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Management of Mobile and Redundant
Manipulators in Cluttered and Dynamic

Environment
- Applications to the Aircraft Production Industry -

Abstract

Industrial applications involving collaborative robots are regarded with a growing
interest. These power-limited systems are embedded with additional sensing capab-
ilities, which allow them to safely work around humans and conquer new industrial
grounds. The subject of managing redundant, collaborative and mobile systems, for
assembly operations within a human-populated aircraft production environment, is
addressed in this thesis. From a process perspective, the use of these smaller and less
stif counterparts of the non-collaborative robots comes with new challenges. Their
high mechanical lexibility and weak actuation can cause shortcomings in positioning
accuracy or for interaction force sustainment. The ever-changing nature of human-
populated environments also requires highly autonomous solutions. In this thesis, a
formulation of positional redundancy is presented. It aims at simplifying the exploit-
ation of the freedom redundant manipulators have on static-task-fulilling postures.
The associated formalism is then exploited to characterise and improve the deform-
ational behaviour and the force capacity of redundant serial systems. Finally, the
subject of planning motions within cluttered and dynamic environments is addressed.
An adaptation of the well-known Probabilistic RoadMaps method is presented – to
which obstacles trajectories anticipation has been included. This solution allows to
plan safe, eicient and non-intrusive motions to a given destination.

Keywords : Industrial robotics, Redundancy, Robot accuracy, Force capacity, Mo-
tion planning, anticipation.
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Introduction and Context

As in other ields, the aircraft production industry has seen major changes with the
robotisation of its processes. While many operations are still performed by human
operators, an increasing number of machines populate the shop loors to take over
the most tedious or repetitive tasks. One of the most recognised advantage of using
automated machines is their high repeatability which ensures a high quality of exe-
cution. The use of robotic arms is popularising in the industry because these tireless
systems are lexible, can reach and work over large volumes, while their compactness
allow them to be transported to where work needs to be done.

In the aircraft ield, the robotised production is widely occupied by high payload
systems, able to carry versatile and heavy (>200 kg) tools such as Kuka Systems
Aerospace best selling product, a multi-function end-efector Fig. ??. The use of
these heavy robots also comes with drawbacks, as safety measures impose to sur-
round them with physical fences preventing human workers to be in the vicinity.
This constraint has been hindering the deployment of robotic solutions in human
populated shop loor up until recently, with the arrival of collaborative robots. Col-
laborative robots are robotic systems that are tailored to work alongside humans [1].
They are generally embedded with additional sensors. A non exhaustive list of these
sensor includes force and torque sensors for collision detection, cameras, distance-
computing, laser sensors. These sensors allow them to detect and/or adapt to human
presence. Another key characteristic of these safe robots is their limited power. This
has consequences on their speed performances, and payload, which rarely exceeds
25 kg. A last important feature is their easy programmability, which is supposed to
quicken their integration in existing industrial processes, and to make them more eas-
ily reprogrammed to new situations or processes. Additionaly to their safety related
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Figure 0.0.1: Multi-function end-efector produced by Kuka Systems Aerospace carried by a
high payload robot (KR300).

features, the cobots are generally small robots, which make them able to squeeze in
more cluttered environments, and bring more lexibility to the workplace.

System presentation

Nevertheless, transiting from high payload non collaborative systems to cobots comes
with diiculties. The irst one of these is the lower working volume issue, as cobots are
generally much smaller systems than traditional robots. To match the reachability
of the latter, company Kuka Systems Aerospace ordered the study of the integration
of a lock of collaborative robot LBR iiwas, mounted on mobile platforms (KMP)
to perform assembly tasks on Aircraft shoploors (see Fig. 0.0.2). In addition to
matching the work volume of traditional robots, the mobility and lock aspect bring
a much desired lexibility, which is at the foundation of industry 4.0. These industrial

2





operations, where sensing and adapting to non perfect part positioning and shapes
becomes more important than having a high end-efector positioning accuracy. The
KMP is a 4-mecanum wheeled mobile platform. These wheels endow the platform
with omnidirectional motion capabilities in the loor plane. This brings 3 additional
degrees of freedom (DOFs) to the entire system, which add up to 10 DOFs. In terms
of safety features, the platform possess two diagonally opposed 270°-ranged SICK
laser scanners that monitor the surrounding physical objects situated at 15 cm above
the loor level. The system carries its own battery, which can provide energy to the
mobile base and the robotic arm for several consecutive hours.

Industrial locks

In 2016, Airbus organised at the International Conference of Robotics and Automa-
tion (ICRA), Stockholm, a competition aiming at using lightweight robots (< 100
kg) to drill aircraft quality holes into a 70 × 70 cm2 aluminium panel (Fig. 0.0.3).
Unremarkably, the marking criteria were related to the cycle time (60 minutes to
drill 245 holes), accuracy on hole positions (tolerance of ± 0.5 mm) and hole quality
(good panel surface condition), which are some of the main quality indicators of the
robotised production ield. For this competition, we chose to use the LBR iiwa alone,
mounted with a drilling end-efector, itself endowed with a vision and laser-based
localisation system and a lubrication tool device (see Fig. 0.0.4).

This challenge was certainly a turning point of this PhD, and the main problems
encountered within the preparation for and during the competition have had a strong
inluence over the organisation of this thesis.

The irst of them, which was encountered in the preparation of the challenge,
was to choose a suitable placement of the robot base, which enabled reachability
of the widest possible number of holes. During the challenge, despite an accurate
vision-based localisation method, unexplained holes positioning misalignments were
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spotted. We later understood that these inaccuracies were strongly inluenced by
the mechanical deformation of the serial system under the stress of the the drilling
procedure. In parallel, we witnessed, without any easy means to predict or avoid
it, that the robot torque limits were sometimes reached before a hole was completely
drilled. The uneven distribution of these unforeseen misalignments or torque shortage
occurrences over the drilling panel tipped us into thinking that the posture used by
the serial system had a strong inluence on the progress of the drilling operation. In
the competition, the 70×70 cm2 panel was to be drilled by 245 holes. Densely packed
as they were, moving from one to an other in a straight line end-efector path regularly
led near singular conigurations. The Cartesian controller of the robot prevented the
robot from performing these motions and therefore many holes were missed. This
happened despite the existence of an associated articular coniguration within joint
bounds for the hole location. We made the decision to use articular motions, i.e.
motions interpolating linearly in joint space between the current articular position
and the articular position destination leading the end-efector in the right location.
This led to quite unpredictable motions of the end-efector and the occurrence of
collisions with the environment, which are unacceptable in an industrial context.

This experience led us to orientate the PhD work towards improving our geometric
and kinematic understanding of the system. This allowed us in time to characterise
the inaccuracies caused by mechanical lexibility, and the force capacity of the system
with regards to a speciic task. Strategies were devised in order to minimise the
inluence of these shortcomings by exploiting the task redundancy of the system.

Thesis contents and organisation

A simple analogy can be used to describe the way autonomous industrial processes
in dynamic and cluttered environment can be decomposed for mobile and redundant
systems. The human knocking in nails in Fig. 0.0.5 uses a similar strategy. The core
steps can be extracted to provide an abstract description of the procedure. At the
beginning, the human is given a task to put a nail somewhere in the wall. The robotic
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Knocking the nail while turning his back to the wall could lead to poor results
in terms of eiciency, accuracy, or just by preventing him from applying enough
strength to the task. One type of posture is generally admitted to be the correct
one to knock in nails, this is the one he chooses. The same applies to the system,
which needs to decide of a suitable posture to perform the task. Our system
is redundant, and could position its end-efector correctly with many diferent
postures. One needs to be chosen that allows it to perform the process in good
conditions.

4. After choosing a suitable posture, the human can start driving the nail in the
wall. The industrial system can also start performing its process when placed
in a suitable posture.

The system described in the previous section, which is composed of a robotic arm
and a mobile platform, can be synthesised into 10 independent DOFs leading to a
displacement of the terminal link. This kinematic structure possesses 4 DOFs that
traditional 6-DOFs industrial robots don’t have. A major challenge associated to
introducing this redundancy in an industrial context is to retain the advantage of
lexibility and dexterity while making the management of these extraordinary kin-
ematic capabilities as simple and intuitive as possible. The enlightened management
of these tremendous yet complex capabilities is the purpose of Chapter 1. The results
presented therein serve as a foundation to the work presented in the two following
chapters.

Despite their undeniable attractiveness, the use of these robots for processes that
are traditionally done by their strong industrial counterparts comes with highly com-
plex challenges. Cobots are generally lighter than their non collaborative counterparts
and composed of parts that are proportionally thinner. Consequently, the mechan-
ical components have lower mechanical stifnesses, and easily deform under the strain
caused by interacting with the environment. This sometimes causes unacceptable
accuracy issues. In this thesis, a strategy is presented in Chapter 2 to cope with the
low mechanical stifness and with the deformations arising from the interactions of
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cobots with their environment.

To abide to safety speciications, collaborative robots can transmit a very limited
amount of power, which translates into rather low motor torques and speeds. Con-
sequently, robot manufacturers try to make these systems as light as possible, as
inertial and gravity compensation of the robot links tend to account for a large por-
tion of their torque capacity. Despite this, cobots sometimes lack the motor torques
needed to perform some operations. New strategies must be found to adapt to pro-
cesses requiring high forces and torques capacities. Chapter 3 introduces the Force
Capacity Index (FCI), which assesses the capacity of a serial robot to produce a given
spatial force. The exploration of the self motion of kinematically redundant systems
is then done to ensure a given force capacity.

Another subject that is tackled within this PhD work is the problem of how to
eiciently and safely move within an unstructured and dynamic environment that
is populated by humans and robots alike. Indeed, while robots are able to perform
thousands of times the exact same motion within a geometric range no human could
hope to match, they are not intelligent, and thus unable to adapt to new situations.
Challenges arising with the use of systems designed for repeatability, in an ever-
changing environment are also numerous. The presence of humans greatly complicates
the management of the displacements of mobile collaborative systems. One of these
challenges, which is approached in Chapter 4 is the safe and eicient motion planning
of these systems in dynamic and cluttered environments.

Thesis positioning and contributions

The overall positioning and organisation of the thesis is reminded on Fig. 0.0.6.

The second chapter is inspired from the author’s publication at the International
Federation of Automatic Control (IFAC) [2], which took place in Toulouse, 2017.
The third chapter is largely copied from the author’s publication at the Robotics and
Automation Letters (RA-L) and conference paper at the International Conference on
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1
An enlightened redundancy

management

Kinematic redundancy is a vast subject and is dealt with through various strategies.
The chapter begins by introducing the way redundancy is traditionally used and delt
with, with inverse diferential schemes in Section 1.2. Then, Section 1.3 introduces
the framework of redundancy spaces, that formalises the concept of redundancy at
the position level. Positional tasks are commonly assigned operations in the robotised
production industry. Pick and place operations, riveting, screwing, drilling, or local
measurements are among these so called positional tasks, because their associated
geometric speciications can be given in terms of static end-efector locations. Re-
dundant robots with regards to these tasks are able to comply with them in continuous
manifolds of articular positions. This framework answers a need for simplifying and
formalising the exploitation of the freedom redundancy ofers at the position level.
When it can be used, advantages of this framework, compared to diferential kinemat-
ics methods, are numerous for the problem of choosing a coniguration that complies
with a positional task. It allows a thorough exploitation of geometric redundancy.
Redundancy resolution using this framework are made simpler, lighter, more accurate
and more exhaustive. This framework will be used in following chapters (Chapter 2
and Chapter 3) as a fundamental tool for the enhancement of posture-dependant
performance characteristics of redundant robots.
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1.1 Introduction to robot kinematics

1.1.1 Geometric nomenclature

The position and orientation of a rigid body in space can be grouped under the term
pose. The minimum number of parameters needed to fully describe the pose of a rigid
body in Euclidean space is six. A coordinate reference frame or frame Fi consists of
an origin, denoted Oi, and a triad of mutually orthogonal basis vectors, denoted
(xi,yi, zi). The pose of a body is always expressed relative to some other body, and
can be expressed as the pose of one coordinate frame relative to another. In the
rest of the thesis, rigid body transformations will be based upon the homogeneous
transformation matrix representation. The homogeneous transformation iTj leading
frame Fi to frame Fj, which is the same as the one describing the pose of frame Fj

with respect to frame Fi, is the 4 × 4 matrix :

iTj =

[
iRj

ipj

0 0 0 1

]

.
iRj can be seen as the 3 × 3 orientation matrix of frame Fj expressed in frame Fi.

ipj can be seen as the position of the origin of frame Fj expressed in frame Fi.
iRj can be otherwise written :

iRj =
[
ixj

iyj
izj

]

=






xj.xi yj.xi zi.xi

xj.yi yj.yi zi.yi

xj.zi yj.zi zi.zi






where ixj, iyj, and izj of iRj are the expressions of vectors xj, yj and zj in frame
Fi, which can be found through the dot product of the vectors of the two coordinate
frames.
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1.1.2 Task Space Formulation

For a serial robot consisting of N rigid bodies, a minimum set of 6N independent
coordinates is necessary to fully describe the position and orientation of all the bodies
relative to a reference frame. Since the links of the robot are connected together, there
exist constraint equations that geometrically bound these coordinates between each
others. Considering this, these 6N coordinates can be expressed in terms of a smaller
set of N coordinates gathered in a vector q, along with a non-varying geometric
description of the geometric relations between these links (see DH parameterisation
in Section 1.1.3). These N coordinates are called generalised coordinates, and are
fully independent from one another.

The articular position coordinates, gathered in a q =
[

q1 . . . qN

]⊺

vector for a N -
DOFs robot, are such a set of generalised coordinates. They are used to naturally and
eiciently describe an entire robot posture. This articular position vector, also termed
coniguration, is part of an articular space, also called joint space. Basic robot control
handles generally include these joint coordinates or their derivatives with respect to
time. Queries that are speciied in terms of trajectories of these articular coordinates
are generally understood by the system:

”Move from this articular coniguration to that one using a bang bang
limited jerk proile interpolating along a straight path (in coniguration
space) joining the two conigurations with non-zero inal velocity, then keep
a constant articular velocity for two seconds and inally stop as quickly as
you can along a straight path in articular space”

Unfortunately, these handles are generally not easily intuited by robot users, who
generally prefer to specify their orders with more abstract notions.

A robot is in essence a system that humans use to perform actions. From the
user’s point of view, these actions/tasks/operations are generally formulated in what
are considered abstract terms for a robot:

”Translate your end efector to this location while avoiding obstacles with
the rest of your links with a smooth bell-shaped Cartesian velocity proile,
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then follow as best as possible a moving frame in position and orientation
with your referenced tool tip for 2 seconds, then apply this force with your
tool tip at this location...”

The mathematical description of a task may be gathered in a vector t =
[

t1 . . . tM

]⊺

,
termed the task vector, or operational vector. Very often, this vector describes the
pose of a frame, which is attached to the end efector of a robot, expressed in a
reference frame. The task is not always as contraining as that, and may contain just
a position or an orientation, or any degratation of a pose. On the other hand, it can
be more contraining, if it contains several poses of subelements of the robot. Each
component ti of the vector contains a single abstract information about the action to
perform. The operational vector is itself part of an operational space or task space.

1.1.3 System geometric description

Cartesian positioning and trajectory following of an end-efector are among the most
prevalent primitive tasks that robots are assigned to perform, especially from the
perspective of an industrial robot programmer. These speciic tasks are so common
in traditional robot uses that, in the roboticits semantics, the term ”task” often
amalgamates to these primitives only.

The irst diiculty lies in translating these high level needs into the control handles
of robotic systems. The ield of serial robot kinematics relates to this problem. Trans-
lating joint space coordinates into end-efector space localisation coordinates is called
the direct modelling of a robotic system. When the coordinates relate to the position
of the end efector, we talk about the direct geometric model. When they relate to
the speed at which the end efector moves, we talk about the direct kinematic model.

The geometric description of serial manipulators can be conveniently and eiciently
done with one of the numerous adaptations of the Denavit and Hartenberg funda-
mental convention [4]. Among these adaptations, one of the most wildly used so called
DH description or parameterisation is the one deined by Khalil and Kleininger in
[5]. The parameters notations will be the ones deined in [6]. This latter convention
uses four parameters to describe eiciently and without ambiguity the geometry of a
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• the joint ofset di, which is the distance from xi−1 to xi along zi,

• the joint angle θi, which is the angle from xi−1 to xi about zi,

This convention has the advantage to relatively locate two successive reference
frames - frame i relative to frame i − 1 - thanks to the composition of four simple
operations. Frame i is located relative to frame i − 1 by irst executing a rotation
by αi about the xi−1 axis. Then a translation of a distance ai along xi−1 is to be
performed. After that, comes a rotation by θi about the zi axis. Finally, a translation
along zi by di is to be carried out. This composition can be written in terms of an
homogeneous transformation, as :

i−1T i =









cos(θi) − sin(θi) 0 ai

sin(θi) cos(αi) cos(θi) cos(αi) − sin(αi) − sin(αi)di

sin(θi) sin(αi) cos(θi) sin(αi) cos(αi) cos(αi)di

0 0 0 1









(1.1)

1.1.4 Direct modelling of robotic systems

1.1.4.1 Direct geometric model for positioning tasks

The direct geometric model of a kinematic chain corresponds to the mathematical
relations calculating the operational coordinates of the system when it is set in an
articular position. The operational coordinates may represent various physical quant-
ities, but the Direct Geometric Model (or Forward Geometric Model) often relates to
operational coordinates representing the pose of a frame which is attached to a tool of
a N -DOFs system. This pose can be represented by an homogeneous transformation
matrix 0TN representing the extremal link reference frame FN pose relative to the
robot base reference frame F0. 0TN can be written as the composition of the ele-
mentary homogeneous matrices derived from the DH parameterisation of the system
as :

0TN = 0T1 . . .
N−1TN =

N∏

i=1

i−1Ti
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Thanks to Eq. (1.1) and to the DH parameterisation of the system, the expressions
for each of these transformation matrices i−1Ti, as well as the expression of 0TN can
be fully derived.

1.1.4.2 Task Jacobian matrices

The direct geometric model has given us a relation between the articular position
coordinates of a system and its operational position coordinates related to the pose
of a frame attached to the robot’s end-efector, thus creating a mapping from joint
space to task space. The mapping is said to have been performed at the position
level. It takes the form:

t = Ft(q) (1.2)

where t is the vector containing the operational space coordinates, Ft is a poten-
tially non-linear vector function of q, which is the vector containing the articular
coordinates. It is interesting to consider the irst order diferential kinematic relation:

ṫ = Jt(q)q̇ (1.3)

which can be obtained by diferentiating Eq. (1.2) with respect to time. In this
expression, ṫ is the operational space velocity, Jt(q) is called the operational space
Jacobian, task Jacobian or analytic Jacobian matrix 1, and q̇ is the articular velocity
vector. The Jacobian matrix is built thanks to the partial derivative of the component
of the vector value function Ft by each element of the articular coordinate vector q.
As such, a convenient, yet mathematically incorrect notation, denotes the Jacobian
matrix as : Jt = ∂Ft/∂q.

The analytical Jacobian matrix is the representation of the operational space ve-
locities with respect to the articular velocities in a given articular coniguration of
the system. Performing an order one approximation of the Taylor expansion of the
ith component Fti of the direct geometry function Ft deined in Eq. (1.2) leads to a

1In the rest of the thesis, a Jacobian matrix will indiferently be called ”Jacobian matrix”, or
merely ”Jacobian”
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mathematical formulation of the ith component δti, of the task displacement δt, with
regards to a small variation of articular coniguration δq = [δq1, . . . , δqm]

⊺.

Fti(q+ δq) = Fti(q) +
m∑

j=1

∂Fti(q)

∂qj
δqj +O(∥δq∥

2)

⇒Ft(q+ δq) =







Ft1(q)
...

Ftm(q)






+ Jtδq+







O(∥δq∥2)
...

O(∥δq∥2)







⇒ δt = Ft(q+ δq)− Ft(q) = Jtδq+







O(∥δq∥2)
...

O(∥δq∥2)







⇒ δt ≈ Jtδq . (1.4)

For a small variation of articular coniguration δq, the task displacement δt can be
approximated at articular coniguration q thanks to Eq. (1.4).

The Jacobian matrices can be seen as representations of the operational space cap-
abilities of the system in a given articular coniguration. The word mapping between
articular and operation spaces is often used to stress this notion. The system’s abil-
ity to produce operational velocities is directly related to the components of these
matrices. By deinition, column i of a Jacobian matrix relates to the inluence of the
positional variations of joint i onto all operational space coordinates.

In some conigurations, the task Jacobian matrix may become rank-deicient. Look-
ing at the deinition of this Jacobian matrix through the expression Jt(q) = ∂Ft/∂q,
it becomes clear that rank deiciency translates into disabling certain directions of
the operational space. These conigurations are called singular. The analysis of the
Jacobian through a Singular Value Decomposition (SVD) [7, 8] can help avoid these
singular conigurations where the manipulator looses or is about to loose operational
mobility and compensates by changing very sharply its articular coniguration (more
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information will be provided on this subject in Section 1.2.2).

Jacobian Matrices are very useful in robotics as they are at the base of the inverse
diferential model, which can be used to compute the articular velocities q̇ needed to
comply with operational velocities ṫ. Jacobian matrices can also be used to compute a
local solution q of joint coordinates corresponding to an operational position t through
numerical integration techniques (numerical methods such as Newton Raphson and
gradient descent are explained in [9]).

1.1.4.3 Geometric Jacobian matrix

One particular Jacobian, which is of major interest in the kinematic analysis of ma-
nipulators is called the geometric Jacobian. This Jacobian matrix is a linear mapping
between the articular velocities of the system and the spatial velocity of the end ef-
fector. Other closely related formalisms for spatial velocity include the twist [10, 11]
or its French version the torseur cinématique [12](which we will call ”torseur” for com-
modity). When the operational coordinates relate entirely to locating the end efector
of the system in position and orientation, the inversion of analytic Jacobians may suf-
fer from representation singularities (or algorithmic singularities), that originate from
the representation of the orientation [13]. The geometric Jacobian then becomes a
very powerful tool, because the representation of velocities used therein don’t sufer
from representation singularities. Therefore, a coniguration may be singular for an
analytic Jacobian while it is not for another that uses another representation of ori-
entations. The geometric Jacobian doesn’t sufer from algorithmic singularities, and
a loss of rank of this Jacobian always translates into a kinematic singularity, i.e. a
loss of mobility in space.

The formalism of ”torseurs cinématiques”, or ”torseurs” can be used to express
the geometric Jacobian of a N -DOFs serial robot. Within the torseur notation, rigid
bodies will sometimes be referred to with the frames that are attached to them (e.g
Si might be referred to as ”Fi” or just ”i”). Given a point A which can be located
anywhere in space, the torseur {VSi/j}

A in point A of a rigid body Si relative to a
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coordinate frame Fj is constructed from a pair of 3-dimensional vectors, the angular
velocity and the linear velocity

{VSi/j}
A =

{

ΩSi/j

VA∈Si/j

}

. (1.5)

The linear velocity will be noted VA∈Si/j. Given a rigid body Si, it expresses the
linear velocity of the body-ixed (i.e. ”Si-ixed”) point which currently coincides with
point A, with regard to frame Fj. The angular velocity of solid Si with regard to
frame Fj will be noted ΩSi/j. It expresses the rate of change of any vector that is
attached to solid Si with regard to Fj. Let us deine {VN/0}

P , the torseur in point2

P of link N , the extremal link of the robot, relative to F0, the robot base reference
frame. The law of relative motions applied to the serial system gives

{VN/0}
P = {VN/N−1}

P + {VN−1/N−2}
P + · · ·+ {V2/1}

P + {V1/0}
P

=
N∑

i=1

{Vi/i−1}
P ,

(1.6)

where

{Vi/i−1}
P =

{

Ωi/i−1

VP∈i/i−1

}

. (1.7)

If joint i is a revolute joint:
Ωi/i−1 = q̇izi (1.8)

where q̇i is the derivative of qi, joint i angular position, by time.
If joint i is a prismatic joint:

Ωi/i−1 = 0 (1.9)

The linear velocity VP∈i/i−1 of the body-ixed point that currently coincides with P

2This point is often conveniently chosen to be the origin of the TCP reference frame, which is
generally attached to end efector of the system.
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Figure 1.1.2: A prismatic and a revolute joints.

and which is rigidly attached to link i, relative to frame Fi−1 (which is itself attached
to link i−1) can be computed thanks to the relation of moment transfers (Varignon’s
theorem) [14] on a point situated on the rotary axis of joint i. Such points can be
found through the DH parameterisation of the robot, taking the origin Oi of Fi which
is attached to the link i:

VP∈i/i−1 = VOi∈i/i−1 +POi ∧Ωi/i−1. (1.10)

If joint i is revolute, in Eq. (1.10), the term VOi∈i/i−1 is zero because any point
situated on the rotary axis of joint i has a zero linear speed with regard to Fi−1.
Therefore, for revolute joints, VP∈i/i−1 simpliies into:

VP∈i/i−1 = POi ∧ q̇izi . (1.11)

If joint i is prismatic, the term VOi∈i/i−1 corresponds to the translation velocity
of the prismatic joint : q̇izi. According to Eq. (1.9), Ωi/i−1 is zero. Therefore, for
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prismatic joints, VP∈i/i−1 simpliies into:

VP∈i/i−1 = q̇izi . (1.12)

The geometric Jacobian J of the system in P can be seen as the columnwise
concatenation of the diferentiation of the torseur {V0/N}P by each joint velocity q̇j

(with j ∈ J1 ..NK). The expression of the jth column of J is

Jj ≡
∂{V0/N}

P

∂q̇j

≡
∂(
∑N

i=1{Vi/i−1}
P )

∂q̇j

≡
N∑

i=1

∂{Vi/i−1}
P

∂q̇j

(1.13)

Eq. (1.7), 1.8, 1.9, 1.11 and 1.12 reveal that {Vi/i−1}
P only depends on the articular

velocity q̇i, vector POi and vector zi.

For revolute joints, Jj simpliies into

Jj ≡
∂{Vj/j−1}

P

∂q̇j

Jj =

[
∂q̇jzj
∂q̇j

∂(POj∧q̇jzj)

∂q̇j

]

=

[

zj

POj ∧ zj

]

.

(1.14)
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For prismatic joints, Jj simpliies into:

Jj ≡
∂{Vj/j−1}

P

∂q̇j

Jj =

[
∂0
∂q̇j
∂q̇jzj
∂q̇j

]

Jj =

[

0

zj

]

. (1.15)

Now noticing that all the vectors composing Jj can be derived from the direct
geometric model for positioning tasks (see Section 1.1.4.1), the geometric Jacobian
can be computed. Often, the geometric Jacobian is expressed in the robot base
reference frame, and sometimes, in the robot tool reference frame. It can also be
given in any known reference frame by expressing zj and POj in the corresponding
frame. Each corresponding Jacobian expression are mappings from articular space
displacements (or velocities), to displacements (or velocities) in Cartesian space seen
from the frame of expression. A Jacobian expressed in frame Fi (noted for commodity
jJ ) can be expressed in frame Fj thanks to the relation of transformation of the
Jacobian matrix

jJ =

[
jRi 03

03
jRi

]

iJ (1.16)

where jRi is the 3× 3 orientation matrix of frame Fi expressed in frame Fj.

The geometric Jacobian matrix is also used to deine the static force model of
robots, used to compute the net joint force vector τ = (τ1 . . . τN)

⊺ that balances the
endpoint P force and moment −fP = (−F⊺ −MP

⊺)⊺ acting on the end efector. To
do that, let us deine the virtual articular displacements vector δq = (δq1 . . . δqN)

⊺

and the end efector virtual displacements vector δpP = (δxP
⊺ δφ⊺)⊺. The principle

of virtual work states that equilibrium is reached if, and only if, the virtual work done
by the forces and moments is zero for arbitrary virtual displacements that conform
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to geometric constraints [15].

0 = τ1δq1 + τ2δq2 + . . . τNδqN − F⊺δxP −MP
⊺δφP

= τ ⊺δq− fP
⊺δp .

(1.17)

The conformation to geometric constraints is ensured by diferential relation Eq. (1.4).
Hence, Eq. (1.17) becomes

0 = τ ⊺δq− fP
⊺Jδq

= (τ − J⊺fP )
⊺δq .

(1.18)

Eq. (1.18) is valid for any virtual arbitrary ininitesimal displacement δq ∈ R
N .

Therefore,
τ = J⊺fP (1.19)

1.1.5 Inverse modelling of robotic systems

As was stated in Section 1.1.2, it is more convenient to specify orders in terms of a
task. It is thus necessary to be able to translate these commands in terms that the
robot may understand. That is the role of inverse modelling. Many methods exist
to reverse the direct modelling and some of them will be explained in the following.
The focus will be made on redundant manipulators, i.e. manipulators that have more
degrees of freedom than necessary to perform tasks.

1.2 Redundancy resolution in the literature

1.2.1 Redundancy resolution

This chapter, which is dealing with the notion of kinematics in robotics, explains
how these joint and task spaces can be mapped into one another, and speciically
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for redundant systems. The relation between the vectors describing the articular
coniguration and the one describing the task can be speciied at the position level, at
the velocity (irst diferential) level and at the acceleration (second diferential) level.
When a manipulator has more joints than necessary to perform a task, it is said to be
redundant. A manipulator is not intrinsically redundant but rather there exist tasks
that make a robot redundant. For redundant manipulators, there exists no bijective
map between the two spaces, but rather a surjective one from joint space to task
space. In fact, for redundant robots, a given regular task can even be performed by
an ininite set of solutions in joint space. To perform the task, a choice has then to be
made within this set, and this is the purpose of redundancy resolution. This choice
can be either perceived as an additional complexity to deal with, or an opportunity
to enhance the performances of the system in a given context.

While the literature is mainly focused on the velocity level, the redundancy resolu-
tion contributions of this doctoral work focus on the position level. Many industrial
processes currently performed by robots on shoploors, especially on aircraft produc-
tion shoploors, don’t require the robot to move while its tool is operating. Actually,
the demand for high precision rarely gives ground to any displacement of the articu-
lated system while the process is being performed. Drilling, screwing or riveting are
among these discrete and static operations requiring high precision. This led us to
develop tools within this framework (see Section 1.3) of redundancy resolution at the
position level. It is useful to consider the direct geometric model (Eq. (1.2)) when
using this framework. Regardless, a major part of redundancy resolution schemes
presented in the literature focuses on velocity (and acceleration) levels. The common
idea of these schemes is to identify and exploit the local behaviour of the system,
set in a given articular posture, with regard to the local task displacements, task
velocities or accelerations. The mathematical abstraction of this idea is embodied in
the Jacobian matrix of the robot task. This central tool is used extensively where
redundancy resolution at these levels is concerned. These schemes naturally target
industrial applications requiring a continuous motion of the robot while the process
is being performed. These applications include for example welding, gasketing, or
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camera measurements. It is interesting in this framework to consider the irst order
diferential kinematics model (Eq. (1.3)).

The presentation of some relevant irst order diferential kinematic schemes is the
purpose of this section, while the presentation of the framework for solving redund-
ancy at the position level will be discussed in the next.

1.2.2 Singular Value Decomposition and general solution to inverse
kinematics for Redundant manipulators

The analysis of the task Jacobian matrix is of primal importance to understand the
motion capabilities of the system. To analyse the linear mapping from joint space to
task space, the Singular Value Decomposition (SVD) of the Jacobian matrix brings
a lot of information. The SVD method was independently discovered by Eugenio
Beltrami and Camille Jordan in 1873 and 1874 and the proof of the singular value
decomposition for rectangular matrices was published in 1936 in [16]. A reliable and
fast algorithm used to compute the SVD of rectangular matrices was introduced in [7].
Eventually, the SVD computation was adapted and made faster for robotic systems
Jacobian matrices, that took advantage of their particular kinematic structures in [8].

The SVD decomposes a matrix Jt into the multiplication of 3 matrices U,Σ and
V ⊺ as:

Jt = UΣV ⊺

(1.20)

Jt =




 u1 . . . uM






︸ ︷︷ ︸

M×M







σ1 (0) 0 . . . 0
. . . ... ...

(0) σM 0 . . . 0







︸ ︷︷ ︸

M×

(
M+(N−M)

)







v1
⊺

...
vN

⊺







︸ ︷︷ ︸

N×N

The columns of U form an orthonormal basis Bt = (ui)i∈J1 ..MK of the task space
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displacement/velocity vectors. The columns of V form an orthonormal basis Bq =

(vi)i∈J1 ..NK of the joint displacement/velocity vectors. Σ = [D 0] is the M×N matrix
whose M ×M submatrix D is a diagonal matrix containing the singular values σi,
in decreasing order, of the Jacobian matrix Jt (D = diag((σi)i∈J1 ..MK)). We will
be focusing on redundant robots, therefore N > M . The main interest about these
bases is that they are linked together through simple relations involving the Jacobian
matrix:

{

∀i ∈ J1 ..MK,Jtvi = σiui

∀i ∈ JM+1 ..NK,Jtvi = 0
. (1.21)

(Note: if Jt is of rank R < M , ∀i ∈ JR+1 ..MK, σi = 0).

From Eq. (1.20) and Eq. (1.21), one can write that:

Jt =
M∑

i=1

σiuivi
⊺

So, it can be understood that for any articular velocity Vq, the task velocity produced
by Vq is equal to the

(

σi⟨vi,Vq⟩
)

-weighted decomposition of the task singular ui

vectors, as :

JtVq =

(
M∑

i=1

σiuivi
⊺

)

Vq =
M∑

i=1

σiui(vi
⊺Vq) =

M∑

i=1

(

σi⟨vi,Vq⟩
)

ui (1.22)

From Eq. (1.21), we can gather that the R irst vi vectors left-multiplied by Jt

span the realisable task velocities space. If R < M , tasks that have components in
span{uR+1 . . .uM} won’t be fully realisable from the current coniguration, which is
said to be singular. With the SVD formalism, rank deiciency of the Jacobian matrix
naturally translates into a loss of mobility along certain directions of the task velocity
space. On the other hand, the N−R last vi vectors correspond to articular velocities
that produce zero task velocities. These last joint velocity vectors thus span the null
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space of the task Jacobian matrix: kerJt = span{vR+1, . . .vN}.

q̇ ∈ R
N = span{v1, . . . ,vN} ẋ ∈ R

M = span{u1, . . . ,uM}

R(Jt) = span{u1, . . . ,uR}
kerJt = span{vR+1, . . . ,vN}

0

Jt

Jt

Jt

Jt

Joint side Task side

Joint velocities space

Joint velocities producing no task velocity

Task velocities space

Task velocities that can be produced

Figure 1.2.1: Task space and joint space representation with SVD formalism.

Of course, the mapping can easily be reversed, as a task velocity along ui, (i ≤ R)

can only be performed if an articular velocity along vi is performed on the joints
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side.Hence, any task velocity can be written as a linear combination of the base
vectors ui.

∀Vt ∈ span{Bt} = R
M ,

∃!(α1, . . . , αM) ∈ R
M : Vt = α1u1 + · · ·+ αMuM

Therefore, the same linear combination of the corresponding vi, weighted by the ratio
1/σi (see Eq. (1.23)), is the minimal norm solution to the inverse kinematics problem.
In any coniguration q that is not singular (i.e. σM(q) > 0) :

Vq =
α1

σ1

v1 + · · ·+
αM

σM

vM veriies :

JtVq = Vt (1.23)

Interestingly, any combination of the articular velocities spanned from kerJt =

span{vR+1, . . .vN} can be added to Vq without interfering with the achievement of
task velocity Vt :

∀(αM + 1, . . . , αN) ∈ R
N−M ,

Jt

(

Vq +
N∑

i=M+1

αivi

)

= JtVq +
N∑

i=M+1

αiJtvi

= Vt + 0

= Vt

(1.24)

Although the SVD is a very interesting tool, such a detailed description of the
mapping Jt is not always necessary. One may resort to less costly tools to reverse the
mapping Jt of a redundant manipulator. One other way is to perform the generalised
inversion of the Jacobian matrix. There exist an ininity of generalised inverses G

of Jt. For a given generalised inverse G, the articular velocity q̇ = Gṫ is a least
square solution to the end efector task constraint ṫ = Jtq̇. This means that q̇ = Gṫ

minimises ∥ṫ−Jtq̇∥. When Jt is full-rank, the generalised inverse veriies ṫ = Jtq̇ =
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JtGṫ, and thus ∥ṫ− Jtq̇∥ = 0 and complies exactly to the task.
A particular generalised inverse of Jt is the pseudoinverse Jt

†. This generalised
inverse also minimises ∥q̇∥ (minimum norm solution). Concretely, this means that
when Jt is full rank :

Jt
†ṫ = q̇ (1.25)

is veriied, and the unweighted norm of q̇ is as small as it can be. From a SVD
perspective, the pseudoinverse always inds the minimum norm solution q̇ which
veriies q̇ ∈ span{v1, . . . ,vR} = R

N \ kerJt

The pseudoinverse A† of a matrix A must verify the Moore-Penrose conditions
[17]:

AA†A = A (1.26)
A†AA† = A† (1.27)
(AA†)⊺ = AA† (1.28)
(A†A)⊺ = A†A. (1.29)

When the Jacobian matrix is full rank (and low rectangular), the pseudoinverse
can be computed as

Jt
† = Jt

⊺(JtJt
⊺)−1.

Otherwise, one can use the SVD of Jt to compute its pseudoinverse, as

Jt
† = V Σ†U ⊺ =

R∑

i=1

viui
⊺

σi

.

The general solution to Eq. (1.3) is the composition of the pseudoinverse solution
and of a term taken in the null space of Jt :

q̇ = Jt
†ṫ+ (I − Jt

†Jt)q̇0. (1.30)

This solution may remind the reader of Eq. (1.24), where null space joint velocities
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are performed by the manipulator without perturbing the task. The term q̇0 is an
arbitrary joint velocity, and (I − Jt

†Jt)q̇0 corresponds to the orthogonal projection
of q̇0 into the null space of Jt. (I−Jt

†Jt) is an orthogonal projector of the null space
of Jt, as can be seen in

Jt(I − Jt
†Jt) = Jt − JtJt

†Jt = 0 (1.31)

which is direct a result of Eq. (1.26).

1.2.3 Local optimisation-based velocity level redundancy resolution
schemes

Basic principle : In the local optimisation approach, the term (I − Jt
†Jt)q̇0 of

Eq. (1.30) is used to stir the articular coniguration of the manipulator towards an
extremum of an objective real-valued function which depends on the current conig-
uration H(q), without hampering the tracking of the primary task velocity ṫ. In this
context, H is often called a performance criteria. To maximise (respectively minim-
ise) H, q̇0 has to be oriented along the gradient (respectively the anti-gradient) of
function H(q) as so (for the maximisation of H) :

q̇0 = kH∇H(q) (1.32)

with kH ≥ 0. Of course, the gradient is a local notion, so it is important not to
take a step in the gradient direction that would be too big and lead to a decrease
of the performance criteria. From a given coniguration q, applying a velocity q0 -
choosing a small enough value for kH - would deinitely stir the articular coniguration
of the robot in a direction that would improve the performance criteria. The velocity
resulting from the projection of q̇0 in the null space of the primary task with the
(I−Jt

†Jt) operator is bound to have at least no hampering efect on the performance
criteria, and at best is bound to improve it.

The performance criteria can take various forms. It may be designed to keep away
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from kinematic singularities, to avoid obstacles [18] or to stay as far as possible from
joints position limits [18, 19]. An overview and a discussion of some well-known
criteria (mostly related to kinematic considerations) can be found in [20].

singularity and workspace ill-conditioning avoidance : Several criteria were
designed to indicate distances from singularities or ill-conditioning of the workspace.
The three main ones are the manipulability measure µ, the condition number κ, and
the smallest singular value σmin. Using these criteria may improve the matter of
avoiding singular conigurations, but does not ensure singularity avoidance. Some
singularities are unavoidable (wrist and shoulder singularities), and the approach is
local and thus can’t ensure singularity avoidance on an entire trajectory.

Singular conigurations occur where the Jacobian matrix loses rank. In other words,
for non redundant manipulators (M = N) the occurrence of a singularity can be detec-
ted by computing the determinant of the geometric Jacobian matrix. For redundant
manipulators, a generalisation of this concept is to compute the determinant of the
geometric Jacobian matrix multiplied by its transpose. The manipulability measure
is similar to that, as :

µ =
√

|JJ⊺|. (1.33)

Remarkably, µ is also equal to the product of the singular values of the geometric
Jacobian matrix, although their calculation is more costly. A loss of rank of the
Jacobian matrix translates into the decrease to zero of the smallest formerly non-zero
singular value.

µ =
M∏

i=1

σi (1.34)

The computation of the manipulability measure using Eq. (1.33) is simple, which
makes it an appealling criterion. Some authors say that the manipulability measure
deines the degree of conditioning of the workspace [21]. Others [22–24] argue that
the manipulability measure may not be a very conclusive indicator of closeness to
singularity or ill-conditioning of the workspace. Eq. (1.34) may help see that this
criteria does not always vary dramatically near singularities, as the highest singular
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values may compensate for the decrease of the smallest ones.

A good measure of the conditioning of the workspace is the aptly named condition
number κ. This measure is equal to the ratio between the highest singular value and
the smallest one.

κ =
σ1

σM

(1.35)

In the SVD, singular values are indicators of the eiciency of the manipulator in a
coniguration to produce velocities in M orthogonal directions. As such, the highest
(and irst) singular value indicates the eiciency at producing an operational velocity
for the end efector, in the direction in which it is most easily moved. Inversely, the
smallest (and last) singular value indicates the eiciency at producing an operational
velocity for the end efector, in the direction in which it is most tediously moved. A
condition number of 1 implies that all the singular values are equal to 1, and thus it
indicates the isotropy of mobility of the manipulator for its end efector in a given
coniguration. Oppositely, if the position number has a high value, the anisotropy
of mobility is also high, and some operational directions will be more easily moved
in than others. An alternative to the condition number is its inverse : the local
conditioning index [20], which is equal to 1/κ. It is often seen as more convenient as
its variations are constrained between 0 in singular conigurations to 1 in isotropic
conigurations. These criterion are said to be good measures of a manipulator’s
distance to singularity [23, 25].

Despite this, measuring closeness to singularity using two singular values may not
yield much better results than doing it using all singular values. The variations of
one may compensate for another’s, and that would lead to an unwavering condition
number while the closeness to a singularity changes. Quite remarkably, the simpler
criterion of smallest singular value σmin is a good indicator of the closeness to a
singular coniguration [24].

Collision avoidance : Occurrences of collisions of the links of a redundant manip-
ulator with its environment can be avoided by designing performance criteria based
on the minimum distance from collision. In [18], the robot control is made with the
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use of potential ields moving the links of the robot away from the obstacles.

joints position limit avoidance : [19] suggests to use optimisation function:

H(q) =
N∑

i=1

(

qi − qi,mid

qi,max − qi,min

)2

(1.36)

to stir the joint coniguration towards the center of the joints range. qi,max and qi,min

are respectively the maximum and minimum limits of joint i, qi,mid =
qi,max+qi,min

2
,

and qi denotes the position on joint i.

1.2.4 Augmented Jacobian

Another way of exploiting redundancy is to create a task vector whose dimension
M matches the number of degrees of freedom N of the robot. For example, one can
append the usual end efector Cartesian trajectory tracking task with other constraint
task vectors, until the dimension of the task is N . This provides with a square
Jacobian matrix, which can then be inverted without ambiguity. The concept was
introduced in [26, 27] and referred to as task-augmentation [28].

Let tAi
(q) be the ith task vector. Let tA be the augmented task vector constructed

from the concatenation of all the sub-tasks tAi
, i ∈ J1 ..P K.

tA =







tA1

...
tAp







(1.37)

The sub-tasks are chosen so that
p
∑

i=1

dim(tAi
) = N. (1.38)

35



We can deine the irst order diferential equation for each of these tasks:

∀i ∈ J1 ..pK, ṫAi
= JtAi

q̇. (1.39)

And eventually deine the square augmented matrix JA as

JA =







JtA1...
JtAp






. (1.40)

Although the task augmentation approach seems appealing, it sufers from a major
law: the algorithmic singularities [29]. Algorithmic singularities occur when the
augmented Jacobian looses rank even though none of the concatenated task Jacobian
matrix have lost rank. These algorithmic failures occur when tasks conlict between
each other. Concretely, if one of the task is an end efector trajectory, and the second
task is related to obstacle avoidance, an algorithmic singularity will occur whenever
the trajectory passes through or close to an obstacle. In the vicinity of the obstacle,
the end efector trajectory task will want to push the end efector toward the obstacle
while the obstacle avoidance task will require the opposite.

A mathematical way of explaining this phenomenon is through the SVD of each task
Jacobian matrix. Let the SVD of the Jacobian matrix associated to task i ∈ J1 ..pK

be:
JtAi

= UtAi
ΣtAi

VtAi

⊺. (1.41)

Let (vtAi
,j)j∈J1 ..NK be the column vectors of VtAi

. If task i is of dimension Mi(< N),
the manipulator will have to use joint velocities taken in span{vtAi

,1, . . . ,vtAi
,Mi
} to

perform it.

Now, an algorithmic singularity will happen if, for two tasks tAk
and tAl

for which
the articular coniguration is not singular,

span{vtAk
,1, . . . ,vtAk

,Mk
} ∩ span{vtAl

,1, . . . ,vtAl
,Ml
} ̸= ∅. (1.42)
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Indeed, this non empty intersection implies that performing one task will always
interfere with the other task, thus leading to an incompatibility between the two
tasks. A singularity will occur, while none of the sub-task Jacobian matrices have
lost rank. In fact, the only way not to have an algorithmic singularity is when all the
singular joint velocity vectors of all tasks are orthogonal to each others.

1.2.5 Task priority

Instead of trying to fulill all the tasks together, the task priority strategy [30–33]
uses a prioritisation of each task to cope with the algorithmic singularities problem.
In this framework, an order of priority is deined between all the tasks, and the lower
priority tasks only produce a null space motion which does not interfere with the
higher priority tasks. As such, lesser tasks may not always be fulilled completely
as the joint velocity associated to them are projected onto the null space of more
important tasks.

The joint velocity q̇[1] associated to the most important (the irst) task is computed
irst using the pseudoinverse of the associated Jacobian matrix. Then, a recursive
operation is performed for each lesser task in order of decreasing priority. The joint
velocity q̇[k] that is outputed at iteration k is the addition of

• the joint velocity q̇[k−1] of the previous iteration

• with the projection in the null space of all the higher priority tasks of

– the joint velocity required to comply with task k

– minus the error made on task k by applying joint velocity q̇[k−1]
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q̇[1] = J
†
tA1

ṫA1

q̇[k] = q̇[k−1]

︸ ︷︷ ︸

➃

+

(

I −







JtA1...
JtAk−1







† 





JtA1...
JtAk−1







)

︸ ︷︷ ︸

➂

J
†
tAk

(ṫAk

︸ ︷︷ ︸

➀

− JtAk
q̇[k−1]

︸ ︷︷ ︸

➁

)

(1.43)

At step k, q̇[k] must:

➀ Comply with task velocity ṫAk

➁ ...which was modiied by the joint velocity vector computed for the k−1 irst
tasks (modiications of task k velocity : JtAk

q̇[k−1]),

➂ ...all that without interfering with the k−1 irst tasks (null space projection)

➃ ...while complying as best as possible with the k−1 irst tasks (result of the
previous operation).

When the manipulator is out of the algorithmic singularities that could be spotted
using the task augmentation implementation, both the task priority and the task
augmentation methods provide the same result. The advantage of this prioritisation
strategy is that even if an algorithmic singularity occurs, the primary task is always
fulilled (as long as its associated Jacobian remains full rank). However, when ap-
proaching an algorithmic singularity, the secondary term {➂, ➀, ➁} may produce
very high joint velocities, which may not be feasible. To cope with this problem,
a strategy consists in removing the correctional term JtAk

q̇[k−1] in the formula of
Eq. (1.43). Task k is then less eiciently tracked, but at least the joint velocities re-
main reasonable near algorithmic singularities. The recursive formula then becomes
:
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q̇[1] = J
†
tA1

ṫA1

q̇[k] = q̇[k−1] +

(

I −







JtA1...
JtAk−1







† 





JtA1...
JtAk−1







)

J
†
tAk

(ṫAk
) (1.44)

When using these strategies, a positional drift will occur for all tasks that could
not be fulilled completely for the sake of not tempering with the higher ranking
ones. As they are, the strategies blindly look at task velocities and do not take
into account or correct any task position error. To do so, one can resort to a CLIK
implementation by swapping, in Eq. (1.43) or Eq. (1.44), term ṫAk

with the term
ṫAk

+ KAk
(tAk

− f tAk
(q)). This term also integrates a weighted task position error

vector, creating a proportional + feedforward control scheme. KAk
is generally a

diagonal weight matrix, tAk
is the desired task position and f tAk

(q) is the actual
position with regard to task k (direct geometry mapping).

Sometimes, a strict task priority ordering is not easy to decide. In dynamic and
changing environments, the priorities may change, or may become antagonistic. Strict
task priority strategy may not be absolutely suitable to this context. In [34] is de-
scribed a soft hierarchy scheme making use of a generalized task weighting strategy
that ensures smooth transitions between tasks.

Another strategy called Generalized Hierarchical Control was developed in [35] to
allow mixing strict task hierarchies with non-strict ones. Strict task priority strategies
are typically based on the concept of task projectors, as described above, while non
strict task priority ones rely on a weighting strategy between tasks. The GHC allows
to seamlessly transition from one -strict and non strict- tasks hierarchy ordering to
another by using a generalised projector which ensures task priorities, transitions,
insertions and deletions. A priority matrix is modulated to change the task priorities
without modifying the control problem formulation.
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1.2.6 Saturation in Null Space (SNS)

While all these schemes, ranging from the local optimisation scheme (Section 1.2.3)
to the task prioritisation (Section 1.2.5) one, may integrate a notion of soft joint
mechanical limit avoidance, none will ensure that these limits are not reached if they
are not deined as primary tasks. Yet, these joint limits (at the position, velocity or
acceleration level) are a sine qua non condition to the feasibility of any trajectory.
Violating any of these hard constraints is conceptually impossible and thus would
prevent any other tasks from being performed. In that regard, these bounds have
to be considered as another paradigm. Such a strategy was presented by Omrčen in
[36], later revisited by Flacco et al. in [37] as the concept of saturation in the null
space, which was also adapted to the task prioritisation scheme in [38].

When the pseudoinverse solution to the inverse kinematics problem is found to
overdrive some joints hard bounds, the method proceeds by applying the hard bound
level to the most overdriven joint and then by redistributing the excess of task velo-
city/acceleration within the joints that are not yet saturated. The method is applied
recursively to the most overdriven joints until too few joints remain to perform the
M -dimensional task. In that case, the SNS method applies a subunitary scaling factor
to the task. This scaling factor eases the task tracking while retaining its geometrical
path. One signiicant advantage of SNS strategies is that singularities are naturally
handled either by mere avoidance, as their occurrence along the way would provoke
excess of joint speed or acceleration, or simply by slowing down the overall motion,
by decreasing the value of the scaling factor.

1.3 Redundancy spaces - A position-level approach to solv-
ing redundancy

1.3.1 Redundancy space formulation

Context : In typical aircraft assembly processes, robots are used to perform high
quality, high precision operations. Aircraft manufacturers increasing expectations
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now regularly set mechanical tolerances below 0.2 mm. Typical industrial robot per-
formances are within a repeatability3 range [0.05mm, 0.5mm], and within an accur-
acy4 range [1mm, 5mm]. Consequently, high precision processes usually happen after
the robot has accurately positioned itself statically, using local calibration techniques.
After accurately positioning itself, the robot is generally asked to remain static while
its tool performs the process (be it drilling, riveting, screwing, or else). During the
interaction, the task performed by the robot is seemingly the simplest one : to keep a
static articular coniguration until the operation is inished. In this context, the sys-
tem can naturally be called a positioner. The goal for the robot arm is to provide an
unperturbed moment for the tool to perform its process. No clever motion control is
possible during the process, because any geometric deviation at the process interface
may ruin the quality of the operation result, or cause breakage. Beside the Aircraft
industry, a lot of robotised operations encountered in the manufacturing industry are
deined as positional tasks (to be opposed to trajectory tasks/tasks were the manipu-
lator is moving). Pick and place operations deine grasping and releasing location for
the gripper. Assembly operations such as riveting or screwing also deine end efector
positional locations.

To perform these positional tasks, our use case involves a system composed of a
mobile platform (KMP) and a 7-DOFs serial arm (LBR-iiwa). Together, these robots
accumulate 10 DOFs, which makes the full system extremely redundant with regards
to many types of end-efector positional tasks.

Objectives : Redundancy is sometimes perceived as a source of complexity. But
while it adds complexity, redundancy also adds possibilities. It provides a choice in
the articular coniguration to use. Therefore, redundancy requires taking decisions
that were not made for non-redundant systems. We want to make the possibilities
redundancy ofers at the position level clearly identiiable to robot end-users. We

3Repeatability is a measure of the reproducibility of an end efector pose for a speciied articular
position.

4Accuracy is deined as the misplacement between a desired end efector pose and the average of
the end efector poses produced by the robot.
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identiied a clear need for a simple formulation of redundancy at the position level,
that allows to know the extent of solutions redundancy ofers. Additionally, any of
these possibilities must be computable quickly and without approximation.

Expressing positional redundancy for positional tasks using diferential
schemes : All the schemes described in Section 1.2 solve redundancy at the velocity
or acceleration level. Getting back to the position level requires the time integration
of the solutions. If a task t is to hold the end efector static, a redundant manipulator
can theoretically generate articular velocities that won’t disturb the task. The task
velocity ṫ is in that case zero at all time, and therefore, for q̇0 ∈ R

N :

q̇ =Jt
†ṫ+ (I − Jt

†Jt)q̇0 (1.45)
=(I − Jt

†Jt)q̇0, (1.46)

will generate a self-motion of the manipulator with regards to the task. Integrating
this velocity over time should provide with a set of articular solutions to the problem.
Equivalently, given the Taylor expansion developed in Eq. (1.4), the variation of task
δt caused by an articular variation δq is given by :

δt = Ft(q+ δq)− Ft(q) = Jtδq+
[

O(∥δq∥2) . . . O(∥δq∥2)
]⊺

. (1.47)

If the articular variation is chosen to be in the null-space of the Jacobian matrix, i.e.
δq ∈ kerJt, the task positional variation becomes

δt =







O(∥δq∥2)
...

O(∥δq∥2)






,

which is close to nothing if δq is small.

Numerical bias : Repeating one of these scheme several times will therefore provide
with conigurations that comply with the task t with a task precision which is given
by the remaining terms of the Taylor expansion. To improve this matter, more terms

42



of the Taylor expansion could be taken into account in the inverse kinematic step.
However, no scheme that uses this strategy or its improvement will ever provide
accurate results eiciently. The solution found by doing these repeated computations
sufer from obvious numerical biases leading to problems of task imprecision.

Incomplete exploration of redundancy : Another important point, beside the
inaccuracy of the solution based on a velocity-level approach, is the fact that the pos-
sibilities ofered by positional redundancy can hardly be all explored. In the scheme
described above, to choose δq ∈ kerJt, one solution is to generate an arbitrary
q̇0 ∈ R

N and to project it in the null space of the Jacobian matrix thanks to the
projector (I − Jt

†Jt). However, choosing arbitrarily q̇0 will not provide an eicient
way of exploring the entire space of solutions, especially if the redundancy of the
system is of order s > 1. At most one discretely described curve of conigurations
complying with the task will be found. Another, more elegant, yet more expensive
solution, could be to compute the SVD of the Jacobian matrix in each new sampled
task-complying coniguration. The eigenvectors spanning the null space of the Jac-
obian matrix, i.e. {vR+1, . . . ,vN}, are independent articular velocities that generate
no task velocity. Therefore, taking small steps in the articular directions suggested
by each of these vectors could help explore more thoroughly the postural possibilities
redundancy ofer thanks to an incremental grid exploration approach. However, a
common drawback of solutions based on diferential kinematic is the lack of cyclicity
[28]. This property implies that no representative sampling of the possibilities ofered
by redundancy can be easily computed using diferential kinematic schemes.

No positional redundancy boundaries : Another drawback of diferential schemes,
which is also related to cyclicity, is the fact that boundaries of the solution space can-
not be easily formulated or found. This is a very important feature to be able explore
its the full extent.

Sources of positional redundancy : In our study, redundancy is deined for a
manipulator and a positional task. It therefore emanates from two tangled sources.
Additional motion capabilities (extra actuators) is one, removal of constraints on the
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task is the other. A n-DOFs manipulator used for a positional task t of dimensionm <

n is said to be kinematically redundant, with a redundancy of order s = n−m. The
dimension of the Jacobian null space will be equal to s in non-singular conigurations.
This means that in a non-singular coniguration, there exist a base of s independent
articular displacements (the null space articular velocity vectors that can be issued
from a SVD study) which will not produce any displacement of t for this manipulator5.
Any combination of these s independent articular displacement vectors will produce
no displacement of the task.

Redundancy spaces : In this thesis, we choose to tackle redundancy exploita-
tion with a diferent approach. An intuition is that for positional tasks, redundancy
exploitation based on a velocity or acceleration level formulation of the task is not
adapted. Instead, it seems more appropriate to remain at the position level.

A redundancy space, i.e. a space parameterised by well chosen, higher level inde-
pendent parameters, is used to represent the full extent of the solution space of the
robot performing its positional task. Let α =

[

α1 ... αs

]T

be a s-dimensional re-
dundancy space position of the manipulator, each αi being a redundancy parameter.
Setting the redundancy space position allows for an unambiguous input formulation
of the inverse geometry problem by reducing the number of unknowns of this problem
to m in a system of m equations, and provides a inite set of solutions to the inverse
geometry problem of the redundant manipulator. A set of articular solutions may
be rigorously computed thanks to an admissible redundancy space position-admissible
task input couple (α, t). Changing the position in redundancy space (i.e. the value
of all these parameters) will change the articular coniguration of the system without
modifying the end-efector positional behaviour. Robots direct geometric models are
generally non linear mappings, and reversing them analytically can be tedious, even
for non redundant robots. However, for some types of redundant systems, closed-form
solutions exist for the inverse geometry. These analytic expressions are very desirable
for redundancy space formulations.

5in a irst order approximation
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Without being a rule of thumb, the parameterisation of the redundancy space can
often take inspiration from which geometric constraints were freed up on a fully con-
strained (pose) task, and which internal/external motion capability were added by
”extra” joints in a kinematic chain. There are generally more than a single redundancy
space formulation for a system and tasks. A necessary property of this parameterised
redundancy space is that picking an admissible redundancy space position-admissible
task couple leads to a unique set of k ∈ N

+∗ articular solutions6 (when out of singu-
larities). In other words, an inverse geometry step is required to get the lower level
inputs that are the joint positions of the manipulator corresponding to the task and
position in redundancy space.

Advantages of redundancy space formulation : The advantage of using a re-
dundancy parameterisation in our context is several-fold. For one, having an un-
ambiguous parameterisation of the space of solutions, that can be easily be intuited
and understood, is paramount. It helps demystifying the complex notion that is re-
dundancy, and eases communication on the subject. It also exposes the full extent
of the solution space of a robot, which may help choosing a suitable coniguration,
as will be done in the following chapters. It may help verify quickly and without a
doubt a reachability information, or the existence of an inverse geometric solution.
Additionally, having an analytic expression of the inverse geometry ensures that no
approximation is made on the solution.

1.3.2 An intrinsic redundancy of SRS robots

A irst redundancy related to the use of Spherical-Rotary-Spherical (SRS) robots
(which are a type of 7-DOFs robots), for the task of positioning (3 geometric con-
straints) and orientating (3 geometric contraints) the end-efector, is the elbow angle
redundancy. We will begin the formulation of a redundancy space for SRS robots by
expressing a closed-form solution to this inverse geometry problem. The positional

6The existence of this set of k solutions comes from the periodicity of the trigonometric functions
used in the geometric model and is unrelated to kinematic redundancy, as it does not increase the
dimension of the redundancy space, but rather multiplies the number of solutions by k.
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task at hand is a fully constraining positional task.

1.3.2.1 Direct geometric modelling of a iiwa-type robot

For the system we study and use throughout this thesis, the relevant parameters and
vectors used to build its DH description are displayed on Fig. 1.3.2, where the LBR
iiwa is set in its so-called zero position. Joint angles (q1, . . . , q7) are displayed aside
their corresponding joint. All the joints of this robot are revolute. (z0, . . . , z7) are
the z axes of the links frames, and are situated upon the rotation axes of the robot
joints. The x axes of all these frames are normal to the plan of the picture, point to
the back of the picture (are directed like the gaze of the reader), and aren’t displayed
on it. Relevant distances for the DH parameterisation lbs, lse, lew and lwt, are the
base-to-shoulder, shoulder-to-elbow, elbow-to-wrist and wrist-to-tip distances. They
are displayed on the right hand side of the igure.

Table 1.3.1: Geometric parameters of the DH parameterisation of the 7 DOFs LBR iiwa

i αi ai di qi
1 0 0 lbs q1
2 −π/2 0 0 q2
3 π/2 0 lse q3
4 π/2 0 0 q4
5 −π/2 0 lew q5
6 −π/2 0 0 q6
7 π/2 0 lwt q7

The modiied DH parameterisation is synthesised in Table 1.3.1 and explained here-
inafter. Joint 1 has a vertical orientation and its origin has an ofset of lbs from the
robot base reference frame origin O, along joint 1 axis of rotation. Joint 2 is per-
pendicular to joint 1. Their axes of rotation intersect in their shared origin, which
is called the shoulder point S. Joint 3 is perpendicular to joint 2 and has an ofset
of lse, along its axis of rotation, from S. Hence, its axis of rotation intersects its two
preceding joints’ in S. Joint 4 is perpendicular to joint 3 and their axis of rotation
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intersect it their shared origin, which is called the elbow point E. Joint 5 is perpen-
dicular to joint 4 and has an ofset of lew, along its axis of rotation, from E. Joint 6
is perpendicular to joint 5 and their axis of rotation intersect in their shared origin,
which is called the wrist point W . Joint 7 is perpendicular to joint 6 and has an ofset
of lwt, along its axis of rotation, from W .

1.3.2.2 Inverse geometric model of a iiwa-type robot

The LBR iiwa is a serial, seven revolute joints robotic arm. Its kinematic structure
is said to be anthropomorphic in that it resembles the one of a human arm. This
kinematic structure is very popular in robotics because it is known to have very good
characteristics in terms of dexterity.

This claim can be correlated to the fact that human beings are among the most
nimble beings of animal kingdom. On a more practical ground, the robots presented
on Fig. 1.3.3 and the LBR iiwa all present a closed-form inverse geometric solution
for the 6-DOFs task of positioning and orientating their extremal link. Closed-form
solutions are always to be sought because they present good computational char-
acteristics, including accuracy and eiciency. The following will present how this
analytical solution can be derived for the LBR iiwa System.

1.3.2.2.1 LBR iiwa geometric facts and elbow angle

An geometric analysis allow us to simplify the serial structure of the LBR iiwa, as
can be seen in Fig. 1.3.4 and Fig. 1.3.5. By construction, its irst three joints axes
always intersect in the shoulder point S and the three last joint intersect in the wrist
point W. Either group of these three intersecting serially attached revolute joints
form a equivalent spherical joint respectively centered in S and W. The fourth joint is
centered in the elbow point E. This decomposition of the structure of the arm gives
the name of Spherical-Rotary-Spherical systems.

As can be seen in Fig. 1.3.4, the pose location of the robot base reference frame
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Figure 1.3.3: Other examples of 7 DOFs anthropomorphic arms, and SRS type robots. Col-
laborative robots Franka Emika Panda, KUKA LWR4 and ABB Yumi.
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β = π/4

β = −π/4

β = −π/2

β = 0

Figure 1.3.6: Elbow angle parameterisation.

also empty (the dark blue sphere of Fig. 1.3.5 entirely lies inside of the light blue
one). If SW ∈ [lse − lew, lse + lew], the intersection of the spheres is either a point
when the pose becomes reachable or a circle in the regular case (see Fig. 1.3.4 for the
regular case). This means that in the regular case, the 6-DOFs task can be performed,
and the elbow can be anywhere on this circle. This freedom of the elbow about the
circle can be conveniently parameterised by the elbow angle β (see Fig. 1.3.5), which
is sometimes termed swivel angle or simply redundancy angle [39–41]. Formally, the
elbow angle is deined as the angle about the shoulder-to-wrist axis between the plane
deined by S, E and W and the reference plane. The reference plane is deined as the
plane constructed from S, E◦ and W (as deined in [40]). Note: the right-hand-side
superscript notation (.)◦ relates to the quantity ”(.)” with the third joint angle set at
zero (q3 = 0).

The computation of the joint angles of the LBR iiwa with regards to a fully con-
straining task (6 DOFs) imposed on the tip (T) of a manipulator and an elbow angle
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β is fully derived in Appendix 2. This demonstration is largely inspired from the
work of Shimizu in [40], and is applied to the LBR iiwa.

1.3.3 Other sources of redundancy

Elbow Redundancy of the LBR iiwa : We described in Section 1.3.2.2.1 how
the elbow angle was a way of parameterising the redundancy of the LBR iiwa arm
for a positioning and orientating (6 DOFs) task of the end efector. The range of the
elbow angle is exactly one lap of the elbow around the shoulder-wrist axis. Therefore
it is equal to 2π, and we chose to bound it between −π and π. The way to compute
the inverse geometry with regards the elbow angle is derived in Appendix 2.

Orientation about the ztcp-axis : One other redundancy space axis that is used
within this thesis is the freedom to rotate about an axis of the TCP frame (see
Fig. 1.3.7). This freedom is for example justiied for drilling tasks, about the drill
axis. A pure rotation operator can be used in that case to change the deinition of
a fully constraining task for the TCP. Let us deine 0T

[atcp=a0]
tcp , the transformation

matrix representing a pose, arbitrarily oriented around the z-axis of the TCP, of the
frame associated to the end efector Ftcp in the robot base reference frame F0. Let
us deine Tatcp

, a transformation matrix only consisting of a pure rotation about the
z-axis.

Tatcp
=

[

ratcp
0

0 0 0 1

]

, with

ratcp
=






cos(atcp) − sin(atcp) 0

sin(atcp) cos(atcp) 0

0 0 1




 .

The redundancy parameter atcp combines with the task to form a fully constrained
task 0T d

tcp for the end efector:

0T d
tcp =

0T
[atcp=a0]
tcp Tatcp

. (1.48)
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Positioning the LBR iiwa base with a KMR : Another redundancy that can
easily be identiied on the system consisting of a robotic arm LBR iiwa mounted on
the mobile platform KMR, is the positioning and orientating of the arm robot base.
Let us deine xb, yb and θb the three redundancy space parameters that come from this
base placement. Considering the full system, the fully constrained task is now deined
with regards to a frame that is not attached to any moving part of the robot. Let us
call this frame world reference frame Fw. Now, the transformation that is produced
by the arm alone can still be noted 0T tcp, but the transformation produced by the
entire system is noted wT tcp. It consists of the composition of the transformation
produced by the mobile platform, which can be parameterised by the redundancy
space parameters deined above, with the transformation produced by the arm alone.

wT tcp =
wT 0

0T tcp

=









cos(θb) − sin(θb) 0 xb

sin(θb) cos(θb) 0 yb

0 0 1 zptf

0 0 0 1









0T tcp

zptf deines the heigth of the mobile platform.
The boundaries of the redundancy space deined by the platform position in the

loor plane are dependent on the target reachability. Simple geometric considerations
can be used to narrow down these limits. As we saw in Section 1.3.2.2.1, for the LBR
iiwa, ”a necessary condition for TCP pose reachability is that the shoulder point S
lies no further than lse + lew to the TCP-ofsetted-wrist-point W”. From the TCP
pose, one can ind the position the wrist is required to take. The shoulder point S
has to lie no further than rmax = lse + lew to W. Besides, the distance between W
and S cannot be smaller than when the arm is completely folded, i.e. when joint 4
has reached its limit q4,lim. this distance is rmin =

√

lse
2 + lew

2 − 2lselew cos(q4,lim).
Therefore, from the TCP pose, one can bound the position of the shoulder point S
within the volume deined by the ball Bmax bounded by sphere Smax and out of the
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1.4 Intermediary conclusion

A framework was presented that establishes the extent of the solution space that is
brought by redundancy for positional tasks.

The chapter does not provide with a systematic methodology on how to formalise
redundancy spaces for any system and task. There may not always exist an easy
parameterisation of redundancy at the position level, especially for hyper redundant
robots, snake robots, etc... For well known and studied industrial systems, however,
redundancy spaces can be formalised from which task constraints are released and
what additional motion freedom extra axes provide.

The positional redundancy framework provides with multiple advantages. The
boundaries of the solution space are well deined within this framework, which al-
lows for a clear identiication of the articular possibilities redundancy ofers. This
framework displays an intuitive and simple formulation of redundancy that is well
suited to the redundancy resolution problem. Closed-form expression of the articular
conigurations of SRS robots, which comply with some exemplary positional tasks,
were derived. Analytic solutions have the advantages, compared to numerical ones, to
ofer exact values, instead of approximations, and to require a lighter computational
load, which are very desirable characteristics.

As a inal proof of the beneits of using redundancy spaces for positional redundancy
resolution, let us contextualise the use of a redundancy space framework for the
optimisation of a posture dependant criteria.

Let a n-DOFs redundant robot be used for a m-DOFs positional task t (n > m).
The articular coniguration of the robot is denoted q = [q1, . . . , qn]

⊺. Let the function
mapping an articular coniguration into the corresponding value of the task7 be called

7This function is often referred to as the direct geometric model of the robot.
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atcp = π
6

atcp = −π
5

β = π

β = −π/4

θ = 0

θ = −20 ∗ π
180

xb = −0.3

yb = 0.1

Ow

xb = 0.3

yb = 0.1

Figure 1.4.1: Two diferent redundancy space positions for the same end efector positional
task. The end efector pose is deined with position (0.263m,−0.422m, 0.800m) and with
orientation in Euler XYZ convention (1.282 rad, 0.658 rad,−0.991 rad+ atcp. The redundancy
space parameters are here deined as β (rad), atcp (rad), xb (m), yb (m) and θb (rad).
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d, so that :

d :Rn → R
m

q→ t (1.52)

Let us assume, as is the case for our use-case system and exemplary tasks, that a
redundancy space formulation exists for this robot and positional task, that allows to
analytically ind the robot coniguration q corresponding to the task t and position
α = [α1, . . . , αn]

⊺ ∈ E ⊂ R
n−m in the redundancy space. Mathematically speaking,

it means that there exists an analytic function g so that:

g :Rm × E→ R
n

(t,α)→ q (1.53)

Let C be the cost function representing the posture dependent criteria, that we
want to minimise, so that :

C :Rn → R
+

q→ C(q) (1.54)

Let Ct be the function representing the redundancy position dependant criteria, for
a given task t. This function is an equivalent version of C, and can be deined for a
given task t ∈ R

m as:

Ct :E→ R
+

α→ C(g(t,α)) (1.55)

Now, the minimisation problem of the performance criteria can be formulated either
using q as decision variable (scheme #1) or using α as decision variable (scheme #2).

scheme #1 :
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For a task t, ind q, so that,

q = argmin
q∈Rn

C(q)

s.t. d(q) = t

scheme #2 :
For a task t, ind q = g(t,α), so that,

α = argmin
α∈E

Ct(α)

Scheme #2 presents some major advantages over scheme #1:

• In scheme #1, the constraint equation d(q) = t requires to ind a coniguration
that complies with the tasks before testing the value of C(q). On the other
hand, the optimisation problem is unconstrained in scheme #2. In scheme
#2, changing the value of α will not hamper the fulilment of positional task t.
Scheme #2 can be seen a direct search in the constrained space of conigurations
complying with the task, which is naturally parameterised by the redundancy
space parameters.

• The search space of scheme #2 has a smaller dimension that the search space of
scheme #1, which suggests a much lighter computational load to ind a solution.

Given these advantages, the framework of redundancy space will be used in chapters
Chapter 2 and Chapter 3 for redundancy resolution purposes. In these chapters, the
posture dependent criteria which will be introduced are related to the stifness of
serial systems, and their ability to counter a spatial force.
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2
Deformational behaviour

improvement of serial redundant
manipulators

The theoretical knowledge of the misplacement of the end efector caused by an
interaction force is a key notion where accurate and high quality robotised operations
are concerned. In this chapter, the Cartesian compliance matrix of serial robots is
irst introduced. This tool is analysed for the LBR iiwa robot, and is then used to
predict the misplacement of the end efector when under the inluence of a force,
which typically happens during machining operations. Redundant manipulators have
the ability to perform a position level task in a continuous space of articular positions.
It so happens that the Cartesian rigidity of serial manipulators is strongly related to
the posture used to perform a task. Therefore, exploiting positional redundancy is
an interesting way of modifying the deformational behaviour of the robot without
afecting the end-efector placement.

In this chapter, the framework of redundancy spaces (Section 1.3) is used to en-
hance the performance related to stifness and accuracy of redundant serial robots
sustaining an interaction force.
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2.1 Industrial context - Robotised machining industry driven
by accuracy

Figure 2.1.1: A typical assembly interface between two fuselage panels involving hundreds of
holes.

Ideally, repetitive high value added tasks such as milling or drilling are given to
CNC machines. While these systems are very accurate and eicient, they are very ex-
pensive, their workspace volumes are generally small, and they can’t be easily moved
around. Large parts such as aircraft panels or wings cannot be itted into them,
and many drilling operations require to be directly followed by assembly operations
to maintain multi layered hole alignment and perfect parts matching. In automot-
ive or aircraft production factories, a lot of drilling operations are still performed by
human workers, who can’t always guaranty high repeatability and quality without
using very onerous and cumbersome special toolings. Therefore, drilling and milling
serial robotic systems have recently appeared on this market. While most robotised
operations are pick and place, welding or assembly tasks (approximately 75%), man-
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ufacturers are now willing to extend robot work to higher value added, and quite
irreversible operations such as drilling or milling. More than one million holes can
be counted on good sized commercial planes. This constitutes a windfall of cost cut
opportunities for aircraft manufacturers, who intensely look into high quality-low cost
robotised solutions. However, a drawback of these versatile serial systems is their low
accuracy and rigidity. Paper [43] reports that standard serial systems have a 1N/µm
stifness against 50 N/µm for less versatile standard CNC machines. This is a major
issue in operations requiring strong physical interactions with the environment, as
it may lead to poor machining surface quality or unacceptable inaccuracies due to
mechanical deformation. Advances in actuation and sensing have recently brought
small collaborative robots on center stage. While these systems are even more com-
pact and versatile, their rigidity is even lower than the one of traditional serial robots
(our estimation shows it is often more than twenty times lower for the LBR iiwa than
on traditional serial systems.), which further complicates the problem of having high
quality drilling or milling operations.

This chapter presents a practical use of the redundancy space of serial manipulators
to improve the matter of low stifness causing positioning discrepancies. It charac-
terises the rigidity of the LBR iiwa and shows how redundancy can be exploited to
enhance its rigidity characteristics and accuracy under the strain of a drilling task.

2.2 Stiffness analysis in the literature

For most industrial robots, joints compliance and more speciically gears compliance
is known to be a source of deformation and discrepancy during robot motion or robot-
environment interaction [44–46]. A number of methods have been developed in the
literature to improve machining accuracy. Some propose, for milling applications, to
modify the initial path in order to account for the low-stifness-linked discrepancies.
The authors of [47] choose to correct the path by measuring the machining surface
after an initial trial at milling. In [48], the authors irst identify the stifness of a
milling robot. Then, they pre-compute a path deviation, based on the estimated
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50N/µm

1N/µm

0.04N/µm

Figure 2.1.2: Cartesian rigidity orders of magnitude for diferent systems [42].
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geometric discrepancies that would happen along the path, by applying a theoretical
milling wrench of the end efector.

Other methods suggest to change the posture of the robot, to improve machining
accuracy. Underlying these methods is the notion of kinematic redundancy, which
allows multiple postures for the same problem. In [49], the robot base location is
chosen to maximise the volume of the kinematic and dynamic ellipsoids ([50]) of the
system along a milling path. Additionally, the initial position of the end efector is
chosen to minimise the torque variations along the path. Given the complexity of
the problem, the others use a genetic algorithm strategy. Guo (in [51]) and Bu (in
[42]) suggest to use, for drilling applications involving 6 DOFs robots, the redundancy
that exists on the end efector orientation about the drill axis to optimise criteria.
Guo introduces a performance index which is based on the volume of the compliance
ellipsoid, which stands for an overall compliance score. We may however argue that,
by mixing translation and rotation information, the performance index introduced
therein have no clear physical meaning, as was notiied in [52]. Bu, instead chooses
to ignore the rotational components of the compliance matrix, claiming that orienta-
tional errors are negligible for his system (below 0.05 mm for a 1000 N force applied
at the end efector). The strategy described therein focuses on the quality of the
countersink, which relates directly to the compliance along the drilling direction. It
is this speciic compliance that is sought to be minimised. Additionally, Bu presents
an interesting analysis of the efect of the deformation of the drill and pre-load of the
end efector (sometimes called clamp) onto the perceived rigidity of the interaction.

The work presented in this chapter also takes roots in the analysis of the compliance
matrix of the robot. One of the diferences here is that, while the notion of a freedom
on the posture was suggested in many of the works presented above, the exploitation
of kinematic redundancy was never explicitly mentioned. The main idea remains the
same, but the concept of redundancy brings a little more genericity and allows more
transposability to other systems. The framework of redundancy space introduced in
Section 1.3 will be used to demonstrate the applicability of the method to a system
that is kinematically redundant of order two for the task of drilling (the LBR iiwa).
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kq1

kq2

kq3

kq4

kq5

kq6

kq7

Figure 2.2.1: Compliance model concentrated in joints as torsion springs.

Additionally, while we know compliance and stifness to be very interesting concepts,
we choose to present the results in terms of deformation of the task. This choice is
motivated by the fact that mechanical tolerances are given in metres and not Newton
per meters, which yields more palpable and intuitive results. Finally, the entire
method is applied to a system that has very rarely been used for drilling tasks. The
stifnesses recorded for this system are low, and this makes it an even more challenging
problem.

As suggested in [42, 46, 51, 53], the joints radial deformations, as well as the links
deformations are neglected and a joint compliance is modelled as a torsion spring with
stifness value kq,i for each joint i. We will assume for the time being that the end
efector and all the links are undeformable rigid bodies. Additionally, we will assume
the drilling process does not involve any feeding motion from the manipulator’s part.
The feeding and turning motions of the drill are performed by the end efector, and
the drilling process is assumed to be under stable condition.

69



τ2

δq2,def

kq,2

Figure 2.3.1: Example of joint model (joint 2). The ith joint compliance is modelled as a
torsion spring with stifness kq,i.

2.3 Cartesian compliance model of a serial system

Assuming an external spatial force −f is applied to the end efector of a N -DOFs serial
robot. To maintain a static posture, the end efector must itself apply a spatial force
f onto its environment. Given the kinetostatic Eq. (1.19), and the robot geometric
Jacobian matrix (see Section 1.1.4.3) J , the torque vector τ , needed to apply this
force is equal to:

τ = J⊺f .

Now, looking at the deformation law of the joints illustrated in Fig. 2.3.1, the
articular deformation vector δq =

[

δq1,def . . . δqN,def

]⊺

can be expressed as :

δq = Kq
−1τ , (2.1)
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Where

Kq =







kq,1 (0)
. . .

(0) kq,N







(2.2)

is the diagonal positive articular rigidity matrix of the N -DOFs robot with joint
stifnesses kq,i on the main diagonal. The static joints stifness values of a robot
can be experimentally determined by measuring each joint angular variation to a set
of imposed external forces or torques. The Cartesian displacement δX of the end
efector caused by a local joint displacement δq is given by

δX = Jδq. (2.3)

Therefore, the Cartesian displacement (twist) caused by the application of an external
spatial force at the end efector can be expressed by combining these equations. This
gives us the expression of the Cartesian compliance matrix of the robot C

δX = Cf = (JKq
−1J⊺)f . (2.4)

To better understand the composition of this matrix, it can be interesting to isolate
translational from orientational terms. The Cartesian displacement can be divided
into a translational displacement δp and a rotational displacement ω. Similarly, the
spatial force can be decomposed into a translational component F and a moment M:

δX =

[

δp

ω

]

and

f =

[

F

M

]

.

With these notation, the compliance matrix can be divided into four 3×3 submatrices
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CPF, CPM, CωF and CωM as

C =

[

CPF CPM

CωF CωM

]

.

In this formulation, CPF (terms in m/N) refers to the translational compliance of the
system with regards to translational forces, CPM (terms in m/Nm) refers to the trans-
lational compliance of the system with regards to moments, CωF (terms in rad/N)
refers to the orientational compliance of the system with regards to translational
forces, and CωM (terms in rad/Nm) refers to the orientational compliance of the sys-
tem with regards to moments. Quite remarkably, one can note that CPM = CωF

⊺.
This can be clariied by expanding each of these matrices in terms of the transla-
tional and rotational parts of the Jacobian matrix J =

[

JX
⊺ Jω

⊺

]⊺

. Doing this, one
will ind that CPM = JXKq

−1Jω
⊺ and that CωF = JωKq

−1JX
⊺ = (JXKq

−⊺Jω
⊺)⊺ =

(JXKq
−1Jω

⊺)⊺.

Figure 2.3.2: CPF : Translational displacement under translational force compliance ellipsoid
(igure credits go to Bu et al. in [42]).
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Bu, in [42], reports that the rotational displacements inluencing the drilling normal
accuracy are negligible for his KR500 robot. His computations show that the drill axis
angular deviation is inferior to 0.03°, when under a 1000 N pressing force at the end
efector, which is far below the usual 0.5° mechanical tolerance that is commonly seen
in aircraft or automotive production. Bu thus simpliies the study of the compliance
matrix by only focusing on submatrix CPF. He then builds the Cartesian compliance
ellipsoid by computing the set of translational forces leading to an overall displacement
norm

√

δp⊺δp equal to one.

δp⊺δp = 1

⇒ F⊺CPF
⊺CPFF = 1

By computing the eigenvalues and eigenvectors of matrix CPF
⊺CPF, one can then

visualise in 3-dimensional Euclidean space the directions in which translational forces
have the most (semi-minor axis) or the least (semi-major axis) inluence over the
displacement of the end efector.

2.4 Compliance matrix and related accuracy measures ap-
plied to the LBR iiwa

In the case of the LBR iiwa, however, the orientational deviation of the drill axis
is often not negligible compared to the usual mechanical tolerances. The following
paragraphs will describe a procedure which assesses the values of the misplacement
of the end-efector of this robot, thus providing with an order of magnitude.

The embedded joint torque sensors of the 7-DOFs Kuka LBR iiwa can be advant-
ageously exploited to simplify the joint stifness identiication procedure, as detailed
in [54]. Given the assumption saying that only deformations happening within the
joints are taken into account, the relected stifness values for one joint is the result
of the serial combination of the gears stifness value kgear and the equivalent control
stifness value kctrl. These serial stifnesses add up to form an equivalent overall stif-
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Figure 2.4.1: Delection of joint 2 under static increasing and decreasing payloads. a) under
position control mode, b) when the motor brakes are locked (gear stifness only)

ness keq = kgearkctrl
kgear+kctrl

. Therefore, the joint stifness values are dependent on the robot
control mode. Fig. 2.4.1 shows the exploitation of the experimental measurements
leading to the evaluation of joint 2 stifness in position control mode (a) and in locked-
joint-brake mode (b) for the Kuka LBR iiwa 14 R820. The irst setup evaluates the
joint stifness with the two serial stifnesses (keq = kgearkctrl

kgear+kctrl
) while the second only

measures the gear stifness keq = kgear. The results seem to show that the two setups
yield very similar overall joint stifnesses. This leads to the conclusion that the gear
stifness is much smaller than the one coming from the control law. Therefore, if
kgear ≪ kctrl, keq =

kgearkctrl
kgear+kctrl

≃ kgearkctrl
kctrl

= kgear. The measured values of the 7 joint
stifness in position control mode, taken from [54], are given in Table 2.4.1. They are
used as a basis for the work introduced in this chapter, since they are very similar to
the actual values of the gear stifnesses.
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kq,1 kq,2 kq,3 kq,4 kq,5 kq,6 kq,7
4.2e4 4.0e4 1.2e4 2.0e4 0.80e4 0.38e4 0.48e4

Table 2.4.1: Identiied joint stifness values of the Kuka LBR iiwa 14R820 (Nm/rad) taken
from [54]

Use case setup description : Let f be a force corresponding to the drilling
process.Let T be a point located at the positional ofset (0.0 m, −0.175 m, 0.0 m).
Let the TCP reference frame Ftcp be positioned in T, with an orientational ofset (in
terms of Euler angle ZYX convention) (0.0 rad, 0.0 rad, −π/2 rad) from F7. This
TCP and its Cartesian axes with be labelled ”unloaded” to refer to the state of this
frame when the system doesn’t counter any external force and ”loaded” when a force
is applied to the end-efector. Denoting tcpf the numerical expression of f in Ftcp, let
us assume that

tcpf =
[

0N 0N −100N 0Nm 0Nm −5Nm
]⊺

.

It corresponds to a force of 100 N along and a torque of −5 Nm about the ztcp-axis (the
drill axis). Let us denote tcpJ the geometric Jacobian matrix at point T, expressed in
Ftcp. The Cartesian compliance matrix of the system at point T, expressed in Ftcp,
can be derived thanks to Eq. (2.4).

tcpC = tcpJKq
−1tcpJ

⊺ (2.5)

Let the current coniguration of the LBR iiwa be : q1 = 110°, q2 = 47°, q3 = −62°,
q4 = 108°, q5 = −158°, q6 = −15° and q7 = −41°.

Cartesian stifness computations : The Cartesian compliance matrix tcpC ex-
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pression, for the current coniguration can be written as:

tcpC =

[

CPF CPM

CωF CωM

]

, where

CPF =






3.746 0.6305 −0.7063

0.6305 2.691 −2.458

−0.7063 −2.458 2.59




 ·10−5 m/N

CPM =






−3.392 5.861 −5.627

−6.707 0.8619 −2.618

6.708 −1.022 2.53




 ·10−5 m/Nm

CωF =






−3.392 −6.707 6.708

5.861 0.8619 −1.022

−5.627 −2.618 2.53




 ·10−5 rad/N

CωM =






21.63 −6.868 10.72

−6.868 29.17 6.85

10.72 6.85 26.9




 ·10−5 rad/Nm

A drilling force tcpf applied at the end-efector’s TCP leads to its Cartesian dis-
placement (expressed in Ftcp,unloaded, which corresponds to the unloaded pose):

δX =
[

δp⊺ ω⊺

]⊺

where, (2.6)

δp =






−0.9876

−2.588

2.716




 mm

ω =






7.243

−0.6798

3.875




 ×10−3 rad
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Some deformational behaviour indices : The translational displacement of
the TCP is directly given by the value of δp. We can determine the imprecision
in the drilling plane positioning by looking at δx = δp(1) and δy = δp(2). The
displacement along ztcp,unloaded, δp(3), is also very important as it goes opposite to
the feed motion.

The orientation shift of the drill axis before and after the application of the force
corresponds to the angle δθ lying between vector ztcp,unloaded and vector ztcp,loaded. To
compute just this, we can irst compute the rotation matrix corresponding to the angle
axis representation whose value is ω. This matrix is a representation of the displaced
TCP axes within the non-moved TCP reference frame. The angle axis notations will
be :

θ = ∥ω∥

wx = ω(1)/θ

wy = ω(2)/θ

wz = ω(3)/θ

(2.7)

With abbreviations cθ = cos(θ), sθ = cos(θ) and vθ = 1 − cos(θ), one can compute
the value of the ω angle axis equivalent rotation matrix1:

tcp,unloadedRtcp,loaded =






wx
2vθ + cθ wxwyvθ − wzsθ wxwzvθ + wysθ

wxwyvθ + wzsθ wy
2vθ + cθ wywzvθ − wxsθ

wxwzvθ − wysθ wywzvθ + wxsθ wz
2vθ + cθ




 (2.8)

Computing the angle between ztcp,unloaded and ztcp,loaded comes down to determining
1Eq. (2.8) corresponds to the expansion of the matrix that was introduced in Eq. (4.8) for the

elbow angle rotation matrix
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δθ as:

δθ = arccos(






0

0

1




 .






wxwzvθ + wysθ

wywzvθ − wxsθ

wz
2vθ + cθ




) = arccos(wz

2vθ + cθ) (2.9)

Deformational behaviour study : For our current use case and coniguration,
the drill shift angle equals δθ = 0.42°. A broader study, taking 10000 randomly gen-
erated articular conigurations, shows some relevant displacements caused by tcpf in
Fig. 2.4.2. Looking at these results, the hypothesis used in [42], according to which
the orientational shift is negligible against the mechanical tolerances seen in produc-
tion factories (0.5°), doesn’t hold with the LBR iiwa. Therefore, the simpliications
performed for the exploitation of the compliance matrix, consisting of ignoring the
orientational terms, don’t hold with the robot we use.

Consequences on the use of stifness ellipsoids for the LBR iiwa : To keep the
framework of compliance ellipsoids (used by Bu [42]) with the LBR iiwa, one could
produce an overall (translational and orientational) ellipsoid. However, this would
involve non physical mixes of units. Indeed, the expression of the ellipsoid would
involve inding spatial forces of unitary euclidean norm. This is already physically
irrelevant as spatial forces mix N (Newtons) and Nm (Newton meters). Additionally,
doing this would involve the computation of C⊺C which in time also involves non
physical mixes of physical quantities (CPF

⊺CPF + CωF
⊺CωF adds up terms of unit

(m/N)2 with terms of unit (rad/(Nm))2).
Another solution would be to produce one ellipsoid for each of the identiied sub-

matrices of C. The results related to orientational shifts, however, would be very
diicult to interpret as they are. The combined analysis and optimisation of all these
ellipsoids for redundancy resolution could also prove a very tedious.

To remain physically consistent and keep the interpretation simple, the strategy we
decide to use is to directly compute the deformation of the system under the stress of
a force. Additionally to being physically consistent, we feel that using displacements
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Figure 2.4.2: Study on the TCP misplacements of an LBR iiwa under a static force tcpf =
[
0 0 −100 0 0 −5

]⊺.
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instead of compliance/stifness is a more pragmatic and understandable result for end
users. It is also easier to use in the context of mechanical tolerances.

2.5 Redundancy exploitation of the LBR iiwa for rigidity
and accuracy enhancement

Use case context : Let us consider a drilling application. Let us assume our setup
to be a drilling panel, a LBR iiwa manipulator and a drilling end efector. Let us
assume that this end efector actuates two independent motions. These two motions
are the feed of the drill2 and its rotation. Assuming the TCP and input force tcpf are
the same as in the previous use case (see Section 2.4).

Redundancy space considerations : From a process point of view, this drilling
task requires 5-DOFs. Three DOFs are required for positioning the drill two others
for orientating its feed axis (the z-axis of the drill is free). 3-DOFs are generally
required to orientate a TCP, but in this case, the rotation about the drill axis is
free. Therefore, in this context, the LBR iiwa, with its 7 independent actuated joints,
naturally ofers two redundancies. The elbow angle β (see Fig. 1.3.6) and the drill
axis orientation atcp (see Fig. 1.3.7) can be used to parameterise the redundancy space
of the robot. We can describe this positional task thanks to the position of the TCP
and its orientation thanks to the Euler-XYZ convention. The Euler-XYZ convention
sets the orientation of the z-axis last, and we will therefore let it free. The positional
task can therefore be deined here as a position (−0.506 m,−0.241 m, 0.586 m) and
z-free orientation (1.2179 rad, 0.8611 rad, atcp)

Objective : Once the posture of the robot complying with the positional task will
be reached, the manipulator will have to maintain it as best as possible while the
drilling process will be running. We saw that the posture of the robot inluences
tremendously its deformational behaviour. Therefore, the objective here is to choose

2The feed corresponds to the translational displacement of the drill that is used to enter the
drilling panel.
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which is described by the redundancy space parameterised by (atcp, β).

Results of the positional redundancy resolution : Fig. 2.5.1 shows the vari-
ations of the drill plane misplacement over the redundancy space of the robot. Each
point of the (atcp, β) plane corresponds to a diferent posture of the manipulator
that complies with the positional task. The variations of the planar misplacement
are within the range [0.16 mm, 2.36 mm] for this positional task. These drastic vari-
ations clearly illustrate the posture-dependency of the accuracy of the system and
the potential beneits an enlightened redundancy management may bring. An optim-
isation scheme may be used on the value of the planar misplacement in order to ind
the posture which minimises this criterion.

However, the planar misplacement may not be the only criterion we want to min-
imise. If we also want to avoid a substantial axial misalignment and axial shift of
the drill, we may want to ensure that all three of these misplacements are contained
within user-chosen tolerance boundaries. Fig. 2.5.2 displays in parallel the planar
displacement, the displacement along the drill axis, and the orientational error on the
drill axis. Each of these plots is overlayed with hatched areas representing regions
of the redundancy space which don’t comply with the tolerances of the associated
criterion. Given the union of the tolerance-respecting areas, the available redund-
ancy space that is within all the misplacements tolerances is displayed in the blue
non-hatched area showed on the bottom right of the igure.

2.6 Intermediary Conclusion

This chapter presented a strategy aiming at characterising and improving the deform-
ational behaviour of a redundant serial robot under the stress of a force. The strategy
exploited the positional redundancy of the system with regards to a given task and
an interaction force, to ind the subset of postures reducing the misplacement of the
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Figure 2.5.2: Various misplacement measures put in perspective for a spatial force tcpf =
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end efector.

We demonstrated the beneits of using the redundancy space framework in order to
ind suitable conigurations. The main use-case presented was one for which the robot
considered had 2 internal motions causing no change in the task fulilment. For re-
dundancy spaces composed of more dimensions, the representation of the performance
criteria cannot be so intuitively done, despite the fact that the performance criteria
can still be computed easily for each sampled redundancy space position. Inspite of
this, optimisation schemes can easily be implemented to improve the deformational
behaviour of redundant systems. The formulation of such an optimisation problem
can be found in Section 1.4, with the beneits redundancy space parameterisations
provide.

We demonstrated how a constrained satisfaction problem could formalise a re-
dundancy resolution problem, in order to constrain the values of several performance
criteria between user-deined boundaries (Fig. 2.5.2).

In the next chapter, the problem of force capacity of serial redundant manipulators
will be tackled. Another performance criterion will be deined that can be exploited
similarly as the ones related to the deformational behaviour of the robot.
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3
Force capacity improvement of
serial redundant manipulators

When considering a set of robotic tasks involving physical interaction with the en-
vironment, the theoretical knowledge of the full force capacity of the manipulator is
a key factor in the design or development of an eicient and economically attractive
solution. Carrying its own weight while countering forces may be too much for a
robot in certain conigurations. Kinematic redundancy with regard to a task allows a
robot to perform it in a continuous space of articular conigurations; space in which
the payload of the robot may vary dramatically. It may be impossible to withstand
a physical interaction in some conigurations, while it may be easily sustainable in
others that bring the end-efector to the same location. This becomes obviously more
prevalent for a limited payload robot.

This chapter describes a framework for this kind of operations, in which kinematic
redundancy is used to explore the full extent of a force1 capacity for a given manip-
ulator and task.

1In this chapter, the terms ”force” and ”wrench” may interchangeably refer to 2,3 or 6 dimensional
forces depending on the dimension of the problem (planar, spatial) and on whether they may or
may not include components of translational forces and/or moments. Their dimensional deinition
will be explicitly given whenever speciically needed.
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3.1 Force Capacity analysis in the literature

Recent developments in lightweight robotics put versatility on center stage. This
versatility is however often hampered by their limited force capacity. This is still
an obstacle to have these manipulators populate a larger portion of the industrial
robotic scene. The idea behind this chapter comes from our participation to the
Airbus Shoploor Challenge taking place at ICRA 2016 Stockholm (see Fig. 3.1.1),
where a frustrating need for a redundancy exploitation to the beneit of force capacity
emerged. Years of study on the subject of poly-articulated mechanisms have shown
us that the force capacity of a robot strongly depends on its articular coniguration
[55] [56] [57] [58] [13] [59]. We propose in this chapter to exploit these variations to
the manipulators’ advantage.

Figure 3.1.1: 7-joints LBR iiwa during the Airbus Shoploor Challenge, ICRA 2016, Stock-
holm.

Yoshikawa introduced the concept of force manipulability ellipsoids [55]. These
ellipsoids are ways of representing, in a given articular coniguration, the force trans-
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mission eiciency of serials manipulators. The force ellipsoid is deined as the forces
created by the set of all possible torque vectors whose norm is equal to one, when
the manipulator is in a given posture. This sphere of articular torques is mapped,
thanks to the Jacobian matrix of the manipulator, into Cartesian space to form an
ellipsoid of Cartesian forces. Yoshikawa also designed the concept of dynamic manip-
ulability ellipsoids [50], which accounts for the eiciency of a manipulator to produce
accelerations of its end-efector. This concept was reined to better take into account
the efect of gravity [60] and Chiacchio and Concilio later formulated a version of
this ellipsoid for redundant manipulators and non-redundant manipulator in singular
conigurations [52] [56]. On the downside, ellipsoids only provide an approximate
description of the performance of a manipulator [61], for they are derived from a l2

norm rather that from a l∞ norm, which prevents them from transforming the exact
joint constraints into task space [62].

The force polytopes [57] are another well known tool for describing dexterity. Force
polytopes have the ability to accurately describe maximum achievable force capacity
of manipulators, because they derive from a l∞ norm. A force polytope is constructed
by mapping the exact joint torque constraints, depicted as a convex polytope in
articular space, into Cartesian force space, to form a convex polytope. The force
polytope provides the exact Cartesian force capability bounds of the robot in all
possible Cartesian forces directions for one given posture. They share with ellipsoids
problems of homogeneity that arise when using euclidean metrics mixing angular and
translational components, and problems of dependency to scale and units [52]. In the
redundant or singular case, the computation of polytopes and ellipsoids requires a
generalised inversion or Singular Value Decomposition (SVD) of the Jacobian matrix,
as well as a projection on the range space of JT [56], to remain compatible with the
static constraints that were outlined in [63].

Later on, Bolwing and Khatib developped the dynamic capability equations (DCE)
[58]. This tool expresses the translational and orientational components of Cartesian
speed, acceleration, force capacities altogether in joint torque space and makes these
immediately comparable in terms of their torque contribution. To do so, spheres of
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minimal Cartesian speed, acceleration and forces are mapped into joint torque space
thanks to the named equation and their corresponding joint torque ellipsoids are
accumulated, centering one ellipsoid after the other on the surface of the previous
one. This accumulation has to be contained within the joint torque polytope for the
manipulator to be able to achieve the minimal performance in terms of the Cartesian
quantity in or about any direction. The strengths of this tool are its ability to unify
velocity, acceleration and force analysis, while dealing consistently with translations
and rotations together.

The methodology proposed in this chapter aims at accurately characterising a spe-
ciic wrench capacity on the full extent of the redundancy space of serial redundant
robots to choose a suitable coniguration for a given task. The incentive behind this
focus on a speciic static wrench capacity is that many industrial operations involve
speciic wrench sustainment and ixed end-efector location. Hence, choosing a suit-
able destination for this job is very important. Another incentive lives in the need for
simplicity and industrial usability of a force capacity criteria. The placement of the
base of non-redundant robots and the oline planning (OLP) of redundant robots are
often made empirically and without measurable exploitation of their potential bene-
its, despite the existence of very interesting and global tools, like the ones described
before.

The force capacity index (FCI) developed herein is a real-valued index, that exists
for an input coniguration and an input wrench. This index gives a succinct and quick
estimation of the maximum intensity, i.e. the multiplier of the input wrench, that
wouldn’t saturate any actuator of a manipulator, while the latter is already sustaining
its own weight.

3.2 Comparison with traditional tools

A comparative study of the FCI with traditional force performance evaluation tools is
presented in Table 3.2.1. The ongoing section will complement this table, providing
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Force
Polytopes

Force
Ellipsoids

Manipulability
index

DCE
Framework FCI

Requires Gen.
Inv. or SVD Yes Yes Yes No No

Output type 2 x 3D
polytope

2 x 3D
ellipsoid Scalar Accumulated N-D

ellipsoids Scalar

Range of study All Cartesian
directions

All Cartesian
directions

All Cartesian
directions

All Cartesian
directions

Focused on a
single wrench

Can estimate speciic
wrench production performance

Yes, for pure
force/moment

Yes, for pure
force/moment No Yes, but at a

great cost Yes

Combines forces/moments in a
physically meaningfull manner No No No Yes Yes

Independence of scale and unit No No No Yes Yes
Handles well singular conig.
Scales well with #DOFs No No No Yes Yes

Analytical expression exists No No No Yes Yes

Table 3.2.1: Qualitative comparative study of diferent posture-dependent tools used for wrench production perform-
ance evaluation of serial redundant manipulators.
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relevant details about each tool, and detailing how and under which assumptions a
result equivalent to the FCI output could be obtained from this list of tools.

Force Polytopes :The use of force polytopes would not suit this particular purpose
in most cases, as general wrenches mix forces and moments, which can’t be meaning-
fully combined with this tool. For pure force/moment wrenches however, one could
try to look at the intersection of the inquired wrench direction (straight line in the
relevant Cartesian space) with the surface of the force polytope, which would provide
a result equivalent to the FCI’s.

Force Ellipsoid :Force ellipsoids share the same problem of being unable to mean-
ingfully combine forces and moments. Besides, ellipsoids account for force production
eiciency, not capacity (eiciency at producing a wrench may be high even though a
robot joint is close to a torque limit, thus limiting the robot wrench production capa-
city). Regardless, speciic wrench production eiciency could be computed for pure
force/moment wrenches expressing these wrenches into the singular vectors decom-
position associated with the coniguration of the system and weighting accordingly
with the associated singular values.

Manipulability Index :The manipulability index is encompassing all Cartesian
force production eiciencies into one single scalar and thus doesn’t allow inquiry
about a speciic wrench production eiciency, let alone capacity.

DCE Framework :Using the DCE framework for a speciic wrench capacity ana-
lysis would be irrelevantly-computationally expensive. It would require accumulating,
within the torque vector space of the manipulator, an ellipsoid corresponding to a pure
force wrench that has the same norm as the one coming from the speciic wrench with
ellipsoids corresponding to a pure moment wrench that has the same norm as the one
coming from the speciic wrench. Then, it would require scaling up these ellipsoids
until the speciic wrench lay on the surface of the robot torque polytope. This inal
scaling factor would then be equivalent to the FCI output. This comparative study
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clearly highlights the need for such an index.

The methodology proposed in this chapter shares with the DCE’s its ability to mix
Cartesian translational and rotational forces in a physically meaningful manner, and
dealing with the problems of dependency on scale and units by focusing on geometric
computations in joint torque space. Just like force ellispoids and polytopes, the DCE
gives global insights of the force performances of a manipulator, in and about any
direction of the Cartesian space. This particular feature is desirable for robot design
purpose, or for reactive control applications, where unforeseen physical interactions
or reactions may have to be dealt with. This, however, does not count among the
explicit focuses of our framework. On the bright side, the FCI behaves very well with
high-number-of-DOFs-manipulators, doesn’t sufer from singularities, doesn’t involve
costly computations (such as generalised inversion or SVD), and most importantly
has a straightforward formulation and interpretation. These features make it very
suitable for redundancy resolution schemes, for easy implementation in autonomous
and/or oline programming of redundant robots, in the mechanical design of end-
efectors, and possibly in control schemes, although adjustments would have to be
done in the latter case to account for dynamic efects. Control schemes won’t be
exempliied in this chapter, which aims at introducing the FCI and apply its use to
quasi-static applications.

3.3 Proposed methodology

3.3.1 The force capacity index λsat

In the n-dimensional aine space of an n-DOFs manipulator joint torques, let us deine
the joint torque polytope (see Fig. 3.3.1) for a 3-DOFs manipulator) as the convex
n-dimensional polyhedron described by the bounding inequalities: ∀i ∈ [[1, n]], τi,l ⩽

τi ⩽ τi,u, which expresses the fact that the torque of joint i, τi, lies within the torque
lower bound τi,l and the torque upper bound τi,u segment.
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Figure 3.3.2: A 3-DOFs planar manipulator settings : l1 = 0.7m, l2 = 0.6m, l3 = 0.4m,
m1 = 1.5 kg, m2 = 1kg, m3 = 0.5 kg, lG1 = 0.5l1, lG2 = 0.5l2, lG3 = 0.66l3, τ1,u = −τ1,l =
20Nm, τ2,u = −τ2,l = 9Nm, τ3,u = −τ3,l = 6Nm. Note: Two sets of solutions exist for this
planar arm as link 1 and link 2 may also be symmetrically placed on the other side of the joint
1-joint 3 axis. However, only one of these sets will be explored, for the sake of brevity.

Let f be the wrench, expressed at the TCP2, that the manipulator has to sustain
at minimum and let q be the articular coniguration in which to compute the wrench
capacity. The gravity torque vector τ g(q), i.e. the vector containing the torque that
each actuator of the manipulator will have to produce to counter the efect of weight
only, can then be computed thanks to the mass data of the manipulator. Then, the
torque vector τ λf , needed to sustain a lone spatial force λf , λ ∈ R

+ in the conigur-
ation q can be computed thanks to the kinetostatic equation τ λf = λJ(q)T f = λτ f .
We will refer to λ as the intensity of the spatial force. During the operation, both
τ g and τ λf , with λ = 1, have to be produced at the same time, and we want to
know the maximum intensity of the wrench that can be sustained by the manip-

2The TCP, or Tool Center Point, refers to a frame, which is statically attached to the extremal
link of the manipulator. This frame is generally placed and oriented at an operating location of the
end-efector.
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ulator. Determining the wrench capacity comes down to computing the intensity
λsat(q) multiplying the wrench f below which no actuator saturates, and from which
at least one actuator saturates. This geometrically translates into inding λsat so that
τ (q) = τ g(q)+λsatτ f lies on the surface of the joint torque polytope, as can be seen
on Fig. 3.3.1. Practically, it is therefore interesting to look into the saturating intens-
ity of each actuator, i.e. the minimal intensity λi(q) ⩾ 0, i ∈ [[1, n]] of the wrench f

that would overwhelm actuator i, without consideration for the other actuators. This
intensity of the wrench produces a torque τi(q) at actuator i either equal to τi,l or to
τi,u. The minimum of the n saturating intensities exactly corresponds to λsat(q).

∀i ∈ [[1, n]], λi =







τu,i−τg,i
τf ,i

, if τf ,i > 0

τl,i−τg,i
τf ,i

, if τf ,i < 0

∞, if τf ,i = 0

λsat = min((λi)i∈[[1,n]])

3.3.2 A simple example : 3-DOFs planar robot for 2-D positioning
task

Let us consider the planar manipulator with three serial revolute joints depicted (for
three diferent conigurations) in Fig. 3.3.2 for the 2-dimensional planar positioning
task while the robot is applying a linear 2-dimensional force f at its TCP. The robot is
kinematically redundant of order one for the positioning task and therefore has a one
dimensional space of articular conigurations that allows for the position of its TCP to
match the task requirements. The initial step is to ind an intuitive parameterisation
of the redundancy space. In our situation, a solution could be to take the third
joint coordinate of the manipulator, which is, according to the formulation of [64], a
monotonic type joint. Indeed, regardless of the goal position occupied by the TCP,
ixing the value of this joint angle enables to provide at most one inite set of solutions
to the inverse geometric model. Another solution for parameterising the redundancy
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Figure 3.3.3: Joint saturating intensities λ1, λ2 and λ3 (thin lines) and saturating intensity
λsat (thick line) of the 3-DOFs planar robot described in igure 3.3.2 for θ ∈ [−π, π]. Task
destination is M(0.5 (m), 0.5 (m)) and output force is f = [5.5 (N), 27.5 (N)]T (everything
is expressed in the origin reference frame). Some enlightening postures of this manipulator are
shown below the curves.

space of the problem is to use the angle θ which corresponds to the angle between
the horizontal and the pointing direction of the TCP. Both parameterisations would
work, but we will favour the latter, because a closed-form expression for the inverse
geometry problem is more trivially found this way.

Fig. 3.3.3 is a representation of the saturating intensity of the three actuators of
the manipulator over a signiicant sampling of α = θ ∈ [−π, π]. For each sampled
θ, the value of λsat is the minimum value of the saturating intensities λ1, λ2 and
λ3. The wrench capacity is shown to greatly depend on the value of the redundancy
parameter θ. In this simulated example, λsat varies everywhere between 0.43 and 1.50.
The wrench f is not feasible when λsat < 1. Drawing a horizontal line at this λsat = 1

highlights the admissible ranges of θ for the current task and spatial force, which
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leaves room for further improvements from a redundancy resolution perspective. In
the example, we can see that two spans of values for θ are available for the manipulator
to sustain the wrench f with an intensity λsat ⩾ 1.

Links length and mass, positions of centres of gravity and TCPs, as well as torques
limits also have a strong and varying inluence on the shape of the saturating intens-
ities. The FCI can also be an interesting criterion to use during robot or end-efector
mechanical design, as is exempliied at the end of the chapter.

3.4 Application of the method to the LBR iiwa

Let us apply this method on an existing robot, the KUKA LBR iiwa, for drilling
operations. The drilling task is a fully constrained task with a free rotation about
the drill axis. Therefore, the it only constrains ive DOFs, which leaves us with a
2-redundant-DOFs manipulator. In these condition, we choose to take the rotation
about the drill (denoted atcp) and the elbow angle (denoted β) as parameters for the
redundancy parameterization of our problem.

Fig. 3.4.1 shows the output of the force capacity evolution over a meaningful
sampling of this 2-dimensional redundancy space. In this simulation, λsat has very
sharp variations, with a potential gain that approximates +290% in the force capa-
city index. The robot postures associated to three relevant positions in redundancy
space are also displayed to give further insight on how the redundancy position in-
luences the general posture of the manipulator while complying with the task, and
what makes the robot strong against the spatial force depicted by the red arrow. An
intuitive result is that the robot seems stronger when its weakest joints are lightly
solicited (in the LBR iiwa, the torque limits range from ±320 Nm for the irst two
base joints to ±40 Nm for the last two joints); e.g. only when joint 6 aligns its ro-
tation axis with the direction of the force does the robot get sharply stronger3. On
the other hand, joint 6 seems to be highly solicited, with its axis nearly orthogonal

3Joint 7 solicitation does not change much over the entire redundancy space, and the joint is only
very lightly burdened whatsoever.
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sometimes non-continuity of λsat function, which comes from taking the minimum of
the (non-convex) saturating intensities4, from the non-reachability of some redund-
ancy space positions and from joint limits, makes it a challenging problem for tradi-
tional optimisation approaches taking λsat as cost (or constraint) function, without
guarantee of inding a global maximum. Local maxima would also be diicult to
ind for traditional optimisation techniques because they often lie on, or close to the
intersections of diferent saturating intensities, i.e. areas where λsat function is not
diferentiable.

Low dimensional problems like the ones shown in this chapter can be fully and
eiciently solved by sampling the redundancy space of the manipulator and computing
λsat for each sample. The sampling approach allows for a very thorough understanding
of the possibilities redundancy ofers. For higher dimensional problems (i.e. problems
where the redundancy space has many degrees of freedom), it may be advisable to
use optimisation techniques such as genetic algorithms, which are more suited to
these kinds of functions than algorithms traditionally used in constrained non-linear
optimisation (interior point, SQP, active set, trust region relective, etc...) although
they don’t guarantee the repeatability of the result. Their use was experimented with
success on 1-, 2- and 4-DOFs redundancy space, with good results (the local extrema
shown on Fig. 3.4.1 are results of this genetic algorithm approach).

3.5 Intermediary Conclusion

A real-valued index measuring the capacity extent of a serial manipulator, set in a
given coniguration, to produce a speciic spatial force was described in this chapter. A
framework, based on a parameterisation of the self-motion of redundant manipulators,
was then presented to help explore their redundancy space in search for strong values
of the force capacity index.

Unlike polytopes, manipulability ellipsoids and DCE-linked tools, which focus on
the overall force (and other physical quantities) capabilities in one given coniguration,
this method focuses on one particular force capacity over all the possible conigura-

4For examples of non-smooth and non-convex saturating intensities, see Fig. 3.3.3.
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tions ofered by kinematic redundancy. The authors ind this tool suitable for direct
use, with the purpose of simplifying redundancy resolution and exploitation.

The relevance of the proposed approach was illustrated with a practical use case
involving a discrete path planning and mechanical design problem. The use case
demonstrated the advantage of exploiting the available redundancies of this system
while demonstrating the simplicity of use of the FCI. The presented index was shown
to have a strong dependency on the coniguration used by the manipulator, which
demonstrates its relevance for redundant robotic operations involving interactions.

Quite remarkably, KUKA LBR iiwa 14 R820 is shown to have force capabilities
which extended well beyond what the worst-case-14kg-equivalent-weight announced
by the manufacturer could suggest (on the simulation of Fig. 3.4.1, more than 570 N
can be withstood at the TCP).

Although force production may be extended well beyond what one could expect
from a robot such as the LBR iiwa, it may be important, for industrial operations,
to maintain a level of accuracy by limiting gear elastic deformations. The criteria
presented in Chapter 2 may be used in parallel to the force capacity index in order
to ensure a suicient force capacity while limiting the deformational behaviour of the
robot operating point.
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4
Motion Planning in Dynamic
Environment Using Receding
Horizon Dynamic RoadMaps

Performing motion planning in an industrial, human populated environment is a
very challenging problem. The industrial context imposes robustness and eiciency,
while the presence of human imposes safe trajectories and creates dynamic obstacles.

In the literature, a lot of focus is made on fast planning rates or path optimality
for a given static environment. A broadly accepted concept to cope with moving
obstacles is to use reactive control but this strategy is prone to local minima and
deadlocks.

In this chapter, a strategy that uses an anticipation of the obstacle motions is
presented to create safe and robust trajectories. A method called Receding Horizon
Dynamic RoadMaps (RH-DRM) is presented that allows eicient and safe trajectories
in changing environments. This method, which classiies into the Sampling Based
(SB) approaches, uses the concept of Dynamic RoadMaps (DRM) and extends it
to obstacles anticipated trajectories. A novel graph search method within a time
changing graph is presented to solve the problem of the earliest arrival journey within
an anticipated roadmap topology.

The chapter irst introduces the broad ield of motion planning. Then, it focuses
on approaches inspired from the well-known PRM method and introduces core tools
used by these strategies. Eventually, the RH-DRM method is presented.
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4.1 Context

The problem of managing collaborative and mobile systems within a dynamic a
cluttered environment is a complex one. More speciically, managing a lock of hy-
per redundant, inaccurate, mechanically lexible and power limited iiwa-type robot
arms mounted on KMR-type robotic platforms, in a human-populated aircraft pro-
duction shop loor, to have them safely and autonomously perform assembly, drilling,
or measurement operations is a real technological challenge. Managing these systems
in this environment involves several steps.

On a high level of abstraction, it involves dynamically assigning ”jobs” to the
available systems. This operation is often referred to as task planning. A ”job” for a
robot generally consists of performing a unique type of process in a set of locations.
We will assume that these locations are organised geographically and can be reached
from a unique mobile platform location. In this thesis, the task assignment is assumed
to be an entry point of our problem.

From this job allocation, one system can pick a suitable geometric destination for
its mobile platform that allows the robot arm to suitably reach the set of locations
associated to the job. This step involves performing a redundancy resolution scheme.
Tools to perform this step were introduced in the previous chapters.

Then, a system needs to safely travel to its chosen destination. Part of the envir-
onment is well known and static. For instance, the fuselage geometry is known in
advance. Aside from that, the environment is occupied by other robots and human
beings that move about the place. One part of this problem is knowing the environ-
ment by constantly sensing it. The other part, which is the subject of this chapter,
is planning a suitable motion within this dynamic and cluttered environment.
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Figure 4.1.1: Mobile robot having to plan a motion in a human populated environment.

4.2 Motion planner specifications

In this chapter, we will consider the problem of planning the motions of a robot,
which may be a serial arm, a mobile platform, or an hybrid system that couples them
both. We will consider no diferential constraints, as both robots can be considered
holonomic. The system, whatever it may be, performs operations in a place shared
by robots and human workers. It comprises the boundaries of the place, like the
walls, loor and other ixed obstacles. It will therefore be referred to as the static
environment. Human workers and other robots will be referred to as the dynamic
environment of the system. The dynamic environment behaviour is not known in
advance. Therefore, the motion planning strategy must adapt to them autonomously.

The objectives that we want to meet for this motion planning solution are several
fold:
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• Motion safety : The motion planning solution has to be safe. The system
should avoid collisions with its environment while moving about, if it is avoid-
able. For the sake of generality, the system is not assumed to be faster than the
other moving agents. It will have to cope with obstacles that may have higher
dynamics than itself.

• Motion eiciency : The method has to deliver an eicient solution by choos-
ing an early arrival route to the destination.

• Motion induction and intrusiveness : The path taken by the system must
adapt to the environment and should avoid disrupting the dynamic environ-
ment’s low. We believe it to be an important feature for improving human
acceptability.

• Geometric detailing : A lot of existing algorithms make strong assump-
tions and simpliications on the shape of the system and obstacles. These as-
sumptions generally aim at decreasing the computational load to an acceptable
level. These assumptions are sometimes so profoundly rooted in the methods
that they cannot be relaxed without modifying completely the inner working
of the algorithms. These simpliications are often limiting in the context of a
cluttered environment and may prevent nimble trajectories from being found.
The method developed for our problem must provide the means to choose the de-
tailing level of the geometric shapes that compose the environment and system.
This speciication will allow the eiciency and result quality of the algorithm
to improve with the computational power increasing trend.

• Computational cost : The method has to be able to cope with sudden
changes in the environment while remaining safe. It should therefore be light
and fast, programmatically speaking.

• Adaptability to multi-robot motion planning : Ideally, the solution
should also be adaptable to a multi-robots motion planning problem. It should
scale well with the number of robots.
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• Industrialisation ease : The method is to be robust and deterministic. The
same consequences should arise for two situations with the same problem inputs.
Additionally, the inner workings and decision process of the algorithm must be
visualisable and understandable. Method transparency is to be sought if the
solution is going to be applicable in an industrial context.

4.3 An introduction to some established motion planning
schemes

4.3.1 History and definitions

The irst motion planning problems were formulated in the mid 60’s, but motion
planning problems really started drawing researchers attention in 1979, with [65].
Motion planning has since grown to become one of the most studied ield in robotics
and automation [66–71]. It has various applications in other ields, including com-
putational biology with protein folding algorithms [72], video games or movies with
computer animation [73, 74]. Historically, motion planning is often referred to as the
piano mover’s problem [75]. The goal of motion planning is, for a given system, to
produce a collision-free motion from a start to a goal coniguration while being among
a collection of obstacles. The pair of start and goal conigurations is called a query
in the motion planning vocabulary.

The system and obstacles envelope geometries can be described in a 2D or 3D
space called the workspace W (which can be R

2 or R
3). The motion, however, is

conveniently described as a path in (possibly higher-dimensional) coniguration space
C. The coniguration space of a robot is a space that uniquely -and unambiguously-
describes the posture of a robot. Articular positions are generally used as the com-
ponents of the vectors of this space. Using coniguration spaces is a useful way of
abstracting planning problems in a uniied way [76, 77], because articulated robots or
robots with complex geometric shapes are represented by a single point q ∈ C. The
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(x, y)

Figure 4.3.1: Deinition and construction of Cfree for a triangular robot that can move in
the plane without rotating. The coniguration of the robot is deined as the position of its
left bottom vertex : q = (x, y). Obstacle region O is displayed in dark grey. Coniguration
forbidden space Cobs is the union of all shades of grey regions. All non-grey regions are the
coniguration free space Cfree.

set of conigurations in which the envelope1 of the robot A(q) ⊂W is not colliding
with the obstacle region O ⊂ W is called the free coniguration space Cfree (i.e.
Cfree = {q ∈ C | A(q)

∩
O = ∅}). The free coniguration space is illustrated for a

simple example in Fig. 4.3.1.The pair composed of start and goal conigurations is
called the query of the motion planning problem.

Given W , O and A, the motion planning problem can be deined for a query
1The envelope is the non convex volume that exactly encompasses the robot for a coniguration

q.
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(qI ,qG), as the search for a continuous path π : [0, tf ]→ Cfree, such that π(0) = qI

and π(tf ) = qG, where tf ≥ 0 is the time needed to reach the destination.

Although the formulation of the motion planning problem is simple, the problem
has been proved to be computationally demanding, even for simple systems [75, 78].

Despite a large number of reviews on the ield [66–71, 79–82], a taxonomy of motion
planning algorithms remains unclear. All the same, some techniques seem to stand
out from the lot. The following paragraphs will briely introduce some of them.

4.3.2 Combinatorial Roadmaps

Combinatorial roadmaps, also referred to as computational geometric algorithms [83]
and exact roadmaps, is a discipline that started in the late 60’s [84]. It was initially
created to solve problems in R

2, with limited possibilities of extension to higher-
dimensional spaces. They generally require the full knowledge of the obstacle region.

Roadmaps based on Voronoï diagrams [85–87], also called maximum clearance
roadmaps [88] or retraction method [89], are one of these techniques (see Fig. 4.3.2).
These algorithms divide free coniguration space into regions that have the property
of being closer to a single obstacle. The boundaries of these regions have the property
of being equally distant to pairs of obstacles, and thus deine the maximum clearance
roadmaps. Motion planning algorithms fully based on Voronoï roadmaps are com-
plete algorithms. They report in inite time a solution if it exists and are able to
report if a query is not feasible.

Visibility graph [83, 84, 90–92], also called shortest path roadmaps, create roadmaps
that link all pairs of the polygonal obstacles vertices if they are visible to one another
(see Fig. 4.3.3). Paths will actually touch the obstacles, and thus provide the shortest
possible solutions.

Cell-based decomposition roadmaps [83, 93–96] use vertical cell decomposition
(plane sweep principle) to divide the free coniguration space into triangles and
trapezoids (see Fig. 4.3.4). Collision free paths can then be computed by moving
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Figure 4.3.2: Voronoi diagram based roadmap.

Figure 4.3.3: Visibility graphs, also called shortest path roadmaps.
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Figure 4.3.5: Artiicial Potential Fields

when looking at the global path planning, this greedy approach is not always suitable.
The path taken is generated from the local shape of the potential ield. In narrow
passages, the planning may perform poorly [97]. Moreover, the local feature may
easily lead the system into local minima of the potential function without further
hope of reaching the destination. Additionally, from a global path perspective, the
solution can hardly be optimal. The idea of repulsive APF was introduced in this
thesis in the context of local optimisation-based velocity level redundancy resolution
(Section 1.2.3) approaches, and can be used in the framework of the task priority
approach [98] (Section 1.2.5).

4.3.4 Mathematical programming methods

Mathematical programming methods deal with motion planning using a constrained
optimisation method. In this scheme, static and dynamic obstacles avoidance is
modelled by inequality constraints on the shortest distance to obstacles. The objective
function may be based on the time, the distance and/or the energy required for the
motion. An interesting application of this method is the distributed receding horizon
approach described in [99, 100]. The method is suited for a lock of robots in a
dynamic environment. In this method, at regular time intervals, the planning of each
robot is performed and then shared amongst the other members of the lock. Each
robot of the lock then modiies its optimal route to adapt to the others trajectory.
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4.3.5 Heuristic approaches

The methods mentioned before have the main disadvantage of being ”ungeneralisable”
to higher dimensional problems or falling in local minima. Heuristics approaches, such
as simulated annealing [101–103] have been combined with potential ields to remove
the problem of local minima by driving the robot out of them.

Particle swarm optimisation [104–106] and genetic algorithms have also been em-
ployed in the motion planning problem [107–110]. In the latter, the main idea is
the creation of chromosomes representing the path taken by the robot. Functions
computing the distance to collision are used to test the suitability of chromosomes for
obstacle avoidance and a suitable cost function can be used to shorten and smooth
up the path.

The concept of stigmergy is also relevant for motion planning. Stigmergy is an
indirect communication process used by termites and other animals living in colonies.
Wandering termites drop pheromones along their way to indicate interesting places or
dangerous ones to their congeners. The cumulated experience of many termites may
provide accurate information about the environment without requiring any explicit
communication. Without physically marking the environment, the same principle
was used in [111–114] to guide locks of mobile robots. A real life application of this
technique is done with Google maps application (Fig. 4.3.6), which monitors in real
time the traic density thanks to the GPS signals of their users.

Fuzzy logic has also been used in motion planning schemes [115, 116], in association
with neural networks [117, 118], genetic algorithms [119], or potential ields. Other
methods include colony optimisation, wavelets or tabu search. A more thorough
description and review of these methods can be found in [80].

Despite being rather eicient methods, heuristic approaches have no guarantee of
inding a solution if it exists. The main disadvantage of these methods is perhaps the
opacity of their inner workings, which could render them diicult to analyse or debug
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Figure 4.3.6: The stigmergy principle used for navigation purpose (Map data ©2018
Google).

within an industrial implementation.

4.3.6 Sampling-based methods

Very popular schemes nowadays for motion planning are the sampling based methods
(SBM). A comprehensive and recent survey of these approaches can be found in [82].
The two most popular and fundamental schemes deriving from SBM are certainly the
Rapidly-exploring Random Trees (RRT) [120] and the Probabilistic Roadmaps (PRM)
[121]. Other very well known planners based on sampling based approaches include
the Rapidly-exploring Random Graph (RRG) [122] and Fast Marching Tree (FMT)
[123]. The main idea behind sampling based methods is the discretisation of the
obstacle free coniguration space of robots. No representation of the obstacle conig-
uration space is needed. This representation is a heavy computational burden that
generally prevents exact roadmap methods (see Section 4.3.2) from being used in high
dimensional coniguration space. These methods generally produce a graph structure
whose nodes are collision free conigurations and whose edges are collision free linear
trajectories between conigurations. A basic need for sampling based methods is the
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Figure 4.3.7: Original version of RRT algorithm. Expansion is driven towards large Voro-
noï regions. Credits to Steven Lavalle, in [120], for the illustration showing the expansion of
Rapidly-exploring Random Trees.

possibility to perform collision tests very quickly. These tests are performed once for
each sampled coniguration, and performed repeatedly along the paths that link them
together in the graph.

Depending on the method, a graph can be constructed every time a query is issued
(single query algorithms), or it can be computed once and then used over and over
for all queries to come (multiple-query algorithms).

Rapidly-exploring Random Tree (RRT) : The RRT algorithm is primarily aimed
at single query applications. The graph constructed in the original version of the
RRT method is rooted at the starting coniguration and grows in a somewhat biased
manner towards the destination while expanding towards large Voronoï regions (see
Fig. 4.3.7). The tree construction process lasts until a coniguration situated in the
goal region is added to the graph. No tree reinement is performed afterwards, which
often leads to highly sub-optimal paths. The absence of cyclicity in the graph doesn’t
improve the optimality of the solution, but path short-cutting post procedure may
help. The constructed trees are not too large as they are focused on linking two
conigurations, which ensures a rather light computational load. Many methods have
been derived from the original RRT algorithm. They include Lower bound Tree
RRT [124], Transition-based RRT [125], RRT* [122] (see Fig. 4.3.8), RRT# [126],
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Figure 4.3.8: RRT and RRT*, for the same obstacle space and batch of sampled conigura-
tions. Credits to Sertac Karamen and Emilio Frazzoli, in [122], for the illustration.

informed RRT* [127], RRTX [128], and many others. The main purposes of these
newer developments are the improvement of path optimality and/or computation
time.

Probabilistic RoadMap (PRM) : The PRM algorithm is suited for multiple-query
applications. This means that the PRM framework allows to solve several queries in
quick succession. To be able to do that, the PRM framework builds and maintains a
graph that aims at capturing the connectivity of the collision free space. This graph
is referred to as the roadmap, or connectivity graph. The edges of this graph are
weighted according to a user deined metric, which generally relates to a measure of
the distance between the linked conigurations.

After building this graph, queries are ready to be planned for. To do that, the start
and goal conigurations of the query are inserted to the graph by collision-checking
trajectories between them, and neighbouring nodes of the graph. A graph search
is then performed to ind the ordered sequence of connected nodes which minimises
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pleteness ensures that if a collision free path exists, the probability that it is found
by one of these methods approaches one exponentially with the number of nodes in
the graph. Asymptotic optimality ensures that an optimal path will be approached
given an increasing number of nodes in the graph. These properties are important
because computational power increase will make them accordingly eicient.

4.4 Core concepts of PRM-based methods for dynamic en-
vironments

The goal of this section is to introduce some core concepts of PRM-based planners,
which serve as foundation of the Receding Horizon Dynamic RoadMap (RH-DRM)
planner that is described at the end of the chapter.

First, graph search methods will be introduced (Section 4.4.1). They are a core tool
used by every PRM-based planners to ind a shortest path within the connectivity
graph. Then, some interesting approaches, based on the PRM planner and aiming at
planning in dynamic environments, will be presented (Section 4.4.2). The algorithms
associated to most of these tools and methods will be detailed to better understand
the contributions of the RH-DRM.

4.4.1 Graph search algorithms

PRM methods rely on a representation of the coniguration space connectivity, which
is conveniently synthesised into a graph structure. Graphs are a very important
tool of discrete mathematics. They conceptualise the notion of connections between
pairs of objects. These objects are indiferently called vertices, nodes or points, while
the connections between them are indiferently called edges, arcs, or lines. In the
PRM framework, the nodes are obstacle-free conigurations. The presence of an edge
between two nodes in the roadmap represents the fact that the linear path between
the two conigurations associated to these nodes is collision-free. Representing the
conigurational connectivity as a graph allows to use some well-known algorithms that
have been developed in the context of other graph theory problems. Graph theory
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problems are among these generic problems, whose solutions have been applied to
diferent ields with success. Our own problem classiies into route problems, and
is called the shortest path problem. The shortest path problem is the problem of
inding the sequence of connected nodes, starting and ending in two given nodes (the
query), that minimises the path cost, which is the sum of all the edges weight that
are traversed.

Breadth First Search method : Among the most famous methods used to solve
the shortest path problem, is the Breadth First Search (BFS) algorithm [129–131].
This method can be used in unweighted graphs, to ind the shortest path in terms of
the number of edges that are traversed. This method is however unable to take into
account the fact that one edge might be more costly than another.

Dijkstra method (uniform search) : A method that generalises BFS is Dijkstra’s
algorithm [132–134]. This algorithm resembles BFS in many points, but uses the
traversal cost of the edges instead of their number to expand outward. Dijkstra
becomes equivalent to BFS if all the edges weight are unitary. These methods are
relatively slow because they explore graphs uniformly from the seed node. To do so,
each explored node maintains a variable that represents the minimal cost ever found
for a path starting from the seed node and ending there. Additionally, each node
keeps the reference of its best parent node, i.e. the one that is one step back in the
same minimal cost path. The algorithm stops when the goal node is expanded. This
strategy means that when the shortest path to the actual destination is found, all the
shortest paths seeding from the starting node, and having a roughly equivalent cost,
no matter where they end, have also been computed. A lot of computational work is
done to explore solutions that are never going to be used.

A∗ method : A generalisation of the Dijkstra’s algorithm is the A∗ algorithm [135].
This method uses a very similar approach to Dijkstra’s, but stirs the exploration in
nodes that seem more likely to be part of the shortest path leading to the destination.
This method is guaranteed, like Dijkstra’s, to ind the shortest path in a weighted
graph. It is also guaranteed to do so at least as fast as Dijkstra’s, and generally
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operates much faster in large graphs. The fundamental diference, in the A∗, is the
addition of the heuristic variable, which is associated to each node of the graph. This
variable accounts for the optimistic estimated cost between each node and the goal
node, no matter if they are connected by a single edge of not. Thanks to this variable,
the exploration of the graph is biased towards the nodes that show the best potential
of being among the shortest path sequence. Setting heuristic variables to zero for each
node comes down to performing a Dijkstra’s algorithm. The pseudo-code associated
to the A∗ algorithm is presented in Algo. 1. In this version of the algorithm, each
node s owns three attributes :

s.g : The cost of the shortest path that was found so far, seeding at the initial node
and ending in s.

s.bp : The reference to the node that is the best parent of s (which is one step back
in the best path ending in s, and found so far).

s.h : The value of the heuristic variable for s, which is the optimistic estimation of
the cost from s to the goal node.
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input :
• G(N , E) // a graph (G) comprised of nodes (N) and edges (E)
• sStart // the reference to the starting node
• sEnd // the reference to the destination node

output: path // an ordered list of node references

1 Procedure AStar(G(N , E), sStart, sEnd)
2 forall s ∈ N do
3 s.g ←∞;
4 s.bp← ∅;
5 s.h← heuristicDistanceBetween(s, sEnd);
6 end
7 sStart.g ← 0;
8 open← ∅, closed← ∅;
9 add(sStart,open);

10 loop
11 s← pop(open);
12 if s = sEnd then break loop ;
13 else if s = ∅ then return ∅ ;
14 foreach n ∈ neighbours(s, E), n ̸∈ closed do
15 costToNThroughS ← s.g + cost(s, n, E);
16 if costToNThroughS < n.g then
17 n.g ← costToNThroughS;
18 n.bp← s ;
19 if n ̸∈ open then add(n,open) ;
20 end
21 end
22 remove(s,open),add(s,closed);
23 end
24 s← sEnd;
25 rpath← ∅, append(s, rpath);
26 while s ̸= sStart do
27 p← s.bp;
28 s← p;
29 append(s, rpath);
30 end
31 path← reverse(rpath);
32 return path;
33 end
34 Procedure pop(open)
35 s← argminc∈open(c.g + c.h) ;
36 return s;
37 end

Algorithm 1: A∗ algorithm.

Initialisation : The A∗ algorithm begins by initialising each node attributes con-
tained in graph G (lines 3 to 7). The g value of each node is set to ininity, ex-
cept for the initial node, for which g(sStart) = 0. This is explained by the fact
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that the shortest path going from sStart to sStart has no cost at all. Function
heuristicDistanceBetween (= hDB in Eq. (4.1) and Eq. (4.2)) computes an op-
timistic estimation of the distance between a node s and the destination node sEnd.
This heuristic variable must be positive, and must abide to the triangular inequality
:

∀(s, s′, s′′) ∈ N 3, hDB(s, s′′) ≤ hDB(s, s′) + hDB(s′, s′′). (4.1)

Additionally, to be admissible, this heuristic variable between two connected nodes
must be bellow or equal to the cost of the edge connecting them:

∀(s, s′) ∈ N 2 that are connected by an edge, hDB(s, s′) ≤ cost(s, s′, E) . (4.2)

Then, the algorithm initialises the promising nodes list open and stores the initial
node sStart within (line 9).

Exploration : Then, the algorithm enters an ininite loop where it explores the
graph. Within this loop, the algorithm selects a promising node and expands it.
These two steps are described thereafter.

Selection : Within the loop, the algorithm irst selects the most promising node from
open (pop call, line 11). pop function inds the node s contained in open for which the
sum s.g + s.h is smallest (line 35). An important property of this algorithm is that
when a node is selected, its g value is guaranteed to be as small as it can be, i.e. no
path exists from sStart to s that is shorter than the one that could be reconstructed
from the current heredity of s.

This sum adds up the cost of the shortest path going from sStart to s : s.g, and the
optimistic estimation of the cost necessary to link sEnd from s : s.h. Therefore, this
sum corresponds to an optimistic estimation of the cost of a path going from sStart
to sEnd through s.

Expansion : Then, the expansion of the promising node s is done. Each of the
neighbours of s, that has not yet been expanded (i.e. that is not in closed) is selected
in turn. Then the cost of the path going from sStart to n through s is computed (line
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15). If this path is the shortest that was ever found that linked sStart to n, then the
value n.g is updated to the correct one (line 17), and the best parent of n becomes
s (line 18). Eventually, n is added to open (line 19). The term ”expansion” is used
to name this fundamental step of the A∗ algorithm because all the nodes that are
connected to s (and that have never been in open) are added as candidates to open,
which ”expands” the search outwards from the seed.

Stopping conditions : The loop ends whenever pop returns nothing (line 13) or
when it selects sEnd as the most promising node (line 12). In the former case, this
means the open list is empty, and no other candidate exists to expand the search.
Therefore, no solution exists that links sStart to sEnd. In the latter case, the selection
of sEnd implies that the shortest path going from sStart to sEnd can be reconstructed
by performing a heredity search.

Path reconstruction : When the break condition is triggered because sEnd was
selected by the pop function, the path is ready to be reconstructed. The heredity of
best parents, starting from sEnd, corresponds to the shortest path going from sEnd
to sStart. Therefore, reversing its order returns the shortest path from sStart to sEnd.
This reconstruction step begins at line 24 and ends at line 31.

4.4.2 Some PRM-based planners for dynamic environments

Despite their undeniable advantages, the sampling-based motion planner that were
described in Section 4.3.6, were not designed speciically for dynamic environments.

The irst part of this section will detail the PRM algorithm. Some intermediary
conclusions will be driven to show the unsuitability of the original PRM versions
for planning in dynamic environments. Then, the Dynamic RoadMap (DRM) al-
gorithm will be described. The need for anticipation will then be stressed for, and an
adaptation of PRM using anticipated obstacle trajectories will be described.
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inputs :
• scGeom // The static scene geometry
• roGeom // The robot geometry
• nNodes // The number of nodes
• kNeighs // The number of connections sought from each node

output: A ”k-neighbours simpliied Probabilistic RoadMap (K-sPRM)” consisting in :

• G(N , E) // a graph G comprised of a node set N and edge set E

1 Procedure constructKsPRM(scGeom, roGeom, nNodes, kNeighs)
2 N ← ∅ ;
3 E ← ∅ ;
4 configs ← generateFreeConfigs(nNodes, scGeom, roGeom) ;
5 N ← createNodes(configs);
6 foreach c ∈ N do
7 cNeighs ← getKNearestNeighbours(c,N \ {c},kNeighs);
8 foreach n ∈ cNeighs, that has not yet been connected to c do
9 edgeCN ← createEdgeConnecting(c,n);

10 if isEdgeFree(edgeCN , scGeom, roGeom) then
11 E ← E ∪ {edgeCN} ;
12 end
13 end
14 end
15 G ← G(N , E) ;
16 return G ;
17 end

Algorithm 2: K-sPRM construction algorithm.
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4.4.2.1 The PRM algorithm

The simpliied version sPRM [136] of the PRM algorithm (which is itself described
in [121]) irst consists of a pre-processing phase during which a connectivity graph
is built. This pre-processing phase begins with an empty connectivity graph G(N =

∅, E = ∅). A batch of conigurations qsamp ∈ C is sampled. The conigurations
that lie within Cfree are added to the nodes set2 N . Then, for each node of N ,
connections to other nodes of N are attempted in order of increasing distance, until
as far as a user-deined ball radius. An alternative version of the algorithm suggests to
attempt connections to the k ∈ N

+∗ most neighbouring conigurations3. An attempt
of connection involves simulating the system travelling from one coniguration to
another. The system is simulated in all the conigurations of a linear interpolation
of the path and checked for obstacle-freedom. This connection and collision-freedom
checking step is ensured by the local planner of the algorithm. If the local planner
validates a path, the path reference is added to the edge set E . In the original
version of the algorithm [121], connections between nodes from the same connected
component are avoided, to avoid cyclicity and quicken the pre-processing phase. The
procedure used to construct the connectivity graph of a k-sPRM is detailled in Algo. 2
and illustrated in Fig. 4.4.2.

The most onerous pieces of the pre-processing phase are the collision checks that
are performed by the local planner before edge insertion. The goal of this step is
to check that no collision occurs while travelling from one coniguration to another.
It would be convenient to have access to the volume swept by the system during
its traversal. It is however very diicult and costly to compute it in a continuous
manner in the general case. Therefore, the typical approach is to interpolate the
path and test the collisions in the interpolated conigurations until a collision is de-
tected or all conigurations have been checked. The interpolation is made so that any

2To check that a coniguration is within Cfree, the system is simulated within its environment,
in the posture corresponding to the coniguration. If no collision or auto-collision is detected in the
coniguration, the test is successful and the coniguration is added to the node set N .

3This version of the algorithm, called the k-sPRM, is the one presented in this thesis.
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This lasts until the length of the pieces is suiciently small to validate the path or
a collision is found. The reason why this method works better than the incremental
approach is that middle positions are the ones that have the highest probabilistic
chance of not being collision-free [138], being as far as possible and on the way of two
collision-free conigurations.

The context of dynamic environments brings new challenges. The connectivity
graph that is constructed in the pre-processing phase is just suited to a single work-
space topology. PRM are suited for planning multiple queries in the same environ-
ment. The pre-processing phase of the PRM algorithm is so costly that, unless the
changes occur at a very slow pace, reconstructing the connectivity graph every time
the environment changes is not an option. This would actually be utterly against
the PRM philosophy, which consists of eiciently inding paths using a minimum-
cost path search method on an established graph. Such a method would in fact
be an unnecessarily expensive imitation of a RRT or RRG planner. A suitable, and
philosophically consistent adaptation of the PRM method, for dynamic environments,
should provide a way for the system to avoid dynamic obstacles without requiring
the repeated use of the onerous local planner.

PRM-based methods do not require a representation of the obstacle coniguration
space Cobs. This is what makes them faster and much easier to generalise to high-
dimensional problems than exact roadmaps methods (see Section 4.3.2). No explicit
representation of Cobs is done or maintained within the PRM framework. A major
disadvantage of the original PRM approaches with regards to dynamic environments
is that they base their research on the sole connectivity of the coniguration free
space Cfree, while the dynamic obstacles geometry is naturally described within the
workspaceW . In the absence of a generic and light mapping of O ⊂ W into forbidden
coniguration space Cobs, the consequences of an obstacle displacement occurring in
W on the topology of Cfree is not trivial at all.
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Figure 4.4.3: Dynamic roadmaps for a dual arm robot. Credit to Kallman and Mataric’ [139]
for the illustration.

4.4.2.2 The dynamic roadmaps approach

This section presents an adaptation of the PRM algorithm, called Dynamic RoadMaps
(DRM) [139, 140]. This method was also successfully implemented in [141] with a 7-
DOFs serial manipulator. The approach is based on the creation of a roadmap and on
the creation of a discrete mapping of O ⊂ W onto C. This mapping is materialised by
an occupancy grid covering the entire workspace. This grid is composed of voxels when
W is 3-dimensional and pixels when W is 2-dimensional4. This mapping is created
in parallel of the roadmap construction. It consists of associating the reference of
each sampled coniguration (and of each collision-free edge) to each voxel that is -at
least- partially occupied by the system when simulated in (or along) them. A discrete
description of the system workspace occupancy is, in this manner, built with regards
to its coniguration space position.

This mapping is then used during the online phase to discard nodes and edges of
the connectivity graph. First, the dynamic obstacles voxels occupancy is determined.

4For the sake of brevity, we will talk about voxels, but the same principles apply to 2D workspaces,
with pixels.
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inputs :
• scGeom // The static scene geometry
• roGeom // The robot geometry
• occGrid // An occupancy grid
• nNodes // The number of nodes
• kNeighs // The number of connexions sought from each node

output: A ”Dynamic RoadMap” consisting in :

• G(N , E) // a graph (G ) comprised of nodes (N) and edges (E)
• occNodes // mapping between N and occGrid
• occEdges // mapping between E and occGrid

1 Procedure contructDRM(scGeom, roGeom, occGrid, nNodes, kNeighs)
2 N ← ∅ ;
3 E ← ∅ ;
4 occNodes ← ∅ ;
5 occEdges ← ∅ ;
6 configs ← generateFreeConfigs(nNodes, scGeom, roGeom) ;
7 N ← createNodes(configs);
8 foreach c ∈ N do
9 occupiedP ixels ← pixelsOccupiedBy(c, roGeom, occGrid) ;

10 linkNodeAndPixels(occNodes,c, occupiedP ixels) ;
11 cNeighs ← getKNearestNeighbours(c,N \ {c},kNeighs);
12 foreach n ∈ cNeighs, that has not yet been connected to c do
13 edgeCN ← createEdgeConnecting(c,n);
14 [isEdgeFree, sweptP ixels]← sweepEdge(edgeCN , scGeom, roGeom,

occGrid);
15 if isEdgeFree then
16 E ← E ∪ {edgeCN} ;
17 linkEdgeAndPixels(occEdges,edgeCN, sweptP ixels) ;
18 end
19 end
20 end
21 G ← G(N , E) ;
22 return [G, occNodes, occEdges] ;
23 end

Algorithm 3: Dynamic roadmap (DRM) construction. Changes with regards to
the PRM construction (Algo. 2) are highlighted in deep blue.
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very light. The strategy of the DRM is therefore a very interesting one. It allows to
take into account the dynamic obstacles in the planning phase without adding much
computational load. It retains all the advantages of the PRM approach, and allows
more.

A major limitation of the DRM framework, however, is that the planned path only
takes into account the occupation of the obstacles in a single instant, and completely
ignores their undergoing motion. This comes down to having paths computed as if the
dynamic obstacles were remaining in their current position. The future conigurations
of the system are therefore planned without considering the future space occupancy
of the obstacles.

Just like many other sampling-based methods, the DRM approach is global with
regards to space. It has the capacity to plan paths globally (in a spatial manner of
speaking), instead of only reacting to what lies in the direct vicinity. However, this
framework plans locally in a temporal way of seeing things, as it only looks at the
current - i.e. local with regards to time - occupancy.

This local-time assumption is somewhat correct if the agent’s velocity is very high
compared to the velocity of the obstacles. However, in our case, the dynamic obstacles
are human beings or counterpart systems. Therefore, the velocities involved are
relatively close to one another, and the obstacles can’t be considered as if they were
remaining in the same place.

Fig. 4.4.5 illustrates situations were anticipation is needed but not used to plan
motions. These examples may suggest what using dynamic roadmaps in an industrial
environment could lead to. Deadlock occurrences are a recurring problem that could
easily arise if motions were planned without predicting obstacle motions. Dangerous
situations could also occur, leading to collisions, breakage and injuries.

Generally speaking, anticipation becomes compulsory in motion planning problems
where the obstacles motions have a non-negligible velocity compared to the system’s
one. To a certain extent, motion prediction even allows to plan paths in environments
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where the obstacles have a higher velocity than the agent itself. Many examples show
that humans use a notion of anticipation to plan their motions, like in Fig. 4.4.6.

4.4.2.3 A PRM-based method that uses anticipation

Another interesting approach, which is based on the PRM framework, was presented
in [143]. The originality of this approach with regards to our problem lies in the
notion of obstacle motions anticipation. The problem solved in this paper is the
one of planning a collision-free path for a mobile robot, within a partially known
environment where the trajectories of the dynamic obstacles are predicted or guessed.

The algorithm begins, just like a classic PRM, with the creation of a roadmap
within the known static environment. The objective in this initial phase is to build
a graph that is extensive enough to provide low-cost paths (with regard to time
traversal). Graph cyclicity is allowed to provide with many alternative routes when
obstacles obstruct portions of the graph.

Figure 4.4.7: Roadmap and dynamic obstacles positions and predicted trajectories. Illustra-
tion credit to Van den Berg et al. in [143].

After that, the authors determine the states of the graph for a sampling of linearly
distributed dates (separated by a duration δt), based on the prediction of the tra-
jectories of the obstacles. All these graphs are stacked up along what can be seen as
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the time axis, and each node is, obstacle-freedom allowing, linked to its predecessor
and successor with regards to time. To establish the states of the graphs, all nodes
and edges situated at a given distance of an obstacle at a given instant are discarded,
which comes down to simplifying the shapes of the agent and obstacles to circles
for the online planning. After building this graph, an anytime graph search called
Anytime D∗ (AD∗) [144] is performed to ind a path to the destination. This graph
search approach is used because the graph built is very big and performing an A∗

search on it would take too much time to be used online. Therefore, the idea here
is to reuse the planned path of the previous search and adapt it to the new graph
topology, which is said to be much faster. This approach allows the agent to use each
node or edge several times, and to wait in a node if necessary. These behaviours are
essential when time is involved.

In this approach, the stacking of graphs on a time axis is very interesting, because
it allows anticipation to be part of the scheme. A drawback of this stacking is that no
optimal solution can be found unless δt is ininitely small, which leads to an ininitely
big graph, whose size is directly correlated to the computational load. Additionally,
nodes and edges discarding uses a very basic strategy, which doesn’t allow to take
into account complex geometries for obstacles or agent, let alone be used for serial
robots.

4.5 Receding horizon dynamic roadmaps (RH-DRM)

4.5.1 Introduction

The novel motion planning strategy described in this chapter is called the Receding
Horizon Dynamic RoadMaps (RH-DRM) method. Anticipation is a key feature for a
safe, nimble and eicient trajectory.

Using DRM to predict graph topology : RH-DRM extends the concept of
dynamic roadmaps (DRM) to an anticipated occupancy of space over a receding time

137



horizon5. The core advantages of DRM are kept. The method is still generic to serial
and mobile systems. It still creates and uses a discrete mapping between obstacle
and coniguration space, remains eicient and abides to simple and sensible rules.

The pre-processing phase of the RH-DRM is exactly the same as the one of the
DRM, which is detailed in Section 4.4.2.2. The roadmap is constructed, nodes and
edges are tested with a local planner, and associated to voxels of an occupancy grid.

Given an online prediction of the moving obstacles trajectories, the prediction of
the voxels occupancy is determined. From this anticipated occupancy, the topology
of the connectivity graph is predicted through the mapping between occupancy grid
and graph that was created during the pre-processing phase.

Objective : An optimal journey is to be found within this changing graph, whose
nodes and edges may be unavailable for periods of time, and for which edges traversal
is not instantaneous.

Graph representation : The novel strategy described in this chapter is based on
a type of graph that was named step-in interval graph. A step-in interval graph
intuitively and eiciently represent changes in the topology of a static graph while
accounting for non instantaneous edges traversal. Additionally, an adaptation of the
A∗ algorithm is presented to solve the earliest arrival journey problem within this type
of graph, for non instantaneous edge traversals. The introduction to these graphs is
made in Section 4.5.2.

Optimal journeys : The involvement of time and changes within the graph com-
pletely changes the paradigm. Three solutions could be sought: the shortest journey,
the fastest journey and the foremost journey [145]. The shortest journey solution
is the journey within this evolving graph for which the travelled spatial length is
minimised, regardless of its duration. The fastest journey instead minimises the time
needed to travel from one node to another, regardless of the date where the agent

5As frequently as possible, the planning is performed according to the space occupancy prediction
which is given over a ixed-time horizon.
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begins to move and of the overall distance. Lastly, The foremost journey solution
gives the journey that allows to arrive as early as possible at the destination.

Real life examples illustrating these problems are numerous. For instance, an eld-
erly person might want to reach a destination across a moving crowd while minimising
the number of steps taken, regardless of the time needed to journey, thus needing a
shortest journey solution. A pedestrian might want to minimise the time of a journey
if rain pours over, by choosing the optimal moment to start their journey, thus need-
ing a fastest journey solution. Lastly, someone who is in a great hurry will look for
the journey that enables them as soon as possible, thus needing the foremost journey.

For our problem, we will consider the foremost journey, because we want our system
to arrive as early as possible to its destination and have no choice in the starting time,
but to begin instantly. The foremost journey may admit stops, multiple runs in a
single node, multiple traversals of a single edge, which cannot be computed using
the standard version of A∗ described in Algo. 1. The computation of the foremost
journey will be described in Section 4.5.3.

4.5.2 An adaptation of interval graphs

In our problem, a predicted partial occupation of a pixel/voxel by a moving obstacle
will translate into the temporary unavailability of all nodes and edges that are as-
sociated to this pixel/voxel. To account for the changes in the topology of graphs,
the ield of temporal networks [146] was created. A type of temporal network called
interval graphs can be used to represent a graph whose nodes and edges may be
unavailable for periods of time. Interval graphs are used in operational research and
scheduling theory for resource allocation problems. Such an interval graph is depicted
in Fig. 4.5.1 a).

Another diiculty in our problem is the fact that edges traversals are not instant-
aneous. To ensure that the edges availability will be sustained throughout their entire
traversal, the intervals associated to the availability of the edges can be shortened
by the time needed to traverse them. This preserves the intervals of time where the
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system can begin to use the edges. We name such an interval graph a step-in inter-
val graph (see Fig. 4.5.1 b)), because the intervals related to the edges represent the
moments when the agent is allowed to begin edges traversal (i.e. when edges can be
”stepped in”). In our framework, the weight associated to an edge correspond to the
estimated time required to traverse it. If an availability interval is shorter than the
traversal duration, then this interval must be discarded as an impracticable one for
this edge (on Fig. 4.5.1 b), e13 second period of availability is discarded).

The ordered sequence of all intervals beginnings and ends D = {t0, . . . , tN0
}, that

can be seen in Fig. 4.5.1 c), gives a very valuable piece of information. Each interval
comprised between a pair of successive dates [ti, ti+1[, (with i ∈ J0 ..N0 − 1K), corres-
ponds to a period where the graph step-in connectivity is constant. This means that
during each of these intervals, the graph connectivity doesn’t change. In each of the
dates of D, the graph’s topology changes.

The overall step-in connectivity can be mathematically described by a set G(N , E ,D).
In G, N is the set of nodes, which are each a logical (N0)-tuple associated to a con-
iguration. Each of the components of the (N0)-tuple determines the availability of
a node between each interval deined by a pair of successive dates of D. E is the set
of edges, which are each a (N0 + 3)-tuple. N0 elements correspond to the availability
of the edge between each interval deined by a pair of successive dates of D. One
element corresponds to the weight of the edge, and two elements correspond to the
node references that the edge connects.

This temporal network can be seen as the succession of N0 static graphs, that
remain constant within a time interval [ti, ti+1[ (with i ∈ J0 ..N0 − 1K ). Each of
these graphs can be represented by a step-in adjacency matrix A[ti,ti+1[. This matrix
describes the step-in connectivity of each node during the interval [ti, ti+1[ to which the
graph is associated. This matrix is sometimes referred to as the graphlet [147, 148],
or snapshot representation [149]. We will call it the interval-graphlet to be more
speciic. In a network comprised of N nodes, the non diagonal elements a[ti,ti+1[

k,l : k, l ∈

J1 ..NK2 & k ̸= l of interval-graphlet A[ti,ti+1[, correspond to the step-in connectivity

141



of an edge connecting node k to node l. The diagonal terms a
[ti,ti+1[
k,k : k ∈ J1 ..NK

determine the availability of a node within the time interval [ti, ti+1[.

4.5.3 Computing the foremost journey

The foremost journey within these types of interval graphs can be computed using
Algo. 4. This algorithm uses a similar strategy to A*’s, and adapts it to the step-in
interval type graphs, which was presented in the previous section. Changes from
Algo. 1 are displayed in deep blue. A special efort was made to keep the version of
the algorithm as similar as possible from the original A∗ algorithm.

The main diference is the type of nodes that is maintained. Instead of exploring
nodes directly, the algorithm explores the temporal versions of these nodes. They
will be referred to as node temporal instances (NTI). For each interval of D, one
temporal instance of each node is created (line 5) and maintained. A NTI is only
valid for its associated period of time [ti, ti+1[. Its step-in connectivity can in practice
be determined thanks to the interval-graphlet A[ti,ti+1[ and is performed by function
stepInNeighbours (line 14). The temporal version st of a node s can be reached
thanks to the function getTemporalInstance(s,t), where s is the node reference,
and t the time for which t ∈ [ti, ti+1[, [ti, ti+1[ being the validity interval of st. The
implication of time within the scheme operates some fundamental changes (lines 16-
25), because a NTI can be left from the moment it is reached until its time interval
ends. Therefore, the expansion of one NTI st is done towards each NTI of the step-in
neighbours of st that can be reached until the last moment of validity of st.
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input :
• G(N , E ,D) // a step-in interval graph (G) comprised of nodes (N), of

edges (E) and dates set (D).
• sStart // the reference to the starting node
• sEnd // the reference to the destination node

output: path // an ordered list of nodes associated to a timing

1 Procedure AStarIntervalGraph(G(N , E ,D), sStart, sEnd)
2 forall s ∈ N do
3 heur ← heuristicDistanceBetween(s, sEnd);
4 forall [ti, ti+1[∈ D do
5 createTemporalInstance(s,[ti, ti+1[,heur,E);
6 end
7 end
8 open← ∅, closed← ∅;
9 st ← getTemporalInstance(sStart, 0), st.g ← 0, add(st,open);

10 loop
11 st ← pop(open);
12 if st.id = sEnd then break loop;
13 else if s = ∅ then return ∅;
14 foreach n ∈ stepInNeighboursOf(st,E) do
15 costEdge← cost(st.id, n, E);
16 firstArrival← st.g + costEdge, lastArrival← st.u+ costEdge ;
17 t← firstArrival;
18 while t < lastArrival do
19 nt ← getTemporalInstance(n, t) ;
20 if nt ̸∈ closed, t < nt.g then
21 nt.g ← t;
22 nt.bp← st;
23 if nt ̸∈ open then add(nt,open);
24 end
25 t← nt.u;
26 end
27 end
28 if canStayIn(st) then expandToNextTemporalInstance(st);
29 remove(st,open), add(st,closed);
30 end
31 rpath← ∅, append(st, rpath);
32 while st.id ̸= sStart do
33 pt ← st.bp;
34 st ← pt;
35 append(st, rpath);
36 end
37 path← reverse(rpath) , return path ;
38 end

Algorithm 4: Modiied A∗ algorithm for step-in interval graphs with non-
instantaneous edge traversal duration. Changes from Algo. 1 are displayed in deep
blue.
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1 Procedure createTemporalInstance(s,[ti, ti+1[,heur,E)
2 st ← ∅, st.id← s, st.l← ti, st.u← ti+1, st.h← heur, st.g ←∞, st.bp← ∅;
3 linkSandSt(s,st);
4 end
5 Procedure pop(open)
6 st ← argminct∈open(ct.g + ct.h);
7 return st;
8 end
9 Procedure expandToNextTemporalInstance(st)

10 if st.u ̸=∞ then
11 ct ← getTemporalInstance(st.id,ct.l);
12 ct.g ← ct.l;
13 ct.bp← st;
14 if ct /∈ open then add(ct,open);
15 end
16 end

Algorithm 5: Implementation of createTemporalInstance, pop and
expandToNextTemporalInstance procedures, which are used in the A∗ algorithm
for step-in interval graphs.
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A NTI st owns several attributes:

st.id : The node reference s which is associated to the node temporal instance st.

st.l : The lower boundary (ti) of the interval which is associated to st.

st.u : The upper boundary (ti+1) of the interval which is associated to st.

st.g : The cost of the foremost journey (i.e. the duration of the best journey) that
was found so far, seeding at the initial node at time 0 and ending in st.

st.bp : The reference to the NTI that is the best parent of st (which is one step back
in the best journey ending in st, and found so far).

st.h : The value of the heuristic variable for st, which is the optimistic estimated
duration of the journey from st.id to sEnd.

Initialisation : The algorithm starts by initialising the NTI of each node of N for
each interval of D. The g value of each instance is set to ∞, except for the temporal
instance of sStart at time t = 0, for which g = 0. The heuristic distance to the
destination is the same for each temporal instance of a node, and is thus computed
once at line 3. Then, the starting node temporal instance is added to the promising
list open.

Exploration : Then, the algorithm enters an ininite loop where it explores the
graph. Within this loop, the algorithm selects the most promising NTI, and expands
it towards all its step-in neighbours. These two steps are described thereafter.

Selection : Within the loop, the algorithm irst selects the most promising NTI
from open (pop call at line 11). pop function inds the NTI st contained in open

for which the sum st.g + st.h is smallest (line 6). This sum adds up the duration of
the shortest journey from the initial temporal instance of sStart to the current NTI
(st.g) with the optimistic estimation of the duration necessary to link st.id to sEnd

(st.h). Therefore, this sum corresponds to an optimistic estimation of the duration
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of a journey going from sStart at time t = 0 to sEnd through st.id.

Expansion : Then, each step-in neighbour of st, is identiied at line 14. The date of
the earliest arrival (firstArrival) and latest arrival (lastArrival) to this neighbour,
taking a journey from sStart at time t = 0 to there, through st, is computed (line
16). Then, all the temporal instances of this neighbour, which are valid between
firstArrival and lastArrival, are added to open if they weren’t in it yet. Their g

value and best parent bp are updated if passing through st to reach them provides an
earliest arrival journey (line 21-22).

After expanding to all step-in neighbours, the temporal instance of st.id, corres-
ponding to the interval following st’s is being expanded to if the agent is allowed to
stay there (line 28). If a NTI - which is already in open - is being expanded to from its
preceding temporal instance, then the best parentage goes in priority to the preced-
ing temporal instance. This prioritisation has an efect on where the agent chooses
to stop in priority when two equivalently optimal journeys have the same geometric
path description but diferent schedules. Doing so forces the agent to advance as far
as possible in its geometric path before choosing to stop.

Stopping condition : The loop ends whenever pop returns nothing (line 12) or
when it selects a temporal instance of sEnd as the most promising NTI (line 13). In
the former case, this means the open list is empty, and no other candidate exists to
expand the search. Therefore, no solution exits that links sStart to sEnd. In the
latter case, the selection of an instance of sEnd implies that the foremost journey
going from sStart to sEnd can be reconstructed by performing a heredity search.

Path reconstruction : When the break condition of line 13 is triggered, the path
is ready to be reconstructed (lines 31-37). The temporal instance of sEnd, which was
stored within st at the last call of pop is added to the ordered set rpath. The heredity
of best parents, starting from sEnd, eventually leads to the initial instance of sStart.
Therefore, reversing the order of rpath (line 37) returns the foremost path between
sStart and sEnd. The duration of the stops can easily be computed by comparing
the g values of two successive nodes with the cost of the edge linking them.
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4.5.4 An illustrative example

To illustrate the inner-workings of the algorithm, let us consider the motion planning
problem displayed at the top of Fig. 4.5.2. In this problem, the agent has to travel
from the left extremity of a corridor to the right extremity (i.e. from n1 to n4).
However, a moving obstacle is preventing the agent from performing a trivial motion
to the destination by blocking the way and advancing towards the former. The spatial
occupation of the moving obstacle is predicted over a 10 seconds time horizon, and
displayed using a time-colour scale (from deep blue at t0 = 0.0s to white at t5 = 10s).
Each node owns 2 attributes : its heuristic value (which is contained in h), and its
availability interval(s)). Each edge owns 2 attributes : its weight (which is contained
in wij), and its step-in availability6. The step-in availability of an edge is computed by
shortening its availability intervals with its weight, as was explained in Section 4.5.2.
The knowledge of the availability of each node of the step-in availability of each edge
allows to draw (at the bottom of Fig. 4.5.2) the availability and step-in availability
intervals for all nodes and edges, as in Fig. 4.5.1 b).

For each period Pi = [ti, ti+1[ where the step-in connectivity of the graph is con-
stant, an interval-graphlet A[ti,ti+1[ can be computed. All the interval-graphlets of
our problem are displayed on Fig. 4.5.3. On the same igure appears a modiied-slice-
graph representation of our step-in interval graph from t = t0 to t = t6.

On this slice graph representation, the NTI objects, that were extensively used to
explain Algo. 4, are represented with the coloured dots . All temporal instances
of a node lie at the same vertical level (horizontal alignment). Each period Pi (during
which the step-in connectivity remains the same) is separated with vertical dashed
lines to its previous and/or following counterpart. For the sake of brevity and clarity,
the temporal instance of a node nj which is active during the period Pi = [ti, ti+1[

6To simplify, in this example, an edge becomes unavailable if it is partially covered by the obstacle
of if one on its extremal nodes is partially covered. In the RH-DRM framework, the occupancy
grid mapping is to be used to determine the availability of nodes and edges, as was described in
Section 4.4.2.2
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Figure 4.5.3: Interval-graphlets and modiied slice graph representation of a step-in interval
graph. Note that although the diagonal terms of A[t5,t6[ are 1, no horizontal connection is
drawn on the right of the corresponding NTIs (that is because t6 =∞).

will be denoted ni
j. The solid curves linking vertically-aligned NTIs (e.g. linking ni

j

to ni
k) indicate which edges of the graph can be stepped in (i.e. if the edges can begin

to be traversed) during the corresponding period. A horizontal solid line between
two time-consecutive node temporal instances ni

j and ni+1
j denotes the possibility to

stay within the coniguration associated to node nj during [ti, ti+2[. The absence of
horizontal segment on the right of a NTI indicates that the agent cannot stay after
its corresponding time-interval ends (i.e. it can still remain there during [ti, ti+1[).

For example, the conigurations associated to all nodes may be stayed in during
[t0, t2[ (horizontal lines). From n0

1, the agent could start the traversal of e13 at any
time during [t0, t1[ (vertical curve from the n0

1 to n0
3). The same applies to n0

2 with the
traversal of e23. From n0

3 the agent could start the traversal of e13 or e23. However,
edge e34 could not be stepped in during that period, because it is occupied by the
obstacle.

Fifteen clones of the slice graph of Fig. 4.5.3 are displayed on Fig. 4.5.4 and Fig. 4.5.5
to illustrate the incremental exploration performed by Algo. 4. The ifteen algorithm
steps which are represented here begin at line 9 and end when the break condition of
line 12 is triggered, meaning that the foremost journey was found.

On these igures, the NTIs are the same as the ones of Fig. 4.5.3, but are represented

149



2.50

2.51

7.65.1

2.51 6.65.1 6.85.310 10

10

6.85.3

2.50

2.51

7.65.1

30 3.71.8

6.65.1 6.85.330

75.1

7.85.3

7.25.330

10 30

30

10

2.50

2.51

7.65.1

30 3.71.8

6.65.1 6.85.330

75.1

7.85.3

7.25.320

10 30

30

10

2.50

2.51

7.65.1

30 3.71.8

6.65.1 6.85.330

75.1

7.85.3

7.25.320

10 30

30

31

2.50

2.51

7.65.1

30 3.71.8

6.65.1 6.85.330

75.1

7.85.3

7.25.320

10 30

21

31

2.50

2.51

7.65.1

30 3.71.8

6.65.1 6.85.330

75.1

7.85.3

7.25.320

10 30

21

31 7.66.132

t 3
=

6
.1
s

t 0
=

0
.0
s

t 4
=

7
.7
s

t 5
=

1
0
s

t 6
=

∞

t 1
=

5
.1
s

t 2
=

5
.3
s

P0 P1 P3P2 P4 P5

2.50

1

2

3

4

5

6

7

10

10

10

10

10

10

Figure 4.5.4: RH-DRM algorithm explanations (step 1-7).
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Figure 4.5.5: RH-DRM algorithm explanations (step 8-15).
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with black dots . The red and blue frames 7.65.1 contain the g and the g+h values
of the NTI situated on the left. If a NTI is circled in green , it belongs to the open
list. An orange circling indicates which NTI was selected by pop function and is
currently being expanded. A red cross over a NTI indicates that it belongs to the
closed list. The circled numbers on the left of the NTIs 10 point to the NTI which
is the best parent found so far. The irst digit corresponds to the reference (i.e. the
id) of the best parent, and the subscript denotes the interval reference (Pi = [ti, ti+1[

is the ith interval or period). e.g. 10 points to the NTI of the irst node n1 during
the irst period P0. During expansion steps (step 2 to 15), the dashed arrows
indicate the neighbouring NTIs that the expansion of the popped NTI reaches.

• Step 1: Insertion of n0
1 which is reached at time t = 0 into open.

• Step 2: Expansion of the only NTI contained in open : n0
1. The step-in con-

nectivity of this NTI indicates that it can remain in the same place, or travel
towards the 3rd node. The NTI is irst expanded towards n3 instances that can
be reached by starting the journey in n1 between t = t0 = 0 and t = t1−ϵ < 5.1,
given that the trip duration lasts 1 second. The irst arrival in n3 will occur at
time t = g +w13 = 1s while there won’t be any arrival from t = u+w13 = 6.1s

onwards. Therefore, the temporal instances n0
3, n1

3 and n2
3 are updated and ad-

ded to open. n0
1 is then expanded towards its time-successor n1

1 (dashed arrow
going to the right). n1

1 is added to the open list with g = t1 = 5.1s.

• Step 3: The most promising node which is popped is n0
3, because its g + h

score is the smallest of the NTIs contained in the open list. The NTI is step-in-
connected to n1, n2 and to its successor. The relevant expansions and updates
are performed.

• Step 4-13: The same pattern is executed with little advances on the journey.
This is explained by the fact that the agent needs to wait for the obstacle to
free n3 up, in order to be able to move again.
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• Step 14: Once the obstacle has left n3 (t = 7.7s), the agent can safely travel
from n2 to n3. The expansion of the NTI of n2 for the period P4 = [7.7, 10[ is
performed. n3 can be reached as early as t = 8.5s.

• Step 15: The expansion of n4
3 is performed, and allows to inally reach n4 at

t = 10s. This NTI will be popped in the next loop because it is contained in
open and scores the smallest value of g + h. The the stop condition will be
triggered.

Given the problem inputs, the foremost journey can be determined by cascading
down the parentage of the irst NTI associated to n4 which is popped : n5

4. n4 is
reached at t = 10s, and its best parent is n4

3. Arriving in n4 at t = 10s implies leaving
n3 at t = 10 − w23 = 10 − 1.5 = 8.5s. The best parent of n4

3 is n4
2. Therefore, the

agent should leave n2 at t = 8.5−w23 = 8.5− 0.8 = 7.7. The best parent of n4
2 is n3

2,
whose best parent is n2

2, etc.. until n0
2. Therefore, the agent will remain in n2 from

t = 1.8 to t = 7.7s. The best parent of n0
2 is n0

3. The agent should therefore leave n3

at t = 1.8− w23 = 1.8− 0.8 = 1s. The best parent of n0
3 is n0

1, which must be left at
t = 1− w13 = 1− 1 = 0s. The journey can therefore be synthesised in the following
steps :

1. Leave n1 at t = 0s to arrive in n3 at t = 1s.

2. Leave n3 at t = 1s to arrive in n2 at t = 1.8s.

3. Stay in n2 until t = 7.7s.

4. Leave n2 at t = 7.7s to arrive in n3 at t = 8.5s.

5. Leave n3 at t = 8.5s to arrive in n4 at t = 10s.

4.6 Intermediary Conclusion

This chapter introduced the Receding Horizon Dynamic RoadMaps (RH-DRM), a
motion planning strategy that combines the framework of dynamic roadmaps with a
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novel temporal network search method. Collision-free trajectories are found eiciently
within environments that may move faster than the agent itself. The computed tra-
jectories adapt to the environment’s motions, and thus the impact and intrusiveness
of the solution is small on the environment’s low. The strategy is applicable for mo-
bile systems and serial systems, and handles even complex geometries online, because
the costly collision computation part is performed oline. The dynamic roadmap
framework is used to discreetly map the obstacle space into the coniguration space
of the agent. Doing so allows determining eiciently the future topology of the con-
nectivity graph (the roadmap), by translating an anticipation of the moving obstacles
trajectories. The foremost journey, i.e. the earliest arrival journey, is found within
this changing graph thanks to a novel temporal network search algorithm inspired for
the A∗ algorithm.

To be implemented on real systems, the strategy requires the use of an eicient
predictor of the moving obstacles trajectories. If the other obstacles are robots,
and assuming a hierarchical organisation is chosen, where some robots have a path
planning priority over others, the anticipation of these top priority robot trajectories
may be shared, allowing for an exact prediction of space occupancy. If the moving
obstacles are humans, an eicient and reliable predictor of their trajectories must be
put in place. Predicting human motions is an active research domain [150–159]. To
generate socially acceptable, yet eicient robot motions, the ield of human-aware
navigation [160, 161] studies and predicts the joint inluence of humans and robots
over the motions they produce. In one of this ield-related approaches [162], the robot
trajectory generation takes the form of an optimisation problem over time elastic
bands [163, 164] which account for the robot trajectory and the humans’. Doing so,
the joint inluence of the human and robot trajectories are predicted by stretching
their respective elastic bands until they all abide by constraints on safety and social
rules. By jointly predicting (planning) the trajectory that a moving human will take
in the presence of a robot, and the one of the robot, deadlocks can be avoided very
elegantly.

The optimality of the prediction depends directly on the quality of the prediction
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foremost journey of the agent if the latter is not able to reach it before they oc-
cur. Therefore, the variations of obstacle-freedom of all nodes and edges only have
to be taken into account from the moment these elements could possibly be reached
by the agent. In particular, all nodes and edges that are situated out of the time-
horizon-reach of the agent can be completely ignored during the temporal network
construction. The voxels that are only concerned by these elements don’t even need
to be checked for collision with the predicted trajectories of the obstacles. The im-
plications of this are two fold.

• The collision checks computational load can be greatly reduced, by monitoring
only the part of the environment that could be concerned by collisions between
the agent and the moving obstacles.

• The temporal network size (and therefore the computational load of the search
within it) can be reduced dramatically.

To determine the nodes and edges that are concerned by the agent during the time
horizon, a modiied Dijkstra algorithm can be used on the original static graph (i.e.
the unchanged graph, with all its nodes and edges). This version of the algorithm can
be seen on Algo. 6. The principle of the algorithm is to radiate outwards from the
node which is currently occupied by the agent (sStart), until the cost of the shortest
path to a node exceeds the cost thorizon. A list (closed) containing the references to
all the nodes that where expanded during the contagion phase is then returned by
the algorithm.

A simulation showing the RH-DRM algorithm in action can be seen on Fig. 4.6.2.
On this igure, the agent (blue shape) is to move within a closed space in which four
obstacles (red shapes) are moving. The planned trajectory (position and orientation
of the agent in the plane) is depicted with a red path interspersed by red arrows,
showing the orientation of the agent. The previous state of the agent, of each obstacle
and of the planned trajectory is overlapped in lighter colours onto each step state. In
this simulation, the anticipation of the obstacles trajectories is performed thanks to
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a linear extrapolation based on the current coniguration of the obstacle and the one
from the previous state. The obstacles and agent have similar velocity capabilities.
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input :
• G(N , E) // a graph (G) comprised of nodes (N) and edges (E)
• sStart // The reference to the starting node
• thorizon // The duration of the prediction horizon

output: closed // A list of nodes that can be reached during thorizon

1 Procedure ModifiedDijkstra(G(N , E), sStart, thorizon)
2 forall s ∈ N do s.g ←∞ ;
3 sStart.g ← 0 ;
4 open← ∅, closed← ∅ ;
5 add(sStart,open) ;
6 loop
7 s← pop(open) ;
8 if g.s > thorizon then break loop ;
9 else if s = ∅ then return ∅ ;

10 foreach n ∈ neighbours(s, E), n ̸∈ closed do
11 costToNThroughS ← s.g + cost(s, n, E) ;
12 if costToNThroughS < n.g then
13 n.g ← costToNThroughS ;
14 if n ̸∈ open then add(n,open) ;
15 end
16 end
17 add(s,closed)
18 end
19 return closed;
20 end
21 Procedure pop(open)
22 s← argminc∈open(c.g);
23 remove(s,open);
24 return s;
25 end

Algorithm 6: Modiied Dijkstra’s algorithm aiming at collecting all nodes that can
be reached by the agent within a prediction horizon thorizon.
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Conclusions

Whilst traditional robotised cells can almost always be completely deined and planned
before they are ever constructed or used, the unstructured and dynamic environment
that is a human populated shop-loor makes the process of thoroughly listing every
possible situation tedious or even impossible. The changing nature of the environ-
ment prevents the use of basic logical rules and requires advanced features. Having
humans in the vicinity places versatility and adaptability on center stage. Autonom-
ous solutions, that are able to accommodate with a changing environment, have to
be developed in this context.

One of the irst responsibility of these autonomous systems is to choose suitable
postures for the tasks that are ordered to them. The use of redundant systems is
justiied here because the lexibility redundancy ofers on reachability is very ad-
vantageous. The alternative options ofered by redundancy on the postures used are
essential in a cluttered and changing environment. However, from a computational
and mathematical perspective, redundancy also complicates the inverse modelling
step needed to determine these postures. This complication is the irst industrial
lock that was addressed in this report. A focus was made on positional tasks, i.e.
tasks requiring the end-efector to be positioned in a static location, because they
constitute a large part of the industrial tasks ordered to robots. A characterisation of
positional redundancy was made through a parameterisation of the self-displacement
space of redundant systems. In the examples derived in the thesis, a position in this
redundancy space could be speciied along with a positional task to provide a unique,
analytically-found articular coniguration. The advantages of solving redundancy for
positional tasks at the position level, instead of doing it using diferential schemes,
were exposed in the conclusion of Chapter 1. Among these advantages is the fact that
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boundaries of the solution space are more easily apprehended, and provides with a
clearer idea of the extent of the available options. The beneits of using redundancy
spaces for positional redundancy resolution were also exposed for the optimisation of
a posture dependant criteria. No approximation is made if the inverse modelling step
is analytic, and the computation is also much faster. The dimension of the search
space of the optimisation problem is reduced to the number of redundant parameters
that direct the redundancy space, instead of having a dimension equal to the number
of degrees of freedom of the robot.

A suitable posture for these redundant system does not only mean a posture that
ensures reachability. Industrial processes have accuracy requirements that need to
be met. When industrial processes involve a physical interaction with the environ-
ment, deformations within the kinematic structure of the robot can occur and cause
a misplacement of the end-efector. A characterisation of the misplacement caused
by a force acting on the end-efector of serial systems was performed in Chapter 2,
and was shown to be signiicantly inluenced by the posture used. A strategy using
the framework of redundancy spaces was exposed to ind postures that fulilled the
geometric task while limiting end-efector misplacements.

Another requirement for the fulilment of a positional task requiring physical inter-
action with the environment (such as machining operations, or assembly processes), is
the assurance that the system is able to counter the contact forces of the interaction.
A second type of posture dependant criterion which accounts for the force capacity of
serial systems, in a chosen coniguration, for a given force applied somewhere on the
end-efector was described in Chapter 3. The scope of this index difers from the one
of force ellipsoids, force polytopes of dynamic capability equations because it focuses
on a single force deinition, and was designed for redundancy resolution. A strategy
using the framework of redundancy spaces was again exposed to ind postures that
ensured the capacity of the robot to produce a given force.

Exemplary use case involving a LBR iiwa for drilling tasks were described to illus-
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trate the use of these two posture dependant criteria for positional redundancy resol-
ution. The tools developed therein were shown to be interesting for the convenience
they brings to optimisation schemes. Additionally the realm of possibilities ofered
by redundancy was explored quickly and eiciently. This exposed the im-possibility
to perform a positional task while fulilling the accuracy requirements more thor-
oughly and globally than schemes that would be based on redundancy resolution at
a diferential level.

Instead of schemes seeking for the ”best posture” with regards to one several cri-
teria, the industrial locks related to deformational behaviour and force capacity were
described as constraint satisfaction problems. This strategy allows to make multi
criteria decisions without worrying about a Pareto dilemma while leaving room for
other posture dependant criteria to come within the scheme. An important feature of
these criteria is their simplicity. Additionally, a special efort was made to produce
criteria that are closely related to how the industrial needs are formulated. Instead of
optimising rigidity, the optimisation is made of the misplacement of the end-efector,
which is directly homogeneous and comparable to mechanical tolerances. The force
capacity index (FCI) can be thought of as a safety coeicient on the assurance that
a robot will be able to sustain a force. The criteria is intuitive, easily understood
which likewise makes it a good candidate for industrial implementations.

The last industrial lock that was addressed is the one of performing safe motions
within a human populated environment. The unstructured nature of this environment
makes the problem very complicated. In this thesis work, the intuition was to use
and adapt the well-known sampling-based method that is the Probabilistic RoadMap
(PRM) to the dynamic and changing nature of the environment. The novel motion
planning strategy is named Receding Horizon Dynamic RoadMaps (RH-DRM). PRM-
based methods have the advantage of being eicient, and adaptable to serial and
mobile robot problems alike, because the path planning is performed in coniguration
space. An adaptation of PRM, called Dynamic RoadMaps (DRM), was taken as basis
for the inal scheme. The main diference with DRM consists in using the anticipation
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of the trajectories of the obstacles instead of just using their spatial occupancy at a
single instant (the current time). The temporal paradigm that was added to the
problem led to the development of a novel adaptation of the A∗ algorithm that inds
an earliest arrival journey within an anticipated graph topology where edges traversal
is not instantaneous. A type of temporal network, here named step-in interval graph,
was deined to formalise and solve the problem at hand. To the author’s knowledge,
this algorithm is the irst that solves this problem in that manner.

RH-DRM retains the advantages of PRM and DRM. It is fast, adaptable to any
kind of system (planning is done in coniguration space), even those with many DOFs.
Additionally, the algorithm provides the foremost collision-free journey, integrates an-
ticipation, which helps avoiding deadlocks, collisions, ensures eiciency of the journey,
and allows planning even for systems that may be slower than the dynamic obstacles.
These last advantages are completely dependant on the quality of the obstacles tra-
jectories prediction.

Some improvements or perspectives could be explored for the industrial implement-
ation of the deformational behaviour criteria described in this thesis.

These indices are based on the assumption that the deformations only happen
within the articulations of the robots. It could be interesting to explore the inlu-
ence of the links of the robot, as well as the deformation of the end-efector on the
deformational behaviour of the system.

Additionally, a very straightforward interaction force deinition was used in the
chapter related to the deformational behaviour, which didn’t precisely relect the
complexity of the real interaction happening between a drilling end-efector, mounted
on a deformed robot and entering an aluminium plate while being clamped against the
plate. The forces issued from the deformation of the drill, as well as from the friction
of the clamp onto the plate act together to improve the deformational behaviour of
the robot by opposing the misplacement of the end-efector. It would be interesting
to look into the efects of these elements onto the deformational behaviour of the

164



robot and machining quality.

The sensibility of the posture-dependant criteria described in this thesis, with re-
gard to the interaction force between the end-efector and the environment could be
explored. Indeed, what would be the inluence of an error made on the estimation of
the intensity or direction of the spatial force related to the interaction? The know-
ledge of this sensibility could be a safeguard to slightly wavering interaction forces or
for inaccurate estimations. An equivalent, but somehow more intuitive result would
be the knowledge of the worst case deformational behaviour and/or force capacity
indices, for input forces that are relatively ”close” to the estimated one. Note that
this sensibility is somehow equivalent to the one related to the positional error made
on the estimated force application point.

The RH-DRM strategy is directly dependant on the obstacles trajectory predic-
tions. Therefore, an implementation of this algorithm would require to develop the
anticipation part of the problem. This aspect is to be included in further develop-
ments. The sensing part of the problem would be a major lock from a safety-related
perspective, if the solution is ever to be implemented in an industrial context.
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Appendix 1 : Iiwa Direct
Geometric Modelling

The expressions of the elementary homogeneous matrices derived from the DH para-
metrisation of the system (see 1.3.1) are :

0T 1 =









cq1 −sq1 0 0

sq1 cq1 0 0

0 0 1 lbs

0 0 0 1









1T 2 =









cq2 −sq2 0 0

0 0 1 0

−sq2 −cq2 0 0

0 0 0 1









2T 3 =









cq3 −sq3 0 0

0 0 −1 −lse

sq3 cq3 0 0

0 0 0 1









3T 4 =









cq4 −sq4 0 0

0 0 −1 0

sq4 cq4 0 0

0 0 0 1









4T 5 =









cq5 −sq5 0 0

0 0 1 lew

−sq5 −cq5 0 0

0 0 0 1









5T 6 =









cq6 −sq6 0 0

0 0 1 0

−sq6 −cq6 0 0

0 0 0 1









6T 7 =









cq7 −sq7 0 0

0 0 −1 −lwt

sq7 cq7 0 0

0 0 0 1









(4.3)

The components of 0T7 computed from the previous matrices multiplication are found
in Eq. (4.4). We adopt Matlab matrix notation, i.e. for a q × p matrix A, for any
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i ∈ J1 ..qK and any j ∈ J1 ..pK, A(i, j) is the term situated at the ith row and jth

column of A.
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0T7(1, 1) =sq7(sq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4)− cq5(cq3sq1 + cq1cq2sq3))−

cq7(sq6(sq4(sq1sq3 − cq1cq2cq3) + cq1cq4sq2)+

cq6(sq5(cq3sq1 + cq1cq2sq3) + cq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4)))

0T7(2, 1) =cq7(sq6(sq4(cq1sq3 + cq2cq3sq1)− cq4sq1sq2) + cq6(sq5(cq1cq3 − cq2sq1sq3)+

cq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4)))−

sq7(sq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4)− cq5(cq1cq3 − cq2sq1sq3))

0T7(3, 1) = −sq7(sq5(cq2sq4 − cq3cq4sq2)− cq5sq2sq3)− cq7(sq6(cq2cq4 + cq3sq2sq4)−

cq6(cq5(cq2sq4 − cq3cq4sq2) + sq2sq3sq5))

0T7(1, 2) =sq7(sq6(sq4(sq1sq3 − cq1cq2cq3) + cq1cq4sq2) + cq6(sq5(cq3sq1 + cq1cq2sq3)+

cq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4)))+

cq7(sq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4)− cq5(cq3sq1 + cq1cq2sq3))

0T7(2, 2) = −sq7(sq6(sq4(cq1sq3 + cq2cq3sq1)− cq4sq1sq2) + cq6(sq5(cq1cq3 − cq2sq1sq3)+

cq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4)))−

cq7(sq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4)− cq5(cq1cq3 − cq2sq1sq3))

0T7(3, 2) =sq7(sq6(cq2cq4 + cq3sq2sq4)− cq6(cq5(cq2sq4 − cq3cq4sq2) + sq2sq3sq5))−

cq7(sq5(cq2sq4 − cq3cq4sq2)− cq5sq2sq3)

0T7(1, 3) =cq6(sq4(sq1sq3 − cq1cq2cq3) + cq1cq4sq2)− sq6(sq5(cq3sq1 + cq1cq2sq3)+

cq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4))

0T7(2, 3) =sq6(sq5(cq1cq3 − cq2sq1sq3) + cq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4))−

cq6(sq4(cq1sq3 + cq2cq3sq1)− cq4sq1sq2)

0T7(3, 3) =sq6(cq5(cq2sq4 − cq3cq4sq2) + sq2sq3sq5) + cq6(cq2cq4 + cq3sq2sq4)

0T7(1, 4) =cq6lwt(sq4(sq1sq3 − cq1cq2cq3) + cq1cq4sq2)− lwtsq6(sq5(cq3sq1 + cq1cq2sq3)+

cq5(cq4(sq1sq3 − cq1cq2cq3)− cq1sq2sq4)) + lewsq4(sq1sq3 − cq1cq2cq3)+

cq1lsesq2 + cq1cq4lewsq2

0T7(2, 4) =lwtsq6(sq5(cq1cq3 − cq2sq1sq3) + cq5(cq4(cq1sq3 + cq2cq3sq1) + sq1sq2sq4))−

lewsq4(cq1sq3 + cq2cq3sq1)− cq6lwt(sq4(cq1sq3 + cq2cq3sq1)− cq4sq1sq2)+

lsesq1sq2 + cq4lewsq1sq2

0T7(3, 4) =lbs+ cq2lse+ lwtsq6(cq5(cq2sq4 − cq3cq4sq2) + sq2sq3sq5) + cq6lwt(cq2cq4+

cq3sq2sq4) + cq2cq4lew + cq3lewsq2sq4

(4.4)
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Appendix 2 : Inverse geometric
model of the lbr iiwa

parameterised by the elbow
angle - a demonstration

The demonstration will be decomposed as such :

• Geometric task description under a mathematical form that highlights the
spherical-rotary-spherical (S-R-S) structure of a 7 DOFs anthropomorphic ma-
nipulators.

• Integration of the elbow angle (β) within this expression.

• Derivation and expression of the non-varying terms of this expression, including
q4.

• β-parameterisation and derivation of the shoulder joint angles (q1, q2 and q3).

• β-parameterisation and derivation of the shoulder joint angles (q5, q6 and q7).

The expressions of the joint angles, with regards to the elbow angle will be distilled
throughout the demonstration (Eq. (4.13), Eq. (4.21) and Eq. (4.23)).

Task description with S-R-S structure highlight : Following the S-R-S de-
composition described beforehand, the tip position and orientation 0p7 and 0R7 with
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regard to the robot base reference frame F0 can be expressed as such:

0p7
︸︷︷︸

≡
−→BT

= 0xbs
︸︷︷︸

≡
−→BS

+ 0R3

(
3xse
︸︷︷︸

≡
−→SE

+ 3R4(
4xew
︸︷︷︸

≡
−−→EW

+ 4R7
7xwt
︸︷︷︸

≡
−−→WT

)
)

0R7 =
0R3
︸︷︷︸

shoulder

3R4
︸︷︷︸

elbow

4R7
︸︷︷︸
wrist

.
(4.5)

where:

0xbs =






0

0

lbs




 , 3xse =






0

−lse

0




 , 4xew =






0

lew

0




 , 7xwt =






0

−lwt

0




 (4.6)

are derived from the DH parameterisation of the LBR iiwa (see Section 1.3.2.1).

Integration of the elbow angle : Because of the existing redundancy of the elbow
angle, the wrist joint input orientation 0R4 can be expressed as

0R4 = rβ
0R◦

4, (4.7)

where rβ is a rotation matrix operator corresponding to the orientational change
resulting from the rotation by the angle β about the shoulder-wrist axis, itself directed
by the unitary vector 0usw = 0xsw/∥

0xsw∥. Matrix rβ is computed thanks to the
formula:

rβ = I3 + sin(β)[0usw×] + (1− cos(β))[0usw×]
2

= sin(β)[0usw×]− cos(β)[0usw×]
2 + (I3 + [0usw×]

2) (4.8)

which derives from the angle axis formalism [6]. In Eq. (4.8), I3 denotes the 3 × 3

identity matrix, and [0usw×] denotes the skew-symmetric matrix of vector 0usw.
Now using the fact that the distance from shoulder to wrist is constant whatever

the elbow angle :
∥ 0usw∥
︸ ︷︷ ︸

cst

= ∥ 3xse
︸︷︷︸
cst

+ 3R4
4xew
︸︷︷︸
cst

∥, (4.9)
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it follows that 3R4 is also constant with regard to β. Therefore, ∀β ∈ R, 3R4 =
3R◦

4. Intuitively, looking at the motion of the elbow around the circle displayed
on Fig. 1.3.5, it can be intuitively understood that the angle ˆ

(
−→
SE,−−→EW) remains un-

changed.
Now looking back at Eq. (4.7), and rearranging it to integrate the shoulder rotation:

0R3
3R4 = rβ

0R◦
3
3R◦

4

⇒ 0R3 = rβ
0R◦

3. (4.10)

Knowing this, Eq. (4.5) can be rewritten as :

0p7 =
0xbs + rβ

0R◦
3

(
3xse +

3R4(
4xew + 4R7

7xwt)
)

0R7 = rβ
0R◦

3
3R4

4R7.
(4.11)

Derivation of q4 and 0R◦
3: The last step before computing all the actual joints

position values is to determine the value of q4 and 0R◦
3. The value of vector

−→
SWd ≡

0xd
sw that complies with the desired task7 is irst computed (note : all the terms on

the right of the expression are known given a task):

−→
SW =

−→
SB+

−→BT+
−−→TW

⇔ 0xd
sw = − 0xbs +

0xd
7 −

0Rd
7
7xwt (4.12)

The irst joint position that is computed is the one of joint 4, q4. The law of cosines
is used within triangle SEW (visible on Fig. 1.3.5).

cos(q4) =
∥ 0xd

sw∥
2 − lse

2 − lew
2

2lselew

q4 = arccos
∥ 0xd

sw∥
2 − lse

2 − lew
2

2lselew
(4.13)

7Right-hand-side superscript notation (.)d stands for the value of ”(.)” that complies with the
desired task.
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0xsw can also be derived so as to make 0R◦
3 appear:

−→
SW =

−→
SE+

−−→EW
⇔ 0xsw = 0R◦

3(
3xse +

3R4
3xew)

⇔ 0xsw = 0R◦
1
1R◦

2
2R◦

3(
3xse +

3R4
4xew). (4.14)

The DH parameterisation of the robot (see Section 1.3.2.1) gives us the formulas
to compute rotation matrices8 0R◦

1, 1R◦
2, 2R◦

3 and 3R4:

0R◦
1 =






c◦1 −s
◦
1 0

s◦1 c◦1 0

0 0 1




 (4.15)

1R◦
2 =






c◦2 −s◦2 0

0 0 1

−s◦2 −c
◦
2 0




 (4.16)

2R◦
3 =






cos(0) − sin(0) 0

0 0 −1

sin(0) cos(0) 0




 =






1 0 0

0 0 −1

0 1 0




 (4.17)

3R4 =






c4 −s4 0

0 0 −1

s4 c4 0




 (with q4 taken from Eq. (4.13)) (4.18)

In Eq. (4.14), let us simplify the notation of the right hand side term by noting
3xse +

3R4
4xew = 3xsw and by adopting matlab matrix notation (e.g. 3 lines and 1

column matrix 3xsw becomes:

3xsw =






3xsw(1, 1)
3xsw(2, 1)
3xsw(3, 1)




).

8For the sake of brevity and concision, cos(q◦
i
) and sin(q◦

i
) will be noted c◦

i
and s◦

i
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In that case, the desired shoulder wrist vector computed in Eq. (4.12) can be equated
to 0R◦

1
1R◦

2
2R◦

3
3xsw, leading to a set of equations that allow to compute9 q◦1 and q◦2 :

0xd
sw = 0R◦

1
1R◦

2
2R◦

3
3xsw

⇒







0xd
sw(1, 1) = 3xsw(1, 1)c

◦
1c

◦
2 −

3xsw(2, 1)s
◦
1 +

3xsw(3, 1)c
◦
1s

◦
2

0xd
sw(2, 1) = 3xsw(1, 1)s

◦
1c

◦
2 +

3xsw(2, 1)c
◦
1 +

3xsw(3, 1)s
◦
1s

◦
2

0xd
sw(3, 1) = − 3xsw(1, 1)s

◦
2 +

3xsw(3, 1)c
◦
2

(4.19)

Parameterised computation of q1, q2 and q3 : The computation of the three
irst joint angles takes roots in Eq. (4.10). The term 0R3 is once again expended to
account for the joint angle values :

0R3 =
0R1

1R2
2R3 =






c1c2c3 − s1s3 −c3s1 − c1c2s3 c1s2

c1s3 + c2c3s1 c1c3 − c2s1s3 s1s2

−c3s2 s2s3 c2






The right hand side of Eq. (4.10) can also be expanded in :

rβ
0R◦

3 =
(
sin(β)[0usw×]− cos(β)[0usw×]

2 + (I3 + [0usw×]
2)
)
0R◦

3

= sin(β)[0usw×]
0R◦

3 − cos(β)[0usw×]
2 0R◦

3 + (I3 + [0usw×]
2) 0R◦

3

= sin(β)AS + cos(β)BS +CS, (4.20)

where

AS = (asi,j)(i,j)∈J1 ..3K = [0usw×]
0R◦

3

BS = (bsi,j)(i,j)∈J1 ..3K = −[
0usw×]

2 0R◦
3

CS = (csi,j)(i,j)∈J1 ..3K = (I3 + [0usw×]
2) 0R◦

3.

9The resolution of this non linear system is not detailed here for the sake of brevity. In one of
[165] appendices can be found a very concise method for this kind of system of equations, in order
to consistently ind the values of q◦

1
and q◦

2
.
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Eq. (4.10) gives us 0R3 = rβ
0R◦

3. Therefore,

if s2 = sin(q2) ̸= 0⇔ |c2| = | cos(q2)| = |
0R3(3, 3)| ̸= 1,

q1 = atan2(0R3(2, 3),
0R3(1, 3))

= atan2(as2,3sβ + bs2,3cβ + cs2,3 , as1,3sβ + bs1,3cβ + cs1,3),

q3 = atan2(0R3(3, 2),−
0R3(3, 1)),

= atan2(as3,2sβ + bs3,2cβ + cs3,2 ,−as3,1sβ − bs3,1cβ − cs3,1),

if sin(q1) ̸= 0

q2 = atan2(0R3(2, 3)/ sin(q1),
0R3(3, 3))

= atan2(
1

s1
(as2,3sβ + bs2,3cβ + cs2,3), as3,3sβ + bs3,3cβ + cs3,3)

else (⇔ sin(q1) = 0)

q2 = atan2(0R3(1, 3)/ cos(q1),
0R3(3, 3))

= atan2(
1

c1
(as1,3sβ + bs1,3cβ + cs1,3), as3,3sβ + bs3,3cβ + cs3,3)

else (⇔ sin(q2) = 0)

q1 = 0 (arbitrarily, as joint 1 and 3 play the same role)
q3 = atan2(0R3(2, 1),

0R3(2, 2))

= atan2(as2,1sβ + bs2,1cβ + cs2,1 , as2,2sβ + bs2,2cβ + cs2,2)

q2 = atan2(0, 0R3(3, 3))

= atan2(0, as3,3sβ + bs3,3cβ + cs3,3)

(4.21)

Parameterised computation of q5, q6 and q7 : With the values of the four
irst joint positions, the value of 4Rd

7 can be computed by composing 4R0 =
0R4

⊺
=

(0R3
3R4)

⊺ = (rβ
0R◦

3
3R4)

⊺ with 0Rd
7, as such:

4Rd
7 = (rβ

0R◦
3
3R4)

⊺ 0Rd
7 =

3R4
⊺
(rβ

0R◦
3)

⊺ 0Rd
7 (4.22)
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Similarly as before, let us write things so as to make β appear more clearly. Using
Eq. (4.20),

3R4
⊺
(rβ

0R◦
3)

⊺ 0Rd
7 =

3R4
⊺
(sin(β)AS + cos(β)BS +CS)

⊺ 0Rd
7

= sin(β)AW + cos(β)BW +CW .

With

AW = (awi,j
)(i,j)∈J1 ..3K =

3R4
⊺
A

⊺

S
0Rd

7

BW = bwi,j
)(i,j)∈J1 ..3K =

3R4
⊺
B

⊺

S
0Rd

7

CW = (cwi,j
)(i,j)∈J1 ..3K =

3R4
⊺
C

⊺

S
0Rd

7.

From the DH model of the system, matrix 4R7 can be expended to account for the
joint angle values q5, q6 and q7:

4R7 =
4R5

5R6
6R7 =






c5c6c7 − s5s7 −c7s5 − c5c6s7 c5s6

−c7s6 s6s7 c6

−c5s7 − c6c7s5 c6s5s7 − c5c7 −s5s6






177



Therefore,

if s6 = sin(q6) ̸= 0⇔ |c6| = | cos(q6)| = |
4R7(2, 3)| ̸= 1,

q5 = atan2(− 4R7(3, 3),
4R7(1, 3))

= atan2(−aw3,3
sβ − bw3,3

cβ − cw3,3
, aw1,3

sβ + bw1,3
cβ + cw1,3

),

q7 = atan2(4R7(2, 2),−
4R7(2, 1)),

= atan2(aw2,2
sβ + bw2,2

cβ + cw2,2
,−aw2,1

sβ − bw2,1
cβ − cw2,1

),

if sin(q5) ̸= 0

q6 = atan2(− 4R7(3, 3)/ sin(q5),
4R7(2, 3))

= atan2(
−1

s5
(aw3,3

sβ + bw3,3
cβ + cw3,3

), aw2,3
sβ + bw2,3

cβ + cw2,3
)

else (⇔ sin(q5) = 0)

q6 = atan2(4R7(1, 3)/ cos(q5),
4R7(2, 3))

= atan2(
1

c5
(aw1,3

sβ + bw1,3
cβ + cw1,3

), aw2,3
sβ + bw2,3

cβ + cw2,3
)

else (⇔ sin(q6) = 0)

q5 = 0 (arbitrarily, as joint 5 and 7 play the same role)
q7 = atan2(4R7(3, 1),

4R7(3, 2))

= atan2(aw3,1
sβ + bw3,1

cβ + cw3,1
, aw3,2

sβ + bw3,2
cβ + cw3,2

)

q6 = atan2(0, 4R7(2, 3))

= atan2(0, aw2,3
sβ + bw2,3

cβ + cw2,3
)

(4.23)

The demonstration above showed how to compute one solution of joint angles that
comply with the task of positioning and orientating the robot tip reference frame in
a desired pose while using a given elbow angle β. However, due to the trigonometric
nature of the functions of the forward geometric model, there exist multiple solutions.
The LBR iiwa, with its anthropomorphic structure, actually possesses 8 diferent
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➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

q1 q1 q1 + π q1 + π q1 q1 q1 + π q1 + π
q2 q2 −q2 −q2 q2 q2 −q2 −q2
q3 q3 + π q3 q3 + π q3 q3 + π q3 q3 + π
q4 −q4 −q4 q4 q4 −q4 −q4 q4
q5 q5 + π q5 + π q5 q5 + π q5 q5 q5 + π
q6 q6 q6 q6 −q6 −q6 −q6 −q6
q7 q7 q7 q7 q7 + π q7 + π q7 + π q7 + π

Table 4.6.1: The 8 possible conigurations seen on Fig. 4.6.3

solutions to this problem, for the same elbow angle value, as can be seen on Fig. 4.6.3.
To compute the other possibilities, one can use Table 4.6.1.
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Appendix 3 : LBR iiwa
specifications

The following document in part of a commercial brochure of the LRB iiwa robot.
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A

B

C
D

E
M
F
¹

G

F

Workspace Dimensions A Dimensions B Dimensions C Dimensions D Dimensions E Dimensions F Dimensions G Volume

LBR iiwa 7 R800 1,266 mm 1,140 mm 340 mm 400 mm 400 mm 260 mm 800 mm 1.7 m3

LBR iiwa 14 R820 1,306 mm 1,180 mm 360 mm 420 mm 400 mm 255 mm 820 mm 1.8 m3

Axis data / 

Range of motion Maximum torque

LBR iiwa 7 kg  

Maximum velocity Maximum torque

LBR iiwa 14 kg  

Maximum velocity

Axis 1 (A1) ± 170° 176 Nm 98°/s 320 Nm 85°/s

Axis 2 (A2) ± 120° 176 Nm 98°/s 320 Nm 85°/s

Axis 3 (A3) ± 170° 110 Nm 100°/s 176 Nm 100°/s

Axis 4 (A4) ± 120° 110 Nm 130°/s 176 Nm 75°/s

Axis 5 (A5) ± 170° 110 Nm 140°/s 110 Nm 130°/s

Axis 6 (A6) ± 120° 40 Nm 180°/s 40 Nm 135°/s

Axis 7 (A7) ± 175° 40 Nm 180°/s 40 Nm 135°/s

30,000 operating hours

¹ dependent on the media flange option

LBR iiwa LBR iiwa 7 R800 LBR iiwa 14 R820

Rated payload 7 kg 14 kg

Number of axes 7 7

Wrist variant In-line wrist In-line wrist

Mounting flange A7 DIN ISO 9409-1-A50 DIN ISO 9409-1-A50

Installation position any any

Positioning accuracy (ISO 9283) ± 0.1 mm ± 0.1 mm

Axis-specific torque accuracy ± 2 % ± 2 %

Weight 23.9 kg 29.9 kg

Protection rating IP 54 IP 54

Technical data

A Sunrise Cabinet

Processor Quad-core processor

Hard drive SSD

Interfaces USB, EtherNet, DVI-I

Protection rating IP20

Dimensions (D x W x H) 500 mm x 483 mm x 190 mm

Weight 23 kg

Power supply connection

Rated supply voltage AC 110 V to 230 V

Permissible tolerance of rated voltage ± 10 %

Mains frequency 50 Hz ± 1 Hz or 60 Hz ± 1 Hz

Mains-side fusing 2 x 16 A slow-blowing

Programmable Cartesian stiffness

Min. (X, Y, Z) 0.0 N/m 0.0 N/m

Max. (X, Y, Z) 5,000 N/m 5,000 N/m

Min. (A, B, C) 0.0 N/rad 0.0 N/rad

Max. (A, B, C) 300 Nm/rad 300 Nm/rad

Sensitive robotics�LBR iiwa



Appendix 4 : Résumé en Français

4.7 Introduction

Tout comme dans d’autres secteurs, l’industrie de production aéronautique a connu
des changements majeurs avec l’automatisation de ses procédés. Bien que de nom-
breuses opérations soient encore efectuées par des opérateurs humains, de plus en
plus de machines colonisent les zones de production pour la réalisation des tâches
les plus pénibles et répétitives. Un avantage notoire de ces machines est leur grande
répétabilité qui assure une bonne qualité de réalisation des opérations. D’abord oc-
cupée par d’encombrantes machines spéciales, l’industrie de production automatisée a
tendance à s’orienter vers des solutions plus versatiles. Les parties opérationnelles de
ces machines spécialisées ont été transférées dans des efecteurs, eux-mêmes montés
sur des robots sériels articulés. Des robots gros porteurs ont naturellement été util-
isés pour assurer cette transition, ce qui a permis de fortement diminuer les coûts
de mise en service, de par leur généricité. Aujourd’hui, la tendance de lexibilisa-
tion et de miniaturisation des solutions productiques amène à repenser les espaces de
production pour permettre la cohabitation sécuritaire des machines et des hommes.
L’arrivée de robots plus petits, mobiles et sécuritaires sur la scène de la production
favorise cette tendance. Les robots collaboratifs, dont la puissance est limitée, sont
dotés de capteurs leur permettant de détecter la présence d’obstacles, ain de garantir
la sécurité des humains se trouvant aux alentours.

On s’intéresse dans cette thèse à l’utilisation de systèmes redondants, collabor-
atifs et mobiles (bras articulés montés sur plateformes mobiles), dans un environ-
nement de production aéronautique peuplé d’humains, pour la réalisation d’opérations
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étape est empirique ou provient d’un apprentissage. L’humain procède par
essai-erreur, en corrigeant sa posture jusqu’à en atteindre une qui lui semble
satisfaisante du point de vue de l’eicacité, de la précision, ou de sa capacité
à taper suisamment fort avec son marteau. Par exemple, il est peu probable
qu’il choisisse de planter le clou en tournant le dos au mur. Notre système
autonome est redondant, et pourrait positionner correctement son efecteur avec
une grande variété de postures. Une de ces postures doit être choisie pour lui
permettre la réalisation de sa tâche dans de bonnes conditions (en pratique,
peut être que ce choix peut être réalisé avant pour le système robotique).

4. Après avoir choisi une posture convenable, l’humain peut planter le clou dans
le mur. Le système industriel peut commencer à réaliser le procédé lorsqu’il a
atteint une posture convenable.

Dans cette thèse, une formulation de la redondance cinématique est d’abord présentée.
Le formalisme associé permet de simpliier l’exploitation de la liberté que ces systèmes
possèdent sur le choix des postures à utiliser pour réaliser des tâches de placement
statique de l’efecteur. Ce formalisme est ensuite exploité pour améliorer et cara-
ctériser le comportement en déformation et la capacité d’application d’eforts des
systèmes redondants sériels. Enin, le sujet de la planiication des mouvements de
systèmes robotisés dans un environnement dynamique et encombré est considéré. La
solution présentée adapte l’algorithme bien connu des Probabilistic RoadMaps pour
y inclure une anticipation des trajectoires des obstacles dynamiques. Cette solution
permet de planiier des mouvements sécuritaires, peu intrusifs et eicaces jusqu’à la
destination.

4.8 Une formulation de la redondance de positionnement

4.8.1 Espaces de redondance

Contexte : Dans le secteur de production aéronautique, les robots sont utilisés
pour réaliser des opérations à haute valeur ajoutée, nécessitant une répétabilité et
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une précision importante. Les tolérances mécaniques typiquement demandée pour
ces opérations sont en dessous de 0.2 mm. Pourtant, les performances typiques des
robots industriels sont de l’ordre de 0.3-0.5 mm en termes de répétabilité et de 1-3
mm en termes de précision. Par conséquent, ces opérations peuvent être réalisées
après que le robot se soit positionné précisément de manière statique, en utilisant
des capteurs externes (laser tracker, caméra, etc...). Dans le secteur de production
aéronautique comme dans d’autres secteurs, de nombreux procédés robotisés peuvent
être décrits comme des tâches de positionnement statique. Les opérations de pick
and place déinissent un placement de la pince pour attraper et un placement pour
relâcher un objet. Les opérations d’assemblage telles que le rivetage, le vissage, ou
même les opérations de perçage font partie de ce type de tâche de positionnement
statique de l’efecteur. Après s’être positionné précisément, on demande généralement
au robot de rester immobile pendant que son outil réalise le procédé (qu’il s’agisse
de perçage, rivetage, vissage, ou autre). Pendant l’interaction, la tâche réalisé par
le robot est en apparence la plus simple: maintenir une coniguration ixe jusqu’à ce
que le procédé soit terminé. Dans ce contexte, le système peut naturellement être
appelé un positionneur. Le but pour le bras robotique est de fournir un moment
non perturbé, laissant le temps à l’outil de réaliser son procédé dans les meilleures
conditions. La moindre déviation géométrique à l’interface du procédé peut ruiner la
qualité du résultat, ou engendrer de la casse.

Ain de réaliser ces tâches de positionnement, notre cas d’étude implique l’utilisation
d’un système composé d’une plate-forme mobile (KMP) et d’un robot sériel à 7 degrés
de liberté (LBR-iiwa). Ensemble, ces deux sous-systèmes accumulent 10 degrés de
liberté, ce qui rend le système complet extrêmement redondant par rapport à tous
types de tâches de positionnement statique de l’efecteur.

Objectifs: La redondance est parfois perçue comme une source supplémentaire de
complexité. Cependant, la redondance est aussi une source de possibilité et de lex-
ibilité. Elle fournit un choix dans la coniguration articulaire à utiliser. Plus le degré
de redondance est important, plus il y a de possibilités. Par conséquent, la présence
de la redondance implique de devoir prendre des décisions, qui n’existaient pas pour
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des robots non redondant. Nous voulons rendre les possibilités que la redondance
ofre clairement identiiables pour les utilisateurs de ces robots. Nous avons identiié
un besoin évident d’une formulation simple de la redondance au niveau du position-
nement, qui permette de connaître l’étendue des solutions que la redondance ofre.
De plus, cette formulation devra permettre un calcul rapide et sans approximation
de la coniguration articulaire associée.

Expression de la redondance en positionnement par des outils diférentiels:
Traditionnellement, la résolution de redondance est réalisée en considérant la tâche
comme étant une consigne de vitesse ou d’accélération Cartésienne de l’efecteur.
Le Jacobien cinématique des robots en est un outil fondamental, car son inversion
permet de calculer les vitesses ou les accélérations articulaires générant des déplace-
ments de l’efecteur se conformant à la consigne. Pour déterminer les positions articu-
laires satisfaisant une tâche de positionnement, ces méthodes ont recours à une phase
d’intégration temporelle de la consigne articulaire. Si une tâche t consiste à maintenir
l’efecteur statique (ṫ = 0), un manipulateur redondant peut théoriquement déplacer
ses articulations sans perturber la tâche. Les vitesses articulaires que ce manipulateur
peut utiliser sans perturber la tâche sont à sélectionner dans le noyau du Jacobien
associé à la tâche. Pour q̇0 ∈ R

N :

q̇ =Jt
†ṫ+ (I − Jt

†Jt)q̇0 (4.24)
=(I − Jt

†Jt)q̇0, (4.25)

correspond à une vitesse articulaire qui générera un mouvement interne du manipu-
lateur vis à vis de la tâche. L’intégration de cette vitesse au court du temps devrait
pouvoir permettre de trouver un ensemble de positions articulaires permettant de se
conformer à la tâche t. De manière équivalente, le développement limité de la fonc-
tion de cinématique directe Ft associée à la tâche t aux alentours d’une coniguration
articulaire q permet d’exprimer la variation de la tâche. La variation de la tâche δt
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associée à un déplacement articulaire δq s’exprime :

δt = Ft(q+ δq)− Ft(q) = Jtδq+
[

O(∥δq∥2) . . . O(∥δq∥2)
]⊺

. (4.26)

Par conséquent, en choisissant un déplacement articulaire dans le noyau de la matrice
Jacobienne de la tâche (i.e. δq ∈ kerJt), la variation de tâche devient :

δt =







O(∥δq∥2)
...

O(∥δq∥2)






,

Ce qui tend vers 0 si δq est petit.

Imprécisions due à la dérive numérique: En répétant successivement la procé-
dure décrite précédemment, on peut trouver des conigurations articulaires qui se
conforment à la tâche t avec une imprécision de l’ordre de grandeur des termes
restants du développement limité. Pour améliorer cette précision, le développement
limité pourrait être réalisé au nime ordre (n > 1) dans la phase de cinématique in-
verse. Cependant, aucune procédure utilisant cette stratégie ne peut déterminer des
résultats précis de manière eicace. Les solutions trouvées en répétant ces calculs
soufrent d’évidente dérives numériques pouvant amener à des imprécisions faites sur
la réalisation de la tâche.

Exploration incomplète l’espace de solutions: Un autre point important, mise
à part l’imprécision de la solution basée sur une approche diférentielle, est le fait
que ces approches ne permettent pas d’explorer eicacement l’ensemble des possib-
ilités ofertes par la redondance. Dans les procédures décrites ci-avant, un moyen
de choisir δq ∈ kerJt est de générer un vecteur de vitesses articulaires q̇0 ∈ R

N et
de le projeter dans le noyau de la matrice Jacobienne associée à la tâche grâce au
projecteur (I − Jt

†Jt). Cependant, en choisissant arbitrairement q̇0, il ne sera pas
aisé d’explorer l’espace des solutions articulaires, d’autant moins si la redondance du
système vis à vis de la tâche est d’ordre s > 1. Au mieux, un espace de dimension
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1 pourra être échantillonné de manière discrète et incomplète. Une autre solution,
plus coûteuse, mais plus exploratoire, pourrait consister à calculer la décomposition
en valeurs singulières (SVD) de la matrice Jacobienne de la tâche ain d’identiier loc-
alement, vis à vis d’une coniguration donnée, toutes les directions articulaires dans
lesquelles le robot peut se déplacer sans perturber la tâche (à l’imprécision des restes
du développement de Taylor près). Faire des petits pas articulaires dans les direc-
tions suggérées par les vecteurs propres de la matrice Jacobienne associés à son noyau
pourrait permettre d’explorer de manière plus rigoureuse cet espace de solutions.
Cependant, un inconvénient commun aux stratégies de résolutions diférentielles est
l’absence de cyclicité[28]. Cette propriété rend un échantillonnage représentatif de
l’espace de solution diicile à trouver.

Pas d’identiication des frontières de l’espace de solutions: Un autre incon-
vénient des stratégies diférentielles, qui est également lié à la cyclicité, est le fait
que les frontières de l’espace de solutions ne peuvent pas facilement être exprimées ou
trouvées. Ces limites sont pourtant une information primordiale pour pouvoir couvrir
une partie représentative de l’espace de solutions.

Sources de redondance de positionnement: Dans notre étude, la redondance
est déinie pour un manipulateur et une tâche de positionnement. Elle émane donc
de deux sources étroitement liées. La présence de capacités supplémentaires de
mouvements (actionneurs supplémentaires) est une source, le retrait de contraintes
géométriques sur la tâche en est une autre. Un manipulateur à n degrés de liberté
indépendant, utilisé pour une tâche t de positionnement de l’efecteur, de dimension
m < n est qualiié de redondant d’ordre s = n − m. La dimension du noyau de
la matrice Jacobienne associée à la tâche sera égale à s dans les conigurations non
singulières. Cela signiie que dans une coniguration non singulière, il existe une base
de s déplacements articulaires indépendants (les vecteurs de vitesses articulaires en-
gendrant le noyau du Jacobien, et issus de sa décomposition en valeurs singulières en
forment une) qui maintiendront la conformité du positionnement de l’efecteur vis à
vis de t. N’importe quelle combinaison linéaire de ces s vecteurs de déplacements ar-
ticulaires n’engendrera aucun déplacements de l’efecteur. Il existe toujours une base
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de vecteurs indépendants de vitesses articulaires qui est directement liée aux capacités
supplémentaires de mouvement (actionneurs supplémentaires) ou aux libérations de
contraintes géométriques.

Espaces de redondance: Dans cette thèse, on choisit de traiter la redondance par
une approche diférente. La résolution de redondance au niveau de la vitesse ou de
l’accélération parait inadaptée pour la réalisation de tâches nécessitant le position-
nement statique de l’efecteur. Une formulation au niveau de la position semble plus
appropriée.

La formulation d’un espace de redondance, c’est à dire un espace paramétré par des
variables indépendantes, est utilisé pour représenter l’espace des solutions disponibles
au robot pour réaliser sa tâche de positionnement. Soitα =

[

α1 ... αs

]T

, un vecteur
à s éléments représentant la position du manipulateur dans l’espace de redondance.
Chaque αi représente un paramètre de redondance. Le fait d’imposer la position du
robot dans l’espace de redondance permet d’enlever toute ambiguïté dans le problème
de géométrie inverse en portant le nombre d’équations à m+s = n dans un système à
n inconnues. Une coniguration articulaire peut être rigoureusement calculée à partir
du couple position admissible dans l’espace de redondance - tâche de positionnement de
l’efecteur (α, t). En changeant la position dans l’espace de redondance (c’est à dire
la valeur des paramètres de redondance), on change la position articulaire du système
tout en conservant la conformité du positionnement de l’efecteur vis à vis de la tâche.
Les modèles géométriques directs des robots sont généralement non linéaires, et leur
inversion analytique peut être complexe, même pour des systèmes non redondants.
Cependant, pour certains types de systèmes redondants, des formulations analytiques
permettent de résoudre ce problème d’inversion.

Sans être une règle absolue, la paramétrisation de l’espace de redondance peut
souvent s’inspirer des contraintes géométriques libérées par rapport à la tâche abso-
lument contrainte (imposant la position et l’orientation de l’efecteur) et/ou des ca-
pacités de mouvements internes ou externes du robot (qui proviennent plus générale-
ment d’axes supplémentaires). Il existe souvent plus d’une formulation d’espaces de
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redondance pour un couple système-tâche donné. Une propriété nécessaire de cette
paramétrisation est le fait que quel que soit le couple admissible (α, t), il n’existe
qu’un nombre ini de solutions articulaires en dehors des singularités.

Avantages d’une formulation d’espaces de redondance: Il y a plusieurs raisons
d’utiliser les espaces de redondances dans ce contexte. D’une part, il est primordial
d’avoir une paramétrisation succincte et non ambiguë de l’espace de solutions, qui
peut être facilement comprise. Cela aide à décomplexiier la notion complexe de
redondance, et facilite la communication sur le sujet. D’autre part, cette formulation
permet d’exposer l’étendue de l’espace de solutions du robot, ce qui peut aider le
choix d’une coniguration articulaire, comme cela est fait dans les chapitres suivants.
Cela permet également de vériier rapidement l’atteignabilité du robot, ou l’existence
d’une solution. De plus, lorsqu’elle est connue, le recourt à une solution analytique
du problème de géométrie inverse permet de déterminer rapidement et de manière
exacte les conigurations se conformant à la tâche donnée.

4.8.2 Exemples de paramétrisation de la redondance appliqué à un
manipulateur mobile

Pour le système qui nous est donné d’étudier et pour le type de tâches de position-
nement statique souvent réalisées dans le secteur de production aéronautique, on peut
identiier des paramétrages de la redondance.

Redondance de l’angle de coude : Le LBR iiwa est un bras robotisé sériel posséd-
ant 7 articulations (liaisons pivots) indépendantes. Sa structure cinématique peut être
perçue comme la composition de 3 articulations : une liaison sphérique - qui englobe
les 3 premiers axes du robot, qui sont concourants - est attachée à une liaison pivot -
correspondant à l’axe 4 du robot - qui est elle-même attachée à une liaison sphérique
- qui englobe les 3 derniers axes du robot, eux aussi concourants. Cette structure par-
ticulière le classe dans une catégorie de robots 7 axes anthropomorphiques appelée
S-R-S (pour Spherical - Rotary - Spherical). Ces robots sont redondants vis à vis
de la tâche consistant à positionner et orienter complètement leur segment terminal.
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β = π/4

β = −π/4

β = −π/2

β = 0

Figure 4.8.2: Paramétrisation de ”l’angle de coude”.

Cette tâche à 6 contraintes géométriques peut être réalisée dans un espace de solution
à une dimension qui est paramétrable par ”l’angle de coude” [39–41], que l’on note
β ∈ [−π, π[ ici. La paramétrisation de cette redondance est visualisable en Fig. 1.3.6.

Orientation autour de l’axe ztcp : Une autre redondance, qui est présente pour
de nombreuses tâches à symétrie de révolution (perçage, rivetage, vissage...), est celle
qui libère la rotation autour de l’axe ztcp du TCP. Elle est visible en Fig. 4.8.3. Elle
est paramétrable par un angle que l’on note ici atcp.

Positionnement de la base du manipulateur : Une autre redondance qui peut
être facilement identiiée sur notre système est celle du positionnement et orientation
dans le plan de la base du bras manipulateur. Cette redondance est disponible lorsque
le bras robotique est monté sur la base mobile. On note ici xb, yb et θb, les 3 paramètres
associés à ce positionnement. Cette redondance est visualisable en Fig. 4.8.4

La combinaison de toutes ces redondances peut être synthétisée dans un espace
de redondance paramétré par α = (β, atcp, xb, yb, θb), comme on peut l’observer en
Fig. 4.8.5.
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atcp = π
6

atcp = −π
5

β = π

β = −π/4

θ = 0

θ = −20 ∗ π
180

xb = −0.3

yb = 0.1

Ow

xb = 0.3

yb = 0.1

Figure 4.8.5: Deux positions dans l’espace de redondance déini par α =
(β(rad), atcp(rad), xb(m), yb(m), θb(rad)) pour une tâche de positionnement donnée.
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50N/µm

1N/µm

0.04N/µm

Figure 4.9.1: Ordre de grandeur des rigidités pour diférents systèmes [42].

4.9 Critères de performance pour tâches statiques pour
la gestion de redondance

Des machines à commande numérique, la production automatisée tends à augmenter
la versatilité des systèmes robotiques. Des systèmes de taille de plus en plus réduite
peuplent les espaces de production pour permettre des solutions sécuritaires, agiles et
reconigurables. Pour étendre leur champ d’action, les robots se dotent aujourd’hui
de capteurs leur servant à détecter ou à anticiper l’occurrence de collisions. Ceci
leur permet, entre autres choses, de travailler dans des milieux peuplés d’humains.
L’utilisation de ces robots collaboratifs, tels que le LBR iiwa, pour des opérations in-
dustrielles normalement efectuées par des robots gros porteurs est cependant jalonnée
de déis. La grande lexibilité mécanique de ces systèmes (Fig. 4.9.1) engendre des
imprécisions sur le placement de l’efecteur du système, notamment lorsqu’une inter-
action physique a lieu avec l’environnement. En outre, la limitation des couples artic-
ulaires est aussi un obstacle à la réalisation de certaines tâches nécessitant des interac-
tions fortes avec l’environnement physique. Ces deux aspects, que sont l’imprécision
due à l’application d’un efort sur l’efecteur, et la capacité d’application d’efort du
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robot, sont abordés dans cette thèse.

4.9.1 Optimisation du comportement en déformation sous l’influence
d’une force statique

On s’intéresse dans un premier temps aux imprécisions statiques de l’efecteur d’un
robot, sous l’inluence d’une force extérieure. Pour cela, on modélise le robot comme
un assemblage de solides rigides (les segments) liés entre eux par des ressorts torsion-
nels à caractéristique linéaire Fig. 4.9.2, situés au niveau des articulations. Ce modèle
permet de calculer la matrice de compliance Cartésienne du robot C.

kq1
kq2

kq3

kq4

kq5

kq6

kq7

Figure 4.9.2: Modèle élastique d’un LBR iiwa concentrant la lexibilité dans les articulations
(ressorts torsionnels linéaires).

δX = Cf = (JKq
−1J⊺)f . (4.27)

Avec :

δX =

[

δp

ω

]

et f =
[

F

M

]

.
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Figure 4.9.3: Étude des imprécisions de placement du TCP sous l’inluence d’un efort
statique tcpf =

[
0(N) 0(N) −100(N) 0(Nm) 0(Nm) −5(Nm)

]⊺ pour 10000 con-
igurations articulaires échantillonnées aléatoirement.

La compliance Cartésienne du robot lie directement les eforts statiques appliqués à
l’efecteur, aux déplacements (imprécisions liées à la lexibilité mécanique) de l’efecteur,
pour une coniguration articulaire donnée.

On peut déinir un certain nombre de critères d’imprécision. Le vecteur de dé-
placement issu de Eq. (4.27) est divisé en une composante translationnelle et une
composante rotationnelle que l’on peut exploiter séparément.

Pour le LBR iiwa, des simulations sur 10000 conigurations articulaires et un ef-
fecteur de taille classique montrent que les déplacements Cartésiens de cet efecteurs
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Figure 4.9.5: Quelques mesures d’imprécision du TCP pour un efort statique tcpf =
[
0(N) 0(N) −100(N) 0(Nm) 0(Nm) −5(Nm)

]⊺ appliqué au TCP en fonction des
deux paramètres de redondance β (angle de coude) et atcp (orientation de l’outil autour de
ztcp). La tolérance pour le déplacement dans le plan δxy =

√

δx2 + δy2 est δxymax
= 0.4,

celle pour le déplacement dans la direction indiquée par ztcp, δz est δzmax = 1 mm, celle
pour le défaut d’orientation de l’axe ztcp, δθz est δθmax

= 0.3◦. Un ensemble de positions de
l’espace de redondance peut être sélectionné pour se conformer à toutes les tolérances décrites
ci-dessus (igure en bas à droite).
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4.9.2 Optimisation de la capacité d’application d’effort

De la même manière, on peut s’intéresser à la capacité qu’a un robot sériel à contrer
un efort extérieur donné. Cette problématique est intéressante dans la mesure ou la
puissance (et donc les couples articulaires) des robots collaboratifs est bridée pour des
raisons de sécurité, alors que les procédés (tels que le perçage, l’usinage, ou le rivetage)
nécessitent toujours la même intensité d’interaction outil-matière. Dans le contexte
de l’utilisation d’un système redondant vis à vis d’une tâche de positionnement, il
peut être intéressant d’observer les variations de cette capacité d’application d’efort
pour l’ensemble des solutions articulaires disponibles en se conformant à la réalisation
de cette tâche.

La déinition que nous exploitons et développons dans cette thèse, est celle de
l’index de capacité d’application d’efort (ou FCI pour Force Capacity Index). Le
FCI correspond, pour une coniguration articulaire q donnée, une action mécanique
−f donnée et un TCP donné, au multiplicateur (réel) minimal λsat ∈ R

+ de l’action
mécanique qui fait saturer en efort au moins un des actionneurs du robot. Ce multi-
plicateur correspond aussi à l’intensité maximale de l’action mécanique qui est souten-
able pour le système.

Dans une coniguration q donnée et pour une action mécanique −λf (λ ∈ R
+) à

contrer au niveau de l’efecteur, les n actionneurs d’un robot sériel doivent produire
chacun un couple τi que l’on peut synthétiser dans un vecteur τ = [τ1 . . . τn]

⊺. Ce
vecteur est la somme τ = τ g + τ λf d’un vecteur τ g = [τg,1 . . . τg,n]

⊺ regroupant les
couples nécessaires pour lutter contre l’efet gravitationnel dans la coniguration q,
et d’un vecteur τ λf = [τλf ,1 . . . τλf ,n]

⊺ regroupant les couples nécessaires pour lutter
contre une force −λf au niveau de l’efecteur, dans la coniguration q. Cette somme
peut aussi s’écrire τ = τ g + λτ f . Une représentation de ces couples est visible en
Fig. 4.9.6 pour un robot à 3 degrés de liberté. Le polytope de couples articulaires
correspond au volume contenant l’ensemble des vecteurs couples que peut produire
le robot (l’actionneur i produit un couple τi ∈ [τi,l, τi,u]).

Le FCI peut être calculé en déterminant, pour chaque actionneur i, l’intensité λi de
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Figure 4.9.7: Intensité saturantes des actionneurs λ1, λ2 and λ3 (traits ins) et intens-
ité saturante λsat (trait épais) d’un robot plan à 3 degrés de liberté efectuant une tâche
de positionnement 2D de son organe terminal (induisant une redondance paramétrable par
θ ∈ [−π, π]) et contrant un efort −f .

à 2 paramètres. La redondance de positionnement de l’iiwa, vis à vis d’une tâche à
symétrie de révolution, consiste en une redondance lié à l’angle de coude β (Fig. 4.8.2)
et une redondance d’orientation de l’efecteur autour de l’axe de symétrie de révolution
atcp (Fig. 4.8.3). Les variations du critère de capacité d’efort λsat sont visibles dans
la Fig. 4.9.8. On peut y observer les postures du robot associée à 3 positions dans cet
espace de redondance pour lesquelles la capacité d’application d’efort est minimale
ou maximale.
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robots sont traditionnellement amenés à fonctionner dans des enceintes fermées, où
la moindre intrusion humaine doit les stopper immédiatement. Un des objectif de
l’usine agile est d’apporter de la modularité, de la reconigurabilité aux systèmes
productiques. Cette lexibilité n’est possible qu’en augmentant l’adaptabilité, et donc
l’autonomie de ces systèmes. L’arrivée sur la scène industrielle des robots collaboratifs
est inscrite dans ce désir d’agilité. Cependant, la présence d’humains autour des
cobots multiplie à l’ininie la variété des topologies environnementales possibles. La
programmation hors ligne des robots, qui est le moyen traditionnel de planiication
des mouvements de ces systèmes, n’est pas un outil adéquat dans cette recherche de
lexibilité, car elle est incapable de prédire toutes les topologies possibles de l’espace
dans lequel évolueraient les systèmes, et encore moins de planiier des trajectoires
pour toutes les situations pouvant survenir.

L’enjeu de cette partie est de présenter une stratégie de planiication de mouve-
ments, appelée RH-DRM (Receding Horizon Dynamic RoadMaps) qui soit adaptée
aux environnements dynamiques. Cette approche se base sur les Dynamic Roadmaps
(DRM) [139], elles-mêmes basées sur les Probabilistic Roadmaps (PRM) [121], ainsi
que sur une adaptation de l’algorithme A∗ [135] pour les graphes à intervalles. Les
PRM et ses déclinaisons font partie de la grande famille des méthodes basées sur
l’échantillonnage de l’espace des conigurations (sampling based methods), qui comptent
aujourd’hui parmi les méthodes les plus populaires de planiication de mouvements.

4.10.2 Présentation des outils à la base du RH-DRM

4.10.2.1 PRM et DRM

Le principe de base des PRM est d’une part un apprentissage discret des mouvements
libres dans l’espace articulaire (phase hors ligne), et d’autre part, l’exploitation de cet
apprentissage pour générer des trajectoires entre des conigurations libres (phase en
ligne). La phase d’apprentissage correspond à la création d’un graphe de connectivité
de l’espace des conigurations du robot. Le graphe de connectivité se présente sous la
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de connectivité est donc amené à changer au cours du temps pour s’adapter aux
obstacles mobiles. Les DRM (voir Algo. 7) permettent de rendre compte de ces
changements en modiiant eicacement la topologie du graphe de connectivité en
fonction de l’occupation de l’espace par des obstacles mobiles. Ceci est rendu pos-
sible en créant pendant la phase hors ligne, en parallèle de la création du graphe de
connectivité, un mapping entre l’espace occupé par le robot dans chaque nœud et
segment du graphe. Ce mapping se présente sous la forme d’une grille d’occupation
de l’espace pour laquelle chaque élément (pixel ou voxel) contient les références de
nœuds ou de segments du graphe qui les concernent directement. Dans une conigur-
ation associée à un nœud (ou à un segment), si l’enveloppe externe du robot occupe
une partie d’un pixel/voxel alors la référence de ce nœud ou de ce segment est associé
au pixel/voxel. Une illustration de ce processus est visible en Fig. 4.10.2. Lors de
la phase en ligne, lorsqu’un obstacle dynamique occupe partiellement un pixel/voxel,
tous les nœuds et segments associés à ce pixel/voxel sont retirés temporairement du
graphe de connectivité. Ceci permet de ne conserver que des nœuds et segments pour
lesquels aucune collision avec l’obstacle n’est possible. Le calcul du chemin le plus
court est efectué sur cette version dégradée du graphe de connectivité.

4.10.2.2 A∗

Lors de la phase en ligne, le calcul du chemin le plus court dans le graphe doit être
efectué très rapidement. Une méthode connue pour la recherche de chemin dans
les graphes pondérés statique est l’algorithme A∗ (Algo. 8). Cette méthode dérive
directement de la méthode de Dijkstra (recherche uniforme), qui consiste à explorer
le graphe de proche en proche à partir du nœud de départ, jusqu’à arriver au nœud
de destination. Dans cette méthode, à chaque nœud est associé le coût du chemin le
plus court trouvé pour s’y rendre à partir du nœud de départ. Ce coût est contenu
dans une variable appelée g. Initialement, tous les nœuds ont une valeur de g ininie
sauf le nœud de départ, pour qui g = 0. à chaque itération de l’algorithme, le
nœud ayant le plus petit score de g est sélectionné, et l’algorithme procède à son
”expansion”. La phase d’expansion consiste à mettre à jour la valeur de g des voisins

209



inputs :
• scGeom // The static scene geometry
• roGeom // The robot geometry
• occGrid // An occupancy grid
• nNodes // The number of nodes
• kNeighs // The number of connexions sought from each node

output: A ”Dynamic RoadMap” consisting in :

• G(N , E) // a graph (G ) comprised of nodes (N) and edges (E)
• occNodes // mapping between N and occGrid
• occEdges // mapping between E and occGrid

1 Procedure contructDRM(scGeom, roGeom, occGrid, nNodes, kNeighs)
2 N ← ∅ ;
3 E ← ∅ ;
4 occNodes ← ∅ ;
5 occEdges ← ∅ ;
6 configs ← generateFreeConfigs(nNodes, scGeom, roGeom) ;
7 N ← createNodes(configs);
8 foreach c ∈ N do
9 occupiedP ixels ← pixelsOccupiedBy(c, roGeom, occGrid) ;

10 linkNodeAndPixels(occNodes,c, occupiedP ixels) ;
11 cNeighs ← getKNearestNeighbours(c,N \ {c},kNeighs);
12 foreach n ∈ cNeighs, that has not yet been connected to c do
13 edgeCN ← createEdgeConnecting(c,n);
14 [isEdgeFree, sweptP ixels]← sweepEdge(edgeCN , scGeom, roGeom,

occGrid);
15 if isEdgeFree then
16 E ← E ∪ {edgeCN} ;
17 linkEdgeAndPixels(occEdges,edgeCN, sweptP ixels) ;
18 end
19 end
20 end
21 G ← G(N , E) ;
22 return [G, occNodes, occEdges] ;
23 end

Algorithm 7: Construction d’une Dynamic roadmap (DRM). Les modiications
par rapport à l’algorithme de construction du PRM (Algo. 2) sont montrés en bleu
foncé.
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du nœud sélectionné pour lesquels le chemin démarrant au nœud de départ, passant
par le nœud sélectionné, et allant jusqu’à eux est plus court (i.e. a un coût plus
faible). L’algorithme s’arrête quand le nœud de destination est sélectionné. Cette
méthode, également appelée recherche uniforme, explore le graphe, comme son nom
l’indique, de manière uniforme. Elle étend la recherche de manière uniforme autour
du nœud de départ, en explorant toutes les options de chemins existants prenant
racine au nœud de départ, et ayant un coût similaire. L’algorithme A∗, en revanche,
biaise l’étape de sélection en choisissant le nœud non pas uniquement en fonction de
sa distance au nœud de départ, mais également en fonction d’un coût estimé pour
rejoindre le nœud de destination. Cette valeur estimée du coût pour rejoindre le
nœud de destination est appelée valeur d’heuristique; celle-ci est calculée à l’étape
d’initialisation de l’algorithme et est stockée dans la variable h.
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input :
• G(N , E) // a graph (G) comprised of nodes (N) and edges (E)
• sStart // the reference to the starting node
• sEnd // the reference to the destination node

output: path // an ordered list of node references

1 Procedure AStar(G(N , E), sStart, sEnd)
2 forall s ∈ N do
3 s.g ←∞;
4 s.bp← ∅;
5 s.h← heuristicDistanceBetween(s, sEnd);
6 end
7 sStart.g ← 0;
8 open← ∅, closed← ∅;
9 add(sStart,open);

10 loop
11 s← pop(open);
12 if s = sEnd then break loop ;
13 else if s = ∅ then return ∅ ;
14 foreach n ∈ neighbours(s, E), n ̸∈ closed do
15 costToNThroughS ← s.g + cost(s, n, E);
16 if costToNThroughS < n.g then
17 n.g ← costToNThroughS;
18 n.bp← s;
19 if n ̸∈ open then add(n,open) ;
20 end
21 end
22 remove(s,open),add(s,closed);
23 end
24 s← sEnd;
25 rpath← ∅, append(s, rpath);
26 while s ̸= sStart do
27 p← s.bp;
28 s← p;
29 append(s, rpath);
30 end
31 path← reverse(rpath);
32 return path;
33 end
34 Procedure pop(open)
35 s← argminc∈open(c.g + c.h) ;
36 return s;
37 end

Algorithm 8: L’algorithme A∗ pour la recherche de chemin dans un graphe pondéré.
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4.10.3 Le besoin d’anticipation dans la planification de mouvements

Les DRM fournissent un moyen eicace de réagir à des changements dans l’environnement.
Par rapport aux PRM, la phase hors ligne de construction du graphe de connectivité
est plus onéreuse. Elle requiert des tests de collisions avec chaque pixel/voxel pour
chaque nœud et segment du graphe. Fort heureusement, cette phase se déroule hors
ligne, et n’afecte que très peu l’eicacité de l’algorithme quand il est réellement util-
isé. La phase en ligne du DRM, par rapport à celle du PRM, est peu impactée, une
fois que l’occupation des obstacles est déterminée. L’opération consistant à rendre
indisponibles les nœuds et segments du graphe concernés par les obstacles est très
simple et rapide. La stratégie du DRM est donc très intéressante. Elle permet de
prendre en compte les obstacles mobiles pendant la phase de planiication sans aug-
menter de beaucoup le coût de l’algorithme. Elle conserve tous les avantages des
PRM, et permet plus.

Une limitation majeure du cadre des DRM, cependant, est le fait que les chemins
planiiés ne prennent en compte l’occupation des obstacles qu’à un instant unique, et
ignorent leur mouvement. Cela revient à planiier des chemins comme si les obstacles
dynamiques restaient immobiles. Les conigurations futures du système sont planiiées
sans prendre en compte l’occupation future de l’espace par les obstacles.

Comme pour beaucoup de méthodes basées sur l’échantillonnage de l’espace des
conigurations, l’approche des DRM est globale vis à vis de l’espace. Elle a la capacité
de planiier des chemins globalement (d’un point de vue spatial) au lieu de ne réagir
que par rapport à ce qui se trouve dans l’environnement proche. Cependant, le cadre
des DRM planiie localement vis à vis du temps, puisqu’il ne regarde que l’occupation
actuelle (i.e. locale vis à vis du temps) des obstacles. Cette hypothèse de ne prendre
en compte l’aspect temporel que de manière locale est justiiée si la vitesse de l’agent
est très grande par rapport à celle des obstacles. Cependant, dans notre cas, les
obstacles mobiles sont des humains ou des homologues robotiques. Par conséquent,
les vitesses impliquées sont relativement proches les unes des autres, et les obstacles
ne peuvent être considérés comme immobiles.
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La Fig. 4.10.3 illustre des situations dans lesquelles l’anticipation est nécessaire
mais pas utilisée pour planiier des mouvements. Ces exemples suggèrent ce que
l’utilisation des dynamic roadmaps dans des environnements dynamiques pourrait
provoquer. Des situations de coincements (deadlocks) pourraient facilement sur-
venir si les mouvements étaient planiiés sans prendre en compte le mouvement des
obstacles. Des situations dangereuses pourraient aussi survenir, pouvant provoquer
des collisions, de la casse ou des blessures.

En règle générale, l’anticipation devient obligatoire pour la planiication de mouve-
ments dès lors que les mouvements des obstacles ont une vitesse relative non néglige-
able par rapport à celle de l’agent. La prédiction des mouvements permet même de
planiier des trajectoires dans des environnements pour lesquels les obstacles ont des
vitesses plus importantes que l’agent lui-même.

4.10.4 Receding Horizon Dynamic RoadMaps (RH-DRM)

La stratégie présentée ici est appelée Receding Horizon Dynamic RoadMaps (RH-
DRM). Elle étend le concept des DRM en utilisant une anticipation de l’occupation
de l’espace sur un horizon de temps. Les avantages des DRM sont conservés. La
méthode est générique aux les robots mobiles ou/et sériels, utilise toujours une re-
présentation discrète permettant de lier l’espace d’évolution des obstacles et celui des
conigurations, est eicace et obéit à des règles simples et sensées. Cette nouvelle
stratégie planiie un trajet (chemin géométrique et timing) permettant d’arriver au
plus tôt à la destination sans entrer en collision avec des obstacles dynamiques (dont
la trajectoire est estimée). Le trajet peut donc potentiellement admettre des arrêts
ainsi que des passages multiples dans une coniguration, ce qui est impossible avec les
algorithmes présentés ci-avant.

La phase hors ligne des RH-DRM est exactement la même que celle des DRM. le
graphe de connectivité est construit en parallèle de la grille d’occupation, et des liens
qui existent entre chaque élément de cette grille et les conigurations associées au
nœuds/segment du graphe. A partir d’une anticipation en ligne des mouvements des
obstacles sur un horizon de temps futur, l’anticipation d’occupation des pixels/voxels
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est calculée, ce qui permet enin de prédire la topologie du graphe de connectivité.

Les RH-DRM se basent sur une représentation particulière du graphe de connectiv-
ité, dont la topologie est variable et pour lesquels la traversée d’un segment n’est pas
immédiate. Un type de graphe baptisé dans ce rapport ”graphe à intervalles de début
de traversée” (ou ”step-in interval graph”, en anglais), est utilisé pour représenter de
manière succincte le problème (voir Section 4.10.4.1).

En utilisant ce graphe, l’objectif va être de trouver le chemin permettant d’arriver
au plus tôt à un nœud de destination, à partir d’un nœud de départ. Cette recherche
de chemin est efectuée grâce à un algorithme inspiré de la méthode A∗.

4.10.4.1 Graphes à intervalles de début de traversée

Un période de disponibilité d’un nœud/segment garantit qu’aucune collision n’aura
lieu sur ce nœud/segment pendant cet intervalle de temps (voir Fig. 4.10.4 a)). La
décision d’emprunter ou non un segment doit garantir la disponibilité du segment
pendant toute sa traversée. Par conséquent, on peut commencer à traverser un seg-
ment entre l’instant où ce segment devient disponible, et le dernier instant auquel il
est disponible auquel on a retranché la durée de traversée. Cette nouvelle disponibilité
est baptisée ”disponibilité de début de traversée”. Elle est à la base de la construction
des graphes à intervalles de début de traversée (voir Fig. 4.10.4 b)). On modiie donc
les intervalles de disponibilité des segments pour prendre en compte cette contrainte.

Une représentation compacte des graphes à intervalles de début de traversée est un
graphe G(N , E ,D), composé d’un ensemble N des nœuds du graphe, d’un ensemble E
des segments du graphe, et d’un ensemble D = {t0, . . . , tN0

} des dates de changement
de connectivité de début de traversée. Chaque nœud n ∈ N est un N0-uplet logique
regroupant la disponibilité du nœud pendant tous les intervalles [ti, ti+1[, i ∈ J0 ..N0−

1K. Chaque segment e ∈ E , en plus de contenir les références des nœuds qu’il lie,
est aussi un N0-uplet logique regroupant la disponibilité du nœud pendant tous les
intervalles [ti, ti+1[, i ∈ J0 ..N0 − 1K.
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Une représentation équivalente que nous préférons pour notre explication est une
succession de N0 graphes statiques, qui sont valables chacun pendant un intervalle de
temps [ti, ti+1[, i ∈ J0 ..N0 − 1K diférent. Chaque nœud de ces graphes correspond
à une instance temporelle des nœuds de N , et sera valable uniquement pendant un
intervalle [ti, ti+1[. On appellera ces objets des instances temporelles de nœuds (ITN).
Chacun de ces graphes peut être représenté par une matrice d’adjacence de début
de traversée A[ti,ti+1[. Cette matrice décrit la connectivité de début de traversée de
chaque nœud et segment pendant l’intervalle [ti, ti+1[. Les termes a

[ti,ti+1[
k,l : k, l ∈

J1 ..NK2 & k ̸= l de cette matrice (termes non diagonaux) correspondent à la valeur
de la disponibilité de début de traversée du segment connectant le nœud k au nœud
l pendant la période [ti, ti+1[. Les termes a

[ti,ti+1[
k,k : k ∈ J1 ..NK correspondent à la

disponibilité du nœud k pendant la période [ti, ti+1[.

4.10.4.2 Calcul du chemin permettant d’arriver au plus tôt

La stratégie de détermination du chemin permettant d’arriver au plus tôt utilise
une version modiiée de l’algorithme A∗ que l’on trouve en Algo. 9. Cette version
est adaptée aux graphes d’intervalles de début de traversée. Dans cet algorithme,
on peut accéder à l’instance temporelle st de l’intervalle [ti, ti+1[ d’un nœud s à un
instant ta ∈ [ti, ti+1[ par l’intermédiaire de la fontion getTemporalInstance(s,ta).
L’implication du temps dans le problème opère des changements fondamentaux dans
le fonctionnement de l’algorithme, car une instance temporelle de nœud (ITN) peut
être quittée à partir du moment où elle est atteinte, et jusqu’à ce que son intervalle
de temps correspondant soit révolu. Par conséquent, l’expansion d’une ITN st, qui
est atteinte à l’instant ta ∈ [ti, ti+1[, se fait vers toutes les instances temporelles des
nœuds qui sont reliées à st pendant [ti, ti+1[ (qui correspondent aux nœuds situés au
bout des segments partant de st dont la traversée peut commencer entre ti et ti+1),
et qui sont atteignables en partant de s entre les instants ta et ti+1 (exclu).

Une ITN possède plusieurs attributs :

st.id : La référence s du nœud qui est associé à l’instance temporelle st.
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st.l : La limite inférieur (ti) de l’intervalle qui est associé à st.

st.u : La limite supérieure (ti+1) de l’intervalle qui est associé à st.

st.g : Le coût du chemin arrivant le plus tôt (i.e. la durée du meilleur trajet) trouvé
jusque-là, commençant au nœud initial au temps t = 0 et inissant en st.

st.bp : La référence à la ITN qui est le meilleur parent de st (qui se trouve également
à une étape en arrière du meilleur trajet trouvé jusque-là se terminant en st).

st.h : La valeur de la variable d’heuristique de st, qui est la même pour toutes
les instances temporelle de st.id. Cette valeur correspond à une estimation
optimiste de la durée du trajet entre st.id et sEnd.

Initialisation : L’algorithme commence par initialiser les ITN de chaque nœud de
N pour chaque intervalle de D. L’attribut g de chaque instance est mis à ∞, sauf la
première instance temporelle de sStart pour laquelle g = 0. Les valeurs des variables
d’heuristiques (h) sont calculée à la ligne 3. Enin, la première instance temporelle
associée à sStart est ajoutée à la liste des instances temporelles prometteuses open

(ligne 9).

Exploration : Ensuite, l’algorithme entre dans une boucle ininie dans laquelle il
explore le graphe. A chaque bouclage, l’algorithme sélectionne l’ITN qui est la plus
prometteuse, et étend sa recherche vers les voisins vers lesquels il peut aller pendant
l’intervalle de début de traversé correspondant.

Sélection : L’algorithme commence son bouclage par sélectionner l’ITN contenue
dans la liste open qui est la plus prometteuse (ligne 11). La fonction pop trouve
l’ITN st contenue dans open pour laquelle la somme st.g + st.h est minimale (Ligne
lin:popDefFrancais). Cette somme additionne la durée du meilleur trajet trouvé entre
sStart et st (st.g) avec l’estimation optimiste de la durée nécessaire pour joindre st.id
à sEnd (st.h). Par conséquent, cette somme correspond à une estimation optimiste
de la durée du trajet partant de sStart à t = 0, et allant à sEnd, en passant par
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input :
• G(N , E ,D) // a step-in interval graph (G) comprised of nodes (N), of

edges (E) and dates set (D).
• sStart // the reference to the starting node
• sEnd // the reference to the destination node

output: path // an ordered list of nodes associated to a timing

1 Procedure AStarIntervalGraph(G(N , E ,D), sStart, sEnd)
2 forall s ∈ N do
3 heur ← heuristicDistanceBetween(s, sEnd);
4 forall [ti, ti+1[∈ D do
5 createTemporalInstance(s,[ti, ti+1[,heur,E);
6 end
7 end
8 open← ∅, closed← ∅;
9 st ← getTemporalInstance(sStart, 0), st.g ← 0, add(st,open);

10 loop
11 st ← pop(open);
12 if st.id = sEnd then break loop;
13 else if s = ∅ then return ∅;
14 foreach n ∈ stepInNeighboursOf(st,E) do
15 costEdge← cost(st.id, n, E);
16 firstArrival← st.g + costEdge, lastArrival← st.u+ costEdge ;
17 t← firstArrival;
18 while t < lastArrival do
19 nt ← getTemporalInstance(n, t) ;
20 if nt ̸∈ closed, t < nt.g then
21 nt.g ← t;
22 nt.bp← st;
23 if nt ̸∈ open then add(nt,open);
24 end
25 t← nt.u;
26 end
27 end
28 if canStayIn(st) then expandToNextTemporalInstance(st);
29 remove(st,open), add(st,closed);
30 end
31 rpath← ∅, append(st, rpath);
32 while st.id ̸= sStart do
33 pt ← st.bp;
34 st ← pt;
35 append(st, rpath);
36 end
37 path← reverse(rpath) , return path ;
38 end

Algorithm 9: Une variation de l’algorithme A∗ adapté pour les graphes à intervalles
de début de traversée pour lequel la traversée des segment n’est pas instantanée.
Les modiications par rapport à Algo. 1 sont montré en bleu foncé.
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1 Procedure createTemporalInstance(s,[ti, ti+1[,heur,E)
2 st ← ∅, st.id← s, st.l← ti, st.u← ti+1, st.h← heur, st.g ←∞, st.bp← ∅;
3 linkSandSt(s,st);
4 end
5 Procedure pop(open)
6 st ← argminct∈open(ct.g + ct.h);
7 return st;
8 end
9 Procedure expandToNextTemporalInstance(st)

10 if st.u ̸=∞ then
11 ct ← getTemporalInstance(st.id,ct.l);
12 ct.g ← ct.l;
13 ct.bp← st;
14 if ct /∈ open then add(ct,open);
15 end
16 end

Algorithm 10: Implementation des procédures createTemporalInstance, pop et
expandToNextTemporalInstance.

st.id.

Expansion : Ensuite, chaque voisin de st dont le segment associée peut commencer à
être traversé est identiié à la ligne 14. Les dates de la première arrivée (firstArrival)
et de la dernière arrivée (lastArrival) à ce voisin n, en prenant un trajet commençant
à sStart à t = 0 et arrivant à n en passant par st sont calculées (ligne 16). Puis, toutes
les instances temporelles de ce nœud dans l’intervalle [firstArrival, lastArrival[, sont
ajoutées à open si elle ne l’ont pas déjà été. Leur attribut g et leur meilleur parent
bp sont mis à jour si le trajet passant par st fournit une meilleure option de trajet.

Après avoir fait l’expansion à tous ses voisins, un expansion inale de l’ITN st est
efectuée vers l’instance temporelle de st.id correspondant à l’intervalle suivant (ligne
28). Pour cette instance temporelle, le coût du meilleur chemin devient donc st.u (i.e.
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st.u correspond à la borne supérieure de validité de st, et aussi à la borne inférieure
de l’instance temporelle de l’intervalle suivant), et le meilleur parent devient st. Si
un autre chemin permettait d’arriver en même temps dans cette instance temporelle,
on choisit quand même de mettre à jour le parent pour qu’il devienne st. Cette
priorisation a un efet sur l’endroit où l’agent choisira de faire ses temporisations
quand deux trajets optimums équivalents possèdent le même chemin géométrique et
un timing diférent. Cette subtilité force l’agent à avancer le plus loin possible dans
son chemin géométrique avant de temporiser.

Critères d’arrêt : La boucle s’arrête dès que pop ne renvoie aucun nœud (ligne 12)
où quand il sélectionne une instance temporelle de sEnd (ligne 13). Dans le premier
cas, cela signiie que la liste open est vide, et qu’il n’existe plus de candidat pour
étendre la recherche. Par conséquent, il n’existe aucune solution permettant de lier
sStart à sEnd. Dans le second cas, la sélection d’une instance de sEnd implique
qu’un trajet reliant sStart à sEnd peut être retrouvé en remontant de parent en
parent à partir de sEnd.

Reconstruction du trajet : Quand la condition d’arrêt de la ligne 13 est atteinte,
le trajet peut être reconstruit (lignes 31-37). L’instance temporelle de sEnd (qui était
stockée dans st au dernier appel de pop) est ajoutée à une liste rpath (pour ”reversed
path”). Ensuite, l’algorithme exploite la chaîne des meilleurs parents, en partant de
cette instance temporelle, pour remonter jusqu’à la première instance temporelle de
sStart. En inversant l’ordre des instances temporelle stockées dans rpath, le trajet
optimal vis à vis de la date d’arrivée est retrouvé. L’emploi du temps des points de
démarrage et d’attente dans les nœuds peut facilement être calculée en comparant
les valeurs de g de deux nœuds successifs avec le coût de la traversée du segment les
reliant.

Un exemple d’utilisation de cet algorithme est décrit dans le corps principal de la
thèse à la Section 4.5.
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