated tag points are constant and not depending
of N . Hence, the distances are not bounded by a term such as `N which goes to 0. Such an approach would
not necessarily provide a convergence in a mean-square-uniformly on compacts sense, not even a point-wise
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convergence in general.

Remark 6.2.4. We mention the most important fact of this approximation method. Since the Random
Measure MZ is orthogonal, the random variables of the form MZpV N

j q and MZpDN q are mutually non-
correlated. Hence, they are easy to simulate. Two difficulties are anyway still present. The first is calculating
their variances. Since MZ is an orthogonal Random Measure with weight p2πq d2µZ , the variances are given
by

VarpMZpV N
j qq � p2πq

d
2µZpV N

j q (6.16)

and
VarpMZpDN qq � p2πq

d
2µZpDN q. (6.17)

If we can rely on a closed and easily computable form for µZpV N
j q and µZpDN q, we are then able to obtain

the variances without practical problems. If not, other approaches must be followed to obtain the variances.
For example, one may use a computational method to approximate the integrals. This produces an extra
error in the approximation and increases the computational cost of the method. Another option is giving an
easily computable approximation of the integral, but this may produce extra errors in the approximation. We
discuss an example of this option in Section 6.2.2.

The second difficulty comes from the Hermitian condition on MZ . As already mentioned, the random
variables of the form MZpV N

j q are mutually uncorrelated but, since they are complex, this does not imply
independence, even in a Gaussian framework. Hence, the procedure is not as simple as simply simulating a
vector of independent random variables without any special regard. For instance, if for two different indices
j, k P t1, ..., Nu, the associated sets V N

j and V N
k satisfy V N

j � �V N
k , then the Hermitianity of MZ implies

that MZpV N
j q � MZpV N

k q, and hence MZpV N
j q and MZpV N

k q cannot be independent. This detail can be
tackled in many manners. We will show an example on how to do this in the implementation section 6.3.

Once these difficulties are tackled, expression (6.4) can be computed by interpreting it as a discrete
Fourier Transform and applying convenient numerical algorithms for its computation. This will be detailed
in the implementation section 6.3.

6.2.2 Application to SPDEs

The results presented in Section 6.2.1 can be applied to develop simulation methods of approximations of
stationary GeRFs or Random Functions with a big generality, whether the GeRF being concerned by a SPDE
or not. However, it also gives us an inspiration to develop numerical methods to solve some classes of SPDEs.
In this section we explain how to do this.
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Let us consider the case of the equation studied in Chapter 4:

LgU � X, (6.18)

where X is an arbitrary stationary GeRF over Rd with spectral measure µX . We will suppose that the
symbol function g satisfies the PBR condition and that it is continuous. We recall that this implies that
|g| ¡ 0. Hence, there exists a unique stationary solution to (6.18) and it is simply given by

U � L 1
g
X. (6.19)

Denoting MX � F pXq, we construct an approximation of the source term X following the principles
exposed in the previous section. Let pV N

j qjPt1,...,Nu,NPN� be a Riemann sequence of partitions growing to
Rd, and let pξNj qjPt1,...,Nu,NPN� be a collection of associated tag points. We set

XN pxq � 1

p2πq d2
Ņ

j�1

MXpV N
j qeix

T ξNj � F�1

�
Ņ

j�1

MXpV N
j qδξNj

�
. (6.20)

Then, we propose an approximation of U through the Random Function:

UN pxq � L 1
g
pXN qpxq. (6.21)

Since for every ξ P Rd, one has 1
g δξ � 1

gpξqδξ, we obtain

UN pxq � F�1

�
Ņ

j�1

MXpV N
j q

gpξNj q
δξNj

�
� 1

p2πq d2
Ņ

j�1

MXpV N
j q

gpξNj q
eix

T ξNj . (6.22)

UN is a stationary Random Function with spectral measure

µUN �
Ņ

j�1

µXpV N
j q

gpξNj q
δξNj

, (6.23)

and with covariance function

ρUN phq �
1

p2πq d2
Ņ

j�1

µXpV N
j q

gpξNj q
eih

T ξNj . (6.24)

By definition, it is immediate that UN satisfies the SPDE:

LgUN � XN , (6.25)

which may be seen as an approximation of the original SPDE (6.18). The next result shows that the sequence
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of Random Functions pUN qNPN� converges in a mean-square-S 1pRdq-weak-� sense to the solution of (6.18).

Proposition 6.2.3. Let X be a real stationary GeRF over Rd with spectral measure µX . Let MX � F pXq.
Let g be a continuous symbol function satisfying the PBR condition. Let pUN qNPN� be the sequence of
Random Functions over Rd defined through (6.22) for an arbitrary Riemann sequence of partitions growing
to Rd, pV N

j qjPt1,...,Nu,NPN� and for arbitrary tag points pξNj qjPt1,...,Nu,NPN� . Then, pUN qNPN� converges
to the unique stationary solution to (6.18) in a mean-square-S 1pRdq-weak-� sense. That is, if U is such a
solution, then

E
�
|xU,ϕy � xUN , ϕy|2

	
Ñ 0, as N Ñ8,@ϕ P S pRdq. (6.26)

Similarly to what has been done in Section 6.2.1, we can also prove a stronger convergence when the
objective GeRF U is a stationary continuous Random Function. However, we need more conditions on the
symbol function g. We recall that the solution U to (6.18) is a stationary continuous Random Function if
and only if |g|�2 is integrable with respect to the spectral measure of X (Remark 4.3.1). The next result is
proven in Appendix A.20.

Theorem 6.2.2. Let X be a real stationary GeRF over Rd with spectral measure µX . Let MX � F pXq.
Let g be a continuous symbol function such that |g|�2 is integrable with respect to µX and such that there
exist α P R and two constants C1, C2 ¡ 0 satisfying

C1p1� |ξ|2qα ¤ |gpξq| ¤ C2p1� |ξ|2qα, @ξ P Rd. (6.27)

Let pUN qNPN� be the sequence of Random Functions over Rd defined through (6.22) for an arbitrary Rie-
mann sequence of partitions growing to Rd, pV N

j qjPt1,...,Nu,NPN� and for an arbitrary collection of tag
points pξNj qjPt1,...,Nu,NPN� . Then, the sequence pUN qNPN� converges in a mean-square-uniformly on com-
pacts sense to the unique real stationary solution to (6.18), which is a continuous Random Function U .
Explicitly,

sup
xPK

E
�
|Upxq � UN pxq|2

	
Ñ 0, as N Ñ8,@K � Rd compact. (6.28)

Remark 6.2.5. The proof of Theorem 6.2.2 relies on the Dominated Convergence Theorem, and it does not
provide a vanishing bound to measure the error of the approximation. It can be verified that the error is
higher than the error when approximating a GeRF through the approach of Theorem 6.2.1.

Remark 6.2.6. We can highlight some cases where the condition (6.27) is not necessary and still having a
mean-square-uniform convergence on compact sets. Always supposing that g is a continuous symbol func-
tion satisfying the PBR condition and such that |g|�2 is integrable with respect to µX , under the following
cases the convergence is also guaranteed:

 1
g is uniformly continuous and µX is finite.
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 µX has compact support.

 The tag points are not arbitrary and they are chosen such that |gpξq| ¤ |gpξNj q| for all ξ P V N
j .

Under these conditions the convergence is easily verified by bounding expressions of the form

Ņ

j�1

»
V Nj

����� 1

gpξq �
1

gpξNj q

�����
2

dµXpξq (6.29)

which appear in the proof of Theorem 6.2.2. On the first two cases, a vanishing bound for the error can be
obtained using the uniform continuity of 1

g .

Remark 6.2.7. Rather than solving the SPDE (6.18) one could follow the approach in Theorem 6.2.1 to
construct an approximation of a Random Function with the same covariance structure as U . This is highly
recommended if the integrals of the form

³
V Nj

dµXpξq
|gpξq|2 are well-known or can be exactly computed. The

approach using the approximation (6.22) is actually nothing but following the approach in Eq. (6.4) with
an approximation of the variances of the random variables MU pV N

j q. Indeed, one could argue that a good
approximation for such variances is given by

VarpMU pV N
j qq � p2πq

d
2µU pV N

j q � p2πq
d
2

»
V Nj

dµXpξq
|gpξq|2 � p2πq

d
2

µXpV N
j q

|gpξNj q|2
. (6.30)

The last expression coincides with the variance of a random variable of the form
MXpV Nj q
gpξNj q

in Eq. (6.22),
hence the approach of solving the approximative SPDE (6.25) is equivalent in law to use an approximation
of the form (6.4) with an approximative computation for the variances. We have noticed in Remark 6.2.5
that such an approximation produces difficulties. Theorem 6.2.2 proposes a convergence with a restrictive
condition on g, for which we do not have a bound to measure the error. It is then preferable, if possible,
to use the approach of Theorem 6.2.1 with an exact computation of the variances. However, a subtlety still
remains: we have not solved the SPDE (6.18), and hence we have not simulated approximations of both
Random Fields U and X . If U is the only Random Function of interest, this is not so much of an issue.
However, if we want to simulate the couple pU,Xq in a bivariate modelling approach (Section 3.6), the only
simulation of U using Theorem 6.2.1 is insufficient. Given a good approximation U , say UN , we still can
simulate an approximation of X through XN � LgUN , the approach being, at the end of the story, the same
as in Theorem 6.2.2. Hence, a non-controlled error will be present in some of the two simulated Random
Fields. We suggest then, if possible, to use the approximation (6.4) without approximative variances to
approach the one we are more interested in, if we are not in a bivariate context.
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6.2.3 Adaptation to first order evolution models

In this section we show how to apply the results presented in Section 6.2.1 to solve numerically the Cauchy
problem associated to first order evolution models studied in Section 5.3. The approach is a generalization of
the method used in Sigrist et al. (2015) to simulate solutions to the stochastic advection-diffusion equation,
where the approach is to do a spatial FFT combined with an exact expression of the solution in time. Here we
give the details of such an approach. We show that it can be generalized to the cases of other equations (just
by changing the function g), and we prove the convergence of the approximations to the theoretical solution
in a weak sense. In this section we work in a spatio-temporal framework, hence we use the notational
conventions pointed out at the beginning of Chapter 5.

We consider thus the Cauchy problem as presented in Section 5.3:$&%
BU
Bt � LgU � X

U
��
t�0

� U0

(6.31)

We recall that here g is a spatial symbol function for which we suppose in addition that gR ¥ 0, being gR its
real part. We will focus on the resolution of the spatial-Fourier transformed problem$&%

BV
Bt � gV � Y

V
��
t�0

� V0

, (6.32)

where Y � FSpXq and V0 � FSpU0q. We suppose that we are in the case presented in Section 5.3.3,
where X is a real GeRF such that Y � FSpXq is a slow-growing Random Measure over Rd � R�, and U0

is a real GeRF such that V0 � FSpU0q is a slow-growing Random Measure over Rd. The principle is to
use an approximation of Y and V0 constructed using a Riemann sequence of partitions growing to the space
Rd. Then, we propose a spatial approximation of the solution to (6.32), and we can thus give an explicit
expression for its time evolution.

Let pV N
j qjPt1,...,Nu,NPN� be a Riemann sequence of partitions growing to Rd, and let pξNj qjPt1,...,Nu,NPN�

be a collection of associated tag points. We introduce the following slow-growing Random Measure, defined
as a set-function:

YN pA�Bq :�
Ņ

j�1

Y pV N
j �BqδξNj pAq, @A P BBpRdq, B P BBpR�q. (6.33)
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Equivalently, YN can be described through its action to test-functions ψ P S pRd � Rq by

xYN , ψy �
Ņ

j�1

»
Rd�R�

1V Nj
pξqψpξNj , tqdY pξ, tq. (6.34)

The initial condition V0 is also approximated through our method. We consider thus the Random Measure

V0,N :�
Ņ

j�1

V0pV N
j qδξNj . (6.35)

We consider then the solution to the approximated transformed problem$&%
BVN
Bt � gVN � YN

VN
��
t�0

� V0,N

. (6.36)

As we have seen in Section 5.3.3, there is a unique solution VN to (6.36) which is a slow-growing Random
Measure with a càdlàg-in-time representation. We can hence express this solution as a collection of Random
Measures over Rd, pVN,tqtPR� , having a càdlàg behaviour in time. The expression is given by

VN,tpAq �
»
A
e�tgpξqdpV0,N � YN p� � t0uqqpξq �

»
A�r0,ts

e�pt�sqgpξqdYN pξ, sq, (6.37)

for all A P BBpRdq. Such expression, which may be quite complicated to compute for a general Y , can now
be expressed in a simpler manner due to the definition of YN using Dirac delta measures:

VN,t �
Ņ

j�1

�
e�tgpξ

N
j q �V0pV N

j q � Y pV N
j � t0uq�� »

r0,ts
e�pt�sqgpξ

N
j qdY pV N

j � �qpsq
�
δξNj

, (6.38)

or more explicitly,

VN,tpAq �
Ņ

j�1

�
e�tgpξ

N
j q �V0pV N

j q � Y pV N
j � t0uq�� »

r0,ts
e�pt�sqgpξ

N
j qdY pV N

j � �qpsq
�
δξNj
pAq

(6.39)
for all A P BBpRdq. Indeed, in this case we have used the well-defined Random Measures over R� deter-
mined by the collection of random variables pY pV N

j � BqqBPBBpR�q. Since Y is a Random Measure over
Rd �R�, the covariance Kernel of Y pV N

j � � q defines a measure over R� �R� for every N P N� and for
every j P t1, ..., Nu. Hence, the expressions of the form»

r0,ts
e�pt�sqgpξ

N
j qdY pV N

j � �qpsq (6.40)
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are simply the stochastic integrals of the temporal deterministic functions of the form s ÞÑ e�pt�sqgpξ
N
j q with

respect to the temporal Random Measure Y pV N
j � � q over the interval r0, ts. In addition, since gR ¥ 0, the

functions s ÞÑ e�pt�sqgpξ
N
j q are bounded over r0, ts, which guarantees the good definition of this stochastic

integral.

Finally, we consider the non-transformed approximated problem$&%
BUN
Bt � LgUN � XN

UN
��
t�0

� U0,N

(6.41)

where XN � F�1
S pYN q and U0,N � F�1

S pV0,N q. The solution is given by the spatial Fourier Transform of
(6.38), which is a Random Function over Rd � R�, determined by

UN px, tq � 1

p2πq d2
Ņ

j�1

�
e�tgpξ

N
j q
�
V0pV Nj q � Y pV Nj � t0uq�� »

r0,ts

e�pt�sqgpξ
N
j qdY pV Nj � �qpsq

�
eix

T ξNj .

(6.42)

UN is a Random Function smooth in mean-square in space and càdlàg in time.

In expression (6.38) we have used the random variables of the form V0,N pV N
j q, Y pV N

j � t0uq and the
stochastic integral (6.40). For general slow-growing Random Measures Y and V0, these random variables
are not necessarily non-correlated, hence we have not win that much in simplicity when looking for a method
to simulate the solution (6.38). This situation is avoided when requiring the extra conditions on X and U0

which were presented in Section 5.3.4. Namely, that X and U0 are stationary, and that Y � FSpXq is a
slow-growing Random Measure. For simplicity we will suppose that Y pV N

j � t0uq � 0. In such a case,
expression (6.38) gives

VN,t �
Ņ

j�1

�
e�tgpξ

N
j qV0pV N

j q �
»
r0,ts

e�pt�sqgpξ
N
j qdY pV N

j � �qpsq
�
. (6.43)

We suppose, in addition, that X and U0 are independent. Consequently, the random variables of the form
V0pV N

j q are independent of the random variables of the stochastic integrals of the form (6.40). Since X is
stationary and Y is the spatial Fourier Transform of X , Y must have an orthogonal behaviour in space, and
hence for a fixed t P R� and for every N P N�, the collection of random variables�»

r0,ts
e�pt�sqgpξ

N
j qdY pV N

j � �qpsq
�
jPt1,...,Nu

(6.44)

are mutually uncorrelated. With these extra suppositions, the simulation of VN,t for a fixed t P R� is easy to
compute, maintaining anyway the subtleties presented in Remark 6.2.4.
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The next proposition gives sufficient conditions when this approximation procedure converges to the
desired solution U in a weak sense. The proof is presented in Appendix A.21.

Proposition 6.2.4. Let X be a real stationary GeRF over Rd � R such that X is separable in the form
X � XS bXT (symbolically), where XT represents a stationary Random Measure over R. Let g : Rd Ñ C
be a continuous spatial symbol function such that gR ¥ 0. Let U0 be a real stationary GeRF over Rd.
Let pUN qNPN� be a sequence of Random Functions defined as in (6.42) for an arbitrary Riemann sequence
of partitions growing to Rd, pV N

j qjPt1,...,Nu,NPN� and for arbitrary tag points pξNj qjPt1,...,Nu,NPN� . Let U
be the solution to the Cauchy problem (6.31), and let pUtqtPR� be its càdlàg-in-time representation. Then,
UN Ñ U in a mean-square-S 1pRdq-weak-� sense in space and in point-wise sense in time. Explicitly,

E

�����xUt, ϕy � »
Rd
UN px, tqϕpxqdx

����2
�
Ñ 0, as N Ñ8,@ϕ P S pRdq,@t P R�. (6.45)

Remark 6.2.8. Proposition (6.2.4) also holds when X has a product-sum form, say

X �
M̧

k�1

Xk
S bXk

T , M P N�, (6.46)

provided that all of the temporal parts pXk
T qkPt1,...,Mu are stationary Random Measures. We recall that

in a product-sum model, the representation (6.46) means that the covariance of X can be expressed as
the covariance of sums of tensor products as in (6.46), being the families of GeRFs pXk

SqkPt1,...,Mu and
pXk

T qkPt1,...,Mu all mutually independent.

Remark 6.2.9. Under the conditions of Proposition 6.2.4, and if we require in addition that gR ¥ κ ¡ 0 for
some κ ¡ 0, as we have pointed out in Section 5.3.4, the covariance of the solution to the problem (6.31)
converges spatio-temporally to the covariance of the unique stationary solution of the associated equation
(5.79) as the time flows. In the approximated case, the solution to the approximated Cauchy problem (6.41)
converges spatio-temporally to the unique stationary solution of the approximated SPDE

BUN
Bt � LgpUN q � XN

S bXT , (6.47)

whereXN
S represents a spatial approximation of the spatial traceXS , through the method exposed in Section

6.2.1. Hence, we obtain a convergence to an approximation of the stationary solution U stat.

Let us now consider the problem of simulating UN at different time locations. In this case we can follow
a recursive approach to obtain a practical expression for VN . Let t P R� and ∆t ¡ 0. With some simple
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algebraic calculations, one obtains the next formula for VN,t�∆t as a function of VN,t:

VN,t�∆tpAq �
»
A
e�∆tgpξqdVN,tpξq �

»
A�pt,t�∆ts

e�pt�∆t�sqgpξqdYN pξ, sq, @A P BBpRdq. (6.48)

Equivalently, we can express VN,t�∆t as

VN,t�∆t �
Ņ

j�1

�
e�∆tgpξNj q

�
e�tgpξ

N
j qV0pV N

j q �
»
r0,ts

e�pt�sqgpξ
N
j qdY pV N

j � �qpsq
��

δξNj

�
Ņ

j�1

�»
pt,t�∆ts

e�pt�∆t�sqgpξNj qdY pV N
j � �qpsq

�
δξNj

.

(6.49)

If we have already a simulation of VN,t through the specification of the collection of random variables�
e�tgpξ

N
j qV0pV N

j q �
»
r0,ts

e�pt�sqgpξ
N
j qdY pV N

j � �qpsq
�
jPt1,...,Nu

, (6.50)

we can use these random variables to calculate the first sum in (6.49). The second sum contains the random
variables of the form »

pt,t�∆ts
e�pt�∆t�sqgpξNj qdY pV N

j � �qpsq, (6.51)

which may be seen as innovation terms. Such terms are not necessarily uncorrelated with the random vari-
ables of the form (6.50). The dependence structure between them is determined by the covariance structure
of Y , which is not necessarily orthogonal in time. A case where there is no correlation between the inno-
vation terms (6.51) and the random variables (6.50) is when Y has the structure of a orthogonal Random
Measure in time, case in which, as we have seen in Section 5.3.5, the solution V has a Markovian behaviour
in time when working in a Gaussian framework. Consider then the case where Y is an orthogonal Random
Measure over Rd � R. If νY P M�

SGpRd � Rq is its weight, the variances of the involved random variables
can be expressed as

Var

�
e�tgpξ

N
j qV0pV N

j q �
»
r0,ts

e�pt�sqgpξ
N
j qdY pV N

j � �qpsq
�

� e�2tgRpξNj qp2πq d2µU0pV N
j q �

»
r0,ts

e�2pt�sqgRpξNj qdνY pV N
j � �qpsq,

(6.52)

and

Var

�»
pt,t�∆ts

e�pt�∆t�sqgpξNj qdY pV N
j � �qpsq

�
�
»
pt,t�∆ts

e�2pt�∆t�sqgRpξNj qdνY pV N
j � �qpsq, (6.53)



6.2. A SPECTRAL METHOD BASED ON THE FOURIER TRANSFORM 163

where µU0 is the spectral measure of U0. Hence, when Y is orthogonal we have an easy way to simulate the
involved random variables and hence to obtain a non-limited in time simulation of the spatio-temporal model.
We remark that if the variances (6.52) and (6.53) are known exactly, the simulation does not accumulate time
errors when evolving in time: the solution is the strict solution to the approximated problem (6.32). The
errors in the approximation are completely determined by the spatial approximation.

We remark that, as we have mentioned in 5.3.5, the conditions that X is stationary and that Y � FSpXq
is orthogonal require that X must be both orthogonal and stationary in time, and hence, possibly, the only
kind of models which satisfy this property are those who have the behaviour of a White Noise in time. In
the implementation section 6.3 we consider the case where X is a coloured in space and white in time noise,
X � XS bWT .

6.2.4 Adaptation to Waving models

Let us consider the application of these principles to obtain approximations of real stationary solutions to
some homogeneous SPDEs. We consider the homogeneous SPDE

LgU � 0, (6.54)

for which we look to approximate a particular stationary solution. As stated in Remark 4.3.3, this is only
possible in the case when g has null values, and in such a case the stationary solutions have spectral measures
concentrated on the subset g�1pt0uq. Hence, a general expression for U is given by

U � F�1pMU q, (6.55)

where MU is an Hermitian slow-growing orthogonal Random Measure concentrated on g�1pt0uq. The gen-
eral principle is to use a Riemann sequence of partitions of g�1pt0uq (or growing to g�1pt0uq if it is not
bounded) together with tag points, and then defining a Random Function UN following the same principle
as in Eq. (6.4), using an orthogonal Random Measure MU concentrated on g�1pt0uq. Hence, F pUN q is
an orthogonal Random Measure concentrated on g�1pt0uq, and hence it is immediate that UN satisfies Eq.
(6.54). However, we still need a criterion to select a particular solution. Since there are many possible spec-
tral measures concentrated on the set g�1pt0uq, there are also many possible orthogonal Random Measures
MU which can be chosen. Such a selection is arbitrary and it is done in order to obtain a model with desired
extra properties, besides the fact of solving Eq. (6.54).

In this section we will focus on the case of Waving models (Section 5.2.4). The selection of a particular
stationary solution for the associated homogeneous Wave equation is done in order to make the solution
follow a desired spatial covariance model. We maintain the notational conventions of the spatio-temporal
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framework as considered in Chapter 5.

Let U be a real stationary GeRF over Rd � R solution to the homogeneous Wave equation

B2U

Bt2 � c
2∆U � 0. (6.56)

As we have seen in Section 5.2.4, U must have a spectral measure of the form

dµU pξ, ωq �
?

2πd

�
δ�c|ξ| � δc|ξ|

2



pωqdµUS pξq, (6.57)

where µUS is a spectral measure over Rd. µUS describes the spatial behaviour of U . Let MU � F pUq. MU

is an orthogonal Random Measure concentrated on the spatio-temporal cone Cc � tpξ, ωq P Rd � R
�� |ω| �

c|ξ|u. We consider a spatial Riemann sequence of partitions growing to Rd, pV N
j qjPt1,...,Nu,NPN� , with

associated tag points pξNj qjPt1,...,Nu,NPN� . Starting from this spatial sequence of partitions, we construct a
spatio-temporal Riemann sequence of partitions growing to Cc as follows: for every N P N� and for every
j P t1, ..., Nu, we define the sets

BN
j,� :� �V N

j � R��X Cc ; BN
j,� :� �V N

j � R�
�
�X Cc. (6.58)

The sequence of collections of sets pBN
j,�qjPt1,...,Nu,NPN� forms a Riemann sequence of partitions growing

to the "positive-temporal-frequency part" of the spatio-temporal cone, Cc X pRd � R�q. Analogously, the
collection of sets pBN

j,�qjPt1,...,Nu,NPN� forms a Riemann sequence of partitions growing to CcXpRd�R�� q.
To every set of the form BN

j,� we associate the tag point pξNj , c|ξNj |q P Cc X pRd � R�q, while to a set of
the form BN

j,� we associate the tag point pξNj ,�c|ξNj |q P Cc X pRd �R�� q. Since MU is concentrated on Cc,
we have that MU pV N

j � R�q � MU pBN
j,�q and MU pV N

j � R�� q � MU pBN
j,�q. We propose then the next

approximation for MU :

MUN :�
Ņ

j�1

MU pV N
j � R�qδpξNj ,c|ξNj |q �MU pV N

j � R�
� qδpξNj ,�c|ξNj |q. (6.59)

We recall that the Dirac measures δpξNj ,c|ξNj |q denotes a measure over Rd � R. MUN is then a compactly
supported orthogonal Random Measure concentrated on Cc and hence its spatio-temporal Inverse Fourier
Transform is a stationary complex Random Function which satisfies Eq. (6.56). Such Random Function is
determined by

UN px, tq � 1

p2πq d�1
2

Ņ

j�1

�
eitc|ξ

N
j |MU pV N

j � R�q � e�itc|ξNj |MU pV N
j � R�

� q
	
eix

T ξNj . (6.60)
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Let us make explicit the variances of the random variables of the form MU pV N
j �R�q and MU pV N

j �R�� q.
MU is an orthogonal Random Measure over Rd � R with weight p2πq d�1

2 µU , with µU given by (6.57).
Hence, for every B P BBpRd � Rq,

VarpMU pBqq � p2πq
d�1
2 µU pBq. (6.61)

Following the disintegration expression (6.57), one has

VarpMU pV Nj � R�qq � p2πq d�1
2 µU pV Nj � R�q

� p2πq d2�1

»
V Nj

δc|ξ| � δ�c|ξ|

2
pR�qdµUS pξq

� p2πq d2�1

�»
V Nj zt0u

δc|ξ| � δ�c|ξ|

2
pR�qdµUS pξq �

»
V Nj Xt0u

δc|ξ| � δ�c|ξ|

2
pR�qdµUS pξq

�

� p2πq d2�1

�
1

2
µUS pV Nj zt0uq � µUS pV Nj X t0uq

�
.

(6.62)

Following the same arguments one obtains

VarpMU pV N
j � R�

� qq �
p2πq d2�1

2
µUS pV N

j zt0uq. (6.63)

We obtain thus the following results which are consequences of Proposition 6.2.3 and Theorem 6.2.1. We
omit the proofs.

Proposition 6.2.5. Let U be a real stationary GeRF over Rd � R which is solution to the homogeneous
Wave equation (6.56). Let MU be its spatio-temporal Fourier Transform. Let pUN qNPN� be the sequence
of Random Functions over Rd � R defined through (6.60) for an arbitrary Riemann sequence of partitions
growing to Rd, pV N

j qjPt1,...,Nu,NPN� and for arbitrary tag points pξNj qjPt1,...,Nu,NPN� . Then, pUN qNPN�
converges to U in a mean-square-S 1pRd � Rq-weak-� sense, that is,

E
�
|xU,ψy � xUN , ψy|2

	
Ñ 0, as N Ñ8,@ψ P S pRd � Rq. (6.64)

For the next result, we remark that if U is a real stationary solution to the homogeneous Wave equation
such that the spectral measure describing its spatial behaviour µUS is finite, we obtain immediately from
(6.57) that its spatio-temporal spectral measure µU is also finite, hence U is a continuous stationary Random
Function.

Theorem 6.2.3. Let U be a real stationary GeRF over Rd � R which is solution to the homogenoeus Wave
equation (6.56), and such that the spectral measure describing its spatial behaviour µUS is finite. Let MU be
its spatio-temporal Fourier Transform. Let pUN qNPN� be the sequence of Random Functions over Rd � R



166 CHAPTER 6. SIMULATIONS

defined through (6.60) for an arbitrary Riemann sequence of partitions growing to Rd, pV N
j qjPt1,...,Nu,NPN�

and for an arbitrary choice of tag points pξNj qjPt1,...,Nu,NPN� . Then, pUN qNPN� converges to U , which is a
continuous Random Function, in a mean-square-uniformly on compacts sense, that is,

sup
xPK

E
�
|Upxq � UN pxq|2

	
Ñ 0, as N Ñ8,@K � Rd � R compact. (6.65)

Remark 6.2.10. Concerning the explicit computation of the variances (6.62) and (6.63) for a particular
spatial spectral measure µUS , we have the same issues as in Remark 6.2.7. If we know how to calculate them
explicitly, we can apply Theorem 6.2.3 and obtain an approximation which converges mean-square uniformly
on compacts. However, if we rather do an approximation, similarly as in Eq. (6.30), some extra conditions
over this spatial spectral measure must be required in order to justify the convergence. For instance, if we
suppose the spatial traces of U to satisfy an equation of the form (6.18), and if we apply the procedures of
section 6.2.2 to approximate U , the conditions on Theorem 6.2.2 are required.

To conclude, we remark that in this case we have a similarity with the approach followed in section 6.2.3
for first order evolution models: the approximation is only spatial. Temporally, our approximation UN solves
the homogeneous Wave equation strictly.

6.3 Implementation

The results presented in Section 6.2 are now applied to simulate approximations of some GeRFs and so-
lutions of SPDEs. We will present examples in a spatial context with a study of the convergence of the
approximations in the case of the Matérn model. We will illustrate other models with interesting properties
in the case of dimension d � 2. In the spatio-temporal context, we will illustrate first order evolution models
and Waving models.

The simulations are done in a Gaussian framework. Hence, all the non-correlated real random variables
involved are independent. Before concerning about the simulation itself, we will point out some necessary
technical specifications about the computational adaptation of our results and how to relate them to a classical
Fourier Analysis computational problem, obtaining expressions associated to Discrete Fourier Transforms.
The simulations are performed in R.

The Riemann multi-sequence of partitions

In this implementation section we will always use the same Riemann sequence of partitions growing to Rd

(or to Rd�R). The collection of sets of the form pV N
j qjPt1,...,Nu,NPN� will be now re-indexed in a convenient

way. The approximation order will not be described by an integer N P N� but by a multi-index of positive
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integers, which will be written in bold letters N P Nd�, and we will further require all of its components to
grow together to8, which we denote by NÑ8. We denote by J�pN�1q,N�1K :� tj P Zd �� �pN�1q ¤
j ¤ N� 1u, where the inequality relation �pN� 1q ¤ j ¤ N� 1 is taken component-wise. The collection
of partitions will be described through a Riemann multi-sequence of partitions growing to Rd, determined
for every j P J�pN� 1q,N� 1K and for every N P Nd� through:

V N
j � aN

�
j1 � 1

2
, j1 � 1

2



�
�
j2 � 1

2
, j2 � 1

2



� ...�

�
jd � 1

2
, jd � 1

2



, (6.66)

where paNqNPNd� is a multi-sequence of positive numbers such that aN Ñ 0 as N Ñ 8 and such that
aNN Ñ 8 as N Ñ 8. It is clear that for a fixed N P Nd�, the collection pV N

j qjPJp�N�1q,N�1K forms a
partition of its reunion. Such a reunion is given by

¤
jPJ�pN�1q,N�1K

V N
j � aN

�
N1 � 1

2
, N1 � 1

2



�
�
N2 � 1

2
, N2 � 1

2



� ...�

�
Nd � 1

2
, Nd � 1

2



, (6.67)

which we may denote informally by

aN

�
N� 1

2
,N� 1

2



. (6.68)

Since aNN Ñ 8 as N Ñ 8, the reunion (6.67) grows to the whole space Rd as N grows. In addition, all
of the members of the partition pV N

j qjPJ�pN�1q,N�1K have the same diameter for a fixed N P Nd�, given by

diampV N
j q � aN

?
d, (6.69)

which goes to 0 as N grows. Hence, we can properly say that (6.66) defines a Riemann multi-sequence of
partitions growing to Rd.

Finally, we choose the associated collection of tag points, which will be given simply by

ξNj � aNj, (6.70)

for all j P J�pN� 1q,N� 1K and for all N P Nd�.

This selection of Riemann multi-sequence of partitions and tag points is preferred for many reasons.
We first remark that it is the most intuitive and classical Riemann partition: we made a partition given by
rectangles and the selected tag points are the middle points. In addition, we remark that we have the following
condition

� pV N
j q

o � pV N
�jq

o
and � ξNj � ξN�j, @j P J�pN� 1q,N� 1K,@N P Nd�, (6.71)

where pV N
j q

o
denotes the interior of the set V N

j . This condition will be beneficial when considering ap-
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proximations of Hermitian Random Measures, in order to identify which random variables are conjugate
one of the other when simulating a real stationary GeRF. Finally, this selection is, as it will be made explicit
below, closely related to the traditional form of a discrete Fourier Transform, for which there are well-known
algorithms of fast computation such as the FFT (Cooley & Tukey, 1965).

We remark that, in any case, this choice is of course not the only possible one, and that other options
may be more adapted for particular cases. For instance, if the target GeRF Z has an isotropic stationary
covariance, a partition grounded on pizza slices centred at the origin, rather than rectangles, may be more
comfortable for analytic computations, although the FFT algorithm is not immediately adapted.

Expression as a Discrete Fourier Transform

Let Z be a real stationary GeRF over Rd. For simplicity, we will suppose that it is a continuous Random
Function over Rd and we will simulate approximations of Z over a fixed domain of Rd, say r0, Lsd � Rd,
with L ¡ 0. The principle is to approach Z by the corresponding analogue approximation (6.4), which is a
stationary Random Function. In the case of the Riemann multi-sequence of partitions considered here, ZN

is given by

ZNpxq � 1

p2πq d2
N�1̧

j��pN�1q
MZpV N

j qeiaNx
T j � F�1

�� N�1̧

j��pN�1q
MZpV N

j qδaNj

�pxq, (6.72)

where MZ � F pZq, which is Hermitian since Z is real. The random variables pMZpVjNqqjPJ�pN�1q,N�1K

for a fixed N P Nd� are all uncorrelated, although non-independent due to the Hermitianity condition. Let
us assume, for simplicity, that the spectral measure of Z, µZ , satisfies that µZpBVjNq � 0, that is, that the
boundary of the sets of the form (6.66) are µZ�null sets, which holds for example when µZ has a density
with respect to the Lebesgue measure. In such a case one has that MZpV N

j q � MZppV N
j q

oq, and since MZ

is Hermitian, by (6.71) one has
MZpV N

j q �MZpV N
�jq. (6.73)

We can conclude that the orthogonal Random Measure

MZN
�

N�1̧

j��pN�1q
MZpV N

j qδaNj (6.74)

is Hermitian. Indeed, if A P BBpRdq, then

MZN
pAq �

N�1̧

j��pN�1q
MZpV N

j qδaNjpAq �
N�1̧

j��pN�1q
MZpV N

�jqδ�aNjp�Aq �MZN
p�Aq, (6.75)
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where we have used a simple rearrangement of the sum. Hence, ZN is a real stationary continuous Random
Function.

We recall that from Remark 6.2.1, the Random Function ZN is periodic. If we want to simulate its
values over the domain r0, Lsd we need to ensure that no undesired periodical behaviour will be present.
From expression (6.72), we see that the frequencies along the canonical directions are multiples of aN,
hence it is through the control of this multi-sequence that we can control the periodicity of ZN over the
desired domain. The lower frequency in expression (6.72) in the direction k P t1, ..., du is given by jk � 1.
In such a case, the associated function eiaNxk has period 2π

aN
. From this, we obtain that if we want to simulate

ZN at points belonging to r0, Lsd, we must take aN ¤ 2π
L . In order to avoid a reflective behaviour, that is,

not necessarily periodic but rather having undesirable cases such as ZNpxq � �ZNpyq for two different
points x, y, we must impose

aN ¤ π

L
. (6.76)

With these considerations we can already simulate the Random Function ZN over an arbitrary finite col-
lection of points belonging to the domain r0, Lsd. Let us suppose that there are M P N points in this domain
where we want to simulate ZN. Supposing that the computations of the variance and the simulation of every
random variable MZpV N

j q are of order Op1q, a direct computation of the sum (6.72) involves a quantity of
operations with complexity OpMN1N2...Ndq. The FFT algorithm allows to reduce the “M” part of this
complexity to a logpMq. However, in order to apply it, the points of evaluation in the domain r0, Lsd must
be on a regular grid. Let us fix the regular grid which must be used. We recall that the classical expression
of a Discrete Fourier Transform in a uni-dimensional case of a vector of complex numbers pX0, ..., XN�1q
is given by the vector pY0, ..., YN�1q determined by

Yk �
N�1̧

j�0

Xje
�i 2π

N
kj , @k P t0, ..., N � 1u. (6.77)

The minus sign in the exponentials in (6.77) can be removed without technical issues, the result being a non-
normalized Discrete Inverse Fourier Transform, for which the FFT algorithm also applies. The adaptation
to a form of the multiple sum (6.72) is done using algebraical rearrangements, for which the final expres-
sion is given by a combination of Discrete Fourier Transforms and non-normalized Discrete Inverse Fourier
Transforms. What really lacks is the presence of an expression of the form i2π

N kj in the exponentials in Eq.
(6.72), whose multi-variate version consists in expressions of the form i2π

�
x1j1
N1

� x2j2
N2

� ... � xdjd
Nd

�
, for

x � px1, ..., xdq P Rd. In order to obtain such an expression, we consider for any fixed N P Nd� and for any
k P Nd, the point in Rd:

xNk �
2π

aN

�
k1

N1
, ...,

kd
Nd



. (6.78)
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These points are set on a regular grid over r0,8qd. If we evaluate ZN on one of them we obtain

ZNpxNk q �
1

p2πq d2
N�1̧

j��pN�1q
MZpV N

j qei2π
�
k1j1
N1

�...� kdjd
Nd

	
, @k P Nd. (6.79)

Hence, we obtain an expression which can be easily related to a multivariate form of combinations of Discrete
Fourier Transform and Inverse Discrete Fourier Transforms. Such an adaptation must be done by rearranging
the sum (6.79) into multi-sums over J0,N� 1K.

Methods based on the FFT algorithm produce arrays of the same quantity as the array which is trans-
formed, and hence we will obtain values associated to the points xNk such that k P J0,N � 1K. We remark
that just some of these points are in the desired domain r0, Lsd. A point xNk is in such a domain if and only
if for the associated multi-index k � pk1, ..., kdq P Nd we have

kl ¤ aNNl

2π
L, @l P t1, ..., du. (6.80)

We remark that from condition (6.76), this implies that k1 ¤ Nl
2 for all l P t1, ..., du, hence we will only

retain a small part of the values obtained when applying the FFT algorithm (less than the half for d � 1, for
instance). We remark also that since aNN Ñ 8 as N Ñ 8, the quantity of points included in r0, Lsd also
grows, obtaining a finer simulation grid as we take a higher order of approximation N. The total quantity of
evaluation points included in the domain r0, Lsd is

d¹
l�1

�Z
aNNl

2π
L

^
� 1



. (6.81)

The complexity of the algorithm is OpN1...Nd logpN1...Ndqq.

The simulation of the random variables involved in the approximation

Consider the problem of simulating the complex random variables pMZpV N
j qqjPJ�pN�1q,N�1K in expression

(6.4). These complex random variables are non-correlated but they are not all mutually independent since
they are related through Hermitianity conditions. The variances of each one of these random variables are
given by

VarpMZpV N
j qq � p2πq

d
2µZpV N

j q. (6.82)

We split MZpV N
j q in its real and imaginary parts

MZpV N
j q �MR

Z pV N
j q � iM I

ZpV N
j q. (6.83)
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SinceMZ is orthogonal and Hermitian, from Proposition 3.3.3,MR
Z andM I

Z are non-correlated real Random
Measures, and hence independent in this Gaussian framework. Recalling relation (6.71) and that we have
supposed that MZ is null over the boundaries of the sets pV N

j qjPJ�pN�1q,N�1K,NPNd� , we obtain the variances

VarpMR
Z pV N

j qq �
p2πq d2

2

�
µZpV N

j q � µZpV N
j X V N

�jq
�

VarpM I
ZpV N

j qq �
p2πq d2

2

�
µZpV N

j q � µZpV N
j X V N

�jq
�
.

(6.84)

From relation (6.73) one gets that it is just necessary to simulate a part of these random variables, the rest
of them being determined by the already simulated ones through a complex conjugation. The procedure is
quite immediate in the case d � 1, where in the sum (6.72) we have to just to simulate the cases of index
j ¥ 0 and then obtain the case of the negative ones through the Hermitian condition. In higher dimensions
the problem is a little bit more complicated.

 We first consider the case where j is such that j1 ¥ 1 and its reflections. In such a case, V N
j XV�j � H

and hence the random variables MR
Z pV N

j q and M I
ZpV N

j q are independent with same variance equal

to p2πq d2 µZpV
N
j q

2 (Eq. (6.84)). We simulate these independent real random variables and then we
set MZpV N

j q � MR
Z pV N

j q � iM I
ZpV N

j q. We then set MZpV N
�jq � MZpV N

j q. The total number of
independent real random variables simulated is 2pN1 � 1q±d

l�2p2Nl � 1q.

 We then consider the case where j1 � 0 and j2 ¥ 1. We apply an analogue procedure since we
still having V N

j X V N
�j � H. The total number of real independent random variables simulated is

2pN2 � 1q±d
l�3p2Nl � 1q.

 We apply recursively the same principle until the case j1 � j2 � ... � jd�1 � 0 and jd ¥ 1, where
the total number of real independent random variables simulated is 2pNd � 1q.

 Finally, the random variable MZpV N
0 q, where 0 � p0, ..., 0q P Nd, is a real random variable since MZ

is Hermitian and V N
0 is a symmetric set (V N

0 � �V N
0 ). The variance of this real random variable is

p2πq d2µZpV N
0 q.

In this procedure, the final total number of real independent random variables simulated is

d¹
l�1

p2Nl � 1q, (6.85)

which is the same number of sets in the partition pV N
j qjPJ�pN�1q,N�1K. We remark that this procedure gets

highly memory-consuming for big values of N.
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6.3.1 Implementation in the case d � 2

In this section we apply the method to cases in dimension d � 2. We consider the case of SPDEs of the form

LgU �W, (6.86)

restricting ourselves to the case where the solution U is a continuous Random Function, i.e. when |g|�2 is
integrable. We follow the approach described in Section 6.2.2, and hence we simulate the solution to the
approximated problem

LgUN �WN, (6.87)

where WN is an approximation of the White Noise using expression (6.72). Since the Fourier Transform of
a White Noise is a White Noise, we have the convenient simple expression of the variances:

VarpMW pV N
j qq � LebpMW pV N

j qq � adN, (6.88)

which does not depend on j. The expression for the solution UN to (6.87) is given by

UNpxNk q �
1

p2πq d2
N�1̧

j��pN�1q

MW pV N
j q

gpξNj q
e
i2π

�
k1j1
N1

�...� kdjd
Nd

	
, @k P Nd, (6.89)

for every point xNk on the evaluation grid.

We set the simulation domain to be r0, Ls � r0, Ls � R2, for L � 100. We also set from now on:

aN � π

L

1

log10pmaxlPt1,...,duNlq , (6.90)

which has been chosen arbitrarily. For simplicity, we will always work with multi-indices of the form
N � pN, ..., Nq P Nd� for some N P N� which will determine the approximation order. Under these
conditions, the total number of points in the simulation grid is given by (Eq. (6.81)):�Z

N

2 log10pNq
^
� 1



�
�Z

N

2 log10pNq
^
� 1



�
�Z

N

2 log10pNq
^
� 1


2

. (6.91)

For instance, for N � 210 the grid has 170�170 evaluation points, for N � 211 it has 310�310 points, and
for N � 212, it has 567� 567 points. From expression (6.78) it follows that the step between two neighbour
points in the grid along an arbitrary canonical direction is given by 2L log10pNq

N .
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The variance of the approximation UN, is given by

σ2
UN
� adN
p2πqd

N�1̧

j��pN�1q

1

|gpξNj q|2
, (6.92)

which can be obtained from the evaluation of Eq. (6.24) at h � 0 (we recall dµW pξq � p2πq� d
2 dξ). This is

used in order to obtain normalized simulations, which are then approximations to the normalized version of
the solution to (6.86).

Matérn model: illustrations and qualitative Error Analysis

We begin by considering the case of the well-known Matérn model. We consider then the equation

pκ2 �∆qα2 U �W, (6.93)

for some κ ¡ 0 and α ¡ d
2 . Hence gpξq � pκ2 � |ξ|2qα2 . We consider simulations of the normalized

approximated version. Figure 6.1 shows illustrations of such simulations for different approximation orders
N and for different regularity parameters α, maintaining the same scale parameter κ.

In order to analyse the quality of this approximate procedure, we computed the average experimental
variograms of 50 independent simulations and compared it to the theoretical variogram of the Matérn model.
The experimental variograms are considered using 20 separation distance bins of width 3, hence considering
points separated up to a distance of 60 units (we recall that L � 100). The comparison is done for different
orders of approximation, regularities and scale parameters. The cases of scale parameter κ � 1

5 are presented
in Figure 6.2. The cases of scale parameter κ � 1

10 are presented in Figure 6.3.

In Figures 6.2 and 6.3 it can be appreciated that when the approximation order N grows, the average
experimental variograms get closer to the theoretical variogram near to the origin. This tendency is stronger
in the cases with high regularity and small practical range. In the sense of the behaviour at the origin, the
method produces better approximations under higher regularities, which is not surprising since, as mentioned
before, the theoretical approximation UN is a smooth Random Function. In broad terms, the coincidence
between the mean of the empirical mean of the variograms and the theoretical variogram is not ideal. The
particular case α � 4 and κ � 1

10 presents more difficulties, probably related to the high practical range of
this case.

While it is theoretically proven that the approximation gets better as the approximation order grows
(Theorem 6.2.2 applies in the case of the Matérn model), it is also true that in such case both the computation
time of the method and the memory required to perform it grow. Hence, it is not an issue which may be easily
tackled in practice without producing extra computational problems.
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(a) α � 1.5, N � 210 (b) α � 1.5, N � 211 (c) α � 1.5, N � 212

(d) α � 2, N � 210 (e) α � 2, N � 211 (f) α � 2, N � 212

(g) α � 4, N � 210 (h) α � 4, N � 211 (i) α � 4, N � 212

FIGURE 6.1: ILLUSTRATION OF APPROXIMATIONS OF THE MATÉRN MODEL FOR DIFFERENT ORDERS OF AP-
PROXIMATION N AND DIFFERENT REGULARITIES. THE SCALE PARAMETER IS SET AT κ � 1

5 . THE VARIANCE IS
NORMALIZED.
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(a) α � 1.5, N � 210 (b) α � 1.5, N � 211 (c) α � 1.5, N � 212

(d) α � 2, N � 210 (e) α � 2, N � 211 (f) α � 2, N � 212

(g) α � 4, N � 210 (h) α � 4, N � 211 (i) α � 4, N � 212

FIGURE 6.2: COMPARISON BETWEEN THE AVERAGE EXPERIMENTAL VARIOGRAMS OF 50 INDEPENDENT SIM-
ULATIONS OF APPROXIMATIONS OF A MATÉRN MODEL (IN BLACK) AND THE THEORETICAL VARIOGRAM OF
THE MATÉRN MODEL (IN RED). THE SCALE PARAMETER IS SET AT κ � 1

5 . NORMALIZED, THE VARIANCE IS
REPRESENTED IN BLUE.

(a) α � 1.5, N � 210 (b) α � 1.5, N � 211 (c) α � 1.5, N � 212

(d) α � 2, N � 210 (e) α � 2, N � 211 (f) α � 2, N � 212

(g) α � 4, N � 210 (h) α � 4, N � 211 (i) α � 4, N � 212

FIGURE 6.3: COMPARISON BETWEEN THE AVERAGE EXPERIMENTAL VARIOGRAMS OF 50 INDEPENDENT SIM-
ULATIONS OF APPROXIMATIONS OF A MATÉRN MODEL (IN BLACK) AND THE THEORETICAL VARIOGRAM OF
THE MATÉRN MODEL (IN RED). THE SCALE PARAMETER IS SET AT κ � 1

10 . NORMALIZED, THE VARIANCE IS
REPRESENTED IN BLUE.
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Illustrations of miscellaneous models

One real advantage of this simulation procedure is its generality: we can now easily simulate approximations
of a large variety of models presenting different interesting behaviours and being related to different SPDEs.
The key issue is the control of the symbol function g, which in the case of equation (6.86) determines
the spectral measure of the solution, which has a density. Taking advantage of this condition, we show
illustrations of a big variety of models related to different kinds of SPDEs.

All the simulations are normalized. The approximation order is set at N � 212.

Lim-Teo generalization of the Matérn model. We consider the SPDE

pκ2 � p�∆qαq γ2U �W, (6.94)

for κ ¡ 0, α ¡ 0 and γ ¡ 0 such that αγ ¡ d
2 . The unique stationary solution of this SPDE follows a

generalization of the Matérn model which was studied in Lim & Teo (2009). The symbol function defining
the operator in (6.94) is given by

gpξq � pκ2 � |ξ|2αq γ2 . (6.95)

The mean-square regularity of this model is determined by the product αγ. Since in this case we can
dissociate this product by controlling the parameters α and γ separately, we are able to control the practical
range of the model without changing the parameter κ, which now plays the role of a regularising parameter
which guarantees the positivity of g and hence the existence of a unique stationary solution. We present in
Figure 6.4 two illustrations of approximations of this model using our method. In both of them we have that
αγ � 2, hence the regularity, that is, the mean-square differentiability order is the same, and the parameter
κ is also set at κ � 1

5 . We illustrate that through the change in the parameters α and γ we are able to control
then the practical range.

Advections and other asymmetries. We present examples which consider a symbol function with non-
null imaginary part. As seen in Section 5.2, such a condition produces an asymmetric behaviour of the
variability of the Random Function with respect to the two spatial components (we may consider it as a non-
symmetric anisotropy). The simplest way of doing this is by considering a vector v P Rd and considering
symbol functions of the form gpξq � gR � ivT ξ. The associated SPDE is then of the form

LgRU � vT∇U �W, (6.96)

which is related to transport phenomena. We take advantage of the generality of our method to consider
other non-typical asymmetries induced by particular symbol functions. The imaginary part gI must be odd.
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(a) α � 0.5, γ � 4 (b) α � 3, γ � 2
3

FIGURE 6.4: SIMULATIONS OF APPROXIMATIONS OF THE LIM-TEO GENERALIZATION OF THE MATÉRN MODEL.
THE PARAMETER κ IS FIXED AT κ � 1

5 . NORMALIZED. WE APPRECIATE DIFFERENT PRACTICAL RANGES WHEN
COMPARING BOTH SIMULATIONS, WHILE THE REGULARITIES ARE THE SAME.

We can obtain a large variety of them by considering any continuous polynomially bounded odd function
f over R and then setting gIpξq � fpvT ξq. It is then expected that some behaviour similar to the simple
case of advection (6.96) will be present if we consider the same vector v. We consider the odd functions
x3, arctan and sin. For the case of x3 a classical differential operator of third order can be obtained. For
the cases of functions arctan and sin, we do not know if there exists a widely used operator associated to
symbol functions involving them.

The results are illustrated in Figure 6.5. In all cases we consider the real part of g to be the one associated
to the Matérn model, gRpξq � pκ2 � |ξ|2qα2 , with κ � 1

5 and α � 2. We set v � p�1, 4q. In the basic case
of gIpξq � vT ξ an anisotropy is clearly apparent, which presents higher correlations at same distances in the
direction of the vector v with respect to other directions. A similar anisotropy is clearly present in the cases
of the functions sin and arctan. In both cases extra small-range correlations are visible along the direction
orthogonal to v. In the case of the sin function, a slight periodic behaviour along the direction of v can be
perceived. In the case of the function x3 the anisotropy is less clear. This can be explained from the extra
regularity that the term pvT ξq3 imposes to the Random Function. Since it is a high order polynomial, the
associated spectral density of the solution, which is the inverse of a strictly positive polynomial of degree
6, is integrable with respect to high order polynomials, hence it is a more regular covariance model. The
simulation shows a significant increase of the practical range with respect to the other cases.
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(a) gpξq � pκ2 � |ξ|2q
α
2 � ivT ξ (b) gpξq � pκ2 � |ξ|2q

α
2 � ipvT ξq3

(c) gpξq � pκ2 � |ξ|2q
α
2 � i arctanpvT ξq (d) gpξq � pκ2 � |ξ|2q

α
2 � i sinpvT ξq

FIGURE 6.5: REALISATIONS OF MODELS WITH NON-SYMMETRIC BEHAVIOUR IN BOTH COMPONENTS, INDUCED
BY AN ADVECTION VECTOR SET AT v � p�1, 4q. THE PARAMETERS OF THE REAL PART OF THE SYMBOLS
FUNCTIONS ARE ALL SAME, SET AT κ � 1

5 AND α � 2.



6.3. IMPLEMENTATION 179

Models with different regularities along the axes. Within this approach it is easy to construct models
presenting different regularities along the axes. The idea is quite similar to the case of the Stein model
in a spatio-temporal context (Example 4.5.5). We consider, for instance, a symbol function of the form
gpξq � κ2 � |ξ1|2α1 � |ξ2|2α2 , for κ ¡ 0 and α1, α2 ¡ 1

2 . The associated SPDE can be written as�
κ2 �

�
� B2

Bx2
1


α1

�
�
� B2

Bx2
2


α2


U �W. (6.97)

Since α1 (resp. α2) controls the integrability of the spectral density with respect to the first (resp. second)
frequency component, both parameters can control separately the regularities along the axes. In Figure 6.6
we present an illustration of such a model, for which we also show the behaviour along one axis when the
other component is fixed at a particular position. As expected, a more regular behaviour along the component
with the higher α�value associated is clearly visible.

(a) α1 � 3, α2 � 0.7 (b) Trace at a fixed x2 (c) Trace at a fixed x1

FIGURE 6.6: SIMULATION OF AN APPROXIMATION OF A MODEL WITH DIFFERENT REGULARITIES ALLONG THE
CANONICAL AXES SATISFYING SPDE (6.97). NORMALIZED. κ � 1

5 . AT THE CENTER AND AT THE RIGHT, WE
PRESENT AN EXAMPLE OF TRACES ALONG THE AXES, OBTAINED BY FIXING ONE COMPONENT TO A PARTICULAR
VALUE. THE FIXED VALUE IN BOTH CASES CORRESPONDS TO THE 50TH POSITION IN THE REGULAR SIMULATION
GRID (EQUALS TO 8.642853 P r0, 100s IN THIS CASE).

The model associated to Eq. (6.97) is symmetric in the sense of Section 5.1.2 (we can interpret, for
instance, the second component as a time component). Hence, it is interesting to illustrate the behaviour of
a non-symmetric case, as presented in Section 5.2. We will thus consider solutions to SPDEs of the form�

κ2 � B2

Bx2
1


α
2

U � B
βU

Bxβ2
�W, (6.98)
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for κ ¡ 0, α ¡ 1
2 and β ¡ 1

2 . The associated symbol function is then

gpξq � pκ2 � |ξ1|2q
α
2 � piξ2qβ. (6.99)

As we mentioned in Section 5.2, these models present a non-symmetric behaviour which in addition
allows to control the regularity along the axes. In Figure 6.7, illustrations of approximations of these models
are presented, with different combinations of the regularity parameters α and β. The parameter κ is set at
κ � 1

5 . The regularity along the axes is studied similarly to the case of the symmetric model (6.97). A
corresponding change in the regularities along the axes when changing the parameters α and β is observed,
as expected.

6.3.2 First order evolution models: asymptotic convergence

We illustrate a simulation of a first order evolution model. We follow the approach proposed in Section 6.2.3.
We consider the case where the spatial symbol function is the one associated to the Matérn model, gpξq �
pκ2 � |ξ|2qα2 . The source term is supposed to follow a coloured in space and white in time noise, which is
spatially approximated as explained in Section 6.2.3: XS

N bWT , with XS
N representing the approximation

of a Matérn model with parameters κXS and αXS . We also consider a null initial condition.

We simulate hence a GeRF UN which satisfies the Cauchy problem:$&%
BUN

Bt � pκ2 �∆qα2 UN � XS
N bWT over Rd � R�

UN

��
t�0

� 0
. (6.100)

We set the parameters to κ � 1
5 , α � 3.12, κXS � 1

5 , and αXS � 0.65. The spatial domain, as well as
the other parameters of the approximation method are set as in section 6.3.1. The order of approximation N
is set at N � 210. The time simulation is done over a regular temporal grid starting at t � 0 and with step
∆t � 0.1.

Some images related to particular time locations are illustrated in Figure 6.8. At every fixed time location,
we calculate an experimental spatial variogram following the same conventions as in Section 6.3.1, and we
compare them with the spatial stationary variogram which the solution should follow once the time has flown
long enough, as it was stated in Section 5.3.4. In this case, the theoretical limit spatial variogram is the one
of a Matérn model, with scale parameter κUstatS

� 1
5 , regularity parameter αUstatS

� α
2 � αXS � 2.21, and

with variance (sill) equal to

σUstatS
� 1

2

1

4πpαUstatS
� 1qκ

2pα
Ustat
S

�1q
UstatS

� 1.61615.
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(a) α � 4, β � 0.7 (b) Trace at a fixed x2 (c) Trace at a fixed x1

(d) α � 2, β � 1.8 (e) Trace at a fixed x2 (f) Trace at a fixed x1

(g) α � 0.7, β � 4 (h) Trace at a fixed x2 (i) Trace at a fixed x1

FIGURE 6.7: SIMULATION OF APPROXIMATIONS OF THE SOLUTION TO EQ. (6.98) FOR DIFFERENT COMBINATION
OF REGULARITIES. NORMALIZED. κ � 1

5 . AT THE CENTER AND AT THE RIGHT, WE PRESENT AN EXAMPLE
OF TRACES ALONG THE AXES, OBTAINED BY FIXING ONE COMPONENT TO A PARTICULAR VALUE. THE FIXED
VALUE IS THE SAME AS IN FIGURE 6.6.
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The convergence to the stationary model can be observed in this simulation.

6.3.3 Waving models

We finish this illustration section with simulations of a Waving model. We follow the approach proposed in
Section 6.2.4. The spatial behaviour is set to be a normalized approximation of a Matérn model, obtaining
thus Waving Matérn models (Section 5.2.4). Hence, the approximation UN satisfies the system of SPDEs:$&%

B2UN

Bt2 � c2∆UN � 0 over Rd � R

pκ2 �∆qα2 UN,S
2nd o.� 1

aWS,N over Rd
, (6.101)

where WN,S denotes an approximation of a spatial White Noise following our method. a ¡ 0 is a constant
normalizing the variance of the solution.

We set the parameters of the spatial model to κ � 1
5 and α � 2. The wave propagation velocity c is set at

c � 8. The spatial domain, as well as the other parameters of the approximation method are set as in section
6.3.1. The order of approximation N is set at N � 210. The time simulation is done over a regular temporal
grid starting at t � 0 and with step ∆t � 0.1. Some images related to particular time locations are illustrated
in Figure 6.9. At every fixed time location, we calculate an spatial experimental variogram following the
same conventions as in Section 6.3.1, and we compare them with the theoretical spatial variogram which
is the one of a Matérn model. The resulting experimental variograms oscillate around the theoretical one,
which is the expected behaviour due to the statistical variability of a experimental variogram with respect to
its theoretical counterpart.

6.4 Discussion

The method discussed in this chapter allows us to obtain simulations of approximations of stationary models
with great generality. The versatility of the method has allowed us to illustrate solutions to many SPDEs,
with associated covariance models having non-trivial properties which are easily controllable by suitable
parameters. It provides hence a quite general method to visualize the behaviour of new stationary models
associated to SPDEs without the restrictions on the associated operator which are present in the case of the
FEM. It also allows to simulate over a spatial regular grid with a large quantity of points.

Within the framework worked out in this dissertation, we were able to theoretically prove the convergence
of this method to the target model in weak and strong senses under suitable conditions. This is also a contri-
bution to the development of this method, for which its main principles and applications have been already
proposed in the literature, for example in Pardo-Iguzquiza & Chica-Olmo (1993) in the case of a general
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(a) t � 0 (b) Spatial experimental variogram

(c) t � 30 (d) Spatial experimental variogram

(e) t � 60 (f) Spatial experimental variogram

(g) t � 90 (h) Spatial experimental variogram

FIGURE 6.8: ILLUSTRATION OF THE SIMULATION OF A FIRST ORDER EVOLUTION MODEL CONVERGING ASYMP-
TOTICALLY SPATIO-TEMPORALLY TO ITS STATIONARY SOLUTION FOLLOWING SPATIALLY A MATÉRN MODEL.
ILLUSTRATIONS AT DIFFERENT TIME LOCATIONS. AT THE RIGHT, THE ASSOCIATED SPATIAL EXPERIMENTAL
VARIOGRAM (IN BLACK), COMPARED WITH THE THEORETICAL SPATIAL VARIOGRAM (IN RED) OF THE LIMIT
MODEL. IN DOTTED BLACK, AN ESTIMATED SILL.
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(a) t � 1 (b) Spatial experimental variogram

(c) t � 1.5 (d) Spatial experimental variogram

(e) t � 2 (f) Spatial experimental variogram

(g) t � 2.5 (h) Spatial experimental variogram

FIGURE 6.9: ILLUSTRATION OF THE SIMULATION OF A WAVING MODEL WITH NORMALIZED APPROXIMATED
MATÉRN SPATIAL COVARIANCE, WITH κ � 1

5 AND α � 2. WAVE PROPAGATION VELOCITY c � 8. ILLUSTRA-
TIONS AT DIFFERENT TIME LOCATIONS. AT THE RIGHT, THE ASSOCIATED SPATIAL EXPERIMENTAL VARIOGRAM
(IN BLACK), COMPARED WITH THE THEORETICAL SPATIAL VARIOGRAM (IN RED). IN BLUE IT IS REMARKED THE
UNITARY VARIANCE. IN DOTTED BLACK, AN ESTIMATED SILL.
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stationary Random Function (as stated in Section 6.2.1) and in Lang & Potthoff (2011) for its application to
SPDEs (as stated in Section 6.2.2). The uniform convergence on compacts sense of the covariance provides
a framework where the variograhic behaviour of the approximated simulated models is similar enough to the
target model when the approximation order is high enough. However, other criteria of good approximation
can be stated for these simulations based on other ways of convergence. For instance, rather than focusing
on a particular theoretical convergence of the approximation Random Fields to the target Random Field, one
may define a good approximation criterion using statistical approaches, and arguing that the approximation
is good enough if after some approximation order the model passes suitable statistical tests grounded on the
target model. This approach is for example the one applied in Lang (2007), and the one proposed in Pereira
& Desassis (2018) under other context of approximations of Gaussian Random Fields.

The use of the FFT algorithm allows us to simulate efficiently the approximations of the model over
a regular grid on the desired domain. As the approximation order N grows, this method provides a more
accurate simulation, both in the sense of a better approximation of the target Random Function and in the
sense of the quantity of simulation points. Its complexity increases dramatically with the spatial dimension.
The memory problem can be tackled using different approaches, see for instance the Singleton’s algorithm
presented in Teukolsky et al. (1992, Section 12.6). However, if we are interested in simulating an approxi-
mation of the model over a non-regular grid, or over a quantity of points which is much smaller than (6.81),
the direct computation of the sum (6.72) is more convenient.

In a general and qualitative sense, the approximation method behaves relatively well in regular cases
with limited practical range. In case with less regularity, the method provides approximations which may
fail to recreate the regularity at low approximation orders. Although we have proved a uniform on compacts
convergence of the covariance of the approximation to the target covariance model, we have not provided
a vanishing bound to the general case of a resolution of the SPDE (6.18). Hence we have not been able to
theoretically indicate at which approximation order this method provides an approximation similar enough
to the target model. This increases the difficulties in the implementation of the method, since an augmen-
tation on the approximation order increases the computational time and the memory storage of the method,
specially for high dimensions.



186 CHAPTER 6. SIMULATIONS



Chapter 7

Conclusion and Perspectives

In this dissertation we have entered into the theoretical details of the current application of the SPDE ap-
proach in Geostatistics. We have set a particular framework of Stochastic Analysis, namely, the framework
of Generalized Random Fields within the mean-square theory. We have exposed this framework and con-
trasted its differences with other approaches to Stochastic Calculus, and we concluded that it is the most
adapted for the needs of geostatistical analysis. Within this framework where Random Functions, Measures
and Distributions cohabit together, we have been able to give a rigorous notion of a linear SPDE and we have
explained how such an equation determines the covariance structure of its potential solutions. We have been
able to obtain criteria of existence and uniqueness of stationary solutions of linear SPDEs involving opera-
tors defined through a symbol. This has allowed us to recover many already known theoretical relationships
between SPDEs and covariance models, and to obtain new relationships. These developments have also
allowed us to construct spatio-temporal geostatistical models presenting non-trivial properties, allowing to
control easily the spatio-temporal symmetry and separated regularity. We have been able to obtain interesting
results concerning stationary solutions for physically-driven SPDEs, and we have entered into the details of
the initial value problem relating SPDEs with a first-order temporal derivative operator involved. Concern-
ing simulation methods, we have studied a particular already known spectral method which was perfectly
adapted to the framework of this dissertation, and for which we have given rigorous mathematical proofs of
its performance. This method has allowed us to easily illustrate models presenting non-trivial properties and
to visualize the models we have developed in this dissertation.

As mentioned in the introductory chapter, the SPDE approach is a vast theoretical and practical field
which requires, and will keep requiring, further research work and developments. We expect that the results
presented in this dissertation will enlighten some ideas and motivate future research questions, but there
are still many important points within this framework which have not been worked out in this dissertation.
We present here our perspectives of future work for the points which we consider are the most important

187
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ones. They are grounded on questions and approaches which arise immediately from the developments
presented in this work. These perspectives concern three major issues: the theoretical question concerning
the possibility of relating an arbitrary and well-known covariance model with a convenient SPDE (which is
basically the inverse problem of what we have done in Chapters 4 and 5), the development of non-stationary
models taking advantage of the SPDE approach, and the development of inference methods adapted to this
framework and to the models developed in this dissertation.

A SPDE for a generic model

The third question presented in the introductory Section 1.3 was not addressed explicitly with whole general-
ity. By following the approach presented in Chapters 4 and 5, we know that we can easily present a SPDE for
a stationary model whose spectral measure has a density with respect to another spectral measure, relating
the density to a convenient symbol function. We can also apply this idea for stationary models whose spectral
measures are concentrated on suitable subsets of the frequency space, obtaining a homogeneous SPDE for
the model to satisfy. With this aim we have been able, for example, to propose SPDEs for the Stein model
(Example 4.5.5) and the J�Bessel model (Example 4.5.4). However, there are still many other models, even
in a stationary framework, for which we do no not know how to relate them to a convenient SPDE, particu-
larly if we do not know the spectral measure associated to the model. For instance, a convenient SPDE for
the Gneiting class of covariance functions (5.4) would produce a huge interest within the spatio-temporal
statistical community, since such a model is popular for its flexibility and capacity to obtain non-separable
models, and for which we do not have an explicit spectral measure associated.

The direct general question “how can we relate a covariance model to a convenient SPDE” has then not
been fully answered in this work. Well understood, any GeRF over Rd, say Z, can be trivially related to a
SPDE involving any operator L for which its application to Z is well-defined. But in such a case, the SPDE
may not be convenient since on the right side of the equation we may obtain a rather complicated GeRF for
which the facilities within the SPDE approach may not be immediate to apply. A more interesting question
is, for example, the following one: given a GeRF Z over Rd following a particular covariance structure,
does it exist an operator L : S 1pRdq Ñ S 1pRdq such that

LZ �W? (7.1)

Here W denotes, as usual, a White Noise over Rd. This more precise question is more relevant for many
reasons. For instance, results presented in Section 4.4 have shown the importance of the case with a White
Noise source term. In addition, a White Noise is a sort of simple model, in the sense that, due to all of its
properties presented in this dissertation, it is easy to treat, simulate and analyse.

We have actually advanced in this question during the PhD period. Although we do not have a formal
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result, we have many indices as to how to answer this question theoretically. A first simple analysis shows
that the solution is not unique: different operators may lead to the same covariance structure. For example,
consider the SDEs over R:�

κ� d

dx



U � σW ;

�
κ� d

dx



U � σW ;

�
κ2 � d2

dx2


 1
2

U � σW, (7.2)

where κ, σ ¡ 0 andW is a White Noise. Using our typical approach with symbol functions, it is not difficult
to prove that all these equations have unique stationary solutions, and that they all have the same spectral
measure dµU pξq � σ2dξ

κ2�|ξ|2 , which corresponds to an exponential model (Eq. (3.5)). More generally, when
facing equations of the form LgU � X as seen in Chapter 4, we recall that the spectral measure of the
potential solution(s) depends on g only through |g|, and hence different symbol functions with the same
modulus generate the same covariance model. Hence, a criterion for selecting one of these solutions should
be proposed. An example is, for instance, to require that the operator is self-adjoint and positive-definite, that
is, such that xLpϕq, φy � xϕ,Lpφqy and that xLpϕq, ϕy ¥ 0 for all ϕ, φ P S pRdq. For instance, in the case

of SDEs (7.2) the only operator satisfying these properties among the presented operators is
�
κ2 � d2

dx2

	 1
2 .

We remark that, at any state, the solutions to equations (7.2) are different strictly speaking: they only coincide
in the covariance structure that they follow.

More generally and regardless of this uniqueness issue, the existence of an operator L such that (7.1)
holds can be studied following a different approach based on convenient spectral decompositions of Z and
the White Noise W . The idea is actually quite simple. Let us suppose that we are in a Gaussian framework.
It can be proven that any GeRF over Rd can be completely determined by an at most countable quantity of
independent random variables. This may be astonishing at first: one may have the idea that, for instance,
a Random Function pZpxqqxPRd is determined by a non-countable quantity of random variables. While
this is true in general, when imposing regularity conditions such as continuity it is easy to verify that Z is
completely determined if we just specify the evaluations at a countable dense subset of Rd. Although those
evaluations are not necessarily independent, a similar but more technical analysis can be done to obtain
an at most countable family of independent random variables which determines completely the Random
Function Z. An approach using a Karhunen-Loève expansion, for instance, may provide such a family
of random variables. In the framework of GeRF, we conjecture that an analogue procedure can be done.
This arises from the fact that the Schwartz space S pRdq is separable (Reed & Simon, 1980, Corollary 2
to Theorem V.14). Hence, by defining the random variables xZ,ϕy for all the functions ϕ belonging to a
suitable countable dense subset of S pRdq, we have determined completely the GeRF Z. We conjecture
that a generalized Karhunen-Loève expansion can be constructed, and that it is possible to obtain an at most
countable basis of functions on S pRdq such that the development of Z on this basis involves mutually
independent random variables with the same variance. Such a basis can be obtained through the use of
the covariance distribution of Z, CZ P S 1pRd � Rdq, and taking advantage of its positive-definite Kernel
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structure in order to construct a pre-inner product over a suitable subspace of S pRdq, from where the basis
functions can be obtained as a result of an orthogonalisation process. We give as example the case of the
White Noise W , for which we can use, for instance, the Hermite functions as a basis of functions in S pRdq
(see Reed & Simon, 1980, Appendix to V.3). Let us denote by phβqβPNd the collection of Hermite functions
over Rd. It is known that this countable collection of functions is included in S pRdq, that they form an
orthonormal system of L2pRdq, and that every test-function in S pRdq and every tempered distribution can
be decomposed in a formal series based on this system of functions (Reed & Simon, 1980, Theorems V.14
and V.15). In the stochastic framework, one has for the White Noise:

W �
¸
βPNd

xW, hβyhβ, (7.3)

where the multi-series is considered in the sense of a mean-square-S 1pRdq-weak-� sense. The orthonor-
mality of the Hermite functions allows to conclude that the random variables pxW, hβyqβPNd are mutually
independent with same variance. For a general GeRF Z, the formal series

Z �
¸
βPNd

xZ, hβyhβ (7.4)

also holds, the random variables pxZ, hβyqβPNd being not necessarily independent. We conclude that, intu-
itively speaking, any GeRF can be identified with a countably-infinite dimensional random vector. A linear
operator L : S 1pRdq Ñ S 1pRdq defined through an adjoint can then be identified with a countably-infinite
matrix, determined by its action on the Hermite functions. The idea is then, to construct this matrix deter-
mining the operator L in such a way that we could obtain a vector of independent random variables from
the collection pxZ, hβyqβPNd . This procedure could be done, for instance, through a generalization of the
Cholesky factorisation to an infinite-dimensional case. With these developments, we conjecture then the
following results:

 Let Z be a real GeRF over Rd. Then, there exists a real linear operator L1 : S 1pRdq Ñ S 1pRdq and
a real White Noise W1 such that

Z � L1W1. (7.5)

 Let Z be a real GeRF over Rd with covariance distribution CZ . Let us denote by KerpZq � tϕ P
S pRdq } xZ,ϕy a.s.� 0u. If the quotient space S pRdq{KerpZq has an infinite absolute basis, then
there exists a real linear operator L2 : S 1pRdq Ñ S 1pRdq such that

L2Z �W2, (7.6)

where W2 is a White Noise.
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For these conjectures the intuition is actually simple. For the first one, we relate it to the discrete result
of determining a finite random vector with a desired covariance matrix starting with a vector of independent
random variables, the typical method being a Cholesky decomposition of the covariance matrix. For the
second one, we follow the intuition that we cannot obtain countably many independent random variables
with the same strictly positive variance starting from a random vector which is only determined by a finite
quantity of independent (non-constant) random variables. Hence, to construct a White Noise starting fromZ,
we necessarily need that Z must be determined by an infinite quantity of independent random variables. The
operators L1 and L2 are not the only ones satisfying these properties, but as stated before, extra requirements
may provide a unique particular selection, such as requiring self-adjointness and positive-definiteness.

These developments, if achieved, would have a huge theoretical value which will improve our under-
standing of GeRFs and the relationship between SPDEs and covariance structures. We remark that we have
not supposed stationarity here, so the conjectures involve quite general covariance structures. However, it is
not immediate to apply them in a practical context. The construction of the operator L is rather abstract and
it is not clear in general how to relate it to classical differential operators or operators defined through a sym-
bol. A study on the action of these well-known operators on the Hermite functions may provide conditions
that L must satisfy in order to identify it as an operator belonging to an already known class of operators.
Simulation and inference methods associated to this development may be achieved by studying the suitability
of a spectral method based on the Hermite basis.

Non-stationarity

The construction of non-stationary geostatistical models presents special issues. Concerning the positive-
definiteness condition that a covariance Kernel must satisfy, constructing valid and flexible covariance mod-
els is specially intricate, since we do not even count on Bochner’s Theorem to easily provide a positive-
definite structure as in the stationary case. Many approaches of development on stationary models have been
done. We refer to Fouedjio (2014) for a presentation and developments of different methodologies in this
aim.

The SPDE approach is then one interesting proposition to construct non-stationary models in a simple
way without the technical requirements on the positive-definite Kernel structure. Indeed, if the Random
Field is the unique and well-defined solution to a SPDE which presents parameters varying spatially or
spatio-temporally, then its covariance structure presents a non-stationary behaviour, which is in addition
easily controllable and parametrizable. We do not even need to know the covariance itself, the SPDE makes
all the job. This is the approach, for example, in Fuglstad et al. (2013), where a non-stationary anisotropical
diffusion matrix is added on the Matérn equation (1.1).

This dissertation did not deal explicitly with this issue. In Chapter 5 we deal mainly with stationary
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models. In Section 5.3 we construct solutions to first order evolution models which are in general non-
stationary models, although the most interesting properties are rather present in the cases where stationarity
holds. The simulation technique proposed in Chapter 6 works also, theoretically, for non-stationary models,
provided that the Random Fields are such that their Fourier Transforms are slow-growing Random Measures.
However, even in such a case, the Random Measure is not orthogonal, and since one of the particularities
of this simulation method is that it takes advantage of this orthogonality, we conclude that this simulation
method proposes no essential advantages at all: the random variables of the form MZpV N

j q in (6.4) are
correlated and hence they are as difficult to simulate as the evaluation of the Random Field at arbitrary points
in the space. Besides those facts, the subject of non-stationary models has not been properly treated. The
main reason is actually that the stationary framework provided an easier context where to obtain new results,
and hence was more attractive to attack in a first sight.

Many questions for future research follow. For instance, the application of the ideas presented in Fuglstad
et al. (2013) into a spatio-temporal context would provide interesting spatio-temporal covariance model
with non-trivial properties. This would be one possible approach for solving the SPDE (3.91). We have
already mentioned some theoretical issues related to this equation in Section 3.8. Studying its deterministic
counterpart may provide a potential enlightenment for the stochastic case under the right conditions, similarly
to the case of first order evolution models presented in Section 5.3. The Lax-Milgram theorem may provide
a theoretical justification of a solution to such equation (see for instance Clément & Martin, 2016) . We
remark that the main theoretical difference to the stationary case is that when stationarity is supposed, the
studied Random Fields behave as members of the space V 1pRdq (Eq. (4.1)). Hence, it is easier to restrict our
space of possible solutions and to determine the kinds of operations that can be applied on its members. In
a non-stationary context, there is no particular special subspace (besides S 1pRdq itself) on which to restrict
our work: such a space will depend on the particular cases depending on the behaviour of the parameters
of the model along the space-time. We remark, however, that a numerical method such as the FEM can be
applied in a first tentative of studying equations such as Eq. (3.91). Even if a theoretical justification for its
resolution is not provided, we may been able to study this equation in a qualitative way through the behaviour
of empirical try-outs using the FEM.

Inference

In this dissertation we have not worked on inference methods for the models developed here or for more
general contexts within the SPDE approach. We give, however, some indices that may be interesting in this
aim. Some typical statistical inference methods such as likelihood based methods and Bayesian techniques
are often based on a suitable manipulation of the precision matrices involved. It is in this point where
the SPDE approach may provide a particular contribution. The conception of inference methods can be
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accomplished in this framework following for example Lindgren et al. (2011), where the knowledge of the
precision matrices associated to evaluations of the Random Field over the nodes in the discretization mesh
is exploited. The general principle is the following: consider the SPDE, discretize it using the FEM, and
work with the matrix associated to the FEM discretization to construct the precision matrix, regardless of
the covariance matrix itself or to the explicit covariance function. The parameters to be estimated are the
parameters defining the discretization matrix, in other words, the parameters of the SPDE. The advantages
of such an approach depends on the SPDE considered and on the discretization or numerical method used to
solve the SPDE selected.

Let us consider, for example, the simulation method presented in Chapter 6. When solving a SPDE such
as in section 6.2.2, we have been able to determine properly the covariance function of the approximation
UN , given by (6.24). With this covariance function, we are actually able to provide an explicit expression for
the covariance matrix of a random vector of the form pUN pxkqqkPt1,...,Mu, where px1, ..., xM q is an arbitrary
finite collection of points in the working domain. Then, it is immediate that the covariance matrix, say Σ,
can be factorised as Σ � V DV T , with two matrices V P CM�N and D P CN�N given by

V �

������
eix

T
1 ξ

N
1 eix

T
1 ξ

N
2 � � � eix

T
1 ξ

N
N

eix
T
2 ξ

N
1 eix

T
2 ξ

N
2 � � � eix

T
2 ξ

N
N

...
...

. . .
...

eix
T
M ξ

N
1 eix

T
M ξ

N
2 � � � eix

T
M ξ

N
N

������ , D � 1

p2πqd

��������

1
|gpξN1 q|2 0 � � � 0

0 1
|gpξN2 q|2 � � � 0

...
...

. . .
...

0 0
... 1

|gpξNN q|2

�������� . (7.7)

We remark that the matrix V is neither square nor unitary in general, and it is not immediate to interpret
the factorisation of Σ as a typical eigenvalue decomposition. However, this factorisation still provides an
immediate expression for the covariance matrix which may be practical for some techniques. We have no
general expression for the , which may not exist in some cases: we claim that the covariance function (6.24)
is not strictly positive definite. It is not clear neither in which cases the precision matrix, when it exists, is
sparse. We remark that when both the evaluation points px1, ..., xM q and the tag points pξNj qjPt1,...,Nu,NPN�
are on a regular grid, the matrices are intimately related to classical Fourier matrices which appear in the
analysis of Discrete Fourier Transforms. Hence, it is expected that a typical analysis technique from such
a framework can be applied within our context. For instance, when M � N and the regular grids are
set conveniently, the matrices involved are exactly those of typical Discrete Fourier Transforms, and the
factorisation Σ � V DV T can be interpreted as an eigenvalue decomposition. The precision matrix is given
simply by V D�1V T up to a multiplicative normalising constant. It is then possible to conceive inference
methods based on Fourier Analysis methods, which are now interpreted within the SPDE approach, taking
advantage of a convenient expression of the precision matrices.

We expect that inference will be one of the most important research directions within the SPDE approach



194 CHAPTER 7. CONCLUSION AND PERSPECTIVES

in a near future. After all, the SPDE approach may also inspire a new methodological paradigm to select
geostatistical models for determined situations: under some phenomena theoretically submitted to physically
driven PDEs, the geostatistician may now be guided by the physical consideration and select covariance
models where the parameters carry some physical meaning. Then, inference techniques adapted to these
kinds of models will be applied. Hence, the physical knowledge of the phenomena may now help the
geostatistical practice. This is maybe a somewhat naive dream about how things will work in practice1, but
still deserves attention and try-outs within the future of Geostatistics.

1Reality almost never works as we want it to do...
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Appendix A

Proofs

A.1 Proof of Proposition 2.1.1

The necessity is an immediate conclusion from Rudin (1987, Theorem 6.4), from which we conclude that
|µ|pRdq   8. We prove the sufficiency. Let µ P M pRdq. µ is by definition a function from BBpRdq
to C and we need to prove that we can extend its domain to BpRdq obtaining finite complex values and
maintaining the σ�additivity property. We first prove that we can define µpAq for all A P BpRdq. Let
A P BpRdq. A particular property of the Euclidean space is that A can be partitioned in a countable family
of mutually disjoint bounded Borel subsets: A � �nPNBn, pBnqnPN � BBpRdq, Bn XBm � H if m � n.
As |µ| PM�

F pRdq, we consider that�����¸
nPN

µpBnq
����� ¤ ¸

nPN
|µpBnq| ¤

¸
nPN

|µ|pBnq � |µ|pAq   8. (A.1)

Thus the series
°
nPN µpBnq is absolutely convergent. Using the fact that a finite union of bounded set is

also bounded, we define the complex number bA � limNÑ8
°
n¤N µpBnq � limNÑ8 µ

��
n¤N Bn

�
. Let

us prove that this limit does not depend on the collection of bounded Borel sets used as partition of A. Let
pCnqnPN � BBpRdq be a collection of mutually disjoint bounded Borel sets such that A � �

nPNCn. By
the same previous arguments, the series

°
nPN µpCnq is absolutely convergent to a limit which is a complex

number cA. By triangular inequality one obtains

|bA � cA| ¤
�����bA � µ

� ¤
n¤N

Bn

�������
�����µ
� ¤
n¤N

Bn

�
� µ

� ¤
m¤N

Cm

�������
�����cA � µ

� ¤
m¤N

Cm

������ . (A.2)
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Both terms
��bA � µ ��n¤N Bn

��� and
��cA � µ ��m¤N Cm

��� converge to 0 as N grows. Considering that�
n¤N Bn �

�
n¤N,mPNBnXCm, we argue that µp�n¤N,mPNBnXCmq �

°
n¤N,mPN µpBnXCmq since

all the sets involved are bounded and their reunion too. Using the same argument as in Eq. (A.1), we can
argue that ¸

n¤N,mPN
µpBn X Cmq �

¸
n¡N,mPN

µpBn X Cmq �
¸

n,mPN
µpBn X Cmq, (A.3)

with all the series in (A.3) being absolutely convergent. Applying the same procedure to
�
m¤N Cn ��

nPN,m¤N Bn X Cm we obtain

�����µ
� ¤
n¤N

Bn

�
� µ

� ¤
m¤N

Cm

������ �
���� ¸
n,mPN

µpBn X Cmq �
¸

n¡N,mPN
µpBn X Cmq

�
¸

n,mPN
µpBn X Cmq �

¸
nPN,m¡N

µpBn X Cmq
����

¤
�����

¸
n¡N,mPN

µpBn X Cmq
������

�����
¸

nPN,m¡N
µpBn X Cmq

�����
¤ |µ|

� ¤
n¡N

Bn

�
� |µ|

� ¤
m¡N

Cm

�
loooooooooooooooooooomoooooooooooooooooooon

Ñ0 as NÑ8 since |µ|PM�

F pRdq

.

(A.4)

We conclude that |bA � cA| can be bounded by any arbitrarily small positive number and thus bA � cA,
and thus

°
nPN µpBnq converges to the same limit regardless of the partition on bounded Borel sets selected.

We call then µpAq :� bA P C, and we have thus extended the domain of µ to all BpRdq. The σ�additivity
property still holds if the partition of the set A is made of bounded Borel sets. We still need to prove that
it holds for an arbitrary countable partition in Borel sets pAnqnPN � BpRdq, but this follows immediately:
the series

°
nPN µpAnq is absolutely convergent, which can be seen by applying the same argument as in Eq.

(A.1), considering that the terms µpAnq for unbounded sets An are now well-defined. Every set An can be
expressed as a union of mutually disjoint bounded Borel sets, for example of the formAn �

�
mPNAnXBm.

From this we have

¸
nPN

µpAnq �
¸
nPN

µ

�¤
mPN

An XBm
�
�
¸
nPN

¸
mPN

µpAn XBmq � µpAq. (A.5)

Here the last equality is justified as the collection pAn X Bmqn,mPN is a countable and mutually disjoint
collection of bounded Borel sets whose reunion is A. This proves the σ�additivity condition and thus that µ
is a well-defined finite measure. �
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A.2 Proofs of the variants of the Riesz Representation Theorem

Before proving both theorems let us describe the continuous linear functionals over CpRdq and CFDpRdq.
Both are complete metric spaces, but from a more general point of view, they are locally convex topological
vector spaces. Hence, their topologies are described by families of semi-norms (see Appendix D). Contin-
uous linear functionals and then described by the corresponding families of semi-norms, following criteria
D.0.1. Let us apply this principle to the cases of CpRdq and CFDpRdq.

In the case of the space CpRdq, a family of directed semi-norms defining the topology can be the norms
} � }K,8 for every compact set K � Rd.1 We conclude then that a linear functional T : CpRdq Ñ C is
continuous if and only if there exists C ¡ 0 and there exists a compact set K � Rd such that

|xT, ϕy| ¤ C}ϕ}8,K , @ϕ P CpRdq. (A.6)

In the case of the space CFDpRdq, a directed family of semi-norms inducing its topology is the family
p}p1� |x|2qN p�q}8qNPN. We conclude that a linear functional T : CFDpRdq Ñ C is continuous if and only
if there exists C ¡ 0 and there exists N P N such that

|xT, ϕy| ¤ C}p1� |x|2qNϕ}8, @ϕ P CFDpRdq. (A.7)

We are going to use the next three Lemmas, which are typical results from Analysis and Measure Theory.

Lemma A.2.1. CcpRdq is a dense subspace of both C0pRdq and CpRdq with their respective topologies.

Proof: Consider a function ϕ P CpRdq. For every n P N, consider a continuous function φn : Rd Ñ
r0, 1s such that φn � 1 overBnp0q and φn � 0 overBn�1p0qc, which can be constructed thanks to Urysohn’s
Lemma. Then, the sequence of functions pϕnqnPN defined through ϕn � φnϕ is in CcpRdq and it is clear
that ϕn

CÑ ϕ since for every compact set K � Rd there exists a large enough n0 P N such that ϕ � φnϕ

over K for all n ¥ n0. If ϕ P C0pRdq, then for every ε ¡ 0 there exists a large enough m P N for
which }ϕ}8,Bmp0qc   ε. For n ¥ m, ϕn � ϕ over Bm, and then }ϕ � ϕn}8 � }pφn � 1qϕ}8,Bmp0qc ¤
}ϕ}8,Bmp0qc   ε. This proves that ϕn

C0Ñ ϕ. �

Lemma A.2.2. Let O � Rd be an open set. Then, there exists a sequence of positive functions pϕnqnPN �
CcpRdq such that pϕnqnPN converges monotonically increasing point-wise to 1O.

Proof: We use the fact that every open set of the Euclidean space can be expressed as a union of a
countable quantity of bounded open rectangles. This fact can be proven using the density of the rational

1We could have taken a countable family of these norms by considering only the compact sets of the form BN p0q with N P N
as in metric (2.26), but this actually will not help us very much.
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numbers. If O is an open set, we consider a countable collection of bounded open rectangles pRkqkPN such
that O � �kPNRk. We write these rectangles as

Rk � pak1, bk1q � � � � � pakd, bkdq, k P N, (A.8)

having of course �8   akj   bkj   8 for all j � 1, ..., d and for all k P N. For each n P N, k P N and

j P t1, ..., du, we consider the piece-wise linear function ϕpj,kqn : RÑ r0, 1s which takes the value 1 over the

closed interval rakj�
bkj�akj
2pn�1q , b

k
j�

bkj�akj
2pn�1q s and the value 0 outside the open interval pakj�

bkj�akj
4pn�1q , b

k
j�

bkj�akj
4pn�1qq,

its graph forming a trapezium for n ¥ 1. For every k P N and n P N we define ϕpkqn : Rd Ñ r0, 1s as the
tensor product ϕpkqn � ϕ

p1,kq
n b ... b ϕ

pd,kq
n , that is, the function determined by ϕpkqn pxq �

±d
j�1 ϕ

pj,kq
n pxjq

for every x � px1, ..., xdq P Rd. Finally, we define for each n P N the function ϕn : Rd Ñ r0, 1s as
ϕn � maxk¤n ϕ

pkq
n . It follows then that the sequence pϕnqnPN is in CcpRdq since the maximum of a finite

quantity of continuous function with compact support is continuous with compact support. We also have
that supppϕnq � O for all n and that 0 ¤ ϕn ¤ ϕn�1, so the sequence is monotonically increasing. Finally
if x P O, there is a rectangle Rk such that x P Rk and since Rk is open, it is clear that for a large enough
n0 P N it will holds that ϕnpxq � 1 for every n ¥ n0. Since supppϕnq � O, it follows that ϕnpxq � 0 for
all x P Oc and for all n P N. This proves that ϕn Ñ 1O monotonically increasing and point-wise. �

Lemma A.2.3. Let µ P M pRdq and let O � Rd be an open set. Suppose that for every ϕ P CcpRdq such
that supppϕq � O, we have that

³
Rd ϕpxqdµpxq � 0. Then, supppµq � Oc.

Proof: Let µ P M pRdq and O � Rd an open set with the specified condition. For simplicity we
will first suppose that O is bounded. Consider the decomposition of µ in four positive measures µ �
µ�R�µ�R� ipµ�I �µ�I q. Let A � O be any open subset of O. Consider a monotonically increasing sequence
of functions pϕnqnPN � CcpRdq approaching 1A as in Lemma A.2.2. We have supppϕnq � A � O, and
hence

³
Rd ϕndµpxq � 0 for all n P N. This implies that»

Rd
ϕndµ

�
R �

»
Rd
ϕndµ

�
R ;

»
Rd
ϕndµ

�
I �

»
Rd
ϕndµ

�
I , @n P N. (A.9)

Using the Monotone Convergence Theorem 2.11, we take the limit when nÑ8 to obtain

µ�RpAq � µ�RpAq ; µ�I pAq � µ�I pAq, @A � O, open. (A.10)

Thus, the positive measures µ�R and µ�I coincide respectively with the positive measures µ�R and µ�I over
every open subset of O. Since the collection of open subsets of O is the collection which engenders the
σ�algebra of Borel subsets of O, denoted by BpOq, a typical result in Measure Theory (see for example
Williams, 1990, Lemma 1.6, applicable since µpOq   8) guarantees that (A.10) holds for every A P BpOq.
This proves that µpAq � µ�RpAq � µ�RpAq � ipµ�I pAq � µ�I pAqq � 0 for all A P BpRdq such that A � O.
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By definition of the total variation measure (see Eq. (2.2)), it follows that |µ|pOq � 0. Since supppµq is the
complementary of the largest open set where |µ| is null, it follows that suppµ � Oc.

If O is an unbounded open set, it can be expressed as a countable union of bounded open sets, O ��
nPNAn. Applying the previous argument for the sets pAnqnPN, it follows that

|µ|pOq ¤
¸
nPN

|µ|pAnq � 0, (A.11)

from which it follows that supppµq � Oc. �

A.2.1 Proof of Theorem 2.1.5

If µ P McpRdq, it follows immediately from Eq. (2.27) that the integral with respect to µ defines a continuous
linear functional on CpRdq by setting C � |µ|psupppµqq in (A.6).

We prove now the converse. Suppose T : CpRdq Ñ C is linear and continuous. Let K � Rd be a
compact set and let C ¡ 0 be such that |xT, ϕy| ¤ C}ϕ}8,K for all ϕ P CpRdq. In particular, this holds
for every ϕ P C0pRdq, for which we also have |xT, ϕy| ¤ C}ϕ}8,K ¤ C}ϕ}8. This proves that T is
also a continuous linear functional over C0pRdq. By the Riesz Representation Theorem for finite measures
2.1.4, there exists a unique finite measure µ P MF pRdq such that (2.25) holds. Consider now any function
ϕ P CcpRdq such that supppϕq � Kc. From Eq. (A.6) it follows that xT, ϕy � ³Rd ϕpxqdµpxq � 0. Since
Kc is open, we obtain from Lemma A.2.3 that supppµq � K. Hence, µ has compact support. Since xT, ϕy �³
Rd ϕpxqdµpxq holds for all ϕ P CcpRdq, the integral with respect to µ coincides with T as a continuous

linear functional in a dense subspace of C (Lemma A.2.1). It follows that xT, ϕy � ³
Rd ϕpxqdµpxq for all

ϕ P CpRdq. �

A.2.2 Proof of Theorem 2.1.6

Proof: Let µ P MSGpRdq. From equation (2.30) it follows immediately that the integral with respect to µ
defines a continuous linear functional on CFDpRdq. Indeed, set N P N such that p1 � |x|2q�N |µ| is finite
and C � ��p1� |x|2q�Nµ�� pRdq in (A.7).

Let us prove the converse. Let T P C 1
FDpRdq and let C ¡ 0 and N P N such that (A.7) holds. Let us

define the linear functional p1� |x|2q�NT : CFDpRdq Ñ C by

p1� |x|2q�NT pϕq :� xT, p1� |x|2q�Nϕy. (A.12)

Since for all ϕ P CFDpRdq the function p1� |x|2q�Nϕ is also in CFDpRdq, this functional is well-defined.
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In addition,

|p1� |x|2q�NT pϕq| � |xT, p1� |x|2q�Nϕy| ¤ C}p1� |x|2qN p1� |x|2q�Nϕ}8 � C}ϕ}8, (A.13)

hence, T is continuous. Expression (A.13) holds in particular for every ϕ P CcpRdq � CFDpRdq. Hence
p1 � |x|2q�NT is a bounded linear functional in the sense of the supremum norm on CcpRdq. By Hahn-
Banach extension Theorem (Reed & Simon, 1980, Theorem III.5 or Theorem V.3), p1 � |x|2q�NT can be
extended to a continuous linear functional over C0pRdq, and since CcpRdq is dense in C0pRdq by Lemma
A.2.1, the extension is unique and Eq. (A.13) holds for every ϕ P C0pRdq. By Riesz Representation
Theorem for finite measures 2.1.4, we conclude that p1�|x|2q�NT is identified with a unique finite measure
ν P MF pRq. Consider then the multiplication measure µ � p1 � |x|2qNν, which is in MSGpRdq. We
conclude that for every ϕ P CFDpRdq we have

xT, ϕy � xT, p1 � |x|2qN
p1 � |x|2qN ϕy � xp1 � |x|2q�NT, p1 � |x|2qNϕy �

»
Rd
ϕpxqp1 � |x|2qNdνpxq �

»
Rd
ϕpxqdµpxq.

(A.14)

This completes the proof. �

A.3 Proofs of Propositions 2.1.2 and 2.1.3

A.3.1 Proof of Proposition 2.1.2

Since for all the cases for j P t“c”, “F”, “SG”u, µ P MjpRdq if and only if |µ| PM�
j pRdq, it is sufficient to

prove this claim for positive measures. The case j � “c” is straightforward from (2.39) since if supppνq �
K it follows that supppµδty�xuq � K �K. Conversely, if supppµδty�xuq � K2 � Rd � Rd, K2 compact,
then there exists a large enough compact set K � Rd such that K2 � K � K, for which we obtain that
supppµq � K. When j � “F” it is also straightforward from (2.39) since µpRdq � µδty�xupRd � Rdq.
Finally, for j � “SG”, from Eq. (2.38) we have that for every N P N,»

Rd�Rd

dpµδty�xuqpx, yq
p1� |x|2 � |y|2qN �

»
Rd

dµpxq
p1� 2|x|2qN . (A.15)

It follows that if one of the two integrals is finite for some N P N then the other is finite. Hence, we can
find a strictly positive polynomial such that the multiplication between its reciprocal and the corresponding
measure is a finite measure. �
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A.3.2 Proof of Proposition 2.1.3

As in Proposition 2.1.2, we prove this just for positive measures. The case j � “F” follows immediately
from (2.44) since µC

c

pµ1,µ2qpRd�Rq � µ1pRdq�µ2pRdzt0uq. We remark that µ2pt0uq   8 since we suppose
µ2 P M pRdq.

For j � “c”, if supppµCcpµ1,µ2qq � Kd �K1, with Kd � Rd and K1 � R compact, then it follows that

µ1pKc
dq � µC

c

pµ1,µ2qpKc
d � R�q � 0 � µC

c

pµ1,µ2qpKc
d � R�

� q � µ2pKc
dq, (A.16)

which proves that supppµ1q Y supppµ2q � Kd. Conversely, suppose supppµ1q Y supppµ2q � Kd for some
Kd � Rd compact. This implies that both µ1 and µ2 are finite so µC

c

pµ1,µ2q is finite. Consider the compact
subset of R, K1 � ta|x| P R

�� � c ¤ a ¤ c, x P Kdu. Let us evaluate µC
c

pµ1,µ2qppKd �K1qcq. Using the
σ�additivity and the finiteness of µC

c

pµ1,µ2qppKd �K1qcq, we obtain

µC
c

pµ1,µ2qppKd �K1qcq � µC
c

pµ1,µ2qpKc
d �Kc

1q � µC
c

pµ1,µ2qpKc
d �K1q � µCcpµ1,µ2qpKd �Kc

1q. (A.17)

Since supppµ1qYsupppµ2q � Kd, it is immediate from Eq. (2.44) that µC
c

pµ1,µ2qpKc
d�Kc

1q � µC
c

pµ1,µ2qpKc
d�

K1q � 0. From Eq. (2.44) we also obtain

µC
c

pµ1,µ2qpKd �Kc
1q �

»
Kd

δc|x|pKc
1qdµ1pxq �

»
Kdzt0u

δ�c|x|pKc
1qdµ2pxq. (A.18)

Since for x P Kd we have �c|x| P K1, both expressions δc|x|pKc
1q and δ�c|x|pKc

1q are null, and hence
µC

c

pµ1,µ2qpKd � Kc
1q � 0. We conclude that µC

c

pµ1,µ2qppKd � K1qcq � 0 and therefore supppµCcpµ1,µ2qq �
Kd �K1, so µC

c

pµ1,µ2q P McpRd � Rq.
Finally, when j � “SG”, we consider that for all N P N it holds that

»
Rd�R

dµC
c

pµ1,µ2qpx, tq
p1� |x|2 � |t|2qN �

»
Rd

dµ1pxq
p1� p1� c2q|x|2qN �

»
Rdzt0u

dµ2pxq
p1� p1� c2q|x|2qN . (A.19)

Hence, if N is such that the integral on the left side of (A.19) is finite, the multiplication between the
reciprocal of the polynomial x ÞÑ p1�p1� c2q|x|2qN and µ1 is a finite measure, as well as its multiplication
with µ2. Hence both measures are slow-growing. Conversely, supposing that µ1 and µ2 are slow-growing,
we can find a number N P N such that both integrals on the right side of (A.19) are finite, and hence µC

c

pµ1,µ2q
is slow-growing. �
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A.4 Proof of Propositions about tensor products (Section 2.2.3)

A.4.1 Proof of Proposition 2.2.1

We consider the next Lemma. It can be found in the context of complex finite measures over abstract measure
spaces in Rudin (1987, Theorem 6.12).

Lemma A.4.1. Let µ P M pRdq. Then, there exists a complex measurable function fµ : Rd Ñ C such that
|fµpxq| � 1 for all x P Rd and such that µ � fµ|µ|.

Proof: See Rudin (1987, Theorem 6.12) for the case of finite measures. The case of not finite measures
is straightforward by restricting the analysis to a collection of disjoint bounded Borel sets whose union is
the whole space Rd and defining the function fµ as the sum of the corresponding functions restricted to the
corresponding bounded Borel sets. �

Proof of Proposition 2.2.1:

Let µ P M pRdq and ν P M pRmq. Let fµ : Rd Ñ C and fν : Rm Ñ C be two measurable complex
functions obtained as in Lemma A.4.1. Consider O P BBpRd � Rmq. By definition of the total variation
measure, we have that

|µb ν|pOq � sup

" ¸
nPN

|pµb νqpOnq|
���� pOnqnPN � BpRd � Rmq partition of O

*
� sup

" ¸
nPN

�� »
On

fµpxqfνpyqd|µ|pxqd|ν|pyq
�� ���� pOnqnPN � BpRd � Rmq partition of O

*
¤ sup

" ¸
nPN
p|µ| b |ν|qpOnq

���� pOnqnPN � BpRd � Rmq partition of O

*
� p|µ| b |ν|qpOq.

(A.20)
Let us now consider the case where O is of the form O � A � B, with A P BBpRdq and B P BBpRmq.
Since the definition of the total variation measure over a set uses the supremum over all partitions of the set,
it holds in particular that

p|µ|b|ν|qpA�Bq ¥ |µbν|pA�Bq ¥ sup

" ¸
n,mPN

|µbνpAn�Bmq|
*
� sup

" ¸
nPN

|µpAnq|
¸
mPN

|νpBmq|
*
, (A.21)

where the supremum is taken over all the possible collections pAn � Bmqn,mPN � BpRd � Rmq which
satisfies that pAnq � BpRdq is a partition of A, pBmqmPN � BpRmq is a partition of B. For every such a
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partition of A�B, it holds that
�����|µ|pAq|ν|pBq �

¸
nPN

|µpAnq|
¸
mPN

|νpBmq|
����� ¤

�����|µ|pAq �
¸
nPN

|µpAnq|
�����looooooooooooomooooooooooooon

arbitrarily small

¸
mPN

|νpBmq|loooooomoooooon
¤|ν|pBq

�
�����|ν|pBq �

¸
mPN

|νpBmq|
�����looooooooooooomooooooooooooon

arbitrarily small

|µ|pAq.

(A.22)

Hence, we can find such a partition pAn � Bmqn,mPN which approaches p|µ| b |ν|qpA � Bq. This proves
that the inequalities in Eq. (A.21) are, in fact, equalities. Hence

p|µ| b |ν|qpA�Bq � |µb ν|pA�Bq @A P BBpRdq, B P BBpRmq. (A.23)

The equality of both measures in the whole system of rectangles guarantees the equality for every set in
BBpRd � Rmq. �

A.4.2 Proof of Proposition 2.2.2

To establish this Proposition, we need a few Lemmas describing some basic behaviour of some objects in
Distribution Theory.

Lemma A.4.2. Let ψ P S pRd � Rmq. Let pynqnPN � Rm be a sequence such that yn Ñ y0 P Rm. Then,

ψp�, ynq S pRdqÝÑ ψp�, y0q.

Proof: Let ψ P S pRd � Rmq. For N P N and α P Nd, let us consider the function ΨN,α : Rd �
Rm Ñ C defined through ΨN,αpx, yq � p1 � |x|2qNDpα,0mqψpx, yq for every px, yq P Rd � Rm. Here
0m � p0, ..., 0q P Nm denotes the multi-index with m null components and pα, 0mq P Nd � Nm denotes the
concatenation between α and 0m. Clearly ΨN,α P S pRd � Rmq. Let pynqnPN � Rm such that yn Ñ y0 P
Rm. We consider then that

sup
xPRd

|ΨN,αpx, ynq �ΨN,αpx, y0q| ¤ } |∇ΨN,α| }8|yn � y0| Ñ 0, (A.24)

where ∇ΨN,α denotes the gradient of the function ΨN,α. Here } |∇ΨN,α| }8 � suppx,yqPRd�Rm |∇ΨN,αpx, yq|
is a finite number since ΨN,α P S pRd � Rmq and hence all of its derivatives are bounded. Since N and α

were arbitrary, this proves the convergence ψp�, ynq S pRdqÝÑ ψp�, y0q. �

Lemma A.4.3. Let ϕ P S pRdq. Let ptnqnPN � R� be a sequence such that tn Ñ 0 as nÑ 8. Let ej P Rd
be the canonical vector in the direction j P t1, ..., du. Then, ϕp��tnejq�ϕp�qtn

S pRdqÝÑ Bϕ
Bxj as nÑ8.

Proof: Let ϕ P S pRdq and let α P Nd. Let x P Rd. We consider the Taylor’s formula for Dαϕ at x
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with integral form of the reminder

Dαϕpx� tnejq � Dαϕpxq � tn BD
αϕ

Bxj pxq � t
2
n

» 1

0
p1� tqB

2Dαϕ

Bx2
j

px� tnejtqdt. (A.25)

Let N P N. We obtain thus

p1� |x|2qN
�
Dαϕpx� tnejq �Dαϕ

tn
� BD

αϕ

Bxj pxq


� tn

» 1

0
p1� tqp1� |x|2qN B

2Dαϕ

Bx2
j

px� tnejtqdt.
(A.26)

Using the convexity of the functions x P Rd ÞÑ |x|2 and x P R ÞÑ |x|N , one can verify that for every
x, y P Rd it holds that p1 � |x|2qN ¤ 2N�1p1 � 2|x � y|2qN � 22N�1|y|2. Applying this idea with
y � �tnejt in (A.26), it follows that the integral in this equation can be bounded in the following way:
�����
» 1

0

p1 � tqp1 � |x|2qN B
2Dαϕ

Bx2j
px� tnejtqdt

����� ¤ 2N�1

» 1

0

p1 � tqp1 � 2|x� tnejt|2qN
�����B

2Dαϕ

Bx2j
px� tnejtq

����� dt
� 22N�1|tn|2N

» 1

0

p1 � tq|t|2N
�����B

2Dαϕ

Bx2j
px� tnejtq

����� dt
¤ 2N�2 sup

xPRd

�����p1 � 2|x|2qN B
2Dαϕ

Bx2j
pxq
�����loooooooooooooooooomoooooooooooooooooon

 8 since B2Dαϕ

Bx2
j

PS pRdq

�22N�1|tn|2N
����B2Dαϕ

Bx2j

����
8

.

(A.27)
It follows that

sup
xPRd

����p1 � |x|2qN
�
Dαϕpx� tnejq �Dαϕpxq

tn
� BDαϕ

Bxj pxq

���� ¤ |tn|2N�2

����p1 � 2|x|2qN B
2Dαϕ

Bx2j

����
8

� |tn|2N�122N�1

����B2Dαϕ

Bx2j

����
8

Ñ 0 as nÑ8.

(A.28)

Since Dαp BϕBxj q � B
Bxj pDαϕq and since Dα

�
ϕp��tnejq�ϕp�q

tn

	
� Dαϕp��tnejq�Dαϕp�q

tn
, this proves that

ϕp� � tnejq � ϕp�q
tn

S pRdqÝÑ Bϕ
Bxj . �

Proof of Proposition 2.2.2:

Let L1 : S pRdq Ñ S pRdq be linear and continuous. Let ψ P S pRd � Rmq. We need to verify that
pL1 b Imqpψq defined as in 2.2.8 is in S pRd � Rmq and that the operator defines a continuous mapping.
Note that for any fixed y P Rm, the function ψp�, yq is in S pRdq. Hence, for every y the function x ÞÑ
L1pψp�, yqqpxq is a well-defined function in S pRdq. This proves that L1 b Im is a well-defined mapping
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from S pRd�Rmq to the space CRd�Rm of all complex functions defined over Rd�Rm. It is straightforward
that this mapping is linear. For simplicity, we will denote by Ψ � pL1 b Imqpψq P CRd�Rm .

We need to prove that Ψ is in S pRd�Rmq. We begin by proving that it is continuous. Let pxnqnPN � Rd

and pynqnPN � Rm be sequences such that pxn, ynq Ñ px0, y0q P Rd � Rm. It holds then that

|Ψpxn, ynq �Ψpx0, y0q| ¤ |Ψpxn, ynq �Ψpxn, y0q| � |Ψpxn, y0q �Ψpx0, y0q|
� |L1pψp�, ynq � ψp�, y0qqpxnq| � |L1pψp�, y0qqpxnq � L1pψp�, y0qqpx0q|
¤ sup

uPRd
|L1pψp�, ynq � ψp�, y0qqpuq| � |L1pψp�, y0qqpxnq � L1pψp�, y0qqpx0q|.

(A.29)

The term supuPRd |L1pψp�, ynq � ψp�, y0qqpuq| goes to zero since by Lemma A.4.2 we have thatψp�, ynq S pRdqÝÑ
ψp�, y0q and L1 is continuous. The term |L1pψp�, y0qpxnq � L1pψp�, y0qqpx0q| goes to zero since x ÞÑ
L1pψp�, y0qqpxq P S pRdq and hence it is continuous at x0. This proves that Ψ is continuous in Rd � Rm.

Let us now prove that Ψ is differentiable. The differentiability of Ψ with respect to the first components
is immediate since Ψp�, yq P S pRdq for every y P Rm. Hence, for every α P Nd the function px, yq ÞÑ
Dpα,0mqΨpx, yq is well-defined. Its continuity can be verified using the same arguments used to prove the
continuity of Ψ. Let us now prove the differentiability with respect to the second components. Let ej P Rm

be the canonical vector in direction j P t1, ...,mu. Let t � 0 and consider the expression of the form
Ψpx,y�tejq�Ψpx,yq

t for a fixed px, yq P Rd � Rm. The linearity of L1 guarantees that

Ψpx, y � tejq �Ψpx, yq
t

� L1pψp�, y � tejqqpxq � L1pψp�, yqqpxq
t

� L1

�
ψp�, y � tejq � ψp�, yq

t



pxq.

(A.30)

A slightly different but valid interpretation of Lemma A.4.3 allows to conclude that ψp�,y�tejq�ψp�,yqt

S pRdqÝÑ
Bψ
Byj p�, yq for all y P Rm as t Ñ 0. Since L1 is continuous it follows that L1

�
ψp�,y�tejq�ψp�,yq

t

	
pxq Ñ

L1

�
Bψ
Byj p�, yq

	
pxq as tÑ 0. Hence,

Ψpx, y � tejq �Ψpx, yq
t

Ñ L1

� Bψ
Byj p�, yq



pxq as tÑ 0. (A.31)

Since this is valid for every px, yq P Rd � Rm, this proves that Ψ is also differentiable at every point
with respect to the second components, and that BΨ

Byj px, yq � L1

�
Bψ
Byj p�, yq

	
pxq. In addition, since Bψ

Byj P
S pRd�Rmq, the same argument used to prove the continuity of Ψ can be used to prove the continuity of BΨ

Byj .
Since this procedure can be repeated for any derivative of any order with respect to the second components
of Ψ, it follows that all the derivatives of Ψ exist and are continuous. This proves that Ψ P C8pRd � Rmq.
We remark that we have implicitly proved that pL1 b Imq

�
Bψ
Byj

	
� B

Byj ppL1 b Imqpψqq, and this is also
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valid for differential operators with respect to the second components of bigger order:

Dp0d,βqppL1 b Imqpψqq � pL1 b ImqpDp0d,βqψq, (A.32)

for any ψ P S pRd � Rmq and any β P Nm. Here 0d P Nd denotes the multi-index with d null components.

We will prove at the same time that the function Ψ and its derivatives are fast-decreasing and that L1bIm
is continuous. For this we will recall the criterion of a continuous linear operator over S pRdq given in Eq.
(2.53). We will use this criterion for both cases n � d and n � d �m, separating the multi-index notation
using concatenations. Let α, γ P Nd and let β, θ P Nm. We need to study the expression

xαyβDpγ,θqΨpx, yq, px, yq P Rd � Rm.

Using the linearity of L1 and the exchange between differential operators with respect to second components
(A.32), we conclude that for all px, yq P Rd � Rm it holds that

xαyβDpγ,θqΨpx, yq � xαyβDpγ,0mqL1pDp0d,θqψp�, yqqpxqq � xαDpγ,0mqL1

�
yβDp0d,θqψp�, yq

	
pxq. (A.33)

Using then the continuity of L1 over S pRdq, it follows that there exist C ¡ 0 and N P N such that

sup
xPRd

���xαyβDpγ,θqΨpx, yq
��� � sup

xPRd

���xαDpγ,0mqL1

�
yβDp0d,θqψp�, yq

	
pxq
���

¤ C
¸

α1,γ1PNd
|α1|,|γ1|¤N

sup
xPRd

���xα1Dpγ1,0mq
�
yβDp0d,θqψ

	
px, yq

���
� C

¸
α1,γ1PNd
|α1|,|γ1|¤N

sup
xPRd

���xα1yβDpγ1,θqpψqpx, yq
��� .

(A.34)

By taking the supremum over all possible y P Rm we finally obtain

sup
px,yqPRd�Rm

���xαyβDpγ,θqpL1 b Imqpψqpx, yq
��� � sup

px,yqPRd�Rm

���xαyβDpγ,θqΨpx, yq
���

¤ C
¸

α1,γ1PNd
|α1|,|γ1|¤N

sup
yPRm

sup
xPRd

���xα1yβDpγ1,θqpψqpx, yq
���

¤ C
¸

α1,γ1PNd
β1,θ1PNm

|α1|,|β1|,|γ1|,|θ1|¤N�|β|�|θ|

sup
px,yqPRd�Rm

���xα1yβ1Dpγ1,θ1qpψqpx, yq
��� .

(A.35)

Here we have used that for any bounded function f : Rd�Rm Ñ C it holds that supyPRm supxPRd |fpx, yq| �
suppx,yqPRd�Rm |fpx, yq|. Since ψ P S pRd � Rmq is arbitrary, the expression (A.35) proves two things:
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first that all the derivatives of pL1 b Imqpψq have fast decreasing behaviour and thus pL1 b Imqpψq P
S pRd�Rmq, and that the operator L1bIm is continuous, which follows from criterion (2.53). This proves
Proposition 2.2.2. �

A.5 Proof of Proposition 3.2.1

The proof of this Proposition follows standard arguments. We have decided to specify them in the setting of
this Proposition. We first prove the deterministic analogue, which is not obvious.

Lemma A.5.1. Let f P CpRdq, µ P M pRdq and A P BBpRdq. Then, for every Riemann sequence of
partitions of A, pV N

j qjPt1,...,Nu,NPN� , and for every choice of tag points xNj P V N
j , it holds that

»
A
fpxqdµpxq � lim

NÑ8

Ņ

j�1

µpV N
j qfpxNj q, (A.36)

where
³
A fpxqdµpxq denotes the Lebesgue integral of f with respect to µ over A.

Proof: We consider that for a fixed N P N�,

Ņ

j�1

µpV N
j qfpxNj q �

Ņ

j�1

»
A
fpxNj q1V Nj pxqdµpxq �

»
A

�
Ņ

j�1

fpxNj q1V Nj pxq
�
dµpxq. (A.37)

Consider for every N P N� the measurable function fN � °N
j�1 fpxNj q1V Nj pxq. From Eq. (A.37), the

Riemann sum in (A.36) is just
³
A fN pxqdµpxq. Let ε ¡ 0. Since A is bounded and f is continuous, f is

uniformly continuous on A. Hence, there exists δ ¡ 0 such that |fpxq � fpyq|   ε for every x, y P A such
that |x� y|   δ. Let N0 P N� be large enough such that max

jPt1,...,Nu
diampV N

j q   δ for all N ¥ N0. Hence,

if x, y P V N
j , then |fpxq � fpyq|   ε. It follows that if N ¥ N0, then

sup
xPA

|fN pxq � fpxq| ¤ max
jPt1,...,Nu

sup
xPV Nj

|fN pxq � fpxq| � max
jPt1,...,Nu

sup
xPV Nj

|fpxNj q � fpxq| ¤ ε. (A.38)

This proves that fN Ñ f uniformly on A. Hence,����»
A
fN pxq � fpxqdµpxq

���� ¤ |µ|pAq}fN � f}8,A Ñ 0, (A.39)

which proves the convergence (A.36). �

The following Lemma extends in some sense the result of Lemma A.5.1 to the case of double dimension
in a particularly convenient way.
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Lemma A.5.2. Let F P CpRd � Rmq, A P BBpRdq, B P BBpRmq, and Λ P M pRd � Rmq. Then, for
every Riemann sequence of partitions of A, pV N

j qjPt1,...,Nu,NPN� � BBpRdq, for every Riemann sequence of
partitions of B, pUMk qkPt1,...,Mu,MPN� � BBpRd � Rmq, and for every choice of tag points xNj P V N

j and
yMk P UMk , the following double limits hold:

»
A�B

F px, yqdΛpx, yq � lim
N,MÑ8

Ņ

j�1

M̧

k�1

F pxNj , yNk qΛpV N
j � UMk q

� lim
NÑ8

lim
MÑ8

Ņ

j�1

M̧

k�1

F pxNj , yNk qΛpV N
j � UMk q

� lim
MÑ8

lim
NÑ8

Ņ

j�1

M̧

k�1

F pxNj , yNk qΛpV N
j � UMk q.

(A.40)

Proof: We remark, first of all, that the limit limN,MÑ8 means the limit when both N,M grow
to 8 together2. For every N,M P N� let FN,M be the measurable function defined by FN,M px, yq �°N
j�1

°M
k�1 F pxNj , yNk q1V Nj pxq1UMk pyq. The double sums in (A.40) are then the Lebesgue integral of FN,M

with respect to Λ. Let us analyse the class of subsets of Rd�Rm, pV N
j �UMk qpj,kqPt1,...,Nu�t1,...,Mu,N,MPN� .

This class forms a sort of Riemann double-sequence partition of A�B. More precisely, it is immediate that
A�B � �pj,kqPt1,...,Nu�t1,...,Mu V

N
j � UMk for all N,M P N� and that pV N

j1
� UMk1 q X pV N

j2
� UMk2 q � H

if pj1, k1q � pj2, k2q. Since for every vector px, yq P Rd �Rm it holds that |px, yq|2d�m � |x|2d � |y|2m, with

| � |n being the Euclidean norm in Rn, we conclude that diampV N
j �UMk q �

b
diampV N

j q2 � diampUMk q2.
Hence,

lim
N,MÑ8

max
pj,kqPt1,...,Nu�t1,...,Mu

diampV N
j � UMk q � 0,

and the same holds for the corresponding iterated limits limNÑ8 limMÑ8 and limMÑ8 limNÑ8. We
argue then that the same arguments used in the proof of Lemma A.5.1 can be used in this case. Indeed,
since F is continuous and A � B is bounded, F is uniformly continuous on A � B. Let ε ¡ 0. Then,
there exists δ ¡ 0 such that for every px, yq, pu, vq P A � B such that |px, yq � pu, vq|   δ, it holds
that |F px, yq � F pu, vq| ¤ ε. Take N0 P N� big enough such that for every N,M ¥ N0 we have that
maxpj,kqPt1,...,Nu�t1,...,Mu diampV N

j � UMk q   δ. Then, it holds that

sup
px,yqPA�B

|FN,M px, yq � F px, yq| ¤ max
pj,kqPt1,...,Nu�t1,...,Mu

sup
px,yqPV Nj �UMk

|FN,M px, yq � F px, yq| ¤ ε.

(A.41)
We conclude that limN,MÑ8 FN,M � F uniformly on A� B. Since A� B is bounded and Λ P M pRd �

2If pan,mqn,mPM is a double-sequence of complex numbers, we say that limn,mÑ8 an,m � a, for a complex number a, if for
every ε ¡ 0 there exists N0 P N� such that for every n,m ¥ N0 we have |an,m � a|   ε. It does not hold, in general, that
limn,mÑ8 an,m � limnÑ8 limmÑ8 an,m � limmÑ8 limnÑ8 an,m. See Habil (2016).
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Rmq, then |Λ|pA�Bq   8. This proves that����»
A�B

FN,M px, yq � F px, yqdΛpx, yq
���� ¤ |Λ|pA�Bq}FN,M � F }8,A�B Ñ 0, (A.42)

as N,M grow together. We conclude that the double limit in (A.40) holds.

Consider now the iterative limits in (A.40). For every N P N� and for every j P t1, ..., Nu, let us define
the set application λV Nj : BBpRmq Ñ C through λV Nj pUq � ΛpV N

j � Uq for every U P BBpRmq. Clearly,
λV Nj

is a well-defined complex measure in M pRmq. Hence, from Lemma A.5.1 it holds that

lim
MÑ8

M̧

k�1

F px, yNk qΛpV N
j � UMk q � lim

MÑ8

M̧

k�1

F px, yNk qλV Nj pU
M
k q �

»
B
F px, yqdλV Nj pyq. (A.43)

The integral in (A.43) is thus well-defined for every N P N�. An analogue argument can be used to prove
the existence of the partial limit with limNÑ8. By a known property of double-sequences (Habil, 2016,
Theorem 2.13), this proves that the iterative limits in (A.40) converge to the same limit which is equal the
double limit. Hence, the double sums converge, in all the senses, to the Lebesgue integral of F with respect
to Λ over A�B. �

Proof of Proposition 3.2.1:

Let us prove that the integral exists as a square-integrable random variable for a fixed arbitrary Riemann
sequence of partitions of A, pV N

j qjPt1,...,Nu,NPN� , and for fixed tag points xNj P V N
j . Consider the sequence

of squared-integrable random variables
�°n

j�1 µpV n
j qZpxnj q

	
nPN�

. Each random variable of this sequence

is in L2pΩ,A,Pq since it is a finite linear combination of random variables in L2pΩ,A,Pq. We remark that
µpV N

j q P C since µ P M pRdq. Let us prove that it is a Cauchy sequence. For n,m P N�, consider the
expression

E

������� ņ
j�1

µpV n
j qZpxnj q �

m̧

k�1

µpV m
k qZpxmj q

�����
2
�. (A.44)
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We split it and we apply the linearity of the expectation to obtain,

E
� ņ

j�1

ņ

k�1

Zpxnj qZpxnkqµpV n
j qµpV n

k q �
m̧

j�1

m̧

k�1

Zpxmj qZpxmk qµpV m
j qµpV m

k q

�
ņ

j�1

m̧

k�1

Zpxnj qZpxmk qµpV n
j qµpV m

k q �
m̧

j�1

ņ

k�1

Zpxmj qZpxnkqµpV m
j qµpV n

k q
	

�
� ņ

j�1

ņ

k�1

�
CZpxnj , xnkq �mZpxnj qmZpxnkq

�
µpV n

j qµpV n
k q

�
m̧

j�1

m̧

k�1

�
CZpxmj , xmk q �mZpxmj qmZpxmk q

�
µpV m

j qµpV m
k q

�
ņ

j�1

m̧

k�1

�
CZpxnj , xmk q �mZpxnj qmZpxmk q

�
µpV n

j qµpV m
k q

�
m̧

j�1

ņ

k�1

�
CZpxmj , xnkq �mZpxmj qmZpxnkq

�
µpV m

j qµpV n
k q
	
.

(A.45)

This is equal to

! ņ

j�1

ņ

k�1

CZpxnj , xnkqµpV n
j qµpV n

k q �
����� ņ
j�1

mZpxnj qµpV n
j q
�����
2

�
m̧

j�1

m̧

k�1

CZpxmj , xmk qµpV m
j qµpV m

k q �
����� m̧
j�1

mZpxmj qµpV m
j q
�����
2

�
ņ

j�1

m̧

k�1

CZpxnj , xmk qµpV n
j qµpV m

k q �
ņ

j�1

mZpxnj qµpV n
j q

m̧

k�1

mZpxmk qµpV m
k q

�
m̧

j�1

ņ

k�1

CZpxmj , xnkqµpV m
j qµpV n

k q �
m̧

j�1

mZpxmj qµpV m
j q

ņ

k�1

mZpxnkqµpV n
k q
)
.

(A.46)

We remark that, from Lemma A.5.1, the sums of the form
°N
j�1mZpxNj qµpV N

j q converge to
³
AmZpxqdµpxq

as N Ñ 8. For the double sums involving the covariance, we apply Lemma A.5.2 to conclude that sums
of the form

°N
j�1

°M
k�1CZpxNj , xMk qµpV N

j qµpUMk q converge to
³
A�ACZpx, yqdpµ b µqpx, yq as N,M

grow together, and also for the corresponding iterative limits. From this we obtain that (A.44) can be made
arbitrarily close, as n,m grow together, to

2
� »

A�A

CZpx, yqdpµb µqpx, yq �
����
»
A

mZpxqdµpxq
����
2

�
»
A�A

CZpx, yqdpµb µqpx, yq �
����
»
A

mZpxqdµpxq
����
2 	

� 0.
(A.47)
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This proves that the sequence
�°n

j�1 µpV n
j qZpxnj q

	
nPN�

is a Cauchy sequence in L2pΩ,A,Pq, which is a

Hilbert space. Hence, it converges to a well-defined square-integrable random variable which we will note
for now IV .

Let us prove that this limit does not depend on the Riemann sequence of partitions chosen. Let us then
consider pUNj qjPt1,...,Nu,NPN� be another Riemann sequence of partitions of A, and let us fix any arbitrary

collection of tag points yNj P UNj . The sequence
�°n

j�1 Zpynj qµpUnj q
	
nPN�

converges to a square-integrable

random variable that we will call IU . We have then that

IV � IU � lim
nÑ8

ņ

j�1

Zpxnj qµpV n
j q � Zpynj qµpUnj q, (A.48)

where the limit is taken in the sense of L2pΩ,A,Pq. It follows that

Ep|IV � IU |2q � lim
nÑ8E

������� ņ
j�1

Zpxnj qµpV n
j q � Zpynj qµpUnj q

�����
2
�.

If we compute the expression Ep|IV � IU |2q � limnÑ8 E
����°n

j�1 Zpxnj qµpV n
j q � Zpynj qµpUnj q

���2
, one

obtains similar expressions as in Eq. (A.45). By applying Lemmas A.5.1 and A.5.2, one obtains that this
expression converges to (A.47) as n grows, hence it vanishes. This proves that IU � IV in L2pΩ,A,Pq, and
hence the limit is unique and it does not depend on the Riemann sequence of partitions of A selected. The
limit IV will be denoted then by

³
A Zpxqdµpxq.

We finally prove the formulas of the mean (3.10) and the covariance (3.11). Let pV N
j qjPt1,...,Nu,NPN� be

a Riemann sequence of partitions of A, with tag points xNj P V N
j . The formula of the mean is immediate

from Lemma A.5.1 since

E
�»

A

Zpxqdµpxq


� E

�
lim
NÑ8

Ņ

j�1

ZpxNj qµpV Nj q
�
� lim
NÑ8

Ņ

j�1

mZpxNj qµpV Nj q �
»
A

mZpxqdµpxq. (A.49)

Finally, if pUMk qkPt1,...,Mu,MPN� is any Riemann sequence of partitions of B with its associated points
yMk P UMk , then applying Lemma A.5.2 to the case Λ � µb ν, one obtains
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Cov
�»

A
Zpxqdµpxq ,

»
B
Zpxqdνpxq



� Cov

�
lim
NÑ8

Ņ

j�1

ZpxNj qµpV N
j q , lim

MÑ8

M̧

k�1

ZpyMk qνpUMk q
�

� lim
NÑ8

lim
MÑ8

Cov

�
Ņ

j�1

ZpxNj qµpV N
j q ,

M̧

k�1

ZpyMk qνpUMk q
�

� lim
NÑ8

lim
MÑ8

Ņ

j�1

M̧

k�1

CZpxNj , yMk qµpV N
j qνpUMk q

�
»
A

»
B
CZpx, yqdµpxqdνpyq,

(A.50)
where we have used the sesquilinearity of the covariance and the convergence of covariances of double-
sequences of square integrable random variables3. This proves the desired result. �

A.6 Proof of Proposition 3.3.1

Let M be a Random Measure over Rd and let f : Rd Ñ C be a measurable function such that f P
L 1pRd,mM q and f b f P L 1pRd � Rd, CM q. In order to prove that f is integrable with respect to
M , we need to prove, following the definition of the integral (3.24), that for any sequence of simple func-
tions pfnqnPN converging point-wise to f and such that |fn| converges point-wise monotonically increasing
to |f |, the sequence p³Rd fnpxqdMpxqqnPN is a Cauchy sequence in L2pΩ,A,Pq. Let us consider pfnqnPN
such a sequence. We have then for m,n P N,

E

�����
»
Rd
fnpxqdMpxq �

»
Rd
fmpxqdMpxq

����
2
�
� E

�����
»
Rd
fnpxq � fmpxqdMpxq

����
2
�

(by linearity)

� Var
�»

Rd
fnpxq � fmpxqdMpxq




� |E
�»

Rd
fnpxq � fmpxqdMpxq



|2

�
»
Rd�Rd

pfnpxq � fmpxqqpfnpyq � fmpyqqdCM px, yq

�
����
»
Rd
pfnpxq � fmpxqqdmM pxq

���� .

(A.51)

3If pXnqnPN� and pYmqmPN� are two sequences of square integrable random variables converging in L2pΩ,A,Pq to X
and Y respectively, then limn,mÑ8 CovpXn, Ymq � limmÑ8 limnÑ8 CovpXn, Ymq � limnÑ8 limmÑ8 CovpXn, Ymq �
CovpX,Y q. This can be proven using the Chauchy-Schwarz inequality.
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The convergence to 0 of the final expression in (A.51) as n,mÑ8 is guaranteed from the facts that»
Rd
fnpxqdmM pxq Ñ

»
Rd
fpxqdmM pxq

as nÑ8 and »
Rd�Rd

fnpxqfmpyqdCM px, yq Ñ
»
Rd�Rd

pf b fqpx, yqdCM px, yq

as n,m Ñ 8. These last convergences are guaranteed by the integrability of the involved functions with
respect to the involved measures and by Dominated Convergence Theorem 2.1.2. This proves that f is
integrable with respect to M . The formula of the mean 3.25 and covariance 3.26 hold evidently when f and
g are simple functions, and with the Dominated Convergence Theorem, one proves that the same holds when
f and g satisfy the required conditions. �

A.7 Proof of Proposition 3.3.2 and its variants

Let M be a Random Measure over Rd, and consider the random variables pxM,ϕyqϕPCcpRdq defined through
the integrals of ϕ with respect to M . The linear functional ϕ P CcpRdq ÞÑ xM,ϕy P L2pΩ,A,Pq is
continuous if and only if for all compact K � Rd there exists CK ¡ 0 such that

}xM,ϕy}L2pΩ,A,Pq ¤ CK}ϕ}8, @ϕ P CcpRdq such that supppϕq � K. (A.52)

This comes from the typical criterion of continuity of lineal operators between locally convex vector spaces
(Theorem D.0.1). Thus, let K � Rd be a compact set and let ϕ P CcpRdq such that supppϕq � K.
Considering that mM P M pRdq � C 1

cpRdq and CM P M pRd �Rdq � C 1
cpRd �Rdq (Riesz Representation

Theorem 2.1.3), it follows from criterion 2.22 that there exist CmMK ¡ 0 and CCMK�K ¡ 0 such that

|xmM , ϕy| ¤ CmMK }ϕ}8 ; |xCM , ϕb ϕy| ¤ CCMK�K}ϕ}28, @ϕ P CcpRdq such that supppϕq � K. (A.53)

Hence,
}xM,ϕy}L2pΩ,A,Pq �

a
E p|xM,ϕy|2q

�
b
VarpxM,ϕyq � |E pxM,ϕyq|2

�
a
xCM , ϕb ϕy � |xmM , ϕy|2

¤
b
CCMK�K}ϕ}28 � pCmMK q2}ϕ}28

�
b
CCMK�K � pCmMK q2}ϕ}8.

(A.54)

Hence, proves that M defines a continuous linear functional.

The proof for the cases of the spaces CFDpRdq, C0pRdq and CpRdq is done in complete analogy, con-
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sidering criteria of continuity of mM , CM and M according to the topology associated to each space. �

A.8 Proof of Proposition 3.3.3

Let M be an Hermitian orthogonal Random Measure over Rd, with weight νM . The parity of νM comes
immediately from

νM pAq � VarpMpAqq � VarpMp�Aqq � VarpMp�Aqq � νM p�Aq, @A P BBpRdq. (A.55)

Here we have used that the variance of a complex random variable equals the variance of its conjugate. Let
MR and MI be the real and imaginary parts of M respectively. Let A,B P BBpRdq. Using the Hermitianity
of M and the parity of νM , we obtain that

CovpMRpAq,MIpBqq � E pMRpAqMIpBqq

� E

�
MpAq �MpAq

2

MpBq �MpBq
2i

�

� �i
4
E
�
MpAqMp�Bq �MpAqMpBq �Mp�AqMp�Bq �Mp�AqMpBq

	
� �i

4

�
CovpMpAq,Mp�Bqq � CovpMpAq,MpBqq

� CovpMp�Aq,Mp�Bqq � CovpMp�Aq,MpBqq
	

� �i
4

�
νM pAX p�Bqq � νM pAXBq � νM pp�Aq X p�Bqqloooooooooomoooooooooon

�νM pAXBq

� νM pp�Aq XBqloooooooomoooooooon
�νM pAXp�Bqq

	

� 0.

(A.56)

Hence, MR and MI are non-correlated Random Measures. The expressions for the covariance measures of
both MR and MI are obtained following the same principles as in (A.56). �

A.9 Proof of Proposition 4.2.1

Let Z be a real stationary GeRF over Rd with covariance distribution CZ P S 1pRd � Rdq, stationary co-
variance distribution ρZ P S 1pRdq and spectral measure µZ P M�

SGpRdq. Let g be a symbol function over
Rd, with Lg being its associated operator. Since Z is real and stationary, its Fourier Transform is an Hermi-
tian slow-growing orthogonal Random Measure (Theorem 3.4.2). Since g is measurable and polynomially
bounded, it is clear that gb g is locally integrable with respect to CF pZq and that the measure gb gCF pZq is
in MSGpRd�Rdq (see Section 2.1.3). Hence, the multiplication gF pZq is a well-defined Random Measure
over Rd (see Section 3.3.3), and since CgF pZq � g b gCF pZq � |g|2p2πq

d
2µZδ

ty�xu, it follows that it is a
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slow-growing orthogonal Random Measure. It is also Hermitian since g is Hermitian. Finally, using again
Theorem 3.4.2, it follows that it Inverse Fourier Transform F�1pgF pZqq, which is then LgZ, is a real sta-
tionary GeRF over Rd, with spectral measure µLgZ � |g|2µZ . The expression for the stationary covariance
ρLgZ is immediate since µZ � F pρZq, and hence ρLgZ � F�1p|g|2µZq � F�1p|g|2F pρZqq � L|g|2ρZ .
�

A.10 Proof of Theorem 4.3.1

We will need the following intuitive but not-so-obvious Lemma.

Lemma A.10.1. Let M be a Random Measure over Rd with mean measure mM and covariance measure
CM . Let f : Rd Ñ C be a measurable function such that 1

f is locally integrable with respect to mM and
1
f b 1

f is locally integrable with respect to CM . Then, fp 1
fMq � M , that is, fp 1

fMq is a well-defined
Random Measure which is a modification of M .

Proof: We first recall that the condition of modification means that for all A P BBpRdq, pf 1
fMqpAq

a.s.�
MpAq. When all the involved measures are slow-growing, this implies an equality in the sense of modi-
fication between GeRFs when interpreting the measures as GeRFs. This is implied from the definition of
integrals of slow-growing measures with respect to functions in the Schwartz space (Example 3.4.2).

The local integrability conditions on 1
f and on 1

f b 1
f imply two things: first that 1

f is locally integrable
with respect to M , and hence that the Random Measure 1

fM is well-defined (see Section 3.3.3), and second

that |mM |pf�1pt0uqq � 0 � |CM |pf�1pt0uq � f�1pt0uqq. This implies that Mpf�1pt0uqq a.s.� 0. In
addition, following Proposition 3.3.1 and Eq. (3.28), we conclude that f is locally integrable with respect to
1
fM , hence the multiplication Random Measure fp 1

fMq is well-defined. Using the σ�additivity of M one
obtains for A P BBpRdq,

MpAq a.s.� MpAX tf � 0uq a.s.�
»
AXtf�0u

fpxq
fpxqdMpxq a.s.�

»
AXtf�0u

fpxqdp 1

f
Mqpxq a.s.�

»
A

fpxqdp 1

f
Mqpxq.

(A.57)

This proves that MpAq a.s.� pf 1
fMqpAq, and hence f 1

fM is a modification of M . �

Proof of Theorem 4.3.1:

Let X be a real stationary GeRF over Rd with spectral measure µX . Let g be a symbol function over Rd

and let Lg be its associated operator. We start by proving the existence criterion. Let us prove the necessity.
Suppose there exists a real stationary GeRF over Rd, say U , satisfying (4.3). Let µU be its spectral measure.
Proposition 4.2.1, implies that |g|2µU � µX . This implies in particular that µXpg�1pt0uqq � 0. Since
µU P M�

SGpRdq, we can take N P N such that p1� |ξ|2q�NµU is finite. We have then that

»
Rd

dµXpξq
p1 � |ξ|2qN |gpξq|2 �

»
tg�0u

|gpξq|2
p1 � |ξ|2qN

dµU pξq
|gpξq|2 �

»
tg�0u

dµU pξq
p1 � |ξ|2qN ¤

»
Rd

dµU pξq
p1 � |ξ|2qN   8. (A.58)



218 APPENDIX A. PROOFS

Let us prove the sufficiency. Since X is a real stationary GeRF, F pXq is an Hermitian slow-growing
orthogonal Random Measure, with covariance measure CF pXq � p2πq d2µXδty�xu (Eq. (3.68) applied to
the Fourier Transform). Following the developments in Section 3.3.3, let us verify that the multiplication
1
gF pXq is a well-defined Random Measure. Let A P BBpRdq. The function 1

g1A is integrable with respect

to F pXq if 1
g1A b 1

g1A P L 1pRd � Rd, CF pXqq. We have that,

»
Rd�Rd

����� 1

gpξqgpηq

�����1A�Apξ, ηqd|CF pXq|pξ, ηq �
»
A

p2πq d2
|gpξq|2dµXpξq. (A.59)

Since condition (4.7) implies in particular that the measure |g|�2µX is locally finite (the polynomial con-
trolling only its growing behaviour), the expression (A.59) is finite since A is bounded. Hence, 1

gF pXq is a
well-defined Random Measure. In addition, its covariance measure is given by

C 1
g
F pXq �

1

g
b 1

g
CF pXq � p2πq

d
2 p|g|�2µXqδty�xu (A.60)

Hence, 1
gF pXq is a well-defined orthogonal Random Measure with weight ν 1

g
F pXq � p2πq d2 |g|�2µX . It

is in addition Hermitian since both 1
g and F pXq are Hermitian. Finally, from condition (4.7), it follows

that the weight measure ν 1
g
F pXq is slow-growing and hence, by the arguments developed in Section 3.3.6,

1
gF pXq is an Hermitian slow-growing orthogonal Random Measure. Its Inverse Fourier Transform is then
well-defined, and from Theorem 3.4.2, U � F�1p1

gF pXqq is a real stationary GeRF over Rd. From Lemma
A.10.1 it follows that g 1

gF pXq � F pXq, and hence

F�1pgF pUqq � F�1p1
g
gF pXqq � X. (A.61)

Hence LgU � X , so the existences of a strict stationary solution to Eq. 4.3 is proven.

Let us now prove the uniqueness criterion. Let us prove the necessity. Let us suppose that g�1pt0uq �
H. Consider µUH be an even positive slow-growing measure concentrated on g�1pt0uq. We can take, for
instance, µUH � δξ0 � δ�ξ0 for any ξ0 P Rd such that gpξ0q � 0 (we remark that in such a case gp�ξ0q � 0

since g is Hermitian). It follows that |g|2µUH � 0. Let U be a real stationary solution to 4.3 and let UH be
a real stationary GeRF with spectral measure µUH independent of U . It follows that LgpUHq � 0, since by
Proposition 4.2.1, µLgUH � |g|2µUH � 0. Hence LgpU � UHq � LgU � X . Since the addition of two
independent stationary GeRFs is a stationary GeRF, it follows that the solution is not unique. This proves
the necessity.

Let us finally prove the sufficiency. Let us suppose that there is no uniqueness, and hence there are two
different stationary solutions U1 and U2 to (4.3), that is, that one is not the modification of the other. Hence,
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LgU1 � X � LgU2. Taking Fourier Transform, one obtains

gF pU1q � X � gF pU2q. (A.62)

Let us call f � 1
g . Since |g| ¡ 0, f is measurable taking finite complex values. Eq. (A.62) is then

1

f
F pU1q � F pXq � 1

f
F pU2q. (A.63)

This implies that |f |�2µU1 � µX P M�
SGpRdq, which in particular implies that p 1

f b 1
f
q is locally integrable

with respect to CF pU1q, since

»
Rd�Rd

����� 1

fpξqfpηq

�����1A�Apξ, ηqd|CF pU1q|pξ, ηq �
»
A

p2πq d2
|fpξq|2dµU1pξq � p2πq

d
2µXpAq   8, (A.64)

for all A P BBpRdq. The same can be stated for the local integrability of p 1
f b 1

f
q with respect to CF pU2q.

By Lemma A.10.1, it follows that multiplying (A.63) by f we obtain

F pU1q � f
1

f
F pU1q � f

1

f
F pU2q � F pU2q, (A.65)

where the equality means that the involved Random Measures are a modification one of another. Taking
Inverse Fourier Transform, we finally obtain

U1 � U2. (A.66)

Hence, U1 is a modification of U2. The contradiction allows us to conclude that the stationary solution to
(4.3) is unique up to a modification.

It follows that the solution U � F�1p1
gF pXqq, is the only stationary solution that satisfies (4.3) up to a

modification. From this, the fact that the spectral measure of the unique stationary solution to (4.3) is of the
form (4.8) comes immediately. �

A.11 Proof of Theorem 4.4.1

For the proof of this Theorem we need two Lemmas. The first one is a straightforward result that we just
mention in order to make it explicit. The second one is a known result of convolutions between some kinds
of distributions.

Lemma A.11.1. Let f be a function defining a tempered distribution over Rd such that F pfq P L1pRdq. Let
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µ P MF pRdq. Then F pfq and F pµq are convolvable and the exchange formula of the Fourier Transform
holds: F pfµq � p2πq� d

2 F pfq �F pµq.

Proof: The convolvability is straightforward since if µ is finite, F pµq P CBpRdq, and every bounded
measurable function is convolvable with an integrable one. We remark that f P C0pRdq by Riemann-
Lebesgue Lemma (Theorem 2.2.1). Since µ is finite and f is continuous and bounded, the multiplication fµ
is in MF pRdq, hence F pfµq is a continuous and bounded function. The Exchange Formula must be verified
in the classical sense of continuous functions. Let us call φ � F pfq. Using the formula of the Inverse
Fourier Transform and Fubini’s Theorem, we obtain

F pfµqpξq � 1

p2πq d2

»
Rd
e�ix

T ξfpxqdµpxq

� 1

p2πq d2

»
Rd
e�ix

T ξ 1

p2πq d2

»
Rd
eix

T ηφpηqdηdµpxq

� 1

p2πq d2

»
Rd

1

p2πq d2

»
Rd
eipξ�ηq

T xdµpxqφpηqdη

� 1

p2πq d2

»
Rd

F pµqpξ � ηqF pfqpηqdη � p2πq� d
2 pF pµq �F pfqqpξq.�

(A.67)

Lemma A.11.2. Let f1 P L1pRdq and f2 P L8pRdq. Then, for every α, β P Nd, Dαf1 and Dβf2 are
S 1�convolvable. The next equality holds in the sense of distributions for every α, β P Nd:

Dαf1 �Dβf2 � Dα�βpf1 � f2q � Dαpf1 �Dβf2q � DβpDαf1 � f2q. (A.68)

Proof: f1 and f2 are convolvable in the classical sense of functions and their convolution is a continuous
and bounded function. Hence f1 � f2 P S 1pRdq, and the derivative Dα�βpf1 � f2q is a well-defined element
of S 1pRdq.

Since in this case we are not in the framework explained in Section 2.2.2, we rather use the defini-
tion through the tensor product presented in Section 2.2.3. Hence, we need to verify if the corresponding
derivatives of f1 and f2 are S 1�convolvable.

Consider then f1 P L1pRdq and f2 P L8pRdq. The tensor product f1 b f2 is simply the function
px, yq ÞÑ f1pxqf2pyq. A typical argument using a change of variables and Fubini’s Theorem guarantees that
the convolution f1 � f2 is well-defined in the sense of distributions, obtaining

xf1 � f2, ϕy � xf1 b f2, px, yq ÞÑ ϕpx� yqy, @ϕ P S pRdq. (A.69)

Let us consider right now the derivatives in distributional senseDαf1 andDβf2. Their tensor product is then
Dαf1bDβf2, and it holds that (Schwartz, 1966, Theorem VII, Chapter IV)Dαf1bDβf2 � Dpα,βqpf1bf2q.
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By definition of the derivative,

xDpα,βqpf1 b f2q, ψy :� p�1q|α|�|β|xf1 b f2, D
pα,βqψy, @ψ P S pRd � Rdq.

Since Dpα,βqppx, yq ÞÑ ϕpx� yqq � px, yq ÞÑ Dα�βϕpx� yq, and Dα�βϕ P S pRdq for every ϕ P S pRdq,
it follows that

xDαf1bDβf2, px, yq ÞÑ ϕpx�yqy � p�1q|α|�|β|xf1bf2, px, yq ÞÑ Dα�βϕpx�yqy � p�1q|α|�|β|xf1�f2, Dα�βϕy,
(A.70)

for all ϕ P S pRdq. This proves two things: first Dαf1 and Dβf2 are S 1�convolvable, and second
Dα�βpf1 � f2q � Dαf1 � Dβf2, which follows from an immediate application of the definition of the
derivative in (A.69). Applying the same principles for the convolutions Dαf1 � f2 and f1 � Dβf2, one
obtains equality (A.68) . �

Proof of Theorem 4.4.1:

We first prove the case of condition 1, which is actually immediate within the framework of tempered
distributions. Indeed, if 1

g P OM pRdq, then it is obvious that |g| ¡ 0 and that the PBR condition holds,
hence there exists a unique stationary solution to (4.3) (and to (4.12) too). Its spectral measure is then given
by the multiplication µU � |g|�2µX . The condition 1

g P OM pRdq also implies that |g|�2 P OM pRdq.
Since µX P M�

SGpRdq � S 1pRdq, the multiplication measure |g|�2µX is simply the multiplication between
a multiplicator of the Schwartz space (Section 2.2.2) and a tempered distribution. Hence, the Exchange
Formula for the Fourier Transform (Eq. (2.65)) holds, obtaining:

ρU � F pµU q � F p|g|�2µXq � p2πq� d
2 F p|g|�2q �F pµXq � F pp2πq� d

2 |g|�2q � ρX � F pµWU q � ρX � ρWU � ρX .
(A.71)

The case of condition 2 is more sophisticated. We will use Lemmas A.11.1 and A.11.2. Let us first
prove that the solution to (4.3) exists and that it is unique. If g satisfies condition 2, then the function
p1 � |x|2q�N |g|�2 is the Inverse Fourier Transform of an integrable function, and hence it is in C0pRdq by
Riemann-Lebesgue Lemma (Theorem 2.2.1). Hence, |g|�2 ¤ }p1�|x|2q�N |g|�2}8p1�|x|2qN and so |g|�2

is polynomially bounded. We conclude that the PBR condition holds, hence there exists a unique stationary
solution to (4.3) with spectral measure µU � |g|�2µX .

Lemma A.11.1 gives us the proof for the case when N � 0 in condition 2 and µX is a finite measure.
Let us prove the general case. Consider g satisfying condition 2 and µX P M�

SGpRdq any arbitrary spectral
measure. Let Ng P N such that condition 2 holds. Let NµX P N such that p1 � |x|2q�NµXµX is a finite
measure. We consider that

|g|�2µX � p1� |x|2qNg�NµX |g|�2

p1� |x|2qNgloooooomoooooon
PF�1pL1pRdqq

µX

p1� |x|2qNµXlooooooomooooooon
PM�

F pRdq

. (A.72)
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Considering the exchange formula for the case of Lemma A.11.1 and the property of the Fourier Transform
with respect to multiplications by polynomials, F pp1 � |x|2qMT q � p1 � ∆qpMqT for M P N and T P
S 1pRdq, we obtain

F p|g|�2µXq � p2πq�
d
2 p1�∆qNg�NµC

������F

� |g|�2

p1� |x|2qNg



loooooooooomoooooooooon
PL1pRdq

�F

�
µX

p1� |x|2qNµX q



loooooooooooomoooooooooooon
PCBpRdq�L8pRdq

�����. (A.73)

We then apply Lemma A.11.2 to split conveniently the differential operators between the two convolving
functions. We conclude that

F p|g|�2µXq � p2πq�
d
2

�
p1�∆qNgF

� |g|�2

p1� |x|2qNg

�
�
�
p1�∆qNµXF

�
µX

p1� |x|2qNµX

�

� p2πq� d
2 F

�
p1� |x|2qNg |g|�2

p1� |x|2qNg


�F

�
p1� |x|2qNµX µX

p1� |x|2qNµX



� p2πq� d
2 F p|g|�2q �F pµXq

� F pµWU q �F pµXq � ρWU � ρX .�
(A.74)

A.12 Proof of Proposition 4.6.1

Let f P V 1pRdq. Let g be a symbol function over Rd and let Lg be its associated operator. Let us prove the
necessity. Let u P V 1pRdq be such that Lgpuq � f . Hence, gF puq � F pfq PMSGpRdq. Thus, there exists
N P N such that p1� |ξ|2q�NgF puq is finite. It also follows that |F pfq|pg�1pt0uqq � 0. Hence,»

Rd

d|F pfq|pξq
p1� |ξ|2qN |gpξq| �

»
tg�0u

|gpξq|
p1� |ξ|2qN

d|F puq|pξq
|gpξq| �

»
tg�0u

d|F puq|pξq
p1� |ξ|2qN ¤

»
Rd

d|F puq|pξq
p1� |ξ|2qN   8.

(A.75)
This proves that 1

gF pfq is slow-growing, and in particular |g|�1 is locally integrable with respect to F pfq.
Let us prove the sufficiency. If 1

g is locally integrable with respect to F pfq, then the multiplication
1
gF pfq defines a measure in M pRdq. Since we have supposed in addition that 1

gF pfq P MSGpRdq, then
its inverse Fourier Transform, u � F�1p1

gF pfqq is well-defined in distributional sense, and it is an element
of V 1pRdq. Let us verify that it solves (4.29). It is clear that F puq � 1

gF pfq. Since 1
g is locally integrable
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with respect to the measure F pfq, it follows that |F pfq| �g�1 pt0uq� � 0. Hence,

F pfqpAq �
»
AXtg�0u

gpxq
gpxqdF pfqpxq �

»
AXtg�0u

gpxqd
�

1

g
F pfq



pxq �

»
A

gpxqd pF puqq pxq � pgF puqq pAq.
(A.76)

We conclude that gF puq � F pfq P MSGpRdq. Taking Inverse Fourier Transform, it follows that Lgpuq �
f , hence the existence is proven.

Let us prove the necessity of the uniqueness criterion. If we suppose that g�1pt0uq � H, then any
slow-growing measure µ concentrated on g�1pt0uq (for instance, µ � δξ0 for any ξ0 P g�1pt0uq), satisfies
gµ � 0. Hence, setting uH � F�1pµq, one gets that LguH � 0. If u is any solution to (4.29), then u� uH
is also a solution to (4.29), which implies non-uniqueness.

Let us now prove the sufficiency of uniqueness criterion. Let us suppose |g| ¡ 0. This implies that 1
g is

a complex measurable function. It is straightforward hence that for any measure µ P M pRdq, µ � g 1
gµ �

1
ggµ. If there are two solutions u1, u2 P V 1pRdq to (4.29), then gF pu1q � gF pu2q � F pfq P MSGpRdq.
Multiplying by 1

g , one obtains that F pu1q � F pu2q, and hence u1 � u2. The solution is then unique. �

A.13 Proof of Proposition 5.1.1

Let Z be a real stationary GeRF over Rd �R with temporally integrable spectral measure µZ P M�
SGpRd �

Rq. As stated in Section 5.1.2, the covariance distribution ρZ P S 1pRd � Rq has a continuous-in-time
representation pρuZquPR � S 1pRdq. The objective is to define the random variables of the form xZt, ϕy, with
ϕ P S pRdq and t P R.

Let t P R and let pθtnqnPN be a sequence of positive functions in S pRq converging to δt in the following
sense:

³
R θ

t
npuqdu � 1 for all n P N, and for every f P CpRq polynomially bounded, one has that

xf, θtny Ñ xδt, fy � fptq, as nÑ8. (A.77)

An example of such a sequence is given by a sequence of Gaussian probability density functions centred at
t with the variance decreasing to 0 as n grows. It follows that

FT pθtnqpωq �
1?
2π

»
R
e�iωuθtnpuqduÑ

1?
2π
e�iωt, as nÑ8,@ω P R. (A.78)

Hence, the temporal Fourier Transforms of the functions in pθtnqnPN converge point-wise to the function
ω ÞÑ 1?

2π
e�iωt.

Let us fix ϕ P S pRdq and t P R and let us consider the sequence of square-integrable random variables
pxZ,ϕb θtnyqnPN. Let us prove that it converges in L2pΩ,A,Pq. Let n,m P N. Using the linearity and that
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CF�1pZq � p2πq
d�1
2 µZδ

tx�yu , we obtain that

E
���xZ,ϕb φtny � xZ,ϕb θtmy

��2	 � E
���xZ,ϕb pθtn � θtmqy��2	

� E
���xF�1pZq,FSpϕqbFT pθtn � θtmqy

��2	
� p2πq d�1

2

»
Rd�R

|FSpϕqpξq|2
��FT pθtn � θtmqpωq

��2 dµZpξ, ωq.
(A.79)

The point-wise convergence of FT pθtnq to the function ω ÞÑ 1?
2π
e�iωt implies that

��FT pθtn � θtmqpωq
��2 � ��FT pθtnqpωq

��2 � ��FT pθtmqpωq
��2 � �FT pθtnqpωqFT pθtmqpωq �FT pθtnqpωqFT pθtmqpωq

	

ÝÝÝÝÝÑ
n,mÑ8

���� 1?
2π
e�iωt

����
2

�
���� 1?

2π
e�iωt

����
2

�
�

1?
2π
e�iωt

1?
2π
e�iωt � 1?

2π
e�iωt

1?
2π
e�iωt




� 0.
(A.80)

Hence,
��FT pθtn � θtmq

��2 Ñ 0 point-wise as n,mÑ8. In addition we have that

��FT pθtn � θtmqpωq
��2 � ���� 1?

2π

»
R
e�iωupθtn � θtmqpuqdu

����2
¤
�

1?
2π

»
R
|θtn � θtm|puqdu


2

¤
�

1?
2π

»
R
pθtn � θtmqpuqdu


2

¤ 2

π
.

(A.81)

Hence,
��FT pθtn � θtmq

��2 Ñ 0 point-wise as n,m Ñ 8 and in addition dominated by 2
π . Since µZ is

temporally integrable, one has

p2πq d�1
2

»
Rd�R

|FSpϕqpξq|2π
2
dµZpξ, ωq   8. (A.82)

It follows from Dominated Convergence Theorem that

p2πq d�1
2

»
Rd�R

|FSpϕqpξq|2
��FT pθtn � θtmqpωq

��2 dµZpξ, ωq Ñ 0, as n,mÑ8. (A.83)

Hence, the sequence of random variables pxZ,ϕb θtnyqnPN is a Cauchy sequence in L2pΩ,A,Pq, and hence
it is convergent to a unique square-integrable random variable, which we will denote by xZt, ϕy. This
limit does not depend on the sequence pθtnqnPN. This can be concluded by considering another sequence
of temporal test-functions, say pϑtnqnPN, converging δt in the same sense as pθtnqnPN, and considering the
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sequence of random variables pxZ,ϕ b pθtn � ϑtnqyqnPN. Following similar arguments as those exposed in
this proof, one proves that xZ,ϕb pθtn � ϑtnqy Ñ 0 in L2pΩ,A,Pq as nÑ8, and hence

xZt, ϕy � lim
nÑ8xZ,ϕb θtny � lim

nÑ8xZ,ϕb ϑtny. (A.84)

Let us now fix two time coordinates t, s P R. Consider two sequences of temporal test-functions pθtnqnPN
and pθsnqnPN converging respectively to δt and to δs in the sense given above. Let f : RÑ C be a continuous
and bounded function. Then, Fubini’s Theorem, a change of variable and a passage to limit, we conclude
that

xf, θtn � θ̌sny �
»
R
fpuq

»
R
θtnpu� vqθsnp�vqdvdu �

»
R�R

fpu� vqθtnpuqθsnpvqdpu, vq Ñ fpt� sq, as nÑ8.
(A.85)

Let us then consider two spatial test-functions ϕ, φ P S pRdq. Then, one has

CovpxZt, ϕy, xZs, φyq � lim
nÑ8CovpxZ,ϕb θtny, xZs, φb θ2

nyq

� lim
nÑ8xρZ , pϕ � φ̌qb pθ

t
n � θ̌snqy

� lim
nÑ8

»
R
xρuZ , ϕ � φ̌ypθtn � θ̌snqpuqdu

� xρt�sZ , ϕ � φ̌y,

(A.86)

where we have used the continuity of the function u P R ÞÑ xρuZ , ϕ � φ̌y and the limit expression (A.85).

Using the continuity-in-time structure of the family pρuZquPR, one concludes immediately that for every
ϕ P S pRdq, the Random Function t ÞÑ xZt, ϕy is a continuous Random Function, which is in addition
stationary. On the spatial dimension, using the tempered structure in space of the family pρuZquPR � S 1pRdq,
one obtains that for every t P R, the family of random variables pxZt, ϕyqϕPS pRdq satisfies the linearity and
continuity conditions to be a well-defined real spatial GeRF, which is also stationary. This completes the
proof. �

A.14 Proof of Proposition 5.2.1

Let β ¡ 0. For an arbitrary symbol function g : Rd Ñ R, with gR and gI being its real and imaginary parts
respectively, we denote by fgR,gI the function over Rd � R

fgR,gI pξ, ωq � piωqβ � gpξq � |ω|β cos

�
βπ

2



� gRpξq � i

�
sgnpωq|ω|β sin

�
βπ

2



� gIpξq



. (A.87)
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Let us first prove the sufficiency of our claim. Let gR : Rd Ñ R satisfying the PBR condition and such
that gR cospβπ2 q ¥ 0. Let p : Rd Ñ R�� be a strictly positive polynomial such that |gR| ¥ 1{p. When β is
an odd integer, we get cospβπ2 q � 0, and it is thus straightforward that |fgR,gI |2 ¥ g2

R ¥ 1{p2, from which
we obtain that fgR,gI has PBR for any chosen gI . When β is not and odd integer, the choice of the sign
of gR is made in order to make that both cospβπ2 q and gR have the same sign, and hence |gR cospβπ2 q| �
|gR|| cospβ π2 q|. Thus, for all pξ, ωq P Rd � R we have

|fgR,gI pξ, ωq|2 ¥
�
|ω|β cospβπ

2
q � gRpξq


2

�
�
|ω|β| cospβπ

2
q| � |gR|pξq


2

¥ |gRpξq|2 ¥ 1

p2pξq .
(A.88)

Hence, fgR,gI satisfies the PBR condition for any chosen gI .

Let us now prove the necessity. Suppose that for every gI there exists a strictly positive polynomial qgI :

Rd�RÑ R�� such that |fgR,gI | ¥ 1
qgI

, which is equivalent to say that fgR,gI satisfies the PBR condition for
any gI . Then, in particular for gI � 0 and evaluating at ω � 0, we get |fgR,0pξ, 0q|2 � g2

Rpξq ¥ q0pξ, 0q�2

from which we obtain that gR satisfies the PBR condition. Let β be such that cospβπ2 q   0. Since gR
has PBR, it cannot take the value 0. Suppose there exists ξ1 P Rd such that gRpξ1q ¡ 0. If we consider

ωξ1 �
�
�gRpξ1q{ cospβπ2 q

	 1
β , we obtain that for every gI ,

fgR,gI pξ1, ωξ1q � �gRpξ1q � gRpξ1q � i
�
�gRpξ1q tan

�
βπ

2



� gIpξ1q



. (A.89)

It suffices then to take a particular measurable polynomially bounded odd function gI such that gIpξ1q �
gRpξ1q tanpβπ2 q, to obtain fgR,gI pξ1, ωξ1q � 0. This proves that fgR,gI does not satisfies the PBR condition.
The contradiction proves that gR must be a negative function. An analogue argument is used to prove that
gR must be a positive function when β is such that cos pβπ{2q ¡ 0.�

A.15 Proofs regarding the stochastic Heat equation (Section 5.2.3)

A.15.1 Existence of stationary solutions

According to Theorem 4.3.1, there exists a stationary solution to the stochastic Heat equation with White
Noise source term (5.56) if and only if the spatio-temporal measure

pω2 � a2|ξ|4q�1dξdω

is in M�
SGpRd�Rq. This would hold if the function pξ, ωq ÞÑ pω2�a2|ξ|4q�1 is locally integrable, the slow-

growing behaviour being provided by the fact that this function is bounded outside every neighbourhood of
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the origin. It suffices thus to study the integrability over subsets of Rd �R of the form B
pdq
R p0q � r�M,M s

for R,M ¡ 0, where Bpdq
R p0q � Rd is the ball of radius R centered in 0. Using integration with polar

coordinates in the spatial domain and the symmetry in the time interval, we obtain»
B
pdq
R p0q�r�M,Ms

1

ω2 � a2|ξ|4dpξ, ωq � C

» R
0

arctan

�
M

ar2



rd�3dr (A.90)

for some positive constant C. Since we have that arctanp M
aR2 q ¤ arctanp M

ar2
q ¤ π

2 for all r P r0, Rs, we
conclude that the integral (A.90) is finite only for d ¡ 2. We conclude that there exist stationary solutions
to the SPDE (5.56) only for spatial dimensions d ¥ 3. In these cases, the stationary solutions would be
continuous Random Functions if the measure pω2� a2|ξ|4q�1dξdω was finite, which would hold if the limit
when M and R go to 8 would exist and was finite. However, by seeing that

³R
0 arctanp M

ar2
qrd�3dr ¥

arctanp M
aR2 qRd�2

d�2 , and by letting M Ñ 8 first and R Ñ 8 second, one gets that the limit is not finite.
Hence, the stationary solutions to (5.56) in spatial dimensions higher that 2 have a meaning as GeRFs and
not as continuous Random Functions.

A.15.2 Covariance structure for d � 3

The covariance distribution (5.57) is the Fourier Transform of the spatio-temporal spectral measure

dµU pξ, ωq � p2πq�
d�1
2 pω2 � a2|ξ|4q�1dξdω

for d � 3. This measure is not finite. The computation of the Fourier Transform ρU � F pµU q is obtained
as the limit in a distributional sense of continuous functions. Let us be precise.

LetR ¡ 0 and let us denote by µRU the restriction of the measure µU to the subsetBp3q
R p0q�R � R3�R,

i.e.
dµRU pξ, ωq � p2πq�

d�1
2 pω2 � a2|ξ|4q�11

B
p3q
R p0qpξqdξdω.

This measure is even, positive and finite, so ρRU � F pµRU q is a continuous positive-definite function over
Rd � R. Since for every ψ P S pR3 � Rq we have xµRU , ψy � xµU , ψ1Bp3q

R p0q�Ry, and that ψ1
B
p3q
R �R Ñ ψ

point-wise and dominated by |ψ| P L 1pR3 � R, µU q as R Ñ 8, we obtain by Dominated Convergence
Theorem that

xµRU , ψy Ñ xµU , ψy as RÑ8. (A.91)

Hence, µRU Ñ µU as R Ñ 8 in a S 1pR3 � Rq�weak-� sense. By continuity of the Fourier Transform, we
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have that ρUR
S

1
σÑ ρU . Let us calculate ρRU ph, uq for ph, uq P R3 � R.

ρRU ph, uq �
1

p2πq4
»
Bp3qR p0q

»
R

e�iuω�ihT ξ

ω2 � a2|ξ|4dωdξ

� 1

p2πq3
1

2a

»
B
p3q
R p0q

e�ih
T ξ e

�a|ξ|2|u|

a|ξ|2 dξ

� 1

p2πq 32
1

2a

c
2

π

» R
0

J 1
2
p|h|rqa
r|h| e

�a|u|r2dr

� 1

p2πq2
1

a|h|
» R

0

sinp|h|rq
r

e�a|u|r
2
dr. (A.92)

Here we have used the expression of the Fourier Transform of radial functions (Donoghue, 1969, Chapter 41).
Let us evaluate the limit of ρRU ph, uq when R Ñ 8 for |h| � 0 � |u|. Consider the function fR : R� Ñ R
defined by fRpλq �

³R
0

sinpλrq
r e�a|u|r2dr for λ ¡ 0, and fRp0q � 0. A typical application of the Dominated

Convergence Theorem proves that fR is continuous over R� and differentiable over R�� . Differentiating
under the integral, we have that f 1Rpλq �

³R
0 cospλrqe�a|u|r2dr for λ ¡ 0. Using the expression of the

Fourier Transform of a Gaussian function, one proves that

lim
RÑ8

f 1Rpλq �
c

π

4a|u|e
� λ2

4a|u| , (A.93)

for every λ ¡ 0. Using fRpλq �
³λ
0 f

1
Rpsqds and again the Dominated Convergence Theorem, we obtain

lim
RÑ8

fRpλq �
» λ

0

c
π

4a|u|e
� s2

4a|u|ds � π

2
erf

�
λ

2
a
a|u|

�
. (A.94)

Using this result in (A.92) with λ � |h| and R Ñ 8, we finally obtain the distribution associated to the
function

ρU ph, uq � 1

p2πq2
π

2a|h| erf

�
|h|

2
a
a|u|

�
., (A.95)

which is the expression in (5.57).

It is worth emphasizing that this expression is only valid in a distributional sense. The distribution ρU is
only meaningful when applied to test-functions, satisfying

xρU , ψy � lim
RÑ8

xρRU , ψy, @ψ P S pR3 � Rq. (A.96)

The expression associated to the function (A.95) refers to the fact that for every test-function ψ such that its
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support does not contain the origin, we have

xρU , ψy �
»
R3�R

1

p2πq2
π

2a|h| erf

�
|h|

2
a
a|u|

�
ψph, uqdhdu. (A.97)

This expression does not hold for a general test-function ψ P S pR3 � Rq.

A.16 Proof of Proposition 6.2.1

Let ϕ P S pRdq. By linearity, the expression xZ,ϕy � xZN , ϕy is simply xZ � ZN , ϕy. Setting φ �
F�1pϕq P S pRdq, we have

xZ � ZN , ϕy � xF pZ � ZN q, φy.

We have that
F pZ � ZN q �MZ �MZN . (A.98)

From the definition of MZN one obtains that

xMZN , φy � x
Ņ

j�1

MZpV N
j qδξNj , φy � xMZ ,

Ņ

j�1

φpξNj q1V Nj y. (A.99)

Hence,
E
�
|xZN � Z,ϕy|2

	
� E

�
|xMZN �MZ , φy|2

	
� E

�������xMZ , φ�
Ņ

j�1

φpξNj q1V Nj y
�����
2
�

� p2πq d2
»
Rd

�����φpξq � Ņ

j�1

φpξNj q1V Nj pξq
�����
2

dµZpξq.

(A.100)

Consider the sequence of functions φN �
°N
j�1 φpξNj q1V Nj . Let us verify that it converges point-wise

to φ. Let ξ P Rd. Since the union of the Riemann sequence of partitions pV N
j qjPt1,...,Nu,NPN� grows to

Rd as N grows, there exists N0 P N� such that for all N ¥ N0, ξ P �N
j�1 V

N
j , and it belongs, of course,

to just one of the V N
j ’s. Since φ is continuous at ξ, for every ε ¡ 0 we can find a δ ¡ 0 such that

|φpξq � φpηq|   ε if |ξ � η|   δ. By taking N1 P N large enough such that if N ¥ N1, `N   δ, one gets
that for N ¥ maxtN0, N1u,

|φN pξq � φpξq| � |φpξq � φpξNj q|   ε, (A.101)

where ξNj is the tag point of the set V N
j which contains ξ.
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Consider now M P N such that p1� |ξ|2q�2MµZ P M�
F pRdq. Expression (A.100) equals to

p2πq d2
»
Rd

��p1� |ξ|2qM pφpξq � φN pξqq��2 dµZpξq
p1� |ξ|2q2M . (A.102)

Consider the sequence of functions defined through fN pξq �
��p1� |ξ|2qM pφpξq � φN pξqq��2. Since φN Ñ

φ point-wise, fN Ñ 0 point-wise. It is clear that

|fN pξq| ¤ sup
ηPRd

��p1� |η|2qMφpηq��2looooooooooooomooooooooooooon
 8 since φPS pRdq

� sup
ηPRd

��p1� |η|2qMφN pηq��2 , @ξ P Rd. (A.103)

By convexity of the function ξ P Rd ÞÑ |ξ|2, it holds that

p1� |ξ|2qM ¤ p1� 2|ξ � ξNj |2 � 2|ξNj |2qM ¤ 2M p1� |ξ � ξNj |2 � |ξNj |2qM .

Using a binomial expansion, we have that for every ξ P Rd,

p1� |ξ|2qM |φN pξq| �
Ņ

j�1

p1� |ξ|2qM |φpξNj q|1V Nj pξq

¤
Ņ

j�1

2M p1� |ξNj |2 � |ξ � ξNj |2qM |φpξNj q|1V Nj pξq

� 2M
Ņ

j�1

M̧

k�0

�
M

k



p1� |ξNj |2qM�k|φpξNj q|looooooooooooomooooooooooooon
¤sup

ηPRd |p1�|η|2qM�kφpηq|

|ξ � ξNj |2kloooomoooon
¤`2kN

1V Nj
pξq

¤ 2M
M̧

k�0

sup
ηPRd

���p1� |η|2qM�kφpηq
��� `2kN

(A.104)

Since φ P S pRdq and `N Ñ 0 this expression is bounded by a constant which does neither depend on N
nor on ξ, which we will denote by Cφ,M ¡ 0. It follows that

|fN | ¤ sup
ηPRd

��p1� |η|2qMφpηq��28 � C2
φ,M . (A.105)

Hence, the sequence pfN qNPN� is dominated by a constant, which is of course integrable with respect to the
finite measure p1� |ξ|2q�2MµZ . By Dominated Convergence Theorem, expression (A.102) goes to 0 as N
grows, which proves the result. �
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A.17 Proof of Theorem 6.2.1

We consider the expressions

Zpxq � 1

p2πq d2

»
Rd
eix

T ξdMZpξq ; ZN pxq � 1

p2πq d2

»
Rd
eix

T ξdMZN pξq. (A.106)

Considering that

»
Rd
eix

T ξdMZN pξq �
Ņ

j�1

eix
T ξNj MZpV N

j q �
»
Rd

Ņ

j�1

eix
T ξNj 1V Nj

pξqdMZpξq, (A.107)

and using the simple fact eix
T ξ � °N

j�1 e
ixT ξ1V Nj

pξq � eixT ξ1DN pξq for all x P Rd and ξ P Rd, we obtain

E
�
|Zpxq � ZN pxq|2

	
� 1

p2πqdE
�����»

Rd
eix

T ξdMZpξq �
»
Rd
eix

T ξdMZN pξq
����2
�

� 1

p2πqdE
�������
»
Rd
eix

T ξ �
Ņ

j�1

eix
T ξNj 1V Nj

pξqdMZpξq
�����
2
�

� 1

p2πqdE
�������
»
Rd

Ņ

j�1

peixT ξ � eixtξNj q1V Nj pξq � e
ixT ξ1DN pξqdMZpξq

�����
2
�

� 1

p2πqdE
������� Ņ

j�1

»
V Nj

eix
T ξ � eixT ξNj dMZpξq �

»
DN

eix
T ξdMZpξq

�����
2
�.
(A.108)

SinceMZ is orthogonal, the stochastic integrals of the form
³
V Nj

eix
T ξ�eixT ξNj dMZpξq and

³
DN

eix
ξ
dMZpξq

are mutually non-correlated for all j P t1, ..., Nu and N P N�. Hence, expression (A.108) equals to

1

p2πqd

�� Ņ

j�1

E

�������
»
V Nj

eix
T ξ � eixT ξNj dMZpξq

�����
2
�� E

�����»
DN

eix
T ξdMZpξq

����2
���

� 1

p2πqd
�

Ņ

j�1

p2πq d2
»
V Nj

���eixT ξ � eixT ξNj ���2 dµZpξq � p2πq d2 »
DN

|eixT ξ|2dµZpξq
�

� 1

p2πq d2

�
Ņ

j�1

»
V Nj

���eixT ξ � eixT ξNj ���2 dµZpξq � µZpDN q
�
.

(A.109)
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Using a typical application of Taylor’s Theorem, one obtains that

|eixT ξ � eixT ξNj | ¤ 2|x||ξ � ξNj | ¤ 2|x|`N , @ξ P V N
j . (A.110)

Applying this to expression (A.109), we obtain

E
�
|Zpxq � ZN pxq|2

	
� 1

p2πq d2

�»
V Nj

���eixT ξ � eixT ξNj ���2 dµZpξq � µZpDN q
�

¤ 1

p2πq d2

�
4|x|2`2NµZ

�
N¤
j�1

V N
j

�
� µZpDN q

�

¤ 1

p2πq d2
�
4|x|2`2NµZpRdq � µZpDN q

�
.

(A.111)

Since µZ is a positive finite measure, we conclude that for any K � Rd compact,

sup
xPK

E
�
|Zpxq � ZN pxq|2

	
¤ 1

p2πq d2
�
4 `2Nloomoon
Ñ0 as NÑ8

µZpRdq sup
xPK

|x|2loooooooomoooooooon
 8

� µZpDN qlooomooon
Ñ0 as NÑ8

�
Ñ 0. (A.112)

This proves the mean-square-uniformly on compacts convergence and gives a bound for analysing the rate
of convergence. �

A.18 Proof of Proposition 6.2.2

Let us consider the case with the addition of the Random Function RN . By definition of RN , one has that

RN pxq � 1

p2πq d2

»
DN

eix
T dNdMZpξq. (A.113)

Following the same procedure and arguments as in (A.108) and (A.109), one gets that for all x P Rd

E
�
|Zpxq � pZN pxq �RN pxqq|2

	
� 1

p2πqdE
�
�
�����
Ņ

j�1

»
V Nj

eix
T ξ � eix

T ξNj dMZpξq �
»
DN

eix
T ξ � eix

T dNdMZpξq
�����
2
�


� 1

p2πq d2

�
Ņ

j�1

»
V Nj

���eixT ξ � eix
T ξNj

���2 dµZpξq �
»
DN

|eixT ξ � eix
T dN |2dµZpξq

�

¤ 1

p2πq d2
�
4`2NµZpRdq|x|2 � 2µZpDN q

�
.

(A.114)



A.18. PROOF OF PROPOSITION 6.2.2 233

Hence,

sup
xPK

E
�
|Zpxq � pZN pxq �RN pxqq|2

	
¤ 2

p2πq d2
�
2`2NµZpRdq sup

xPK
|x|2 � µZpDN q

�
Ñ 0, (A.115)

which proves that ZN �RN converges mean-square-uniformly on compacts to Z, and also proves the bound
(6.13).

The convergence of σZ
σZN

ZN to Z using the triangular inequality:

E

����� σZσZN ZN pxq � Zpxq
����2
�
� 1

σ2
ZN

E
�
|pσZ � σZN qZN pxq � pZN pxq � ZpxqqσZN |2

	
¤ 2

σ2
ZN

�
E
�
|pσZ � σZN qZN pxq|2

	
� E

�
|σZN pZN pxq � Zpxqq|2

	�
� 2

σ2
ZN

�
|σZ � σZN |2σZ2

N
� σZ2

N
E
�
|ZN pxq � Zpxq|2

		
� 2|σZ � σZN |2 � 2E

�
|ZN pxq � Zpxq|2

	
.

(A.116)
Since σZN Ñ σZ and from Theorem 6.2.1 the convergence in the sense of mean-square-uniformly on
compact sets follows. The bound (6.14) also follows immediately.

The equality of the variances between σZ
σZ
ZN is straightforward. The equality between the variances of

ZN �RN and Z follows from

VarpZpxqq � VarpZp0qq � Var

�
1

p2πq d2
MZpRdq

�
� Var

�
1

p2πq d2
pMZN pRdq �MRN pRdqq

�
� VarpZN p0q �RN p0qq � VarpZN pxq �RN pxqq.

(A.117)
Here we have used that RN and ZN are non-correlated stationary random Functions and that

MZN pRdq �MRN pRdq �MZpRdq, (A.118)

which is easy to conclude from the definition of RN . �
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A.19 Proof of Proposition 6.2.3

We follow the same arguments as in the proof of Proposition 6.2.1. We consider ϕ P S pRdq and we set
φ � F�1pϕq. We call

MXN :� F pXN q �
Ņ

j�1

MXpV N
j qδξNj . (A.119)

Using that

xMXN ,
1

g
φy �

Ņ

j�1

MXpV N
j q

φpξNj q
gpξNj q

� xMX ,
Ņ

j�1

φpξNj q
gpξNj q

1V Nj
y, (A.120)

we conclude that

E
�
|xU,ϕy � xUN , ϕy|2

	
� E

����xL 1
g
X,ϕy � xL 1

g
XN , ϕy

���2

� E

�����xMX ,
1

g
φy � xMXN ,

1

g
φy
����2
�

� E

�������xMX ,
1

g
φ�

Ņ

j�1

φpξNj q
gpξNj q

1V Nj
y
�����
2
�

� p2πq d2
»
Rd

�����φpξqgpξq �
Ņ

j�1

φpξNj q
gpξNj q

1V Nj
pξq
�����
2

dµXpξq

� p2πq d2
��»

Rd

�����φpξqgpξq �
Ņ

j�1

φpξNj q
gpξNj q

1V Nj
pξq
�����
2

dµXpξq �
»
DN

����φpξqgpξq
����2 dµXpξq

�� .
(A.121)

The convergence to 0 of the first integral is concluded using Dominated Convergence Theorem following the
same arguments as in the proof of Proposition 6.2.1. Namely, using the continuity of φg one proves that

�����φpξqgpξq �
Ņ

j�1

φpξNj q
gpξNj q

1V Nj
pξq
�����
2

Ñ 0 (A.122)

as N grows for any ξ P Rd. Using that g satisfies the PBR condition, there exists c ¡ 0 and m P N such that
|gpξq| ¥ c

p1�|ξ|2qm for all ξ P Rd, and hence |φpξqgpξq | ¤ 1
c |p1 � |ξ|2qmφpξq| for all ξ P Rd. We apply then the

same procedures as in equations (A.102), (A.103), and (A.104) to prove that the convergence is dominated,
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using M such that p1� |ξ|2q�2MµZ is finite, replacing φN by
°N
j�1

φpξNj q
gpξNj q

1V Nj
pξq and fN pξq by

�����p1� |ξ|2qM
�
φpξq
gpξq �

Ņ

j�1

φpξNj q
gpξNj q

1V Nj
pξq
������

2

,

and taking advantage from the inequalities |φpξ
N
j q

gpξNj q
| ¤ 1

c |p1� |ξNj |2qmφpξNj q| in (A.104).

Finally, the integral »
DN

����φpξqgpξq
����2 dµXpξq (A.123)

vanishes as N Ñ 0 since |φg |2 is integrable with respect to µX and DN decreases toH. �

A.20 Proof of Theorem 6.2.2

We follow a similar approach as in Theorem 6.2.2. Since |g|�2 is integrable with respect to µX we have that
1
g is integrable with respect to the Random Measure MX (Section 3.3.6). We recall that we have supposed
that g satisfies the PBR condition, hence |g| ¡ 0. We consider that the unique stationary solution U to (6.18)
can be written as

Upxq � 1

p2πq d2

»
Rd

eix
T ξ

gpξq dMXpξq. (A.124)

And the approximation UN can be written as

UN pxq � 1

p2πq d2

»
Rd

eix
T ξ

gpξq dMXN pξq �
1

p2πq d2

»
Rd

Ņ

j�1

eix
T ξNj

gpξNj q
1V Nj

pξqdMXpξq. (A.125)
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Using the orthogonality of MX we obtain that

E
�
|Upxq � UN pxq|2

	
� 1

p2πqdE
�
�
�����
»
Rd

eix
T ξ

gpξq �
Ņ

j�1

eix
T ξNj

gpξNj q
1V Nj pξqdMXpξq

�����
2
�


� 1

p2πqdE
�
�
�����
»
Rd

Ņ

j�1

�
eix

T ξ

gpξq � eix
T ξNj

gpξNj q

�
1V Nj pξqdMXpξq �

»
DN

eix
T ξ

gpξq dMXpξq
�����
2
�


� 1

p2πq d2

�
�»

Rd

Ņ

j�1

�����e
ixT ξ

gpξq � eix
T ξNj

gpξNj q

�����
2

1V Nj pξqdµXpξq �
»
DN

�����e
ixT ξ

gpξq

�����
2

dµXpξq
�
�

� 1

p2πq d2

�
�»

Rd

Ņ

j�1

�����e
ixT ξ

gpξq � eix
T ξNj

gpξq � eix
T ξNj

gpξq � eix
T ξNj

gpξNj q

�����
2

1V Nj pξqdµXpξq �
»
DN

dµXpξq
|gpξq|2

�
�

¤ 1

p2πq d2

#
2

»
Rd

Ņ

j�1

���eixT ξ � eix
T ξNj

���2 1V Nj pξqdµXpξq|gpξq|2

� 2

»
Rd

Ņ

j�1

����� 1

gpξq �
1

gpξNj q

�����
2

1V Nj pξqdµXpξq �
»
DN

dµXpξq
|gpξq|2

+

¤ 1

p2πq d2

#
8|x|2`2N

»
Rd

dµXpξq
|gpξq|2looooooooooomooooooooooon

Ñ0

�2

»
Rd

Ņ

j�1

�����1 � gpξq
gpξNj q

�����
2

1V Nj pξq
dµXpξq
|gpξq|2 �

»
DN

dµXpξq
|gpξq|2loooooomoooooon
Ñ0

+
.

(A.126)

Here we have used an inequality of the form |x�y|2 ¤ 2p|x|2�|y|2q and the bound (A.110). The vanishing
integrals are justified by the integrability of |g|�2 with respect to µX and the fact that DN decreases to
H. For every K � Rd compact, we can take the supremum over all x P K in procedure (A.126) and the
vanishing integrals still going to zero. We need then to verify the convergence to 0 of the integral

»
Rd

Ņ

j�1

�����1� gpξq
gpξNj q

�����
2

1V Nj
pξqdµXpξq|gpξq|2 . (A.127)

From the continuity of g and using the same arguments which concluded (A.101) in the proof of Proposition
6.2.1, on proves the point-wise convergence

Ņ

j�1

�����1� gpξq
gpξNj q

�����
2

1V Nj
pξq Ñ 0, as N Ñ8,@ξ P Rd. (A.128)

Let us prove that the convergence is dominated. For this, we use condition (6.27) to conclude that�����1� gpξq
gpξNj q

�����
2

¤ 1�
����� gpξqgpξNj q

�����
2

¤ 1� C2
2

C2
1

�
1� |ξ|2

1� |ξNj |2

�α
, @ξ P Rd,@j P t1, ..., Nu. (A.129)



A.21. PROOF OF PROPOSITION 6.2.4 237

From the mean value theorem one can conclude the inequality:���� logp1� u2q � logp1� v2q
u� v

���� ¤ sup
w¥0

���� 2w

1� w2

���� ¤ 1, @u, v ¥ 0, (A.130)

from where we can conclude that�����log

�
1� |ξ|2

1� |ξNj |2

������ ¤ ��|ξ| � |ξNj |�� ¤ |ξ � ξNj |. (A.131)

Using the monotony of the logarithm, one obtains ( ^ denotes minimum and _ maximum)

log

�
1� p|ξ| _ |ξNj |q2
1� p|ξ| ^ |ξNj |q2

�
�
�����log

�
1� |ξ|2

1� |ξNj |2

������ ¤ |ξ � ξNj |, (A.132)

and hence
1� p|ξ| _ |ξNj |q2
1� p|ξ| ^ |ξNj |q2

¤ e|ξ�ξ
N
j |. (A.133)

We obtain thus that for ξ P V N
j :

�����1� gpξq
gpξNj q

�����
2

¤ 1�C
2
2

C2
1

�
1� |ξ|2

1� |ξNj |2

�α
¤ 1�C

2
2

C2
1

�
1� p|ξ| _ |ξNj |q2
1� p|ξ| ^ |ξNj |q2

�α
¤ 1�C

2
2

C2
1

eα|ξ�ξ
N
j | ¤ 1�C

2
2

C2
1

eα`N .

(A.134)
Since `N Ñ 0 and N Ñ 8, we obtain thus that the convergence (A.128) is dominated by the constant
1 � C2

2

C2
1
eα supNPN� `N . Since |g|�2 is integrable with respect to µX , from Dominated Convergence Theorem

we conclude that the integral (A.127) vanishes as N Ñ 8. This proves the mean-square-uniformly on
compacts convergence. �

A.21 Proof of Proposition 6.2.4

Let Y � FSpXSq b XT (symbolically). Since X is stationary and its temporal trace XT is a Random
Measure, we have that Y is a Random Measure over Rd � R. Let CXT P MSGpR � Rq be the covariance
measure of XT , and let µXS be the spectral measure of the spatial trace XS . The covariance measure of Y
is then determined by

xCY , ψy � p2πq
d
2

»
R�R

»
Rd
ψppξ, tq, pξ, sqqdµXS pξqdCXT pt, sq, @ψ P S ppRd � Rq � pRd � Rqq,

(A.135)
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form which we remark that Y has the structure of an orthogonal Random Measure in space, but not neces-
sarily on time.

We set as usual V0 � FSpU0q and V0,N its approximation given by (6.35). We consider the solution
to the transformed problem (6.36), expressed through its càdlàg-in-time representation pVN,tqtPR� given by
equation (6.43). Let V be the solution to (6.31), and let pVtqtPR� be its càdlàg-in-time representation. It is
clear that (6.45) holds if and only if it also holds for the spatial Fourier Transforms VN and V of UN and U
respectively, hence it suffices to analyse the mean-square-S 1pRdq-weak-� in space and point-wise in time
convergence of pVN qNPN� to V . Let ϕ P S pRdq. Using the independence of V0 and Y we have

E
�
|xVt � VN,t, ϕy|2

	
� E

���xV0 � V0,N , e
�tgϕy��2	� E

�������
»
Rd�r0,ts

e�pt�sqgpξqϕpξqdpY � YN qpξ, sq
�����
2
�.

(A.136)
For the first expectation we consider that

xV0,N , e
�tgϕy � xV0,

Ņ

j�1

e�tgpξ
N
j qϕpξNj q1V Nj y, (A.137)

and hence

E
���xV0 � V0,N , e

�tgϕy��2	 � E

�������xV0, e
�tgϕ�

Ņ

j�1

e�tgpξ
N
j qϕpξNj q1V Nj y

�����
2
�

� p2πq d2
»
Rd

�����e�tgpξqϕpξq � Ņ

j�1

e�tgpξ
N
j qϕpξNj q1V Nj

�����
2

dµU0pξq

� p2πq d2
»
Rd

Ņ

j�1

���e�tgpξqϕpξq � e�tgpξNj qϕpξNj q���2 1V Nj pξqdµU0pξq

� p2πq d2
»
DN

|e�tgpξqϕpξq|2dµU0pξq.

(A.138)

Using the same arguments using Dominated Convergence Theorem as in the proof the Proposition 6.2.1. and
considering that gR ¥ 0 and hence |e�tg| ¤ 1, we obtain that (A.138) vanishes as N Ñ8.

Let us now bound the second expectation in the right side of (A.136). Using that

»
Rd�r0,ts

e�pt�sqgpξqϕpξqdYN pξ, sq �
»
Rd�r0,ts

Ņ

j�1

e�pt�sqgpξ
N
j qϕpξNj q1V Nj pξqdY pξ, sq, (A.139)
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we obtain that

E

�
�
�����
»
Rd�r0,ts

e�pt�sqgpξqϕpξqdpY � YN qpξ, sq
�����
2
�


� E

�
�
�����
»
Rd�r0,ts

e�pt�sqgpξqϕpξq �
Ņ

j�1

e�pt�sqgpξ
N
j qϕpξNj q1V Nj pξqdY pξ, sq

�����
2
�


� E

�
�
�����
»
Rd�r0,ts

Ņ

j�1

�
e�pt�sqgpξqϕpξq � e�pt�sqgpξ

N
j qϕpξNj q

	
1V Nj pξqdY pξ, sq �

»
DN�r0,ts

e�pt�sqgpξqdY pξ, sq
�����
2
�


� p2πq d2
»
Rd

»
r0,ts�r0,ss

#

Ņ

j�1

�
e�pt�uqgpξqϕpξq � e�pt�uqgpξ

N
j qϕpξNj q

	�
e�ps�vqgpξqϕpξq � e�pt�uqgpξ

N
j qϕpξNj q

	
1V Nj pξq

+
dCXT pu, vqdµXS pξq

� p2πq d2
»
DN

»
r0,ts�r0,ss

e�pt�uqgpξq�ps�vqgpξq|ϕpξq|2dCXT pu, vqdµXS pξq.
(A.140)

Following the approach of Proposition 6.2.1, one proves that for all ξ P Rd,

Ņ

j�1

�
e�pt�uqgpξqϕpξq � e�pt�uqgpξNj qϕpξNj q

	�
e�ps�vqgpξqϕpξq � e�pt�uqgpξNj qϕpξNj q

	
1V Nj

pξq Ñ 0,

(A.141)
as N Ñ 8, and using again that |e�tgpξq| ¤ 1 for every t P R�, one proves that the convergence is
dominated. Finally, since |ϕ|2 is integrable with respect to µXS P M�

SGpRdq and DN decreases toH, then
�����
»
DN

»
r0,ts�r0,ss

e�pt�uqgpξq�ps�vqgpξq|ϕpξq|2dCXT pu, vqdµXS pξq
����� ¤ |CXT |pr0, ts � r0, ssqlooooooooooomooooooooooon

 8

»
DN

|ϕpξq|2dµXS pξqlooooooooooomooooooooooon
Ñ0 as NÑ8

.

(A.142)

This proves that convergence of (A.136) to 0. �
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Appendix B

Formal Construction of Generalized
Random Fields

In this Appendix we present a way of constructing (or rather, we show the existence of) Generalized Random
Fields as stated in Definition 3.4.1, following a wide-range of possible laws, not-necessarily Gaussian, and
following desired mean and covariance structures. It is based on the classical Kolmogorov’s Theorem of
existence of Stochastic Processes with finite-dimensional evaluations following a family of compatible laws.
This Theorem will be sufficient for our developments. This construction is completely analogue to the one
described in Ma (2009) in the case of continuous Random Functions, where the construction is simply done
by multiplying a Gaussian Random Function with a suitable independent positive random variable. Here we
present the general case for Generalized Random Fields describing explicitly the multi-dimensional laws of
the constructed stochastic process.

In Section 3.4 we have defined a real GeRF Z as a real and continuous linear mapping from S pRdq
to L2pΩ,A,Pq. Then, we have concluded that a mean distribution mZ P S 1pRdq and a covariance distri-
bution CZ P S 1pRd � Rdq exist. This definition of a GeRF is quite useful for the understanding of this
mathematical object and for practical applications based on the analysis of the mean and covariance struc-
tures. Nevertheless, the formal mathematical proof of the existence of such a mathematical object is usually
done backwards, that is, we choose an arbitrary distribution mZ P S 1pRdq which will be our mean distri-
bution, and we also choose a distribution of two variables CZ P S 1pRd � Rdq defining a positive-definite
Kernel which will be our covariance distribution. Starting from these deterministic objects we construct a
stochastic process indexed by S pRdq following a particular law with its mean and covariance structures
being characterised by mZ and CZ respectively.

We will make explicit this construction, for which we will use a Fourier-Transformed version of Kol-
mogorov’s Theorem.
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B.1 Reminders on Kolmogorov’s Theorem

Kolmogorov’s Theorem is the basic tool used to construct stochastic processes indexed by arbitrary sets.
Although this approach could produce some technical problems regarding the regularity of the sample-paths
of the processes as mentioned in Section 3.7, this framework will be sufficient for us.

Theorem B.1.1 (Kolmogorov, real values case). Let T be a non-empty set. For every finite vector of
elements in T , pt1, ..., tN q P TN , with N P N�, we consider a probability measure µpt1,...,tN q over RN . Sup-
pose that the so-defined family of probability measures pµpt1,...,tN qqpt1,...,tN qPTN ,NPN� satisfies the following
compatibility conditions:

 Permutability: µpt1,...,tN qpA1 � ...� AN q � µptσp1q,...,tσpNqqpAσp1q � ...� AσpNqq, for any collection
of Borel sets A1, ..., AN P BpRq and for any permutation σ : t1, ..., Nu Ñ t1, ..., Nu, for all N P N�.

 Projectivity: µpt1,...,tN ,tN�1qpA1 � ... � AN � Rq � µpt1,...,tN qpA1 � ... � AN q for any collection of
Borel sets A1, ..., AN P BpRq, for all N P N�.

Then, there exists a probability space where a family of real random variables pXtqtPT such that the law of
an arbitrary finite vector of this family pXt1 , ..., XtN q is µpt1,...,tN q can be well-defined.

To be more precise about what the statement “there exists a probability space where...” means, Kol-
mogorov’s Theorem actually states that there exists a unique probability measure over the space RT of all
mappings from T to R equipped with the cylinders σ�algebra such that the random vectors constructed
through the evaluation of these functions over a finite quantity of points of T have the corresponding prob-
ability law in the family pµpt1,...,tN qqpt1,...,tN qPTN ,NPN� . We are not going to enter into these details, and
we will just use Kolmogorov’s Theorem to assure that a real stochastic process indexed by an arbitrary set
exists provided that we have a compatible family of probability measures describing the laws of the finite
vector valued sub-families. See Kolmogorov (1956, Section 4, Chapter III) for a statement of this theorem
and a proof. See also the development in Dellacherie & Meyer (1978, Chapter III, No 50 to 52), applicable
when R is replaced by a complete metrizable space. Another source exposing this Theorem with additional
conditions concerning compact classes associated to each point t P T is the classical Neveu (1970, Chapter
III, §3).

Let ~X be a random vector taking values in RN with N P N� and let µ ~X be its probability law over RN .
As we know, this probability measure can be completely described by its characteristic function

ϕ ~Xpξq � Epe�iξT ~Xq �
»
RN

e�iξ
T xdµ ~Xpxq, ξ P RN . (B.1)

Hence, defining a compatible family of probability measures is equivalent to defining a compatible family
of characteristic functions. We recall that from Bochner’s Theorem 3.4.1 it can be concluded that necessary
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and sufficient conditions for a function ϕ : RN Ñ C to be a characteristic function is to be continuous,
to satisfy ϕp0q � 1, and to be a positive-definite function (see Eq. (3.2)). Thus, we are going to re-write
Kolmogorov’s Theorem in terms of these characteristic functions.

Theorem B.1.2 (Kolmogorov, real values case, characteristic functions version). Let T be a non-empty
set. For every vector of elements in T , pt1, ..., tN q P TN , with N P N�, we consider a characteristic
function ϕpt1,...,tN q : RN Ñ C. Suppose that the so-defined family pϕpt1,...,tN qqpt1,...,tN qPTN ,NPN� satisfies
the following compatibility conditions:

 Permutability: ϕpt1,...,tN qpξ1, ..., ξN q � ϕptσp1q,...,tσpNqqpξσp1q, ..., ξσpNqq, for all vector ~ξ � pξ1, ..., ξN q
P RN and for all permutation σ : t1, ..., Nu Ñ t1, ..., Nu, for all N P N�.

 Projectivity: ϕpt1,...,tN ,tN�1qpξ1, ..., ξN , 0q � ϕpt1,...,tN qpξ1, ..., ξN q, for all vector ~ξ � pξ1, ..., ξN q P
RN , for all N P N�.

Then, there exists a probability space where a family of real random variables pXtqtPT such that the law
of an arbitrary finite vector of this family pXt1 , ..., XtN q is the law associated to the characteristic function
ϕpt1,...,tN q can be well-defined.

We will see that it is much easier to work in the context of this transformed theorem. In particular for
some laws of square-integrable random variables, it will be quite easy to see where must the covariance and
mean structure act.

B.2 Schoenberg’s Theorem and some characteristic functions

Defining a compatible family of characteristic functions satisfying our desired properties is easier than ex-
pected. For this, we need then to define characteristic functions over RN with N taking different values.
Our approach is to use a very useful theorem due to Schoenberg which describes isotropic positive-definite
continuous functions in any dimension.

Theorem B.2.1 (Schoenberg). Let g : r0,8q Ñ R be a continuous function. Then, g has the property that
for every N P N� the function ϕ : RN Ñ R defined through

ϕpxq � gp}x}q (B.2)

is a positive-definite function if and only if g is of the form:

gptq �
»
r0,8q

e�rt
2
dνprq, (B.3)
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with ν being a positive finite measure over pr0,8q,Bpr0,8qqq.

See (Donoghue, 1969, Chapter 41) for a proof. Thus, this theorem describes continuous positive-definite
functions which are radial and valid for any arbitrary dimension. We see that if we ask the measure ν to
satisfy νpr0,8qq � 1, that is, to be a probability measure, the associated function ϕ satisfies ϕp0q � 1,
hence it is a characteristic function of the form

ϕpξq �
»
r0,8q

e�r|ξ|
2
dνprq, ξ P RN . (B.4)

This is a valid characteristic function over RN for any dimension N . We see that this function is always
positive and it decreases as we advance in some particular direction in RN . This implies that the probability
law over RN associated to this characteristic function is invariant under rotations (thus symmetric with
respect to 0) and its support is the whole space RN (it is necessarily not bounded in every direction).

Since we work in a L2 context, we also need ϕ to be twice continuously differentiable. By Dominated
Convergence Theorem, this requires that the measure ν must satisfy»

r0,8q
r2dνprq   8. (B.5)

We will suppose this holds. Hence, the law of the random vector associated to the characteristic function
(B.4) has square-integrable components. In particular, every real random vector of dimension N having
(B.4) as characteristic function have 0 mean and uncorrelated components (not necessarily independent).
We are going to see that in order to construct vectors with some particular covariance structure (matrix), all
we need to do is to conveniently insert an anisotropy matrix.

B.3 Construction

Let us fix once and for all a real mean distribution mZ P S 1pRdq and a real covariance distribution CZ P
S 1pRd�Rdq defining a positive-definite Kernel. We are going to construct a real stochastic process indexed
by real functions of the Schwartz space. This subspace of the Schwartz space will be denoted by SRpRdq.
Thus, we need to construct finite-dimensional laws or characteristic functions indexed by finite vectors of
real test-functions. Let us fix a probability measure ν over pr0,8q,Bpr0,8qq which satisfies (B.5).

For allN P N�, we consider a finite vector of real test-functions pφ1, ..., φN q, and we define the following
characteristic function over RN :

ϕpφ1,...,φN qpξ1, ..., ξN q � e�i
°N
j�1 ξjxmZ ,φjy

»
r0,8q

e
� r

2
³
r0,8q tdνptq

°N
j,k�1 ξjξkxCZ ,φjbφky

dνprq. (B.6)
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We verify that this function is well-defined as a characteristic function. For that, consider a function
ϕ defined as in (B.4). Consider any symmetric positive-definite matrix A P RN�N , and let

?
A be its

symmetric positive-definite square root. Then, the function ϕ � ?A : RN Ñ R, is continuous and it is
straightforward that it is positive-definite. In addition, its evaluation at 0 equals to 1. Hence, it is a well
defined characteristic function, where

?
A works as an anisotropy matrix for the isotropic function ϕ. If in

addition we consider any vector v P RN , then it is straightforward that the function e�ivT p�qϕp?Ap�qq is also
a characteristic function. Here the vector v acts as a translation vector for the original associated law.

In Eq. (B.6) we have then considered a mean vector mpφ1,...,φN q P RN using mZ through

mpφ1,...,φN q :� pxmZ , φ1y, ..., xmZ , φNyq, (B.7)

and we have also considered a covariance matrix Cpφ1,...,φN q � pCpφ1,...,φN q
j,k qNj,k�1 P RN�N , obtained using

CZ thorough
C
pφ1,...,φN q
j,k :� xCZ , φj b φky, @j, k P t1, ..., Nu. (B.8)

Since CZ P S 1pRd � Rdq defines a positive-definite Kernel, the matrix (B.8) is positive-definite and sym-
metric. We express thus the function (B.6) more explicitly through this vector and this matrix:

ϕpφ1,...,φN qp~ξq � e�i~ξ
Tmpφ1,...,φN q

»
r0,8q

e
� r

2
³
r0,8q tdνptq

~ξTCpφ1,...,φN q~ξ
dνprq (B.9)

The matrix 1
2
³
r0,8q tdνptq

Cpφ1,...,φN q is positive-definite and we can take its square root as an anisotropy ma-

trix. The vector mpφ1,...,φN q is acting as a translation vector. It turns out that the function (B.9) is a valid
characteristic function for every vector pφ1, ..., φN q P SRpRdqN .

It is quite easy to verify that this so-defined family of characteristic functions form a compatible family
according to Kolmogorov’s Theorem B.1.2. Indeed, both the expressions ~ξTmpφ1,...,φN q and ~ξTCpφ1,...,φN q~ξ
are stable under permutations of the respective components of the vectors and matrices involved, and if
we evaluate any of the components of ~ξ in 0 we will obtain analogous expressions in dimension N � 1,
hence the projectivity condition is also satisfied. We conclude that there exists a real stochastic process
pxZ, φyqφPSRpRdq whose finite-dimensional laws are described by the characteristic functions (B.9). Now,
for any arbitrary complex test-function φ P S pRdq, we simply define the associated random variable

xZ, φy :� xZ, φRy � ixZ, φIy, (B.10)

where φR and φI are the real and the imaginary parts of φ respectively. The resulting stochastic process
pxZ, φyqφPS pRdq is then well-defined and it has the property of producing real random variables when eval-
uated at real test-functions.
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Differentiating (B.9) and evaluating at 0, we can conclude that for any vector of test-functions pφ1, ..., φN q
it holds that

i
Bϕpφ1,...,φN q

Bξj p0q � EpxZ, φjyq � mpφ1,...,φN q
j � xmZ , φjy. (B.11)

And differentiating twice and evaluating at 0 , considering real test-functions pφ1, ..., φN q, we obtain

�B
2ϕpφ1,...,φN q
BξkBξj p0q � EpxZ, φjyxZ, φkyq � mpφ1,...,φN q

j mpφ1,...,φN q
k � Cpφ1,...,φN q

j,k

� xmZ , φjyxmZ , φky � xCZ , φj b φky.
(B.12)

And thus we obtain for two arbitrary real test-functions φ and ψ:

EpxZ, φyq � xmZ , φy (B.13)

CovpxZ, φy, xZ,ψyq � xCZ , φb ψy (B.14)

By linearity we see that formula (B.13) also holds for complex test-functions. The sesquilinearity of the
covariance allows to conclude that for two complex test-functions φ and ψ it holds that

CovpxZ, φy, xZ,ψyq � xCZ , φb ψy, (B.15)

which is what we expected to have. Hence, the distributions mZ and CZ do describe the moments of the
stochastic process Z.

We still need to verify the linearity and continuity conditions, but this is straightforward in this squared-
integrable context. Indeed, for the linearity consider φ, ψ P S pRdq and α, β P C. A few calculations based
on the linearity of mZ and the bi-linearity of pφ, ψq ÞÑ xCZ , φb ψy of CZ allow to show that

E
�
|xZ,αφ� βψy � pαxZ, φy � βxZ,ψyq|2

	
� 0. (B.16)

Hence, xZ,αφ � βψy a.s.� αxZ, φy � βxZ,ψy. To prove the continuity, let us consider a sequence of test-

functions pφnqnPN � S pRdq such that φn
SÑ 0. Considering that this implies that φn b φn

S pRd�RdqÝÑ 0 1,
we obtain from the continuity of mZ and CZ that

Ep|xZ, φny|2q � VarpxZ, φnyq � EpxZ, φnyqEpxZ, φnyq � xCZ , φn b φny � xmZ , φnyxmZ , φny Ñ 0.

(B.17)
This proves that the so constructed stochastic processes Z defines a continuous mapping in the mean-square

1This is concluded immediately from the fact that for every φ P S pRdq, suppx,yqPRd�Rd |φpxqφpyq| � }φ}28, and applying this
to every function of the form xαDβφ.
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sense. Hence, we have proved the existence of a GeRF following the required mean and covariance structures
and with finite-dimensional laws described by the family of characteristic functions determined by (B.9).

Remark B.3.1. Using ν of the form ν � δt for some t P p0,8q in (B.9), we obtain a Gaussian process.

Remark B.3.2. An analogue construction can be done outside the framework of square-integrable random
variables, but still using a “mean” and “covariance” structures as basis. Such a construction is done by con-
sidering mZ P S 1pRdq and CZ P S 1pRd�Rdq taken as always and considering the family of characteristic
functions:

ϕpφ1,...,φN qp~ξq � e�i~ξ
Tmpφ1,...,φN q

»
r0,8q

e�r~ξ
TCpφ1,...,φN q~ξdνprq. (B.18)

From the arguments exposed above, this defines a compatible family of characteristic functions. The gener-
alization is done by considering a probability measure ν which does not satisfy (B.5). It is not even necessary
to require

³
r0,8q tdνptq   8. The only difference is that the continuity of the associated stochastic process

pxZ, φyqφPS pRdq must be interpreted in probability and not in the sense of L2pΩ,A,Pq. The arguments that
we have used in this Appendix do not work to prove the linearity and continuity in such a case, since we have
used the mean-square structure. However, both linearity and continuity can be proven by analysing directly
the characteristic functions associated. Indeed, by doing some algebraic calculations using the linearity of
mZ and the bi-linearity of the Kernel associated to CZ , one can prove that the characteristic function of a
random variable of the form xZ,αφ � βψy � pαxZ, φy � βxZ,ψyq, with α, β P C and φ, ψ P S pRdq, is
the constant function 1. Hence the random variable equals 0 almost-surely (its probability law is the Dirac
measure). Analogously, if φn

SÑ 0 one proves that the characteristic functions of the associated random vari-
ables xZ, φny converges point-wise to the function 1. From Lévy’s Theorem one concludes that the sequence
pxZ, φnyqnPN converges in law to 0, and since every sequence of random variables which converges in law
to a constant also does it in probability, it follows that Z is continuous in probability. We omit the details
of this procedure. We conclude that we can construct a GeRF Z continuous in probability with the same
principles as done in the square-integrable case, using mZ and CZ as basic tools. Here the “mean” and “co-
variance” distributions do not determine, exactly, the first two moments of Z, since they do not necessarily
exist. However, they do describe the dependence structure between the random variables of the process, and
they do it in a quite analogous way as the mean and covariance do: through a translation and an anisotropy.

Remark B.3.3. Using another space of test-functions such as DpRdq or E pRdq, with the mean and co-
variance belonging to the corresponding dual space (the covariance defining, of course, a positive-definite
Kernel), the same procedure can be used to prove the existence of Random Distributions in the generic sense
and of Random Distributions with compact support. The same idea also holds if we take as spaces of test-
functions CcpRdq, CFDpRdq, C0pRdq and CpRdq in order to construct Random Measures, slow-growing
Random Measures, finite Random Measures and Random Measures of compact support respectively, by
making the mean and the covariance being in suitable spaces of measures. Random Measures interpreted
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as set-functions also enters in this framework, applying the same procedures by replacing the test-functions
with indicator functions of bounded Borel sets. Finally, and getting back a little into a more basic frame-
work, this procedure also shows the existence of Random Functions with any mean function and covariance
functions. For that, replace simply the test-functions with Dirac measures at the corresponding points in the
space, interpreting of course xmZ , δxy and xCZ , δx b δyy as mZpxq and CZpx, yq respectively.



Appendix C

Formal resolution of first order evolution
equations.

In this Appendix we deal with the resolution of a spatio-temporal SPDE of the form

BU
Bt � LgU � X, (C.1)

where X and U are GeRFs over Rd � R� having a suitable behaviour, and Lg is a spatial operator defined
through a continuous symbol function g : Rd ÞÑ C (see Chapter 4) for which we will suppose that its real
part satisfies gR ¥ 0. We will follow a traditional approach and obtain an existence and uniqueness result
by fixing an initial condition that the solution must follow. This actually poses more theoretical problems
than those which are simplified. When requiring, for example, that the evaluation at 0 of the solution must
be equal to some particular spatial GeRF, we have already implicitly required that the solution must have
a functional meaning in time, at least at t � 0 or at a neighbourhood of t � 0. This restricts the space of
possible solutions to the problem and hence it also restricts, in principle, the type of operators we can apply
over members of this space. However, we will fix a special space where the functional meaning in time of
the solution can be guaranteed, without losing much generality. The approach is done by considering spaces
of spatio-temporal distributions such that their temporal derivatives are measures in time. This selection has
been done by following the fact that the distributional primitive of every measure over R can be identified
with a càdlàg function.

We will first show how to solve the associated deterministic problem. The resolution of the stochastic
version of the problem will follow analogously.

We will use the same notational conventions used in the spatio-temporal context presented in Chapter 5.
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C.1 Solving the deterministic problem

C.1.1 Convenient spaces of test-functions and their dual spaces

In Chapter 4 we have introduced a convenient space of tempered distributions over Rd, V 1pRdq, which is
the space of all tempered distributions such that their Fourier Transforms belong to MSGpRdq. We have not
justified the notation V 1pRdq as the dual of a particular space, but using the Riesz Representation Theorem
for slow-growing measures 2.1.6 this can be done easily. Let us consider the next space of test-functions:

V pRdq � tϕ P C8
0 pRdq

�� Dφ P CFDpRdq such that ϕ � F pφqu � F pCFDpRdqq. (C.2)

We have defined V pRdq in such a way that V pRdq � C8
0 pRdq, but this requirement actually follows from

Riemann-Lebesgue Lemma (Theorem 2.2.1). Indeed, a function φ P CFDpRdq can be multiplied by any
polynomial, the result being always integrable. Hence, the Fourier Transform of φ is smooth and all of
its derivatives vanish at infinity. V pRdq is a strict subspace of C8

0 pRdq1. The space V pRdq can be defined
equivalently as the space of functions inC8

0 pRdq such that their Inverse Fourier Transforms are inCFDpRdq.
In such a case, the Inverse Fourier Transform must be interpreted in distributional sense, considering the
members of C8

0 pRdq as tempered distributions. Of course, if we use the Inverse Fourier Transform instead
of the Fourier Transform in the definition (C.2) of V pRdq, the space remains the same.

We endow V pRdq with the topology induced by the directed family of semi-norms

pN pϕq � sup
ξPRd

��p1� |ξ|2qNF pϕqpξq�� , N P N. (C.3)

This topology is equivalent to the one induced by the metric

pϕ, φq ÞÑ
¸
NPN

1

2N�1

sup
ξPRd

��p1� |ξ|2qNF pϕ� φqpξq��
1� sup

ξPRd

��p1� |ξ|2qNF pϕ� φqpξq�� , @ϕ, φ P V pRdq. (C.4)

Hence, a sequence of functions pϕnqnPN � V pRdq converges to 0 as nÑ8 on V pRdq, denoted by ϕn
VÑ 0,

if and only if F pϕnq CFDÑ 0 (See Section 2.1.4 for a recall on the topology of CFDpRdq).
Since CFDpRdq � L 1pRdq, the Fourier Transform of a fast-decreasing continuous function is defined

classically as an integral. The same holds for the Inverse Fourier Transform. For the members in V pRdq these
operations are algebraically defined in distributional sense, having a one-to-one correspondence between
members in V pRdq and CFDpRdq, and satisfying F�1pF pϕqq � ϕ for every ϕ P V pRdq and also for every

1For d � 1, the function ξ ÞÑ 2?
2π

sinpξq
ξ

is in C8
0 pRq, but it is the Fourier Transform of 1r�1,1s, which is not in CFDpRq.
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ϕ P CFDpRdq. From Theorem D.0.1, it follows immediately that the Fourier Transform and its inverse
are continuous linear operators from V pRdq to CFDpRdq (or from CFDpRdq to V pRdq, as pleasure). The
completeness of CFDpRdq and the continuity of the Fourier Transform imply the completeness of V pRdq.
V pRdq is a Fréchet space.

Proposition C.1.1. The Schwartz space satisfies S pRdq � V pRdq and S pRdq � CFDpRdq and it is a
dense subspace of both spaces with their respective topologies.

Proof: The inclusions are straightforward. We will just prove the density of S pRdq in CFDpRdq. The
density in V pRdq follows immediately from the continuity of the Fourier Transform.

We first prove that if f P CFDpRdq and ϕ P S pRdq, then f � ϕ P S pRdq. It is clear that f is
integrable and bounded, as well as ϕ which is in addition smooth. Thus f � ϕ is a smooth integrable
and bounded function, and its Fourier Transform satisfies F pf � ϕq � p2πq d2 F pfqF pϕq. We have that
F pϕq P S pRdq since F is a bijective endomorphism of S pRdq. Since f P CFDpRdq, then F pfq P
V pRdq � C8

0 pRdq � OM pRdq. This implies that p2πq d2 F pfqF pϕq P S pRdq. This proves that f � ϕ �
F�1

�
p2πq d2 F pfqF pϕq

	
P S pRdq.

Let pφnqnPN � S pRdq be a regularizing sequence of positive compactly supported smooth functions,
such that supppφnq � B 1

n
p0q and

³
Rd φnpxqdx � 1 for all n P N. We consider the sequence of functions

fn � f � φn, which are all in S pRdq. We will prove that fn
CFDÑ f . Let m P N be fixed. We must show that

}p1�|x|2qmpfn�fq}8 Ñ 0 as nÑ8. Let ε ¡ 0. As f P CFDpRdq, we can takeR ¡ 0 large enough such
that for every x such that |x| ¡ R� 1, p1� 2|x|2qm|fpxq|   ε

3p2m�1�22m�1q holds. Notice that in this case,

p1 � |x|2qm|fpxq|   ε
3 . Since f is continuous, it is uniformly continuous over the compact set BR�1p0q.

Thus, there exists δ ¡ 0 such that if |x � y|   δ, then |fpxq � fpyq|   ε
3p1�R2qm for all x, y P BR�1p0q.

Consider n0 P N such that 1
n0
  δ. Then, for all n ¥ n0,

}p1� |x|2qmpf � fnq}8 � sup
xPRd

������
»
B 1
n
p0q
p1� |x|2qmpfpxq � fpx� yqqφnpyqdy

������
¤ sup

xPBRp0q

������
»
B 1
n
p0q
p1� |x|2qmpfpxq � fpx� yqqφnpyqdy

������loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon
paq

� sup
xPBRp0qc

������
»
B 1
n
p0q
p1� |x|2qmpfpxq � fpx� yqqφnpyqdy

������looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon
pbq

.

(C.5)
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For the first term paq, the uniform continuity of f implies

paq � sup
xPBRp0q

������
»
B 1
n
p0q

p1 � |x|2qmpfpxq � fpx� yqqφnpyqdy
������ ¤

»
B 1
n
p0q

p1 �R2qm ε

3p1 �R2qmφnpyqdy �
ε

3
.

(C.6)

Regarding the second term pbq, the integral is split to obtain

pbq ¤ sup
xPBRp0qc

! »
B 1
n
p0q
p1� |x|2qm|fpxq|φnpyqdyloooooooooooooooooooomoooooooooooooooooooon

¤ ε
3

�
»
B 1
n
p0q
p1� |x|2qm|fpx� yq|φnpyqdy

)
. (C.7)

When applying a convexity argument twice, one shows that p1�|x|2qm ¤ 2m�1rp1�2|x�y|2qm�2m|y|2ms
for all x and y, and thus»

B 1
n
p0q
p1� |x|2qm|fpx� yq|φnpyqdy ¤ 2m�1

�»
B 1
n
p0q

p1� 2|x� y|2qm|fpx� yq|loooooooooooooooomoooooooooooooooon
  ε

3p2m�1�22m�1q from |x�y|¡R�1

φnpyqdy

� 2m
»
B 1
n
p0q

|fpx� yq|loooomoooon
  ε

3p2m�1�22m�1q

|y|2mloomoon
¤1

φnpyqdy
�

  2m�1

�
ε

3p2m�1 � 22m�1q � 2m
ε

3p2m�1 � 22m�1q


� ε

3
.

(C.8)
Hence considering (C.7) and (C.8) we finally obtain pbq   2ε

3 . Putting together this result and (C.6) on
equation (C.5), we finally obtain that for all n ¥ n0,

}p1� |x|2qmpf � fnq}8   ε, (C.9)

hence }p1 � |x|2qmpf � fnq}8 Ñ 0. Since m was arbitrary, this result holds for all m. We therefore
conclude that fn

CFDÑ f . Since for any arbitrary f P CFDpRdq we can find a sequence included in S pRdq
which converges to f , we conclude that S pRdq is dense in CFDpRdq. �

The dual space of V pRdq is then denoted by V 1pRdq. From Theorem D.0.1, it follows that a linear
functional T : V pRdq Ñ C is in V 1pRdq if and only if there exist C ¡ 0 and N P N such that

|xT, ϕy| ¤ C sup
ξPRd

��p1� |ξ|2qNF pϕqpξq�� , @ϕ P V pRdq. (C.10)

The density of S pRdq in V pRdq and the integrability of the functions in CFDpRdq allow to conclude the
following inclusions:
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S pRdq � V pRdq � V 1pRdq � S 1pRdq. (C.11)

The Fourier Transform over V 1pRdq can be defined equivalently as the restriction over V 1pRdq of the
Fourier Transform on S 1pRdq, or as the transpose of the Fourier Transform F : CFDpRdq Ñ V pRdq.
Using this second option, it follows immediately that it is a sequentially continuous linear functional F :

V 1pRdq ÞÑ C 1
FDpRdq in the sense of a weak-� convergence. Since C 1

FDpRdq � MSGpRdq from Riesz
Representation Theorem 2.1.6, we conclude that V 1pRdq is indeed the space of tempered distributions such
that their Fourier Transforms are slow-growing measures, as it was defined in Chapter 4.

Let us now introduce some special spaces of test-functions which consider that we work over the positive
time, hence over the space Rd � R� rather than over Rd � R.

We define the next space of test-functions:

CFDpRd � R�q :� tψ P CpRd � R�q �� sup
pξ,tqPRd�R�

��p1� |x|2qnS p1� t2qnTψpξ, tq��   8,@nS , nT P Nu.
(C.12)

This space can be equivalently defined as the space of restrictions of functions in CFDpRd�Rq to the subset
Rd � R�. CFDpRd � R�q is endowed with the topology induced by the metric

pψ1, ψ2q ÞÑ
¸

nS ,nT PN

1

2nS�nT�2

sup
pξ,tqPRd�R�

��p1 � |ξ|2qnS p1 � t2qnT pψ1 � ψ2qpξ, tq
��

1 � sup
pξ,tqPRd�R�

��p1 � |ξ|2qnS p1 � t2qnT pψ1 � ψ2qpξ, tq
�� , (C.13)

for all ψ1, ψ2 P CFDpRd � R�q. CFDpRd � R�q is a Fréchet space. We denote by C 1
FDpRd � R�q its

dual space. A linear functional T : CFDpRd � R�q Ñ C is continuous if and only if there exist C ¡ 0 and
NS , NT P N such that

|xT, ψy| ¤ C sup
pξ,tqPRd�R�

��p1� |ξ|2qNS p1� t2qNTψpξ, tq�� , @ψ P CFDpRd � R�q. (C.14)

Let us now define the space MSGpRd � R�q. We define it as the space of slow-growing complex
measures such that their absolute variation over Rd � R�� is null:

MSGpRd � R�q :� tµ P MSGpRd � Rq �� |µ|pRd � R�
� q � 0u. (C.15)

We could have defined MSGpRd � R�q as a space of measures over Rd � R� without concerning on what
happens over the negative time, but it is actually easier to work with measures defined over the whole space
Rd � R but for which we only look at their behaviours over the subset Rd � R�. MSGpRd � R�q is also
equivalently defined as the space of slow-growing measures with support included in Rd � R�.



254 APPENDIX C. FORMAL RESOLUTION OF FIRST ORDER EVOLUTION EQUATIONS.

The next Proposition follows from Riesz Representation Theorem.

Proposition C.1.2. MSGpRd � R�q � C 1
FDpRd � R�q.

Proof: The inclusion MSGpRd � R�q � C 1
FDpRd � R�q is immediate. Let T P C 1

FDpRd � R�q. Let
ψ P CFDpRd � Rq. We define the action of T over ψ as

xT, ψy :� xT, ψ��Rd�R�y. (C.16)

Since T P CFDpRd � R�q, there exist C ¡ 0 and NS , NT P N such that

|xT, ψy| �
���xT, ψ��Rd�R�y

���
¤ C sup

pξ,tqPRd�R�

��p1� |ξ|2qNS p1� t2qNTψpξ, tq��
¤ C sup

pξ,tqPRd�R

��p1� |ξ|2qNS p1� t2qNTψpξ, tq�� .
(C.17)

This proves that the extension of T to the whole space CFDpRd � Rq is a continuous linear functional and
hence there exists a slow-growing measure µ P MSGpRd � Rq such that

xT, ψ��Rd�R�y �
»
Rd�R

ψpx, tqdµpx, tq, @ψ P CFDpRd � Rq. (C.18)

It can be concluded either using the inequality (C.17) or the Lemma A.2.3 that the measure µ has its support
in Rd � R�. This proves that C 1

FDpRd � R�q �MSGpRd � R�q. �
We also define the space CFDpR�q of continuous fast decreasing functions over R�, with an analogous

topology which makes it a Fréchet space. Its dual can be represented as the space MSGpR�q of measures
over the positive-time, which can as well be identified with the space of measures in MSGpRq which have
their supports contained in R�. We omit the details for such claims since they are analogous to the analysis
already done for the space CFDpRd � R�q.

We consider right now the following space of test-functions which are spatial Fourier Transforms of
functions in CFDpRd � R�q:

V pRdqpbCFDpR�q :� tψ P CpRd � R�q �� Dψ2 P CFDpRd � R�q such that ψ � FSpψ2qu. (C.19)

Members of this class act as members of V pRdq spatially and as members of CFDpR�q temporally.
That is, if ψ P V pRdqpbCFDpR�q, then for every x P Rd, ψpx, �q P CFDpR�q and for every t P R�,
ψp�, tq P V pRdq. It is immediate that this set of functions forms a complex vector space. Every function of
the form ϕ b φ, with ϕ P V pRdq and φ P CFDpR�q is a member of this class, as well as any finite linear
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combination of functions of this form. The notation V pRdqpbCFDpR�q has a deep inspiration in the theory
of Nuclear spaces: the notation Eb̂F , when E and F are more general topological vector spaces, is used to
represent a completition, under suitable topologies, of the spaceEbF of finite linear combinations of tensor
products (see Trèves (1967, Part III) or Grothendieck (1955)). We will not enter in those details explicitly,
and we will simply work with definition (C.19) and its notation 2.

The space V pRdqpbCFDpR�q is endowed with the topology induced by the metric:

pψ1, ψ2q ÞÑ
¸

nS ,nT PN

1

2nS�nT�2

sup
pξ,tqPRd�R�

��p1 � |ξ|2qnS p1 � t2qnTF�1
S pψ1 � ψ2qpξ, tq

��
1 � sup

pξ,tqPRd�R�

��p1 � |ξ|2qnS p1 � t2qnTF�1
S pψ1 � ψ2qpξ, tq

�� , (C.20)

@ψ1, ψ2 P V pRdqpbCFDpR�q. In virtue of Theorem D.0.1, the spatial Fourier Transform (and its inverse)
defines a continuous linear functional from CFDpRd � R�q to V pRdqpbCFDpR�q, and it also does it in
the reversed sense from V pRdqpbCFDpR�q to CFDpRd � R�q, with the spatial Fourier Transform being
interpreted in a distributional sense. From the continuity of FS and the completeness of CFDpRd � R�q, it
can be concluded that V pRdqpbCFDpR�q is a Fréchet space.

The dual space of V pRdqpbCFDpR�q is denoted by
�
V pRdqpbCFDpR�q�1. A linear functional

T : V pRdqpbCFDpR�q Ñ C

is a member of
�
V pRdqpbCFDpR�q�1 if and only if there exist C ¡ 0 and NS , NT P N such that

|xT, ψy| ¤ C sup
pξ,tqPRd�R�

��p1� |ξ|2qNS p1� t2qNTF�1
S pψqpξ, tq�� , @ψ P V pRdqpbCFDpR�q. (C.21)

The spatial Fourier Transform FS over
�
V pRdqpbCFDpR�q�1 is defined as the adjoint of the Fourier Trans-

form over CFDpRd � R�q, whose range is the space V pRdqpbCFDpR�q. We obtain thus a sequentially
continuous linear operator

FS :
�
V pRdqpbCFDpR�q

	1
Ñ MSGpRd � R�q.

More explicitly, FSpT q is the distribution in C 1
FDpRd � R�q �MSGpRd � R�q such that

xFSpT q, ψy :� xT,FSpψqy, @ψ P CFDpRd � R�q. (C.22)

The spatial Fourier Transform and its inverse interchange thus the spaces
�
V pRdqpbCFDpR�q�1 and

2This notation would be fully justified if it turns out that the space V pRdq is nuclear. See Trèves (1967, Proposition 50.7).
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MSGpRd � R�q.
We remark that both spaces

�
V pRdqpbCFDpR�q�1 and MSGpRd � R�q are subspaces of S 1pRd � Rq,

that is, their members are tempered distributions. To see this, we can consider that for every ψ P S pRd�Rq,
we can define the application

xT, ψy :� xT, ψ��Rd�R�y, (C.23)

for T P MSGpRd � R�q or T P �V pRdqpbCFDpR�q�1. It is easy to see that for every ψ P S pRd � Rq
the restriction ψ

��
Rd�R� is in both spaces CFDpRd � R�q and V pRdqpbCFDpR�q, hence this application

is well-defined. It also defines a tempered distribution, which can be obtained easily following criterion
(2.49) and using criteria (C.10) and (C.14). It turns out that every distribution in MSGpRd � R�q or in�
V pRdqpbCFDpR�q�1 can be differentiated any number of times, and that the spatial, temporal and spatio-

temporal Fourier Transforms can be applied freely. We say thus, that
�
V pRdqpbCFDpR�q�1 is the space of

all tempered distributions whose spatial Fourier Transforms are slow-growing measures over Rd�R�.

C.1.2 Temporal Integration and càdlàg-in-time primitives

Let T P �V pRdqpbCFDpR�q�1. This distribution acts as a measure in the positive time. To see this, we
consider the following fact:

 For every ϕ P V pRdq, θ P CFDpR�q ÞÑ xT, ϕb θy is a slow-growing measure over R�.

 For every θ P CFDpR�q, ϕ P V pRdq ÞÑ xT, ϕb θy is in V 1pRdq.

This comes immediately from criterion (C.21). Indeed, let us consider C,NS , NT as in (C.21). If θ P
CFDpR�q, set Cθ � C suptPR�

��p1� t2qNT θptq��. Then,

|xT, ϕb θy| ¤ Cθ sup
ξPRd

��p1� |x|2qNSFSpϕqpξq
�� , @ϕ P V pRdq, (C.24)

which shows that xT, � b θy P V 1pRdq. On the other hand, by fixing ϕ P V pRdq and setting Cϕ �
C supξPRd

��p1� |ξ|2qnSFSpϕqpξq
�� we obtain

|xT, ϕb θy| ¤ Cϕ sup
tPR�

��p1� t2qNT θptq�� , @θ P CFDpR�q. (C.25)

Hence xT, ϕb �y is in C 1
FDpR�q, and hence it is a slow-growing measure by Riesz Representation Theorem.

The fact that T acts temporally as a measure implies that we can construct integrals with respect to
its time component. To be precise, for every ϕ P V pRdq, we can extend the domain of definition of the
application θ ÞÑ xT, ϕ b θy to every measurable function with fast decreasing behaviour over R�. In
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particular, for any A � R� Borel and bounded, we have the right to write:

xT, ϕb 1Ay, (C.26)

expression that can be defined through limiting arguments. In particular, when A is any bounded closed
interval, the definition can be done by considering limits of functions in CcpR�q which converge point-wise
monotonically-decreasing and bounded by 1 to the indicator function 1A (a sequence of functions whose
graphs form trapeziums, for instance). Hence, we can consider for any t P R�, the expression xT, ϕb1r0,tsy.
Since T is a measure in the temporal component, the function t P R� ÞÑ xT, ϕb1r0,tsy is a càdlàg function.

Since
�
V pRdqpbCFDpR�q�1 � S 1pRd � Rq, the distributions in

�
V pRdqpbCFDpR�q�1 can be dif-

ferentiated with respect to the temporal component in a distributional sense. With these considerations,
let us describe the distributions in

�
V pRdqpbCFDpR�q�1 whose temporal derivatives are also in the set�

V pRdqpbCFDpR�q�1. According to our intuition, such a distribution should follow a càdlàg behaviour in
time, since their temporal derivatives behave like a measure in the time component. The next Proposition
states that this intuition is correct.

Proposition C.1.3. Let T P �V pRdqpbCFDpR�q�1 such that BTBt P
�
V pRdqpbCFDpR�q�1. Then, there exists

a family of spatial distributions pTtqtPR� � V 1pRdq such that

 the function t P R� ÞÑ xTt, ϕy is a càdlàg function for every ϕ P V pRdq.

 xT, ϕb θy � ³R�xTt, ϕyθptqdt for all ϕ P V pRdq and for all θ P CFDpR�q.

Before proving this Proposition, let us prove the next Lemma:

Lemma C.1.1. Let f : R Ñ C be a càdlàg function. Let t0 P R. Let pθpt0qn qnPN be a sequence of functions
approaching δt0 from the right-side, that is, pθpt0qn qnPN � C�

c pRq is such that for all n P N, supppθpt0qn q ��
t0, t0 � 1

n�1

�
and

³
R θ

pt0q
n ptqdt � 1. Then,

lim
nÑ8

»
R
fptqθpt0qn ptqdt � fpt0q. (C.27)

Analogously, if pθpt0qn qnPN is a sequence of functions approaching δt0 from the left-side, that is, pθpt0qn qnPN �
C�
c pRq is such that for all n P N, supppθpt0qn q �

�
t0 � 1

n�1 , t0

�
and

³
R θ

pt0q
n ptqdt � 1. Then,

lim
nÑ8

»
R
fptqθpt0qn ptqdt � fpt�0 q, (C.28)

where fpt�0 q � limtÑt�0
fptq.
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Proof: Let f : R ÞÑ C be a càdlàg function and let pθpt0qn qnPN be such a sequence of functions
approaching δt0 by the right-side. Let ε ¡ 0. Since f is càdlàg, there exists δ ¡ 0 3 such that |fpt0q�fptq|  
ε for all t such that 0 ¤ t� t0   δ. Considering n0 P N such that 1

n0�1   δ, it follows that if n ¡ n0 then

����»
R
fptqθpt0qn ptqdt� fpt0q

���� �
�����
» t0� 1

n�1

t0

pfptq � fpt0qqθpt0qn ptqdt
����� ¤ ε

» t0� 1
n�1

t0

θpt0qn ptqdt � ε. (C.29)

Which proves the convergence. The converge to the left-limit fpt�0 q is done analogously. �

Proof of Proposition C.1.3: The proof consists in verifying that the family of (evidently linear) appli-
cations

ϕ ÞÑ xTt, ϕy :� xBTBt , ϕb 1r0,tsy, t P R�, (C.30)

satisfies the required properties. Let us first prove that (C.30) does define a spatial distribution in V 1pRdq for
any fixed t P R�. Since BT

Bt P
�
V pRdqpbCFDpR�q�1, there exist C ¡ 0 and NS , NT P N such that (criterion

(C.21))

|xBTBt , ϕb θy| ¤ C sup
pξ,tqPRd�R�

��p1 � |ξ|2qNS p1 � t2qNTFSpφqpξqθptq
�� , @ϕ P V pRdq,@θ P CFDpR�q. (C.31)

Let us approach the function 1r0,ts by a convenient sequence of functions. Let us consider a sequence of
positive functions pθptqn qnPN � CcpR�q, continuously differentiable over R�� and such that θptqn � 1 over
r0, ts and θptqn � 0 over

�
t� 1

n�1 ,8
	

, having a decreasing behaviour over the open interval pt, t � 1
n�1q.

Then, the functions pθptqn qnPN converge point-wise to the function 1r0,ts, and they are all bounded by 1r0,t�1s.
It follows from Dominated Convergence Theorem (we recall that BT

Bt acts as a measure on the temporal
component) that����xBTBt , ϕb 1r0,tsy

���� � lim
nÑ8

����xBTBt , ϕb θptqn y
����

¤ lim
nÑ8C sup

uPR�

���p1� u2qNT θptqn puq
��� sup
ξPRd

��p1� |ξ|2qNSFSpϕqpξq
��

¤ Cp1� pt� 1q2qNT sup
ξPRd

��p1� |ξ|2qNSFSpϕqpξq
�� .

(C.32)

This proves that the family (C.30) defines spatial distributions in V 1pRdq for all t P R� (criterion (C.10)).
Let us fix ϕ P V pRdq. Since BT

Bt behaves as a measure in the temporal component, the function t ÞÑ
xBTBt , ϕb 1r0,tsy is a càdlàg function, and from (C.32) it follows that it is also polynomially bounded. Hence,

3Do not confuse with the Dirac measure at 0.
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for every θ P CFDpR�q, the integral »
R�
xBTBt , ϕb 1r0,tsyθptqdt

is well-defined. We remark that the sequence of differentiable functions pθptqn qnPN is such that the sequence

of derivatives pdθptqndt qnPN satisfies that supppdθptqndt q �
�
t, t� 1

n�1

�
, dθ

ptq
n
dt ¤ 0 and � ³R� dθ

ptq
n
dt psqds � 1 for

all n P N, hence they approach�δt from the right. Let µT,ϕ be the slow-growing measure over R� such that
µT,ϕpAq � xT, ϕb 1Ay for every bounded Borel set A � R�. From these considerations, it follows that
»
R�
xBTBt , ϕb 1r0,tsyθptqdt � lim

nÑ8

»
R�
xBTBt , ϕb θ

ptq
n yθptqdt (since θptqn Ñ 1r0,ts point-wise dominated)

� lim
nÑ8

�
»
R�
xT, ϕb dθ

ptq
n

dt
yθptqdt (Def. of derivative)

� lim
nÑ8

»
R�

»
R�

�dθ
ptq
n

dt
psqdµT,ϕpsqθptqdt

� lim
nÑ8

»
R�

»
R�

�dθ
ptq
n

dt
psqθptqdtdµT,ϕpsq (Fubini’s Theorem)

�
»
R�
θpsqdµT,ϕpsq � xT, ϕb φy. (Lemma C.1.1)

(C.33)

Hence,»
R�
xBTBt , ϕb 1r0,tsyθptqdt �

»
R�
xTt, ϕyθptqdt � xT, ϕb φy, @ϕ P V pRdq,@θ P CFDpR�q, (C.34)

and thus the family (C.30) satisfies all the required conditions. �

If T P �V pRdqpbCFDpR�q�1 satisfies the conditions presented in Proposition C.1.3, we say that it has a
V 1pRdq-in-space and càdlàg-in-time behaviour. We also say that T has a càdlàg-in-time representation
and that the associated family of spatial distributions pTtqtPR� � V 1pRdq is the càdlàg-in-time representa-
tion of T .

We remark that the notion of càdlàg-in-time representation can be applied for many other distributions,
not necessarily with a spatial behaviour in V 1pRdq. We remark in particular the case where T P MSGpRd �
R�q, for which we say that it has a càdlàg-in-time representation if there exists a family of slow-growing
spatial measures, pTtqtPR� � MSGpRdq such that

 the function t P R� ÞÑ xTt, ϕy is a càdlàg function for every ϕ P CFDpRdq.

 xT, ϕb θy � ³R�xTt, ϕyθptqdt for all ϕ P CFDpRdq and for all θ P CFDpR�q.

The next Proposition follows almost immediately.
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Proposition C.1.4. Let T P MSGpRd � R�q. Then, T has a càdlàg-in-time representation if and only if
FSpT q P V pRdqpbCFDpR�q has a càdlàg-in-time representation.

Proof: Since FSpMSGpRd � R�qq � V pRdqpbCFDpR�q, it suffices to take pFSpTtqqtPR� as the
family defining the càdlàg-in-time representation of FSpT q. �

C.1.3 The PDE

Let us now consider the PDE (C.1). In principle, we interpret this PDE in distributional sense considering
X P S 1pRd � Rq and looking at for solutions in S 1pRd � Rq. This can be worked out for example when
g P OM pRdq, since for those distributions since both operators B

Bt and Lg are well-defined. However, since
we also want to restrain the solution to obey a particular initial condition, more requirements on X , and
hence on the solution must be added. Let us explain a method to do this. Such a method will allow us to
properly speak about an initial condition and in addition to consider the cases where g is continuous and
polynomially bounded, not necessarily in OM pRdq.

First of all, we restrain the space where X belongs to our space
�
V pRdqpbCFDpR�q�1. Let us apply the

spatial Fourier Transform to problem (C.1) to obtain the spatially-multiplicative problem:

BV
Bt � gV � Y, (C.35)

where Y � FSpXq and V � FSpUq. From the developments presented in the previous section, the
distribution Y is in MSGpRd � R�q. We recall that we have supposed gR ¥ 0. Let us define the following
operator, which will be called the Duhamel’s Operator. Consider Dg : CFDpRd �R�q Ñ CFDpRd �R�q
defined through

Dgpψqpξ, tq :�
» 8
t
e�ps�tqgpξqψpξ, sqds pξ, tq P Rd � R�. (C.36)

We remark that this operator is nothing but a temporal convolution with the function s P R ÞÑ esg1p�8,0spsq
(we may, for instance, extend the domain of ψ to Rd � R by making it null over Rd � R�� , in order to
properly define such a convolution). Let us verify that this operator is well-defined. The linearity of Dg is
straightforward. If we consider a sequence pξn, tnqnPN � Rd � R� such that pξn, tnq Ñ pξ, tq P Rd � R�

as nÑ8, it is immediate to verify using the continuity of g and ψ that

e�ps�tnqgpξnqψpξn, sq1ptn,8qpsq Ñ e�ps�tqgpξqψpξ, sq1pt,8qpsq, as nÑ8,@s P R�. (C.37)
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Considering that gR ¥ 0, we also have that |e�agpξq| ¤ 1 for every a ¥ 0, hence

���e�ps�tnqgpξnqψpξn, sq1ptn,8qpsq��� ¤ |ψpξn, sq| ¤ |ψpξn, sq|p1� s2q p1� s
2q ¤ suppη,uqPRd�R�

��ψpη, sqp1� s2q��
1� s2

.

(C.38)
We conclude that the convergence (C.37) is dominated by the integrable function

s ÞÑ suppη,uqPRd�R�
��ψpη, sqp1� s2q��

1� s2

(we have used that ψ P CFDpRd�R�q). It follows from Dominated Convergence Theorem that the function
Dgpψq is continuous. Let nS , nT P N. We consider that

sup
pξ,tqPRd�R�

��p1 � |ξ|2qnS p1 � t2qnTDgpψqpξ, tq
�� � sup

pξ,tqPRd�R�

����p1 � |ξ|2qnS p1 � t2qnT
» 8
t

e�ps�tqgpξqψpξ, sqds
����

¤ sup
pξ,tqPRd�R�

! » 8
t

p1 � |ξ|2qnS p1 � t2qnT |ψpξ, sq|ds
)

¤ sup
pξ,tqPRd�R�

! » 8
t

p1 � |ξ|2qnS p1 � s2qnT |ψpξ, sq|ds
)

¤ sup
pξ,tqPRd�R�

! »
R�
p1 � |ξ|2qnS p1 � s2qnT�1|ψpξ, sq| ds

p1 � s2q
)

¤ π

4
sup

pξ,sqPRd�R�

��p1 � |ξ|2qnS p1 � s2qnT�1ψpξ, sq�� .
(C.39)

This proves that Dgpψq is a fast-decreasing function, hence Dg is well-defined. In addition, this also proves
that Dg is a continuous linear operator from CFDpRd � R�q to CFDpRd � R�q (Theorem D.0.1). The
adjoint operator of Duhamel’s operator is denoted by D�

g and it is a sequentially continuous linear operator
from MSGpRd � R�q to MSGpRd � R�q. Explicitly,

xD�
g pT q, ψy :� xT,Dgpψqy, @T P MSGpRd � R�q,@ψ P CFDpRd � R�q. (C.40)

Proposition C.1.5. Let Y P MSGpRd � R�q � S 1pRd � Rq. Then, D�
g pY q satisfies

BD�
g pY q
Bt � gD�

g pY q � Y, (C.41)

in the sense of S 1pRd � Rq.

Proof: Let ψ P S pRd � Rq. We have that

xBD
�
g pY q
Bt , ψy � �xD�

g pY q,
Bψ
Bt y � �xD

�
g pY q,

Bψ
Bt
��
Rd�R�y � �xY,D�

g

�Bψ
Bt
��
Rd�R�



y. (C.42)
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Now, we consider that for every pξ, tq P Rd � R�, we have by integration by parts that

�Dg

�Bψ
Bt
���
Rd�R�



pξ, tq � �

» 8
t
e�ps�tqgpξq

Bψ
Bt pξ, sqds

� �
�
e�ps�tqgpξqψpξ, sq��s�8

s�t �
» 8
t
e�ps�tqgpξqp�gpξqqψpξ, sqds

�
� �

�
�ψpξ, tq � gpξq

» 8
t
e�ps�tqgpξqψpξ, sqds

�
� ψpξ, tq � gpξqDgpψqpξ, tq.

(C.43)

From the definition of Duhamel’s Operator, it is immediate that gDgpψq � Dgpgψq. We obtain thus that

xBD
�
g pY q
Bt , ψy � xY, ψy � xY,Dgpgψqy � xY, ψy � xD�

g pY q, gψy � xY, ψy � xgD�
g pY q, ψy, (C.44)

where the equality xD�
g pY q, gψy � xgD�

g pY q, ψy is justified since D�
g pY q is a slow-growing measure and

g is a continuous polynomially bounded continuous function, hence the multiplication is well-defined as a
measure in MSGpRd � R�q. This proves that D�

g pY q satisfies the PDE (C.41) in the sense of S 1pRd � Rq.
�

Corollary C.1.1. Let Y P MSGpRd � R�q. Then,
BD�

g pY q
Bt P MSGpRd � R�q.

Proof: BD�
g pY q
Bt � Y � gD�

g pY q PMSGpRd �R�q since D�
g and the multiplication by g are operations

with values in MSGpRd � R�q. �
From Propositions C.1.3 and C.1.4, the following Corollary follows immediately.

Corollary C.1.2. Let Y P MSGpRd � R�q. Then, D�
g pY q has a càdlàg-in-time representation.

We conclude then that we can always find a solution to the transformed problem (C.35) which has a
càdlàg-in-time behaviour, and hence for which the notion of an initial condition makes sense. Nevertheless,
the following result shows that we still have some difficulties if we want to consider any arbitrary initial
condition to a Cauchy problem associated to equation (C.35).

Proposition C.1.6. D�
g pY q is the unique possible solution in MSGpRd � R�q to equation (C.35).

This result follows from a simple fact, which is actually a statement equivalent to Proposition C.1.6 the
homogeneous problem

BVH
Bt � gVH � 0 (C.45)

has no non-trivial solutions in MSGpRd � R�q.
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Proof: Let us suppose there are two solutions in MSGpRd � R�q, say V1 and V2. Then, by linearity
of the equation, the difference VH � V1 � V2 P MSGpRd � R�q must satisfy the homogeneous problem
(C.45). Let us see if such kinds of solutions exist. Let us look for solutions to the homogeneous problem in
the bigger space of measures M pRd�Rq. We recall that MSGpRd�R�q �M pRd�R�q � D 1pRd�Rq.
If VH P M pRd � Rq satisfies (C.45), we have that BVH

Bt P M pRd � Rq since gVH P M pRd � Rq. With a
typical analysis we have that VH satisfies

B
Bt
�
etgVH

� � 0. (C.46)

Hence,
etgVH � S b 1 (C.47)

for some S P D 1pRd � Rq, and since we have required that VH must be a measure, S must be in M pRdq. It
turns out that VH is of the form

VH � e�tg pS b 1q . (C.48)

Since we want VH to be slow-growing, it is necessary to require S P MSGpRdq. However, expression (C.48)
does not provide a measure with support on Rd � R� unless S � 0. Hence, there is no solution to (C.45) in
MSGpRd � R�q besides the trivial solution. This completes the proof. �

In the last proof we remark that if we consider the restriction of the measure VH over Rd � R�, which
is the measure which is null outside Rd �R� an equals VH over Rd �R�, denoted by 1Rd�R�VH , then we
do obtain a measure in MSGpRd � R�q if S P MSGpRdq. However, this measure does not satisfy (C.45) in
the sense of S 1pRd � Rq.

C.1.4 The Cauchy Problem

Let us right now concentrate, once and for all on the Cauchy problem of the form$&%
BU
Bt � LgU � X

U
��
t�0

� U0

(C.49)

for suitable distributions X and U0.

We require X P �V pRdqpbCFDpR�q�1 and U0 P V 1pRdq. We apply the spatial Fourier Transform and
we work with the transformed Cauchy problem$&%

BV
Bt � gV � Y

V
��
t�0

� V0

, (C.50)
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where Y � FSpXq P MSGpRd � R�q, V0 � FSpU0q P MSGpRdq and V � FSpUq is the transformed
unknown.

Proposition C.1.6 guarantees that if we look at for solutions in MSGpRd � R�q to the Cauchy problem
(C.50), we will have just one possibility: D�

g pY q. We recall that D�
g pY q has a càdlàg-in-time representation,

which we will denote by pD�
g pY qtqtPR� � MSGpRdq. This measure is the solution to the Cauchy problem

(C.50) if and only if it holds that D�
g pY q0 � V0. Hence, we have no freedom at all to fix an arbitrary initial

condition. The next result proves that, with just some arrangements, we can gain more freedom in the initial
condition by requiring that the restriction to Rd � R� of the solution is in MSGpRd � R�q, rather than the
solution itself.

Theorem C.1.1. Let Y P MSGpRd � R�q. Let g : Rd Ñ C be a continuous symbol function such that
gR ¥ 0. Let V0 P MSGpRdq. Then, there exists a unique measure V P M pRd � Rq such that

 BV
Bt � gV � Y in the sense of D 1pRd � Rq.

 Its restriction to Rd � R� is in MSGpRd � R�q and it has a càdlàg-in-time representation whose
evaluation at t � 0 is V0.

Proof: for the existence, consider simply the measure V P M pRd � Rq defined by

V � e�tg
�pV0 �D�

g pY q0qb 1
��D�

g pY q, (C.51)

which is more explicitly expressed as (we recall that D�
g pY q is a measure over Rd�R� and V0 and D�

g pY q0
are measures over Rd):

xV, ψy �
»
R

»
Rd
e�tgpξqψpξ, tqdpV0�D�

g pY q0qpξqdt�
»
Rd�R�

ψpξ, tqdpD�
g pY qqpξ, tq, @ψ P DpRd�Rq.

(C.52)
The fact that V satisfies the PDE (C.35) arises from Proposition C.1.5 and from the fact that the measure
e�tg

�pV0 �D�
g pY q0qb 1

�
satisfies the homogeneous equation (C.45), since it is of the form (C.47).

The restriction of V over Rd � R� is given by

1Rd�R�V � e�tg
�pV0 �D�

g pY q0qb 1R�
��D�

g pY q. (C.53)

It is immediate that 1Rd�R�V is in MSGpRd�R�q since gR ¥ 0. A typical computation using the derivative
of the product and Proposition C.1.5 allow to conclude that

B
Bt
�
1Rd�R�V

� � �ge�tg �V0 �D�
g pY q

�
b 1R� � e�gt

�
V0 �D�

g pY q0
�
b δ0T � gD�

g pY q � Y, (C.54)
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where δ0T is the Dirac measure at 0 P R�. We remark that

e�gt
�
V0 �D�

g pY q0
�
b δ0T �

�
V0 �D�

g pY q0
�
b δ0T .

From this we obtain that the temporal derivative of 1Rd�R�V is a measure in MSGpRd � R�q since it is
a sum of measures in MSGpRd � R�q. From Propositions C.1.4 and C.1.3, it follows that 1Rd�R�V has
a càdlàg-in-time representation. Applying expression (C.52) to test-functions of the form ψ � ϕ b θ with
ϕ P CFDpRdq and θ P CFDpR�q (which can be done since the involved distributions are measures), one
obtains that the càdlàg-in-time representation of V over Rd�R� (which is evidently the same as the càdlàg
representation of 1Rd�R�V ) is given by

Vt � e�tg
�
V0 �D�

g pY q0
��D�

g pY qt P MSGpRdq, @t P R�. (C.55)

And from this, it is immediate that the evaluation at t � 0 if this càdlàg representation equals the desired
initial condition V0. This proves the existence.

If we suppose that there are two measures V1 and V2 satisfying the conditions in Theorem C.1.1, we
consider then the difference VH � V1 � V2 must satisfies the homogenoeus problem (C.45), and hence it
must be of the form (C.47) for some S P MSGpRdq. But this implies that the evaluation at 0 of its càdlàg-in-
time representation is VH,0 � S. Since in addition, V1

��
t�0

� V2

��
t�0

, then it follows that VH,0 must be null,
and hence S � 0. It follows that VH � 0. This proves that V is the unique solution to (C.50) satisfying the
required properties. �

As stated in the proof of Theorem C.1.1, the solution V has a càdlàg-in-time representation over R�.
Let us describe the corresponding family pVtqtPR� which determines it. For this, let us first study the càdlàg
representation of D�

g pY q. Let ϕ P CFDpRdq and θ P CFDpR�q. We have thus that

xD�
g pY q, ϕb θy � xY,D�

g pϕb θqy

�
»
Rd�R�

Dgpϕb θqpξ, sqdY pξ, sq

�
»
Rd�R�

» 8
s
e�pt�sqgpξqϕpξqθptqdtdY pξ, sq

�
»
Rd�R�

»
R�
e�pt�sqgpξqϕpξq1rs,8qptqθptqdtdY pξ, sq

�
»
R�

»
Rd�R�

e�pt�sqgpξqϕpξq1r0,tspsqdY pξ, sqθptqdt,

(C.56)

where we have used Fubini’s Theorem. It follows that

xD�
g pY qt, ϕy �

»
Rd�R�

e�pt�sqgpξqϕpξq1r0,tspsqdY pξ, sq, @t P R�. (C.57)
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We write then,

D�
g pY qt �

»
r0,ts

e�pt�sqgp�qY p� � dsq PMSGpRdq, @t P R�, (C.58)

for which we mean the measure such that

D�
g pY qtpAq �

»
A�r0,ts

e�pt�sqgpξqdY pξ, sq, @A P BBpRdq. (C.59)

We remark that D�
g pY q0 is simply

D�
g pY q0 � Y p� � t0uq. (C.60)

It follows that the càdlàg-in-time representation over R� of the solution V determined in Theorem C.1.1 is
given by the family pVtqtPR� � MSGpRdq defined by

Vt � e�tg pV0 � Y p� � t0uqq �
»
r0,ts

e�pt�sqgp�qY p� � dsq, @t P R�. (C.61)

Theorem C.1.2. Let X P �V pRdqpbCFDpR�q�1. Let g : Rd Ñ C be a continuous spatial symbol function
such that gR ¥ 0. Let U0 P V 1pRdq. Then, there exists a unique distribution U P �V pRdqpbCFDpR�q�1
such that

 It has a càdlàg-in-time representation whose evaluation at t � 0 is U0.

 It satisfies

xBUBt � LgU,ψy � xX,ψy, @ψ P S pRd � Rq such that suppψ � Rd � R�. (C.62)

Proof: Let us prove the existence. Let Y � FSpXq PMSGpRd�R�q and V0 � FSpU0q PMSGpRdq.
Let us then consider the solution V of the transformed problem (C.50) obtained from Theorem C.1.1 and
which is given by (C.51). Let us consider its restriction to Rd � R�, 1Rd�R�V , which is given by (C.53).
We define then

U � F�1
S

�
1Rd�R�V

� � F�1
S

�
e�tg

�pV0 �D�
g pY q0qb 1R�

��D�
g pY q

�
. (C.63)

ClearlyU P �V pRdqpbCFDpR�q�1 since it is the spatial inverse Fourier Transform of a measure in MSGpRd�
R�q. Since 1Rd�R� has a càdlàg-in-time representation, it follows that U also has it (Proposition C.1.4), and
that its evaluation at t � 0 is U0 � F�1

S pV0q.
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Using the rule of the product of the derivative and Proposition C.1.5, we obtain that

B
Bt
�
1Rd�R�V

� � �g �e�tg �pV0 �D�
g pY q0qb 1R�

��D�
g pY q

�� Y � e�tg �pV0 �D�
g pY q0qb δ0T

�
� �g �1Rd�R�V

�� Y � pV0 �D�
g pY q0qb δ0T .

(C.64)
Since B

Bt �F�1
S � F�1

S � B
Bt over S 1pRd � Rq, it follows that U satisfies, in the sense of S 1pRd � Rq, the

equation
BU
Bt � LgU � X � �U0 �F�1

S

�
D�
g pY q0

��
b δ0T . (C.65)

If we restrain the space of test-functions to those in S pRd � Rq such that their supports are included in
Rd � R�, then we will obtain condition (C.62) since for such kinds of test-functions we have ψp�, 0q � 0

and hence xpU0 �F�1
S

�
D�
g pY q0

�qb δ0T , ψy � 0. This proves the existence of such a solution.

The uniqueness is proven in a typical manner, by supposing that there are two different solutions satisfy-
ing the conditions and then taking the difference between the solutions. It follows that such difference must
be of the form

UH � F�1
S pe�tgS b 1R�q (C.66)

for some S P V pRdq. UH has a càdlàg-in-time representation which must be null. It is then immediate to
conclude that S � 0, and hence there is a unique solution satisfying the desired conditions. �

The solution U P �V pRdqpbCFDpR�q�1 satisfying (C.49) in the sense of Theorem C.1.2 can be then
described through its càdlàg-in-time representation pUtqtPR� � V 1pRdq, given by

Ut � F�1
S

�
e�tg pFSpU0q �FSpXqp� � t0uqq �

»
r0,ts

e�pt�sqgp�qFSpXqp� � dsq
�
, @t P R�. (C.67)

This is simply Ut � F�1
S pVtq, with pVtqtPR� � MSGpRd �R�q being the càdlàg-in-time representation of

the solution to the transformed problem.

C.1.5 Asymptotic Analysis

Consider now the problem (C.49) with the slightly different conditions that both Y :� FSpXq and MX :�
F pXq are in MSGpRd � Rq. Hence, X P V 1pRd � Rq and the restriction of FSpXq to Rd � R� is in
MSGpRd � R�q. In such a case we can analyse the equation

BU
Bt � LgU � X (C.68)
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following the approach presented in Section 4.6. Hence, we can solve the problem by analysing the spatio-
temporal Fourier Transformed equation

piω � gpξqqMU �MX , (C.69)

where MU � F pUq. Let us suppose there exists κ ¡ 0 such that gR ¥ κ. In such a case, Proposition 4.6.1
guarantees the existence of a unique solution in V 1pRd � Rq given by

U8 � F�1

�
1

iω � gpξqMX



� F�1

�
1

iω � gpξqF pXq


. (C.70)

We study right now the relation between the solution U8 and the solution U to the associated Cauchy
problem studied in the previous section whose existence and uniqueness is stated in Theorem C.1.2. The
next Theorem states that, actually, the solution U8 describes how the solution U behaves spatio-temporally
once the time has flown long enough.

We remark that since for the Cauchy problem (C.49) we work over Rd � R�, the distribution X is
interpreted as a restriction 1Rd�R�X when facing this Cauchy problem. This can be done since X acts as a
measure in time.

Theorem C.1.3. Let X P V 1pRd � Rq XF�1
S pMSGpRd � Rqq. Let g : Rd Ñ C be a continuous symbol

function such that there exists κ ¡ 0 such that gR ¥ κ. Let U0 P V 1pRdq. Let U P �V pRdqpbCFDpR�q�1
be the unique solution to the Cauchy problem (C.49) (interpreting X as 1Rd�R�X) satisfying conditions in
Theorem C.1.2. Let U8 be the unique solution in V 1pRd �Rq to the equation (C.68). Then, for every ε ¡ 0

and for every ϕ P S pRdq, there exists tε,ϕ P R� such that

|xU8 � U,ϕb θy|   ε, @θ P S pRq such that supppθq � rtε,ϕ,8q and
»
R�
|θptq|dt � 1. (C.71)

Proof: We note as usual Y � FSpXq PMSGpRd�Rq and V0 � FSpU0q PMSGpRdq. We recall that
the Cauchy problem (C.49) is analysed with Y P MSGpRd �R�q rather than in MSGpRd �Rq. Hence, the
solution U in this case is expressed through the restriction of V to Rd � R� as

U � F�1
S

�
e�tg

�pV0 �D�
g p1Rd�R�Y q0qb 1R�

��D�
g p1Rd�R�Y q

�
. (C.72)

We consider the difference U8 � U acting on a test-function of the form ψ � ϕb θ, with ϕ P S pRdq and
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θ P S pRq with supppθq � R�. Considering that

U8 � U � F�1

�
1

iω � g
F pXq



�F�1

S

�
e�tg

�pV0 �D�
g p1Rd�R�Y q0qb 1R�

��D�
g p1Rd�R�Y q

�
� F�1

S

�
F�1
T

�
1

iω � g
FT pY q



�D�

g p1Rd�R�Y q


�F�1

S

�
e�tg

�pV0 �D�
g p1Rd�R�Y q0qb 1R�

��
,

(C.73)

let us compare F�1
T

�
1

iω�gFT pY q
	

and D�
g p1Rd�R�Y q acting on test-functions of the already mentioned

form. We consider that

xF�1
T

�
1

iω � gFT pY q


, ϕb θy � xY, ϕFT

�
1

iω � gF�1
T pθq



y. (C.74)

Using the exchange formula for the temporal Fourier Transform, which holds since the function ω ÞÑ 1
iω�gpξq

is in OM pRq for all ξ P Rd since gR ¥ κ ¡ 0, we have that

FT

�
1

iω � gF�1
T pθq



� 1?

2π
FT

�
1

iω � g



pRq� θ. (C.75)

Here
pRq� denotes a convolution with respect to the temporal component. A known result in Fourier Analysis,

which is obtained considering that gR ¥ κ ¡ 0, is that

FT

�
1

iω � g


ptq �

?
2πetg1R��

ptq (C.76)

in distributional sense. Hence,

ϕFT

�
1

iω � gF�1
T pθq



� ϕ

�
etg1R��

pRq� θ



. (C.77)

And as we have mentioned in Section C.1.3, doing this convolution and applying Duhamel’s operator is
equivalent over test-functions in CFDpRd � R�q. Since supppθq � R�, we are in this case. We conclude
that

xF�1
T

�
1

iω � gFT pY q


, ϕb θy � xD�

g pY q, ϕb θy, @ϕ P S pRdq, θ P S pRq such that supp θ � R�.

(C.78)
It follows that

|xU8 � U,ϕb θy| � ��xF�1
S

�
e�tg

�pV0 �D�
g p1Rd�R�Y q0qb 1R�

��
, ϕb θy��

� ��xe�tg �pV0 �D�
g p1Rd�R�Y q0qb 1R�

�
,F�1

S pϕqb θy��
�
����»

Rd

»
R�
e�tgpξqF�1

S pϕqpξqθptqdtdpV0 �D�
g p1Rd�R�Y q0qpξq

���� .
(C.79)
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We suppose that V0 � D�
g p1Rd�R�Y q0. Otherwise, the result is obvious. Let us fix ϕ P S pRdq. Since

gR ¥ κ ¡ 0, |e�tg| ¤ e�tκ. We can hence bound (C.79) by

|xU8 � U,ϕb θy| ¤
»
Rd

»
R�

���e�tgpξqF�1
S pϕqpξqθptq

��� dtd ��V0 �D�
g p1Rd�R�Y q0

�� pξq
¤
»
Rd

��F�1
S pϕqpξq�� d ��V0 �D�

g p1Rd�R�Y q0
�� pξq »

R�
e�tκ|θptq|dt

(C.80)

We set
Cϕ :�

»
Rd

��F�1
S pϕqpξq�� d ��V0 �D�

g p1Rd�R�Y q0
�� pξq

which is a non-null positive real number since the measure V0 � D�
g p1Rd�R�Y q0 � 0 is in MSGpRdq. Let

ε ¡ 0. if we chose tε,ϕ P R� such that e�κtε,ϕ ¤ ε
Cϕ

, it follows that if we take θ P S pRq such that
supppθq � rtε,ϕ,8q and

³
R� |θptq|dt � 1,

|xU8 � U,ϕb θy| ¤ Cϕ

»
R�
e�tκ|θptq|dt

¤ Cϕ

»
rtε,ϕ,8q

e�tε,ϕκ|θptq|dt � Cϕ
ε

ϕ

»
rtε,ϕ,8q

|θptq|dt � ε.
(C.81)

This proves the desired result. �

Hence, as the time flows, the solution U is more and more similar to the solution U8. We remark
that, although U has a càdlàg-in-time representation, it is not clear if the solution U8 does. The asymptotic
convergence described in Theorem C.1.3 is obtained only in a suitable sense of distributions. Let us consider,
however, the case where MU8 � F pU8q is temporally integrable, which is the case when»

A�R

dMXpξ, ωq
iω � gpξq   8, @A P BBpRdq. (C.82)

Then, U8 is a continuous-in-time distribution (see Eq. (5.24), interpreted in a deterministic context). There
exists then a continuous-in-time representation pU8

t qtPR � V 1pRdq.

Proposition C.1.7. If U0 � U8
0 in the Cauchy problem (C.49) (with X restricted to 1Rd�R�), then its

solution U and the distribution U8 coincide over R�.

Proof: It suffices to show that

F�1
S

�
D�
g

�
1Rd�R�FSpXq

�� � F�1

�
1

iω � gF pXq
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over Rd � R�. For that, consider ϕ P S pRdq and θ P S pRq such that supppθq � R�. We have

xF�1
S

�
D�
g

�
1Rd�R�FSpXq

��
, ϕb θy � xD�

g

�
1Rd�R�FSpXq

�
,F�1

S pϕqb θy
� x1Rd�R�FSpXq,Dg

�
F�1
S pϕqb θ

�y
� xFSpXq,Dg

�
F�1
S pϕqb θ

�y
� xX,FS

�
Dg

�
F�1
S pϕqb θ

��y,
(C.83)

where the equality x1Rd�R�FSpXq,Dg

�
F�1
S pϕqb θ

�y � xFSpXq,Dg

�
F�1
S pϕqb θ

�y is justified since
FSpXq is a measure and supppθq � R� and hence we have supppDg

�
F�1
S pϕqb θ

�q � Rd � R�. We
continue our development to obtain

xX,FS

�
Dg

�
F�1
S pϕqb θ

��y � xD�
g pFSpXqq ,F�1

S pϕqb θy

� xF�1
S

�
F�1
T

�
1

iω � gFT pFSpXqq




, ϕb θy

� xF�1

�
1

iω � gF pXq


, ϕb θy,

(C.84)

where we have used that D�
g � F�1

T p 1
iω�gFT p�qq over Rd � R�, as we have already proved in Eq. (C.78).

The equality follows, and hence both F�1
S

�
D�
g

�
1Rd�R�FSpXq

��
and F�1

�
1

iω�gF pXq
	

have the same
representation over R� which is actually a continuous-in-time representation. In particular,

F�1
S

�
D�
g

�
1Rd�R�FSpXq

��
0
� F�1

�
1

iω � gF pXq



0

� U8
0 .

Since the solution U is given by

U � F�1
S

�
e�tg

�
U8

0 �D�
g p1Rd�R�FSpXqq0

�
b 1Rd�R�

��F�1
S

�
D�
g

�
1Rd�R�FSpXq

��
,

it follows that over Rd � R�:

U � 0�F�1
S

�
D�
g

�
1Rd�R�FSpXq

�� � F�1

�
1

iω � gF pXq


� U8. �

C.2 Stochastized version

Let us now consider the problem (C.49) but with the elements being interpreted as convenient GeRFs with
analogue properties to the deterministic case. Say, X is a GeRF over Rd � R such that its spatial Fourier
Transform Y � FSpXq is a slow-growing Random Measure concentrated on Rd � R�, and U0 is a GeRF
over Rd such that its (spatial) Fourier Transform is a slow-growing Random Measure. The function g is,
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as usual, a continuous spatial symbol function such that gR ¥ 0. The resolution in this case is done in a
completely analogous way to the method of the deterministic case. Indeed, Duhamel’s operator and the other
operations used to construct the solution (C.63) can be applied without technical difficulties to the stochastic
case, since they are all defined through their actions over test-functions. The only concept which deserves a
little review is the one of càdlàg-in-time representation.

We suppose that all the random objects have zero mean.

C.2.1 Some facts about mean-square càdlàg Random Functions

We first make explicit the definition of a càdlàg in mean-square temporal Random Function. Let pZptqqtPR
be a real Random Function over R. We say that Z is càdlàg in mean-square, or simply càdlàg, if

 for all t0 P R, Zptq L
2pΩqÑ Zpt0q if tÑ t�0 ,

 for all t0 P R, there exists a random variable Zpt�0 q P L2pΩ,A,Pq such that Zptq L2pΩqÑ Zpt�0 q if
tÑ t�0 .

Càdlàg temporal Random Functions have many similar properties to deterministic ones. In particular,
they are continuous outside an at most countable set. To see this, we can apply the same arguments as
used to prove such a property for deterministic cases. See for instance the Theorems in Swanson (2011),
which can be applied to our case since a temporal Random Function is a function from R to the metric
space L2pΩ,A,Pq. The main consequence of this fact is that we can define the integral with respect to the
Lebesgue measure of a càdlàg Random Function without technical difficulties, just by considering the sum
of the integrals outside the discontinuity points, where the procedure presented in Section 3.2.2 can be used.
Hence, for every compactly supported and bounded measurable function f : RÑ C, one can define»

R
fptqZptqdt. (C.85)

The following Theorem is a simplified stochastic version of Fubini’s Theorem.

Theorem C.2.1 (Stochastic Fubini’s Theorem). Let M be a Random Measure over Rd and let µ P
M pRmq. Let f : Rd � Rm Ñ C be a measurable and bounded function with compact support such
that the Random Function over Rm, y ÞÑ ³

Rd fpx, yqdMpxq, is continuous outside a µ�null set. Then,»
Rd

»
Rm

fpx, yqdµpyqdMpxq �
»
Rm

»
Rd
fpx, yqdMpxqdµpyq. (C.86)

The condition on f in Theorem C.2.1 is required for the simple reason that in this dissertation we have not
defined the stochastic integral of a Random Function that is not continuous outside a non-null-measure Borel
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set (we have only done it for continuous Random Functions or for càdlàg Random Functions in dimension
d � 1). In order to prove this Theorem, we need the following Lemma.

Lemma C.2.1. Let µ P M pRdq and let Z be a Random Function over Rd which is continuous outside a
µ�null set and such that it is null outside a compact set. Then,

Cov
�»

Rd
Zpxqdµpxq, X



�
»
Rd

Cov pZpxq, Xq dµpxq, @X P L2pΩ,A,Pq. (C.87)

Proof: Let X P L2pΩ,A,Pq. Let B P BBpRdq such that Z is null outside B and let D P BpRdq such
that |µ|pDq � 0 and such that Z is continuous outside D. Set K � B XDc. Since Z is continuous over K,
the integral of Z with respect to µ is well-defined through the use of a Riemann sequence of partitions of K,
pV N
j qjPt1,...,Nu,NPN� � BBpRdq together with associated tag-points pxNj qjPt1,...,Nu,NPN� , having

»
Rd
Zpxqdµpxq �

»
K
Zpxqdµpxq � lim

NÑ8

Ņ

j�1

ZpxNj qµpK X V N
j q, (C.88)

where the limit is taken in the sense of L2pΩ,A,Pq (Definition 3.2.1). We remark that the deterministic
function x ÞÑ CovpZpxq, Xq is continuous over K, which can be verified using the Cauchy-Schwarz in-
equality and using the continuity of Z over K. Its integral over K can also then be obtained as the limit of
its corresponding evaluations in the tag points of the sequence pV N

j qjPt1,...,Nu,NPN� . One has then,

Cov
�»

Rd
Zpxqdµpxq, X



� lim

NÑ8

Ņ

j�1

CovpZpxNj q, XqµpV N
j XKq

� lim
NÑ8

Cov

�
Ņ

j�1

ZpxNj qµpV N
j XKq, X

�

� lim
NÑ8

Ņ

j�1

Cov
�
ZpxNj q, X

�
µpV N

j XKq

�
»
K
CovpZpxq, Xqdµpxq �

»
Rd

CovpZpxq, Xqdµpxq. �

(C.89)

Proof of Stochastic Fubini’s Theorem: Since the deterministic function x P Rd ÞÑ ³
Rm fpx, yqdµpyq

is a measurable function with compact support (typical result from Measure Theory) which in addition is
bounded, it is integrable with respect toM (Proposition 3.3.1). Both integrals in (C.86) are then well-defined
as random variables in L2pΩ,A,Pq. We consider then the value

Var
�»

Rd

»
Rm

fpx, yqdµpyqdMpxq �
»
Rm

»
Rd
fpx, yqdMpxqdµpyq



, (C.90)
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which equals

Cov
�»

Rd

»
Rm

fpx, yqdµpyqdMpxq,
»
Rd

»
Rm

fpu, vqdµpvqdMpuq



� Cov
�»

Rd

»
Rm

fpx, yqdµpyqdMpxq,
»
Rm

»
Rd
fpu, vqdMpuqdµpvq



� Cov

�»
Rm

»
Rd
fpx, yqdMpxqdµpyq,

»
Rd

»
Rm

fpx, yqdµpyqdMpxq



� Cov
�»

Rm

»
Rd
fpx, yqdMpxqdµpyq,

»
Rm

»
Rd
fpu, vqdMpuqdµpvq



.

(C.91)

Using conveniently Lemma C.2.1 and Proposition 3.3.1, one concludes that this expression equals»
Rd�Rd

»
Rm

fpx, yqdµpyq
»
Rm

fpu, vqdµpvqdCM px, uq

�
»
Rm

»
Rd�Rd

»
Rm

fpx, yqdµpyqfpu, vqdCM px, uqdµpvq

�
»
Rm

»
Rd�Rd

fpx, yq
»
Rm

fpu, vqdµpvqdCM px, uqdµpyq

�
»
Rm

»
Rm

»
Rd�Rd

fpx, yqfpu, vqdCM px, uqdµpyqdµpvq,

(C.92)

where CM is the covariance measure of M . The classical deterministic Fubini’s Theorem guarantees that all
the repeated integrals in (C.92) are equal, hence expression (C.90) equals 0. This proves the Theorem. �

The next Proposition presents a simple analogue to the case of deterministic functions whose derivatives
are measures.

Proposition C.2.1. Let M be a Random Measure over R. Then, the Random Function defined by

Zptq �Mpr0, tsq1R�ptq �M ppt, 0qq1R�� ptq, t P R, (C.93)

is a càdlàg Random Function whose derivative in distributional sense is M .

Proof: Let CM be the covariance measure of M . Let t0 P R�, and let ∆t ¡ 0. One has that

E
�
|Zpt0 �∆tq � Zpt0q|2

	
� E

�
|Mpr0, t0 �∆tsq �Mpr0, t0sq|2

	
� E

�
|Mppt0, t0 �∆tsq|2

	
� CM ppt0, t0 �∆ts � pt0, t0 �∆tsq.

(C.94)

Since CM is a measure over R� R and the set pt0, t0 �∆ts � pt0, t0 �∆ts decreases toH as δtÑ 0, one
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has that expression (C.94) goes to 0 as ∆tÑ 0, and hence Z is mean-square right-continuous. If t0   0 and
∆t is small enough, the same argument can be used to prove that Z is also right-continuous in mean-square
over R�� .

Let now t0   0. We consider that

E
�
|Zpt0 �∆tq �Mprt0, 0qq|2

	
� E

�
|Mppt0 �∆t, 0qq �Mprt0, 0qq|2

	
� E

�
|Mppt0 �∆t, t0qq|2

	
� CM ppt0 �∆t, t0q � pt0 �∆t, t0qq ,

(C.95)

expression which goes to 0 as ∆t Ñ 0 since pt0 �∆t, t0q � pt0 �∆t, t0q decreases to H as ∆t Ñ 0 and
CM is a measure. Hence Z has left-limits in mean-square over every t0 P R�� , which are given by the
random variables of the form Mprt0, 0qq. This same argument is applied for t0 � 0, using as limit a null
random variable, and for t0 ¡ 0 using as limit the random variable Mpr0, t0qq. This proves that Z is càdlàg
in mean-square.

Let us now prove that dZdt �M in distributional sense. For that, we consider θ P DpRq and we see that,

xM, θy �
»
R
θpsqdMpsq

�
»
R�
θpsqdMpsq �

»
R��
θpsqdMpsq

�
»
R�
�
» 8
s

dθ

dt
ptqdtdMpsq �

»
R��

» s
�8

dθ

dt
ptqdtdMpsq

� �
»
R�

»
R�

dθ

dt
ptq1rs,8qptqdtdMpsq �

»
R��

»
R��

dθ

dt
ptq1p�8,sqptqdtdMpsq

� �
»
R�

»
R�

dθ

dt
ptq1r0,tspsqdtdMpsq �

»
R��

»
R��

dθ

dt
ptq1pt,0qpsqdtdMpsq,

(C.96)

we use Stochastic Fubini’s Theorem C.2.1 to obtain

xM, θy � �
»
R�

»
R�

dθ

dt
ptq1r0,tspsqdMpsqdt�

»
R��

»
R��

dθ

dt
ptq1pt,0qpsqdMpsqdt

� �
»
R�

dθ

dt
ptqM pr0, tsq dt�

»
R��

dθ

dt
ptqM ppt, 0qq dt

� �
»
R

dθ

dt
ptqZptqdt

� �xZ, dθ
dt
y � xdZ

dt
, θy. �

(C.97)
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We finish by describing the covariance of a càdlàg Random Function.

Proposition C.2.2. Let Z be a càdlàg real Random Function over R. Then, its covariance function CZ :

R� RÑ R satisfies:

 for all t P R, CZpt, �q is a càdlàg function, and

 the function t ÞÑ CZpt, tq is càdlàg.

The first condition in Proposition C.2.2 is equivalent to say that CZ is separately càdlàg, that is, that the
one-variable function obtained when fixing any of the two components is a càdlàg function. The equivalence
is obtained immediately from the symmetry of a covariance function.

Proof: Let us prove the necessity. Let t0 P R be fixed. Then, by Cauchy-Schwarz inequality one has
for every s, s0 P R,

|CZpt0, sq � CZpt0, s0q| � |E ppZpsq � Zps0qqZpt0qq| ¤
a
Var pZpt0qq

a
Var pZpsq � Zps0qq. (C.98)

Since Z is càdlàg, then Var pZpsq � Zps0qq Ñ 0 as s Ñ s�0 . This proves that the function CZpt0, �q is
right-continuous. Now, let ptnqnPN � R be a sequence of real numbers such that sn Ñ s�0 . Let us consider
the sequence of real numbers pCZpt0, snqqnPN. Let n,m P N. Using again the Cauchy-Schwarz inequality,
one obtains,

|CZpt0, snq � CZpt0, smq| ¤
a
Var pZpt0qq

a
Var pZpsnq � Zpsmqq. (C.99)

Since Z is càdlàg, the sequence pZpsnqqnPN converges in L2pΩ,A,Pq, and hence it is a Cauchy sequence.
It follows that Var pZpsnq � Zpsmqq Ñ 0 as n,m Ñ 8. It follows that the sequence pCZpt0, snqqnPN is
Cauchy and hence it converges to a limit as sn Ñ s�0 . This proves that CZpt0, �q has left-limits, and hence it
is càdlàg. In order to prove the second condition, we consider that if t P R, then

|CZpt, tq � CZpt0, t0q| �
��E �Z2ptq � Z2pt0q

���
�
���E�pZptq � Zpt0qq2	� 2E pZpt0q pZptq � Zpt0qqq

���
¤ E

�
|Zptq � Zpt0q|2

	looooooooooomooooooooooon
Ñ0 as tÑt�0

�2
a
Var pZpt0qq

a
Var pZptq � Zpt0qqloooooooooooomoooooooooooon

Ñ0 as tÑt�0

,
(C.100)

where we have used the Cauchy-Schwarz inequality and that Z is càdlàg. This proves that t ÞÑ CZpt, tq
is right-continuous. Finally, consider a sequence ptnqnPN � R such that tn Ñ t�0 . We consider then the
sequence

CZptn, tnq � E
�
Zptnq2

�
, n P N. (C.101)

Since Z is càdlàg, and tn Ñ t�0 , Zptnq is Cauchy on L2pΩ,A,Pq, and hence it converges. It follows that
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its squared-norm also does it, and hence CZptn, tnq has a limit as n Ñ 8. This proves that the function
t ÞÑ CZpt, tq has left-limits, and hence it is càdlàg. �

C.2.2 Solving the stochastic Cauchy problem

Let Z be a GeRF over Rd � R. We say that Z has a càdlàg-in-time representation if there exists a family of
spatial GeRFs such that

 for all ϕ P S pRdq, the Random Function t ÞÑ xZt, ϕy is càdlàg in mean-square,

 for all ϕ P S pRdq and for all θ P S pRq, it holds that

xZ,ϕb θy �
»
R
xZt, ϕyθptqdt. (C.102)

If Z has a càdlàg-in-time representation, then its covariance distribution CZ P S 1ppRd�Rq�pRd�Rqq
has a separately-càdlàg-in-time representation, that is, there exists a family of tempered distributions in
S 1pRd � Rdq, pCt,sZ qpt,sq P R� R, such that

 for all ϕ, φ P S pRdq and for all t P R, the function s ÞÑ xCt,sZ , ϕb φy is càdlàg,

 for all ϕ, φ P S pRdq and for all s P R, the function t ÞÑ xCt,sZ , ϕb φy is càdlàg,

 for all ϕ, φ P S pRdq, and for all θ1, θ2 P S pRdq, it holds that

xCZ , pϕb θ1q b pφb θ2qy �
»
R�R

xCpt,sq
Z , ϕb φyθ1ptqθ2psqdpt, sq. (C.103)

This claim can be easily proven using Proposition C.2.2.

This definition of a càdlàg-in-time representation can be defined analogously in the specific cases when
Z is a slow-growing Random Measure (using ϕ P CFDpRdq and θ P CFDpRq, the family pZtqtPR being a
family of spatial slow-growing Random Measures), a slow-growing Random Measure over Rd�R� (that is,
CZ P MSGppRd � R�q � pRd � R�qq, using ϕ P CFDpRdq and θ P CFDpR�q, the family pZtqtPR� being
a family of spatial slow-growing Random Measures), or if Z is such that FSpZq is a slow-growing Random
Measure over Rd�R�, that is, it acts analogously as a member of

�
V pRdqpbCFDpR�q�1 (using ϕ P V pRdq

and θ P CFDpR�q, the family pZtqtPR� being a family of spatial GeRF for which the action to test-functions
in V pRdq is well defined). For the latter two cases, the mean-square càdlàg condition is only required over
R�. Let us describe the latter case more in detail. Let Z be a real GeRF over Rd � R such that its spatial
Fourier Transform is a slow-growing Random Measure concentrated on Rd � R�. Hence, the covariance
distribution of FSpZq, CFSpZq, is in MSG

�pRd � R�q � pRd � R�q�. Using the density of S pRdq in
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V pRdq, it is clear that the random variables of the form xZ,ϕb θy for ϕ P V pRdq and θ P CFDpR�q can be
defined by a limiting argument in a mean-square sense4. It follows that if θ P CFDpR�q, then the application
ϕ ÞÑ xZ,ϕ b θy defines a GeRF which acts similarly to a member of V 1pRdq, in the sense that its Fourier
Transform is a Slow-growing Random Measure over Rd. Similarly, for every ϕ P V pRdq, the application
θ P CFDpR�q ÞÑ xZ,ϕb θy defines a slow-growing Random Measure over R�.

The next Proposition is the stochastic analogue of Proposition C.1.3.

Proposition C.2.3. Let Z be a spatio-temporal GeRF such that its spatial Fourier Transform is a slow-
growing Random Measure over Rd � R�. Suppose in addition that BZ

Bt is also such that its spatial Fourier
Transform is a slow-growing Random Measure. Then, Z has a càdlàg-in-time representation.

Proof: Let U � FSpZq. U is a Random Measure over Rd � R�, and so does BU
Bt . We consider the

family of GeRFs over Rd defined through:

xUt, ϕy :� xBUBt , ϕb 1r0,tsy �
»
Rd�R�

ϕpxq1r0,tspsqd
BU
Bt px, sq, t P R�, (C.104)

for ϕ P CFDpRdq. It is immediate that ϕ P CFDpRdq ÞÑ xUt, ϕy defines a spatial slow-growing Random
Measure.

If ϕ P CFDpRdq is fixed, the application A P BBpRq ÞÑ
³
Rd�R� ϕpxq1AptqdBUBt px, tq defines a temporal

Random Measure, and hence it is immediate from Proposition C.2.1 that the random function t ÞÑ xUt, ϕy
defines a mean-square càdlàg Random Function, for which in addition its covariance function is polynomially
bounded since BU

Bt is slow-growing. The stochastic integrals of the form
³
R�xUt, ϕyθptqdt are then well-

defined for every ϕ P CFDpRdq and θ P CFDpR�q.
Let us now prove that the family (C.104) represents U in the sense of Eq. (C.102). As we did in the

proof of Proposition C.1.3, we approach the function 1r0,ts by a sequence of positive functions pθptqn qnPN �
CcpR�q, continuously differentiable over R�� and such that θptqn � 1 over r0, ts and θptqn � 0 over

�
t� 1

n�1 ,8
	

,

having a decreasing behaviour over the open interval pt, t � 1
n�1q. Then, the functions pθptqn qnPN con-

verge point-wise to the function 1r0,ts, and they are all bounded by 1r0,t�1s. In addition, pθptqn qnPN is

such that the sequence of derivatives pdθptqndt qnPN satisfies that supppdθptqndt q �
�
t, t� 1

n�1

�
, dθ

ptq
n
dt ¤ 0 and

� ³R� dθ
ptq
n
dt psqds � 1 for all n P N, hence, they approach �δt from the right. Let us denote by MU,ϕ the

temporal Random Measure defined by MU,ϕpAq � xU,ϕ b 1Ay for every A P BBpRq. It follows from the
stochastic versions of the Dominated Convergence Theorem (see Section 3.3.3) and Fubini’s Theorem C.2.1

4It is a little bit more technical, but also possible to prove that the random variables of the form xZ,ψy for ψ P
V pRdqpbCFDpR�q can be defined and hence we can treat Z as a continuous linear functional from V pRdqpbCFDpR�q to
L2pΩ,A,Pq. To prove this, it is necessary to prove that the restrictions of functions of the Schwartz space S pRd�Rq to Rd�R�

form a dense subspace of V pRdqpbCFDpR�q and of CFDpRd � R�q. This can be proven following similar arguments as in
Proposition C.1.1.
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that»
R�
xBUBt , ϕb 1r0,tsyθptqdt � lim

nÑ8

»
R�
xBUBt , ϕb θ

ptq
n yθptqdt (since θptqn Ñ 1r0,ts point-wise dominated)

� lim
nÑ8

�
»
R�
xU,ϕb dθ

ptq
n

dt
yθptqdt

� lim
nÑ8

»
R�

»
R�

�dθ
ptq
n

dt
psqdMU,ϕpsqθptqdt

� lim
nÑ8

»
R�

»
R�

�dθ
ptq
n

dt
psqθptqdtdMU,ϕpsq (Stochastic Fubini’s Theorem)

�
»
R�
θpsqdMU,ϕpsq � xU,ϕb φy. (Lemma C.1.1)

(C.105)

and thus the family of GeRFs (C.104) satisfies all the required conditions. The passage to Z is simply
obtained by applying a spatial Inverse Fourier Transform to each member of the family Ut, t P R�. �

Now, in order to construct a solution to the stochastic version of the Cauchy problem (C.49), we see that
we have all the necessary tools to justify the use of the solution

U � F�1
S

�
1Rd�R�V

� � F�1
S

�
e�tg

�pV0 �D�
g pY q0qb 1R�

��D�
g pY q

�
, (C.106)

where Y � FSpXq is a slow-growing Random Measure over Rd�R� and V0 � FSpU0q is a Random Mea-
sure over Rd. Indeed, Duhamel’s operator D�

g can be applied without problem to a slow-growing Random
Measure over Rd � R� since it is defined through an adjoint, the result still being a slow-growing Random
Measure over Rd � R� which has a càdlàg-in-time representation thanks to Proposition C.2.3 . The rest
of the operations such as the restrictions to R� are well-defined for slow-growing Random Measures. The
uniqueness of the solution is guaranteed using the same arguments which prove the uniqueness in the case
of Theorem C.1.2. The analogue of Theorem C.1.2 can be then stated.

Theorem C.2.2. Let X be a GeRF over Rd � R such that its spatial Fourier Transform is a slow-growing
Random Measure concentrated on Rd � R�. Let U0 be a GeRF over Rd such that its (spatial) Fourier
Transform is a slow-growing Random Measure over Rd. Then, there exists a unique-up-to-a-modification
GeRF over Rd �R, U such that its spatial Fourier Transform is a slow-growing Random Measure and such
that

 It has a càdlàg-in-time representation whose evaluation at t � 0 equals U0 almost surely.

 It satisfies (C.62).

The resolution of the stochastized transformed problem (C.61) is done immediately by using a spatial
Fourier Transform.
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C.3 Convergence to the stationary solution

Let us now consider the case where X is a stationary GeRF over Rd � R such that its spatial Fourier
Transform Y � FSpXq is a slow-growing Random measure. An example of such a GeRF is a separable
GeRF with any arbitrary spatial stationary structure and a temporal stationary structure which represents
a continuous random function or a random measure: X � XS b XT , with XT representing a stationary
temporal stationary random function or, for instance, a White Noise.

In this case, if we suppose in addition that there is κ ¡ 0 such that gR ¥ κ, we can consider the unique
stationary solution to (C.68), which is given by

U stat :� F�1

�
1

iω � gF pXq


. (C.107)

We consider hence both GeRFs U stat and the solution over Rd � R� to the stochastic Cauchy problem
U , with U0 being any spatial real stationary GeRF which we will suppose is independent of X . Consider U
to be the solution to the associated Cauchy problem, using the restriction of X to Rd � R� as source term,
which has a càdlàg-in-time representation given by (C.67). The following analogue to Theorem C.1.3 is then
obtained.

Theorem C.3.1. For every ε ¡ 0 and for every ϕ P S pRdq, there exists tε,ϕ P R� such that

E
���U � U stat, ϕb θy��2	   ε, @θ P S pRdq such that supppθq � rtε,ϕ,8q and

»
R�
|θ|ptqdt � 1.

(C.108)

Proof: The proof is completely analogue to the proof of Theorem C.1.3, considering the fact that
both Duhamel’s operator and the operator F�1

T

�
1

iω�gFT pY q
	

coincide over Rd � R� in the sense of Eq.
(C.78), and that this also holds in our stochastic case, since every argument for such a claim is applied to the
test-functions. It follows that (see Eq. (C.79)),

E
���xU stat � U,ϕb θy��2	 � E

�����»
Rd

»
R�
e�tgpξqF�1

S pϕqpξqθptqdtdpV0 �D�
g p1Rd�R�Y q0qpξq

����2
�

�
»
Rd�Rd

»
R��R�

e�tgpξq�sgpηqF�1
S pϕqpξqF�1

S pϕqpηqθptqθpsqdpt, sqdCV0�D�
g p1Rd�R�Y q0pξ, ηq.

(C.109)
Since gR ¥ κ ¡ 0 and CV0�D�

g p1Rd�R�Y q0 is a slow-growing measure over Rd �Rd, we can argue similarly
to the case of Theorem C.1.3 to prove the convergence to 0 as the time flows, obtaining and arbitrarily small
value for fixed ϕ P V pRdq and θ such that

³
R� |θ|ptqdt � 1 with supppθq being contained in an interval
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sufficiently far away from 0. �

We conclude that as the time flows, the solutions gets closer spatio-temporally to the stationary solution
U stat.
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Appendix D

Some notions on Topological Vector Spaces.

A (complex) Hausdorff locally convex topological vector spaceE is a vector space endowed with a topology
determined by a family of semi-norms indexed by an arbitrary index set I , ppiqiPI , and satisfying the axiom

pipxq � 0 for all i P I ñ x � 0. (D.1)

Precisely, the topology with which E is endowed is the weakest topology in which the addition, the multi-
plication by scalar and all the semi-norms ppiqiPI are continuous.

A family of semi-norms ppiqiPI over E is called directed if for all i, j P I there exists k P I and C ¡ 0

such that
pipxq � pjpxq ¤ Cpkpxq, @x P E. (D.2)

One can prove that for every Hausdorff locally convex topological vector space endowed with an arbitrary
family of semi-norms, we can construct a directed family of semi-norms which is equivalent to the initial
one, that is, such that the topologies generated by the two families are the same. If the family of directed
semi-norms consists in just one semi-norm (which is then automatically a norm), the space is a normed
space, and it is called a Banach space if it is complete. If the family of directed semi-norms consists in a
countable family of semi-norms, the space is a metric space, and it is called a Fréchet space if it is complete.

The next Theorem, which can be found in (Reed & Simon, 1980, Theorem V.2) has been widely used in
this dissertation:

Theorem D.0.1. Let E and F two complex Hausdorff locally convex topological vector spaces with families
of semi-norms ppiqiPI and pdjqjPJ respectively. Then, a linear map T : E Ñ F is continuous if and only if
for all j P J there exist i1, ..., in P I and C ¡ 0 such that

dj p T pxq q ¤ C ppi1pxq � ...� pinpxqq , @x P E. (D.3)

283
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In particular, if the family ppiqiPI is directed, then T is continuous if and only if for all j P J there exists
i P I and D ¡ 0 such that

dj p T pxq q ¤ Dpipxq, @x P E. (D.4)

A particular case of Theorem D.0.1 is when the space F is C. In such a case, T : E Ñ C is a continuous
linear functional if and only if there exists C ¡ 0 and ii, ..., in P I such that

|xT, xy| ¤ C ppi1pxq � ...� pinpxqq , @x P E, (D.5)

or equivalently, if and only if there exists i P I and D ¡ 0 such that

|xT, xy| ¤ Dpipxq, @x P E, (D.6)

if the family ppiqiPI is directed.

For the proofs of these claims and for more details about locally convex topological vector spaces, we
refer to (Reed & Simon, 1980, Chapter V).
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RÉSUMÉ

Ces travaux présentent des avancées théoriques pour l’application de l’approche EDPS (Équation aux Dérivées Partielles
Stochastique) en Géostatistique. On considère dans cette approche récente que les données régionalisées proviennent de
la réalisation d’un Champ Aléatoire satisfaisant une EDPS. Dans le cadre théorique des Champs Aléatoires Généralisés,
l’influence d’une EDPS linéaire sur la structure de covariance de ses éventuelles solutions a été étudiée avec une grande
généralité. Un critère d’existence et d’unicité des solutions stationnaires pour une classe assez large d’EDPSs linéaires
a été obtenu, ainsi que des expressions pour les mesures spectrales associées. Ces résultats permettent de développer
des modèles spatio-temporels présentant des propriétés non-triviales grâce à l’analyse d’équations d’évolution présentant
un ordre de dérivation temporel fractionnaire. Des paramétrisations adaptées de ces modèles permettent de contrôler
leur séparabilité et leur symétrie ainsi que leur régularité spatiale et temporelle séparément. Des résultats concernant des
solutions stationnaires pour des EDPSs issues de la physique telles que l’équation de la Chaleur et l’équation d’Onde sont
présentés. Puis, une méthode de simulation non-conditionnelle adaptée à ces modèles est étudiée. Cette méthode est
basée sur le calcul d’une approximation de la Transformée de Fourier du champ, et elle peut être implémentée de façon
efficace grâce à la Transformée de Fourier Rapide. La convergence de cette méthode a été montrée théoriquement dans un
sens faible et dans un sens fort. Cette méthode est appliquée à la résolution numérique des EDPSs présentées dans ces
travaux. Des illustrations de modèles présentant des propriétés non-triviales et reliés à des équations de la physique sont
alors présentées.

MOTS CLÉS

Modèles géostatistiques, Champs aléatoires généralisés, Équations aux Dérivées Partielles Stochastiques, Ap-

proche EDPS, Géostatistique spatio-temporelle, Simulation.

ABSTRACT

This dissertation presents theoretical advances in the application of the Stochastic Partial Differential Equation (SPDE)
approach in Geostatistics. This recently developed approach consists in interpreting a regionalised data-set as a realisation
of a Random Field satisfying a SPDE. Within the theoretical framework of Generalized Random Fields, the influence of a
linear SPDE over the covariance structure of its potential solutions can be studied with a great generality. A criterion of
existence and uniqueness of stationary solutions for a wide-class of linear SPDEs has been obtained, together with an
expression for the related spectral measures. These results allow to develop spatio-temporal covariance models presenting
non-trivial properties through the analysis of evolution equations presenting a fractional temporal derivative order. Suitable
parametrizations of such models allow to control their separability, symmetry and separated space-time regularities. Results
concerning stationary solutions for physically inspired SPDEs such as the Heat equation and the Wave equation are also
presented. A method of non-conditional simulation adapted to these models is then studied. This method is based on the
computation of an approximation of the Fourier Transform of the field, and it can be implemented efficiently thanks to the
Fast Fourier Transform algorithm. The convergence of this method has been theoretically proven in suitable weak and strong
senses. This method is applied to numerically solve the SPDEs studied in this work. Illustrations of models presenting
non-trivial properties and related to physically driven equations are then given.

KEYWORDS

Geostatistical models, Generalized random fields, Stochastic Partial Differential Equations, SPDE Approach,

Space-time Geostatistics, Simulation.
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