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Introduction

Spherodization is a microstructural phenomenon occurring in α/β titanium
alloys during thermomechanical treatment, which may be described as fol-
lows. Starting from an initial lamellar microstructure of α colonies inside
former β grains, a globular morphology of the α phase can be obtained by
applying hot deformation and subsequent annealing. In the case of α/β ti-
tanium alloys, the spheroidized microstructure exhibits higher strength and
ductility. For that reason, this phenomenon received considerable attention
in the literature and industry.

α/β titanium alloys have various applications in many industrial fields
such as aeronautics and biomechanics. The importance of spheroidization
lies in the concept of microstructural control, and in turn of the alloy
properties. Simulating microstructural evolution would allow saving time
and would avoid going through expensive experiments to design processing
routes for getting better or optimum material properties. In order to develop
models for simulating the evolution of the microstructure, it is important
to get first an insight onto the microstructural changes that the α/β tita-
nium alloys get through thermomechanical treatment. Understanding the
phase transformation and diffusion mechanisms occurring in the microstruc-
ture during thermomechanical treatment is essential for proposing physically
based numerical methods that will efficiently and realistically simulate the
involved phenomena.

There are several papers in literature describing spheroidization based on
experimental observations but very little has been done towards modeling it.
The phenomenon of spheroidization has been reported to occur in different
stages and with the contribution of many different mechanisms. Long term
annealing is not enough to break lamellar structures down and observe shape
evolution, but deformation is needed.

Provided the complexity of the phenomenon, it would not be possible
to take all the contributing mechanisms into account to build a complete
model within the frame of a PhD work. The focus of the present work has
therefore been placed on the interfacial kinetics mechanisms leading lamellae
splitting, during isothermal post-deformation annealing. This is a necessary
step before going into more complete modeling, where crystal plasticity and
diffusive phase transformation mechanisms should also be considered.
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Layout of the thesis

The thesis is organized in four chapters:

• Chapter 1 first covers a literature review regarding spheroidization
phenomenon. Information regarding the involved mechanisms are pre-
sented. Furthermore, a mathematical description of interfacial kinetics
leading to α lamellae splitting is detailed.

• In chapter 2, an experimental study/analysis of results coming from
hot compression tests with Ti-64 material is detailed.

• In chapter 3, a full field model based on a Finite Element/ Level Set
framework simulating the α lamellae splitting is detailed. Two differ-
ent approaches are considered and tested. Academic cases validating
the proposed methodologies are presented.

• In chapter 4, first simulations on real microstructures extracted from
experimental images using the introduced numerical framework are
presented and discussed.
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Chapter 1

Literature Review

Résumé en français

Dans ce chapitre, une revue de la littérature concernant le phénomène de
globularisation dans les alliages des titanes α/β est présenté. Les microstruc-
tures lamellaires des alliages de titane α/β sont constituées de colonies de
lamelles de phase α parallèles qui se développent dans les grains β au cours
de leur refroidissement. La globularisation est un phénomène qui se produit
lors de la compression à chaud et du traitement thermique subséquent. Selon
la littérature, la globularisation se fait en deux étapes: les lamelles se subdi-
visent d’abord en segments plus courts, puis ces segments globularisent. La
subdivision des lamelles se fait au niveau des sous-joints formés au cours de
la déformation à chaud. Lors de traitements thermiques prolongés, les plus
gros globules de phase α grossissent au détriment des plus petits.

Tous les mécanismes prédominants de ce phénomène, qui ont été étudiés
dans la littérature, sont analysés en détail dans ce chapitre. La plasticité
cristalline est responsable de la formation de sous-joints dans les lamelles α
au cours de déformation à chaud. La subdivision de lamelles de phase α est
la conséquence des mécanismes simultanés de migration des interfaces α/β
et interfaces α/α des sous-joints. De plus, le grossissement des particules de
phase α est produit de diffusion volumique.

En ce qui concerne la partie modélisation, dans ce chapitre l’accent a été
mis sur le modèle mathématique pour la description des deux mécanismes
de migration des interfaces qui conduisent à la subdivision des lamelles et à
leur globularisation.
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1.1 Literature review on the physical description
of the phenomenon of spheroidization in α/β
titanium alloys

1.1.1 Titanium alloys and the studied Ti-64 alloy

Titanium alloys are materials with high strength, fatigue and corrosion re-
sistance, low density and good ductility. Due to these characteristics, they
have preferential use in the aerospace domain, biomedical engineering and
energy/power industry [1]. Pure titanium exhibits an allotropic phase trans-
formation at 882 ◦C from a hexagonal close packed crystallographic struc-
ture (HCP, α phase, stable at low temperature) to a body centered cubic
crystallographic structure (BCC, β phase, stable at high temperature).

Microstructural evolution in titanium alloys is strongly dependent on
this allotropic transformation and on the alloying elements, which govern
the stability of both phases. In titanium alloys, the β phase can indeed be
partially stabilized at low temperatures and the equilibrium volume fractions
of α and β phases vary with temperature. The temperature at which a
specific alloy becomes entirely composed of β phase is called β-transus. The
β-transus temperature is a value relative to which the thermomechanical
processing conditions are chosen [1, 2].

Commercial titanium alloys are classified conventionally into three differ-
ent categories α, β and α/β alloys, based on the amount of β phase retained
at room temperature.

• β and near β alloys have large to moderate amounts of β-stabilizing
elements such as vanadium, molybdenum, chromium and iron. Their
β transus temperature is typically in the range of 700 ◦C to 850 ◦C [1].

• The group of α alloys contain no or low volume fraction of β phase
(2-5 vol %) at room temperature [1].

• The α/β titanium alloys contain a combination of α and β stabilizing
elements. The two phases are coexisting at room temperature. The
β transus temperatures of α/β titanium alloys are typically between
950 ◦C and 1050 ◦C [1].

The existence of two different crystal structures and the corresponding
phase transformation are the main reasons of the appearance of a variety of
properties in titanium alloys. The deformation temperature, the tempera-
ture of thermal treatments, as well as the cooling rates, are very important
factors in the control of the final microstructure [2]. There are several metal-
lurgical phenomena that take place in titanium alloys during thermomechan-
ical processing and play a major role in controlling the final microstructure.
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Solid state phase transformations, recrystallization and grain growth phe-
nomena in single or two-phase alloys, spheroidization and coarsening of α
phase in α/β alloys after hot forging are some examples of these phenomena.

Materials science is an extended domain that ranges from the micro-
scopic atomic behavior of the material to the macroscopic mechanical be-
havior. The deep understanding of microstructural evolution is a necessity
in many engineering fields, nowadays. Thanks to the microstructural con-
trol, structures with enhanced properties and desirable features can be built.
This PhD work is focused on the phenomenon of spheroidization of α phase
during thermomechanical treatment of α/β titanium alloys, with the Ti-64
alloy as a model material.

Ti-64 is the mostly used titanium alloy in industry. Its low density,
high corrosion resistance and good strength-ductility balance makes it very
popular for numerous industrial applications such as high-performance au-
tomotive parts, marine applications, medical devices and most of all in air-
craft structural parts [1–6]. The mechanical properties of the alloy are very
dependent on its microstructure. The chemical composition of Ti-64 or Ti-
6Al-4V or TA6V as it is also denoted, contains ∼6 wt%Al and ∼4 wt%V
and small amounts of other elements like Fe, Si, Zr, C (balance Ti). Ti-
64 microstructural morphology builds up by a series of thermomechanical
processing steps [1–9]. Thermomechanical processing must be optimized to
obtain a suitable microstructure. A uniform equiaxed microstructure of pri-
mary α phase inside a matrix of transformed β offers a good compromise
of mechanical properties. After casting, the produced ingots are typically
hot-worked and heat-treated above the β transus temperature (i.e. within
the single β phase domain) to eliminate casting inhomogeneities. After this
stage, during cooling from the β phase region, the α phase forms. Depending
on the cooling rate, the α phase appears in the form of small equiaxed grains
at β grain boundaries and triple junctions (called primary α phase), or in
the form of α lamellae colonies, or in the form of very fine acicular marten-
sitic α phase inside β matrix [1–9]. As a general trend, the microstructure
goes finer when increasing the cooling rate.

The phenomenon of spheroidization consists, at stable phase proportions,
in the breaking of initial lamellar microstructures during deformation and
subsequent heat treatment in order to obtain a globular α phase form that
finally gives enhanced strength and ductility. For this PhD work, the Ti-64
material was provided with a lamellar microstructure. In the following sec-
tion, more informations are provided regarding the formation of α colonies
inside former β grains.

1.1.2 Lamellar α− β microstructures

The microstructure of α/β titanium alloys is basically described by the
size, the volume fraction and the arrangement of the two phases α and β.
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Microstructures with α lamellae are generated by phase transformation from
β phase, while cooling down from the β domain. When the temperature falls
below the β transus temperature, α phase nucleates at grain boundaries and
then grows as lamellae into the prior β grain, with a thickness which depends
on the cooling rate [1–9] . The initial α phase nucleation at the β/β grain
boundaries leads to a more or less continuous α layer along boundaries, that
is often called αGB. Prior β grains can be as large as several millimeters.
Sets of parallel lamellae (called α colonies) grow into the same direction
inside β grains following a specific orientation relationship (Fig. 1.1) [1].

Figure 1.1: Backscattered electron micrograph showing α lamellae colonies
in former β grains in a Ti-64 sample (LX2 as received material).

The β to α phase transformation is such that the most densely packed
planes of the BCC β phase {110} transform into the basal plane {0001} of
the hexagonal α phase. Within those planes the dense directions < 111 >β
become < 112̄0 >α. This orientation relationship between β and α phase is
referred to as the Burgers relationship [1, 2].

It has been shown that for an α/β two phase mixture, the Burgers orien-
tation relationship between the α and β phases provides an easy slip trans-
mission across the α/β interface since the respective close packed planes
{0001}α/{110}β and the close packed directions < 112̄0 >α /< 111 >β are
parallel [1–3].

In a β grain there are six {110}β planes, each containing two < 111 >β
directions, on which an α variant/colony can form. So, there are 12 α
variant orientations in a prior β grain which satisfy the Burgers orientation
relationship Table 1.1.
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Variants Orientation relationships

A (11̄0)β//(0001)α, < 111 >β < 112̄0 >α
B (101̄)β//(0001)α, < 111 >β< 112̄0 >α
C (011̄)β//(0001)α, < 111 >β< 112̄0 >α
D (110)β//(0001)α, < 1̄11 >β< 112̄0 >α
E (101)β//(0001)α, < 1̄11 >β< 112̄0 >α
F (011̄)β//(0001)α, < 1̄11 >β< 112̄0 >α
G (110)β//(0001)α, < 11̄1 >β< 112̄0 >α
H (101̄)β//(0001)α, < 11̄1 >β< 112̄0 >α
I (011)β//(0001)α, < 11̄1 >β< 112̄0 >α
J (11̄0)β//(0001)α, < 111̄ >β< 112̄0 >α
K (101)β//(0001)α, < 111̄ >β< 112̄0 >α
L (011)β//(0001)α, < 111̄ >β< 112̄0 >α

Table 1.1: 12 possible crystallographic orientations of the α colonies inside
a (prior) β grain, which arise from the Burgers orientation relationship.

In a given β grain, the α lamellae can nucleate and grow according to
the 12 orientations listed in Table 1.1. The lamellae of a given colony have
the same crystallographic orientation. The orientation change across the
colony boundaries prevents the slip transmission. Therefore, the nature of
the colony boundaries and their orientation change are important factors for
understanding deformation mechanisms in these alloys [1, 3].

1.1.3 The importance of the phenomenon of spheroidization

Spheroidization is the shape evolution of α phase from a lamellar form to an
equiaxed form. It is a very important phenomenon for microstructure and
properties control in two-phase titanium alloys as well as in two-phase car-
bon steels. In the case of α/β titanium alloys, spheroidization appears after
hot working and thermal treatment (Fig. 1.2). The lamellar microstructure
has moderate strength, fatigue resistance and crack growth resistance but
low ductility. In contrast, a microstructure comprising globular α phase has
enhanced strength and ductility [4].

One of the main goals of this PhD work is a better understanding of
the mechanisms occurring during spheroidization in α/β titanium alloys, in
order to build a numerical model which could efficiently describe the phe-
nomenon. In the following sections of this chapter, the information avail-
able in the literature with regards to the thermodynamic driving forces of
spheroidization and the related mechanisms will be described.
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(a) (b)

Figure 1.2: Backscattered electron micrographs showing the spheroidization
of Ti-64 alloy. (a) Microstructure after 30 min holding at 950 ◦C set as initial
state for our research of microstructural evolution and (b) microstructure
after hot-deformation and thermal treatment at 950 ◦C. The α phase is dark
and the light grey regions is β- transformed.

1.1.4 Literature review regarding spheroidization

There are quite few papers in the literature concerning the experimental
study of spheroidization in titanium alloys [1–9]. Those papers provide
informations regarding the evolution of the microstructure topology as well
as theories concerning the involved mechanisms.

Margolin and Cohen [8, 9] were the first to report on the fragmentation
of the α lamellae during hot working and subsequent annealing. They sug-
gested that recrystallized α grains are formed within the α lamellae and
that there is a driving force for the penetration of the β phase along the
α/α boundaries something that leads to the segmentation of the lamellae.

Later, Weiss et al. [7] described the α lamellae morphology change as a
two steps process that occurs during hot-working and subsequent annealing.
The first step is the formation of sub-boundaries inside the α lamellae or
the appearance of shear bands across the α lamellae. It is followed by the
penetration of the β phase to complete separation. If the initial strain is
large enough the lamellae are fragmented immediately due to the formation
of intense shear bands. Otherwise, if the strain is not so high, sub-boundaries
appear and help the penetration of β phase into α phase. Weiss et al [7] also
noticed that the thickness of the lamellae plays an important role. Lamellae
are splitted easier and faster if they are initially thinner.

Mironov and Zherebtsov have used the EBSD technique to investigate
microstructural evolution during warm working of Ti-64 alloy starting from
a α colony microstructure [3, 4]. Kinking of the lamellae is reported in the
colonies that were initially perpendicular to the compression axis [3]. What
is called kinking of the lamellae is the bending of the lamellae under the
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applied strain and this leads to faster splitting into shorter laths (Fig. 1.3).
On the other hand, the colonies which were initially not perpendicular to the
compression axis simply tend to align with the matter flow orientation. The
lamellar structure actually appears to be surprisingly stable during warm
deformation and only the kinked lamellae seem to start spheroidizing.

(a) (b) (c)

Figure 1.3: Lamellae splitting promoted by lamellae kinking: (a) lamellae
initially vertical, (b) kinking and (c) splitting of the lamellae into smaller
laths.

Later, they showed that the behavior of Ti-64 alloy microstructure during
warm working and subsequent annealing is temperature dependent. They
indeed suggest that the fragmentation of α lamellae is controlled by classical
boundary splitting mechanisms and the subsequent spheroidization of the
remaining α laths by means of termination migration [4]. The same group
of authors also studied the formation of boundary misorientation spectrum
in α/β titanium alloys [10]. The results showed that the accumulation and
redistribution of dislocations result in the formation of sub-boundaries in-
side α lamellae which leads to their fragmentation. They also observed that
the process depends on the lamellae orientation. Moreover, the strain distri-
bution along the length of the lamellae is noticed to be non-uniform. Again,
these authors report that the β phase penetrates into the α phase where
sub-boundaries were formed.

Stefanson and Semiatin [2,5] studied in depth the phenomenon of static
spheroidization (i.e. during annealing after deformation) and provided more
information. In [5], the idea that spheroidization occurs in two stages is
again supported, but with a somewhat different definition of the two stages.
The first stage is the segmentation of the lamellae by boundary splitting and
edge spheroidization which takes place during deformation and the early
stages of static annealing. The second stage occurs over longer-term an-
nealing and corresponds to microstructure coarsening by mechanisms such
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as termination migration and Ostwald ripening. Furthermore, in [6] it is
clearly proved that the kinetics of spheroidization depend on the strain level
applied prior to heat treatment as well as on the heat treatment tempera-
ture. On the other hand, according to [6] the deformation temperature does
not seem to be an important factor for the shape evolution of the α lamellae,
at least within the temperature range explored in this work (compression
tests done at temperatures between 900 ◦C and 955 ◦C).

Semiatin and Furrer [2] made a more complete description of the se-
quence of mechanisms governing spheroidization in an attempt to introduce
a mathematical description of the phenomenon. The first stated mechanism
is the localization of strain into intense shear bands inside the α lamellae,
that eventually leads to their fragmentation. The limited number of avail-
able slip systems in HCP titanium ( α phase) together with the anisotropy
of the β phase favors strain localization and result in the appearance of
intense shear bands that will subsequently lead to fragmentation. Here we
can connect the shear band mechanism with the lamellae kinking mechanism
since they both seem to lead to very fast lamellae fragmentation during hot
deformation.

Both Semiatin [2] and Mironov et al. [3, 4] showed that, due to crystal
plasticity, dislocations accumulate inside the α lamellae during deformation
and lead to the formation of local crystal misorientations inside the α lamel-
lae and in turn to α/α sub-boundaries. By subsequent annealing, these
sub-boundaries lead to the formation of grooves at the surface of α lamellae,
driven by atomic diffusion kinetics due to differences in chemical potentials
between the α/α sub-boundaries and the α/β interface. The formation of
grooves during deformation plays a key role for the following phenomenon
of spheroidization (see Fig. 1.4) [2, 3, 7].

Semiatin in [2] addresses the already observed phenomenon of the pen-
etration of β phase in the α phase as a grooving-related mechanism. He
basically states that the penetration of the β phase where α/α sub- bound-
aries formed during deformation can be described using classical approach
for grain boundary grooving originally developed by Mullins [11]. Though
Mullins originally refers to the interaction of a grain boundary with a free
surface, the approach could also be used for the interaction of α/α sub-
boundaries with the α/β interphase boundary. In both cases, interfaces
(solid/vacuum or α/β) evolve due to atomic surface/volume diffusion phe-
nomena.
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(a) (b)

Figure 1.4: Formation of grooves at the α/β interfaces due to the exis-
tence of internal α/α sub-boundaries: (a) microstructure after deformation
where the sub-boundaries are appearing and (b) microstructure after ther-
mal treatment where grooves are schematized.

Two phase alloys with lamellar microstructure are generally thermody-
namically unstable due to their large interfacial area. After deformation the
interfacial energy is even higher. First, the initial α/β interfaces (formed
during cooling from the β domain (see paragraph 1.1.2) have a relatively low
energy, but after deformation, both their misorientation and habit planes are
very likely to have changed as a result of dislocation storage and/or plastic
flow. The α/β interface energy is thus likely to be higher. In addition,
the formation of sub-boundaries and lamellae fragmentation increases the
interface area per unit volume. Reducing the interfacial energy constitutes
a thermodynamic driving force for further microstructure evolution. More-
over, the interfacial energy balance between the α/β interfaces and the α
sub-boundaries promotes local atomic diffusion, leading to grooving at the
lamellae surface and finally to lamellae splitting into α laths with pancake
shapes.

To reduce the free energy associated with the interfaces, two phase sys-
tems generally tend to adopt spheroidal topologies which minimize the sur-
face to volume fraction ratios as compared to other morphologies (assuming
that the interfacial energy is isotropic). Moreover, the gradient of chemical
potentials provides a driving force for interfacial diffusion from the curved
areas of α particles towards the flat ones. Subsequent coarsening of α glob-
ules (Ostwald ripening) is driven by the same minimization of the free energy
associated with the interfaces and involves volume diffusion mechanisms.

Motion by surface diffusion at the α/β interfaces and motion by mean
curvature at the α sub-boundaries (implying Young’s law at the multiple
junctions), occur simultaneously during deformation and at the first stages
of the subsequent annealing. Both lead to the split of α lamellaes into α
laths. Subsequent evolution of α laths towards a more spherical morphology
is directly due to the motion by surface diffusion.

α/β interface motion by surface diffusion is initiated by differences in
chemical potentials along α/β interface. Then it is obesreved the motion
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of atoms between curved areas of the α lamellae towards the flat ones (see
Fig. 1.5). In the Ti-64 alloy, the diffusion rate limiting solute is vanadium
and as a result these atoms control the surface diffusion kinetic. At this
point it is important to notice that in addition to the high interfacial energy
obtained after deformation that promotes interface motion, temperature is
also a very important factor that enhances the mobility of the interfaces.

Figure 1.5: α lath morphology evolution due to surface diffusion from high
to low curvature areas.

The α/α sub-boundaries formed during deformation interact with the
α/β interfaces and also contribute to the shape evolution of the lamellae.
Indeed, the respect of Herring’s [12, 13] equation at the multiple junctions,
derived from the local mean curvature driving force, between the α/β lamel-
lae interfaces and the α/α sub-boundaries interfaces contribute in the ap-
pearance of grooves (see Fig. 1.6).

Figure 1.6: Splitting of a lamellae due to the combined effects of interface
motion by surface diffusion at the α/β interface and the motion by mean
curvature at the α/α interface.

The mechanisms described above are occurring during deformation and
first stages of subsequent annealing. According to Semiatin and Stefanson et
al. [2, 5,6] another mechanism becomes the governing one during prolonged
annealing, that is the coarsening mechanism. After the splitting of the
lamellae, the α laths keep evolving and coarsen in order to minimize the
α/β interfacial energy. The surface diffusion mechanism keep being active
during annealing until the α laths reach the equilibrium state of a shape of
minimized interfacial area (sphere if the interfacial energy is isotropic). On
the other hand, coarsening involves bulk diffusion with the motion of atoms
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from the smaller α particles with higher interface curvature to the bigger
ones with lower curvature (phenomenon known as Ostwald ripening). This
results in the disappearance of smaller particles and the growth of the bigger
ones.

The complexity of the phenomenon does not stop here though. In-
deed, during deformation, stress at the grain interfaces can also lead to
grain boundary diffusion involving atoms moving along the grain bound-
aries. Moreover, literature on α/β titanium alloys [14–18] also shows that
the α/β phase equilibrium is not the same under static or dynamic condi-
tions, the β phase being promoted under hot-deformation conditions. For
Ti-64 alloy, the higher the deformation the more the β phase volume fraction
increases during deformation [14]. In this work, it is clearly stated that there
is a strain threshold above which the β phase starts increasing significantly.
The exact physical reasons for this shift in the thermodynamic equilibrium
does not seem to be clear yet but may involve a change of Gibbs energies
of both phase under the applied stress, the contribution of crystalline de-
fects to that Gibbs energies, in addition to a possible stress-enhanced atomic
diffusion. During isothermal annealing after hot-deformation, the α and β
phase volume fractions get back to the static equilibrium values [14, 15].
Here, eventhough there is no obvious reason why that phenomenon would
be sensitive to the phase topology, it is important to underline the fact that
the cited literature does not refer to α/β alloys with initial lamellae mi-
crostructure. In the present work aiming at modelling of spheroidization,
this dynamic equilibrium issue will not be considered, and the volume frac-
tions will thus be considered to be constant during deformation and equal
to the static phase equilibrium values reached before deformation starts.

1.2 Literature review on the mathematical de-
scription of interface kinetics

In this thesis the focus will mainly be placed on the simulation of two inter-
face motion mechanisms, driven by surface diffusion and by mean curvature.
The combined effect of both mechanisms leads to the grooving and subse-
quent splitting of the α lamellae.

1.2.1 Mullins model for thermal grooving

The mathematical model which will be used is based on the historical article
of Mullins [11]. This paper describes the kinetics of a thermal groove formed
where a grain boundary meets a free surface. Semiatin in [2] points out
that the same model can be used to describe the grooving of α lamellae
during spheroidization, by considering the kinetics of the α/α sub-boundary
meeting the α/β interface.
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Grooving is initiated by atomic-scale processes near the region of the
α/α boundary and α/β interface intersection, and for the semi-infinite con-
figuration of Fig. 1.7 a groove angle δ appears. Thanks to the Herring’s
equation [12, 13] in a context of a constant γ energy per interface and by
a simple projection of the surface tension vectors on the α/α plane of the
Fig. 1.7, the dihedral angle δ satisfies:

2γαβ cos (δ/2) = γαα. (1.1)

Mass transfer from the curved areas to the flatten edges (as a result of
curvature induced chemical potential gradients) leads to the development of
the groove. This can thus be described by surface diffusion equations at α/β
interfaces and motion by mean curvature equation at α/α sub-boundaries
(Fig. 1.7). Both sets of equations will be presented in the following para-
graphs.

(a)

(b)

Figure 1.7: Formation of a groove angle due to interaction of a α/α sub-
boundary and a α/β interface: (a) a 3D diagram and (b) a 2D diagram.

1.2.2 Motion by surface diffusion at the α/β interfaces

According to Mullins [11], atomic flow at the α/β interface can be described
by a surface flux ~j :

~j = ν~v, (1.2)

where ν denotes the number of drifting atoms per unit area and ~v denotes
the average velocity of the drifting atoms. Assuming local equilibrium, ~v can
be expressed using the Nernst-Einstein formula as follows :

~v =
Dαβ

kT
∇sµ, (1.3)
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where Dαβ denotes interfacial diffusivity, µ the chemical potential , k is
the Boltzmann constant and T the absolute temperature. The ∇s operator
denotes the surface/interface gradient, defined as the tangential component
of the gradient:

∇sµ = ∇µ− (∇µ · ~n)~n = P∇µ, (1.4)

with ~n the outward-pointing unit vector normal to the interface and P the
matrix defined as I − ~n⊗ ~n with I the identity matrix. Combining Eq. 1.2
and Eq. 1.3, we obtain the following equation:

~j =
νDαβ

kT
∇sµ. (1.5)

If we consider mass conservation, the evolution of the interface can then
be described by the normal velocity to the interface:

~v = vs~n = −Ω∇s~j, (1.6)

where vs denotes the surface diffusion velocity (here of vanadium) and
Ω denotes the atomic volume. Combining Eq. 1.5 and Eq. 1.6 we obtain:

vs = −
νΩDαβ

kT
∆sµ, (1.7)

with ∆s = ∇s · ∇s the surface laplacian operator (also called Laplace-
Beltrami operator).

As it is observed from Eq. 1.7, the normal velocity is associated with
the chemical potential. By considering κ as the mean curvature (sum of the
main curvatures in 3D) and γαβ the α/β interface energy without taken into
account its possible anisotropy, chemical potential µ can be related to the
mean curvature κ by Eq. 1.8 [19,20]:

µ = −γαβΩκ. (1.8)

Eq. 1.8 implies that a decrease in the α/β interface mean curvature leads
to a decrease in the chemical potential, which in turn leads to a decrease
in the total interface energy. Using Eq. 1.7 and Eq. 1.8, the motion of the
interface can be described as:

vs =
γαβνΩ2Dαβ

kT
∆sκ. (1.9)

By defining

B =
γαβνΩ2Dαβ

kT
, (1.10)

as kinetic coefficient, we obtain:

vs = B∆sκ. (1.11)
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Eq. 1.11 describes the relation between the motion due to surface diffu-
sion and the surface laplacian of the mean curvature [11,21].

Several factors that can affect the α/β interface energy γαβ and the in-
terfacial diffusivity Dαβ. Semiatin, nevertheless, provided an approximation
of the value γαβ around 0.2- 0.4 J · m2 [21]. The α/β surface energy γαβ
is likely to be very anisotropic, but its anisotropy remains difficult to esti-
mate. That is why anisotropy will be ignored in this work. Diffusivity is
also influenced by several factors such as temperature, stress and the pres-
ence of dislocations. Diffusivity coefficients are likely to be very sensitive
to changes in thermomechanical paths. Diffusivity coefficients of the lim-
iting solutes of titanium alloys can be found in literature, in the form of
experimental plots [22]. Semiatin [21], for Ti-64, refers to the diffusivity of
the vanadium as the most influential one and uses this one in his models
with a value of Dαβ = 0.048µm2/s at T=950 ◦C. A global discussion on the
physical parameters is presented in the last chapter.

1.2.3 Motion by mean curvature at the α/α interfaces

The γαα grain boundary energy is very important for boundary grooving.
The relation between mean curvature motion and grain boundary energy
is given by the well known Gibbs-Thompson relationship where the normal
velocity vκ~n of the grain boundary is described as being proportional to the
mean curvature κ:

vκ = −κγααbfΩ

kT
e−

Q
RT , (1.12)

with R the gas constant, b the norm of the Burgers vector, f the Debye
frequency, γαα the surface energy of the α/α boundary, and Q the activation
energy. Eq. 1.12 can be re-written as:

vκ = −Aκ, (1.13)

with:

A =
γααbfΩ

kT
e−

Q
RT . (1.14)

1.2.4 Global equation for α lamellae splitting coupling both
motions

As surface diffusion and mean curvature motions are taking part simulta-
neously during the phenomenon of globularization, we should proposed a
numerical framework combining them. So the final form of our equation
will be:

~v = (vs + vκ)~n = (B∆sκ−Aκ)~n (1.15)
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where B is defined by Eq. 1.10 in α/β interfaces and 0 elsewhere and A is
defined by Eq. 1.15 in α/α interfaces and 0 elsewhere.

1.3 Summary

In this chapter, a literature review regarding the phenomenon of spheroidiza-
tion has been presented. All the known governing mechanisms have been
analyzed in detail as they were found in various papers. Regarding the mod-
eling part, the focus was placed on the interface kinetics. A mathematical
description of the two governing mechanisms of motion by surface diffusion
and motion by mean curvature has been given. These two mechanisms are
responsible for the α lamellae splitting.

In the following chapter, we are going to present an experimental analysis
of results obtained after hot compression tests of Ti-64 samples.
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Chapter 2

Experimental analysis of the
metallurgical processes
leading to spheroidization

Résumé en français

Dans ce chapitre, les résultats d’analyse expérimentale du phénomène de
globularisation sont présentés. D’abord, le plan expérimental est expliqué en
détail. Des échantillons biconiques de Ti-6Al-4V sont utilisés. Des essais de
compression à chaud à 950 ◦C et des traitements thermiques sont effectués.
Pour la caractérisation de la microstructure, les techniques de microscopie
électronique à balayage (Scanning Electron Microscopy ou SEM en anglais)
et de diffraction d’électrons rétrodiffusés (Electron Backscatter Diffraction
ou EBSD en anglais) sont utilisées.

L’analyse expérimentale de ces résultats confirme que l’épaisseur des
lamelles et leur orientation sont des facteurs importants pour la globular-
isation. Les lamelles plus fines et celles orientées parallélement à l’axe de
compression globularisent plus facilement. Il est aussi prouvé que les sous-
joints qui sont arrivé dans les lamelles α pendant la déformation sont essen-
tiels pour l’évolution de la microstructure. Ce sont eux qui introduisent des
instabilités dans les lamelles et déclenchent les mécanismes interfaciaux qui
mènent à l’évolution de la forme de la phase α. De plus, en effectuant des
traitements thermiques de durées différentes suivis d’une déformation, il est
prouvé que la globularisation n’a lieu qu’après des traitements thermiques
prolongés.

Ce travail expérimental a permis de mieux appréhender la complexité
du phénomène de globularisation et de clarifier des mécanismes physiques
prédominants aux différentes étapes du phénomène. Il a aussi aidé à intro-
duire un cadre numérique adapté pour la simulation de la globularisation.
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2.1 As received materials and experimental plan

Experiments consisting of thermomechanical tests, heat treatments and mi-
crostructure characterization were performed to help getting a general un-
derstanding of the behavior of the material with regards to α lamellae frag-
mentation and subsequent spheroidization. The second aim of those exper-
iments is to collect quantitative information to enable us to model the phe-
nomenon more efficiently and to have a reference for comparing/validating
our numerical results. As already mentioned in chapter 1, the phenomenon
of spheroidization in microstructures initially made of α colonies inside β
grains proceeds in two steps. The first step is the splitting of the α lamellae
into shorter α laths during hot deformation and/or subsequent annealing.
The second step is when these α laths will subsequently spheroidized and is
reported to occur during thermal treatment [2–10]. Over long term anneal-
ing the material may undergo coarsening of the spheroidized α phase.

The experimental plan was setup to follow topological evolutions in the
Ti-64 alloy while being processed at 950 ◦C, a temperature which is relevant
from an industrial point of view. Microstructure was characterized just
before deformation (i.e. after holding at deformation temperature to achieve
phase equilibrium), after quenching right at the end of deformation, after
post-deformation holding, or after subsequent thermal treatment.

One question triggered from the literature is how much does the initial
size of the α lamellae actually affect the studied phenomena. In order to
be able to examine this factor, our industrial partners have provided us
two materials with two different microstructures with different width of α
lamellae and different sizes of β grains. Both materials will be submitted to
similar thermomechanical routes.

2.1.1 As received materials

The as received Ti-64 materials have two different α lamellae widths, ob-
tained by adjusting the cooling rate after holding in the β domain, for 1h at
1050 ◦C. A first block was air cooled, with a cooling rate of 30 ◦C/min. The
microstructure of this block, referred to as Lx2, has a β grain size of 0.25
-0.7 mm and an α lamellae thickness in the range 1-2 µm (see Fig. 2.1(a)
and Table 2.1). A second block was slowly cooled with a rate of 2 ◦C/min
until it reached 600 ◦C. The microstructure, referred to as Lx4, has a β grain
size of 0.7 -1.5 mm and α lamellae thickness of 5-15 µm (see Fig. 2.1(b) and
Table 2.1).
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as-received microstructure Lx2 Lx4

β grain size 0.25-0.7mm 0.7-1.5mm

lamellae thickness 1-2µm 5-15 µm

Table 2.1: Typical β grain size and lamellae thickness of the as received
materials.

(a) Lx2 (b) Lx4

Figure 2.1: BackScattered Electron (BSE) micrographs of the two as-
received microstructures: a) Lx2 and b) Lx4.

2.1.2 Geometry of the compression test samples

As already mentioned, we need to apply hot deformation and subsequent
annealing in order to see spheroidization. Double cone samples were used
in order to get a well-controlled strain gradient along the radius after hot-
compression and directly assess the effect of the strain level within one sam-
ple. Nevertheless, unfortunately, only the microstructure at center of the
samples has been analyzed in this work.

Two sample geometries have actually been used (see Fig. 2.2), in order
to investigate the ”low strain” range and the ”high strain” range.
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(a) low strain geometry

(b) high strain geometry

Figure 2.2: Dimensions of the double cone compression test samples used to
investigate a) the low strain range (0 to 0.36 strain) and b) the high strain
range (up to 1.34 strain).

In our experiments, compression is performed at 950 ◦C after 30 min
holding and the targeted strain rate is 0.1 s−1. The samples are compressed
down to the cylindrical part, which allows getting a strain gradient from
about 0 at the rim to 0.36 in the center for the low strain geometry, and up
to 1.34 for the high strain geometry.

2.1.3 Applied thermomechanical paths

The performed thermomechanical experiments are summarized on Fig. 2.3.
Some of those treatments were interrupted to characterize the current met-
allurgical state:

• after holding for 30 min at 950◦C and quenching to assess the mi-
crostructure right before it starts being deformed (state 1 on Fig. 2.3a),

• hot compression at 950◦C and 0.1 s−1 followed by immediate water
quenching to assess the as-deformed state (state 2 on Fig. 2.3a),

• hot compression experiments followed by holding at the deformation
temperature for 15 min before water quenching to assess post-dynamic
microstructure evolution (state 3 on Fig. 2.3a),

• longer term annealing performed at 950◦C in a conventional furnace
(for optimizing the usage time of the compression machine, and avoid-
ing damage risks for the tools) (see Fig. 2.3b).

The tests above were performed for both microstructures Lx2 and Lx4
and also for both sample geometries, low strain and high strain. The long
term post-deformation annealings (see Fig. 2.3.b) have been performed only
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on the high strain samples. According to Semiatin [2, 5], α laths indeed
spheroidize and coarsen during prolonged annealing. The duration of an-
nealing has been selected from the work of Semiatin and Stefanson [5, 6].
Over longer annealing the microstructural evolution reaches a plateau and
it does not evolve significantly anymore.

(a) (b)

Figure 2.3: Details of the performed thermomechanical experiments and
interrupted tests.

Compression tests and thermal treatments have all been performed at
950◦C which is in the α/β domain of the alloy. The equilibrium volume
fraction of α phase at 950◦C is ∼30 % [6]. Fig. 2.4 shows BSE micrographs
of the microstructures Lx2 and Lx4 after 30 min holding at 950 ◦C and
quenching. The alpha phase volume fraction measured on such images is
∼30% and ∼25% for Lx2 and Lx4 respectively which is close with the liter-
ature value of 30%. The microstructure of Fig. 2.4 will actually be the initial
microstructure of which the isothermal microstructure evolutions obtained
with a low strain (section 2.2) and with a high strain (section 2.3) will be
described in the next sections.

(a) ”Initial state” of the Lx2 material (b) ”Initial state” of the Lx4 material

Figure 2.4: BSE micrographs of the a) Lx2 and b) Lx4 materials after
holding at 950◦C for 30 min and water-quenching. Those are actually the
initial microstructures for the hot-deformation process.
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2.1.4 Sample preparation for microstructural characteriza-
tion

In order to characterize microstructures, double cone samples have been cut
and polished along a longitudinal section. Scanning Electron Microscopy
(SEM) observations have been performed at the center of the compressed
samples where the highest strain level is reached using mainly the BackScat-
tered Electron (BSE) detector to enhance chemical contrasts and better de-
pict α and β phases, and Electron BackScatter Diffraction (EBSD) scans.
EBSD provides crystal orientation maps, which allows for detecting intra-
granular misorientations induced by plastic deformation. Plastic deforma-
tion indeed introduces dislocations which in turn lead to intragranular ro-
tations of the crystal lattice. Even though a quantitative relationship is not
that easy to perform, intragranular misorientations can semi-quantitatively
be interpreted as the sign of the presence of dislocations. The higher the
dislocation density, the higher the induced rotations.

Since quite conventional SEM and EBSD analyses have been performed,
this thesis does not contain a section dedicated to the experimental pro-
tocols, but few relevant details are given here below and in the following
sections dedicated to the presentation of the results.

• The local misorientations will be quantified and displayed as Kernel
Average Misorientation (KAM) angle values that are available in any
commercial EBSD data processing software package. The KAM value
of a point is the average value of the misorientation angle between
the point of interest and all its neighbors located at a given distance
(i.e. Kernel radius). In this work, second or third neighbors have been
considered in the calculation.

• orientation maps will be shown within a so-called IPF (Inverse Pole
Figure) color coding, which shows which crystal direction is lying par-
allel to z axis of the sample frame.

• Image treatment of BSE micrographs will be performed with the use
of ImageJ software in order to collect statistical values for α lamellae
in each stage of the microstructure.

EBSD is a very demanding technique in terms of sample preparation.
In order to get a suitable sample surface quality. The applied preparation
procedure is the following:

• Starting with a sequence of polishing papers of 600µm for 90s, 1200µm
for 90s, 2400µm for 90s applying force of 0.8daN .
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• Continuing with a sequence with powders disks of 6µm for 240s, 3µm
for 240s, 1µm for 240s applying force of 0.8daN .

• The final step is the use Oxide Polishing Suspension (OPS) for 240s
applying force of 0.8daN in the rotative polishing machine and then
changing to a vibrating machine using again OPS for 3h.

• The specimen is rinsed with water and subsequent rinse with alcohol
to dry it before to proceed to SEM observations and EBSD measure-
ments.

2.2 Microstructure evolution obtained with a strain
of 0.36

2.2.1 For the Lx2 material (fine α lamellae) with a strain of
0.36

Fig. 2.5 is an EBSD map of the ”initial” Lx2 microstructure already de-
scribed in Fig. 2.4a, i.e. after holding 30 min of thermal treatment at 950◦C.
Only the points which could be indexed using the α phase structure (HCP)
are shown. The α phase appears in the form of straight lamellae, that are
those which were stable at 950 ◦C before quenching, and in the form of much
finer lamellae, which arise from the β → α + β phase transformation upon
cooling.

Figure 2.5: ”Initial state” of the Lx2 material : KAM map after at 30 min
at 950 ◦C.

The color-coding of Fig. 2.5 is related to local misorientation angle
(KAM) between α phase neighboring points. The map exhibits blue colors
corresponding to very low KAM values, in the range of 0.5◦. This is actually
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the accuracy with which crystal orientation can be determined using EBSD
under the used setup. One can therefore consider that the dislocation con-
tent is very low in the initial microstructure, which is consistent with the
thermal history of the sample. In other words, crystal orientation is uniform
inside each lamella, and lamellae within a given colony have all the same
crystal orientation.

After hot-compression to sample height reduction of 20% and a max-
imum strain of 0.36 at the sample center, orientation gradients developed
inside the lamellae (as revealed by the color gradients on the IPF color coded
orientation map of Fig. 2.6.a). Lamellae inside a given colony exhibit a simi-
lar but not exactly same behavior, as can be seen from the lamella to lamella
color variations. Some colonies seem more deformed than others as can be
appreciated from the orientation/color gradients inside them. Another im-
portant observation with regards to the mechanisms under study is the ap-
pearance of subgrain boundaries inside lamellae, visible on the KAM maps of
Figs. 2.6b/c. The subboundaries are quite diffuse (thick) and have low local
misorientation angles, typically 1-2 ◦(green-yellowish colors on Fig. 2.6b/c),
but cumulated misorientation angles through the thick subboundaries which
can reach up to 10 ◦(see the jumps on the profiles of Fig. 2.7).

Plots of misorientation profiles along lamellae chosen from the KAM map
of Fig. 2.6b are shown in Fig. 2.7. Misorientation profiles are plots showing
the cumulative misorientation in respect to the first point of the drawn lines.
Line AB (Fig. 2.7a) and Line CD (Fig. 2.7b) indeed show that fairly large
misorientations developed between the starting and ending points.

Some lamellae do even start to fragment, already at this relatively low
strain level (examples arrowed on Fig. 2.6c). Nevertheless, the fragmentation
process is quite heterogeneous from one colony to another. The orientation
of the colonies with respect with the direction of the applied deformation,
seem to be a very important factor for the fragmentation of the α lamellae
(Fig. 2.6c compared to Fig. 2.6b), as reported already in the literature [3–
5,7].
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(a)

(b) (c)

Figure 2.6: a) Crystal orientation map of the Lx2 material after hot-
deformation to 0.36 strain. The color coding indicates which crystal di-
rection is parallel to the direction normal to the map (z). b) and c) are
KAM maps of zoomed colonies differently oriented in relation with the com-
pression axis. The compression axis is vertical (↓).
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(a) (b)

Figure 2.7: a) Misorientation profiles of line segment AB drawn on Fig. 2.6b
and b) misorientation profiles of line segment CD.

After the material was held for 15 min at 950◦C after deformation, a sig-
nificant microstructure change is observed (see Fig. 2.8) as compared to the
case where it was quenched immediately after deformation (see Fig. 2.6).
The orientation map of Fig. 2.8a shows that fragmentation of the lamel-
lae has quite significantly progressed during the post-deformation holding.
The fact that the microstructure is more fragmented after only 15 minutes
annealing is fully consistent with the conclusions drawn in literature that
misorientations and subboundaries developed inside the α lamellae during
deformation subsequently form grooves during annealing and lead to lamella
splitting into shorter laths.

Furthermore, Fig. 2.8 confirms the importance of the lamellae orientation
with regards to the compression axis. Kinking of the lamellae parallel to the
compression axis is visible on Figs. 2.8a/b. Fragmentation seems to be more
advanced within the kink regions.
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(a)

(b) (c)

Figure 2.8: a) Crystal orientation map of the Lx2 material after hot-
deformation to 0.36 strain and holding for 15 min before quenching. The
color coding indicates which crystal direction is parallel to the direction nor-
mal to the map (z). Compression axis is vertical(↓). b) and c) are KAM
maps of zoomed colonies with different orientation to the compression axis.
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(a) (b)

Figure 2.9: a) Misorientation profiles of line segment AB drawn on Fig. 2.8b
and b) misorientation profiles of line segment CD.

The misorientation profiles of segments AB and CD drawn on Fig. 2.8.b
are shown on Figs. 2.9a and b, respectively. The jumps in the profiles, in-
dicative for the presence of subboundaries along the lamellae, are of similar
amplitude but much steeper than they were in the deformed and quenched
material. This clearly proves that subboundaries re-organized during the
post-deformation holding time. They became real subboundaries, whereas
they were more like thick transition zones after deformation. These sub-
boundaries delimit subgrains, which may subsequently separate from each
other during the fragmentation process.

Globally and qualitatively, it can be seen from Figs. 2.8 and 2.10 that
fragmentation of the α lamellae starts already during deformation and the
shape keeps evolving towards a more circular form but without any big
change in the length of the laths. For the purpose of quantifying the changes
in the lamellae shape during annealing after deformation, BSE micrographs
like those of Fig. 2.10 have been analyzed.
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(a)

(b)

(c)

Figure 2.10: Typical BSE micrographs of the Lx2 material, in its a) initial
state after 30 min of annealing at 950 ◦C, b) deformed state (ε = 0.36),
c) deformed and annealed (15 min) state, used for quantifying the shape
evolution of the α lamellae.

A total number of about 700 laths have been analyzed in each state, by
processing BSE images with the ImageJ software package. With ImageJ,
the lath shapes could be approximated by ellipsoids whose length and width
can then be measured. To describe the shape evolution, the lath/ellipsoid
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aspect ratio, that is a dimensionless number, will be used:

aspect ratio =
major axis of ellipsoid

minor axis of the ellipsoid
. (2.1)

The closer the aspect ratio goes to 1 the more circular is the shape.

Figure 2.11: α lath aspect ratio histograms of the Lx2 material in its de-
formed state (blue),deformed and annealed state (15 min at 950◦C)(red).

The aspect ratio histograms of the deformed state and of the deformed
and annealed state (Fig. 2.11) keep being very similar. The mean values
of the aspect ratio are close, 7.76 for the deformed state and 7.84 for the
deformed and annealed state. The fragmentation process is likely to not
be advanced enough yet to give meaningful results through the performed
analysis. The small progression of the fragmentation obtained after 15 min
annealing is consistent with what has been reported by Semiatin and Ste-
fanson [5,6]. A short annealing time of 15 min was probably not enough to
get significant fragmentation. Another possible explanation is the applied
strain being too small. Other experiments will thus be described later on
(section 2.3) where higher strain and longer annealing times were applied.

2.2.2 For the Lx4 material (thick α lamellae) with a strain
of 0.36

In order to investigate the effect of the lamella thickness onto the onset of
fragmentation mechanisms, the same experiments presented in the previous
section for the Lx2 material have been conducted on the Lx4 material.

The initial state (after holding at 950◦C for 30 min and quenching) is
shown on Fig. 2.12, the deformed state on Fig. 2.13, and the deformed and
annealed state (15 min post-deformation holding) on Fig. 2.15.
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Figure 2.12: KAM map of the Lx4 material after at 30 min at 950 ◦C and
quenching.

Regarding the initial state of Lx4 obtained after 30 min thermal treat-
ment at 950 ◦C (Fig. 2.12) the same comments can be made as for the Lx2
material : lamellae are long and straight, and do not exhibit internal mis-
orientations. The only difference is the lamella thickness (around 5-15 µm
for Lx4 and around 1-2µm for Lx2).

The deformed Lx4 microstructure (Fig. 2.13) does not seem to be so
affected by deformation as was the Lx2 material at the same strain level, but
from KAM maps we can see that slight intra-lamellar misorientations have
developed and this goes along with the appearance of diffuse subboundaries
which start forming.

The misorientation profiles along AB and CD segments (drawn on Fig. 2.13a)
of lamellae in the deformed state (plotted on Fig. 2.14a/b) have much lower
amplitudes than the ones of the deformed state of Lx2 (see Fig. 2.7). Those
profiles exhibit more regular orientation gradients, with jumps in the range
of 2-3◦at maximum (against up to 10◦in the thin lamellae of Lx2).

(a)
(b)

Figure 2.13: KAM maps of the Lx4 material after hot-deformation to 0.36
strain: a) in a colony almost parallel to the compression axis and b) in a
colony almost perpendicular to the compression axis.
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(a) (b)

Figure 2.14: Misorientation profiles along: a) segment AB and b) segment
CD.

After post-deformation holding for 15 min, the Lx4 microstructure still
exhibits misorientations inside the α lamellae, but on a first sight there is no
microstructure change over post-deformation holding (Fig. 2.15 compared
to 2.13). Apparently the 15 min of annealing is not enough time to see a
significant evolution of those initially thick lamellae which developed only
few degrees misorientations.

It is worth mentioning that some of the misorientation profiles, like the
one plotted on Fig. 2.16a for lamellae after 15 min post-deformation an-
nealing show steep orientation changes with an increased amplitude (8-10◦)
compared to the deformed Lx4 state (Fig. 2.14). A possible explanation is
that recovery was active enough during post-deformation holding, so that
the stored dislocations responsible for the continuous orientation gradients
could migrate and gather into thin walls, i.e. well defined subboundaries.

(a) (b)

Figure 2.15: KAM maps of the Lx4 material after hot-deformation to 0.36
strain and subsequent holding for 15 min at 950◦C.
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(a) (b)

Figure 2.16: Misorientation profiles along segments: a) AB and b) CD drawn
on Fig. 2.15b.
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(a)

(b)

(c)

Figure 2.17: Typical BSE micrographs of the Lx4 material, in its a) initial
state, b) deformed state, c) deformed and annealed (15 min) state, used for
quantifying the shape evolution of the α lamellae.

BSE image analysis lead for the Lx4 material to the aspect ratio distri-
butions of Fig. 2.18 (gathering the data of about 750 lamellae for each state,
collected on images like those Fig. 2.17). Between the deformed stage and
the deformed and annealed for 15 min stage the difference between both
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distributions is not really significant. The mean value of aspect ratio for the
deformed state is 8.74 and for the annealed state 8.40. No conclusion can
be drawn from those analyses yet.

Figure 2.18: α lath aspect ratio histograms of the Lx4 material in its de-
formed state (blue) and deformed and annealed state (15 min at 950◦C)(red).

2.2.3 Comparison of the Lx2 and Lx4 materials submitted
to a strain of 0.36

The two materials at both deformed and deformed-and-annealed states with
the same applied deformation conditions (up to 0.36 at 950◦C and 0.1s−1)
basically leads to the same conclusions. During deformation, misorientations
and subboundaries start developing inside the α lamellae. subboundaries
appear as diffuse orientation change areas after deformation and become
better defined subboundaries during holding after deformation. The areas
with higher misorientations (onset of subboundary formation) are the ones
that are most likely to form grooves and subsequently lead to the lamella
splitting. The misorientations developed in the fine lamellae are stronger
(up to 10◦) than in the coarse ones (only few degrees). This is basically
the only difference that could be observed between both materials. With a
post-deformation holding of 15 min at 950 ◦C, quite limited microstructure
evolution occurs both in the fine and coarse lamellae materials. Basically,
only the subboundaries become better depicted. The mean aspect ratio of
the α lamellae/laths (obtained from BSE image analysis) follows very similar
trends for both Lx2 and Lx4 materials (see Fig. 2.19). Deformation strongly
affects the shape of the lamellae/laths as compared to the initial state, but
the post-deformation holding has almost no influence.
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(a) (b)

Figure 2.19: Mean value of the α lamella/lath aspect ratio of a) the Lx2
and b) Lx4 materials in their initial state, deformed state and deformed and
annealed state (15 min at 950◦C).

As the Lx2 and Lx4 materials led to the same observations, the lamella
thickness does not seem to have any significant influence on the overall evo-
lution with regards to the fragmentation process, under the applied thermo-
mechanical conditions. On the other hand, the orientation of the lamellae
with regards to the compression axis appeared to strongly affect the lamella
shape after deformation, and this hold for both materials. The lamella which
are initially lying parallel to the compression axis undergo kinking, and this
helps further fragmentation mechanisms (subboundary formation, grooving
and finally splitting). Striking examples of lamellae kinking in both ma-
terials are shown in Fig. 2.20. These micrographs have been taken at the
center of the deformed samples, and are very similar to some reported in
the literature [2–4].

(a) (b)

Figure 2.20: Lamella kinking observed at the center of a) Lx2 and b) Lx4
samples after hot-compression, in areas where lamellae were obviously ini-
tially parallel to the compression axis. The compression axis is vertical.

52



The strain level will be increased in the following section, in order to
induce more significant microstructure changes, and more advanced frag-
mentation states.

2.3 Microstructure evolution obtained with a strain
of 1.34

With the double cone geometry of Fig. 2.2.b, a strain level of 1.34 can be
reached at the center of the sample. In this section, the same as-received
materials (Lx2 and Lx4) as in the previous section will be used and submit-
ted to the high strain compression experiments. In addition to the strain
level, the duration of the post-deformation annealings will be increased as
well to promote spheroidization of α lamellae.

2.3.1 For the Lx2 material (thin α lamellae) with a strain of
1.34

Fig. 2.21a shows an orientation map of Lx2 microstructure after hot com-
pression with sample height reduction 63 % and the maximum strain of 1.34
at the sample center. The deformed microstructure is much more fragmented
than that of Lx2 after 0.36 strain (see Fig. 2.6). The map of Fig. 2.21a cov-
ers a wide area with different orientations of α colonies. In the lower half
of the area, the microstructure is very fragmented and there are no more
signs of the previous elongated laths. On the other hand, in the upper area
of the map not obvious fragmentation is observed but orientation gradients
are developed inside the α lamellae (indicated by the variation of colors).
This map is one more clear proof that all colonies do not exhibit the same
behavior under deformation.

In addition, on the following KAM map (Fig. 2.21b) very clear sub-
boundaries are observed inside the remaining elongated laths. For better
observations, Fig. 2.21b shows the KAM map of the zoomed area inside
the rectangle of Fig. 2.21a. For complementary information, further data
analysis regarding the subboundaries on this specific map has been done
with MTEX toolbox ( EBSD data post-processing software). On Fig. 2.21c,
again the zoomed area inside the rectangle, the α lamellae boundaries are de-
fined with a threshold angle of 10◦are plotted black. At the same image the
magenta color depicts the 2◦to 3◦angle subboundaries and the green color
depicts the 3◦to 4◦angle subboundaries. From the combination of these two
Figs. 2.21b/c, it is shown that smaller laths are already schematized. At the
same time, well defined internal subboundaries appear inside the remaining
lamellae.

On Fig. 2.22 plots of misorientation profiles inside laths of the KAM map
of Fig. 2.21b are shown. Both given plots are representative, since these two
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are not the only lamella/lath measured. By comparing the misorientation
profiles inside elongated lamellae and smaller α laths, it is observed that the
longest one exhibits higher misorientations.

From the information above, it is obvious that the fragmentation process
is initiated during deformation at high strains. There are α colonies that
are already very fragmented and others which are still very elongated but
include subboundaries. These observations are in agreement with what is
reported in the literature: during deformation, due to crystal plasticity,
subboundaries appear and are the main reason for the subsequent splitting
of lamellae.

(a)

(b)
(c)

Figure 2.21: a) IPF map of Lx2 material after hot deformation to 1.34 strain
at 950◦C. The color coding indicates which crystal direction is parallel to
z axis. b) KAM map of the area in the rectangle a), c) boundaries plotted
black and subboundaries plotted pink (2◦- 3◦) and green (3◦- 4◦) in the
rectangle area drawn on a).
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(a)

(b)

(c)

Figure 2.22: Misorientation profiles of segments: a)AB and b)CD.

Fig. 2.23 shows an EBSD map of Lx2 microstructure after hot compre-
sion at 1.34 strain and post-deformation annealing for 15 min at 950 ◦C.
The shape evolution towards smaller α laths is clearly visible after only 15
min of annealing. On Fig. 2.23a an IPF map is presented where the α laths
are smaller and exhibit a more spheroidized shape. Each lath also has a
uniform color which indicates a uniform crystal orientation. No subbound-
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aries are left inside the laths. The KAM map on Fig. 2.23b confirms that
no significant internal misorientation exist inside the smaller and circular α
laths.

Fig. 2.23c is another representation of the microstructure, using the same
interface color coding as in Fig. 2.21c. Comparing Fig. 2.23c with 2.21c, only
few subboundaries still appear, which confirms that the lamellae splitting
has already progressed a lot in certain colonies and new well defined and
shorter α laths have already been formed after only 15 min of annealing.

The 1.34 strained Lx2 microstucture after 15 min post-deformation hold-
ing is very different to the Lx2 microstructure after the same post deforma-
tion holding time (15 min) but lower strain 0.36 (see Fig. 2.8). The higher
the strain the more subboundaries appear inside the α lamellae, which leads
to a faster evolution during annealing.

The lath formation in Fig. 2.23 only occurs in some colonies in the area
of maximum strain of the sample. In the same area, other colonies have also
been observed with not much shape evolution. This confirms the assump-
tion that the colony orientation with respect to the orientation of applied
deformation plays a very important for how quick spheroidization will occur.
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(a)

(b)

(c)

Figure 2.23: a) IPF map of Lx2 material after hot deformation to 1.34 strain
and 15 min holding at 950 ◦C. The color coding indicates which crystal
direction is parallel to z axis, b) KAM map and c) boundaries plotted black
and subboundaries plotted pink (2◦- 3◦) and green (3◦- 4◦).
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Figs. 2.24a and 2.24b show the Lx2 microstructure hot deformed to the
same strain of 1.34 but submitted to a longer subsequent annealing, for 1h.
The relatively wide field BSE image of Fig. 2.24 shows that the microstruc-
ture became homogeneous, the initial colonies can hardly be recognized any-
longer. Furthermore, the KAM map on Fig. 2.24b shows that α particles
have homogeneous orientation. The center of the sample, strained to 1.34
shows thus the expected microstructural evolution towards a more globular
and coarser shape.

Other areas of the same sample, where the strain level was lower have
been also observed. Two of such areas are shown in Figs. 2.24c and 2.24d. In
those ones, the initial colonies and the initial grains can still be recognized,
both because the fragmentation progressed to different levels, and because
the orientations keep some link to initial colony orientation. In addition to
the initial orientation of the lamellae with regards to the compression direc-
tion, the crystallographic orientation could also possibly be a reason for a
different evolution of each colony. Actually the morphological orientation of
the initial lamellae can not be unambiguously determined from 2D sections,
3D microscopy would be usefull to really comprehend the phenomenon of
spheroidization of α lamellae and its mechanisms.
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(a) (b)

(c) (d)

Figure 2.24: Lx2 material after hot deformation and 1 h holding at 950 ◦C.
a) BSE micrograph and b) KAM map the center of the sample with 1.34
strain. c) BSE micrograph and d) IPF map in a lower strain area of the
same sample. The color coding indicates which crystal direction is parallel
to z axis.

Next, the Lx2 material submitted to hot-compression, immediate water
quenching and subsequently reheated for 4h and 8h annealing at 950 ◦C
in a separate furnace are presented, on Figs. 2.25 and 2.26, respectively.
A clear image at the exact center of the sample with the maximum strain
was not possible for sample with 4h annealing, so Fig. 2.26 shows EBSD
maps from lower strain areas of that sample. α phase coarsened signifi-
cantly during those long term annealings, as compared to the previously
described samples. α phase keeps coarsening between 4h and 8h annealing.
This meets up with the expectations given from literature for coarsening of
the microstructure during prolonged annealing. Furthermore, in the EBSD
map of Fig. 2.25.b from the material annealed for 4h, there are groups of α
laths with the same orientation. This leads to the assumption that given a
starting colony breaks up to smaller laths that they keep some orientation
relationship with the mother colony. Further analyses regarding the quan-
tification of the microstructural evolution will be made in sections 2.4 and
2.5.
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(a) (b)

Figure 2.25: Lx2 material after hot deformation at strain 1.34 and 4h holding
at 950◦C: a) BSE micrograph and b) IPF map at lower strain area of the
sample. The color coding indicates which crystal direction is parallel to z
axis.

(a) (b)

Figure 2.26: BSE micrographs of Lx2 material after hot deformation at
strain 1.34 and 8 h holding at 950 ◦C.

2.3.2 For the Lx4 material (coarse α lamellae) with a strain
of 1.34

In this section, results regarding the Lx4 material after deformation and
subsequent annealing are presented following the same sequence as presented
for Lx2 in the previous section.

BSE micrographs and EBSD maps of Lx4 after hot compression to 1.34
strain at 950 ◦C are presented on Fig. 2.27. The microstructure does not
seem to be highly fragmented and no obvious shape evolution is observed, ex-
cept for the kinked areas. On Fig. 2.27c the orientation map shows color vari-
ations inside lamellae which indicate orientation gradients developed during
deformation. In addition, the KAM map of Fig. 2.27d reveals the existence
of areas with higher misorientations along the α lamellae. It is also interest-
ing to note that some of the lamellae came into contact but did not merge.
Instead, they formed a subboundary/interface between them.
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Possibly related to the large width of the lamellae, many colonies with
lamellae kinking were found in this sample. Let’s remind here that lamellae
kinking was reported in the literature [3] as one of the mechanisms that
promotes fragmentation of the α lamellae. Figs. 2.27e/f show orientation
and KAM maps of kinked but not yet fragmented lamellae. On Fig. 2.27f,
we observe high misorientations inside the lamellae especially at the kinked
areas.

(a) (b)

(c) (d)

(e) (f)

Figure 2.27: Lx4 material after hot deformation at strain 1.34 at 950◦C: a)b)
BSE micrographs, c)d) IPF map and KAM map of lamellae which did not
bend during deformation, e)f) IPF map and KAM map of kinked lamellae.
The IPF color coding indicates which crystal direction is parallel to z axis.

Lx4 microstructure under hot compression to 1.34 and subsequent 15
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min holding at 950◦C has significantly changed in comparison with previous
state, fragmentation onset is observed. Fig. 2.28 shows that fragmentation
occurred but the laths are still elongated with no subsequent spheroidization
for the moment. Complementary the KAM map on Fig. 2.28b does not show
a lot of misorientation inside the formed laths.

Over longer term annealing (see Figs. 2.29, 2.30, 2.31 for 1h, 4h and 8h
post-deformation annealings, respectively), globularisation progresses and
coarsening occurs, as already observed in samples Lx2. With the Lx4 mate-
rial, globularization has only started after 15 min holding (Fig. 2.28), con-
trary to Lx2 where it was more advanced. After 1h annealing (Fig. 2.29),
fragmentation is more advanced, but also elongated laths remain. Starting
from 4h annealing, well defined gobularized and coarsened particles, some
of them in touch with each other, are formed (Fig. 2.30). Longer term
annealing of 8h just leads to slight further coarsening (Fig. 2.31).

(a) (b)

Figure 2.28: Lx4 material after hot deformation at strain 1.34 and holding
for 15 min at 950◦C: a) IPF map. The color coding indicates which crystal
direction is parallel to z axis and b) KAM map.

(a) (b)

Figure 2.29: Lx4 material after hot deformation at strain 1.34, immediate
water quenching and subsequent 1 h annealing at 950◦C: a) BSE micro-
graph and b) IPF map. The color coding indicates which crystal direction
is parallel to z axis.
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(a) (b)

Figure 2.30: Lx4 material after hot deformation at strain 1.34, immediate
water quenching and subsequent 4 h annealing at 950◦C: a) BSE micro-
graph and b) IPF map. The color coding indicates which crystal direction
is parallel to z axis.

(a) (b)

Figure 2.31: Lx4 material after hot deformation at strain 1.34, immediate
water quenching and subsequent 8 h annealing at 950◦C: a) BSE micro-
graph and b) IPF map. The color coding indicates which crystal direction
is parallel to z axis.

Lx4 after deformation at 1.34 strain follows the same behavior as Lx2
at the same state. After deformation the microstructure exhibits signifi-
cant misorientations inside α lamellae but no real fragmentation yet. Shape
evolution and then coarsening occurs mainly during the post-deformation
holding or annealing. The main difference between both materials is that
Lx4 microstructure with post-deformation 15 min annealing does not tend
to the spheroidized microstructure as observed in Lx2 material at the same
state (Fig. 2.23). Lx4 has coarser lamellae which may not facilitate the
formation of subboundaries inside the lamellae, even at the relatively high
strain level of 1.34.

The difference in the behavior of Lx4 compared to Lx2 materials can be
globally appreciated on the low magnification BSE micrographs of Fig. 2.32.
Those images are taken at the center of the compressed double cone samples,
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but at a magnification low enough that the effect of strain gradients can be
appreciated as well.
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(a)

(b)

Figure 2.32: a) BSE micrograph at the center of the sample of Lx2 mate-
rial after hot deformation at strain 1.34, immediate water quenching and
subsequent 1 h annealing at 950◦C and b) BSE micrograph at the center of
the sample of Lx4 material after hot deformation at strain 1.34 immediate
water quenching and subsequent 8h annealing at 950◦C.

Fig. 2.32a is a BSE micrograph of the middle of the sample of Lx2 where
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the applied strain is 1.34, observed after hot deformation and 1h subsequent
annealing at 950◦C. The area inside the red box is depicting the middle of
the sample where no more colonies can be seen as spheroidization of the α
phase has occurred. Also there is no indication of former β grain boundaries.
Outside the red box where the strain is lower, colonies are still detectable and
less fragmented. Similar comments can be made from Fig. 2.32b, concerning
the Lx4 microstructure after hot deformation and subsequent annealing of
8h at 950◦C. In this case, since the microstructure is coarser, an overall
image across the whole sample could be obtained. In the red box, no former
grain boundaries and no colonies can be recognized.

Further quantitative information regarding the microstructural evolution
of both microstructures are presented in the following section.

2.4 Quantitative description of the microstructural
evolution of Lx2 and Lx4 materials upon an-
nealing after hot deformation to 1.34 strain

In the previous sections, experimental results are presented for both the Lx2
and Lx4 materials strained to 1.34. In addition, to the results of Lx2 and Lx4
at 0.36 strain, it appears that the globularization process is more difficult
in the coarser lamellae material Lx4. The evolution of both microstructures
during the post-deformation annealing will be described more quantitatively
in the following. The focus will be placed on the experiments performed with
the high applied strain, since the lower one, 0.36, appeared to be insufficient
to promote significant globularization.

BSE micrographs were analyzed with the ImageJ software package to
measure the α lamellae evolution from the experiments above described.
The average area of individual lamellae/laths and their aspect ratios will be
shown and commented below. Fig. 2.33 shows the evolution of these two
quantities as a function of the annealing time for Lx2 and Lx4 materials
after hot compression to 1.34.
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(a) (b)

Figure 2.33: Evolution of the average aspect ratio (blue) and average area
of α lamellae/laths (red) in materials: a) Lx2 and b) Lx4 during annealing
after hot compression to 1.34.

The mean aspect ratio decreases very quickly from the beginning in the
Lx2 material (Fig. 2.33a, about 500 laths measured for each point). The
mean aspect ratio decreased from about 8 to about 5.5 during the first 15
min annealing. Between the first 15 minutes and 1 hour, it keeps decreasing
quickly, and then the change is much slower upon annealing beyond 1 hour.
On the other hand, the average area of the laths increases steadily up to 4
hours annealing and then the growth rate slows down.

For the Lx4 microstructure, the measurements were more difficult to be
done because the quality of our results was not as good as was for Lx2. The
material was more difficult to be polished. Only 300 to 350 laths could be
measured to build Fig. 2.33b. The points corresponding to 1 hour annealing
are out of the global trend depicted by the other data. We suspect that
something could go wrong with the experiment, possibly with the control of
the annealing temperature, and the corresponding data will thus be ignored
in the following comments. After 15 min annealing, very little change in
both the average aspect ratio and lath area is observed, consistently with
the EBSD maps shown on Figs. 2.29, 2.30 and 2.31. After 4h, the aspect
ratio has significantly been reduced and the mean area increased but to a
lower extent. Between 4h and 8h annealing, the aspect ratio does not really
change any longer but the α laths are getting significantly coarser.

The results above suggest two regimes in the microstructure evolution.
At the beginning, the aspect ratio decreases quickly and the area of the laths
increases relatively slowly.

The governing mechanisms at the early stages of spheroidization are
supposed to be those leading to α lamellae splitting : the motion due to
surface diffusion at the α/β interfaces and the motion by mean curvature
at the α/α subboundaries interfaces. If only those mechanisms would be
active, the individual lath area would go down as a result of the splitting
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process, and then keep being more or less constant as the shape of the
lath is evolving. The average area of the laths is on the contrary slightly
increasing from the beginning, which suggest that coarsening also occurs to
some extent. The increase in size being rather small, one can nevertheless
consider the splitting mechanisms as being the predominant ones in the
early stages of the globularization process. On the other hand, over longer
annealing times, the shape came close to globular and does not evolve so
drastically anylonger, but the average area keeps increasing. The mechanism
governing microstructure evolution is then turning to be the coarsening of
the α particles.

To conclude, the appearance of subboundaries is confirmed to be of great
importance for how the microstructure will be evolving and further investi-
gation should be done on this subject.

2.5 Phase transformation during the experiments

Phase transformation is one of the possible mechanisms going along with the
phenomenon of spheroidization, but will not be considered in the numeri-
cal modeling developments for the sake of simplification. Since isothermal
evolutions were investigated, ignoring a possible change in phase volume
fractions sounds reasonable. Nevertheless, it is has been reported in the lit-
erature [14–18] that α/β titanium alloys may undergo phase transformation
from α to β during hot-deformation. An increase in β phase fraction has in-
deed been observed after deformation and quenching. During annealing after
hot-deformation, the volume fractions came back to the static equilibrium
values that can be predicted based on thermodynamic calculations. Taking
this into account, it is worth checking the phase volume fraction evolution
among our deformation experiments of initially lamellar microstructures.

Again by using the image processing software ImageJ, the α phase vol-
ume fraction was measured from BSE micrographs. The results displayed
on Fig. 2.34 are average values obtained with about 10 pictures for each
sample.

68



(a) (b)

Figure 2.34: Evolution of the α phase volume fraction before and after
deformation, and during subsequent annealing for: a) Lx2 and b) Lx4.

The results are contradictory with the literature [14–18]. A raise in the
β volume fraction during deformation was expected but instead a raise in α
volume fraction was observed. This increase is quite large, from 25-30% to
45-55% within few seconds of deformation, and the value slowly goes back
to the initial one upon subsequent long term annealing. On the other hand,
experiments with both microstructures and both strain levels exhibit the
same trends regarding the α phase evolution, which gives some consistency
to these unexpected results. It is clear that further research should be done
on this issue to better understand the mechanisms and kinetics of dynamic
phase equilibrium and to validate the current results. At the present time,
we can only keep in mind that the phase volume fractions are actually not
constant during the spheroidization process, and include this point into the
perspectives of this work.

2.6 Attempt of quantifying subboundaries

In previous sections of this chapter, as well as in the literature review, the
important role of subboundaries formed during deformation on the further
evolution of the microstructure was already emphasized. The most obvious
example was material Lx2 which did not show any significant evolution upon
the 15 min post-deformation annealing when submitted to the low strain of
0.36, but greatly evolved when deformed up to 1.34 strain. This is quantified
on Fig. 2.35 where the evolution of the mean aspect ratio of the α laths
during the 15 min holding is shown for both levels of strain. The aspect
ratio of the α laths in both deformed microstructures is more or less the
same but evolves very differently during the annealing. After 1.34 strain, the
deformed lamellae presented much more subboundaries (Fig. 2.23) and their
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the aspect ratio goes down during post-deformation annealing, as a result
of lamellae fragmentation, while the 0.36 strained microstructure basically
does not evolve with these regards.

Figure 2.35: Evolution of the mean aspect ratio of α lamellae/laths in Lx2
material when hot-deformed to 0.36 (blue) strain and at 1.34 strain (red).

As reported in the literature [2–10], subboundaries initiate the process
of lamellae splitting through the formation of grooves on α/β interfaces.
Higher strains lead to the storage of more dislocations in the lamellae, and
thus to the appearance of higher misorientations and subsequently to the
formation of more subboundaries inside the lamellae. Somehow, the insta-
bility introduced by subboundaries is the reason why the mechanisms such
as surface diffusion and motion by mean curvature are initiated.

EBSD data were analysed using the MTEX toolbox for the sake of quan-
tifying the numbers of particles separated by subboundaries after deforma-
tion and after 1h or 4h subsequent annealing of Lx2 material at 1.34 strain.
Maps with similar α lath total area were selected for these analyses. A
threshold angle of 10◦was set to define boundaries and the number of par-
ticles detected base on this criterion was measured. The particles detected
with a 10◦threshold are supposed to be the lamellae or laths. Then lower
thresholds were applied (7◦, 5◦,4◦and then 3◦), leading to higher numbers of
detected particles, representative for sub-grains delimited by the subbound-
aries. This way, the amount of subboundaries in the microstructures could
be indirectly assessed. The number of particles was normalized for each data
set by the total area of α laths. The results are shown on Fig. 2.36.
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Figure 2.36: Number of particles detected per total α lamellae/laths area as
a function of the considered angle threshold in Lx2 material submitted to
1.34 strain. Deformed state in blue, deformed and annealed for 1h in red,
deformed and annealed for 4 hours in green.

As a general trend, the number of particles is increasing when decreasing
the threshold angle, and this holds for all states, deformed, and deformed-
and-annealed. This means that individual lamellae, and later laths, are
composed by several portions delimited by subboundaries. Furthermore, as
compared to the deformed state, the annealed materials have higher number
of detected particles. This trend is more pronounced after 4h annealing than
after 1h anneling. This is consistent with the fragmentation the lamellae into
more and more (smaller) laths and/or the formation of more subboundaries
(by recovery mecanisms) during annealing.

2.7 Conclusion

The performed experiments allowed to confirm the mechanisms reported in
the literature and to get a clearer picture of how deformation and annealing
affect the phenomenon of spheroidization.

Deformation is not homogeneous throughout the colonies. The colonies
of lamellae that are parallel to the compression direction usually form kinks,
which lead to quicker fragmentation. The areas where the lamellae are not
parallel to the compression direction are more difficult to be fragmented.
During deformation, lamellae accumulate dislocations, which induce inter-
nal misorientation and the formation of subboundaries. The number of
subboundaries is increasing with increasing the strain level. Subboundaries
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are the key for the future spheroidization of the α laths, which is initiated
by the formation of grooves at the α/β interfaces.

The thickness of the lamellae was also confirmed to be an important
factor. Thicker lamellae form less subboundaries (at a given strain level)
and are more difficult to spheroidize. For the Lx4 material, with thick
lamellae, a shape change towards a spherical form could indeed be detected
only after long term annealing.

Subboundaries destabilize the lamellar microstructure and trigger inter-
facial mechanisms as surface diffusion at the α/β interface and motion by
mean curvature at the α/α subboundaries. These two mechanisms are pre-
dominent at the beginning of the process and they lead the lamellae splitting
into shorter laths. This can occur either already during deformation (at high
strains and for thin lamellae), or during subsequent annealing.

Over long-term annealing, lath coarsening becomes the predominant and
later on the only active mechanism. The physical mechanism behind coars-
ening is bulk atomic diffusion.

Even though only isothermal experiments have been performed, the
phase volume fractions appeared to evolve significantly during deformation.
An increase in α phase fraction was observed during deformation, which was
unexpected (and remained unexplained) since the literature has reported the
opposite trend in the same alloy (but with a different starting microstruc-
ture). During annealing, inverse phase transformation occurs to retrieve the
static phase equilibrium volume fractions. Since it was impossible to con-
sider the whole complexity of the involved mechanisms in the model to be
developed, this effect was left apart, but this is definitely something which
should be studied in the future.

All mechanisms contributing to the spheroidization of initially lamellar
microstructures can be listed as follows:

Mechanism Consequence Occurs during

Crystal Plasticity Formation of sub-
boundaries

Hot deformation

Surface diffusion at Grooving of Hot deformation
the α/β interface the α/β interface and/or
motion by mean Lamellae splitting early annealing
curvature at the Lath Spheroidization stages
α/α sub-boundaries

Bulk diffusion
Lath coarsening Long-term annealing
Dynamic phase trans-
formation

Deformation

Static phase transfor-
mation

Annealing

The following chapters will present the numerical framework that was de-
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veloped with the aim of being able in the future to simulate the spheroidiza-
tion process in a digital microstructure. In this numerical part of the PhD,
the focus will be placed on the lamellae splitting in a system already contain-
ing subboundaries, and thus on the two involved mechanisms: the motion
by surface diffusion at the α/β interfaces and the motion by mean curvature
of the α/α interfaces.
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Chapter 3

Introducing a numerical
framework for the numerical
modeling of α lamellae
splitting

Résumé en français

Une méthode à champ complet basée sur la méthode Level-Set implémente
dans un cadre Eléments Finis a été teste pour simuler les mécanismes physiques
de migration interfaciale menant à la subdivision des lamelles et à l’évolution
vers une forme globulaire. Deux approches sont présentées en détail dans ce
chapitre, la première utilise un cadre Eulérien et la deuxième dans un cadre
Lagrangien. Ces deux approches sont basées sur plusieurs outils numériques
existants dans la librairie Elément Finis C++ CIMLIB, qui a été développée
dans le laboratoire du CEMEF.

Plusieurs cas académiques sont présentés pour valider les deux approches.
Ensuite, les deux approches sont comparées pour trouver la plus efficace pour
la simulation de la subdivision des lamelles α et l’évolution des particules α
vers une forme globulaire. De plus, différentes techniques d’adaptation de
maillage sont testées pour simuler efficacement l’évolution de la forme des
particules de phase α.

Il est trouvé que la méthode dans le cadre Lagrangien avec l’outil d’adaptation
de maillage conforme FITZ est la plus efficace pour modéliser les mécanismes
physiques considérés dans ce travail, et c’est donc cette méthode qui a été
choisie pour les cas plus complexes considérés dans les chapitres suivants.
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3.1 Numerical modeling

Both chapter 1 and chapter 2 have drawn the attention to the importance
of the appearance of subboundaries inside the α lamellae for the post-
deformation microstructural evolutions. Due to the existence of α/α sub-
boundaries after deformation, the α lamellae turn into an unstable configura-
tion and diffusion mechanisms take place in order to restore microstructural
equilibrium.

By considering the importance of this behavior to the spheroidization
phenomenon, one of the main objectives of this work is, at the scale of
Fig. 3.1, to efficiently simulate the α lamellae splitting inside a β grain due
to the appearance of α/α subboundaries during deformation.

To reach this objective, it is important to propose an adapted numer-
ical framework. As already mentioned, the two instantaneous mechanisms
responsible for the α lamellae splitting are the motion due to surface dif-
fusion on the α/β interfaces and the motion due to mean curvature on the
α/α subboundaries. The rest of the involved mechanisms are not taken into
account in this work.

Figure 3.1: Experimental image of α lamellae inside a β grain.

A FE/level-set method is proposed for simulating the splitting of the
α lamellae and the subsequent shape evolution of the α laths towards a
spheroidal shape during the stage of annealing. The basic idea is that the
α lamellae are represented as a signed distance function. The simulation
domain will be considered as the β phase/grain.

This provides a global framework for simulating efficiently the lamellae
splitting mechanisms during the spheroidization phenomenon. This chapter
will illustrate in detail all the steps followed in order to build the numerical
framework.

In all the numerical simulations, unstructured FE meshes, Th, of the
domain calculation Ω are considered. The elements, e ∈ Th, are assumed
triangular in 2D and tetrahedral in 3D. In the following, the space of con-
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tinuous piecewise linear functions (P1) over the domain Ω will be denoted
Vh.

3.2 A level-set method to describe the α/β lamel-
lae interfaces

A level-set (LS) method was used since it enables to implicitly represent
an object and to describe its evolution on a domain Ω [23]. The main
idea behind this method is that a distance function φ returns the Euclidean
distance, denoted d, to the boundary Γ of a sub-domain Σ ∈ Ω:

Γ(t) = {x ∈ Ω, φ(x, t) = 0}, (3.1)

and generally a signed convention is assumed where φ is defined positive
inside Γ and negative outside as following:

φ(x, t) =

{
d (x,Γ (t)) , x ∈ Σ

−d (x,Γ (t)) , x /∈ Σ
(3.2)

The evolution of φ(x, t) for an imposed velocity field v(x, t) is then gov-
erned by the following convection equation [23,24]:

∂φ

∂t
+ ~v · ∇φ = 0. (3.3)

The main advantage for using LS method is that topological changes can
be captured efficiently. Some intrinsic geometric properties of the interfaces
can also be easily determined. More details are given below.

3.3 Level Set formulation of α lamellae

A level-set (LS) model was formulated in order to deal with the topological
changes at the α/β interfaces. The 0-isosurface of the LS will represent the
α/β interfaces. One of the main advantages of the LS method, as already
mentioned, is that certain geometric entities can be easily computed [25,26].
Specifically, with the chosen sign convention, the unitary outside normal
~n and the mean curvature (i.e. the trace of the curvature tensor in 3D
equivalent to the sum of the main curvatures) κ can be obtained as:

~n =
−∇φ
‖∇φ‖

, (3.4)

and

κ = div(~n) = −∇ · ∇φ
‖∇φ‖

. (3.5)
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The interface Γ submitted to a velocity field ~v can be modeled by solving
the convective equation Eq. 3.3. If the LS function is initially defined as a
distance function (see Eq. 3.2), this property is not naturally preserved dur-
ing convection. This metric property is equivalent to verifying ‖φ (x, t) ‖ = 1
and can be retrieved by a reinitialization/redistancing procedure [23]. More
details are given in section 3.5.

Taking into account Eq.1.15, the following form of ~v can be considered
to simulate α laths/lamellae:

~v = vn~n = (vs + vκ)~n = (B∆sκ︸ ︷︷ ︸
vs

−Aκ︸ ︷︷ ︸
vκ

)~n, (3.6)

with

B =


γαβνΩ2Dαβ

kT
at the α/β interfaces

0 otherwise

(3.7)

and

A =


γααbfΩ
kT

e−
Q
RT at the α/α interfaces

0 otherwise

(3.8)

It can also be proven that in the considered LS formulation, vn [26] can
be rewritten as

vn = B∆sκ−Aκ =
B

‖∇φ‖
∇ · (‖∇φ‖P∇κ)−Aκ, (3.9)

where P is the projection matrix on the tangent plane to the surface:

P = I − ~n⊗ ~n = I − ∇φ
‖∇φ‖

⊗ ∇φ
‖∇φ‖

. (3.10)

and I is the identity matrix.
In the considered LS framework, the velocity is then defined in the entire

domain and corresponds to the vicinity of the 0-isovalue of the LS function,
i.e. Γ, to the interface velocity. In the following section, more informa-
tion are given regarding the formulation of the surface diffusion velocity as
proposed in [26].
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3.4 Velocity approximation in context of surface
diffusion

In order to model the induced flow from the surface diffusion mechanism at
the α/β interface, a FE methodology is adopted. At any time t, the normal
transport velocity vn is expressed as:

vn = vs = B∆sκ =
B

‖∇φ‖
∇ · (‖∇φ‖P∇κ) (3.11)

with B defined in Eq. 3.7 and P as defined in Eq. 3.10.
The B coefficient is defined as a constant. Thus, it is chosen to neglect

any anisotropy concerning the interface energy and the diffusivity. Further-
more, isothermal conditions are assumed. The time evolution of Γ(t) due to
surface diffusion can then be obtained by solving the following convective
system: 

∂φ
∂t

+ vs~n · ∇φ = 0

φ(x, 0) = φ0(t)

(3.12)

The interface can then be obtained at each time step as the 0-isovalue
of the LS function and the velocity is updated by using Eq. 3.11 before the
following time step.

3.4.1 Surface diffusion velocity identification and transport
resolution

Looking at Eq. 3.11, one of the basic problems that arises is that the velocity
vs is defined by the surface Laplacian of the mean curvature. Since a P1
description of the LS is used, the velocity is then a function of the fourth
order spatial derivative of φ. The methodology used to solve this problem
and to calculate the surface diffusion velocity at each time step of the FE
scheme is based on the FE strategy introduced by Bruchon et al. in [26,
27]. This surface diffusion methodology which is integrated in CimLib (the
parallel C++ FE library used in this work [28]), will be called from now on
in the manuscript as (κ,vs)-identification solver.
The methodology is based on a FE strategy detailed below.

To begin with, a smoothed modified φ̃ LS function is evaluated to de-
scribe the interfaces, rather than using directly the distance function as in
Eq. 3.2:

φ̃ (x, t) =


2E
π sin

(
π

2Ed (x, t)
)

if d (x, t) ∈ [−E,E]

−2E
π if d (x, t) ≤ −E

2E
π if d (x, t) ≥ E

(3.13)
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The paramater E can be seen as the φ̃ mid-thickness and it will be
generally directly linked (equal) to the mesh adaptation and reinitialization
thicknesses in the following. As sin (x) ≈ x for small values of |x|:

φ̃ ≈ d near the 0-isovalue. (3.14)

Moreover, as a LS function, Eqs. 3.1, 3.3, 3.4, 3.5 and 3.11 are, of course,
verified by φ̃.
The unknowns φ̃, κ and vs are then approximated, respectively, by φ̃h, κh
and vsh belonging to Vh. The time scale is discretized and a field, F , eval-
uated at time t will be denoted F t. In every time step φ̃th is assumed to
be known. Then, by evaluating Eqs. 3.5 and 3.11 for φ̃, the κth and the vtsh
fields could be computed a priori. However, at this point the first difficulty
appears. Since φ̃h is piecewise linear, the gradient will be a constant per
element (P0) and the following derivatives will be equal to zero. A weak
formulation is adopted to solve this problem. The second difficulty comes
from the non-linear relationship between φ̃, κ and vs. In order to overcome
this difficulty, φ̃t+dth is explicitly determined by considering the surface dif-
fusion velocity at time t. Finally, in order to avoid numerical oscillations in
the full explicit resolution [26, 27], the numerical method consists of build-
ing a system where the unknowns are the P1 mean curvature κth and the
P1 velocity vtsh and by introducing a regularization term. In order to in-
troduce implicitly this regularization term, a first order Taylor expansion is
considered:

φ̃t+dth + o(dt) = φ̃th +
∂φ̃th
∂t

dt, (3.15)

which is defined as φ̃
t+ 1

2
h .

Substituting φ̃ in Eq. 3.3, we obtain ∂φ̃
∂t = −~v · ∇φ̃. By substituting this

equation at time t in the right side of Eq. 3.15:

φ̃
t+ 1

2
h = φ̃th − ~vth · ∇φ̃thdt. (3.16)

By using ~vth = vtsh~n = −vtsh∇φ̃
t
h/‖∇φ̃th‖, Eq. 3.16 becomes:

φ̃
t+ 1

2
h = φ̃th + vtsh‖∇φ̃

t
h‖dt. (3.17)

Furthermore, by considering Eq. 3.5 applied to φ̃ at time t with the use

of φ̃
t+ 1

2
h and Eq. 3.17:
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κ = −∇ ·

(
∇φ̃
‖∇φ̃‖

)
⇒ κth = −∇ ·

 ∇φ̃t+
1
2

h

‖∇φ̃t+
1
2

h ‖


⇒ κth = −∇ ·

∇φ̃th +∇
(
vtsh‖∇φ̃

t
h‖dt

)
‖∇φ̃t+

1
2

h ‖


⇒ κth + dt∇ ·

∇
(
‖φ̃th‖vtsh

)
‖∇φ̃t+

1
2

h ‖

 = −∇ ·

 ∇φ̃th
‖∇φ̃t+

1
2

h ‖

 .

(3.18)

In addition, by considering Eq. 3.11 applied to φ̃, we obtain:

vtsh‖∇φ̃
t
h‖ −B∇ ·

(
‖∇φ̃th‖Pφ̃th∇κ

t
h

)
= 0. (3.19)

The idea of the mixed formulation proposed by Bruchon et al. [26, 27],
is then to solve the system defined by the Eqs. 3.18 and 3.19 with some
simplifications. First, ‖∇φ̃th‖ is replaced by the value 1 in the second term
of the left-side part of Eq. 3.18. This approximation is acceptable thanks

to Eq. 3.14. Second, the term ‖∇φ̃t+
1
2

h ‖ in Eq. 3.18 is replaced by the

approximation C = ‖∇φ̃th + dt∇vt−dtsh
‖.

Finally, the following system is solved:
κth + dt∇ ·

(
∇vtsh
C

)
= −∇ ·

(
∇φ̃th
C

)
vtsh‖∇φ̃

t
h‖ −B∇ ·

(
‖∇φ̃th‖Pφ̃th∇κ

t
h

)
= 0

(3.20)

which leads to the following weak formulation: at time t, assuming φ̃th
known, find

(
κth, v

t
sh

)
∈ Vh × Vh as

∀ϕh ∈ Vh

{ ∫
Ω κ

t
hϕh dΩ + dt

∫
Ω∇ ·

(
∇vtsh
C

)
ϕh dΩ = −

∫
Ω∇ ·

(
∇φ̃t

h
C

)
ϕh dΩ∫

Ω v
t
sh
‖∇φ̃th‖ϕh dΩ−B

∫
Ω∇ ·

(
‖∇φ̃th‖Pφ̃t

h
∇κth

)
ϕh dΩ = 0

(3.21)

Interestingly, by assuming that no lamella crosses the boundary domain,
the use of φ̃ rather than φ ensures that the boundary terms which can be
obtained by the divergence theorem applied to Eq. 3.21 vanish.
Finally, Eq. 3.21 is equivalent to: at time t, assuming φ̃th known, find(
κth, v

t
sh

)
∈ Vh × Vh as

∀ϕh ∈ Vh
{ ∫

Ω
κthϕh dΩ− dt

∫
Ω

1
C∇v

t
sh
· ∇ϕh dΩ =

∫
Ω

1
C∇φ̃

t
h · ∇ϕh dΩ∫

Ω
vtsh‖∇φ̃

t
h‖ϕh dΩ +B

∫
Ω
‖∇φ̃th‖Pφ̃t

h
∇κth · ∇ϕh dΩ = 0

(3.22)
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3.5 Direct Reinitialization (DR) Methodology

One of the weaknesses of using the LS method is that, after the resolution of
the advection equation Eq. 3.3, the LS function, initially defined as a signed
distance function (Eq. 3.2), stops being a distance function, i.e. the metric
property ‖∇φ‖ = 1 is no longer satisfied. Reinitialization is then needed in
order to restore this metric property [23].

Reinitialization is a very important step for our LS methodology. Indeed,
as usual in a LS convective Eulerian framework, a periodic reinitialization
procedure is needed to keep a precise description of the interface. In our com-
putations, the reinitialization must be performed at each time step for two
main reasons. First, as it will be illustrated in the next section, our metric-
based meshing/remeshing strategy undermines the use of the distance to
the laths interface. Second, it was illustrated in the previous section that
the the metric property ‖∇φ̃‖ = 1 is a hypothesis of the (κ,vs)-identification
solver. Thus, it was important to use in this work an efficient and precise
methodology to reinitialize the LS functions (around their 0-isovalues) used
at each time step of our simulations.

Different methods exist for reinitialization of the LS. Classical approaches
consist in solving, separately, the convective part and the reinitialization part
thanks to the resolution of a classical Hamilton-Jacobi system [23], [29] or
to adopt an unified advection and re-distancing methodology by solving one
single equation based on a smooth description of the LS [30,31].

Here, a new approach is followed as it was developed from Shakoor et
al. [32]. In this work, a new parallel and direct reinitialization algorithm
based on the use of a k-d tree space-partitioning strategy is presented. In
this algorithm, the Γ(t) interface is firstly discretized into a collection of
segments (or triangles in 3D cases). Reinitialization of the signed distance
function can be performed at any mesh node by computing the distance
function between the node and all the segments (or triangles) and by storing
the smallest one as the new value of the distance function. In this rough
shape, the aforementioned algorithm can be time consuming. Thus, it has
been enhanced with k-d tree and an efficient bounding box strategy enabling
to maximize the numerical efficiency [32].

There are many advantages for using this algorithm. Firstly, given a
P1 representation of the LS function (linear by element interpolation), the
Direct Reinitialization method which gives a geometrical solution is very ac-
curate in comparison with other solutions [32]. Also, it enables us to avoid
the validation/ calibration of non-physical parameters necessary to reini-
tialize the LS function as in classical Hamilton-Jacobi resolution [29], [31].
Furthermore, another advantage in comparison with the other methods is
that we can obtain directly an exact P1 description of the normal ~n to Γ(t),
which helps to compute the transport velocity, rather than following the
classical way where we compute the normals by performing a P1 interpola-
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tion of the first derivative of the LS function [33]. Since restoring the metric
property ‖∇φ‖ = 1 everywhere in the domain can be time consuming, this
algorithm also provide us with the possibility of restoring the metric prop-
erty only at the direct vicinity of the interface. This, in addition to the
k-d tree methods and bounding box, renders the algorithm extremely time
efficient.

In the next section we are going to present the main methodologies
followed in this PhD in order to efficiently simulate the shape evolution of
the α lamellae.

3.6 Simulating motion that leads to lamellae split-
ting

In the previous sections all the numerical tools used for the simulations
have been described. The final goal is to be able to efficiently simulate the
α lamellae splitting and subsequent α lath spheroidization.

In this section we will describe two different methodologies developed
for this purpose in order to test their efficiency and to choose the best one.
The first methodology was built in an Eulerian framework and the second
was built in a Lagrangian framework. The following sections describe both
methodologies and academic tests cases to compare it.

3.6.1 Eulerian approach

3.6.1.1 The procedure

The first approach is based on a classical Eulerian framework. The method
can be summarized by the flow chart described in Fig. 3.2:
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Figure 3.2: Flow chart of the methodology in the Eulerian framework.

The first step of our methodology consists of the calculation of the ve-
locity vs with the (κ, vs)-identification solver described in section 3.4. As
in [34], the mean curvature part of the velocity is, in fact, taken into account
thanks to the diffusive formulation. Indeed, if φ remains a distance function,
vκ~n · ∇φ can be simplified as vκ~n · ∇φ = −A∇ · (∇φ)∇φ · ∇φ = −A∆φ.
Finally, Eq. 3.3, can be written:

∂tφ+ vs~n · ∇φ−A∆φ = 0. (3.23)

An implicit P1 solver with a Streamline Upwinding Petrov-Garlerkin
(SUPG) method for the stabilization, and the Generalized Minimal Resid-
ual Method (GMRES) for the numerical resolution of the linear system of
equations are used to solve Eq. 3.23 [28, 35]. Subsequently, direct reinitial-
ization around the 0-isovalue is performed.
Different remarks can be done here:
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• the use of a diffusive part in the kinetic resolution given by Eq. 3.23 is
a third reason explaining the necessity of reinitialization at each time
step,

• if φ̃ was used for the (κ, vs)-identification solver and could be used for
the kinetic equation as well, we prefer here to deal with the distance
function, φ, reinitialized in the thickness [−E,E] in order to verify
precisely that the norm of the gradient of the used LS function remains
equal to 1 in all the thickness [−E,E],

• by assuming that no lamella crosses the boundary domain, no bound-
ary conditions are needed to solve Eq. 3.23.

In the next section, our meshing strategy is described.

3.6.1.2 Mesh adaptation techniques

One of the main difficulties that we have faced during our developments is
that in comparison with the β grain size, the α lamellae are very thin. As
a result the LS of the lamellae are very difficult to be described within a
reasonable FE mesh. In specific, as we have seen in the previous chapters,
the average size of α lamellae is in µm while the mean size of the β grains
is in mm. As the distance calculation in a LS method is in dependence with
the mesh size, it is very important to use a non homogeneous mesh in order
to represent efficiently the α lamellae without dealing with a homogeneous
very fine and computationally demanding FE mesh.

In a context of numerical simulations based on FE methods, mesh adap-
tation techniques can improve the efficiency of numerical resolutions and
reduce the calculation time. The mesh adaptation method followed in our
Eulerian context was based on the calculation of a metric on each node of
the FE mesh and the use of a topological mesher, MTC, developed in CE-
MEF [36]. Using local meshing/remeshing strategies enable us to describe
the LS interface evolution in a precise way by limiting the computational
cost.

A metric is a symmetric positively defined tensor which represents a local
base to modify the way of computing a distance, so that:

‖~u‖M =
√
t~uM~u, < ~u,~v >M = t~uM~v, (3.24)

with M a symmetric positive definite tensor [35]. The eigenvalues of the
metric tensor M are linked with the mesh sizes, and the eigenvectors define
the direction in which these mesh sizes are applied.

The first metric calculation used was proposed in [35]. To begin with, the
length 2E is defined as the characteristic thickness around the interface for
the mesh adaptation. Far from the interface the mesh is fixed as isotropic
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and the mesh size is equal to hd. Inside the narrow band around the 0-
isovalue defined by |φ| ≤ E, the mesh size is then reduced by a factor
m = hd

h in the normal direction of the interface. This result is obtained by
considering the following metric:

M = C(
∇φ
‖∇φ‖

⊗ ∇φ
‖∇φ‖

) +
Id

hd
2 , (3.25)

with

C =

{
0 if |φ| ≥ E
1
h2 − 1

hd
2 if |φ| ≤ E

(3.26)

where Id corresponds to the identity tensor [35]. This metric corresponds
to an anisotropic mesh close to the interface, with reduced mesh size h near
to the interface in the direction ∇φ and equal to hd in the other directions.
Furthermore, with some modifications on Eqs. 3.25 and 3.26, we can deal
with other remeshing strategies. Firstly, we can consider:

M = C̃Id, (3.27)

with

C̃ =

{
1
h2 if |φ| ≤ E
1
hd

2 if |φ| ≥ E
(3.28)

to obtain an isotropic fine mesh around the interface with a mesh size
equal to h and a coarse mesh far (|φ| ≥ E) from the interfaces with a mesh
size equal to hd. This metric is illustrated in Fig. 3.3 for the case of an ellipse
(a = 0.5mm and b = 0.1mm with h = 1µm, hd = 10µm and E = 10µm).
If we also consider h as a function of |φ| in Eq. 3.26 or in Eq. 3.28, we can
obtain a continuous refinement from the coarse mesh size to the fine mesh
size as proposed in [37].
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(a)

(b)

Figure 3.3: (a)Global isotropic mesh refinement with the use of the metric
defined by Eq. 3.25 and Eq. 3.26, (b) A zoom. The red lines correspond to
the 0-isovalue of the LS function.

A second method of metric calculation tested during our computations
in the Eulerian framework was to perform an error analysis in order to reach
an ideal mesh (without real improvement on the results comparatively to
the method described previously). This notion of ideal mesh undermines
generally the minimization of a discretization error for a given field and a
fixed number of elements. The metric is then directly given by the error es-
timator which will concentrate the mesh adaptation in the sharpest gradient
zones of the considered field [38–40]. The method adopted here was the one
proposed in [38] and [40]. No mechanical field was considered to evaluate the
discretization error but a function linked to the distance function. Indeed,
as a function of constant gradient in norm, the distance function can’t be
used directly. Finally, the function φ̃ described previously was an input of
the error estimator when it was used.
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3.6.2 Lagrangian approach

3.6.2.1 The procedure

The second approach tested is based on an enhanced Lagrangian framework.
This second method is summarized by the flow chart described in Fig. 3.4:

Figure 3.4: Flow chart of the methodology in the Lagrangian framework.

The first step remains the calculation of the surface diffusion velocity
and the mean curvature using the (κ, vs)- identification solver. The velocity
(see Eq. 3.6) that couples both motion by surface diffusion and motion by
mean curvature is constructed by calculating separately and adding the two
different velocities as : ~v = (vs − Aκ)~n = (B∆sκ − Aκ)~n. An enhanced
Lagrangian formulation is then used, where we employ the advantages of a
new mesh adaptation tool (FITZ) developed by M. Shakoor et al. [41]. In
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the following section, we are going to give a short description of FITZ mesh
adaptation methodology and on its advantages.

3.6.2.2 Adaptive meshing and remeshing with Fitz

It has been clearly stated numerous times until now in this work, that mesh-
ing and remeshing is very important for efficiently capturing the shape evo-
lution of the α lamellae and to avoid numerical diffusion. This holds true,
especially for simulating the interfacial kinetics during the spheroidization
phenomenon where the volume conservation is very important since physi-
cally we do not consider yet phase transformation but only the shape evo-
lution of the phases.

By working on a Lagrangian framework, the convection problem is solved
by updating the mesh. As previously mentioned, the α lamellae are de-
scribed by a signed distance function with a P1 formulation. The signed
distance function is computed at the mesh nodes and the evolution of the
interfaces is then obtained by computing the Lagrangian displacements of
each node. Usual Lagrangian mesh movement leads to deterioration of the
quality of the elements (or even to possible flipping of elements) and as a
result, frequent remeshing operations are required. During remeshing, there
is a tendency of diffusing the interfaces and volume at each iteration. The
new meshing and remeshing method realized in the FITZ tool, has been
proven to reduce volume diffusion in a Lagrangian framework especially in
a context of large deformation and displacement. A part of FITZ is com-
mon with the mesher MTC. Since MTC was developed many years ago, the
developments of FITZ come to enhance the existing algorithms with some
new operators as fitting, locking, refining and coarsening of the interface of
the LS [41,42].

Taking into account that the LS function represents α lamellae inside
the domain, FITZ first considers the metric field, described in the previous
section 3.6.1.2, in order to have more refined mesh around the interfaces, and
to control the mesh size in the whole domain. Remeshing is performed. If
the quality of the mesh is not good enough, the sequence of firstly calculating
the LS, afterwards defining the metric and at the end remeshing, is repeated
several times until reaching the desired mesh quality. At that point FITZ
operates the fitting of mesh at the interface. The procedure lists all the edges
in the mesh and then splits the ones where the LS function changes its sign.
For more information regarding this procedure the reader can refer to [41,42].
In the cited papers the criteria and regulations of FITZ performing meshing
and remeshing are explained in depth, as well as the methodologies followed
in order to prevent poor quality elements. After the body fitted interface is
obtained, remeshing is again performed by FITZ in order to maintain the
quality of the mesh at the interface and the whole domain.

To conclude, the main advantages of using FITZ for our developments

88



are: (a) the volume conservation and that (b) the body fitted interface help
us capture efficiently the triple junction that is formed between an α/α sub-
boundary and the α/β interfaces. Both seem very interesting advantages
regarding the simulation of the lamellae splitting in order to avoid the vol-
ume diffusion that is observed in classical Eulerian formulation. Fig. 3.5
illustrates, in context of the Fig. 3.3, the results obtained with the use of
the FITZ meshing algorithm for the same metric. The main difference this
time is that 0-isovalue (red line) is conformed to the mesh.

(a)

(b)

Figure 3.5: Same case than the Fig. 3.3 realized with the FITZ capabilities:
(a) global mesh, (b) zoom. The red lines corresponds to the 0-isovalue of
the LS function.

3.7 Velocity application area

At this point, it is important to be more precise regarding how we apply
the velocity field in order to move our LS. In both Eulerian and Lagrangian
space, we define a P1 velocity field (linear by element interpolation). The
whole process of surface diffusion and motion by mean curvature occurs ei-
ther at the α/β interface either at the α/α interface, respectively. For that
reason the velocity field is then applied only in the narrow band around the
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0-isovalue already defined as |φ| ≤ E.

We have described the two methodologies considered in order to simulate
the α lamellae splitting. In the following section, we are going to present
results from simulations performed with these two methodologies in order
to examine and compare their efficiency.

3.8 Results

Having discussed the theoretical background of the Eulerian approach and
the Lagrangian approach, results from some first academic cases are pre-
sented. By comparing these results, we are going to decide which of the
two approaches is more efficient for simulating the lamellae splitting phe-
nomenon. To begin with, we perform academic cases for simulating surface
diffusion and motion by mean curvature separately using both approaches.
Tests comparing the efficiency of different mesh adaptation techniques are
also presented. Finally, the final academic case of this chapter illustrates
the coupling of the two motions again by comparing the two proposed ap-
proaches.

3.8.1 Tests on surface diffusion simulations on static mesh
using the Eulerian approach

In this section, we are considering an ellipsoid shape under surface diffusion.
We want to test the efficiency of the proposed formulation for a simple
case where an analytical solution is known. We considered a computational
domain of 1mm × 1mm square centered in (0,0). An initial ellipse of axis
a = 0.3mm and b = 0.2mm is considered:

x2

a2
+
y2

b2
= 1. (3.29)

Under surface diffusion, the ellipse shape is going to evolve towards a
circular shape while conserving its area. Thus limit radius, i.e. the limit
value of a and b is given by the value

√
πab ≈ 0.43416mm.

The flow chart of Fig. 3.2 with A = 0 is implemented. A static mesh is
used and an initial isotropic mesh adaptation is realized in a ring centered
at (0,0) and defined as 0.19mm ≤ r ≤ 0.31mm. This refined mesh area
is defined to enforce a fine mesh size over the entire area crossed by the
zero-isovalue of the LS during the simulation. The mesh size in this zone is
defined by h. A description of one of the initial configuration of this case
(h = 1µm) is given in Fig. 3.6 where we can observe: (a) the global mesh
with the interface (red ellipse), (b) a zoom on the mesh, (c) the initial mean
curvature field κ, (d) the initial x−component of the velocity field vs~n (see
Eq. 3.6):
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Figure 3.6: case 1 - Initial Configuration, from top to bottom and left to
right: the global mesh, a zoom on the mesh, the initial mean curvature field
κ and the initial norm of the velocity field vs~n (see Eq. 3.6). The ellipse
interface is given by the red line in all the pictures.

The shape evolution of the numerical solution is compared to the exact
solution [27]. The exact velocity of the point(a(t),0) can indeed be obtained
by the following strategy:

~va (t) = B
3(b2 − a2)a

b6
~i = va~i, (3.30)

with ~i the first basis vector of the cartesian coordinate system. Then, a(t+
dt) is approximated with an Euler forward scheme :

a(t+ dt) = a(t) + dtva(t), (3.31)

and by considering the area conservation, b(t+ dt) can be easily obtained
with:

b(t+ dt) =
a(0)b(0)

a(t+ dt)
. (3.32)

The coefficient B for all the chapter 3 simulations is set at 1e-3mm4 ·s−1.
The mesh size in the finer mesh circle is h = 1µm and the time step is
dt = 1ms. The same time step and initial geometry is used for the analytical
solution. Fig. 3.7 illustrates the comparison between the shape evolution
of the analytical solution, represented by the blue line, and the numerical
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one, represented by the red line, for the numerical approximation for t=0s,
t=0.20s and t=1s. Taking a closer look at Fig. 3.7b, at time t=20s, a small
difference between the two solutions can be observed.
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(a)

(b)

Figure 3.7: (a)Ellipse interface at 0s, 0.2s and 1s in blue for the analytical
solution and in red for the LS methodology, (b) zoom.
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The same simulation is performed on Eulerian framework with the same
stable mesh but using a unified approach of convection + reinitialization, as
it is detailed in [27]. Comparing these two formulations is of interest in order
to investigate how efficient is the proposed Eulerian formulation/approach.

First, we have examined how the time step and the mesh size affect the
response of our simulations and the corresponding precision of the results.
The most important parameters regarding our study cases, the mesh size
used in the refined zone, the time step, the CPU simulation time and finally
the corresponding precision of the results obtained concerning the position
of (a(t),0) in comparison with the solution, are summarized in Table 3.1.
The errors have been defined as:

e1 =
‖asim(t)− aexact(t)‖L1

‖aexact(t)‖L1

=
Σi‖asimi − aexacti‖

Σi‖aexacti‖
, (3.33)

e2 =
‖asim(t)− aexact(t)‖L2

‖aexact(t)‖L2

=

√
Σi(asimi − aexacti)2

√
Σiaexact2

, (3.34)

where i denotes the time discretization.

Data Case 1 Case 2 Case 3 Case 4

h in µm in the mesh refined zone 1 1 2 1
# Elt ∼2.7e5 ∼2.7e5 ∼7e4 ∼2.7e5

Time step in ms l 5 10 0.1
Convect+Direct Reinit X X X
Unified approach [27] X

Calculation time using 12 CPU 1h 17 min 1 min 6h
e1 in % after 1s 2.5 2.6 2.1 2.2
e2 in % after 1s 3 3.1 2.9 2.8

Table 3.1: Ellipse under surface diffusion: comparisons between two Eulerian
approaches for different numerical parameters and a static mesh.

Taking into account the first simulations summarized in Table 3.1, we
can make the following remarks:

• in contrast with the unified approach of case 4 [27], our new approach
with DR seems to reduce drastically the calculation time. This result
illustrates the interest of the proposed direct renitialization procedure
as already discussed in [32],

• for the first three simulations with the DR (cases 1,2 and 3) the varia-
tion in time step and mesh size does not affect significantly the e1 and
e2 errors.
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From these first tests, we have established that the new method of con-
vection with DR is more efficient regarding the calculation time in compar-
ison with a classical Hamilton-Jacobi resolution for the reinitialization. In
the next section, we consider surface diffusion tests, using mesh adaptation
techniques.

3.8.2 Tests on surface diffusion with mesh adaptation oper-
ations in an Eulerian approach

In this section, some first results are described regarding tests with sur-
face diffusion on ellipsoids using the a priori mesh adaptation techniques
described in section 3.6.1.2.

The initial geometry remains an ellipse of a = 0.3mm and b = 0.2mm
axes, in a square domain 1mm × 1mm. We use the Eulerian approach
with the convection + Direct Reinitialization algorithm. Mesh adaptation
is performed at each time step.

Two different mesh adaptation metrics are tested. The considered met-
rics are calculated thanks to the method described in [31]. It enables us to
obtain isotropic or anisotropic (in the normal direction of the interface) fine
mesh at the vicinity of the interface. The definition of this metric is based
on the distance function and is described in section 3.6.1.2. See Eqs. 3.25
and 3.26 for the anisotropic formulation and Eqs. 3.27 and 3.28 for the
isotropic one.

Table 3.2 summarizes the results of several simulations. The most effi-
cient mesh adaptation method is examined regarding the ellipse evolution
and area conservation. For the latter,the area of the shape is measured at
every time step and the loss is calculated with the following equation:

Area loss% = 100 ·
|Areatinit −Areatfinal |

Areatinit
. (3.35)

technique Isotropic Anisotropic

h in µm in the mesh refined zone 1 1
hd in µm 10 10
E in µm 10 10

# Elt ∼9000 ∼8000
Time step in ms l 1

Convect+ Direct Reinit X X
Calculation time 12 CPU 2 min 2 min
Area loss % at t=1s 3.5 6

Table 3.2: Ellipse under surface diffusion: comparisons between two mesh
metrics.
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Initial meshes of Table 3.2 are presented in Fig. 3.8.

(a) (b)

(c) (d)

Figure 3.8: (a) Isotropic mesh adaptation, (b) zoom of (a), (c) Anisotropic
mesh adaptation, (d) zoom of (c).

Taking into account Table 3.2, it seems that the time calculation has
considerably decreased in comparison with the cases without mesh adapta-
tion summarized in Table 3.1. The final shape of the ellipses in the two
cases are circular. For the same time step and the same value of h at the
refined area, isotropic refining seems to be more efficient in terms of volume
conservation for a comparable calculation time. Furthermore, by making
a comparison of the evolution of the axis for each case with the analytical
solution (Eqs. 3.30, 3.31 and 3.32), the curves of Fig. 3.9 are obtained.

The a-value and the b-value should converge towards Rlimit ≈ 0.2444µm.
By comparing the axis evolution with the two different methods, the isotropic
case seems to converge towards the analytical limit. For each of these two
cases, there is an initial difference regarding the slopes of the curves.

Finally, regarding the shape evolutions during the simulations, it seems
that the isotropic mesh adaption technique is much more appropriate for
our simulations in comparison with the anisotropic one. The same analysis
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Figure 3.9: Radius axis evolutions during surface diffusion: (top) isotropic
remeshing and (bottom) anisotropic remeshing.
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was realized for different shape ratios of the initial ellipse, and the same con-
clusions were obtained. The idea of anisotropic mesh adaptation was then
rejected since it seems that the volume loss is more important in comparison
with the isotropic methodology.

Nevertheless, further tests have been made regarding mesh adaptation
techniques but this time with the Lagrangian approach. More details re-
garding this subject are given to in following section.

3.8.3 Tests on surface diffusion with the Lagrangian approach
using body fitted meshing and remeshing

Until now, only the Eulerian approach has been tested. In this section, we
are going to illustrate some first academic cases concerning the enhanced
Lagrangian approach that we have described in section 3.6.2.

Once again, we begin with simple tests regarding the shape evolution of
ellipses under surface diffusion. For this case, we use exactly the isotropic
metric described in the previous test case.

The geometry considered is an ellipse of a = 0.5mm and b = 0.1mm un-
der surface diffusion as we have studied previously in context of the Eulerian
approach in section 3.8.2. The case is presented in Table 3.3.

Data Lagrangian approach

Mesh refinement isotropic
h in µm in the refined mesh zone 1

hd in µm 20
E in µm 20 µm

# Elt ∼20300
Time step in ms 5

Calculation time 12 CPU 3 min
Area loss at t=1s % 1.9

Table 3.3: Ellipse under surface diffusion: a Lagrangian calculation.

As illustrated by the results summarized in Table 3.3, the use of the pro-
posed Lagrangian approach enables to limit the volume loss comparatively
to the previous cases. The initial configuration of this case and the evolution
of the 0-isovalue of the LS are described in Fig. 3.10, and Fig. 3.11.

98



Figure 3.10: Lagrangian framework: initial configuration.

Figure 3.11: Lagrangian framework: time evolution of the 0-isovalue.

The improvement concerning the area conservation can also be explained
by the increase of E (and therefore the number of mesh elements) consid-
ering in this case comparatively to the previous ones. Thus, to continue, a
comparison between the Lagrangian and the Eulerian approach is made on
a same configuration. A case of an ellipse with a = 0.4mm and b = 0.04mm
axes (ratio of 10) is considered in a square domain 1mm × 1mm. It is a
shape with higher curvature than the previous test cases and so this config-
uration is more realistic comparatively to the geometry of real α laths and
more complex in terms of kinetics. Table 3.4 presents the two cases.

99



Data Eulerian approach Lagrangian approach

Mesh refinement isotropic isotropic
h in µm in the refined mesh zone 0.5 0.5

hd in µm 20 20
E in µm 20 µm 20 µm

# Elt ∼55000 ∼55000
Time step in ms 0.3 0.3

Convect+Direct Reinit X
Calculation time 12 CPU 13 min 13 min

Area loss at t=0.1s % 20 6

Table 3.4: Ellipse under surface diffusion: comparison between an Eulerian
calculation and a Lagrangian one.

Isotropic mesh refinement is used for both cases. Time calculation for
both cases is short even if the time step was fixed to the small value of 0.3ms
in order to be precise on the comparison. Moreover a too large time step
of thin elongated shape can lead to unrealistic split-off of the ellipse. The
area conservation is clearly better with the use of the proposed enhanced
Lagrangian framework as illustrated by Table 3.4 and the Figs. 3.12 and
3.13 which illustrate, respectively, the time evolution of the ellipse with
the Eulerian approach and with the Lagrangian approach. With the chosen
numerical parameters, we were not able to obtain a realistic interface motion
thanks to the Eulerian approach.

Figure 3.12: Eulerian method - Ellipse case - a = 0.4mm, b = 0.04mm.
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Figure 3.13: Lagrangian method - ellipse case - a = 0.4mm, b = 0.04mm.

From all the previous ellipses cases, we can conclude that the mesh adap-
tation techniques have facilitated the shortening of the computation time in
both frameworks. Until now we have seen that the better volume conserva-
tion is obtained by using isotropic remeshing and the Lagrangian framework.

Another interesting case found in [27] is the motion by surface diffusion
on a star shape. The star shape is formed by 3 ellipses with a ratio of 10
between the major and minor axis. B remains equal to 1e-3 mm4 · s−1 and
dt = 0.5ms. The same case with a ”star” shape can be found in [25,43].

Figure 3.14: Eulerian approach - star shape evolution under motion by
surface diffusion.
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Data Eulerian approach

mesh technique isotropic
h in µm in the refined mesh zone 4

# Elt ∼13000
Time step in ms 0.1
Final time in ms 14

Convect+Direct Reinit X
Calculation time 8 CPU 2 min
Area loss % at t=14ms 4.5

Table 3.5: ”Star” shape case - Data for the Eulerian simulation.

Fig. 3.14 illustrates the shape evolution under surface diffusion with
the Eulerian approach. Table 3.5 contains all the parameters of this test
case. Shape convergence towards a circle is observed as expected from the
literature [27, 43]. The final shape was reached after 150 iterations and the
area loss at t=14ms is around 4.5 %.

Figure 3.15: Lagrangian approach - star shape evolution under motion by
surface diffusion.
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Data Lagrangian approach

Mesh refinement isotropic
h in µm in the refined mesh zone 4

# Elt ∼14000
Time step in ms 0.1
Final time in ms 14

Convect+Exact Reinit
Calculation time 8 CPU 2 min
Area loss % at t=14ms 2.4

Table 3.6: ”Star” case - Data for the Lagrangian simulation.

Fig. 3.15, illustrates the shape evolution under surface diffusion with the
Lagrangian approach. Table 3.6 contains all the parameters of this test case.
As previously, the shape convergence to a circle is observed as expected. The
final shape was also reached after 150 iterations and the area loss is around
2.4 %.

Both simulations seem to converge faster in the final shape than the one
found in literature [27]. Since the totality of the parameters regarding this
case study was not available, no safe conclusion can be made. Furthermore,
main difference with [27] concerns the new Direct Reinitialization method
(see section 3.5). Given a P1 representation of the LS function, the Direct
Reinitialization gives a geometrical solution that is very accurate in compar-
ison with other reinitialization methodologies. We are also able to obtain an
exact description of the normal ~n (necessary for the calculation of the trans-
port velocity) rather than following the classical way where the normals are
computed by interpolation of the first derivative.

It is also important to highlight that, once again, the Lagrangian ap-
proach has smaller area loss than the Eulerian one (see Tables 3.6 and 3.5).

To conclude, in this section we have proved that both introduced numer-
ical approaches are efficient for simulating surface diffusion. However, FITZ
with the Lagrangian approach has given better results for all the calculation
considered in the context of surface diffusion.

Thus, to complete our comparisons, it is important to examine and com-
pare these two methodologies for motion by mean curvature in order to reach
a final decision regarding what will be our final choice for simulating lamellae
splitting.

3.8.4 Tests on motion by mean curvature

In the previous sections we have presented some results for testing our two
approaches in context of surface diffusion. In this section, we are going to
present results from simple cases simulating motion by mean curvature. Our
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purpose again is to validate these results with literature cases and to decide
which approach is more efficient for simulating the mechanisms of interest.

The first case performed is a sphere shrinkage case due to motion by
mean curvature. We have chosen this case because the analytic solution is
easily obtainable. To be more precise, the time evolution of a circle’s radius
R (t) evolving thanks to motion by its mean curvature can be described by
the Eq. 3.36:

~v = −Aκ~n→ dR

dt
= −A

R
→ R

dR

dt
= −A→

∫ t

0

1

2

d

dt

(
R2
)
dt = −

∫ t

0
Adt

→ R2 (t)

2
|t0 = −At→ R (t)2 = R (0)2 − 2At,

so the solution is:

R (t) =

√
R (0)2 − 2At. (3.36)

The Eulerian approach is first tested. As we have mentioned in previous
sections, the flow chart of Fig. 3.2 is considered with a convective-diffusive
formulation (see Eq. 3.23). The case is built on a square domain 1mm×1mm
with a circle of initial radius of 0.2mm. Fig. 3.16 shows, forA = 0.1mm2·s−1,
the results obtained with an isotropic static mesh of mesh size h = 2µm and
dt = 0.5µs and the comparison with the analytical solution (Eq. 3.36). The
final error concerning the time of the circle disappearance is around 3%.

Figure 3.16: R(t) evolution (in mm) with motion by its mean curvature and
static isotropic mesh (h = 2µm) thanks to the Eulerian framework.
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A second comparison is done in the Eulerian framework using mesh
adaptation. We use the isotropic mesh adaptation technique based on the
metric that we have described in section 3.6.1.2. The mesh size at the
remeshing area around the interface is fixed at h = 1µm and the time step
at dt = 1ms. The final error concerning the time of the circle disappearance
is around 2.5%. Fig. 3.17 illustrates the comparison with the analytical
solution.

Figure 3.17: R(t) evolution (in mm) with motion by mean curvature and
isotropic mesh adaptation on the Eulerian methodology - h = 1µm in the
refined zone and dt = 1µs.

Our analysis continues with the same case in the Lagrangian framework
by moving the mesh with the mean curvature velocity ~v = −Aκ~n. The
mesh size at the remeshing area around the interface is fixed at h = 2µm
and the time step at dt = 1ms. Fig. 3.18 illustrates the comparison with
the analytical solution. The final error concerning the time of the circle
disappearance is around 1%.
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Figure 3.18: R(t) evolution (in mm)with motion by mean curvature and
isotropic mesh adaptation on the Lagrangian methodology - h = 2µm in the
refined zone and dt = 1µs.

From the analysis above and also from the L2 calculation error of the
R(t) curves of the three previous simulations, we can conclude that the La-
grangian approach gives better results than the Eulerian one in this test
case for equivalent numerical parameters.

The last test performed for testing the efficiency of motion by mean
curvature in context of the Lagrangian approach is a triple junction config-
uration. Evolution of a T-junction due to mean curvature is presented using
the proposed Lagrangian approach with body fitted meshing and remeshing.
More specifically the geometry of the triple junction is defined by 3 different
level sets as illustrated in Fig. 3.19. This configuration is largely discussed
in [34] and [44].

Figure 3.19: Scheme of the triple junction described with 3 LS functions.

For each level set the mean curvature κ and the mean curvature velocity
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~v = −Aκ~n, with A = 0.1mm2 · s−1, are calculated using the (κ,vs) identi-
fication solver. In order to move the mesh, the proposed methodology is to
realize the half-sum of the three velocities and applied the resulting velocity
to the grain boundary network.

Fig. 3.20 illustrates the body fitted mesh at t = 0s.

Figure 3.20: Body fitted mesh adaptation on the triple junction.

The simulation is performed with a time step dt = 2ms and a final time
t = 2s. The mesh size around the 0-isovalue is fixed to h = 2µm. The
results are described in Fig. 3.21.
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Figure 3.21: Time evolution of the T-junction. Blue and red lines are the
triple junction at t=0s and t=2s respectively and intermediary colors from
left to right correspond to the triple junction state at t = 0.2i with i ∈
{1, . . . , 9}.

Blue and red lines are the triple junction at t=0s and t=2s respectively.
Intermediary lines from left to right correspond to the results at t = 0.2i
with i ∈ {1, . . . , 9}.

Interestingly, the problem considered is totally equivalent to the problem
of modeling grain growth with multiple junctions [34,45]. The method pro-
posed here (enhanced Lagrangian framework) constitutes a new promising
numerical method for this kind of microstructure evolutions. This topic is
currently studied by Florez et al. [46].

By considering the coefficient A as constant for the three interfaces,
Herring’s equation and Young’s equilibrium should lead to the formation of
equal equilibrium angles at the multiple junction between each interface [47].
Subsequently, the equilibrium angles of the triple junction should converge
quickly at 120◦.
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In Fig. 3.21, it seems indeed that this condition is well respected. The
angles at the triple junction were precisely measured from the results pre-
sented in Fig. 3.21 and the mean angle values are summarized in Table 3.7.
The equilibrium is then perfectly respected during the simulation.

time mean angle error %

0.2 s 119.1 0.7
0.4 s 121.5 1.2
1 s 120.4 0.3
2 s 120.1 0.08

Table 3.7: Measures of the mean angle at the triple junction in Fig. 3.21.

The calculation was realized in 20 processors in 20 min. This example
of T -junction is really important since this geometry is representative for
the case of an α/α subboundary meeting an α/β interface. Nevertheless, in
order to build a case representing the junction between α/α subboundaries
and the α/β interfaces, the coupling of the surface diffusion velocity and the
motion by mean curvature should be considered. In the next section, the
sequence of steps followed in order to realize this calculation is presented.

3.8.5 Coupling motion by surface diffusion and motion by
mean curvature

In the previous sections, the two methods (Eulerian and Lagrangian ap-
proaches) were validated for simulating separately the motions by surface
diffusion and by mean curvature. Various academic cases have been exam-
ined and a conclusion was drawn regarding which approach is the most effi-
cient for each case. For both motions described separately, the simulations
following the Lagrangian approach with body fitted meshing and remeshing
seems the most efficient. In this section, a last academic test case is con-
sidered to validate this choice. To simulate efficiently the lamellae splitting,
we have to couple the motions due to surface diffusion and mean curvature.
Driven from Derkach’s work [19], the chosen configuration is two rectangles
in contact in order to idealize an α lamella with an internal boundary as
illustrated in Fig. 3.22, here two LS functions are considered. The dimen-
sions of the rectangles are 0.3mm × 0.05mm and they are embedded in a
1mm × 1mm square domain. The used time step is 1ms and the physical
coefficients are fixed as B =1e-6 mm4 · s−1 and A =1e-3 mm2 · s−1. The
mesh size at the remeshed zone around the interface is fixed to h = 1.6µm.
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Figure 3.22: An idealized lamella with an internal α/α interface.

With the Eulerian approach, as already mentioned, a P1 convection dif-
fusion solver is used. In the convection diffusion equation the convective
part simulates motion due to surface diffusion and the diffusive part simu-
lates motion by mean curvature. Each motion is activated by defining areas
around the interfaces where the coefficients are non zero in contrast with
the rest of the domain (see Fig. 3.23 and Eqs. 3.7 and 3.8). The shape
evolution is described in Fig. 3.24.

Figure 3.23: Eulerian approach: the blue-part corresponds to the part where
surface diffusion is active whereas the red-part corresponds to the part where
motion by mean curvature is active.

Figure 3.24: Academic case of lamella splitting with the Eulerian approach.

Lamella splitting due to surface diffusion and motion by mean curvature
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is well observed after 0.1s. The simulation was realized in 12 CPU in 26
min. However, an area loss of 8.5% is observed. Furthermore, oscillations
around the interface appeared during the simulation after the splitting. The
mesh around the interface is illustrated in Fig. 3.25.

Figure 3.25: Mesh around the 0-isovalue at (top) t=0s, (bottom) t=4ms
with the Eulerian approach.

The same case was realized in the Lagrangian approach. The two dif-
ferent velocities, defined by zone and calculated thanks to the two LS are
added (with a factor 1/2 for the mean curvature part as counted twice) in
order to move the mesh. Flow chart of Fig. 3.2 is then applied. Mesh and
interfaces evolutions are described in Figs. 3.26 and 3.27. The area loss was
limited to 6%, the calculation time in 12 CPUS was 18min and the split was
observed after 0.118s.

Figure 3.26: Academic case of lamella splitting with the Lagrangian ap-
proach.
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Figure 3.27: Mesh around the 0-isovalue - Enhanced Lagrangian framework:
(top) initial mesh, (middle) mesh at 8ms and (bottom) zoom on the α/α
subboundary at t = 4ms.

The comparison between the two methods for the case of lamellae split-
ting shows that in general the splitting occurs quicker with the Eulerian
approach with, however, a lower initial kinetic. Moreover the area loss is
more important. Regarding the calculation time the Lagrangian approach
seems faster. Both approaches give very interesting results in all the tests
that we have performed. To conclude, the more interesting method re-
garding volume conservation, time calculation and interface evolution is the
enhanced Lagrangian framework approach. This method is the one selected
for the following simulations. The difference observed concerning the time
of splitting between the two approaches was not perfectly understood yet
and will be investigated thoroughly in the future.

3.9 Conclusion

In this chapter, two full field methods were described and tested in order
to simulate the mechanisms which lead to lamellae splitting. These two
methods are based in several numerical tools developed in our C++ FE
library called CimLib.

The first method takes place in an Eulerian framework where by provid-
ing the LS φ, the surface diffusion velocity is calculated using the (κ, vs)-
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identification solver. The LS is then updated by using a classical convective-
diffusive solver. The diffusive part corresponds to the motion by mean cur-
vature. The DR method is then performed in order to restore the metric
property of the LS, followed by a remeshing operation. The second method
takes place in an enhanced Lagrangian framework. The first step remains
the calculation of the surface diffusion velocity and curvature with the (κ,
vs)-identification solver. The velocity, that couples velocities due to surface
diffusion and motion by mean curvature, is constructed by calculating the
two terms separately at the LS interfaces and adding them (with a factor
1/2 for the mean curvature part as counted twice). By updating the mesh,
the LS is moved. Furthermore, a new topological mesher and remesher FITZ
provides a conform mesh to the interface.

In comparison with literature, our method enables to model precisely
surface diffusion and motion by mean curvature mechanisms in a unified
numerical framework. The time calculation and precision seem reasonable
in both cases.

After several tests simulating each of the two motions separately and
coupled at the end, we have reached the conclusions that the enhanced La-
grangian method was better in terms of calculation time and area conserva-
tion. For these reasons this approach is adopted for the following simulations
presented in the next chapter.
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Chapter 4

Numerical simulations on
real microstructures

Résumé en français

Dans ce chapitre, il est prouvé que la méthode numérique proposée per-
met de simuler efficacement les mécanismes physiques de migration inter-
faciale menant à la subdivision des lamelles et à l’évolution vers une forme
globulaire, et ceci dans le cas d’une microstructure réelle extraite d’images
expérimentales. Des efforts ont été faits pour estimer les coefficients physiques
dans la méthode numérique proposée afin de réaliser des simulations en
temps réel. Les coefficients ne pouvaient pas être aisément approchés car
les paramètres matériaux ne sont pas connus dans la littérature scientifique.
Des recherches plus approfondies doivent être effectuées l’avenir sur ce sujet
afin d’améliorer la représentativit de nos simulations.

La simulation sur la microstructure réelle a donné de bons résultats
concernant la conservation de surface pendant l’évolution de la forme et du
temps de calcul, et ce indépendamment du nombre de lamelles traitées et
de la taille du domaine. Pour cela, la méthode numérique proposée est une
bonne base de départ pour ensuite développer un modèle numérique plus
complet du phénomène de globularisation.
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4.1 Simulating the spheroidization on real mi-
crostructures

In the previous chapters, all the responsible mechanisms for the phenomenon
of spheroidization were presented as found in literature. Furthermore, some
experimental results from hot compression tests performed during this PhD
work, were described in detail. From these results, it was proven that motion
by surface diffusion and motion by mean curvature are two mechanisms
of great importance which can lead to the α lamellae splitting during the
first stages of annealing. Following these results, we have presented and
validated a new FE/LS methodology in order to simulate the phenomenon
of α lamellae splitting at the lamellae scale.

Some academic test cases by the literature were discussed in the third
chapter. In this chapter, more complicated configurations are presented
in order to test the efficiency of the proposed methodology. Experimental
images are considered and immersed in FE meshes in order to deal with re-
alistic α laths geometries (see Fig. 4.1a). ImageJ software package was used
for binarizing the image (see Fig. 4.1b) and extracting the signed distance
functions of the α laths.

The ImageJ distance function was immersed (projection of the distance
field to the FE mesh) into CimLib as initial geometry. The initial state de-
scribed by Fig. 4.1(a) is representative of the experimental case described in
Fig. 2.28 of Lx4 material after hot-compression at 1.34 strain and annealing
for 15min at 950◦C (see also Fig. 2.33(b) - second blue point). Immersion
in FE mesh is realized by respecting the size and units of these experi-
mental data. Moreover laths intersecting the boundaries of the calculation
domain were removed in order to avoid numerical difficulties in the adopted
enhanced Lagrangian framework.

4.2 Discussions for estimating material parameter
values at T = 950◦C

Since real microstructures were obtained and immersed as geometries for
simulations, there is a need to clarify if and how laths spheroidization can
be efficiently simulated in real time. As already mentioned in chapter 2,
from literature and the experimental data, it is observed that interfacial
kinetics are very slow and they are initiated during the first stages of thermal
annealing. Only after long hours of annealing, evident spheroidization can be
observed. Furthermore, the size of the lamellae of the initial microstructure
is an important factor affecting the mechanism.

In our equations, the physical parameters are described by the coeffi-
cients B and A (see Eqs. 1.10 and 1.15). The B and A coefficients, as
products of an interface energy and a mobility, are, respectively, the expres-
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(a)

(b)

Figure 4.1: a) initial BSE micrograph image. b) Binarized microstructure
extracted from experimental image a) by using ImageJ software.
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sion of the thermodynamic and kinetic properties of the α/β interfaces and
of the α/α sub-boundaries interfaces.

The following section is dedicated to discussions about representative
values of these parameters.

4.2.1 Estimation of the B coefficient for motion by surface
diffusion

In Mullins [11] and as described by Eq. 1.10, coefficient B is defined as:

B =
νγαβΩ2Dαβ

kT
, (4.1)

with,

• γαβ the energy of the interface between the two considered phases,

• ν the number of drifting atoms per unit area or density of the surface,

• Ω the atomic volume,

• Dαβ the diffusivity of the interface between the two considered phases,

• k ≈ 1.38 · 10−23J ·K−1, the Boltzmann constant,

• T the absolute temperature.

From Semiatin article [21], we can identify for the considered material
at T = 1223K i.e. 950◦C (our working experimental temperature):

• the molar volume [48], Vm ≈ 10440mm3 ·mol−1,

• the surface energy [48], γαβ ≈ 0.4 J ·m−2,

• the diffusivity defined as controlled by the vanadium atoms [49], Dαβ (T ) ≈
7.7 · 104e−17460/T (K) i.e. at 1223K, Dαβ ≈ 0.048µm2 · s−1.

We could not find a typical value in the literature regarding drifting
atoms per unit area ν, as a commonly used coefficient does not seem to
exist. In order to propose a rough approximation of the magnitude of this
coefficient and how it can affect B, we assumed the following: the atoms
diffuse in beta phase, that is body centered cubic (bcc), on the plane <
110 >. This plane has 4 sharing atoms and one central, meaning that we
have 2 atoms on the whole square surface. Since the lattice constant α for
body-center cubic titanium phase is α=0.3nm, we obtain for ν:

ν =
2

α2
√

2
=

2

9 · 10−14
√

2
≈ 1.57 · 1013mm−2. (4.2)
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The molar volume (Vm ≈ 10440mm3 ·mol−1) enables to calculate the
atomic volume:

Ω =
Vm
NA

=
10440

6.022 · 1023
≈ 1.73 · 10−20mm3, (4.3)

with NA the Avogadro number. Substituting these values in Eq. 4.1, we
obtain:

B =
(1.57 · 1013 1

mm2 ) · (0.4 · 10−6 J
mm2 ) · (1.73 · 10−20mm3)

2 · (0.048 · 10−6mm2

s )

1.38 · 10−23 J
K · 1223K

≈ 5.35 · 10−9 µm4 · s−1.

4.2.2 Estimation of the A coefficient for motion by mean
curvature

In the work of Mullins [11] and in the domain of grain growth modeling [47],
the A coefficient describing the motion by the mean curvature is expressed
as follow:

A = M (T )︸ ︷︷ ︸
bfΩ
kT
∗e−

[[E]]
kT

γαα =
γααbfΩ

kT
e−

[[E]]
kT =

γααbfΩ

kT
e−

Q
RT , (4.4)

where M is defined as the grain boundary mobility, γαα denotes the
energy of the α/α interfaces, b is the burgers vector norm associated with
hoping event, f the Debye frequency, R the gas constant, and [[E]] the dif-
ference between the free energy of the two grains [2,11,19]. [[E]] is linked to
the activation energy Q by the relation [[E]] = Q/NA as k with R.

From literature [2, 11,19] we can obtain:

• a typical value for the burgers vector norm b ≈ 0.26nm,

• a typical value for the Debye frequency f ≈ 1.45 · 1013 s−1,

• from Semiatin [2], we found Q ≈ 160 kJ ·mol−1 and γαα ≈ 0.4 J ·m−2.

Concerning the γαα coefficient, from Herring’s relation [12,13], we know
that the expression 2γαβcosδ/2 = γαα (see Fig. 1.7 and Eq. 1.1) [50, 51],
denotes a relation between the energy of the α/β interface and the energy of
the subboundary verified where the groove appears. By assuming moreover
that γαα can’t be larger than γαβ, the minimum dihedral angle that we
can obtain is δ = 120◦ for which γαα = γαβ ≈ 0.4J · m−2. We could
assume that this approximation is the upper bound of the γαα value. Indeed
this parameter is usually related to the misorientations observed at these

118



subboundaries [47, 52]; then the low misorientations observed in chapter 2
implies probably lower values of this parameter. Finally, for the sake of
simplicity, the value γαα ≈ 0.4J ·m−2 will be used as following. So A can
be approximated with the following calculations:

A ≈
4 · 10−7 J

mm2 · 2.6 · 10−7mm · 1.73 ∗ 10−20mm3 · 1.45 · 1013s−1

1.38 · 10−23 J
K
· 1223K

· e
−

1.6·105 J
mol

8.3145 J
mol·K ·1223K

A ≈ 2.27 · 10−1µm2 · s−1.

4.2.3 Conclusions regarding the A and B coefficients

The following remarks can be done concerning the order of magnitude ob-
tained for coefficients A and B. To begin with, the value of A is in agreement
with existing data discussed in the literature [11,19,53]. On the other hand,
discussions regarding the coefficient B are limited in the literature concern-
ing the spheroidization phenomenon. In our estimation, which was obtained
by using typical values found in the work of Semiatin et al. [21,49], the order
of magnitude of B ≈ 10−8 − 10−9µm4 · s−1 is far from the order of magni-
tude found in Mullins [11] or Derkach [19] ≈ 10−4µm4 · s−1. That can be
easily explained by the fact that both Mullins and Derkach work deal with
the phenomenon of grooving at free surfaces where the diffusivity coefficient
is generally estimated around 103µm2 · s−1 while in our case diffusivity is
Dαβ ≈ 0.048µm2 · s−1 at 1223K.

In the next sections simulation results are presented using geometries
extracted from real microstuctures where the determined coefficients are
used.

4.3 Motion by surface diffusion on an immersed
microstructure

4.3.1 Lx4 material

In this section, simulations of surface diffusion on immersed geometries from
microstructures extracted from experimental images are presented. The
purpose is to test the efficiency of the adopted methodology (Lagrangian
framework using (κ, vs)-identification solver and FITZ).

The procedure followed is more or less the same as the one of the aca-
demic test cases for the surface diffusion discussed in Chapter 3. Fig. 4.2
displays the immersed microstructure of Fig. 4.1 in the considered FE mesh,
the size of the simulation domain is 200µm× 120µm (with an experimental
image of 180µm× 100µm). The number of α laths treated is 165. All the α
laths are expressed with only one common LS function.
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The conform mesh at the interface obtained with the use of FITZ is one
of the advantages of the Lagrangian methodology. In Fig. 4.2 we can observe
the conform mesh around the 0-isovalue, with a global view on Fig. 4.2(a)
and with a zoom on some laths on Fig. 4.2(b). The number of elements
used is around 270000 with an isotropic mesh refinement around the laths
(mesh metric defined with Eqs. 3.27 and 3.28). The maximum mesh size is
hd = 1µm, while the minimum mesh size around the interface is h = 0.2µm
and E = 1µm. Here the thickness used to define φ̃ is different from E and
is equal to 0.3µm. The initial functions φ and φ̃ are described in Fig. 4.3.

(a) Global mesh

(b) Zoom

Figure 4.2: Conform mesh adapted to the experimental image.
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(a) immersed microstructure - distance field φ (µm)

(b) filtered distance - φ̃

Figure 4.3: LS functions: (top) φ and (bottom) φ̃. White lines correspond
to the lamellae/laths interfaces.

As detailed in Fig. 4.4, the velocity field is evaluated only in the thickness
used to build φ̃. Comparatively to the velocity scale, the time step dt was
fixed to 12h. The simulation was realized in 20mins in 24 CPUs. Fig. 4.5
illustrates the time evolution of the microstructure.
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(a) Zone where the surface diffusion field is considered

(b) Norm of the Lagrangian velocity (µm · s−1)

Figure 4.4: Illustration at t = 0s of the velocity field.
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(a) t = 0s

(b) t = 10days

(c) t = 50days
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(d) t = 100days

(e) t = 200days

Figure 4.5: α Microstructure evolution - Function φ̃ with black lines for the
lamellae/laths interfaces.

Microstructural evolution from the initial elongated shape of the particles
to more circular ones is observed. Area loss until the end of the simulation
is limited to 1.75% at t = 200days. From this simulation we can make the
following remarks:

1. shape evolution of long isolated lamellae/laths is coherent with surface
diffusion mechanism,

2. the smaller particles tend to evolve faster towards a spheroidal shape,

3. volume conservation is very well verified,
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4. some lamellae/laths have numerically merged,

5. the global kinetic is very low comparatively to experimental results
described in Fig. 2.33(b).

Regarding remark 5., the unrealistic numerical kinetics can be explained
by the fact that our simulation is more representative of a static spheroidiza-
tion phenomenon with large lamellae without the presence of a α/α sub-
boundaries. Indeed, it is well known that static spheroidization without
pre-deformation can lead to very low evolution of the microstructure. More-
over, in such context, additional mechanisms should be taken into account
(coarsening, phase transformation etc.) as they are described in chapters 1
and 2. The fast evolution observed in Fig. 2.33(b) in terms of spheroidization
during the first hour of thermal treatment can be explained by the presence
of numerous α/α interfaces inside the lamellae enabling their fragmentation
in smaller laths evolving faster to spheroidized shape.

Finally remark 4. illustrates the limit to use only one level set function
for all the lamellae/laths leading to numerical coalescence when contact
occurs. In section 4.4, we will illustrate how this weakness can be solved.
The study that was realized for Lx4 material was also realized for the Lx2
material and the results are discussed in the following section.

4.3.2 Lx2 material

A new immersed microstructure coming from the Lx2 material is considered.
The size of the simulation domain is 205µm × 100µm (with an experimen-
tal image of 195µm × 90µm). All the α laths are expressed with only one
common LS function. As for the previous test case, this initial state was ob-
tained after hot-compression at 1.34 strain and 15min of thermal treatment
at 950 ◦C/ 1223K. Fig. 4.6 illustrates the global evolution with time and
the conclusions are similar to the previous Lx4 microstructure. The time
step dt was fixed to 6h. The simulation was realized in 28mins in 24 CPUs.
Finally the alpha area loss was limited to 3% at t = 200days.
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(a) t = 0s

(b) t = 50days

(c) t = 100days
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(d) t = 200days

Figure 4.6: α microstructural evolution - function φ̃ with black lines for the
lamellae/laths interfaces.

4.4 Coupling motion by surface diffusion and mo-
tion by mean curvature

The previous simulations have shown that the proposed methodology en-
ables to respect area conservation of each phase. Furthermore, the lamel-
lae/laths shape evolution is coherent with an evolution towards more spheroidal
shapes with very slow motion as illustrated by the Fig. 4.7 which describes
the quasi steady-state obtained for the test case of Fig. 4.6. However, one of
the weaknesses of the previous simulations, as clearly illustrated by Fig. 4.7,
is that laths merging can occur, something that does not correspond with
experimental observations.
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Figure 4.7: Quasi steady-state of the Fig. 4.6 test case.

As we have already mentioned when studying the physics of the phe-
nomenon, lamellae/laths in contact keep their boundary. The challenge is
then to simulate a realistic boundary evolution between two evolving laths
in case of contact. When such interfaces come in contact, physically α/α
interfaces must be taken into account in the global kinetic. In chapter 3,
we have shown that we were able to couple motion by mean curvature and
motion by surface diffusion in some simple cases. Now, we are going to per-
form simulations coupling these two motions in the considering geometry of
section 4.3. With the coupling of these two mechanisms we expect to obtain
a more realistic shape evolution of the lamellae/laths.

The concept of coupling these two mechanisms was described in section
3.8.5 and is recalled below:

• the Lx2 microstructure describes in Fig. 4.6(a) is considered,

• we index the different initial lamellae/laths by using a model [33] that
enables to identify separately the different connected components (see
Fig. 4.8),

• each separated lamella/lath is described by one distance function, that
we will denoted as φi, obtained thanks to direct reinitialization of the
belonging field to the corresponding connected components,

• for each distance function we calculate the surface diffusion velocity
~vsi = B∆sκi~ni and the curvature κi which is used in order to calculate
the mean curvature velocity ~vκi = −Aκi~ni,
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• we define the applied velocity areas for surface diffusion and mean
curvature separately, ~vsi = B∆sκi~niχαβi and ~vκi = −Aκi~niχααi, with
χαβi and χααi the characteristic functions, respectively, of α/β and
α/α interfaces,

• at the end we add all the different velocities of each lamella/lath at one
global velocity which is used in the considered enhanced Lagrangian
framework. The mean curvature velocity contribution of the concerned
distance functions at α/α interfaces, is divided by a factor of 2 (because
counted twice) in the global kinetic:

~v (x, t)global =
∑
i

(
B∆sκi~niχαβi −

A

2
κi~niχααi

)
. (4.5)

Figure 4.8: α lamellae/laths indexing.

All the numerical parameters of the previous test case are also considered
here. Moreover, since in this simulation we include the velocity due to
motion by mean curvature, the coefficient A is defined thanks to the value
discussed in section 4.2.2 as A = 0.227µm2·s−1. The only difference concerns
the time step which is equal to 1min as the mean curvature velocity could
be important comparatively to the surface diffusion velocity.

Fig. 4.9 illustrates the results obtained.
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(a) t = 50days

(b) t = 200days
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(c) Quasi steady-state

Figure 4.9: α lamellae/laths evolution with motions by surface diffusion and
mean curvature.

A different shape evolution is observed in comparison with the case
where only surface diffusion was considered for the same microstructure (see
Fig. 4.6) and coalescence events are avoided typically where the curvature
velocity is activated as illustrated in Fig. 4.10. This element indicates that
even without α/α subboundaries considered initially inside the lamellae, the
very close proximity (or even contact) of some laths/lamellaes lead to the
activation of the curvature velocity with an impact on the global kinetic.
The calculation time for this simulation was 5h in 24 CPUs. The fact that
each particle is treated separately and the small time step increased the
time calculation. Interestingly, surface diffusion seems globally more active
in this simulation comparatively to the results described in Fig. 4.6 and at
the same time a better volume conservation was observed (1% of area loss at
t = 200days). This difference can probably be a coupled effect of the smaller
time step with the presence of ~vk in some locations. Moreover, mesh size
at the laths/lamellae interfaces is also an important parameter which leads
to detect more or less precisely the zone of contact forming α/α interfaces
and the α lamellae/laths thicknesses with an impact on the microstructure
evolution. This spatial precision is indeed important in the occurence of nu-
merical splitting of very fine and long lamellae under surface diffusion (some
examples are evident in the quasi steady-state described by Fig. 4.9c). A
thorough study of these elements constitute a perspective of these results.
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Figure 4.10: |vκ| at t = 50days with black lines for the lamellae/laths inter-
faces.

In this section, we have proved that we are able to couple the motion
of surface diffusion and motion by mean curvature in real microstructures
extracted from experimental images.

4.5 Conclusion

In this chapter, it is proven that the proposed numerical framework enables
to efficiently simulate the coupling of motion by surface diffusion and mo-
tion by mean curvature on real microstructures extracted from experimental
images.

Efforts have been made to approximate the physical coefficients in or-
der to perform real time simulations. Further investigation must be done
in the future on this topic in order to improve the representativity of our
simulations.

A first perspective would be the consideration of a representative number
of α/α subboundaries inside the initial microstructure. With the existence
of subboundaries we could verify the occurrence of lamellae splitting leading
to smaller laths as well as the acceleration of the surface diffusion mechanism
comparatively to the kinetics exhibited in this chapter.

Secondly, a long term perspective of this work, is to take into account all
the additional mechanisms (coarsening, phase transformation, appearance
of subboundaries during deformation, anisotropy of B and A coefficients etc)
in order to be even more precise concerning the numerical modeling of the
microstructure evolution of titanium alloys during metal forming. Moreover,
the proposed numerical strategy is usable in 3D; thus working with realistic
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3D shapes for the lamellae/laths constitutes another exciting perspective of
this work.
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Conclusions-Perspectives

The general objective of this thesis is to contribute to the understanding
of the phenomenon of spheroidization in α/β titanium alloys during defor-
mation and prolonged annealing and to introduce a numerical framework
to efficiently simulate it. This is of utmost importance since spheroidized
microstuctures exhibit higher strength and ductility. The ability to simu-
late microstructure evolution upon thermomechanical processing and more
particularly this phenomenon is thus of interest for the titanium industry.

In Chapter 1, a literature review has been presented summarizing the in-
formation found about spheroidization in α/β titanium alloys. Experimental
efforts have been made to better describe the evolution of the phenomenon.
Various information of great value for our research, were found regarding
the governing mechanisms of spheroidization on its different stages. On the
other hand, very few attempts have been made until now to efficiently sim-
ulate this phenomenon. The focus of this PhD thesis is on modeling the
interfacial kinetics. The mathematical description found in literature for
the two governing mechanisms of motion by surface diffusion and motion
by mean curvature is given. These two mechanisms are responsible for the
lamellae splitting during hot deformation and subsequent annealing.

The experiments performed in this thesis, presented in chapter 2, mostly
aimed at better understanding the driving mechanisms of the spheroization
phenomenon and provided qualitative and quantitative informations regard-
ing the microstructure evolution. The entire work was carried out on the
alloy Ti-64 processed at 950 ◦C. All the mechanisms reported in literature
were confirmed throughout the experiments.

Subboundaries formation appear to be the most important factor regard-
ing the spheroidization of the α phase. During deformation, the α lamellae
accumulate dislocations, which lead to intralamellar misorientations and the
formation of subboundaries. The existence of subboundaries initiates the
grooving process through interfacial kinetics that leads to lamellae splitting
into shorter laths and eventually to lath spheroidization. The higher the
strain the more subboundaries are formed and the faster the α lamellae will
split. Furthermore, the size of the lamellae is also an important factor, since
it was noticed that the thicker lamellae form less easily subboundaries and
undergo a slower α phase evolution. In addition, the orientation of the α
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lamellae with respect to the applied deformation is also a very important
factor. The lamellae that are initially parallel to the compression direction
undergo kinking, leading to quicker fragmentation. Nevertheless, the shape
of the α lamellae does not change drastically during hot-deformation but
during short or prolonged annealing after deformation. At the early stages
of annealing, the interfacial mechanisms as surface diffusion at the α/β in-
terface and motion by mean curvature at the α/α interface are the predomi-
nant mechanisms leading to lamellae splitting. During long term annealing,
the predominant mechanism switches to be coarsening (bulk diffusion). In
fact, except for crystal plasticity that clearly occurs during deformation and
leads to the formation of subboundaries, all the other mechanisms of surface
diffusion, motion by mean curvature and bulk diffusion, may occur simulta-
neously, during deformation and during post-deformation annealing.

The numerical part of the thesis is focused on simulating the two mecha-
nisms of surface diffusion and motion by mean curvature, which were identi-
fied as being responsible for lamella splitting, and to be predominant in the
first stages of post-deformation annealing. A full field approach based on a
Level-Set/ Finite Element framework was introduced for that purpose and is
compatible with the future implementation of the other involved mechanisms
(crystal plasticity and bulk diffusion) to simulate the whole spheroidization
process.

Several numerical tools from the state of the art were used as the (κ,vs)-
identification solver developed by Bruchon et al. [20,26,27], providing, in our
P1 formulation, the calculation of the curvature and of the surface laplacian
of the curvature with a correct precision. Two different approaches were
tested for the coupling of motion by mean curvature at the α/α interfaces
and motion by surface diffusion at the α/β interfaces.

The first approach is based on a Eulerian framework where the lamel-
lae/laths interfaces described by a distance function φ are updated by a
classical convection diffusion solver, the convective part corresponding to the
surface diffusion velocity and the diffusive one to the motion by mean cur-
vature. Each time step is completed by a Direct Reinitialization method to
preserve the metric property of the distance function, followed by a remesh-
ing operation.

The second approach is based on an enhanced Lagrangian framework
developed by Shakoor et al. [41, 42]. The first step remains the same, cal-
culation of the curvature and surface laplacian of the curvature. Then the
two different velocities of surface diffusion and motion by mean curvature
are calculated and added to a final global velocity that couples both mo-
tions. With this final velocity, enhanced Lagrangian evolution coupled with
remeshing (H-adaptation) of the FE mesh is performed. Direct Reinitializa-
tion method is then used. A originality of this strategy is that the volume of
each phase is respected precisely when remeshing operations are performed,
using a conformed to the interface mesh strategy (FITZ).
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Both methods have enabled us to simulate surface diffusion velocity and
motion by mean curvature in a unified numerical framework. The results
provided from the academic cases have very good time calculation and pre-
cision. By comparing the two approaches, it was highlighted that the en-
hanced Lagragian approach with the use of FITZ (body fitted mesh) is the
most efficient one.

This approach was then adopted to deal with real microstructures which
were extracted from our experimental results and immersed as geometries
in Finite Element meshes. Surface diffusion simulations could thus be per-
formed on real microstructures while respecting the volume conservation and
reaching fast time calculations. Finally the most important achievement was
the coupling of the two different motions of surface diffusion and motion by
mean curvature on real microstructures. Those last simulations gave rea-
sonable time calculations with excellent volume conservation independently
of the number of lamellae treated, or their size.

Still further work must be done in order to include all the mechanisms
of spheroidization in the simulations. A domain that definitely should be
included in the perspectives of this work is the study of the α/β interfaces
and diffusion kinetics occurring during deformation and annealing. Studying
these aspects is important for getting right values of model parameters. We
have indeed proposed a numerical model that is efficiently working regarding
a numerical point of view, but it stills missing a better calibration of two
physical parameters, the coefficients B for motion by surface diffusion and
the coefficient A for motion by mean curvature.

Further model developments should also be done to account for the whole
process of spheroidization: crystal plasticity is needed to simulate the for-
mation of the α/α subboundaries during deformation, bulk diffusion for
describing coarsening over prolonged annealing. Only if the four different
mechanisms would be all immersed in the calculations, it could be stated
that a global numerical framework has been built to efficiently simulate the
phenomenon of spheroidization at constant phase fractions.

To make the simulation really complete, phase transformation (which
also proceeds by bulk diffusion) must be taken into account as well. The
phase equilibrium is not only dependent on temperature but also on defor-
mation.

An increase of α volume fraction during deformation has been observed
in this work, something that was unexpected because the opposite effect
was reported in the literature but in α/β alloys with different initial mi-
crostructures (not lamellar). During post-deformation annealing, inverse
phase transformation must occur to retrieve static phase equilibrium. Since
there are very few information available in literature for this phenomenon
in α/β titanium alloys with initial lamellar microstructure and our results
do not give a clear image on the subject, further experimental work should
be performed to get a better understanding and description of dynamic
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phase equilibrium, and how this could participate to the phenomenon of
spheroidization.

Finally, 3D microscopy could help in order to obtain informations re-
garding the shape evolution of an α lamellae in three dimensions during
deformation and prolonged annealing, while using also this information in
order to perform 3D simulations with the proposed numerical framework.
Indeed, if the proposed numerical strategy was detailed and used in 2D in
this work, it is directly usable in 3D.
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Résumé 
 
Les alliages de titane α/β ont beaucoup 
d’applications dans des domaines industriels 
divers comme l’aéronautique. Le phénomène 
de globularisation qui se produit lors de 
traitements thermomécaniques est un 
phénomène important dans la mesure où une 
microstructure globulaire présente une tenue 
mécanique et une ductilité accrues. 
Les microstructures lamellaires sont 
constituées de colonies de lamelles de phase 
α parallèles qui se développent dans les 
grains β au cours de leur refroidissement. La 
globularisation se fait en deux étapes : les 
lamelles se subdivisent d’abord en segments 
plus courts, puis ces segments globularisent, 
au cours de la déformation à chaud et des 
traitements thermiques. La subdivision des 
lamelles se fait au niveau des sous-joints 
formés au cours de la déformation à chaud. 
Lors de traitements thermiques prolongés, les 
plus gros globules de phase α grossissent au 
détriment des plus petits. La formation des 
sous-joints et le grossissement des globules 
n’ont pas été étudiés en détail dans ce travail. 
L’accent a été mis sur les mécanismes de 
migration des interfaces α/β et α/α qui 
conduisent à la subdivision des lamelles et à 
leur globularisation. 
Des essais de compression à chaud et des 
traitements thermiques appliqués à des 
échantillons de Ti-6Al-4V ont permis de 
confirmer que l’épaisseur des lamelles et de 
leur orientation sont des facteurs importants 
pour la globularisation. Les lamelles plus 
fines et celles orientées parallèlement à l’axe 
de compression globularisent plus facilement. 
Ce travail expérimental a permis de mieux 
appréhender la complexité du phénomène de 
globularisation et d’introduire un cadre 
numérique adapté pour sa simulation. Une 
méthode à champ complet, basée sur la 
méthode Level-Set dans un cadre Eléments 
Finis, a ainsi été testée pour simuler les 
mécanismes physiques de migration 
interfaciale menant à la subdivision des 
lamelles et à l'évolution vers une forme 
globulaire. Les premiers résultats sont très 
prometteurs et illustrent le potentiel du cadre 
numérique proposé. 

Abstract 
 

α/β titanium alloys have many industrial 
applications in various fields such as 
aeronautics. Spheroidization is a 
phenomenon that occurs in initially lamellar 
α/β titanium alloys during thermomechanical 
processing and receives considerable 
attention as spheroidized microstructures 
exhibit enhanced strength and ductility. 
Lamellar microstructures are made of 
colonies of parallel α lamellae developed 
inside β grains while they are cooled down. 
Spheroidization actually proceeds in two 
successive steps: the lamellae first split into 
smaller α laths, which subsequently undergo 
spheroidization. This occurs during hot-
deformation and subsequent annealing. 
Lamella splitting occurs where subboundaries 
were formed inside lamellae during hot-
deformation. Over long term annealing the 
spheroidized α phase particles undergo 
coarsening. The formation of subboundaries 
and coarsening were not addressed in this 
work. The focus has been placed on the 
interfacial kinetics mechanisms leading α 
lamellae splitting during the first stages of 
spheroidization.  
Hot compression tests and subsequent 
annealings carried out on Ti-6Al-4V samples 
confirmed that the thickness and the 
orientation of the lamellae are important 
factors with regards to spheroidization. 
Thinner lamellae and lamellae oriented 
parallel to the compression axis spheroidize 
faster. Those experiments contributed to a 
better understanding of the phenomenon and 
allowed to introduce a suitable numerical 
framework to simulate the early stages of 
spheroidization. A full field method in a Finite 
Element/ Level Set framework has thus been 
tested for simulating the involved physical 
mechanisms of interface migration that lead 
to lamellae splitting and the subsequent 
shape evolution of the α laths towards a 
spheroidal shape. First results are promising 
and illustrate the potential of this numerical 
framework 
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