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Chapter 1

Introduction

3 out of the 4 states of matter known are fluids: liquids, gases and plasmas
are ubiquitous, and their motion is studied by a branch of Physics called Fluid Dy-

namics. Pioneer of modern fluid-dynamics, Osborne Reynolds in 1883 has been amongst
the first to focus onto the different regimes a flow can pursue, and most importantly, he
identified the key physical parameters involved in the transition process from one state
to another. His experimental apparatus consisted of straight pipes immersed in a water-
tank. Using a trumpet mouthpiece he managed to provide an undisturbed inlet to the
tubes, while injecting a streak of highly coloured water so to track the flow evolution. He
found that when velocities were sufficiently low, the injected streak of colour extended in
a steady straight line. This is one of the key feature of laminar flows, where the motion
of each fluid particle follows well predictable, streamlined, layered paths (Latin lamina:
layer). Increasing the flow velocity he noticed that the coloured streaks tended to become
unsteady, oscillating and suddenly breaking-up, causing the colour to mix with surround-
ing water, filling all the tube. Employing the intermittent light of an electric spark he
remarked that, despite appearing homogeneous, this stage was instead characterised by a
disordered, chaotic motion, with the coexistence of swirly and fluctuating eddies. What
he witnessed was the transition process leading to a fully developed turbulent flow, which
he attributed to an imbalance between viscous and inertial forces. He introduced what is
now known as the Reynolds number Re which, accounting for this ratio, characterises the
behaviour a flow.

While laminar flows are generally associated to slow, viscosity dominated dynamics,
turbulent ones are those most commonly found in almost all technical applications. Flow
around an aircraft wing or a sail, or that inside an engine or an oil duct, ocean waves
onto a shore or the stream within a windfarm, are all characterized by a turbulent motion,
which has the important drawback of a drag increase with respect to laminar conditions.
Drag is the resistance to motion experienced by a fluid flowing on a surface, generated by
the difference in velocity between the solid object and the fluid. The larger the drag, the
larger the forces (and the costs) to keep the fluid and the body in relative motion.

Drag reduction in wall bounded flows has been pursued in the last decades through
the introduction of many passive and active flow control means. Focusing on passive
flow control, many researchers have taken inspiration from Nature to engineer bio-mimetic
surfaces allowing to reduce friction at the wall.
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Figure 1.1 – (a) Scanning electron micrograph depicting a drop of liquid mercury onto the
epidermal surface of a colocasia esculenta, demonstrating the Lotus-Effect. Bar = 50µm,
from Barthlott and Neinhuis (1997). (b) Sketch of a water drop onto a textured surface.
Contact angles of θ ≈≥ 120 denotes superhydorphobic surfaces (Rothstein, 2010). An
example of natural superhydrophobic surface is depicted in figure 7.1
.

1.1 State of the art

Taking inspiration from the Nelumbo nucifera, the Lotus flower, researchers have re-
cently started to engineer highly water repellent solid substrates, called SuperHydrophobic
Surfaces (SHS) (Barthlott et al., 2017). The nanostructure of the Lotus leaves is composed
of a hierarchical structure which, trapping air underneath falling water droplets owing to
capillary forces, reduces the wetting by limiting direct contact of the liquid with the solid
substrate, see sketch in figure 1.1.

The renewed self-cleaning property of Lotus leaves, where water droplets rolls at the
slightest incline (Schellenberger et al., 2016) collecting all solid impurities (Barthlott and
Neinhuis, 1997), is due to the low air to water viscosity ratio (µair/µwater ≈ 2%). Su-
perHydrophobic Surfaces engineered on the basis of Lotus leaves are capable of trapping
gas pockets within the micro-roughnesses on their surfaces by means of capillary forces
when submerged by a liquid. When the flow conditions allow to maintain this non-wetted
(Cassie and Baxter, 1944) state, the overlying liquid flow is only partially in contact with
the solid substrate as well as partially sustained by the underlying mattress of trapped
gas bubbles (plastron) with the overall effect of lubricating the overlying liquid flow. In
recent years, a number of experimental works have studied the effect of superhydrophobic
surfaces on wall-bounded flows, starting from laminar microchannels (Ou et al., 2004; Byun
et al., 2008; Schäffel et al., 2016) towards fully turbulent channel and boundary layer flows
(Daniello et al., 2009; Zhang et al., 2016; Rosenberg et al., 2016; Gose et al., 2018).

Ou et al. (2004) have been amongst the first to experimentally demonstrate the poten-
tial of submerged superhydrophobic surfaces for reducing drag in laminar flows. Through
µPIV measurements they have found resulting slip velocities greater than 60% of the
average velocity measured at the wall, as well as a parabolic velocity profile, confirming
the previous analytical results obtained by Philip (1972), the first to theoretically study
this kind of flows. Starting from this seminal work, a number of successive experimental
works have provided an increasingly better understanding of the influence of submerged
superhydrophobic surfaces in laminar flows. At first focusing on their capacity in providing
some sort of slip (Truesdell et al., 2006; Tsai et al., 2009; Lee and Kim, 2009) in channel
and Taylor-Couette flows, researchers have addressed their attention to SHS’s capability
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of retaining their lubricating features (Byun et al., 2008; Lee and Kim, 2011; Xu et al.,
2014; Xiang et al., 2017), they have studied their liquid-lubricant dynamics (Schellenberger
et al., 2016; Liu et al., 2016) and even measured the flow field within the nano sculptures
characterising them (Schäffel et al., 2016). At the same time, numerous analytical and
numerical studies have been carried out. Ybert et al. (2007) have proposed scaling laws
so that complex textured superhydrophobic surfaces could be modelled as a single spa-
tially homogeneous partial slip, considered a major result for researchers working both
in laminar and turbulent flows (Seo et al., 2015), as indicated in the following. In fact,
studies onto wetting stability (Emami et al., 2013) and drag reduction (Davies et al., 2006;
Haase et al., 2016; Li et al., 2017; Alinovi and Bottaro, 2018) in the laminar regime re-
port a drag reduction up to 40%, depending on the amount of slip a superhydroprobic
surface can provide. This quantity has been found to scale approximately linearly with
the texture size up to the point where capillary forces are capable of robustly retain the
lubricating gas layer (Lee et al., 2016). These encouraging findings have promoted the
interest of using such gas-lubricated surfaces so to reduce drag also in fully turbulent flows.
Gogte et al. (2005) have been the first to the author knowledge to report turbulent drag
reduction using superhydrophobic surfaces. They managed to obtain a 18% drag reduction
onto an hydrofoil coated with randomly dispersed superhydrophobic coating. In the fol-
lowing years researchers have been capable to further decrease drag (Henoch et al., 2006;
Daniello et al., 2009; Jung and Bhushan, 2009), up to the latest work of Gose et al. (2018)
who attained a 90% drag reduction. Altering the behaviour of the turbulence inner scale
(Ling et al., 2016; Rowin et al., 2017, 2018), superhydrophobic surfaces have demonstrated
their potential in reducing turbulent drag in a number of flow configurations, spanning
from channel flows (Daniello et al., 2009), boundary layers (Gose et al., 2018) up to the
Taylor-Couette flow (Srinivasan et al., 2015). Numerical simulations of turbulent flows over
superhydrophobic surfaces as well have extensively increased in accuracy, thereby enabling
to provide a better understanding of the key physical mechanisms involved in the drag
reduction observed in experiments. Min and Kim (2004) have been amongst the first to
study the behaviour of a flow in a channel enclosed with superhydrophobic surfaces, again
modelled as a spatially homogeneous partial slip boundary condition (Navier, 1823; Ybert
et al., 2007) so to reduce the numerical cost of each simulation. For a constant flow rate
mass, they showed that streamwise slip can reduce skin-friction, whereas spanwise slip can
increase drag, altering the mean velocity profiles. A model for skin friction of turbulent
flows over SHS has been first presented by Fukagata et al. (2006), then successively im-
proved by Busse and Sandham (2012) and Seo and Mani (2016) so to take into account
more complex surface patterns. Only more recently Seo and Mani (2016) and Fairhall and
García-Mayoral (2018) have proven the accuracy of spatially homogeneous modellings to
predict the performance of SHSs. In fact these latter studies rely on the a priori assump-
tion that the scales of the overlying turbulent flows are large compared to the size of the
rough surface texture (Bechert and Bartenwerfer, 1989). In other words, this modelling is
reliable only in the ’vanishingly small’ textures (Fairhall et al., 2018), therefore providing
only a limited amount of slip. In fact while increasing texture size would provides larger
slips, their characteristic length could match the one of the overlying turbulent structures,
invalidating the previous assumption and requiring for the explicit resolution of the SHS
rough texture (Martell et al., 2010; Park et al., 2013; Rastegari and Akhavan, 2015; Seo
et al., 2015). Even if these spatially refined simulations account for the size of the surface
roughness, the dynamics of the gas-water free-interface is generally neglected. Only more
recently Seo et al. (2017) carried out a comprehensive study taking into account its influ-
ence. They observed the onset of flow-induced capillary waves and provided a new criterion
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to determine the robustness of air-water interfaces, therefore enabling an accurate design of
superhydrophobic surfaces capable of withstanding wetting transition while providing drag
reduction. In fact numerous experiments have shown that the larger the surface texture,
the higher the possibility for the gas layer depletion to occur, producing an increase in drag
up to 90% (Gose et al., 2018). This behaviour is due to the wetting transition, and while
mastering this phenomenon is crucial for real world application, multiphase-fully-resolved
turbulent simulations capable of capturing the triple-point dynamics have still not been
reported in literature.

Regarding the influence of superhydrophobic surfaces in controlling the laminar-turbulent
transition process, only few studies are available up to date, the majority of which focus-
ing onto its initial linear stages. The first linear stability analysis of a channel flow with
superhydrophobic walls modelled with a spatially homogeneous Robin boundary condition
have been reported by Min and Kim (2005), who found that introducing slip stabilises the
Tollmien-Schlichting waves. This effect was attributed to the shear reduction, and similar
results have been found accounting for anisotropic surfaces (Pralits et al., 2017; Alinovi,
2018). In 2D, local stability analysis have been carried out by Donati (2015); Yu et al.
(2016) onto streamwise homogeneous configurations. A global stability analysis has been
carried out for the flow over a bluff body by Auteri et al. (2016), who have attributed the
flow stabilisation to a shear reduction.

The study by Min and Kim (2005) represents to the authors knowledge the only
work showing the influence of superhydrophobic surfaces in controlling the whole laminar-
turbulent process. They have shown that transition delayed further for increasing slip
lengths but apart from this promising result, no details on the transition process has been
provided in that pioneering 4 pages letter. The aim of the present thesis is to extend
the work of Min and Kim (2005), trying to shed some light onto the physical mechanism
involved in this transition delay, by means of both qualitative and quantitative observa-
tions. The effectiveness of SHS in delaying the onset of turbulence is tested for various
transition scenarios. The influence of the different characteristic features of superhydroph-
pbic surfaces is explored using increasingly accurate modelling where, relaxing a priori
assumptions, we take into account for additional physical features.

1.2 Controlling the laminar-turbulent transition process
with superhydrophobic surfaces

Tackling this problem with numerical tools requires some modelling; since the viscosity
of a gas is usually negligible comparing to that of a liquid, and conjecturing that the
gas-liquid surface will remain constantly flat, it is generally agreed that this surface can
be modelled by a flat wall characterised by alternating no-slip and shear-free zones, as
discussed, to cite a few, by Ybert et al. (2007); Martell et al. (2009); Jelly et al. (2014);
Rastegari and Akhavan (2015).

Even though such approximations allow for the use of the single phase, incompressible
Navier-Stokes equations, accurate simulations remains computationally demanding (Seo
and Mani, 2016). In fact, to study these configurations one has to solve both the macro-
scopic laminar-turbulent bulk flow having the scale of the channel half-height H, as well
as the microscopic dynamics at the scale of the texture roughnesses, L, as depicted in
the sketch of figure 1.2, where x, y, z represent the streamwise, wall-normal and spanwise
directions respectively. Whilst for laminar flows in microchannels at low Reynolds number
the H/L ratio is of order ≈ 10 (Byun et al., 2008), it can easily reach ≈ 1000 when a fully
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developed turbulent flow at large Reynolds number is considered (Daniello et al., 2009;
Zhang et al., 2016; Rowin et al., 2017), considerably increasing the computational cost of
the problem.

For both laminar (Tretheway and Meinhart, 2002; Choi et al., 2003; Ou et al., 2004)
and turbulent flows (Daniello et al., 2009; Seo and Mani, 2016; Rosenberg et al., 2016)
it has been found that these alternating, spatially heterogeneous slip/no-slip boundary
condition patterns can be effectively modelled via an equivalent spatially homogeneous
Robin boundary condition:

us = Ls
∂u

∂n
, and ws = Ls

∂w

∂n
(1.1)

where [us, ws] and ∂[u,w]/∂n are the slip velocity and the shear rate at the wall, while
Ls denotes the slip length, as sketched in figure 5.1. While a number of studies take into
account anisotropic patterns (Min and Kim, 2004; Aghdam and Ricco, 2016; Pralits et al.,
2017), the simplest approach is that of considering surfaces that are statistically homo-
geneous in all wall-parallel directions, therefore allowing for the use of a single isotropic
slip length Ls which, together with a standard non permeable assumption (v = 0) will
constitute the framework of a part of the present work. This approach, similar to that
recently proposed by Zampogna et al. (2019) for rough walls, allows for a huge reduction of
the computational cost of a Direct Numerical Simulation (DNS) of channel flow: Seo and
Mani (2016) have recently shown that a DNS using heterogeneous slip/no-slip boundary
conditions would need a 12 times more refined computational grid compared to an equiva-
lent computation using a homogeneous slip boundary condition. Recent Direct Numerical
Simulations of turbulent flows over spatially heterogeneous boundary conditions, resolved
up to the scale of the texture roughness (Seo and Mani, 2016) have confirmed the trend
found in experiments for both laminar (Ou et al., 2004; Choi et al., 2003) and turbulent
regimes (Daniello et al., 2009; Zhang et al., 2015, 2016), as well as the theoretical predic-
tions by Fukagata et al. (2006); Seo and Mani (2018). Given the texture geometry, in most
flow conditions the slip length Ls is linearly dependent on the texture characteristic size
L. Since Ls scales (mostly) linearly with L (Rastegari and Akhavan, 2015), one would be
tempted to increase the texture size to obtain higher drag reduction. However, for rough-
ness of very large characteristic size, the high shear and pressure fluctuations will induce
gas bubble depletion, resulting in a wetted (Wenzel, 1936) state, resulting in an overall
increase of the drag (Zhang et al., 2016; Gose et al., 2018; Seo et al., 2017), despite the
large value of the slip length theoretically expected.

While the influence of superhydrophobic surfaces as a mean of passive flow control has
been extensively studied in laminar and turbulent regimes, to the authors knowledge only
one study has by now focused on the impact of SHS onto the transition process. Using
homogeneous slip boundary conditions, Min and Kim (2005) investigated the effect of the
imposed slip length on a specific transition path, the K-type scenario (Zang and Krist,
1989). They showed that in this particular case transition can be delayed by using a
slippery boundary condition, but they did not explain how and why this effect is achieved
nor they investigate which physical mechanism is inhibited or damped by the presence
of a superhydrophobic surface. This point is particularly interesting and worth to be
investigated since it can potentially provide the key for avoiding transition in specific
flow conditions, leading to a considerable drop of the drag. Moreover, since the laminar-
turbulent transition path is strongly dependent on the initial disturbances affecting the
flow, it still remains to be investigated in which flow conditions transition delay, and the
consequent drag reduction, can be actually achieved.
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Figure 1.2 – Sketch of a channel flow with submerged SuperHydrophobic Surfaces, depicting
the length-scales gap between the overlying laminar-turbulent macroscopic flow (H) and
the near-wall, capillary driven microscopic free-surface dynamics (L)

In this framework, chapter 5 focuses on how SHSs affect the laminar to turbulent pro-
cess in a channel flow for a number of different transition scenarios. Direct Numerical
Simulations with homogeneous slip conditions are used in order to make a direct valida-
tion with the available literature results (Min and Kim, 2005) as well as for keeping the
computational cost sufficiently low (Zang and Krist, 1989). Standard transition scenarios
(K-type, optimal) have been considered, as well as uncontrolled transition, whose modelling
has been the object of one of the chapters of this work.

1.3 Triggering uncontrolled transition
in channel flow numerical simulations

While procedures for triggering controlled transitions in numerical simulations of a tem-
poral channel flow has been introduced already in the eighties (Zang and Krist, 1989), at
the present day a theoretical-numerical framework to properly trigger uncontrolled transi-
tion as a consequence of the flow receptivity to external noise is still missing. This is not
the case of semi-open configurations such as the boundary layer for which, noisy velocity
perturbations can be easily added at the free-stream so to trigger receptivity of the under-
lying boundary layer, thus resulting in different transition scenarios depending onto the
intensity of these external disturbances (Brandt et al., 2004a), as depicted in figure 1.3.

Differently from boundary layers, channel flows are not characterized by any freestream
region, where a statistically homogeneous flow in the wall-normal direction can be retrieved.
Therefore, uncontrolled transition is often triggered by using noisy velocity perturbations,
although producing an initial non-physical transient behaviour, which can be detrimental
when studying laminar-turbulent transition. Many techniques have been already devel-
oped to ensure a fully turbulent state when solving numerically the Navier-Stokes equa-
tions (Wu, 2017), such as the recycling inflow (Lund et al., 1998), the synthetic eddy
(Jarrin et al., 2006) or the random Fourier method (Kraichnan, 1970). These approaches
rely on ad-hoc inlet boundary conditions which are maintained during the course of the
simulation, affecting the flow up to considerable distances downstream of it before reach-
ing a fully turbulent regime. For this reason, these techniques are ill-suited for studying
laminar-turbulent transition, since the footprints of these inlet conditions strongly affect
the transition process. Differently from fully-developed turbulent flows which are charac-
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Figure 1.3 – Sketch of a transitional flow over a flat plate. Depending onto the intensity
of perturbations in the external free-stream, measured with the quantity Tu which is
introduced in chapter 4, path to transition can follow different routes. (a) Sketch of low-
intensity, K-type like transition scenario, with the characteristic succession of TS-waves, λ
and hairpin vortices, widely discussed in chapters 5 and 6. (b) Representation of transition
triggered by uncontrolled, higher intensity perturbation, typically identified by transient
energy growth and the onset of streamwise velocity modulation (streaks), introduced in
chapter 4.

terized by time-decorrelated properties (Pope, 2000), the main features of transitional flows
are strictly dependent on initial and boundary conditions, each imposed condition lead-
ing to a specific transition path which relies on different physical mechanisms (Kachanov,
1994b). For this reason, transition scenarios are classified depending on the nature of the
initial and boundary conditions from which they stem: deterministic transition scenarios,
that usually occur under controlled (laboratory) conditions, and stochastic ones, typical
of uncontrolled configurations. The first class of transition paths is based on mechanisms
that are well understood on a theoretical basis (Schlichting and Gersten, 2017) including
notably the K-type, H-type (Sayadi et al., 2013b), Oblique Waves (OW) (Berlin et al.,
1994), and Streamwise Vortices (SV) (Hoepffner et al., 2005) scenarios, to cite a few. Be-
ing mostly based on linear mechanisms at least in their early phases, they are quite easy
to reproduce numerically although difficult to observe experimentally due to the low level
of background noise requested (Klebanoff et al., 1962b). On the other hand, when noise
levels are sufficiently high, transition can occur bypassing some phases of linear growth
of the disturbances, leading more rapidly to breakdown as a consequence of non-linear
effects. This second class of transition paths, despite currently occurring in experiments
in uncontrolled environments (Kendall, 1998; Matsubara and Alfredsson, 2001), is chal-
lenging to reproduce numerically. For boundary-layer flows, the Free-Stream Turbulence
(FST) typically occurring in experiments can be reproduced numerically by ad-hoc inlet
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boundary conditions using a numerical method introduced by Brandt et al. (2004b); Jacobs
and Durbin (2001b). This method, which has been specifically designed for wall-bounded
open flows (namely, the flow over a flat plate), relies on the idea of injecting at the in-
let of the numerical domain a velocity perturbation which accurately models the main
features of free-stream turbulence, such as spectrum, turbulence intensity, and integral
length scale. Due to the receptivity of the boundary layer, this disturbance will trigger
transition downstream of the inlet, similarly to what happens in an experimental setup
in the presence of grids. Numerically, this synthetic FST is constructed as a weighted
sum of eigenmodes of the continuous branch of the Orr-Sommerfeld and Squire operator
(Jacobs and Durbin, 2001b), with wavenumbers and associated amplitudes suitably chosen
to satisfy a prescribed energy spectrum (Brandt et al., 2004b) in the homogeneous area
outside the boundary layer. Using these methods, uncontrolled transition to turbulence
in boundary-layer flows has been extensively studied (Elder, 1960; Wu et al., 2014; Lee
and Zaki, 2015) and compared to controlled scenarios (Klebanoff, 1955; Berlin et al., 1999;
Sayadi et al., 2013b; Berlin et al., 1999; Schlatter et al., 2009), producing a rich body of
literature (Morkovin, 1994; Kachanov, 1994b). On the other hand, in wall-bounded parallel
flows such as the channel flow, although controlled transition has been long studied (Zang
and Krist, 1989; Sandham and Kleiser, 1992b; Lee and Zaki, 2017) (also due to the rela-
tively low computational cost as compared to spatially evolving flows (Kleiser and Zang,
1991)), a little body of literature is available to the authors knowledge regarding uncon-
trolled transition. In fact, the presence of streamwise-periodic boundary conditions and
the lack of a free-stream prevent the use of synthetic FST to induce uncontrolled transition
in numerical experiments, which in most cases is triggered using noisy velocity fields built
as a random superposition of Stokes modes (Reddy et al., 1998). However, despite being
less studied, uncontrolled transition is far more common than controlled one, especially
considering the fact that it usually occurs in subcritical conditions, namely for values of
the Reynolds number lower than the critical linear one. Thus, new methods for numerically
triggering this type of transition are worth to be introduced in the literature.

Towards this aim, we propose a new method to trigger turbulence in a streamwise-
periodic shear flow using a synthetic forcing appropriately constructed on the basis of an
optimal forcing analysis, so to mimick the uncontrolled transition scenario. We present and
discuss this method in chapter 4, where we design a method for triggering transition in
a channel flow via response to a suitably constructed noisy perturbation mimicking those
typically observed in uncontrolled transition. Due to the streamwise periodicity of the flow,
this perturbation cannot be injected at the domain inlet, but it should be introduced in the
Navier-Stokes equations as a forcing, in the same way as it is done for plasma actuators
(Mullenix et al., 2013). In many recent works (Klein et al., 2017; Schmidt and Breuer,
2017), volume forcing is used to trigger turbulence in numerical simulations. Differently
from these works, the method we propose is not specifically designed to efficiently obtain a
turbulent state, but to induce uncontrolled transition in closed wall-bounded flows through
receptivity of the flow to external disturbances, as it would occur in an experimental facility.
In other words, the method proposed here intends to provide a numerical tool to trigger in
a physically accurate way transition to turbulence, at the same time avoiding to impose a
continuous forcing to sustain a constant turbulence level, as it usually occurs in unbounded
flows (Klein et al., 2017).

In order to construct a perturbation able to trigger a large-amplitude response in the
flow as a consequence of receptivity, we have chosen to use as a basis a set of harmonic
disturbances that maximise (within a linear framework) the flow response for different
given frequencies (Schmid and Henningson, 2001; Schmid, 2007). The usefulness of the
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optimal response to harmonic forcing, mediated by the resolvent operator, for constructing
simple models reproducing key statistical and structural descriptions of wall turbulence, has
been proven by many recent works (see Moarref et al. (2014); Sharma et al. (2017) among
others). The synthetic noisy volume forcing is then constructed as a linear composition
of these optimal volume forcings issued from resolvent analysis, suitably weighted in order
to respect a chosen energy spectrum.

1.4 Modelling superhydrophobic surfaces:
influence of microstructure size
and gas-water free-surface dynamics

Under certain conditions SHS can retain gas bubbles trapped within their roughness
even when fully submerged in water (Cassie and Baxter, 1944), offering a form of passive
control in hydrodynamic flow (Lee and Kim, 2011). In fact, unlike active control methods
(Ceccio, 2010), SHS have already proven the potential of reducing drag in a number of
applications by providing lubricating air layer (plastron) without the need of any external
energy output (Daniello et al., 2009; Castagna et al., 2018), acting as a slippery boundary
and reducing skin friction for the overlying hydrodynamic flow (Rothstein, 2010).

Barrier to the real world application of SHS is the depletion of the lubricating gas layer.
Whilst on one hand one would be tempted to attain higher slip by increasing the texture
size, as theoretically predicted both in laminar (Ybert et al., 2007) and turbulent (Seo
and Mani, 2016) flows, air-water interfaces becomes less stable, and the wetting transition
would be more likely to occur. Following the depletion of the gas bubbles, the liquid
fills the roughness elements (Wenzel, 1936), transforming the SHS into a wetted, drag-
increasing rough surface (Zhang et al., 2016; Ling et al., 2016; Gose et al., 2018). It is
nowadays well known that a number of different causes could affect the plastron stability
in laminar flows (Wexler et al., 2015; Patankar, 2016), but only recently Seo et al. (2015,
2017) have quantified physical mechanism involved in the failure of a SHS supporting fully
developed turbulent flows. The "boundary map for stable superhydroprobic surface design"
proposed by Seo et al. (2017) suggests that with the maximum texture size (L+

c ) for wetting-
stable gas-infused surface, drag reduction in a realistic superhydrophobic surface would be
approximately less than 30%. This prediction is consistent with the latest experimental
observations (Bidkar et al., 2014; Park et al., 2014; Zhang et al., 2015, 2016; Ling et al.,
2016; Gose et al., 2018), therefore providing a reliable threshold for realistic use of SHSs
in turbulent flows. As a consequence, the typical size of a wetting stable SHS roughness is
O ≈ 100 smaller than the characteristic length of the overlying turbulent flow (Seo et al.,
2017). In these conditions the slippery wall does not modify the overlying turbulence
dynamics (Fairhall et al., 2018), and the mechanism for drag reduction is akin to the one
observed for the flow over riblets (Luchini et al., 1991).

Accurate numerical simulation of the wetting transition, characterised amongst the
others by the gas-liquid-solid contact line dynamics, surface tension and liquid-gas diffu-
sion, is an extremely complex task per se, requiring for sophisticated and computationally
demanding methods such as free-energy simulations (Lisi et al., 2017), but which are still
not adapted for the simulation of high Reynolds number regimes.

Owing to the major impacts in understanding the physical mechanisms involved in de-
signing passive drag control methods, researchers have come up with a number of models in
order to study underwater superhydrophobic surfaces, trying to retain most of the physical
mechanisms while reducing the computational cost. Here we shortly introduce the most
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common ones, in decreasing order of complexity.
The first is based onto the assumption that, in order to provide some form of drag

reduction, the lubricating plastron layer must be retained within the surface sculptures,
hence that the air-water interfaces are securely pinned to the roughness edges (Steinberger
et al., 2007; Seo et al., 2015), therefore unconditionally wetting-stable. But even simulating
both the multi-scale//multi-phase physics of such flows is still computationally challenging,
and the latest available works are limited to the laminar regime (Li et al., 2017; Alinovi
and Bottaro, 2018).

To reach the turbulent regime, Seo et al. (2017) have modelled the superhydrophobic
surfaces as periodic textures of patterned slip and no-slip boundary conditions on the
overlying flow. The gas-liquid interface dynamics is taken into account via a linearised
Young-Laplace equation, solved coupled with the overlying turbulent flow. By replacing
the air-water surface with an equivalent hyperelastic compliant (Gad-El-Hak et al., 1984;
Luhar et al., 2015) yet slippery membrane, Seo et al. (2017) confirmed that the interface
fluctuations are very small compared to the overlying flow scales (Martell et al., 2010), and
that the free-surface deformation does not alter the mean nor the fluctuations of velocity
profiles in turbulent statistics.

This result can be considered, in our opinion, as an a posteriori validation of a second
modelling, in which gas-liquid interface are assumed to be flat, where the superhydrophobic
surface is modelled as an alternation of no-slip–shear-free patterned patches (Martell et al.,
2010; Park et al., 2013; Jelly et al., 2014; Rastegari and Akhavan, 2015; Seo et al., 2015,
2017; Fairhall et al., 2018), greatly reducing the complexity and the cost of numerical
simulations (Seo et al., 2017).

The third and last approach consist of using a macroscopic, spatially homogeneous
Navier (Robin) slip (Navier, 1823) boundary condition

us = Ls
∂u

∂n
, (1.2)

to effectively model the flow over a rough superhydrophobic surface (Zampogna et al.,
2019). Here the average velocity on the boundary us, called slip velocity, is linked to the
mean wall shear by a single constant, the slip length Ls. Seo and Mani (2016) have proven
that in the limit of small roughness size the single slip length model provides the same mean
and fluctuations that would be measured by using a spatially accurate heterogeneous slip–
no-slip boundaries.

Many recent studies have shown the equivalency of these methods in modelling the
influence of a SHS drag-reducing wall, both in laminar (Davis and Lauga, 2010; Li et al.,
2017) and in turbulent regimes, as long as some key physical constraints are satisfied
(Seo and Mani, 2016; Seo et al., 2017). However, while being crucial for any real world
application, the in-between laminar-turbulent transitional regime remains at the present
day mostly unexplored, except for a single work by Min and Kim (2005).

In chapter 6, we investigate the influence of different SHS modelling onto the bench-
mark K-type laminar-turbulent transition process (Klebanoff et al., 1962a; Sandham and
Kleiser, 1992a; Kachanov, 1994a; Sayadi et al., 2013a) by means of global linear stability
analysis and time resolved direct numerical simulations (DNS). We have considered SHS
made out of a regular pattern of square posts because of their relevance in studying arbi-
trary disposed, sprayed-like coatings (Seo and Mani, 2018), and at the same time to dispose
of a quantitative comparison of our simulations in the turbulent regime (Seo and Mani,
2016; Seo et al., 2017). Moreover, being spatially isotropic, SHS made out of square post
will simplify the modelling process, both when using spatially homogeneous (Min and Kim,
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Figure 1.4 – Sketch depicting K-type transition occurring over a superhydrophobic surface.
Snapshots represents a DNS where both spatial heterogeneity and free-surface dynamics
have been taken into account. The typical succession of TS-like waves (t = 28), λ (t = 135)
and hairpin vortices (t = 150) up to the breakdown to turbulence (t = 200), identified
as isosurfaces of the λ2 criterion, is somehow influenced by the dynamics of the moving
interface, shifted sideways for sake of visualization. Reτ , introduced in chapter 5, measure
the friction within the channel, and indicates the onset of turbulence. For more details the
reader is referred to chapter 6.

2004) or heterogeneous equivalent boundary conditions (Seo et al., 2017). Roughness size
of the SHS has been selected based on the design principles proposed by Seo et al. (2017),
thus small enough to ensure wetting stability while providing the highest possible slip. In
chapter 5 we have extended the work of Min and Kim (2005) showing how superhydropho-
bic walls modelled via a simple Homogeneous Slip Length (HSL) could differently affect
transition in a channel flow, depending onto the specific transition scenario one wishes to
control. In fact, while being totally ineffective in delaying uncontrolled transitions, dom-
inated by streamwise velocity modulations (streaks)(Jacobs and Durbin, 2001a; Brandt
et al., 2003), SHS have proven to be a viable method to delay or even inhibit the onset of
turbulence in scenarios characterised by the presence of near-wall structures, such as the
K-type transition (Nishioka et al., 1975; Kleiser and Zang, 1991; Schlatter et al., 2006).
Reducing the wall shear, the slippery boundary interferes with the development of the
coherent structures usually occurring during this specific transition scenario, altering the
vortex stretching-tilting processes that produces Λ and hairpin vortices (Malm et al., 2011;
Sayadi et al., 2013a). Depending on its performance, namely on the slip it could provide,
we showed how SHS inhibits the sweep-ejection process, therefore drastically retarding or
even avoiding the breakdown to turbulence.

Objective of chapter 6 is to determine whether more physically accurate models, in-
cluding spatially heterogeneity as well as the free-surface dynamics, would affect laminar-
turbulent transition with respect to the predictions made using a simple equivalent Navier
boundary condition. Our aim is to verify the robustness of different SHS modellings in
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transitional flows, as it has been proven to be the case in both laminar (Ou et al., 2004)
and turbulent(Seo and Mani, 2016; Seo et al., 2017) regimes. On the one hand our inves-
tigation proves that the size of SHS roughness capable of sustaining wetting transition is
so small that it does not interact with the overlying coherent structures occurring during
transition, and that the slip provided by these gas-impregnated surfaces can effectively
retard the process. On the other we demonstrate that considering the air-water interface
deformation introduces a non-zero wall normal velocity on the wall which, despite being
small, promotes the ejection mechanism which eventually advances transition. Figure 1.4
depicts the main features observed during K-type triggered transition occurring over su-
perhydrophobic surfaces, such as the deformation of the gas-liquid free-surfaces and its
interaction with the overlying coherent structures characterising the process.

To sum up, this thesis addresses the following three main questions:
— How is the laminar-turbulent transition process affected by the use of superhy-

drophobic surfaces as a mean of passive control?
— Does it depend on the specific transition scenario occurring?
— What are the key physical features to take into account for an accurate modelling

of superhydrophobic surfaces in transitional flows?
The objective of this thesis is to give some answers to these questions.

1.5 Organization of the manuscript

In Chapter 2 we introduce the key mathematical notions on which the present work is
based, while in Chapter 3 we provide the numerical framework used to carry out our anal-
ysis. In chapter 5 we show how superhydrophobic surfaces, modelled as a single spatially
homogeneous slip length, can affect the laminar-turbulent transition process. We show
that the effectiveness of slippery surfaces in delaying the occurrence of turbulence relies
on their capacity to interact with the physical mechanism characteristic of each transition
scenario. In Chapter 4 we present a method to trigger uncontrolled transition in numerical
simulations of a temporal channel flow. Using this purpose-built technique, we show that
while being highly effective in controlling deterministic K-type process, superhydrophobic
surfaces are ineffective in delaying natural transition. Finally, in chapter 6 we study how
including other physical features in the modelling of superhydrophobic surfaces can change
our previous findings. Finally, general conclusions and perspectives are provided in chapter
7.
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Chapter 2

Mathematical Framework

In this section we introduce the basic concepts for the study of fluid mechanics, along
with some of the tools we employ for the analysis of the laminar-to-turbulent transitional
regime. We present the notions from the linear stability framework, such as the concepts
of base flow, the time asymptotic behaviour of infinitesimal perturbations, the spatial
homogeneity and the difference between local and global stability. Also we introduce the
concepts of short time dynamics and response to a harmonic forcing.

2.0.1 The Navier-Stokes equations

The Navier-Stokes equations, named after Claude-Louis Navier and George Gabriel
Stokes, describe the motion of viscous fluids. They are based on the assumption that the
conservation of momentum, arising from Newton’s second law applied to the fluid motion,
is balanced by stresses in the fluid system. If these latter depend linearly on the sum of
diffusing viscous term, proportional to the gradient of velocity, and pressure, the fluid is
defined as Newtonian. When effects such as temperature, fluid velocity with respect to the
speed of sound, and the scales of the motion compared to the free patch of atoms are large,
most gases and liquids can be considered as incompressible. Under these assumptions the
Navier-Stokes equations read as:

∂U

∂t
= −(U · ∇)U −∇P +

1

Re
∇2U + f (2.1)

∇ ·U = 0, (2.2)

where U(x, t) and P (x, t) are the velocity and pressure field and Re is the dimensionless
Reynolds number characterising the flow, representing the ratio between the inertial and
viscous forces occurring within the flow. The first equation is the conservation of mo-
mentum while the second one represents the incompressibility constraint. Whilst this set
of partial differential equations is well defined mathematically when boundary and initial
conditions are defined, the presence of the non-linear term (U · ∇)U) in the momentum
conservation has restrained the analytical resolution of these equations to a few configu-
rations. This is still nowadays an open problem; approximate mumerical solution can be
obtained discretizing equations (2.1) and (2.2) in space and in time, representing the re-
search field of Computational Fluid Dynamics (CFD). The numerical framework employed
in this thesis is described in chapter 3.
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2.1 Instability Framework

First step to study the departure of an initially laminar flow up to a fully turbulent
regime, is to investigate the evolution of perturbations on top of an unperturbed state. If
the perturbation decays in time/space, it is said to be stable, while if its amplitude grows
asymptotically it is labelled as unstable. These notions, borrowed from the dynamical
system framework, are essential for posing the physical and mathematical problems in the
following. In general, time-evolving systems such as those governed by equations (2.1) and
(2.2) can be written as

∂Q

∂t
= F(Q), (2.3)

where Q = (u, p)T and F is a non-linear operator. The state variables can be expressed
as:

Q(x, t) = Qb(x) + q(x, t), (2.4)

which is to say that Q is sum of a (steady) base state Qb(x) plus a time evolving pertur-
bation q(x, t). Substituting (2.4) in (2.3) we obtain:





∂Qb

∂t
= F(Qb) = 0

∂(Qb + q)

∂t
= F(Qb + q)

(2.5)

where the base solution is provided and the perturbation represents the unknown of the
problem. At this point the definition of stability itself is not unique. Let us assume a system
such as that in equation (2.5), evolving on a domain V and closed with a convenient set of
boundary and initial conditions. The norm of the perturbation can be expressed as:

||Q−Qb||(t) =

[∫

V
(Q−Qb)

2dV
] 1

2

. (2.6)

The base state Qb is said to be:
— Lyapunov stable if: ∀ε > 0, ∃δ(ε) > 0 such that if||Q(x, 0)−Qb(x, 0)|| < δ then
||Q(x, t)−Qb(x, t)|| < ε,∀t ≥ 0

— Asymptotically stable if it is Lyapunov stable and limt→∞ ||Q(x, t)−Qb(x, t)|| =
0

— Globally unconditionally stable if it is asymptotically stable
∀ ||Q(x, 0)−Qb(x, 0)|| ⇒ limt→∞ ||Q(x, t)−Qb(x, t)|| = 0

A base state is conditionally stable when finite amplitude perturbations depart from it
asymptotically. On the other hand, focusing onto the evolution of infinitesimal perturba-
tions we are allowed to linearise the governing equations, which represents the fundamental
idea behind the linear stability theory framework.
The key physical mechanism involved in the linear instability of wall-bounded shear flows
as well as in the first stages of the laminar-turbulent transition process of have been stud-
ied during the last century relying onto the linearized framework (Schmid and Henningson,
2001). The present work aims at extending these findings indicating how the linear stability
of shear flows is modified if bounded with slippery superhydrophobic surfaces.

2.2 Linear Stability

In the linear stability framework, a base flow Qb is said to be stable if all perturbations
q decay in time/space. To study the evolution of such perturbations, we inject equation

14
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(2.4) in equation (2.3), and linearising around the base state we obtain the general form:




B
∂q

∂t
= Jq

q(x, t = 0) = q0

Lq(x0, t) = 0 ∈ ∂D
(2.7)

where B is a mass matrix Schmid and Henningson (2001), J is the Jacobian operator,
q0 the initial and Lq(x0, t) the boundary conditions of the problem. Being system (2.7)
autonomous in time, we can assume solutions in the form:

q(x, t) =
1

2π

∫

Lλ

q̂(x)eλtdλ+ c.c. (2.8)

where q̂ is the Fourier-Laplace transform of q, c.c. denotes the complex conjugation and
λ = σ + iω is the complex frequency of the normal mode considered, integrated onto the
Lλ path in the complex plane. Injecting (2.8) in (2.7) we obtain the eigenvalue (λ) and
eigenvector (q̂) problem:

λBq̂ = Jq̂, (2.9)

representing the temporal stability of the system itself. To each eigenvector q̂i is associated
an eigenvalue, where Re(λi) = ωi, describes the evolution of its amplitude in time, while
oscillating at a frequency Im(λi) = σi. If at least one σi > 0, the system is said to be
asymptotically unstable, whereas if σi < 0 ∀i, it is considered as asymptotically stable.
This constitutes the concepts of the linear Global stability analysis framework, where no
assumption is made on the base state and perturbation spatial distribution, therefore the
fully three-dimensional base flow reads Ub(x) = (Ub(x), Vb(x),Wb(x))T . Thus, equation
(2.9) can be written as:




λû = −Ub
∂û

∂x
− Vb

∂û

∂y
−Wb

∂û

∂z
− û∂Ub

∂x
− v̂ ∂Ub

∂y
− ŵ ∂Ub

∂z
− ∂p̂

∂x
+

1

Re
∆û

λv̂ = −Ub
∂v̂

∂x
− Vb

∂v̂

∂y
−Wb

∂v̂

∂z
− û∂Vb

∂x
− v̂ ∂Vb

∂y
− ŵ ∂Vb

∂z
− ∂p̂

∂y
+

1

Re
∆v̂

λŵ = −Ub
∂ŵ

∂x
− Vb

∂ŵ

∂y
−Wb

∂ŵ

∂z
− û∂Wb

∂x
− v̂ ∂Wb

∂y
− ŵ ∂Wb

∂z
− ∂p̂

∂z
+

1

Re
∆ŵ

∂û

∂x
+
∂v̂

∂y
+
∂ŵ

∂z
= 0

(2.10)

While being the most general framework available, tackling a global stability problem is
still computationally challenging as we will show in chapter 3, and only in the last decades
we have been able of obtaining reliable solutions of the eigenvalue problem for fully 3D
flows (Loiseau et al., 2014).

On the other hand, taking advantage of spatial homogeneity of the base state, the lin-
ear stability of parallel-flow (i.e. whose base state has one or more spatially homogeneous
directions, such as Couette and Poiseuille flows), have allowed in the past for the resolution
of less computationally expensive approaches (Orszag, 1971). Assuming a base state, or
base flow, in the form of Ub = (Ub(y), 0, 0)T , the linearised Navier-Stokes equations be-
come homogeneous in the x and z directions, as well as in time. Further expanding the
perturbations

q(x, t) =
1

(2π)3

∫

Lλ

[∫

Lβ

(∫

Lα

q̂(y, α, β, λ)ei(αx+βz)+λtdα

)
dβ

]
dλ+ c.c., (2.11)
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Chapter 2. Mathematical Framework 2.3. Non-normal operator

where we have assumed the perturbations to have a sinusoidal form, characterised by a
dispersion relation for the streamwise and spanwise wavenumbers, α and β, respectively.
This normal modes expansion represents the building block of the local stability theory
framework. Prescribing perturbations having a prescribed real wavevector k = αx+ βz is
the idea behind the temporal stability analysis framework. Relying on the work of Squire
(1933), (2.10) can be reduced to:





λû = −v̂ ∂Ub
∂y
− iαûUb − iαp̂+

1

Re

(
∂2

∂y2
− α2

)
û

λv̂ = −iαûUb − iα
∂p̂

∂y
+

1

Re

(
∂2

∂y2
− α2

)
v̂

iαû+
∂v̂

∂y
= 0

(2.12)

The advantage of this approach is that the eigenproblem (2.9) has now been massively
reduced, from 3D to 1D, allowing for inexpensive numerical resolutions. Before concluding
this section we would like to stress again that the key difference between global and local
stability analysis relies onto the fact that in the latter the flow is homogeneous in one
or two spatial directions (for instance, in the direction of mean flow advection for parallel
flows). While the most direct consequence relies on the complexity of the base flow studied,
one has to take special care about the implications on convective and absolute instability
(Huerre and Monkewitz, 1990) too.

2.3 Non-normal operator

Following Squire’s theorem (Squire, 1933), the most unstable mode of equation (2.12)
is a 2D perturbation, having β = 0. Using this assumption Orszag (1971) has been the
first to accurately determine the critical Reynolds number (Rec) for a Plane Poiseuille
Flow (PPF), namely the one for which at least one eigenvalue has a σi > 0. Whereas
Rec ≈ 5772, it is well known that transition to turbulence can be observed for way lower
values of the Reynolds number, Re ≈ 1000 (Manneville, 2015). The same can be said
about Couette flow, where transition is observed for Re ≈ 350 (Lundbladh and Johansson,
1991), whilst being unconditionally stable from a linear point of view (Romanov, 1973).
This behaviour is not only related to non-linear effects, but also to the non-normality of the
J operator (Reddy and Henningson, 1993; Schmid, 2007), which allows a strong transient
growth of initially small perturbations triggering non-linearity. Here we report some of the
key results arising from the linear non-normal framework. The reader is referred to chapter
4 for more details.

2.3.1 Short time dynamics, optimal perturbations

Let us consider A operator to be the Jacobian operator in a divergence free space,
therefore equation (2.7) yields:

∂u

∂t
= Au. (2.13)

The evolution of a given velocity field, from time t = 0 to a target time T is therefore
described by the relation:

uT = Mu0, (2.14)
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where M is the exponential propagator matrix eAT . Our goal is to find the perturbation
u0 which maximises the quantity

G(T ) = max
u0

ET
E0

, (2.15)

called gain, representing the ratio between energy increase from time 0→ T , where energy
is defined as the inner product E(t) = 〈ut,ut〉. Ratio (2.15) can be recast in:

G(T ) = max
u0

ET
E0

= max
u0

〈uT ,uT 〉
〈u0,u0〉

= max
u0

〈Mu0,Mu0〉
〈u0,u0〉

= max
u0

〈M+Mu0,u0〉
〈u0,u0〉

, (2.16)

where M+ is the adjoint operator of M , equal to its conjugate transpose (Schmid, 2007).
Finding the uT maximising condition (2.15) consists of solving the optimal perturbation
problem, and can be written as an eigenvalue problem, yielding:

(
M+M − γ

)
u0 = 0. (2.17)

Matrix M+M is symmetric and defined positive and the optimal perturbation u0 turns
out to be the eigenvector associated to the largest eigenvalue γ. Finally, perturbation
uT at time T is recovered using equation (2.14). Even if the system is linearly stable,
yielding that all eigenvectors of A have negative growth rate and each eigenvector decays
asymptotically, non-normal interaction of these latter can lead to transient energy growth,
eventually producing non-linearities and transition to turbulence. We will cover this specific
transition scenario in chapter 5.

2.3.2 Response to harmonic forcing, optimal forcing

Let us suppose our system 2.13 to be forced by a forcing termf leading

∂u

∂t
= Au+ f , (2.18)

and that this forcing is harmonic in time, namely f = f̂eiωt+c.c., with ω ∈ R. Its response
u it short time dynamics is strictly related to the non-normality of the eigenmodes of A
(Schmid, 2007). When system (2.13) is stable, and all eigenmodes of A are stable, its
homogeneous solution goes asymptotically to zero, leaving only the particular solutions in
the form

u = ûeiωt + c.c. (2.19)

Injecting (2.19) in (2.18) yields:

û = (iωI −A)−1

︸ ︷︷ ︸
R

f̂ (2.20)

linking the harmonic forcing f (input) to the system’s response u (output), at a fixed
ω. Operator R is known as resolvent matrix. Following the same process described in
the previous section, we can wonder which is the forcing able to maximize the response,
namely ||û||2/||f̂ ||2. Again we can rearrange the previous equation into an eigenvalue
problem from which the optimal forcing can be obtained (Schmid, 2007). Further details
about this optimal forcing analysis as well as its application for triggering transition in
closed wall-bounded flows, are presented in chapter 4.
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Chapter 3

Numerical Tools

3.1 Introduction to the spectral elements code Nek5000

In the mid-eighties Paul Fischer, Lee Ho, and Einar Rønquist (M.I.T) developed the
incompressible fluid flow solver NEKTON, with technical input from A. Patera and Y.
Maday. A commercial version was brought to market by Fluent, Inc, as NEKTON 2.0, in
1996. Paul Fischer branched off a research version of the code known as Nek5000. This
code was recognized with the Gordon Bell prize for algorithmic quality and sustained parallel
performance in 1999. Today, Fischer’s code is released as an open source project covering
a broad range of applications including thermal hydraulics of reactor cores, transition in
vascular flows, ocean current modeling and combustion. More than two dozen research
institutions and more than 100 users worldwide are using the code. Leading edge scalability
has been demonstrated up to 262144 processors producing more than 170TFlops (Extreme
Scaling Workshop 2010 Report) 1. All the 3D simulations reported in this work have been
carried out using NEK5000, a Spectral Element Method (SEM) (Patera, 1984) combining
finite elements with spectral methods. The reader is referred to the books of Deville et al.
(2002); Canuto et al. (2007). For sake of simplicity the notation used in this section is the
same as the one in Deville et al. (2002).

3.1.1 Spatial discretization: spectral elements

In order to be solved numerically, linear and non-linear Navier-Stokes equations are
spatially discretized using spectral elements method. These methods share many similari-
ties with the finite elements, as such they are part of the family of approximation schemes
based on the Galerkin method, therefore Navier-Stokes equations are solved in their weak
form. Following the approach suggested by Loiseau et al. (2014), we will introduce the
method by applying spectral elements spatial discretization to a simpler case, namely the
1D Burgers equation.





∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

u(t = 0, x) = u0,

u(t, x = ∓1) = ±1,

(3.1)

Computational domain considered is Ω := {x ∈ [−1, 1]}. Equation (3.1) is subject to
Dirichlet boundary condition (BC) at each end of the domain. Despite its simplicity this

1. https://nek5000.mcs.anl.gov/index.php/Main_Page
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Chapter 3. Numerical Tools 3.1. Introduction to the spectral elements code Nek5000

partial differential equation contains some of the key ingredients of the Navier-Stokes ones,
namely the non-linearity, making it a suitable benchmark for numerical methods.

3.1.2 Variational formulation and spatial discretization

As mentioned before SEM share many similarities with the Galerkin method. In this
framework partial differential equations are solved in their weak form. To this end we
introduce a set of trial function v(x) belonging to a Sobolov space HN0 (Ω) which, injected
in (3.1), provides its weak counterpart:

∫

Ω
v
∂u

∂t
dx+

∫

Ω
vu
∂u

∂x
dx = −ν

∫

Ω

∂v

∂x

∂u

∂x
dx (3.2)

If the solution and the test function of the problem are approximated as
{
u(x, t) =

∑N
i=0 φi(x)ui(t)

v(x) = φj(x), 0 ≤ j ≤ N
(3.3)

it is possible to rewrite the variational problem in the form:
(∫

Ω
φiφjdx

)
dui
dt

+

(∫

Ω
φjφiui

dφk
dx

dx

)
uk = −

(
ν

∫

Ω

dφj
dx

dφi
dx

dx

)
ui (3.4)

which can be further recast in matrix-vector form:

M d

dt
u+ C(u)u+Ku = 0 (3.5)

with u = (u0, . . . , uN )T , M the mass matrix, C(u) the convective operator and K the
stiffness matrix. Matrices components are given by:





Mij =
∫

Ω φiφjdx,

Cij(u) =
∫

Ω φiφj
dφi
dx

dx,

Kij = ∇
∫

Ω

dφj
dx

dφi
dx

dx,

(3.6)

The derivation of the variational form of the Burgers equation is up to this point identical
to the one used in standard Galerkin methods. The differences with SEM arise from the
different choice of test and trial functions φi(x), namely the selection of the approximation
space and basis. In fact while finite elements methods generally relies on uniform spacings,
Legendre polynomials are used in SEM, since they can provide the best approximation in
the HN norm (Deville et al., 2002). The domain Ω is discretized into E hexaedral elements.
Each one is defined as Ωe := {x;xe−1 < x < xe}, 1 ≤ e ≤ E, and let Ω̂ := {ξ;−1 ≤ ξ ≤ 1}
to be the reference element onto which each element Ωe is mapped through an affine
transformation. Assuming a three-dimensional flow, the discrete velocity in each element
Ωe mapped on the three-dimensional reference element Ω̂3 can be written as:

u (x (ξ, ζ, η)) |Ωe =

N∑

i=0

N∑

j=0

N∑

k=0

uei,j,khN,i(ξ)hN,k(ζ)hN,k(η) (ξ, ζ, η) ∈ Ω̂ (3.7)

where hN,i, hN,j and hN,k are the one-dimensional Nth-order Lagrange interpolants based
on the Legendre polynomials, x is a mapping function of the local geometry and uei,j,k
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are the unknown nodal values in Ωe(Deville et al., 2002). To avoid spurious pressure
modes two different quadratures rules are used. Velocity is represented on a N + 1 Gauss-
Lobatto-Legendre (GLL) quadrature, while the pressure on the N − 1 Gauss-Legendre
(GL), resulting in the PN −PN−2 formulation. At this point discretizing Burgers equation
equations using GLL quadrature rules yields:

M
d

dt
u+C(u)u+Ku = 0 (3.8)

whereM ,K are the discretised mass matrix, containing the integration weights, and stiff-
ness matrices representing the discrete Laplacian, while C(u)u represents the non-linear
advection operator evaluated using the convection form. Applying the same procedure
to the dimensionless Navier-Stokes equations, using both GLL and GL quadratures, we
obtain:




M

d

dt
u = −C(u)u− 1

Re
Ku+DT p+Mf

−Du = 0
(3.9)

In addition to the terms already present in equation (3.8), here we have introduced D
and DT representing the divergence and gradient operators. In all the different studies
presented in this manuscript we have used a polynomial approximation of order 7, while
the number of spectral elements in each direction as well as their spatial distribution has
been tuned so to meet the typical requirements for the simulation of a turbulent channel
flow, as indicated in the following chapters.

3.1.3 Time discretisation

In Nek5000, linear terms are solved by using stable implicit methods, while the non-
symmetric non-linear C(u)u term is treated explicitly so to avoid algorithmic difficulties.
This results into a peculiar semi-implicit scheme BFDk/EXTk: the viscous terms are
discretized implicitly using backward differentiation of order k, while the non-linear ones
are treated explicitly by extrapolation of order k, where in general k = 1, 2, 3. For k = 3,
the fully discretized Navier-Stokes equation written with the BFD3/EXT3 scheme reads
as:

(
11

6∆t
M +K

)
un+1 −DT

i p
n+1 =

M

∆t

(
3un − 3

2
un−1 +

1

3
un−2

)

−
(
3Cun − 3Cun−1 +Cun−2

)
+Mfn

(3.10)

−Dun+1 (3.11)

which is solving for the discrete variables un+1 and pn+1 at the time step n + 1 with a
third-order global accuracy (see equation (6.4.22) in Deville et al. (2002)). Equations (3.10)
and (3.11) rearranged in matrix form yield:

(
H −DT

−D 0

)(
un+1

δpn+1

)
=

(
Mfn+1 +DT pn

0

)
(3.12)

where DT pn have been added to both sides to avoid non-vanishing error for steady state
solution, function of δpn+1 = pn+1 − pn, which goes to zero for a steady solution (Deville
et al., 2002). This matrix problem can be solved using LU decomposition. In order to
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obtain a solution that is solenoidal, the matrix Q is used to project u on a divergence free
space. Therefore the solution to such LU decomposition is a two-step procedure:

(
H 0
−D −DQT

)(
u∗

δpn+1

)
=

(
Mfn+1 +DT pn

0

)
(3.13)

and (
I −QDT

0 I

)(
un+1

δpn+1

)
=
(
u∗δpn+1

)
(3.14)

where the predicted velocity field u∗ is then projected into a divergence-free space up to
obtention of the solenoidal field un+1. The choice of matrix Q determines which projection
method is used. In the present code, the matrix Q is set to be:

Q = H−1 (3.15)

resulting into a Uzawa algorithm. Evaluation of the inverse of the Helmholtz operatorH is
computationally intense. To overcome this problem, instead of the exact Uzawa algorithm,
the Blair-Perot formulation is implemented in NEK5000. The projection matrix then is
Q = γM−1/∆t (with γ = 11∆t/6 for the BDF3/EXT3 scheme). Since the mass matrix
M is a diagonal, the computation of its inverse is straightforward. Using the Blair-Perot
algorithm a non-zero splitting error is introduced, proportional to δpn+1. This requires
for special care when choosing a suitable ∆t for the time marching procedure. Extensive
details can be found in Deville et al. (2002).

3.2 Boundary conditions

Spatial discretization has to take into account the boundary conditions to complete both
the non-linear and linearised Navier-Stokes equations. Two types of boundary conditions
are applicable to the fluid velocity in the standard Nek5000 distribution: essential (Dirich-
let) and natural (Neumann). In our work we have chosen to use the nonstress formulation,
therefore the boundary condition must be homogeneous on the entire fluid element. This
will be one of the reasons why the simulation of the flow over superhydrophobic surfaces
modelled as a spatial alternation of slip/no-slip patches requires a high number of spectral
elements, as indicated in chapter 6.

3.2.1 Robin Boundary Condition

In this work we will present a method to model the presence of a superhydrophobic wall,
based on the use of a Robin boundary condition for the wall-parallel velocities, namely:

(
u+ Lxs

∂u

∂y
= 0, w + Lzs

∂w

∂y
= 0

)

wall

(3.16)

which, together with standard, no penetration in the wall normal direction

(v = 0)wall (3.17)

represents a flow bounded in the wall-normal direction by a slippery spatially homogeneous
surface characterised by the scalar slip length L•s, as introduced in chapter 5. Robin
boundary condition for the velocity field is not originally implemented in NEK5000, and
in the following we detail the procedure to include such condition. Taking cue from the
Newton cooling boundary condition already implemented for the passive scalar within the
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subroutine bcneusc, Robin partial slip for the velocity field is implemented by refitting
theH matrix involved in the resolution of the Helmholtz problem. According to equations
(3.10) and (3.9), H = (b0M/∆t+K), where b0 = 11/6 for the BFD3/EXT3 scheme.
Owing to the specific procedure used to ensure a divergence-free field, Helmholtz operator
is kept splitted in Nek5000, so that b0K/∆t = H2 and −K = H1, and these matrices are
formed with a call of the routine sethlm.

Our approach to implement the Robin (ROB) boundary condition has been to tweak
the symmetry (SYM) one. Symmetry condition to the velocity field for a PN − PN−2,
no-stress formulation are imposed on top of the Helmholtz operator during the call of the
subroutine plan3, which has been modified to accommodate for the modified H.

H1 and H2 operators are formed within plan3 with a call to the subroutine sethlm,
after which our modification starts. At this point we compute the additional contribution
due to the Robin boundary condition using a newly purpose-built routine. Subroutine
BCNEUSC_MOD() is built upon the BCNEUSC one used for imposing the Newton
cooling law. It is designed so to find all the boundary elements labelled as ’SYM’, and to
build a matrix containing the weights that has to be added on top of H2 so to ensure for
the prescribed Robin boundary condition. Modified plan3 as well as BCNEUSC_MOD
are reported in E.1 and E.2 respectively in appendix.

At this point the H2 contribution computed with BCNEUSC_MOD is added on top
of the original component of the Helmholtz operator, and we resume to the native code
operation.

This implementation is suitable for isotropic slip lengths, provided that the same modi-
fied H2 operator is used for both streamwise and spanwise velocity components, during the
call to the ophinv subroutine. For anisotropic slip lengths, it would have been necessary to
build up different H2_X and H2_Z using a similar bcneusc_ROB subroutine, and modify
the ophinv so to take into account for the spatial anisotropy. A possible implementation
within Nek5000 would require modifying subroutines ophinv, and is indicated in E.3 and
E.4 in the appendix. The advantage of having derived a Robin boundary condition from
the SYM one is that the non penetration Dirichlet at the wall is automatically imposed,
overwriting the results obtained during the CALL HMHOLTZ(’VELY’) obtained from
the call to ophinv subroutine. The implementation presented here relies on the fact that
wall normal direction is always y. Some further development would be needed in order to
extend it to surfaces with any orientation.

3.2.2 Arbitrary Lagrangian-Eulerian Formulations
and Free-Surface Flows

In the present work we have studied the influence of different conditions aiming at
modelling superhydrophobic surfaces withstanding laminar-turbulent transition in wall
bounded flows. Characteristic feature of such surfaces is the presence of gas-liquid in-
terface. In the present work Arbitrary Lagrangian-Eulerian (ALE) implementation has
been used so to take into account the interface dynamics, as shown in chapter 6.

3.2.3 Preliminary concepts

In general solid mechanics problems are based on a Lagrangian formulation, while
fluid mechanics ones uses an Eulerian approach. In the case of free-surface flows or fluid-
structure interaction problems, neither of these two approaches are suitable to describe the
ongoing physics due their intrinsic limitations.
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In fact in the Eulerian formulation the domain definition is generally fixed. If not, a
proper application of the boundary conditions requires for some form of interpolation of
the geometry and the condition itself. On the other hand the reference system is attached
to material points of the continuous medium when a Lagrangian formulation is employed,
which is to say, the domain elements deform with the material. Arbitrary Lagrangian-
Eulerian formulations aims at combining these two paradigms, taking the most desirable
features from each of them. The idea is that the reference system is not defined a priori,
but instead is an unknown of the problem, as well as for the fluid velocity field itself. Here
we follow the approach described by Ho (1989), and reported by Deville et al. (2002). First
we define as w(x, t) the mesh velocity field, which in general is different from the fluid
velocity u(x, t). δ/δt denotes the time derivative of a fictious particle moving with the
mesh at velocity w(x, t), and is called ALE derivative. From the definition of material
derivative D • /Dt = ∂ • /∂t+ u · ∇•, the evolution of a function f becomes:

δf

δt
=
∂f

∂t
+w · ∇f. (3.18)

Three configurations are possible:
— w = 0, the mesh is fixed and we recover the Eulerian formulation;
— w = u, the mesh moves as the continuum field, resulting into a Lagrangian Formu-

lation;
— w 6= u 6= 0, and time derivative (3.18) takes into account this variation.

In the following we recall some of the key ingredients of this method, referring the reader
to Deville et al. (2002) for further details. Equilibrium of forces acting on a fluid reads as:

d

dt

∫

Ω(t)
ρudV =

∫

∂Ω(t)
tdS +

∫

Ω(t)
ρfdV (3.19)

where t accounts for contact forces on the continuum surface (dS) and f for the body
forces of the volume (dV ), provided a domain Ω(t). According to Cauchy principle, stress
vector t depends on the oriented normal n to the domain ∂Ω(t) at a given position x,
yielding:

t(n) = σ · n (3.20)

where in this chapter σ denotes the stress tensor, so that ti = σijni using Einstein notation.
Let’s study the dynamics at the interface of two fluids, such as water (•w) and air (•a).
Equilibrium of forces at the free interface is written as:

tw + ta = 0, (3.21)

which, provided that nwater = −nair, results in:

σwnw = σana. (3.22)

We recall that for a Newtonian fluid the frame-indifferent stress tensor reads as

σ = [−p+ λ Tr (d)] I + 2µd (3.23)

where λ is the second viscosity, µ the dynamic viscosity and d is the rate-of-deformation
tensor, defined as:

d =
1

2

[
∇u+ (∇u)T

]
(3.24)
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Considering that the air/water viscosity ratio is (µwater/µair ≈ O(1000)), the gas is treated
as inviscid, then the interface condition is:

(−pwI + 2µdw)n = −pan (3.25)

Projecting the latter equation onto the normal n and tangent vector τ to the free-surface
yields:

−pw + 2µ(dwn) · n = −pa, (3.26)
2µ(dwn) · τw = 0. (3.27)

For capillary tension dominated phenomena, a generalisation of Laplace law gives:

− pw + 2µ(dwn) · n = −pa − γ
(

1

R1
+

1

R2

)
(3.28)

where γ denotes the surface tension coefficient and 1/R1, 1/R2 the principal curvatures
of the free-surface, thus (1/R1 + 1/R2) is double the mean curvature of the surface. The
key parameter accounting for the ratio between inertia and surface tension forces is the
dimensionless Weber number:

We =
ρU2L

γ
(3.29)

3.2.4 ALE implementation within NEK5000

Here, we provide a brief description of the procedure developed by Ho (1989) so to
implement ALE in within the SEM code NEK5000, employed in the present work so to take
into account for the free-surface dynamics characteristic of underwater superhydrophobic
surfaces. Being the free-surface a material surface, the resulting kinematic condition for
the normal velocity reads as

w · n = u · n (3.30)

and
w · τ = 0 (3.31)

is imposed so to minimize the mesh deformation, while on solid boundaries w = 0.
The approach proposed by Ho (1989) is to compute the mesh velocity by solving an

elliptic problem of the form:
Ew = 0, (3.32)

The operator E comes from an elasticity problem, namely the steady linear equilibrium
problem given by

∇ ·
(
σD + pI

)
+ ρf = 0 (3.33)

where:
— p = (3λ+ 2µ)∇ · a;
— σD = 2µε;
— µ = E/ [2(1 + ν)] , λ = Eν/ [(1 + ν)(1− 2ν)] are the Lamé coefficients written

using Young’s modulus E and the Poisson coefficient is set to ν = 0.499 so to
obtain an incompressible elastic continuum;

— the deformation tensor ε =
1

2

[
∇a+ (∇a)T

]
written with reference to the mesh

displacement vector a.
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Once the mesh velocity is obtained, its movement is obtained by integrating the equation

dx

dt
= w (3.34)

where x is the location of the mesh points. Assuming the wall tangent displacement of
superhydrophobic surfaces is negligible (see chapter 6), during this work we will track only
wall-normal location of the grid in time, which is stored within the YM1 field.

3.2.5 How ALE is used in NEK5000

ALE free-surface formulation employed in this thesis is based on the free-surface channel
flow example 2, located within the fs_2 folder along with other examples provided with
the code. Natively implemented ’MS ’ free-surfaces boundary condition is used, where the
surface tension is provided within the usrdat2 subroutine, called once at the beginning
of the code execution. This approach follows the one used by NEK5000 developers team
to study free-surface dynamics, as reported in examples/fs_2 case.

3.3 Modal decomposition

3.3.1 Global linear stability, time-stepping algorithm

Computing the eigenproblem (2.9) arising from a global framework in 3D such as the
one presented in equation (2.10) using standard algorithms would require huge numerical
resources, and most of the cases are just out of reach. As a consequence, a time-stepping
approach can be used (Bagheri et al., 2009). Here we have employed the algorithmic
implementation of Loiseau et al. (2014) within Nek5000. The dynamics of an infinitesimal
perturbation around the base flow is governed by the first equation of (2.7), which we
rewrite here:

∂u

∂t
= Au (3.35)

where A is the Jacobian projected onto a divergence free space. Time integration of the
latter formulation reads asM = eAδT , which is the exponential propagator, whose related
eigenvalue problem becomes:

µû = Mû. (3.36)

The norm of the largest eigenvalue dictates the asymptotic behaviour of the system, since
if ||µ|| > 1 the perturbation grows and vice versa, provided that u(δt) = eAδtu0 = Mu0.
WhileM can not be computed explicitly, its action can be approximated by time-marching
the linearised Navier-Stokes equations from t = 0 to t = ∆T , allowing for the use of Arnoldi-
based iterative eigenvalue solvers. Finally, eigenpairs of the exponential propagator (µ, û
are linked to those of the Jacobian J by:

λ =
log(µ)

∆T
, and Bq̂ = û. (3.37)

Key of time-stepping approach is to project the n × n M operator into a smaller m ×m
space, where n is the number of degrees of freedom of the 3D global problem (namely the
number of gridpoints times the number of variables) and m << n to enable for standard
eigenproblem solution. Let us consider a n×m operator Vm composed of m orthonormal-
ized vectors of size n × 1. Each m-th column of this matrix is a snapshot taken at time

2. https://github.com/Nek5000/NekExamples/tree/master/fs_2
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t = (m−1) ·δt from the linearised Navier-Stokes solver, successively orthonormalised using
a Gram-Schmidt process (see Loiseau et al. (2014) for more details). V V T ≈ I, where I
is the n× n identity matrix, therefore:

M = V V TMV V T = V HV T , (3.38)

where H is the m × m Hessenberg matrix. In section 6 we compute the leading global
eigenmodes of a channel flow enclosed with spatially heterogeneously modelled superhy-
drophobic surfaces using exactly this Arnoldi algorithm (Loiseau et al., 2014).

3.3.2 Local stability analysis

In chapter 5 and 6 modelling superhydrophobic surfaces with a spatially homogeneous
slip length allows for the use of the local stability analysis framework, introduced in (2.12).
A 1D local, spectral collocation method based on Chebyshev polynomials (Schmid and
Henningson, 2001) has been implemented in Octave language. A primitive formulation is
used and slippery surfaces are considered through a Robin boundary condition. In this
framework problem (2.12) is spatially discretized onto a 1D vector y = [−1, . . . ,+1] of
size N × 1, with N the number of gridpoints. N × N matrices DyDyy arise from the
spectral collocation method (Hoepffner et al., 2019), and Dyu indicates the derivative in
the wall normal direction of the quantity u. Owing to the mode expansion (2.11), spatial
derivatives in streamwise and spanwise direction are Dx = iαI,Dz = iβI, with I the
N ×N identity matrix and α, β the streamwise and spanwise wavenumbers, respectively.
Eigenproblem (2.12) then assumes the form:

λ




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0




︸ ︷︷ ︸
B





u
v
w
p





︸ ︷︷ ︸
q̂

=




S −Uy 0 −Dx

0 S 0 −Dy

0 0 S −Dy

Dx Dy Dz 0




︸ ︷︷ ︸
A

q̂ (3.39)

where 0 indicates a zerosN×N matrix, U = Iub, Uy = DyU with ub the vector containing
the base flow Ub, and S = −UDx+1/Re(−α2I+Dyy−β2I). Robin boundary conditions
at the u,w components, as well as v = 0 at the walls, are imposed by replacing the rows
within the previous matrix problem representing their values at the boundary:

A(1 + 0 ·N, . . . ) = −Y (1 + 0 ·N, . . .) + Ls · T (1 + 0 ·N, . . . )
A(1 + 1 ·N, . . . ) = +Y (1 + 1 ·N, . . .)
A(1 + 2 ·N, . . . ) = +Y (1 + 2 ·N, . . .) + Ls · T (1 + 2 ·N, . . . )
A(N + 0 ·N, . . . ) = −Y (N + 0 ·N, . . .)− Ls · T (N + 0 ·N, . . . )
A(N + 1 ·N, . . . ) = +Y (N + 1 ·N, . . .)
A(N + 2 ·N, . . . ) = +Y (N + 2 ·N, . . .) + Ls · T (N + 2 ·N, . . . )

and

B(1 + 0 ·N, . . . ) = 0

B(1 + 1 ·N, . . . ) = 0

B(1 + 2 ·N, . . . ) = 0

B(N + 0 ·N, . . . ) = 0

B(N + 1 ·N, . . . ) = 0

B(N + 2 ·N, . . . ) = 0
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provided that Y ,T are the block diagonal matrices built the I and Dy of size 4 ·N ×4 ·N ,
and that Ls is the slip length, introduced in equation (3.16). Eigenvalues and eigenvectors
are computed calling the function eig(A,B), using a QZ algorithm, while the results are
numerically converged for N = 100.
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Chapter 4

Triggering Natural transition
in numerical simulations

Research on laminar-turbulent transition of wall-bounded parallel flows has usually
focused on controlled scenarios where transition is triggered by perturbations having simple
shapes and spectra. These disturbances strongly differ from the environmental noise usually
present in experimental setups or industrial applications, where uncontrolled transition
is usually observed. In this chapter a new method is proposed to trigger uncontrolled
transition to turbulence in wall-bounded parallel flows exploiting the receptivity of the
flow to a volume forcing (Picella et al., 2019).

Using some concepts provided by linear stability and sensitivity analysis, such as the
resolvent, we propose a method for constructing a volume forcing capable of inducing
stochastic velocity perturbations with a prescribed energy level, eventually leading to
laminar-turbulent transition as a response of the system to external noise.

The method has been tested in a channel flow configuration, using direct numerical sim-
ulations of the fully nonlinear Navier-Stokes equations in the presence of the volume forcing
constructed on the basis of optimal forcing functions. Subcritical transition to turbulence
induced by the prescribed forcing has been investigated and compared to other transition
scenarios, where deterministic perturbations are imposed for obtaining a turbulent flow.
Finally, the fully developed turbulent flows induced by the proposed method has been
analysed, showing that low-order statistics and energy balance equations are practically
unaffected by the continuous synthetic forcing.

In section 4.1 we set the problem framework and we outline the method for triggering
turbulence in a streamwise-periodic wall-bounded flow by using a synthetic noisy volume
forcing. In section 4.2 we test the method in a linearised framework to verify the consistency
of all the assumptions previously made. In section 4.3 we provide a detailed description of
the non-linear dynamics observed when transition is triggered using the method proposed
here, with particular focus on the physical mechanisms as compared to classical transition
scenarios. In section 4.4 we verify that the subsequent fully turbulent state is independent
of the transition scenario from which it is generated. Finally, relevant conclusions are
drawn in section 4.5.

4.1 Problem Statement and numerical methods

The aim of this Chapter is to provide a new method for triggering uncontrolled tran-
sition in an incompressible wall-bounded streamwise-periodic flow such as a channel flow.
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This configuration has proven to be particularly suitable for numerical investigations of
turbulent shear flows. In fact, being the problem homogeneous in the directions parallel
to the wall, turbulent channel flows can be accurately simulated in relatively small do-
mains (Jiménez and Moin, 1991) using periodic boundary conditions in both streamwise
and spanwise directions (Kim et al., 1987). The latter configuration, known as temporal
channel flow (Zang and Krist, 1989), is chosen as framework due to its physical relevance,
its large presence in the literature as well as to the low computational cost of numeri-
cal simulations in this setup as compared to spatially-evolving configurations such as the
boundary-layer flow (Kleiser and Zang, 1991; Schlatter et al., 2004).

In this part of the thesis, differently from several works already present in the literature,
we are not interested in controlled transition scenarios, such as for instance the K-type
one (Sandham and Kleiser, 1992b; Lee and Zaki, 2017), but instead on investigating how
transition arises as a response of the fluid system to external noise similar to that occurring
in uncontrolled experimental conditions (Sano and Tamai, 2016). Thus, in the present
Chapter we will set up a numerical method to study how transition arises as a response
of the flow to a synthetic noisy volume forcing. The latter, solution of the equations
governing the fluid system, will be constructed using an ad hoc procedure relying on some
concepts of linear stability and sensitivity analysis such as the resolvent analysis (Schmid
and Henningson, 2001).

4.1.1 Governing equations

The dynamics of the incompressible flow of a Newtonian fluid are governed by the
Navier-Stokes equations

∂U

∂t
= −(U · ∇)U −∇P +

1

Re
∇2U + f (4.1)

∇ ·U = 0, (4.2)

where U = (U(x, t), V (x, t),W (x, t))T is the velocity field, P (x, t) is the pressure and f
the forcing field. The Reynolds number is defined as Re = UH/ν, where U is the centerline
velocity, H is half the height of the channel and ν the kinematic viscosity of the fluid. The
reference frame x = (x, y, z)T is chosen such that x is the streamwise, y the wall-normal
and z the spanwise directions.

Steady solutions Qb(x) = (Ub, Pb)
T of the Navier-Stokes equations are known as base

flows or fixed points of the system. Under the assumption of small-amplitude disturbances,
we decompose the flow field as a sum of the base flow and a perturbation such as Q(x, t) =
Qb(x) + q(x, t) , that is to say (U(x, t), P (x, t))T = (Ub(x), Pb(x))T + (u(x, t), p(x, t))T .
Linearising the governing equations around the base flow we obtain the linearized Navier-
Stokes equations for the perturbation field, which can be compactly written as:

∂u

∂t
= Lu+ f (4.3)

once projected onto a divergence-free vector space. Being this system autonomous in time
and being the base flow periodic in both streamwise and spanwise directions one can apply
a Fourier transform to any field q so that q(x, t) = q̃(y) exp[i(αx+ βz) + λt] + c.c, where
the last term stands for complex conjugate, α and β are the streamwise and spanwise
wavenumbers and λ is the temporal one. In general α, β, λ, ũ ∈ C.

When f = 0, the behaviour of a generic solenoidal velocity perturbation u is linked
to the eigenpairs of L (λeig, ũeig) (Orszag, 1971), since it can be written as u(x, t) =
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∑
l κlũ(y)eigl ei(αx+βz)+λeigl t, where κl is a scalar weight. For a given couple α, β ∈ R

(condition that will be held throughout the whole work), the temporal behaviour of each
eigenvector of the linearised operator L is then described by its associated eigenvalue λeigi =

σeigi + iωeigi , where σeigi represents its asymptotic growth/decay and ωeigi its oscillation
wavenumber.

We now assume the linearised system (4.3) to be forced, with a forcing harmonic in
time, namely

f(x, t) = f̃(y)eiωtei(αx+βz) + c.c. (4.4)

and that the system is stable, namely that all the eigenvalues of L have growth rate
σeigi < 0,∀i. Thanks to the linearity of the governing equations the Linear Time Invariant
(LTI) system in equation (4.3) simplifies to

ũ = (iωI −L)−1f̃ , (4.5)

where (iωI −L)−1, called the resolvent of L, represents a mapping between the harmonic
input and the corresponding output for a given [α, β, ω,Re] set and I stands for the identity
operator. Under such forcing input the resulting response of the system will oscillate at
the same frequency ω, in particular:

u(x, t) = ũ(y)ei(αx+βz)eiωt, (4.6)

which is a monochromatic wave oscillating in time and space with wavenumbers (ω, α, β).
The kinetic energy density of this response for a given [α, β, ω,Re] set is defined as:

||ũ(y, α, β, ω)||2E =
1

2V

∫

V
uHu(x, t)dV

∣∣∣∣
α,β,ω

= E(u(x, t))|α,β,ω , (4.7)

where V is the volume of the computational domain and uH is the transconjugate of u.
Among all the possible (f ,u) couples, let us focus on the one which maximizes the ratio
of the output energy with respect to the input one, namely:

R(α, β, ω) =
||ũopt||2E
||f̃opt||2E

= max
f̃

||ũ||2E
||f̃ ||2E

= ||(iωI −L)−1||2E , (4.8)

where f̃opt, ũopt are defined as optimal forcing and response, again evaluated for a given
[α, β, ω,Re] set and R is the resolvent norm. The optimal forcing and the associated
response (f̃opt, ũopt) can be built using a linear combination of the eigenvectors of L:

f̃opt(y, α, β, ω,Re) =

K∑

k=1

#kf̃
eig
k (y, α, β, ω,Re) (4.9)

ũopt(y, α, β, ω,Re) =
K∑

k=1

2kũ
eig
k (y, α, β, ω,Re), (4.10)

whose scalar weights (#k,2k) are retrieved by means of a singular value decomposition of
the resolvent norm (Schmid and Henningson, 2001; Schmid, 2007). An application of the
resolvent norm theory to the case of plane Poiseuille flow is depicted in figure 4.1. In the
reminder of this section we drop the Re dependency for the sake of readability.
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Figure 4.1 – Some typical optimal forcings/responses for Plane Poiseuille Flow (PPF) with
α = 1, β = 0.25, Re = 2000, for various forcing frequencies ω: ω = αU/3 (upper frames),
ω = α2αU/3 (middle frames), and ω = αU (bottom frames), triggering A-modes (viscous
T-S modes), S-modes (critical layer modes) and P-modes (inviscid modes), respectively.
From left to right the boxes represents the optimal forcing f̃opt, the optimal response ũopt,
the resolvent norm R(ω) highlighted as a circle, and the eigenspectrum λeigi of L. The
forcing and response vectors are built as a linear composition of the system’s eigenvectors
following equation 4.9, whose weights are proportional to the sizes the markers.

4.1.2 Building a volume forcing to enforce a prescribed energy spectrum

Our aim is to construct a velocity perturbation attaining a target value of the turbulence
intensity, Tu =

√
U2
rms/3, which, within the linear framework, is equivalent to

Tulinear =
√
u2/3 ≡

√
2

3
Elinear, (4.11)

where u is the linear response to a given volume forcing.
Similarly to what is done in equation (4.9), we decompose the desired velocity pertur-

bation field as a linear combination of a discrete set of optimal responses ũopt, each one
solution of equations (4.1) and (4.8). The associated optimal forcing fields are then used as
a basis to construct the synthetic volume forcing able to induce the desired perturbation
field via receptivity mechanisms. Optimal forcings are here chosen as a basis not only be-
cause they provide a straightforward force-velocity relation, but also because they are able
to induce the given energy level Tulinear with the lowest possible forcing intensity (within
a linearized framework). The optimal forcing and response fields are computed using a
simple 1D code solving equation (4.8) for different values of the wavenumbers [α, β, ω],
conveniently chosen to discretize the prescribed energy spectrum.

For the sake of simplicity, in the following we will assume a flat energy spectrum, whose
energy is evenly distributed within a frequency range [ωmin, ωmax], although the following
procedure can be easily extended to more complex energy spectra (see section 4.2.3). The
prescribed continuous energy spectrum is discretized into Nω modes ǔi, each one associated
to a specific frequency ωi, so that:

ωi =
(ωmax − ωmin) (i− 1)

Nω
+ ωmin (4.12)

32



Chapter 4. Triggering Natural transition
in numerical simulations 4.1. Problem Statement and numerical methods

and

u(x, t) =

Nω∑

i=1

ǔ(x, ωi)e
iωit, E (ǔ(x, ωi)) =

Elinear

Nω
(4.13)

where the left side of equation (4.13) coincides with the Discrete Fourier Transform (DFT)
of u(x, t), ǔ(x, ωi) being a discrete subset of DFT modes associated to its respective
discrete set of forcing frequencies:

ω = [ωmin, . . . , ωi, . . . , ωmax] . (4.14)

We further decompose the velocity field associated to a given frequency ǔ(x, ωi) into
Nα,β discrete modes for each allowed (α, β) spatial wavenumber. The physical reasons
of this restriction will be explained in detail in section 4.1.3. Thus, the resolvent norm
analysis will provide a discrete set of modes associated to Nα,β spatial wavenumbers:

α, β (ωi) =
[
(α, β)1

i , . . . , (α, β)ji , . . . , (α, β)
Nα,β
i

]
, (4.15)

each one compatible with a corresponding single frequency ωi. Similarly to equation (4.13),
we can further decompose the velocity field as follows:

ǔ(x, ωi) =

Nα,β∑

j=1

ũ(y, αji , β
j
i , ωi)e

i(αjix+βji z), ||ũ(y, αji , β
j
i , ωi)||2E =

Elinear

NωNα,β
(4.16)

where each ũ(y, αji , β
j
i , ωi) has the same kinetic energy for the simple test case considered

here. The couples (αji , β
j
i ) are suitably chosen to span a large number of wavelengths in

order to increase the isotropy of the perturbation, similarly to FST methods (Jacobs and
Durbin, 2001b; Brandt et al., 2004b).

Replacing the generic ũ with ũopt in equation (4.16) results in:

ǔ(x, ωi) =

Nα,β∑

j=1

ũopt(y, αji , β
j
i , ωi)e

i(αjix+βji z), ||ũopt(y, αji , β
j
i , ωi)||2E =

Elinear

NωNα,β
. (4.17)

The same procedure is then applied to the discrete set of forcing fields associated to
the chosen optimal responses, obtaining:

f̌(x, ωi) =

Nα,β∑

j=1

Aji f̃
opt(y, αji , β

j
i , ωi)e

i(αjix+βji z)ei(φxx+φzz), (4.18)

where each optimal forcing f̃opt is multiplied by the scalar Aji to ensure a prescribed weight
and shifted in space by a random phase φx, φz to increase homogeneity (Brandt et al.,
2004b). The weights Aji are assigned in order to fulfill the prescribed energy spectrum; in
particular, combining equations (4.8) and (4.17) one obtains:

Elinear

NωNα,β
= Aji ||ũopt(y, α

j
i , β

j
i , ωi)||2E = AjiR(y, αji , β

j
i , ωi)||f̃opt(y, α

j
i , β

j
i , ωi)||2E , (4.19)

which is then rearranged to provide the value of Aji for each forcing f̃opt :

Aji =
Elinear

NωNα,βR(αji , β
j
i , ωi)

(4.20)
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.
The obtained discrete set of Nω forcing fields reads:

f̌ (ωi) =
[
f̌(x, ωmin), . . . , f̌(x, ωi), . . . , f̌(x, ωmax)

]
. (4.21)

where each forcing is associated to a given frequency ωi. The real volume forcing to be
injected in equations (4.1) in order to obtain the requested response by time marching can
be expressed as:

f(x, t) =

Nω∑

i=1

f̌(x, ωi)e
iωit =

Nω∑

i=1

[
<(f̌(x, ωi))cos(ωit)−=(f̌(x, ωi))sin(ωit)

]
(4.22)

Within a linearized framework, the obtained response reaching the prescribed energy level
Tulinear has the form:

u(x, t) =

Nω∑

i=1

ǔ(x, ωi)e
iωit =

Nω∑

i=1

[<(ǔ(x, ωi))cos(ωit)−=(ǔ(x, ωi))sin(ωit)] . (4.23)

The whole procedure, to which we will refer to as F-type forcing method, is summarized
in algorithm 1 and in figure 4.2.

Physical Parameters : Lx, Lz,Re
Target : Tulinear

Numerical Parameters: Nα,β, Nω

Result: ω (i), f̌ (i),u(x, t = 0)

1 Elinear ← eq. (4.11);
2 ω (i), α, β (i, j)← AlphaBetaOmegaCompute(Lx, Lz, Nα,β, Nω);
3 u = 0;
4 for i← 1 to Nω do
5 ωi = ω (i);
6 f̌(i) = 0;
7 for j ← 1 to Nα,β do
8 αji , β

j
i ← α, β (i, j);

9 ũopt, f̃opt, R(i, j)← OptimalCompute(αji , β
j
i , ωi,Re);

10 Aji ← eq. (4.20);
11 f̌(i) = f̌(i) +AjiRf̃e

i(αjix+iβji );
12 ǔ(i) = ǔ(i) +Aji ũe

i(αjix+iβji );
13 end
14 u = u+ <(ǔ(i));
15 end
Algorithm 1: F-type forcing method. The AlphaBetaOmegaCompute algorithm, de-
tailed in algorithm (2) in section 4.1.3, provides the discrete ωi and α

j
i , β

j
i sets for a given

configuration, while the OptimalCompute function computes the 1D optimal forcing fields
solving equation (4.8), as shown in (Schmid and Henningson, 2001). The whole method
is sketched in figure 4.2.

From a practical point of view, we first compute the set of Nω forcing fields f̌(x, t)
in the frequency domain as a preprocessing, prescribing only the discrete set of Nα,β and
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Figure 4.2 – Sketch depicting the F-type forcing method detailed in algorithm 1, aiming
to build a forcing which ensures a velocity perturbation field reaching Tulinear.

Nω wavenumbers. Then, we compute f at each timestep by means of equation (4.22)
and feed it to the direct numerical simulation. It is noteworthy that, while the whole
energy is equally distributed on the optimal response fields composing the desired velocity
perturbation as imposed in equation (4.13), each optimal forcing can be associated to a
different energy level, since the resolvent norm acting as input-output transfer function has
a different value for each wavenumber/frequency. As a consequence, the energy spectrum
of the forcing field will not be flat in ω.

4.1.3 Constraints on α, β, and ω

As mentioned in the previous subsection, the optimal forcing fields used to construct
the desired synthetic volume forcing for triggering uncontrolled transition, are function of
α, β, ω. These parameters cannot be assigned freely, being linked to each other due to some
physical reasons detailed below. The first reason is based on simple geometrical consid-
erations: being the numerical setup periodic in both streamwise and spanwise directions,
only a finite number of wavelengths are allowed within the assigned domain. Beyond the
trivial 0th mode, the lowest possible wavelengths are therefore determined by the size of the
computational domain Lx, Lz through the relations αbox = 2π/Lx, βbox = 2π/Lz. Integer
multiples of these wavenumbers can be also retrieved, up to the maximum wavenumber
allowed due to spatial discretization. Using the Nyquist-Shannon sampling theorem (Jerri,
1977), one obtains αmax ≈ 2π/(8∆x), (βmax ≈ 2π/(8∆z), providing the following discrete
set of geometrically compatible wavelengths:

α geom = [0, αbox, 2αbox, . . . , αmax], β
geom

= [0, βbox, 2βbox, . . . , βmax] (4.24)

where ∆x,∆z indicate the characteristic grid size in the streamwise and spanwise direc-
tions, respectively. Concerning the wavenumber α = 0, although being geometrically
allowed within the domain, it would result in a deformation of the one dimensional base
flow, changing the physical nature of the problem. Thus, the allowed wavenumber set is
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reduced to:

α = [αbox, 2 · αbox, . . . , αmax] (4.25)

β = [0, βbox, 2 · βbox, . . . , βmax ] (4.26)

The same can be said about the ω = 0 temporal mode, which would result in an unphysical
constant forcing. The forcing frequencies will thus lie in the range [ωmin, ωmax], where the
values of ωmin, ωmax can be easily chosen due to the following physical considerations. In
figure 4.1 one can notice how the wall normal distribution of the modes changes depend-
ing on the assigned value of ω: different forcing frequencies result in different sensitivity
mechanisms, which can be retrieved in the spectrum in the form of viscous Tollmien-
Schlichting, critical layer, and inviscid modes (from upper to bottom frames). Similarly to
FST method in semi-bounded domains (Brandt et al., 2004b; Jacobs and Durbin, 2001b)
where only free-stream modes are excited, in the current setup only inviscid modes will be
used, whereas the viscous Tollmien-Schlichting waves, also referred to as A-modes (Schmid
and Henningson, 2001), are discarded. Towards this aim, the forcing frequencies associated
to a particular spatial wavenumber are constrained within the range:

range(ω(α)) =

{
2

3
α, α

}
U (4.27)

where a generalisation of Taylor’s hypothesis ω = αU is used, 2/3U corresponding to the
mean velocity of the flow. In this way, for a given αi, all the viscous A-modes are discarded,
leaving only inviscid (P and S) modes to construct the desired volume forcing. Moreover, as
depicted in figure 4.3, one can observe that a given ω range is associated to each α. Thus,
the ω range results from α , as reported in equation (4.27). Table 4.1 summarises the
lower and upper bounds of the spatial and temporal wavenumbers of the optimal forcing
fields used for constructing the desired volume forcing. It is noteworthy to remark that,
while α depends on the specific forcing frequency ωi, β is only dependent on the domain
discretization.

αmin αmax βmin βmax ωmin ωmax
2π
Lx

2π
8∆x 0 2π

8∆x
2
3αmin αmax

Table 4.1 – Lower and upper bounds for the spatial (left) and temporal (right) wavenumbers
of the optimal forcing fields used for constructing the desired volume forcing.

This feature can result in a discontinuous spectrum for low forcing frequencies, depend-
ing on the domain sizes Lx, Lz.

A sketch of the allowed spatial and temporal wavenumbers is provided in figure 4.4,
and the numerical procedure to choose them is summarised in algorithm 2.

.

4.2 Algorithm testing: linear regime

In the following we test and tune our method by running forced direct numerical simu-
lations of equations (4.3). The Navier-Stokes equations are solved using the incompressible
flow solver Nek5000 (Fischer et al., 2008) which is based on the spectral element method
(SEM). A PN −PN−2 formulation has been used: the velocity field is discretised using N th

degree Lagrange interpolants, defined on the Gauss-Legendre-Lobatto quadrature points, as
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Figure 4.3 – Orr-Sommerfeld spectra of plane Poiseuille flow for Re = 5000, β = 0 and dif-
ferent values of α provided in the legend. The spectra widens as the streamwise wavenumber
is increased. This physically means that shorter streamwise wavelengths can be linked to
higher forcing frequencies. For this computation we have used a pseudo-spectral Chebyshev
collocation method with numerical resolution of 256 points in the y direction.

Figure 4.4 – Graphical summary of section 4.1.3. Diamonds and circles represent the spatial
and temporal wavenumbers taken into account for building up the synthetic volume forcing.

basis and trial functions, while the pressure field is discretised using Lagrange interpolants
of degree N − 2 defined on the Gauss-Legendre quadrature points. Finally, the time inte-
gration is performed using the BDF3/EXT3 scheme: integration of the viscous terms relies
on the backward differentiation (BDF3), while the convective terms are integrated explic-
itly using a third order accurate extrapolation (EXT3), both with a third-order accuracy.
We wish to compare our forcing method with some benchmark, deterministic transition
scenario, namely the K-type transition (Schlatter et al., 2004). Therefore we set our com-
putational box dimensions as [Lx, Ly, Lz] = [2π/1.12, 2, 2π/2.10], as well as the numerical
resolution to Nx×Ny×Nz = 128×128×128 gridpoints on a 16×16×16 spectral element
grid with spectral order equal to 8. We have verified that the chosen parameters of the nu-
merical discretization are sufficient to accurately reproduce the dynamics of perturbations
in a channel flow (Sandham and Kleiser, 1992b; Zang and Krist, 1989). The Reynolds
number is set to a subcritical value, namely Re = 5000; this value is kept constant in
all the numerical simulations discussed in this work. As already mentioned, periodicity is
enforced in the streamwise and spanwise directions while a Dirichlet boundary condition
is imposed at wall normal boundaries.
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Physical Parameters : Lx, Lz
Numerical Parameters: Nα,β, Nω

Result: ω (i), α, β (i, j)

1 αbox = 2π
Lx
, αmax = 2π

8∆x , βbox = 2π
Lz
, βmax = 2π

8∆z ;
2 α = [αbox, . . . , αmax], β = [0, βbox, . . . , βmax] from eq. (4.25);

3 Nα =length( α ), Nβ =length( β );
4 ωmin = 2

3αmin, ωmax = min {αmax, βmax}, from table (4.1);
5 α, β

tot
=combinations( α , β );

6 for i← 1 to Nω do
7 ω (i) = ωi = (ωmax−ωmin)·(i−1)

Nω
+ ωmin from eq. (4.13);

8 α, β
shuffled

tot
=shuffle( α, β

tot
);

9 j = 0, k = 1, ωtest = ω (i);
10 while (j ≤ Nα,β or k ≤ NαNβ) do

11 (αtest, βtest) = α, β
shuffled

tot
(k);

12 if (ωtest ≥ 2
3αtest and ωtest ≤ αtest) then

13 α, β (i, j) = (αtest, βtest);
14 j = j + 1;
15 end
16 k = k + 1;;
17 end
18 end
Algorithm 2: AlphaBetaOmegaCompute algorithm, which summarises the constraints on
α, β for each discrete forcing frequency ω as detailed in section4.1.3. Function length()
computes the number of elements of an input discrete list x ; function combinations()
provides all their possible combinations; and function shuffle() randomly redistribute
the elements of the list.

4.2.1 Transient dynamics

In this section we test whether the F − type forcing method is capable of delivering a
velocity perturbation (within a linear approximation) attaining the target Tulinear. The
initial condition is set to u(x, t = 0) = 0, and the synthetic volume forcing constructed
using equation (4.22) is injected into equation (4.3). In figure 4.5 one can observe the
time evolution of the perturbation energy, which increases from zero up to the prescribed
target value, regardless of the number of frequencies used to discretize the energy spectrum,
Nω. The asymptotic behaviour, related to the particular solution, is attained as long as the
homogeneous solution is damped out, see equation (4.6), for a time t→∞. To characterize
the transient behaviour we define the Rising Time (RT ) so that:

∣∣∣∣
Tu(RT )− Tulinear

Tulinear

∣∣∣∣ ≤ ε, (4.28)

where ε is arbitrarily small; in the present work ε = 10−3. As shown in figure 4.5, RT
increases as long as Nω increases, being approximately proportional to the fundamental
frequency of the whole forcing signal. It is worth noting that, while for Nω = 1 we have
RT ∝ 2π/ω, when increasing Nω the rising time rapidly becomes inconveniently long
(de Cheveigné and Kawahara, 2002). In order to remove this transient behaviour we set as
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Figure 4.5 – Time evolution of turbulent intensity extracted from a linearised DNS forced by
the F-type method with Tulinear = 0.01, u(x, t = 0) = 0, and for differentNω andNα,β = 4
as indicated in the legend. The prescribed turbulence intensity Tulinear is attained after a
finite rising time, when the transient behaviour has left place to an asymptotic regime.
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Figure 4.6 – Same as in figure 4.5, but with u(x, t = 0) = uopt. Differently from figure 4.5,
the flow immediately settles to the asymptotic regime, without any rising time.

initial condition the velocity perturbation resulting from equation (4.8) for the previously
constructed synthetic forcing, imposing both u and f with the associated time phases
predicted by the resolvent analysis. In this way, we are able to cancel out the rising time,
as shown in figure 4.6, attaining the desired Tulinear already at t = 0. From now onward
all our simulations are initialised as shown in this section.

4.2.2 Recovering the optimal dynamics

To further test our numerical setup we verify whether our fully 3D simulation is able
to recover the 1D behaviour predicted by the optimal forcing analysis. Thus, we construct
a forcing whose energy is concentrated on only one given couple of spatial wavenumbers,
namely α = 1.12, β = 0.0 (Nα,β = 1), and 8 temporal frequencies (Nω = 8). The en-
ergy spectrum of the input signal (squares), as well as that of the output perturbation as
provided by the numerical simulation (circles) and by the resolvent analysis (diamonds)
are depicted in figure 4.7. The system energy response ||u||2E matches the theoretical one
R(ω)||f ||2E within the forcing range [ωmin, ωmax]. Conversely, for higher frequencies the
energy level predicted by the resolvent analysis is well below the threshold observable with
our DNS code, which is affected by numerical noise. One can also notice the large energy
gap between ||u||2E and ||f ||2E : this is due to the optimal shape of the forcing for each given
frequency, providing high values of the resolvent norm R. Thus, the F-type forcing method
provides, within a linearized framework, the lowest possible input forcing amplitude for a
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Figure 4.7 – Energy spectra of the forcing (blue solid line) and associated response obtained
by DNS (purple solid line) and by the resolvent analysis (dashed line) with Nα,β = 1,
(α = 1.12, β = 0.0), Nω = 8, and [ωmin, ωmax] ≈ [0.747, 1.120].

4.2.3 Spectrum analysis

In this subsection we investigate the influence of Nω on the energy spectrum recovered
through DNS with F-type forcing.
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Figure 4.8 – Energy spectra extracted from several DNS using different values of Nω. The
dashed line represents the target energy spectra prescribed for constructing the F-type
forcing.

In figure 4.8 one can observe that the shape of the spectra deeply changes with Nω,
becoming less spiky when this parameter is increased. Moreover, the area below the curve
E(ω) must be the same for all the simulations, being Tulinear constant. This results in
a flattening of the energy spectra for Nω → ∞. In particular, it appears that the energy
spectra become almost independent from Nω when more than 64 forcing modes are used.
Thus, we set Nα,β = 4, Nω = 64 throughout the reminder of the present work.

As a further validation of the method, we have imposed a different target energy spec-
trum, namely that extracted from DNS of a fully turbulent channel flow. First, we have
recovered the turbulent energy spectrum at Reτ = 210 (see purple line in figure 4.9), re-
sulting from turbulent transition starting from the laminar flow at Re = 5000. Then, we
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Figure 4.9 – Energy spectra extracted from a fully developed turbulent channel flow Reτ =
210, used as target energy spectra for constructing a F-type forcing. The method, that for
this test has been constrained to be deployed within a forcing range [ωmin, ωmax] = [1/3, 2]
for sake of visualisation, can accurately mimic the signature of a turbulent flow, as well as
the FST for the flow over a flat plate. Here we have used Nω = 64 and Nα,β = 4.

have set it as a target spectrum in a further computation where the F-type volume forcing
is imposed, in order to show that our method is capable of reproducing a stochastic vol-
ume forcing with any given spectrum. This is clearly demonstrated by the light blue curve,
which follows closely the purple one representing the prescribed turbulent spectrum, within
the selected frequency range. Please notice that the energy associated to each frequency
recovered in a fully turbulent channel flow remains close to the mean value independently
of the frequency, justifying our initial choice to use a flat energy spectrum. In fact, a
flat energy spectrum would be recovered by ensemble-averaging several realisations of the
turbulent flow in the same conditions.

4.3 Non-Linear Dynamics

In the previous section we have shown how the F − type forcing method is capable
of providing, within the linear framework, a synthetic noisy velocity perturbation with
prescribed Tulinear. However, it is still to be verified whether the provided method is
capable of triggering transition for a given target energy level, eventually leading to sus-
tained turbulence. Aiming at a qualitative and quantitative comparison of our non-linear
results with the literature, we set Re and the domain size Lx = 2π/αLz = 2π/β, with
α = 1.12, β = 2.10 in order to match the well known K − type channel-flow transition case
investigated in Nishioka et al. (1975); Sandham and Kleiser (1992b), that is commonly
used as benchmark in numerous numerical studies of turbulent transition (Schlatter et al.,
2004; Lee and Zaki, 2017; Zhao et al., 2014, 2016). From now onward we will show results
derived from Direct Numerical Simulation of the fully non-linear Navier–Stokes equations,
all computed for Nω = 64, Nα,β = 4, using the procedure summarised in algorithm 1, using
the same Re and numerical discretisation applied in section 4.2.

4.3.1 Evolution of the turbulence intensity

Once the domain size and the parameters Nω and Nα,β have been selected, the only
physical control parameter that remains to be set is the intensity of the energy perturba-

41



Chapter 4. Triggering Natural transition
in numerical simulations 4.3. Non-Linear Dynamics

tion field generated by the forcing perturbation, which coincides with Tulinear in the linear
regime. Figure 4.10 shows the evolution of Tu measured in 6 direct numerical simulations
(solid lines) forced using the F-type method with different target energy levels Tulinear.
For low levels of Tulinear, the system response to the forcing matches the linear prediction
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Figure 4.10 – Time evolution of Tu measured in different nonlinear DNS where the F-type
forcing has been imposed at different target energies Tulinear indicated in the legend.

as expected (Tulinear remains equal to the imposed level Tu = 10−4), as shown by the bot-
tom line designated as linear. Increasing Tulinear we observe that the perturbation energy
slowly increases starting from the imposed level Tulinear, reaching asymptotic saturation.
This phenomenon is due to the fact that the prescribed forcing energy level is high enough
to trigger non-linear effects, even if the flow still remains in the laminar regime. Further
increasing Tulinear one can observe, after an initial slow increase of Tu due to the previ-
ously mentioned nonlinear laminar phase, a sharp jump in Tu due to laminar-turbulent
transition. Thus, the transition threshold for an initial Tulinear sits between the two lines
designated as laminar and turbulent, for the prescribed value of the Reynolds number.
Increasing the energy of the forcing beyond the transition level one can observe that the
nonlinear laminar phase shrinks in time, leading to transition in lower simulation time. It
is worth to notice that, regardless of the initial energy level, the final Tu for the statisti-
cally converged turbulent cases remains the same. The transition scenario obtained for the
case with Tulinear = 0.5% (corresponding to the yellow line in figure 4.10) is depicted in
figure 4.11. The streamwise component of the forcing (top) and of the resulting response
(middle) as well as the response λ2 surfaces (bottom) are provided at t = 25, 75, 130, 215
along with the Reτ curve (see equation 4.29) allowing to identify the different stages of
transition. At first, the velocity perturbations resulting from the receptivity of the flow to
the volume forcing are localized in the flow bulk (see box (a) of the figure). This bulk noise
then penetrates close to the wall through receptivity triggering elongated streamwise ve-
locity perturbations (box (b)). A fully non-linear transitional phase is reached when these
streaky structures become unstable generating vortices on their top and flanks, among
which some hairpin-like vortices can be recognized in box (c). Finally, after breakdown to
turbulence, the flow becomes statistically homogeneous in both spanwise and streamwise
direction (see box (d)).

4.3.2 Wavenumber decomposition

A powerful tool to study and unveil the mechanisms occurring in the first stages of
transition is to analyse the mode-by-mode energy evolution, performing a spatial Fourier
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Figure 4.11 – Uncontrolled transition scenario obtained with the F-type method. Boxes a),
b), c) and d) depict the isosurfaces of the streamwise component of the forcing (top), the
streamwise velocity perturbation u (middle) as well as the isosurfaces of the λ2 criterion
to visualise the onset of coherent vortical structures. The snapshots are extracted from
a DNS of a 3D transitional channel flow with Tulinear = 0.5%, Nω = 64, Nα,β = 4, for
t = 25, 75, 130, 215, respectively; the lower plot represents the friction Reynolds number
Reτ (see equation (4.29)), which indicates whether transition has taken place. Only the
lower half of the channel is displayed for sake of clarity.

decomposition of the flow field at each timestep (Zang and Krist, 1989; Reddy et al., 1998).
The results of this procedure are shown in figure 4.12, where the different spatial modes are
identified by the couple of integers (iα, iβ) indicating the ith multiples of the fundamental
wavenumbers 2π/Lx, 2π/Lz (see also (Reddy et al., 1998)).

For high enough Tu levels, streamwise invariant streaky structures (identified by modes
(0, iβ) rapidly appear and grow in amplitude, despite not being injected in the flow via the
synthetic forcing/response, for the reasons discussed in section 4.1.3. This is probably due
to the fact that the optimal perturbation (Schmid, 2007) for shear flows has the form of a
pair of streamwise streaks; thus, this kind of streamwise-invariant structure is also the most
likely to occur when the laminar flow is perturbed, as discussed by Luchini (2000). For
low values of Tulinear (frame 4.12b) the streaky modes are characterized by an amplitude
comparable with that of the other modes, and of the linear forcing itself. Increasing the
value of Tulinear (frame 4.12c) we observe a strong increase of their amplitude leading
to nonlinear saturation, despite the flow remaining laminar, as discussed before. For the
largest value of Tulinear (frame 4.12d) secondary instability of the streaks is triggered
after nonlinear saturation, leading to turbulence. A similar behaviour has been observed
by Reddy et al. (1998) when triggering transition by using noise (constructed as a sum
of random Stokes modes) as initial condition in a temporal channel flow, as provided in
figure 4.13 (left frame). Comparing these literature results with those obtained by the
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(b) Time evolution of the energy density of
different Fourier modes for Tulinear = 0.01%

0 1000 2000 3000 4000 5000

10
−6

10
−4

10
−2

t

E
n
er
g
y
D
en
si
ty

(1,0)
(2,0)
(1,1)
(2,1)
(0,1)
(0,2)
(2,2)

(c) Time evolution of the energy density of
different Fourier modes for Tulinear = 0.15%
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(d) Time evolution of the energy density of
different Fourier modes for Tulinear = 0.20%

Figure 4.12 – Energy density of selected Fourier components (iα, iβ) for different values
of Tulinear. Subframe (a) is a phase portrait representing the evolution of the first two
streamwise-invariant modes generated by the non-linear interactions, usually referred as
streaks (Schmid and Henningson, 2001), for different values of Tulinear. Subframes (b,c,d)
show the emergence of the streaky modes from the forced background noise. Depending on
the forcing energy levels, several flow behaviours are observed, from laminar to turbulent
(see figure 4.10).

F-type forcing method for high Tulinear values (right frame), one can observe that the
time evolution of the energy density of the Fourier components is similar, although some
discrepancies can be found. For instance, at the very beginning of the F-type transition
process, modes (1, 0), (1, 1), and (0, 1) strongly increase their energy due to the high
receptivity of the flow to the imposed forcing. Whereas, when random Stokes modes are
used, an initial decrease of these modes energy is observed, followed by an energy increase
of the streaky modes only. This notable difference in the initial phases of transition can
be better visualized in figure 4.14, showing the early time evolution of Tu in both cases.
When the flow is fed with random noise, a non-physical initial transient is observed, where
Tu initially decreases while the disturbance is adapting itself to the underlying Navier-
Stokes equations, then steeply increases again, saturates, and begin to substantially grow
(mostly due to non-linearity) only at t ≈ 60. Whereas, when the F-type method is used,
Tu increases algebraically already at the very beginning of the simulation, since the flow
receptivity is exploited optimally to trigger energy growth. This allows to induce transition
with lower amplitude perturbations as compared to random noise.
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Figure 4.13 – Energy density of selected Fourier modes (iα, iβ) for a DNS with initial
condition composed by random Stokes modes (N-type transition) as computed by Reddy
et al. (1998) (left frame) and for the F-type forcing method (right frame) both for Re =
5000. The energy of the initial perturbation for the N-type transition is ||u(t = 0)||E ≈
2e−4. The forcing intensity for the F-type method has been set so that the induced velocity
field attains the same energy value. Even though the velocity fields induced by the F-
type method are initially devoid of α = 0 modes, these modes rapidly grow in amplitude
overtaking the other ones, as also observed in the N-type transition
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Figure 4.14 – Time evolution of Tu during the initial phases of transition for the F-type
method and for white noise perturbations. Tulinear = 0.05% is used for the F-type method,
while the initial random noise has been scaled in order to reach Tu(t = 0) = 0.05% as well.
The Tu growth in the initial phase is almost linear for the F-type method.

4.3.3 Transition energy thresholds

As the transition location in a spatially-evolving flow is strongly influenced by the
intensity of the incoming perturbed flow (Schlatter et al., 2004), in a streamwise periodic
flow the transition time is directly affected by the chosen Tulinear. To identify transition
to turbulence we measure the Reynolds number based on the friction velocity:

Reτ =

√
Re
∣∣∣∣
∂〈u〉
∂y

∣∣∣∣
wall

, (4.29)
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where 〈·〉 represents the spatial average in the two homogeneous directions at a given time.
The time evolution of Reτ for several values of Tulinear is shown in figure 4.15 by the
continuous lines, compared to the standard K-type transition scenario (Schlatter et al.,
2009) (dashed line). Comparing figure 4.10 with 4.15 one can observe that Reτ strongly
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Figure 4.15 – Time evolution of Reτ for the standard K-type transition scenario (Schlat-
ter et al., 2009) (dashed line) and the F-type forcing method for several forcing levels
(continuous lines coloured by the imposed Tulinear value).

overtakes the initial laminar value only when turbulence is attained, confirming that its
value can be used to detect when transition has taken place. Thus, figure 4.15 shows that
the transition time decreases monotonically with the forcing energy Tulinear, similarly to
the transition position in boundary layer flows (Brandt et al., 2004b). Therefore, it appears
that using the F-type forcing method one can easily control the transition time changing
the control parameter Tulinear.
It is also worth to investigate the threshold energy able to trigger turbulence using the
F-type method, as compared to other transition scenarios. The threshold energy density
for different transition scenarios in channel flow is provided in figure 4.16 for different
values of Re. Following Reddy et al. (1998), we consider that transition has taken place
when Reτ (t) overtakes the value 1.01Reτ (laminar). As one can observe in figure 4.16, the
threshold energy density of the velocity perturbation field induced by the F-type forcing is
comparable to that needed for triggering turbulence by using random perturbations (N-type
scenario). However, there is a crucial difference between the F-type method and the N-type
scenario. Figure 4.17 provides the velocity perturbation energy ||u||E = 1

2V

∫
V u

2(x, t)dV
and its corresponding forcing norm ||f ||E = 1

2V

∫
V f

2(x, t)dV . Since the flow is excited by
a weighted sum of optimal forcings, the highest possible gain between the forcing itself and
the induced velocity field is attained (Schmid, 2007). The curves in the figure show that
the volume forcing energy injected within the flow is two to three orders of magnitude lower
than the energy of the noisy velocity perturbation inducing transition. Thus, the F-type
forcing method triggers transition to turbulence relying on a low-amplitude noisy volume
forcing, without prescribing unrealistic initial perturbations linked to specific transition
mechanisms (such as streamwise rolls, oblique waves, etc.) like the classical scenarios
proposed in the literature.

4.4 Turbulent state

In this section, the statistically converged turbulent state induced by the F-type forcing
method with Tulinear = 0.5% is analysed, in comparison with that of the standard K-type
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Figure 4.16 – Threshold energy densities for triggering transition using the synthetic forcing
method proposed here (F-type) and for several transition scenarios (Reddy et al., 1998)
where different velocity fields are used as initial condition, namely Tollmien-Schlichting
waves (TS), random noise (N), streamwise vortices (SV) and oblique waves (OW).

Figure 4.17 – Threshold energy densities for triggering transition of the imposed forcing
as well as the resulting velocity perturbations, ||f ||E and ||u||E , whose amplitude is scaled
by the resolvent norm R. The slope of the ||u||E and ||f ||E lines differs since the resolvent
norm R increases with Re

transition method (Schlatter et al., 2004). The fundamental wavenumbers α = 1.12, β =
2.10 are chosen, the dimensions of the numerical domain being 2π/α×2×2π/β, discretized
on a Nx×Ny×Nz = 1923 grid. Schlatter et al. (2004), starting with Reynolds number Re =
(UH)/ν = 5000 measured at the centerline, and keeping a constant flow rate throughout
the whole simulation, reached a friction Reynolds number Reτ ≈ 208 is defined using the
friction velocity

uτ =

√
τwall
ρ

(4.30)

with local shear stress at the wall given by:

τwall = µ

∣∣∣∣
∂〈u〉
∂y

∣∣∣∣
wall

. (4.31)
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Using this value of the friction Reynolds number the chosen domain size and the grid
resolution can be expressed in wall units as:

[L+
x , Ly, L

+
z ] = [≈ 1165, 2,≈ 435] (4.32)

[∆x+|mean,∆y+|wall/∆y+|centre,∆z+|mean] = [7.3, 0.040/4.1, 3.9]

where the superscript + indicates adimensionalisation with respect to wall units, with

uτ = Reτ/Re laminarcenterline ≈ 0.0417

and l+ = 1/Reτ ≈ 0.00481. Thus, the selected computational domain is much larger than
the minimal flow unit (Jiménez and Moin, 1991) and the grid size is sufficiently small to
accurately describe a turbulent flow (Schlatter et al., 2004). The time averages presented
in this chapter are based on a period of T = 500 time units starting 500 time units after
transition takes place.

Following Ricco et al. (2012), the average of the three-dimensional, time dependent
field f(x, y, z, t) in the homogeneous directions x and z reads:

f(y, t) =
1

LxLz

∫ Lx

0

∫ Lz

0
f(x, y, z, t) dx dz. (4.33)

The velocity field can be thus decomposed as

u = {U(y, t), 0, 0}+ {u′, v′, w′} (4.34)

as well as the forcing field

f = {F (y, t), G(y, t), H(y, t)}+ {f ′, g′, h′}. (4.35)

It is important to note that in the F-type forcing method the spatial average of the forcing
is strictly zero ({F ,G,H} ≡ {0, 0, 0}), being constructed by a linear composition of Fourier
modes in the homogeneous directions. Assuming f to be statistically steady over N periods
of length T , we can define the phase average of f(y, t) as f̂(y, τ), that can be written as:

f̂(y, τ) =
1

N

N−1∑

n=0

f(y, nT + τ). (4.36)

The space-time average over a period T is:

〈f〉(y) =
1

T

∫ T

0
f̂(y, t) dt (4.37)

and the global quantity [f ]g is obtained integrating 〈f〉(y) in the wall-normal direction:

[f ]g =

∫ h

0
〈f〉(y) dy. (4.38)

4.4.1 Statistics and energy budget

Figures 4.18a and 4.18b show the zero-th and first order statistics of fully turbulent
DNS where transition has been triggered following different transition paths. As expected,
the results of the different simulations are indistinguishable.
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Figure 4.18 – Comparison of mean flow and Reynolds stresses extracted by fully turbulent
DNS for a classical K-type (Schlatter et al., 2004) transition scenario as well as the F-type
forcing method.
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Ubτw
ǫ
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F-type

Figure 4.19 – Sketch of the global energy balance in a channel flow. Arrow widths are
proportional to the corresponding values, except Fp that is scaled by a factor of 1000 for
the sake of visualization and exists only if a volume forcing is used. Energy is initially
pumped into the flow via the Ubτw term. One part is dissipated by the mean flow (Du),
the rest is transferred to the fluctuations via the production term of the turbulent kinetic
energy Puv, which eventually coincides with the turbulent dissipation ε. The F-type method
creates an additional sink-source energy Fp, but its effect turns out to be negligible.

In order to determine whether the F-type forcing method affects in some way the
energy balance within the turbulent flow, we analyse the transport equations of the Mean
and Turbulent Kinetic Energy (MKE and TKE), identifying the terms associated with the
volume forcing. The transport equations of the MKE and TKE are detailed in appendinx
A, where it is also shown that the volume forcing affects the TKE equation, only. A
sketch of the energy budget in a statistically turbulent channel flow is provided in figure
4.19. In a fully turbulent channel flow, since both MKE and TKE are statistically zero,
the energy pumped by the pressure gradient is transferred by the production term to the
flow oscillations and dissipated by the mean flow as well as by the turbulent fluctuations.
This standard scenario (Pope, 2000) is altered by the F-type volume forcing due to the
introduction of an energy term linked to the forcing itself, Fp, whose form and derivation is
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detailed in appendix A. In order to determine the amount of energy produced or dissipated
by the volume forcing, we compute the time evolution of the different terms of the Kinetic
Energy Budget (KEB), as in equation (A.14) in a statistically converged turbulent flow
arising from different transition scenarios. The different terms are plotted in figure 4.20a,
where one can observe that the term Fp associated to the forcing in equations (A.15) is
three to four order of magnitudes smaller than the other production or dissipation terms.
Thus, this term can be considered negligible in the energy balance account. In fact, in figure
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(a) Kinetic energy budget (A.14) for turbu-
lent states triggered via K-type (solid line)
and F-type (dashed line) transition methods.
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Figure 4.20 – Turbulent Kinetic Energy Decomposition plots. Labels are defined in A.

4.20a one cannot distinguish between the energy terms of the turbulent states obtained by
the K-type and F-type methods, although in the latter the volume forcing remains active
throughout the simulations. Figure 4.20b provides a phase portrait describing the laminar–
turbulent transition paths for the K-type and F-type methods. The time evolution of the
production term Puv and the turbulent dissipation ε is very similar for both transition
scenarios. Moreover, when the final turbulent state is reached, the energy budget terms
perfectly match.

4.4.2 Energy spectrum comparison

To further analyse the turbulent flow we plot in figure 4.21 the one-dimensional energy
spectra for the turbulent states triggered via the K-type and F-type transition, compared
to the benchmark data extracted from Moser et al. (1999). The energy density associated
with large wavenumbers is several order of magnitudes lower than that at low wavenum-
bers, confirming that the grid resolution is adequate for accurately describing a turbulent
state. However, one can observe that, for low wavenumbers, the energy spectrum does
not perfectly match the benchmark values when the F-type forcing method is used. In
order to find a possible reason for this weak discrepancy we analyse the time variation of
the friction Reynolds number, provided in figure 4.22. Comparing in figure 4.22a the Reτ
signals issued from the turbulent states obtained with the K-type and F-type methods,
one can observe that the latter is characterised by higher frequency oscillations than the
former. Performing a Fourier transform in the time range 500 ≤ t ≤ 1000 and invoking
Taylor’s relation linking spatial and temporal frequencies, we have found that these high
frequencies match with those imposed using the F-type volume forcing, as represented in
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Figure 4.21 – Comparison of the streamwise velocity one-dimensional turbulent energy
spectra Euu for <τ = 210 at y = 0 (midplane) for the K-type, F-type, and F-type with
Controlled Forcing Amplitude (F-CFA) method, as discussed in section 4.4.3, as well as for
the MKM benchmark literature case at Reτ = 180 from Moser et al. (1999). The spectrum
recovered with the F-type method slightly deviates from the expected result, as a result
of the presence of the volume forcing. This behaviour can be avoided by simply switching
the forcing off as explained in section 4.4.3, resulting in the F-type with Controlled Forcing
Amplitude case. The slight misalignment between the spectra obtained from the present
computations (K-type, F-type and F-CFA) and the reference case is due to the fact that
the former are computed for Reτ = 210, while the latter for Reτ = 180.

figure 4.22b. To verify that the discrepancy of the spectra is indeed due to the imposed
volume forcing, we suspend it once a fully turbulent state is obtained (for t ≥ 500 in the
considered case). In figure 4.22a the resulting Reτ signal is provided. The high frequency
oscillations rapidly decay when the forcing is interrupted, resulting in a spectrum devoid
of spurious peaks, as shown in figure 4.22b. Finally, figure 4.21 shows that once turned off

(a) Reτ (t) signals. The vertical dashed line
represents the time at which the forcing is
interrupted.
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(b) Reτ spectra for the signals presented on
the left frame; ωi indicate the forcing fre-
quency range for the F-type method.

Figure 4.22 – Reτ time signals and spectra for K-type (blue line), F-type (light blue line)
and F-type with interrupted forcing (F-CFA, green line) methods. Spurious energy peaks
in the F-type method occur within the same range of the forcing used to trigger transition,
as indicated by the vertical lines in the right frame. If the forcing is turned off (for t > 500
as indicated by the vertical line in the left frame), these spurious energy peaks disappear.
K-type related data are shifted by a factor of 5000 for sake of readability.

the forcing, the energy spectrum matches the benchmark one.
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4.4.3 Automatic forcing amplitude control

We have shown in the previous subsection that the volume forcing needs to be turned
off once the turbulent state is attained in order to avoid spurious frequencies in the energy
spectrum. However, the time to reach a fully turbulent state depends on a number of
factors, namely: the Reynolds number Re, the initial velocity disturbances shape and
intensity (for K-type like methods), the Tulinear forcing intensity (for F-type method), to
cite a few. For this reason, in this section we aim at constructing a function capable of
automatically adjust the forcing intensity without any a priori knowledge of the final state.

Towards this aim, we define two functions:

Ashift(t) =
ReAτ (t)− Reτ (t)

ReAτ (t)
(4.39)

and

Bshift(t) =
ReBτ − Reτ (t)

ReBτ
(4.40)

ReAτ (t) being an exponential moving average (see Holt (2004)), computed at each iteration,
it, as: [

ReAτ
]it

= [Reτ ]it + e(−dt·T ) ·
([
ReAτ

]it−1 − [Reτ ]it
)
, (4.41)

where the prescribed averaging window is T = 100, dt is the time difference between the
itth and the (it − 1)th iterations. Whereas, ReBτ is a function of the laminar Reynolds
number only, namely, ReBτ =

√
2 · Re. Functions (4.39) and (4.40) have been constructed

in order to show an opposed behaviour in the laminar and in the turbulent regime. In
the laminar regime, being ReAτ ≈ ReBτ , we have Ashift(t) ≈ Bshift(t); whereas, in the
turbulent one, the difference ReBτ − Reτ will be much larger than ReAτ − Reτ , resulting
in Ashift(t) � Bshift(t). Thus, for detecting transition to turbulence one can define the
following function:

∆F =

∣∣∣∣
Ashift
Bshift

∣∣∣∣ (4.42)

which is used to gradually damp the F-type forcing once transition is triggered. Towards
this aim, the forcing field issuing from the F-type forcing method is premultiplied by ∆F ,
which becomes equal to zero right after the flow reaches a self-sustained turbulent regime,
as provided in figure 4.23. In the same figure one can observe the time evolution of Reτ
in the Controlled Forcing Amplitude (CFA) case, together with its space-time average,
showing the establishment of a fully turbulent flow. In pictures 4.23 and 4.25, we report
the average value [ReAτ ]it (referred to as < Reτ (t) > for the sake of notation), which appears
to clearly indicate when transition is taking place, attaining a plateau when turbulence is
finally achieved.

The transition scenario observed using the controlled amplitude F-type forcing with
Tulinear = 0.5% is depicted in figure 4.24. The streamwise component of the forcing
and the λ2 surfaces of the associated response are provided at t = 110, 140, 150, 180. The
stochastic forcing begins to fade away when the nonlinear phase of transition is attained. At
t = 140, a few isolated hairpin-like structures can be clearly observed, which rapidly create
secondary hairpin vortices as well as small scale vortical structures (see the λ2 surfaces in
the bottom plots). At t = 180 the turbulence intensity is saturating towards an asymptotic
value, indicating that fully developed turbulence is almost attained. The forcing shuts off
when Tu reaches its asymptotic value and turbulent conditions are attained.
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Figure 4.23 – Transition in a channel flow at Re = 5000 using F-type method with Con-
trolled Forcing Amplitude (F-CFA). The forcing amplitude ∆F continuously decreases as
the friction Reynolds number increases, finally reaching a zero value when Reτ attains the
turbulent plateau.

We conclude this section by investigating whether the behaviour of the controlled am-
plitude parameter ∆F is robust in a different flow setting. In fact, up to this point we
have considered subcritical transition for Re = 5000, as depicted in figure 4.24, close to
the threshold for linear stability (Schmid and Henningson, 2001), but considerably larger
than the minimum Reynolds number at which transition to turbulence can be observed in
a channel flow (Tsukahara et al., 2014), namely Re ≈ 1600. For Re < 1600, turbulence
is not self-sustained (Manneville, 2015); thus, an initial perturbation superposed to the
base flow might induce transition for a finite time, but the flow will eventually relaminarize
(Iida and Nagano, 1998). Applying the F-type forcing method with controlled amplitude
in such case, for instance at Re = 1250, relaminarization is avoided since ∆F never reaches
zero, as shown in figure 4.25.

Whereas, by simply suspending the forcing beyond a threshold time, as done in figure
4.22a, relaminarization would have been attained. The controlled amplitude F-type forcing
method is thus effective in inducing transition in the flow even at very low Reynolds
numbers.

4.5 Conclusions

A new method is presented to build a continuous synthetic forcing capable of induce
stochastic velocity perturbations with a prescribed energy level in wall-bounded parallel
flows through receptivity mechanisms. The method is designed to provide a numerical
framework for reproducing uncontrolled laminar-turbulent transition in wall-bounded par-
allel flows, characterised by high levels of external noise. Exploiting some concepts provided
by linear stability and sensitivity analysis, such as the resolvent norm, we demonstrate that
this method, which we refer to as F-type forcing method, is able to produce a stochastic
velocity perturbation of prescribed energy level leading to turbulence. This goal is achieved
by using a low-amplitude volume forcing composed of optimal forcing functions with dif-
ferent suitably chosen frequencies.

The method has been first tested in a linear framework using direct numerical simula-
tions of the linearised Navier-Stokes equations, allowing a tuning of the numerical param-
eters. Then, direct numerical simulations of the fully nonlinear equations in the presence
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Figure 4.24 – Uncontrolled transition scenario, obtained with the F-type with Controlled
Forcing Amplitude method. Boxes a), b), c) and d) depict the isosurfaces of the streamwise
component of the forcing (top) and response (bottom) within the 3D transitional channel
flow, for t = 110, 140, 150, 180, respectively; the lower plot represents the turbulent inten-
sity Tu as well as the automatic forcing amplitude control intensity ∆F in time. It can be
clearly seen that, when turbulent conditions are attained, the forcing shuts off automati-
cally. In this computation Tulinear = 0.5%, Nω = 64, Nα,β = 4. Hairpin-like structures can
be visualised in the λ2-criterion surfaces during the late stages of transition, see b) and c).
Only the lower half of the channel is displayed for sake of clarity.

of the F-type volume forcing have been performed to test the robustness of the method.
Subcritical transition to turbulence induced by the prescribed forcing has been investi-
gated and compared to other transition scenarios, where deterministic (and unrealistic)
perturbations are imposed for obtaining a fully turbulent flow.

Finally, the fully developed turbulent flow induced by the F-type method has been in-
vestigated. Low-order statistics and energy balance equations are practically unaffected by
the continuous synthetic forcing. However, in the energy spectra a slight discrepancy with
respect to literature data is retrieved, that can be easily avoided by suspending the forcing
once a fully turbulent regime is attained. Thus, the F-type forcing method is modified by
adding a controlled amplitude parameter based on runtime measured quantities, able to
automatically damp the continuous forcing once the turbulent state is attained. Finally,
the robustness of the controlled forcing amplitude F-type method has been demonstrated,
by verifying its effectiveness in sustaining a transitional state even at very low Reynolds
number.

The F-type method introduced here has proven to be a useful tool for studying un-
controlled transition in wall-bounded, parallel flows, such as the channel flow considered
here. The same technique can be used without any modification to study non-deterministic
transition to turbulence in a number of other closed flow configuration, avoiding the use
of unstable modes for constructing the initial condition (Schmid and Henningson, 2001;
Tatsumi and Yoshimura, 1990), as for instance done for the duct flow in Biau and Bottaro
(2009). The same volume forcing method could be also used in a spatially developing
flow such as the boundary layer flow, by forcing a small part of the domain and letting
the disturbance develop downstream. The F-type forcing method allows not only to
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Figure 4.25 – Controlled amplitude F-type transition method for a low Reynolds number,
Re = 1250. The forcing intensity is the lowest one for which a transitional behaviour can
be observed: Tulinear = 0.7%. Forcing is activated intermittently to keep a turbulent state.

study uncontrolled transition in a wide range of closed, wall bounded shear flows, but also
provides a numerical framework for better understanding the onset and propagation of
turbulence at its edge, the dynamics of incipients turbulent fronts (Song et al., 2017), puffs
and slugs (Barkley, 2016) in pipe flow, as well as the establishment of direct percolation
in the Couette flow (Lemoult et al., 2016).
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Chapter 5

Controlling transition
with superhydrophobic surfaces

Superhydrophobic surfaces are capable of trapping gas pockets within the micro rough-
nesses on their surfaces when submerged in a liquid, with the overall effect of lubricating
the flow on top of them. These bio-inspired surfaces have proven to be capable of dramat-
ically reducing skin friction of the overlying flow in both laminar and turbulent regimes.
However, their effect in transitional conditions, in which the flow evolution strongly de-
pends on the initial conditions, has still not been deeply investigated. In this Chapter the
influence of superhydrophobic surfaces on several scenarios of laminar-turbulent transition
in channel flow is studied by means of direct numerical simulations. A single phase incom-
pressible flow has been considered and the effect of the micro-structured superhydrophobic
surfaces has been modelled imposing a slip condition with given slip length at both walls.
The flow evolution from laminar, to transitional, to fully-developed turbulent flow has been
followed starting from several different initial conditions. When modal disturbances issued
from linear stability analyses are used for perturbing the laminar flow, as in supercritical
conditions or in the classical K-type transition scenario, superhydrophobic surfaces are able
to delay or even avoid the onset of turbulence, leading to a considerable drag reduction.
Whereas, when transition is triggered by nonmodal mechanisms, as in the optimal or un-
controlled transition scenarios, which are currently observed in noisy environments, these
surfaces are totally ineffective for controlling transition. Superhydrophobic surfaces can
thus be considered effective for delaying transition only in low-noise environments, where
transition is triggered mostly by modal mechanisms.

In this chapter the we will use the SHS acronym both for referring to superhydrophobic
surfaces in general as well as to the spatially homogeneous slip approach that we will use
to model them in this section.

5.1 Governing equations

The aim of the present study is to study how SHS at the walls of a plane channel affect
flow stability and transition to turbulence in different flow conditions, allowing to delay or
even avoid transition in some particular cases. . As previously discussed, when both the
spanwise length of the grooves and the shear-free fraction are small enough with respect to
the channel thickness so to ensure that the lubricating layer is retained within the surface
microsculpture while sustaining a laminar-turbulent flow, namely withstanding wetting
transition(Seo and Mani, 2016), the spatially heterogeneous solid and gas substrates can
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Figure 5.1 – Sketch of a channel flow with submerged SuperHydrophobic Surfaces, depicting
the near-wall, capillary driven microscopic free-surface dynamics as well as its modelling
using a slip condition with slip length Ls.

be modelled as a spatially homogeneous surface with a given slip length (see figure ??
The dynamics of an incompressible Newtonian fluid flowing in a channel is governed

by the Navier-Stokes equations:

∂U

∂t
= −(U · ∇)U −∇P +

1

Re
∇2U (5.1)

∇ ·U = 0, (5.2)

where U = (U(x, t), V (x, t),W (x, t))T is the velocity field and P (x, t) is the pressure field.
The Reynolds number is defined as Re = UrH/ν, where H is half the height of the channel
and ν the kinematic viscosity of the fluid. Dimensionless time t = H/Ur and reference
velocity Ur = 3Ua/2 is based on its average over the entire domain Ua = 1/2H

∫
Udxdydz.

The reference frame x = (x, y, z)T is chosen so that x is the streamwise, y the wall-normal
and z the spanwise directions. The presence of SHS is taken into account using an ad-hoc
boundary condition at the wall, provided in equation (1.1).

Steady solutions Qb(x) = (Ub, Pb)
T of the Navier-Stokes equations are known as

base flows or fixed points of the system. Under the assumption of small-amplitude dis-
turbances, we decompose the flow field as a sum of the base flow and a perturbation
such as Q(x, t) = Qb(x) + εq(x, t), with ε � 1, that is to say (U(x, t), P (x, t))T =
(Ub(x)Pb(x))T + ε(u(x, t), p(x, t))T . In our framework, the base flow assumes the form
Ub(x) = (Ub(y), 0, 0), with

Ub(y) = (2Ls + 1− y2)/(3Ls + 1), (5.3)

as found by Philip (1972). Despite U(y = 0) value is usually employed for nondimension-
alisation, the use of a slippery boundary condition modifies the velocity at the centerline.
Again, this issue is overcome using Ur as reference velocity, enabling for a consistent defi-
nition of Re throughout all the present study. In order to trigger transition to turbulence
starting from the laminar base flow, we will use perturbations constructed on the basis of
modal and nonmodal linear stability analyses (see Min and Kim (2005) and Pralits et al.
(2017)).

5.1.1 Linear Stability Analysis (LSA)

Linearising the governing equations around the base flow we obtain the linearized
Navier-Stokes equations, which can be compactly written as:

∂u

∂t
= Lu (5.4)
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once projected onto a divergence-free vector space. Being this system autonomous in time
and being the base flow periodic in both streamwise and spanwise directions one can apply
a Fourier-Laplace transform to any field q so that q(x, t) = q̃(y) exp[i(αx + βz) + λt] +
c.c, where c.c. is the complex conjugate, α and β are the real streamwise and spanwise
wavenumbers respectively, λ is the complex circular frequency and q̃ ∈ C4 is the associated
eigenfunction.

In this framework, the behaviour of a generic solenoidal perturbation u is linked to the
eigenpairs of L:

{
λeig, ũeig

}
(Orszag, 1971), since it can be written as

u(x, t) =
∑

l

κlũ(y)eigl ei(αx+βz)+λeigl t, (5.5)

where κl is a scalar weight. For a given couple (α, β) the temporal behaviour of each
eigenvector of the linearised operator L is then described by its associated eigenvalue
λeigi = σeigi + iωeigi , where σeigi represents its asymptotic growth/decay rate and ωeigi its
circular frequency.

Solving the 1D local stability problem, which is to say seeking for the eigenvalues of L
which govern the behaviour of small perturbations in the time-asymptotic limit, by means
of a spectral code (Schmid and Henningson, 2001), we retrieve the same result found by
Min and Kim (2005). The most unstable modes of the operator L, i.e., the Tollmien-
Schlichting (TS) waves, are strongly affected by the value of the slip length imposed at
the wall. This is not surprising considering that TS waves are near-wall perturbations and
that SHS reduces the velocity gradient near the wall. Figure 5.2(a) shows that, increasing
the value of Ls the neutral curve moves towards higher values of Re, suggesting that SHS
might delay transition to turbulence, at least in supercritical conditions (i.e., when the
Reynolds number overtakes the critical value for linear instability).

In subcritical conditions, small-amplitude perturbations can transiently grow in time
due to nonmodal mechanisms, linked to the nonnormality of the Navier-Stokes equations.
To investigate how the nonmodal dynamics of small perturbations is affected by SHS in
a finite-time framework, we seek for the ’optimal’ perturbation at initial time, uOpt0 (x),
capable of inducing the maximum energy growth at a target time T (Butler and Farrell,
1992; Luchini, 2000). The energy gain to be optimized reads:

G(T ) = max
u0

E(uT )

E(u0)
, (5.6)

where the integral energy in the computational domain V is defined as:

E(u(t)) =
1

2LxLz

∫

V
uT (t)u(t)dV. (5.7)

For obtaining the optimal energy gain Gopt(T ) and the corresponding initial and final
optimal perturbations uOpt0 (x), uOptT (x) a singular value decomposition of the linearised
governing equation (5.4) has been used, following the approach of Schmid and Brandt
(2014). As shown in figure 5.2(b), a variation of Ls induces but a slight modification of the
maximum energy gain and of the optimal perturbation shape, consisting of modulations in
the spanwise direction of the streamwise velocity, i.e., streaks (Farrell, 1988). In fact, since
these optimal structures essentially lie in the flow bulk far from the walls, they are much
less affected by the surface boundary condition than the near-wall TS waves . The fact that
velocity perturbations are slightly or strongly affected by SHS depending on their distance
from the wall suggests that some specific transition scenarios can be better controlled than
others by the introduction of SHS.
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Figure 5.2 – Linear stability and transient growth analyses for different values of Ls: neutral
curve for linear stability for β = 0 (a) and optimal energy gain in the α − β plane for
Re = 1000 (b), both in perfect match with Min and Kim (2005). The slip length strongly
affects the time asymptotic behaviour, while being ineffective in controlling finite-time
dynamics, as shown by the unmodified contours of the optimal transient energy growth.
Contours in subplot (b) are related to the same values of Ls reported in subplot (a).
The values of the isocontours in subplot (b), from outer to inner, correspond to GOptmax =
[110, 120, 130, . . . , 180, 190, 200].

5.1.2 Direct Numerical Simulations

In order to investigate the influence of SHS on laminar-turbulent transition, we su-
perpose different perturbations built on the basis of the previously introduced modal and
nonmodal stability analyses to the laminar base flow and follow their evolution using Di-
rect Numerical Simulations (DNS). The flow in a streamwise-periodic channel with constant
flow rate is simulated using the incompressible solver Nek5000 (Fischer et al., 2008), based
on the spectral element method (SEM). The code, which has been modified to account
for the Robin boundary condition (1.1), is based on a PN − PN−2 spatial discretisation
and a BDF3/EXT3 spatial scheme. Throughout the present work, the domain size is
set to [Lx, Ly, Lz] = [2π/α, 2H, 2π/β], where α = 1.12, β = 2.10. In most computations
the Reynolds number is set to Re = 5000, in order to match literature results about
the K-type transition in channel flows (Zang and Krist, 1989). Using 24 spectral ele-
ments in each direction with polynomial order equal to 8, the resulting spatial resolution
is [Nx, Ny, Nz] = [192, 192, 192]. Under these conditions and considering a no-slip wall, the
resulting fully turbulent state is characterised by a friction Reynolds number Reτ = 210
(Schlatter et al., 2006) (albeit we will show that imposing a constant flow rate will result
in a lower Reτ for a turbulent flow over SHS). Therefore, the grid size expressed in friction
units is small enough to accurately simulate a turbulent channel flow by DNS (Seo and
Mani, 2018). In particular we have ∆x+ ≈ 6.2,∆z+ ≈ 3.0, ∆y+

min ≈ 0.16 at the wall and
∆y+

max ≈ 11.5 at the centerline, which are lower than the values used by Min and Kim
(2004, 2005).

5.2 Transition triggered by modal mechanisms

The aim of the present work is to explain how different scenarios of transition to turbu-
lence are affected by a slip boundary condition with given slip length. First, we consider the
case in which transition is triggered by modal stability mechanisms. Thus, following Zang
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and Krist (1989); Sandham and Kleiser (1992a); Schlatter et al. (2006), we use as initial
conditions for the DNS a superposition of the laminar base flow plus a linear combination
of eigenvectors of L:

U(x, t = 0) = Ub(x) +
∑

j

εjũ(y)eigj ei(αx+βz)+λeigj t. (5.8)

where εj is a given amplitude. In supercritical conditions, namely for Re ≥ Recritical =
5772.22 (Orszag, 1971), only one mode will be retained in the right hand side of the
previous equation, namely the most unstable one. Conversely, in subcritical conditions
(Zang and Krist, 1989), we will refer to the well-known K-type (or H-type) transition
(Kachanov, 1994a), that can be obtained numerically by setting initial conditions similar
to the experiments of Nishioka et al. (1975), where a sum of two-dimensional and oblique
TS waves were used (Kleiser and Zang, 1991). In the literature, the effect of SHS on
transition to turbulence have been studied for the K-type scenario only (see Min and Kim
(2005)), but even for this case the physical mechanisms leading to transition delay have
not been investigated yet.

5.2.1 Supercritical case: TS waves

For the chosen configuration, the most unstable eigenvalue of L is the two-dimensional
TS wave with α = 1.00, β = 0.0, which we will refer to as uTS2D

. We set Re = 10000
so that, according to the neutral curve shown in figure 5.2(a), the flow remains linearly
unstable for a large range of slip lengths. We superpose the unstable mode to the base flow
as U(x, t = 0) = Ub(x)+εuTS2D

(x) and study the flow evolution by DNS first for a no-slip
wall and than for a SHS with a slip value compatible with the experiments of Gose et al.
(2018), Ls = 0.005. The amplitude ε is set to ≈ 3 ·10−3 to guarantee an initial linear phase
of exponential growth before the onset of nonlinear effects, provided that E(t = 0) = 10−5.

In order to detect transition we track the evolution of the kinetic energy density of
the velocity perturbation defined in equation (5.7). The result is plotted in figure 5.3 for
Ls = 0 and Ls = 0.005. In both cases, after an initial phase characterised by exponential
growth as predicted by the LSA, secondary instability sets in leading to a rapid increment
of E towards saturation to a fully turbulent state. For both the considered values of Ls
the onset of secondary instability is observed for E ≈ 5 · 10−5, and the energy saturates
towards the same value characterizing the turbulent regime. As predicted by LSA, in the
presence of SHS the initial exponential phase is characterized by a lower growth rate, thus
the threshold energy for secondary instability is reached in more time, leading to a time
delay of the consequent transition to turbulence. For the chosen amplitude of the unstable
mode, most of the transition time is spent during the initial exponential growth and the
physical mechanisms leading to transition are essentially the same in both the considered
cases. Therefore the transition time might be estimated using the eN method (van Ingen,
2008) also for the SHS case.

5.2.2 Subcritical case: K-type transition

In this section we study in detail how the K-type transition scenario is influenced by
a slippery wall at Re = 5000, pursuing the study made by Min and Kim (2005) in order
to unveil the physical mechanisms leading to transition delay. This transition scenario is
triggered setting as initial disturbances a sum of the 2D TS wave uTS2D

and a sum of
equal and opposite oblique 3D fundamental Tollmien-Schlichting waves uTS3D

. The initial
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Figure 5.3 – Influence of SHS on the supercritical transition path at Re = 10000. Simula-
tions have been initialised with the most unstable eigenvector of L, with initial perturbation
kinetic energy density equal to E(t) = 10−5, for different slip lengths Ls. Dashed lines rep-
resent the exponential energy growth predicted by the linear theory, for both considered
slip lengths.

condition for K-type transition then reads

U(t = 0) = UBF + 0.03uTS2D
+ 0.001uTS3D

, (5.9)

where the shape of the modes depends on the imposed value of Ls and their phase is set
so that the maximum amplitude of the disturbances occurs at z = Lz/2 (Zang and Krist,
1989; Sandham and Kleiser, 1992a). For both waves, the maximum value of the streamwise
velocity component is set to the desired amplitude and the other components are scaled
accordingly. Figure 5.4 shows the temporal evolution of the instantaneous wall shear
normalised by its laminar value for Ls = 0.00, 0.01, 0.02. The first two curves accurately
reproduce those in figure 3(a) of the work by Min and Kim (2005) (where only Ls = 0.00
and Ls = 0.01 are considered), validating our numerical approach. The highest value of
Ls = 0.02, already used by the same authors in a previous study (Min and Kim, 2004),
would result from a SHS having a roughness texture period of L+ ≈ 15 in the turbulent
regime (Seo and Mani, 2016). This value of L+ is still sufficiently low to ensure the
suitability of the spatially homogeneous numerical approach (Seo and Mani, 2016) and to
avoid wetting transition (Zhang et al., 2016) and is comparable to values of the texture
period in turbulent conditions reported in the literature, namely L+ ≈ 0.5− 10 (Daniello
et al., 2009; Woolford et al., 2009; Park et al., 2014; Rowin et al., 2018; Gose et al., 2018).
While for Ls = 0.01 transition is only delayed in time (see also Min and Kim (2005)),
for Ls = 0.02 it is completely avoided, although the wall shear increases to a value larger
than the laminar one (but still much lower than the turbulent one). For investigating the
physical mechanisms affecting transition in the presence of a slip length, we place ourselves
in a threshold condition, slightly increasing the initial perturbations intensity of the case
with Ls = 0.02 up to a value for which transition is triggered. This is achieved for a 10%
increase of the perturbation amplitude, namely:

U(t = 0) = UBF + 1.10(0.001uTS2D
+ 0.0003uTS3D

). (5.10)

In the remainder of the chapter we will focus on this latter case (equation (5.10)), referring
to it simply as K-type transition for the sake of simplicity, after having verified that ini-
tialising the simulation using equation (5.9) or (5.10) provides essentially the same results
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Figure 5.4 – Time evolution of the instantaneous wall shear normalised by its laminar value
in a standard K-type transition scenario as in equation (5.9). Referring to the no-slip case
(Ls = 0.0), with SHS transition to turbulence can be retarded (Ls = 0.01) or even avoided
(Ls = 0.02). The symbols LVs are validations with respect to the case 3 from Min and Kim
(2005).

for Ls = [0.00, 0.01]. For detecting whether transition has taken place, in figure 5.5 we
provide the evolution of the friction Reynolds number, defined as:

Reτ =

√
Re

∣∣∣∣
∂ 〈U(x, t)〉

∂y

∣∣∣∣
wall

, (5.11)

where 〈·〉 represents the spatial average computed on the wall-parallel planes x − z at a
given time t and the laminar Reynolds number is set to the constant value Re = 5000
(Zang and Krist, 1989). Both the laminar (t < 100) and turbulent (t > 500) mean values
of Reτ change with Ls. The former can be easily derived injecting equation (5.3) within
equation (5.11):

Reτ =

√
Re

∣∣∣∣
2y

3Ls + 1

∣∣∣∣
wall

=

√
2Re

(3Ls + 1)
, (5.12)

while the latter is reduced due to the reduced friction drag. This is a consequence of the
fact that we have imposed a constant flow rate, therefore we cannot directly compare our
results with other studies of turbulent flows over SHS where Reτ is kept constant (Min and
Kim, 2004; Seo and Mani, 2016).

Looking at the transitional phase, we observe that while Reτ increases monotonically
for Ls = [0.00, 0.01], this is not the case for Ls = 0.02, where a transient growth of the skin
friction is observed, followed by a saturation and a rapid increase towards the turbulent
value. In the following sections we will analyse the coherent structures and associated
Fourier modes arising in the different stages of transition with the aim of identifying the
instability mechanisms inhibited by the presence of SHS.
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Figure 5.5 – Time evolution of the friction Reynolds number Reτ , for the modified K-type
transition scenario (equation (5.10)) and different slip lengths. Differently from the case
in figure 5.4 transition occurs even for Ls = 0.02.

Coherent structures

Figure 5.6 provides snapshots of the flow structures observed during transition to tur-
bulence for the three considered slip lengths. The snapshots are placed one next to the
other in order to provide an overall view of the transition process; the time at which each
snapshot has been extracted is reported in the figure. In figure 5.6(a) the standard K-type
transition scenario is reported for comparison purpose. At first (t ≤ 80) a saturation of the
2D TS wave is observed, followed by a symmetry breaking in the spanwise direction and a
three-dimensionalization of the perturbation due to secondary instability (t = 85) (Gilbert
and Kleiser, 1990). Then, the presence of strong shear layers promotes the formation of
Λ−shaped vortices (t = 103). The roll up of the shear layer connects the downstream side
of Λ vortices, forming the heads of characteristic hairpin vortices, whereas the legs formed
in the upstream part of the Λ−vortices are stretched (t = 113) (Sandham and Kleiser,
1992a). The late stage of transition (t = 125) is characterised by the rapid formation of
multiple hairpin heads as a succession of sweep-ejection events (Guo et al., 2010). Finally,
at t ≥ 130, breakdown to turbulence is observed.

Figure 5.6(b) depicts K-type transition over a SHS with Ls = 0.01. Transition appears
to be qualitatively similar to the no-slip case in its early stages (t < 100). Notable differ-
ences arise in the late stages, where the Λ− vortices weaken and stretch in the streamwise
direction (t = 125). An inhomogeneous streamwise velocity distribution is also observed at
the wall (t = 120). Hairpin vortices are created at a later time with respect to the no-slip
case, showing smaller heads and legs that appear to originate right at the wall, leaving a
clear footprint in the slip velocity (t = 130). Vortical structures such as Λ and hairpin
vortices persist for a longer temporal range compared to the no-slip case (t ≈ 150), while
the final breakdown to turbulence appears to be qualitatively the same.

Increasing the slip length up to Ls = 0.02, as represented in figure 5.6(c), produces a
drastic change in the transition path. First of all, the spanwise symmetry breaking of the
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TS waves is considerably delayed in time (t = 150). Then, the development of Λ vortices
appears to be inhibited by the slippery walls, leading to a saturation and subsequent
slow decrease of the wall shear corresponding to the bump in the Reτ time series at t =
250 shown in figure (5.5). At t ≈ 300, due to flow receptivity (Luchini (2000)), the
residual perturbations regroup in long, streamwise aligned velocity modulations (streaks),
as suggested by the slip velocity distribution at the wall (250 < t < 275), whereas vortices
appear almost completely damped. At t ≈ 365, due to secondary instability of the streaks,
new vortical structures arise in the flow, leading to the onset of bypass transition.

Fourier harmonics

With the aim of providing a more quantitative description of how K-type transition
scenario is affected by the use of SHS, we track in time the amplitude of selected Fourier
harmonics (Zang and Krist, 1989):

Ek(kx, kz) =
1

2E0

∫ +1

−1
|ûkx,kz(y, t)|2 dy, (5.13)

where ûkx,kz(y, t) is a single component of the Fourier transform of the perturbation velocity
field in the streamwise and spanwise direction with wavenumbers kx, kz, respectively, while
E0 is the kinetic energy of the laminar flow. Following the literature, the wavenumbers of
the different Fourier modes will be indicated as multiples of the fundamental wavenumber,
the couple (ix, iz) representing the ith multiple of the fundamental streamwise and spanwise
wavenumbers, 2π/Lx, 2π/Lz, respectively. We recall that in this framework the presence of
the TS waves uTS2D

, uTS3D
is translated into spikes in the (1, 0) and (1,±1) Fourier modes,

respectively. The time evolution of the most energetic Fourier modes during the different
phases of the K-type transition is provided in figure 5.7 for the considered values of the
slip length. In all cases, despite energy is initially provided only to the (1, 0) and (1,±1)
modes, a streamwise invariant, subharmonic mode (0, 2) is immediately generated, rapidly
increasing in energy. This is a clear sign that, even if the mode initial amplitude is relatively
small, non-linear interactions are already taking place, indicating that predictions based
on linear amplification mechanisms are not sufficient for modelling the transition scenario
(Min and Kim, 2005). For Ls = 0.00 and Ls = 0.01 the time evolution of the Fourier
modes is substantially similar. On the other hand, for the Ls = 0.02 case we observe
a decrease of the amplitude of the (1, 0) mode and a much slower increase of (1, 1) and
(0, 2) modes. At t ≈ 200, the streamwise-dependent modes begin to decrease their energy
whereas mode (0, 2) saturates for a rather long time range. Thus, for t > 200 the flow is
mostly characterised by streamwise-invariant velocity modulations, i.e., streaky structures.

Late stages of transition

In order to follow the development and eventual disruption of these streaky structures,
in figure 5.8 we provide the time evolution of the streamwise and spanwise vorticity (ωx, ωz)
within the channel section, as well as the friction Reynolds number (bottom) coloured by
the amplitude of the spanwise modulation, which is defined as:

As(t) = [maxy,z(U(x, t)−Ub(x)−miny,z(U(x, t)−Ub(x))] (5.14)

as proposed by Andersson et al. (1999); Brandt et al. (2003). Monitoring these quantities
in time allows to identify the hairpin legs and heads, characterised by high values of ωx, ωz,
respectively (Zhou et al., 1999), as well as the onset of spanwise vortices, associated with
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Figure 5.6 – Overview of the K-type transition over superhydrophobic surfaces with dif-
ferent slip lengths. For each slip length, snapshots extracted at different times are placed
one next to the other in order to provide an overall view of transition. The time values
are reported on the black lines separating the snapshots. The iso-surfaces show the λ2

criterion, coloured by its distance from the wall, and the iso-contours represent the stream-
wise velocity measured at the lower wall, shifted in the spanwise direction for visualisation
issues. Only the lower channel half is showed for the sake of visualisation.
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Figure 5.7 – Time evolution of the energy associated to (1,0), (1,1) and (0,2) Fourier
modes during K-type transition for different values of Ls. While the 2D and 3D TS waves,
respectively identified by modes (1,0) and (1,1) evolve in a similar way in all cases, for the
Ls = 0.02 case streaks ((0,2) modes) dominate the flow evolution for a large time range,
leading to a consistent delay in transition.

peaks of ωz and As (Brandt et al., 2003). The time evolution of these three quantities
is qualitatively and quantitatively similar for the Ls = [0.00, 0.01] cases, as reported in
the first two columns of figure 5.8. In both cases, the formation of Λ vortices (localized
peak in ωx for t < 100 in figures 5.8.0a and 5.8.1a) is followed by their evolution into
hairpin vortices, as suggested by the ωz spot at t ≈ 125 indicating the rapid development
of hairpin heads (see figures 5.8.0b and 5.8.1b). Although this ωz peak is weaker for the
Ls = 0.01 case, in both cases it is followed by a wall-normal spreading of both vorticity
components together with a rapid increase of Reτ , indicating the breakdown of hairpin
vortices and consequent transition to turbulence (Sandham and Kleiser, 1992a). Figures
5.8.0c and 5.8.1c are also very similar, although for the slip case the transitional phase is
longer and Reτ is characterised by smaller values.

This process is radically modified for the largest slip length considered here, Ls = 0.02.
Whilst the initial condition has been designed to promote the formation of Λ vortices
(Sandham and Kleiser, 1992a), ωx increases only transiently and then drops to very low
values, as depicted in figure 5.8.2a. The reduced wall shear restrains the formation of
Λ vortices, therefore inhibiting the consequent creation of hairpin vortices. Right after
the disappearance of the ωx transient peak, at t ≈ 200, ωz begins to increase, initially
close to the wall and then migrating through the channel bulk up to t ≈ 400 (see figure
5.8.2b). In this time range the friction Reynolds number Reτ increases to a value larger
than the laminar but lower than the turbulent mean one and the spanwise modulation
amplitude saturates, as shown in figure 5.8.2c. In fact, in this phase streaky structures are
created as a response of the flow to the residual perturbations present in the computational
domain (Luchini (2000)). For 180 < t < 200 the streaks linearly increase their amplitude
(As) due to flow receptivity. Once As reaches a threshold amplitude nonlinear effects set
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Figure 5.8 – Streamwise and spanwise vorticity averaged along the homogeneous directions
x−z, 〈ωx〉 , 〈ωz〉 in subplots x.a and x.b, respectively. Subplots x.c show the time evolution
of the friction Reynolds number Reτ , coloured by the spanwise deformation amplitude As.
Plots are arranged in columns according to the Ls to which they belong.

in ( according to (Brandt et al., 2004a), As ≈ 26% of the free-stream velocity for sinuous
instability), and lead to a saturation of both Reτ and As, while the region of high amplitude
ωz departs from the wall. This indicates that the initial ’linear’ streaks are deformed in
the wall-normal direction due to nonlinear effects (Mao et al., 2017). Finally, at t > 400,
abrupt secondary instability of these nonlinearly saturated flow occurs and breakdown to
turbulence is finally reached.

The development of nonlinearly saturated streaks and the consequent creation of hair-
pin vortices can be further analysed by following the time evolution of the streamwise
perturbation and of the uv product averaged in the wall-parallel planes as plotted in figure
5.9 together with the time variation of As coloured by the skin friction coefficient Cf . The
first quantity, 〈u〉 allows to distinguish linear from nonlinear streak. In fact, linear high-
and low- speed streaks are placed at the same wall-normal positions (Schmid and Henning-
son, 2001), thus spanwise averaging cancels out their contribution in the 〈u〉 term. When
nonlinearity sets in, since low- (high-) speed streaks migrate upwards (downwards), the
quantity 〈u〉 departs from zero. The second quantity, 〈uv〉, allows to identify the presence
of sweep and ejection events, characterised by large values of 〈uv〉 with u and v anticorre-
lated in sign (belonging to the Q4 and Q2 quadrant of the u− v plane, see Adrian (2007);
Farano et al. (2015)). The presence of these events has been indicated in the figure using
the Q4 and Q2 nomenclature respectively, as a reminder to the 〈uv〉 velocity quadrant to
which they belong.

Comparing figure 5.9.0d .1d and .2d, one can see that, when Ls increases from 0 to
0.02, in the time range t = [0, 120] the quantity 〈u〉 decreases to zero close to the wall,
indicating that near-wall linear streaks almost disappear. In the same time range, sweeps

68



Chapter 5. Controlling transition
with superhydrophobic surfaces 5.2. Transition triggered by modal mechanisms

−1.00

−0.75

−0.50

−0.25

0.00

y

+

−(0d)

Ls = 0.000

+

−(1d)

Ls = 0.010

+

−(2d)

Ls = 0.020

−1.00

−0.75

−0.50

−0.25

0.00

y

Q2

Q4

(0e)

Q2

Q4

(1e)

Q2

Q4

(2e)

0 50 100 150 200

t

0.0

0.5

1.0

A
s

(0f)

0 50 100 150 200

t

(1f)

0 200 400

t

(2f)

1e − 4

0

1e − 4

<
u
v

>

−0.001

0.000

0.001

<
u

>

0.010

0.015

0.020

0.025

0.030

C
d

Figure 5.9 – First row: contours of the streamwise velocity disturbances averaged onto the
x − z plane (〈u〉). Second row: contours of the uv product measuring Q2 and Q4 events
averaged onto wall-parallel planes (〈uv〉). Third row: time evolution of the spanwise am-
plitude deformation As, coloured by the friction coefficient Cf . Each column is associated
to a given slip length, Ls = 0.00, 0.01, 0.02 from left to right.

and ejections are completely absent in the Ls = 0.02 case, whereas for Ls = 0, 0.01 they
occur in the narrow t = [75, 100] window (compare figures 5.9.0e, .1e and .2e). In this time
range Q4 (Q2) events occur close to (far from) the wall, as typically observed in the presence
of hairpin vortices. On the contrary, at 200 < t < 400 for the Ls = 0.02 case, ejections are
observed close to the wall whereas sweeps lay in the outer region (see figure 5.9.2e). This
feature can be associated with the onset of nonlinearities saturating the streaks, where the
lift-up of the low-speed streaks initially placed in the near-wall region induces Q2 events
close to the wall and the downward motion of high-speed streaks produces Q4 events far
from the wall. The same wall-normal arrangement of Q2 and Q4 events is observed in all
the three cases in the turbulent regime, namely at t > 150 for Ls = 0, 0.01 and at t > 400
for Ls = 0.02 (as indicated by the rapid increase of Cf at these times), due to the presence
of nonlinear streaks in the buffer and viscous layer in the fully turbulent flow (Jiménez,
2013).

The effect of the slip boundary condition on sweeps and ejections events in the nonlinear
phase of the transition scenario can be further analysed inspecting the distribution of the
u − v probability density function averaged over the wall-parallel planes in the near-wall
region (0 < y < 1), which is provided in the upper row of figure 5.10, together with the wall-
normal distribution of the positive/negative streamwise velocity disturbances averaged onto
the x−z planes (u+, u−) provided in the lower row of figure 5.10, for different values of Ls.
Sweep and ejection events are attenuated when the slip length is increased from Ls = 0.0
to Ls = 0.01 (compare figure 5.10.a with 5.10.b), whereas the u+ and u− velocity profiles
in figures 5.10.d and 5.10.e, representing the wake of hairpin legs and heads respectively,
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Figure 5.10 – Upper row: contours of the logarithm of the probability density function of
the wall-normal and streamwise velocity disturbances in a u− v plane (w = 0) averaged in
the wall-parallel planes in the region 0 < y < 1. Values of the logarithm of the PDF have
been normalized with respect to the total number of points of the computational domain.
Bottom row: profiles of the positive/negative (u+/u−) streamwise velocity disturbances,
averaged on the x − z planes. For each computed Ls, arranged in columns, we plot the
data at time T so that the Reτ (T ) = 1.1 · Reτ (t = 0), at the beginning of the non-linear
phase.

remain qualitatively similar. In the case Ls = 0.02, Q4 events are strongly inhibited and
the probability density function is mostly dominated by Q2-Q3 events (see figure 5.10.c),
indicating that the flow is characterised by stronger low-speed streaks whose peak value
moves upwards in the wall-normal direction (see figure 5.10.c, bottom), a further evidence
of the development of non-linear streaks (Mao et al., 2017). Very similar u−v distribution
is found farther from the wall (not shown), confirming that the reduced shear succeeds
in inhibiting Q4 events everywhere in the flow. These results clearly indicate that for a
sufficiently large slip length (Ls = 0.02 in the present configuration) the SHS considerably
alters the mechanisms leading to the creation of Λ and hairpin vortex, inhibiting Q4 events
and consequent transition to turbulence. Depending on the initial amplitude of the imposed
perturbations, K-type transition can be delayed or even completely avoided by the presence
of SHS of sufficiently large slip length.

How slippery surfaces damp the growth of Λ vortices

We have shown that a slippery boundary is capable of delaying K-type transition by
considerably modifying the coherent structures occurring in the process (Bake et al., 2002;
Sayadi et al., 2013a). In particular, figure 5.6 clearly shows that introducing a slip length
inhibits the development of hairpin vortices by strongly damping the growth of Λ vortices.
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Since during K-type transition Λ vortices result from the vortex tilting of the spanwise
vorticity associated with the initially imposed TS waves (Malm et al., 2011), we focus on the
effect of the slippery walls on the streamwise and spanwise vorticity. Figure 5.11 provides
the time evolution of the wall-normal averaged values of 〈ωx〉, 〈ωz〉 for the three considered
slip lengths. For Ls = 0.00 we observe an initial increase of ωz due to the presence of TS
waves near the walls. After the spanwise vorticity has reached a plateau value, ωx begins
to increase exponentially due to vortex tilting (Malm et al., 2011), producing Λ vortices.
The vortex tilting phase leading to the creation of Λ and subsequent hairpin vortices can
be visualized in figure 5.12. Increasing Ls results in a reduction of ωz right during the
vortex tilting phase, with a consequent weaker growth of ωx (see figure 5.13). This effect
can be analysed by evaluating the different terms of the vorticity transport equation, which
for an incompressible flow reads

Dω

Dt
= (ω · ∇)u+

1

Re
∇2ω, (5.15)

where ω is the three-dimensional vorticity vector field. Assuming the Re number to be
large enough so that the diffusive term is small (Ye et al., 2018), the temporal evolution of
the spanwise vorticity reduces to

Dωz
Dt
≈ −∂v

∂z

∂w

∂x︸ ︷︷ ︸
Tzx

+
∂u

∂z

∂w

∂y︸ ︷︷ ︸
Tzy

+ωz
∂w

∂z︸ ︷︷ ︸
Szz

, (5.16)

where Tzx, Tzy and Szz represent the vorticity tilting and stretching terms for the spanwise
component, respectively. Further development of the latter relation provides the equation
which describes the temporal evolution of the spanwise vorticity:

∂ωz
∂t
≈ −

(
u
∂ωz
∂x

+ v
∂ωz
∂y

+ w
∂ωz
∂z

)

︸ ︷︷ ︸
Az

+Tzx + Tzy + Szz. (5.17)

The volume integral of each term of equation (5.17) is represented in figure 5.14 for different
values of Ls at time t = 40. At this time, for Ls = 0.00, ∂ωz/∂t ≈ 0 results from a
balance of all terms in equation (5.17) so that ωz remains constant in time for a large
time range. Introducing a slippery boundary the wall-normal gradients ∂ (•) /∂y (Min
and Kim, 2004) are reduced, inducing a strong decrease of the vortex tilting term Tzy =
∂u/∂z · ∂w/∂y. This results into a disequilibrium in equation (5.17) leading to a decrease
of the spanwise vorticity and consequently of the vortex-tilting-induced streamwise one,
inhibiting the growth of Λ vortices. Thus, introducing a slippery boundary mildly influences
the evolution of the TS spanwise vortices, while strongly affects the subsequent onset of Λ
vortices by reducing ωz, as clearly shown in figure 5.13.

5.3 Transition triggered by nonmodal mechanisms

5.3.1 Optimal perturbations

In subcritical conditions in a noisy environment, streaky perturbation are usually ob-
served prior to transition (Kendall, 1998; Saric et al., 2002; Manneville, 2015), since small-
amplitude environmental perturbations project in time onto the largest singular value of the
linearised Navier-Stokes operator L (Luchini, 2000), whose associated response corresponds
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Figure 5.11 – Wall-normal integral of the averaged spanwise and streamwise components
of vorticity for different slip lengths. A scaled time t∗ = t/t(Reτ = 1.1 · Reτ (t = 0)) has
been used for the sake of visualization.

Figure 5.12 – Isosurfaces of λ2 (red, on the left) and ωz, ωx (blue, green, on the right)
during K-type transition over a no-slip (Ls = 0.00) wall at different times indicated in
the plot: λ2 = −0.001, ωz = 2.0 for t = 90; λ2 = −0.02, ωx = 0.8, ωz = 3.0 for the other
snapshots. Isosurfaces are coloured with their wall-normal location (darker is closer to
the wall). Straight lines highlights the exponential growth of ωx, indicating the vorticity
stretching phase (Malm et al., 2011).
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Figure 5.13 – Isosurfaces of λ2 = −0.001 (red, on the left) and ωz = 1.475, ωx = 1.0 (blue,
green, on the right) during K-type transition over a no-slip wall for T = 90 and increasing
slip. Whilst spanwise vortices arising from the weakly non-linear interaction of TS waves
phase appear to remain substantially unchanged, ωz is strongly reduced by the introduction
of a slip length.
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Figure 5.14 – Integrals of the spanwise vorticity equation (5.17) terms, for t = 40
and different slip lengths Ls. Terms (Az, Tzx, Tzy, Szz) have been scaled by a factor of
(10−2, 10−1, 10−3, 10−3), respectively, for the sake of visualization.
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to the optimal perturbation for the considered flow (Farrell, 1988). Optimal perturbations
are able to induce, by means of non-normal yet linear interaction of eigenmodes of L, the
maximum possible transient energy growth in a finite time range (Schmid and Henning-
son, 2001). This energy growth allows the development of nonlinear interactions leading
the flow to transition. To study the effect of the SHS on this optimal transition scenario,
we impose as initial condition U(x, t = 0) = Ub(x) + εuOpt0 (x), where εuOpt0 (x) is the
initial optimal perturbation computed in the chosen flow conditions and ε is a given ampli-
tude, which has to be set sufficiently high for triggering nonlinear effects and consequently
lead to transition (Reshotko, 2001). Being derived from linearised equations, the optimal
perturbation can be freely scaled so to match an arbitrarily imposed energy level. If the
initial perturbation energy is set to a very low value, the initial perturbation, composed
of streamwise vortices, linearly evolves in time creating optimal streaks, which asymptot-
ically fade away as predicted by the linear theory. Increasing the initial energy level to
E(0) = 10−6, as shown in figure 5.15 for the no-slip case, after an initial linear growth
phase (0 < t < 200), the streaks saturate nonlinearly (see the inset at the bottom right) to
an amplitude As. As soon as this amplitude overcomes a critical threshold (Brandt et al.,
2003) secondary instabilities of the nonlinearly saturated optimal streaks set in (t ≈ 400),
immediately followed by breakdown to turbulence. Further increasing the initial energy to
E(0) = 10−5 leads to a more rapid departure from the linearly predicted energy growth
curve due to the onset of non-linearities already at very small times, resulting in a different
saturation energy threshold. Nonlinearly saturated streaks, strongly deformed with respect
to the linear optimal solution as shown in the top right inset, are formed already at t ≈ 150
and due to secondary instability, breakdown to turbulence is reached already at t ≈ 200.

Introducing a slippery boundary does not modify this scenario, as depicted in figure
5.16. For the smallest considered energy level the growth rate curves for the cases Ls =
0.00, 0.02 are very close to each other, although a slightly larger energy gain is reached in
the slippery case. The same effect is observed for the largest energy level considered here,
where the case at Ls = 0.02 appears to follow more closely the linear evolution of G(t) with
respect to the no-slip one. This is probably due to the fact that in the no-slip case a slightly
larger energy growth is predicted by the linear theory at small times (compare the solid
with the dashed black lines in the left frame), resulting in a more rapid onset of nonlinear
effects which translates in an earlier and more pronounced deviation from the linear energy
growth curve. However, in both cases secondary instability is reached practically at the
same time, since the energy level reached in the saturation phase (see the right frame of
figure 5.16) and the shape of the nonlinearly saturated streaks (see figure 5.17) appear
to be almost independent on the imposed slip length. The fact that, differently from the
K-type one, the optimal transition scenario is virtually unaffected by the introduction of a
slip length can be explained by the fact that the optimal perturbations are localised in the
bulk of the channel, as opposed to TS waves which are placed close to the wall. Since SHS
act by modifying the flow shear near the wall, it appears clear why optimal streaks are
unaffected by this boundary modification even when non-linearities kicks-in, as depicted
in figure 5.17.

5.3.2 Uncontrolled transition

In this section we aim at studying how uncontrolled transition, namely that naturally
occurring in a noisy environment in subcritical conditions, is affected by the presence of
superhydrophobic walls. Uncontrolled transition in a channel flow can be triggered using
random noise, a random superposition of Stokes modes, or as proposed in 4, using an ad
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Figure 5.15 – (a) Time evolution of the kinetic energy density of the velocity perturbation
during laminar-turbulent transitions triggered by linear optimal perturbations, for a no-slip
wall (Ls = 0.00) and for two prescribed values of the initial energy, E(t = 0) = 10−6 and
E(t = 0) = 10−5 (thick solid lines coloured by the value of As). The dashed lines indicate
the energy growth as predicted by the linear theory for the two imposed initial energy
levels. (b) Isocontours of the streamwise velocity perturbation in a z − y plane for the
case with E(t = 0) = 10−6 at t = 150 showing the highly deformed nonlinearly saturated
streaks. (c) Isocontours of the streamwise velocity perturbation in a z − y plane for the
case with E(t = 0) = 10−5 at t = 380. In both (b) and (c) cases, the velocity field is
invariant in the streamwise direction, therefore any x-normal plane will provide the same
data.
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Figure 5.16 – Influence of SHS on subcritical transition at Re = 5000 triggered by linear
optimal perturbations. Both subfigures represent the same dataset. In a) the energy gain
evolution is represented to highlight the initial linear phases, whereas in b) the energy is
plotted, for two initial energy levels and two slip lengths indicated in the legend. The
dashed lines indicate the energy growth as predicted by the linear theory for the two
imposed initial energy levels.
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Figure 5.17 – Streamwise velocity perturbation measured at T = 150 in a DNS initialized
with the optimal perturbation having initial energy E(t) = 10−5 for two slip lengths. The
non-linear streaks observed in the no-slip case (Ls = 0.0, subplot 5.15.c) match those
developing onto a slippery surface with Ls = 0.02.

hoc volume forcing constructed by a superposition of optimal forcing functions. The latter
technique, which we refer to as F-type transition, has been chosen here for studying the
effect of SHS on laminar-turbulent uncontrolled transition. In figure 5.18 we show the
impact of SHS on uncontrolled transition. Increasing Ls is totally ineffective in delaying
the onset of turbulence, as shown by the evolution of the friction Reynolds number dur-
ing F-type transition (figure 5.18.a). As explained in section 4 for the classical channel
flow with no-slip walls, the imposed volume forcing acts similarly to a noisy environmental
disturbance, promoting the development of streaks as a response of the flow to external dis-
turbances (Schmid and Henningson, 2001; Jacobs and Durbin, 2001a; Brandt et al., 2004a).
As previously shown in figure 5.16, streaks are mildly affected by a slippery boundary con-
dition, being localised far from the walls. This is confirmed by figure 5.18.b, where the
time evolution of the Fourier modes (0, 1), (1, 1) and (0, 2) is provided, clearly showing
the onset of streaks ((0, 1)) and (0, 2) modes) from a noisy disturbance due to receptivity,
their non-linear saturation as well as their final breakdown. Practically no difference can
be noticed between the mode evolution for the considered three slip length. The time
evolution of the coherent structures associated with uncontrolled transition is provided in
Figure 5.19. The flow evolution appears very similar for the three slip lengths considered,
except for the non-zero velocities measured at the wall in the SHS cases, which has prac-
tically no influence on the mechanisms leading to transition. Thus, we can conclude that
uncontrolled transition cannot be effectively controlled by SHS, at least for the considered
values of the slip length, since similarly to the optimal transition scenario, it mostly relies
on the onset and instability of streamwise streaks, which are both intrinsically inviscid
mechanisms not strongly affected by the presence of a slippery wall.

5.4 Summary and conclusions

In this chapter we investigate the influence of Superhydropbobic Surfaces (SHS) on
different laminar-turbulent transition processes, in order to evaluate their effectiveness as
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Figure 5.18 – Time evolution of the friction Reynolds number Reτ and of the energy of
three selected Fourier modes for channel flow with different slip lengths undergoing F-type
transition. The process is completely unaffected by the increase in slip length Ls.

passive devices for flow control in transitional conditions. Following Min and Kim (2005),
we have focused on the channel flow configuration where the superhydrophobic surfaces
have been modelled by flat, spatially homogeneous and isotropic slippery boundaries. We
have performed a wide range of DNSs showing that transition delay is not only dependent
on the intrinsic slip length of a certain Superhydrophobic surface, but also strongly depends
on the specific transition scenario one aims at controlling. Our investigation has revealed
that a slippery wall can effectively control transition scenarios dominated by near-wall
perturbations, i.e. Tollmien-Schlichting waves such as those naturally arising in the flow
in supercritical conditions or those occurring during K-type transition in subcritical con-
ditions. In this framework, superhydrophobic surfaces alter the development of Λ vortices,
since the reduced wall normal velocity gradient inhibits their formation out of the initial
Tollmien-Schlichting waves. In turn, this inhibits the formation of hairpin vortices altering
the succession of sweep and ejection events, thus provoking relaminarization or a large delay
in the transition time. On the other hand, our analyses indicates that superhydrophobic
surfaces are ineffective in controlling transition initiated by linear optimal perturbations,
or even uncontrolled transition, namely that occurring in noisy environments in subcriti-
cal conditions, where the seeds of transition (namely, streamwise vortices and streaks) are
localised in the bulk of the flow, far from the bounding walls. Superhydrophobic surfaces
can thus be considered effective in delaying or avoiding transition only in low-noise en-
vironments, where transition is triggered mostly by modal mechanisms, but not in noisy
ones, where nonmodal mechanisms govern the transition scenario.

It remains to be verified whether a more accurate modelling of the superhydrophobic
surface might lead to different results. The homogeneous slip condition can be replaced
at first with a patterned slip/no-slip boundary condition on a flat wall to investigate the
effects of this condition on laminar-turbulent transition. Eventually, also the dynamics of
the deformable gas/liquid interfaces might be taken into account as already done by Seo
and Mani (2018) for a turbulent channel flow. Increasing the model accuracy may result
in further modifications of the transitional phase, and thus requires further investigation.
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Figure 5.19 – Overview of F-type transition over superhydrophobic surfaces. As in figure
5.6 snapshots depict the isosurfaces of the λ2 criterion and streamwise velocity at the wall
for different values of the slip length Ls. This uncontrolled scenario, characterised by the
onset of streaky velocity perturbations occurring in the flow bulk, appears to be completely
unaffected by the introduction of a slippery boundary.
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Chapter 6

Influence of SHS Modelling
on K-type transition

Many passive control strategies have been recently proposed to reduce drag in wall
bounded shear flows. Amongst them, underwater Superhydrophobic Surfaces (SHS) have
proven to be capable of dramatically reduce the skin friction of a liquid current, providing
a lubricating layer of gas bubbles, which is kept trapped within the surface nano-sculptures
due to capillary forces. Under specific geometrical and thermodynamical conditions, such
as the roughness size, wetting transition can be avoided, such textured surfaces can pro-
vide a slippery boundary, resulting in the so called Lotus effect. In this framework we
propose to study, by means of numerical simulations, the influence of SHS on laminar-
turbulent, K-type transition in a channel flow. The complete evolution from laminar, to
transitional and fully developed turbulent flow is studied considering different surface mod-
ellings. First the SHS is considered to be flat, either with an alternation of slip–no-slip
boundaries to discretise each roughness or through a spatially homogeneous equivalent
slippery wall, showing that SHS can triple the transition time to turbulence by stretching
hairpin’s legs and inhibiting the sweep-ejection process. Then, the dynamics of each mi-
croscopic liquid-gas free-surface has been taken into account by means of a fully coupled
fluid-structure solver. Whilst being extremely small compared to the streamwise compo-
nent, the non-zero wall-normal velocity resulting from the interface deformation promotes
ejection events, eventually advancing transition. This behaviour, undetected by global sta-
bility analysis, confirms that SHS can effectively control K-type transition scenario from
its weakly nonlinear stages. The chapter is organised as follows. In section §6.1 we present
the governing equations, as well as the method used to implement different modellings
for taking into account the key physical features introduced by the use of underwater su-
perhydrophobic surfaces and highlight the main characteristic lengths and dimensionless
parameters for the problem. In section §6.2 we show how the behaviour of infinitesimal
perturbations is influenced by differently modelled SHS by means of local and global sta-
bility analisys. Section §6.3 reports the DNS results of our simulations where we show
that the laminar-turbulent transition process is strongly affected by the physical feature
unlocked by each specific modelling. In particular we demonstrate that, while modelling
each microtexture provides the same transition scenario as the one computed of spatially
homogeneous slippery surfaces, taking into account the gas-liquid interface displacement
produces wall-normal velocities at the boundary that strongly interacts with the overly-
ing coherent structures characteristic of the transitional process. A final discussion and
conclusions are given in section §6.4.
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Figure 6.1 – Sketch of a channel flow with Superhydrophobic Surfaces, depicting the length-
scales gap between the overlying laminar-turbulentmacroscopic flow (H) and the near-wall,
capillary driven microscopic free-surface dynamics (L)

6.1 Problem formulation

The channel flow configuration is chosen to study how laminar-turbulent transition
could be controlled using superhydrophobic walls capable of entrapping a gas-lubricating
layer. Assuming that air-water free-surfaces are kept pinned to the roughness surfaces, as
sketched in figure 6.1, the influence of superhydrohobic surfaces can be modelled with an
equivalent boundary condition for the overlying, incompressible Newtonian flow, governed
by the Navier-Stokes equations

∂U

∂t
= −(U · ∇)U −∇P +

1

Re
∇2U + f (6.1)

∇ ·U = 0, (6.2)

where U = (U(x, t), V (x, t),W (x, t))T is the velocity field, P (x, t) is the pressure and f
the forcing field. The Reynolds number is defined as Re = UH/ν, where U is the centerline
velocity, H is half the height of the channel and ν the kinematic viscosity of the fluid. The
reference frame x = (x, y, z)T is chosen such that x is the streamwise, y the wall-normal
and z the spanwise directions. The periodic roughness structure is made out of square
post, and is characterised by its period L and width W as indicated in figures 6.1 and 6.2,
while the free-surface interface is kept in place by capillary forces, characterised by the
surface tension σ, dependent on the gas-liquid physical properties. The different boundary
conditions aiming at modelling SHS have been implemented within Nek5000 (Fischer et al.,
2008), a spectral element method flow solver. We have used streamwise periodic boundary
conditions, as an alternative to the spatial framework for the numerical simulation of
transitional flows (Gilbert and Kleiser, 1990). Reducing the computational size needed to
observe transition, this approach enables the use of complex surface modellings such as the
ones proposed in the present study, reducing considerably the computational cost.

6.1.1 Modelling Underwater SuperHydrophobic Surfaces

The first and simplest model consists of representing SHS using a spatially homogeneous
Navier boundary condition on the surface, as introduced in equation (1.2). This approach,
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based on an homogeneization theory (Zampogna et al., 2019) and which we will refer
to as spatially Homogeneous Slip Lenght (HSL), provides a computationally unexpensive
method to describe the influence of gas-lubricated substrates. In fact simulations with HSL
boundary conditions have proven to predict well the experimental results in both laminar
(Rothstein, 2010) and turbulent regime (Seo and Mani, 2016), provided that the scalar
slip length Ls is well evaluated (Seo et al., 2015). The choice of using SHS made out of
square posts allows for the use of a single, constant slip length. This allows for an even
more simplified model, in contrast with what would occur when dealing with anisotropic
SHS patterns (Pralits et al., 2017) or considering shear-dependent slip length (Aghdam
and Ricco, 2016).

The second approach used here aims at modelling each single microscopic gas-solid
boundary with an equivalent Slip–No-Slip (SNS) boundary condition. The underlying as-
sumption is that the free-surface remains perfectly flat while providing a shear-free bound-
ary, a standard in the literature for DNS of turbulent flow supported by SHS (Martell et al.,
2009; Park et al., 2014; Jelly et al., 2014; Lee et al., 2016). While the implementation of
such method is straightforward, simulating texture sizes similar to the ones observed in
experiments could require spatial discretization up to ten times more refined than using a
simple spatially homogeneous boundary condition (i.e. cases P06 and HP06 in the work
by Seo and Mani (2016)).

The third SHS model used here includes the dynamic influence of interface deformation
on the overlying flow. Following the work of Seo et al. (2017), we consider an ideal free-
shear boundary condition on the air-water interface (Schönecker et al., 2014), that neglects
plastron viscosity, whilst ensuring a pinned interface(Steinberger et al., 2007; Teo and
Khoo, 2010; Seo et al., 2015). Under these assumptions the free-surface deformation is
linked to the liquid pressure at the interface via a linearized Young-Laplace equation,

∆2η ≈ Pliquid − Pgas
σ

, (6.3)

where σ is the surface tension and, assuming Pgas to be uniform within all the lubricating
gas layer, the plastron’s mass conservation yields

∫ ∫
η(x, z, t) dx dz = 0. (6.4)

Doing so, we end up solving equations (6.1) over a time-dependent, deforming boundary,
constituting a two-way coupled fluid structure interaction problem. It is important to
underline that in this preliminary study we have neglected the motion of the gas, as well
as considered it to maintain a constant pressure. Despite being strong simplifications (Lee
and Kim, 2011), on one hand these assumptions allows the use of a simplified framework,
as indicated in the following. On the other hand their influence on the behaviour of the
overlying flow has still not been identified experimentally (Gose et al., 2018), precluding
any eventual quantitative comparison for the validation of the numerical approach.

In the present study we make use of arbitrary-Lagrangian-Eulerian (ALE) description
(Ramaswamy and Kawahara, 1987) to simulate the free-surface deformation, taking ad-
vantage of the implementation made by Lee-Wing and Patera (1990), natively coded and
validated within Nek5000 (Ho, 1989). This approach provides an accurate and numerically
efficient description of the free-surface dynamics while ensuring the kinematic condition

w · n̂|η = U · n̂|η, (6.5)

where w is the mesh velocity and n̂ is the unit normal at the free surface η(x, z, t). Pro-
vided that the mesh velocity at the wall is w|wall = η̇, this MoVing Boundary (MVB)
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Figure 6.2 – Equivalent boundary conditions for modelling the influence of Underwater
SuperHydrophobic surfaces.

model allows for non-zero wall normal velocity components over the free-surface interface.
Although the resulting wall normal velocity at the boundary is negligible in fully turbu-
lent flows over realistic SHS (Seo et al., 2017), we will show that it can strongly affect
the processes occurring during the transitional phase. As a further remark we would like
to hightlight that, owing to the small η compatible with wetting stable SHS, wall normal
velocity induced by the interface deformation will assume the form:

V (x, y = η, z, t) =
Dη

Dt
=
∂η

∂t
+ U

∂η

∂x
+W

∂η

∂z
, (6.6)

as found by Seo et al. (2017) by linearizing the boundary condition for V at y = ±1. A
summary of the three different SHS models is sketched in figure 6.2, as well as a reminder for
the smooth-wall boundary condition providing the standard Plane Poiseuille Flow (PPF).

6.1.2 Simulation parameters

In this work we study how the fundamental K-type transition (Kachanov, 1994a) could
be controlled in a periodic channel flow bounded by superhydrophobic surfaces. Simulations
were performed in channels of size 2πα × 2H × 2πβ. A constant flow rate corresponding
to a laminar Reynolds number of Re = 5000 and (α, β) = (1.12, 2.10) have been set so
that to match the transitional DNSs available in literature (Zang and Krist, 1989; Gilbert
and Kleiser, 1990; Schlatter, 2005). The fully developed turbulent flow is characterised
by the friction Reynolds number Reτ = uτδ/ν, measuring the ratio between the external
scales (δ ≡ H in a channel flow) and the viscous unit length δν = ν/uτ . The friction
velocity is given as uτ =

√
τw/ρ, using the wall shear stress τw = νρ|∂ < U > /∂y|wall,

representing the mean skin friction averaged over the entire surface area. While the solid
no-slip boundary is constantly located at y = ±1, the moving interface is free to deform
and displace in the y direction. For this reason we will consider that a grid point belongs to
the lower (upper) wall when it yields the lowest (highest) y value, for a given x−z location.
The use of SHS aiming at controlling transition requires an accurate design of the surface
features. While highly slippery walls, resulting from large free-surface interfaces, have
proven to be capable of delaying and eventually inhibiting the onset of turbulence (Min
and Kim, 2005), it must be kept in mind that the texture size of SHS roughness shall not
exceed the threshold for wetting stability to occur (Seo et al., 2017), limiting the maximum
amount of slip these gas-impregnated surfaces could provide. Key dimensionless parameter
is the size of the texture size in viscous units L+ = L/δν , where L is the SHS texture size,
as indicated in figures 6.1 and 6.2. Experiments have demonstrated that SHS characterised
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by L+ ≈ 0.5−10 are capable of sustaining a fully developed turbulent flow (Daniello et al.,
2009; Woolford et al., 2009; Park et al., 2014; Li et al., 2017; Gose et al., 2018), while
larger surface texture would not be capable of withstanding wetting transition (Zhang
et al., 2016). The use of a spatially Homogeneous Slip Length (HSL) boundary condition
for the simulation of such flows presents no difficulties: an equivalent slip length can be
dependably evaluated (Seo and Mani, 2016), ensuring for physically accurate simulations
with no added computational cost when comparing to standard no-slip wall (Min and Kim,
2004; Fukagata et al., 2006). On the other hand employing spatially heterogeneous (SNS
or MVB) models requires for extremely refined computational grids in order to accurately
discretise the texture patterns, which have become affordable only in the last decade(Türk
et al., 2014; Rastegari and Akhavan, 2015; Seo et al., 2015, 2017; Seo and Mani, 2018).
Moreover, the treatment of the gas-liquid interface dynamics arising from MVB models
imposes an additional limitation on our timestep, as indicated in equation (3.3) in the
work of Seo et al. (2017).

Previous numerical investigations have made use of HSL models to simulate laminar-
turbulent transition over superhydrophobic surfaces (Min and Kim, 2005), where the largest
slip length considered is Ls = 0.02, that we consider as benchmark value. In order to com-
pare the influence of surface modelling onto the transition process, we must determine the
surface texture features required in SNS and MVB modelling to provide the same amount
of slip using HSL boundaries. To do so we use the universal slip length representation for
turbulent flows over SHS, (equation 15 in the work by Seo et al. (2015)):

L+ =
L+
s

Cb
+ 0.328(L+

s

√
φs)

3, (6.7)

where the coefficient Cb = (0.325/
√
φs)−0.44, φs is the liquid-solid/liquid-gas area ratio of

the texture pattern and L+
s is the slip length adimensionalised by its viscous counterpart.

Based on previous studies of the transitional flow over SHS surfaces modelled with a single
slip length, we know that setting a laminar Re = 5000 and keeping a constant flow rate,
superhydrophobic substrates will decrease the friction Reynolds number defined in Section
(5), resulting in Ls = 0.02 for a Reτ ≈ 190. Setting φs = 0.25 as first guess, equation (6.7)
states that the surface texture size has to be L+ ≈ 19, equivalent to L ≈ 0.1. The value is
close to the upper limit proposed by Seo and Mani (2016), who demonstrated the remark-
able matching of DNS results obtained using both pattern-resolved (SNS) and equivalent
homogeneous (HSL) boundary conditions for simulating a fully turbulent flow over SHS. It
follows that accounting for superhydrophobic walls using spatially heterogeneous SNS and
MVB models, there are (2π/α)/L ≈ 53 and (2π/β)/L ≈ 28 posts in the streamwise and
spanwise simulation, respectively. Each liquid-solid//liquid-gas interface has to be treated
with a single spectral element owing to numerical constraints of the code we use, thus the
imposed value of φs = 0.25 implies that the domain will be discretized by 106 elements in
the streamwise direction and 56 in the spanwise one in order to simulate isotropic square
posts. Choosing a spectral order of 8, each texture element is discretised with 16 grid
points per direction which, according to a recent study by Fairhall et al. (2018), allows for
an accurate study of the turbulent state, therefore sufficient for the study of the transi-
tional stage. The main interest of using the Navier model in equation (1.2) is that we do
not need to discretize the surface texture iself, greatly reducing the computational cost of
a single simulation. In table 6.1 we report the numerical discretisations employed during
the present study, depending onto the surface model employed: the spatially homogeneous
(PPF, HSL) as well as the spatially heterogeneous ones (SNS, MVB). The last dimen-
sionless parameter we introduce is the Weber number We+ = ρu2

τδν/σ, which relates the
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Surface Model Ex ×Ez ×Ey Nx ×Nz ×Ny 〈∆x+〉 × 〈∆z+〉 ×∆y+
y=±1//0

Homogeneous 24× 24× 24 192× 192× 192 ≈ 6.2× ≈ 3.0× 0.04//4.1
Heterogeneous 106× 56× 24 848× 448× 192 ≈ 1.2× ≈ 1.2× 0.04//4.1

Table 6.1 – Simulation parameters. Superhydrophobic surfaces capable of withstanding
wetting transition while supporting a turbulent flow requires for L+ ≈ 20, therefore the
spatial discretization arising from heterogeneous models (SNS, MVB) overwhelms the one
needed to accurately compute the turbulent state over a smooth, spatially homogeneous
(PPF, HSL) surfaces, as shown by Seo and Mani (2016).

surface tension σ of the gas-liquid interface to the momentum, and is required when using
MVB modelling of SHS. In the present study we assume an air-lubricating water turbulent
channel at a 20◦C, providing σ = 0.072N/m, ρ ≈ 103N · s2/m4 and ν ≈ 10−5m2/s. For
Reτ = 190 we will measure uτ ≈ 0.038m/s. Considering that uτδν = ν we end up with
We+ = ρuτν/σ ≈ 5× 10−4 which, together with L+ ≈ 19 we discussed earlier, constitutes
the key controlling parameters of our simulations. These L+,We+, comparable with the
ones observed experimentally, have been considered suitable for the simulation of SHS ca-
pable of withstanding a turbulent flow without the occurrence of wetting transition (Seo
et al., 2017).

6.2 Influence of Surface Modelling
onto Linear Stability

In this section we study whether flow stability is modified by the use of different surface
modellings of the SHS. To do so, we study the evolution of small-amplitude disturbances
q(x, t) around steady solutions of the Navier-Stokes equations (6.1) which constitute the
base flow Qb(x), so that Q(x, t) = Qb(x) +q(x, t). The dynamics of such perturbations is
governed by the linearised Navier-Stokes equations, which once projected onto a divergence-
free vector space can be compactly written as

∂u

∂t
= Ju. (6.8)

Provided that equation (6.8) models the behaviour of a linear dynamical system au-
tonomous in time, we can expand the perturbation q in normal modes, such that u(x, t) =∑∞

k=1 ûk(x)eλkt. Injecting this expansion into equation (6.8) yields the eigenvalue problem

λû = Jû, (6.9)

where λ = σ + iω is the eigenvalue and û its associated eigenvector, σ and ω representing
the growth rate and the frequency of the eigenmode. When the critical Re number (Rec)
is overtaken, at least one eigenvalue of J will have σ > 0 and the whole system is said to
be linearly unstable.

Min and Kim (2005) have been the first to investigate the influence of SHS on the
stability of a pressure driven flow, modelled using an HSL model. Under this assumption
the base flow is dependent only to the wall-normal direction (Philip, 1972) and on the slip
length value, as

Ub(y) =
2Ls + 1− y2

3Ls + 1
. (6.10)
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Thus, in this particular case the perturbation can be further expanded as

u(x, t) =
∞∑

k=1

ũk(y)eλktei(αx+βz), (6.11)

where α and β represent the streamwise and spanwise wavenumbers, respectively. This ex-
pansion allows to carry out a computational inexpensive 1D local stability analysis (Orszag,
1971). Min and Kim (2005) have found that slippery surfaces stabilise the Tollmien-
Schlichting waves (TS) by weakening the wall shear ∂U/∂y, and that the critical Reynolds
number Rec increases with the slip length Ls.

In this work we investigate whether introducing the spatial heterogeneity of the SHS
affects these results. In fact, depending on the chosen SHS pattern, the base flow will
be homogeneous in only one or even zero directions, invalidating the assumption made
in equation (6.11) and requiring an increasingly complex framework to tackle the linear
stability problem. For instance, while the flow over streamwise ridges modeled using the
SNS approach (Alinovi and Bottaro, 2018) can be treated with a 2D local stability analysis
(Yu et al., 2016), the flow over isotropic posts will result in a base flow having no homoge-
neous directions, therefore requiring fully three-dimensional global stability analysis (Pi-
cella et al., 2018). Using the SNS/MVB models, we have run DNS of channel flow over SHS.
The computations have been initialised using the base flow 1D solution reported in equation
(6.10) and run until convergence have been reached, the residual having dropped to 10−8.
A fully three-dimensional, non-parallel base flowUb(x) = (Ub(x), Vb(x),Wb(x)) is obtained
imposing a texture size L given by equation (6.7), with an averaged slip velocity at the wall
equivalent to that obtained from equation (6.10), which reads us = 〈u〉wall = 2Ls/(3Ls+1).
For solving this eigenproblem, it appears clear that using direct methods (i.e. QZ or QR)
is hardly possible at the moment due to the large number of degrees of freedom involved
(Nx×Ny×Nz×4→ O(108)). Thus, we use a time-stepper formulation to find the leading
eigenpairs of 6.8, based on the iterative Arnoldi algorithm (Arnoldi, 1951) as described by
Loiseau et al. (2014). Using a Krylov subspace of dimension K = 250, we compute the
most unstable mode developed over a spatially alternating slip–no-slip (SNS) boundary
condition, which has the form of a modified TS wave.

Figure 6.3.a depicts the eigenspectra obtained using the HSL and SNS models. When
the SHS is modeled by an HSL the eigenvalue problem is solved using a 1D local stability
approach with α = 1.12, β = 0.00 and Ls = 0.02. As predicted by Min and Kim (2005),
we find that the most unstable mode is a 2D Tollmien-Schlichting (TS) modified wave,
shown in figure 6.3.b. Using fully 3D, global stability analysis (Loiseau et al., 2014), we
solve the eigenvalue problem for the SNS case, finding that the most unstable eigenvalue is
superposed to that computed for the HSL case. Averaging the corresponding eigenvector
along the x − z planes we obtain an averaged 1D velocity profile, labeled as SNSavg in
figure 6.3.b, which slightly departs from that computed using the HSL model. The spatial
heterogeneity arising from the surface pattern has a characteristic length L much smaller
than the scale of the TS waves, affecting their shape only in the vicinity of the wall, as
shown in figure 6.4.a. To quantitatively evaluate the influence of the heterogeneous SHS
on the TS waves we define Ud(x) as the deviation between the three-dimensional base flow
obtained using the SNS approach and its HSL counterpart:

Ud(x) = USNSb (x)− Ub(y)HSL, (6.12)

where the last term is the 1D velocity profile obtained using equation (6.10). Ud constitutes
a measure of the spatial heterogeneity of the base flow, similarly as the streaks amplitude

85



Chapter 6. Influence of SHS Modelling
on K-type transition

6.2. Influence of Surface Modelling
onto Linear Stability

Figure 6.3 – (a) Eigenspectra of the linearized Navier-Stokes operator for a channel flow
enclosed with superhydrophobic surfaces at Re = 5000. Using a spatially homogeneous slip
length for modelling SHS allows for the use of a 1D local approach, where α = 1.0, β = 0.0.
Employing a spatially heterogeneous slip/no-slip one (SNS) requires for the use of a Global
framework. (b) Norm of the streamwise component associated to the most unstable eigen-
value represented in (a). Despite the radically different framework employed and surface
modelling employed, we recover in both case the same eigenmode, which represent the
Tollmien-Schlichting wave equivalent for superhydrophobic surfaces. Mode obtained using
SNS modelling has been averaged in wall-parallel directions so to make the comparison
with the HSL case easier.

As defined by Brandt et al. (2003) to measure the intensity of streamwise vortices occurring
during transition (Andersson et al., 1999). Averaging the leading eigenvector of the SNS
case and Ud along the wall-parallel directions we get the 1D velocity profiles plotted in
figure 6.4. The base flow deformation due to the spatially heterogeneous boundary reduces
to 10% of its maximum value already at y±0.98. Whereas, the wall-normal location of the
peak amplitude of the TS wave is located at ≈ 0.875 (indicated with a black dashed line
in figure 6.3.b and 6.4.b). These elements indicate that the heterogeneity of the surfaces
slightly affect the TS waves frequency and shape since its effect is confined in the near-wall
region.

We consider now the influence of air-water interfaces dynamics. The base flow obtained
using the MVB approach starting from the SNS base flow (thus setting the initial deforma-
tion η(x, z, t = 0) to zero and allowing it to evolve freely) is almost indistinguishable from
that computed using SNS boundary condition. While in experiments the mass of the gas
trapped withing the surface pattern does not change (unless wetting transition occurs) the
MVB modelling assumes that the plastron volume remains constant (see equation (6.4)).
This results into a maximum free-surface deformation ηmax ≈ 5×10−5, which is two orders
of magnitude smaller than the surface texture length scale L, a posteriori confirming the
viability of the linearised model of equation (6.3), as shown by Seo et al. (2017). Since
including the interface dynamics into the time-stepping algorithm would complicate the
eigenvalue problem solution from both computational and algorithmic point of views, we
choose to use a continuation method (Theofilis and Colonius, 2003) to obtain the three-
dimensional eigenfunctions starting from their respective local counterparts. We thus inject
the eigenfunctions obtained using local stability analysis for the 1D base flow of the HSL
case as initial condition for a DNS with a MVB modelled superhydrophobic surface. As
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Figure 6.4 – (a) Streamwise velocity isocontours of the leading unstable mode computed
for SNS superhydrophobic surfaces using the global stability analysis framework, on top of
the streamwise velocity at the boundary. It appears clear that the lenghtscale associated
to the spatial heterogeneity L is much smaller than the one of TS waves. Spatial hetero-
geneity does not interact with overlying structures, despite the closeness of TS waves to
the wall. (b) Evolution of the leading unstable modes, computed for HSL and SNS mod-
elled hydrophobic surfaces, together with the 3D base flow deformation Ud introduced in
6.12. Looking at the maximum and minimum mode amplitude at the wall for SNS we can
immediately recognise the influence of the heterogeneous boundary condition slip (shear
free, ∂U/∂y = 0 and no slip U = 0). On the other hand spatial heterogeneity rapidly fades
out further from the wall, as indicated by the Ud profile. 3D modes are coloured by their
normalised distance from the wall |y| in (a), while A(y) represents the streamwise velocity
component for each quantity plotted in (b).
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Figure 6.5 – Trace of the evolution of wall-normal velocity in a fixed point of the domain,
measured during DNS. A, B, C lines represents computations performed for DNS onto HSL,
SNS and MVB modelled surfaces respectively, but all of them initialized adding on top of
their respective base flows the TS 2D wave computed from the 1D local framework using
HSL approach. After a short initial transient, in all three cases we recover the dynamics
predicted from the linear stability framework.

depicted in figure 6.5, after a short transient, the perturbation adapts to the heteroge-
neous boundary condition, but maintains both the frequency and the growth rate of the
TS mode computed using the local stability analysis. This is probably due to the fact that
the lengthscale of the spatial heterogeneity due to the SNS/MVB modelling L is small
compared to the channel size H.

Thus, it appears that the eigenmodes of the linear stability problem are barely affected
by the different methods used to model the SHS. However this result is strongly dependent
on the fact that we have performed our analysis using small texture sizes, following the
results shown by Seo and Mani (2016); Seo et al. (2017) for the SNS and MVB models in
turbulent regimes.

6.3 K-type transition

We now focus on how different modelling of the SHS can affect the non-linear stages
of the laminar-turbulent transition process. Amongst all the possible transition scenarios
studied in literature (Schmid and Henningson, 2001), the K-type transition scenario (Kle-
banoff et al., 1962a; Sayadi et al., 2013a) has been chosen as a benchmark for the present
study. Our choice is based onto the fact that this specific scenario is not only the most doc-
umented in both experimental (Nishioka et al., 1975; Kachanov, 1994a; Guo et al., 2010)
and numerical (Gilbert and Kleiser, 1990; Kleiser and Zang, 1991; Sandham and Kleiser,
1992a; Rist and Fasel, 1995) studies, but most importantly because it has been recently
shown to be the most sensitive to the use of slippery superhydrophobic surfaces as a mean
of passive flow control (Chapter 5).

K-type transition can be triggered in a streamwise periodic (also called temporal
(Schlatter, 2005)) channel flow, by setting as initial perturbation of the laminar base flow
a linear combination of a 2D (uTS2D

) and two 3D uTS3D
TS waves as

U(t = 0) = Ub +A2DuTS2D
+A3DuTS3D

(6.13)
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. The amplitudes of the TS waves are set to (A2D, A3D) = (0.03, 0.001) so that at subcrit-
ical Reynolds number Re = 5000, weakly non-linearities immediately develop (Sandham
and Kleiser, 1992a; Sayadi et al., 2013a). The eigenmodes are shifted in x so that the max-
imum of their streamwise velocity component, which is normalised to one, is synchronised
in space. These conditions allow to easily trigger transition in numerical experiments by
originating from TS waves interaction a set of aligned Λ vortices which turn into hairpin
ones up to their final breakdown to turbulence (Rist and Fasel, 1995). As shown in chapter
5, this scenario is radically modified by the introduction of SHS modelled as a spatially
homogeneous boundary: slippery walls delay transition (Min and Kim, 2005), prevent-
ing the formation of Λ vortices by modifying the vortex stretching-tilting process usually
occurring in the very first non-linear stages of transition and subsequently inhibiting the
sweep-ejection process occurring during the onset of hairpin vortices. With this background
we will show that while introducing spatial heterogeneity (with SNS modelling) does not
change the previous findings, taking into account also the interface dynamics (MVB) leads
to substantial modification of the physical mechanisms occurring during transition and, in
a broader perspective, to the capacity of SHS of delaying the laminar-turbulent transition
itself.

As we have shown in our previous work (chap. 5), we must increase the initial amplitude
A2D, A3D in order to obtain transition over a SHS capable of providing an equivalent slip
length Ls = 0.02. It turns out that all of the simulations shown in the present study have
been triggered using as initial condition:

U(t = 0) = Ub + 1.10 · (A2DuTS2D
+A3DuTS3D

), (6.14)

where the 2D and 3D global TS wave equivalents for spatially heterogeneous surface mod-
ellings SNS and MVB have been computed using the procedure presented in the previous
section. In order to detect the onset of transition we follow the evolution of the friction
Reynolds number, defined as:

Reτ =

√
Re

∣∣∣∣
∂ 〈U(x, t)〉

∂y

∣∣∣∣
y=±1

, (6.15)

where 〈•〉 represents the spatial average computed onto wall-parallel planes x−z at a given
time t. Following the notation used in the present work, the Reynolds decomposition reads
as:

Ui = 〈Ui〉+ U ′i = 〈Ui(t)〉x,z + U ′i . (6.16)

When describing the statistically converged fully turbulent phases, the 〈•〉 notation will be
used to identify quantities averaged onto the wall-paralles planes x, z, as well as over time
t.

As in the case of flows over compliant surfaces (Rosti and Brandt, 2017), when SHS are
modelled with the MVB approach the quantity (6.15) must be modified in order to take
into account the shear stresses which are non zero at the moving interface. Following the
approach developed for porous walls (Breugem et al., 2006), the friction Reynolds number
computed over a moving surface becomes:

Reτ =

√
Re

∣∣∣∣
∂ 〈U(x, t)〉

∂y

∣∣∣∣
y=±1

− |〈U ′V ′〉|y=±1, (6.17)

where 〈U ′V ′〉 is the off-diagonal component of the Reynolds stress tensor, evaluated on the
spatially heterogeneous deformed SHS surface. Wall-normal velocity fluctuations V ′ are
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Figure 6.6 – Temporal evolution of the friction Reynolds number Reτ , measured during
laminar turbulent K-type triggered transition over no slip (PPF) walls, as well as onto
spatially homogeneous (HSL), spatially heterogeneous (SNS) and deformable (MVB) mod-
elled superhydrophobic surfaces. While Reτ measured during the laminar and turbulent
regimes is the same for the three models, the transition process is strongly affected by the
different SHS modelling

zero on the solid-liquid interface. On the other hand, despite being small on the gas-liquid
interfaces, their presence constitutes up to the 10% of Reτ .

All simulations are computed for a constant flow rate and the laminar Reynolds num-
ber is set to Re = 5000. Figure 6.6 depicts the friction Reynolds measured during K-type
simulations over differently modelled SHS, as well as the standard no-slip one for reference.
What we immediately notice is that flat, spatially heterogeneous slip/no-slip boundaries
(SNS) provide the same behaviour of spatially homogeneous slippery surfaces (HSL), de-
laying considerably transition with respect to the case of no-slip (PPF) walls. Thus, we
can conclude that HSL and SNS models provide similar performances not only for laminar
(Ybert et al., 2007) and turbulent flows (Seo et al., 2015) but also in the transitional regime,
at least for the small value of the texture roughness size considered here. It is although pos-
sible that increasing L beyond a given threshold can affect this result, as it has been shown
for turbulent flows (Seo et al., 2015). However, large superhydrophobic patterns would
not guarantee to sustain wetting transition (Seo et al., 2017), making the MVB approach
not viable anymore. On the other hand, taking into account the free-surface dynamics
radically changes the dynamics of the flow as shown in figure 6.6, since the transition to
the turbulent state is considerably advanced with respect to the SNS/HSL cases. In the
remainder of this section we investigate the reason why the free-surface motion at the wall
radically changes the dynamics of the flow with respect to a slippery flat surface.

6.3.1 Coherent structures and preliminary qualitative observations

Figure 6.7 provides a general overview of the structures occurring during K-type tran-
sition in a channel flow over no slip (PPF), homogeneous slippery (HSL) and flat Slip
No-Slip boundaries (SNS), as well as taking into account for the interface dynamics with
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a moving boundary approach (MVB). The PPF case, depicted in figure 6.7.a, represents
the benchmark K-type scenario as described in many other studies (Gilbert and Kleiser,
1990; Sandham and Kleiser, 1992a; Schlatter, 2005). The TS waves injected into the flow
experience from the early phases weakly nonlinear interactions (t < 80), forming spanwise
aligned TS-like vortices, that can be easily identified using λ2 criterion. Secondary instabil-
ities and vortex stretching promotes the three-dimensionalization of these spanwise vortices
(t = 85), whose strong shear layers induce the formation of Λ shaped vortices, composed of
two elongated legs (t = 103). Sweep-ejection events result into an increase of the spanwise
vorticity on top of the λ legs forming the head of characteristic hairpin vortices (t = 113).
During the late stages of transition (t = 120) we observe the rapid formation of multiple
hairpin heads as a succession of sweep-ejection events (Rist and Fasel, 1995; Guo et al.,
2010), up to the final breakdown to turbulence (t > 130). This process is radically modified
by the introduction of a slippery boundary. While using HSL modelled superhydrophobic
surfaces does not affect the very first weakly non-linear phase (t < 85), slippery boundaries
inhibit the onset of λ vortices, which in turn prevents the formation of hairpin vortices. As
discussed in detail in chapter 5, this is due to the reduction of the tilting of the spanwise
TS-like vortices, due to the decreases shear at the wall. The transient bump in the Reτ
evolution depicted in figure 6.6 indicates the attenuation of vortical structures within the
channel, as visualised for t = 164, 190, 220 in figure 6.7.b. Still, the flow receptivity to the
residual velocity perturbations triggers a different transition scenario, characterised by the
onset of linear streamwise-elongated velocity modulations (streaks) (t = 325). These struc-
tures saturate non-lineary and when they reach a certain amplitude the onset of sinuous
instability is observed (t = 365), eventually leading to the fully turbulent regime.

Taking into account the spatial heterogeneity does not change the latter scenario. In
fact, despite the different surface modelling, one can notice that HSL computation matches
the SNS one, as shown in figure 6.7. Also the λ2 isosurfaces as well as the averaged slip
velocity at the wall depicted in 6.7.b appear to be qualitatively identical.

On the other hand, considering the deformability of the free-surface radically changes
the transition scenario described above. The first stages of the transitional simulations over
MVB modelled superhydrophobic surfaces, reported in figure 6.7, show that the onset of
spanwise TS-like vortices is similar to that observed at the same time (< 90) for the cases
with η = 0. However, although being constrained by the texture pattern, free surfaces
experience a macroscopic deformation having the same streamwise periodicity as the over-
lying TS-like vortices. In fact, the streamwise velocity excess-defect resulting from these
vortices produces an alternance of spanwise aligned pressure waves, deflecting the liquid-
gas interface. High (low) streamwise velocities produce low (high) pressure waves, which in
turn deflect the interface upwards (downwards). Similar behaviour has been first observed
by Seo et al. (2017) and is quite common in the study of flows over compliant surfaces
(Lucey and Carpenter, 1995; Zhang et al., 2017). As time advances spanwise vortices tilt
downstream (t = 123), forming λ vortices similar to those observed in the PPF case, but
in this case attenuated and stretched in the streamwise direction (t = 135). The interface
deformation follows the overlying coherent structure, such as hairpin vortices whose onset
is observed at t ≈ 150. These vortical structures are characterised by larger heads and
tinier stretched legs as compared to those observed in the PPF flow for t = 113. In this
time range the maximum interface deformation is placed right below the large hairpin head
(t = 165), and breakdown to turbulence takes place from > 175.

Thus, it appears that the interface deformation, directly linked to the pressure fluctua-
tions at the wall, may contribute in enhancing the transition process. In fact, as shown in
figure 6.8, free-surface dynamics taken into account by MVB modelling of SHS introduces
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Figure 6.7 – Overview of K-type triggered laminar-turbulent transition over smooth, no slip
wall (PPF), as well as variously modelled superhydrophobic surfaces (HSL, SNS, MVB).
For each configuration, snapshots extracted at different times are placed one next to the
other in order to provide an overall view of transition. The time values are reported on
the black lines separating the snapshots. The iso-surfaces show the λ2 criterion (Jeong
and Hussain, 1995), coloured by its distance from the wall, and the iso-contours represent
the streamwise velocity measured at the lower wall, shifted in the spanwise direction for
visualisation issues. Only the lower channel half is showed for the sake of visualisation.
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Figure 6.8 – Evolution of streamwise velocity U and wall-normal velocity V at the boundary,
as well as interface deformation η, measured during K-type triggered transition over MVB
modelled underwater superhydrophobic surfaces. The onset of coherent structures during
transition leaves a characteristic footprint on the interface, producing wall-normal velocities
at the wall that are synchronised with the overlying dynamics. This behaviour is kept until
the late stages of transition (t = 140), while the interface dynamics during the turbulent
regime qualitatively resembles the one found by Seo et al. (2017) for SHS having the same
texture size. On top of textured microposts U = V = 0, leaving a characteristic pattern
onto the presented slices.

a non zero velocity at the wall, induced by the gas-liquid interface deformation. The wall
normal velocity at the wall is strictly linked to the interface deformation which, owing to
the pressure coupling, is therefore dependent onto the streamwise velocity field. In the first
non-linear stages (t = 120) the surface deformation follows the spanwise TS-like vortex,
and the resulting wall normal velocity is in phase with η. After the onset of λ vortices
(t = 140), the interface acts as an elastic potential energy reservoir, producing a highly
localized mass injection, identified by the high values in wall normal velocities. In the
following we will show that, while slippery surfaces damp Λ vortices, these localised mass
injections amplify ejection events, leading to the rapid formation of vortices similar to hair-
pins head (cfr. figure 30 in the recent work by Zhang et al. (2017)) although devoid of their
characteristic legs. When the flow is turbulent (t > 190) streamwise velocity obtained with
MVB modelling matches that computed with HSL and SNS approaches, while interface
deformation and wall normal velocity at the boundary are qualitatively identical to the
ones found by Seo et al. (2017). Incidentally, we have verified a posteriori that the wall
normal velocities at the deformable interface computed using equation (6.6) proposed by
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Figure 6.9 – Time evolution of the energy associated to (1,0), (1,1) and (0,2) Fourier
modes during K-type transition over no-slip (PPF) and SHS surfaces (HSL, SNS, MVB).
The initial linear and weakly non-linear stages of transition do not seem to be affected by
the introduction of superhydrophobic surfaces. Besides a temporal shift, the late stages
of transition appears to be qualitatively identical, suggesting that following the energy
evolution mode by mode is not suitable to study the fully non-linear stages of the transition
process.

Seo et al. (2017) are very close to those obtained using our ALE approach (MVB), since
the root-mean-square of their normalized difference at time t = 120, t = 140, t = 200 is
2.6%, 2.7%, 3.5%, respectively. As a further remark regarding the MVB modelling, pressure
fluctuations measured at the interface appear to be dominated by stagnation pressure and
by the overlying transitional structures only. Pressure fluctuations due to capillary waves,
characterised by their peculiar upstream-propagating dynamics, have not been detected
throughout all the transitional phase nor in the turbulent regime. In fact, in this work
we consider a SHS with texture of size L+ < 26 in the fully turbulent regime, for which
Seo et al. (2017) capillary effects are negligible and only downstream-propagating pressure
perturbations have been measured. On the other hand, transitional structures enhance
the spanwise-coherent interface deformations, which could affect the wetting stability of
the SHS itself. However, studying this phenomenon would require the use of a multiphase
approach, going beyond the scope of the present work.

6.3.2 Fourier harmonics

In order to study the initial stages of transition we track in time the amplitude of
selected Fourier harmonics (Zang and Krist, 1989):

Ek(kx, kz) =
1

2E0

∫ +1

−1
|ûkx,kz(y, t)|2 dy, (6.18)

where ûkx,kz(y, t) is a single component of the Fourier transform of the perturbation veloc-
ity field in the streamwise and spanwise direction with wavenumbers kx, kz, respectively,
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while E0 is the kinetic energy of the laminar flow. In this framework the wavenumbers of
the different Fourier modes are indicated as multiples (ix, iz) of the fundamental wavenum-
bers (2π/Lx, 2π/Lz), in the streamwise and spanwise direction, respectively. In figure 6.9
we report the most energetic ones. Provided that K-type transition is triggered by adding
on top of the base flow a linear combination of TS waves regardless of the surface modelling
employed, the initial perturbation energy for all simulations is distributed onto the (1, 0)
and (1,±1) Fourier modes only, corresponding to the 2D and 3D fundamental TS waves,
uTS2D

and uTS3D
. In all simulations, the initial perturbation amplitude prescribed by the

K-type scenario (see 6.14) is high enough so that weakly non-linear effects are immediately
triggered, as indicated by the onset of the streamwise homogeneous subharmonic (0, 2))
mode. Transition takes place when the (0, 2) modes attain a given threshold, and all four
scenarios appear to be qualitatively similar despite shifted in time. While this analysis con-
firms that during the linear stages of transition (t ≈ 50) K-type transition is not affected
by the use of slippery, not deformable boundaries, it is also clear that studying the per-
turbation energy evolution of the Fourier harmonics cannot provide insightful information
regarding the fully non-linear phases of this process.

On the other hand the interface deformation introduced by the MVB modelling of
SHS appears to keep its spatial coherence, even during the highly non-linear stages of
transition, as shown in figure 6.10. Figure 6.10.a displays λ vortices, with a bump formed
between its legs at t = 130. Looking at the power spectral density (PSD) of the Fourier
modes of the wall normal velocity at the boundary in figure 6.10.b we immediately notice
the presence of quasi 2D waves (modes (1, 0)), as well as the footprint of the spatially
heterogeneous discretization of the interface, indicated as a peak at kx,z ≈ 28 = Lx/L =
Lz/L, corresponding to the surfaces roughness lengthscale. This behaviour is enhanced at
t = 145, where the interface deflection further increases. The onset of quasi streamwise
vortices over an interface dimple is observed together with the formation of a hairpin-
like-head on top of a bump produced by an inward deformation of the free-surface, as
shown in figure 6.10.c. At the same time we measure a strong increase in the wall normal
velocity intensities, while their spatial distribution remains qualitatively the same (see
figure6.10.d). These behaviours appear to be remarkably similar to those observed by
Zhang et al. (2017) regarding the onset of coherent structures in a turbulent channel flow
enclosed by compliant walls. As long as the flow becomes fully turbulent we recover the
same dynamics found by Seo et al. (2017): the texture size L is small enough that the
stagnation pressure and the oscillations due to the overlying turbulent behaviour dominate
the pressure fluctuations at the wall. Again, the capillary pressure is negligible when
compared to other components, resulting into a downstream-propagating deformation with
wall-normal velocities at the interface characterised by a widespread PSD(U) spectrum
but still containing some influence of the characteristic texture size L (figure 6.10.f).

6.3.3 Vorticity dynamics

While the onset of spanwise TS-like vortices is substantially unmodified by the intro-
duction of slippery neither compliant boundaries (see figure 6.7 for t < 100), SHS alter
the standard K-type transition process starting from the fully non-linear phase, affecting
the development of typical vortical structures, well identified by the isocontours of the
λ2 criterion. In order to quantitatitely identify the influence of SHS on these structures
with the aim of providing a better understanding of the underlying physical mechanism
involved, we track the time evolution of the vorticity ω. The streamwise component of
vorticity ωx = ∂W/∂z − ∂V/∂y indicates the onset of streamwise aligned vortices, such
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Figure 6.10 – (a,c,e) Selected Snapshots from figure 6.7 depicting the coherent structures
and the underlying interface dynamics occurring onto MVB modelled surfaces during tran-
sition. (b,d,f) Power spectral density of the Fourier harmonics of the wall-normal velocity
at the deformable interface. Long wavelengths (kx, kz) = (1, 0) are associated to the defor-
mation produced by the overlying coherent structures, while short ones (kx, kz) = (28, 28)
to the characteristic size of the textured superhydrophobic surface L. Their ratio is high
enough so that they do not interfere with each other during transition (t = 130, 145).
When fully developed turbulent state is achieved the PSD spectra becomes much noisier
(f), but one can still recognise the wavelengths accounting for the highest intensities.
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Figure 6.11 – Streamwise and spanwise vorticity averaged along the homogeneous directions
x−z, 〈ωx〉 , 〈ωz〉 in subplots x.a and x.b, respectively. Subplots x.c show the time evolution
of the friction Reynolds number Reτ , coloured by the spanwise deformation amplitude As.
Plots are arranged in columns according to the surface modelling to which they belong.
SNS results matches the observations made for HSL modelled superhydrophobic surfaces,
and are reported in chapter 5.

as Λ vortices as well as the legs of hairpin structures, whereas the spanwise vorticity
ωz = ∂V/∂x − ∂U/∂y marks the presence of spanwise TS-like vortices as well as the ap-
peareance of hairpin heads (Rist and Fasel, 1995; Zhou et al., 1999; Sayadi et al., 2013a).
When the free-surface dynamics is neglected (HSL-SNS), we observe streamwise aligned
vortices occurring prior to the final breakdown to turbulence (see figures 6.7.b and 6.7.c for
t = 325), which seem to be linked to streaky structures. These elongated structures can
be identified by tracking the evolution of the amplitude of spanwise modulation of U(x, t)
(Brandt et al., 2003), which is defined as:

As(t) = [maxy,z(U(x, t)−Ub(x)−miny,z(U(x, t)−Ub(x))]. (6.19)

In the first two rows of figure 6.11 we represent the evolution of streamwise and span-
wise vorticity measured during K-type transitions over flat (SNS) or compliant (MVB)
superhydrophobic surfaces, together with the no-slip case (PPF). Vorticities are averaged
on the wall-parallel directions to better identify the onset of specific coherent structures
(Zhou et al., 1999). During standard K-type transition, we first measure an increase of ωx
(t ≈ 90 in figure 6.11.0a) close to the wall, indicating the onset of characteristic Λ vortices.
Streamwise vorticity spreads in the wall-normal direction, and the isolated spot of ωz ap-
pearing at t = 113 in figure 6.11.0b marks the formation of characteristic hairpin heads
further from the wall. While the amplitude of spanwise deformation has homogeneously
risen, the onset of hairpin heads marks a steep increase in friction Reynolds number (Fig.
6.11.0c), typical of the K-type transition scenario. After the late stages of transition have
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taken over (Sandham and Kleiser, 1992a), the fully turbulent state is characterised by a
plateau in Reτ , from t ≈ 200. We have already shown how introducing a slippery bound-
ary changes this scenario, damping the growth of the characteristic λ and hairpin vortices.
When SNS modelled superhydrophobic surfaces are used we observe a transient behaviour
for ωx (see figure 6.11.1a). In fact, as we will demonstrate in the following, slip at the wall
interferes with the vortex tilting and stretching that transform spanwise TS-like vortices
into Λ structures. Therefore, it is clear that the transient growth of ωx corresponds to
the onset and decay of λ vortices (figure 6.7.b and 6.11.1a for t ≈ (165, 200)). On the
other hand, when λ vortices are damped by the wall slip, we observe the onset of high
spanwise vorticity, moving from the wall towards the channel bulk (figure 6.11.1b, as well
as a plateau value in the spanwise amplitude modulation (Fig. 6.11.1c)). This peculiar
behaviour for ωz indicates the onset of non-linear streamwise vortices (Mao et al., 2017),
slowly saturating from t ≈ 200 up to t ≈ 350. We argue that these structures arise from
the flow receptivity to the residual velocity perturbation left from the damped λ vortices
4, even if computations where designed so to trigger K-type transition, SHS surfaces are
delaying this process undertaking a different route to turbulence. The process described
above is qualitatively and quantitatively identical to the one observed over HSL modelled
superhydrophobic surfaces (Chap. 5).

Taking into account the interface dynamics with MVB modelling provides a different
scenario. The streamwise vorticity evolution (figure 6.11.2a) suggests that some kind of
streamwise aligned structure is forming close to the wall such as in the PPF (figure 6.11.0a).
At the same time strong spanwise vortices are forming far from the wall (figure 6.11.2b);
the values and wall-normal location of the ωz peak is similar to that found in the HSL
case, but occurs much earlier (figure 6.11.1b) and not after saturation of the As value
as previously observed. Looking at figure 6.7.d we can see that the streamwise vorticity
marks the onset of vortices similar to the λ ones at t > 130, but stretched in the streamwise
direction, whereas the ωz peak is the signature of isolated, large hairpin-like vortex heads
(see figure 6.7.d t = 150, 165).

It is clear that SHS can delay K-type transition by altering the processes occurring dur-
ing the onset of characteristic Λ vortices, whose presence can be detected by measuring the
intensity of the streamwise vorticity (Zhou et al., 1999). Figure 6.12 depicts the evolution
of ωz in time for K-type triggered transitions over differently modelled surfaces. For no-slip
walls (PPF), Λ vortices result from the vortex tilting of the TS-like spanwise vortices used
to trigger K-type transition, resulting into a constant ωz intensity in the range t = (20, 80)
(Malm et al., 2011). In both the HSL and SNS cases, ωz decreases in the same time range,
suggesting that the vortex tilting process has been modified. However, taking into account
the interface dynamics that introduces wall normal velocities at the compliant free-surface
changes again the evolution of the spanwise vorticity in its initial stages, requiring a more
accurate analysis of these findings. As previously done in chapter 5, we now focus on the
evolution of the vorticyt transport equation, defined as 5.16. In figure 6.13 we show the
volume integral of each term of equation (5.17) at time t = 40 but for different surface
modellings. When no-slip boundaries (PPF) are employed, the terms of the equation vor-
tex tilting Tzy and stretching Szz are balanced, providing a characteristic ωz plateau during
the development of Λ-vortices. Introducing slippery boundaries decreases the intensity of
normal gradients ∂ •/∂y (Min and Kim, 2004). All terms of equation 5.17 are affected, but
with different rates, especially the ones explicitly containing the wall normal derivative,
namely Tzy = ∂u∂z ·∂w∂y as well as Szz = (∂v/∂x−∂u/∂y)∂w/∂z. This, similarly to the
mechanism driving the linear transient growth (Schmid and Henningson, 2001), introduces
an imbalance in equation 5.17, promoting the evolution of ωz. The behaviour presented
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Figure 6.12 – Wall normal integral of the averaged spanwise component of vorticity. Notice
the early plateau obtained in the benchmark PPF case, representing the saturation of TS-
like spanwise vortices and their development into characteristic Λ vortices (Malm et al.,
2011)
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Figure 6.13 – Integrals of the spanwise vorticity equation (5.16) terms, for t = 40 and
different surface modellings. Each term has been normalised with respect to the SNSs
counterpart, so to enhance their variation.
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Figure 6.14 – Wall normal integral of the averaged streamwise component of vorticity. No-
tice the exponential growth obtained in the benchmark PPF case, marking the development
of characteristic Λ vortices (Malm et al., 2011)
.

for SNS again matches the one found for SHS modelled with a flat, spatially homogeneous
model (HSL, refeer to chapter 5), indicating that slippery surfaces delays K-type transition
by inhibiting the onset of its characteristic Λ vortices altering the vortex tilting-stretching
process. Taking into account the interface dynamics introduces wall normal velocities at
the boundaries that change this picture, hindering the effect of wall slip and decreasing
the ∂ωz/∂x amplitude by mostly acting on the Tzx term. Again we observe how different
models for SHS produce opposite effects on the K-type transition process: on the one hand
slip (HSL and SNS cases) delays transition by attenuating the vortex tilting process, which
on the other hand is enhanced by the interface dynamics.

Studying the evolution of the streamwise vorticity in figure 6.14 provides some addi-
tional elements to understand how differently the surface modellings employed in this study
behave. First we briefly describe the key feature of the ωx evolution during the standard
K-type transition over flat, no-slip surfaces (PPF). After an initial decrease, vortex tilting
and stretching of the TS-like spanwise vortices leads to the onset of Λ-vortices. This phase
produces a characteristic exponential growth in ωx (t ≈ (70, 110)), that can be explained
as follows. Starting from equation (5.15) and following the approach proposed by Malm
et al. (2011), the streamwise vorticity evolution can be reduced up to :

Dωx
Dt
≈ ωx

∂u

∂x
, (6.20)

where both the damping term 1/Re∆2ω as well as the strain in other directions are ne-
glected during this stage. Solving for ωx provides

ωx ∼ e(∂u/∂x)t, (6.21)

which therefore explains the exponential growth of streamwise vorticity along x, as found in
our computation. Modelling SHS as a spatially homogeneous slippery boundary condition
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Figure 6.15 – Streamwise component of vorticity close to the wall for t = 40, averaged
along the wall-parallel directions. High vorticity intensities measured for SNS and MVB
cases are due to the presence of tiny vortices at the wall, generated by the slip/no-slip
discontinuity used to spatially discretize the surface texture. These peaks rapidly fades
out far from the wall, and do not affect the dynamics of the bulk flow. The streamwise
velocity profile of a TS wave is reported as a reference of the typical wall-normal distance
for the overlying structures occurring during transition. TS profile has been rescaled so
that its maximum is 0.01, so to facilitate the comparison with ωx profiles.

on a flat wall (HSL) this exponential growth phase disappears, indicating the absence of Λ
vortices.

Instead, looking at figure 6.14 the influence of the spatial heterogeneity can be visu-
alized in the initial phases, for t < 50. While ωx strongly decreases for both PPF and
HSL simulations, spatial heterogeneity (SNS and MVB cases) produce higher values of
streamwise vorticity. This finding can appear counter intuitive provided that an increase
of ωx is usually linked to the onset of Λ vortices, which are almost absent in both HSL,
SNS and MVB simulations. In order to better understand the source of such high stream-
wise intensities measured for spatially heterogeneous models, we plot ωx averaged onto
wall-parallel planes at time t = 40, as depicted in figure 6.15. While far from the wall, for
y ≈ 0.3, the peak measured for all simulations is associated to the vortex tilting process,
eventually leading to the onset of Λ vortices, the near wall dynamics appears to be quite
different. In fact, for y ≈ 0.02, we can clearly see that while streamwise vorticity is reduced
by homogeneous slip (HSL), it is strongly increased by spatially heterogeneity (SNS) and
even more by wall-normal velocities at the deformable interface. Indeed, discretizing the
SHS roughnesses results in the development of tiny vortices on top of the solid posts, as-
sociated to the slip-no-slip condition, which can be visualized observing the λ2 isosurfaces
close to the wall (see for example figures 6.10 a, c and e). On the other hand, provided
that the characteristic size of these vortices is linked to the size of the microposts, L, this
near wall behaviour does not affect the dynamics of the overlying transitional flow. In
fact, starting from t ≈ 75, the ωx evolution for both HSL and SNS simulations matches
again, further indicating the equivalence of these two modellings. In the MVB case we
obtain a behaviour that is in between those observed for no-slip and flat slippery surfaces.
During the very initial stages near wall vortices, stronger than those observed in the SNS
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Figure 6.16 – First row: contours of the streamwise velocity disturbances averaged onto
the x-z plane (〈U〉). Second row: contours of the U ′V ′ product measuring Q2 and Q4
events averaged onto wall-parallel planes (〈U ′V ′〉). Third row: time evolution of the span-
wise amplitude deformation As, coloured by the friction coefficient Cf . Each column is
associated to a given surface modelling. Results for SNS matches the ones for HSL, which
are reported in chapter 5

simulations (see figure 6.15) result in high levels of ωx as provided in figure 6.14. Then,
we observe some oscillations followed by a monotonic growth of streamwise vorticity for
t ≈ (90, 130). We argue that these oscillations are due to the interaction of the overlying
TS-like spanwise vortices with the underlying compliant surface, producing coherent, large
quasi 2D spanwise waves, such as those depicted in figure 6.7.d for t = 94 and characterised
in figure 6.10.b. However, the monotonic increase of ωx has a smaller growth rate than
that measured during the onset of standard Λ-vortices on non-slippery surfaces (PPF),
indicating that some key elements driving this process have been modified.

6.3.4 Generation of coherent structures

The contribution of SHS in delaying K-type transition has been attributed to their
capacity to alter the standard development of characteristic coherent structures normally
occurring during this process, namely Λ and hairpin vortices, by interfering with the vortex
tilting-stretching process. This section aims at establishing how sweep and ejection events,
strictly linked to the hairpin generation (Farano et al., 2015), are affected by SHS. Ac-
cording to Cohen et al. (2014), hairpin vortices are generated by the non-linear interaction
of three ingredients, namely: a) shear in the wall normal direction, b) a pair of counter-
rotating vortex and c) a 2D wavy vortex sheet. Wall-normal shear measured for PPF, SNS
and MVB simulations is shown in figure 6.16.x.d. We can notice that wall shear is qualita-
tively the same in all cases, playing a small part in modifying the transition scenario. On
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Figure 6.17 – Sketch based on data from PPF simulation at t = 108. −0.02 isosurfaces of the
λ2-criterion, depicting a Λ-vortex, characterised by ωx vorticity, just after the formation of
a primary hairpin arch, indicated with ωz, and right before the development of a secondary
arch. Dash-dotted line represent the rotation axis of the coherent structure, curved arrows
its rotational sense, and Q4, Q2 annotations the key areas for sweep-ejection events. Notice
how the hairpin legs, formerly Λ-vortices, produce an outward transport of mass

the other hand, we have already shown that SHS act on streamwise vortices, identified as
ωx (see figure 6.14). We have already shown that SHS modeled as a flat boundary do not
alter much the 2D TS-waves, so HSL and SNS surfaces delay K-type transition by prevent-
ing the onset of hairpin vortices. Whereas, deformable interfaces enhance the development
of small scale 2D wavy vortices, producing a wall-normal velocity at the boundary with
the same spatial wavenumber of the fundamental 2D TS wave (see figure 6.10.a). Based
onto these results we argue that MVB modelled SHS enhance the formation of hairpin-
like vortices (and therefore advance transition comparing to HSL and SNS cases) owing
to the interaction of coherent flow structures and interface deformation, similarly to what
is found in turbulent flows over a compliant surface, where the surface deformation η is
correlated with the velocity perturbations U ′ (Zhang et al., 2017). In this perspective we
track the correlation between streamwise and wall normal velocity perturbations, and in
particular their probability of occurring in the second (Q2) and fourth (Q4) quadrant of
the U ′ − V ′ plane (Adrian, 2007). Q2 events represent ejections, with negative U ′ lifted
away from the wall by positive wall normal fluctuations, whereas Q4 events (sweeps) are
characterised by positive streamwise velocity transported toward the wall by negative V ′,
plotted in the second row of figure 6.16. For K-type transition on no-slip surfaces (PPF,
figure 6.16.0e) we initially observe for t ∈ (75, 100) the onset of Q4 events near the wall,
indicating the sweeping action of Λ-vortices legs. For t > 90, Q2 events appear farther
from the wall, marking the beginning of ejection events that result in the development of
characteristic hairpin heads. This process is summarised in figure 6.17. Looking at figure
6.16.1e we notice how the onset of Q2 and Q4 events is modified by the introduction of
slippery boundaries. The plot presented here for spatially heterogeneous surfaces matches
that obtained for HSL modelled SHS (Chap. 5). In both cases the characteristic succession
of sweep-ejection events is substantially attenuated, and the strong Q2-Q4 values occur-
ring in correspondence with the plateau in As (figure 6.16.1f) identify the saturation of
non-linear streaks, described in our previous investigation. MVB modelled superhydropho-
bic surfaces introduce a wall-normal velocity at the interface that modifies the scenario.
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Figure 6.18 – Sketch based on data from MVB simulation at t = 108. −0.02 isosurfaces of
the λ2 criterion on top of the deformable U-SHS surface. Upward interface displacement is
related to strong ejections (Q2), producing ωz vortices similar to the ones of hairpin-heads
but without their typical legs. Streamwise vortices (not streaks) are measured on top of
negative deformations of the MVB modelled surface. These latter, to which is associated
most of the sweeping events (Q4), have a rotation sense that is opposite to the one of the
hairpin-like legs. Rotation axis are qualitatively indicated with a dash-dotted line.

As for the PPF case, we first observe the onset of sweeping events at the wall, followed
by ejections in the bulk flow; but in contrast with what is found on rigid smooth walls,
we observe rapid oscillations in the measured signal. In fact, analysing a single snapshot
of MVB simulation for t ≈ 100 we realize that the streamwise distribution of Q2-Q4 is
far from being homogeneous. On the one hand, strong ejections occur on top of surface
bumps, forming hairpin vortices characterised by large heads and small legs; on the other
hand, counter rotating streamwise vortices, not streaks, occur on top of negative interface
deformations, producing a sweeping event (see figure 6.18). These findings match those
made by Zhang et al. (2017) regarding the development of coherent structures in a turbu-
lent flow over compliant walls. Another remarkable feature is that at this stage we observe
the coexistence of streamwise vortices and hairpin-like legs, characterised by an opposite
sign in ωx. This explains the oscillating behaviour observed in figure 6.16.2e, which passes
undetected in figure 6.11.2.a showing the absolute value of ωx. The deformable interface
introduced by MVB modelling for SHS acts as an elastic energy reservoir, which advances
transition by promoting the ejection process, forming hairpin like head without the need
for Λ-vortices. After this phase, transition takes over in a way similar to that observed for
standard K-type transition on PPF surfaces, with the development of secondary hairpin
heads (Guo et al., 2010) up to the final breakdown to turbulence (Sandham and Kleiser,
1992a).

6.4 Summary and perspectives

The effects of underwater superhydrophobic surfaces on the K-type transition process
has been investigated numerically, spanning through a series of different surface modellings,
extending our previous work (Chap. 5). We have employed both global linear stability
analysis and DNSs over flat as well as deformable boundaries to introduce the physical
ingredients usually occurring for flows over gas lubricated surfaces. We have found that
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slippery surfaces are capable of delaying the transition process by inhibiting the onset of
characteristic coherent structures arising during the process, namely Λ and hairpin vor-
tices. Their influence begins from the very first non-linear stages, and has been attributed
to a modification in the vortex stretching-tilting process occurring on saturated TS-like
spanwise vortices, responsible for the onset of Λ aligned vortices in the case of standard
K-type transition. In the limit of a flat interface we have found that K-type transition
process is not dependent onto the spatial discretisation of the surface, as long as its char-
acteristic size L is small enough so to match some physical requirements, namely if it is
capable of withstanding wetting transition (Seo et al., 2017). In fact SHS modelled with
a single spatially homogeneous slippery boundary as well as with a texture resolved al-
ternating slip/no-slip boundary provides the same transition process, therefore extending
the findings made for both laminar (Ybert et al., 2007) and turbulent (Seo and Mani,
2016) flows. Relaxing the flat-interface dynamics requires the resolution of a coupled fluid-
structure like problem, where an arbitrary lagrangian eulerian approach is used to deform
the computational mesh so to follow the interface evolution, which is taken into account
via a linearised Young-Laplace equation (Seo et al., 2017). In this framework, the modelled
air-water interface introduces a new physical ingredient to the process, namely wall-normal
velocities at the moving boundaries. This additional element enhances the non-linear dy-
namics occurring during transition. Collective upwards moving interfaces enhance ejection
events, leading to the development of hairpin-like structures, featuring large heads but with
legs missing, while streamwise vortices are observed on top of the free-surface dimples.

Taking into account for interface deformation modifies the findings obtained for flat-
modelled superhydrophobic surfaces, altering the time needed to transition as well as chang-
ing the underlying physical mechanism involved. Therefore, using SHS modellings including
interface deformation in transitional flows does not provide the same results as the ones
which assumes flat surfaces, in contrast with what has been found for fully turbulent flows
(Seo et al., 2017).

A number of extensions and improvements to the present work can be envisioned.
— Run a series of parametric analysis in order to verify the robustness of our findings

regarding the surface size L and the surface tension employed.
— Verify how different transition scenarios (Chap. 5), other than the K-type scenario,

are affected by spatially heterogeneous SHS as well as moving interfaces.
— Extend our DNS to fully coupled two-phase flows, taking into account for the wetting

stability process with appropriate contact line models so to study the eventual loss
of gas lubricant.
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Chapter 7

Conclusions

7.1 Overall Conclusions

The aim of this thesis has been to determine how transition processes in wall bounded
shear flows are influenced by the use of slippery superhydrophobic surfaces. Whilst many
recent studies have shown the effectiveness of such surfaces in reducing drag in both lami-
nar and turbulent regimes, only the work by Min and Kim (2005) addresses the problem in
transitional conditions. Therefore, the present thesis has aimed at determining which phys-
ical mechanisms occurring during transition are affected by the use of superhydrophobic
surfaces as a mean of passive flow control, as well as predict their performance in real world
applications. To tackle this problem we have used numerical simulations of transitional
channel flows, enclosed with variously modelled superhydrophobic surfaces. The spectral
element code NEK5000 has been employed together with a temporal simulation approach,
enabling for an accurate resolution of the surface-linked dynamics.

We have shown that the effectiveness of gas lubricated surfaces in controlling transition
strongly depends on the specific physical mechanism occurring during the process. When
modelled with a spatially homogeneous and partially slippery boundary (Robin), super-
hydrophobic surfaces are capable of delaying K-type transition scenario by inhibiting the
onset of Λ and hairpin vortices. In the cases tackled in this thesis, the slip length arising
from the Robin boundary condition modelling the superhydrophobic surfaces is based onto
a careful analysis of the available literature, ensuring that its gas-lubricated layer remains
trapped within the surface roughnesses. Under these conditions we have found that wall
slip modifies the typical vortex stretching-tilting process responsible for the development of
these characteristic coherent structures, and transition can be delayed up to be completely
avoided. A radically different behaviour has been found for the optimal and uncontrolled
transition scenarios, which are barely affected by the presence of SHS. In particular, trig-
gering uncontrolled transition in channel flows without any unphysical bias has required the
construction and implementation of an ad-hoc theoretical and numerical framework. The
method developed in this thesis consists of using a continuous synthetic forcing capable of
inducing stochastic velocity perturbations with a prescribed energy level in wall-bounded
parallel flows through receptivity mechanisms. Being built using concepts arising from the
optimal forcing framework, unphysical transient effects such as those arising when using
random perturbations are avoided, allowing the study of transition scenarios similar to the
ones observed in poorly-controlled experiments. In this framework, it has been shown that
uncontrolled transition is unaltered by the introduction of slippery surfaces. In fact this
transition scenario is characterised by the onset of streamwise velocity perturbations far
from the wall, called streaks, which we have also shown to be substantially unaffected by
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the use of superhydrophobic surfaces.
On the basis of these preliminary results, K-type transition has been selected as bench-

mark case to study the influence of more accurate substrate modellings, so to include other
key physical features characteristic of superhydrophobic surfaces getting rid of some of
the assumptions previously made. First, the influence of spatial heterogeneity has been
studied. Global linear stability analysis of channel flows enclosed with SHS modelled by
spatially discretizing each gas-liquid/liquid-solid interface as a slip/no-slip flat boundary
condition provides virtually the same results obtained using a single, spatially homogeneous
Robin one. This result relies onto the fact that typical wall roughness lengthscales of su-
perhydrophobic surfaces capable of withstanding a fully turbulent flows are much smaller
than those of characteristic transitional structures. As a matter of fact it is found that
the whole transitional process appears to be unchanged by the two different modellings,
complementing and extending the recent findings made for both laminar (Ybert et al.,
2007) and turbulent regimes (Seo et al., 2015).

Taking into the account also the flat-interface dynamics has required the formulation
and implementation of a fully coupled fluid-structure problem, where an Arbitrary La-
grangian Eulerian (ALE) approach is used to deform the computational mesh so to follow
the interface evolution, which is taken into account via a linearised Young-Laplace equa-
tion (Seo et al., 2017). The whole has been accomplished using the same Spectral Element
Method code NEK5000, taking inspiration from the ALE implementation introduced by
Ho (1989). In this framework, the modelled air-water interface introduces a new physical
ingredient to the process, namely wall-normal velocities at the moving boundaries. This
additional element enhances the non-linear dynamics occurring during transition. Col-
lective upwards moving interface enhance ejection events, leading to the development of
hairpin-like structures, featuring large heads with small legs, while streamwise vortices are
observed on top of the free-surface dimples.

Taking into account the interface deformation modifies the findings obtained for flat-
modelled superhydrophobic surfaces, altering the time needed to reach transition as well
as changing the underlying physical mechanism involved. Therefore, using SHS modellings
including interface deformation in transitional flows does not provide the same results as
those assuming flat surfaces, in contrast with what has been found for fully turbulent flows
(Seo et al., 2017).

7.2 Perspectives

The work presented in this manuscript aims at determining the performances of gas-
lubricated superhydrophobic surfaces as a mean of passive flow control. Extending the
findings of previous works regarding the laminar and turbulent states, this thesis focuses
on the transitional regime. K-type transition is the most affected by the introduction of
such surfaces, balanced by two competing effects. On one hand slippery surfaces inhibits the
development of hairpin vortices by reducing vortex stretching, while accounting for the free-
surface dynamics produces wall-normal velocity oscillations that enhance the development
of their characteristic heads. To the author’s perspective, this work constitute a starting
point for many future works. The non-exhaustive list of perspectives that follows arises
from the current’s author interest, the numerous discussions he had with his supervisors
as well from the fruitful debates he had during conferences and non-official talks.

— Non-linear optimal perturbations in a channel flow are characterised by hairpin-
like structures (Farano et al., 2015), similar to the ones occurring during K-type
transition. On the other hand we have shown that slippery surfaces inhibit the
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onset of hairpin structures. Studying the non-linear optimal perturbation on SHS
surfaces could allow to find a different preferential path for the laminar-turbulent
transition process. A direct-adjoint optimization based on the conjugate gradient
method is already available in NEK5000 (Farano et al., 2015). Performing such
simulations on slippery surfaces would require nothing but the implementation of
the equivalent Robin boundary condition for the adjoint solver.

— Global linear stability analysis has demonstrated the equivalency of spatially homo-
geneous and heterogeneous ’flat’ modellings, provided that the surface’s character-
istic size to model is small enough. It would be interesting to find the threshold size
beyond which 1D local and 3D global analysis diverges. This would suggest some
important features for triggering transition in low Reynolds applications, where the
roughness size (L) reaches lengths comparable to the one of the overlying flow (H)

— Implementing interface dynamics within the Arnoldi algorithm for the Global sta-
bility analysis would enable for the study of configurations where capillary lengths
becomes predominant, such as in microchannels.

— Despite having a relatively slow amplitude, interface deformations strongly alters
the transitional process, acting as an energy reservoir for the overlying flow in a
similar way to the one observed for compliant surfaces (Zhang et al., 2017). Another
interesting line of research would be to study the influence of compliant surfaces in
transitions other than K-type.

— All the results presented in this thesis are based on the assumption that plastron
layer are stably kept within the surface roughnesses, neglecting for an eventual
wetting transition during the laminar-turbulent one. Numerical simulations of fully
coupled two-phase fluids, accounting for both the interface movement as well as the
triple point dynamics, would be crucial for an accurate study of the phenomena.

— Envisaging a collaboration with other researcher, notably with groups capable of
performing experiments, is paramount in the author’s opinion. On one hand the
results presented in the present thesis would provide a starting point onto which to
base the design of experimental essays; on the other the latter would provide funda-
mental data to validate the assumptions made in the modelling of superhydrophobic
surfaces.
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Figure 7.1 – The author posing with a Lotus Flower plant. Notice the water drop onto the
large leaf. Silvery areas that can be seen in transparence are due to light reflection on the
gas-water interface.
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Appendix A

Derivation of Mean
and Turbulent
Kinetic Energy balance equations

We detail the derivation of Mean and Turbulent Kinetic Energy (MKE and TKE)
balance equations in the framework of a temporal channel flow with F-type volume forcing.
In the following we make use of the convention of summation over identical indices.

A.1 MKE derivation

Applying the time-averaging defined in equation (4.36) to equation (4.1) where the
decomposition of the velocity field given in equations (4.34) and (4.35) has been used, one
obtains:

∂Ûi
∂t

= −∂ÛiUj
∂xj

− ∂ûiuj
∂xj

− ∂P̂

∂xi
+

1

Re
∂2Ûi
∂x2

j

(A.1)

In order to recover an equation for the mean kinetic energy we multiply equation (A.1) by
Ui, giving:

Ûi
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a

= − Ûi
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∂2Ûi
∂x2

j︸ ︷︷ ︸
e

(A.2)
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Developing all the terms one by one one obtains:
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(A.3)
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(d) = −Ûi
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(e) =
1

Re
∂

∂xj

(
Ûi
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(A.7)

which, rearranged into a single equation, provides the MKE balance equation for a generic
incompressible newtonian flow. In the framework of a temporal channel flow, the MKE
equation can be reduced as follows:
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, (A.8)

where the term (d) represents the power driving the flow, being Π the streamwise pressure
gradient. Time averaging and using some physical arguments Ricco et al. (2012), one can
obtain the global transport equation of the MKE:

Ubτw = −
[
ûv
∂Û

∂y

]
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Puv

+



(
∂Û

∂y

)2
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Du

(A.9)

The first term on the left represents the global input power, given by the pressure gradient
force times the bulk velocity. The first term on the right, Puv (see (c.1)), is a source term
for the MKE, allowing the energy to be transferred from the mean flow to the turbulent
fluctuating field, thus providing the link between the MKE and the TKE. The last term
on the right, Du (see (e.2)), represents the viscous dissipation due to the gradient of the
mean flow.
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A.2 TKE derivation

We now derive the TKE balance equations under the same assumptions made in the
previous section. Starting from equations (4.1), using the decomposition in equations (4.34)
and (4.35), and then removing the equation for the mean state, we obtain the following
equation for the perturbation evolution:

∂ui
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= −Ûj
∂ui
∂xj
− uj

∂Ûi
∂xj
− ∂p

∂xj
+

1

Re
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∂xj

− uj
∂ui
∂xj

+ uifi (A.10)

Similarly to Reynolds-Orr equation in the linear-stability framework (Schmid and Henning-
son, 2001), we derive an evolution equation for the TKE by scalar multiplication of ui with
the previous equation. By further rearranging equation (A.10), the following turbulent
kinetic energy equation is obtained:
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 (A.12)

+ uifi︸︷︷︸
Fp

. (A.13)

These terms are usually referred to as mean advection (Aii), production (Pii), transport by
fluctuations Qii, pressure redistribution φii, viscous diffusion Dt, and turbulent dissipation
εii terms. The presence of the F-type forcing appears in the last term of (A.11), which is
called Fp.

As for the MKE, we now rewrite the TKE in a temporal channel flow framework, taking
the average in the spatially homogeneous directions:
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where q2 = uiui. In the same way as for the MKE equations, time averaging and integration
along y of equations (A.14) allows for further simplifications (Ricco et al., 2012), finally
reading as:

− Puv + Fp = ε (A.15)





Appendix B

Numerical validation of chapter 5

Direct Numerical Simulations have been validated comparing our results with those pro-
vided by Min and Kim (2004) on a fully developed turbulent flow over a superhydrophobic
surface. Figure B.1.a depicts the statistics obtained with our code in the turbulent regime.
To converge statistics the simulations have been run for t ≈ 1000 time units after the onset
of a turbulence state. Transition has been triggered following the K-type scenario. The
mean velocity profiles U+ slightly deviate from the reference ones when the slip length is
increased. This behaviour is due the fact that our statistically converged states result from
laminar-turbulent transition of a channel where we have imposed a constant flow rate for
different values of the slip length, instead of a constant mean value of Reτ in the turbulent
regime as done by Min and Kim (2004). As a consequence, in our numerical configuration
the mean friction Reynolds number in the fully developed turbulent regime reduces when
the slip length Ls is increased, since the shear at the wall decreases. To allow a more
direct comparison with Min and Kim (2004) results we make use of the shifted-turbulent
boundary layer (S-TBL) model first proposed by Fukagata et al. (2006). Using equation
(6) from Seo and Mani (2016) we obtain the profiles in figure B.1.b, which compare well
with those obtained by DNS. As a further validation we present Reynolds stresses in figure
B.2. Our results match the values computed by Schlatter (2005) for a no-slip boundary
at Reτ ≈ 210, while increasing the Ls we obtain the same behaviour prescribed by Min
and Kim (2004) for a lower friction Reynolds number. This validates our approach, further
confirming that the fully turbulent state is independent from the transition route.
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Figure B.1 – (a) Mean velocity profiles compared with the ones for Reτ = 180 (Min and
Kim, 2004). The discrepancy derives from the fact that our turbulent states arise from
transition made at a constant flow rate. (b) Same mean velocity profiles as in a), now
compared with shifted-turbulent boundary layer model (Fukagata et al., 2006), for the
different obtained Reτ .
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Figure B.2 – Reynolds stresses in wall scaling for different Ls. From top to bottom
〈uu〉1/2 /uτ , 〈ww〉1/2 /uτ , 〈vv〉1/2 /uτ , 〈uv〉 /u2

τ . Open circles represents the values com-
puted for Ls = 0.0 (no-slip wall) by Schlatter (2005) at Reτ ≈ 210.
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Appendix C

Fully turbulent channel flow over
superhydrophobic substrates:
influence of surface modellings

We report the averaged statistics of turbulent flows over SHS modelled using different
approaches, obtained by extending the transitional DNS up to fully developed turbulent
state. Statistical averaging is performed onto a t = 400 wide window, conventionally
starting from 100 timesteps after the peak in friction Reynolds number. Regardless for
the model employed, mean velocity profiles for turbulent flows over SHS provides the same
result, matching the prediction made using the Shifted Turbulent Boundary Layer (S-TBL)
model, as proposed by Fukagata et al. (2006):

U+ =
1

k
ln(Reτ ) +B + Ls

+, (C.1)

where in our case Ls+ ≈ 2, whereas the constants (k,B) are set to (0.41, 5.0). The footprint
of spatially heterogeneous modelling of SHS can be recovered by looking at the Reynods
stresses near the wall. The peculiar behaviour of 〈U ′U ′〉 and 〈U ′V ′〉 components near the
wall is a typical feature of slip/no-slip modellings (Fairhall et al., 2018). Starting from
y+ > 15 all SHS models provide the same results, constituting an a posteriori validation
of the DNS computations described in the present work.
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surface modellings

Figure C.1 – (a) Mean velocity profiles for statistically converged turbulen flows. Standard
no-slip condition provides Reτ = 210, and is compared with Min and Kim (2004). Provided
that flow is kept constant during all transitional simulations, slippery SHS provides a lower
friction, resulting in Reτ ≈ 190. For this reason we compare our profiles with the ones
obtained using the S-TBL model C.1. (b) Reynolds stresses in wall scaling for different
surfaces. From top to bottom 〈U ′U ′〉, 〈W ′W ′〉, 〈V ′V ′〉 and 〈U ′V ′〉.
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Appendix D

Validation of DNS
over deformable free-surfaces
modelled with ALE approach

Solid lines represents the reference solution obtained using the 1D local framework as
well as dashed lines represents the numerical results obtained for the DNS validation. The
DNS code in which Free-surface dynamics implemented trough ALE approach (Ho, 1989) is
verified against solutions found within the linear stability analysis framework. In particular,
we select the water table flow (Olsson and Henningson, 1995) as benchmark case because
it contains all the physical features of the liquid flow over a gas-infused superhydrophobic
surface. Water table flow describes the flow of a liquid film down an inclined plane, driven
by gravity and exposing a free-surface external environment. Following the procedure
described in Schmid and Henningson (2001), the evolution of infinitesimal perturbations
on top of the base flow Ub(y) = 2y − y2v is governed by the classical Orr-Sommerfeld

(−iω + iαUb)(D
2 − k2)v̂ − iαU ′′b v̂ =

1

Re
(D2 − k2)v̂ (D.1)

and Squire equation

(−iω + iαUb)ζ̂ + iβU ′b =
1

Re
(D2 − k2)ζ̂. (D.2)

The above equations are derived from 6.8, where the the primitive formulation has been
dropped in favour of the normal velocity-vorticity one, ζ = ∂u/∂z − ∂w/∂x and we have
assumed disturbances of the form

v(x, y, z, t) = v̂(y)ei(αx+βz−ωt) (D.3)
ζ(x, y, z, t) = ζ̂(y)ei(αx+βz−ωt) (D.4)

where k2 = α2 + β2 and D and ′ denote the normal derivative. Equations (D.1) and
(D.2) are identical to the ones for any wall bounded flow, such as Poiseuille and Couette.
Influence of the free-surface requires for a special care of the boundary condition, that will
result an additional set of equations

k2Sη̂ +

[
−iω + iα− 1

Re
(D3 − 3k2)

]
Dv̂ = 0 (D.5)

−(D2 + k2)v̂ = 2iαf̂ (D.6)
(−iω + iα)f̂ = v̂ (D.7)

Dζ̂ = 2iβf̂ (D.8)
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over deformable free-surfaces
modelled with ALE approach

Figure D.1 – Evolution in time of the interface location, for a watertable flow configuration.
Solid lines represents the reference solution obtained using the 1D local framework as well as
dashed lines represents the numerical results obtained with the DNS having ALE modelled
gas-liquid free interfaces. (a) Interface location in time in the range (t = 0 − 0.2), from
blue to yellow. (b) Trace of the peak point of the wall-normal velocity, normalised by its
initial intensity.

at at the gas-liquid interface for y = 1, while simple v̂ = ∂v̂/∂y = ζ = 0 at the solid wall,
for y = 0. Parameter S accounts for the influence of gravity and surface tension,

S =
cosφ

Fr2
+

k2

We
(D.9)

with the Froude (Fr) and Weber (We) number respectively, and φ the angle of the inclined
plane. Setting φ = π/2 neglect for the influence of gravity and, using a 1-D local stability
analysis code, we are capable of retrieving the eigenvalues and its associate eigenvectors, as
found by Olsson and Henningson (1995). We take the most unstable eigenvector, computed
for α = 0.7, β = 1.3, Re = 1000 and S = 0.1, and use it as initial condition for a DNS over
ALE modelled free-surface interface. Our DNS solver provides the same interface motion
prescribed by the 1-D linear stability analysis code, as depicted in figure D.1.
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Appendix E

Nek5000 subroutines
for Robin boundary condition

In the following section, comments to the code are indicated as

!ROBIN_BC

SUBROUTINE PLAN3 (IGEOM)
C-----------------------------------------------------------------------
C
C Compute pressure and velocity using consistent approximation spaces.
C Operator splitting technique.
C
C-----------------------------------------------------------------------

include ’SIZE’
include ’INPUT’
include ’EIGEN’
include ’SOLN’
include ’TSTEP’
include ’GEOM’!ROBIN_BC
include ’MASS’!ROBIN_BC

C
COMMON /SCRNS/ RESV1 (LX1 ,LY1 ,LZ1 ,LELV)

$ , RESV2 (LX1 ,LY1 ,LZ1 ,LELV)
$ , RESV3 (LX1 ,LY1 ,LZ1 ,LELV)
$ , DV1 (LX1 ,LY1 ,LZ1 ,LELV)
$ , DV2 (LX1 ,LY1 ,LZ1 ,LELV)
$ , DV3 (LX1 ,LY1 ,LZ1 ,LELV)
COMMON /SCRVH/ H1 (LX1 ,LY1 ,LZ1 ,LELV)

$ , H2 (LX1 ,LY1 ,LZ1 ,LELV)
COMMON /MYROB/ H2_ROB(LX1 ,LY1 ,LZ1 ,LELV) !ROBIN_BC
n=nx1*ny1*nz1*nelv !ROBIN_BC

C
IF (IGEOM.EQ.1) THEN

C
C Old geometry
C

CALL MAKEF
C

ELSE
C
C New geometry , new b.c.
C

INTYPE = -1
CALL SETHLM (H1,H2,INTYPE)
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C------------------------------------------------------------------!
C--------Create H2 that takes into account for Robin BC !

call rzero(H2_ROB ,N) !ROBIN_BC !
call bcneusc_mod(H2_ROB)!ROBIN_BC !

C--------Add contribution of Robin BC to standard Neumann condition!
call add2(H2 , H2_ROB ,N) !ROBIN_BC !

C------------------------------------------------------------------!
CALL CRESVIF (RESV1 ,RESV2 ,RESV3 ,H1 ,H2)
mstep = abs(param (94))
if (param (94).ne.0. .and. istep.ge.mstep) then
call ophinv_pr(dv1 ,dv2 ,dv3 ,resv1 ,resv2 ,resv3 ,h1,h2,tolhv ,nmxh)

c CALL OPHINV (DV1 ,DV2 ,DV3 ,RESV1 ,RESV2 ,RESV3 ,H1,H2,TOLHV ,NMXH)
else

CALL OPHINV (DV1 ,DV2 ,DV3 ,RESV1 ,RESV2 ,RESV3 ,H1,H2 ,TOLHV ,NMXH)
C call ophinv_rob (DV1 ,DV2 ,DV3 ,RESV1 ,RESV2 ,RESV3 ,
C & H1 ,H2,H2_ROB ,TOLHV ,NMXH)

endif
CALL OPADD2 (VX,VY,VZ,DV1 ,DV2 ,DV3)

c
c Default Filtering
c
c alpha_filt = 0.05
c if (param (103). ne.0.) alpha_filt=param (103)
c call q_filter(alpha_filt)
c
c CALL SSNORMD (DV1 ,DV2 ,DV3)
c

call incomprn(vx ,vy,vz,pr)
C

ENDIF
C

RETURN
END

C
C********************************************************************

Listing E.1 – modified plan3 subroutine

C********************************************************************
SUBROUTINE BCNEUSC_MOD(S) !PICELLA
include ’SIZE’
include ’TOTAL’
include ’CTIMER ’
include ’NEKUSE ’
DIMENSION S(LX1 ,LY1 ,LZ1 ,LELV)
CHARACTER CB*3
real NU

slip_length=param (79)+1e-10! To be imposed within the .REA !
NU = abs(param (02))

if(nio.eq.0) write (6,*)’SLIP_LENGTH ’,SLIP_LENGTH ,’NU’,NU
NFACES =2* NDIM
NXYZ =NX1*NY1*NZ1
IFIELD =1 !flow variables
NEL =NELFLD(IFIELD)
NTOT =NXYZ*NEL

C CALL RZERO(S,NTOT)
C if(nio.eq.0)
C $write (6,*)’SUBROUTINE␣BCNEUSC_MOD ’
C $ ,NFACES ,NEL ,NTOT ,LELV

DO 1000 IE=1,NEL
DO 1000 IFACE=1,NFACES
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ieg=lglel(ie)
CB =CBC(IFACE ,IE ,IFIELD)
IF (CB.EQ.’SYM’) THEN !Apply the condition to ’SYM ’ faces only ...

IA=0
C
C IA is areal counter , assumes advancing fastest index first. (IX...IY...IZ)
C

CALL FACIND (KX1 ,KX2 ,KY1 ,KY2 ,KZ1 ,KZ2 ,NX1 ,NY1 ,NZ1 ,IFACE)
DO 100 IZ=KZ1 ,KZ2
DO 100 IY=KY1 ,KY2
DO 100 IX=KX1 ,KX2

IA = IA + 1
! S(IX,IY,IZ,IE)=1/ slip_length

S(IX ,IY ,IZ ,IE) = S(IX ,IY ,IZ ,IE) +
$ NU/Slip_length*AREA(IA ,1,IFACE ,IE)/BM1(IX,IY,IZ ,IE)

C if(nio.eq.0) write (6,*)IE,S(IX,IY ,IZ ,IE)
100 CONTINUE

endif
1000 CONTINUE

RETURN
END

C

Listing E.2 – subroutine bcneusc_mod

As indicated within the subroutine, the slip length Ls value is prescribed within the
*.rea file, using the blank variable parameter(79).

[...]
CALL HMHOLTZ (’VELX’,OUT1 ,INP1 ,H1 ,H2 ,V1MASK ,VMULT ,

$ IMESH ,TOLH ,NMXI ,1)
CALL HMHOLTZ (’VELY’,OUT2 ,INP2 ,H1 ,H2 ,V2MASK ,VMULT ,

$ IMESH ,TOLH ,NMXI ,2)
IF (NDIM.EQ.3)

$ CALL HMHOLTZ (’VELZ’,OUT3 ,INP3 ,H1,H2,V3MASK ,VMULT ,
$ IMESH ,TOLH ,NMXI ,3)

[...]

Listing E.3 – standard ophinv subroutine

[...]
CALL HMHOLTZ (’VELX’,OUT1 ,INP1 ,H1 ,H2_X ,V1MASK ,VMULT ,!ROBIN_BC

$ IMESH ,TOLH ,NMXI ,1)
CALL HMHOLTZ (’VELY’,OUT2 ,INP2 ,H1 ,H2 ,V2MASK ,VMULT ,

$ IMESH ,TOLH ,NMXI ,2)
IF (NDIM.EQ.3)

$ CALL HMHOLTZ (’VELZ’,OUT3 ,INP3 ,H1,H2_Z ,V3MASK ,VMULT ,!ROBIN_BC
$ IMESH ,TOLH ,NMXI ,3)

[...]

Listing E.4 – ophinv_anisotropic subroutine

.
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Scientific production

In the following are listed all the conferences to which the author has taken part during
his period as a Ph.D. student, together with those where his work will be presented by
others. Works related to the three-dimensional dynamics of an open cavity flow have began
during the author’s Master, and have been finalised during the first months of thesis.

International conferences

— EFMC11
F. Picella, C. Douay, J.-C. Loiseau, J.-C. Robinet, S. Cherubini, L. Pastur and F.
Lusseyran
Stability analysis of three-dimensional open cavity.
11th European Fluid Mechanics Conference
2016, Sevilla, Spain

— EDRFCM17
F. Picella, S. Cherubini, J.-C. Robinet
SuperHydrophobic Channel flow, Transition an Passive Flow Control
2017, Rome, Italy

— Euromech591
SuperHydrophobic Channel Flow, Transition and Passive Flow Control
F. Picella, S. Cherubini, J.-C. Robinet Euromech Colloquium 591
2017, Bari, Italy

— EFMC12
F. Picella, M.A. Bucci, S. Cherubini, J.-C. Robinet
A novel technique for triggering bypass transition in internal flows based on the
receptivity to forcing. 12th European Fluid Mechanics Conference
2018, Wien, Austria

— APS DFD 2018
F. Picella, J.-C. Robinet, S.Cherubini
Influence of superhydrophobic surfaces on the laminar-to-turbulent transition in a
channel flow
American Physical Society, Division of Fluid Dynamics meeting
http://meetings.aps.org/Meeting/DFD18/Session/E27.6
2018, Atlanta, GA, USA

— LIMSI2019
F. Picella, J.-C. Robinet, S.Cherubini
Invited Talk: Influence of superhydrophobic surfaces on the laminar-to-turbulent
transition in a channel flow
LIMSI CNRS
2019, Orsay, France
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— BIFD2019
F. Picella, J.-C. Robinet, S. Cherubini
Influence of superhydrophobic surfaces on the laminar-to-turbulent transition in a
channel flow
Bifurcations in Fluid Dynamics
2019, Limerick, Ireland

— IUTAM Transition 2019
F. Picella, J.-C. Robinet, S. Cherubini
Influence of superhydrophobic surfaces on the laminar-to-turbulent transition in a
channel flow
IUTAM Symposium on Laminar Turbulent Transition
2019, London, UK.

Scientific papers

— F. Picella, J.-C. Loiseau, F. Lusseyran, J.-C. Robinet, S. Cherubini and L. Pastur
Successive bifurcations in a fully three-dimensional open cavity flow
Journal of Fluid Mechanics (Picella et al., 2018)

— F. Picella, M. A. Bucci, S. Cherubini, J.-C. Robinet
A synthetic forcing to trigger laminar-turbulent transition in parallel wall
bounded flows via receptivity
Journal of Computational Physics (Picella et al., 2019)

— F. Picella, J.-C. Robinet, S. Cherubini
Laminar-turbulent transition(s) over SuperHydrophobic Surfaces
Submitted to Journal of Fluid Mechanics

— F. Picella, J.-C. Robinet, S. Cherubini
K-type laminar-turbulent transition over SuperHydrophobic Surfaces:
influence of free-surface dynamics
Under preparation Journal of Fluid Mechanics

Pedagogy

As a Ph.D. student at Ecole Nationale Supérieure des Arts et Métiers, the author has
joined the teaching staff of fluid mechanics department, providing courses to bachelor and
master students of the school. Here are listed some of the courses he joined.

— 2017-2019 Simulation des systèmes fluides (Prof. V. Daru and Prof. X. Gloerfelt)
— 2018 Hydrodynamic Instabilities (Prof. J.C. Robinet)
— 2017-2018 Mathematique Informatique (Prof. X. Merle)
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Retarder la transition vers la turbulence en imitant les feuilles de lotus 

RÉSUMÉ : Nombreuses stratégies de contrôle ont été récemment proposées par la communauté scientifique afin de               
pouvoir réduire la traînée dans les écoulements pariétaux. Entre autres, les Surfaces Superhydrophobes (SHS) ont               
montré leurs capacités de pouvoir réduire considérablement le frottement pariétal d’un écoulement liquide grâce à la                
présence de microbulles de gaz piégées dans les nano-rugosités de la surface. Dans des conditions géométrique et                 
thermodynamique données pour lesquelles la transition de mouillage est évitée (condition pour laquelle normalement              
la taille des rugosités qui caractérise la SHS est de plusieurs ordres de grandeur plus petite que l'échelle                  
caractéristique de l'écoulement principal), on peut atteindre ce qu’on appelle ‘l'effet Lotus’, pour lequel l'écoulement               
glisse à la paroi, avec une vitesse différente de zéro.. Dans ce cadre, nous nous sommes proposés d’étudier, à l’aide                    
de simulations numériques l’influence des SHS sur la transition laminaire-turbulent dans un écoulement de canal.               
Pour cela, nous avons réalisé une série de simulations numériques directes (DNS), allant de l'état laminaire au cas                  
turbulent pleinement développé, en traitant la plupart de scénarios de transition connu en littérature. Des analyses de                 
stabilité locale et globale ont aussi été réalisées afin de déterminer l’influence de ces surfaces sur la première phase                   
du processus de transition. Bien que la procédure de déclenchement de la transition contrôlée (type K, H, C,...) soit                   
bien décrite dans la littérature, cela n’est pas le cas pour les transitions naturelles. À cette fin, une nouvelle méthode a                     
été développée pour déclencher puis étudier la transition naturelle dans des écoulements de type canal. Cette méthode                 
est basée sur des mécanismes de réceptivité de l'écoulement (resolvent global) permettant de construire un forçage                
volumique spécifique. Plusieurs approches pour modéliser les SHS ont été utilisées, de complexités croissantes, tout               
en tenant en compte des caractéristiques physiques de ces surfaces. Dans un premier temps, une condition de                 
glissement homogène a été utilisée et son influence analysée. Chaque rugosité a été ensuite discrétisée spatialement,                
d’abord avec une alternance de condition limite sur une surface plate, ensuite en tenant compte de la dynamique de                   
l’interface gaz-liquide par une méthode Lagrangienne-Eulerienne Arbitraire (ALE). Nous avons montré que les SHS              
permettent d’efficacement retarder les transitions contrôlées mais qu’en revanche elles ont peu d’influence sur les               
transitions naturelles (développant des stries de vitesse). En effet, ce comportement dérive de l'équilibre entre deux                
effets contradictoires. D’un côté, le glissement pariétal nuit au développement des structures cohérentes de type               
hairpin, en altérant le processus de vortex stretching-tilting. D’autre part, le mouvement de l’interface gaz-liquide               
interagit avec les structures cohérentes de l'écoulement, en produisant des vitesses normales à la paroi favorisant                
davantage le processus de sweep-ejection et entraînant le développement de structures en forme d’arche. Nous avons                
montré que les interfaces gaz-liquide statiques retardent la transition de façon analogue à une condition aux limites                 
homogène (si l’hétérogénéité pariétale est petite). En revanche la prise en compte de leur dynamique limite le retard                  
de la transition, montrant l’importance du modèle de SHS dans les écoulements transitionnels. 

Mots clés : transition laminaire-turbulent, surfaces superhydrophobes, interaction fluide-structure, contrôle passif,          
réduction de traînée, analyse de stabilité globale. 

Delay transition to turbulence with Lotus leaves bio-mimetic superhydrophobic surfaces 
ABSTRACT: Many passive control strategies have been recently proposed for reducing drag in wall-bounded shear               
flows. Among them, underwater SuperHydrophobic Surfaces (SHS) have proven to be capable of dramatically              
reducing the skin friction of a liquid flowing on top of them, due to the presence of gas bubbles trapped within the                      
surface nano-sculptures. In specific geometrical and thermodynamical conditions for which wetting transition is             
avoided (in particular, when the roughness elements characterizing the SHS are several orders of magnitude smaller                
than the overlying flow), the so-called ’Lotus effect’ is achieved, for which the flow appears to slip on the surface                    
with a non zero velocity. In this framework, we propose to study, by means of numerical simulations, the influence of                    
SHS on laminar-turbulent transition in a channel flow. To do so we have performed a series of direct numerical                   
simulations (DNS), from the laminar to the fully turbulent state, covering the majority of transition scenarios known                 
in the literature, as well as local and global stability analysis so to determine the influence of SHS onto the initial                     
stages of the process. While the conditions for observing controlled K-type transition in a temporal channel flow are                  
well defined, this is not the case for uncontrolled ones. To this end, a novel theoretical numerical framework has been                    
developed so to enable the observation of natural transition in wall-bounded flows. This method, similarly to the                 
Free-Stream-Turbulence framework available for the boundary layer flow, is capable of triggering uncontrolled             
transition through flow receptivity to a purpose-built forcing. Different surface modellings for the superhydrophobic              
surfaces are tested. First, homogeneous slip conditions are used. Then, the spatial heterogeneity of the SHS has been                  
considered by modelling it as a flat surface with alternating slip no-slip boundary conditions. Finally, the dynamics of                  
each microscopic liquid-gas free-surface has been taken into account by means of a fully coupled fluid-structure                
solver, using an Arbitrary Lagrangian Eulerian formulation. We show that while SHS are ineffective in controlling                
transition in noisy environment, they can strongly delay transition to turbulence for the K-type scenario. This                
behaviour results from the balance of two opposing effects. On one hand slippery surfaces inhibit the development of                  
characteristic hairpin vortices by altering the vortex stretching-tilting process. On the other hand, the movement of                
the gas-liquid free-surfaces interacts with the overlying coherent structures, producing wall-normal velocities that             
enhance the sweep-ejection process, leading to a rapid formation of hairpin-like head vortices. Thus, when               
considering flat interfaces transition time is strongly increased, while taking into account the interface dynamics               
induces smaller changes with respect to the no-slip case, indicating the need for an appropriate modelling of SHS for                   
transition delay purposes. 
Keywords: laminar-turbulent transition, superhydrophobic surfaces, fluid-structure interaction, passive flow control,          
drag reduction, global stability analysis. 
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