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Chapitre 1

Introduction

Below is a French summary of the following chapter "Introduction".

Le nombre de victimes de la route dans le monde a diminué de 42% au cours de la dernière
décennie [ITF, 2016]. En dépit de ces chiffres prometteurs, les accidents de la route sont la 9th

cause principale de décès [Woodside Capital Partners (WCP), 2016]. Sur la base de cette tendance,
les accidents de la route pourraient devenir la principale cause de décès évitables d’ici 2020 [Al-
Dweik et al., 2017]. Un autre gros problème dans le transport routier est la congestion. Étant
donné que le nombre de véhicules dans les grandes villes continue d’augmenter, cela représente un
accroissement de la pollution de l’air et du temps de transport, augmentant la probabilité d’erreurs
humaines entraînant des accidents de la route [Zhang et al., 2011].

Les systèmes de transport intelligents (STI) ont émergé en réponse à ces problèmes. Ces
systèmes utilisent les télécommunications, l’électronique et les technologies de l’information pour
planifier, concevoir, exploiter et entretenir un tel système de transport [Nowacki, 2012]. Les pre-
miers développements intelligents sur les systèmes ITS dans le secteur automobile sont connus
sous le nom de systèmes ADAS (Advanced Driver Assistance Systems). Ces systèmes sont équipés
dans les véhicules en tant que fonctions d’aide, d’avertissement ou d’assistance dans la tâche de
conduite. Le nombre d’ADAS intégrés dans les véhicules utilitaires ne cesse d’augmenter, de même
que le niveau d’automatisation des véhicules, le développement de véhicules entièrement automa-
tisés étant l’objectif final de ces ADAS. Par exemple, des systèmes tels que l’alarme d’angle mort,
l’alerte de collision avant, l’alerte de sortie de voie, le régulateur de vitesse adaptatif (ACC), l’ABS,
Stop & Go, l’assistance pour le maintien de la voie et même l’aide au stationnement ont déjà été
commercialisés.

Toutefois, les normes ADAS établies pour les véhicules de tourisme couvrent le niveau deux
d’automatisation sur cinq (automatisation complète). Cela signifie que nous sommes encore loin
d’avoir des véhicules entièrement automatisés qui roulent sur les routes, en particulier dans les
environnements urbains, ce qui suppose un défi technologique plus important. Là, les véhicules
doivent réagir de façon réactive aux situations imprévues, et ces capacités ne sont pas encore
disponibles. Sous ces considérations, l’objectif de cette thèse est de développer une approche de
planification des trajectoires capable de traiter ces scénarios urbains complexes, pouvant apporter
une solution au problème de suivi de trajectoire, aussi bien en environnement statique qu’en
environnement dynamique, en traitant les obstacles rencontrés dans l’itinéraire et adaptable à
différentes plates-formes.
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Chapter 1

Introduction

The number of road fatalities in the word has decreased by 42% in the last decade [ITF, 2016].
In spite of these promising numbers, road traffic crashes rank as the 9th leading cause of death
[Woodside Capital Partners (WCP), 2016]. Based on this tendency, traffic accidents could become
the leading cause of preventable deaths by 2020 [Al-Dweik et al., 2017]. Another big issue in
road transport is congestion. Since the number of vehicles in big cities continues increasing, this
represents an enlargement of air pollution and in transportation time, incrementing the probability
of human errors leading to traffic accidents [Zhang et al., 2011].

Intelligent Transportation Systems (ITS) emerged as a response to these problems. These
systems apply telecommunications, electronics and information technology to plan, design, operate
and maintain such transportation system [Nowacki, 2012]. The first intelligent developments on
ITS systems in the automotive field are knowns as Advanced Driver Assistance Systems (ADAS).
These systems are equipped in the vehicles as aiding, warning or assisting features in the driving
task. The number of ADAS integrated in commercial vehicles keeps increasing, as well as the
automation level of the vehicles, where the development of fully automated vehicles is the final
goal of these ADAS. For instance, systems such as the blind spot warning, forward collision warning,
lane departure warning, Adaptive Cruise Control (ACC), ABS, Stop&Go, Lane keeping assist and
even parking assist have already been commercialized.

However, established ADAS for passenger vehicles cover up to the level two of automoation
out of five (full automation). It means that we are still far away for having fully automated
vehicles running on roads, specially on urban environments, which suppose a bigger technological
challenge. There, the vehicles have to react to the unexpected situations in a reactive way, and
those capabilities are not available yet. Under these considerations, the goal of this PhD thesis
is to develop a motion planning approach able to deal with these complex urban scenarios, being
able to provide a solution to the path following problem both on static and dynamic environments,
dealing with the obstacles found in the itinerary and adaptable to different platforms.

This research work has been accomplished between the Robotics and Intelligent Transportation
Systems team at the French national institute for research in computer science and automatics
(from french Institut National de Recherche en Informatique et en Automatique), in collabora-
tion with Vedecom institute (from french Véhicule Décarboné Communicant et sa Mobilité). The
motivation of the thesis as well as the objectives are presented below.

3
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1.1 Motivation

Research and development of ADAS can improve transportation from an economic, environmental
and safety driving points of view. Since production vehicles started to commercialize these features,
a significant reduction on the number of accidents on road transport was produced, with the
corresponding reduction of expenses derived from those accidents [European Commission, 2016b],
[Mosquet et al., 2015]. It also contributes to the reduction of the CO2 emissions [International
Council on Clean Transportation (ICCT), 2017]. The increasing tendency of electric and hybrid
vehicles in the market worldwide, surpassing the two million vehicles in 2016 after achieving one
million in 2015 [International Energy Agency (IEA), 2017]. Combined with the development of
ADAS, they contribute to ecodriving, making the vehicle operate in the most efficient manner,
reducing the emissions a 15%, with a great potential in urban environments where accelerations
and decelerations occur more frequently [Breemersch, n.d.]. Finally, they improve the day-life of
road users, producing a significant reduction of transportation time thanks to systems such as the
traffic jam assist or the ACC [Verband der Automobilindustrie e. V. (VDA), 2015].

Recent demonstrations worldwide have presented the great potential of these systems. Waymo
recently made a demonstration showing their vehicle riding in city streets using a 360o vision
system. They also intend to predict the behavior of road users, and gathering data from their
vehicles running on automated way for more than six years [Google, 2015]. Recently, they have
racked up eight millions of kilometers traveled on automated way, taking less than three months to
achieve last million. The development of on-demand automated vehicles for car-sharing providing
robo-taxi features have raised last years. Both Navya, who presented their Autonom CAB vehicle
in the CES 2018, and Easymile, with their EZ10 driverless shuttle tested for mobility on airports
and on cities as demonstrated in the University of Laussane in 2016, have started to show the
great potential of these platforms, mostly in urban environments. Audi, together with Nvidia,
area one of the leading companies introducing machine-learning on automated vehicles, as shown
with their BB8 during the CES 2018 congress in a path following application on a non-structured
environment with obstacles. Some other important demos, such as the recreation of the first trip
made by a car but in automated way on the Mercedes Benz memorial route in 2013, the Public
Road Urban Driverless (PROUD) car test of University of Parma, driving on the International
VisLab Intercontinental Autonomous Challenge (2010) from Parma to Shangai, the first USA coast
to coast automated journey in 2015, or the Grand Cooperative Driving Challenge, have shown the
improvements in the field after the two DARPA Challenge competitions.

However, recent accidents of automated vehicles running on normal roads with human driver
supervision demonstrate that we are not that close to achieve the fully-automation level. Among
them, the first death where an automated vehicle was responsible was produced in the USA with
an Uber car due to a failure in recognizing a pedestrian crossing in front of the vehicle at night.
Previously, first death where one of these vehicles was involved was due to a driver relaxation. The
driver assumed the Tesla autopilot was able to react to every situation, expecting a maximum level
of automation, using the ride time for leisure without supervising the scene. Similar accidents have
been produced because of other human drivers could not understand the behavior of the automate
cars, which was not natural (such as the crash produced in a intersection by an Uber vehicle, or the
accidents of Navya in Las Vegas). Thus, more robust systems able to compensate the malfunctions
of perception systems are needed before achieving a higher automation level.

Path planning is one of the most important elements on the vehicle navigation. The ability
to deal with the unexpected circumstances offering alternative paths to arrive at the destination
place safely is critical to achieving a semi-automation level. Development of planning algorithms
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applied to automated vehicles started ro rise since the DARPA Grand Challenge in 2005, where
graph-search based algorithms were firstly used to find a path on the desert scenario. Later, in the
DARPA Urban Challenge in 2007, combination of graph-search based algorithms and parametric
curves were used dealing with urban environments, and sampling based solutions were introduced.
A classification of path planning methods has been considered in this thesis, namely: graph search
based algorithms, sampling based algorithms, and interpolating curve based algorithms.

This thesis presents a path planning approach where parametric curves are explored, proposing
an approach where quartic Bézier curves are used searching comfort as planning criteria, due
to the ability of these curves to adapt to the different environments thanks to be defined by
control points. This allows to offer a solution where both constraints of road and vehicle are
considered in a pre-planning stage, and later optimal curves are loaded in real-time according
to human-like driving style. That way, a fast and natural planning solution is intended to solve
the navigation problem in urban environments, being able to deal with obstacles in the path
generating a comfortable trajectory. This two-staged planning architecture is validated both in
simulation (Pro-Sivic&RTMaps, Matlab-Simulink) and in real platforms (Cybercars and and a
robotised electric car), showing its performance in such a different scenarios, adapting to the scene
conditions and to the type of ego-vehicle.

1.2 Objectives
The main goal of this PhD thesis is to design a functional local path planning modular architecture
for automated vehicles running on urban environments. It generates a continuous path in real-
time, providing a solution to the navigation problem in such changing scenarios. A two-staged
algorithm is presented, where the pre-planning stage allows to consider the physical constraints of
both road and vehicle to pre-compute parametric curves to fit the best to any turn configuration.
Smoothness is the main criteria for the optimality function in the real-time planning stage, where
an extended planning horizon is envisaged to optimize not only the upcoming cuve but also the
next one, providing a human-like driving style. Different paths are studied where the starting and
ending position on the curves depend on the changes of concavity and the available space between
curves.

In addition to dealing with static environments, a dynamic planning system for adapting the
path to avoid the obstacles found in the way is addressed. There, the problem is solved by building
a virtual lane on a grid based discretization of the scene. This virtual lane modifies if necessary
the global path to avoid the obstacle performing two lane changes, allowing the system to target
the new global path as a static environment where each lane change consists of two curves. Thus,
it searches a fast response benefiting from the static planning stage, and the dynamic algorithm
only search in real-time the best slope for changing lanes generating an smooth path.

In order to validate the proposed local planning approach, different experiments have been
carried out, both in simulation as in real platforms running at different speeds (both at low and
at medium speeds). This PhD work aims the missing gaps on the state of the art, providing
human-like paths, generated in real-time as fast as possible and considering both road and vehicle
constraints, adapting to the changes on the environment.

1.3 Manuscript organization
This PhD thesis is organized in six chapters. A brief description of the contents of each chapter is
presented below.
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Chapter 2, State of the Art: First, this chapter presents an overview of the development
and in-market penetration of ADAS. It shows the evolution of these systems, focusing on the
economical, technological and the safety contribution to road transport, up to the appearance
of the automated vehicles and the different levels of automating driving. Then, a general-
ization of the functional architecture for automated vehicles in the literature is described.
Finally, a review of the different path planning methods used in the main demonstrations
involving vehicles automation by both research laboratories and industrial companies is de-
tailed. Based on this review, path planning methods are divided in three main groups: graph
search-based methods, sampling-based methods and interpolating curve methods.

Chapter 3, Path planning in static environments: The proposed planning strategy
is presented here. First, it is divided in global and local planning. The proposed local
planning approach consists of a pre-planning stage and a real-time planning stage. This
chapter presents both stages for solving the navigation problem on static environments. The
pre-planning stage benefits from the static information of road and vehicle to pre-compute
the optimal curves that the vehicle might encounter for any turn configuration on urban
roads. This allows the real-time planner to generate smoother paths by interpolating in real-
time the optimal curves, fitting better to the road layout. The algorithm considers both the
sharpness of the road and the limited space between turns to provide an extended planning
horizon where two curves are optimized concurrently. Quartic Bézier curves are considered,
with curvature constraints at the beginning and at the end of the curves for ensuring path
continuity.

Chapter 4, Path planning in dynamic environments: Once the planning approach for
static environments has been presented, dynamic environments are addressed in this chapter.
A method to modify the planned static path avoiding the obstacles the automated vehicle
could found in the itinerary is presented. It is based on a grid discretization of the scene, a
classification of the obstacle type from the perception information and the construction of a
virtual lane allowing to solve the avoiding problem benefiting from the former knowledge of
the static environment.

Chapter 5, Validation tests: This chapter presents the experiments carried out to val-
idate the path planning system, both in simulated and in real environments. Simulation
experiments have been performed emulating urban environments and platform on ProSivic
and RTMaps software to validate the real-time planning, whereas Matlab-simulink is used for
validating the pre-planning stage. Real experiments have been performed on the platforms
of the INRIA RITS team, more specifically on a Cycab and on a robotised electric Citroën
C1. The planning strategy has been validated both on low-speed and medium-speed vehi-
cles. The different tested scenarios show the planned and traked paths on different situations
where road layout combines both consecutive curves and straight stretches, presenting the
turns different sharpness and with different space available among turns.

Chapter 6, Conclusion, future work and research perspective: Final chapter presents
the conclusions extracted after this PhD work, presenting some possible future works as well.
The perspective on motion planning research is also provided.

1.4 Contributions
The main contribution of this thesis can be briefly described below.
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1. Local path planning approach based on a two-staged architecture (pre-planning and real-
time planning) for automated vehicles on urban environments. It provides a real-time per-
formance, generating enhanced G1 continuous paths minimizing both curvature and abrupt
changes on it. The novelty of this approach is the introduction of a pre-planning phase
where both road phyisical constraints and vehicle kinematic constraints are considered to
pre-compute the optimal curves for any possible turn scenario, generating different databases
where different starting and ending position of the vehicle on the lane are considered.

2. Then, the real-time algorithm generates a continuous path by joining the pre-computed opti-
mal curves by considering the actual road layout (sharpness, available distance and concavity
changes). Thus, the only parameter to be optimized in real-time is the junction point between
curves, making the algorithm work with a low computational burden.

3. Planning approach working on both static and dynamic environments, where obstacles are
found in the path. A virtual road generation based algorithm is used to modify the planned
static path adapting it to the changing scene. It benefits from the static local planner to
address the avoidance problem as the performance of two additional curves for each lane
change, considering the new itinerary as a static scenario. This allows to generate faster
avoidance paths. A prediction of the motion of the obstacles is done thanks to a grid-based
discretization of the scene, where vehicles are first classified and after adding the security
distances the virtual road is computed by the dynamic algorithm. There, the dynamic
planning algorithm searches solutions minimizing the slope of the lane changes to generate
smoother avoiding paths.

1.5 Publications

Title: Optimized trajectory planning for Cybernetic Transportation Systems
Authors: F. Garrido, D. González, J. Pérez, V. Milanés, and F. Nashashibi
Conference: 9th IFAC Symposium on Intelligent Transportation Systems
Place: Leipzig, Germany Date: July, 2016

Title: Real-time planning for adjacent consecutive intersections
Authors: F. Garrido, D. González, J. Pérez, V. Milanés, and F. Nashashibi
Conference: 19th International IEEE Conference on Intelligent Transportation Systems (ITSC)
Place: Rio de Janeiro, Brazil Date: November, 2016

Title: Human-like Based Real-Time Path Planning for Dynamic Environments
Authors: F. Garrido, V. Milanés, J. Pérez, and F. Nashashibi
Journal: IEEE Intelligent Transportation Systems Magazine
Status: To be submitted
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Chapitre 2

État de l’art

Below is a French summary of the following chapter "State of the art".

L’état de l’art est divisé en trois blocs principaux: Tout d’abord, un examen important de
l’évolution du domaine des STI, allant de l’ADAS de production aux projets de recherche mondi-
aux les plus pertinents, est réalisé dans la section 2.1. Deuxièmement, l’architecture fonctionnelle
des véhicules automatisés proposée dans cette thèse est présentée dans la section 2.2. Là, les sept
étapes qui composent l’architecture sont introduites, en se concentrant sur l’étape de la planifica-
tion. De plus, les hypothèses et contraintes prises en compte pour le système de planification sont
résumées dans la section. La troisième partie de l’état de la technique est spécifiquement axée sur
les algorithmes de planification des trajectoires, qui sont la cible de cette thèse 2.3.

9
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Chapter 2

State of the art

During the last decades, road transport has remained as the primary way of moving both people
and goods in the world. For instance, it accounted for almost 50% of the total goods transport
and over 80% of the passenger transport in the European Union during 2015 (see Figure 2.1),
according to the last statistics [European Commission, 2017].

Figure 2.1 – Transport of goods and passengers in the EU in 2015 (from data at [European
Commission, 2017])

Improving road safety is one of the top priorities for governments and institutions worldwide.
Every day, 70 people die on European roads, and 370 people suffer serious injuries, which is
equivalent to a large airplane [European Commission, 2016b]. This makes 135 thousand people
seriously injured per year, which is equivalent to two large football stadiums. Therefore, as 26
thousand road fatalities have been registered each year since 2013, on average there are five severe
injuries for each road fatality. Besides, in the United States, motor vehicle crashes were the leading
cause of death for young people between 16 and 23 years old in 2015 [NHTSA National Center for
Statistics and Analysis, 2017b].

Organizations and institutions worldwide, such as the National Highway Traffic Safety Admin-
istration, and the European Commission, are putting their efforts to reduce deaths, injuries and
economic losses on roads. New frameworks for improving road safety have been created, including
legislation and recommendations. For instance, in 2015, an agreement for the deployment of inno-
vative technology that can save lives [European Commission, 2010], which entails that all the new
vehicles from March 2018 have to be fitted with the eCall system.

Although the inclusion of technology in both vehicles and infrastructure, as well as the legisla-

11
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tive plans, have reduced the number of fatalities this decade, the decrease rate has been stalled,
and it even grew slightly in 2015, showing that the tendency is not as good as expected, as shown
in Figure 2.2. Between 2001 and 2010, it was reduced by 43%, and between 2010 and 2015 by an-
other 17%. However, last year only a 17% of reduction compared to 2010 was registered, and from
2013 to 2014 the reduction was close to zero, increasing on 2015. It means that the efforts must
be stepped up to reach the strategic target of halving the number of road deaths by 2020. Thus,
this great interest in improving this means of transport for both governments and enterprises led
first to the birth of the Intelligent Transportation Systems (ITS). Then, this interest went through
the inclusion of the Advanced Driver Assistance Systems (ADAS) on the roads, and the further
appearance of the automated features on the driving task, i.e., the automated vehicles.

Figure 2.2 – EU Road fatalites and targets 2001-2020 (from data at [European Commission, 2016b])

The development of ADAS contributing to better and safer driving experience, providing a par-
tial level of automation, is demonstrated thanks to systems such as the Adaptive Cruise Control,
Lane Keeping Assist, or the Autonomous Emergency Braking system. Nevertheless, the greater
complexity of urban environments makes them still represent an unsolved challenge. Automated
vehicles have to interact with other vehicles and vulnerable road users, dealing with unexpected
situations to perform collision-free trajectories through the desired itinerary. Path planning sys-
tems have an essential role since they allow the generation of trajectories where passengers comfort
is a design parameter, avoiding the possible obstacles in the route in real-time, providing a smooth
trajectory to the vehicle controller searching the best tracking on the vehicles. Although mo-
tion planning problems have been largely studied in robotics during last decades [Latombe, 1991],
cars and robots present different constraints making necessary to consider different path planning
strategies to deal with them. Among these constraints, the following can be highlighted: struc-
tured against unstructured environments, non-holonomic against holonomic systems, and different
kinematics and dynamics of vehicles). Thus, a classification of the different path planning ap-
proaches in the literature has been done to consider the proper path generation algorithm on the
path planning system presented in this thesis.

The state of the art is divided into three main blocks: first, a significant review of the ITS
field evolution ranging from production ADAS up to most relevant worldwide research projects is
carried out in Section 2.1. Second, the functional architecture for the automated vehicles proposed
in this thesis is presented in Section 2.2. There, the seven stages that compose the architecture are
introduced, focusing the planning stage as the target of this research. In addition, the assumptions
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and constraints considered for the planning system are summarized in Section 3.1.1. The third
part of the state of the art is specifically focused on the path planning algorithms, which is the
target of this thesis.

2.1 Evolution of the ITS to the automated vehicle

2.1.1 Economic and social impact of automated driving

This subsection presents some remarkable figures and facts about the social and economic impact
of the ADAS and the automated vehicles, based on their current status of penetration on the
automotive market, as well as on short-term predictions.

The cumulative safety contribution of available ADAS technologies works out to $16,307 per
vehicle over a vehicle’s 20-year life [Mosquet et al., 2015]. If all new-car buyers made an investment
of $8,240, which is the price of these features, it would reduce by 30% the number of crashes and
by 9,900 the number of fatalities in the United States. Furthermore, the motor crashes cost the
USA $910B or 6% of the real gross domestic product each year. Current ADAS features could
save $251B annually. Currently, it would represent a 98% of safety return delivered over vehicle’s
lifetime, which could become a 439% with the future fully automated cars [Mosquet et al., 2015].

Despite their enormous potential to improve transportation systems, ADAS features have a
slow adoption curve, related to the economic cost for consumers. They are unwilling to pay as
much for ADAS features as they cost to make and market, as can be seen in Figure 2.3. For
example, most consumers appointed that they would pay on average $270 and as much $400 for
the Blind Spot Detection system (BSD) when the actual cost is $595 per vehicle.

Figure 2.3 – Cost to consumer and consumers willingness to pay for ADAS features [Mosquet et
al., 2015]

Figure 2.4 shows the evolution of the ADAS market up to 2016 and the expected evolution up
to the horizon of 2020. It would reach up to $60.14 billion by then, registering a Compound Annual
Growth Rate (CAGR) of 22.8% during the period 2014-2020. The growing trend for comfort and
safety while driving, along with favorable government initiatives has contributed to this growth.

Improving the transportation systems is not only relevant for safety, but also from the economic
point of view. Although the highest severity crashes decreased by 16.8% in the last decade in the
United States, the number of motor-powered vehicle fatal crashes have increased 7% from 2014
to 2015, with an increment of 4.1% of non-fatal injury crashes and a 3.7% increase in property-
damage-only crashes [NHTSA National Center for Statistics and Analysis, 2017b]. On average, 96
people died each day, and one person was killed every 15 minutes in motor vehicle accidents in the
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Figure 2.4 – Global ADAS market expectation [Woodside Capital Partners (WCP), 2016]

United States. Therefore, the estimated economic cost for the material losses that result from all
motor vehicle traffic crashes in the USA in 2010 was $242 billion (see Figure 2.5).

Figure 2.5 – Economic and comprehensive cost estimates in billions, 2010 [NHTSA National Center
for Statistics and Analysis, 2017b]

The National Highway Traffic Safety Administration (NHTSA) of the U.S Department of Trans-
portation (USDoT) pointed out that in 2015 there were more than 32 thousands of fatal motor
vehicle traffic crashes, resulting in more than 35 thousands of fatalities [NHTSA National Center
for Statistics and Analysis, 2017a]. Indeed, 45% of these accidents and 44% of the fatalities oc-
curred in urban areas. Although the rate of urban fatalities has declined by 18% from 2006 up
to 2015 (see Figure 2.6), these figures confirm that despite both industry and research have been
working on the integration of in-vehicles ADAS it has not been enough to improve transport safety.
Additionally, urban areas still suppose a big challenge regarding safety because of the interaction
between cars and other vulnerable road users (VRU) such as pedestrian, cyclists or other two-
wheeled motorized vehicles. Besides, cities would continue growing, reaching a percentage of 70%
of the people living in cities and only 30% in the countryside [Verband der Automobilindustrie e.
V. (VDA), 2015]. It will require a greater effort in the development of ITS solutions for these areas
to reduce the associated problems such as long traffic lines or too few parking spaces.
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Figure 2.6 – Economic and comprehensive cost estimates in billions, 2010 [NHTSA National Center
for Statistics and Analysis, 2017a]

Connected vehicles should lead to a reduction in the number of accidents on the roads, achieving
a 90% of reduction by deploying more applications in domains such as the road design, traffic
management, vehicle design, information and communications technologies, and human systems
integration [Barbaresso et al., 2015].

2.1.2 Historical overview of the ITS - research and industrial projects, demon-
strations and competitions

Intelligent Transportation Systems (ITS) emerged in the 1970s willing to facilitate the safe, clean,
efficient and comfortable mobility of people and goods, saving lives, time and money. ITS are
defined as systems that apply telecommunications, electronics and information technologies into
road transport to plan, design, operate and maintain such transport systems [Nowacki, 2012].

Figure 2.7 – History of first ITS developments (1970-1994) [Nowacki, 2012]
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Figure 2.7 shows the timeline of the main developments in Europe, United States, Australia,
and Japan, from their birth up to the acceptance of the ITS term. The first developments in
the ITS appeared in the 1960s in the United States with the Advanced Vehicle Control System
(AVCS) of the General Motors research group, which provided both automated lateral and lon-
gitudinal control. Besides, the MIT launched the METRAN (MEtropolitan TRANsportation)
project, whose aim was applying new control techniques to urban transportation. This led to the
further conceptualization of the ITS [Dingus et al., 1996], and the foundation of the CACS program
(Comprehensive Automobile Control System) in Japan in the 1970s, to test an interactive route
guidance system with an in-vehicle display unit in urban areas.

In the 1980s and beginning of the 1990s, the conditions for the developments of ITS were de-
termined. The technological development of mass memories made possible a cheaper information
process, which encouraged both manufacturers and the European Community to develop concur-
rently two projects in Europe: (i) the Eureka PROMETHEUS project (PROgraMme for a Euro-
pean Traffic of Highest Efficiency and Unprecedented Safety, 1987-1995) [Eureka, 1987-1995], to
improve the competitive strength of Europe by simulating developments in information technology,
telecommunications, robotics, and transport technology. (ii) And the DRIVE project (Dedicated
Road Infrastructure for Vehicle Safety in Europe, 1988-1991) [European Commission, 1988-1991],
a European Commission project which looked forward to a Europe in which drivers would be better
informed and in which intelligent vehicles would interact with their surroundings. The European
Road Transport Telematics Implementation Coordination Organization (ERTICO) was funded in
1991 for all European and international organizations to work together for the sustainability of
transport through the ITS.

At the same time, there were other projects to deploy the ITS worldwide. In Japan, the
RACS (Road/Automobile Communication System) project [Takada et al., 1989] in 1984 formed the
basis for the current car navigation system. In Australia, the project TRACS (Traffic Responsive
Adaptive Control System) appeared as a pioneering project to evolve transportation concerning
traffic management systems. In the United States, the Mobility 2000 group was the precursor of
the IVHS (Intelligent Vehicle Highway Systems) program, a Federal Advisory Committee for the
US Department of Transportation (USDoT).

The ITS America was established as a non-profit organization, and the term ITS was accepted
in 1994 [Auer et al., 2016]. Since then, the prior programs started to be implemented and telematics
was settled as a major topic of research, intending to develop new ITS applications and defining
its standards, as promoted in the IV EU Framework program.

In 1997, the California PATH group, in collaboration with General Motors, presented an eight
cars platoon on a highway scenario during the National Automated Highway Systems Consortium
(NAHSC) Proof of Technical Feasibility Demonstration held in San Diego [Shladover, 1997]. The
platoon operated with an inter-vehicle distance of 6.5 meters, accelerating, decelerating and per-
forming coordinate stops, at speeds as high as the full highway speed (around 105 km/h) to prove
the feasibility of improving the throughput of the transportation in highways.

Cybercars concept appeared in the 1990s [Parent and de La Fortelle, 2005]. These are fully
automated road vehicles designed for passengers or goods transport, operating on-demand and
with door-to-door capabilities for short trips at low speeds in urban areas. In 1997, they were
operated for the first time in long-term parking at the Amsterdam Schiphol airport. Since then,
several European projects (such as Cybercars and Cybercars-2) and different demonstrations have
been done in the 2000s and 2010s to introduce cybercars in the cities public transport (such as
the ones in La Rochelle or Antibes), considering a fleet of these cars operating together on platoon
configurations.
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Regarding international competitions, in 2004 the Defense Advanced Research Projects Agency
(DARPA) proposed a Grand Challenge in the Mojave Desert region in the USA. It was the first
long-distance competition for automated cars in the world, whose goal was to encourage the re-
search and development of technologies needed to create the first fully automated ground vehicles
capable of completing an off-road course. None of the vehicles participating in the first edition of
2004 finished the route. A second edition of the competition was held in 2005. Then, five vehicles
completed the route. In 2007, an urban version of the challenge was held in Victorville, California.
There, a mock urban scenario comprising four-way stop intersections, U-turns, and parking areas.
There, six of the 11 participating vehicles completed the 90 km course, where vehicles had to
respect all traffic regulations, dealing with other traffic and obstacles, and merging into traffic.

Since interoperability is a critical factor for a deeper development of ITS, new challenges
sought to boost the development of cooperative vehicles, able to operate together efficiently by
exchanging and interpreting data, providing information and services to other systems in real-
time, such as the state of the roads, allowing better traffic management. For instance, it would
allow an ambulance to arrive faster to the hospital by changing the timing of the traffic lights
after notifying the accident. The Grand Cooperative Driving Challenge [Lauer, 2011] took place
as an important competition to deepen the cooperative automated driving. It was held on a
highway closed to traffic between Helmond and Eindhoven (Holland), in 2011. There, the nine
European teams participating had to develop the longitudinal controller for a platoon configuration
of heterogeneous vehicles, where they were exchanging their positions, velocities, and accelerations
through wireless communication. There, research on new algorithms for sensor fusion, vehicle-
to-vehicle communication, and cooperative control was tested [Geiger et al., 2012]. A second
edition of the GCDC was held in 2016 as part of the European project i-GAME. On that occasion,
three challenging cooperative scenarios were the focus of the competition: automated platoon
merge, automated crossing and turn at an intersection, and automated space-making for emergency
vehicles in traffic jam [Englund et al., 2016].

In 2010, another remarkable demonstration was carried out by the Vislab group (University of
Parma), as part of the VIAC project. It consisted of an international journey with the PROUD
automated car from Parma to Shangai. The course combined rural, freeway and urban open roads,
where the vehicle was capable of dealing with the public traffic [Broggi et al., 2014].

There exist some other relevant projects that appeared between the 2000s and the 2010s such as
HAVEit, SPITS or DESERVE. HAVEit project (Highly Automated Vehicles for Intelligent Trans-
port) aimed to contribute to higher traffic safety and efficiency by designing a task repartition
scheme between the driver and the co-driving system, a failure tolerant vehicle architecture and
developing and validation the next generation of ADAS directed towards a higher level of automa-
tion. The SPITS project (Strategic Platform for Intelligent Traffic Systems) was a Dutch project
that aimed to improve mobility and safety, focusing on three main areas: traffic management
through cooperative driving and mobility, development of an upgradeable in-vehicle platform to
deploy the different in-vehicle systems, and a service download and management solution. DE-
SERVE (DEvelopment platform for Safe and Efficient dRIVE) European project (2012-2015) aimed
to establish a new embedded software and hardware design by using a more efficient development
process, overcoming challenges in reducing component costs and development time of future ADAS
functions [Kutila et al., 2014].

Finally, from the Strategic Plan for IVHS, six functional areas can be identified in the devel-
opment of the ITS [Sussman, 2008]:

• Advanced Traffic Management Systems (ATMS), to predict traffic congestion, offer alter-
native routing instructions improving the efficiency of the highway network, being able to
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control the traffic dynamically and performing an incident detection to reduce the road traffic.

• Advanced Traveler Information Systems (ATIS), to provide data both to road users at their
vehicles or their workplaces and to transit users, such as the location of incidents, weather
problems, road conditions, optimal routing and lane restrictions.

• Advanced Vehicle Control Systems (AVCS) -now Advanced Vehicle Safety Systems (AVSS)-,
to make the travel safer and more efficient, which comprises collision warning features and
emergency brake assist. In the longer term, those systems would imply a higher infrastructure
information treatment to improve the efficiency of the roads, concept known as Automated
Highway System (AHS).

• Commercial Vehicle Operations (CVO), improving the productivity of trucks, vans and taxi
fleets.

• Advanced Public Transport Systems (APTS), to enhance the accessibility of information to
users of public transport and the scheduling of public transport vehicles.

• Advanced Rural Transportation Systems (ARTS), to face the economic constraints in low-
density roads.

Nowadays, these functional areas of the ITS are covered by 31 user services, which surged as an
evolution of the National ITS Program Plan in 1995, providing a comprehensive planning reference
for ITS, illustrating how the goals of ITS could be addressed through the development of these
inter-related user services [Walton et al., 2000].

2.1.3 Advanced Driver Assistance Systems (ADAS)

Advanced Driver Assistance Systems (ADAS) are vehicle-based ITS designed to improve road
safety concerning crash avoidance and injury prevention (primary safety), reduction of injury
in the event of a crash (crash protection or secondary safety) and post-impact care assistance (to
reduce the consequences of injury) [European Commission, 2016a]. They were born as an evolution
of the first systems applied for the safety or convenience, such as the cruise control (1958), the
seatbelt reminders (the 1970s), anti-lock braking systems (1971) and electronic stability control
(1987) [Mosquet et al., 2015]. Nevertheless, as the European Commission pointed out, not all the
in-vehicle systems are used for safety purposes but are also intended to improve the comfort or to
manage the traffic.

ADAS can also be defined as electronic components installed in modern vehicles that present an
intelligent driving experience to the driver. Their main challenge is the green, safe and supportive
transportation, in particular to the accident-free mobility scenarios. Thus, the ADAS have three
fundamental functions: aid, warn and assist the driver [Mosquet et al., 2015]. These systems began
to be commercialized in the 2000s. So far, we can distinguish the following.

(i) First, as aiding features, we can find visual aids such as the night vision (2000), rear-
mounted cameras (2002), adaptive front headlights (2006) and surround view systems.

(ii) Second, as warning features, there exist systems to alert the driver to potential dangers
through sensory signals (auditory, light or vibrations). Some examples are the park assist
(2002), the forward collision warning (2000), the lane departure warning (2005), the blind-
spot and the rear cross-traffic detectors (2006), and the driving monitoring systems (2006)
such as the driver fatigue or drowsiness monitoring.
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Figure 2.8 – The holistic view of safety [European Commission, 2016a]

(iii) Third, as assisting features, the ones that directly act on the vehicle are found, i.e., on the
steering, accelerator or brakes to ensure the vehicle’s safe operation. They include forward
collision assist (2008), adaptive cruise control (2008), self-parking (2006), lane keep assist
(2010) and pedestrian avoidance (2014). Some other features as the intelligent speed adap-
tation are envisaged to enter the market in the coming years.

In recent years, the number of ADAS integrated into commercial vehicles has increased. Based
on the safety criteria described above (primary safety, secondary safety or post-impact assistance),
the following ADAS can be found:

• Crash/collision avoidance/warning systems (primary safety): These systems are
thought to prevent and avoid the accidents, studying the causality of the accidents reducing
them to the maximum level. These systems are placed at the beginning of the conflict part
in Figure 2.8, where the car is still able to avoid the collision.

– Autonomous emergency braking (AEB) systems (assisting feature): This emergency sys-
tem either prevents collisions with approaching road users detected or reduces their
severity in the event of a crash. The emergency brake assist applies the needed pres-
sure to the break if the driver has not applied enough in an emergency situation. The
study made by [Fildes et al., 2015] reflects that vehicles equipped with the AEB system
reduced a 38% the front to rear crashes.
Among the different systems and technologies which are under research and implemen-
tation we can highlight the following:

– Forward Collision Warning (FCW) (warning feature): It warns visually and acousti-
cally to the driver if the car is too close to the vehicle in front. Combining FCW
with AEB has shown in [Cicchino, 2016] that can reduce a 39% the rear-end crashes
without injuries, a 42% with direct injuries and a 44% with third-party injuries.

– Reverse Collision Warning (RCW) (warning feature): This system warns visually and
acoustically to the driver about the likelihood of collision with an object or person
behind the vehicle by the use of sensors in the rear bumper, intensifying the magnitude
when the distance between the vehicle’s rear and the object decreases.

– Adaptive Cruise Control (ACC) (assisting feature): It is the enhancement of the well-
known Cruise Control (CC). It automatically maintains a fixed distance with the vehicle
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in front, thanks to the use of radar or lidar sensors, adapting the vehicle speed according
to that of the vehicle in front.

– Attention assist (aiding/warning feature): These systems monitor the driving behavior,
such as the level of attention or drowsiness and the use of the steering wheel, alerting
in case he or her seems to be sleepy.

– Vision enhancement (aiding feature): Vision systems contribute to better detection of
objects or other road users when driving, especially during night-time. For instance:
the adaptive headlight system adjusts the headlight beam by moving it to optimize
its operation with different weather or visibility conditions, whereas the night-vision
cameras provide additional visual information to the driver.

– Lane support systems (warning/assisting feature): The Lane Departure Warning Sys-
tem (LDWS) is a device that warns the driver if the vehicle is veering off the lane or
the road, in case of having visibility of the road markings. On the other hand, the
Lane Keeping Assist System (LKAS) is an automatic system which keeps the vehicle
in its lane thanks to the lane marking recognition, except if some blinker is activated.
Although it is a newly implemented technology in certain commercial vehicles and it is
still early to measure its impact on safety, some figures can be highlighted: Nodine et
al. [Nodine et al., 2011] analyzed the impact of the LDWS built-in 16 passenger cars on
the safety, founding a 33% reduction in the rate of lane-change near crashes and a 19%
reduction in road-departure near-crashes.

– Blind spot monitor (aiding/warning feature): This system warns the driver about the
presence of other road users in the blind spots of the vehicle. They may provide an
additional warning if using the turn blinker when there is a vehicle next to the vehicle
in another lane. The warning signals can be visual (in the side-view mirrors or the
windshield frame), audible, vibrating or tactile.

– Intelligent Speed Adaptation (ISA) (warning/assisting feature): It constitutes a primary
safety system which warns the driver not to exceed the maximum speed limit of the road
or other desired speed thresholds below this limit at safety-critical points, establishing
the in-vehicle speed limit automatically according to that of the road. There are three
types of ISA systems: (i) Informative or advisory: Gives the driver feedback through a
visual or audio signal. (ii) Supportive or warning: increases the upward pressure on the
accelerator pedal. (iii) Intervening or mandatory: prevents any speeding by reducing
fuel injection or by requiring a reduction by the driver.
As stated in [Elvik, 2009], speed is a key factor for the road safety. An increase of 5%
on the mean speed leads to a 20% increase in fatal accidents. Decreasing the number of
accidents would be translated into some other benefits such as a reduction in the cost,
fuel saving, decrease in CO2 emissions and potential to reduce the travel time.

• Crash mitigation systems (primary safety): These are the active in-vehicle systems
which aim to mitigate the severity of the crash when it is imminent and cannot be avoided.
These systems are placed in the conflict part of Figure 2.8, just before the impact occurs.

– Advanced Braking Systems (assisting feature): The Anti-lock Braking Systems (ABS)
is a safety system conceived in the 1950s to prevent skidding where loss of steering and
control results from locked wheels when braking hard, providing additional steering in
an emergency situation. It contributes to reducing the collisions with vulnerable road
users and collisions involving turning vehicles. However, ABS seems not to contribute
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to reducing the rear-end collisions. This system has been enhanced with the Electronic
Stability Control (ESC) to control the front-to-rear brake bias electronically. It has
speed sensors and independent braking for each wheel, identifying a critical driving
situation and applying specific brake pressure on one or more wheels. Its implementation
in the industry has meant a reduction of 22% in the number of crashes within the vehicles
where this system is integrated. In addition, they had around 35% fewer accidents in
wet and snowy conditions respectively.

– Seat belt reminders (aiding feature): These devices constitute a warning system that
detects if any of the seatbelt are not in use, emitting both a visual and an increasing
acoustic signal until the belts are used. A combination of this system with airbags could
reduce the death risk substantially in a collision.

– Alcohol interlock systems (aiding feature): Alcohol interlocks are automatic control sys-
tems which are designed to prevent driving with excess alcohol by requiring the driver to
blow into an in-car breathalyzer before starting the ignition. Introducing those systems
would contribute to reducing the road deaths caused by an excess of alcohol in Europe,
which currently comprises a 25% of all road deaths.

• Crash protection systems (secondary safety): These systems have been developed
during the last 20 years to reduce the injury severity during the impact phase.

– Improvements in occupant restraint systems which better reflect the different human
tolerance thresholds of male and female occupants and different age groups. In this cat-
egory systems as the following can be mentioned: airbag, seatbelt, latch, head restraint
or child safety seats. Those systems limit the injuries by restraining the occupants as
quickly as possible after a collision. Their purpose is to slow the occupant over the
longest possible time and distribute the crash forces over the largest area possible.

– Multi-collision brake: These systems apply full braking and activate the hazard lights
following a collision that has deployed the airbag. It aims to mitigate a subsequent
collision with another vehicle or obstacle. If the driver considers that the risk is likely
to increase, the system can be defeated by pressing the accelerator.

• Post-crash response systems: These systems aim to alert and advance emergency medical
support in the event of a crash.

– eCall: This system sends an automatic message to the emergency services right after a
road crash including on it the accident location. This aims to reduce the time between
the collision and the medical services are deployed, reducing the consequences of the
accident, trying to prevent fatalities and disabilities. From April 2018, the new vehi-
cles in the European Union must integrate the 112-eCall in-vehicle system [European
Parliament and Council of the European Union, 2015].

– Electronic driving licenses: which have an embedded smart card containing personal
information about the driver, including which vehicles he or she is authorized to drive,
serving as an ignition key access, allowing the driver to start the car if there is a
correspondence between the card and the vehicle unit.

– In-vehicle crash data or event data recorders and journey data recorders: The first ones
are devices that collect data over a period before and after the crash and critical events,
to monitor or validate new safety technology, to establish human tolerance limits or
to record impact speeds. They are often based on the airbag control module and will
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cease to store information once the airbag has deployed. The second ones collect data
to provide information regarding driving behavior and low infringements. This data
can be used for studying the traffic management.

2.1.4 Levels of driving automation for on-road vehicles

SAE 
Level

Name Definition
Execution of 
steering and 
acceleration

Monitoring 
driving 

environment

Fallback 
performance 
of dynamic 
driving task

System 
capability 
(driving 
modes)

Driver monitors the environment

0
No 

automation
The full-time performance by the human driver of all aspects of the dynamic 
driving task, even when enhanced by warning or intervention systems

n/a

1
Driver 

assistance

The driving mode-specific execution by a driver assistance system of either 
steering or acceleration/deceleration using information about the driving 
environment and with the exception that the human driver performs all 
remaining aspects of the dynamic driving task – timeline: completed

Some driving 
modes

2
Partial 

automation

The driving mode-specific execution by one or more driver assistance systems
of both steering and acceleration/deceleration using information about the 
driving environment and with the expectation that the human driver perform 
all remaining aspects of the dynamic driving task – timeline: 2015-2017

Some driving 
modes

Automated vehicle monitors the environment

3
Conditional 
automation

The driving mode-specific performance by an
automated driving system of all aspects of the dynamic driving task with the 
expectation that the human driver will respond appropriately to a request to 
intervene – timeline: 2017-2025

Some driving 
modes

4
High 

automation

The driving mode-specific performance by an automated driving system of all
aspects of the dynamic driving task, even if a human driver does not respond 
appropriately to a request to intervene – timeline: 2025-2030

Some driving 
modes

5
Full 

automation

The full-time performance by an automated driving system of all aspects of the
dynamic driving task under all roadway and environmental conditions that 
can be managed by a human driver – timeline: 2030 onwards

All driving 
modes

Figure 2.9 – SAE Automation levels. Adapted from [SAE International, 2016]

SAE international published in 2014 a taxonomy for motor vehicle driving automation systems
[SAE International, 2014], represented in Figure 2.9. This classification is based on the performance
of the driving task, that can be done either by the driver, by the system or by both of them. This
standardization body provides a classification of six levels of driving automation with detailed
definitions for each of them. From no automation (level 0 or fully manual), where the driver
performs all the driving task; to full driving automation (fifth level or fully automated), where is
the vehicle which performs the driving task entirely.

This standardization took as a basis the two previous documents describing the levels of driv-
ing automation, namely: the US National Highway Traffic Safety Administration (NHTSA)’s
"Preliminary Statement of Policy Concerning Automated Vehicles", published in May 2013 [Na-
tional Highway Traffic Safety Administration (NHTSA), 2013], and the German Federal Highway
Research Institute’s (Bundesanstalt für Strassenwesen, a.k.a. BASt) "Legal consequences of an
increase in vehicle automation", published in July 2013 [Gasser et al., 2013]. After it was pub-
lished in January 2014, the International Organization of Motor Vehicle Manufacturers adopted
the BASt levels and aligned them with the SAE’s one, including the addition of the sixth level
representing the full driving automation. The NHTSA adopted the SAE standard in 2016, and
SAE published an update of the standardization [SAE International, 2016], which is the current
version.

According to this classification, the described ADAS belong to either the first (driver assistance)
or the second (partial automation) SAE levels. There, the human driver is in charge of monitoring
the environment, and the system executes either the steering or the accelerator/brake pedal (first
level), or both (second level).
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The term automated vehicles can be applied moving forward to the third SAE level, also called
conditional automation. There, is the system itself that monitors the driving environment, but
the driver must respond to the request to intervene, whereas at the fourth level is the system that
responds in any case. The fifth level corresponds to the fully automated car, where the system
controls all driving modes. Although we are still far away from reaching the maximum level of
automation, expected from 2025 [Mosquet et al., 2015], some features belonging to the partially
automated driving (second level) and conditional automation levels (third level) are already com-
mercial. They include the single-lane highway autopilot, introduced in 2014 by Tesla in their
Model S. This system takes control of the steering and the pedals during the lane keeping opera-
tion while adjusting the speed to the road limits thanks to the recognition of signals on the way.
Other features are being developed, such as the highway autopilot with lane change-assist (third
level) and the automated valet parking (fourth level). Some others are expected for a more distant
future (from 2025), as the urban autopilot.

A classification of the already established and the future ADAS can be done according to
their level of automation, considering the passenger cars, the freight cars, and the urban mobility
vehicles separately, as depicted in Figure 2.10.

(i) Systems for Automated Passenger Car: This kind of vehicles is the most extended, and
thus, the one where both research and industries have put more efforts to continue developing
automated driving. Among the systems developed, we can distinguish between the parking
use cases and the driving scenarios.

• Automated Parking Assistance:
(a) Parking Assist (second level): This system can accomplish the parking maneuver by

itself both in private or in public parking places, but always under the supervision
of the human driver, who may had to take control of the car to stop the maneuver
if needed. It is already present in some commercial vehicles, such as in most of the
BMW’s X models, Mercedes-Benz, Volvo, Cadillac, Chevrolet, Ford, Infiniti, Land
Rover, Lincoln and Buick cars.

(b) Parking Garage Pilot (fourth level): The highly automated parking system is cur-
rently in the development phase. It is designed to control the parking maneuver
to and from the parking place remotely (by smartphone or key) without human
supervision.
Mercedes has developed a variant of the parking assist that includes a 360◦camera
as well as the new remote parking pilot, both systems built in its E-Class. It intends
to make easier the tasks of finding, choosing and leaving the parking places, braking
if an obstacle is detected while doing the maneuver. Additionally, Mercedes-Benz
and Bosch have promised a joint pilot project to deploy the automated parking.
Their system claims to pick up the car from the drop-off area of the parking garage
by the on-demand application. Then, it moves off into the parking garage and
maneuvers into a free parking space, being able to park and unpark without any
further human intervention.

• Automated Driving Assistance:
(a) Traffic Jam Assist (second level): This system controls the vehicle longitudinally

and laterally to follow the traffic flow at low or medium speeds (<60 km/h). The
system can be seen as an extension of the ACC with Stop&Go functionality (i.e.,
no lane change support). Cars like the Volkswagen Passat and the Audi A4 have
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SAE
Automation

Level
Established Future

D
ri

v
er

 m
o

n
it

o
rs

 t
h

e 
en

v
ir

o
n

m
en

t

0:
No

automation

Function: warning or support by active safety systems

Lane Departure Warning System:

Blind-spot warning:

Forward collision warning:

ABS, ESC:

Emergency brake:

1:
Driver

assistance

Advanced Driver Assistance Systems (ADAS):

Adaptive Cruise Control:

Stop & Go:

Lane Keeping Assist:

Lane Change Assist:

Parking Assist:

CACC Truck platooning:

2:
Partial

automation

Traffic jam assist:

Parking assist:

Traffic jam assist:

Parking assist:

Automated truck platooning:

Urban bus assist:
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3:
Conditional
automation

Traffic Jam Chauffeur:

Highway Chauffeur:

Automated Urban bus chauffeur:

4:
High

automation

Highway autopilot:

Highly automated vehicles
in confined areas

Highly automated vehicles
on dedicated areas:

Highway pilot platooning:

Highly automated vehicles
on open roads

Automated PRT/Shuttles
on dedicated roads

Automated buses
on dedicated roads

Automated PRT/Shuttles
in Mixed Traffic

Automated Buses
in Mixed Traffic

5:
Full

automation

Fully automated passenger cars

Fully automated freight vehicles

Fully automated urban
Mobility vehicles

Figure 2.10 – Deployment of automated vehicles according to the vehicle type. Adapted from
[ERTRAC, 2017]
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deployed this system in their vehicles. There, the car follows the vehicle ahead and
automatically operate the steering, accelerator and brakes within the limits of the
system, keeping this way the vehicle within the limits of the lane.

(b) Traffic Jam Chauffeur (third level): Conditional automated driving in traffic jams
up to 60 km/h on motorways and motorway similar roads. Once the system is
activated in a traffic jam situation, it detects slow-driving vehicles in front. Then,
it takes control of both longitudinal and lateral commands, It does not require any
supervision from the human driver. It adapts its speed to that of the surrounding
traffic and the road speed limit. In order to make the system work, the speed at
the traffic jam has to be under 50-70 km/h.

(c) Highway Chauffeur (third level): It is an enhancement of the traffic jam assist. It
not only adapts the speed according to the other vehicles and road but also decides
to change the lane to either overtake or return to the slower lane or leaving the
highway. In the end, it consists of a lane keeping assist together with a lane change
assist.

(d) Urban and Suburban Pilot (fourth level): Highly Automated Driving up to limi-
tation speed, in urban and suburban areas. The system can be activated by the
driver on defined road segments, in all traffic conditions. The driver can at all time
override or switch off the system.

(e) Highway Autopilot including Highway Convoy (fourth level): Highly Automated
Driving up to 130 km/h on highways or similar road from the entrance to exit,
on all lanes, including overtaking and lane change. The driver must activate the
system, but does not have to monitor the system constantly.

• Automated private vehicles on public roads: The fully automated vehicle must be able
in the mid-term future to make an A-B itinerary without any human intervention. The
driver will be able at all time to retake the control of the vehicle.

(ii) Systems for Automated Freight Vehicles: Automation of commercial vehicles for long-
distance freight transport has a particular interest for manufacturers due to the lower tech-
nological gap that exists for deploying the systems since these vehicles operate in restricted
lanes, generally in highways.

• Highway applications:
Platooning is a kind of vehicles formation that will be deployed in scenarios where fuel
saving and improvement of safety and traffic flow are sought. From mono-fleet platoons
to multi-fleet platoons, from low-level platoons with driver involvement to high-level
platoons with driver involvement.
(a) CACC Platooning (first level): Cooperative ACC (CACC) will be applied in trucks

forming a partially automated truck platooning. There, the system makes the speed
control keeping a short but safe distance to the leading vehicle, while the drivers
remain responsible for all driving functions.

(b) Automated Truck Platooning (second level): It enables platooning in both dedi-
cated lanes and on open roads in mixed traffic. The vehicle should be able to keep
its position in the platoon with a safe distance between the vehicles. The leading
vehicle transmits speed through V2V communication to the following vehicle. It
should also take into consideration changes in the platoon, such as merging and
dissolving platoons and the interaction with other road users.
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(c) Highway Pilot Platooning (fourth level): Automated driving on highways from en-
trance to exit on all lanes, including overtaking and lane changes. The driver will
have to activate the system but is not in charge of monitoring the system.

From a single vehicle point of view, besides the traffic jam assist, the traffic jam chauffeur
and the highway chauffeur, the following systems are envisaged:
(d) Highly Automated Trucks on Open Roads (fourth level): Highly automated trucks

for automated operation on public roads in mixed traffic handling all typical sce-
narios without driver intervention on planned freight transport operation. Remote
fleet and transport management and monitoring are required.

(e) Fully automated freight vehicles (fifth level): The fully automated vehicle should
be able to handle all driving from point A to B, without any input from the driver
or passenger in all operating environments.

• Confined areas and dedicated roads:
(a) Highly automated freight vehicles in confined areas (fourth level): Automated

freight transport carriers in confined areas for potentially unmanned freight trans-
port.

(b) Highly automated freight vehicles in dedicated lanes/roads/areas (fourth level):
Automated freight transport carriers on dedicated and controlled lanes/roads/areas
and for potentially unmanned freight transport. A fuel reduction would be possible
by operating at night.

(c) Highly automated freight vehicles on open roads (fourth level): Automated freight
transport carriers on public roads and for unmanned freight transport.

(iii) Systems for Urban Mobility Vehicles: The current automated systems running on the
European urban environments require low speeds or dedicated infrastructure.

• Urban driving assist and chauffeur applications
(a) Parking Assistance (second level): Idem than for system for automated passenger

cars.
(b) Traffic Jam Assist (second level): Idem than for system for automated passenger

cars, but for low speeds up to 30 km/h.
(c) Urban Bus Assist (second level): Automated assist functions for city-buses to in-

crease productivity and safety for city bus operation such as bus stop maneuvering,
short distance following, and maneuvering on narrow lanes.

(d) Automated Bus Chauffeur (third level): Conditional automated driving in traffic
jams up to 60 km/h on highways. The system can be activated in case of a traffic
jam scenario exists. It detects slow-driving vehicles in front and then handles the
vehicle both longitudinally and laterally.

• Highly automated urban applications
(a) Automated Personal Rapid Transit (PRT)/Shuttles on dedicated roads (fourth

level): The automated PRT/Shuttle drives in designated lanes/dedicated infras-
tructure, with a maximum speed of 40 km/h.

(b) Automated Personal Rapid Transit (PRT)/Shuttles in mixed traffic (fourth level):
The automated PRT/Shuttle drives in mixed traffic at the same speed as other
traffic.
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(c) Automated buses on dedicated lanes (fourth level): The automated bus operates in
dedicated bus lanes together with non-automated buses in normal city bus speed.
Functions may include bus platoons, path following, and bus-stops automation.

(d) Automated buses in mixed traffic (fourth level): The automated bus operates in
mixed traffic on open roads together in normal city traffic speed. Functions may
include bus platoons, path following, and bus-stops automation.

• Fully automated urban vehicles: Fully automated vehicles that can bring passengers to
any destination as robotaxis, cybercars, automated shuttles and automated passenger
cars.

2.2 Functional architecture for automated vehicles

Having the fully-automated vehicle running in both urban and highway roads is the final goal
of both research and industry on the automotive field. Although we have not achieved this fifth
automation level so far, expected from 2025 [Mosquet et al., 2015], the number of ADAS that
are equipped in commercial vehicles has increased, leading to up to automation level three in
commercial vehicles and four in prototypes for research.

Based on the category of application of the automated vehicles described in the previous section,
the following already commercial systems can be highlighted.

2.2.1 Advanced automated vehicle systems

As automated passenger vehicles: Waymo presented a 360o video showing how the vehicle rec-
ognizes the environment and takes decisions based on it, operating as a taxi. Other companies
which envisage offering this service soon are Uber and Tesla. Uber’s cars are based on a hybrid
perception system combining multi-camera (up to 20) with LiDAR and GPS for localization. Tesla
became famous thanks to their highway autopilot which was commercialized in 2014 in their Model
S. This system takes control of the steering and the pedals during the lane keeping operation while
adjusting the speed to the road limits thanks to the recognition of signals on the way.

Figure 2.11 – Current automated cars: Waymo’s (left), Uber’s (right)

Lyft-Aptiv presented in the Consumer Electronic Show of 2018 (CES2018) their BMW semi-
automated car operating as a taxi service on Las Vegas. Audi, in cooperation with Nvidia, was a
pioneer in introducing the Artificial Intelligence in the automated vehicles. Some other features
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are being developed, such as the highway autopilot with lane change-assist (third level) and the
automated valet parking (fourth level). Some others are expected for a more distant future (from
2025), as the urban autopilot.

Figure 2.12 – Automated passenger vehicles: Lyft-Aptiv (left) and Audi-Nvidia’s AI (right)

Navya and EasyMile (France) are the leading companies in the deployment of robotaxis. Figure
2.13 shows the Navya’s AUTONOM CAB and the EasyMile’s EZ10. The first one (Navya’s) was
presented as the first 100% automated robotaxi. They envisage with this shuttle to complement
the mass transport systems for long distances and becoming the automated taxi for short distances.
It presents neither steering wheel nor pedals, and it can accommodate six passengers. It works on-
demand, being able to be requested through a mobile application. Navya claims that, unlike other
companies working such as Uber and Lyft, they do not add new vehicles to the roads making more
significant the congestion on cities and augmenting the pollution as well. In contrast, they promote
the car sharing, either as a private service (taxi) or as a public service (shuttle). The second one
(EasyMile) has shown the application of these platforms as a mobility service in airports, moving
people from the parking space to the terminal, presenting obstacle detection and emergency braking
capabilities. They also showed its versatility on a demonstration in Laussane University, where
the vehicle operates in three different modes (metro, bus, and on-demand), with a capacity of
12 passengers. It uses hybrid localization (laser, vision, and GPS) making unnecessary the lane
marking.

Figure 2.13 – Robotaxis: Navya’s AUTONOM CAB (left) and EasyMile’s EZ10 (right)

Cybercar platforms are urban vehicle prototypes designed to operate as a fully automated city
shuttle system. They have been largely used at research centers such as Inria and Mines ParisTech
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to develop the concept of Cybernetic Transportation Systems (CTS). European projects such as
Cybercars, Cybercars2, CityMobil, and CityMobil2 have targeted the research and development
of these vehicles.

Figure 2.14 – INRIA’s Cybercars: Cycab (left) and Cybus (right)

The project team RITS (Robotics and Intelligent Transportation Systems), previously IMARA,
is a multidisciplinary project at INRIA (from the French Institut National de Recherche en Infor-
matique et en Automatique), working on robotics for intelligent transportation systems towards
the design of advanced intelligent robotic systems for autonomous and sustainable mobility. They
cover a wide range of research topics within the ITS: multi-sensor signal processing and data fu-
sion, advanced perception for environment modeling and understanding, route planning, vehicle
control, wireless communications, large-scale traffic modeling and simulation, and the development
of automated vehicles. The goal of these studies is to improve transportation in terms of safety,
efficiency, comfort and minimize nuisances.

Together with Mines ParisTech, the RITS team is part of the La Route Automatisée consortium,
associated to the Drive4U International Chair, involving the École Polytechnique Fédérale de
Lausanne (EPFL), the University of Berkeley and the Shanghai Jiao Tong Univ. (SJTU) as
academic partners. It is also a partner of the euRobotics European network, as well as the french
MOV’EO cluster, being involved in numerous European projects on automated navigation, ADAS,
cooperative driving and traffic management.

Furthermore, the team is deeply involved in the development of the cybercars. These platforms,
also called Cybernetic Transportation Systems (CTS), are low-speed vehicles designed to operate
on urban roads, both for passengers and goods transport [Roldao et al., 2015]. A cooperation is
underway with Robosoft, Valeo, Akka, Renault (France), Yamaha (Japan) and the SwRI (USA)
to develop and test these vehicle prototypes. Inria is then one of the major test sites for CTS,
having a fleet of Cycabs and Cybuses in the Inria-Rocquencourt site. Together with a recently
robotised Citroën C1, they constitute the platforms of the team.

2.2.2 A reference automated vehicle architecture

The operation of all automated vehicle is based on a modular architecture such as the one proposed
in Figure 2.15. It constitutes the enhanced and up-to-date version of the architecture for cybercars
presented first in [González and Pérez, 2013] and then improved in [Roldao et al., 2015] with the
description of the technical specifications, as well as in [González et al., 2016b] with the inclusion
of a control sharing stage. This architecture is composed of seven main stages, which allows
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describing the whole behavior of the vehicle according to the functions that it accomplishes, namely
acquisition, perception, localization, communication, decision, control and actuation, finding some
auxiliary stages to manage the system as well. Each of these stages is described below.

Automated vehicle
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Gathers ego-vehicle info

Proprioceptive sensors

Encoders, compass, IMU

Exteroceptive sensors

LIDAR, RADAR, camera,

ultrasounds, GPS...
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Figure 2.15 – INRIA RITS vehicles architecture

Acquisition (in green in Figure 2.15): This stage is in charge of retrieving the information
from the environment with both the proprioceptive and the exteroceptive sensors. On the
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one hand, the proprioceptive sensors measure the internal values of the vehicle, such as
the encoders for the speed, compass for the orientation, GPS for the position and IMU for
altitude, velocity and position, among others. On the other hand, the exteroceptive sensors
obtain the information from the vehicle environment. Some examples are the LIDAR (Light
Detection and Ranging) and RADAR (Radio Detection and Ranging) lasers for obstacles
detection and classification, as well as for the vehicle localization, allowing to generate a
map of the surrounding environment where both ego-vehicle and obstacles are localized.
Other exteroceptive sensors are the ultrasonic sensors, for short-term obstacles detection,
used mostly in parking maneuvers as a warning system; and cameras, to perceive the signals,
the lane marking or the nearby vehicles and pedestrians in the scene.
Perception (in light-blue in Figure 2.15): It fuses the information extracted from the ac-
quisition and makes the environment sensing, detecting and classifying the objects on it.
Hence, it provides the state of the vehicle to the upcoming stages as well as the numerical
information about the surrounding, built from the data received.

Localization (in red in Figure 2.15): In this stage the vehicle position is obtained by one
of the following methods: either with Real Time Kinematic Differential Global Positioning
System (RTK-GPS) or a fusion of GPS data with the Inertial Measurement Unit (IMU)
data, or by the Simultaneous Localization and Mapping (SLAM) algorithm [Trehard et al.,
2014]. The last one creates a map of the surrounding fusing the data of the LIDAR lasers.

Communication (in orange in Figure 2.15): It allows the information exchange between
vehicles (V2V), and between vehicle and infrastructure (V2I), such as the position, speed,
and acceleration of the vehicles, or the road information such as the traffic state or the
presence of accidents.

Decision (in yellow in Figure 2.15): This stage is considered the core of the architecture. It
receives the information of the environment coming from the perception and communication
stages and decides which maneuver perform, generating the proper trajectory. Accordingly,
it is divided into three sub-stages. (i) Behavioral planning, in charge of the maneuver de-
cision (i.e., vehicle stop, overtaking, or yielding at intersections, among others). (ii) Global
planning, receiving the mission order, as going from an origin to a destination point, and
computing a first route consisting of way-points defining the itinerary. (iii) Local planning,
which generates a collision-free trajectory to reach the destination, smoothing the itinerary.

Control (in white in Figure 2.15): It receives the planned trajectory (i.e. the path to be
followed and the reference speed profile), and combines longitudinal and lateral control meth-
ods, for both steering wheel and throttle and brake pedals, to minimize errors in the tracking
of the path, ensuring the stability of the system and preserving the passenger comfort.

Actuation (in blue in Figure 2.15): This is the final stage of the architecture, which acts
directly through the vehicle pedals and steering wheel, applying the speed and steering
commands received from the control stage, respectively.

System management (in purple in Figure 2.15): There are some auxiliary modules to manage
the system (in purple), such as the HMI, the supervision sensors, the fault management, and
the databases, among others.

Based on the described architecture for automated vehicles (see Figure 2.15), trajectory plan-
ning composes the core of the decision-making stage. It is performed at different levels, namely
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global and local planning, which form the phases in which the planning stage is divided. Global
planning (also called route planning) is in the highest level of the planning phase. It is in charge
of generating a first route from the origin to the destination. Local planning is in the lowest level
of the planning phase. It considers the dynamism of the scene to generate a feasible continu-
ous trajectory, respecting the different constraints regarding vehicle kinematics, motion and road,
whereas providing a dynamic behavior, being able to avoid dynamic obstacles and re-compute the
trajectory if an unexpected situation occurs.

A review of the state of the art on path planning techniques is presented in Section 2.3.

2.3 Path Planning Techniques for Automated Vehicles
Motion planning algorithms can be classified according to two different criteria: the completeness
(exact or heuristic) and the scope (global or local) [Hwang and Ahuja, 1992]. Since exact algorithms
always find a solution or prove its non-existence, these algorithms are usually computationally
expensive, whereas heuristic algorithms are aimed to generate a solution in a short time. On the
one hand, the resolution completeness is related to discretization. When continuous quantities are
discretized, the associated algorithm is approximate, and its accuracy depends on the resolution of
the discretization. Thus, an algorithm is resolution complete if an algorithm is exact in the limit
as the discretization approaches a continuum.

There are several techniques for generating trajectories that can be used in the global and local
planning phases. The ones more used in the literature for automated ones are classified into the
following four categories: based on graph search, based on sampling, based on curves interpola-
tion, and based on numerical optimization. The most important algorithms of each category are
introduced below.

2.3.1 Graph search based algorithms

The main objective of path planning algorithms is to make the target (i.e., the robot or the vehicle)
arrive from an initial position to a destination point. The road space through which the vehicle
passes can be discretized employing grids or lattices, which represent the space as occupied or free,
depending on the obstacles found on the road and the road restrictions. Thus, the path can be
understood as a set of states through which the vehicle passes to arrive at the destination. Path
planning can be generated therefore using a graph search algorithm. These algorithms not always
find a solution, and the solution found might not be the optimal one [González et al., 2016b].

2.3.1.a Dijkstra

This algorithm finds single-source shortest paths on a weighted directed graph [LaValle, 2006].
There, all edge weights are non-negative [Bestaoui Sebbane, 2014]. It was developed by Edsger
Dijkstra in 1959 with the purpose of finding the shortest path through a set of interconnected
nodes. Since Dijkstra’s algorithm always chooses the lightest or closest vertex, it is considered a
greedy algorithm, which means that it does not provide optimal solutions, but computes shortest
paths. However, the graph needed to represent a road network can be formed by millions of edges,
making this algorithm impractical [Paden et al., 2016].

This algorithm has been implemented in the following automated vehicles: The Ben Franklin
Racing Team’s vehicle LittleBen, which was one of the six vehicles that finished the DARPA
Urban Challenge. Its motion planning algorithm computes an alternative sequence of way-points
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using Dijkstra to adapt the response to the traffic conditions [Bohren et al., 2008]. In addition, the
VictorTango’s team vehicle Odin, which finished in the third position the DARPA Urban Challenge,
used the algorithm to perform a parking maneuver, selecting the control points for navigating
toward the parking spot and reversing out of the spot [Bacha et al., 2008]. Li et al. [Li et al., 2009]
also implemented Dijkstra’s algorithm to calculate the shortest path between the source node and
target node. It has been applied to taxis GPS trajectories, reflecting a hierarchical cognition of
road network. They performed three programs which respectively are Dijkstra algorithm based on
original graph, hierarchical route planning algorithm based on a hierarchical graph by road class
and hierarchical route planning based on a hierarchical graph by taxi experience. They use the
Dijkstra’s algorithm on a flat graph of the road network.

Figure 2.16 – Dijkstra algorithm [LaValle, 2006]

2.3.1.b A-star (A*) based algorithms

It is described as an extension of the Dijkstra algorithm [Delling et al., 2009]. It improves the
Dijkstra’s running time in practice if a heuristic is available, by focusing the search towards the
goal [Bestaoui Sebbane, 2014]. It is used to compute minimum cost paths in graphs, searching
a graph efficiently for a chosen heuristic. Since it returns an optimal path in the heuristic is
optimistic, i.e., it always returns a value less than or equal to the cost of the shortest path from
the current node to the goal node. The output of the A* algorithm is a back pointer path, which
is a sequence of nodes starting from the goal and going back to the start.

This algorithm tries to reduce the total number of states explored by incorporating a heuristic
estimate of the cost to get to the goal from a given state. It works in the same way as Dijkstra’s
algorithm, but it guarantees to find optimal plans [LaValle, 2006]. Since it is a classical shortest
path search algorithm like Dijkstra, it results impractical if the graph representing the road network
is not small, which may contain for example millions of edges [Paden et al., 2016].

KIT AnnieWAY’s team used this algorithm on its automated system in the 2007 DARPA
Urban Challenge [Kammel et al., 2008]. Since the zones where the Urban Challenge took place
were parking lots and off-road areas, there a graph for path planning is not available. Therefore, an
implicit search graph in which all paths are feasible was defined. Employing this algorithm, they
expanded the search graph, accelerating the exploration of the search space by using a combination
of two cost functions for both kinematic constraints and for evaluating the graph free and occupied
space due to the obstacles encountered, which allows finding the least-cost path.
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Ziegler et al. [Ziegler and Werling, 2008] used the A* algorithm to find the least-cost path onboard
the AnnieWay team vehicle, which participated in the DARPA Urban Challenge. This algorithm
provided good results for static environments, and combined with Voronoi heuristics guided the
search towards the target even in unstructured environments.

There exist some variations of the A* algorithm, where the following can be highlighted:
Weighted A*: It is an extension of A* that trades-off running time and solution quality

[Bestaoui Sebbane, 2014]. The main difference with respect to A* is that it inflates the heuristic
by a factor greater or equal than 1. It makes the higher it is, the greedier the search and the sooner
a solution is found, offering a sub-optimality bound, i.e., is no costlier than factor times the cost
of the optimal solution.

Dynamic A*: Stentz, from CMU, introduced the Dynamic A* as a dynamic approach of
A* [Stentz, 1994]. The main difference with respect to the A* is that the arc cost parameters can
change during the execution of the algorithm. It was tested on sensor-equipped robots as the path
planning algorithm capable of work under unknown, partially known and changing environments,
in an efficient, optimal and complete manner.

Field D*: Ferguson and Stentz presented the Field D* and the Multi-resolution Field D*
algorithms [Ferguson and Stentz, 2006b], two interpolation-based algorithms that extend D* using
linear interpolation to produce low-cost paths that eliminate unnecessary turning efficiently. A
significant limitation of current planners arises from the use of uniform resolution grids to present
the environment. The use of this kind of grids is usually unfeasible due to the large amount of
memory and computation required to store and plan over these structures. Therefore, they propose
this multi-resolution approach to overcome these inconveniences.

θ*: Another extension of the A* is the θ* [Bestaoui Sebbane, 2014]. This algorithm does not
restrict the search to the neighboring nodes, but it allows to search through the nodes in the
line of sight with the expanded node. Daniel et al. presented two different approaches to this
algorithm [Daniel et al., 2014]: the Basic Theta* and the Angle-Propagation Theta*. Both are
intended to face the issue of the artificially constrained headings of the paths formed by grid edges
whose lengths can be longer than true shortest paths in the terrain. They proved the correctness
and completeness of these Theta* approaches and compared them to other any-angle path planning
algorithms, namely A* with post-smoothed paths (A* PS), A* on visibility graphs and Field D*
(FD*). It was tested for path planning in video games maps formed by considerably large grids
(100x100 and 500x500), showing that Theta* finds shorter paths than both A* and Field D* with
a runtime comparable to that of A* on grids.

Anytime repairing A* (ARA*) and Anytime D* (AD*): Likhachev et al. introduced the Any-
time Repairing A* algorithm [Likhachev et al., 2008], which is an efficient anytime heuristic search
that also runs a series of A* searches with inflated heuristics but satisfying the sub-optimality
bounds. They demonstrate the efficiency of the algorithm on a motion planning application in-
volving a simulated robotic arm with several degrees of freedom. Anytime planning algorithms
are useful when the environment is known in advance, but they are not appropriate when the
environment is barely known or dynamic. Additionally, they present the Anytime D* (AD*) algo-
rithm, a search algorithm that is both anytime and incremental. It enhances the ARA* algorithm,
which stops the execution when it finds a solution even if more planning time is available. On the
contrary, the AD* algorithm re-uses its old search efforts while concurrently improving its previous
solution. This algorithm (AD*) was also used by the Boss vehicle of the Tartan Racing team of the
Carnegie Mellon University, the winners of the DARPA Urban Challenge [Likhachev et al., 2008].
It quickly generates an initial, suboptimal plan for the vehicle and then improves the quality of
this solution while deliberation time allows to incrementally repair its solutions when changes in
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the environment occur. The algorithm is able to efficiently repair its existing solution to account
for the new information.

Hybrid A*: An evolution of the A* algorithm, called Hybrid A*, was implemented by the
Stanford University on its Junior vehicle in the DARPA Urban Challenge [Montemerlo et al., 2008].
There, the vehicle state is represented in a four-dimensional discrete grid, where the dimensions
correspond to the (x,y) vehicle’s position, its direction and the direction of motion. Hybrid A*
is more convenient than the non-hybrid A* for vehicles running on unstructured environments,
since the A* states are discrete and the environment is continuous and therefore big enough to be
represented with discrete states. There, two cost functions are used to guide the search process.
First one considers the kinematic constraints of the vehicle, and the second one is derived from the
Voronoi’s graph of the vehicle’s free space and thus incorporates knowledge of shape and position
of the obstacles.

Montemerlo et al. compared A* (left) to Field D* (center) and Hybrid A* (right) , as depicted
in Figure 2.17. A* associates cost with centers of cells and visits only states that correspond to
grid-cell centers. Meanwhile, Field D* associates cost with cell corners allowing arbitrary linear
paths from cell to cell, and Hybrid A* associates a continuous state with each cell, where the
score of the cell is the cost of its associated continuous state. As can be deduced from the figure,
the paths generated by A* and Field D* cannot be easily tracked by vehicles, whereas the one
generated by Hybrid A* it is thanks to associating continuous coordinates with each grid cell.

Figure 2.17 – Comparison of A*, D* and Hybrid A* search algorithms [Montemerlo et al., 2008]

2.3.1.c State lattices

This algorithm searches the discretization of the vehicle’s states space as a direct graph to find a
motion plan that satisfies the constraints [Pivtoraiko and Kelly, 2008]. Therefore, a state lattice
can be defined as a discretization of the configuration space into a set of states, representing
configurations, and connections between these states, where every connection represents a feasible
path [Likhachev and Ferguson, 2008].

A state lattice is built from a discretization or sampling strategy to represent the states in the
lattice, and the action space or control set for the inter-state connections, which has to be dense
enough that every feasible path through the lattice can be constructed by combining sequences of
these actions. There, the state space is formed by its position, orientation, and maximum forward
and reverse velocity. Lattices provide a method for motion planning problems to be formulated
as graph searches. The feasibility requirement of lattice connections guarantees that any solutions
found using a lattice will also be feasible. Thus, they are suitable for being used for motion
planning with non-holonomic vehicles.
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The state lattice is represented as a cyclic directed graph, where nodes are discrete values of
state [Pivtoraiko and Kelly, 2008]. Finding a motion plan that satisfies differential constraints is
reduced to finding a path (a sequence of nodes and edges) in the state lattices graph. Each edge
can be assigned a cost. Since the state lattice is a directed graph, any standard systematic search
algorithm can be utilized to find the shortest path in it, which would correspond to a minimum-
cost feasible motion that drives the system from the initial to the goal state. Figure 2.18 shows a
state lattice formed by a repeated and regular pattern of vertices and edges.

Figure 2.18 – State Lattices [Pivtoraiko and Kelly, 2008]

Howard et al. from CMU presented an algorithm for wheeled mobile robot trajectory generation
in rough terrains for space stations that achieves a high degree of generality and efficiency [Howard
and Kelly, 2007]. There, numerical optimization methods are required to solve the nonlinear
equations of motion for such arbitrary terrain. They applied state lattices for creating an inherently
feasible search space for global motion planning, connecting each state with feasible motions that
serve as edges to make the states transitions, where the edges are adapted to the shape of the
terrain.

The lattice is assumed to contain all feasible paths up to a given resolution, allowing resolution
complete planning queries [Pivtoraiko and Kelly, 2005]. Like a grid, it converts the problem of
planning into a continuous space in the decision making in a discretized space, but unlike a grid, the
connections represent feasible paths, where mobility constraints have to be considered. There, each
node has a four-dimensional space, comprising position, heading and curvature. For constructing
the state lattice, they use an inverse path generation method to find paths between any node in
the grid and the arbitrarily chosen origin. The algorithm was tested on the Reeds-Shepp car.

Later, Pitvoraiko et al. presented a differentially constrained mobile robot motion planning
in arbitrary cost fields [Pivtoraiko et al., 2009]. There, the state lattice used to discretize the
search space permits fast full configuration space cost evaluation and collision detection to avoid
the arbitrary obstacles. Since the state lattice is a directed graph, any systematic graph search
algorithm is appropriate for finding a path on it. They use them together with A* and D*
search algorithms because they return optimal paths for the desired cost function, even while the
topology of the space is dynamically changing. They validated the approach on simulation test
and prototype rovers, showing that state lattices are resolution complete, optimal and smooth,
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satisfying the differential constraints and the efficiency. Although they are not as fast as grid
planners in the presence of obstacles, they prevent problems related to the non-feasibility of the
paths produced with grid planners.

Ziegler and Stiller presented a motion planner algorithm that combines spatio-temporal state
lattices with quintic splines for generating continuous and smooth paths on dynamic on-road
driving scenarios, considering the motion of the obstacles [Ziegler and Stiller, 2009]. In conventional
state lattices, the configuration space is a graph where the nodes represent the samples, and the
geometric connection between nodes is done with the local planning algorithm. They have been
used either to generate high-speed trajectories in real-time [Ziegler and Stiller, 2009] or to calculate
highly optimized paths between destinations [Andreasson et al., 2015].

Unlike the conventional lattices, the spatio-temporal state lattices allow the prediction of the
obstacles motion by combining both configuration space and time. Afterward, a sampling phase
is applied on the discrete subset at equidistant positions, using quintic polynomials to represent
edges, which leads to second order continuous paths and boundary conditions for position, velocity,
acceleration and time. Besides, using spatio-temporal state lattices does not require using shortest
path algorithms such as Dijkstra or A* to maintain the visited vertices in a partially ordered data
structure.

In McNaughton et al. a motion planner using spatio-temporal state lattices for highway driving
is presented [McNaughton et al., 2011]. Unlike the work of Ziegler and Stiller in [Ziegler and Stiller,
2009], they use a more efficient method of augmenting the state lattice with time and velocity
dimensions, using realistic vehicle kinematics to construct the actions, reducing the modeling error
inherent to hierarchically decomposed planners.

Likhachev and Ferguson presented an algorithm using anytime incremental search on a multi-
resolution lattice state space for generating dynamically-feasible maneuvers with automated ve-
hicles at high speeds, testing the approach on the Tartan Racing team’s vehicle [Likhachev and
Ferguson, 2008]. The multi-resolution lattice allows planning long complex maneuvers over lattices,
which can be expensive concerning both computation and memory using normal lattices. It con-
sists of using a high-resolution action space close to the vicinity of the vehicle and a low-resolution
action space elsewhere.

A global planning approach using multi-resolution state lattice search space has been used in
[Likhachev and Ferguson, 2008] to reduce the complexity of the global search, which is a drawback
of the purely global-planning based approaches. Indeed, an efficient anytime incremental search
is used to quickly generate bounded suboptimal solutions, solving one of the issues of the purely
based local planning approaches. Since planning complex maneuvers over lattices can be expensive
regarding computation and memory, it is not convenient to explore the whole spectrum of paths
between vehicle and goal configurations. On the contrary, a combination of a high-resolution action
space in the vicinity of the vehicle and a low-resolution action space elsewhere can be applied.

They implemented the approach on an automated passenger vehicle, generating dynamically-
feasible maneuvers at high speeds on the Tartan Racing team’s vehicle, which drove over 3000
kilometers in urban environments, including the DARPA Urban Challenge. The multi-resolution
state lattice planner was used for planning through parking lots and into parking spots, as well as
for geometric road following in off-road areas, and in error recovery scenarios. There, the vehicle ran
at speeds around 25 km/h, performing complex maneuvers avoiding static and dynamic obstacles.
The multi-resolution lattice planner searches backward out from the global pose and generates a
path consisting of a sequence of feasible high-fidelity maneuvers that are collision-free considering
the static obstacles observed in the environment. The lattice used in this application does not
explicitly represent the curvature. They showed the performance of the system on a parking lot
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when planning between two parking spots, using the AD* algorithm to compute the cost of the
path. The algorithm is three times faster than without multi-resolution lattices. The algorithm
was validated on multiple scenarios, such as obstacle-laden parking lots, and narrow and highly-
constrained parking lots.

Table 2.1 – Comparison of graph search-based techniques for path planning

Technique Advantages Disadvantages

Dijkstra’s algorithm

Finds the shortest path on
weighted direct graphs. Suitable
for global planning in structured
and unstructured environments
Adaptable to dynamic environ-
ments

Impractical for large graphs rep-
resenting the road network. The
generated paths are neither opti-
mal nor continuous. The search is
not heuristic.

A* family

Extension of Dijkstra’s algorithm.
Heuristic search, returning an
optimal path. Kinematic and
dynamic constraints considered
through cost functions for dy-
namic environments. Computa-
tional time and memory use are
lower.

Impractical for large graphs rep-
resenting the road network. The
generated path is not continuous.
Shortest and lower cost path lie on
the heuristic applied

State lattices

Suitable for dynamic on-road sce-
narios. Allow space-time planning,
including time and velocity dimen-
sions. Lane adapted workspace pa-
rameterization. Suitable for global
planning. Incremental search al-
gorithm: suitable for unknown
or partially known environments.
Unlike the graph-based algorithms,
they consider the feasibility of the
path

Problems with curvature continu-
ity. Motion could be restricted.
Slower than grid planners in the
presence of obstacles. Resolution
completeness translated into com-
putation cost. The planning preci-
sion depends directly on the lattice
resolution.

2.3.2 Sampling-based algorithms

Motion planning methods based on sampling the configuration space can be classified in two
sub-types according to the way of sampling: random sampling-based methods and deterministic
sampling-based methods [Ziegler and Stiller, 2009].

State lattices can be considered as deterministic sampling-based algorithms, where each sample
becomes a vertex in a graph, and edges connect each vertex to a finite number of neighbors with
an associated cost, forming a geometric path that is used by a graph searching method to search
the shortest path.

Since deterministic sampling-based methods have already been presented in Section 2.3.1.c, this
subsection focuses on the probabilistic sampling-based methods such as Probabilistic RoadMaps
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(PRM), Artificial Potential Fields (APFs) and the random sampling-based algorithms, specifically
in the RRT family algorithms.

2.3.2.a Probabilistic RoadMaps (PRM)

Probabilistic roadmaps (PRM) methods emerged in the late 1990s as effective methods to solve
complex motion planning problems [Saha, 2006]. This algorithm finds a path from a starting
configuration to a goal configuration while avoiding obstacles in static spaces.

It consists of two phases: a construction and a query phase [Kavraki et al., 1996]. First, a
learning phase where a probabilistic roadmap is built and stored as a graph whose nodes corre-
spond to collision-free configurations and whose edges correspond to feasible paths between these
configurations. Second, a query phase where the start and goal configurations are connected to
the roadmap (graph), and then a path is sought that joins these two nodes by applying a graph
search algorithm such the Dijkstra’s shortest path.

PRM methods are capable of computing the motion both for single-robot as for multiple-
robot systems operating in complex geometric scenarios and considering motion constraints such
as collision avoidance, stability, visibility, and contact constraints [Saha, 2006].

PRM planning approaches work by constructing a simplified sample-based approximate repre-
sentation of the free space, called a probabilistic roadmap. This roadmap is a graph whose nodes
are configurations sampled from the free space according to some suitable probability measure,
reflecting the uncertainty on the actual shape of the free space. Meanwhile, an edge or local path
connects a pair of nodes in the roadmap. Once the roadmap is constructed, a path connecting
origin and destination nodes is extracted using standard graph-searching techniques. The presence
of narrow passages in the free space makes this approach to be computationally expensive.

The planning steps of the PRM method are depicted in Figure 2.19. There, the planning is
done in the vehicle’s free space. The nodes represent the different configurations, and the edges
represent the collision-free links to the k-nearest neighbors. Finally, the start (s) and goal (g)
configurations are added to the PRM, which is searched for a path from s to g, represented by the
red polyline.

Robot's c-space forbidden space free space

Figure 2.19 – PRM planning. Figure adapted from [Saha, 2006]

The described method has also been applied to non-holonomic car-like robots. Although the
PRM algorithm works well on static environments, however, for planning applications involving
dynamic and rapidly changing environments is not convenient because building a roadmap a priori
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may not be feasible [Fiore, 2008]. On the contrary, the Rapid Exploring Random Tree (RRT)
sampling-based motion-planning approach targets this weakness, as will be shown in Subsection
2.3.2.c. Thus, techniques as the RRT are more convenient for being used with non-holonomic
systems such as the automated vehicles.

For addressing the limitations of the sampling-based path planning algorithms available in the
literature, Karaman and Frazzoli proposed a new algorithm called Optimal Probabilistic RoadMaps
(PRM*) [Karaman and Frazzoli, 2011]. It is a batch variable-radius PRM, in which the radius
is scaled with the number of samples ensuring both asymptotic optimality and computational
efficiency. This algorithm has shown a performance with a configuration space of dimensions up
to five.

2.3.2.b Artificial potential fields

Potential fields represent a heuristic approach to motion planning where the configuration space
is discretized into a fine regular grid of configurations to search a free path through it. There, the
robot represented as a point in the configuration space can be seen as a particle moving under the
influence of an attractive artificial potential produced by the goal configuration and a repulsive one
produced by each obstacle [Latombe, 1991]. Although these methods can be very efficient, their
main drawback is linked to the fact that they are descent optimization methods, and therefore
they can get trapped into local minima of the potential function other than the goal configuration.

Unlike roadmap and cell decomposition methods, which are considered global methods, poten-
tial field methods can be used as global [Warren, 1989] or as local methods [Wolf and Burdick,
2008], since at each step they compute the potential gradient to make the transition between
configuration states.

Figure 2.20 – Artificial potential fields applied into a stay-in-lane scenario [Wolf and Burdick, 2008]
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Although this method has been mostly applied in robotics, it has also been applied in the
vehicles automation field on simulation to assist an automated vehicle in a multi-lane populated
highway, concretely for lane-keeping, road-staying, speed preference, vehicle avoidance and passing
scenarios. There, potentials for both lane and road are used to keep the vehicle on the road,
preferably in the center of the lane. Figure 2.20 shows an application of APF into a scenario where
the vehicle must stay in the lane. It can be used not only for navigation, but it can also be applied
for decision making purposes, as well as an input in driver assistance devices.

APF have also been applied to vehicle control, as in [Gerdes and Rossetter, 1999], where various
assistance systems can be integrated through superposition of individual potential and dampling
functions.

2.3.2.c Rapid Exploring Random Tree (RRT) and Enhanced RRT (RRT*)

Rapid Exploring Random Tree (RRT) is a random sampling based method which builds an incre-
mental tree for searching in large spaces. LaValle et al. introduced the RRTs as randomized data
structures designed for a broad class of path planning problems [Lavalle, 1998].

Unlike the previous randomized techniques (potential fields and probabilistic roadmaps), this
algorithm was specifically designed to handle nonholonomic constraints, including dynamics, and
high degrees of freedom (being tested up to 12 degrees of freedom). Besides, it has also been
successfully applied to holonomic and kinodynamic planning problems [LaValle and Kuffner, 1999].

Since the probabilistic roadmap technique might require thousands of connections among con-
figuration states fo find a solution, it results impractical for nonholonomic and kinodynamic prob-
lems that arise in robotic and automatic fields. In contrast, thanks to RRTs do not require any
connections to be made between pairs of configurations (or states), this method is suitable for
nonholonomic constraints.

RRT, like most of the current motion planning algorithms in the state of the art, prioritize
providing a quick solution instead of an optimal one, due to the real-time constraint dominating the
navigation applications. On the other hand, old motion planning algorithms tried had difficulties
to finish the execution, using all the computation time to find a better solution, for different criteria
such as time, path length, and fuel consumption. The shortcoming of these algorithms is that they
cannot ensure to converge to optimal trajectories.

Karaman and Frazzoli presented an enhanced version of the RRT algorithm, called RRT*
[Karaman and Frazzoli, 2010], which targets the weakness of RRT, consisting of the non-existence
of theoretical bounds on the quality of the solution obtained by these algorithms, i.e., the optimality
of the solution cannot be ensured. This algorithm is a tree version of the Rapidly-exploring
Random Graph (RRG), which preserves the asymptotic optimality of RRG while maintaining a
tree structure like RRT, which allows to deal with differential constraints or cope with modeling
errors presented in the motion planning problems. It essentially rewires the tree as it discovers
new lower-cost paths reaching the nodes that are already in the tree. Nevertheless, the asymptotic
computational complexity for the RRT* algorithm remains the same as that of the RRTs and the
RRG. These strengths of RRT* compared to RRT can be shown in [Karaman and Frazzoli, 2010],
presenting an environment cluttered with static obstacles on simulation, where the cost of the
RRT* solution is lower when augmenting the number of iterations.

An anytime algorithm based on the RRT* was subsequently presented. This anytime algo-
rithm finds an initial feasible solution quickly, but unlike RRT, it almost surely converges to an
optimal solution [Karaman et al., 2011]. Additionally, two extensions of the RRT* were intro-
duced: committed trajectories and branch-and-bound tree adaptation, allowing the algorithm to
make more efficient use of computation time online, resulting in an anytime algorithm for real-
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time implementation. They evaluated the method using a series of Monte Carlo runs, comparing
it to the RRT method in simulation and on an outdoor robot. Figure 2.21 depicts the resulting
paths from the simulation tests with both RRT (on the left) and RRT* (on the right) algorithms
under an environment consisting of a bounded region with two polygonal obstacles. The vehicle
dynamics correspond to those of a rear wheel-steered nonholonomic ground vehicle. There, it is
shown that the RRT frequently produces trajectories that are unnecessarily long, whereas RRT*
provides shorter paths to the goal thanks to the correct identification of the route between the two
obstacles.

Figure 2.21 – RRT and RRT* algorithms performance [Karaman et al., 2011]

The committed trajectory extension consists of an initial planning phase and an iterative
planning phase. In the 1st one, the RRT* runs until the robot must start moving towards its goal.
In the 2nd one, the robot starts to execute the motion plan generated by the RRT* algorithm until a
given commit time, deleting each of its branches and declaring the end of the committed trajectory
(initial path) as the new root. Meanwhile, the RRT* continues to improve the remaining part of
the trajectory within the new and communicated tree of trajectories. Once the robot reaches the
end of the committed trajectory, the iterative phase is re-executed until the robot reaches the goal
region, using the initial portion of what is currently the best path in the RRT* tree to define
a new committed trajectory. In addition to considering a committed trajectory, they employ a
branch-and-bound strategy to build the tree more efficiently. It removes periodically from the tree
the set of vertices whose cost to get to them plus the lower-bound cost to go from the node to the
goal region is higher than the upper-bound cost trajectory that reaches the goal node.

An extension of the RRT algorithm named closed-loop RRT (CL-RRT) was implemented on
the MIT’s vehicle finishing in fourth place the DARPA Urban Challenge [Kuwata et al., 2009],
where the vehicle completed a 60 mile (around 96.5 km) simulated military supply mission, while
safely interacting with other automated and human-driven vehicles. This algorithm presented
there extends the RRT by making use of a low-level controller and planning over the closed-loop
dynamics. It enables the online use of RRTs on robotic vehicles with complex, unstable dynamics
and significant drift, while preserving safety. As stated in [Kuwata et al., 2008], the use of RRTs had
never been used in online planning systems for robotic vehicles. They implemented the algorithm
on the MIT’s Landrover LR3 used for the DARPA Urban Challenge, where the algorithm was
validated on different scenarios such as on an obstacles field, a parking-lot area, and a U-turn.

A threat-aware approach using the CL-RRT method for path planning was presented in [Aoude
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et al., 2010]. There, they put the focus on negotiating the traffic intersections, where several vehi-
cles were involved in collisions or near-collisions, wherein the motion planner evaluates the risk of
potential trajectories considering the obstacle uncertainty. This threat assessment module was val-
idated through simulation and experiments performed in the MIT Real-time indoor Autonomous
Vehicle test ENvironemnt (RAVEN), a testbed equipped with motion-capture cameras to provide
high-fidelity vehicle state data, to identify and avoid an errant human-driver vehicle at intersec-
tions.

Another RRT based implementation was implemented by the Korea University of Technology
and Education for high-speed on off-road scenarios and with capabilities to avoid obstacles of
different patterns [Ryu et al., 2013]. It was implemented on the Pharos automated vehicle and
tested during the Hyundai-Kia motors Autonomous Vehicle Competition. The RRT algorithm was
modified to increase the computation efficiency of the planner to provide a faster response to the
environment changes, allowing to run at higher speeds.

Robust RRT was presented in [Fiore, 2008] as another enhancement of the RRT algorithm,
designed for large robotic vehicles and uncertain, dynamic environments. One fundamental dif-
ference with the original RRT algorithm is that the Robust RRT samples the space of inputs to
the vehicle controller, as opposed to sampling the space of inputs to the vehicle directly. This
algorithm was employed by the MIT’s team on the DARPA Urban Challenge, being validated on
the six different scenarios conforming the event, i.e., a full parking lot, blocked road, rectangular
track with obstacles, dense obstacle field, narrow passage and dead ends.

The RRT* algorithm was implemented in [hwan Jeon et al., 2013] for the half-car dynamical
model to enable automated high-speed driving. They provide a fast local steering algorithm for
the half-car dynamic model separating geometric path planning step from optimal time parame-
terization step, providing a significant advantage, allowing to make the collision checking after the
geometric path planning step.

RRT has also been used for planning the motion of multiple vehicles, like in [Kala and Warwick,
2011]. There, different traffic scenarios were simulated (such as curved roads and straight roads
leading to avoidance maneuvers), and the generated trajectories are smoothed with spline curves,
finding the maximum feasible speed associated to the paths. Unlike [Kuwata et al., 2008], they
separated the planning and control modules, where RRT is only in charge of the planning task,
making the planner more adaptive to any vehicles whose dynamics are initially unknown.

An extension of RRT has also been tested in car-like robots, more precisely in the INRIA
cybercars, under simulation experiments [Fulgenzi et al., 2009]. They present a path planning
algorithm where the probability of both obstacles future trajectory and collision are considered for
the motion of the cycab on a simulated environment among multiple dynamic obstacles.

An anytime algorithm for planning paths through high-dimensional, non-uniform cost search
spaces was presented in [Ferguson and Stentz, 2006a]. It generates a series of RRTs where each
tree reuses information from previous trees to improve its growth and the quality of the resulting
path. The approach was tested on both single-robot and multi-robot planning domains.

A heuristically-guided implementation of the RRT (hRRT) was presented in [Urmson and
Simmons, 2003]. There, the search is guided by a heuristic quality function in order to improve
the path produced through the RRT like search. It was tested on simulation, showing a lower
computational cost than the classical RRT in its performance with obstacles.

An RRT based global planner called RTR (rotate-translate-rotate) has been used in [Nagy
et al., 2015] to generate a path consisting of straight lines and circular arcs primitives, which
is then transmitted to the C*CS steering method, which improves the path by generating lower
bounded raddi arcs that are feasible to be tracked not only by a differential robot but also by a
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non-holonomic car-like robot.
The uncertainty of both the environment and the initial and final configuration spaces are

tackled in [Panchea et al., 2017], where the tBoxRRT* algorithm based on RRT* is presented as
a robust planner to guarantee safe paths while avoiding static obstacles.

Table 2.2 – Comparison of sampling-based techniques for path planning

Technique Advantages Disadvantages

Probabilistic
RoadMaps

Roadmap stored as a graph, where
a search algorithm is applied.
Efficient on static environments.
Works for avoiding static obstacles.

Not convenient for dynamic and
changing spaces. Impractical for
nonholonomic and kinodynamic
problems. Computationally ex-
pensive in road-like areas. De-
pends on graph-search based algo-
rithms.

Artificial Potential
Fields

Relatively fast and effective for
generating safe paths around ob-
stacles in dynamic environments.
Suitable for both global and lo-
cal planning. Suitable for nonholo-
nomic vehicles

The workspace must be known in
advance. Trapped into local min-
ima since they are descent opti-
mization methods.

RRT family

Handle nonholonomic and dy-
namic constraints. Deals with
differential constraints and copes
with modeling errors. Real-time
operation, providing a quick solu-
tion. Probabilistically complete.
Works on dynamic and changing
scenarios. Works on high-speed
driving conditions. Even on off-
road scenarios.

Non-existence of theoretical
bounds on the quality (RRT), i.e.,
no guarantee of finding an optimal
solution. The path generated
is not continuous. Asymptotic
computational complexity

2.3.3 Interpolating curves algorithms

These methods generate a smooth path from a set of way-points that describe the route. Unlike the
previous methods that are mostly used for global planning, these are well-known as local planning
approaches. The most significant methods are described below.

Furthermore, these methods allow an easy adaptation to the dynamic conditions of roads,
where only a path to avoid the obstacle and another one to come back to the original path needs
to be computed.

2.3.3.a Straight lines and circular arcs

A combination of straight line segments, and circular arcs was also used to model both path and
lane to generate smooth trajectories for a car-like on-road vehicle [Horst and Barbera, 2006].
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Circular arc-based approaches are used for path planning on parking maneuvers, where a
combination of either straight-lines and circular arcs or several circular arcs is used, depending
on the parking configuration. For example, a method using a simple arc circle together with a
rectilinear movement was used for parking on perpendicular spots on the OSU-ACT vehicle during
the DARPA Urban Challenge [Hsieh and Ozguner, 2008]. In addition, it was applied to parallel
parking for cybercars in [Marouf et al., 2014] and [Petrov and Nashashibi, 2014b].

Another application of this combination method was used in [Kanayama and Hartman, 1989]
to describe a path as a sequence of postures (positions with their correspondent orientation) that
is later smoothed by applying a cost function that tries to minimize the maximum curvature by
using cubic splines.

Figure 2.22 – Combination of straight lines and circular arcs for path planning [Kanayama and
Hartman, 1989]

Dubins showed that the shortest possible path that meets a maximum curvature bound between
a starting and an ending position with predefined orientations consists of at most three pieces, being
either straight lines or arc circles [Dubins, 1957]. This algorithm was extended to car-like vehicles
by considering the backward motion [Reeds and Shepp, 1990]. However, the main disadvantage
of these methods is the curvature discontinuity which occurs at the joint point of two consecutive
path segments [Tsourdos et al., 2010]. This problem can be solved by applying a clothoid arc
between a straight line and a circular arc [Fraichard and Scheuer, 2004].

2.3.3.b Clothoids

These are curves whose curvature varies linearly with the length of the curve. Their main advan-
tage is that they are used in the design of road highways, where some of them are constructed
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joining clothoids with circular arcs and straight-line segments [Walton and Meek, 2005]. They
are used as the transition from straight segments to circular arcs in roads and highways due to
the constant change of acceleration that the vehicle would have following the curve at constant
speed [Meidenbauer, 2007].

Additionally, they can also be used for modeling the urban road lanes [Gackstatter et al.,
2010]. However, they are not applied in urban areas due to the dynamism of the environment
with various actors that the vehicle may find when driving, which would increase the computation
cost to process them in real-time. In addition, since they are defined in terms of Fresnel integrals
which cannot be solved analytically, their use in real-time applications is difficult in comparison
with non-linear curvature methods that are easier to compute [Brezak and Petrović, 2014].

Although some authors do not consider clothoids as an interpolation method [Labakhua et al.,
2008], they have been placed in this category because they can be defined by parametric equations,
depending on the initial curvature, the curvature derivative, the orientation angle and the radius
of the clothoid.

Several approximation of clothoids have been made, using power series [Press et al., 1992],
numerical integration algorithms, other analytical curves such as Bézier or B-splines [Wang et al.,
2001], s-power series [Sánchez-Reyes and Chacón, 2003], rational function approximations [Heald,
1985], continuous function approximation [Mielenz, 2000] or arc splines [Meek and Walton, 2004].
However, none of these methods guarantees bounded error of clothoid approximation over a broad
range of clothoid parameters.

Stanford University used clothoids for pre-compute the path to be followed at high-speed by an
Audi TTS using a highly accurate differential GPS [Funke et al., 2012]. There, the turns have been
modeled with a combination of a straight stretch, an entry clothoid, a circular arc segment and
an exit clothoid. The system was validated on the Pikes Peak Hill Climb course, which combines
paved and unpaved road surfaces.

Figure 2.23 – Clothoids: double end spiral (left), line-arc-clotoid interpolation (middle) [Girbés et
al., 2011], line-clothoid-circle interpolation (right)

Clothoids were used in [Bertolazzi and Frego, 2012], [Bertolazzi and Frego, 2015] to solve the
problem of Hermite G1 interpolation, which allows a curve to interpolate two given points in a
plane with assigned tangent directions. However, in real-time applications, this interpolation is
cost-effective, in particular when the discontinuity of the curvature is acceptable.

Piecewise clothoids have been extensively used in road design and robot path planning. A me-
chanical model called super-clothoids allowing to compute the dynamics of an elastic, inextensible
piecewise clothoid is presented in [Bertails-Descoubes, 2012].
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Although clothoids are mathematically and algorithmically more complex than polynomial
splines, Baran et al. state that the quality of the generated path weights the cost [Baran et al.,
2010].

A combination of straight lines and clothoids for generating G2 continuous paths is proposed
in [Lekkas, 2014]. There, they state that one of the main drawbacks of clothoids is that their
coordinates do not have a closed-form expression since they involve computation of the Fresnel
integrals.

A combination of clothoids, line segments and circular arcs was also used in [Girbés et al., 2011]
to generate continuous curvature paths for the kinematic control of a wheeled mobile robot. They
present two alternatives: the Single Continuous Curvature path (SCC) and the Double Continuous
Curvature path (DCC). First ones (SCC paths) are composed of two clothoids and a circular arc
in-between (as shown in the mid-part of Figure 2.23). Second ones (DCC paths) consist of two
SCC paths plus an additional final straight line segment.

Broggi et al. used clothoids during the Vislab Intercontinental Autonomous Challenge (VIAC)
combining them with circular arcs, according to the curvature conditions of the terrain for approx-
imating the vehicle’s motion [Broggi et al., 2012]. Thus, circular arcs were used for continuous
curvature, whereas clothoids were used in any other case, where a non-negligible curvature is
introduced.

A local planning approach based on the combination of clothoid tentacles with the generation
of an ego-vehicle centered occupancy grid was presented in [Alia et al., 2015]. The algorithm
discretizes the environment through the occupancy grid and classifies the tentacles as navigable
or not navigable. The algorithm was tested off-line on simulation with the data extracted from
the Lidar embedded in the non-robotized vehicle, on a real scenario where obstacles were present,
comparing the path obtained by clothoid tentacles with another solution consisting on circular
tentacles.

A clothoid-based solution has also been applied to a Linear Time-Varying Model Predictive
Control (LTV-MPC) approach to address the problem of path following by a non-holonomic vehicle
traveling at low-speeds. There, a set of clothoids is sent to the LTV-MPC to describe a reference
path [Lima et al., 2015].

2.3.3.c Polynomial curves

These are curves defined by polynomial equations. They are used to fit a series of data points,
possibly subject to constraints, where either interpolation or smoothing is involved. As advantages,
they have a low computational cost, and they make possible the concatenation of several curves in
a continuous fashion. However, with curves of less than fourth degree is hard to find the coefficients
to build continuous curves. Therefore there is an increase in the calculation cost.

A trajectory planning algorithm divided into path generation, search of the optimal path and
post-optimization, where the path is formed by connecting cubic and quartic curvature polynomials
has been proposed in [Xu et al., 2012]. After the path generation, they apply a path and speed
optimization step using lattices for discretize both sets.

Quintic polynomial splines are used by CMU in [Piazzi et al., 2002] proving that the continuity
of both curvature’s rate of change and its derivative is guaranteed with this order, leading to
smoother paths allowing higher speed tracking. They also applied cubic polynomial curvature
spirals combined with lattices sampling [Gu et al., 2013].

Fourth and fifth-degree polynomials were used in [Glaser et al., 2010] for lane changes. There,
a set of fixed polynomial paths is generated with a corresponding target speed and a time lapse.
The considered input constraints are the vehicle position, speed, and acceleration. Besides, the
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calculation of the coefficients for both the fourth order longitudinal and the fifth order lateral
polynomials are described, according to the continuity constraints. Fifth order polynomials were
used previously in [Simon and Becker, 1999] to describe both trajectory and road boundaries,
considering the position, orientation, and curvature as system constraints. In addition, quintic
polynomial curves were used in [Resende and Nashashibi, 2010] to search the optimal path building
a spatio-temporal set of trajectories to be performed in a dynamic highway environment.

Interpolation of cubic polynomial curves has been applied in [Petrov and Nashashibi, 2014a]
for performing lane change maneuvers in overtaking scenarios, since the trajectory generated by
the polynomial curves constitutes a reference path for the adaptive controller, which solves the
overtaking as a tracking problem.

Figure 2.24 – Polynomial curves with different weightings to tune the path [Gu et al., 2013]

2.3.3.d Splines

Splines are piecewise differentiable curves defined by parametric equations. These can be either
polynomial curves ( [Bacha et al., 2008], [Ghilardelli et al., 2014]), b-splines (quartic b-splines
[Berglund et al., 2010], cubic b-splines [Trepagnier et al., 2007]), i.e., a generalization of Bezier
curves, Bézier curves ( [Romani and Sabin, 2004]) or even clothoids. Their knots or polynomial
joints pose a high degree of smoothness. For instance, quartic B-splines used in [Berglund et al.,
2010] ensure a continuous derivative of the curvature, which benefits smoothness. In addition,
cubic b-splines were implemented on a motion planning algorithm running on the Team Gray’s
KAT-5 vehicle participating on the DARPA Grand Challenge [Trepagnier et al., 2007]. They were
used to follow the center of the route while ensuring the path is feasible for a non-holonomic
vehicle, respecting the kinematic constraints (maximum feasible curvature) and allowing to avoid
obstacles by adjusting the control points in real-time. Later on, cubic splines were applied in the
DARPA Urban Challenge by the VictorTango’s team to generate the path that fits the more with
the physical lanes of the road, given the geo-referenced aerial imagery provided by the competition.

Splines have also been used to approximate clothoid spirals, as was proposed in [Meek and
Walton, 2004], where they claim that spline arcs are very easy to lay out to fit with the clothoid arcs
defining the highways. Furthermore, pairs of clothoids were used as blending curves to construct
clothoid splines as control polylines, which facilitates the design and modification of the clothoids
to adjust to the road definition [Walton and Meek, 2005].

Furthermore, splines have been largely used together with some spatio-temporal search space
discretization algorithm as state lattices. Quintic splines were used by the motion planning algo-
rithm of KIT Institute in [Ziegler and Stiller, 2009] to generate continuous and smooth paths on
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dynamic on-road driving scenarios.
A parameterized curve primitive, the η4-spline, was proposed by the University of Parma for the

generation of high-quality drive paths for a truck and trailer automated vehicle [Ghilardelli et al.,
2014]. This primitive consists of a ninth order polynomial curve. This spline can be systematically
used to generate smooth paths for the automation of articulated vehicles. Indeed, η4 splines can
be used to solve problems of dynamic articulated vehicles. The η-spline primitive was presented
in [Piazzi et al., 2002].

Figure 2.25 – η-Splines interpolating given points [Piazzi et al., 2002]

2.3.3.e Nurbs

The term nurbs is an acronym of non-uniform rational B-spline. It is a mathematical model
widely used in computer graphics for generating and representing curves and surfaces, thanks to
presenting the following characteristics [Piegl and Tiller, 1996].

• A unified mathematical basis for representing both analytic as well as free-form shapes.

• Intuitive design.

• Fast and numerically stable algorithms.

• Invariant curves and surfaces under common geometric transformations.

• They are generalizations of non-rational B-splines and rational Bézier curves and surfaces.

Figure 2.26 shows a cubic Nurbs curve.

2.3.3.f Bézier curves

Bézier curves are parametric curves based on the Bernstein polynomials and ruled by control
points [Prautzsch et al., 2002]. Although they were created for designing automobile bodies, they
have been widely used in computer graphics and animation [Choi et al., 2008]. Additionally, they
present some properties that make them appropriate for path planning purposes [Han et al., 2010]:
(i) Bézier curves always pass through the first and last control points defining them. (ii) The
vectors with the two control points defining the beginning and the end of the curve respectively
are tangent to the curve. (iii) The curves will always be framed within the convex hull defined
by the outermost control points. (iv) The behavior of the curve concavity is consistent with the
concavity formed by the control points (as shown in Figure 2.27).
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Figure 2.26 – Cubic NURBS curve [Piegl and Tiller, 1996]

Figure 2.27 – Bézier curves [Sederberg, 2007]

Thanks to their properties, they are used to satisfy the path constraints generating a reference
trajectory feasible for automated vehicles, as in [Choi et al., 2008], where the path planning
algorithm considered the corridor constraints for the operation of an automated ground vehicle.
In addition, since these curves are defined by control points, they can be easily modified in real-
time to adapt the path to avoid possible obstacles in the itinerary, while maintaining a smooth
path tracking [Han et al., 2010]. Thus, it shows the good behavior of this method with real-time
constraints, generating a fast and low-computational cost. Since these curves have been widely
used for surface design, the continuous transition between them has been studied. For instance,
in [Walton et al., 2003] a planar G2 transition between Bézier segments that ensure geometric
continuity in the joint point where segments share a common curvature center.

It has also been applied to unmanned aerial vehicles [Yang and Sukkarieh, 2008], where cubic
Bézier spirals where used to generate a continuous curvature path, smoothing a previously gener-
ated path with RRT, respecting the non-holonomic constraints and considering the angle between
the way-points. A seventh order Bezier curve based local planning algorithm is used in [Neto et
al., 2010] to connect the vertexes of the tree generated by an RRT global planning approach for
an aircraft, i.e., a holonomic robot, on a well-known non-structured space with static obstacles.

Thanks to the low-computation load of this method, it can be used for the generation of lane
change trajectories on-road environments, as in [Chen et al., 2013], where quartic curves are used
for generating a continuous curvature path respecting the non-holonomic constraints of the vehicle.
Quartic Bézier curves were also used in [Chen et al., 2014] for generating continuous and bounded
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curvature profiles shaping the trajectory, and at the same time, generating a linear velocity profile
to execute the trajectory.
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Table 2.3 – Comparison of interpolating curves based techniques for path planning

Technique Advantages Disadvantages

Lines and arcs

Low computational cost. Gener-
ates shortest possible path that
meets a maximum curvature with
at most three pieces. Suitable for
parking maneuvers.

Path generated is not continuous.
Not suitable for non-holonomic
constraints. It requires a local
planning post-process to smooth
the path.

Clothoids

Curvature varies linearly with
arc length. Smooth transitions
between straight lines to circle
arcs. Used for highways road de-
sign. High-quality of the generated
paths. Clothoid tentacles can be
combined with road discretization
methods. Suitable for nonholo-
nomic systems. Applied to high-
speed path tracking when the envi-
ronment is static and well-known.

High computational since they are
defined by Fresnel integrals and
cannot be solved analytically. Not
suitable for real-time. Interpola-
tion of clothoid curves in real-time
is computationally expensive. Ap-
proximated methods to implement
them not guaranteeing bounded er-
rors.

Polynomial curves

Trajectories meet kinematic con-
straints. Feasible to be used in
real-time. Concatenation of curves
in a continuous fashion is feasi-
ble. Suitable for dynamic envi-
ronments. Modeling of both road
boundaries and path.

Optimization process might be re-
quired to generate a smooth trajec-
tory with low degree curves. Forth
or fifth-degree curves are needed to
ensure path continuity, augment-
ing the computational cost.

Splines

Real-time implementation. Con-
secutive curves can be interpo-
lated in a continuous way thanks
to knots-based definition. Al-
low respecting nonholonomic con-
straints.

Do not guarantee finding an opti-
mal solution. Meeting smoothness
and road constraints require using
higher degree polynomials, or an
optimization phase.

Nurbs

Generalization of non-rational b-
splines and rational Bézier curves.
Intuitive design. Low computa-
tional load.

The smoothness of the path de-
pends strongly on the degree of the
curves used.

Bézier curves

Low-computation cost. Real-time
concatenation of multiple curves.
Curves are malleable (i.e. ease to
control the shape to meet the kine-
matic and road constraints). Real-
time adaptability to the dynamism
of the scene.

Curvature continuity requires ei-
ther at least quartic degree curves
or some optimality evaluation.
Curve points do not pass through
all the control points, making nec-
essary an algorithm to define a
polygon where they should be
placed respecting the lane borders.
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2.4 Discussion
The increasing adoption of ADAS in commercial vehicles leads to a positive impact in the road
transport, both from the safety and the environmental impact. Systems such as the lane keeping
assist, the lane change assist or the parking assist are some examples of already commercialized
ADAS. Automated vehicles have emerged in last decade as a promising line of research to contribute
on those aspects as well, aiming to integrate the developed technology on the on-road vehicles as
soon as possible. Both private companies and public research institutions envisage deploying
vehicles able to achieve the fourth automation level in the short term. It means to develop vehicles
able to travel autonomously under specific scenarios. The development of this technology is making
possible this transition between a fully manual and a fully automated experience, where the control
of the car would be shared between human driver and the system.

One of the most challenging scenarios in driving is the urban environment, where the vehicle
has to consider all the dynamic changes on the scene, interacting with the other vehicles and
vulnerable road users such as bikes and pedestrians, following traffic rules. Additionally, the
ability to drive in a natural way (i.e., as a human driver does) plays an important role for users
acceptability. Automated vehicles are expected to deliver smooth driving, increasing ride comfort
to the passengers.

Trajectory planning plays a key role in achieving such goals as part of the decision-making stage.
These systems generate the route to arrive from the departure position to the destination safely,
which implies the modification of the route to deal with unexpected situations such as obstacles in
the path, either to avoid them or to perform an emergency braking if needed. Although the path
planning problem has been largely studied in robotics [Latombe, 1991], the operating conditions
for robots and automated vehicles are not equivalent. Constraints from both the vehicle and
the infrastructure such as the non-holonomicity, the structured roads, and the traffic rules, lead
to the appearance of different planning solutions. Solutions applied in robotics worked well on
unknown or partially known environments, where the robot moves in a free-space non-structured
environment. However, different solutions were needed for automated vehicles, traveling through
roads which are structured environments and in most of the cases are well-known thanks to the
information provided by the digital maps. Unlike robots, the movement of automated vehicles on
the lanes is not only limited by the physical layout, but also by more restrictive kinematic and
dynamic constraints. In the same way, path planning approaches for highways are not suitable
either for urban driving due to the complexity of the scene, where the vehicle has to interact with
the different VRU, generating a collision-free trajectory keeping passengers comfort as a design
variable.

A review of the path planning approaches that have been used or are appropriate for automated
vehicles has been done in this chapter. The different algorithms have been classified into three main
groups, according to the base of the algorithm, namely: graph search based, sampling-based and
interpolating curves based algorithms. Tables 2.1, 2.2 and 2.3 summarize their main advantages
and disadvantages. A representation of the most relevant events for automated vehicles where
path planning methods have been applied is presented in the timeline of Figure 2.28.

After reviewing the state of the art, the following conclusions can be drawn:
• Methods based on curves interpolation are the ones mostly used for urban areas. This results

both from their flexibility, adapting the path to the dynamic conditions to avoid every possible
collision with VRU; and from their low computational cost, allowing a real-time operation
and re-planning.

• Graph search-based algorithms were the methods mostly used at first, thanks to the prior
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know-how on robotic applications. Since the research and development on this domain were
promoted by the DARPA Urban Challenge, those algorithms have been studied combined
with another interpolating curve based algorithm. Specifically, state lattices have been com-
bined with splines for path planning on structured areas, both in static and dynamic envi-
ronments. Lattices allow space-time planning and the adaptability to the lane workspace
and are suitable for unknown or partially known environments. Splines allow the real-time
evaluation of several path alternatives keeping a low computational burden and respecting
both kinematic and dynamic constraints.

Motion planning systems have to provide a fast response to work efficiently together with the
other modules of the architecture, especially with perception and control, being the input and
output components respectively for the planning system. Since perception algorithms might be
heavy algorithms requiring memory resources to represent the environment and a higher time con-
sumption [Pendleton et al., 2017], the planning algorithms must be as fast as possible. They have
to be reactive and fast enough to decide what to do and re-compute the trajectory on unexpected
situations [Pivtoraiko and Kelly, 2009], such as when a pedestrian is detected crossing in the middle
of the road, a vehicle is blocking the lane, or the human driver leaves the steering wheel control
to the vehicle when traveling through a destination.

Robust algorithms to predict the behavior of the other road users in a dynamic environment
such as road intersections, pedestrian crossing or parking lots have to be developed. Additionally,
creating fault-tolerant planning systems is a must to react when failures occur in the perception
and vision algorithms, avoiding possible accidents such as the one occurred in Arizona where a
woman who was crossing the road was fatally run over by an automated vehicle. Learning algo-
rithms may be considered on the path planning strategies in the short term. Research on this
line is trying to study traffic scenarios, such as in [Fridman et al., 2018], where the perception,
planning, and control systems are handled by a single neural network in the reinforcement learn-
ing process in a micro-traffic simulation. A review of emerging trends in this field, precisely in
perception, planning and decision making is presented in [Schwarting et al., 2018]. As an open
challenge, planning methods will have to provide safe and system compliant performance in com-
plex, cluttered environments while modeling the uncertain motion of other traffic participants. So
far, most approaches are rule-based, i.e., use a state machine to switch between predefined behav-
iors. It supposes a lack of generalization to unknown situations and to deal with uncertainties.
Therefore, an integrated perception and planning solution is expected, where the control input
for the vehicle is generated directly from sensory information relying on machine learning. There,
deep-learning based algorithms have a high potential to improve planning algorithms by learning
how the other vehicles react according to the traffic situation achieving the fourth automation level.



2.4. DISCUSSION 55

DARPA Urban 

Challenge

Dijkstra A* AD* + 

State lattices

2007

Hybrid A* CL-RRT, 

Robust RRT
Lines & arcs 

+ Splines

Graph search

based algorithms

Sampling based

algorithms

Interpolating

curve based

algorithms

Optimization

based algorithms

2008
State 

Lattices

2009

State 

Lattices

SemifinalistFinalists

2005

DARPA Grand 

Challenge

2010
RRT*

2011

Hyundai-Kia 

AV competition

State 

Lattices

Appearance of the 

RRT*. 

On simulation

High-speed 

trajectories on 

simulation

RRT Running at 

high speeds *
Spatio-temporal 

SL for highway 

driving

Clothoids

Clothoids
Audi Pikes Peak 

mountain race

VIAC 

(Parma-Shangai)

Clothoids

2015
Clothoid 

tentacles

2012 Polynomial 

curves

Splines

Splines
Search-based

approach

Conformal

graph search

H1ghlander and Sandstorm

Numerical

optimization

Winners Participants

2013

PROUD car 

test

Bertha Benz 

memorial route

GCDC RRT

2017

2016

GCDC

Behavioral planning + 

numerical optimization

1997

Parkshuttle parking system at 

Amsterdam Schipol airport

Cybercars 1st

demos

8 cars platoon on a highway scenario 

during the NAHSC in San Diego

2018

Figure 2.28 – Path planning timeline on automated vehicles greatest hits
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Chapitre 3

Planification des trajectoires pour des
environements statiques

Below is a French summary of the following chapter "Path planning in static environments".

Ce chapitre présente l’algorithme de planification des trajectoires pour les environnements sta-
tiques. Il se compose de deux étapes:

• Étape de pré-planification, où les courbes optimales pour tout scénario de virage sont générées
en tenant compte des informations statiques de la cinématique du véhicule et de la disposition
de la route.

• Étape de planification en temps réel, où un trajet continu est construit en joignant la courbe
pré-planifiée optimale pour chaque virage, en tenant compte de la configuration réelle de la
route.

Ce planificateur local à deux étages offre un style de conduite humain grâce aux fonctionnalités
suivantes:

• Il bénéficie de l’étape de pré-planification [Garrido et al., 2016a] pour générer des chemins
plus lisses, où seul le point de jonction entre les courbes optimales est évalué en temps réel

• Un horizon de planification étendu de deux courbes consécutives est envisagé, optimisant
simultanément deux courbes (la seconde à l’avance), grâce à la connaissance de la carte
numérique fournie par le planificateur global [Garrido et al., 2016b].

Le but de cette étape est de générer un chemin qui s’adapte le plus à l’environnement, avec
les moindres changements de courbure afin de faciliter le suivi de trajectoire en cherchant un
voyage confortable pour les passagers. Ainsi, ce chemin statique est envoyé au planificateur local
dynamique, qui le modifie en fonction des changements dynamiques sur la scène. Ce planificateur
dynamique est présenté dans le chapitre suivant.
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Chapter 3

Path planning in static environments

Automated vehicles are intelligent systems that use decision making to process the observations
obtained from the onboard sensors and, together with the knowledge about the road and vehicle,
are used to control the motion of the vehicle [Paden et al., 2016]. The decision-making system
of automated cars can be decomposed into several layers (see Figure 2.15): behavioral planning,
global planning, and local planning, which is connected to the control of the vehicle. Global planner
selects a route through the road network from its current position to the requested destination.
Behavioral planner considers the road conditions and the vehicles behavior to decide which motion
specification carry out during the progress along the route. This route is smoothed on the local
planning layer to make it feasible, and finally, the control system adjusts the variables to command
the actuators to correct the lateral and longitudinal errors in the tracking of the reference trajectory.

The rest of the chapter is structured as follows: The motivation for studying the path planning
problem for automated vehicles is discussed in Section 3.1. Then, the planning system is pre-
sented with a modular architecture, where the planning problem is divided first in global and local
planning. The global planning stage is described in Section 3.2, where a route to the destination
consisting of a set of way-points is generated. This route is transmitted to the local planner stage,
which generates a collision-free continuous path smoothing the route, as explained in Section 3.3.
Finally, some remarks are given in Section 3.4.

The main contribution of the thesis relies on a new planning architecture for automated vehicles,
depicted in Figure 3.1. The different stages of the architecture are described below.

1. The global planner is composed of the following main blocks:

(a) Digital map: it is the database with all the road layout information. In our case, it
corresponds to the coordinates of the singular points (or way-points) and additional
information such as the type of singular point or the maximum speed. These data is
recovered from localization maps such as Google, Open Street Maps or from routing en-
gines such as Open Source Routing Machine (OSRM). These coordinates are converted
from the World Geodetic System (WGS84) to the coordinates system defined on the
standard of the dynamics of road vehicles (ISO8855).

(b) Route generation: This module receives from the HMI the desired destination point of
the route. Then, it localizes both the vehicle and the destination point on the digital
map, generating a set of way-points defining the itinerary to follow, which is finally sent
to the local planner.

2. Local planner: It consists of two phases.
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(a) First, a pre-planning phase presented in Section 3.3.1, where the goal is to pre-compute
the optimal curve for every feasible isolated turn, taking advantage of the static infor-
mation about vehicle and infrastructure. These optimal pre-computed curves for every
feasible turn configuration are saved into several databases where the initial and final
position of the vehicle changes on the lane according to the design parameters, allowing
to join the curves later in the real-time stage providing a human-like driving.

(b) Second, a real-time planning stage presented in Section 3.3.2. The environment is
considered as static, and a smooth and continuous path is guaranteed on real-time
using the pre-planned information, evaluating the sharpness of the road bends and
the available space among them to provide a human-like driving style. In addition, it
presents an extended planning horizon, optimizing two consecutive curves concurrently,
where the only parameter that is evaluated in real-time is the junction point between
the loaded optimal curves. Finally, the resulting path is transmitted through a buffer
to the dynamic planner. It is in charge of adapting the static path to the changing
scenario, using a grid-based discretization of the scene, where obstacles are classified,
and a virtual lane is built to target the dynamic scenario as a static one by joining two
curves for each lane change, using the static planner. A re-planning is only made if
the estimated motion of the obstacles is not as expected, or if an unexpected situation
arises, generating a safe return to the lane maneuver aborting the former avoidance one.
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Figure 3.1 – Path planning flowchart

3.1 Problem description

Urban areas represent the most challenging environment for automated vehicles because of the
interaction with different agents such as pedestrians, cyclists, and other vehicles, especially in
unexpected situations, which highly increase the complexity of the driving task. These dynamic
environments require a proper real-time trajectory planning, being able to adapt the route ac-
cording to the obstacles found in the changing scene, in a safe and comfortable way. As stated
in Section 2.2, decision making is one of the biggest unsolved challenges in the field, and thus
research on motion planning methods as part of the decision-making system is essential. Those
systems will be able to model the behavior of other traffic participants, predicting their motion
and planning their paths according to that. In addition, they will have to integrate perception
to consider the uncertainties of the sensors seeking a robust solution, even with variable weather
conditions [Schwarting et al., 2018].
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The main focus of this thesis is to improve the existing path planning systems on urban
transport vehicles. All the factors mentioned above demand algorithms able to run in real-time
under these changing scenarios, performing a collision-free route from an origin to a destination
point autonomously in a comfortable way. In this way, by making a proper trajectory generation,
it would improve transportation by reducing the traffic flow as well as the fuel consumption,
increasing the safety on the roads, reducing the likelihood of accidents.

In the field of automated vehicles control, path planning plays a key role to improve the
efficiency and safety of transportation [Gu and Dolan, 2012], increasing the driving stability [Fu
et al., 2015]. For open spaces such as parking lots, where automated vehicles deal with different
road actors, it must determine the best possible collision-free path.

3.1.1 Assumptions and constraints

Over recent decades numerous planning systems have been developed, specially in the field of mo-
bile robotics [Latombe, 1991], [LaValle, 2006], [Bestaoui Sebbane, 2014]. When planning trajecto-
ries for automated vehicles, it is important to consider different constraints that are not compatible
with standard robotics systems. This has a significant impact on path planning. This section in-
cludes both the constraints and the assumptions set for the implementation of the presented path
planning system, as well as their justification.

A series of assumptions and constraints concerning road, vehicle kinematics, motion and time
performance are considered for the development of the local planning algorithm.

Regarding the road, information about road and obstacles coming from the perception and
the global planner is assumed to be accurate, as well as the vehicle localization. Thus, the global
planner provides the way-points forming the itinerary to follow, along with the lane width, as
inputs for the local planner. Since the typical value of the lane width in urban roads is between
3 and 3.7 meters, a 3 meters lane width is assumed. As the vehicle circulates through structured
environments, a constraint is set to respect the limits of the road, not invading the sidewalk.
Thanks to the Convex Hull property of the curves, this constraint is met. It guarantees that the
curve is defined inside the polygon formed by its outermost control points. Thus, by considering
an internal separation of half the width of the vehicle at both sides of the road borders, the vehicle
will always be inside the road limits.

Regarding the vehicle kinematics, the vehicle model is well-known concerning the physical
characteristics such as width, length, and maximum steering angle. Since the vehicles are non-
holonomic systems, they present a maximum steering angle and, therefore, a maximum associated
curvature. Hence, the generated curves forming the path must comply with the maximum curva-
ture requirement, which means that the curvature in all the points of the curves must be lower or
equal than the maximum curvature of the vehicle, as will be further explained in Section 3.3. In
addition, a kinematic model with drift, also known as bicycle model, is considered for the cycabs,
due to the low-speed limitation presented on these platforms (up to 5 m/s), assuming that small
lateral forces are generated, and the angle of drift is negligible at such speeds.

Regarding the motion, the generated trajectories have to be continuous to search the smooth-
ness of the path and, consequently, the comfortability for the passengers. A constraint in the
curvature at the beginning and the end of each curve is introduced forcing it to be approximately
zero to ensure smooth transitions. There are several techniques that can be used for the trajectory
generation for the local path planning [Katrakazas et al., 2015,González et al., 2016b]. Among
them, the interpolating curve methods meet our requirements, and Bézier curves have been chosen
due to the ease manipulation of the curves, since they are defined by control point. It allows to
fulfill all the described requirements.
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Regarding the execution time, the developed algorithm has to be implemented in real-time to
work together with the perception and control algorithms. It means that the frequency of the
system has to be at least of 10 Hz to be considered a real-time application since 100 milliseconds
is the maximum response time perceived as instantaneous [Miller, 1968]. However, most of the
human drivers react in a range of 0.3 to 1.2 seconds, depending on factors such as the speed of the
vehicle or the visibility conditions [Ruhai et al., 2010], and brake reaction times on unexpected and
surprise situations are between 1.25 and 1.5 seconds, varying in function of the level of risk and the
time to collision [Summala, 2000]. According to these time constraints, quartic Bézier curves are
considered, as they ensure the path continuity by introducing the curvature constraint, presenting
a lower computational cost than quintic Bézier curves. Unlike cubic Bézier curves, quartic curves
present a central control point allowing to push away or attract the curve to the center of the
turn, providing more flexibility to the path generation. It also allows the generation of paths
whose curvature profiles are less curvy and more comfortable for the passengers. Although they
are costlier than cubic Bézier curves, since the function definition is well-known, there is almost no
impact on the computational burden. Time to generate the optimal cubic curves for a specific turn
angle on the databases is around 2.9 seconds, whereas it takes around 4.5 seconds for the quartic
curves ones, which present five times more iterations. Therefore, the time to generate a single
curve is around 1.35 milliseconds for quartic curves, and 1.2 milliseconds for cubic ones. Indeed,
the narrowed the turn, the more difficult to find a cubic curve that fulfills the design requirements,
such for example with the 60 degrees turns where there is no feasible solution with cubic curves.

3.2 Global planning

Global planning has been widely explored in the robotics fields, where the environments are usu-
ally non-structured, and the robots do not present non-holonomic constraints. However, global
planning methods for automated vehicles have to be adapted and complemented with local plan-
ning strategies due to the limitations of either the environment (since vehicles usually operate on
structured environments), the vehicle (as non-holonomic systems) or due to comfort constraints
(paths should not be jerky to preserve comfort of passengers).

Among the different methods for global planning, the following have been tested with auto-
mated vehicles or car-like robots: graph search based algorithms, i.e., Dijkstra, A* based algorithms
and state lattices, and the RRTs sampling-based algorithms, as shown in Section 2.3.

Since the goal of these global planners is to design routes minimizing travel time, they consider
the shortest path generated by the underlying graph search based algorithm, together with the
information of the road, such as the traffic conditions, accidents, or works.

Although these systems make use of the GPS sensors to get the vehicle location during the
route, an accurate digital map of the road is required. Different navigation systems such as Waze
and Google Maps provide an accurate digital map which considers the real-time traffic information
to generate several options to the user through an HMI to arrive at the destination, using GPS as
the localization source.

However, this localization does not consider the position of the vehicle on the lane, the borders
of the lanes or the road layout, mostly on urban scenarios, where both road and marking may not
be properly defined. The research trend is the real-time lane marking detection on roads based on
vision algorithms [Liu et al., 2008], [Bauda et al., 2017], [Lee and Moon, 2018].

Localizing vehicles with respect to the lane marking is still an unsolved challenge, but a com-
bination of the information coming from the GPS-RTK and the IMU sensors is still an accurate
way of being localized on open environments, and a digital map based solution can be considered.
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Figure 3.2 – Global planning flowchart

The global planning strategy of the team is depicted in the flowchart of Figure 3.2. First,
the global planner reads an XML file representing the way-points describing the route. These
way-points consist of the (x,y) GPS coordinates describing the center of the road most significant
points, as well as its maximum speed and the type of road shape. Thus, these points need to be
taken by hand based on the digital map of the area, as in Figure 3.3, where a global path formed by
the way-points in red is shown at the INRIA-Rocquencourt facilities, for a path following operation
from an origin point O to a destination point D. Automatic global planning approaches can be
used there to modify the itinerary in real-time through an HMI, changing the destination point
while traveling [Vaca et al., 2016]. It allows the vehicle to adapt the route in function of traffic
congestion and users demand. Additionally, it allows to add stop points in the route or modifying
the intermediate way-points choosing another itinerary to arrive at the destination. Automation
of the global planning process is based on Open Source Routing Machine (OSRM)1, a digital map
tool that provides a set of singular points for the different requested destinations, taking into
account the geographic information and road network, generating an itinerary to be followed in
real-time.

These way-points are placed in the center of the lane. That way, as the road width is well
known (either because of the localization maps or because of the knowledge of the usual urban
road configuration, where the width is between 2.7 and 3.7 meters) the road limits are computed
geometrically by applying half of the lane width to both sides of the physical representation
resulting from the union of those way-points. Thus, the road is easily modeled with straight
lines building a corridor through which the trajectory will be generated [w. Choi et al., 2010],
transforming that way the real space into a lane space [Horst and Barbera, 2006].

The following XML code represents an example of a pre-defined global path, like the one shown
in Figure 3.3.

<network>
<l i n k id=" 1 " d i r=" 0 " >

<node id=" 1 " x=" 28 .69 " y=" 45 .76 " speed=" 3 " ></node>
<node id=" 2 " x=" 19 .15 " y=" 24 .50 " speed=" 3 " type="−2" ></node>

1http://project-osrm.org/
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Figure 3.3 – Global path example at INRIA-Rocquencourt facilities

<node id=" 3 " x=" 11 .60 " y=" 3 .80 " speed=" 3 " type="−2" ></node>
<node id=" 4 " x=" −6.13 " y=" −3.77 " speed=" 3 " type="−2" ></node>
<node id=" 5 " x=" −2.42 " y=" −17.60 " speed=" 3 " type="−2" ></node>
<node id=" 6 " x=" 16 .97 " y=" −16.53 " speed=" 3 " type="−2" ></node>
<node id=" 7 " x=" 56 .18 " y=" −6.02 " speed=" 3 " type="−2" ></node>
<node id=" 8 " x=" 47 .87 " y=" 26 .08 " speed=" 3 " type="−2"></node>
<node id=" 9 " x=" 41 .47 " y=" 47 .74 " speed=" 3 " ></node>

</ l i n k>
</network>

There, each node represents a way-point, containing the following information:

• Id: Identification number for each way-point in the XML

• x,y: Cartesian coordinates (in meters) describing its global position on the local map with
respect to an origin point defined by the localization technique, usually either an RTK-GPS
or a SLAM based algorithm.
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• Speed: Maximum speed associated with the road segment between the current and the
following way-point.

• Type: Type of singular point. It allows defining the road shape, where -2 represents a
turn or intersection. Some other road shapes can be added, such as roundabouts or special
road crosses. The first and last points do not have this attribute since both are origin and
destination points respectively.

Some other parameters can be added to the XML map, such as the altitude of the points for
considering the slope of the terrain, but it is out of the scope of the thesis.

Following the flowchart describing the global planning strategy of Figure 3.2, once the XML file
is read, a data structure containing this map is saved. Then, the vehicle is located on the map, i.e.,
finding the future closer way-point on the map and considering the vehicle position as the origin
way-point. After gathering the destination point chosen by the human from the HMI, this point
is also located on the map in the same way. Then, the global path is created by adding to a list
the way-points between origin and destination, as well as the origin point as the first one and the
destination point as the last one. Finally, the global path list is sent to the local planner. Hence,
the destination point acts as a trigger to activate the system, waiting for the human request to
start the automated mode. In case a new destination request is made during the path execution,
the global planner re-plans the new path in real-time, selecting the way-points that form the new
itinerary. It would be equivalent and replaceable by a digital map like that of HERE2 or any other
manufacturer that gave the information of the road.

3.3 Local planning

Since global planner approaches provide a route formed by a set of way-points defining the itinerary,
this global path only presents G0 geometric continuity, where curves touch at the joint point, i.e.,
it is only geometrically continuous on its function definition, but not on its derivatives. It means
that, as it is composed by straight lines, its stretches touch at the joint points, but they do not
share a common tangent direction. The purpose of the local planner is to take the global path
as a reference path and smooth it to comply with the kinematic and dynamic constraints of both
vehicle and road, considering the non-holonomicity of the system.

In the rest of this section, the proposed local planning approach for static environments is
presented as a two-stage process: pre-planning and real-time planning, as depicted in Figure
3.4. There, the left part shows the pre-planning stage [Garrido et al., 2016a]. It generates the
databases which contain the optimal curve for each kind of turn feasible by the vehicle. Meanwhile,
the right part represents the real-time stage [Garrido et al., 2016b]. It generates a smooth and
continuous path by loading from the databases the appropriate curves, joining them according to
the characteristics of the road and the map, coming from perception and global planner, respecting
the vehicle constraints as well.

3.3.1 Pre-planning stage

Thanks to the accuracy provided by current perception systems and localization maps, together
with the knowledge of the itinerary provided by global planers, we know in advance how is the
environment through which the vehicle must drive. Hence, as the way-points defining the itinerary

2https://www.here.com/



66 CHAPTER 3. PATH PLANNING IN STATIC ENVIRONMENTS

Road 

constraints

Optimal curve 

evaluation

Databases of 

optimized curves

  ... parameters

Vehicle

model
Next curves 

analysis

Optimal junction 

point next 2 curves

Intervals, angles

Read curves  params

Path generation 1st 

planned curve 

& 

Saved params 2nd 

curve planned in 

advance

Global 

path

   path end 

Static local path

Figure 3.4 – Local planning for static environments flowchart

to follow are received from the global planner, it is immediate to compute the available distance
between the road way-points, as well as the sharpness of the bends defining the scenario.

One can easily identify the next static parameters: 1. the physical and kinematic characteristics
of the vehicle, 2. road layout, in the sense of limits of the road and configuration of the lanes,
distance between turns, or angles of the feasible turns. These parameters are well-known and
do not change during the navigation (as seen in Sub-section 3.1.1), assuming low-speed vehicles
ruled by a kinematic model. Among them, the following can be highlighted: length and width of
the vehicle as physical parameters, maximum steering angle and the associated maximum feasible
curvature as kinematic parameters of the vehicle, and road lanes width and turning angles for the
road bends as infrastructure constraints. Table 3.1 shows these values for the team vehicles, which
are first mentioned in Section 2.1 and detailed later in Section 5.1.

Table 3.1 – Main physical parameters of the vehicles

Vehicle Physical parameters
Wheelbase Width track Max steering angle (deg)

Cycab 1.25 m 1.15 m 38.5
Cybus 2.15 m 1.05 m 38.5

Citroën C1 2.34 m 1.415 m 40.0

Computation cost for local path planning may be too high if the full process is done in real-
time. We can get benefit from all the above to pre-compute the optimal curve the vehicle can
perform for all possible single-turn scenario, regardless of the vehicle type. Figure 3.5 depicts a
single-turn scenario, defined by three points, two segments and the angle of the turn that they
form. The points are defined in the center of the lane: the origin of the turn (Gn−1), the central
point of the turn (Gn) and the ending point of the turn (Gn+1). The distance between these
points, i.e., the length of the segments formed by joining the points are disseg1 and distseg2. These
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points represent the trio of way-points that constitute the itinerary received by the global planner.
Finally, the angle of the turn is represented by α.

 

Lane borders
Lane centre

1nG

1nG

2segdist

2R

nG

 1segdist

Planned path

Figure 3.5 – Single-turn scenario with optimal curves search [Garrido et al., 2016a]

Thus, the algorithm goal is to find the optimal curve for each single-turn configuration, i.e. for
each trio α, distseg1, distseg2.

To this end, the algorithm iterates over the different singular curves by changing the value
of the three parameters. Then, for each iteration it evaluates the optimal curve and saves the
relative location of the optimal curves’ control points into a database indexed with the same three
parameters. Finally, the generated databases are loaded later in the real-time stage, generating
the whole path by joining the optimal curve for every single turn of the itinerary.

A pseudo-code description of the intelligent algorithm developed for this pre-planning stage is
presented in Algorithm 1, where it is shown how the databases containing the parameters of the
optimal curves are generated. Next sub-sections explain the algorithm in detail. Therefore, this
pre-planning stage seeks for the curve that better fits in a pre-defined turn scenario.

3.3.1.a Bézier curves based path planning

Chapter 2.3 presented the different techniques for path planning, grouped in: graph search based
algorithms, sampling based algorithms and interpolating curves algorithms. As studied there, the
group of techniques that fit more our requirements is the one based on interpolating curves. Graph
search based planners are not the most appropriate for local planning since they are based on a grid
search, and the resulting path presents discontinuities. Thus, these methods are mostly applied
to global planning together with a further smoothing approach, which could be a local planning
method. Sampling-based planners could respond to the real-time constraint, but continuity there
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Algorithm 1 Pre-planning algorithm for the generation of the databases containing the parame-
ters of the optimal curves

1: for each turn configuration (changing α, d1, d2) do
2: Calculate road limits and road constraints
3: Changing d3, d4, dlat and dlatM
4: Calculate control points location
5: Check if the curve is feasible by the vehicle
6: Check if the continuity constraints are fulfilled
7: while the curve is not totally generated do
8: Generate curve points
9: Calculate nearest point to internal constraint point

10: Check if the car doesn’t invade the sidewalk
11: Evaluate curve’s optimality with cost function
12: Check if this curve improves the best one
13: Save the best curve’s configuration in the database
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Figure 3.6 – Bézier curve [Garrido et al., 2016a]

is not guaranteed. However, interpolating curve planners allow a faster path generation while re-
specting the curvature continuity requirements for generating smooth trajectories. This is feasible
thanks to the modularity of the curves (especially the polynomial based approaches). Among the
different interpolating curve algorithms, we have therefore chosen Bézier since these curves accom-
plish the real-time and the continuous curvature path constraints, thanks to the flexibility provided
by the control points defining them. Thus, since they are ruled by control points, positioning them
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through space is a simple task even when the degree of the curve is high.
The basis of these curves are the Bernstein polynomials. The generation of an n-degree Bézier

curve is mathematically defined in Equation 3.1.

B(t) =
n∑
i=0

(
n

i

)
(1− t)n−itiPi t ∈ [0, 1] (3.1)

where n is the degree of the polynomial equation, and Pi are the control points that define the
curve in the time interval t, defined between 0 and 1.

As introduced in Chapter 2.3, these curves present several properties that make them suitable
for path planning under the described constraints [Han et al., 2010]. The most important ones for
the current work are stated below.

(i) The curves begin at the first control point (P0) and end at the last control point (Pn).

(ii) The curves begin with a direction defined by the vector formed by the first two control points
(−−−→P0P1) and end with a direction defined by the last two control points (−−−−−→Pn−1Pn).

(iii) The curves are framed within the convex hull defined by the outermost control points.

(iv) The behavior of the curve concavity is consistent with the concavity formed by the control
points, as can be seen in Figure 3.7.

(v) The curves are fully symmetric, i.e., if the control points are reversed, the resulting curve is
the same.

Figure 3.7 – Bézier’s Convex Hull and concavity change

3.3.1.b Algorithm description

The goal of the pre-planning algorithm is to find the optimal curve for each single-turn configura-
tion, i.e. for each trio α, distseg1, distseg2 (see Figure 3.5). Thus, the algorithm iterates over the
different singular curves by changing the value of the three parameters. Then, for each iteration,
it evaluates the optimal curve and saves the relative location of the optimal curves’ control points
into a database indexed with the same three parameters. Finally, the generated databases are
loaded later in the real-time stage, generating the whole path by joining the optimal curve for each
single turn of the itinerary.
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Since the goal is to generate a database for each resolution type, firstly it is necessary to set
the step of variation for the parameters defining the single-turn scenario, that is, for the angle
of the turn (α), the distance to the turn mid-point (distseg1) and the distance from there to the
end of the turn stretch (distseg2), as explained in Subsection 3.3.1.g. Then, the algorithm first
iterates changing the angle of the turn (Algorithm 1, line 1), ranging from the sharpest turn that
the vehicle can perform according to its maximum steering angle (about 35o) up to a straight line
(180o). Thus, the sharpness of the turn is defined.

For each turn with a defined angle α, the algorithm iterates the other two parameters defining
the turn, i.e., the arrival distance (distance up to the mid-point of the turn) and the exit distance
(distance to leave the turn up to the next way-point). Since the databases are thought to consider
realistic turn scenarios, a maximum distance of 40 meters is considered for both arriving and exit
distances. Assuming that a human driver usually begins to signal a turn about three seconds
ahead, a distance of 40 meters has been assumed as the maximum distance to start the maneuver,
considering that 50 km/h (13.89 m/s) is the maximum speed in urban environments.

Once the parameters that define the turn are defined, the road limits are computed geometri-
cally (Algorithm 1, line 2), assuming that the starting and ending way-points are located at the
center of the lane and applying half of the lane width to both sides to build the lane representation
with straight segments. In addition, to ensure that the vehicle stays in the lane limits without
invading the sidewalk curbs, a set of points forming a corridor internal to the lane representation
are computed. These points are separated an inner distance of half the vehicle width (W/2) from
the lane boundaries (points L0, L1, L2 and R1, R2, R3 in Figure 3.6 for the left and right lane
constraints, respectively). Thanks to the Convex Hull property of the Bézier curves described
above, by placing the control points of the curve inside the polygon formed by these points, it
ensures that the curve will be inside this polygon, respecting the road curbs.

Since Bézier curves are defined by control points, the algorithm has to compute their location.
The algorithm tries to find first a third-order Bézier curve (cubic) that fits the requirements, and
if it is not valid, a fourth order Bézier curve (quartic) is evaluated. Thus, the number of control
points will be either four or five. The control points are placed in the defined corridor according
to the degree of the Bézier curve, obtaining the following configurations:

1. On the one hand, in the case of evaluating cubic Bézier curves (four control points): the first
two control points are placed in the first half of the corridor (between the way-points Gn−1
and Gn). First (P0) and last (Pn) control points are the first and last points of the curve.
They are placed at a longitudinal distance of d1 and d2 with respect to the turn mid-point,
respectively, either in the center of the lane or with a lateral displacement, depending on
the concavity change with respect to the previous and following turn, as will be explained
in Subsection 3.3.1.f. However, the inner control points are moved not only longitudinally
but also laterally, in order to find better curves by reducing the curvature. Longitudinally,
they are moved from the turn mid-point up to the location of the external control points,
being placed at a distance of d3 and d4, respectively. Laterally, they are moved from the lane
center (no lateral displacement) to the border of the internal corridor separated half of the
vehicle width. Thus, d3 < d1 and d4 < d2.

2. On the other hand, if quartic Bézier curves are evaluated (five control points), the fifth
control point is placed parallel to the turn central way-point. The algorithm iterates the
lateral displacement dlatM from the lane center (no lateral displacement, matching with Gn
position) to the position of the road constraint R1 in the case of a left-hand curve (or L1 in
the case of a right-hand curve), i.e. a distance of half of the lane width minus half of the
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vehicle width (Rw −W/2), considering the angle of the turn.

One of the design parameters of the planning algorithm is continuity on the path. Generating
paths with G1 geometric continuity increases the smoothness on the path. It is achieved by joining
cubic or quartic curves sharing a common tangent direction. Providing this behavior is a simple
task thanks to the adaptability of the Bézier curves. Considering consecutive turns, where the
joint point between curves corresponds to both last and first control points of the two curves, it
ensures having the last two points of a curve aligned with the first two points of the next one.
Ensuring G2 continuity (where curves also share a common center of curvature at the joint point,
i.e., three control points are aligned in the same vector) would require both first and second function
derivatives continuous at the joint points, which is feasible from quintic Bézier curves [González et
al., 2016a]. Since these curves are computationally more expensive than quartic ones, a constraint
in the curvature at the joint points of the quartic curves is set, evaluating curves whose first and last
points have a curvature approximately zero. This results in an improvement in the G1 continuity
of the path.

Once the algorithm has set these parameters to evaluate the curve, i.e., the order of the Bézier
curve and the longitudinal and lateral distances to place the control points, the control points are
computed as described in Equation 3.2 (see Figure 3.6).

Pix,y =

Gnx + d1
Gn−1x−Gnx

‖Gn−1−Gn‖ + sign · dlat · cos(θ − π
2 ),

Gny + d1
Gn−1y−Gny

‖Gn−1−Gn‖ + sign · dlat · sin(θ − π
2 )

 (3.2)

P2 =

Gn − dlatM ·
Gn−Ln
‖Gn−Ln‖ , if right turn

Gn + dlatM · Gn−Ln
‖Gn−Ln‖ , if left turn

(3.3)

where:

• Pi are the (x,y) coordinates of the control points defined in Equation 3.2, except for the
central control point in quartic Bézier curves, which is computed from Equation 3.3.

• Gn represents the (x,y) coordinates of the way-point defining the center of the turn, whereas
Gn−1 and Gn represent the previous and the next way-point, respectively.

• d1 is the distance from the first way-point of the turn (Gn−1) to the central way-point (Gn)
describing the turn, hereinafter called arrival distance. The first control point of the curve
P0 is placed at this distance from the turn mid-point Gn. In the same way, d2 is the distance
from the central way-point of the turn to the next way-point, hereafter called exit distance.
The last control point of the curve P4 (for quartic Bézier curves) is therefore placed at this
distance from the turn mid-point Gn.

• Conversely, d3 and d4 represent the longitudinal distance to place the internal control points
(P1 and P3, respectively), with respect to Gn. These points also present a lateral displace-
ment with respect to the center of the lane, which is described by dlat in Figure 3.6.

• dlatM is the lateral displacement with respect to Gn for the central control point in quartic
Bézier curves.

• L0, L1, L2 and R0, R1, R2 represent the points that constraint the lane on the left and right
sides, respectively, allowing to build the polygon where the control points are placed. These
points are placed at a distance of W/2, i.e., half of the vehicle width from the lane borders.
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• Ln and Rn are the points defining the left and right corners of the turn.

• θ, which can be either θ1 or θ2, represent the angle used for computing the control points
displaced from the center of the lane, considering θ1 for those in the first segment and θ2 for
those in the second segment.

• sign represents the direction of the turn. It will be negative for right turns and positive for
left turns.

For each turn iteration, another iteration process is done to generate the different Bézier curve
trajectories modifying the location of the five control points Pn, both laterally and longitudinally
in the mathematical definition of the curve (see Equation 3.1). This means changing the values
of the following parameters to generate the control points: the longitudinal distances to place the
control points (d1, d2, d3, d4), and the lateral displacements with respect to the lane center (dlat
and dlatM ).

Once the control points are computed and the curve is generated, an analysis of its feasibility
must be done (Algorithm 1, line 5). It will ensure that the vehicle will be able to track the curve
due to the kinematic constraints are respected since the curves forming the planned path present
a curvature profile smaller than the maximum curvature feasible by the vehicle. The maximum
curvature feasible by the vehicle is given when the angle of the wheel is maximum using the
Ackerman model [Ackermann, 1999]. The analytical method is used to calculate the curvature k
at each point t of the Bézier curve −→B (t), defined in Equation 3.4 for two-dimensional curves [Walton
et al., 2003]. This method calculates the curvature k at each point t of a curve B(t) whose (x, y)
coordinates depend on this variable t [Choi et al., 2010], [Walton et al., 2003]. Because of the
simplicity of this equation, it makes its application in computational algorithms much faster, if
the equation that defines the curve and if its derivative are known.

k(t) =
−→
B ′(t)×−→B ′′(t)∥∥∥−→B ′(t)∥∥∥3 (3.4)

Although there exist other methods to compute the curvature, the analytical computation
allow us to get the curvature from the mathematical definition of the curve, whereas other methods
compute the curvature by generating a circular arc with a set of passed (or future) planned points
(minimum 3), which adds at every step an error in the measurement.

Each of the Bézier curves evaluated must comply with the maximum curvature constraint, as
well as with the zero curvature constraint at the initial and final points of the curve (Algorithm 1,
line 6). This last constraint allows to generate a continuous path, avoiding discontinuities in the
joints between curves or curves and straights, and therefore it is translated into the generation of
smoother paths.

3.3.1.c Optimality criteria

The curves are evaluated through optimality criteria determined by a cost function. The optimal
curve for each turn configuration is the one that minimizes the cost (i.e., maximizes the fitness).
In this work, several cost functions have been used in the intelligent algorithm, as presented below.

1. The first proposed approach takes into account the curvature, as it was considered in the
previous work in the RITS team [González et al., 2014]. Specifically, it considers the measure
of the curvature k in the three most critical points: at the beginning, in the middle and at
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the end of the curve. On the one hand, the first and last point play a key role since they link
with previous and next road stretches respectively. These points correspond to t = 0, t = 0.5
and t = 1 in Equation 3.4, respectively. On the other hand, since the Bézier curves are
generated symmetrically there (i.e. placing the internal control points at the same distance,
as well as the external ones). It leads to a curvature profile whose maximum value is reached
at the mid-point of the curve. Therefore, this first cost function search the curves minimizing
the curvature at these three points, as described in Equation 3.5

Q1 = k0 + kn/2 + kn (3.5)

where n+ 1 is the number of points of the Bézier curve.

2. Coming up next, as a second approach, the cost function considers minimizing the derivative
of the curvature (k′) instead of the curvature (k) on those three points. Equation 3.6.

Q2 = k′0 + k′n/2 + k′n (3.6)

Since the derivative penalizes sudden changes on the curvature, the aim was obtaining a
smoother path avoiding the abrupt changes on the curvature.

Equation 3.7 defined in [Walton et al., 2003] is used to calculate the derivative of the analytical
curvature for each curve in the algorithm, where the parametric curve is defined by the set
of points −→B (t) = (x(t), y(t)) for a real t ∈ [0, 1]

k′(t) = r(t)∥∥∥−→B ′(t)∥∥∥5 (3.7)

where

r(t) =
{−→
B ′(t) · −→B ′(t)

}{−→
B ′(t)×−→B ′′′(t)

}
− 3

{−→
B ′(t)×−→B ′′(t)

}{−→
B ′(t) · −→B ′′(t)

}
(3.8)

Since the Bézier function is well-known, its derivatives can be pre-computed for the degrees
of the curves that are used, in this case for cubic and quartic Bézier curves. Thus, the
first, second and third derivatives of the cubic, quartic and quintic Bézier curves required for
computing the curvature derivative are shown in Equations 3.9, 3.10 and 3.11, respectively.

B′(t) = −3(1− t)2 · P0 + 3(3t2 − 4t+ 1) · P1 + (−3t2 + 2t) · P2 + 3t2 · P3

B′′(t) = 6(1− t) · P0 + 3(6t− 4) · P1 + 3(−6t+ 2) · P2 + 6t · P3

B′′′(t) = −6 · P0 + 18 · P1 − 18 · P2 + 6 · P3

(3.9)

B′(t) = −4(1− t)3 · P0 + 4((1− t)3 − 3t(1− t)2) · P1 + 6(2t(2t2 − 3t+ 1)) · P2

+4((3− 4t)t2) · P3 + 4t3 · P4

B′′(t) = 12(1− t)2 · P0 − 24(2t2 − 3t+ 1) · P1 + 12(6t2 − 6t+ 1) · P2

+24t(1− 2t) · P3 + 12t2 · P4

B′′′(t) = (24t− 24) · P0 + (−96t+ 72) · P1 + (144t− 72) · P2

+(96t+ 24) · P3 + 24t · P4

(3.10)



74 CHAPTER 3. PATH PLANNING IN STATIC ENVIRONMENTS

B′(t) = −5(1− t)4 · P0 + 5((1− t)4 − 4t(1− t)3) · P1

+10(−6t2(1− t)2 + 2(1− t)3) · P2 + 10(−3t2(1− t)2 + 2t(1− t)3) · P3

+5(−t4 + 4t3(1− t)) · P4 + 5t4 · P5

B′′(t) = 20(1− t)3 · P0 − 20(2(1− t)3 − 3t(1− t)2) · P1

+20((1− t)3 − 6t(1− t)2 + 3t2(1− t)) · P2 + 20(3t(1− t)2 − 6t2 + 7t3) · P3

+20(3t2 − 5t3) · P4 + 20t3 · P5

B′′′(t) = (−60t2 + 120t− 60) · P0 + (300t2 − 480t+ 180) · P1

+(−600t2 + 720t− 180) · P2 + (600t2 − 480t+ 60) · P3

+(120t− 300t2) · P4 + 60t2 · P5

(3.11)

3. Results from the prior cost function showed that considering the derivative of the curvature
it is not enough for generating smooth paths due to the non-avoidance of high curvature
peak profiles, especially at the mid-point of the curve. This led to consider a combination of
both curvature and its derivative in the cost function as a third approach. It tries to find the
curves that minimize the derivative of the curvature at these three significant points and the
maximum curvature in the middle of the curve. Equation 3.12 describes the corresponding
cost function.

Q3 = kn/2 + k′0 + k′n/2 + k′n (3.12)

4. With the previous cost function, which minimizes both the maximum curvature and its
derivative in the three most significant points, a slight improvement regarding smoothness
was achieved, but not as much as expected. Therefore, based on [Xu et al., 2012] and [Gu and
Dolan, 2012] the cost function was redefined considering all the relevant static parameters
regardless of the vehicle dynamics, as shown in Equation 3.13. This allows evaluating not only
the comfort but also the efficiency, the energy consumption, and the driving behavior. Those
parameters are the following: (i) First since the generated curves are not symmetrical (i.e.
the control points are not necessarily equidistantly placed), both curvature in its absolute
value |ki| and its change |k′i| are considered in the whole curve (i.e. in all its points). (ii) In
addition, the lateral offset at every point of the curve offseti (that is, the displacement
from the center of the lane) is also considered, since the displacement from the center of the
lane can be translated into a lateral error. (iii) Then, since one of the goals of the planning
is to generate the shortest paths between origin and destination, the length of the path l
is considered as an optimization parameter, with an associated weight wl. (iv) Finally, in
addition to minimize the length of the path, another aim of the optimization function is to
generate the shortest path as fast as possible. Thus, the time t to generate the curve is also
included in the cost function.

Q4 =
n∑
i=0

wki |ki|+ wk′ i
∣∣k′i∣∣+ offseti + wl · l + t (3.13)

5. Finally, since the paths that minimize the curvature and its change are similar among them,
and the less the curvature, the less the distance covered, this parameter can be removed
from the cost function. In the same way, the time to generate the curve is not needed.
Considering that the experimental vehicles (either the current automated vehicles on the
roads or the vehicles on simulation) cannot travel to high speeds, due to either limitations
of the infrastructure (the test track is limited to 30 km/h, and urban roads are limited to 50
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km/h) or limitations of the vehicles (cybercars are limited to a maximum speed of about 20
km/h).

Q5 =
∑n

i=0
wki |ki|+ wk′ i

∣∣k′i∣∣ (3.14)

Thus, the optimal curve for each turn configuration is the one that minimizes the cost computed
by applying the cost function Q5, defined in Equation 3.14. There, n represents the number of
points defining the curve, wki is the weight assigned to the curvature and wk′i the one assigned to
the curvature derivative.

Hence, the goal of this cost function is to minimize both curvature and its derivative in all the
points defining a curve, penalizing abrupt changes of the curvature and trying to find the minimum
possible curvature to have a smooth and safe path.

3.3.1.d Validation of the proposed optimality criteria

Several weights of the curvature and curvature derivative have been taken into account in the
definition of the cost function, trying to give more importance either to the curvature or the
curvature derivative. The results obtained with the several cost functions reflected that the best
weighting was wki = wk′i = 1.

Figure 3.8 shows the most significant subset of turn cases considered for comparing the cost
functions described above. They try to represent the most common scenarios that can be found in
urban environments. The angle of each turn is measured counter-clockwise in the internal side of
the turn, i.e. the point where the curvature is maximum. That is a sharp turn (60o), a right-angle
turn (90o), which can be considered the most common one, and a more opened turn (120o). For
each turn scenario, the optimal curve planned for the path (Figure 3.8a), its curvature profile
(Figure 3.8b), and its curvature derivative (Figure 3.8c) are represented.

As stated before, by considering only either the curvature at the first, the midpoint and the
last points of the curve (Q1 cost function, in red), or its derivative (Q2 cost function, in blue) is not
enough for generating continuous curvature profiles with low maximum curvature. Additionally,
minimizing both the curvature at the midpoint and the curvature change (curvature derivative)
shows a significant improvement concerning smoothness (Q3 cost function, in green), but assumes
that the curves are symmetrical and the maximum curvature is in the midpoint, which is not the
case in our algorithm. Thus, considering both curvature and its derivative at all the curve points
constitutes a better approach, providing less curvy profiles (Q4 cost function, in purple).

After presenting the optimality criteria based on evaluating the cost for generating the path on
the single-turn scenario, the approach is compared with previous methods in the team [González
and Pérez, 2013], [Pérez Rastelli et al., 2014]. As with the literature approaches, that cost function
only considers minimizing the curvature in the three most significant points of the curve (first
point, mid-point, and last point). The first approach used cubic curves where the control points
are statically placed, i.e. considering a fixed distance with respect to the center of the turn. The
second one makes a dynamic allocation of the control points, but only considers a short amount of
positioning changes for the control points in real-time, resulting in a small set of different curves
evaluated, thanks to the inclusion of the curvature derivative as an optimization parameter.

Figure 3.9 shows a comparison between the proposed algorithm using the cost functions Q3 and
Q4, with respect to the algorithms on [González and Pérez, 2013] (static allocation of the control
points) and [Pérez Rastelli et al., 2014] (dynamic allocation of control points but considering only
few variations) using cubic Bézier curves. There, the algorithm which only considers a static
allocation of the control points (in red) is not appropriate, since a bad allocation of the control
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(a) Optimal curves for the different cost functions
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(b) Curvature profiles for the different cost functions
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(c) Curvature derivative profiles for the different cost functions

Figure 3.8 – Comparison of the different cost functions on 60o, 90o and 120o turns

points may generate a path not lying within the limits of the lane, invading the sidewalk, as can be
noticed in Figure 3.9a. An improvement in terms of smoothness can be appreciated with respect
to the dynamically allocated control points algorithm. Since the proposed algorithm with both
cost functions Q3 in green and Q4 in purple present lower curvature profiles (Figure 3.9b), with a
more continuous behavior than the algorithms in [González and Pérez, 2013] (in red) and in [Pérez
Rastelli et al., 2014] (in blue) due to the lower curvature derivative profiles.

Furthermore, Figure 3.10 shows a more detailed set of experiments performed to validate the
optimality approach comparing the proposed cost function with the curvature dependent method
presented in [Pérez Rastelli et al., 2014]. There, four different turns are considered, namely 60o, 90o,
120o and 150o turns, which represent the most common cases can be found in urban roads. Here,
quartic Bézier curves are used, since with cubic curves is harder to fulfill the curvature continuity
constraint included in the algorithm, becoming quartic curves more convenient to ensure that the
junction between consecutive curves is continuous. In Figures 3.10a the red line shows the path
generated using the algorithm described in [Pérez Rastelli et al., 2014], while the garnet and dark
blue lines show the paths tracked by the vehicle, respectively. Meanwhile, in Figures 3.10b the
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(b) Curvature and curvature derivative profiles

Figure 3.9 – Comparison of the proposed optimality criteria with respect to curvature-dependent
approaches placing the control points both statically and dynamically

curvatures and curvature derivatives for both the [Pérez Rastelli et al., 2014] and the proposed
approach [Garrido et al., 2016a] are represented respecting the same colors used in Figure 3.10a.

Table 3.2 summarizes the most relevant information of the prior experiments. There, a compu-
tationally less expensive behavior of the proposed algorithm is shown since the time to generate the
curves with the proposed approach is lower. Considering that for each turn scenario the previous
algorithm has around 2, 000 iterations and the proposed here has around 10, 400, 000 iterations, i.e.
5, 000 times more, the execution time has been reduced a 34% in the worst scenario. It can also be
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Figure 3.10 – Validation of the proposed optimality criteria with respect to a curvature-dependent
approach
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noticed an improvement on the curvature in all the scenarios. Regarding the maximum curvature,
it improves from 32% for a 60o turn up to a 62% for a 150o turn. It can also be shown a reduction
on the mean curvature difference. Furthermore, the derivative of the curvature presents the same
behavior. These results reflect an improvement in the path continuity, mostly in the connection
between curves, where the strength of the algorithm lies. In Figure 3.10b we can appreciate that
the curvature and its derivative with the presented method (gray lines) have lower values than
the obtained with the other method (black lines), improving the continuity and leading us to a
smoother and more comfortable path planning approach.

Table 3.2 – Validation experiments of the optimality function

Turn Algorithm Measurements: time [ms], k [m−1], k’ [m−2]
time |µk| |kmax|

∣∣µ′
k

∣∣ ∣∣k′
max

∣∣
150◦ Pérez et al., 2014 48 0.0466 0.0878 0.1738 0.2340

Proposed approach 13 0.0259 0.0327 0.0560 0.2061

120◦ Pérez et al., 2014 24 0.0925 0.1917 0.3759 0.5415
Proposed approach 13 0.0583 0.0915 0.1936 0.5997

90◦ Pérez et al., 2014 18 0.1893 0.4256 0.7504 1.4033
Proposed approach 12 0.0909 0.2267 0.4247 0.8275

60◦ Pérez et al., 2014 22 0.1637 0.4453 0.7815 1.8833
Proposed approach 13 0.1020 0.3021 0.5709 1.3745

3.3.1.e Checking the optimality of the evaluated curves

After evaluating the optimality of each curve, the algorithm compares it with the current optimal
curve and saves the curve configuration in case its cost is lower than the one of the current optimal
curve (line 12, Algorithm 1). These parameters are the longitudinal and lateral displacement with
respect to the center of the turn placed on the center of the lane, i.e. d1 (longitudinal distance for
P0), d2 (longitudinal distance for P4), d3 (longitudinal distance for P1), dLatP1 (lateral distance
for P1), d4 (longitudinal distance for P3), dLatP3 (lateral distance for P3), and dLatM (lateral
distance for P2).

This information is saved into the corresponding database in order to be loaded later in the
real-time local planner to generate the path by interpolating the corresponding loaded curve for
each turn (line 13, Algorithm 1).

The databases are generated from the inside out. This means that for a specific turn sharpness
(with a defined turn angle α)) the other two indexes of the databases are changed from the center
of the lane to the maximum distance considered, which is 40 meters as explained above. Thus, the
algorithm starts to iterate changing the value of these two indexes defining the arrival distance and
exit distance from the midpoint of the turn with the step change defined in the space discretization
explained in Subsubsection 3.3.1.g. Thus, for instance, for a turn defined by a 90o angle, an arrival
distance of 20 meters and an exit distance of 15 meters, the external control point defining the
beginning of the curve can be at any point between the mid-point and the arrival distance. That
is, it does not have to be necessarily located at the arrival distance of 20 meters from the mid-point
of the turn. The algorithm starts to iterate from the turn mid-point with a distance equal to the
step of variation. That way, since the algorithm has already iterated over the previous distances,
it only has to evaluate the possible curves iterating the internal control points, comparing the
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evaluated curves with the already optimal one for the iterations with the external control points.
It means that for this configuration (90o, 20 meters, 15 meters) the algorithm has already evaluated
the curves iterating the external control points for 20 meters minus the step of variation and 15
meters minus the variation step. That way, assuming a variation step of 2 meters for the external
control points, when starting to iterate for 20 meters of arrival distance, the algorithm has already
computed the optimal curve for 18 meters. It implies that the current optimal solution to start
to iterate could be any curve with an arrival distance less than 18 meters (for instance d1 = 10
meters), where the external control point is placed.

The following XML code (Listing 3.1) shows an example of content belonging to the database
of optimal curves generated in the pre-planning stage, and presented in A. Its structure is defined
with the aforementioned indexes, which are: angle as the turn angle of alpha degrees, segment1
as the arrival distance, and segment2 as the exit distance, whose values are determined by the
length parameter. For each specific turn scenario, i.e. for each angle alpha, distance of the first
segment up to the midpoint of the turn segment1 and distance of the second segment up to the
final way-point segment2, the database saves the parameters generating the optimal curve, which
are the following: d1seg1 and d1seg2 are the longitudinal distances to place the external control
points at both first and second segment, d2seg1 and d2seg2 are the distances to place the internal
control points, respectively. Finally, dLatP1 and dLatP2 represent the lateral displacement of the
control points with respect to the lane center for the internal control points in the first and second
segments, respectively, whereas dLatPMiddle1 represents the lateral displacement for the central
control point. In addition, the cost of each curve is saved in the parameter cost.
<turn>
<angle alpha=" 30 ">
. . .
<ang le alpha=" 90 ">

<segment1 l ength=" 4 ">
<segment2 Bezier_order=" 4 " l ength=" 6 " d1_seg1=" 4 " d1_seg2=" 6 "

d2_seg1=" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1="
0 " co s t=" 26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 8 " d1_seg1=" 4 " d1_seg2=" 6 "
d2_seg1=" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1="
0 " co s t=" 26.682454851472151 " />

. . .
</segment1>
<segment1 l ength=" 6 ">
. . .

</ ang le>
. . .
</ turn>

Listing 3.1 – Database XML subset code

3.3.1.f Human-like driving behavior

One of the goals of the path planning approach is to provide a human-like driving style. Four
database types have been defined with that purpose, as shown in Figure 3.11.

Table 3.3 explains the combination of all possible scenarios that can be found for interpolating
curves later in the real-time planning stage, i.e. it summarizes the typical scenarios that can be
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Figure 3.11 – Path databases for consecutive intersections scenarios

found to perform a turn depending on the direction of rotation of the previous and following curve.
Thus, the scenarios where the initial or final position of the car in the curve are, either at the center
of the lane or displaced towards the right border of the lane, are covered. The starting/ending
points for generating the curve path can be either center in the lane (represented by A) or slightly
moved to the border of the lane (represented by B).

This feature emulates the behavior of the human drivers, who use the entire width of the
lane depending on the road layout. For instance, if consecutive curves are presented in the same
direction, the database whose curves use the entire lane width will be loaded in the real-time phase
for planning the curve for the upcoming turn, i.e. the ones whose ending points are displaced with
respect to the lance center. Therefore, it allows the real-time local planner to load the curves that
fit more with the road layout.

Table 3.3 – Paths databases according to the different directions of rotation (d.o.r)

Trajectory Starting point Ending point
Blue A A
Red A B
Green B A
Black B B

Bézier curves contribute to this human-like style thanks to the ease of manipulation of the
curves, allowing to modify the initial and final position of the car on the lane thanks to the first
and last control points. This permits to the whole trajectory meet both the road and vehicle
constraints above in subsection 3.1.1, as well as an easy path modification to avoid obstacles.
Apart from that, they present a low computational load since they are defined using the analytical
method [Walton et al., 2003], where the curve derivatives are well-known in advance, which permits
a fast trajectory generation [Han et al., 2010].
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3.3.1.g Databases resolution

Thanks to the pre-planning stage the optimal curve for each turn scenario can be pre-computed.
However, a trade-off between database resolution and database size is needed to find the minimum
variation step for the three parameters defining the turn (angle, arrival distance and exit distance)
that ensure generating paths that are continuous and smooth enough.

Obviously, the lower step of variation of the curve parameters, the higher the smoothness of
the curves and the higher the resolution of the database. However, since the databases occupy a
physical space into the disk, and they are read later on in the real-time planning stage, the bigger
they are, the more time to access to them and thus the slower the algorithm it is. Thus, since
the computational cost of evaluating in real-time a large enough set of curves would be high, a
trade-off is needed.

Since both the sharpness of the turn and the available space considered to make a curve are
limited and well-known, a discretization of the space can be done to define this variation step.
There, the angle of the turn changes from a minimum value of 60o, which would represent the
sharpest turn a vehicle could find when driving (according to the maximum steering of the vehicle,
which normally is between 37 and 40 degrees), up to 180 degrees, which would represent a straight-
line segment. Once the real-time planner receives the way-points of the global path, both the angles
of the turns and the distances between way-points are computed.

The goal is generating the curves that fit more with the real scenario. The angle of the turn is
rounded to the lower value applying the variation step, reproducing the worst case. For instance,
if an angle of 93.5o is measured, considering a variation step of 5o, the turn is approximated to a
90o turn and not to a 95o turn, i.e. to the closest sharp turn.

First, the different curves have been evaluated considering a variation step of five degrees for
the sharpness of the curves. After testing with different configurations, ranging from one degree up
to ten degrees of variation step, the chosen five degrees was the one providing the best relationship
between path quality and computational expense.

Second, for both the distances to the external control points (arriving and exit distances) as
for the internal control points, a variation step must be chosen. In the same way as for the angle,
an approximation is needed to reproduce the turn scenario as close as possible to the reality,
considering the worst case. Thus, the values of the distances are approximated to the smaller
distance, since it is more realistic consider having less free space than having more free space to
perform the curve.

In order to search the best variation step for the distances, the same four characteristic turns
already presented were considered: 60o, 90o, 120o and 150o. For each scenario, the pre-planning al-
gorithm generated the optimal curve changing the values ranging from one meter (as the minimum
variation step) up to five meters (as the maximum variation step).

We tested the different databases containing the pre-planned trajectories for the isolated curves
with the model of the vehicles in Matlab-Simulink, as shown in Figure 3.12. This model has been
set-up with the Cybercars configuration and is presented in the following subsection (Section
3.3.1.h). The planning module has been introduced to analyze the variation of the both the lateral
and the angular error, as well as the variation of the curvature, with respect to the most accurate
configuration, being the one where the distances are changed every meter (lower value considered
as variation step).

If a significant error is detected when augmenting the variation step, the last variation step
is considered to be the best one. Table 3.4 shows the comparison of three databases considering
different steps of variation of the external control points (both for the arrival distance and the exit
distance).
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Cybercar model Errors calculation

Figure 3.12 – Matlab-Simulink model for comparing the steps of variation for the databases gen-
erated in the pre-planning stage

Table 3.4 – Comparison of the steps of variation of the curve parameters on the different databases

Turn Lateral error [m] Heading angle [deg] Curvature [m−1]
Angle DB mean(abs) var (%) mean(abs) variation (%) mean(abs) variation(%)

60o
1m 1m 0.0530 0.00 8.1732 0.00 0.0581 0.00
2m 1m 0.0575 8.49 8.4473 3.35 0.0607 4.48
5m 1m 0.0586 10.57 8.4029 2.81 0.0587 1.03

90o
1m 1m 0.0592 0.00 9.9158 0.00 0.0676 0.00
2m 1m 0.0510 -13.85 10.2236 3.08 0.0766 13.31
5m 1m 0.0594 0.34 10.1939 2.78 0.0687 1.63

120o
1m 1m 0.0281 0.00 6.2424 0.00 0.0441 0.00
2m 1m 0.0342 21.71 5.8505 -6.28 0.0409 -7.26
5m 1m 0.0294 4.63 5.6943 -8.78 0.0419 -4.99

150o
1m 1m 0.0087 0.00 2.8803 0.00 0.0199 0.00
2m 1m 0.0211 142.53 2.3402 -18.75 0.0174 -12.56
5m 1m 0.0153 75.86 2.9614 2.82 0.0226 13.57

The databases are compared with respect to the more discrete one, i.e. the one where both
external and internal control points are moved every meter, called "db 1m 1m". Although the
difference of the mean value of the control variables (lateral and heading error, and curvature) is
close between second and third databases, presenting both a difference of about 15 %, practical
results show that in some cases there is no solution for the less discrete databases, which has not
been reflected in the database. The intermediate database (db 2m 1m) has been the one chosen
for the experiments since the discretization level is higher and with a good number of iterations
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(about 6.5 million iterations in the pre-planning stage, against 153 millions of the more discretized
one and almost 4 millions of the most discretized). Considering the smallest database would not
provide much more accuracy (a reduction of less than 10 % of improvement in the variables),
but would mean a bigger increment in the time to access the databases and consequently in the
computational cost of the algorithm.

3.3.1.h Vehicle model

The vehicle model considered for validating the pre-planning stage in simulation on Matlab-
Simulink is a dynamic bicycle model [Rajamani, 2011] since this model is appropriate for vehicles
operating at low-speeds.

Although the control of the vehicle is out of the scope in this thesis, some basic information
about the algorithm used in the team architecture is provided. Equation 3.15 describes the motion
of the vehicle in the Cartesian plane, according to the kinematic model of the vehicle, represented
in Figure 3.13.

Figure 3.13 – Bicycle model (re-make own figure with described nomenclature)

Vehicle dynamics terminology from SAE [Society of Automotive Engineers. Vehicle Dynamics
Committee, 1978] is used as the convention for the nomenclature. For describing this movement,
three coordinates are needed: x and y for the position and ψ for the orientation of the vehicle.
Additionally, L represents the wheelbase, ψ is the orientation angle with respect to the global
frame, and δ is the steering angle.

x′(t) = dx(t)
dt

= vxcos(ψ(t))

y′(t) = dy(t)
dt

= vxsin(ψ(t))

ψ = dψ(t)
dt

= vx
L
tan(δ(t))

(3.15)

Since these vehicles operate at low speed, both the slip and the forces transferred between
wheels of the same axle can be neglected. It leads to the assumption that the maximum curvature
feasible for the vehicle is when the steering angle is maximum.
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3.3.2 Real-time planning stage

As shown in Figure 3.14, this phase can be divided into three fundamental tasks. First, an analysis
of the turns and straights of the itinerary through which the vehicle will pass are analyzed, in
terms of available space and sharpness. Second, it makes a real-time evaluation to find the optimal
location of the junction point between curves, evaluating the turns in pairs by loading from the
databases the curves that fit more the road layout. Third, for each turn, once the junction point
is found, the algorithm generates the optimal curve for the upcoming turn with the parameters
loaded from the database. In addition, it keeps the optimal curve parameters for the following
turn, which has been planned in advance. Finally, after repeating the process for all the turns on
the itinerary, the full static path is transmitted to the dynamic path component, which modifies
it in the presence of obstacles on the path and sends it to the controller.
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Figure 3.14 – Real-time static local path planning flowchart

Urban environments usually consist of a series of road elements such as turns, intersections, and
roundabouts, which can be found very consecutively and with limited space between one element
and the following. Since the way-points defining the path following itinerary are received from the
global planner, the algorithm can easily compute the distance between these elements, as well as
the sharpness of the turns needed to pass through them. Thus, for every single turn, the real-time
algorithm plans the curve that fits more by considering a pair of turns: the upcoming and the
following one. By planning two curves concurrently, we try to distribute the Bézier curves on the
road improving the comfort by reducing the cost function for the pairs of curves.

Thanks to the databases generated in the pre-planning stage, the real-time algorithm only has
to determine which is the best junction point between them. Thanks to the pre-planning stage,
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the curves generated for each turn by loading its parameters from the databases are already the
optimal ones. The only operation done in real-time is the evaluation of the junction point of the
pair of consecutive curves (both upcoming and next one). This junction point is moved on the
shared segment, and the cost of both curves is computed accordingly. Then, it analyzes if the
evaluated pair is the optimal one by comparing with the cost of the current optimal one.

Algorithms 2 and 3 describe the procedure the real-time planning follows to generate the static
path, where the first one represents the main algorithm, and the second one details the function
for the path generation, making use of the mentioned pre-planning stage.

Algorithm 2 Real-time local path planning for static areas
1: Init: load databases, read vehicle and road properties
2: Read: veh. position and orientation, itinerary way-points
3: if first time then
4: Locate vehicle on the itinerary
5: Add first itinerary point to the path list
6: Generate a 1st path until reaching the horizon distance
7: Locate vehicle on the path and remove past path points
8: Calculate distance to travel from vehicle position to the next path point
9: Add vehicle position point into the path list front

10: if distance to travel < horizon distance then
11: Generate path until horizon is reached
12: Send local path through a buffer to the controller

First of all (line 1, Algorithm 2), the algorithm has an initialization phase where the databases
containing the optimized curves for the single-turn scenarios are loaded into main memory. In
addition, the algorithm reads the information concerning both vehicle and road constraints, i.e.
the length and width of the vehicle, its maximum steering angle and the width of the lane, as well
as the number of lanes of the road.

Once the initialization phase has finished, the vehicle position and orientation are read from
the onboard sensors or from the simulation component that provides the vehicle state at every
time interval. Furthermore, the component receives from the global path the way-points defining
the itinerary (line 2, Algorithm 2). This will let the algorithm compute the physical borders of
the lane geometrically, as explained in previous sections.

After receiving all the needed input data, the algorithm first must localize the vehicle on the
itinerary (line 4, Algorithm 2). If the path following scenario has just started, the vehicle position
at the beginning is added as the first point of the trajectory list containing the points of the
local path. Then, a first trajectory until reaching the horizon distance can be computed (line 6,
Algorithm 2). This path is generated using Algorithm 3, that will be further explained. If the
vehicle has already started the path following maneuver, after localizing the vehicle on the global
path and the local path, the past points are removed from the lists, i.e. the points describing
positions where the vehicle has already passed through (line 7, Algorithm 2). The distance to
travel from the vehicle position to the next path point is computed (line 8, Algorithm 2). If
this distance less or equal than the planning horizon, then the algorithm computes the path until
reaching the horizon (lines 10 and 11, Algorithm 2). Finally, the planned local path is sent to the
controller through a buffer (line 12, Algorithm 2).

The path generation process is presented in Algorithm 3, and it is explained below.
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Algorithm 3 Function: Path generation
1: for i=currentWayPoint; i<waypoints.length; i++ do
2: if ∃ i+3, i+4 (∃ 2nd & 3rd turns)) then
3: Define turns [i, i+2], [i+1, i+3], [i+2, i+4]
4: Get: distances between turn points, turn angles
5: Evaluate type: single, first, middle or last turn
6: Compute geometrically road limits and constraints
7: Evaluate way-point type: left or right turn, straight
8: Normalize values to the DBs discretization step
9: Evaluate curves junction location interval

10: if i = pathBegin & i+2 6= path end (∃ a 1st turn) then
11: Iterate junction point between 1st & 2nd turns (m)
12: Analyze direction of rotation 1st & 2nd curves
13: to determine DB to load for 1st curve
14: Iterate junction point between 2nd & 3rd turns (n)
15: Analyze direction of rotation 2nd & 3rd curves
16: Load the optimal curve info for 2nd curve
17: if curve1.cost + curve2.cost < bestCost then
18: bestCurve1 = curve1; bestCurve2 = curve2;
19: best%SegmentCurve1 = m
20: best%SegmentCurve2 = n

21: LastCurveSegment2% = best%SegmentCurve1
22: LastCurveSegment3% = best%SegmentCurve2
23: else if i 6=pathBegin & i+26=path end (mid-turn) then
24: curve1 = bestCurve2 (already computed 1st curve)
25: Iterate junction point 2nd [& 3rd turns] (n)
26: Analyze direction of rotation 2nd [& 3rd curves]
27: Load the optimal curve info for 2nd curve
28: if curve1.cost + curve2.cost < bestCost then
29: bestCurve1 = curve1; bestCurve2 = curve2;
30: best%SegCurve1 = LastCurveSeg3%
31: best%SegCurve2 = n

32: LastCurveSeg2% = best%SegCurve1
33: LastCurveSeg3% = best%SegCurve2
34: else // i+2=path end (last curve)
35: consider whole length of segment2
36: repeat process of line 23 only for the last curve
37: Compute control points location from curve’s info
38: if curve was planned (control points generated) then
39: Compute Bézier curve points from control points

First of all, the algorithm iterates over the way-points of the itinerary analyzing which kind
of scenario they represent (turn, intersection, roundabout, etc). In this work, all of them are
considered as turns. Then, since the way-points defining the itinerary are known in advance, the
algorithm can profit from that information to optimize two curves in parallel. Since the urban
scenarios may present consecutive turns in a short period, by planning the path considering an
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extended horizon of two curves allows the algorithm to generate smoother paths by considering
the direction of rotation of the curves on the road.
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Figure 3.15 – Segmentation process of the consecutive turns shared segment to search the optimal
junction point between curves: flowchart (a) and use-case example (b)

Thus, a process to distribute the curves on the space is needed. Flowchart of Figure 3.15a
describes the process to segment the shared space between curves in order to evaluate the position
to place the junction point between them. Meanwhile, Figure 3.15b represents a scenario consisting
of three consecutive turns. This Figure is used as support to explain the segmentation process.
There, the three turns are named by their central way-points, namely Gn−1, Gn and Gn+1. The
corresponding Bézier curves for the three turns are C1 in orange for the first, C2 in green for the
second, and C3 in red for the third turn. There, since the first turn is more narrowed than the
second one, the junction point is searched in the half of the shared segment closer to the second
turn (Gn). Similarly, the second turn is more opened than the third one, so the junction point
between the curves is searched in the half of segment closer to Gn. That way, a natural driving style
is searched for the system, where it tries to compensate the sharpness of the curves more difficult
to track by using the whole shared space between curves. Additionally, the concavity changes are
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considered. For instance, since first is a curve to the left and second one to the right, this concavity
change makes both curves join in the center of the lane, reducing that way the curvature profile.
However, second and third turns are both to the right. Thus, no concavity change is produced, and
the system get benefit from the developed databases to make both curves join using the available
width of the lane, reducing that way the curvature and the curvature changes.

If in addition to the upcoming turn there exist a 2nd and a 3rd one (line 2, Algorithm 3), the
algorithm takes them into account by:

• computing the distances between the way-points defining the center of the turns.

• getting the angles of the turns and the direction of rotation according to their concavity
changes.

• evaluating the type of turn in the itinerary (first turn, last turn or a mid-turn).

In addition, road limits are obtained geometrically from the global path, whose points define
the center of the lane (line 6, Algorithm 3).

Then, the direction of rotation of the upcoming turn is analyzed, checking if it is a left turn,
a right turn or a straight segment. This further lets the algorithm place on the correct side the
control points, as well as consider the correct internal lane constraint according to the concavity
change of the curve.

Since the databases containing the already optimized curves for the single turn scenarios have
been discretized as explained in Section 3.3.1.g, the parameters that describe each turn are nor-
malized, namely the angle of the turn, the arrival distance and the exit distance to the mid-point
of the turn. Those parameters are normalized to the lower value to bring the scenario closer to
the most realistic case, loading the nearest closed curve from the database. For instance, if the
geometrically measured angle for the upcoming turn is 92o, assuming a variation step of 5o between
turns as the database discretization, the optimal curve for a 90o turn will be considered. In the
same way, the arrival and exit distance are normalized according to the variation step for both
segments in the database, which is not the same than the one defining its angle.

Since the algorithm aims to provide a human-like driving style, a segmentation of the shared
segment between curves is proposed considering both the relationship between the turn sharpness
and the physical space for performing the curves.

First of all, the position of the turn in the path is analyzed, verifying if the upcoming turn is
either the first one of the path, the last one or an intermediate one, considering the three cases
separately for the segmentation process.

Thus, the algorithm benefits the turn more difficult to perform, i.e. the junction point between
curves is placed in the half of segment closer to the softer turn. Then, if the 1st turn to perform
(upcoming turn) is softer than the 2nd one (next one), the junction between both curves is moved
in the second half of the shared segment. On the contrary, the junction point is moved along the
first half of the shared segment. In order to plan in advance the next curve (2nd curve), an analysis
of the relation between the 2nd and the 3rd turns is done similarly. Therefore, if the 2nd turn is
sharper than the 3rd one, the junction point for the second curve will be placed on the 2nd half of
the shared segment, otherwise in the first one.

Once the analysis to place the junction point between curves has been done, the algorithm
starts to iterate the position of the junction point between 1st and 2nd turns. Since the most
logical situation would be starting to iterate from the middle of the shared segment, for the exit
distance of the 1st curve the algorithm first evaluates the curves with an exit distance of a 50% of
the actual segment length. This exit distance will take values from the half of the segment until
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the beginning (or the end) of the segment, depending on the case, with a variable step of change
depending on the chosen discretization. In this case, a step of 5% has been used.

A

B

(a) The algorithm searches the best location for the junction point between curves in real-time

A

B

(b) Planned path after repeating the process for every curve where the best junction points are maintained

Figure 3.16 – Real-time path planning process: from loading the curves from the databases to get
the whole path

Figure 3.16 shows a possible urban environment, consisting of a two-lane road where some
consecutive turns can be found.

In the upper sub-figure, the red points represent the way-points defining the itinerary for the
path-following scenario, received from the global planner. The point A shows the departure point
and the point B the destination. Then, the algorithm computes the angles of the turns that will be
found in the itinerary (α1, α2, α3 and α4), and the distances between them (segment1, segment2,
segment3 and segment4). The upper sub-figure (3.16a) shows the process to find the best junction
point between the turns α1 and α2 considering the sharpness of both. In that case, as α1 is sharper,
the algorithm searches the junction in the half of the segment2 which is closer to α2, giving that
way more space to the curve which is more difficult to track. In addition, the direction of rotation
of the curves is considered to decide whether to start and end the curve at the center of the lane
or close to the lane boundary. Here, as α1 is the first one the curve starts at the center of the lane.
Besides, as α1 is a right turn and α2 is a left turn, the junction point between them is placed at the
center of the lane, due to the previously described smoothness criteria. Therefore, the algorithm
generates the optimal pair of curves for both turns by evaluating the curves loading them from the
databases for each position of the junction point. The location where the sum of the cost for both
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curves is minimized is considered the best junction, and the curve parameters for both turn α1
and α2 are saved. In addition, the curve points of the first planned curve are added to the planned
path in order to be tracked. The process is repeated for the following turns, getting the whole
static path as depicted in the below sub-figure (3.16b). In the following iterations, the difference
lies in the upcoming turn, which has already been planned and the algorithm only has to plan the
following one, in case the first one remains feasible.

Once the upcoming curve and the following one are planned, the cost of both curves has been
computed, and then an evaluation is done to verify if that configuration is the optimal one, i.e. if
the sum of the cost of both curves is less than the cost of the optimal configuration. Then, the
percentage of the best percentage for the second curve is saved.

Finally, after the iteration is saved, the optimal curve to perform the upcoming turn has
already been planned, it can be generated loading it from the proper database with the control
points location as indexes of the databases.

3.4 Conclusions
This chapter has presented the path planning algorithm for static environments. It consists of
two stages: (i) pre-planning stage, where the optimal curves for any turn scenario are generated
considering the static information of both the kinematics of the vehicle and the road layout.
(ii) real-time planning stage, where a continuous path is built joining the optimal pre-planned
curve for each turn, considering the actual road layout. This two-staged local planner provides a
human-like driving style thanks to the following features:

• It benefits from the pre-planning stage [Garrido et al., 2016a] to generate smoother paths,
where only the junction point between the optimal curves is evaluated in real-time

• An extended planning horizon of two consecutive curves is considered, optimizing two curves
concurrently (the second one in advance), thanks to the knowledge of the digital map provided
by the global planner [Garrido et al., 2016b].

The goal of this stage is to generate a path that adapts the more to the environment, with the
least curvature changes in order to ease the path tracking searching comfortable travel for the
passengers. Thus, this static path is sent to the dynamic local planner, which modifies it according
to the dynamic changes on the scene. This dynamic planner is presented in the following chapter.
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Chapitre 4

Planification des trajectoires pour des
environements dynamiques

Below is a French summary of the following chapter "Path planning in dynamic environments".

Ce chapitre présente la démarche de planification illustrée à la Figure 4.1 pour adapter en temps
réel le chemin statique généré en fonction des événements dynamiques survenant dans les environ-
nements urbains, en modifiant le chemin en maintenant la continuité et le confort. Tout d’abord,
Section 4.1 présente un bref aperçu des différentes stratégies permettant de surmonter les obsta-
cles rencontrés dans la planification des parcours. Deuxièmement, le problème est formulé dans la
section 4.2, où l’approche proposée est présentée. Il est basé sur une génération de route virtuelle,
présentée dans la section 4.3, où un corridor est généré en temps réel pour traiter le problème
dynamique en tant que problème statique (sous-section 4.3.2). combinée avec une discrétisation
de l’espace basée sur une grille (sous-section 4.3.1). Enfin, quelques conclusions sont tirées de la
section 4.4.
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Chapter 4

Path planning in dynamic
environments

Chapter 3 has shown the path planning strategy for static environments, where a continuous path
is generated based on a two-stage approach, 1) combining a pre-planning stage, where the optimal
curve for every single turn is precomputed; and 2) a real-time stage that evaluates the junction
of the optimal curves loaded from the pre-planning stage by considering a human-like driving
behavior and adjusting them the most to the road layout.

In order to make a path planner able to deal with dynamic environments, there are two main
aspects to be considered: 1) Urban environments are complex scenarios. The interaction with the
different road users causes challenging situations where the scene changes dynamically in short
time intervals, requiring a fast response of the system being able to adapt the path avoiding the
obstacles in a safe way. 2) Despite these difficulties, both vehicles and rest of VRU can be classified
according to their dimensions which are well-known. These characteristics physically limit their
speed and therefore their position. This assumption let us consider the path planning system
developed in Chapter 3 as the basis to optimize the dynamic environment by modifying the path
to address the dynamic scenarios as static.

This chapter presents the planning approach in Figure 4.1 to adapt in real-time the already
generated static path according to the dynamic events that arise on urban environments, being
able to modify the path maintaining the continuity and the comfort. First, Section 4.1 presents a
short review about different strategies to deal with obstacles in path planning. Second, the problem
is formulated in Section 4.2, where the proposed approach is presented. It is based on a virtual
road generation, presented in Section 4.3, where a corridor is generated in real-time to treat the
dynamic problem as a static problem (Subsection 4.3.2) combined with a grid-based discretization
of the space (Subsection 4.3.1). Finally, some conclusions are drawn in Section 4.4.

4.1 Overview of dynamic path planning strategies
The problem of navigating through dynamic environments was first tackled on robotics, where
mobile robots generate collision-free paths, avoiding any possible obstacle or physical barrier that
may prevent the robot from reaching the destination point.

The path planning strategies for robots used in the literature range from grid-based A* algo-
rithms, roadmaps built with Voronoi diagrams or visibility graphs, cell decomposition and artificial
potential fields [Willms and Yang, 2006]. These algorithms are mainly used in static environments
as global planning methods since they are computationally expensive for complex environments.
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Figure 4.1 – Path planning system architecture

Additionally, they are not convenient for structured environments such as urban or peri-urban
roads, where they can stuck in a local minima, for example in U-turns [Willms and Yang, 2006].
Lately, techniques based on artificial intelligence have been introduced, for example, based on neu-
ral networks or reinforcement learning based models. Sampling-based approaches such as RRT*
have been recently applied to perform the path re-planning in the presence of random and un-
predictable obstacles in the path. This algorithm is suitable for robotics since it provides a quick
solution, but it is not optimal since the path generated is not continuous unless some local planning
technique is applied [Connell and La, 2017]. In addition, the behavior of other road participants
can be modeled more accurately than the behavior of moving robots or other objects in a non-
structured space.

Generating collision-free trajectories on dynamic scenarios for non-holonomic vehicles involves
complex decision making including the performance of obstacle avoidance maneuvers, if the ob-
stacle is not moving, or overtaking maneuvers if the vehicle is traveling slower in the same lane.
Unlike solutions for static environments, not only the information concerning the ego-vehicle is
considered, but also that of the obstacles surrounding it.

Overtaking maneuvers have been treated in the literature as three-phase maneuvers, consisting
of: first a left lane change to avoid the slower vehicle, then a lane keeping to pass it and finally
another lane change, to return to the original lane [Shamir, 2004]. It is considered as one of
the most challenging maneuvers due to the different factors that can lead to a collision between
overtaking and overtaken vehicles. For instance, a wrong estimation of the distance to the in-front
vehicle to overtake, a wrong estimation of its speed or the lack of vision beyond the obstacle in
front, due to malfunctions in the perception system or the on-board sensors [Richter et al., 2016].

A classification of the different approaches has been drawn depending on which is the main of
the application: from a safety point of view, from a geometric point of view, from a planning point
of view, and from a control point of view.

First, from a safety point of view, emergency lane change maneuvers where studied in the late
90s. There, the minimum distance from which a static obstacle cannot be avoided given an initial
speed, performing the sharpest feasible maneuver was determined in [Shiller and Sundar, 1998].
The generation of collision avoidance maneuvers in emergency scenarios where the automated
vehicle may need to go up to their handling limits was treated in [Funke et al., 2016]. There, an
MPC-based approach was presented, considering stabilization and collision avoidance as a single
problem.

Second, from a geometric point of view, Shamir [Shamir, 2004] stated that the shape and
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time of the lane change trajectory do not depend on the velocity of the obstacle. He proposed
an optimization problem to determine the time and distance of the trajectory considering the
maximal acceleration during the maneuver as the only dynamic constraint, generating minimum
jerk trajectories. Murgovski et al. [Murgovski and Sjöberg, 2015] also addressed the problem
from an optimization point of view, minimizing the error on the reference velocity and position
trajectory to plan the entire maneuver in one optimization step.

From a path planning point of view, a combination of quartic polynomial curves for the lane
change maneuvers and cubic polynomial curves for the lane keeping maneuvers were employed
in [Xu et al., 2012] for generating trajectories to avoid slower obstacles in the route, applying
an iterative path and speed optimization which is less time-consuming than a simultaneous opti-
mization. Cubic polynomials were also used in [Petrov and Nashashibi, 2014a] to define the lane
change trajectory geometrically. In addition, from a control point of view a kinematic modeling
of the relative inter-vehicle kinematics for the overtaking maneuver was proposed, considering no
information is received from the infrastructure, and being able to adapt the maneuver to overtake
multiple obstacles, assuming they travel performing a rectilinear movement. Similarly, Naranjo
et al. [Naranjo et al., 2008] determined the point where the curve for changing the lane in the
overtaking should finish, corresponding to the position where the rear part of the ego-vehicle is
parallel to the front part of the overtaken vehicle. Besides, they propose to trigger the overtaking
maneuver considering the longitudinal distance it would take to change the lane and estimating
the distance traveled by the overtaken vehicle, assuming it is traveling at a constant speed. Also
from a control based point of view, a fuzzy-logic decision system for the longitudinal control of
the overtaking maneuvers, even under risky situations, was presented in [Pérez et al., 2011]. Al-
though these last works present the lane change problem using geometric approaches, their main
focus is on the control point of view, thus, comfort in the lane change paths is not a key element
there. Different security lateral distances between overtaking vehicle and obstacles in the lane
change maneuver were defined in [Milanes et al., 2012] to perform safer maneuvers. There, the
dimensions of the obstacles are considered, thanks to a vision system that classify the obstacles
according to their estimated width and length. Most of the strategies described above address the
lane change problem from a spatial point of view. Nilsson et al. [Nilsson et al., 2017] evaluated the
appropriate inter-vehicle traffic gap and time instance to perform a lane change maneuver. There,
a reachability analysis is done to ensure safe margins and satisfying the physical limitations of the
road.

Quintic polynomial curves have been considered in some works because they generate a smoother
curve than quartic and cubic approaches, ensuring C2 continuity. González et al. [González Bautista,
2017] used them not only to generate a smooth collision-free path but also to generate a continu-
ous speed profile, where the quintic curves assure a smooth jerk and acceleration, improving the
comfort. Qian et al. [Qian et al., 2016] combined a Subplex optimization of the quintic-curves path
with a reference speed profile optimization using an MPC controller that considers some dynamic
and energy consumption constraints. You et al. [You et al., 2015] also used quintic curves in a
collaborative strategy where they apply the infinite dynamic circles approach for detecting possi-
ble collisions. An optimization method for the steering angle searching both vehicle performance
and driving comfort by reducing the lateral acceleration during the lane change was proposed in
Zhang et al. [Zhang et al., 2013]. This optimized steering angle is used afterward to generate a
collision-free candidate trajectory based on a predictive kinematic model, where the movements of
the other vehicles are predicted under traffic conditions in simulation. Trigonometric and expo-
nential functions were used in [Ji et al., 2017] to geometrically describe the road and the dynamic
constraints of the obstacles, respectively, building a 3D potential field for the collision avoidance
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path planning. Then, it uses a Multiconstrained MPC (MMPC) for the path-tracking, trying to
minimize risk to the vehicle through evasive maneuvering and stabilizing the vehicle at high speeds.

The following works describe the use of grid-based planners for dynamic environments. An
extended solution to consider the uncertainty and dynamism of the road on the trajectory gener-
ation is the use of grids as drivability maps. Fu et al. [Fu et al., 2015] combined the navigation
circle method with cubic splines to analyze the collision risk and generate the collision-free tra-
jectory but considering dynamic obstacles as if they were static. A road course estimation on a
grid-based representation of the environment is done in [Tanzmeister et al., 2016]. It benefits from
the maps of the static world to generate the collision-free paths combining A* and RRT graph-
based algorithms. The first one to find the minimum cost path and the second one to explore the
search space uniformly. However, the approach is computationally expensive and the grid does
not consider the dynamic changes in the environment. A dynamic occupancy grid map based on
a stereo-vision framework instead of the classical Lidar-based framework was proposed in [Li and
Ruichek, 2014]. It combines the segmentation of the moving objects with an occupancy probabil-
ity estimation to take into account their motion. A Bayesian grid holding both occupancy state
and velocity was employed to represent the environment providing an enhanced estimation of the
motion of the objects in the scene, especially when they are not describing rectilinear movements
on the urban environment [Gindele et al., 2009] . This approach was tested using the Team An-
nieWAY’s automated vehicle which participated in the DARPA Urban Challenge. Hundelshaussen
et al. presented an ego-centered occupancy grid-based method for drivability [Hundelshausen et
al., 2009], combining it with the tentacles that are used for evaluating it and to perform the
motion, integrating the method on the finalist Team AnnieWAY’s vehicle of the DARPA Urban
Challenge [Kammel et al., 2008]. A method to deal with uncertainties in the perception of the
environment by combining Belief Functions and clothoid tentacles is proposed in [Mouhagir et
al., 2017]. There, an evidential occupancy grid is built based on these functions to represent the
uncertainties, whereas a set of clothoid tentacles is used for planning the local trajectories. The
evidential grid considers the safety distances between the automated vehicle and the obstacles, and
they enhance the binary occupancy grid by including the road limit and the longitudinal expansion
of the dynamic obstacles.

4.2 Problem formulation

From the literature review, one can appreciate how the formation of collision-free paths handling
the dynamics of the obstacles must combine a technique for exploring the space and another for
the path generation considering the motion of the obstacles [Gindele et al., 2009], [Hundelshausen
et al., 2009], [Mouhagir et al., 2017]. When dealing with complex urban environments, multiple
traffic agents generation can occur in a really short period of time, underlying the importance of
being able to adapt vehicle’s trajectory in real time.

This thesis presents an approach that divides the motion planning problem for urban envi-
ronments into two sub-problems. First, the optimal path to arrive at the desired destination is
computed, considering the physical limitations of the vehicle as well as the road constraints, as
presented in Chapter 3. There, a two-stage algorithm is proposed. The pre-planning stage (Sec-
tion 3.3.1) aims to benefit from the static information of both vehicle and road to pre-compute
the optimal curves that the vehicle may encounter in all urban scenario. Then, a real-time local
planning stage considers the actual road layout to load the optimal curves, searching the best
junction between them to provide a smooth trajectory.

This chapter presents the strategy to deal with dynamic environments. The strength of this
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algorithm lies in the benefit of the already planned path for the static environment to adapt it to
the dynamic scene, providing a real-time response. Next sections present the developed algorithm,
where a grid-based local planning algorithm is developed to represent the scene considering the
obstacles that the ego-vehicle may find on the route. It predicts their future position according to
the vehicle type, creating then a virtual lane to address the problem as a static environment. There,
the obstacle avoidance path is built by joining two curves for each lane change according to the
virtual lane configuration, loading them from the pre-planning stage. A verification process is done
in the real-time planning stage to check if the path needs to be re-planned. A new avoiding path is
computed if the prediction of the distance covered by either ego-vehicle or moving obstacle is far
from those predicted. Furthermore, an auxiliary trajectory to return safely to the lane is computed
at every planning step during the avoiding maneuver. It would allow to the automated vehicle to
return safely to the original lane in case some unforeseen situation arises, such as detecting another
vehicle in the left lane or a sudden change of the vehicle in front, forcing the algorithm to abort
the current avoiding maneuver and return to a safe configuration.

A flowchart of the dynamic planning process is depicted in Figure 4.2. First, the scene is
discretized through a grid from the information of the obstacles coming from the perception stage.
There, a classification is done to determine what type of road user are the obstacles perceived.
After adding a security space behind and ahead the obstacle, a virtual lane is computed from the
original global path. It is done adding two additional way-points for each lane change, allowing
that way to re-plan only the portion of the path where the obstacles are found generating the
avoiding path as performing two static curves for each lane change, benefiting from the static local
planner. Additionally, a checking process is done to verify if the estimated dynamics of both ego
and obstacles are correct for generating a safe path, or if a re-planning process is needed. Finally,
the resulting path is transmitted to the control stage for the tracking process.

Grid 

discretization

Virtual

lane

Path re-planning 

for the virtual 

lane curves

Road 

constraints

Final local path

Static local path

Global 

path

Figure 4.2 – Dynamic local planning system architecture

4.3 Dynamic local planning algorithm based on a virtual lane
generation and a grid discretization

This section considers the impact of the dynamic behavior of other road users on the path. Specif-
ically, an obstacle avoidance solution is proposed to adapt the planned path to avoid the possible
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static obstacles detected in the path and overtaking the dynamic ones, such as other cars, bikes or
pedestrians.

Maneuvers to avoid a static obstacle or to overtake a dynamic obstacle have been defined in
the literature three-phase maneuvers [Shamir, 2004]: vehicle first changes to the left lane, then
it keeps the lane surpassing the obstacle and then returns to the original right lane. With the
proposed approach, these phases consist of four curves, as depicted in Fig. 4.3: two for the first
lane change and another two for changing back to the original lane.
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Figure 4.3 – Trajectory planned with the proposed algorithm for obstacle avoidance

The proposed solution for adapting the static path to the dynamic environments avoiding the
obstacles is to build a virtual lane overlapping the current lane, which modifies the way-points of the
itinerary and makes the local-planner re-plan only the driving area where interaction with other
traffic agents occurs. This is based on a grid discretization of the road, where the information
about the obstacles is received from the perception and then used to classify them providing a
safe clearing distance for the virtual lane generation and therefore, for the obstacle avoidance
maneuver. Thus, the proposed algorithm for avoiding static obstacles and overtaking dynamic
vehicles combines the following features, shown in the flowchart of Figure 4.2.

4.3.1 Grid-based discretization

The purpose of using grids is to obtain a better description of the scene representing the space as
free or occupied by means of cells, making a discretization of the road space allowing the system
to consider the uncertainty of the sensors, and as a result, the dynamism of the road [Mouhagir et
al., 2017], [Elfes, 1989].

Algorithm 4 details the developed algorithm to generate the grid making this space discretiza-
tion, representing the space as occupied or free according to the objects detected on it.

Before building the grid, the obstacle detection is done in the perception stage. In case any
obstacle is detected in front of the ego-vehicle, the dynamic path planner will receive its Oriented
Bounding Box (OBB) (line 2, Algorithm 4). In our case, as the vehicles are equipped with single-
layer Lidar sensors, it receives the OBB of the obstacle as the 2D coordinates of the rear part of
the vehicle in front, as well as the distance from the automated vehicle position to such obstacle,
computed from this information [Merdrignac et al., 2015].
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Algorithm 4 Re-planning algorithm for the dynamic path generation
1: Initialization: grid configuration is set
2: Receive rear coordinates of the obstacles ahead
3: Classify which type of vehicle is the obstacle ahead
4: Estimate length of obstacle
5: Build Oriented Bounding Box
6: Set the cells occupancy value for the obstacles BBs

Table 4.1 – Obstacle types classification based on the width

Road user dimension Road users classification according to their dimensions

VRU Cybercar Car Bus/truck
Width [m] [0.0 - 1.0) [1.0 - 1.4) [1.4 - 2.1) [2.1 - 3)

Length max [m] 3 2.9 5.5 18
Security dist. [m] 1.5 width/2 width/2 width/2

Then, an obstacle classification is done in order to further leave different security distances
according to the vehicle type, on a similar way than in [Milanes et al., 2012] (line 3, Algorithm 4).
Since the overtaken vehicle is in front, the OBB only provides the information of the obstacle width,
but the length of the vehicle is unknown. In consequence, a classification of the obstacle is done by
using Table 4.1. There, the different vehicle types are defined based on the European Euro NCAP
Structural category [van Ratingen et al., 2016] and the American US EPA Size Class regulations
[US Environmental Protection Agency (EPA), 2017]. In addition, the cybercar prototypes have
also been included. Thus, the vehicle types considered are VRU (including pedestrian, bikes and
two-wheeled vehicles, cybercars (either cycabs or cybuses), passenger cars, and longer vehicles
such as trucks or buses. For each vehicle type, both the width-range and its equivalent length
have been determined by analyzing the dimensions of some of the reference vehicles on the market.
Thus, an estimation of the obstacle length is feasible from the OBB width, and different lateral
and longitudinal security distances can be considered respecting the obstacle dimensions (line 4,
Algorithm 4). Therefore, for estimating the length of the obstacle, once its width is known and
the obstacle has been classified, its length/width relationship is applied.

The space discretization is therefore done by representing the space occupied by the obstacle
after the length prediction in the grid matrix. Such area corresponds to the axis aligned Bounding
Box, or just Bounding Box (BB), depicted with a red rectangle in upcoming Figures (line 5, algo-
rithm 4). Figure 4.4 represents the different obstacles the ego-vehicle could encounter according to
the described vehicles classification with respect to their physical dimensions. There, the Bounding
Box of the obstacles, the cells of they occupy and the added distance for safety and comfort reasons
are depicted: in garnet for a bike (VRU), in blue for a cybercar, in green for a passengers car and
in magenta for a truck.

A discretization of the road space allows an easier recognition of the free space on the road,
where the road space occupied by the BB is represented as occupied using red crosses in the
Figures.

In order to set the state of the cells where the obstacles lie as occupied (line 6, algorithm 4), a
conversion from continuous space to discrete space is done, i.e. from the coordinates of the BB of
the obstacles in meters, to the corresponding indexes of the cell. If the borders of the obstacle’s
BB lie in the middle of the cell, the whole cell will be considered as occupied, setting a one as its



102 CHAPTER 4. PATH PLANNING IN DYNAMIC ENVIRONMENTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

Abscissa axis [m]

-1.5

1.5

4.5

O
rd

in
at

es
 a

x
is

 [
m

]

Road limits

Occupied grid cells

Obstacles BB

Obstacles limits for safety and comfort

VRU Cybercar Passengers car truck or bus

Figure 4.4 – Grid representation of the different vehicle types

value in the matrix. In other case, the cell value will remain as free, represented by a zero value
of the cell. It should be noted that a grid centered on the ego-vehicle has been considered.

A parameterizable grid has been considered (line 1, algorithm 4), where the following param-
eters are established to configure the grid and defining the space discretization: number of road
lanes (thanks to the global maps this information can be known), lane width (by default considered
as three meters, since lanes on urban roads vary from 3.0 up to 3.7 meters), cell size (set by default
at 1 meter), and horizon of the grid, i.e. maximum distance to which the grid is considered (set
by default at 40 meters, since the available Lidar sensors operate up to this distance).

The grid is updated then at every planning period in order to consider the changes on the
scene. The following sub-sections shows how the virtual lane is generated from the information of
the obstacles.

4.3.2 Virtual lane generation

The proposed method to deal with dynamic environments is based on the generation of a virtual
lane, i.e. a corridor [Choi et al., 2008] to represent the new road layout overlapping the existing two-
lanes road. This subsection details how it is generated to modify the already computed static path
to avoid any possible obstacle generating the new dynamic local path, which is further transmitted
to the controller.

Once an obstacle is detected blocking the existing static path, the perception system alerts
the planning stage, which classifies the obstacle and updates the grid representing the scene, as
explained in previous subsection. Thus, it triggers the generation of the virtual road to perform
the avoidance maneuver. Figure 4.5 shows in purple the virtual road generated for an automated
vehicle performing a path following scenario, where A-B are the following way-points belonging to
the itinerary to follow. Although the figure shows just the A-B segment, it is normally part of a
bigger path where obstacles can be found, even in turn stretches.

The goal of building the virtual road is to modify the itinerary corresponding to the affected
path following road section (A,B) by adding some supplementary way-points (swpn) to the global
path, resulting in (A, swp1, swp2, swp3, swp4, B), as shown in Figure 4.5. These points define the
center of the new virtual lane, from where the limits of the virtual lane are further computed
geometrically, letting us to target the overtaking problem with the proposed static planner.

The system works as follows:

1) After an obstacle is detected, classified and its Bounding Box is formed, some lateral and
longitudinal security distances will be added, forming the obstacle’s safety area for the avoid-
ing maneuver, represented with the external red rectangle in Figure 4.5. On the one hand, a
longitudinal distance of the ego-vehicle length is considered both on the front and the rear,
based on previous works in the literature [Shamir, 2004, Naranjo et al., 2008]. It ensures
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Figure 4.5 – Virtual lane generation with the proposed algorithm for obstacle avoidance

not colliding with the obstacle: neither in the completion of the first lane change (avoiding a
frontal collision), nor in the second lane change to the right lane (avoiding a lateral collision).
On the other hand, a lateral distance of at least 1.5 meters is considered for the VRU, placing
the way-points in the middle of the left lane by default. In any other case, half of the width
of the obstacle is considered.

2) The virtual road is built from the obstacle’s safety area, whose internal points k1 and k2
are obtained after applying the longitudinal and lateral safety distances to the obstacle’s BB
(see Figure 4.5). These points allow us to place the way-points swp2 and swp3 in the left
lane and they constitute the last way-point for the first lane change and the first way-point
for the second lane change, respectively.

3) Then, the points swp1 and swp4 for the starting and finishing phases of the lane changes are
computed, placing them perpendicular to the preceding or next way-points, respectively, to
avoid abrupt changes on the curvature. For this purpose, an algorithm has been designed
to find the minimum slope (ϕ1 angle in Fig. 4.6) for the lane change maneuver, as well as
the best ϕ2 angle that will determine the location of the points swp2 and swp3, respectively.
That way, it will determine how far the avoiding maneuver begins and the close that the
ego-vehicle will pass with respect to the obstacle at the end of the lane change maneuver to
be located in the adjacent lane, parallel to the obstacle. The last step moves laterally the
way-points of the new global itinerary that form the center of the virtual lane, with a positive
and a negative distance of half of the road width. Thus, the algorithm iterates modifying the
value of these two angles, getting the position of both way-points. For each configuration,
the real-time static local planner will just search the optimal location of the junction point
between the two curves for the lane change, i.e. evaluating both curves with the described
optimality criteria, optimizing both curves, as explained in the static path planner chapter.

4) Finally, the optimal virtual road is generated (in purple in Figure 4.5) applying a geometric
lateral displacement of half of the lane width with respect to the center of the lane, formed
by the new global path after adding the way-points to avoid the obstacles. This way, just
by modifying the global path we could profit of the developed static local planner providing
a dynamic behavior, only evaluating in real-time the minimum feasible slope for the lane
change.



104 CHAPTER 4. PATH PLANNING IN DYNAMIC ENVIRONMENTS

5 10 15

Abscissa axis [m]

-1.5

1.5

3

O
rd

in
at

es
 a

x
is

 [
m

]

Virtual lane

Obstacle BB

Safety area

swp1

swp2

φ1

φ2
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The whole planning architecture proposed in this thesis presents three main advantages: 1) Abil-
ity to deal with any road configuration optimizing the trajectory in real-time. 2) Low computational
cost, thanks to most of the optimization process is done off-line (in the pre-planning stage), making
the computation time almost negligible. 3) Ability to quickly deal with emergency situations if an
obstacle avoidance maneuver is feasible with a lateral displacement, or if an emergency braking is
needed to minimize the collision risk aborting the avoiding maneuver.

The algorithm described above shows how to adapt the local path to avoid static obstacles.
In order to consider dynamic obstacles, the occupancy of the cells on the grid is updated taking
into account the obstacle speed. There, a prediction of the space that will be occupied by the
obstacle in the worst case is done, considering its maximum speed and its maximum acceleration,
as described in Equation 4.1. Thus, all this space is represented as occupied in the grid. Then,
the new global path points are calculated in the same way as shown before. Figure 4.7 shows an
example where the internal rectangle represents the predicted maximum space occupied by the
vehicle, whereas the external rectangle is its safety area, defining the new virtual road. Then,
ego-vehicle is localized according to the new global path to generate te local path to overtake it.

xobstpredicted
= xobst + vMaxobst ∗ vMaxobst/accMaxobst (4.1)

where xobstpredicted
represents the estimation of the space occupied by the obstacle (in m), xobst

represents the current position (in m), and vMaxobst and accMaxobst are the maximum speed and
maximum acceleration of the obstacle according to the vehicle type (inm/s andm/s2 respectively).

4.3.3 Re-planning method for dynamic scenarios

Since urban environments are continuously changing, a method that checks the environment and
evaluates if the first avoiding trajectory is still feasible or not is needed, i.e. a re-planning ap-
proach. This method benefits from the proposed modular planning architecture to adapt the
already planned path by displacing the way-points that define the itinerary, if and only if the con-
ditions to perform the planned maneuvers are not feasible any more, either because the dynamics
of the ego or the obstacle have changed, or because some unexpected circumstance arises forcing
the system either to abort the maneuver and execute an emergency maneuver to return safely to
the lane, or to make an emergency brake.
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Figure 4.7 – Virtual lane generation for dynamic obstacles considering the obstacle’s occupied
space prediction

The proposed algorithm is described in Algorithm 5. It takes into account the speeds and
accelerations of both ego-vehicle and obstacle to predict their behavior over time. That way, a
re-computation of the path has not to be done unless the difference between predicted and traveled
distances by both ego and obstacle are substantial, bigger than a parameterized threshold. The
default value considered for this threshold is 0.5 meters for low-speeds (up to 20 km/h).

Algorithm 5 Re-planning algorithm for the dynamic path generation
1: Receive global path and static local path
2: Check if there is any obstacle in the path
3: Check if ego-vehicle is running faster than obstacle
4: Compute accelerations of ego and obstacle
5: Compute distance covered by ego and obstacle during time period
6: if distance covered by either ego or obstacle on ∆T > threshold then
7: Compute Time-to-collision (TTC)
8: if TTC ≤ 6 s then
9: Predict distance to be covered by obstacle on TTC

10: Predict distance to be covered by obstacle on period T
11: Project obstacle position
12: Compute the distance that both ego and obstacle will travel on time period
13: Compute obstacle Bounding Box from obstacle width
14: Compute obstacle’s safe zone
15: Compute new global path and new virtual lane
16: Update previous speeds and accelerations

Line 1 shows that the algorithm first receives from the static planning stage both the global
path containing the way-points of the itinerary and the local path whose points smooth the global
itinerary preserving the comfort.

Then, in order to predict their motion, the acceleration of both ego-vehicle and obstacle in
front are computed for the current time period, as shown in Equation 4.2 (line 4, Algorithm 5),
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aegot =
vegot − vegot−1

∆T
aobstt =

vobstt − vobstt−1

∆T

(4.2)

where aegot and aobstt are the current acceleration for ego-vehicle and obstacle, respectively; vegot

and vobstt are the current speeds. Meanwhile, variables vegot−1 and vobstt−1 are the speed of ego-
vehicle and obstacle in the previous time period ∆T .

In addition, the algorithm gets the real distance covered by both the ego-vehicle and the
obstacle on the last time period. This measurement of the real distance covered will be compared
with the predicted values, which will suppose a further trigger to perform the re-planning of the
overtaking maneuver if the difference between real and predicted measurements is higher than the
specified threshold (lines 5-6, Algorithm 5). Equation 4.3 serves as basis to compute the TTC.
This equations represents that the distance covered by ego-vehicle in the current period t have to
be the same than the one covered by the obstacle plus the distance between them.

segot
= sobstt + dist(ego, obst) (4.3)

where segot
is the distance covered by the ego-vehcile, sobstt the distance covered by the obstacle

and dist(ego, obst) the distance between them.
Then, if both vehicles present a constant speed, i.e. the accelerations are zero, the time to

collision (TTC) is computed as presented in Equation 4.4. On the other hand, if the vehicles
present an acceleration different from zero, the TTC is computed as in Equation 4.5. TTC is the
time that would pass until reaching the obstacle position, i.e. until colliding with it.

TTC = dist(ego, obst)
vego − vobst

(4.4)

sego = sobst + dist(ego, obst)

TTC =
−(vego0 − vobst0) +

√
−4 · 1

2 · (aego − aobst) · (−dist(ego, obst))
2 · 1

2 · (aego − aobst)

(4.5)

where vego0 and vobst0 are the inital speed of ego-vehicle and obstacle,
A verification has to be done in order to trigger the re-planning process if the TTC is lower than

6 seconds, which is considered in [Milanes et al., 2012] based on the accuracy of the vision-based
detection system (line 8, Algorithm 5).

By computing the TTC, a prediction of the distance that both ego and obstacle would travel on
this time can be done. This will let the algorithm move the way-points to construct the new virtual
lane as explained in previous section, where the location of the way-points added for avoiding the
obstacle depend on the projection of the obstacle position in the TTC.

Once the TTC has been computed, the algorithm is able to predict the distances that both
the ego-vehicle and the obstacle will cover on this time (line 9, Algorithm 5), i.e. segoT T C and
sobstT T C

, respectively. Thus, a projection of the obstacle position on the TTC can be done by
using Equation 4.6.

segoT T C = sego0 + vego0 · TTC + 1
2 · aego · TTC

2

sobstT T C
= sobst0 + vobst0 · TTC + 1

2 · aobst · TTC
2

(4.6)
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In addition, on the same way the algorithm predicts the distance that both vehicles will cover
on the period time T (Equation 4.7), i.e. segoT and sobstT , respectively. Then, these values are
compared in the next period T with the real measurement of the distance actually covered by the
vehicle (line 10, Algorithm 5).

segoT = sego0 + vego0 · T + 1
2 · aego · T

2

sobstT = sobst0 + vobst0 · T + 1
2 · aobst · T

2
(4.7)

If the algorithm detects in the next time interval T that the re-planning has to be carried
out due to a difference between predicted and actual distance covered by overtaking or overtaken
vehicles higher than the specified threshold, the process to generate the virtual lane starts as
explained above.

First, since the standard perception systems are based on 2D Lidar sensors, as the ones equipped
on the RITS team, the planning algorithm only receives the coordinates of the rear track of the
obstacle vehile. According to the classification of the different road users in Table 4.1, the Oriented
Bounding Box is computed from the width of the obstacle applying the length/width relationship.
Once the OBB is computed and the safety zone surrounding the obstacle is built, the avoiding
maneuver can be computed as explained in Section 4.3, where the new global path consist of the
old way-points and four additional way-points to avoid the obstacle, where their location depends
on the safety area points and the longitudinal and lateral safety distances employed. That way,
the algorithm only recomputes a new virtual lane (i.e. a new global path that will trigger a new
local path for the affected area) if the vehicles do not follow an expected behavior.

Finally, the algorithm has to update the previous speed and acceleration to iterate in the next
time-stamp.

Figure 4.8 shows how the virtual-lane is recomputed when an obstacle is continuously acceler-
ating, according to the explained re-planning process. There, a sub-set of virtual lanes is depicted.
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Figure 4.8 – Re-computation of the virtual lane in real-time for re-planning on scenario with
changing dynamics of the obstacle

This scenario represents the case where the first prediction done is not correct, because the
vehicle is changing its speed over time. In this case, the obstacle is accelerating with a longitudinal
acceleration of 2 m/s2. Thus, the re-planning system has to re-compute the virtual lane in order
to generate new avoidance paths.

There, the virtual lane is recomputed over time every 0.5 seconds, but only a sub-set of four
virtual lanes during 3 seconds execution has been shown. First virtual lane computed is depicted
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in light blue, second one in dark blue, third one in purple and last one in green.

4.3.4 Safety avoidance path

During this chapter we have discussed how the proposed local planning approach is able to modify
the path avoiding the obstacles that may be encountered in front of the automated vehicle while
performing the path following operation. However, sometimes unexpected situations occur in such
urban scenarios where they operate, forcing to abort the avoiding maneuver. For instance, if the
automated vehicle is performing the avoiding maneuver and another obstacle is detected on the
left lane while it is changing its lane, the automated vehicle must abort the avoiding maneuver
returning to the original lane, as shown in Figure 4.9. Some other similar situations include:
detecting a pedestrian, bike or any other vulnerable road user crossing in front of the car, or
detecting that the prediction of the moving obstacle in front is not correct since a huge speed
difference is detected from predicted to the real measurement.
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Figure 4.9 – Emergency return to the lane maneuver under unexpected vehicle found situation

The algorithm must compute at every planning period a safety emergency path to return to the
right lane safely. Thus, a backup global path is generated, modifying the avoiding path removing
the way-points on the left lane and adding way-points to make the vehicle drive back to the right
lane. Figure 4.10 shows some possible emergency paths to return to the lane for three different
time instants of the avoiding maneuver, for the vehicle location A, B and C respectively, assuming
the obstacle in front is running at a constant speed.
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Figure 4.10 – Emergency return to the lane maneuvers under unexpected vehicle found situation
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Figure 4.9 shows in dark green the new virtual lane for the maneuver to return safely to the
lane, overlapping the previous virtual lane in garnet for the obstacle avoidance maneuver. A new
global path consisting on removing the way-points corresponding to the second lane change (swp4
in garnet and B), replacing them with two additional way-points in the original right lane, which
allows to pull the curve to this side of the road and finish the maneuver behind the obstacle. Thus,
here the algorithm iterates to search a feasible new path moving this swp2 way-point from the old
position to the vehicle position. In addition, swp3 is placed in the center of the lane behind the
moving obstacle, and sw4 just behind the obstacle respecting a minimum security distance of one,
becoming the new destination point B. Thus, in order to carry out the maneuver a new global
path is generated, changing from the old one formed by the way-points in garnet: A, swp1, swp2,
swp3, swp4, B, to the new one in dark green from the current position of the vehicle, formed by:
swp2, swp3, swp4, all in green. Then, the virtual lane is computed geometrically and the local
planner receives this new itinerary for computing the new local path as an static environment as
explained before.

If there is not enough space to perform a safe maneuver to return to the right lane, an emergency
braking must be done, avoiding that way any further collision.

4.4 Conclusions

This chapter presented a method that benefit from the proposed planning stage to adapt the
planned static path to operate in dynamic environments, where both static and dynamic obstacles
are encountered while driving. The proposed approach is based on a grid discretization of the
space, where the occupancy of the space is determined, together with a virtual lane generation,
which computes a new global path which allows to avoid the static or dynamic obstacles in the
same way as a static environment by adapting the global path. This dynamic planning architecture
was presented in Figure 4.2, and belongs to the general planning architecture depicted in Figure
3.1.

To determine the occupancy level of the space, a classification of the different road users
perceived in front of the vehicle in the scene is done according to the physical relation between the
perceived width and the length/width relationship of the different road users considered. There,
different lateral and longitudinal security distances have been considered to extend the BB of the
obstacle, setting as occupied that space allowing to generate safer maneuvers for each type of
obstacle as in [Milanes et al., 2012].

Afterwards, a corridor called virtual lane is built geometrically from the position of the security
area surrounding the BB of the obstacle. Additionally, if it is in movement, an initial prediction is
done considering the worst case where the obstacle achieves the maximum speed and acceleration.

The re-planning method checks if the predicted motion of both automated vehicle and obstacle
are not the same as the real distances covered. In that case, the time-to-collision is re-computed
and the space grid is updated setting as occupied the space up to the projected position of the
obstacle in the next period of time in the planning process. That way, the dynamic planner only
modifies the static path in the segment between the way-points of the itinerary where the obstacles
are found, and the avoidance path is only re-computed if there is a big gap between the predicted
motion of obstacle and ego vehicle, allowing to alleviate the planning phase to be executed as fast
as possible. Additionally, it checks if the avoidance maneuver is still feasible. If some unexpected
situation arises, such as another obstacle is detected in the avoidance path while changing lane or a
pedestrian crossing in front of the vehicle, the avoidance maneuver is aborted. Then, an emergency
path is computed to perform a safe return to the lane maneuver. If this maneuver is not even
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feasible due to safe criteria (not presenting enough distance) an emergency braking is carried out.
That way, the algorithm is able to deal with any dynamic situation a vehicle can encounter when
driving in structured urban environments.

Thanks to the adaption of the problem to be solved as a static environment with the proposed
real-time static planner, the significant advantage with respect to the obstacle avoidance techniques
in the state of the art is that the only parameter to evaluate in real-time is the slope of the lane
change maneuver. However, other techniques such as state lattices evaluate in real-time a big set
of trajectories to make the full path (lane change, lane keeping and return to the lane), which is
more time-consuming, due to the impact of analyzing a big set of curves in real-time. With this
information, the global path is updated with the additional way-points to perform the avoiding
maneuver, the vehicle is localized with respect to this new global path and the curves are generated
by loading the proper ones from the databases and searching the junction point, as described in
the static real-time planning stage.

The virtual lane construction for the avoiding maneuver is based on the three-phase method
presented in the literature [Shamir, 2004], which consist in two lane changes (a first one to the
left lane and a last one to the right lane) and a lane keeping maneuver. Here, each of the two
lane changes is carried out by joining two optimal quartic Bézier curves (loading them from the
databases), after the evaluation of the optimal junction point is done. Thus, the algorithm ensures
generating continuous avoiding paths with a low computational burden.



Chapitre 5

Expériences de validation

Below is a French summary of the following chapter "Validation Tests".

Ce chapitre est structuré comme suit: Tout d’abord, Section 5.1 décrit à la fois le logiciel de simula-
tion (Pro-Sivic et RTMaps) et les véhicules expérimentaux (Cybercars et Citroën C1) utilisés pour
tester et valider l’approche de planification proposée dans le cadre de l’architecture automatisée
générale du véhicule. Ensuite, les différentes expériences effectuées à la fois sur la simulation et
sur des plates-formes réelles sont présentées dans la section 5.2 pour les environnements statiques,
puis les résultats des environnements dynamiques dans la section 5.3.
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Chapter 5

Valdiation Tests

This chapter presents the results of the tests that have been performed to validate the local path
planning approach proposed in this PhD thesis. It has been tested within the modular vehicle
architecture for automated vehicles available at INRIA RITS team presented in Section 2.2. Since
the scope of this thesis is to make the planning component deal with urban environments while
working together with the other modules of the architecture, a fast and real-time response of
the approach is pursued. The validation of the proposed planning approach is done using the
following scheme: First, simulation of short itineraries combining consecutive curves and straight
stretches. They emulate urban environments where the terrain is structured and the road layout
is changing along the route. Second, real tests with similar characteristics, where algorithm is
validated with different platforms, being able to provide good results for any road layout and
vehicle configuration. The proposed solution generates a path from an origin to a destination
point, operating without human interaction. Apart from the path following operation on static
environments, it also provides an obstacle avoidance operation on simulation under unexpected
circumstances where static or dynamic road users are encountered in the path.

This chapter is structured as follows: First, Section 5.1 describes both the simulation software
(Pro-Sivic and RTMaps) and the experimental vehicles (Cybercars and Citroën C1) used to test
and validate the proposed planning approach operating as part of the general automated vehicle
architecture. Then, the different experiments performed both on simulation and on real platforms
are presented in Section 5.2 for static environments, and then the results for dynamic environments
in Section 5.3.

5.1 Validation platforms: simulator and vehicles

5.1.1 Simulation tools

The simulation environment consists of both Pro-Sivic1 and RTMaps2 software tools.

• RTMaps is an asynchronous component-based platform that allows engineers and researchers
to develop and test applications for ADAS and autonomous vehicles (among others). It
provides a modular toolkit and a framework allowing to use data from vehicle sensors and
CAN buses (to time-stamp, record, synchronize and play back data), as well as commanding
orders to the vehicle actuators, thanks to the connection with either simulators, such as

1www.civitec.com
2www.intempora.com
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Pro-Sivic, or directly to the CAN buses of the vehicles. Since it is based on multi-threading,
it benefits on the multi-core architecture of the systems allowing a real-time processing and
data fusion.

• Pro-Sivic is a virtual prototyping platform for virtual integration of a range of perception
sensors, allowing to simulate custom scenarios involving sensors, dynamic actors, such as
vehicles and pedestrians, to perform prototyping and testing stages for ADAS, and ITS
applications. Pro-SiVIC is used together with RTMaps to perform external processing during
a Pro-SiVIC simulation, providing sensor data to RTMaps, whereas RTMaps can send vehicle
commands such as steering and acceleration back to Pro-SiVIC, allowing to develop and
validate applications for ADAS and automated vehicles. Matlab-Simulink has been used for
testing the behavior of the vehicle off-line and validate the pre-planning stage, as described
in Chapter 3. In addition, it allows an ease use of the data from the low-level of the vehicle
gathered by RTMaps, allowing a fast representation of the results.

The connexion of both RTMaps with either the simulator (Pro-Sivic) or the vehicles (Cycab or
Citroën C1) is shown in Figure 5.1, where the main RTMaps blocks for this software interaction
are presented. The component named ProSivic_Vector in the left part of Figure 5.1a gathers the
data of the low-level of the simulated ego-vehicle through the observer in Pro-Sivic, configured to
work in RTMaps mode in ProSivic, as shown in Figure 5.1b. This data is received by the low-to-
high level controller, and transmitted to the vehicle state component fusing the data to provide
the state of the vehicle to the planning stage (position, speed and heading angle). Similarly, the
components ProSivic_Steering and ProSivic_Acceleration in the right part of the figure allow us to
transmit the steering and acceleration command to the simulation tool. Previously, the reference
velocity and steering angle resulting from the control stage passed through the high-to-low level
controller in order to compute the acceleration transmitting it to the actuator of the simulated
vehicle. In case of real platforms, the low-to-high and high-to-low level controllers are substituted
by that corresponding to the Cycab or the Citroën C1. These components will operate similarly,
but receiving the CAN frame to the CAN and building the frame again with the steering and
speed commands to send it back again to the low-level actuators of the platforms. As can be seen
from the above, the great advantage of RTMaps is the modularity and asynchronous operation it
provides, allowing an easy integration of the planning components into the the vehicle architecture
to test the planning component both on simulation and real platforms.

5.1.2 Vehicles

The proposed planning approach has been also tested on the experimental platforms of the INRIA
RITS team. The automated vehicles available at the team are the Cybercars (Cycabs and Cybuses)
and a recently robotized Citroën C1. Figure 5.2 presents the platforms and their equipment. The
aim of research in automated driving is to achieve a higher automation level from the applications
related to ADAS already in the third level, up to the fourth one in the medium term. To achieve
that automation level, these platforms are equipped with both proprioceptive and exteroceptive
sensors, as described below.

• Cybercar platforms, defined as part of the CTS, are low-speed vehicles (up to 5 m/s) designed
to operate on urban roads, both for passengers and goods transport [Roldao et al., 2015],
without any mechanical actuator, i.e. without pedals and steering wheel. They are golf-like
cars with 4 DC motors (one per each wheel). They present a modular architecture based
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ProSivic management

ProSivic low-level and high-level

Initialization & config destination

Vehicle data fusion

Trajectory planning

Control

ego-vehicle
observer

Input data from ProSivic

Output data to ProSivic
simulted vehicle

(a) RTMaps main components for a simulation test with Pro-Sivic

(b) Pro-Sivic configuration of the simulated vehicle’s observer

Figure 5.1 – RTMaps and Pro-Sivic interfaces for testing on both simulation and real platforms

on the components shown in Figure 2.15. This constitutes the enhanced and up-to-date
version of the architecture proposed in [González and Pérez, 2013,González et al., 2016b].
They are equipped with encoders at the wheels as proprioceptive sensors to get the speed
of the vehicle. Apart from the proprioceptive sensors, they are equipped with GPS-RTK
modules. It allows the localization of the vehicle in the localization stage, where the data
from the GPS-RTK is fused with the information coming from the IMU providing a more
accurate positioning. Additionally, 2D LIDAR sensors are equipped in the front of the C1
to perceive and classify the possible obstacles surrounding the vehicle. These sensors also
allow to localize the vehicle on the road based on the SLAM technique, which creates a map
of the environment while driving.
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(a) Cycab electric vehicle and on-board equipment

GPS-RTK
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HMI

CPU

Lidar
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(b) Citroën C1 robotized electric vehicle and on-board equipment

Figure 5.2 – Experimental platforms of the INRIA RITS team used for on the validation tests

• Citroën C1. This electric vehicle has been robotized for an automated operation of both
steering wheel and pedals. It is also equipped with a GPS-RTK and an IMU, both used for
the localization of the vehicle. Additionally, it presents two 2D Lidar sensors in the front of
the vehicle, which could be used as future work for the obstacles detection and classification
on the dynamic operation. These sensors would also allow to localize the vehicle using
the SLAM technique, creating a map of the environment and localizing the car on it while
running.

The information gathered by these sensors is provided as inputs to the developed local planner
module, which will generate the trajectory and will send it through a buffer to the longitudinal
and lateral controller, in charge of perform the path tracking. It can be seen in Figure 5.3, where
the different modules that form the architecture of the Cycabs are shown. It can be noticed that
the vehicle state (magenta modules) is an input of the local planner (orange modules). It consists
of the fusion of both GPS (light pink modules) and IMU data (purple modules). The local planner
also receives the global path and the number of points it contains as a verification measure. On
the other hand, the global planner receives the destination point from the HMI and once it is
triggered by the user, it computes the route and is transmitted to the local path. After the local
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planner computes the path to be followed by the vehicle, it is transmitted to the path controller
(green modules). It computes the speed and the steering from the reference path and speed. If
the user decides to take control of the car through the joystick, the controller multiplexer will
switch from automated to manual operation mode (gray module in the right area). Finally,the
high-to-low component (light blue components) receives the desired speed and steering angle from
the path controller and builds the CAN frame to be transmitted to the vehicle. The data from the
vehicle is received similarly from the low-to-high component and transmitted to the vehicle state
component. The RTMaps diagram for the Citroën C1 is similar to the described on for the Cycab,
following the same architecture, but with the corresponding components for controlling pedals and
steering wheel.

Cycab low-level and high-level
Initialization, config destination & manual controlVehicle data fusion (GPS, IMU) Trajectory planning

Control

GPS data

IMUdata

Figure 5.3 – RTMaps architecture for testing on Cycab platforms

Different controllers have been implemented on the team for the platforms: a PD simple gains
controller, a LQR controller and a KLSC controller on the Cycabs, whereas a simple gains controller
was used on the Citroën C1. These controllers are breifly presented below.

1. First, a feedback proportional derivative (PD) simple gains controller was tested on simula-
tion, on the cycab and later on the C1, where the control low is given in Equation 5.1, as
presented in [González and Pérez, 2013]. The steering angle ψ is computed considering the
curvature k, the lateral error errorlat and the angular error errorang, where α1, α2 and α3
represent the controller gains for each of the parameters. This PD controller tries to keep
the vehicle on the center of the trajectory, improving that way the tracking.

δ = α1 k + α2 errorlat + α3 errorang (5.1)

Errors are calculated with respect to the look-ahead point for this and the following con-
trollers. This point is placed in front of the vehicle at a defined look-ahead distance towards
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the following path point with the current vehicle heading [Lekkas and Fossen, 2012,Kuwata
et al., 2009]. This look-ahead distance is defined in the planning stage. It takes a fix value
for low-speed, since the errors in the localization do not increase that much the position and
angular errors. However, it is speed-dependent for higher speeds, where the faster the vehicle
is running the bigger look-ahead distance should be consider to compensate for possible lo-
cation errors. Angular error is computed with Equation 5.2 and lateral error with Equation
5.3. On the one hand, angular error, also called heading error, is computed as the difference
between the reference angle τref (computed geometrically from the look-ahead point up to
the next path point) and the measured angle τmeas (obtained from the RTK-GPS).

errorang = τref − τmeas = −asin(−cos(δmeas) sin(τref ) + sin(τmeas) cos(τref )) (5.2)

On the other hand, lateral error is computed as the minimum error between the look-ahead
point and each of the path segments.

errorlat = min(dist(position, pathSegment)) (5.3)

2. A proportional Linear-Quadratic Regulation controller (LQR-P) high-level controller was
used to enhance the tracking results obtained with the PD controller. This is an optimal
feedback controller where the vehicle dynamics are represented by a set of differential linear
equations. The reference steering is computed from Equation 5.4. There, the differential
lateral error dLat and differential heading error dAng are considered, where αdLat and αdAng
are their gains, respectively.

δ = α1 k + α2 errorlat + α3 errorang + αdLat errordLat + αdAng errordAng (5.4)

3. A Kinematic Lateral Speed Controller (KLSC) with dynamic gains has been used both in
real platforms and in simulation experiments, enhancing the path following performance with
respect to the prior controllers on low-speed platforms. Its operation is ruled by Equation
5.5, which dictates the behavior of the steering wheel, computing the reference steering angle
of the vehicle.

δ = arctan(L(−Kτ sin(τp)−
KτKlatdr

vu
+ c(s) cos(τp)

1− c(s)dr
)) (5.5)

where L is the length of the vehicle, τp is the heading error, i.e. the angular deviation
of the car with respect to the reference path, and dr represents the lateral error, i.e. the
lateral deviation with respect to the center of the reference path. The term c(s) denotes the
curvature of the reference path at the closest point over the path, from the center of the
vehicle rear wheels axis and vu represents the longitudinal speed of the car. The gain Kθ, is
the angular gain of the controller, used to moderate the controller sensibility to the heading
and lateral errors and Klat, is the lateral gain used to regulate the lateral speed of the car
when approaching the path.

4. Finally, a cascade controller by state feedback with transfer function has been used in the
Citroën C1. The control parameters are both lateral and heading error, and the curvature.
Equation 5.6 presents the computation of the steering angle to correct the deviation on the
trajectory tracking, where KP , KI and KD are the proportional, integrative and derivative
gains of the high level controller. Figure 5.4 shows the blocks diagram of the high level
controller, where a P controller is applied for the curvature, a PI controller for the lateral
error, and a PID controller for the angular error.
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three different controllers are used for
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Figure 5.4 – High-level cascade lateral controller for the Citroën C1

5.2 Validation tests for the static path planner
This section presents the different experiments carried out to validate the local path planner for
static environments presented in Chapter 3, first on simulation and then on real platforms.

5.2.1 Results on simulation platforms

The two-staged planner has been designed to generate an enhanced G1 continuous path from a
departure to a destination point, dealing with any possible road configuration (such as right turns,
narrow turns, slight turns, intersections, roundabouts, etc) on a structured urban environment as
if they were turns.

Figure 5.5 presents a simulated urban scenario on Pro-SIVIC, where the automated car running
with the developed planning approach performs a path following scenario from origin point O to
destination point D. Figure 5.5a shows both the path planned by the component developed in
RTMaps (i.e. the local path, in dark blue) and the path tracked by the controller of the vehicle
(in light blue). There, the itinerary has been chosen because of the following reasons:

• It presents several curves with different sharpness: where there are two narrow-turns, three
right-turns and one long-turn less sharp.

• These curves present different concavity changes, since there are consecutive right turns,
consecutive left turns and different turns with a concavitiy change, i.e. with different direction
of rotation (from left-turn to a right-turn or vice versa).

These characteristics allow the simulation to provide a realistic scenario to validate the planner,
which considers the road layout in terms of sharpness, analyzing how difficult is to perform the
curves and thus, offering a way to trade-off the available space between curves with the sharpness
of the turns. Additionally, the changes on the direction of rotation were considered to provide a
human-like driving style where the driver approaches to the external side of the lane when several
consecutive turns are presented in the same sense.
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Figure 5.5 – Comparison of planned and tracked paths on the simulation scenario

The variables considered on the optimality criteria are illustrated in Figure 5.5b, where cur-
vature profile is drawn in red line and its derivative in dashed blue lines. As can be noticed,
the maximum curvature in the whole path is of 0.3 m−1, and the maximum curvature change is
slightly higher than 1 m−1. It means the path generated is continuous and leads to a smoother
path tracking. Furthermore, the variables considered in the control algorithm are illustrated in
Figure 5.5c, where blue line represents the heading error and red line the lateral error. There,
lateral error is below 0.2 meters both for the slight turns and the right-angle turns, whereas a
maximum lateral error of around 0.6 meters can be appreciated for the narrowest turn. These
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results confirm that the generated path meets the continuity and comfort requirements for vehicles
running at low-speed.

Figure 5.6 presents a simulated urban scenario where consecutive curves are presented in a
short period of time. The itinerary has been defined to show the performance of the approach on
urban environments where multiple changes on the road configuration are found in a short time
horizon. This scenario represents one lane road formed by four turns, where two of them are right
turns and the other left turns, combining right-angle turns, sharper turns and a more opened turn.

Results with the proposed approach have been depicted together with results with a prior algo-
rithm in the team, shown in [González et al., 2014], where the optimality criteria was considering
only to reduce the curvature in the three most significant points of the curves, in contrast with
the proposed approach which considers both curvature and curvature derivative in all the curve
points, both for the upcoming curve as for the next one planned in advance.

A comparison of the proposed two-staged planning module have been carried out with respect
to a fully real-time approach, as the one presented in [González et al., 2014] previously developed
in the team, in order to validate the approach. There, the optimality analysis considers minimizing
the curvature at the three most significant points, and the different paths are analyzed in real-
time by changing the location of the control point in a established interval, considering a planning
horizon of one curve, i.e. the optimality function evaluates only the upcoming curve.

Figure 5.6a shows in blue the paths for the proposed approach, whereas the paths for the
approach in [González et al., 2014] are depicted in red. Besides, solid lines represent the planned
local path, whereas the dotted lines represent the paths tracked by the controller of the simulated
vehicle.

The variables of the planning optimality criteria are shown in Figure 5.6b, depicting both
curvature profiles with solid lines, and curvature derivative profiles with dotted lines. Additionally,
the control variables are shown in Figure 5.6c. There, lateral and angular errors for the proposed
approach are depicted in blue and light blue respectively, whereas those for the entirely real-time
approach are depicted in red and light red.

Table 5.1 summarizes the prior results, where an improvement of the curvature is appreciated.
It is clearly manifested in lower peak curvature values: A reduction of around 0.2 m−1 in the
maximum curvature peak is observed with respect to the approach shown in [González et al.,
2014], meaning an improvement of 32%. An improvement in the curvature derivative can be also
appreciated in both peak and mean values. These improvements rely on the generation of smoother
paths, which contribute to the comfort of the passengers, allowing to track smoother paths.

The results shown the human-like driving style in the performance for the two first curves.
Since they are both right turns, the algorithm consider using the whole lane width without passing
through the center of the lane, opening that way the trajectory. This is directly translated in a
reduction of the maximum curvature, since the second turn is the sharpest one in the scenario.
Same behavior can be noticed for the last two curves, but in the opposite direction. This improved
performance is obtained thanks to the described optimality criteria, where the planning horizon
was extended to two curves, not only optimizing the closest curve, but also the next upcoming
one, considering to that end the information of three turns as explained in Section 3.3.2.

5.2.2 Results on real platforms

The developed local planner has also been tested on the experimental vehicles of the RITS team:
both in the Cycabs and in the robotized electric Citroën C1, presented in Figure 5.7.

Thus, this section presents the experiments carried out with these platforms at the Inria-
Rocquencourt facilities. Several itineraries were tested with both Cycab and Citroën C1. Among
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Figure 5.6 – Comparison of planned and tracked paths on the simulation scenario

Table 5.1 – Comparison of comfort variables: curvature and curvature derivative

Algorithm Measurements
|µk| (1/m) |kmax| (1/m)

∣∣µ′
k

∣∣ (1/m2)
∣∣k′
max

∣∣ (1/m2)
González et al., 2014 0.0929 0.4295 0.4286 1.9522
Proposed approach 0.0657 0.2891 0.2916 1.2554
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(a) Cybercar performing a curve during a path following test

(b) Citroën C1 performing a curve during a path following test

Figure 5.7 – INRIA RITS platforms running on automated way on the test track

them, the following can be highlighted.

5.2.2.a Cycab experiments

Figure 5.8a shows a path following itinerary performed by the Cycab from the origin point O to
the destination point D. The experiment has been performed at low-speed, 3 m/s, which is close
to the maximum speed of these vehicles for a safe operation.

In the same way as in the simulation tests, this itinerary has been defined to present several
intersections or some other road configuration on the road layout in a short time horizon, making
it ideal for the kind of urban scenarios where these automated vehicles may operate in the short
term without any human intervention.

Specifically, it presents first a straight stretch, then the vehicle performs a very slight left
displacement in order to reduce the curvature of the following curve (C1 curve), which is sharper
and there is much less space to perform it. Afterwards, the vehicle performs the U-turn formed
by curves from C2 to C4. Later, it takes the right exit of the roundabout performing the curve C5
and leads to the right-angle C6 facing the INRIA building. Then, the vehicle continues during a
short period on the lane and then takes the left exit on the intersection, performing curve C7, and
returns to the main road with curve C8. Finally, the vehicle goes straight ahead a few meters and
then performs curve C9 to enter in the parking slot, and curve C10 to arrive to the destination D.

In the same way as in the simulation experiments, the proposed approach has been compared
with entirely real-time planning approaches such as the one in [González et al., 2014]. Figure 5.8b
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Figure 5.8 – Path following itinerary performed by the Cycab platform at Inria-Rocquencourt
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Figure 5.9 – Curvature details of the path in Figure 5.8a

shows the value of the variables considered in the planning optimization process, i.e. curvature
and curvature derivative, depicted in blue and light blue for the proposed approach, and in red
and light red for the other approach, respectively. Additionally, the control variables, i.e. lateral
and angular errors are depicted using same colors criteria in Figure 5.8c.

An analysis of the results obtained from both continuity of the path and comfortability points
of view is presented below.

First of all, it is worth noting a big difference between both curvature derivative profiles, where
the maximum value for the proposed approach is of 0.75 m−2 whereas the maximum one for the
other approach is of 5 m−2. This reduction in the curvature changes means the generation of
trajectories with much less abrupt movements of the steering, which is translated into a smoother
path tracking.

Since there is such a gap between curvature derivative profiles, Figure 5.9 presents the curvature
profiles for both systems separately. There, the curves with bigger difference in the curvature
profiles are the ones corresponding to the U-turn, i.e. curves C3, C4 and C5, being that difference
of 0.9074m−1, 0.7102m−1, and 0.49m−1, respectively. This improvement in the planning variables
directly comes from the human-like driving behavior provided to the system. For instance, since
those three are left turns, the planning strategy decides to place the joint point between curves
using the lane width up to the limits defining the safe area. Furthermore, a better distribution
of the space between curves is a key element. Analyzing the junction between curves C3 and C4,
it can be noticed that the proposed approach starts the curve C4 much before, and closer to the
end of C3 since both are sharp turns. Same behavior can be noticed but in a smaller scale for
curves C6, C7, C8 and C9. The generation of smoother curves makes possible to reduce the errors
in the path controller. Figure 5.8c shows both lateral and longitudinal errors for the whole path.
There, a reduction on both the lateral and heading error is observed, mostly in turns with less
space available among them, such as curves C8, C9 and C10.

In addition to the improvement in terms of physical path, a faster planning is also achieved
thanks to the use of optimal curves loaded from the databases generated in the pre-planning stage.
The execution time of both algorithms has been compared, showing a reduction of the mean
computation burden with the proposed approach, being 0.0341 s the the real-time planning time
for the proposed approach, whereas 0.1122 s is the one for the fully real-time algorithm.

Thus, the analysis of the results has confirmed that the static planning strategy offers good
results at low-speeds in terms of path continuity, generating smooth paths making possible an
easier path tracking in the control stage.
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5.2.2.b Citroën C1 experiments

Previous subsection validated the proposed planning approach in static environments for low-speed
vehicles. This subsection shows how this approach can be used for passenger vehicles such as the
Citroën C1 car of the INRIA RITS team, running at medium-speed.

Figure 5.10 shows the path following itinerary performed at the INRIA-Rocquencourt test
track, from point A to point E. performed to validate the approach. There, two areas can be
distinguished: First, a one-way path from point A to D (Figure 5.10a, and then a return path
from point D to point E (Figure 5.10b). There, the vehicle performs the path at a speed of 25
km/h, since the maximum speed of the track is 30 km/h and due to limitations on the available
controller of the car.
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Figure 5.10 – Path following itinerary performed by the Citroën C1 platform at Inria-Rocquencourt
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The designed itinerary was developed to test not only the planning approach proposed on this
work, but to validate the high-level controllers for the actuators as well (both for the steering wheel
and the accelerator and brake pedal) as part of the work of other team members. For that reason,
it combines curved areas with straight stretches. Since the strength of the planning algorithm is
to deal with changing scenarios, the curved areas of the itinerary are studied in detail: First area,
shown in Figure 5.11 considers the points from the departure point A to the point B. Second area,
shown in Figure 5.10b, consists of the itinerary between points C and D.

An analysis of the paths for the first area (Figure 5.11a) is extracted below. For that purpose,
Figure 5.11b shows the curvature (in red) and curvature derivative (in blue) profiles for the planned
path. Meanwhile, Figure 5.11c shows the corresponding lateral (dark blue) and angular (light blue)
errors.

The planned path for the part of the itinerary common to the experiment with the Cycab
platforms is not the same. This is due to the consideration of the kinematics of the vehicle in the
planning stage. For instance, the resulting path for the curves C3 and C4 uses less lane space, that
is, is closer to the center of the lane. This is because of the higher width of the C1 with respect
to the Cycab, which reduces the safe space to place the control points (Convex Hull polygon) and
then the junction points between curves. It also helps to perform the curve when the vehicle is
traveling at higher speeds, like in this experiment where the car is running at 25 km/h. Although
the generated path considering the kinematic and dynamic characteristics of the vehicle is less
flexible, it still maintain a smooth behavior. Curvature profile is continuous and its maximum
value is 0.32 m−1 for the first turn and 0.2 m−1 as much for the other sharp turns. In addition,
the changes on the curvature are also reduced, being always below 1 m−2. Although the lateral
error in the sharp turns is important, it is based on the available simple-gains controller on the
C1 platform, which leads to higher errors for medium-speeds. As has been shown before, the
smoother the path planned, the better the path tracking on the controller. Thus, the application
of the planning approach with a more precise high-level lateral controller is envisaged for future
works.

Figure 5.12a shows the path for the area C-D, where its curvature and curvature derivative
profiles are depicted in Figure 5.12b, and the lateral and angular errors of the controller in Figure
5.12c. Similar results are obtained in terms of curvature continuity and smoothness. As can
be noticed in the curvature profile, even for the narrowest turn performed with curve C10, the
curvature value is low (0.209 m−1). It is worthy to mention that the curvature of curve C10 is
that low thanks to the use of the road width up to the feasible limits to plan a more opened path.
Additionally, it has been shown how the curvature change between curves C10 and C11 make the
vehicle to pass through the center of the lane between both curves, but not abruptly but using the
whole space between way-points searching the best junction point for both curves.
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Figure 5.11 – Path following itinerary from Figure 5.10: A-B area
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Figure 5.12 – Path following itinerary from Figure 5.10: C-D area

5.3 Validation tests for the dynamic path planner

Previous section shown the experiments carried out to validate the planning approach on static
urban environments, performing a path following from an origin to a destination point. This
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section introduces the experiments carried out to validate the planning approach for dynamic
environments presented in Chapter 4, where the vehicle has to deal with obstacles found in the
path, modifying the already planned static path to avoid them in a safe and smooth way.

5.3.1 Results on simulation platforms

For this purpose, the algorithm has been tested on simulation under the following use cases: First,
the dynamic local planner is validated for scenarios where static obstacles are found in the path,
in the same lane as the automated vehicle is running. Second, the performance of the system in
the presence of dynamic obstacles in the path with different speed profiles (both constant and non-
constant speeds) is presented, where the adaptability of the path is achieved considering dynamics
of both ego and avoided obstacle. Third, the response of the system when unexpected obstacles
are detected in the other lane is presented, forcing the vehicle to make a safe maneuver to return
to the original lane.

Since the static planning has already been validated, as a matter of simplicity, the scenario
created on Pro-Sivic to validate the dynamic planner on the defined use cases considers an itinerary
representing only a straight stretch being part of a whole path following itinerary combining cured-
areas and straight stretches. That way, we focus on avoiding the obstacle on the straight stretches
where there is enough space to perform the avoidance maneuver.

The information of the obstacles usually comes from the perception stage, where the lasers on
the vehicle provide the distance at which they are separated from the ego-vehicle position, as well
as the Oriented Bounding Box representing the width of the obstacle (in case of 2D lasers) and the
object type. To facilitate the validation experiments, the position of the obstacles is well-known
during the simulation. Thus, the distance to the obstacles is computed at all the time.

5.3.1.a Static obstacles scenario

Figure 5.13a shows the experiment carried out to validate the approach on scenarios where static
obstacles are found in the path. The ego-vehicle is the white passenger car and is located in the
center of the right lane, whereas the obstacle is a Cybus platform located fifteen meters ahead
of the ego-vehicle, represented in black color. First of all, the grid is generated centered on the
vehicle’s front position, where the lasers are located, allowing it to perceive the different objects
on the road, and classify them later. It is represented with grey lines in the Figure. This grid is
setted-up as explained in Section 4.3.1. In this example, the chosen resolution has been cells of one
meter, that way the lane width is discretized in three cells. In spite of the position of the vehicle
is well-known, the construction of the virtual lane is done like if this information had come from
the perception stage. Then, a classification of the obstacle is done according to the width of the
obstacle, computed from the obstacle Oriented Bounding Box (OBB). If the lasers equipped are
2D, like in our case, the information coming from the OBB only give us the information about the
width of the rear part of the obstacles. From this information, the classification is done according
to the relationship between length and width of the different road user types, being in our case:
vulnerable, cybercar, car and bus or truck. After being classified as a cybercar, the length of
the vehicle is estimated, and the Bounding Box of the obstacle is updated with that information,
as shown in the Figure 5.13a with a red rectangle surrounding the obstacle. The grid is then
updated, setting the cells where the obstacles lie as occupied, represented with garnet crosses in
the Figure. The safety area for the obstacle avoidance maneuver is computed, maintaining the
longitudinal and lateral safety distances, which are in this case the length of the ego-vehicle and
the limit of the lane, respectively. The points of the safety area lying in the line separating right
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and left lanes are points of the virtual lane, k1 and k2 respectively, as explained in Chapter 4. Once
this area is computed, from the internal vertices are computed the points swp2 and swp3, which
are the way-points located in the center of the left lane allowing the static planner to compute
the curves to perform both lane changes. These two points are computed applying the angle ϕ2,
which longitudinal separation of the way-points with respect to the obstacle position, making the
lane change maneuver end further or closer to the obstacle. For natural criteria, this angle ϕ2 is
prioritized to zero leading to more natural lane changes. On the other hand, the angle ϕ1 is the
slope for the lane change maneuvers. Thus, the algorithm evaluates the different curves changing
these angles in the available space between both vehicles. There, two curves are evaluated for
the first lane change and another two for the second lane change, and the only parameter that
the static planner searches in real-time is the junction point between curves. It starts to search
from the least values of the slope ϕ1, prioritizing that way smoother lane changes. The optimality
criteria for the curves evaluation is the one described in Chapter 3.

After applying the angles ϕ1 corresponding to the optimal curves found for both maneuvers,
the way-points defining the beginning and the end of the two lane changes are obtained (swp1 and
swp4 respectively, being placed in the center of the lane. The virtual lane is therefore generated
geometrically, applying half of the lane width to both sides. This virtual lane defines the new road
limits, considered in the static planner to ensure maintaining the ego-vehicle in the road without
invading the sidewalk.

Figure 5.12a shows in blue the resulting planned path for the avoiding maneuver, whereas the
path performed by the vehicle is depicted in light blue. This represents the optimal solution found
after the curves evaluation, where the corresponding parameters are ϕ1 = 65o and ϕ2 = 20o.

Figure 5.13b shows the curvature and the curvature derivative profiles for the avoiding ma-
neuver. It can be noticed that the maximum curvature is lower than 0.1 m−1, and the maximum
curvature change is of about 1 m−2. These values confirm the smoothness of the generated avoid-
ing path. Additionally, Figure 5.13c shows that the lateral error while tracking the avoiding path
keeps below 0.4 meters, thanks to the contribution in terms of smoothness of the path planned.

5.3.1.b Dynamic obstacles scenario

In addition to adapting the path to static obstacles found in the path, the proposed dynamic
planning approach also deals with dynamic obstacles found in the path. Figure 5.14 shows a
scenario where the ego-vehicle finds a moving obstacle blocking the path. First, as described in
the chapter 4, the algorithm predicts the worst case possible, where obstacle presents maximum
speed and acceleration. That way, the Bounding Box of the obstacle is updated considering this
information about the obstacle dynamics. The prediction will make that the virtual lane is re-
computed by projecting the way-points conforming the new global path for the two lane change
maneuvers.

Thus, 5.14a shows in blue the new planned avoiding path, where the performance of the ego-
vehicle is depicted in light blue. As can be seen, by considering the vehicle dynamics, what it is
done is to extend the lane keeping phase of the overtaking maneuver. The associated curvature
and curvature derivative profiles are presented in Figure 5.14b. As for the static obstacles scenario,
the values of both curvature and curvature derivative keep low, contributing to the comfort of the
path. In addition, the errors from the simulated vehicle performance are as low as for the static
obstacles use case, confirming that the approach adapts to dynamic environments without being
affected the tracking of the path.

One of the great advantages of this method is that the path does not have to be recomputed
all the time, with difference to other approaches based on lattices. Only when either the difference
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Figure 5.13 – Dynamic path on a straight stretch scenario with static obstacles

between expected distance traveled by obstacle or ego-vehicle is higher than the specified threshold,
or the time to collision is below six seconds, the re-planning process is started.

Figure 5.15 shows an application of the algorithm on a changing scene where there is a wrong
classification of the type of obstacle in front of the ego-vehicle. First, after receiving the coordinates
of the obstacle in front, it is classified as a cybercar, according to the vehciles classification already
shown in Chapter 4. Then, their dimensions are predicted, obtaining its predicted Bounding Box
represented in red in Figure 5.15a. A first virtual lane is computed (depicted in purple), and
the planning algorithm plans a path on it to arrive to the destination point. However, when the
ego-vehicle is in the point A, the perception system detects that the obstacle dimensions have
changed, being represented in garnet. In that moment, a re-computation of the virtual lane is
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Figure 5.14 – Dynamic path on a straight stretch scenario with dynamic obstacles

done according to the actual dimensions of the vehicle, as depicted in dark green, and a new path
is planned on this new virtual lane, allowing the vehicle to adapt its trajectory to the destination
point in a fast way. Additionally, a continuous curvature profile is kept, as shown in Figure 5.15b,
where the curvature is always below 0.2 m−1 and the curvature derivative is bounded to X m−2. It
eases the tracking of smooth lane changes curves for avoiding the obstacle when some unexpected
situations arise.

This way, the problem of finding a smooth path for avoiding both static and obstacles is reduced
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Figure 5.15 – Virtual lane re-computation and path replanning applied to a wrong prediction of
the obstacle dimensions

to the modification of the global path in the straight stretch, adding additional way-points which
allow the dynamic planning algorithm to make use of the static planner to evaluate the pair of
curves for each lane change, by changing only the slope of the maneuvers and the desired separation
with respect to the obstacle.

Finally, the algorithm is able also to react to unexpected circumstances, like for example when
an obstacle is found in the left lane once the avoiding maneuver has started, forcing us to make a
safe return to the lane. The algorithm computes in these cases an emergency path to perform this
maneuver aborting the original lane change, as shown in Figure 5.16a. First, ego vehicle starts
the maneuver for avoiding the obstacle Obst1, whose planned path and corresponding virtual are
depicted in red and dark red respectively. When the ego-vehicle perceives that another obstacle
(Obst2) is in the left lane, blocking the planned path, it switches from the avoiding path to the
safe return to the original lane one, whose path and virtual lane are depicted in light green and
dark green respectively. As can be seen in Figure 5.16b, the algorithm ensures performing a
smooth path even in emergency situations such the described. The maximum curvature reached
for the emergency maneuver (depicted in blue) is bounded below to 0.2 m−1, keeping a continuous
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curvature profile, where the maximum curvature change is produced in the switching process
between paths. It means an increment of only 0.1 m−1 on the maximum curvature with regard to
the original obstacle avoidance path in the same point.
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Figure 5.16 – Emergency return to the lane re-computation of the virtual lane, aborting the original
avoiding maneuver

The described dynamic planning strategy improves the previous works on the team [González
et al., 2014] in terms of path smoothness and computation cost, thanks to the use of the described
static planner which generates the optimal path for every virtual lane for the obstacle avoidance
maneuvers. A re-planning strategy to avoid re-computing the path at every planning period is
presented as well. The adaptability of the algorithm to any circumstances let us consider emergency
situations forcing to abort lane change maneuvers and generating a safe trajectory to return to
the original lane. These situations are handled just by computing a new virtual lane modifying
the location of the way-points according to both ego-vehicle and obstacle state.
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Chapitre 6

Conclusion

Below is a French summary of the following chapter "Introduction".

Ce chapitre présente d’abord les conclusions tirées après l’achèvement de ce travail de trois ans.
Ensuite, les contributions relatives à l’état de l’art sont extraites. Enfin, quelques directives concer-
nant les orientations futures du sujet de planification des trajectoires dans la conduite automatisée
sont données.
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Chapter 6

Conclusion

This chapter presents first the conclusions extracted after the completion of this three-years work.
Then, the contributions with respect to the state of the art are extracted. Finally, some guidelines
regarding the future directions of the path planning topic in automated driving are given.

6.1 Conclusions and remarks

Development and commercialization of ADAS have risen during last years. It has a big impact
from a safety point of view, allowing to reduce the gap between automated levels, aiming to achieve
a fourth level of automation in a short term. However, recent accidents, such the first death where
an automated vehicle was directly responsible, show that there is still work to do before having the
whole architecture working together robustly. Additionally, providing a natural driving behavior to
these systems is still a huge challenge. Crashes produced last year in automated urban navigation
have shown that the other drivers over reacted intending to compensate the performance of the
automated vehicles, since they were not navigating in the same way as a human driver would
do. Providing a real-time human-like driving style would increase the acceptance of automated
vehicles in society, since these vehicles would navigate in a safer way, performing more comfortable
trajectories, and more predictable by the rest of road users.

This PhD thesis presents a two-staged path planning architecture to address this problem on
urban environments, which supposes a bigger challenge due to the dynamism they present. It
comprises pre-planning and real-time planning stages. First, the physical characteristics of both
road and ego-vehcile are considered to pre-compute the optimal curves for adjusting the best to
every single turn the vehicle can encounter. Then, the actual information of the map is considered
to perform the desired itinerary by joining the optimal pre-computed curves generating an enhanced
G1 continuous path. The proposed approach is able to deal with any road configuration, treating
them as turns, under the assumption of an accurate global map providing the information of the
road. The proposed planner not only provides a solution to the navigation problem on static
environments, but also adapts the path to dynamic environments, where both static and dynamic
obstacles could be found in the path. Thanks to a grid-based discretization of the road, the position
of the obstacles is considered to build a virtual lane for generating the avoidance path. That way,
the original path is adapted considering the dynamics of the obstacle. Finding an avoidance path
is understood as evaluating the optimal slopes for performing the two lane changes and finding the
optimal junction point between curves. This way, the dynamic planner transforms the avoiding
problem into a new path following itinerary that is solved by the static planner.

The proposed planning strategy for automated vehicles has been validated both in simulation
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and in real platforms. Pro-Sivic, together with RTMaps, were used to create the static and dynamic
urban scenarios to validate the two stages of the approach. Additionally, Matlab-Simulink was used
to validate the pre-planning stage. Both Cybercars and the robotized Citroën C1 were employed in
the validation experiments at INRIA-Rocquencourt facilities. Results showed a good performance
of the system, providing a human-like path able to adapt to the road layout and to the dynamism
of urban environments. Reducing curvature and curvature derivative profiles as possible make
vehicles perform smoother and more comfortable paths, contributing to the development of safer
ADAS.

6.2 Contributions to the state of the art

The contributions to the current thesis can be summarized to the following, according to the field
of application.

6.2.1 Static environments

• Pre-planning stage generates databases containing the optimal curves for every single turn
the vehicle can find in the road, considering both vehicle kinematics and urban road charac-
teristics.

• Different databases are generated with respect to the vehicle position at the beginning and
end of the curve, i.e. depending on the use of the lane width.

• Real-time planning stage generates an enhanced G1 continuous path by joining the opti-
mal quartic Bézier pre-computed curves, allowing a good adaptation to the road layout,
performing any road configuration as turns.

• Path continuity and smoothness thanks to an optimality function searching to minimize both
the peaks on the curvature and the abrupt changes on it, for both the upcoming curve and
the next one, providing an extended planning horizon that optimizes that way two curves in
parallel.

• Intelligent algorithm to find in real-time the optimal location of the junction point between
curves, according to the available distance and the sharpness relation between curves, de-
ciding to use the available width of the lane or not and loading the proper database. Fur-
thermore, this junction between curves is continuous thanks to the considered curvature zero
constraint at the beginning and at the end of the optimal curves generated.

• Fast real-time planning: thanks to the pre-planning stage, this time can be below 35 ms.

6.2.2 Dynamic environments

• Dynamic planning algorithm which makes use of the static planning algorithm to modify the
planned static path generating the avoiding path in a fast way.

• Path continuity and smoothness criteria seeked while keeping simplicity: only the slope of
the lane changes and the distance to the obstacle are the parameters to evaluate in real-time.

• Each lane change path consists of two curves interpolated by the static local planner, keeping
that way curvature continuity and smoothness in the obstacle avoidance maneuver.
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• Adaptation of the path thanks to the generation of a virtual lane, which modifies the global
path adding two extra way-points for each of the two lane changes.

• Re-planning process is not computed every time period of the planning time: it is only done
either if the first prediction of the obstacle position is not correct, or if the distance traveled
by both ego-vehicle and obstacle changes substantially, or if the time to collision is below the
acceptable limits. It leads to the generation of faster dynamic paths.

6.3 Future work

This section presents the research perspective on motion planning systems for automated vehicles.
Based on the review of the state of the art, three different research lines can be distinguished in
this domain:

• With the technological evolution and economic impact shown in the late 90s and beginning
of the 00s, graph-search planning approaches supposed a big revolution in motion planning,
in robotics field first and later in automated vehicles.

• Since the generated paths are not continuous in base, sampling based techniques where ad-
dressed to provide constrained and faster trajectories. Parametric-based techniques appeared
to generate curvature continuous paths dealing with intersections, narrow U-turns or similar
urban configurations. These techniques have been used in combination with search based
techniques such as state lattices in order to consider dynamic changes on the scene.

• Last years, since the decision making is still an unsolved problem that prevents to reaching
the desired fourth automation level, both industry and research have put their efforts on
improving the decisional stage by studying the behavior of drivers and making the system
to learn. Thus, before having the urban autopilot available, robust algorithms have to be
deployed to predict the behavior of the other road users, mostly on urban environments such
as on road intersections, pedestrian crossing or parking lots.

Machine-learning algorithms may be considered on the path planning strategies in the short
term. Research on this line is trying to study traffic scenarios, such as in [Fridman et al., 2018],
where the perception, planning and control systems are handled by a single neural network in the
reinforcement learning process in a micro-traffic simulation. As an open challenge, planning meth-
ods will have to provide safe and system compliant performance in complex, cluttered environments
while modeling the uncertain motion of other traffic participants [Schwarting et al., 2018]. So far,
most approaches are rule-based, i.e. use a state machine to switch between predefined behaviors.
It supposes a lack of generalization to unknown situations and to deal with uncertainties.

An integrated perception and planning solution is expected, where the control input for the
vehicle is generated directly from sensory information relying on machine learning. There, deep-
learning based algorithms have a great potential to improve planning algorithms by learning how
the other vehicles react according to the traffic situation and thus letting us to achieve the fourth
automation level.

Creating fault-tolerant planning systems is a must in order to react when failures occur in the
perception and vision algorithms, which is an unsolved problem so far. This would probably avoid
accidents where a wrong recognition or classification of the road actors in front of the vehicle could
lead to fatalities. Eluding these accidents could promote policies and investment for the research
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and development of automated vehicles on urban roads, as well as an increase of the citizens’
confidence of the automated vehicle.



Appendix A

Appendix Title

The following XML code (Listing A.1) shows a subset of one of the four generated databases
containing the configuration parameters to generate the optimal pre-computed curves found in
the pre-planning process. This subset corresponds to the optimal curves for 90o turns, where the
arriving distance to the center of the turn is four meters, and the exiting distance ranges from 4
meters up to 40 meters.

<turn>
<angle alpha=" 30 ">
. . .
<ang le alpha=" 90 ">
<segment1 l ength=" 4 ">
<segment2 Bezier_order=" 4 " l ength=" 6 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1="

2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 8 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1="
2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 10 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 12 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 14 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 16 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 18 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 20 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />
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<segment2 Bezier_order=" 4 " l ength=" 22 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 24 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 26 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 28 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 30 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 32 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 34 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 36 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 38 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

<segment2 Bezier_order=" 4 " l ength=" 40 " d1_seg1=" 4 " d1_seg2=" 6 " d2_seg1=
" 2 " d2_seg2=" 4 " dLat_P1=" 0 " dLat_P2=" 0 " dLat_PMiddle1=" 0 " co s t="
26.682454851472151 " />

</segment1>
<segment1 l ength=" 6 ">
. . .
</ ang le>
. . .
</ turn>

Listing A.1 – Database XML subset code
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Resumé

Les systèmes de transport intelligents (STI) sont
conçus pour améliorer les transports, réduire les
accidents, le temps de transport et la consomma-
tion de carburant, tout en augmentant la sécurité,
le confort et l’efficacité de conduite. L’objectif fi-
nal de ITS est de développer ADAS pour faciliter
les tâches de conduite, jusqu’au développement
du véhicule entièrement automatisé. Les systèmes
actuels ne sont pas assez robustes pour atteindre
un niveau entièrement automatisé à court terme.
Les environnements urbains posent un défi partic-
ulier, car le dynamisme de la scène oblige les al-
gorithmes de navigation à réagir en temps réel aux
éventuels changements, tout en respectant les rè-
gles de circulation et en évitant les collisions avec
les autres usagers de la route. Sur cette base, cette
thèse propose une approche de planification locale
en deux étapes pour apporter une solution au prob-
lème de la navigation en milieu urbain. Première-
ment, les informations statiques des contraintes de
la route et du véhicule sont considérées comme
générant la courbe optimale pour chaque config-
uration de virage réalisable, où plusieurs bases de
données sont générées en tenant compte de la po-
sition différente du véhicule aux points de début
et de fin des courbes, permettant ainsi une anal-
yse réaliste. planificateur de temps pour analyser
les changements de concavité en utilisant toute la
largeur de la voie. Ensuite, la configuration réelle
de la route est envisagée dans le processus en
temps réel, où la distance disponible et la netteté
des virages à venir et consécutifs sont étudiées
pour fournir un style de conduite à la manière
humaine optimisant deux courbes simultanément,
offrant ainsi un horizon de planification étendu.
Par conséquent, le processus de planification en
temps réel recherche le point de jonction optimal
entre les courbes. Les critères d’optimalité min-
imisent à la fois les pics de courbure et les change-
ments abrupts, en recherchant la génération de
chemins continus et lisses. Quartic Béziers est
l’algorithme d’interpolation utilisé en raison de ses
propriétés, permettant de respecter les limites de la
route et les restrictions cinématiques, tout en per-
mettant une manipulation facile des courbes. Ce
planificateur fonctionne à la fois pour les environ-
nements statiques et dynamiques. Les fonctions
d’évitement d’obstacles sont présentées en fonc-
tion de la génération d’une voie virtuelle qui mod-
ifie le chemin statique pour effectuer chacune des
deux manoeuvres de changement de voie sous la
forme de deux courbes, convertissant le problème
en un chemin statique. Ainsi, une solution rapide
peut être trouvée en bénéficiant du planificateur lo-
cal statique. Il utilise une discrétisation en grille de
la scène pour identifier l’espace libre nécessaire à
la construction de la route virtuelle, où le critère de
planification dynamique consiste à réduire la pente
pour les changements de voie. Des essais de sim-
ulation et des tests expérimentaux ont été réalisés
pour valider l’approche dans des environnements
statiques et dynamiques, adaptant la trajectoire en
fonction du scénario et du véhicule, montrant la
modularité du système.
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Abstract

Intelligent Transportation Systems (ITS) develop-
ments are conceived to improve transportation re-
ducing accidents, transport time and fuel consump-
tion, while increasing driving security, comfort and
efficiency. The final goal of ITS is the develop-
ment of ADAS for assisting in the driving tasks,
up to the development of the fully automated ve-
hicle. Despite last ADAS developments achieved
a partial-automation level, current systems are not
robust enough to achieve fully-automated level in
short term. Urban environments pose a special
challenge, since the dynamism of the scene forces
the navigation algorithms to react in real-time to
the eventual changes, respecting at the same time
traffic regulation and avoiding collisions with other
road users. On this basis, this PhD thesis proposes
a two-staged local planning approach to provide a
solution to the navigation problem on urban envi-
ronments. First, static information of both road and
vehicle constraints is considered to generate the
optimal curve for each feasible turn configuration,
where several databases are generated taking into
account different position of the vehicle at the be-
ginning and ending points of the curves, allowing
the real-time planner to analyze concavity changes
making use of the full lane width. Then, actual road
layout is contemplated in the real-time process,
where both the available distance and the sharp-
ness of upcoming and consecutive turns are stud-
ied to provide a human-like driving style optimizing
two curves concurrently, offering that way an ex-
tended planning horizon. Therefore, the real-time
planning process searches the optimal junction
point between curves. Optimality criteria minimizes
both curvature peaks and abrupt changes on it,
seeking the generation of continuous and smooth
paths. Quartic Béziers are the interpolating-based
curve algorithm used due to their properties, allow-
ing compliance with road limits and kinematic re-
strictions, while allowing an easy manipulation of
curves. This planner works both for static and dy-
namic environments. Obstacle avoidance features
are presented based on the generation of a virtual
lane which modifies the static path to perform each
of the two lane change maneuvers as two curves,
converting the problem into a static-path following.
Thus, a fast solution can be found benefiting from
the static local planner. It uses a grid discretization
of the scene to identify the free space to build the
virtual road, where the dynamic planning criteria is
to reduce the slope for the lane changes. Both sim-
ulation and experimental test have been carried out
to validate the approach, where vehicles performs
path following on static and dynamic environments
adapting the path in function of the scenario and
the vehicle, testing both with low-speed cybercars
and medium-speed electic platforms, showing the
modularity of the system.
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