
HAL Id: tel-02197271
https://pastel.hal.science/tel-02197271

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On information-centric routing and forwarding in the
internet of things

Marcel Enguehard

To cite this version:
Marcel Enguehard. On information-centric routing and forwarding in the internet of things. Net-
working and Internet Architecture [cs.NI]. Université Paris Saclay (COmUE), 2019. English. �NNT :
2019SACLT013�. �tel-02197271�

https://pastel.hal.science/tel-02197271
https://hal.archives-ouvertes.fr

N
N

T
:2

01
9S

A
C

LT
01

3

On Information-Centric routing and
forwarding in the Internet of Things

Thèse de doctorat de l’Université Paris-Saclay
préparée à Télécom ParisTech

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat: Réseaux, Information et Communications

Thèse présentée et soutenue à Paris, le 15 avril 2019, par

MARCEL ENGUEHARD

Composition du Jury :

Thomas Clausen
Professeur, École Polytechnique Président

George Pavlou
Professeur, University College London Rapporteur

Lan Wang
Professeur, University of Memphis Rapporteur

Emmanuel Baccelli
Chercheur, INRIA Examinateur

Matthias Wählisch
Professeur, Freie Universität Berlin Examinateur

Lixia Zhang
Professeur, University of California, Los Angeles Examinateur

Jean-Louis Rougier
Professeur, Télécom ParisTech Directeur de thèse

Giovanna Carofiglio
Distinguished Engineer, Cisco Systems Co-encadrante

On Information-Centric routing and forwarding
in the Internet of Things

Marcel Enguehard

2

Mal nommer un objet
c’est ajouter au malheur
de ce monde

ALBERT CAMUS, 1944

ii

Acknowledgements

First and foremost, I would like to express my utmost gratitude to Dr. Gio-
vanna Carofiglio et Prof. Dario Rossi for supervising my thesis during the major
part of the last three years. Dario’s approach, mixing wide-ranging technical
expertise, a thorough knowledge of academia, and an always positive mood has
been of the main reasons I was able to conduct my PhD successfully. Gio-
vanna’s vision, rigour, and leadership made her essential to the success of my
thesis. Her guidance was crucial in defining and focusing the research directions
that I explored, but also to considerably increase the technical and writing qual-
ity of my scientific production, including this manuscript. She was an amazing
mentor during my employment at Cisco, helping me naviguate the company
and bootstrap my career. I would also like to warmly thank Ralph Droms, who
supervised my during the six first months of my thesis. Our conversations put
me on the right path and I learned a lot during them. I must also thank him
for taking the time to finish the work we started together after he moved on to
other occupations. Finally, I would like to thank Jean-Louis Rougier for guiding
me through the last steps of my PhD. His advice was key in the preparation of
my manuscript and defense.

I would like to extend my gratitude to my defense committee, and first to
the reviewers Prof. George Pavlou and Prof. Lan Wang for taking the time to
read and thoroughly comment my thesis manuscript. I would also like to thank
the examiners Prof. Thomas Clausen, Dr. Emmanuel Baccelli, Prof. Matthias
Wählisch and Prof. Lixia Zhang for participating in my PhD defense and for
asking sharp and acute questions which led to very interesting discussions.

Il me faut maintenant remercier mes collègues et amis grâce à qui j’allais
toujours au travail de bonne humeur. Merci d’abord à l’ensemble des «jeunes
»du PIRL : Aloÿs, Guillaume, Jacques, Mohammed, Nathan, Pierre, Victor,
et Yoann. Mentions spéciales à Yoann Desmouceaux, avec lequel nous avons
beaucoup collaboré quitte à programmer dans des langages ésotériques et à
Jacques Samain avec lequel nous avons partagé beaucoup de moments au sein
de l’équipe ICN. J’en profite pour remercier aussi l’ensemble des membres de
l’équipe ICN avec lesquels j’ai eu beaucoup de plaisir à travailler, tant pour
leurs qualités humaines que pour leurs compétences professionnelles. Merci en
particulier à Jordan Augé, pour sa motivation et son ardeur à toute épreuve
et pour toutes ces conversations pendant lesquelles j’ai beaucoup appris. Merci
enfin à l’ensemble des membres du PIRL, et en particulier Mark Townsley pour
sa bienveillance et son intérêt depuis mon recrutement jusqu’à ma soutenance.
Mark a rendu ma thèse possible et a toujours été présent lorsque des difficultés
se sont présentées.

Merci aussi à l’ensemble de l’équipe de la chaire NewNet@Paris à Télécom,

iii

iv ACKNOWLEDGEMENTS

qui rendirent les moments passés au laboratoire toujours plus agréables et am-
icales. Je dois évidemment beaucoup à l’ensemble de mes co-auteurs, dont
beaucoup ont déjà été cités, pour leur contribution inestimable à la conception
et rédaction des différentes publications présentées dans cette thèse : Jordan
Augé, Giovanna Carofiglio, Alberto Compagno, Yoann Desmouceaux, Ralph
Droms, Luca Muscariello, Victor Nguyen, Pierre Pfister, Dario Rossi, Mauro
Sardara, Wenqin Shao, Éric Vyncke.

Je voudrais remercier mes proches qui m’ont soutenus tout au long de ma
thèse : ma famille, et en particulier mes parents qui m’ont encouragé à m’inscrire
en thèse, à mes amis qui ont pu se libérer pour assister à ma soutenance. Enfin
et surtout, merci à Margot qui a été là durant toute ma thèse, pour fêter les
moments heureux mais aussi pour me soutenir aux moments difficiles et qui m’a
toujours écouté et su me conseiller avec pertinence quand je doutais.

Résumé / Abstract

Résumé en Français
Les réseaux centrés contenus (ICN) sont considérés comme une solution aux

nouveaux défis et modes de communication liés à l’émergence de l’Internet des
Objets (IoT). Pour confirmer cette hypothèse, la problématique fondamentale
du routage sur les réseaux ICN-IoT doit être abordée. Cette thèse traite de ce
sujet à travers l’architecture IoT.

Premièrement, une méthode sécurisée est introduite pour acheminer des
paquets ICN à partir de coordonnées géographiques dans un réseau sans-fil de
capteurs à faible puissance. Elle est comparée à une inondation optimisée du
réseau inspirée des approches existant dans la littérature. En particulier, leur
faisabilité et passage à l’échelle sont évalués via un modèle mathématique. Le
modèle est paramétré grâce à des données réalistes issues de simulation, de la
littérature, et d’expériences sur des capteurs. Il est montré que le routage géo-
graphique permet de diviser la mémoire nécessaire sur les capteurs par deux et
de réduire considérablement le coût énergétique du routage, en particulier pour
des topologies dynamiques.

Ensuite, ICN est utilisé pour contrôler l’admission à une plate-forme de
calcul de type Fog afin de garantir le temps de réponse. La stratégie de con-
trôle d’admission proposée, le LRU-AC, utilise l’algorithme Least-Recently-Used
(LRU) pour apprendre en direct la distribution de popularité des requêtes. Son
efficacité est démontrée grâce à un modèle fondé sur un réseau de files d’attente.
Une implémentation du LRU-AC est proposé, utilisant des filtres de Bloom pour
satisfaire aux contraintes des cartes FPGA. Son bien-fondé est prouvé par un
modèle mathématique et son efficacité en termes de latence et débit démontrée.

Enfin, on présente vICN, un outil pour la gestion et la virtualisation de
réseaux ICN-IoT. Il s’agit d’une plate-forme qui unifie la configuration et la
gestion des réseaux et des applications en exploitant les progrès des techniques
d’isolation et de virtualisation. vICN est flexible, passe à l’échelle, et peut rem-
plir différents buts : expériences à grande échelle reproductibles pour la recher-
che, démonstrations mélangeant machines émulées et physiques, et déploiements
réels des technologies ICN dans les réseaux IP existants.

v

vi RÉSUMÉ / ABSTRACT

Abstract
As the Internet of Things (IoT) has brought upon new communication pat-

terns and challenges, Information-Centric Networking (ICN) has been touted as
a potential solution. To confirm that hypothesis, the fundamental issue of rout-
ing and forwarding in the ICN-IoT must be addressed. This thesis investigates
this topic across the IoT architecture.

First, a scheme to securely forward ICN interests packets based on geo-
graphic coordinates is proposed for low-power wireless sensor networks (WSN).
Its efficiency is compared to an optimized flooding-based scheme similar to cur-
rent ICN-WSN approaches in terms of deployability and scalability using an
analytical model. Realistic data for the model is derived from a mixture of
simulation, literature study, and experiments on state-of-the-art sensor boards.
Geographic forwarding is shown to halve the memory footprint of the ICN stack
on reference deployments and to yield significant energy savings, especially for
dynamic topologies.

Second, ICN is used to enhance admission control (AC) to fixed-capacity
Edge-computing platforms to guarantee request-completion time for latency-
constrained applications. The LRU-AC, a request-aware AC strategy based on
online learning of the request popularity distribution through a Least-Recently-
Used (LRU) filter, is proposed. Using a queueing model, the LRU-AC is shown
to decrease the number of requests that must be offloaded to the Cloud. An
implementation of the LRU-AC on FPGA hardware is then proposed, using
Ageing Bloom Filters (ABF) to provide a compact memory representation. The
validity of using ABFs for the LRU-AC is proven through analytical modelling.
The implementation provides high throughput and low latency.

Finally, the management and virtualization of ICN-IoT networks are con-
sidered. vICN (virtualized ICN), a unified intent-based framework for network
configuration and management that uses recent progress in resource isolation
and virtualization techniques is introduced. It offers a single, flexible and
scalable platform to serve different purposes, ranging from reproducible large-
scale research experimentation to demonstrations with emulated and/or physical
devices and network resources and to real deployments of ICN in existing IP
networks.

Contents

Acknowledgements iii

Résumé / Abstract v

List of Acronyms 1

1 Introduction 3
1.1 The Internet-of-Things . 3

1.1.1 IoT applications . 4
1.1.2 IoT networks . 4
1.1.3 Challenges . 6

1.2 Information-Centric Networking for the IoT: motivation 8
1.2.1 Information-Centric Networking 8
1.2.2 ICN for the IoT . 10

1.3 ICN for the IoT: background . 11
1.3.1 ICN for the WSN . 11
1.3.2 ICN for the Fog . 13
1.3.3 ICN for specific IoT applications 14

1.4 Thesis contribution . 14
1.4.1 Forwarding and routing in the ICN-IoT: challenges 15
1.4.2 Contribution and organization 15

1.5 Publications . 17

2 Geographic routing 21
2.1 Geographic routing . 21
2.2 Reference WSN deployments . 23
2.3 Reference Information-Centric Things (ICN-WSN) Architecture . 24

2.3.1 Secure neighbour discovery 24
2.3.2 Secure beaconing . 28
2.3.3 Forwarding . 30

2.4 Methodology overview . 31
2.4.1 Experimental setup . 32
2.4.2 Memory . 34
2.4.3 Computation . 34
2.4.4 Energy . 35

2.5 Cost of forwarding a single ICN packet 36
2.5.1 Frame transmission and reception 37
2.5.2 Data Encryption and Decryption 38

vii

viii CONTENTS

2.5.3 Forwarding algorithm . 39
2.5.4 Overall cost . 40

2.6 Cost of control traffic . 41
2.6.1 Geographic forwarding . 41
2.6.2 Flood and learn . 42

2.7 Guidelines for ICN-WSN operation 44
2.7.1 Energy cost . 44
2.7.2 Memory and CPU complexity 46

2.8 Summary . 47

3 Fog admission control 49
3.1 Admission control for QoS in Fog deployments 49
3.2 Problem description . 51

3.2.1 Reference Fog architecture 51
3.2.2 Fog vs Cloud admission control 52

3.3 An analytical model . 53
3.3.1 Application model and request distribution 53
3.3.2 Queueing model . 53
3.3.3 Computing the statistical latency 56
3.3.4 Computing the cost function 57
3.3.5 An example application - Numerical parameters 57

3.4 Popularity-based Fog admission 57
3.4.1 Optimizing Fog resources 57
3.4.2 Blind admission control 58
3.4.3 LFU-AC strategy . 60
3.4.4 The LRU-AC strategy . 60
3.4.5 Preliminary evaluation of the admission control strategies 61

3.5 Ageing Bloom-Filters for an hardware-accelerated LRU-AC . . . 63
3.5.1 Ageing-Bloom filters . 64
3.5.2 Hit-rate approximation for the ABF 65
3.5.3 Model verification for α = 1 68
3.5.4 ABF - memory usage vs LRU 68

3.6 Hardware-implementation of the LRU-AC 69
3.6.1 Using hICN as the underlying network layer 69
3.6.2 Hardware-implementation of the LRU-AC 70

3.7 Evaluation . 72
3.7.1 Packet-level simulation . 72
3.7.2 Implementation evaluation 74

3.8 Related Work . 75
3.9 Summary . 76

4 Intent-based ICN 77
4.1 Intent-Based Networking and ICN 77
4.2 Related work . 79
4.3 The vICN framework . 80

4.3.1 Functional architecture 81
4.3.2 Resource model . 82
4.3.3 Resource processor . 84
4.3.4 Orchestrator and Scheduler 85

4.4 Implementation . 86

CONTENTS ix

4.4.1 vICN codebase . 86
4.4.2 Slicing . 86
4.4.3 IP and ICN topologies . 87
4.4.4 Link emulation . 87
4.4.5 Monitoring capabilities . 88

4.5 Examples . 88
4.5.1 Use case description . 88
4.5.2 Scalability . 89
4.5.3 Programmability . 90
4.5.4 Monitoring and Reliability 91

4.6 An Intent-Centric network management protocol 91
4.6.1 Intent-based network model 91
4.6.2 Model-based routing and forwarding 92

4.7 Summary and future work . 93

5 Conclusion 95
5.1 Geographic routing for the ICN-enabled WSN 95
5.2 Popularity-based latency control for Fog applications 96
5.3 Intent-based management of ICN 96
5.4 Future research directions . 96

Appendices 115

A Appendix of Chapter 3 117
A.1 Computing the Fog hit rate for the LRU-AC 117
A.2 Proof of Equation (3.6) . 117
A.3 Proof of Equation (3.7) . 119

A.3.1 The case α = 1 . 120
A.3.2 The case α 6= 1 . 120

A.4 Numerical evaluation of tC(r) . 121

B Résumé étendu en Français 123
B.1 Introduction . 123
B.2 Acheminement géographique dans les réseaux de capteurs sans-fil 124

B.2.1 L’architecture SLICT . 125
B.2.2 Évaluation de l’acheminement géographique 126

B.3 Contrôle d’admission pour applications à temps de réponse contraint127
B.3.1 Contrôle d’admission dans le Fog et modélisation 127
B.3.2 La stratégie LRU-AC . 128
B.3.3 Principaux résultats . 129

B.4 Orchestration d’applications et gestion de réseaux centrés contenus129
B.4.1 Orchestration fondée sur l’intention 129
B.4.2 La plateforme vICN . 129

x CONTENTS

List of Acronyms

ABF Ageing Bloom Filter

AC Admission Control

API Application Programming Interface

CS Content Store

CSP Constraint Satisfaction Problem

DB Data base

DAG Directed Acyclic Graph

DMA Direct Memory Access

DoS Denial of Service

F&L Flood and Learn

FIB Forwarding Information Base

FSM Finite-State Machine

IBN Intent-based networking

ICN Information-Centric Networking

IoT Internet of Things

IRM Independent Request Model

ISP Internet Service Provider

ITS Intelligent Transportation Systems

LAN Local-Area Network

LPM Longest-Prefix Match

1

2 CONTENTS

LFU Least-Frequently Used

LRU Least-Recently Used

M2M Machine-to-Machine

MAC Message Authentication Code

MANO Management and Orchestration

MPR Multi-point relay

MTU Maximum transmission unit

NAT Network Address Translation

NDN Named-Data Networking

NFN Named-Function Networking

NFV Network Function Virtualization

OS Operating system

PIT Pending Interest Table

QoS Quality of Service

RTT Round-Trip Time

SDN Software-Defined Networking

SLA Service-level agreement

TLV Type-Length Value

V2V Vehicle-to-vehicle

VM Virtual-Machine

VNF Virtual Network Function

WSN Wireless Sensor Network

Chapter 1

Introduction

The underlying principles of the Internet have remained rather stable since
its inception. TCP and IP, introduced in 1974 by Cerf and Kahn [1], still remain
the fundamental protocols upon which communication channels are built. The
use and the scale of the Internet, however, has dramatically evolved, moving
from kilobytes to petabytes per second, from dozens to billions of connected
end-points. Nowadays, networks have in fact invaded most aspects of our soci-
ety and everyday life. There are but a few examples more representative of that
phenomenon than the emergence of the Internet-of-Things (IoT), which prom-
ises to help automate and optimize our environment by increasing the number
of connected devices by another few orders of magnitude.

The scale of the envisioned IoT deployments and their requirements in terms
of bandwidth, latency, flexibility have raised concerns about the suitability of
TCP/IP. New architectures have thus been proposed to replace or enhance
TCP/IP so as to accommodate these new requirements, chief among them
Information-Centric Networking (ICN). This thesis, in line with this approach,
investigates the suitability of ICN for the IoT from a networking perspective.

1.1 The Internet-of-Things

The past ten years have seen the emergence of the so-called “Internet-of-
Things” (IoT). The turn-of-phrase, which originally describes the growing trend
of providing Internet connectivity to everyday objects (e.g., kitchen appliances,
transportation tools, medical material), has been used to describe many different
applications. The connectivity is used to build a network of “smart” objects that
cooperate in view of automating specific tasks and systems. Notable examples
of IoT subdomains are, among others, building [2,3], home [4–6], or factory [7,8]
automation, intelligent transportation systems (ITS) [9], environmental monit-
oring [10], smart cities [11–13], the “smart grid” [14], etc. This section aims
at gaining a principled understanding of the IoT despite that diversity, looking
at IoT applications (Section 1.1.1), networks (Section 1.1.2), and finally at the
challenges associated with both (Section 1.1.3).

3

4 CHAPTER 1. INTRODUCTION

ac
tio

ns
m

ea
su

re
s

Application
Sensors
Actuators

High-level instructions

Curated data

Figure 1.1 – Typical functioning of an IoT deployment

1.1.1 IoT applications

While diverse in form, in scale, and in objectives, IoT applications share
common principles. Their goal is, in general, to automate and optimize part
of our environment (the home, the city, etc.) As such, they follow the same
global patterns of reading data from the environment, processing it to compute
a metric, compare that metric against an objective, and apply actions on the
environment accordingly.

These common characteristics lead IoT applications to share the same funda-
mental building blocks. Indeed, they are composed of four main actors: sensors,
actuators, applications, and humans. Their respective function, summarized in
Figure 1.1 can be described as such:

Humans deploy and manage IoT deployments. They set high-level goals (e.g.,
keep the building temperature at 20 ◦C) for automation or expect curated
data (e.g., time series of the average level of pollution in a city) from the
deployment.

Sensors are the basic data generators in IoT networks. They are typically
single-purpose hardware modules deployed in a system, tuned to measure
a specific physical phenomenon (e.g., temperature, speed, humidity). For
instance, current top-of-the-line cars embed hundreds of sensors [15].

Actuators are modules that perform actions to influence the state of the sys-
tem, for instance, by controlling the heating system in a specific room or
the braking system of a car. They are controlled using the data generated
by the sensors as a feedback mechanism.

Applications are used to provide intelligence to the system. They take as
input the data measured by the sensors and the human-issued high-level
objective and output instructions for the actuators, curated data for the
humans, etc.

1.1.2 IoT networks

Another common thread of the various IoT use cases is their network ar-
chitecture. Indeed, an IoT deployment usually implicates various logical and

1.1. THE INTERNET-OF-THINGS 5

Core network

Wireless mesh network

ISP 1
ISP 2

802.15.4

Cloud 1
Cloud 2

Local
Area
Network

Figure 1.2 – Examples of IoT deployments

topological locations of the Internet. In particular, four main components can
be identified: the IoT network, the access network, the core network, and the
data center. The articulation between these components is shown in Figure 1.2

The IoT network is where sensors and actuators are deployed. It corres-
ponds to the geographic location of the system controlled or measured by the
IoT (e.g., smart building, city, etc.). Sensors and actuators are often low-power
nodes, with constrained computing, memory, and energy resources. They are
equipped with a network interface, through either wired (Ethernet, Power Line
Communications) or wireless (IEEE 802.11, IEEE 802.15.4, LoRa, cellular con-
nections) technologies. IoT networks broadly follow one of two topology classes:
star-shaped networks, and mesh networks. In star-shaped networks, all nodes
are only connected to a base station, which acts as a relay towards both the
inside and the outside of the IoT network. Typically, cellular or IEEE 802.11
networks are star-shaped. In mesh networks, on the other hand, nodes that are
in communication range can communicate directly with each other. They form a
decentralized network, where information can be transmitted over multiple hops
from one sensor to another without going through a centralized base station.
Such mesh networks of sensors, usually called Wireless Sensor Networks (WSN),
have been widely studied in the literature [16].

To link the IoT network with the rest of the Internet, IoT operators usually
buy connectivity from an Internet Service Provider (ISP), connecting either the
devices directly to the ISP network or via their own Local-Area network (LAN).
The ISP network holds a specific place compared to other networks traversed
by the IoT traffic: it is the only network operator with which the IoT operator
maintains a business relation.

While sensors and actuators are usually only found in the IoT network, ap-
plications are ubiquitous in the IoT context. A popular solution is, for instance,
to rent compute and storage resources in a Cloud platform. In this case, operat-
ors deploy their applications in a virtualized environment, typically hosted in a
large data-centers remote from the actual IoT network. Such a solution is often

6 CHAPTER 1. INTRODUCTION

Table 1.1 – Location of IoT building blocks

Device type Location
Sensor IoT network
Actuator IoT network
Applications Ubiquitous
Human-facing devices IoT network; Data center network

practical for, e.g., collecting long time-series over specific readings or performing
hard computations over large sets of data. On the other end of the spectrum,
some rudimentary logic can be deployed directly on a sensor or an actuator. In
this case, actuators can, for instance, retrieve data directly from sensor boards
using horizontal Machine-to-Machine (M2M) communications. This approach
is fit for low-latency control loops that require only minimal (if any) data pro-
cessing. Finally, as a class of compute-intensive low-latency IoT applications
started to emerge, e.g., for Augmented/Virtual reality (AR/VR) or for ITS, a
new computing platform has emerged: the Fog [17]. The Fog is defined as a
highly virtualized, often distributed, computing and storage layer that sits at
the edge of the network, e.g., in the IoT operator LAN or in the ISP network.
Fog deployments are thus ideal for applications that require a low response time
or, for instance, geographic awareness.

Finally, ISP and Cloud are connected through the Internet core network,
sometimes through multiple transit networks. Obviously, and as represented
in Figure 1.2, real-life IoT deployments can consist of multiple IoT networks
connected to multiple access networks, with applications deployed in multiple
data-center networks. In particular, the location of the actors in an IoT deploy-
ment is summarized in Table 1.1.

1.1.3 Challenges

The IoT has raised new challenges for communications networks. This sec-
tion details some of the most important ones, namely new communication pat-
terns, implementability, mobility handling, scalability, security, and Quality of
Service (QoS). For each of these challenges, limitations of IP-based approaches
are also presented.

Communication patterns

IoT traffic follows novel patterns, for which current networks have not been
designed. A first novelty is the rise of horizontal M2M traffic [18], as opposed
to the traditional vertical client-server interactions seen in today’s Internet.
Indeed, while current Internet connections mainly consist of human-facing ter-
minals (e.g., Web browsers or video players) in edge networks downloading data
from data-centers in the cloud, the rise of the IoT has seen autonomous devices
sharing information with each other. M2M communications can include, for
instance, sensors sharing their data with an actuator or cars sharing traffic in-
formation with each other. In fact, between 2016 and 2021, Cisco expects 51
per cent of worldwide connected devices to perform M2M communications [19].

1.1. THE INTERNET-OF-THINGS 7

Furthermore, IoT streams are quite different from the original large point-
to-point file transfers for which, e.g., TCP was designed. They often consist
in periodic transfers of low-size data blobs in a one-to-many fashion, where
multiple applications subscribe to consecutive readings of a sensor [20, 21]. To
scale such communications patterns, multicast support is essential [22]. Native
network multicast is even more important in constrained networks with multiple
devices competing for network access and where thus network utilization should
be minimized. In IP, multicast is not natively supported and comes with a large
signalling overhead and strong limitations [23].

Implementability

Classical IP stacks are notoriously hard to scale on low-power IoT nodes
with constrained capabilities (in terms of battery, compute power, storage ca-
pacity, network bandwidth). Not only is the IP stack memory-consuming [24],
but its headers are disproportionally large for the low maximum transmission
unit (MTU) of low-power networking technologies [25]. Thus, a set of adapted
protocols has been standardized for low-power networks: 6LoWPAN [25] for
the network layer with RPL [26] as a routing protocol, DTLS [27] as secure
transport, CoAP [28] for the application layer. These protocols were designed
with IP compatibility in mind but are still ill-fitted to the IoT context. For
instance, Clausen et al., have argued that RPL is sub-optimal for M2M commu-
nications [29]. Furthermore, low-power nodes connected over wireless technolo-
gies are often disconnected, be it because they sleep to save battery or because
of interference over the wireless medium. This is particularly problematic for
the connection-based DTLS transport, which cannot handle such connectivity
interruptions [23].

Mobility

Mobility is an integral part of many IoT use cases. The smart city or ITS, for
instance, involve nodes with high physical mobility. Even in static deployments,
low-power nodes connected via wireless media only have intermittent connectiv-
ity due to their low duty-cycle or to wireless interference. Handling this mobility
is a notably hard challenge in IP, as IP addressing is location-based [30].

Scalability

As explained in Section 1.1.1, a key feature the IoT is the deployment of
many sensors and actuators in our everyday environment and the introduc-
tion of Internet connectivity to previously monolithic appliances. The number
of devices connected to the Internet is thus expected to skyrocket, reaching
27.1 billion in 2021 [19]. These devices will generate and consume data and
raise scalability issues in multiple aspects of the network. Beyond the obvious
problem of being able to efficiently fit all of this data into the current network-
ing infrastructure, it also brings traditional network protocols under tremendous
stress. Routing protocols, for instance, could encounter scalability issues, e.g.,
from routing tables exploding in size or from control traffic overwhelming the
network.

8 CHAPTER 1. INTRODUCTION

Table 1.2 – Classification of IoT applications by QoS requirements

Application class QoS requirement Example use case
Latency-critical 1-10 ms Factory automation
Latency-sensitive 100-500 ms Building automation
Latency-tolerant None Environmental monitoring

Security

Security is paramount for IoT applications, which present a particularly
wide attack surface [31]. The connection-based security model built on (D)TLS
is problematic for IoT environment, as creating and maintaining the channel
requires important resources (in terms of network, memory, and compute) on
constrained devices [32]. It is also hard to accommodate alongside network
multicast and mobility, which as explained earlier are essential features for the
IoT. Furthermore, as IoT verticals are often built using, e.g., more powerful
relay nodes such as gateways as protocol proxies [31, 33], a purely connection-
based approach does not guarantee end-to-end authentication and data integrity
between the sensor and the data consumer.

Quality of Service

Finally, the IoT is characterized by the cohabitation of many different QoS
requirements. IoT applications can roughly be categorized into three classes,
as summarized in Table 1.2: (i) latency-critical, when data must be received
within 1-10 ms (typically in M2M interactions [21]), (ii) latency-sensitive, where
the timescale interaction is in the order of 100 ms (e.g., applications with human
interaction [34]), and (iii) latency-tolerant, that have no specific delay constraint
such as time-series collection for big-data analysis. All of these applications
coexist along the IoT vertical and sometimes even rely on the same underlying
sensor data.

1.2 Information-Centric Networking for the IoT:
motivation

To tackle the challenges listed in Section 1.1.3, recent research has put for-
ward a new network architecture called Information-Centric Networking (ICN) [23,
24,35,36]. Section 1.2.1 presents the high-level functioning of ICN. Theoretical
advantages of ICN for the IoT are then presented in Section 1.2.2.

1.2.1 Information-Centric Networking

ICN is a recent network paradigm introduced by Van Jacobson et al. [37].
It is centred on the idea of using identifiers rather than locators as the central
network primitive. Indeed, while Pouzin, inventor of the first datagram network,
already pointed out in 1973 that topological addresses had limitations [38],
current IP networks are still based on host-to-host communications. Conversely,
in ICN, the central unifying layer is named data. The network is then in charge

1.2. INFORMATION-CENTRIC NETWORKING FOR THE IOT: MOTIVATION9

of locating and retrieving the data associated with a given name rather than
forwarding a packet to a given destination address.

Indeed, each addressable object in the network is given a name (e.g., /Cis-
co/ILM/Eiffel/Temp for the temperature in the Eiffel room of the Cisco office
in Issy-les-Moulineaux). Names are rather generic and can represent anything:
a specific sensor reading, a chunk of a video, a remote procedure call on an
actuator, or even an endpoint. In ICN, network addresses thus represent named
objects rather than only the host where said objects can be found. The forward-
ing plane is then in charge of finding a location for the named object. While
ICN can be found in many derivations [39–42], in this thesis the term ICN refers
to two rather similar realisations of ICN: CCNx [43, 44] and Named-Data Net-
working (NDN) [40]. Both architectures use hierarchical naming conventions
(similarly to DNS) and are based on a pull-based communication model with
symmetric routing. They rely on two fundamental packet types: Interest and
Data packets. Interest packets, which are generated by consumers, contain the
name of the piece of content that the consumer wishes to access. It is forwarded
over the network based on that name towards the producer of the data until it
reaches a point where the corresponding content is available. There, the con-
tent is put into a Data packet, also addressed by the content name, which is
forwarded back to the consumer using the reverse path of the Interest packet.

ICN routers are based on three data structures: the Forwarding Information
Base (FIB), the Pending Interest Table (PIT), and the Content Store (CS).
The FIB, similarly to an IP router, maps name prefixes to next hop in the ICN
network. It is used to forward Interests towards their destination object, by
matching the name in the Interest against the name prefixes in the FIB using
Longest-Prefix Match (LPM). The use of hierarchical names and LPM helps the
FIB scale, by, for instance, aggregating all the routes towards the Cisco Issy-
les-Moulineaux office under the /Cisco/ILM name prefix. The PIT is used to
record in-flight Interest to perform symmetric routing of the corresponding Data
packet. It contains a list of all the names for which the router has received an
Interest packet that has not been satisfied yet with a Data packet. Each of the
names is stored with the incoming and outgoing interfaces of the corresponding
Interest packets. These Interests are grouped by name: all requests for the
same named object are aggregated in a single PIT entry. Namely, if a router
receives an Interest for a name that is already in the PIT, it does not forward
the Interest, but only update the PIT entry to register the current Interest
incoming face. Interest aggregation is a fundamental feature of ICN, as the
name-based forwarding allows to detect requests for the same name object and
achieve native multicast. Upon reception of a Data packet, its name is matched
in the PIT against outstanding Interests. The Data packet is then forwarded
to all the registered incoming interfaces, thus taking the reverse path of the
corresponding Interests. Finally, the CS is used to cache content directly on
the forwarding path. Upon receiving an Interest, the router checks whether
the requested content is available in its CS and serves it directly from its cache
in that case. Upon receiving a Data packet, a cache admission policy (e.g.,
Least-Recently-Used (LRU) eviction) is used to decide whether to store the
corresponding piece of content in the CS or not. The forwarding mechanism for
Interest packets is summarized in Figure 1.3.

10 CHAPTER 1. INTRODUCTION

Name in
PIT?

Content
in CS?

no

Aggregate
Interest

yesyes

Reply with
Data packet

LPM in
the FIB

no faces Forward Interest
on selected faces

Figure 1.3 – Flowchart of ICN Interest forwarding

1.2.2 ICN for the IoT

IoT has been identified as an area where ICN could bring many advant-
ages [45]. Among others, name-based forwarding, in-network caching and mul-
ticast, object-based security, and mobility support are characteristics of ICN
that could be beneficial for the IoT.

Name-based forwarding

First of all, forwarding on data-identifiers rather than network locators seems
suited to IoT networks. Indeed, enforcing names at the network layer forces
applications to share a common semantic. This is highly desirable for sensor
data to be shared between multiple applications, especially on single-purpose
low-power sensors [21, 28, 36]. Inversely, network names allow applications to
benefit from in-network service discovery [46]. This is extremely important in
the IoT context, where applications are not necessarily aware of sensors deployed
in the field [47]. It means that multiple sensors can provide the same data,
the same service, and that content ubiquity is handled directly at the network
layer [36]. This approach is more integrated than IP-based approaches like
CoAP, which require layers of indirection to map services to IP addresses [28].

In-network caching and multicast

Furthermore, content ubiquity means that caching becomes a native feature
in ICN networks [48]. Caching is a crucial feature for IoT applications. First,
it helps increase data availability in WSN. Indeed, on-field low-power sensors
might only have intermittent reachability (because, e.g., of low duty-cycles and
unreliable wireless connectivity) [49]. Offloading the data produced by these
sensors to more powerful and reliable nodes is necessary to ensure continuous
data availability. Furthermore, caching is necessary to scale ever-growing IoT
deployments. For instance, in WSNs, in-network caching allows for limiting the
number of network transmissions and thus saving energy [50]. More generally,
caches bring data close to its consumer, thus decreasing both download time
and network utilisation. This is particularly crucial for low-latency applications
(e.g., Augmented/Virtual Reality) [17, 36]. The efficiency of the data retrieval
process is further increased thanks to the native multicast provided by the PIT
and CS as described in Section 1.2.1.

1.3. ICN FOR THE IOT: BACKGROUND 11

Object-based security

This approach is furthermore enabled by the object-based security model
of ICN, which maintains end-to-end trust between the data producer and the
data consumer, even if the data goes through relay nodes [35]. Indeed, in ICN,
security is associated with the data rather than with the channel. In practice,
it means that every piece of data is signed and/or encrypted directly by its
producer. The security context is thus attached to the object rather than to
the host (as it is the case in TLS). This removes the limitations of TLS-based
approaches described in Section 1.1.3. Furthermore, ICN security scales with
the number of produced objects rather than with the number of connections
handled by a machine [32,36]. Low-power sensor nodes are freed from the burden
of maintaining high-cost TLS connections, thus lowering the energy overhead of
securing the data.

Mobility support

Network mobility is a core feature of IoT networks, especially for use cases
as ITS or Smart Cities. In IoT networks, mobility is not only associated to
moving devices (e.g., connected vehicles or pedestrian-held devices), but also
network mobility due to unreliable physical connections (e.g., wireless interfer-
ences on an IEEE 802.15.4 channel). The connection-less model of ICN is an
obvious candidate to handle that mobility [51]. Indeed, consumer mobility is
naturally handled thanks to symmetric routing: since consumers do not have
network addresses, no signalling is required in case of a mobility event. More
generally, the simplicity of the ICN stack and its native collaboration with the
way applications are designed is expected to reduce signalling and decrease the
number of indirection layers [35].

1.3 ICN for the IoT: background

Research on ICN for IoT has focused on many different topics. This sec-
tion summarizes seminal research contributions in three main areas that are of
relevance for this thesis: ICN for the WSN (Section 1.3.1), ICN for the Fog
(Section 1.3.2), and ICN for specific IoT applications (Section 1.3.3). For a
more general survey on the ICN-IoT literature, the interested reader is referred
to Arshad et al. [51].

1.3.1 ICN for the WSN

Data-centric approaches have a long history in WSN [52]. Of particular
note in this context, Directed Diffusion is a data-centric routing protocol where
all nodes perform application-aware routing [53]. In particular, sensors are
identified by attribute-value pairs and, similarly to ICN, data retrieval is done
through a pull-based model using Interest messages. Interests are either flooded,
directed based on geographic location, or forwarded based on routes learned
during previous Interest/Data exchanges. Directed Diffusion has been adapted
to the ICN context by Amadeo et al. [54]. They propose an extended naming
scheme that consists of a multi-dimensional attribute-value set (e.g., task type,
location, task time). A hybrid approach between multi-dimensional sets and

12 CHAPTER 1. INTRODUCTION

traditional hierarchical names for IoT networks is proposed by Ascigil et al. [55].
Namely, a one-dimensional name is used as a network prefix in combination with
a named-function (i.e., some processing to be applied on the retrieved data)
and tags to describe the retrieved data. The prefix is used to route the packet
towards a specific network location, where the tags are understood in context
to find relevant sensors. The function is then used to enable in-network data
processing. Similarly, Abidy et al., propose to extend the ICN naming scheme
to perform in-network aggregation of several pieces of content [56].

Other authors have looked at adapting in a more straightforward way ICN-
implementations to WSNs. Baccelli et al. [24], consider the performance of
an out-of-the-box ICN stack (CCN-Lite [57]) over constrained nodes using the
open-source operating system (OS) RIOT-OS [58]. Using an experimental ap-
proach, they show advantages of ICN in terms of implementation complexity
(lower memory usage, lower header footprint in the packet) with respect to
6LoWPAN. They propose two naive forwarding strategies for ICN: vanilla flood-
ing and “flood-and-learn”, which consists in flooding Interest packets for which
there is no FIB entry and learning routes by observing the hop from which the
corresponding Data packet comes back. Similarly, Gündogan et al. [59], compare
ICN with current IP-based standards for WSN (CoAP [28] and MQTT [60]).
They show that ICN yields benefits in terms of implementability (i.e., footprint
on the low-power device) and highlight an interesting trade-off: while ICN is
more robust and resilient in multi-hop mesh scenarios, IP-based protocols are
quicker and have less overhead in star-shaped deployments. Inversely, in [61],
an implementation of COAP over ICN is proposed for enabling application in-
teroperability in ICN-IoT networks. The authors show, in particular, that the
native ICN-multicast allows for significantly decreasing the communication over-
head. Shang et al., propose an alternative implementation of the NDN protocol
suite over RIOT-OS [62], complemented by a larger framework to apply ICN for
WSN [63]. Their architecture includes, among other contributions, a bootstrap
protocol to issue meaningful names to sensors connecting to the IoT networks, a
publish-subscribe system that respects the pull-model of ICN, and trust model
for the data generated by the sensors. Looking specifically at constrained net-
work technologies, Ren et al., present a lightweight CCNx-based protocol for
fitting CCNx headers in 802.15.4 MTUs [64]. As the lower memory footprint of
ICN stacks opens the opportunity for caching in IoT boards, Hahm et al. [49],
study how cooperative caching can increase content-availability for nodes with
low duty-cycles. Pfender et al., also look at caching for low-power nodes, fo-
cusing on the efficiency of admission and eviction policies for IoT data [65]. To
further optimize the caches, Melvix et al., design a forwarding strategy where
ICN forwarders map Interest names to scopes and domains, which describe the
expected accuracy on the requested data [66]. For data that is tolerant to in-
accuracies, stale or approximating pieces of content available in the CS can be
used instead of forwarding the Interest in order to conserve energy.

Several pieces of work have also addressed the issue of security for ICN-
WSN. In [67], the authors propose a global security framework for ICN-WSN
that enables both push- and pull-interactions. The framework enforces access
control over the ICN namespace and protects against Denial-of-Service (DoS)
attacks using either asymmetric or symmetric cryptography. Compagno et al.,
propose OnboardICNg, a mechanism for secure-network join tailored for low-
power IoT devices [68]. The evaluation shows improvements in terms of energy

1.3. ICN FOR THE IOT: BACKGROUND 13

consumption and onboarding speed compared to IP-based standards. Similarly,
Mick et al., introduce LaSeR, a lightweight scheme for sensor onboarding in the
context of Smart Cities [69]. In particular, LaSeR is integrated into the routing
protocol so as to provide both functionalities (routing and authentication) at a
lower overhead.

1.3.2 ICN for the Fog

The first natural use case for the Fog in an ICN network is as a caching layer.
In [48], the authors propose a metric for optimizing content placement in distrib-
uted and collaborating Fog caches. Their metric is based on content centrality,
i.e., how well connected a cache is to the content it is serving. Hit-rate improve-
ments are shown compared to topology-based (rather than content-based) cent-
rality metrics and to non-collaborative caching systems. Their scheme is exten-
ded in [70] by considering popularity in the centrality metric. Wang et al. [71],
propose to use the Fog as a classifying layer to help routers decide which data to
cache. They use the Fog as a computing layer that does not suffer from the same
limitations as ICN routers to distinguish dynamic data (which should not be
cached) from static data (which should be cached). That classification is then
encoded as a tag in the Data packet header and used by routers to optimize the
content of their CS.

Other authors have looked at how to exploit the Fog to realise one of the
promises of ICN: in-network processing. One of the main steps in that direction
is Named-Function Networking (NFN), an extension of ICN where packets do
not only carry the name of the desired content but also the name of a function
to be applied to said content [72]. Simple data-processing (e.g., lambda func-
tions [73]) can then be fetched from a function repository to perform oppor-
tunistic in-network processing of data. The named functions can, for instance,
be implemented as Virtual Machines (VM) [74]. ICN routers equipped with a
hypervisor can then launch these VMs on the content stored in a data packet
to perform some computation on it. Scherb et al., specifically propose to ap-
ply NFN in the IoT by prioritizing Fog nodes to execute functions as on-path
routers have only limited computing capacities [75].

Finally, some authors have explored the interaction between ICN and Fog
from a network point-of-view. Shang et al., argue that the ICN naming and
security model offers the opportunity to break from Cloud-only approaches by
deploying applications directly into edge networks [76]. The Cloud is used as a
complementary platform that can be used if available but is not necessary for
the IoT applications to run, thus protecting the latters from loss of connectivity.
Adhatarao et al., suggest using a Fog gateway as a protocol translation node
between standard ICN protocols and a lightweight counterpart used to fit the
requirements of low-power IoT networks [77]. In [78], the Fog is used to perform
content-aware filtering for security services in social networks. Specifically, the
Fog layer acts as a security middleware between two parties of an ICN-enabled
social network to discard illegal content by classifying the exchanged content
along labels defined by a regulator. Nguyen et al. [79] suggest ICN as a nat-
ural network layer to enable horizontal Fog-to-Fog communications. They use
two case studies (video streaming and building energy management) to show
the theoretical advantages of ICN in the Fog-to-Fog context such as reduced
signalling, latency, and network utilization.

14 CHAPTER 1. INTRODUCTION

1.3.3 ICN for specific IoT applications

Finally, ICN has been studied as an enabler for specific applications: smart
homes and buildings, smart cities, and ITS. This section contains an overview of
the literature on applying ICN to these use cases. Note that, while substantial
work has also been conducted on smart healthcare [80–82], it mostly addresses
application-layer naming and security, which are not the topic of this thesis.
Thus, we do not cover it in this state-of-the-art.

In [83], an implementation of ICN for smart homes is presented. The au-
thors suggest a flexible naming scheme and propose to support push operations
by embedding data into Interest packets called Interest notifications. Similarly,
Silva et al., evaluate the efficiency of Interest notifications for smart home light-
ing, showing a reduction in message-delivery delays compared with an HTTP-
based platform [84]. Shang et al., investigate building automation and manage-
ment systems [85]. They propose a namespace to represent both sensor data
(based on its location in the building, its type, and a timestamp) and users
(based on user-ids and security material). That naming scheme is used to per-
form access control by mapping the names of the users to the data namespaces
that they are allowed to access.

Moving up in scale from smart homes, Piro et al., introduce a platform for
ICN-enabled smart cities [86]. They propose a service discovery protocol that
allows the user to retrieve the security context associated with a specific name
and show its application to several smart city use cases. In [87], Yue et al.,
introduce DataClouds, a community-based ICN for smart cities. Communities
are network overlays comprised of users interested in the same pieces of data.
Splitting the ICN network into communities helps to scale the network by dis-
seminating data and routes only to the interested users.

Another crucial part of the Smart City paradigm is the emergence of ITS.
There, while ICN has again been identified as a natural solution for the network
layer, several challenges are left to overcome [88, 89]. One particular area of
interest in that regard is vehicle-to-vehicle communication (V2V). Yan et al.,
introduce an architecture that supports typical ITS communications patterns,
which involve mobility, push-based communications, and large-scale retrieval of
small-sized pieces of data [90]. Their architecture is based on a hierarchical
topology, where nodes in the access network are responsible for specific geo-
graphic zones. These nodes are then used aggregate Data packets and segregate
Interest packets in order to increase the scalability of the network. Their naming
strategy is also based on using geographic zones as prefixes. Interest packets
are then geographically routed towards the node in the access network that is
in charge of the corresponding zone. Similarly, Grassi et al., propose a routing
scheme for V2V communications based on geography [91]. Data is identified by
a grid location in the Military Grid Reference System [92]. ICN forwarders map
these grid locations to geographic faces using flood-and-learn techniques.

1.4 Thesis contribution

This thesis addresses the problem of routing and forwarding along the IoT
vertical. This section summarizes the main contributions. First, the challenges
tackled by the thesis are described in Section 1.4.1. Then, the contributions and

1.4. THESIS CONTRIBUTION 15

Integrated network and
application management

(Chapter 4)

Application

Forwarding strategy
(chapter 3)

deployment and management

Sensing and actuation
from WSN
(chapter 2)

Readings and
instructions

Figure 1.4 – Articulation between the contributions presented in the thesis

organisation of the thesis are summarized in Section 1.4.2.

1.4.1 Forwarding and routing in the ICN-IoT: challenges

Most of the issues described in Section 1.1.3 resonate in the way forward-
ing and routing are considered in the IoT: routing protocols must be scalable
and responsive enough to manage mobility, forwarding must accommodate the
various QoS requirements of IoT applications, the impact of both routing and
forwarding on low-power IoT nodes must be considered, etc. On top of that, the
use of ICN as the network layer for the IoT brings not only opportunities but
new challenges. Two main problems arise: (i) the scalability of the ICN naming
scheme in terms of routing structures (FIB) [93] and (ii) the development of for-
warding strategies to select the next-hop when content is available in multiple
locations [94]. The latter is of such importance to ICN that it has led to the
development of a new block in the ICN router architecture: the strategy layer,
used to transform the list of faces matched in the FIB into an actual forwarding
decision [95]. As QoS is a predominant problem for the IoT, being able to co-
ordinate forwarding strategies not only across nodes but also with application
orchestration is of utmost importance [96].

While often mentioned as an important challenge [23, 24, 63], routing and
forwarding for the IoT received little interest in the ICN community. For in-
stance, most of the envisioned routing schemes for WSNs rely on a variant on a
flood and learn mechanism, varying from simple name discovery [24,86] to dis-
covering groups prefixes based on attributes such as geographic location [54,91]
or tags [55]. Similarly, the literature on the ICN-enabled Fog has focused on
exploiting the Fog resources to enhance ICN intrinsic capacities (e.g., larger
storage space for caching or computing power for protocol translation) but has
not considered how ICN routing and forwarding can be used to enhance the
functionalities for which the Fog was built in the first place.

1.4.2 Contribution and organization

This thesis is divided into three main chapters, reflecting the respective
contributions. In particular, routing and forwarding are considered across the

16 CHAPTER 1. INTRODUCTION

complete lifecycle of IoT data: data retrieval and processing. First, efficient
data retrieval from IoT networks is investigated in Chapter 2. In particular, we
explore the opportunities for performing geographic routing in the ICN-enabled
WSN while keeping the network safe from malevolent attackers. In Chapter 3,
ICN is used to bring intelligence to the network and help data processing plat-
forms meet QoS requirements. In particular, we consider the problem of admis-
sion control in Fog platforms to enforce service time constraints. Finally, we
address the broader problem of unifying network configuration and application
orchestration in Chapter 4 by introducing vICN, a framework for ICN network
management and virtualization based on recent progress in intent-based net-
working (IBN). The main contributions of this thesis are then summarized in
Chapter 5, where perspectives on further work and research are briefly outlined.
The articulation between the different contributions of this thesis is summarized
in Figure 1.4.

Secure geographic routing for WSN

In a first step, we investigate the feasibility of using geographic forwarding
to solve the routing problem in ICN-based WSNs. First, an architecture to se-
curely perform geographic forwarding in the ICN semantic is introduced, based
on four pillars: a naming scheme, a neighbour authentication mechanism, an
ICN-based secure beaconing protocol, and a geographic forwarding algorithm.
For the authentication mechanism, two protocols with similar security guar-
antees are considered: OnboardICNg [68], based on symmetric cryptography,
and a new protocol, based on asymmetric cryptography. They are evaluated in
terms of memory footprint and completion time. Second, an analytical model
is presented to compare the efficiency of geographic forwarding to flood-and-
learn approaches in terms of energy consumption, memory footprint, and CPU
complexity. This model is completed by a mixture of experiments on standard
sensor boards and of simulation to derive general guidelines as to when to use
geographic forwarding with respect to flood-and-learn. In particular, it shows
that geographic forwarding outperforms flooding-based approaches in terms of
memory footprint in most cases and yields significant improvements in terms of
energy overhead for dynamic topologies.

Popularity-based forwarding for Fog-Cloud placement

In a second step (and moving up the IoT vertical), we explore how ICN can
help Fog platforms enforce service-level agreements (SLA). In particular, we look
at how ICN can enhance Fog admission control (AC) by bringing application-
awareness into the AC module. The Fog admission control problem is formalized
as a constrained optimization problem using a queueing model. The LRU-AC,
an approach based on estimating popularity through a virtual LRU cache, is
proposed. Using the constrained optimization framework, the LRU-AC is shown
to allow Fog nodes to accept more requests than application-blind approaches
while respecting the same latency SLA. An implementation of the LRU-AC
on programmable hardware is studied to provide AC at line-rate with minimal
latency. This implementation is based on replacing the LRU structure with
an Ageing Bloom Filter. The algorithmic validity of the implementation is
proven through analytical modelling and verified through simulation. It is shown

1.5. PUBLICATIONS 17

to perform the LRU-AC with minimal latency overhead (3 µs) and line-rate
throughput (16.7 Mpps).

Unified network management and application orchestration for the
ICN-enabled IoT

In the last chapter, the challenge of unifying network and application man-
agement is explored. This problem is particularly stringent in the ICN-enabled
IoT for many reasons, e.g., (i) the scale and diversity of IoT networks requires
low-granularity control but also high-level human facing-interfaces; (ii) current
ICN implementations and toolchains typically lack the comprehensive control
mechanisms and protocols developed for IP; (iii) in ICN, the potential for inter-
actions between the network and applicative layers reinforce the need for uni-
fying network management and application orchestration. We thus introduce
virtualized ICN (vICN), an intent-based framework for network virtualization
and management developed specifically for ICN. It offers a single, flexible and
scalable platform to serve different purposes, ranging from reproducible large-
scale research experimentation to demonstrations with emulated and/or physical
devices and network resources and to real deployments of ICN in existing IP
networks. We highlight the flexible, modular, and scalable design of vICN and
provide concrete examples to demonstrate its potential. Finally, the possibility
of using ICN as a control protocol is explored. In particular, we propose an
intent-based alternative to current IP-based network control standards that is
able to perform routing and forwarding over orchestration objects. We illustrate
benefits in terms of network programmability, reliability, and scalability.

1.5 Publications

Journal papers

— [97] M. Enguehard, Y. Desmouceaux, G. Carofiglio. “Efficient latency
control in Fog deployments via hardware-accelerated popularity estima-
tion”. Under review in ACM Transactions on Internet Technology. 2019

— [98] M. Enguehard, D. Rossi, R. Droms. “On the cost of geographic for-
warding for information-centric things”. In IEEE Transactions on Green
Communications and Networking. 2018

Conference papers

— [99] Y. Desmouceaux, M. Enguehard, V. Nguyen, P. Pfister, W. Shao,
E. Vyncke. “A Content-aware Data-plane for Efficient and Scalable Video
Delivery”. In 16th IFIP/IEEE Symposium on Integrated Network and
Service Management (IM). 2019

— [100] M. Enguehard, G. Carofiglio, D. Rossi. “A Popularity-Based Ap-
proach for Effective Cloud Offload in Fog Deployments”. In 30th Interna-
tion Teletraffic Congress (ITC 30). 2018

— [101] M. Sardara, L. Muscariello, J. Augé, M. Enguehard, A. Compagno,
G. Carofiglio. “Virtualized ICN (vICN): towards a unified network virtu-

18 CHAPTER 1. INTRODUCTION

alization framework for ICN experimentation”. In Proceedings of the 4th
ACM Conference on Information-Centric Networking (ICN). 2017

Workshop papers
— [102] M. Enguehard, D. Rossi, R. Droms. “SLICT: Secure Localized

Information-Centric Things”. In Proceedings of the 3rd ACM Conference
on Information-Centric Networking - Workshop on Information Centric
Networking for 5G (IC5G). 2016

Posters and demonstrations
— [103] M. Enguehard, D. Rossi, R. Droms. “On the Cost of Secure As-

sociation of Information Centric Things”. In Proceedings of the 3rd ACM
Conference on Information-Centric Networking (ICN). 2016

— [104] J. Augé, G. Carofiglio, M. Enguehard, L. Muscariello, M. Sardara,
“Simple and efficient ICN network virtualization with vICN”. In Pro-
ceedings of the 4th ACM Conference on Information-Centric Networking
(ICN). 2017

— [105] J. Augé, M. Enguehard. “A network protocol for distributed or-
chestration using intent-based forwarding”. In 16th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM) - Demonstra-
tion Session

Talks and presentations
— Information-Centric Things - Running ICN over RIOT. RIOT Summit

2016. Berlin, Germany. 2016
— ICN, IoT, and the FOG: enabling computation at the edge. INRIA RIOT

Seminar. Paris, France. 2017
— Configuration, management and control of a CICN network demo. ICNRG

Interim Meeting. Prague, Czech Republic. 2017
— Virtual ICN-based IoT networks with vICN and RIOT. RIOT Summit

2017. Berlin, Germany. 2017
— Tutorial: Community Information-Centric Networking (FD.io/cicn). 4th

ACM Conference on Information-Centric Networking (ICN). Berlin, Ger-
many. 2017

— Objets centrés sur le contenu: application des réseaux centrés contenus à
l’Internet des objets. La Recherche montre en main (Weekly live science
show on French public radio France Culture). 6 December 2017

— Réseaux intelligents pour les villes intelligentes. Journée TEDonnées. Be-
sançon, France. 2018

Patent applications
— A. Compagno, L. Muscariello, G. Carofiglio, M. Enguehard. LIGHT-

WEIGHT NAMING SCHEME FOR AGGREGATING REQUESTS IN
INFORMATION-CENTRIC NETWORKING. USPTO Application Num-
ber 15/943,775

1.5. PUBLICATIONS 19

— M. Enguehard, G. Carofiglio, D. Rossi. POPULARITY-BASED LOAD-
BALANCING FOR FOG-CLOUD PLACEMENT. USPTO Application
Number 16/043,550

— M. Hawari, Y. Desmouceaux, M. Enguehard, A. Augustin, A. Surcouf.
RESILIENT TRANSMISSION OF RAW VIDEO STREAMS OVER AN
IP COMMUNICATION NETWORK. USPTO Application Number 16/033,112

— M. Enguehard, Y. Desmouceaux, J. Augé. SYSTEM AND METHOD
FOR MIGRATING A LIVE STATEFUL CONTAINER. USPTO Applic-
ation Number 16/130,824

— M. Enguehard, J. Augé, G. Carofiglio, M. Papalini. DISTRIBUTION
OF NETWORK-POLICY CONFIGURATION, MANAGEMENT, AND
CONTROL USINGMODEL-DRIVEN AND INFORMATION-CENTRIC
NETWORKING. USPTO Application Number 16/178,967

— J. Augé, M. Enguehard, J. Samain, A. Compagno, M. Papalini. AN-
CHORLESS ANDMULTI-RATMOBILITY ANDROAMINGMANAGE-
MENT. WTO Application Number PCT/US2018/049181

— M. Enguehard, Y. Desmouceaux, P. Pfister, M. Townsley, E. Vyncke.
EFFICIENT AND FLEXIBLE LOAD-BALANCING FOR CLUSTERS
OF CACHES UNDER LATENCY CONSTRAINT. USPTO Application
Number 16/261,462

20 CHAPTER 1. INTRODUCTION

Chapter 2

Geographic routing for
information-centric wireless
sensor networks

In this first chapter, we focus on the retrieval of data from IoT networks. In
particular, the problem of routing and forwarding in a multi-hop wireless sensor
network (WSN) using ICN is addressed. Indeed, as noted in the introduction,
recent research argues that ICN is a better fit for WSN than the standard IPv6-
based network stack, For instance, seminal work [24] shows through experiments
that a slightly modified ICN stack outperforms the standard IPv6-based stack
(i.e., IEEE 802.15.4, 6LoWPAN and RPL) in terms of energy efficiency and
memory requirements – which are primary concerns for WSNs.

However, the advantages resulting from the use of ICN architectures in
terms of naming, mobility, and security (Section 1.2) do not come without chal-
lenges [36]. One such challenge is efficient packet delivery with minimal control
traffic. Most of the recent pieces of work on ICN for the WSN rely on a flavour of
flood-and-learn to discover network paths towards ICN names [24,54,55,86,91].
While simple from an implementation perspective, such approaches that use net-
work broadcast can be costly for low-power devices, especially in mobile wireless
networks where bandwidth is also a scarce resource [106].

2.1 Geographic routing

Geographic routing, where packets are routed towards a physical location
instead of a host, has long been pushed as a potential solution for routing in
WSNs [107]. Indeed, in typical geographic routing implementations, forward-
ing is performed by selecting the neighbour that is the closest to the packet’s
destination. Control traffic is thus kept local, as nodes only need to know their
neighbours’ position to take a forwarding decision. While geographic routing
strategies have been thoroughly studied in the literature since the publication
of seminal work such as [108], to date there are no implementations available
in state of the art IoT stacks [109] and the same holds true for the ICN-WSN
context.

21

22 CHAPTER 2. GEOGRAPHIC ROUTING

In this chapter, we set ourselves to explore the feasibility and practicality
of using geographic routing and forwarding in ICN-enabled WSNs, looking spe-
cifically at three aspects:

(i) how can geographic routing and forwarding be realized from a protocol
point-of-view while respecting the ICN semantic?

(ii) how can the routing protocol be protected from rogue participants aiming
at either diverting or denying requests?

(iii) how does geographic routing compare to the current flood-and-learn ap-
proach in terms of feasibility (memory and CPU footprint of the forward-
ing algorithm on the constrained devices) and efficiency (energy and net-
work overhead of the routing scheme)? Rather than focusing on a specific
WSN deployment, which would result in conclusions of limited scope, we
intentionally study the broad issue of geographic as opposed to name-based
routing and forwarding, where resource consumption grows respectively
with the number of neighbours and entries in the ICN FIB.

Our contributions, matching the aforementioned challenges, can thus be sum-
marized as such:

(i) we propose a protocol implementation of geographic routing in ICN that
relies on a naming convention, a beaconing mechanism, and the ICN
strategy layer to realize geographic forwarding. In particular, we imple-
ment a classic flavour of geographic forwarding, GPSR [108], in an ICN
stack based on RIOT-OS [58].

(ii) security mechanisms for the protocol in (i) are introduced, in particular, to
prevent rogue nodes to join the WSN and to emit beacons. A secure join
protocol based on asymmetric cryptography is proposed and compared
to a state-of-the-art protocol, OnboardICNg [68], itself based on sym-
metric cryptography. Trade-offs between the two protocols are presented,
showing that OnboardICNg requires more network transmissions but less
energy consumption.

(iii) we propose a simple analytical model to represent the energy consump-
tion of WSN routing protocols based on either name-based or geographic
forwarding; we use our protocol implementation to measure the protocol
CPU footprint and gather accurate data from the literature on message
encryption and transmission costs as one source of data for the model; we
simulate message propagation dynamics over large topologies, from which
we gather propagation patterns as the second source of data to the model;
finally, given an energy budget, we use the model to derive the expected
number of messages for different degrees of network dynamism under both
schemes, giving useful guidelines for ICN-WSN deployments.

The content of this chapter has been the object of three publications. [102] cov-
ers the protocol implementation of geographic forwarding (i) and offers partial
insights into its comparison to name-based approaches (iii), looking at the cost
of forwarding a single packet. [103] contains the comparison between the two
network join protocols (ii). [98] extends the work on comparing geographic and
name-based forwarding, looking this time at the complete cost of the routing
protocol (i.e., forwarding cost plus control plane cost).

The remainder of this chapter is organized as follows. We start by overview-
ing WSN deployments, with the purpose of selecting some relevant use cases

2.2. REFERENCE WSN DEPLOYMENTS 23

Table 2.1 – Reference WSN deployments

Deployment
name

Deployment class No. of
Nodes

Node
degree

Ref.

A Place de la Na-
tion

Urban sensor network 97 3.8 [13]

B Great Duck Is-
land

Environmental sensor
network

150 4.6 [110]

C CASAS Home automation 30 8 [4]
D Sensor Andrew Building automation 1000 15 [111]

that we use as reference points in our evaluation (Section 2.2). Next, we in-
troduce the reference ICN architecture, discussing aspects related to naming,
security, and forwarding (Section 2.3). We then formally state our problem
and outline the methodology, introducing the energy model for ICN-WSN de-
ployments at a high level (Section 2.4). We incrementally add details to the
overall picture, refining each of the building blocks (Section 2.5–2.6). The full
details of the model are then presented and used to quantitatively and qualit-
atively contrast geographic and named-based ICN forwarding for the identified
use cases (Section 2.7). Finally, we discuss and summarize our main findings
(Section 2.8).

2.2 Reference WSN deployments

Depending on the use cases and applications, WSN deployments cover a
broad spectrum of characteristics in terms of node density, number of nodes,
typical topology, traffic patterns, etc. Given that our main aim is to identify
under which circumstances, if any, geographic forwarding is more advantageous
than classical name-based forwarding, we need to select a number of specific
use cases, representative of different application classes. For the purpose of
quantitative assessment, we need each use case to precisely report characteristics
that are specific to a single deployment. At the same time, provided that the
selection is made among carefully defined application classes, we expect that
the results for the selected example in any given application class qualitatively
applies to other deployments in the same class.

As pointed out in Section 1.1, there are many classes of IoT applications. To
better focus our investigation, we consider the IETF Routing Over Low power
and Lossy networks (ROLL) working group 1, which identifies four main use
cases: (i) urban sensing [12], (ii) industrial sensing [7], (iii) home automation [5],
and (iv) building automation [2]. While not considered by the ROLL working
group, environmental sensor networks and machine-to-machine deployments are
another class of deployments largely covered in the literature [10,112]. Without
loss of generality, and to give the reader several reference points, we consider
four deployments, whose relevant characteristics we summarize in Table 2.1
with their classes with respect to the aforementioned ROLL categories. For
each deployment, we review the reference documentation or available data to
determine the number of neighbours for each node, which we use as input data

1. https://datatracker.ietf.org/wg/roll/

https://datatracker.ietf.org/wg/roll/

24 CHAPTER 2. GEOGRAPHIC ROUTING

to our model. The deployments, ordered by increasing node degree in Table 2.1,
are:

(A) Place de la Nation: as an example of the urban sensing class, we take
the Cisco-Paris deployment, which is a joint venture between Cisco, the
City of Paris and several start-up companies [13]. The deployment is used
to measure and track car and pedestrian traffic and pollution patterns on
a highly frequented square in Paris. It consists of 19 cameras, 14 noise
sensors, 5 pollution-reading sensors, and 12 wireless access points that
report information about user connections. The measured data is open-
source and available online [113].

(B) Great Duck Island: the Great Duck Island deployment [110] is an en-
vironmental sensor network consisting of 150 devices. The sensors were
used to observe the habitat of seabirds on an island off the coast of Maine
and its evolution depending on weather conditions.

(C) CASAS: as an example of the home automation class, we select CA-
SAS [4], which is a so-called “smart-home in a box”: a ready-to-deploy
sensor network that allows any consumer to transform their home in a
connected (or “smart”) home. It consists of 30 nodes communicating over
the IEEE 802.15.4 radio channel, including temperature sensors and in-
frared motion/light sensors.

(D) Sensor Andrews: as an example of the building automation class, we
select Sensor Andrew [111], a sensor network deployment at Carnegie Mel-
lon University (CMU). More than 1000 devices spread all over the CMU
campus report numerous measurements such as electricity consumption
or temperature.

2.3 Reference Information-Centric Things (ICN-
WSN) Architecture

To realize secure geographic routing, several building blocks must be added
to tradition ICN-WSN architectures: (i) a neighbour discovery and association
protocol (Section 2.3.1), which ensures that only trusted nodes are authorized to
send packets on the network; (ii) a secure beaconing (Section 2.3.2) protocol to
handle topology and location changes; (iii) a forwarding scheme (Section 2.3.3),
to ensure correct forwarding of Interest packets over the network independently
of the forwarding algorithm class (i.e., geographic or name-based). In this sec-
tion, sample implementations for these are detailed and discussed, highlighting
the various trade-offs. Let us note that our study leaves for future work one
important feature of ICN: in-network caching. As memory is a scarce resource
on IoT platforms, a better understanding of the opportunities for in-network
caching in the ICN-WSN would require a thorough study of current ICN-WSN
stacks and their memory usage. We provide a first step in that direction with
the results of Section 2.7.2.

2.3.1 Secure neighbour discovery
Whereas in the context of fixed ICN networks, security is attached to self-

verifiable data objects, the world of ICN-WSN requires additional features. To

2.3. REFERENCE INFORMATION-CENTRIC THINGS (ICN-WSN) ARCHITECTURE25

begin with, given the broadcast nature of the wireless medium, in a hostile envir-
onment silent attackers could eavesdrop on sensitive sensor data. Additionally,
given the multi-hop nature of WSN communications, talkative attackers could
instead swamp network resources, such as battery and wireless medium, by
issuing bogus Interest messages. Additional security mechanisms are thus re-
quired, such as naming and communication patterns to enforce access control
on ICN-based WSNs [67,68].

This section thus addresses the problem of neighbour discovery and associ-
ation for ICN-WSN, to ensure that only trusted nodes are authorized to send
packets on the wireless network. A novel association protocol based on asym-
metric keys is presented and compared to a recently proposed one based on
symmetric cryptographic keys [68]. The evaluation considers both security and
network properties of these protocols, as well as important practical aspects
such as the forecasted power consumption of the protocol implementation on
different WSN technologies.

Association protocols using (a)symmetric cryptography

Symmetric Cryptography. Let us first note that, while symmetric cryp-
tography is not natively suited to authentication, it is several orders of mag-
nitude less expensive in terms of CPU cycles than standard asymmetric crypto-
graphy [114], which makes it attractive for low-power environments. Addition-
ally, there is a growing hardware support for symmetric cryptography on recent
sensor boards, which implies a shrinking energy footprint of cryptographic op-
erations. This explains why the author of OnboardICNg [68], an ICN-based
neighbour authentication protocol, selected to rely only on symmetric crypto-
graphy. To overcome the limitations of symmetric cryptography, OnboardICNg
requires nodes to be pre-configured with a secret symmetric key shared with
a central authority, which must then be contacted at each authentication ex-
change and acts as a trusted third party between the nodes in the ICN-WSN.
In particular, if dj is a node trying to join the network and dnbr is a neighbour
in charge of the authentication, an OnboardICNg exchange yields the following
results:

1. dj proves to dnbr that it shares a symmetric key with the central authority;
2. symmetrically, dnbr proves to dj that it shares a symmetric key with the

central authority;
3. dnbr generates a secret symmetric key for dj and dnbr to encrypt their

unicast layer-2 traffic;
4. dnbr and dj use the aforementioned key to exchange broadcast keys (the

broadcast key is a symmetric key propagated by one node to its direct
physical neighbour to enable encrypted L2 broadcasts).

Asymmetric Cryptography. We further design an ICN-based protocol that
uses asymmetric cryptography, such as Elliptic Curve Cryptography (ECC).
Compared to symmetric cryptography-based OnboardICNg, where every au-
thentication session requires contact with an authentication server, asymmetric
cryptography allows nodes to authenticate each other without any third party.
Local exchanges imply spatial reuse of the wireless medium and reduce the en-
ergy footprint due to relaying traffic towardsthe authentication server. This

26 CHAPTER 2. GEOGRAPHIC ROUTING

d1 d2Interest
name: /my_AMI/hello

Content
name: /my_AMI/hello
payload: rn1, DSAK1()

Interest
name: /my_AMI/auth/rn1

rn1 ← RNG()

Content
name: /my_AMI/auth/rn1
payload: rn2, C2, DSAK2()

Interest
name: /my_AMI/auth/rn2

Content
name: /my_AMI/auth/rn2
Payload: C1, DSAK1()

rn2 ← RNG()

1

2

3

4

5

6

Figure 2.1 – ICN-based protocol for authentication using asymmetric crypto-
graphy

is especially critical for nodes close to the authentication server that are more
solicited and whose battery would be quickly depleted. At the same time, while
asymmetric cryptography is rather commonly used in association with a pub-
lic key infrastructure to perform authentication (e.g., in TLS [115]), it requires
computationally expensive operations, which may not be a good fit for energy-
constrained nodes.

Given that the design of an asymmetric cryptography protocol with the same
security properties as the symmetric cryptography-based OnboardICNg [68] is
an original contribution of this work, we briefly sketch its inner working in
fig. 2.1. In this scheme, each node di has a pair of asymmetric keys Ki, with
its corresponding certificate Ci signed by a trusted third party (e.g., the au-
thentication server). Signing a message with a key Ki is noted as DSAKi()
and RNG() is a random number generation function. To authenticate itself, a
node must prove that it owns a key that has been certified by the trusted third
party (messages 4 and 6). The nonces rn1 and rn2 protect the protocol against
replay attacks by providing a challenge-response authentication. They can also
be used to derive a symmetric session key, for instance with the Diffie-Hellman
algorithm.

Network vs Energy Footprints

We estimate the footprint using two sensors, the older TelosB (with 16-bit
MSP430 CPU) and a new-generation OpenMote (with 32MHz ARM Cortex-
M3 CPU). We consider respectively ECC160 for asymmetric cryptography and
AES-CCM-128 for symmetric cryptography. Interestingly enough, the Open-

2.3. REFERENCE INFORMATION-CENTRIC THINGS (ICN-WSN) ARCHITECTURE27

Table 2.2 – Cost of encrypting (AES-128) or signing (ECC) 128b on the TelosB
and OpenMote

TelosB OpenMote
ECC160 sw AES128 hw ECC192 sw AES128 hw
15 mJ [116] 14.3 µJ [117] 11.4 mJ [118] 0.9 µJ [118]

Table 2.3 – asymmetric cryptography vs symmetric cryptography-based authen-
tication protocols

Board Crypto Messages (#) Energy (mJ) Latency (s)
TelosB AES hw 9 4.3 – 6.4 1.4

ECC sw 6 53.3 – 57.3 10.9
Open AES hw 9 0.54 – 0.89 0.13
Mote ECC hw 6 22.5 – 28.7 0.95

Mote supports both AES and ECC in hardware. We collect energy costs of
cryptographic operations in table 2.2, which we use for the performance evalu-
ation. We then contrast (i) number of messages, (ii) energy cost and (iii) latency
for both schemes in table 2.3.

On the one hand, we observe that only 6 messages are required in asymmetric
cryptography compared to 9 in OnboardICNg – a 30% reduction. Additionally,
exchanges in the asymmetric cryptography case are confined to neighbouring
devices, whereas in the symmetric cryptography case messages need to reach a
sink point (the authorization entity). Hence, not only does asymmetric cryp-
tography requires fewer messages, but these messages have a shorter delay and
involve fewer hops in the network. These are all desirable properties that make
asymmetric cryptography an interesting alternative to symmetric cryptography-
based protocols such as OnboardICNg [68]. On the other hand, we also gather
that cryptographic functions dominate latency overhead for asymmetric cryp-
tography — by about 8x. Similarly, energy-wise the performances are largely
favourable to OnboardICNg — up to 41x. It must be noted however that the
cost of transmitting messages reduces the performance gap between asymmetric
cryptography and symmetric cryptography shown in table 2.2 where ECC-160
requires up to 104 more energy.

Given this very large performance gap, it follows that the advantages in
terms of the network communication cost are completely offset by the large
penalties in terms of latency and energy. This finding leads to an interesting
trade-off, depending on the characteristics of the WSN: on the one-end, sym-
metric cryptography is less energy- and latency-consuming; on the other hand,
it requires connectivity to a trusted third party even though the low-power
wireless technologies used in WSN are subject to temporary network partitions
due to, e.g., interference or duty-cycling. Thus, while symmetric cryptography
is better suited for authentication in dynamic WSNs with reliable connectivity
(e.g., dense and mobile networks such as smart cities), asymmetric cryptography
is better suited to static networks with intermittent disconnections (e.g., envir-
onmental sensor networks). As mobility is one of the challenges we set ourselves
to solve in this chapter, OnboardICNg [68] is selected as the reference authen-
tication protocol.

28 CHAPTER 2. GEOGRAPHIC ROUTING

n1 n2 n3

Association

Association

Creates persistent
/ndb/n2 pit entryCreates persistent

/ndb/n2 pit entry

Content message: /ndb/n2
Payload: coordinates, seq

num

Updates
n2 position in DB

Updates
n2 position in DB

Figure 2.2 – Synoptic of the ICN-WSN beaconing protocol

2.3.2 Secure beaconing
Beaconing presents two new challenges. First, unsecure beaconing opens

the possibility of wormhole or DoS attacks through exhausting the neighbour
database or overloading the central processing unit (CPU). Second, beaconing
is essentially a push operation, which contrasts with the ICN pull model.

Security. In order to prevent these threats, sensors must be able to distinguish
between beacons originating from trusted and malicious entities. We thus use
the broadcast keys provided by OnboardICNg [68] to encrypt our beacons and
authenticate their origin. All the subsequent messages are encrypted with the
node broadcast key and contain a message authentication code (MAC). Using
this encryption, ICN-WSN devices are resistant to flooding attacks from non-
authorized nodes. Indeed, only beacons encrypted with the broadcast key of
authenticated neighbours are considered, and the corresponding key can only
be accessed by trusted nodes. However, the scheme is not resistant to trusted
nodes that have been physically tampered with.

Note that if the AES operations have to be performed in software, attackers
can send packets with bogus encryption to perform a simple DoS attack against a
node’s CPU. However, recent platforms such as the OpenMote Section 2.4.1) are
equipped with hardware modules that can perform AES computation. There-
fore, these systems compute and check MAC at low CPU and energy cost.

Push. To accommodate the push nature of beacons with ICN, we must slightly
modify the specification of ICN exchanges, similar to the work presented in [119].
Specifically, we use persistent Pending Interest Table (PIT) entries (i.e., entries
that are not purged after being satisfied once) and unsolicited Data messages
(i.e., Data messages that are emitted without a corresponding Interest message).
We describe the beaconing protocol with the help of Figure 2.2:
(i) After an OnboardICNg association, each node creates a persistent PIT

entry (e.g., with a soft timeout) for /ndb/neigh_id, where neigh_id is
the id of the neighbour with whom the exchange was performed.

(ii) Regularly, each node sends a broadcast unsolicited Data packet (encrypted

2.3. REFERENCE INFORMATION-CENTRIC THINGS (ICN-WSN) ARCHITECTURE29

Interest
packet

Forwarding module

Extract
name

Figure 2.3 – Coexistence of forwarding strategies in the reference ICN-WSN
stack

with the node broadcast key) for /ndb/node_id containing the beacon
information (e.g., the node’s coordinates) and a sequence number (to avoid
replay attacks).

(iii) Unsolicited Data packets are forwarded to the beacon processing applica-
tion, thanks to the persistent PIT entry.

Persistent PIT entries and unsolicited messages have a network utilisation
advantage over the traditional ICN Interest/Data exchange. Indeed, the tradi-
tional scheme requires four packets per pair of neighbour nodes (two exchanges,
one per node), so a total of 4Nd where N is the total number of nodes and d the
average number of neighbours per node. Instead, with our scheme, each beacon
is broadcast to all of the nodes in the neighbourhood, so that only N packets
are required.

Deriving from the standards ICN specifications comes at a cost as the pull
model is central to many aspects of the ICN architecture. One such example
is congestion control [120] where the Interest-to-Data balance is used to per-
form both receiver-based interest pacing and packet scheduling at intermediate
nodes [121]. Another is protecting the network against DoS attacks (specific-
ally reflection and bandwidth depletion attacks as defined in [122]) by ensuring
that nodes do not receive Data packets that they have not requested with a
corresponding Interest. Both of these issues can, however, be mitigated for the
geographic beacons presented in this section:

— beacons are purely link-local and never routed and are thus not subjec-
ted to congestion control or packet scheduling (similarly to, e.g., IPv6
Neighbour Discovery [123]); to enforce this property, the implementation
of the ICN stack should prevent creating persistent PIT entries that are
not associated with an application face;

— beacons are also encrypted using the broadcast key distributed during the
association protocol presented in Section 2.3.1; thus, only authenticated
and trusted nodes are allowed to issue unsolicited data packets.

30 CHAPTER 2. GEOGRAPHIC ROUTING

2.3.3 Forwarding

Our reference ICN-WSN architecture is conceived as a framework to perform
name-based and geographic forwarding in the ICN-based WSN and is thus in-
dependent of the actual variation of geographic forwarding chosen. We achieve
this using the strategy layer introduced in Section 1.4.1 with the workflow sum-
marized in Figure 2.3. In our ICN stack implementation, FIB entries match
with faces and strategies. Faces can be either physical neighbours, application
or virtual faces (such as the broadcast face). A strategy is a callback on the
faces in the FIB, that can, for instance, select a face among the available ones
with a specific metric. For instance, one could use a specific prefix (such as /g/)
to forward packets through geographic forwarding by linking it to the corres-
ponding strategy in the FIB. Interest packets destined to any other prefix would
still be forwarded by name.

While our architecture allows for a variety of forwarding strategies, for quant-
itative performance evaluation we need to select specific geographic and name-
based forwarding strategies that are implemented and executed on real IoT
hardware. Routing and forwarding in the WSN world have been the subject
of extensive research; we refer the reader to [124] for a taxonomy and survey
of algorithms. To guide our selection, we remark that this taxonomy, which
categorizes forwarding into flat/hierarchical or location-based strategies, also
applies in an ICN-flavoured WSN, where the choice of using flat/hierarchical
or location-based naming schemes directly maps the choice of a forwarding
strategy as well [125].

Location-based. To select our candidate location-based strategy, we remark
that most geographic forwarding techniques are based on greedy forwarding
(i.e., select the neighbour closest to the destination as a next hop) with either a
beacon-based [108, 126] or beacon-less [127, 128] approach. Greedy choices are
complemented by recovery techniques to route around sinkholes, as in GPSR [108]
or GOAFR+ [126].

The applicability of geographic forwarding to ICN has explored in a limited
way, primarily as applied to Vehicle-to-Vehicle (V2V) networks [91,129,130] and
are designed to exploit V2V characteristics: highly dynamic, fast moving nodes
with no battery/CPU constraints that receive long streams of video/audio data.
In [131], the authors propose an ICN-WSN routing scheme based on geographic
coordinates. However, their proposal assumes a tree-like topology and does
not account for potential sinkholes. We additionally note that, despite the
availability of many geographic forwarding algorithms in the literature, there
are few implementations; e.g., even the most basic and best-known approaches,
such as GPSR [108], are not available in modern IoT toolboxes [109] such as
Contiki [132] or RIOT [58]. As a representative of location-based strategies,
we implemented GPSR [108], a classic and well-understood strategy based on a
geographic greedy forwarding algorithm. The implementation of GPSR is made
available as open-source [133].

In addition to destination coordinates (that are part of a name under the /g/
prefix), GPSR also requires additional information for the forwarding. Indeed,
to avoid local maxima (cases where the current node is closer to the destination
than any of its neighbours), GPSR uses a technique called “perimeter routing”,
which requires the packet to carry the coordinates of the node where it entered

2.4. METHODOLOGY OVERVIEW 31

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Length

M
o
d
e

sl Flags Coordinates

Figure 2.4 – The TLV field used by GPSR for keeping in-flight state (with
sl=16).

the perimeter mode. The ICN-WSN architecture stores this information in a
Type Length Value (TLV) field as described in Figure 2.4, where a flag determ-
ines whether the GPSR is in greedy or perimeter mode. Given that we expect
the reference ICN-WSN architecture to be used in different scenarios (dense
deployment in urban buildings as opposed to sparse deployments in large rural
areas), it may be desirable to provide the capability to adjust the coordinate
resolution to a specific application scenario to avoid overhead. As a result, the
architecture also supports the use of different resolutions for geographic coordin-
ates: as Figure 2.4 outlines, 2 bits in the flags, noted as sl, allow to specify from
8 to 64 bits coordinates, in step of 8 bits.

Name-based. The matching between Interest names and output faces in the
ICN-WSN FIB is usually done using longest-prefix match. Simple flood-and-
learn (F&L) forwarding strategies [24, 134] (and variants [135, 136]) are typ-
ically used in ICN-WSN to construct FIBs on demand. These are inherently
non-scalable and possibly a bad fit for IoT deployments. As such, while we
do implement F&L for reference purposes, we do also argue for the need to
complementing it with additional techniques to reduce broadcast storms. Par-
ticularly, we opt for a Multi-Point Relay (MPR) [137] variant inspired by the
Optimized Link State Routing Protocol (OLSR), where at each hop during the
message propagation, only a few relays are selected out of those having received
the message.

However, while implementing naive F&L is simpler than implementing GPSR,
implementing a full-blown MPR distributed OSLR-like protocol is not. In par-
ticular, F&L and MPR performance will not only differ in the number of mes-
sages sent over the network (which we can simulate) but will also differ in
the computational complexity (which we should measure from an actual im-
plementation). We can approximate the computational cost of MPR with the
computational cost of the simpler F&L strategy to provide a conservative eval-
uation of the energy efficiency of MPR for comparison with GPSR. Therefore,
we prototype only the simpler F&L for the purpose of measuring the compu-
tational cost in Section 2.4.3, and simulate an ideal MPR for the purpose of
gathering a lower bound of the number of messages transmitted by MPR over a
network in Section 2.6.2. In particular, our ideal MPR implementation exploits
global knowledge available in simulation to find a minimal set of MPR relays,
providing a lower bound on the message complexity. These choices guarantee
a conservative evaluation of the potential benefits of geographic GPSR over
name-based MPR.

2.4 Methodology overview

In this section, we define the lines along which we evaluate the costs of using
name-based and geographic forwarding strategies in ICN-WSN deployments. In

32 CHAPTER 2. GEOGRAPHIC ROUTING

Table 2.4 – Characteristics of the OpenMote

Architecture ARM Cortex-M3 (32 bits)
MCU Texas Instrument CC2538 (32 MHz)
RAM (ROM) 32 kB (512 kB)
Encryption HW AES & ECC
Encryption cost [118] 19.7 µJ (SW, AES-CCM, 128bits)

8.7 µJ (HW, AES-CCM, 128bits)
Consumption [138] 39 mW (CPU at 32 MHz, no RX/TX)

60 mW (CPU idle, RX at -50 dBm)
72 mW (CPU idle, TX at 0 dBm)

particular, we detail the experimental setup (Section 2.4.1) and focus our atten-
tion on the most relevant implementation criteria: namely, (i) memory footprint
(Section 2.4.2), (ii) CPU overhead (Section 2.4.3), and (iii) energy consumption
(Section 2.4.4). We consider memory and CPU metrics as tied to the feasib-
ility of an ICN-WSN deployment, whereas we use the energy consumption to
quantify the cost of ICN-WSN operation. We found that assessing memory
and CPU costs is significantly simpler than assessing the overall energy budget,
which, therefore, is the main contribution of our investigation. We thus set to
solve the following problem: under which conditions (if any) is geographic for-
warding more performant in terms of energy, memory, and CPU consumption
than flood-based strategies for the ICN-WSN?

A complex system such as a WSN deployment is influenced by numerous
factors (that are recapped and summarized further on in Table 2.6). Therefore,
we employ a range of methodologies. At each step of our evaluation, we select
the most appropriate one to estimate values that have practical relevance for
the different variables. This section defines our ICN-WSN experimental model
and enumerates the various sources of energy consumption. Sections 2.5 and 2.6
combine measurement from an actual ICN-WSN implementation with stochastic
modelling of L2 transmission and simulation of network-wide scenarios to popu-
late the different components of the model, including security, forwarding, data
plane traffic, and control plane overhead. The refined model is then quantitat-
ively analysed to provide guidelines on the most favourable ICN-WSN settings
for the different WSN deployment classes and scenarios (Section 2.7).

2.4.1 Experimental setup

While our methodology to evaluate the cost of secure geographic forward-
ing in the reference ICN-WSN architecture is general, the quantitative aspects
reported in this chapter are relevant for the hardware and software setup with
which we conducted our evaluation. To make them of interest to the largest pos-
sible audience, we selected widely used open-source hardware (OpenMote [139])
and software (RIOT OS [58]) stacks.

Hardware setup. The OpenMote platform has a 32 MHz ARM Cortex-M3
CPU and is equipped with an IEEE 802.15.4 chipset as well as hardware mod-
ules for symmetric and asymmetric cryptography. To evaluate the cost of hard-
ware cryptography and of receiving or transmitting packets through the IEEE

2.4. METHODOLOGY OVERVIEW 33

Table 2.5 – Size of Interest (I), Geo-interest (GI), and Data (D) ICN frames

Packet Type
Field Field size I GI D

L
2

h
ea

d
er 802.15.4 PHY header 6B 3 3 3

802.15.4 MAC header 23B 3 3 3
802.15.4 SEC header 5B 3 3 3

L
3

h
ea

d
er

Packet Type TL 1B 3 3 3
Nonce TLV 1B (TL) + 1B (V) 3 3
Name TL 1B 3 3 3
Name component TLVs sn 3 3 3
GPSR TLV 1B (TL) + (1 + sl) (V) 3

P
a
y
lo

a
d

Content TLV 1B (TL) + sc (V) 3
Signature Info TL 1B 3
Signature Type TLV 1B (TL) + 1B (V) 3
KeyLocator TLV 1B (TL) + 1B (V) 3
KeyId TLV 1B (TL) + 1B (V) 3
Signature TLV 1B (TL) + 16B (V) 3

F
o
o
te

r 802.15.4 Signature 16B 3 3 3
802.15.4 CRC 2B 3 3 3

Total size Packet Type
56B + sn Interest
58B + sn + sl Geo-Interest
79B + sn + sc Data

802.15.4 interface, we rely on measurements performed by Shafagh et al. [118].
The energy consumption figures for this platform are provided in the corres-
ponding datasheet [138], which we summarize along with other characteristics
in Table 2.4.

Software setup. Our code runs on top of the RIOT operating system [58].
We implement a custom ICN stack on top of RIOT that uses standard ICN
forwarding (i.e., longest-prefix match in the FIB) as well as GPSR (with peri-
meter routing as introduced earlier). To accommodate the typically low frame
sizes of WSN (e.g., 127 bytes for IEEE 802.15.4 networks), adaptations to the
TLV-based format of ICN packets have been proposed. Following the recom-
mendations in [140], we implement 1+0 TLVs (i.e., where the Type and Length
field are encoded in one single byte), instead of the 1+1 or 2+2 format described
in the CCNx specifications [141], with which our implementation is otherwise
fully compliant. Table 2.5 details the different fields of IEEE 802.15.4 ICN In-
terest, geographic-Interest and Data frames and reports the total frame size (as
a function of the name or location size). As shown by this table, the geographic-
Interest packet format differs from the ICN Interest only by the presence of the
GPSR TLV that is used on top of the name and name-components TLVs to
perform the routing.

34 CHAPTER 2. GEOGRAPHIC ROUTING

2.4.2 Memory

Memory is a primary constraint in WSN. For example, an old platform such
as the MSP430-based TelosB only offers 10KB of random-access memory (RAM)
and 48KB of flash memory. Even recent hardware like the OpenMote includes
only 32KB of RAM and 512KB of flash memory. This amount is still tiny
considering that recent implementations of an ICN-WSN stack require already
between 5KB [24] and 11KB [62] of RAM. Additionally, optimizing memory
consumption is especially interesting in the context of ICN, where caching can
be used to accommodate nodes with low duty-cycles [142].

When considering memory requirements, geographic forwarding has advant-
ages over name-based forwarding. Indeed, under geographic forwarding the size
of the state retained by a node to be able to forward any packet is bounded
by the node degree, whereas under F&L (and variants) each node needs to re-
tain some state for the name of every other node. In fixed ICN networks, state
explosion is alleviated by using prefix aggregation in the FIB. However, this is
hardly possible in highly-dynamic and mobile WSNs, and to the best of our
knowledge no aggregation scheme has been proposed for ICN applied to WSNs.

Memory requirements can be computed considering that under geographic
forwarding, the FIB contains the coordinates (having size sl) of all its d neigh-
bours, and that the beaconing protocol described in Section 2.3.2 additionally
requires nodes to store a persistent PIT entry (having size spit) for each of their
neighbours. Under classic name-based forwarding, ICN requires having one FIB
entry (having size sfib) for each of the ns reachable names. As no aggregation
scheme is currently available for dynamic WSN topologies, ns is equal to the
number of nodes in the WSN. This means that each node has a FIB entry for
every other node in the network. To compute the required memory, it must be
noted that both FIB and PIT entries also contain a 1-byte pointer to an ICN
face and that a FIB entry also contains a 1-byte pointer to a strategy. We can
thus express the respective memory requirements as:

Mgeo = d(sl + spit) = d(sl + sn + 1)

Mfib = ns × sfib = ns(sn + 2)
(2.1)

2.4.3 Computation

CPU power is another strong constraint on IoT platforms: this holds for both
old platforms such as TelosB (16-bit CPU clocked at 8Mhz), as well as for newer
platforms such as the OpenMote (32-bit CPU clocked at 32MHz). An inefficient
forwarding algorithm on a slow processor can delay message forwarding, causing
congestion in the network.

We remark that the CPU complexity of a forwarding algorithm is also in-
herently dependent on the underlying hardware: for instance, multiplication on
32-bits integers is much faster on newer 32-bit CPUs than older 16-bit ones. It
is thus only possible to evaluate the strength of a forwarding implementation
with respect to a specific platform. More specifically, we can evaluate the num-
ber of CPU cycles nc(algo) required in a given assembly language for a specific
implementation of any given strategy and then compute the corresponding en-
ergy ECPU consumed by the CPU given its frequency fCPU and its power drain

2.4. METHODOLOGY OVERVIEW 35

Listing 2.1 – Benchmarking code
uint32_t do_iteration () {

// Initializes structures and counter
do_initialize ();
DWT ->CYCCNT = 0;

// Performs the micro -benchmark
perform_bench ();

// returns the number of used CPU cycles
return DWT ->CYCNT;

}

PCPU from data-sheets:

ECPU (algo) =PCPU tCPU (algo)

=PCPU
nc(algo)

fCPU

(2.2)

To devise an accurate model, we need a method to reliably measure the
number of cycles nc(algo). Given that CPU emulators or static code analysis
are subject to low accuracy [143], we opt for micro-benchmarking the different
pieces of the reference ICN-WSN architecture code with cycle-level accuracy,
using a simple yet powerful technique. To accomplish micro-benchmarking,
we use a special register of the Cortex-M3 CPU dedicated to counting CPU
cycles 2. This register is directly mapped in memory and can be accessed on
RIOT through the DWT->CYCCNT variable, without performance penalty. An
example of the micro-benchmark code is presented in listing 2.1.

2.4.4 Energy
The energy cost of a specific ICN-WSN implementation comes from three

main sources: a computational cost related to the forwarding algorithms, a se-
curity cost related to cryptographic operations and message exchanges due to
the security protocol, and a network cost related to point-to-point communica-
tion, end-to-end transmission, and network maintenance.

During the overall lifetime of an ICN-WSN deployment, network cost can be
split into bootstrap, forwarding of Interest/Data packets, and handling of route
failures, all of which are clearly dependent on the forwarding strategy employed.
Network bootstrap is the cost of setting up the forwarding for the full network
to be able to forward packets from any node to any other. Once routes are set
up, communication under different forwarding strategies incurs different costs.
Indeed, the amount of energy spent for forwarding depends on the computational
cost of the forwarding algorithm, on communication costs because of additional
state embedded in the Interest packets, and on the different numbers of relays
under each algorithm. Finally, handling route failure is an operation common
to volatile environments such as WSN deployments, where routes to content
can become unavailable due to mobility or poor channel conditions. Reacting
to this failure triggers the (re)discovery of a path, a costly operation that must
be considered and whose cost depends on the forwarding strategy.

2. The CYCCNT register, see http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ddi0337e/ch11s05s01.html

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/ch11s05s01.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/ch11s05s01.html

36 CHAPTER 2. GEOGRAPHIC ROUTING

In our evaluation, we assume that network load is uniformly distributed over
the ICN-WSN network, i.e., that each node forwards probabilistically the same
amount of traffic. This simplifying assumption, necessary for the tractability
of the model, is justified by the fact that we consider networks with either
user/sensor mobility or machine-to-machine communications, which tend to
make the existence of a single hotspot sink less prevalent. Furthermore, we
do not aim at precise absolute evaluation of the network energy spending in
a specific scenario but at a relative comparison of name-based and geographic
forwarding for the ICN-WSN. We can then compute the total network cost by
summing the Ebootstrap, Eforwarding and Echange network-related components
as follows:

Etotal = Ebootstrap +NmEforwarding +
Nm
fc

Echange

= NmEforwarding + (1 +
Nm
fc

)Echange

(2.3)

where Nm is the number of useful ICN queries (i.e., expression of Interest sat-
isfied by a Data packet in a multi-hop fashion) and fc is the number of queries
performed between two route changes. Intuitively, fc represents the level of dy-
namism in the network, which lumps altogether phenomena such as (i) the addi-
tion/removal of new names or sensors, (ii) mobility of physical devices, (iii) route
failure due to the wireless medium. Arguably, Ebootstrap is a one-time cost with
vanishing impact over time, so we approximate it with Ebooststrap ≈ Echange,
i.e., the control-plane cost of repopulating a FIB. Eforwarding instead represents
the energy cost of a single query in the WSN once the FIB is already populated,
and as such accumulates the data-plane costs to transmit an Interest over sev-
eral hops in the network as well as the cost of receiving the corresponding Data
packet travelling in the opposite direction. Eforwarding and Echange are ad-
dressed in Section 2.5 and Section 2.6 respectively.

Finally, it must be noted that the number of messages Nm is not a design
parameter. Rather, we can re-express Equation (2.3) to infer the total number
of exchanges Nm that are possible, as a function of the network dynamism fc,
under different forwarding strategies:

Nm =
Etotal − Echange

Eforwarding + 1
fc
Echange

(2.4)

Without loss of generality, in Section 2.7 we exploit Section 2.4.4 where we
equate the total energy budget to the amount of energy available in standard
AA batteries, i.e., Etotal = EAA.

2.5 Cost of forwarding a single ICN packet
In this section, we set out to evaluate the energy spent by a node to for-

ward a single ICN packet as the first refinement of our energy model. We then
evaluate this model for the OpenMote, using our own experiments and data
gathered from the literature. From the point of view of a relay, the packet for-
warding process can be divided into 5 steps, namely: (i) frame reception, (ii)
frame decryption, (iii) forwarding face selection through the forwarding strategy,

2.5. COST OF FORWARDING A SINGLE ICN PACKET 37

Table 2.6 – Summary of variables used in the evaluation

Parameter Symbol Default value
No. of neighbours d 15
No. of ICN names ns 2000
No. of FIB entries nf 15
Size of a location info sl 8 B
Size of a name sn dlog2(ns)e
Size of the content sc 32 B
Energy cost of AES encryption EAES 10 µJ
No. of tries / transmission ntr,s eq. (2.6)
L2 drop probability pc [144]
No. of times a packet is forwarded dur-
ing flood (including L2 retries)

Ntr(T,D) eq. (2.19)

Energy cost of transmission/bit Ebtx 1.163 µJ
Energy cost of reception/bit Ebrx 0.96 µJ
Max number of hops of a packet on the
WSN

T 8

Size of an ICN Interest packet si 56B + sn
Size of a geographic ICN packet si,g 58B+sn+sl
No. of Interest/Content exchanges be-
fore a route change

fc free parameter

Energy content of an AA battery EAA 15 390 J
Budget of Interest/Data exchanges dur-
ing the lifetime

Nm eq. (2.21) and eq. (2.20)

(iv) frame encryption, and (v) frame transmission. We summarize the various
variables used in the mode in Table 2.6.

2.5.1 Frame transmission and reception

The transmission and reception cost of an ICN packet is given by the amount
of time that the node’s antenna has to be powered in transmission (TX) and
reception (RX) mode. Since the power consumption Ptx (resp. Prx) of the plat-
form is dependent on the hardware and available from the data sheets provided
by the manufacturer, only the transmission time needs to be computed.

At any hop, the transmission time is driven by two factors: the number
of retransmissions that are necessary for a successful reception on the wireless
medium and the size of the message (which impacts the time taken by each
retransmission). Let ntr,s(pc) be the average number of tries necessary for suc-
cessful transmission on a channel with collision probability pc and capacity Cphy.
The transmission cost of a frame of size sf is then given by:

Etx(sf) = Ptx
sf
Cphy

ntr,s(pc) = Ebtxsfntr,s(pc) (2.5)

The reception cost can be similarly derived.
Let Mtr be the maximum number of L2 retransmissions of a given frame

(after which the frame is dropped). For a given pc, we have that ntr,s(pc) is, in

38 CHAPTER 2. GEOGRAPHIC ROUTING

16 32 48 64 80 96 112 128

smsg - size of the encrypted message (byte)

0

10

20

30

40

50

60

E
-e

ne
rg

y
(µ
J

)

AES-CCM software: E=5.55⌈smsg/16⌉+7.92

AES-CCM hardware

Figure 2.5 – Energy cost of AES-CCM based on size of message. Software en-
cryption measurement are gathered as described in Section 2.4.3. Measurement
for hardware encryption are provided in Table 6 of [118]

expectation:

E[ntr,s(pc)] =

Mtr∑
k=1

kP (k L2 transmissions needed)

=

Mtr∑
k=1

kpk−1c (1− pc)

=
1− pMtr

c (Mtr + 1) + pMtr+1
c Mtr

1− pc

(2.6)

We stress that pc is not a system parameter but depends in turn on other
properties of the ICN-WSN deployment, such as node density and radio range.
We come back to pc in Section 2.6.

2.5.2 Data Encryption and Decryption
The cost of cryptography depends on the device’s capabilities, such as CPU

characteristics, and more importantly on the availability of hardware crypto-
graphy components. We present the energy consumption of AES-CCM en-
cryption in the OpenMote platform, considering both software- and hardware-
assisted cryptography as a function of the message’s size in Figure 2.5.

For the software implementation, we microbenchmark the AES implement-
ation of the crypto module of RIOT with the previously outlined technique.
Figure 2.5 provides the measurements as well as an equation derived from the
measurements. For the hardware-assisted encryption, we point out that cryp-
tography hardware modules are not yet supported on RIOT: we thus use as a
reference the AES-CCM measurement reported in Table 6 of [118]. The picture
clearly shows the importance of hardware modules for cryptographic operations:
the AES-CCM software implementation consumes up to 5 times more energy
than its hardware-assisted counterpart. In hardware, AES-CCM has a max-
imum cost of 10 µJ per packet (since the IEEE 802.15.4 maximum transmission
unit (MTU) is 127B).

In the rest of the chapter, we assume that the platform is equipped with a
hardware module that is accessible through an API of the software stack (as

2.5. COST OF FORWARDING A SINGLE ICN PACKET 39

1 5 10 15 20 25 30 35 40 45 50
Number of neighbours/FIB entries

0

1·104

2·104

3·104

N
um

be
r

of
C

P
U

cy
cl

es

Name-based: nc = 70.87nf + 201.83

GPSR: nc = 621.14d+ 577.25

Figure 2.6 – Cycles per forwarding decision on the OpenMote based on number
of neighbours/FIB entries. Boxplots report cycle-level accurate measurements
with the method in Section 2.4.3, lines reports linear fitting of the data.

planned in RIOT). With hardware-assisted encryption, as Figure 2.5 shows, we
can assume that costs for encryption/decryption are constant with respect to
the frame size. Finally, given that encryption/decryption costs are not the main
components of packet transmission, for the sake of simplicity, we assume that
encryption and decryption have an equal cost, which we indicate with EAES .

2.5.3 Forwarding algorithm

Deducing the cost of the forwarding algorithm is fairly simple: Equation (2.2)
requires a microbenchmark of the forwarding code to accurately measure the
number of CPU cycles required to perform either name-based ICN forwarding
(i.e., longest-prefix match in the ICN FIB) or GPSR forwarding operations.
Note that in this section, we do not yet consider the control traffic, but the
name-based FIB would typically be populated using F&L or MPR. These meas-
urements are reported in Figure 2.6, which shows boxplots of the number of CPU
cycles as a function of the number of entries in the FIB (for name-based ICN)
or the number of neighbours of the node (for GPSR) in the x-axis. Incidentally,
the figure shows a linear correlation between CPU consumption and memory
occupancy irrespectively of the forwarding algorithm. As expected, geographic
forwarding grows more steeply than name-based forwarding (621 cycles per addi-
tional neighbour versus 71 cycles per additional FIB entry). Indeed, geographic
forwarding requires the node to perform floating point multiplications to com-
pute the distance to the next hops, while name-based forwarding only requires
byte comparisons. It must be noted that we could implement geographic for-
warding using fixed-point arithmetic or on a more recent CPU with embedded
support for floating-point operations. However, while this would narrow the
performance gap, geographic forwarding would still be more expensive in CPU
cycles than the byte comparisons used by name-based forwarding.

While the gap between geographic and name-based forwarding appears to
be important, it is just one component of the overall cost, which we detail in
the next section.

40 CHAPTER 2. GEOGRAPHIC ROUTING

UsecaseA
sn =10

d=4
sl =4

UsecaseB
sn =11

d=5
sl =8

UsecaseC
sn =8

d=8
sl =1

UsecaseD
sn =13

d=15
sl =8

0

100

200

300

400

500

600

E
n
e
rg
y
co
st
(µ
J
)

F IB FIB FIB FIBGEO GEO GEO GEO

Comm. (L3) Comm. (L2 hdr) Crypto Fwd

Figure 2.7 – Energy cost of the forwarding modules

2.5.4 Overall cost
We can now express the total cost for a node to relay an ICN packet as:

Erelay(algo, s) = Etx(s) + Erx(s) + 2EAES + PCPU
ncycles(algo)

fCPU
(2.7)

It should be noted that since Data packets are forwarded through symmetric
routing, they are not concerned by the computation overhead. Considering both
the Interest and the Data packet, the forwarding cost per node adds up to:

Erelay(algo) = Erelay(algo, si) + Erelay(exact-match, sc) (2.8)

Finally, we can summarize Eforwarding as the cost of forwarding an Interest
packet and its corresponding Data packet over a multi-hop network by consider-
ing that on the path we have: (i) T − 1 relay nodes that must perform both TX
and RX operations, (ii) a source node that only performs TX for the Interest
and RX for the Data packet, and (iii) a destination that performs only RX for
the Interest and TX for the Data packet. This can be rewritten as T relay nodes
performing both TX and RX operations for both packets:

Eforwarding = T (Erelay(algo, si) + Erelay(exact-match, sc)) (2.9)

In Figure 2.7, we represent the respective costs of each of the different com-
ponents for the reference use cases in Table 2.1 with the corresponding numbers
of FIB entries, neighbours and the size of the name. In particular, we group
transmission and reception costs, and present them as L2 IEEE 802.15.4 and L3
ICN components, on which the cryptographic and forwarding costs are stacked.
For each reference use case, we gather d and ns from the literature, then com-
pute sn = log2(ns), and finally select a size of sl relevant to the geographic scale
of the use case (i.e., depending on the coordinate resolution).

From Figure 2.7, it clearly emerges that RX and TX operations are the pre-
dominant factors of energy consumption (even though they are actually under-
estimated as we do not account for MAC layer signalling nor idle listening [116]).

2.6. COST OF CONTROL TRAFFIC 41

Table 2.7 – Additional bytes sent in the reference ICN-WSN architecture

Beacons (per node) Interest packet (per packet & hop)
58 + sid + sl 2 + sl

The communication cost is two orders of magnitude higher than the cost of for-
warding (software), even for geographic forwarding with numerous neighbours,
and one order of magnitude higher than the cost of cryptography (hardware).
Notice that the cost of software forwarding lumps together energy expenditures
related to CPU (selecting the forwarding face) and memory (storing and up-
dating the neighbour table or the FIB), which are clearly negligible w.r.t. the
energy spent on cryptographic and network operations.
Hence, to summarize:

— the principal overhead in energy consumption when using GPSR is the
increased header size included in each Interest packet because of the GPSR
TLV,

— the complexity of the forwarding algorithm is clearly negligible and Equa-
tion (2.7) becomes:

Erelay(algo, s) ≈ Etx(s) + Erx(s) + 2EAES (2.10)

2.6 Cost of control traffic

An additional source of energy consumption is the background control in-
formation that is needed to discover routes to new names, new neighbours, and
to maintain the network connectivity in spite of changes such as node mobility.
That cost is intrinsically related to the geographic (Section 2.6.1) or flooding-
based (Section 2.6.2) forwarding algorithm employed. In this section, we thus
build a model to derive the energy consumption of the network forwarding
process (data and control plane). We complete this model with simulation to
estimate the spread of flooding for the F&L and MPR algorithms.

2.6.1 Geographic forwarding

For geographic forwarding, control information takes two forms: (i) the
beacons to transmit geographic information between neighbours, and (ii) the
additional GPSR TLV in the Interest packet to transmit per-packet forward-
ing state along the path. We now review the cost of both factors, which we
summarize in Table 2.7.

Beacons. Beacons are the most obvious source of control overhead in geo-
graphic forwarding. As described in section 2.3.2, they are local (i.e., not routed)
broadcast messages that do not propagate in the network and only reach the
nodes involved in the L2 broadcast.

Let us consider a node whose immediate neighbourhood has changed: this
node must broadcast its current position to its new neighbours, and receive the d
broadcast messages from its neighbours. Given sb the size of a beacon message,

42 CHAPTER 2. GEOGRAPHIC ROUTING

the energy Echange required for this update by each node is simply:

EGPSRchange = (sbntr,sE
b
tx + EAES) + d(sbntr,sE

b
rx + EAES) (2.11)

Headers. On top of the beacons, additional control information for GPSR is
embedded in every Interest packet through the TLV described in Section 2.3.3.
As shown in Figure 2.4, this TLV contains both a flag for the forwarding mode
(greedy or perimeter) and a set of coordinates. Thus, the size si,g of an Interest
packet for geographic forwarding is:

si,g = si + 2 + sl (2.12)

As we have seen in Figure 2.7, we expect the extra control fields in the
headers to have a sizeable impact on data traffic, lowering the efficiency of GPSR
with respect to name-based forwarding. We can now plug si,g in Equation (2.9)
and using Equation (2.10), we get:

EGPSRforwarding = T
(
4EAES + ntr,s(si,g + sc)(E

b
rx + Ebtx)

)
(2.13)

At the same time, we expect the benefits of GPSR to come primarily from
keeping the amount of FIB state bounded to the number of neighbours and
limiting the exchanges at a local level, unlike F&L-based strategies.

2.6.2 Flood and learn

In the case of name-based forwarding, despite similar forwarding operations,
the data-plane energy is lower due to the smaller Interest size (si < si,g):

EF&L
forwarding = T

(
4EAES + ntr,s(si + sc)(E

b
rx + Ebtx)

)
(2.14)

However, we need to the estimate the cost of learning routes to objects in an
F&L-based ICN-WSN deployment:

EF&L
change =

Ntr(T, d)

ntr,s
2EAES +Ntr(T, d)(Ebrx + Ebtx)si (2.15)

Therefore, we have to determine the number of network-wide transmissions re-
quired to update FIB information Ntr(T, d), for which we model the propagation
of a flooded packet over a wireless multi-hop network. Let us consider a uniform
random geographic graph G(N, d) where N is the number of nodes in G and d
the average node degree, and let focus on a messagem that must be flooded over
the WSN with a maximum Time-To-Live (TTL) of T . Denoting with Ntr(T, d)
the number of times m has been transmitted during its propagation, including
L2 retransmissions, we have:

E[Ntr(d)] =

T−1∑
t=0

E[nttr(d)] (2.16)

where nttr(d) is the number of times the message m is transmitted at the t-th
hop (i.e., for a TTL=T − t). Letting Vt be the set of nodes that relay message

2.6. COST OF CONTROL TRAFFIC 43

4 8 12
0

50

100

150

E
[c

ar
d(
V
t
)]

F&L

0 4 8 12

MPR

TTL = T − t

d = 4 d = 10 d = 14

Figure 2.8 – Average value of card(Vt)

2 4 6 8 10 12 14

TTL = T − t

1.0

1.5

2.0

2.5

E
[c

ar
d(
V

F
&
L

t
)]
/
E
[c

ar
d(
V

M
P
R

t
)]

d = 4

d = 10

d = 14

Figure 2.9 – Ratio between average
values of card(Vt) for naive F&L and
MPR

m at hop t, and recalling that ntr,s(m) is the number of transmission attempts
until a successful transmission, we have:

nttr(d) =
∑
i∈Vt

ntr,s(pc) (2.17)

and thus:
E[nttr(d)] = E[card(Vt)]E[ntr,s(pc)] (2.18)

To estimate the number of nodes card(Vt) transmitting the message at the
t-th hop, we simulate the packet propagation for both F&L and MPR. For
this purpose, we have developed multi-threaded programs that we have made
available to the community [133]. The tools generate random graphs with a
given density and number of nodes and use a custom version of breadth-first
search to compute card(Vt) in the case of naive F&L. In the case of MPR,
they compute the set of MPR-neighbours using the greedy algorithm described
in [137]. For any given density, we sample a population of 105 random graphs on
which we evaluate the number of transmissions for naive F&L and MPR from
a random source. We run the simulations on a Linux 4.7 server with an Intel
Xeon CPU clocked at 2.40GHz: for each density, the simulation takes about
9 hours, where the dominant 3 time is represented by the MPR strategy. As
simulation time is rather long, we also provide on our GitHub the results of our
simulation rounds as well as a Jupyter Notebook to explore them.

Figure 2.8 presents simulation results for the number of messages generated
by naive F&L (left) and MPR (right) as a function of T − t ∈ [0, 15] (x-axis)
and for different density values d ∈ [4, 15]. To quantify the advantages brought
by MPR, Figure 2.9 additionally reports the ratio of the messages generated by
F&L over MPR. Interestingly, regardless of the density, MPR roughly halves
the number of messages that need to be flooded at each step. To perform a
conservative assessment of the benefits of geographic forwarding, we thus only
consider MPR as a benchmark.

3. While Python is enough for F&L, we had to rewrite the tool in C for speed efficiency in
the case of MPR. Both tools are available in the GitHub page

44 CHAPTER 2. GEOGRAPHIC ROUTING

Finally, plugging in Equation (2.18) the card(Vt) measured in simulations, we
can accurately numerically estimate the forwarding cost of flood-based strategies:

E[Ntr(d)] =

T−1∑
t=0

E[card(Vt)]
1− pc(d)Mtr (Mtr + 1) + pc(d)Mtr+1Mtr

1− pc(d)
(2.19)

where the collision probability pc(d) for IEEE 802.15.4 is given in [144] as a
function of the average node degree (that is referred to as pnetcol in [144]).
Results for Equation (2.19) are reported in Figure 2.10.

2.7 Guidelines for ICN-WSN operation

Using these results, we can systematically compare MPR and geographic
forwarding for both energy (Section 2.7.1) and feasibility (Section 2.7.2) met-
rics. In particular, we apply the models derived in Section 2.5 and Section 2.6
to the four WSN reference deployments of Section 2.2, considering a network of
OpenMote devices. Readers or ICN-WSN operators interested in other network
characteristics are referred to our Jupyter Notebook 4, whose interactive inter-
face can be used to explore more scenarios. For convenience, we summarize the
main parameters in the evaluation in Table 2.6, as well as their default scalar
or functional values when relevant.

2.7.1 Energy cost

Having modelled the energy budget required to transmit Nm exchanges, we
can derive the number of Interest/Data exchanges for name-based forwarding
(NF&L

m) and geographic forwarding (NGPSR
m) that can be completed with the

energy available in one AA battery (EAA = 15 kJ [145]). For completeness, the
message budgets are reported in Equation (2.20) and Equation (2.21).

4. https://github.com/marceleng/geographic-icthings/blob/master/models/
geographic-icthings.ipynb

4 6 8 10 12 14
0

500

1000

1500

2000

E
[N

tr
(T

,d
)]

F&L

4 6 8 10 12 14

MPR

Node degree d

TTL=4 TTL=10 TTL=14

Figure 2.10 – Expected number of transmitted messages E[Ntr(T, d)]

https://github.com/marceleng/geographic-icthings/blob/master/models/geographic-icthings.ipynb
https://github.com/marceleng/geographic-icthings/blob/master/models/geographic-icthings.ipynb

2.7. GUIDELINES FOR ICN-WSN OPERATION 45

4 6 8 10 12 14

Average node degree d

100

200

300

400

500

600

700

N
um

be
r

of
no

de
s
n
s

A
B

C

D

GPSR more
efficient

MPR
more
efficient

1.0x 0.96

0.98

1.00

1.02

1.04

Figure 2.11 – Relative message budget NGPSRm

NMPRm
when fc = 60

N
MPR
m =

EAA −
(
Ntr(T,d)
ntr,s

2EAES + Ntr(T, d)si(E
b
rx + Ebtx)

)
(
Ntr(T,d)
ntr,s

2EAES + Ntr(T, d)si(E
b
rx + Ebtx)

)
/fc + T

(
4EAES + ntr,s(si + sc)(Ebrx + Ebtx)

)

(2.20)

N
GPSR
m =

EAA −
(
(sbntr,sE

b
tx + EAES) + d(sbntr,sE

b
rx + EAES)

)
(
(sbntr,sE

b
tx + EAES) + d(sbntr,sE

b
rx + EAES)

)
/fc + T

(
4EAES + ntr,s(si,g + sc)(Ebrx + Ebtx)

)
(2.21)

These equations provide a metric for measuring the efficiency of both proto-
cols: the number of possible Interest/Content exchanges (Nm) for a given bat-
tery capacity, depending on the density d, the average number of hops T and the
topology change ratio fc. Figure 2.11 shows the ratio between NGPSR

m /NMPR
m

(i.e., the relative message budget of GPSR vs MPR) depending on the network
size nnodes (y-axis) and the average node degree d (x-axis). In this figure, the
lighter the heatmap, the more efficient geographic forwarding is with respect to
MPR. Without loss of generality, we select T = 8 and fc = 60, which corres-
ponds to the case where, if an Interest/context exchange happens every minute,
then a route change happens every 1 hour.

Several conclusions can be drawn from Figure 2.11. First, let us note that the
ratio takes valuesNGPSR

m /NMPR
m ∈ [0.95, 1.05], i.e., the respective performances

of name-based and geographic forwarding are close for these (T ,fc) settings. The
inflexion point in the figure is caused by a change in the MPR regime: i.e., at
some point, the network becomes big enough so that the flooding stops because
of the TTL, rather than because everyone in the network already received the
packet. Also, note that in these settings, 3 (out of 4) reference deployments
(A, B, D) sit below the NGPSR

m = NMPR
m contour and would thus (slightly)

benefit from using MPR. Finally, it is easy to see that for an average node
degree higher than 7 and a deployment size larger than 100 nodes, geographic
forwarding performs (slightly) better than MPR.

46 CHAPTER 2. GEOGRAPHIC ROUTING

100 101 102 103 104

1M

2M

3M

4M

5M

6M

7M

8M
A
B
C

D

A
B
C
D

GPSR
MPR

Number of measurements between 2 route changes fcM
ea

su
re

m
en

t
bu

dg
et

on
on

e
A

A
ba

tt
er

y
N

m

Figure 2.12 – Expected message budget for GPSR and MPR for the reference
deployments as a function of network dynamism

We next turn our attention to dynamic cases where we vary the rate at
which the network changes (e.g., due to node churn, mobility, deployment of
new nodes, etc.). Specifically, fc represents the number of consecutive data
plane exchanges between two changes requiring control plane messages. We let
fc ∈ [1, 104], so that for fc = 1 there is a significant control plane overhead,
whereas for fc = 104 the network is mostly stable. We report the raw number
of Interest/Data messages on an AA battery as a function of fc for the four
reference deployments on Figure 2.12. Two main observations hold. First, for
networks with frequent changes geographic forwarding is up to twice as effi-
cient as MPR for all considered scenarios. Second, it can be seen that MPR
is slightly more efficient than geographic forwarding over relatively stable net-
works, although the difference is small enough not to have practical relevance.
Thus, GPSR seems a good candidate for dynamic scenarios, while both GPSR
and MPR can be used in stable topologies at approximately the same cost.

2.7.2 Memory and CPU complexity

Finally, we concisely summarize the CPU and memory footprint of geo-
graphic forwarding and F&L-based strategies in Figure 2.13. The contour plots
show the relative footprint of GPSR versus F&L ICN, while the heatmap illu-
minates areas where GPSR is advantageous on both criteria (white), only in
memory (grey) or in neither (black). The letters show the respective positions
of the use cases described in Table 2.1. The picture shows that GPSR has a
lower memory footprint when the number of FIB entries inflates, which is an
important factor on memory-constrained nodes in networks where numerous
names must be accessible. In particular, three of the use cases (A, B, and D) re-
quire less memory and CPU resources using GPSR rather than with name-based
forwarding. Furthermore, while CPU consumption is often favourable to F&L
ICN, GPSR is faster in sparse but large networks (e.g., nf > 40 and d < 5).

2.8. SUMMARY 47

0 4 8 12
100

101

102

103

N
um

be
r

of
F

IB
en

tr
ie

s

B
A

D

C

0.25x

0.5x

1x
2x 4x

CPU

4 8 12

Number of neighbours

B
A

D

C
0.25x

0.5x
1x

2x

4x

Memory

4 8 12

B
A

D

C

Combined

Figure 2.13 – Contours of the relative memory and CPU footprints of GPSR
and F&L ICN. The heatmap shows areas where GPSR outperforms F&L ICN
for both criteria (white), for memory utilisation (grey) or for neither (black)

Overall, there are no CPU/memory obstacles to implement geographic forward-
ing in ICN-WSN. Rather, GPSR can provide memory savings with respect to
name-based forwarding, an appealing advantage for constrained environments.

2.8 Summary
In this chapter, we introduce a generic ICN architecture for WSNs, able of

performing secure geographic forwarding. We use this framework to assess the
CPU/memory feasibility of geographic forwarding as well as to derive energy
models for geographic and name-based forwarding that encompass all network-
related activities of a WSN. We implement GPSR in a RIOT-based ICN stack
and contrast it to naive flooding, as well as to an improved flooding technique
using Multi-Point Relay (MPR).

In summary, we find that GPSR-based forwarding is feasible in ICN-WSN.
Specifically, GPSR memory requirements are lower than that of flood-based
strategies. Additionally, while algorithmic complexity increases when using
GPSR over flooding-based strategies, the required CPU resources are a neg-
ligible component of the overall energy cost. Indeed, the cost of security (in-
cluding cryptographic operations and network overhead) is at least one order of
magnitude higher than the computation cost of the forwarding algorithm, which
can, therefore, be neglected.

In terms of energy consumption, two opposite forces are in play: the in-
creased header size in the case of GPSR translates into higher energy cost per
unit packet while GPSR keeps beaconing local, lowering the cost of network-wide
updates. As such, while there is a clear incentive in using GPSR for dynamic
networks requiring frequent updates, the performance gap in the case of net-
works with stable topologies and infrequent changes is slightly favourable to

48 CHAPTER 2. GEOGRAPHIC ROUTING

flood-based strategies. At the same time, that gap remains small and it should
not be a limiting factor for the use of GPSR in ICN-enabled WSNs.

Chapter 3

Enforcing latency-control in
the Fog via popularity-aware
admission control

While sensor networks are not only useful for generating data but can imple-
ment primary levels of environment automation, many IoT applications require
consequent computing or storage resources and thus cannot be implemented on
low-power nodes such as the ones described in Chapter 2. Complementary to the
study of routing in WSNs is thus the study of routing and forwarding data ex-
tracted from the WSNs towards the corresponding applications. In that regard,
as discussed in Section 1.1.2, two complementary platforms have emerged: the
Cloud, located in a large data centre designed for scale, and the Fog, located at
the edge of the network for latency-constrained applications. In this chapter, we
consider the problem of controlling admission to a Fog platform (and offloading
the refused traffic to the Cloud) so as to guarantee an average response time. In
particular, exploiting the request-awareness provided by ICN, we look at how
network-level popularity estimation can be used to realize line-rate, low-latency,
efficient admission control for a Fog deployment.

3.1 Admission control for QoS in Fog deployments

The emergence of low-latency applications in the IoT has created a need for
computing and storage platforms located geographically and topologically close
to the access. Introduced as an extension of the Cloud at the network edge for
computing and storage purposes [17], the Fog is a highly virtualized, potentially
distributed, computing and storage platform placed at the edge of the network
and capable of processing IoT data under low latency. Since its definition,
there has been a growing interest in the research community for Fog computing,
encompassing areas such as workload placement [146], caching [48, 71], or ap-
plication profiling [147]. Accelerated by the advent of 5G, the Fog is expected to
play a key role for IoT applications in cases where latency requirements and/or
security reasons preclude the use of a Cloud-only approach.

Fog platforms are not intended as a replacement for Cloud processing, rather

49

50 CHAPTER 3. FOG ADMISSION CONTROL

as a complementary computing and storage platform to use if and whenever be-
neficial. For instance, with frameworks such as AWS Greengrass [148], IoT pro-
viders can use their own devices (e.g., an IoT gateway or a local compute node)
to perform some stateless pre-processing of data on its path to the Cloud. In
addition, the Fog does not enjoy the same elasticity as the Cloud. Indeed, while
Cloud data centers inherently scale thanks to their size and their high number of
tenants, Fog nodes have strong physical limits that cannot be infringed. Thus,
sudden bursts of requests, e.g., flash crowds, can greatly increase application
response time and raise scalability issues for Fog deployments. In such cases,
the natural solution is to redirect part of the Fog load to the Cloud [149, 150].
However, if done incorrectly, that could actually worsen the response latency.
Furthermore, renting compute and storage power in the Cloud is expensive, as
opposed to user-owned Fog devices. In this chapter, we thus investigate the fol-
lowing question: how to minimize Cloud costs while offering statistical latency
guarantees in case of sudden bursts of requests in a Fog network?

As described in Section 1.1.3, IoT applications can roughly be categorized
in three QoS categories: (i) latency-critical, where processed data must be re-
ceived within 1-10 ms, (ii) latency-sensitive, where the expected response time
is of the order of 100 ms [34], and (iii) latency-tolerant, that have no specific
delay constraint. Whereas latency-critical applications cannot run in the Cloud
(but rather in the device or at Fog level), latency-tolerant applications would
naturally be deployed there. Thus, Cloud redirection is most relevant for applic-
ations of the latency-sensitive class, where the computing bottleneck in the Fog
may force to offload part of request processing to the Cloud. At the same time,
the use of faraway Cloud resources not only increases the cost for the operator
but may also increase the service latency. There is thus a need for clever Fog
admission control (AC) to keep response time bounded.

In this chapter, an approach for Fog admission control is presented that
relies on using request popularity to optimize the usage of the Fog platform,
and in particular of the caching capacities of the Fog. Specifically, two AC
strategies are introduced: the LFU-AC, which exploits perfect knowledge of the
request popularity distribution and the LRU-AC, which is based on statistically
estimating the most popular requests by using a cache on request identifiers with
the Least-Recently-Used (LRU) policy. Using an analytical model, the LFU-
AC is shown to provide sizeable benefits over optimized request-agnostic AC
strategies. The LRU-AC performance is also shown to be close to the LFU-AC
bound.

A system implementation of the LRU-AC strategy on programmable hard-
ware is then proposed, thus allowing for a line-rate, low-latency deployment that
does not require provisioning extra computing resources. As implementing an
LRU cache in hardware is inconvenient due to the necessity of using linked-list
structures [151], an implementation of the LRU-AC using Ageing Bloom Filters
(ABF) [152] in NetFPGA [153] is proposed. An analytical model of the expec-
ted hit-rate of the ABF is built to guarantee its behaviour w.r.t. the LRU-AC.
The use of an ABF is shown to reduce memory footprint by up to 4, making
the implementation fit within memory sizes available in programmable hardware
devices. The implementation relies on hICN [154], an ICN protocol that uses the
semantic of IP/TCP for backward compatibility. Using the P4 framework [155],
request semantic is then efficiently accessible in hardware at the network layer
thanks to hICN’s name-based forwarding with fixed-sized names, while relieving

3.2. PROBLEM DESCRIPTION 51

the AC from maintaining per-flow state thanks to a connection-less approach.
The implementation is shown to support a throughput of 16.7 Mpps (exceeding
10 GbE line-rate) with a packet processing latency of 3 µs. Algorithmic per-
formance of the ABF is evaluated and shown to produce QoS results that are
consistent with the LRU-AC model.

This chapter has been the object of two publications. [100] introduces the
LRU- and LFU-AC strategies and provides a preliminary evaluation based on
the queueing model. [97] describes the system implementations of the LRU-AC
using ABFs. Note that, while orthogonal to this work (and thus not reported
in this thesis), [99] also exploits the LRU-AC strategy to optimize cache hit in
the context of video delivery networks.

The remainder of this chapter is organized as follows: Section 3.2 states
the Fog-AC problem in a principled way; Section 3.3 introduces the analytical
model used to derive the performance of AC strategies; relevant popularity-
based strategies are presented and partially evaluated in Section 3.4; in Sec-
tion 3.5, the use of ABF to realize the LRU-AC, selected because it is both
practical and effective, is proposed and justified; the LRU-AC hardware imple-
mentation is then introduced in Section 3.6 and evaluated in Section 3.7.

3.2 Problem description

3.2.1 Reference Fog architecture

The reference IoT architecture assumed in this chapter is a simplification of
the larger picture depicted in Section 1.1.2 and consists of three main compon-
ents: (i) IoT networks, where sensors, actuators, and users are connected; (ii)
an access network which connects these IoT networks together and with the In-
ternet; and (iii) a Cloud platform, used for compute and storage. On top of this
Cloud platform, a Fog deployment is available in the access network. Both the
Fog and the Cloud are equipped with LRU caches. Without loss of generality,
we adopt a per-application view and consider a single Fog node with comput-
ing and storage capabilities that receives homogeneous requests from a single
stateless application (e.g., lambda function). The Fog, either owned by the ap-
plication developer or rented to its Internet Service Provider (ISP), is deployed
for latency-critical applications. However, as Fog platforms are not elastic, the
application developer wants to use the residual computing and memory capacit-
ies to perform latency-sensitive tasks. That residual capacity is considered to be
constant, hence the Fog node cannot handle a high arrival rate for a prolonged
period. It redirects part of its load to a Cloud platform, where the operator rents
computing and storage resources, while still respecting the latency agreement.

An admission control module is in charge of forwarding incoming requests
from the IoT networks to either Fog (accept) or Cloud (refuse). That architec-
ture is summarized in Figure 3.1. We consider Fog applications working in the
following way: (i) the application retrieves raw data from one or several sensor
nodes (e.g., an image or a temperature from several sensors); (ii) it performs
some computation to transform the raw data into processed data (e.g., JSON
file indicating detected shapes, or the average of the measured temperatures);
(iii) the processed data is retrieved by users or actuators which use it to take de-
cisions. As security is paramount for Fog applications [17], both processed and

52 CHAPTER 3. FOG ADMISSION CONTROL

User Sensor

Cache Compute

Cache Compute

Cloud

Transit

Fog

upstream

1

2

3

4

5
1

2

3

Admission-
Control

Fog – Cache hit
Fog – Cache miss

Storage DB

Access

Figure 3.1 – Reference IoT, Fog and Cloud architecture

raw data are encrypted during network transmissions, commonly with (D)TLS.
In particular, we consider a pull-based model driven by client requests, of which
we illustrate two of the possible paths in Figure 3.1. The user application starts
by issuing requests (step 1), which reach the admission control module. For
the sake of illustration, only cases where requests are accepted in the Fog are
shown. In the Fog node, the request is matched against a cache (step 2) for the
availability of processed data. In case of a cache hit (red dots · · ·), the processed
data is sent back directly to the user. In case of a cache miss (green dashes),
the raw data must be retrieved from the sensor (step 3), before the computation
can take place (step 4) and the processed data can then be served back to the
user (step 5).

3.2.2 Fog vs Cloud admission control
To devise such strategies where the application runs both in the Cloud and in

the Fog, costs for the Fog operator must be considered. In the Cloud, resources
are elastic and the capacity can be increased as the incoming load grows [156].
Furthermore, the Cloud is assumed to always store the raw data for orthogonal
archiving and monitoring purposes; the cost of raw data archival is thus not
considered. This comes on top of the cache for processed data, whose size is
defined by the amount of storage rented in the Cloud. Moving data to/from
the Cloud through the transit network also has a cost. On the other hand,
application deployment in the Fog comes at no cost for the Fog operator (since
it owns the infrastructure). As Fog nodes have limited storage resources, the Fog

3.3. AN ANALYTICAL MODEL 53

cache is only used for processed data. The Fog node also has a finite amount
of computing resources, which must be equally shared between all incoming
requests. Thus, in case of a high load, the Fog node might have a high completion
time or even start dropping requests, which may violate the agreement set up
with the Fog application developer.

The need for a proper offloading function φ between the Fog and Cloud
resources thus becomes clear: such a function should minimize the cost Π(φ)
of renting Cloud resources while respecting the agreed upon latency constraint,
which we outline below (and formalize in Section 3.3):{

min. Π(φ)

s.t. E[T (φ)] ≤ ∆
(3.1)

where T is the stochastic variable describing the system completion time. In
particular, Π is a cost per second, in accordance with the pay-as-you-use model
for Cloud pricing. We use a statistical latency constraint, which guarantees
that the average request completion time is under ∆. The advantage of such
formulation is clear considering that it enables us to express the constraint in
closed form in a queueing model, which simplifies tractability.

3.3 An analytical model

To understand the performance of a given admission control function, a
queueing model that describes the systemic behaviour of the IoT architecture is
introduced. The variables necessary for the model are summarized in Table 3.1.

3.3.1 Application model and request distribution

Let us consider a single application running on a sliced Fog deployment.
This application is described by its latency constraint ∆, its raw data size sr,
its processed data size sp, and its amount of service work X. In particular, we
assume that sr and sp are constant, while X is a stochastic variable following
an exponential distribution.

Let now R be the total number of possible requests, and {r1, . . . , rR} these
requests. Following previous work, we consider that the request popularity dis-
tribution q follows a Zipf distribution [48,157–159], i.e., for a request r arriving
in the system, q(k) = P[r = rk] = γk−α where α > 0 is the skew parameter and
γ a normalization factor. In particular, requests arrivals are user-driven and are
thus well modelled by a Poisson process of parameter λ. The arrival processes
for each request rk are assumed to be independent and thus follow a Poisson
process of parameter λk = q(k)λ. The use of an independent requests model
(IRM) is known to under-estimate of the cache benefits [160,161], so we expect
our results to be conservative.

3.3.2 Queueing model

Whenever relevant, we follow seminal work [149,162–164] to select the most
appropriate queue to describe each resource. Particularly, an M/M/1-PS queue
is selected for the Fog compute [149,162]: processor-sharing policy models that

54 CHAPTER 3. FOG ADMISSION CONTROL

Table 3.1 – Variables used in the model

Application specific unit
Number of possible requests R -
Cumulated arrival rate λ req/s
Amount of service work X CPU cycles
Raw data size sr B
Processed data size sp B
Application latency constraint ∆ s
Request popularity distribution q(r) -

Optimization variables
Load-balancing function φ(r) -
Cloud cache size sc Objects
Total request serving time T (φ, sc) s
Cost function Π(φ, sc) $/s

Fog characteristics
Fog compute capacity pf Hz
Fog cache size sf Objects
Access network capacity κa B/s
Access network propagation time τa s
TLS establishment delay τf s

Cloud characteristics
Cloud compute capacity pc Hz
DB query delay τd s
Transit network capacity κt B/s
Transit network propagation time τt s
TLS establishment delay τc s

Cloud pricing
Compute price cc $/s
Network price cn $/s
Storage price cs $/B

Miscellaneous
Cache hit probability hf

c
(r, sf

c
) -

3.3. AN ANALYTICAL MODEL 55

Cloud

Compute
M/M/∞

Compute
M/M/1

PS

Fog

𝜆

𝜆f 𝜆f

𝜆f,nh

𝜆f,m

𝜆c 𝜆c

𝜆c,m 𝜆c,m

𝜆c1-Φ
Φ

hc
1-hc

hf

1-hf

𝜆

𝜆f,m

Access ↓
M/M/1-PS

Access ↑
M/M/1-PS

Transit ↓
M/M/1-PS

Cache
TLS

M/D/∞

TLS
M/D/∞

DB
M/D/∞

TLS
M/D/∞

AC

Cache

Figure 3.2 – Queueing network

the Fog has a fixed amount of resources that must be shared between all the
incoming requests. On the other hand, as the Cloud compute is elastic, it is best
represented by an M/M/∞ queue 1, and we represent Cloud-database access as
a constant-time M/D/∞ queue. For network resources, the M/M/1-PS model is
used as common in the literature [149,163,164]. As admission control decisions
and cache lookup should be done at line-rate (see Section 3.6), their impact
is considered minimal w.r.t. other queues; and since they do not impact the
comparison between Cloud and Fog service time anyway, they are neglected
in what follows. Finally, the TLS endpoints are modelled as M/D/∞ queues,
neglecting the computation time of the TLS handshake. Assuming that TLS
is running in version 1.3, only 1 round-trip is necessary to establish the TLS
connection, i.e.:

τf = 2τa

τc = 2(τa + τt).

The resulting queueing system is depicted in Figure 3.2. One can note that the
request transmission time is uniquely taken into account in the TLS queue: since
IoT requests have negligible size, their transmission time is indeed dominated
by their propagation time.

The AC strategy can be expressed as φ:{1, . . . , R}→[0, 1], a function that to
each request associates a probability of being accepted in the Fog. In particu-
lar, given a popularity distribution q and an admission control strategy φ, the
popularity distribution of requests arriving in the Fog is qf (r) = γfφ(r)q(r),
where γf is a normalization factor. For computing the hit probability in the
Fog cache, the seminal approximation proposed by Che et al. [165] is used:

hf (r) ≈ 1− e−qf (r)ts (3.2)

where ts is the unique root of
∑R
r=1(1− e−qf (r)t) = sf . A similar model applies

1. The underlying assumption is that of a perfect autoscaling policy.

56 CHAPTER 3. FOG ADMISSION CONTROL

Table 3.2 – Arrival rate per queue in network

A
C AC module

λ
Access down.

Fo
g

TLS - Fog
λf =

∑
r∈R φ(r)λq(r)

Cache - Fog
Access up.

λf,m =
∑
r∈R φ(r)(1− hf (r))λq(r)

Compute - Fog

C
lo
ud

TLS - Cloud
λc =

∑
r∈R(1− φ(r))λq(r)Cache - Cloud

Transit down.
DB

λc,m =
∑
r∈R(1− φ(r))(1− hc(r))λq(r)Compute - Cloud

for the Cloud cache, replacing the probability function φ by its complement
1− φ.

3.3.3 Computing the statistical latency

First, let us point out that since processor-sharing queues are quasi-reversible
processes, the exit distribution of an M/G/1-PS queue is a Poisson process
(Theorem 3.6 of [166]). This is also true for the M/G/∞ queue [167], justifying
that all the queues have a Markovian input. The expected sojourn time in each
of the queues is then easy to compute. In particular, the expected service time
for requests with an amount of service work X and Poisson arrival rate λ in an
M/G/1-PS of capacity C is given by:

E[T] =
1

(µ− λ)
where µ =

C

E[X]
(3.3)

The arrival rate at each queue can be derived from the offloading strategy φ and
the cache hit probabilities hf and hc at the Fog and Cloud caches respectively,
obtained using Equation (3.2). Per-queue arrival-rates are reported in Table 3.2.

We can thus get the equation for the expected queueing delay as:

E[T] =
∑
r

q(r)
[
φ(r)E[Tf (r)] + (1− φ(r))E[Tc(r)] +E[Ta,d]

]
(3.4)

where the expected latency for the service time in the Fog Tf (r) is:

E[Tf] = τf + (1− hf) (τf + E[Ta,u] + E[Tcomp,f]) ,

the expected latency for the service time in the Cloud Tc(r) is:

E[Tc] = τc + (1− hc)
(
τd +

E[X]

pc

)
+ E[Ttransit,d],

and where Ta,u, Ta,d, Tcomp,f , Ttransit,d respectively represent the time spent in
the access upstream, in the access downstream, in the compute in the Fog, and
in the transit downstream, and whose expected values can be computed with
Equation (3.3), Table 3.1 and Table 3.2.

3.4. POPULARITY-BASED FOG ADMISSION 57

3.3.4 Computing the cost function
The cost per second consists of a network, a computing, and a storage term.

The computing power rented in the Cloud is assumed to be synchronized with
the incoming load (i.e., the Cloud spawns a container process at each new re-
quest). The cost of running the Cloud increases proportionally to the requested
load: p(c, s, n) = ccc+ css+ cnn, where c (resp. s) is the amount of computing
(resp. storage) resources rented on the Cloud, and ν is the egress Cloud traffic
in bytes per second.

Compute cost

Since the resource consumption in the Cloud is assumed to be elastic, if
Qc(t) is the number of customers in the Cloud compute M/M/∞ queue, the
instantaneous number of instantiated Cloud computing instances is: c(φ, sc)t =
Qc(t). According to [167], the expected value for c(φ, sc) is thus:

E[c(φ, sc)] =
λc,m(φ, sc)

pc/E[X]

Storage cost

The storage cost depends on the cache size in the Cloud: s(φ, sc) = scsp.

Network cost

For each incoming request, sp is transferred downstream as a reply. Given
the Cloud arrival rate λc, the average number of bytes per second on the Cloud
downstream link is:

E[ν(φ, sc)] = λc(φ)sp

Thus, the total cost function reads:

Π(φ, sc) =
ccλc,m(φ, sc)

pc/E[X]
+ csscsp + cnλc(φ)sp (3.5)

3.3.5 An example application - Numerical parameters
All upcoming numerical evaluations use the characteristics described in Table 3.3.

In particular, we select an application with a medium computing difficulty
(10 ms on a 1 GHz processor) and medium processed data size. For the Fog
deployment, the application is assigned a slice of a computing platform amount-
ing to a 3 GHz CPU and 1 GB of cache. Finally, to make the evaluation more
realistic, the public pricing of the Google Compute infrastructure as of October
2017 is used, the delay target is set to ∆=100 ms.

3.4 Popularity-based Fog admission

3.4.1 Optimizing Fog resources
Request processing in the Fog-Cloud system can be decomposed in three

modes: requests served (i) from the Fog cache, (ii) from the Fog compute, and

58 CHAPTER 3. FOG ADMISSION CONTROL

Table 3.3 – An example application

Deployment Application
pf 3 GHz R 107

sf 105 (1 GB) λ 10 kHz
κa 10 Gbit/s E[X] 107 CPU cycles
τa 2 ms sr 1 MB
pc 2 GHz sp 10 kB
τd 1 ms α 1
κt 1 Gbit/s ∆ 100 ms
τt 20 ms

Cloud pricing
cn $0.08 per GB
cs $0.004446 per GB and hour
cc $0.033174 per vCPU and hour

(iii) from the Cloud (disregarding the Cloud cache vs the Cloud compute trade-
off). An effective AC strategy should then maximize the proportion of traffic
handled by the Fog. Since the Fog compute has a fixed capacity, increasing the
amount of traffic handled by the Fog can only be done by increasing the cache
hit-rate. The AC policy should then aim at maximizing the global Fog cache
hit-rate (as defined by h̃f =

∑
r φ(r)hr(r, φ)) while keeping the Fog-Compute

arrival rate λf,m bounded.
To this end, an effective approach is to admit only popular content in the Fog.

Indeed, this method increases the hit-rate of the cache policy effectiveness by
artificially reinforcing the skewness towards the most popular pieces of content
in the cache input distribution. The admission control must then be able to
(i) identify the content targeted by each request and (ii) extract popularity
patterns. Content identification (i) is an architectural problem, which we discuss
in Section 3.6.1. To illustrate the limit of solutions without content awareness, a
“blind ” admission control is introduced in Section 3.4.2. Extracting popularity
patterns (ii) is a similar problem to caching policies: detecting the most popular
pieces of content. Thus, using a virtual cache (caching only identifiers rather
than content) that follows traditional admission and eviction policies is a natural
solution. In this case, a hit in the virtual cache identifies popular requests which
should be handled in the Fog, while a miss hints that the request is not popular
and should be offloaded to the Cloud. This solution is similar to multi-layered
caching systems such as the 2Q-LRU [168], differing mainly in that the first layer
(the identifier cache) is completely independent from the actual cache. Indeed,
in 2Q the virtual layer only governs cache insertion (but not cache retrieval),
whereas the Fog-AC might refuse requests even though the corresponding answer
is available in the Fog cache. In particular, the LFU (Section 3.4.3) and LRU
(Section 3.4.4) policies are investigated.

3.4.2 Blind admission control

As a baseline, a request-oblivious admission control strategy, called Blind-
AC, is introduced. It blindly load-balances all traffic with i.i.d. probability:

3.4. POPULARITY-BASED FOG ADMISSION 59

0.000 0.025 0.050 0.075
Blind probability φB

0.00

0.05

0.10

0.15

C
on

st
ra

in
t

(s
)

0

10

20

30
E[T]

(a) Blind-AC vs φ, sc = 3.1 · 106

101 103 105

Filter size kLFU

0.00

0.05

0.10

0.15

0

10

20

30

C
os

t
($

/h
)

Compute Network

(b) LFU-AC vs φ, sc = 3.0 · 106

101 103 105 107

Cache size scache,c

0.090

0.095

0.100

0.105

C
on

st
ra

in
t

(s
)

0.0

0.4

0.8

1.2

E[T]

(c) Blind-AC vs sc, φ = 0.084

101 103 105 107

Cache size scache,c

0.090

0.095

0.100

0.105

0.0

0.4

0.8

1.2

Compute Memory

(d) LFU-AC vs sc, kLFU = 1.4 · 105

Figure 3.3 – Constraint value (left) and cost (right) of the system vs φ and sc
for the Blind- and LFU-AC at fixed cache size

φ(r) = φB ,∀r. In particular, Equation (3.1) can be rewritten as:{
min. Π(~φB , sc)

s.t. E[T (~φB , sc)] ≤ ∆

with ~φB = (φB , . . . , φB). In this particular case, since (φB , sc) ∈ [0, 1][0, R], the
problem is easy to optimally solve numerically.

We next evaluate the respective importance of the two optimization variables
using the parameters reported in Table 3.3 for numerical evaluation. In partic-
ular, the variation of the costs and constraint functions depending on either φB
or sc are represented in respectively Figure 3.3a and Figure 3.3c.

Figure 3.3a shows the variation of the constraint function (+, left side) and
of the compute (•, right side) and network (, right side) costs for a fixed cache
size sc = 3.1 ·106. The storage cost is ignored as it is constant (since sc is fixed).
The first takeaway is that, as expected from the costs in Table 3.3, the network
cost is dominant w.r.t. the compute and memory cost. We also notice that the
constraint function diverges towards +∞ when φB grows close to 0.085, as the
Fog compute queue becomes unstable and cannot handle the request rate.

In Figure 3.3c, we next vary the cache size sc for a fixed load-balancing
probability φB = 0.084 (the sweet spot in Figure 3.3a). We show the value of the
constraint function (+, left side), and the compute (•, right side) and memory
(H, right side) costs. The network cost is now ignored since it is constant when
φ is constant. First, we note that varying the cache size has a limited impact on

60 CHAPTER 3. FOG ADMISSION CONTROL

both the cost and the constraint function. Furthermore, in this case, given that
the compute is almost one order of magnitude more expensive than the memory
and the Cloud popularity distribution is sufficiently skewed, it is interesting to
cache highly popular requests.

3.4.3 LFU-AC strategy
Let us first consider a perfect LFU virtual cache, which deterministically

identifies the kLFU most popular requests for processing in the Fog. In partic-
ular, the admission control function φ can be expressed as:

φ(r) = δr≤kLFU :=

{
1 if r ≤ kLFU
0 otherwise.

Equation (3.1) then becomes:{
min. Π(~δkLFU , sc)

s.t. E[T (~δkLFU , sc)] ≤ ∆

with ~δkLFU = (δ1≤kLFU , . . . , δR≤kLFU). Again, this problem is two-dimensional
and can easily be solved numerically.

Figure 3.3b (resp. Figure 3.3d) shows the evolution of the cost and constraint
functions while setting sc = 3.0 · 106 (resp. kLFU = 1.4 · 105) for the setup in
Table 3.3. At a first glance, Figure 3.3b indicates that a proper choice of kLFU
allows decreasing the network cost at levels unreachable with the Blind-AC while
respecting the constraint. Furthermore, as in Section 3.4.2, the dominant factor
in terms of cost is the number of offloaded requests. Both of these insights point
towards LFU as a good strategy for Fog/Cloud admission control. Additionally,
Figure 3.3d shows that for small values of sc, the compute cost stays constant.
This is due to the popularity distribution at the Cloud cache, which only con-
tains the long tail of the Zipf distribution. Thus, for small cache sizes, the hit
probability is low and the cache almost useless.

3.4.4 The LRU-AC strategy
While the LFU-AC is efficient, it is an ideal policy, difficult to realize in

practice if the popularity distribution is not known in advance (as deriving
the exact popularity distribution is difficult and slow 2). To derive a practical
admission control policy, we argue that the admission control does not need to
learn the popularity of each specific request. It only needs to flag whether a
request is popular, acting as a low-pass filter. In a second step, the LRU policy is
thus considered for the admission control virtual-cache. The functioning of the
corresponding admission control module, called the LRU-AC, is summarized in
Figure 3.4. Compared to the aforementioned counter solution for the LFU-AC,
the LRU-AC has four main advantages: (i) it does not require prior knowledge of
the application; (ii) it keeps memory constrained to the size of the filter, instead
of the size of the catalogue; (iii) it is flexible w.r.t. changes in the popularity

2. This requires either offline analysis of the popularity distribution, or to keep counters
of incoming requests. Both solutions are not flexible to popularity changes and are difficult
to implement efficiently.

3.4. POPULARITY-BASED FOG ADMISSION 61

Is the
identifier

in the
filter?

Move that
entry to the
top of the

filter

Accept in Fog

Insert an
entry at the
top of the

filter
Remove the

bottom entry
in the filter

Forward
request to

Cloud

yes

no Is the
filter
full?

yes

no

Figure 3.4 – Functionning of the LRU-AC

distribution; (iv) it requires minimal effort for integration in ICN forwarders as
the LRU structure is already used for caches.

To incorporate LRU-AC in the model, we must compute the load-balancing
function φ depending on the filter size kLRU . Since the admission control be-
haves like an LRU cache, φ(r) = hkLRU (r) where hkLRU (r) is the hit probability
for the request r in an LRU cache of size kLRU with input distribution q, which
can be derived straightforwardly from Equation (3.2). Integrating this in Equa-
tion (3.1) yields a constraint and a cost function that depends only on kLRU
and sc: {

min. Π(~hkLRU , sc)

s.t. E[T (~hkLRU , sc)] ≤ ∆

with ~hkLRU = (hkLRU (1), . . . , hkLRU (R)). However, the interaction between the
LRU meta-cache and Fog LRU cache introduces some correlation effects, as
shown by Garetto et al., for the LRU-2Q cache [169]. Following their example,
a discrete time Markov chain is used to model the interdependence between hits
in the filter and hits in the Fog cache. Details of the derivation are provided in
Appendix A.1. Compared to the LFU-AC, realizing and optimizing the LRU-
AC only requires knowing the popularity skewing factor α and the arrival rate
λ instead of the actual per-content popularity distribution.

3.4.5 Preliminary evaluation of the admission control strategies

In this section, a first evaluation of the admission control strategies based
on the model introduced in Section 3.3 provided. In particular, the Method-of-
moving-asymptotes [170] (in its NLopt implementation [171]) is used to solve
the optimization problem (Equation (3.1)). A Jupyter notebook is available for
reproducing the results of this section or to experiment with different paramet-
ers [172].

In a first step, we show in Table 3.4 the optimized values for our example
application. We first note that using the LRU and LFU-AC allows the Fog to
handle more than twice as many requests as with the Blind-AC. This results

62 CHAPTER 3. FOG ADMISSION CONTROL

Table 3.4 – Optimal costs and parameters per AC

Method E[φ] sc Π
Blind 0.084 3.1 · 106 27 $/h
LFU 0.75 (kLFU = 1.4 · 105) 3.0 · 106 7.6 $/h
LRU 0.71 (kLRU = 2.8 · 105) 2.9 · 106 8.6 $/h

100 101 102 103 104 105 106

Fog cache size sf (nb of objects)

5

10

15

20

25

O
pt

im
al

co
st

($
/h

)

Blind-AC

LFU-AC

LRU-AC

1e–5% 1e–4% 1e–3% 0.01% 0.1% 1% 10%

Figure 3.5 – Cost vs size of Fog cache for Blind-, LFU- and LRU-AC

in a decrease in offload cost of more than 70%. Furthermore, it shows that the
LRU-AC has similar performances to the LFU-AC, with a 3% relative difference
in offload cost w.r.t. the Blind-AC.

In Figure 3.5, the influence of the Fog cache size sf on the optimal Cloud
cost for the Blind-, LFU-, and LRU-AC strategies is shown. In particular, this
figure shows that both the LFU- and LRU-AC strategies are much better at
exploiting an increasing cache size that the Blind-AC. Indeed, for the Blind-
AC, increasing the Fog cache size only slightly decreases the optimal cost. On
the other hand, both the LFU- and the LRU-AC provide an exponential decrease
of the cost as the cache size increases, showing the effectiveness of popularity-
based admission control. Furthermore, this graph confirms that the LRU-AC is
an extremely good approximation of the ideal LFU-AC, and regardless of the
Fog cache size.

Figure 3.6 then investigates the influence of the popularity distribution skew
(represented by the Zipf parameter α). For small α values, the popularity distri-
bution converges towards a uniform distribution, thus diminishing the impact of
popularity-based ACs. However, for typical values of α found in the literature
(α ∈ [0.5, 1.1]), the LFU- and LRU-AC strategies allow for a largely reduced
optimal cost for both Fog cache sizes that we tested. Furthermore, the LFU-
and LRU-AC strategies with sf = 104 are much more efficient than the Blind-
AC strategy with sf = 105. This indicates that the strategies also allow for
more efficient provisioning of Fog resources. Once again, the performance of the
LRU-AC is close to the LFU-AC, varying by at most 6%.

Finally, the impact of the arrival rate on the efficiency of the strategies is
shown in Figure 3.7. Interestingly enough, the optimal cost increases linearly
w.r.t. the arrival rate for all three cases, with slopes at 2.9·10−3 $/Hz for the
Blind-AC, 8.2·10−4 $/Hz for the LFU-AC, and 1.0·10−3 $/Hz for the LRU-
AC. This confirms that the LFU- and LRU-AC strategies cope better with
increased loads (e.g., flash crowds) than the Blind-AC. This is typically due
to the improved hit rate at the Fog cache, which absorbs a large part of the

3.5. AGEING BLOOM-FILTERS FOR AN HARDWARE-ACCELERATED LRU-AC63

0.4 0.6 0.8 1.0 1.2 1.4
Popularity parameter α

0

10

20

30

O
pt

im
al

co
st

($
/h

)
Blind-AC
LFU-AC
LRU-ACsf = 105

sf = 104

Figure 3.6 – Cost vs Zipf parameter α for the Blind-, LFU- and LRU-AC

2000 4000 6000 8000 10000 12000
Arrival rate λ (req/s)

0

10

20

30

O
pt

im
al

co
st

($
/h

)

Blind-AC

LFU-AC

LRU-AC

Figure 3.7 – Cost vs arrival rate λ for Blind-, LFU-, and LRU-AC

increased arrival rate. Particularly, if the cost of the Blind-AC diverges with
respect to the LFU-AC and the LRU-AC for an increasing arrival rate, their
ratio stays however constant. The ratio between the absolute costs for the
LFU-AC (LRU-AC) over the Blind-AC is of 3.5 (2.9) 3. Thus, when the arrival
request rate increases, the relative gain of using the LFU-AC (LRU-AC) over
the Blind-AC also increases, which shows the LRU- and LRU-AC to be quite
robust to high arrival rates.

This preliminary evaluation shows that the LRU-AC combines tractability,
flexibility, and effectiveness. It is thus selected as the default admission policy
for the remainder of this chapter.

3.5 Ageing Bloom-Filters for an hardware-accelerated
LRU-AC

As the admission control strategies were designed to provide predictable
completion time under high-load, their implementation should benefit from the
same virtues. Thus, implementing the LRU-AC in hardware seems particularly
profitable. However, the LRU-AC raises many realization challenges, particu-
larly on hardware-accelerated platforms. The first and obvious one is memory
usage. As shown in Section 3.5.4, the total memory footprint of the LRU-AC
can overtake the high-speed BRAM (Block RAM [173]) available in the hard-
ware – notwithstanding the BRAM that needs to be allocated for e.g., packet
queues. Furthermore, the access time to an LRU element is not constant (as
a hash map provides only amortized constant time for read operations), which

3. The relative cost gain of the LFU-AC (LRU-AC) over the Blind-AC (ΠBlind−AC −
ΠLRU−AC)/ΠBlind−AC is deceptive here as it asymptotically grows to 100%

64 CHAPTER 3. FOG ADMISSION CONTROL

renders it undesirable for hardware implementation [151]. Thus, in this sec-
tion, we explore Ageing Bloom Filters (ABF) as an alternative data-structure
to implement the LRU-AC. After a brief description of the ABF behavior (Sec-
tion 3.5.1), a predictive model similar to Che’s approximation (Equation (3.2))
for the hit-rate of the ABF is presented (Section 3.5.2). The model is verified
by way of simulation (Section 3.5.3) and memory gains compared to standard
LRU implementations are evaluated (Section 3.5.4).

3.5.1 Ageing-Bloom filters
A popular and natural structure for storing sets in programmable hardware

are Bloom filters [174–176]. Indeed, they provide a compact and efficient way to
store set membership with a controllable error probability as the only trade-off.
In particular, Bloom filters have been proposed to store network identifier for
high-performance packet forwarding [176, 177]. Thus, using a Bloom filter to
store the content of the LRU-AC seems like a promising step towards imple-
menting it in hardware. Realizing the LRU-AC, however, requires the ability to
evict old content from the cache, which standard Bloom filters do not support.
To replicate this behaviour, Yoon introduced Aging Bloom Filters (ABF) [152].

An ABF consists of two parallel Bloom filters: the active Bloom filter A1,
used to learn the most recent items, and the passive Bloom filter A2, which holds
older items in memory. It has two parameters: na, the maximum number of
items that each filter holds, and fp, a target false positive rate. The functioning
of the ABF is summarized in Algorithm 1. In steady state, the passive filter
A2 holds exactly na different items. The active filter A1 holds 0 ≤ cnt < na
items, some redundantly with A2. An item is said to be in the ABF if it belongs
to either A1 or A2. Insertion is done only in the active filter A1 until it holds
na unique items. At this point, A2 is swapped with A1, and the active filter is
reinitialized. This ensures that the ABF contains at least the last na different
items received, and at most 2na. However, there are redundancies between A1

and A2, the exact number of objects in the ABF is a stochastic process.

Algorithm 1 The ABF main functions
function Init . Filter initialization

A1 ← ∅, A2 ← ∅, cnt← 0
end function
function Check(item) . Checks if an item is in the filter

return (item ∈ A1 ∪A2)
end function
function Set(item) . Inserts an item in the filter

if item /∈ A1 then
A1.insert(item)
cnt← cnt+ 1
if cnt = na then

A2.flush()
swap(A1,A2)
cnt← 0

end if
end if

end function

3.5. AGEING BLOOM-FILTERS FOR AN HARDWARE-ACCELERATED LRU-AC65

0 K1 K2 K3 K4

Number of draws

0

na

N
um

b
er

of
un

iq
ue

el
em

en
ts E[A1]

E[A2]

E[A1 ∪ A2]

f(k)

Ñ

Figure 3.8 – Number of distinct elements in the active filter A1 (··), in the
passive filter A2 (- -) and in the full filter A1 ∪ A2 (–), as well as the function
f(k) (–) used to compute them and the stochastic average Ñ of |A1 ∪A2|.

3.5.2 Hit-rate approximation for the ABF

To replace the LRU-AC with an ABF, the expected hit-rate of the ABF
must be evaluated. Indeed, as shown in Section 3.4.5, the hit-rate distribution
is the major factor that explains the performance of the LRU-AC. While for
brevity reasons, only the major ideas behind the model derivation are presented
here, a complete explanation is provided in Appendix A.

As in Section 3.3, Zipf arrivals under IRM are assumed. Let us consider
|A1 ∪A2| (k) the stochastic process representing the number of unique elements
in an ABF after k arrivals. First, as depicted in Figure 3.8, one can observe
that the behaviour of an ABF is cyclic (except for the bootstrap, during which
A2 is empty). At a given time, its behaviour only depends on the arrivals which
occurred after the second-to-last flush-and-swap operation as the memory of
events that occurred before that point has been flushed. Therefore (and since
arrivals are memoryless due to the IRM assumption), it suffices to analyse the
behaviour of the filter during the second cycle. Let us denote byK1 (respectively
K2) the number of steps necessary to complete the first (respectively second)
cycle:

K1 = min{k ≥ 0 : |A1|(k) = na}
K2 = min{k ≥ K1 : |A1|(k) = na}

We will thus study the behaviour of the filter in [K1,K2).

Approximating K1 and K2

For k ≤ K2, the probability hk(r) that content r is in the filter after k ≤ K2

draws from the catalogue is simply the probability that it was selected at least
once from the k draws:

hk(r)
def
= P[r ∈ (A1 ∪A2)(k)|K2 ≥ k] = 1− (1− q(r))k

66 CHAPTER 3. FOG ADMISSION CONTROL

Thus, the expected number f(k) of items in the filter after k draws is:

f(k)
def
= E[|A1 ∪A2|(k) |K2 ≥ k] = E[

R∑
r=1

1r∈(A1∪A2)(k)|K2 ≥ k]

=

R∑
r=1

hk(r) =

R∑
r=1

[1− (1− q(r))k]

It is possible to prove, using Chernoff bounds (see Appendix A.2) that K1 (the
number of steps necessary for there to be na items in A1) deviates little from
k̂1, the number of steps necessary for there to be na items in average in A1,
defined as:

k̂1
def
= f−1(na) (3.6)

Due to the cyclic behaviour of the filter, K2 is then naturally approximated as
K2 ≈ 2k̂1.

It is then possible to efficiently find k̂1 by using an approximation for f(k),
rather than inverting a sum with R elements. Assuming a Zipf catalogue with
a parameter α (i.e., q(r) = r−α

HR,α
with HR,α =

∑R
i=1 i

−α), we have:

f(k) ≈
{
Ak −Bk log k if α = 1

Ak −Bk1/α if α ∈ (1/2, 1) ∪ (1,+∞)
(3.7)

where:

A =


R1−α

(1− α)HR,α

1 +
1 + log logR− 2γ

logR+ γ

if α >
1

2
, α 6= 1

if α = 1

B =


−Γ(−1/α)

α2H
1/α
R,α

1

logR+ γ

if α >
1

2
, α 6= 1

if α = 1

(3.8)

where Γ(z) is the gamma function and γ ≈ 0.577 the Euler-Mascheroni constant.
The derivation is provided in Appendix A.3.

Approximating the hit rate

As introduced in the previous section, the hit rate hk(r) for content r after
k ≤ K2 draws from the catalogue is:

hk(r) = 1− (1− q(r))k

Thus, the (stochastic) hit rate H(r) for content r when observed at an instant
Kobs drawn uniformly during the cycle [K1,K2) is:

H(r)
def
= E[1r∈(A1∪A2)(Kobs)|K1,K2]

=
1

K2 −K1

∑
K1≤k<K2

[
1− (1− q(r))k

]

3.5. AGEING BLOOM-FILTERS FOR AN HARDWARE-ACCELERATED LRU-AC67

and the corresponding average hit rate h(r) is:

h(r)
def
= E[H(r)] = E

 1

K2 −K1

∑
K1≤k<K2

[
1− (1− q(r))k

]
Since (as argued in the previous section) K1 and K2 can be approximated

by k̂1 and 2k̂1, respectively, we can further provide an approximation ha(r) of
h(r) as:

h(r) ≈ 1

k̂1

∑
k̂1≤k<2k̂1

[
1− (1− q(r))k︸ ︷︷ ︸
≈1−e−kq(r)

]

≈ 1

k̂1

∫ 2k̂1

k̂1

[
1− e−kq(r)

]
dk

def
= ha(r)

Simple algebra then yields:

ha(r) = 1− e−q(r)tC(r) (3.9)

where:

tC(r) = k̂1 +
1

q(r)
log

k̂1q(r)

1− e−k̂1q(r)
∈ [k̂1,

3

2
k̂1]

A Che-like approximation

For large values of r, tC(r) exhibits very little variation: a Taylor expansion
shows that tC(r) ≈ 3

2 k̂1 −
q(r)
24 k̂1

2
. For small values of r, tC(r) varies more, but

its contribution to h(r) can be neglected as h(r) ≈ 1 in those cases, as argued
in [178] (figures depicting this phenomenon are available in Appendix A.4).
Therefore, it is possible to make the approximation that tC(r) is a constant tC ,
yielding:

ha(r) ≈ 1− e−q(r)tC (3.10)

In that case, by summing over r ∈ {1, . . . , R}, tC can be computed by finding
the root of:

R∑
r=1

[1− e−q(r)tC] =

R∑
r=1

ha(r)
def
= Ñ (3.11)

where Ñ represents the average number of items in the filter, and can be com-
puted with:

Ñ ≈ 1

k̂1

∫ 2k̂1

k̂1

f(k)dk (3.12)

using the approximation of f(k) provided in the previous section and straight-
forward integration.

This is similar to the Che approximation (see Equation (3.2)), with the
(fixed) size of the LRU cache replaced by the average over time of the “size”
(number of distinct items) of the ABF. Functions for computing k̂1 and na
depending on kLRU are provided in the Jupyter Notebook associated with this
chapter [172]. For instance, kLRU=2.8·105 (as in Table 3.4) yields na=2.0·105.

68 CHAPTER 3. FOG ADMISSION CONTROL

101 102 103 104 105 106

ABF parameter na

102

104

106

A
ve

ra
ge

nu
m

b
er

of
it

em
s
Ñ

Model

Simulation

Figure 3.9 – Simulation and model results for Ñ vs na (R=107 and α=1). Each
simulation point consists of the average value on 108 arrivals.

101 102 103 104 105 106

ABF parameter na

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

hi
t

ra
te

Model

Simulation

Figure 3.10 – Simulation and model results for the expected hit-rate of the
ABF depending on na (R=107 and α=1). Each simulation point consists of the
average value measured over 108 arrivals

3.5.3 Model verification for α = 1

To verify the model, a software implementation of the ABF was subjected
to a Poisson arrival process with Zipf popularity distribution. In particular, in
Figure 3.9, measured values of Ñ are compared to the results obtained using
the method described at the end of Section 3.5.2. It shows that the analytical
model accurately captures the expected number of unique items in the ABF,
with an average relative difference 3%. Then, the accuracy of the approximation
proposed in Section 3.5.2 is evaluated in Figure 3.10, which compares the average
hit-rate

∑
r q(r)ha(r) computed from the approximation of Equation (3.10) with

the measured average hit-rate in simulation runs. It shows that the model fits
almost perfectly with the experiments, with a relative difference < 0.02% for
na > 10.

3.5.4 ABF - memory usage vs LRU

LRU memory

Let us consider a traditional LRU implementation consisting of a hash map
pointing to a doubly-linked list. Each LRU entry has a memory footprint at
least equal to the size of 3 pointers (one in the hash map and two in the doubly-
linked list). The minimal pointer size is dlog2 kLRUe. To compare the ABF

3.6. HARDWARE-IMPLEMENTATION OF THE LRU-AC 69

to the LRU and according to Equation (3.11), kLRU = Ñ is used. Thus, the
memory used by the LRU is:

mLRU = 3Ñdlog2 Ñe (3.13)

ABF memory

Let fp be the wished false-positive rate of the ABF. The corresponding false-
positive rate of A1 and A2 is fa = 1−

√
1− fp [152]. The corresponding number

of hash-functions is nh = d− log2(1 −
√

1− fp)e, and m= 2nanh
log 2 . Putting it all

together, the memory consumption of the ABF is:

mABF =
2nad− log2(1−

√
1− fp)e

log 2
(3.14)

Numerical results

For kLRU = 2.8 · 105 (as in Table 3.4), the minimal pointer size is 19 bits
(since log2(kLRU) ≈ 18.1). The required memory per element adds up to 57
bits. In total, this amounts to mLRU = 16 Mbit. By comparison, the cor-
responding ABF has for parameter na = 2.0 · 105. For a false positive rate
of fp=1%, Equation (3.14) yields mABF = 4.6 Mbit, dividing the LRU-AC
memory footprint by 4. Furthermore, let us note that while the computation of
mABF is exact, the computation of mLRU is conservative. Indeed, implement-
ing a hash-table requires a significant memory overhead and creates a memory
vs operation-latency trade-off.

3.6 Hardware-implementation of the LRU-AC

3.6.1 Using hICN as the underlying network layer

To guarantee line-rate performances, the hardware-accelerated admission
control must be able to access the request identifier easily. While extracting
application-level semantics from packets (deep-packet inspection) is possible in
hardware using frameworks such as P4 [155], it is costly in terms of cycles.
Therefore, the performance of the admission control hardware module would
benefit from a network framework that exposes application-semantic at a low-
level, but that also provide a deterministic packet format (through fixed-size
headers, fixed field locations, such as IP/TCP).

In that regard, hICN [154] is an ideal candidate. hICN is an implementation
of ICN [179] that transparently uses the semantic of IPv6/TCP for backward-
compatibility. In particular, while hICN is a name-based protocol (i.e., for-
warding is performed based on named-content identifiers rather than locators),
names are encoded using an IPv6 address for a name prefix (64 bits of routable
prefix and 64 bits of data identifier) and a 32-bit integer for the name suffix. An
Interest (resp. Data) packet then carries the name prefix in the IPv6 destination
(resp. source) address field, while the name suffix is placed in the TCP segment
number field. As such, hICN holds the desirable characteristics for implement-
ing the LRU-AC in hardware: request semantic accessible in fixed-size fields in
fixed locations of the network and transport headers.

70 CHAPTER 3. FOG ADMISSION CONTROL

compute
h[1]

compute
h[2]

query
RAM[h[1]]

query
RAM[h[2]]

retrieve
RAM[h[1]]

retrieve
RAM[h[2]]

retrieve
RAM[h[3]]

query
RAM[h[3]]

query
RAM[h[4]]

compute
h[3]

compute
h[4]

retrieve
RAM[h[4]]

write
output

fetch
input

AND
results

cycles

Figure 3.11 – Bloom filter pipeline illustration with nh = 4: latency is 7 cycles,
throughput is one operation per 8 cycles.

3.6.2 Hardware-implementation of the LRU-AC

To demonstrate implementability of the LRU-AC in hardware, the NetFPGA-
SUME [153], a state-of-the-art academic programmable network cards, was
used. To provide a modular and easily-modifiable implementation, the pro-
totype is implemented in P4 [155], allowing packet parsing to be performed in a
high-level language. The P4→NetFPGA framework [180] is then used to trans-
late that high-level representation into a NetFPGA-SUME implementation.

The prototype comprises two parts: (i) a Bloom filter atom 4 written in
Verilog, that implements a single Bloom filter; and (ii) a P4 data-plane, which
performs packet parsing, processing, and deparsing, and whose processing part
implements an ABF by using two Bloom filters atoms. Using a Bloom filter
atom and implementing the ABF logic in P4 rather than directly implementing
the ABF as a black-box Verilog module provides greater modularity and ex-
pressiveness in the high-level language and simplifies the engineering effort by
having to focus on optimizing only a single and simpler low-level module. The
Bloom filter atom has been upstreamed to the P4-NetFPGA project 5.

Bloom filter atom

The Bloom filter atom takes a fixed-length key of size skey in argument, as
well as an operand specifying the operation to be performed on that key (read
or insert), and returns a single bit specifying whether the key was found in
the filter – in case of an insert operation, whether the key was found before
insertion. Additionally, a third operand allows resetting the filter (i.e., clearing
all its bits). This allows exporting a very simple API:

extern void bloom_filter(in bit <2> opcode , in bit <KEY_SIZE > index ,
out bit <1> result);

The Bloom filter is parametrized by the number nh of hash functions, and the
size shash of their output – governing the number of addressable objects. Each

4. Atoms are low-level modules that can handle state and perform a simple operation,
while interfacing with a higher-level packet processing language [181].

5. https://github.com/NetFPGA/P4-NetFPGA-public

https://github.com/NetFPGA/P4-NetFPGA-public

3.6. HARDWARE-IMPLEMENTATION OF THE LRU-AC 71

Table 3.5 – Resource usage of a Bloom filter atom

shash skey Logic (LUTs) Registers BRAM Multipliers
20 24 185 134 33 2
21 24 246 152 65 2
22 24 357 186 129 2
20 48 281 178 33 4
21 48 317 196 65 4
22 48 431 230 129 4

hash function hi (i ∈ {1, . . . , nh}) is implemented using universal hashing [182].
Indeed, universal hashing relies only on multiplication, XOR and shift opera-
tions, and can thus be efficiently implemented on the NetFPGA-SUME (using
multiplier blocks).

To optimize throughput and latency, the Bloom filter is implemented with
a pipelined approach, as depicted in Figure 3.11. The idea is to use each cycle
to query one bit (at the address dictated by one of the nh hash functions),
for a total of approximately nh cycles. Since querying the BRAM has a 2-
cycle latency and hash function computation uses a full cycle, the i-th hash
function is computed at cycle i and the corresponding bit is queried at cycle
i+ 1 for a result retrieved at cycle i+ 3. The final result is then output at cycle
nh + 4, after ANDing all the intermediary results. In sum, the Bloom filter has
a latency of nh + 3 cycles and a throughput of 1 operation every nh + 4 cycles.
In terms of spatial complexity, in addition to the LUTs (Look-Up Tables, the
fundamental reconfigurable logic blocks in FPGAs) required to implement the
logic, the module uses 2shash−15 blocks of BRAM (of size 32 Kbit). Table 3.5
reports the resource usage of a single Bloom filter after synthesis, for different
values of skey and shash.

P4 data plane

The P4 data plane leverages the simplicity of having defined an external
Bloom filter atom to provide a simple implementation. It comprises four com-
ponents: (i) a parser, which extracts Ethernet and IPv6 headers and stores the
hICN object key, (ii) an action, which implements the ABF logic to determine
the egress interface for the packet, (iii) a match-action table, which maps that
interface to an Ethernet address, and (iv) a deparser, which reconstructs the
output packet. (i), (iii) and (iv) are straightforward to implement in P4. (ii) is
implemented through four external atoms: two Bloom filters, a flag that keeps
track of the active Bloom filter, and a counter that keeps track of the number
of requests since the last swapping event. Predicated-read-add-write registers
available from the P4-NetFPGA framework [181] are used to implement the
counter and the flag. The counter is incremented if its value is smaller than k̂1
and reset when it reaches k̂1 6. The flag is swapped when the counter has just

6. k̂1 is used as a threshold on the number of steps rather than na on the number of
elements in the filter because the reg_ifElseRaw atom can only be accessed once per packet
in the P4-NetFPGA workflow. To use na, the counter would have to be read before querying
the filters (to decide whether to swap) and updated after the queries have completed (to count
the number of active elements). The validity of using k̂1 comes from Equation (3.6).

72 CHAPTER 3. FOG ADMISSION CONTROL

been reset. Depending on the value of the flag and on whether it has just been
swapped, suitable (read, write or clear) operations are sent to the two Bloom
filters, along with the key extracted from the packet. Finally, the output port
is chosen, depending on the OR of the result of the two queries.

3.7 Evaluation

In this section, an evaluation of the FPGA-based LRU-AC (named ABF-
AC in this section to distinguish it from the LRU-AC implemented with an
actual LRU filter) is presented. First, packet-level simulation is used to compare
the ABF-AC to the LRU-, LFU- and Blind-AC. Then, the throughput and
processing speed of the FPGA implementation is evaluated.

3.7.1 Packet-level simulation

To derive more insights about the packet-level behavior of the schemes in-
troduced in Section 3.4, packet-level simulations of the queueing network intro-
duced in Section 3.3 using actual implementations of each strategy were con-
ducted. The simulator, written in Rust and available in open-source [172], is a
general-use queueing simulator designed to allow quick specification and testing
of queueing networks. In this section, it is set up with the values presented
in Table 3.3 and the admission control modules with the values computed in
Table 3.4. The ABF filter is configured with k̂1 = 5.2·105 (computed through
Equation (3.6)) and fp=1%. The interested reader can use the Jupyter note-
book provided with the simulator to find the filter parameters tailored to their
own scenario and set up the simulator accordingly.

In a first step, the per-packet response time of the LRU-AC is considered.
Figure 3.12 shows the cumulated distribution function (CDF) for both the ABF-
and LRU-AC. For the sake of clarity, the head and the tail of the distribution are
represented in resp. Figure 3.12a and Figure 3.12b, while individual CDFs for the
Fog and Cloud paths are represented in Figure 3.12c and Figure 3.12d. The only
visible difference between the LRU- and the ABF-based implementations is the
spread of the distribution, which concerns only 0.1% of requests, thus justifying
the validity of the ABF-AC. Of further note is the length of the queue, which
goes up to 600s. As shown by Figure 3.12, this is due to the effect of the tri-
modal nature of the distribution on the problem formulated in Equation (3.1).
Indeed, a large percentage of requests are processed with a latency � ∆. Thus,
the constraint E[T] ≤ ∆ can tolerate a long tail, which might be a problem for
real-life applications (even if 99% of the requests are completed under a minute).
For operators with stricter latency constraints, the length of the queue can be
reduced by slightly modifying the value of kLRU and k̂1. For instance, artificially
reducing the load on the Fog by 5 percentage points by setting kLRU=1.3·105

(resp. k̂1=2.3·105) allows reducing the distribution spread to about 0.3 s and
the threshold excess rate (i.e., % of requests with service time ≥ ∆) to 1% for
a 16% cost increase for both implementations, as shown in Figure 3.13.

In a second step, Figure 3.14 shows the request path repartition and the
threshold excess rate for the Blind-, LFU-, and both implementations of the
LRU-AC. It highlights that the threshold excess rate is of the same magnitude
between all schemes, with probabilistic LRU-AC just slightly higher. Further-

3.7. EVALUATION 73

0.00 0.02 0.04 0.06 0.08 0.10
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(a) Head (Fog+Cloud)

10−1 100 101 102

Request completion time (s)

0.95

0.96

0.97

0.98

0.99

1.00

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(b) Tail (Fog+Cloud)

0 200 400 600
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(c) Fog

0.00 0.05 0.10 0.15
Request completion time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

(d) Cloud

Figure 3.12 – Cumulative distribution functions of the measured request re-
sponse time for the LRU- and ABF-AC

0.0 0.1 0.2 0.3
Request completion time (s)

0.0

0.5

1.0

C
um

ul
at

iv
e

%
of

re
qu

es
t

LRU

ABF

Figure 3.13 – Cumulative distribution function of the measured response time
for conservative settings of the LRU- and ABF-AC

74 CHAPTER 3. FOG ADMISSION CONTROL

Blind LFU LRU ABF
0.00

0.25

0.50

0.75

1.00

R
eq

ue
st

pa
th

re
pa

rt
it

io
n

0.000

0.025

0.050

0.075

0.100

T
hr

es
ho

ld
ex

ce
ss

ra
te

Fog cache Fog compute Cloud Excess rate

Figure 3.14 – Threshold excess rate (red line, left y-axis) and Request breakdown
(grey bars, right y-axis) for the Blind-, LFU-, LRU-, and ABF-AC

Table 3.6 – Dataplane resource usage

LUTs BRAM Power (W)
2 Bloom filters 715 130 0.089

P4 103424 564 8.550
Total 104139 694 8.639

Available resources 433200 1470 —
Resource consumption 24.0 % 47.2 % —

more, it illustrates again the strong difference between on one side the LFU-
and LRU-AC, which handle about 70% of the requests in the Fog, and the
Blind-LB, which sends more than 90% of the requests in the Cloud. Popularity-
based admission control thus seems an appropriate approach to take maximum
advantage of edge resources.

3.7.2 Implementation evaluation

The P4 data plane introduced in Section 3.6.2 has been synthesized for the
NetFPGA-SUME platform with the P4→NetFPGA framework. The targeted
false positive rate is fa = 1%, yielding nh = 8. The maximum number of
elements in the ABF is taken to be na = 9.2·104 (corresponding to an equivalent
LRU filter size kLRU = 1.3·105, i.e., the conservative settings introduced in
Section 3.7.1), yielding mABF /2 = 2.1·106 bits in each filter. Thus, one must
take shash = dlog2

mABF
2 e = 21 to be able to address all elements in each filter.

Finally, we take a key of skey = 48 bits, allowing to address up to 280·1012

objects, way above the catalogue size R = 107.
Resource usage on the FPGA board is reported in Table 3.6. As can be

seen by comparing these results to those in Table 3.5, most of the logic (LUT)
is consumed by the NetFPGA framework (MAC for the network interfaces and
packet processing). However, an important part of the BRAM resources is
consumed by the Bloom filter modules. In total, the BRAM usage is 47%,
confirming that the limits of the platform are reached and that a standard LRU
filter (which would consume 4 more memory as shown in Section 3.5.4) could
not be implemented.

The performance of the P4 data plane is evaluated by injecting in the FPGA

3.8. RELATED WORK 75

Table 3.7 – Dataplane performance

Latency (µs) Throughput (Mpps)
2.62 16.7

simulator a batch of 4096 packets (directly after the Ethernet interface, so as
to outreach the 10 Gbps limit), and measuring the corresponding latency and
throughput. Results are reported in Table 3.7, showing that packets can be for-
warded over the 10 Gbps line-rate (14.4 Mpps) while providing low latency. The
obtained throughput results are consistent with the throughput of the Bloom
filter atom (one operation every nh + 4 = 12 cycles at 200 MHz).

3.8 Related Work

The importance of locating computing resources topologically close to users
has been put forward under diverse forms in the community: Fog computing [17],
Mobile-Edge-Computing [183], hybrid Cloud [149]. In particular, Niu et al. [149]
explore a similar problem to ours: the use of a local Cloud infrastructure to
handle sudden bursts of traffic. They also use a Markov-chain based model
for computing the expected completion time and devise a scheduling algorithm
between hybrid and public Cloud using an optimization problem under budget
constraints. However, they do not exploit any knowledge of the request pop-
ularity, thus falling under the hard limit that we exposed for the Blind-AC.
Malawski et al., study costs optimization between a hybrid Cloud and multiple
public Clouds with different pricing models under a deadline constraint [184].
However, they focus on task optimization, looking at a model closer to schedul-
ing for scientific computing rather than live optimization of user requests. Du et al. [150]
formulate a joint resource allocation and offloading between user devices, Fog
networks and Cloud networks, so as to minimize energy consumption and re-
quest processing delay.

Using popularity to load-balance content in ICN networks has already been
explored. In [157], the authors propose to count incoming packets and use
exponential smoothing. As argued in Section 3.4.4, this approach is not flex-
ible to popularity changes and requires knowledge of the application. Fur-
thermore, the authors aim at load-balancing packets over homogeneous paths,
whereas the Fog/Cloud offload problem is essentially heterogeneous. Similarly,
Carofiglio et al. [158] propose to use a k-LRU filter to learn popularity for
load-balancing ICN interests over multiple paths. They then measure per-name
latency to optimize the distance to the next object. However, the authors do
not specify the settings of the k-LRU filter, and only consider the effect of their
load-balancing on the data creation process. Finally, in [71], the authors use the
ICN-Fog node as a classifier between static and dynamic data, thus preventing
upstream caches to store dynamic data. They do not, however, consider the
data processing that happens in many Fog applications.

76 CHAPTER 3. FOG ADMISSION CONTROL

3.9 Summary
In this chapter, we introduced methods for guaranteeing response time in

Fog deployments based on popularity-aware admission control. Two specific
admission control schemes were defined: the oracle-based LFU-AC and the
probabilistic LRU-AC. Their effectiveness was demonstrated using an analytical
model for various application parameters. An implementation of the LRU-AC
on state-of-the-art FPGA hardware using an ABF was then proposed and its
soundness was demonstrated through analytical modeling. This implementation
is shown to provide admission control at 10 GbE line-rate throughput with a
3 µs latency. It increases the acceptance rate by almost 10 w.r.t. content-blind
approaches while maintaining the latency excess rate stable.

Chapter 4

Network and application
management in
Information-Centric Networks

As illustrated in the previous chapter, one of the big advantages of ICN is
the tight integration between applications and the network. In this chapter,
we argue that to realize the full potential of such a cross-layer collaboration,
most of the network tooling must be rethought accordingly. This is particularly
true for the management of both applications and networks, and all-the-more
for platforms such as Fog computing, which are highly virtualized [17]. Man-
agement frameworks should reflect the characteristics of ICN, for instance by
intertwining network and application management. We thus attack the network
management problem from a general and high-level perspective. In particular,
we explore the relation between ICN and Intent-Based Networking (IBN), a net-
work management design where administrators only specify an abstract view of
their desired network model instead of detailing the necessary steps to attain
it. We explore both sides of the problem: how can IBN be applied to ICN but
also how ICN can be used to enhance IBN.

4.1 Intent-Based Networking and ICN

Recent years have seen the emergence of network paradigms such as network
function virtualization (NFV) or Cloud and Fog computing, an increasing com-
plexity of network security requirements, and a shift in network communication
patterns. Human operators are thus struggling to keep up with the complex-
ity and diversity of network devices, services and traffic. In particular, network
management has essentially become a multiparty process, where deploying a ser-
vice involves many actors. This has led to the development of Software-Defined
Networking (SDN) [185] and the apparition of feature-rich, centralized network
and service orchestrators such as OpenStack [186] or Kubernetes [187], built to
present simplified and unified human-facing interfaces. Of particular note is the
switch from procedural APIs to intent-based network configuration [188, 189],
where the user specifies an intent in a human-readable and abstract way, e.g.,

77

78 CHAPTER 4. INTENT-BASED ICN

“Deploy a video-conferencing service for my company”, instead of the full con-
crete procedure necessary to achieve it. Intent-based networking is touted as
an enabler for complete network automation, where a self-regulating network
is able to digest and apply high-level policies without human interaction [190].
In fact, with its stated aim of abstracting the actual configuration in favour of
abstract policies [188, 189], intent-based networking raises many research chal-
lenges, e.g., how to use artificial intelligence on telemetry data to verify and
optimize policy application [191].

Progress on IBN has not yet been reflected in ICN. The ICN community has
admittedly stated the importance of a pragmatic experimental and application-
driven research approach since its inception [40, 192]). Multiple tools and test-
beds have even been developed for simulation and emulation (CCNx, NDN
software and testbed, CCN-lite, MiniCCNx [193], MiniNDN). Most of them
have however been designed to assist research, specifically on the design and
evaluation of specific aspects of the ICN architecture (e.g., caching, forward-
ing, or routing). They operate in dedicated fully-ICN network environments,
trading-off abstraction of network characteristics for scale and offering limited
flexibility to modify core ICN features, network topology and settings, or ap-
plication APIs. To bridge the gap between a promising network architecture
and a feasible deployment-ready solution, problems such as network configur-
ation, management, and orchestration must be resolved. On the other hand,
ICN offers the opportunity to rethink IBN frameworks, looking not only at how
IBN should be applied to ICN but also at how ICN can enhance and empower
intent-based network management.

First, we present vICN (virtualized ICN), a flexible intent-based framework
for ICN network configuration, management, and control that is able to satisfy a
number of important deployment and experimentation use cases: (i) conducting
large-scale and fine-controlled experiments over generic testbeds; (ii) instanti-
ating reliable ICN network with real applications in proofs of concept; (iii) de-
ploying large networks within networks for trial and test development. Clearly,
requirements are different: research experimentation needs fine-grained control
and monitoring of the network as well as reproducibility of the experiments.
Prototypes for demonstration require a high level of programmability and flexib-
ility to combine emulated and real network components or traffic sources. More
than in previous cases, reliability and resource isolation is a critical property for
deployments in ISP networks.

The operations required for the deployment of an ICN network include in-
stalling/configuring/monitoring a new network stack in forwarding nodes or the
socket API used by applications at the end-points. If loading a cloud micro-
service from an application store into general purpose hardware is easy to realize,
a network stack has different requirements: ultra-reliability, high-speed and pre-
dictability, to cite a few. vICN shares the same high-level goals as SDN/NFV
architectures, but with additional ICN-specific capabilities not typically required
by IP services. Overall, we identify three main challenges that vICN addresses
and that differentiate it w.r.t. state of the art:

Programmability: i.e., the need to expose a simple and unified intent-based
API, intuitive enough to facilitate bootstrap, expressive enough to accom-
modate both resource configuration and monitoring, and flexible enough
to allow the user to decide about the level of control granularity. Exist-

4.2. RELATED WORK 79

ing software like OpenStack, which is built as a collection of independent
components, each one following different design patterns, does not offer
such a satisfactory level of programmability.

Scalability: vICN aims at combining high-speed packet processing, network
slicing and virtualization, and highly parallel and latency minimal task
scheduling. Current systems are based on a layered architecture that pre-
vents fine-grained optimization, thus limiting scalability on the long term.

Reliability: a fundamental property of vICN lies in its ability to maintain
the state of deployment, recover from failures and perform automatic
troubleshooting. This requires the overall software to be able to ac-
commodate programmable function monitoring and debugging. In exist-
ing designs, each component has independent implementations to achieve
that.

In a last step, and looking ahead to future research directions, we turn the
tables and investigate how an ICN-like approach can benefit IBN. In particular,
we argue that many limitations of current orchestrators come from the necessity
to perform an early and centralized binding from the user’s request to a set of
device configurations, requiring full knowledge and preventing any further actors
to participate in the resolution of the intent. We thus propose to push the intent
deeper into the network fabric rather than limiting it to the edge, which means
both transporting and processing it in-between network elements or orchestrat-
ors. Inspired by ICN, we introduce an Intent-Centric network management
protocol, used to route intent in a distributed fashion rather than pushing con-
figuration from a centralized node. We propose a router architecture as well as
tentative ideas for forwarding algorithms. We show how carrying intent over the
management plane could simplify orchestration systems, providing scalability,
reliability, and flexibility by offloading many of their central functions.

The work presented in this chapter has been the object of three publications.
[101,104] cover the design and implementation of vICN. [105] focuses on making
the case for an Intent-Centric network management protocol. Furthermore,
the vICN orchestrator has been released as open-source as part of the Linux
Foundation Fast-Datapath (FD.io) project [194].

The remainder of the chapter is organized as follows: Section 4.2 summarizes
the state of the art, before introducing the vICN architecture in Section 4.3 and
its implementation in Section 4.4; Section 4.5 provides concrete examples of
vICN in action; Section 4.6 looks at future research directions, in particular
how ICN-like approaches can be applied to create truly autonomous networks;
Section 4.7 concludes this chapter.

4.2 Related work
Salsano et al. [195] propose to introduce network virtualization for ICN net-

works through the use of OpenFlow. In [196], the authors address a similar issue
and propose an architecture to perform network slicing. However, [195] does not
consider any network slicing technology while [196] misses the aspects of net-
work management and control. Mininet [197] makes a step in that direction and
sits closer to our objectives as it enables the creation of virtual networks based

80 CHAPTER 4. INTENT-BASED ICN

on containers and virtual switches. Application performance can be tested in
emulated network conditions by setting parameters such as link delay and capa-
city, node CPU share, etc. However, it does not propose any slicing mechanism
and lacks support for wireless or any control on applications or workload.

Interesting tools have also emerged from the testbed community. Emulab [198]
is a network experimentation framework joining emulation facilities with phys-
ical testbeds, but it lacks support for wireless topologies and offers no control
over the network resources. NEPI [199] is maybe one of the most polyvalent
tools. It hides all the complexity under a uniform programming interface. NEPI,
however, lacks some control granularity and specializes in the management of
resources provided by testbeds, assuming tasks such as slicing are already per-
formed.

The Cloud computing community has made important efforts to facilitate the
use of data center resources. Cloud Operating Systems have been proposed, such
as OpenStack [186], designed to manage and monitor large-scale deployments,
providing access to network, computing, and storage resources through a set
of homogeneous APIs and sub-projects. Available tools are generally oriented
towards applications being deployed in a global pool of resources. Container-
specific tools such as Kubernetes [187] present some interesting aspects in that
they expose a unique consistent API for simplicity, with however limited control
over granularity for our purpose. Automation is ensured by third-party tools
layered on top of these standard APIs, like Chef [200], which are intrinsically
limited by their procedural language design, where the user must make every
step of the deployment explicit, manually adapt to the current state, and handle
errors. Other tools (e.g., Puppet [201]) use a descriptive language, where the
user only needs to describe his/her needs and leave the rest to the tool. Despite
the integration effort in Cloud computing, the silos around functionalities and
the proliferation of APIs appear limiting for our purpose. The system does not
enable simple setup and control for users, nor to build applications on top.

The now joint SDN and NFV communities are maybe the closest to our
needs, at least from an architectural point of view. In [202] for instance, the
authors describe a set of design principles for the Management and Orchestration
(MANO) of virtualized network functions (VNF). Their approach is based on
a modular architecture, clearly identifying the fundamental function such as
user and VNF description, orchestration, etc. They also point the need to
ensure reliable management by considering the lifecycle of the resource they
manage. OpenDayLight is a promising candidate framework for building NFV
capabilities, as it relies on a model-driven abstraction layer that fits with our
requirements. However, this aspect is mainly used from a software engineering
point of view rather than to offer programmability of the resource (called "micro-
service"). Moreover, the orchestration is layered on top of other modules that
behave as silos.

4.3 The vICN framework

The high-level architecture of vICN, presented in Figure 4.1 reminds of NFV
proposals such as MANO. Our contribution is in the design of a resource model
able to carry intent and on its use as the underlying end-to-end unifying lan-
guage.

4.3. THE VICN FRAMEWORK 81

Figure 4.1 – vICN functional architecture

4.3.1 Functional architecture

The Resource is the basic unit of information in vICN. It consists of an
abstract model that holds at the same time the current network state and the
desired model. Resources are stored in the Resource factory and are diverse
in type (e.g., a specific Virtual Machine, an application or an IP route). They
can be combined or extended to form other Resources. The vICN architecture
differentiates the role of users, developers, and infrastructure providers. De-
velopers integrate tools by creating new Resources or extending the old ones.
Both users and infrastructure providers use this base set of Resources to de-
scribe what they respectively require (users) or make available (infrastructure
providers).

Resources are specified according to different degrees of detail: e.g., the in-
frastructure is described precisely to form a Resource database that serves as
a base for deployment. On the other hand, user specifications might be general
or abstract and only mention Resources of interest for the user. The role of the
Resource processor is to turn an abstract and incomplete description into a
set of Resources mapped on the infrastructure leading to a consistent deploy-
ment. Once Resources are selected, the orchestrator translates them into a set
of actions to be performed, based on the current state of the deployment and on
constraints due to task synchronization or sequentiality. The resulting actions
are processed by a scheduler. It outputs an execution plan and dispatches
parallel tasks to a worker pool with the objective of minimizing the deployment
time.

To summarize, vICN is based on two main abstractions: (i) Resources, which
are external units of information exposed to users, developers and infrastruc-
ture providers; (ii) Tasks, which are internal units of information defined by
developers to translate Resource requests into changes in the network deploy-
ment state.

82 CHAPTER 4. INTENT-BASED ICN

Intent-based interface

Convergence
module

Inference
system

Yang models

abstract intent model

User intent

Yang models

NETCONF driverOrchestrator

Figure 4.2 – Functioning of current intent-based frameworks

Figure 4.3 – Flow of information in vICN

4.3.2 Resource model

Most of the current intent-based frameworks are built on an intent-model,
such as NEMO [203] or PGA [204]. As depicted in Figure 4.2, the role of the
Intent module is to translate the intent-model into the configuration model used
by the underlying orchestrator, e.g., YANG [205]. It is the configuration model
which is used, e.g., starting from the orchestrator module in Figure 4.1. In
vICN, a unique Resource model is used globally from the user interface to the
scheduling module.

This model, specifically constructed to hold intent rather than configuration,
is built using an object-relational model [206]. It defines a base object as a set of
typed attributes and methods, where types refer to standard integers, strings,
etc., or to newly defined object themselves. The query language built on top of
it (in the spirit of SQL or SPARQL) is used to create, destroy and manipulate
those objects, either for Resource setup or to retrieve monitoring information.
This model thus benefits from the power and expressiveness of the relational al-
gebra [207] and of some key concepts of Object-Oriented Programming, namely
composition and inheritance. It serves as an integrated interface based on both
human- and machine-readable semantics.

Resources

Resources in vICN are logical representations of physical and/or remote
elements whose state has to be kept synchronized. The state of a Resource can

4.3. THE VICN FRAMEWORK 83

be affected by user queries, by events involving Resources, or through monitoring
queries issued to the remote Resource. For instance, a routing component might
recompute routes when notified about a change in the set of nodes, interfaces
or links. The corresponding information flow is shown in Figure 4.3.

Such an approach is similar to the IETF standard YANG [205], a human-
and machine-readable data model to convey configuration inspired by Object-
Oriented programming. However (and importantly), our model differs from
YANG, adding three key features to move from holding configuration to mod-
elling intent:
Abstraction: Like [208], we extend YANG with abstract objects by proposing
standard models for abstract services (e.g., DNS server, node, or relational
database) and resource inheritance. This brings two advantages: it unifies both
configuration and intent models, simplifying the translation process, and enable
late resource specialization (e.g., from node to Linux Container or Xen VM) in
subsequent orchestrators or even at end-devices.
Foreign models: As such, YANG models only describe per-device configura-
tion, which prevents, for instance, device-to-device cooperation to offload part
of the scheduling from the orchestrator. The vICN model, in contrary, has the
notion of abstract foreign objects. For instance, a DNS server can be made
aware of the existence of a new node for which it must record a domain name
and retrieve the assigned IP address directly from the device on which the node
is deployed instead of relying on the orchestrator.
Scheduling information: Foreign requirements are not enough on their own
to enable efficient device-to-device cooperation. Indeed, it still presents a flat
temporal model while certain services are ordered (some services require others
to be completed before them, e.g., a domain-name registration comes after IP
address assignment). We thus enrich YANG groupings to distinguish parallel
and sequential groupings.

Resource state

The state of a Resource is tracked, for reliability and consistency, by a Fi-
nite State Machine (FSM) presented in the left part of Figure 4.4. The FSM
models the possible states of a Resource (rectangles, raising events) and the
pending operations, or tasks, being executed (round shapes). The transitions
are dictated by user actions or internal events and follow the typical lifecycle
of an object: INITIALIZE is called when the shadow Resource and its object
are being created for internal setup; CREATE and DELETE are the respective
constructor and destructor: they can create or destroy the remote Resource and
eventually set some attributes; GET retrieves the current state of a Resource,
as well as the state of some of its attributes; UPDATE proceeds to attribute
update and, in fact, runs parallel instances of an attribute-FSM, as shown on
the right-hand side of the figure.

Resource mapper

For each transition between states, a developer can associate commands to
be executed thanks to Resource mappers. These commands are handled by
vICN through the task abstraction, which also inherits from the base object.
They are specialized to cope with multiple southbound interfaces such as NET-

84 CHAPTER 4. INTENT-BASED ICN

Figure 4.4 – vICN Finite State Machine

CONF/YANG, SSH/Bash or LXD REST calls (similarly to Object-Relational
Mappers such as SQLAlchemy [209]).

New tasks can be created through inheritance or composition, using algeb-
raic operators to inform about their parallel or sequential execution. Resource
objects are equipped with similar operators so that inheritance and composi-
tion produce a similar composition of tasks. Both resources and tasks define an
algebra that the scheduler is able to use to perform calculations and optimize
the execution plan. A subset of Resources defined in vICN is represented in
Figure 4.5, showing, in particular, the four base abstractions of Node, Interface,
Channel and Application from which most Resources inherit, similarly to the
model defined in [210].

4.3.3 Resource processor

The resource processor plays the central role of adapting the user requests
to the platform policies and the available Resources. For instance, an abstract
Resource Node can be implemented either as an LXCContainer or a VM. This
choice (specialization step) can be either explicitly dictated by user preferences
or inferred by the tool itself depending on the context. As another example,
when deploying an ICN forwarder on a node that runs ndnping, vICN might
prefer an NDN forwarder instance, and do the same for all nodes of the same
experiment.

The Resource processor is also in charge of mapping the Resources to de-

4.3. THE VICN FRAMEWORK 85

Figure 4.5 – vICN partial Resource Hierarchy

ploy onto available physical servers, by verifying all the constraints/policies
required by the user, the developer, or by the infrastructure provider. Such an
assignment can be assimilated to an (NP-Hard) Constraint-Satisfaction Problem
(CSP) [211] as the system has to accommodate several Resources in a finite ca-
pacity system in terms of networking, compute and memory. Both user-specified
attributes and optional infrastructure provider policies are taken into account in
the CSP as additional constraints. The output is a mapping from specification
to implementation, which is also used to expose back monitoring to the user in
a consistent way.

4.3.4 Orchestrator and Scheduler

The role of the orchestrator is to maintain one FSM per Resource, and
ensure they reach the state requested by the user. Its outcome is a task depend-
ency graph, which is shared with the scheduler. Task dependencies are derived
from Resource dependencies, from the structure of the FSM, as well as from
inheritance and composition constraints related to both the Resources and the
mappers.

Figure 4.6 – Toy scenario - vICN scheduler

The scheduler ensures the scalability of the deployment by scheduling the
parallel execution of tasks over a pool of worker threads. Given the dependency
graph presented before, this corresponds to a classical DAG scheduling problem,
which has been studied in the community [212]. Figure 4.6 presents a toy-
scenario underlining the need for optimizing the scheduling algorithm. In that
small example, a greedy selection of the task with the higher distance to the
destination is a sufficient heuristic to get an optimal solution and save one

86 CHAPTER 4. INTENT-BASED ICN

execution round. We remark that user interactions can cause the graph of tasks
to evolve in time and require a recomputation. Heuristics [213] might then
be preferred to optimal solutions because of their faster execution time, while
providing satisfactory performance.

Because of its centralized architecture, the performance of vICN is also im-
pacted by the network transmission time 1. We alleviate this issue by enabling
task batching when two consecutive tasks target the same node interface. The
algebraic structure of tasks also makes it possible to reorganize the graph struc-
ture to better optimize execution or to increase the ability to batch tasks.

4.4 Implementation
The flexibility of vICN lies in its modular architecture organized around its

Resource model. Various Resources can be developed to cover a wide range
of underlying infrastructure and bring missing functionalities such as slicing or
topology management. We here describe the current release and its set of base
Resources covering the whole ICN stack. They build on and reuse available
technologies, selected with scalability and reliability in mind.

4.4.1 vICN codebase

A first version of vICN has been open-sourced within the Community ICN
(CICN) project [41], as part of the Linux Foundation’s Fast Data I/O effort. The
code, written in Python, is released under the Apache v2.0 license. This release
implements all the building blocks described in Figure 4.1 and is mature enough
to launch complex ICN deployments. Alongside, we distribute a prepackaged
container image containing the full CICN suite (including forwarders, the ICN
stack, and useful applications), so that a full ICN network can be bootstrapped
in tens of seconds or minutes. This suite includes a high-speed forwarder based
on the VPP framework [214], which already handles almost 1Mpps per thread
in its first release.

4.4.2 Slicing

In addition to bare-metal deployments, vICN is able to slice nodes and net-
work links offered by the infrastructure through a set of technologies described
here. This is crucial for proper experiment isolation, and to realize separate
control and management planes.

Virtual nodes can be implemented either as containers or as virtual ma-
chines. We chose containers as the core technology (via the use of Linux Contain-
ers [215]) because they are more lightweight and efficient (thanks to zero-copy
mechanisms, the ZFS filesystem and simplified access to the physical resources).
Increased security concerns and limitations such as sharing the same kernel are
not limiting since most ICN functions are implemented in userland.

The network is shared at layer 2 via OpenVSwitch [216], which provides
advanced functionalities, such as VLAN and OpenFlow rules, required by our
wireless emulators and to bridge real external devices to the virtual environment.
vICN fully isolates the deployment’s network from the outside world by creating

1. network round-trip-time and, for instance with TLS, session establishment time

4.4. IMPLEMENTATION 87

a single and isolated bridge per deployment, using iptables as a NAT to provide
external connectivity. On top of that, we reduce the load of the bridge and
isolate control traffic from the data plane. Indeed, we directly link connected
containers, through pairs of Virtual Ethernet interfaces (veth), thus bypassing
the bridge. Connected containers that are spawned across different servers in a
cluster are transparently connected through a GRE tunnel.

Finally, vICN has to arbitrate for shared resources on the physical host, be it
names for interfaces (with constraints such as the 16-character limit on Linux)
or containers, VLAN IDs, and even MAC or IP addresses depending on the
required level of network isolation. It is important to do such “naming” properly
not only for correctness, but also to simplify debugging and troubleshooting.
vICN further enforces consistent names that uniquely identify a Resource, which
allows for faster detection and recovery when the tool restarts or has to redeploy
the same experiment.

4.4.3 IP and ICN topologies

Using the mechanisms described previously, it is possible to build a layer-
2 graph on top of which vICN can set up IP and ICN connectivity. For IP
networking, a centralized IP Allocation Resource is in charge of allocating IP
prefixes and addresses to the different network segments of the graph. Global
IP connectivity is then ensured by computing the routes to be installed on the
nodes. vICN provides a generic routing module implementing various algorithms
(such as Dijkstra or Maximum-Flow) taking as an input a graph (layer-2) and a
set of prefix origins (allocated IP addresses). It outputs a set of routes, encoded
as vICN Resources. Route setup is then driven by a Routing Table Resource,
from which the Linux and VPP routing tables inherit.

The process is similar for ICN, except that we first build (IP or Ethernet)
faces based on a configurable heuristic (e.g., L2 adjacency). We can then reuse
the same routing module by feeding it with the face graph, and the set of prefix
origins found in attributes of content producer Resources. The corresponding
Routing Table is, in this case, implemented by the ICN forwarder. We remark
that the use of multipath routing schemes (e.g., Maximum Flow) makes more
sense in this context. The process results in a deployment accommodating IP
and ICN coexistence, enabling performance comparison of both architectures at
the same time.

4.4.4 Link emulation

A feature that is missing from most tools is the ability to measure the
performance of applications running on top of virtual networks with specific
bandwidth or propagation delay. vICN offers Resource attributes for the Linux
Traffic Control layer (tc) in order to shape link bandwidth and emulate con-
strained networks.

A complementary aspect is the ability to use emulated radio Resources as an
alternative to real hardware in a transparent fashion. Two types of radio channel
are currently supported, WiFi and LTE, both based on real-time simulation fea-
tures of the NS-3 simulator. The vICN radio channel Resource is implemented
as a drop-in replacement of a regular radio link Resource. It connects stations

88 CHAPTER 4. INTENT-BASED ICN

and access point (or UEs and Base Station) through a configurable radio chan-
nel and hides the internal wiring from the user. The emulation then takes care
of all relevant wireless features such as beaconing, radio frequency interference,
channel contention, rate adaptation and mobility. Real-time emulation scales by
using multiple instances orchestrated by an overarching mobility management
Resource in vICN, communicating in real time with the different emulators.
This process can collect relevant information from the simulation, and expose
it to the internal model and thus monitoring.

4.4.5 Monitoring capabilities

Monitoring is natively implemented as part of vICN as a transversal func-
tionality, building on the object model introduced in Section 4.3. The language
offered by vICN allows querying any object attribute, including annotations
made by the Resource processor and orchestrator about the host or the de-
ployment state of the Resource. This is the same interface that is used by the
orchestrator to query the current state of a remote Resource, to communicate
with the emulators, or for the user to interact with vICN in order to change
an attribute or create a new Resource at runtime. Its syntax closely matches
the SQL syntax. More precisely a query object contains the following elements:
the object name, a query type (create, get, etc.), a set of filters and attributes,
eventually completed by attribute values to be set.

For periodic measurements such as link utilization, vICN provides a daemon
that can be installed on the nodes and that exposes information via a similar
interface. Communication between the components is ensured using the IP
underlay setup by vICN.

4.5 Examples

We now illustrate some characteristics of vICN using a particular use case:
mobile video delivery. This section is not meant to be exhaustive, but to il-
lustrate how the design of vICN helped us solve practical challenges, and to
emphasize general properties of the design that are relevant to other use-cases.

4.5.1 Use case description

The recent years have seen drastic changes in the video consumption pat-
terns that put much pressure on delivery networks: the shifts in video quality
(up to 4K), from broadcast to on-demand and from fixed to wireless and mo-
bile networks. Our objective was to show that ICN addresses these challenges,
using mechanisms like caching or multihoming over heterogeneous networks.
Figure 4.7 represents an example of such a video delivery network. It consists of
four parts: a heterogeneous WiFi/LTE access network with multihomed video
clients; a backhaul network aggregating the resulting traffic with workload from
emulated clients; a core network composed of two nodes; and producers serving
4K video. All nodes have a fully-featured ICN-stack. The core nodes use a
VPP-based high-speed forwarder, the others a socket-based one. Overall, the
deployment consists of 22 LXC containers, 3 real devices connected to the vir-
tual network, 22 emulated links (including WiFi and LTE channels), and one

4.5. EXAMPLES 89

Figure 4.7 – Mobile World Congress topology

0 5 10 15 20
Number of worker threads

0

250

500

750

1000

1250

1500

B
o

ot
st

ra
p

du
ra

ti
on

(s
)

Figure 4.8 – vICN bootstrap time vs number of worker threads

physical link between DPDK-enabled network cards (the core). We use a pre-
packaged container image containing all the necessary software to reduce the
bootstrap time.

4.5.2 Scalability

The simplification offered by vICN is illustrated by the following numbers:
during the deployment, vICN created about 800 Resources compared to the 104
declared in the topology file, a reduction in complexity of 85-90%; more than
1500 bash commands were executed, either directly on physical machines, or
on LXC containers. This even underestimates the number of Bash commands
an operator would type to deploy an equivalent topology, as some are batched
for efficiency reasons (e.g., we insert all IP routes for a given node in a single
command).

Figure 4.8 then shows the time taken by vICN to deploy the topology as
a function of the number of dedicated threads. We deployed this topology

90 CHAPTER 4. INTENT-BASED ICN

Figure 4.9 – Alternative vICN topology deployments on single server and a
cluster.

on a Cisco UCS-C with 72 cores clocked at 2.1 GHz. We first note that multi-
threading provides a sevenfold reduction in bootstrap time and that the topology
can be deployed in about two minutes. The observed gains are due to the I/O-
intensive nature of tasks, which spend most of their lifetime waiting for return
values. This reduction is specific to our implementation and our simplistic
scheduling heuristic. The shape of the curve remains nonetheless interesting,
with a performance bound appearing. This is due to the underlying task graph,
whose breadth intrinsically limits the number of tasks that can be run in parallel.

4.5.3 Programmability

One advantage of our Resource model (see Section 4.3.2) is the use of in-
heritance. It allows the user to choose his level of granularity depending on
their needs and expertise. In particular, the user can remain oblivious to the
underlying technology used to deploy Resources. We used that feature to scale
the demonstration on a cluster of servers connected through a switch instead of
a single powerful server. In that configuration, linking containers on different
hosts requires to connect them to virtual bridges on their respective hosts, and
to link these bridges through an L2-tunnel. The two deployments, shown in
Figure 4.9, require different Resources and tasks. However, they can be realized
with the same vICN specifications, thanks to the Link abstract Resource. Here,
vICN completely abstracts the implementation complexity and enables painless
switching from one deployment to the other.

The deployment of containers running VPP is another example of vICN’s
ability to shield a user from implementation and configuration details thanks
to its Resource model. Indeed, VPP uses Direct Memory Access (DMA) to
read and write in contiguous memory areas named hugepages. Both the host
and the containers have to be configured to allocate and share enough of these
hugepages. On top of starting and setting up the application on the container,
VPP thus requires to execute commands on the physical node and to change the
container’s configuration before its creation. In vICN, simply linking VPP to a
container is enough to perform the bootstrap. The tool is then able to change
the other Resources (e.g., use a VPP-enabled container instead of the standard
one) and to run all the necessary commands.

4.6. AN INTENT-CENTRIC NETWORK MANAGEMENT PROTOCOL 91

The flexibility of the framework also allowed us to switch Resources in many
situations. During our tests, we replaced real tablets by emulated nodes to
generate test workloads. During the demonstrations, we could also seamlessly
use a real LTE mobile core instead of an emulated one. It only required to change
one Resource in the specification and did not affect the rest of the scenario.

4.5.4 Monitoring and Reliability

We conclude by highlighting how the Resource model enables monitoring
and debugging. As described in Section 4.4.5, vICN exposes a query language
based on its underlying model for monitoring. This language can be used to
collect information about network status at different time scales: link utiliza-
tion, radio status, cache status etc. vICN thus integrates all information about
the deployment in a consistent and query-able representation, building on the
model introduced in Section 4.3. In the same way vICN provides an API to
navigate through structured logs that may assist the whole process of software
development.

4.6 An Intent-Centric network management pro-
tocol

Current intent-based frameworks (such as OpenStack Heat [217] or the
Open-Networking Foundation Boulder project [218]) act as centralized human-
interfaces to translate intent into orchestration actions (e.g., configuration files
or command-line instructions), which are then offloaded to other modules of
the orchestrator. Compared to these, vICN already takes a step further by
using a unified intent-based model (Section 4.3.2) for intent specification, resol-
ution, and scheduling but remains nonetheless a single centralized framework.
While such centralized approaches represent the first step towards intent-based
networking, they suffer from stark limitations. Mainly, they keep orchestration
centralized, which results not only in scalability issues (OpenStack, for instance,
has over 9M lines of code and running a controller requires at least 3 physical
machines with 12 CPU and 64GB of RAM [219]) but also restricts the possib-
ilities offered by intent-based networking in terms of network automation and
innovation.

We argue that many limitations of current orchestrators come from the ne-
cessity to perform an early and centralized binding from the user’s request to a
set of device configurations, requiring full knowledge and preventing any further
actors to participate in the resolution of the intent. We thus propose to push
the intent deeper into the network fabric rather than limiting it to the edge,
which means both transporting and processing it in-between network elements
or orchestrators. In that regard, the recently established consensus around net-
work management protocols such as NETCONF [220] and YANG [205] is of
particular interest.

4.6.1 Intent-based network model

As described in Section 4.3.2, the YANG data model is not too dissimilar
to the vICN intent model. In particular, it is extensible and allows decoupling

92 CHAPTER 4. INTENT-BASED ICN

* where infra=ISP1 1

* where infra=ISP2 2

1

Storage where infra=ISP1 1

Xen-VM where infra=ISP1 2

1

2

ISP1ISP2

2

CREATE
Node where
infra=ISP1

Figure 4.10 – Example of request forwarding

the model structure from its semantic aspects. However, despite sharing some
similarities with object-oriented programming or relational databases, YANG
does not include all of their features and thus lacks some expressiveness for
encoding user intent or exposing relations and constraints within or in-between
resources. The use of YANG as the central communication model thus forces
intent to be entirely resolved in the origin orchestrator and largely limits the
possibility of doing multi-party inference. Furthermore, it forces the orchestrator
to keep a complete, fine-grained, and up-to-date database of all the objects
present in the network to perform inference (e.g., in the vICN Resource processor
– Section 4.3.3). This raises scalability, consistency, and concurrency issues, as
multiple modules might modify the same resources synchronously.

To enable distributed intent resolution, a natural solution is thus to extend
the reach of the vICN intent model from the orchestrator to the network. Note
that, as noted in Section 4.3.2, small tweaks to YANG would effectively realize
such a model:

— Abstraction: a proposal for extending YANG to support abstract object
was introduced in [208], using the extends keyword to provide resource
inheritance.

— Foreign models: Foreign objects could be defined in YANG model by using
a foreign key, which would make the end-device aware that the object is
implemented elsewhere. Foreign objects can then naturally be referenced
using identityref or leafref.

— Scheduling information: To provide scheduling information, YANG
groupings can be completed with similarly defined sequences. In this
case, grouping now indicates that both models can be applied in parallel
whereas sequence indicates that they must be applied sequentially.

4.6.2 Model-based routing and forwarding

In a second step, we propose to depart from the traditional star deployment
where all resources are reachable from a single orchestrator, to a more distrib-
uted approach where resources attached to different orchestrators advertise their
capabilities throughout the network and allow users’ intents to be routed back to
those able to best satisfy the request. This essentially means building a routing

4.7. SUMMARY AND FUTURE WORK 93

and forwarding plane, similar to ICN in that forwarding is done based on an ab-
stract resource rather than a physical network location. Like ICN, our proposal
uses location-independent identifiers but these are multidimensional structures
representative of the intent itself rather than one-dimensional names. Each or-
chestrator now becomes a router and is, in addition, able to split (composition)
or transform the incoming request (specialization, attribute binding), which gets
fully resolved upon reaching end devices of interest. This approach replaces the
point-to-point transport of NETCONF by a multipoint-to-multipoint network
propagation. An example of such propagation is provided in Figure 4.10.

The design of our intent router closely follows the structure of an ICN router
as presented in Section 1.2.1, where the three main data structures have been
adapted to our new addressing scheme: the Forwarding Information Base (FIB),
used to match incoming intent requests to network locations, the Pending Intent
Table (PIT), that keeps state to symmetrically route answers back to the origin
of the corresponding intent, and a Content Store (CS) that can be used to cache
answers.

The FIB is the main component of our router. It maps received resource
advertisements to their ingress interface and uses this information to forward
an intent to one or several next hops able to further satisfy it. This hap-
pens after an eventual local intent-resolution where the intent can be (partially)
bound, specialized, or decomposed into multiple sub-intents using the network
model. To perform the matching process over multi-dimensional intent ob-
jects, we developed a preliminary solution based on maximal subset matching
algorithm [221].

Like ICN, we store incoming requests into the PIT along with their ingress
interface and associated outgoing sub-requests. The PIT thus collects all the
necessary information to send the corresponding answers back up to their origin,
thereby implementing symmetric routing. It serves as a distributed scheduling
module, keeping track of requests in progress and allowing hop-by-hop reconcili-
ation of concurrent messages. The PIT is thus crucial to ensure the synchroniz-
ation and consistency of the execution in a multipoint-to-multipoint concurrent
environment. Furthermore, the PIT contributes to the scalability of the system
by aggregating redundant requests and execute them only once.

The CS caches responses flowing back through the router, and stores the
current state of a network model deployment for improved performance. It can
be used to access such information with lower RTT and network overhead. It
also brings resiliency as the network can still at least partially operate during
disconnection periods.

4.7 Summary and future work

In this chapter, we introduce vICN (virtualized ICN), an intent-based uni-
fied framework for ICN network configuration, management, and control to
complement existing tools, especially for large scale and operational networks
deployment. vICN is an object-oriented programming framework rooted in re-
cent advances in SDN/NFV research that provides higher flexibility than exist-
ing virtualization solutions. It is specifically tailored to ICN, but its modular
design allows for extensions to other technologies. While most of the current
software is developed in silos, with significant limitations in terms of optim-

94 CHAPTER 4. INTENT-BASED ICN

ization, vICN offers the capability to optimize each component of the virtual
network to provide carrier-grade service guarantees in terms of programmab-
ility, scalability, and reliability. Finally, we present opportunities for further
optimization and decentralization of the management process by introducing
an intent-centric network management protocol based on the data model that
is central to vICN.

There are still many research issues to investigate to achieve intent-based
networking. The first and obvious one is the evaluation of the scalability of our
system in terms of computing overhead. Indeed, the forwarding algorithms men-
tioned in Section 4.6.2 are more complex than traditional name-based forwarding
in ICN. We have explored preliminary ideas, using work on multi-dimensional
forwarding in ICN through maximal subset matching [222]. Our first imple-
mentation suggests that it is a viable approach but we leave its description (and
- especially - its evaluation) to future work.

The second issue is routing. Indeed, creating a scalable forwarding plane
for intent requires to be able to fill up the routers FIB with the corresponding
object models. As such, exploring seminal work for routing database quer-
ies [223, 224] might give insight into realizing the object-based routing plane.
Another approach would be to divide the properties of an object between “ loc-
ator ” properties for inter-domain routing and “identifier ” for intra-domain in-
ference and scheduling. Both approaches should be explored and evaluated in
terms of deployment simplicity, expressiveness and scalability.

Finally, another stringent issue of our approach is security. Indeed, in NET-
CONF the security model resides on securing the point-to-point communication
channel (e.g., with SSH or TLS). Our approach currently does not include such
a security model. In fact, we need to explore how to authenticate each of the
modules that performed inference on the original intent. This is a difficult
task that requires a thorough investigation, as a failure to find a scalable and
tractable security model would prove fatal for any orchestration protocol.

Chapter 5

Conclusion

ICN is a promising solution for the IoT. Its salient features such as name-
based forwarding, native multicast, or object-based security are natural solu-
tions to many of the challenges that the IoT has raised for networks. However,
to transform that envisioned fit into actual ICN-IoT deployments, concrete solu-
tions for the network layer in the ICN-enabled IoT must be developed. Indeed,
while much of the literature has addressed how ICN can benefit IoT applic-
ations, there lacks consistent work on routing and forwarding frameworks for
ICN in the IoT context.

In this thesis, three conjoined problems were tackled: (i) how to perform
efficiently routing and forwarding in ICN-IoT networks, (ii) how to use ICN
forwarding to help IoT applications reach QoS targets, and (iii) how to deploy,
manage, and orchestrate edge IoT networks and applications at scale. Overall,
these three contributions pave the way for the ICN-enabled IoT. Indeed, they
address (i) the problem of setting up a routing plane in WSNs and of (iii) man-
aging the applications and forwarding plane in the edge. Finally, (ii) shows that
clever forwarding strategies can help the deployed IoT applications reach their
QoS target.

5.1 Geographic routing for the ICN-enabledWSN

In a first step, geographic routing and forwarding are evaluated as a solu-
tion for ICN-enabled WSNs. A secure geographic routing framework is pro-
posed, composed of a neighbour authentication protocol, a beaconing protocol,
a naming strategy, and a forwarding strategy. For the neighbour authentica-
tion protocol, two alternatives are evaluated with similar security features but
based respectively on symmetric and asymmetric cryptography, showing that
while asymmetric cryptography allows for reducing the number of messages and
keeping the transmission local, it has a higher energy cost because of its compu-
tational complexity. An analytical model is used to compare geographic routing
to an enhanced version of the “flood-and-learn” approaches of the literature in
terms of implementability (i.e., CPU and memory footprint on the IoT device)
and energy efficiency (i.e., energy overhead caused by the routing protocol). To
provide a realistic evaluation, the model is parameterized with data issued from
simulation, from previous work, and from experience on a standard IoT sensor

95

96 CHAPTER 5. CONCLUSION

platform. Geographic routing is shown to require less memory than flood-and-
learn while also providing large energy savings in cases where the topology is
dynamic.

5.2 Popularity-based latency control for Fog ap-
plications

In a second step, we look at how clever forwarding can help IoT applications
fulfil their QoS requirements. In particular, a popularity-based approach for
controlling admission in a limited capacity Fog platform is proposed. Called
the LRU-AC, it relies on an LRU meta-cache to estimate the popularity of a
request and accept the popular ones in the Fog platform. Using an analyt-
ical queueing model, the LRU-AC is shown to provide a good balance between
efficiency and practicality compared to either request-blind or oracle-based ap-
proaches. An implementation of the LRU-AC on FPGA-hardware using Ageing
Bloom filters (ABF) is proposed so as to realize the LRU-AC with minimal
latency overhead and maximal throughput. The validity of the implementation
is justified using an analytical model and verified via simulation. The ABF-AC
is shown to achieve high throughput, low latency overhead, and to multiply the
Fog admission-rate by 10 compared to request-blind admission control in the
tested scenario.

5.3 Intent-based management of ICN

Finally, a solution for the conjoint deployment, configuration, and manage-
ment of IoT networks and applications is proposed. Virtualized ICN (vICN), an
intent-based unifying framework for network configuration, management, and
application orchestration is introduced. It exploits recent progress in Intent-
Based Networking to define a new intent-based resource model used to unify net-
work management and application orchestration. Through concrete examples,
the programmability, scalability, and reliability of vICN are illustrated. Look-
ing forward, we show how the vICN resource model can actually be used to
decentralize intent-based frameworks. In combination with an Intent-Centric
protocol, inspired from ICN to perform routing based on intent objects, it sets
the foundations for truly developing intent-based networks (instead of intent-
based orchestrators) able to automate themselves using intent as the unifying
language.

5.4 Future research directions

The work in this thesis relies often on analytical model and simulation,
especially in Chapter 2 and Chapter 3. Such an approach offers the advantages of
generality, flexibility, and allows to derive insights that are not bound to a given
scenario or implementation (which was a goal of this thesis). It should, however,
be completed with a system approach, that uses deployment on actual physical
hardware to test, e.g., the implementability and scalability of the solutions. It
is with that in mind that code-source has been released to implement most

5.4. FUTURE RESEARCH DIRECTIONS 97

of the schemes proposed in this thesis. Our GPSR module [133] could, for
instance, be integrated into a standard ICN-WSN stack (e.g., CCN-Lite [57]
over RIOT-OS [58]) and deployed over a public IoT test-bed such as the FIT
IoT-LAB [225] to verify, e.g., the energy consumption predicted by the model
or to compare the GPSR algorithm with other approaches, such as hyperbolic
geographic routing [226,227].

However, rather than testing each contribution individually on specialized
test-beds, vICN can be used to connect them and test their scalability and
interoperability. In particular, one could imagine the following deployment:

— a virtualized WSN created thanks to (i) containerized RIOT-OS nodes
built in the native mode (which allows building RIOT stacks as Linux
processes); (ii) virtualized IEEE 802.15.4 links thanks to the lr-wpan
module of ns-3 [210] integrated into vICN similarly to IEEE 802.11 or
LTE;

— a virtualized edge network virtualized with vICN, e.g., using a topology
from [228] and assigning realistic computing and storage capacities to each
node;

— an IoT application running on these nodes and in a Cloud platform, using
data retrieved from the virtualized WSN and deployed via vICN;

— realistic traffic models for either endogenous or exogenous requests.
Deploying such a testbed would allow assessing benefits of our mechanisms in
realistic settings across the full IoT vertical, but also to evaluate the oppor-
tunities to further development, optimization and integration of the proposed
solutions.

For instance, in a submitted patent application 1, a solution is discussed to
automate the parameterization of the LRU-AC, which currently depends on the
request arrival rate and the popularity distribution. Our proposal exploits a PI-
controller to control the response time of the Fog node via the filter-size kLRU .
Another research direction would be to extend the Fog admission control to
clusters of servers, as the Fog is usually considered as highly distributed [17,48].
While independent LRU-AC modules could be deployed independently in front
of each Fog node, this might result in an under-optimized utilisation of the global
storage and computing resources. On the other hand, enforcing collaboration
between caches can be difficult because, e.g., of the time scale of the feedback
loop versus the request arrival rate, or because of the difficulty of reaching
distributed consensus. A candidate solution should thus not only have strong
mathematical guarantees in terms of resource utilization but also be flexible and
adaptive enough to fit the IoT context. The LRU-AC, combined, for instance,
with a clever request-aware load-balancing technique, could be the foundation
for such a distributed QoS control framework.

1. M. Enguehard, Y. Desmouceaux, P. Pfister, M. Townsley, E. Vyncke. EFFICIENT
AND FLEXIBLE LOAD-BALANCING FOR CLUSTERS OF CACHES UNDER LATENCY
CONSTRAINT. USPTO Application Number 16/261,462

98 CHAPTER 5. CONCLUSION

Bibliography

[1] V. Cerf and R. Kahn, “A protocol for packet network intercommunication,”
IEEE Transactions on Communications, vol. 22, no. 5, pp. 637–648, may
1974.

[2] J. Martocci, P. D. Mil, N. Riou, and W. Vermeylen, “Building Automa-
tion Routing Requirements in Low-Power and Lossy Networks,” Internet
Requests for Comments, RFC Editor, RFC 5867, Jun. 2010.

[3] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman, “Com-
munication systems for building automation and control,” Proc. IEEE,
vol. 93, no. 6, pp. 1178–1203, jun 2005.

[4] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS:
A smart home in a box,” IEEE Computer, vol. 46, no. 7, pp. 62–69, Jul.
2013.

[5] A. Brandt, J. Buron, and G. Porcu, “Home Automation Routing Require-
ments in Low-Power and Lossy Networks,” Internet Requests for Com-
ments, RFC Editor, RFC 5826, Apr. 2010.

[6] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A zigbee-based home automation
system,” IEEE Transactions on Consumer Electronics, vol. 55, no. 2, pp.
422–430, may 2009.

[7] K. Pister, P. Thubert, S. Dwars, and T. Phinney, “Industrial Routing
Requirements in Low-Power and Lossy Networks,” Internet Requests for
Comments, RFC Editor, RFC 5673, Oct. 2009.

[8] F. De Pellegrini, D. Miorandi, S. Vitturi, and A. Zanella, “On the use
of wireless networks at low level of factory automation systems,” IEEE
Transactions on Industrial Informatics, vol. 2, no. 2, pp. 129–143, may
2006.

[9] S. hai An, B.-H. Lee, and D.-R. Shin, “A survey of intelligent transport-
ation systems,” in Proc. 3rd International Conference on Computational
Intelligence, Communication Systems and Networks. IEEE, jul 2011.

[10] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, “En-
vironmental wireless sensor networks,” Proc. IEEE, vol. 98, no. 11, pp.
1903–1917, nov 2010.

[11] A. Cocchia, “Smart and digital city: A systematic literature review,” in
Smart city. Springer, 2014, pp. 13–43.

[12] M. Dohler, T. Watteyne, T. Winter, and D. Barthel, “Routing Require-
ments for Urban Low-Power and Lossy networks,” Internet Requests for
Comments, RFC Editor, RFC 5548, May 2009.

99

100 BIBLIOGRAPHY

[13] J.-F. Balcon, “Expérimentation: Cisco mesure la fréquentation de la
place de la Nation,” http://gblogs.cisco.com/fr-smartcities/2016/03/
31/experimentation-cisco-mesure-la-frequentation-de-la-place-de-la-
nation/, Mar. 2016, consulted in Jan 2017.

[14] X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid — the new and
improved power grid: A survey,” IEEE Communications Surveys & Tu-
torials, vol. 14, no. 4, pp. 944–980, 2012.

[15] S. Abdelhamid, H. S. Hassanein, and G. Takahara, “Vehicle as a mobile
sensor,” Procedia Computer Science, vol. 34, pp. 286–295, 2014.

[16] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,”
Computer Networks, vol. 52, no. 12, pp. 2292–2330, aug 2008.

[17] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proc. 1st Edition of the Workshop on
Mobile Cloud Computing (MCC’12), 2012.

[18] J. Höller, D. Boyle, S. Karnouskos, S. Avesand, C. Mulligan, and V. Tsi-
atsis, From machine-to-machine to the internet of things. Elsevier, 2014.

[19] Cisco Virtual Networking Index, “The zettabyte era: Trends
and analysis,” 2017, [Accessed 2018/06/12]. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf

[20] U. Hunkeler, H. L. Truong, and A. Stanford-Clark, “MQTT-s – a pub-
lish/subscribe protocol for wireless sensor networks,” in Proc. 3rd Inter-
national Conference on Communication Systems Software and Middleware
and Workshops (COMSWARE’08). IEEE, jan 2008.

[21] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi,
“Toward better horizontal integration among IoT services,” IEEE Com-
munications Magazine, vol. 53, no. 9, pp. 72–79, sep 2015.

[22] R. Silva, J. S. Silva, M. Simek, and F. Boavida, “Why should multicast be
used in WSNs,” in Proc. 2008 IEEE International Symposium on Wireless
Communication Systems (ISWCS). IEEE, 2008.

[23] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT networking
via TCP/IP architecture,” Named-Data Networking Project, techreport
NDN-0038, Feb. 2016.

[24] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch, “In-
formation centric networking in the IoT: Experiments with NDN in the
wild,” in Proc. 1st international conference on Information-centric net-
working - ICN’14. New York, NY, USA: ACM, 2014, pp. 77–86.

[25] G. Montenegro, “Transmission of IPv6 packets over IEEE 802.15.4
networks,” RFC 4944, Sep. 2007. [Online]. Available: https://rfc-
editor.org/rfc/rfc4944.txt

[26] T. Watteyne, T. Winter, D. Barthel, and M. Dohler, “Routing
Requirements for Urban Low-Power and Lossy Networks,” RFC 5548,
May 2009. [Online]. Available: https://rfc-editor.org/rfc/rfc5548.txt

[27] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” RFC 6347, Jan. 2012. [Online]. Available: https://rfc-
editor.org/rfc/rfc6347.txt

http://gblogs.cisco.com/fr-smartcities/2016/03/31/experimentation-cisco-mesure-la-frequentation-de-la-place-de-la-nation/
http://gblogs.cisco.com/fr-smartcities/2016/03/31/experimentation-cisco-mesure-la-frequentation-de-la-place-de-la-nation/
http://gblogs.cisco.com/fr-smartcities/2016/03/31/experimentation-cisco-mesure-la-frequentation-de-la-place-de-la-nation/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc5548.txt
https://rfc-editor.org/rfc/rfc6347.txt
https://rfc-editor.org/rfc/rfc6347.txt

BIBLIOGRAPHY 101

[28] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available: https://rfc-
editor.org/rfc/rfc7252.txt

[29] T. Clausen, U. Herberg, and M. Philipp, “A critical evaluation of the IPv6
routing protocol for low power and lossy networks (RPL),” in Proc. 7th
International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob). IEEE, oct 2011.

[30] S. Cespedes, X. Shen, and C. Lazo, “IP mobility management for vehicular
communication networks: challenges and solutions,” IEEE Communica-
tions Magazine, vol. 49, no. 5, pp. 187–194, may 2011.

[31] M. M. Hossain, M. Fotouhi, and R. Hasan, “Towards an analysis of security
issues, challenges, and open problems in the internet of things,” in Proc.
2015 IEEE World Congress on Services. IEEE, jun 2015.

[32] M. Vucinic, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “OSCAR: Object security architecture for the internet of
things,” in Proc. 2014 IEEE International Symposium on a World of Wire-
less, Mobile and Multimedia Networks. IEEE, jun 2014.

[33] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IoT gateway: Bridging
wireless sensor networks into internet of things,” in Proc. 2010 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing. IEEE,
dec 2010.

[34] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proc. International Workshop on Managing Requirements Know-
ledge (AFIPS). ACM, Dec. 1968, pp. 267–277.

[35] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A. Molinaro, A. Iera,
R. L. Aguiar, and A. V. Vasilakos, “Information-centric networking for the
internet of things: challenges and opportunities,” IEEE Network, vol. 30,
no. 2, pp. 92–100, Mar. 2016.

[36] R. Ravindran, Y. Zhang, L. A. Grieco, A. Lindgren, J. Burke,
B. Ahlgren, and A. Azgin, “Design Considerations for Applying
ICN to IoT,” Internet Engineering Task Force, Internet-Draft draft-
irtf-icnrg-icniot-02, Oct. 2018, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icniot-02

[37] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th interna-
tional conference on Emerging networking experiments and technologies -
CoNEXT’09. ACM, 2009.

[38] L. Pouzin, “Presentation and major design aspects of the CYCLADES
computer network,” in Proc. 3rd ACM symposium on Data communica-
tions and Data networks Analysis and design - DATACOMM’73. ACM,
1973.

[39] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani, “MobilityFirst,”
ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 16, no. 3, p. 2, dec 2012.

[40] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”

https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-icniot-02

102 BIBLIOGRAPHY

ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, jul 2014.

[41] The Linux Foundation, “FD.io CICN project,” 2017. [Online]. Available:
https://wiki.fd.io/view/Cicn

[42] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (NetInf) – an information-centric net-
working architecture,” Computer Communications, vol. 36, no. 7, pp. 721–
735, apr 2013.

[43] M. Mosko, I. Solis, and C. A. Wood, “CCNx Semantics,” Internet
Engineering Task Force, Internet-Draft draft-irtf-icnrg-ccnxsemantics-10,
Jan. 2019, work in Progress. [Online]. Available: https://datatracker.ietf.
org/doc/html/draft-irtf-icnrg-ccnxsemantics-10

[44] ——, “CCNx Messages in TLV Format,” Internet Engineering Task
Force, Internet-Draft draft-irtf-icnrg-ccnxmessages-09, Jan. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-irtf-icnrg-ccnxmessages-09

[45] B. Ohlman, D. Corujo, G. Boggia, G. Tyson, E. B. Davies,
A. Molinaro, and S. Eum, “Information-Centric Networking: Baseline
Scenarios,” RFC 7476, Mar. 2015. [Online]. Available: https://rfc-
editor.org/rfc/rfc7476.txt

[46] M. Amadeo, C. Campolo, A. Molinaro, and G. Ruggeri, “Content-centric
wireless networking: A survey,” Computer Networks, vol. 72, pp. 1–13, oct
2014.

[47] S. Cirani, L. Davoli, G. Ferrari, R. Leone, P. Medagliani, M. Picone, and
L. Veltri, “A scalable and self-configuring architecture for service discovery
in the internet of things,” IEEE Internet of Things Journal, vol. 1, no. 5,
pp. 508–521, oct 2014.

[48] J. A. Khan, C. Westphal, and Y. Ghamri-Doudane, “A content-based
centrality metric for collaborative caching in information-centric fogs,” in
Proc. 2017 IFIP Networking Conference and Workshops. IEEE, Jun.
2017.

[49] O. Hahm, E. Baccelli, T. C. Schmidt, M. Wählisch, C. Adjih, and L. Mas-
soulié, “Low-power internet of things with NDN & cooperative caching,” in
Proc. 4th ACM Conference on Information-Centric Networking - ICN’17.
ACM, 2017.

[50] K. S. Prabh and T. F. Abdelzaher, “Energy-conserving data cache place-
ment in sensor networks,” ACM Transactions on Sensor Networks, vol. 1,
no. 2, pp. 178–203, nov 2005.

[51] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent advances in
information-centric networking based internet of things (ICN-IoT),” IEEE
Internet of Things Journal, pp. 1–1, 2018.

[52] I. Stojmenović and S. Olariu, “Data-centric protocols for wireless sensor
networks,” in Handbook of Sensor Networks. John Wiley & Sons, Inc.,
sep 2005, pp. 417–456.

[53] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A
scalable and robust communication paradigm for sensor networks,” in

https://wiki.fd.io/view/Cicn
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxsemantics-10
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxsemantics-10
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxmessages-09
https://datatracker.ietf.org/doc/html/draft-irtf-icnrg-ccnxmessages-09
https://rfc-editor.org/rfc/rfc7476.txt
https://rfc-editor.org/rfc/rfc7476.txt

BIBLIOGRAPHY 103

Proc. 6th annual international conference on Mobile computing and net-
working - MobiCom’00. New York, NY, USA: ACM, 2000, pp. 56–67.

[54] M. Amadeo, C. Campolo, A. Molinaro, and N. Mitton, “Named data net-
working: A natural design for data collection in wireless sensor networks,”
in Proc. 2013 IFIP Wireless Days. IEEE, nov 2013.

[55] O. Ascigil, S. Reñé, G. Xylomenos, I. Psaras, and G. Pavlou, “A keyword-
based ICN-IoT platform,” in Proc. 4th ACM Conference on Information-
Centric Networking - ICN’17. ACM, 2017.

[56] Y. Abidy, B. Saadallahy, A. Lahmadi, and O. Festor, “Named data ag-
gregation in wireless sensor networks,” in Proc. IEEE Network Operations
and Management Symposium (NOMS). IEEE, May 2014.

[57] “CCN Lite: Lightweight implementation of the content centric networking
protocol,” http://www.ccn-lite.net.

[58] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. Schmidt, “RIOT
OS: Towards an OS for the internet of things,” in Proc. 2013 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, Apr. 2013.

[59] C. Gündogan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and
M. Wählisch, “NDN, CoAP, and MQTT: A comparative measurement
study in the IoT,” in Proc. 5th ACM Conference on Information-Centric
Networking (ICN ’18). ACM, Sep. 2018.

[60] A. Banks and R. Gupta, “Mqtt version 3.1.1,” OASIS standard, 2014.
[61] N. Fotiou, H. Islam, D. Lagutin, T. Hakala, and G. C. Polyzos, “CoAP over

ICN,” in Proc. 8th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, Nov. 2016, pp. 1–4.

[62] W. Shang, A. Afanasyev, and L. Zhang, “The design and implementation
of the NDN protocol stack for RIOT-OS,” in Proc. 2016 IEEE Globecom
Workshops (GC Wkshps). IEEE, dec 2016.

[63] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,
J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named data network-
ing of things (invited paper),” in Proc. 1st International Conference on
Internet-of-Things Design and Implementation (IoTDI). IEEE, apr 2016.

[64] Z. Ren, M. A. Hail, and H. Hellbruck, “CCN-WSN - a lightweight, flex-
ible content-centric networking protocol for wireless sensor networks,” in
Proc. IEEE 18th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP’13). IEEE, Apr. 2013,
pp. 123–128.

[65] J. Pfender, A. Valera, and W. K. Seah, “Performance comparison of cach-
ing strategies for information-centric IoT,” in Proc. 5th ACM Conference
on Information-Centric Networking - ICN’18, 2018.

[66] L. M. J.S.M., V. Lokesh, and G. C. Polyzos, “Energy efficient context
based forwarding strategy in named data networking of things,” in Proc.
2016 conference on 3rd ACM Conference on Information-Centric Net-
working - ACM-ICN ’16. ACM, 2016.

[67] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Secure sensing over named
data networking,” in Proc. 13th International Symposium on Network
Computing and Applications. IEEE, Aug. 2014, pp. 175–180.

http://www.ccn-lite.net

104 BIBLIOGRAPHY

[68] A. Compagno, M. Conti, and R. Droms, “OnboardICNg: a secure protocol
for on-boarding IoT devices in ICN,” in Proc. 2016 conference on 3rd ACM
Conference on Information-Centric Networking - ACM-ICN’16. New
York, NY, USA: ACM, Sep. 2016, pp. 166–175.

[69] T. Mick, R. Tourani, and S. Misra, “LASeR: Lightweight authentication
and secured routing for NDN IoT in smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 755–764, apr 2018.

[70] J. A. Khan, C. Westphal, and Y. Ghamri-Doudane, “A popularity-aware
centrality metric for content placement in information centric networks,”
in Proc. 2018 International Conference on Computing, Networking and
Communications (ICNC). IEEE, mar 2018.

[71] M. Wang, J. Wu, G. Li, J. Li, and Q. Li, “Fog computing based content-
aware taxonomy for caching optimization in information-centric net-
works,” in Proc. 2017 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, may 2017.

[72] M. Sifalakis, B. Kohler, C. Christopher, and C. Tschudin, “An information
centric network for computing the distribution of computations,” in Proc.
1st international conference on Information-centric networking - ICN ’14.
ACM, 2014.

[73] M. J. Fischer, “Lambda-calculus schemata,” LISP and Symbolic Compu-
tation, vol. 6, no. 3-4, pp. 259–287, nov 1993.

[74] M. Król and I. Psaras, “NFaaS: : named function as a service,” in Proc. 4th
ACM Conference on Information-Centric Networking - ICN’17. ACM,
2017.

[75] C. Scherb, D. Grewe, M. Wagner, and C. Tschudin, “Resolution strategies
for networking the IoT at the edge via named functions,” in Proc.
15th IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE, jan 2018.

[76] W. Shang, Z. Wang, A. Afanasyev, J. Burke, and L. Zhang, “Breaking
out of the cloud: Local trust management and rendezvous in named data
networking of things,” in Proc. 2nd International Conference on Internet-
of-Things Design and Implementation - IoTDI’17. IEEE, 2017.

[77] S. S. Adhatarao, M. Arumaithurai, and X. Fu, “FOGG: A fog computing
based gateway to integrate sensor networks to internet,” in Proc. 29th
International Teletraffic Congress (ITC 29). IEEE, sep 2017.

[78] J. Wu, M. Dong, K. Ota, J. Li, and Z. Guan, “FCSS: Fog computing
based content-aware filtering for security services in information centric
social networks,” IEEE Transactions on Emerging Topics in Computing,
pp. 1–1, 2017.

[79] D. Nguyen, Z. Shen, J. Jin, and A. Tagami, “ICN-fog: An information-
centric fog-to-fog architecture for data communications,” in Proc. 2017
IEEE Global Communications Conference (GLOBECOM 2017). IEEE,
dec 2017.

[80] M. Chen, “NDNC-BAN: Supporting rich media healthcare services via
named data networking in cloud-assisted wireless body area networks,”
Information Sciences, vol. 284, pp. 142–156, Nov. 2014.

BIBLIOGRAPHY 105

[81] H. Zhang, Z. Wang, C. Scherb, C. Marxer, J. Burke, L. Zhang, and
C. Tschudin, “Sharing mHealth data via named data networking,” in
Proc. 2016 conference on 3rd ACM Conference on Information-Centric
Networking - ACM-ICN ’16. ACM, 2016.

[82] D. Saxena and V. Raychoudhury, “Design and verification of an NDN-
based safety-critical application: A case study with smart healthcare,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–
15, 2017.

[83] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Information centric
networking in IoT scenarios: The case of a smart home,” in Proc. 2015
IEEE International Conference on Communications (ICC). IEEE, jun
2015, pp. 648–653.

[84] U. D. Silva, A. Lertsinsrubtavee, A. Sathiaseelan, and K. Kanchanasut,
“Named data networking based smart home lighting,” in Proc. ACM Con-
ference on Special Interest Group on Data Communication - - SIGCOMM
’16. ACM, 2016.

[85] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Secur-
ing building management systems using named data networking,” IEEE
Network, vol. 28, no. 3, pp. 50–56, May 2014.

[86] G. Piro, I. Cianci, L. A. Grieco, G. Boggia, and G. Camarda, “Information
centric services in smart cities,” Journal of Systems and Software, vol. 88,
pp. 169–188, Feb. 2014.

[87] H. Yue, L. Guo, R. Li, H. Asaeda, and Y. Fang, “DataClouds: Enabling
community-based data-centric services over the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 5, pp. 472–482, oct 2014.

[88] S. H. Bouk, S. H. Ahmed, D. Kim, and H. Song, “Named-data-networking-
based ITS for smart cities,” IEEE Communications Magazine, vol. 55,
no. 1, pp. 105–111, jan 2017.

[89] M. Amadeo, C. Campolo, and A. Molinaro, “Information-centric network-
ing for connected vehicles: a survey and future perspectives,” IEEE Com-
munications Magazine, vol. 54, no. 2, pp. 98–104, Feb. 2016.

[90] Z. Yan, S. Zeadally, and Y.-J. Park, “A novel vehicular information net-
work architecture based on named data networking (NDN),” IEEE Inter-
net of Things Journal, vol. 1, no. 6, pp. 525–532, Dec. 2014.

[91] G. Grassi, D. Pesavento, G. Pau, L. Zhang, and S. Fdida, “Navigo: In-
terest forwarding by geolocations in vehicular named data networking,” in
Proc. 16th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). Boston, MA, USA: IEEE, jun 2015.

[92] P. H. Stott, “The UTM grid reference system.” IA. The Journal of the
Society for Industrial Archeology, vol. 3, no. 1, pp. 1–14, 1977.

[93] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “Scaling NDN
routing: Old tale, new design,” NDN Project, techreport NDN-0004, 2013.

[94] H. Yuan, T. Song, and P. Crowley, “Scalable NDN forwarding: Concepts,
issues and principles,” in Proc. 21st International Conference on Computer
Communications and Networks (ICCCN). IEEE, jul 2012.

106 BIBLIOGRAPHY

[95] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, apr 2013.

[96] H. B. Abraham and P. Crowley, “Forwarding strategies for applications in
named data networking,” in Proc. 2016 Symposium on Architectures for
Networking and Communications Systems - ANCS’16. ACM, 2016.

[97] M. Enguehard, Y. Desmouceaux, and G. Carofiglio, “Efficient latency con-
trol in Fog deployments via hardware-accelerated popularity estimation,”
2019, under review.

[98] M. Enguehard, R. E. Droms, and D. Rossi, “On the cost of geographic
forwarding for information-centric things,” IEEE Transactions on Green
Communications and Networking, vol. 2, no. 4, pp. 1150–1163, Dec. 2018.

[99] Y. Desmouceaux, M. Enguehard, V. Nguyen, P. Pfister, W. Shao, and
É. Vyncke, “A content-aware data-plane for scalable video delivery,” in
Proc. 16th IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2019.

[100] M. Enguehard, G. Carofiglio, and D. Rossi, “A popularity-based approach
for effective cloud offload in fog deployments,” in Proc. 30th International
Teletraffic Congress (ITC 30). Vienna, Austria: IEEE, Sep. 2018.

[101] M. Sardara, L. Muscariello, J. Augé, M. Enguehard, A. Compagno, and
G. Carofiglio, “Virtualized ICN (vICN): towards a unified network virtu-
alization framework for ICN experimentation,” in Proc. 4th ACM Con-
ference on Information-Centric Networking - ICN’17. ACM, 2017, pp.
109–115.

[102] M. Enguehard, R. Droms, and D. Rossi, “SLICT: Secure localized inform-
ation centric things,” in Proc. 2016 conference on 3rd ACM Conference on
Information-Centric Networking - ACM-ICN ’16 (IC5G workshop). New
York, NY, USA: ACM, 2016, pp. 255–260.

[103] ——, “Poster: On the cost of secure association of information centric
things,” in Proc. 2016 conference on 3rd ACM Conference on Information-
Centric Networking - ICN’16. New York, NY, USA: ACM, 2016, pp.
207–208.

[104] J. Augé, G. Carofiglio, M. Enguehard, L. Muscariello, and M. Sardara,
“Simple and efficient ICN network virtualization with vICN,” in Proc. 4th
ACM Conference on Information-Centric Networking - ICN ’17. ACM,
2017.

[105] J. Augé and M. Enguehard, “A network protocol for distributed orches-
tration using intent-based forwarding,” in Proc. 16th IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM) - Demon-
stration Session, Apr. 2019.

[106] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proc. 5th annual ACM/IEEE
international conference on Mobile computing and networking - MobiCom
’99. ACM, 1999.

[107] D. Chen and P. Varshney, “A survey of void handling techniques for geo-
graphic routing in wireless networks,” IEEE Communications Surveys &
Tutorials, vol. 9, no. 1, pp. 50–67, 2007.

BIBLIOGRAPHY 107

[108] B. Karp and H. T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. 6th annual international conference on Mobile
computing and networking - MobiCom’00. New York, NY, USA: ACM,
2000, pp. 243–254.

[109] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 720–734, Oct. 2016.

[110] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler,
“An analysis of a large scale habitat monitoring application,” in Proc.
2nd international conference on Embedded networked sensor systems -
SenSys’04. New York, NY, USA: ACM, 2004, pp. 214–226.

[111] A. Rowe, M. E. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. H.
Garrett, J. M. F. Moura, and L. Soibelman, “Sensor andrew: Large-scale
campus-wide sensing and actuation,” IBM Journal of Research and De-
velopment, vol. 55, no. 1.2, pp. 6:1–6:14, jan 2011.

[112] M. Amadeo, O. Briante, C. Campolo, A. Molinaro, and G. Ruggeri,
“Information-centric networking for m2m communications: Design and
deployment,” Computer Communications, vol. 89-90, pp. 105–116, Sep.
2016.

[113] Mairie de Paris, “Paris data,” https://opendata.paris.fr.
[114] H. Tschofenig and M. Pegourie-Gonnard, “Performance of state-of-the-art

cryptographyon ARM-based microprocessors,” NIST Lightweight Crypto-
graphy Workshop 2015, Jul. 2015.

[115] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246, Aug. 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5246.txt

[116] G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira, “On the
energy cost of communication and cryptography in wireless sensor net-
works,” in Proc. 2008 IEEE International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob). IEEE,
oct 2008, pp. 580–585.

[117] J. Lee, K. Kapitanova, and S. H. Son, “The price of security in wireless
sensor networks,” Computer Networks, vol. 54, no. 17, pp. 2967–2978, dec
2010.

[118] H. Shafagh, A. Hithnawi, A. Droescher, S. Duquennoy, and W. Hu, “Talos:
Encrypted query processing for the Internet of Things,” in Proc. 13th ACM
Conference on Embedded Networked Sensor Systems - SenSys’15. New
York, NY, USA: ACM, 2015, pp. 197–210.

[119] C. Tsilopoulos and G. Xylomenos, “Supporting diverse traffic types in
information centric networks,” in Proc. ACM SIGCOMM workshop on
Information-centric networking - ICN’11. New York, NY, USA: ACM,
2011, pp. 13–18.

[120] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive for-
warding in named data networking,” ACM SIGCOMM Computer Com-
munication Review, vol. 42, no. 3, p. 62, jun 2012.

[121] G. Carofiglio, M. Gallo, and L. Muscariello, “Optimal multipath con-
gestion control and request forwarding in information-centric networks:

https://opendata.paris.fr
https://rfc-editor.org/rfc/rfc5246.txt

108 BIBLIOGRAPHY

Protocol design and experimentation,” Computer Networks, vol. 110, pp.
104–117, dec 2016.

[122] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS in named
data networking,” in 22nd International Conference on Computer Com-
munication and Networks (ICCCN). IEEE, jul 2013.

[123] W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861, Sep. 2007. [Online].
Available: https://rfc-editor.org/rfc/rfc4861.txt

[124] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor
networks: a survey,” IEEE Wireless Communications, vol. 11, no. 6, pp.
6–28, Dec. 2004.

[125] M. Amadeo, C. Campolo, and A. Molinaro, “Multi-source data retrieval in
IoT via named data networking,” in Proc. 1st international conference on
Information-centric networking - ICN ’14. New York, NY, USA: ACM,
2014, pp. 67–76.

[126] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric ad-hoc
routing: Of theory and practice,” in Proc. 22nd annual symposium on
Principles of distributed computing - PODC’03. New York, NY, USA:
ACM, 2003, pp. 63–72.

[127] M. Heissenbüttel, T. Braun, T. Bernoulli, and M. Wälchli, “BLR: beacon-
less routing algorithm for mobile ad hoc networks,” Computer Communic-
ations, vol. 27, no. 11, pp. 1076–1086, jul 2004, applications and Services
in Wireless Networks.

[128] J. A. Sanchez, R. Marin-Perez, and P. M. Ruiz, “BOSS: Beacon-less on
demand strategy for geographic routing in wireless sensor networks,” in
Proc. 2007 IEEE Internatonal Conference on Mobile Adhoc and Sensor
Systems (MobHoc). IEEE, oct 2007, pp. 1–10.

[129] L. Wang, O. Waltari, and J. Kangasharju, “MobiCCN: Mobility support
with greedy routing in content-centric networks,” in Proc. 2013 IEEE
Global Communications Conference (GLOBECOM). IEEE, dec 2013,
pp. 2069–2075.

[130] D. Pesavento, G. Grassi, C. E. Palazzi, and G. Pau, “A naming scheme to
represent geographic areas in NDN,” in Proc. 2013 IFIP Wireless Days,
Nov. 2013, pp. 1–3.

[131] H. Ma, L. Liu, A. Zhou, and D. Zhao, “On networking of internet of
things: Explorations and challenges,” IEEE Internet of Things Journal,
vol. 3, no. 4, pp. 441–452, Aug. 2016.

[132] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in Proc. 29th Annual IEEE
International Conference on Local Computer Networks. IEEE (Comput.
Soc.), Nov. 2004, pp. 455–462.

[133] M. Enguehard, “marceleng/geographic-icthings: Code for the paper:
On the cost of geographic forwarding for information centric things,”
https://github.com/marceleng/geographic-icthings, Apr. 2018.

[134] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in named
data networking for the wireless internet of things,” in Proc. 2015 Inter-
national Conference on Recent Advances in Internet of Things (RIoT).
IEEE, apr 2015, pp. 1–6.

https://rfc-editor.org/rfc/rfc4861.txt

BIBLIOGRAPHY 109

[135] C. Anastasiades, J. Weber, and T. Braun, “Dynamic unicast: Information-
centric multi-hop routing for mobile ad-hoc networks,” Computer Net-
works, vol. 107, pp. 208–219, oct 2016.

[136] M. Amadeo, C. Campolo, A. Iera, and A. Molinaro, “Named data net-
working for IoT: An architectural perspective,” in Proc. 2014 European
Conference on Networks and Communications (EuCNC). IEEE, Jun.
2014.

[137] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying for flooding
broadcast messages in mobile wireless networks,” in Proc. 35th Annual
Hawaii International Conference on System Sciences, Jan. 2002, pp. 3866–
3875.

[138] CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz
IEEE 802.15.4, 6LoWPAN, and ZigBee R© Applications, Texas Instrument,
Dec. 2012, revised April 2015.

[139] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: Open-
source prototyping platform for the industrial IoT,” in Proc. International
Conference on Ad Hoc Networks. Springer, 2015, pp. 211–222.

[140] M. Mosko and C. Tschudin, “CCN and NDN TLV encodings in
802.15.4 packets,” https://www.ietf.org/mail-archive/web/icnrg/current/
pdfs9ieLPWcJI.pdf, Jan. 2015, consulted on March 17, 2017.

[141] PARC, “The CCNx project,” https://blogs.parc.com/ccnx/.
[142] O. Hahm, E. Baccelli, T. C. Schmidt, M. Wahlisch, and C. Adjih, “A

named data network approach to energy efficiency in IoT,” in Proc. 2016
IEEE Globecom Workshops. IEEE, dec 2016.

[143] K. Roussel, Y.-Q. Song, and O. Zendra, “Using Cooja for WSN simula-
tions: Some new uses and limits,” in Proc. 2016 International Conference
on Embedded Wireless Systems and Networks (EWSN’16). USA: Junc-
tion Publishing, 2016, pp. 319–324.

[144] S. Pollin, M. Ergen, S. C. Ergen, B. Bougard, L. V. D. Perre, I. Moerman,
A. Bahai, P. Varaiya, and F. Catthoor, “Performance analysis of slotted
carrier sense ieee 802.15.4 medium access layer,” IEEE Transactions on
Wireless Communications, vol. 7, no. 9, pp. 3359–3371, Sep. 2008.

[145] K. Nisimova, “Energy of a 1.5 V battery,” http://hypertextbook.com/
facts/2001/KhalidaNisimova.shtml, consulted on 20 April 2017.

[146] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kolde-
hofe, “Mobile fog: A programming model for large-scale applications on
the internet of things,” in Proc. 2nd ACM SIGCOMM workshop on Mobile
cloud computing - MCC’13. ACM, 2013.

[147] Z. Chen, R. Klatzky, D. Siewiorek, M. Satyanarayanan, W. Hu, J. Wang,
S. Zhao, B. Amos, G. Wu, K. Ha, K. Elgazzar, and P. Pillai, “An empirical
study of latency in an emerging class of edge computing applications for
wearable cognitive assistance,” in Proc. 2nd ACM/IEEE Symposium on
Edge Computing (SEC’17). ACM, 2017.

[148] “Aws greengrass,” https://aws.amazon.com/greengrass.
[149] Y. Niu, F. Liu, X. Fei, and B. Li, “Handling flash deals with soft guarantee

in hybrid cloud,” in Proc. 2017 IEEE Conference on Computer Commu-
nications (INFOCOM 2017). IEEE, may 2017.

https://www.ietf.org/mail-archive/web/icnrg/current/pdfs9ieLPWcJI.pdf
https://www.ietf.org/mail-archive/web/icnrg/current/pdfs9ieLPWcJI.pdf
https://blogs.parc.com/ccnx/
http://hypertextbook.com/facts/2001/KhalidaNisimova.shtml
http://hypertextbook.com/facts/2001/KhalidaNisimova.shtml

110 BIBLIOGRAPHY

[150] J. Du, L. Zhao, J. Feng, and X. Chu, “Computation offloading and resource
allocation in mixed fog/cloud computing systems with min-max fairness
guarantee,” IEEE Transactions on Communications, vol. 66, no. 4, pp.
1594–1608, apr 2018.

[151] M. Blott, K. Karras, L. Liu, K. A. Vissers, J. Bär, and Z. István, “Achiev-
ing 10Gbps line-rate key-value stores with FPGAs.” in Proc. 5th USENIX
Workshopon Hot Topics in Cloud Computing (HotCloud’13), 2013.

[152] M. Yoon, “Aging bloom filter with two active buffers for dynamic sets,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 1,
pp. 134–138, jan 2010.

[153] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, “Net-
FPGA SUME: Toward 100 gbps as research commodity,” IEEE Micro,
vol. 34, no. 5, pp. 32–41, sep 2014.

[154] L. Muscariello, G. Carofiglio, J. Auge, and M. Papalini, “Hybrid
Information-Centric Networking,” Internet Engineering Task Force,
Internet-Draft draft-muscariello-intarea-hicn-01, Dec. 2018, work in Pro-
gress.

[155] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, and A. Vahdat,
“P4: Programming protocol-independent packet processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, jul
2014.

[156] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet ap-
plication deadlines in cloud workflows,” in Proc. 2011 International Con-
ference for High Performance Computing, Networking, Storage and Ana-
lysis - SC’11. ACM, 2011.

[157] T. Janaszka, D. Bursztynowski, and M. Dzida, “On popularity-based load
balancing in content networks,” in Proc. 24th International Teletraffic
Congress, 2012, p. 12.

[158] G. Carofiglio, L. Mekinda, and L. Muscariello, “FOCAL: Forwarding
and caching with latency awareness in information-centric networking,”
in Proc. 2015 IEEE Globecom Workshops. IEEE, dec 2015, pp. 1–7.

[159] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web cach-
ing and zipf-like distributions: evidence and implications,” in Proc. 18th
IEEE Conference on Computer Communications (INFOCOM ’99), vol. 1.
IEEE, 1999.

[160] C. Imbrenda, L. Muscariello, and D. Rossi, “Analyzing cacheable traffic in
isp access networks for micro cdn applications via content-centric network-
ing,” in Proc. 1st international conference on Information-centric network-
ing - ICN ’14. ACM, 2014.

[161] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Nic-
colini, “Temporal locality in today’s content caching: why it matters and
how to model it,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 5, pp. 5–12, nov 2013.

[162] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “An
analytical model for multi-tier internet services and its applications,” ACM

BIBLIOGRAPHY 111

SIGMETRICS Performance Evaluation Review, vol. 33, no. 1, p. 291, jun
2005.

[163] M. Nabe, M. Murata, and H. Miyahara, “Analysis and modeling of world
wide web traffic for capacity dimensioning of internet access lines,” Per-
formance Evaluation, vol. 34, no. 4, pp. 249–271, dec 1998.

[164] J. Boyer, F. Guillemin, P. Robert, and B. Zwart, “Heavy tailed m/g/1-
PS queues with impatience and admission control in packet networks,” in
Proc. 22nd IEEE Conference on Computer Communications (INFOCOM
2003), vol. 1. IEEE, 2003.

[165] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: mod-
eling, design and experimental results,” IEEE Journal on Selected Areas
in Communications, vol. 20, no. 7, pp. 1305–1314, sep 2002.

[166] F. P. Kelly, Reversibility and stochastic networks. Cambridge University
Press, 2011.

[167] G. F. Newell, “The M/G/∞ queue,” Journal on Applied Mathematic,
vol. 14, no. 1, 1966.

[168] D. Shasha and T. Johnson, “2q: A low overhead high performance buffer
management replacement algoritm,” in Proc. 20th International Confer-
ence on Very Large Databases, 1994.

[169] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to the
performance analysis of caching systems,” ACM Transactions on Modeling
and Performance Evaluation of Computing Systems, vol. 1, no. 3, pp. 1–
28, may 2016.

[170] K. Svanberg, “The method of moving asymptotes – a new method for
structural optimization,” International Journal for Numerical Methods in
Engineering, vol. 24, no. 2, pp. 359–373, feb 1987.

[171] S. G. Johnson, “The NLopt nonlinear-optimization package,” http://ab-
initio.mit.edu/nlopt.

[172] M. Enguehard and Y. Desmouceaux, “marceleng/queueing-
network-simulator: a simulator for queueing networks,”
https://github.com/marceleng/queueing-network-simulator, Jan 2019.

[173] J.-L. Brelet, “Using block ram for high performance read/write cams,”
Xilinx Inc., Application Notes, 2000.

[174] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood, “Deep
packet inspection using parallel bloom filters,” IEEE Micro, vol. 24, no. 1,
pp. 52–61, jan 2004.

[175] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash table
lookup using extended bloom filter: an aid to network processing,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 4, pp. 181–192,
2005.

[176] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 lookups using
distributed and load balanced Bloom filters for 100Gbps core router line
cards,” in Proc. 28th IEEE Conference on Computer Communications
(INFOCOM 2009). IEEE, apr 2009, pp. 2518–2526.

112 BIBLIOGRAPHY

[177] M. Yu, A. Fabrikant, and J. Rexford, “BUFFALO: Bloom filter forward-
ing architecture for large organizations,” in Proc. 5th international confer-
ence on Emerging networking experiments and technologies - CoNEXT’09.
ACM, 2009, pp. 313–324.

[178] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approxim-
ation for LRU cache performance,” in Proc. 24th International Teletraffic
Congress, 2012, p. 8.

[179] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of information-
centric networking research,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 2, pp. 1024–1049, Jul. 2014.

[180] P4.org, “P4 → NetFPGA: A low-cost solution for testing P4 pro-
grams in hardware,” https://p4.org/p4/p4-netfpga-a-low-cost-solution-
for-testing-p4-programs-in-hardware.html, Oct. 2017.

[181] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrish-
nan, G. Varghese, N. McKeown, and S. Licking, “Packet transactions:
High-level programming for line-rate switches,” in Proc. ACM Confer-
ence on Special Interest Group on Data Communication - SIGCOMM’16.
ACM, 2016, pp. 15–28.

[182] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen, “A re-
liable randomized algorithm for the closest-pair problem,” Journal of Al-
gorithms, vol. 25, no. 1, pp. 19–51, oct 1997.

[183] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing – a key technology towards 5g,” ETSI white paper, 2015.

[184] M. Malawski, K. Figiela, and J. Nabrzyski, “Cost minimization for compu-
tational applications on hybrid cloud infrastructures,” Future Generation
Computer Systems, vol. 29, no. 7, pp. 1786–1794, Sep. 2013.

[185] H. Kim and N. Feamster, “Improving network management with software
defined networking,” IEEE Communications Magazine, vol. 51, no. 2, pp.
114–119, feb 2013.

[186] “The OpenStack foundation,” https://www.openstack.org/.
[187] “Kubenetes: Production-grade container orchestration,” https://

kubernetes.io/.
[188] A. Lerner, J. Skorupa, and S. Ganguli, “Innovation insight: Intent-based

networking systems,” Gartner, Tech. Rep., 2017.
[189] P. A. Aranda Gutiérrez and D. R. López, “Fighting your way through the

jungle of intent,” IEEE Softwarization, Sep. 2016.
[190] “Networking on a new level,” MIT Technology Review, Nov. 2017.
[191] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba,

F. Estrada-Solano, and O. M. Caicedo, “Machine learning for cognitive
network management,” IEEE Communications Magazine, vol. 56, no. 1,
pp. 158–165, jan 2018.

[192] “Future internet research and experimentation,” https://www.ict-fire.eu.
[193] C. M. Cabral, C. E. Rothenberg, and M. F. Magalhães, “Mini-CCNx: Fast

prototyping for named data networking,” in Proc. 3rd ACM SIGCOMM
workshop on Information-centric networking - ICN ’13. ACM, 2013, pp.
33–34.

https://p4.org/p4/p4-netfpga-a-low-cost-solution-for-testing-p4-programs-in-hardware.html
https://p4.org/p4/p4-netfpga-a-low-cost-solution-for-testing-p4-programs-in-hardware.html
https://www.openstack.org/
https://kubernetes.io/
https://kubernetes.io/
https://www.ict-fire.eu

BIBLIOGRAPHY 113

[194] The Linux Foundation, “Virtualized ICN,” https://wiki.fd.io/view/vicn.
[195] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, “In-

formation centric networking over SDN and OpenFlow: Architectural
aspects and experiments on the OFELIA testbed,” Computer Networks,
vol. 57, no. 16, pp. 3207–3221, Nov. 2013.

[196] R. Ravindran, A. Chakraborti, S. O. Amin, A. Azgin, and G. Wang,
“5g-ICN: Delivering ICN services over 5g using network slicing,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 101–107, may 2017.

[197] “Mininet,” http://mininet.org/.
[198] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,

K. Webb, and J. Lepreau, “Large-scale virtualization in the Emulab net-
work testbed,” in USENIX 2008 Annual Technical Conference (ATC).
Berkeley, CA, USA: USENIX Association, 2008, pp. 113–128.

[199] M. Lacage, M. Ferrari, M. Hansen, T. Turletti, and W. Dabbous, “NEPI:
using independent simulators, emulators, and testbeds for easy experi-
mentation,” ACM SIGOPS Operating Systems Review, vol. 43, no. 4, pp.
60–65, jan 2010.

[200] The Linux Foundation, “OpenStack Chef,” https://wiki.openstack.org/
wiki/Chef, 2017.

[201] “Puppet openstack,” https://wiki.openstack.org/wiki/Puppet.
[202] E. T. S. Institute, “Network functions virtualisation (NFV); management

and orchestration,” European Telecommunications Standards Institute
(ETSI), Tech. Rep. GS NFV-MAN 001, 2014.

[203] S. Hares, “Intent-Based Nemo Overview,” Internet Engineering Task
Force, Internet-Draft draft-hares-ibnemo-overview-01, Oct. 2015, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-hares-ibnemo-overview-01

[204] C. Prakash, Y. Zhang, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Baner-
jee, C. Clark, Y. Ma, and P. Sharma, “PGA: Using graphs to express and
automatically reconcile network policies,” in Proc. ACM Conference on
Special Interest Group on Data Communication - SIGCOMM’15. ACM,
2015.

[205] M. Bjorklund, “The YANG 1.1 Data Modeling Language,” RFC 7950,
Aug. 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt

[206] C. J. Date and H. Darwen, Foundation for object/relational databases: the
third manifesto. Addison-Wesley Professional, 1998.

[207] J. Paredaens, “On the expressive power of the relational algebra,” Inform-
ation Processing Letters, vol. 7, no. 2, pp. 107–111, Feb. 1978.

[208] S. Kuryla, B. Linowski, and M. Ersue, “Extending YANG with
Language Abstractions,” RFC 6095, Mar. 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6095.txt

[209] A. Brown, The architecture of open source applications (SQLAlchemy).
Kristian Hermansen, 2012, vol. 2.

[210] “The Network Simulator version 3,” https://www.nsnam.org/.
[211] A. K. Mackworth, “The logic of constraint satisfaction,” Artificial Intelli-

gence, vol. 58, no. 1-3, pp. 3–20, dec 1992.

https://wiki.fd.io/view/vicn
http://mininet.org/
https://wiki.openstack.org/wiki/Chef
https://wiki.openstack.org/wiki/Chef
https://wiki.openstack.org/wiki/Puppet
https://datatracker.ietf.org/doc/html/draft-hares-ibnemo-overview-01
https://datatracker.ietf.org/doc/html/draft-hares-ibnemo-overview-01
https://rfc-editor.org/rfc/rfc7950.txt
https://rfc-editor.org/rfc/rfc6095.txt
https://www.nsnam.org/

114 BIBLIOGRAPHY

[212] O. Sinnen, Task scheduling for parallel systems. John Wiley & Sons,
2007, vol. 60.

[213] R. Sakellariou and H. Zhao, “A hybrid heuristic for DAG scheduling on
heterogeneous systems,” in Proc. 18th International Parallel and Distrib-
uted Processing Symposium, 2004. IEEE, 2004, p. 111.

[214] The Linux Foundation, “Vector Packet Processing - Fast Data I/O,” https:
//wiki.fd.io/view/VPP/.

[215] “Linux containers,” https://linuxcontainers.org/.
[216] The Linux Foundation, “Open vSwitch,” http://openvswitch.org/, 2017.
[217] “Heat - OpenStack,” https://wiki.openstack.org/Heat.
[218] “Boulder - Open Networking Foundation,” https://www.opennetworking.

org/incubator-projects/boulder/.
[219] R. Kofman, “OpenStack hardware requirements and capacity planning:

Servers, CPU and RAM,” https://www.stratoscale.com/blog/openstack/
openstack-hardware-requirements-and-capacity-planning-servers-cpu-
and-ram-part-1/, 2018.

[220] R. Enns, M. Bjorklund, A. Bierman, and J. Schönwälder, “Network
Configuration Protocol (NETCONF),” RFC 6241, Jun. 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6241.txt

[221] N. Alon and R. Yuster, “Fast algorithms for maximum subset matching
and all-pairs shortest paths in graphs with a (not so) small vertex cover,”
in Proc. European Symposium on Algorithms (ESA 2007). Springer Berlin
Heidelberg, 2007, pp. 175–186.

[222] D. Rogora, M. Papalini, K. Khazaei, A. Margara, A. Carzaniga, and
G. Cugola, “High-throughput subset matching on commodity gpu-based
systems,” in Proc. 12th European Conference on Computer Systems
(EUROSYS’17). ACM, 2017, pp. 513–526.

[223] A. Kumar, J. Xu, and E. W. Zegura, “Efficient and scalable query routing
for unstructured peer-to-peer networks,” in Proc. 24th IEEE Conference
on Computer Communications (INFOCOM 2005), vol. 2. IEEE, 2005,
pp. 1162–1173.

[224] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica, “Querying the internet with PIER,” in Proc. 29th international
conference on very large data bases. Elsevier, 2003, pp. 321–332.

[225] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and T. Watteyne,
“FIT IoT-LAB: A large scale open experimental IoT testbed,” in Proc.
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT). IEEE,
Dec. 2015.

[226] W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao, “Resilient routing
for sensor networks using hyperbolic embedding of universal covering
space,” in Proc. 29th IEEE Conference on Computer Communications
(INFOCOM 2010). IEEE, mar 2010, pp. 1–9.

[227] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov,
and L. Wang, “An experimental investigation of hyperbolic routing with a
smart forwarding plane in NDN,” in Proc. 24th IEEE/ACM International
Symposium on Quality of Service (IWQoS). IEEE, jun 2016.

https://wiki.fd.io/view/VPP/
https://wiki.fd.io/view/VPP/
https://linuxcontainers.org/
http://openvswitch.org/
https://wiki.openstack.org/Heat
https://www.opennetworking.org/incubator-projects/boulder/
https://www.opennetworking.org/incubator-projects/boulder/
https://www.stratoscale.com/blog/openstack/openstack-hardware-requirements-and-capacity-planning-servers-cpu-and-ram-part-1/
https://www.stratoscale.com/blog/openstack/openstack-hardware-requirements-and-capacity-planning-servers-cpu-and-ram-part-1/
https://www.stratoscale.com/blog/openstack/openstack-hardware-requirements-and-capacity-planning-servers-cpu-and-ram-part-1/
https://rfc-editor.org/rfc/rfc6241.txt

BIBLIOGRAPHY 115

[228] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The
internet topology zoo,” IEEE Journal on Selected Areas in Communica-
tions, vol. 29, no. 9, pp. 1765–1775, oct 2011.

[229] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized
algorithms and probabilistic analysis. Cambridge university press, 2005.

116 BIBLIOGRAPHY

Appendix A

Appendix of Chapter 3

A.1 Computing the Fog hit rate for the LRU-AC

As explained in Sec. IV.D of [169], our method to compute the cache hit
rate in the Fog assumes independence between the arrivals at the filter and
at the Fog cache. To remove that assumption, we can consider the Discrete
Time Markov Chain (DTMC) presented in Fig. 4 of [169] (and summarized in
Figure A.1). It represents the presence of a given piece of content in the filter
and in the cache at the time of arrival of a request for said content. In particular,
an unwritten assumption of the model in [169] is that the characteristic time
t1 of the filter is smaller than the characteristic time t2 of the cache (t1 < t2).
Thus, qa = 1 − e−t1q(n) is the probability that the inter-arrival time is smaller
than t1; qb = e−t2q(n) is the probability that the inter-arrival time is bigger than
t2; qc = 1− (qa + qb) is the probability that the inter-arrival time is bigger than
t1 but smaller than t2.

We can now predict the Fog hit rate using the balance equations for the given
chain. Note that compared to [169], the hit probability is only derived from the
probability p(1,1) of being in the state (1, 1) (when the content is in both the
filter and the cache), whereas for the LRU-2Q case the state (0, 1) (where the
content is only available in the cache) also leads to a hit. In particular, the Fog
hit probability for content r reads:

hf (r) =
q2a

qa + qb

Furthermore, t2 can be computed by resolving the following equation:

sf =
∑
r

(
p(0,1)(r) + p(1,1)(r)

)
=
∑
r

(
1− (1 + qa)qb

qa + qb

)

A.2 Proof of Equation (3.6)

For i ∈ {1, . . . , R}, let Y ki the random variable whose value is 1 if content
i has been drawn from the catalogue after k steps and 0 otherwise. Y ki is a
Bernoulli variable with parameter 1 − (1 − q(i))k, and by definition, |A1(k)| =

117

118 APPENDIX A. APPENDIX OF CHAPTER 3

0, 0 1, 0

1, 10, 1

qa

1− qa

qb

qa

qc

qa

qc

qb

qc

qa

qb

Figure A.1 – Discrete Time Markov Chain for the filter-cache interaction in the
Fog (Fig. 4 of [169]). Each state correspond to content presence in the filter
(first coordinate) and the Fog cache (second coordinate).

∑R
i=1 Y

k
i (as long as A1 has not been reset). Let K1 be the random variable

giving the time necessary to fill the filter:

K1 = min{k : |A1(k)| ≥ na}

and let k̂1 = f−1(na). We want to show that K1 is close to k̂1, with high
probability. More precisely, let ε > 0, we want to find κ such that:

P
[
|K1 − k̂1| ≥ κ

]
≤ 2

Rε

According to Chernoff bounds [229], we know that
∑R
i=1 Y

k
i is close to

E[
∑R
i=1 Y

k
i] with high probability. Precisely, for γ ∈ (0, 1]:

P [|A1(k)| ≥ (1 + γ)f(k)] ≤ exp(−γ2f(k)/3) (A.1)

P [|A1(k)| ≤ (1− γ)f(k)] ≤ exp(−γ2f(k)/2) (A.2)

Let κ1 be such that:(
f(k̂1)

f(k̂1 − κ1)
− 1

)2
f(k̂1 − κ1)

3
≥ ε logR (A.3)

Then, with γ = f(k̂1)

f(k̂1−κ1)
− 1 and k = k̂1 − κ1 in Equation (A.1), we obtain:

P[K1 ≤ k̂1 − κ1] = P[|A1(k̂1 − κ1)| ≥ na]

= P|A1(k̂1 − κ1)| ≥ (1 + γ)f(k̂1 − κ1)|]
≤ exp(−γ2f(k̂1 − κ1)/3)

≤ exp(−ε logR) =
1

Rε
(A.4)

A.3. PROOF OF EQUATION (3.7) 119

Similarly, let us consider κ2 such that:(
1− f(k̂1)

f(k̂1 + κ2)

)2
f(k̂1 + κ2)

2
≥ ε logR (A.5)

We then take γ = 1 − f(k̂1)

f(k̂1+κ1)
and k = k̂1 + κ2 in Equation (A.2) to obtain

(recalling that f(k̂1) = na):

P[K1 ≥ k̂1 + κ2] ≤ 1

Rε
(A.6)

Taking κ = max{κ1, κ2} and combining Equation (A.4) and Equation (A.6)
gives, using the union bound P[A ∪B] ≤ P[A] + P[B]:

P
[
|K1 − k̂1| ≥ κ

]
≤ 2

Rε

as desired.
For practical purposes, if κ1 � k̂1, it is possible to use a Taylor approxima-

tion of f :
f(k̂1 − κ1) = f(k̂1)− κ1f ′(k̂1) +O(κ21)

The left-hand-side of Equation (A.3) then becomes:

κ21f
′(k̂1)2

3f(k̂1)
+O(κ31)

Thus in practice, Equation (A.3) can be fulfilled by taking:

κ1 ≈
√

3naε logR

f ′(k̂1)

Similarly, Equation (A.5) can be fulfilled by taking:

κ2 ≈
√

2naε logR

f ′(k̂1)

which justifies taking κ = max{κ1, κ2} ≈
√
3naε logR

f ′(k̂1)
.

A.3 Proof of Equation (3.7)

As R � 1, q(i)� 1 and thus (1− q(i))k = (1− (kq(i))/k)k ≈ exp(−kq(i)).
Thus:

f(k) ≈
R∑
i=1

[1− exp(−kq(i))] =

R∑
i=1

[
1− exp(− k

iHR,α
)

]

and finally:

f(k) ≈
∫ R

1

[
1− exp(− k

xHR,α
)

]
dx

120 APPENDIX A. APPENDIX OF CHAPTER 3

Computing the derivative f̂ ′ of this approximation yields:

f̂ ′(k) =

∫ R

1

1

xHR,α
exp(− k

xHR,α
)dx

We will now distinguish between two cases, depending on whether α = 1.

A.3.1 The case α = 1

We have, in this case:

f̂ ′(k) =
1

HR,1

[
E1(

k

RHR,1
)− E1(

k

HR,1
)

]
where E1(x) =

∫ +∞
−x

e−t

t dt is the exponential integral function. As E1(x) ≈ 0
for x � 1 and E1(x) ≈ − log x − γ for x � 1 (where γ ≈ 0.577 is the Euler-
Mascheroni constant), if we assume 1 HR,1 � k � RHR,1, we obtain:

f̂ ′(k) ≈ 1

HR,1

[
−γ − log(

k

RHR,1
)

]
=

log(RHR,1)− γ
HR,1

− log k

HR,1

Using HR,1 ≈ logR+ γ yields:

f̂ ′(k) ≈
(

1 +
log logR− 2γ

logR+ γ

)
− log k

logR+ γ

Straightforward integration leads to:

f(k) ≈
(

1 +
1 + log logR− 2γ

logR+ γ

)
︸ ︷︷ ︸

A

k − 1

logR+ γ︸ ︷︷ ︸
B

k log k

which is an approximation of the form f(k) ≈ Ak −Bk log k with A,B > 0.

A.3.2 The case α 6= 1

We have, in this case:

f̂ ′(k) =
1

kα2

[
xα exp(− k

xαHR,α
)− xE1+1/α(

k

xαHR,α
)

]R
x=1

where En(x) =
∫ +∞
1

e−xt

tn dt is the generalized exponential integral function.
Again, we use E1+1/α(x) ≈ 0 and exp(−x) ≈ 0 for x� 1. Thus:

f̂ ′(k) ≈ R

kα

[
exp(− k

RαHR,α
)− 1

α
E1+1/α(

k

RαHR,α
)

]
1. HR,1 � k � RHR,1 is a reasonable assumption. HR,1 ≈ logR + γ is usually smaller

than 20. On the other hand, RHR,1 � R � na. As shown by eq. (3.7), k stays in the same
order of magnitude as na and thus k � RHR,1.

A.4. NUMERICAL EVALUATION OF TC(R) 121

Furthermore, E1+β(x) ≈ 1
β +xβΓ(−β)+ 1

1−βx for x� 1 and 0 < β < 2, where Γ

is the gamma function defined by Γ(z) =
∫∞
0
xz−1e−xdx. Using β = α−1 ∈ [0, 2]

(since we assume α > 1/2) gives:

f̂ ′(k) ≈ R

kα

[
1− k

RαHR,α
− 1− 1

α
Γ(− 1

α
)

(
k

RαHR,α

)1/α

− 1

α− 1

k

RαHR,α

]
=
−Γ(− 1

α)

α2H
1/α
R,α

k1/α−1 +
R1−α

(1− α)HR,α

Integrating that equation yields:

f(k) ≈ − Γ(− 1
α)

αH
1/α
R,α︸ ︷︷ ︸
B

k1/α +
m1−α

(1− α)HR,α︸ ︷︷ ︸
A

k (A.7)

which is of the general form f(k) ≈ Ak − Bk1/α. Equation (A.7) can then be
further approximated by using the following approximation for HR,α:

HR,α ≈
{
R1−α−1

1−α ∀α < 1

ζ(α)− 1
(α−1)Rα−1 ∀α > 1

where ζ(s) =
∑∞
i=1 i

−s is the Riemann zeta function.

A.4 Numerical evaluation of tC(r)
As an example, Figure A.2 depicts tC(r) and h(r) for a catalogue of R = 107

objects distributed according to a Zipf distribution with α = 1. It can indeed
be visualized that the regions where tC(r) varies slowly and h(r) is close to one
are mutually exclusive.

The validity of Che approximation is quantified in Figure A.3, which de-
picts the exact value h(r) from Equation (3.9) versus its Che approximation
from Equation (3.10) (where tC is found by solving Equation (3.11)), for the
same parameters as in Figure A.2. It can be seen that the relative error is
smaller than 1%, and for objects that belong to the tail of the catalogue – thus
having a little impact when computing the hit rate over the whole catalogue.

122 APPENDIX A. APPENDIX OF CHAPTER 3

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1x106 1x107

H
it

ra
tio

Content identifier

h(r)

 0

 100000

 200000

 300000

 400000

 1 10 100 1000 10000 100000 1x106 1x107

C
ha

ra
ct

er
is

tic
 ti

m
e

Content identifier

tC(r)

Figure A.2 – Che’s approximation illustration: h(r) and tC(r) for a Zipf cata-
logue with α = 1 and R = 107. In the region where tC(r) evolves steeply
(r ≤ 5000), we have h(r) ≈ 1 and thus the precise value of tC(r) has little
impact.

 0
 0.001
 0.002
 0.003
 0.004
 0.005
 0.006
 0.007
 0.008
 0.009

 0.01

 1 10 100 1000 10000 100000 1x106 1x107

R
el

at
iv

e
er

ro
r

Content identifier

|h(r) - hChe(r)|/h(r)

Figure A.3 – Che’s approximation validation: exact value of h(r) from Equa-
tion (3.9) versus Che approximation from Equation (3.10). Zipf catalogue with
α = 1 and R = 107.

Appendix B

Résumé étendu en Français

B.1 Introduction

Les dix dernières années ont vu l’émergence, sous le nom d’"Internet des
Objets" (IoT) de multiples applications : villes intelligentes [11–13], voitures [9]
et bâtiments [2–4] connectés, etc. Ces domaines, malgré leur multiplicité, sont
des expressions de la même tendance qui consiste à munir des objets du quotidien
d’une connexion internet. Les applications IoT présentent des défis considérables
pour les réseaux de communications en termes de capacité, de flexibilité, ou de
qualité de service. Pour répondre à ces défis, de nouvelles architectures réseau
ont été mises en avant telles que les réseaux centrés contenu (ICN). Cette thèse
s’inscrit dans cette lignée en enquêtant sur l’acheminement de paquets dans
l’Internet des Objets centré contenu.

Les applications IoT sont fondés sur le même fondamental principe : d’au-
tomatiser ou d’optimiser une partie de notre environnement en y déployant des
machines, capables non seulement de mesurer certaines variables environnemen-
tales (les capteurs) mais aussi d’agir dessus (les actuateurs). Ces machines sont
dotées d’une connectivité sans-fil (par exemple le standard IEEE 802.15.4) et
forment ainsi un réseau - l’Internet des Objets. Les applications IoT peuvent en-
suite utiliser cette connectivité pour effectuer une boucle de contrôle qui prend
en entrée les mesures des capteurs et sort des instructions pour les actuateurs.
Ce fonctionnement général peut être utilisé pour représenter des boucles d’une
complexité variable, du réglage d’un radiateur connecté à partir d’un thermo-
mètre au contrôle des systèmes de direction d’un véhicule à partir de données
produites par des centaines de capteurs embarqués.

Les particularités de l’Internet des Objets posent des défis particuliers aux
réseaux, en particulier en termes de passage à l’échelle, de flexibilité mais aussi
d’adaptation à des modes de communications différents [23]. Pour cette raison,
des architectures et protocoles réseaux alternatifs ont été proposées pour l’IoT,
et en particulier les réseaux centrés contenus (ICN) [40]. ICN est un paradigme
réseau nouveau qui repose sur l’utilisation de noms porteurs de sens comme
couche centrale du réseau. Ces noms sont des identifiants, qui décrivent l’objet
(la donnée ou le service par exemple) accédé sur le réseau, se distinguant ainsi
des traditionnelles adresses IP qui indiquent la location dudit objet. Ils sont
utilisés avec un modèle de transmission par tirage : pour récupérer une donnée,

123

124 APPENDIX B. RÉSUMÉ ÉTENDU EN FRANÇAIS

un client émet un paquet appelé "Intérêt" qui est acheminé jusqu’à un endroit
où la donnée est stockée. Un paquet dit "Donnée" est utilisé pour transporter la
donnée jusqu’au client en utilisant le chemin inverse de l’Intérêt correspondant.
Le passage d’une approche centrée sur la localité à une approche centrée sur le
contenu apporte de nombreux avantages théoriques, décrits dans [63] : l’unifica-
tion de la gestion des couches applicatives et réseaux, la possibilité de découvrir
des services dans le réseau, ou le support natif de la diffusion multipoint et du
cache au niveau réseau, etc.

Néanmoins, si beaucoup d’études se sont penchées sur ces avantages et sur
l’application d’ICN à des cas d’usage spécifique, il manque dans la littérature
une étude systématique d’une question fondamentale : comment gérer l’ache-
minement des paquets dans un réseau ICN utilisé pour l’IoT ? En effet, les
réseaux ICN-IoT posent des défis bien particuliers à l’acheminement de paquets
en termes de passage à l’échelle, de flexibilité face à des réseaux très dyna-
miques ou des applications à forte contrainte de latence, ou de sélection du
meilleur chemin quand un objet est disponible à plusieurs endroits du réseau.
Les travaux de cette thèse se penchent sur cette question, en regardant l’achemi-
nement de paquets à travers l’ensemble de l’architecture IoT. En particulier, les
contributions présentées ici se répartissent en trois grandes parties. D’abord, la
possibilité d’utiliser un acheminement géographique et sécurisé dans les réseaux
de capteurs sans fil est évaluée. Ensuite, des stratégies d’acheminement sont
proposées avec pour objectif de contrôler le temps de réponse d’une application
déployée sur une plateforme de type Fog. Enfin, une architecture logicielle et ré-
seau pour gérer conjointement réseaux et déploiement d’applications virtualisées
à partir d’intentions abstraites est présentée.

B.2 Acheminement géographique dans les réseaux
de capteurs sans-fil

Dans un premier temps, le problème de l’acheminement dans les réseaux
de capteurs sans-fil est étudié. En effet, de précédents travaux ont montré des
avantages d’ICN par rapport aux protocoles standards basés sur IPv6 [24] en
termes d’utilisation mémoire et de consommation énergétique sur les capteurs, ce
qui est crucial pour des capteurs à faible puissance. Néanmoins, ces avantages ne
viennent pas sans de nombreux défis, et en particulier le problème d’acheminer
les paquets efficacement avec le moins de trafic de contrôle possible.

Pour répondre à ces défis, cette thèse contient une étude de la possibilité
d’utiliser de l’acheminement géographique [107]. L’acheminement géographique
consiste à assigner à chaque paquet une destination géographique (par exemple,
avec des coordonnées de géolocalisation) qui sera utilisé ensuite dans chaque
nœud relais pour choisir le prochain saut. La plupart de ce type d’algorithme
est fondée sur deux modes de relais : la sélection gloutonne (lequel de mes voisins
est le plus proche de la destination du paquet) et une technique d’évitement des
puits (situation dans laquelle le nœud relais est le plus proche de la destination
du paquet dans son voisinage). Une revue des techniques d’évitement de puits
est présentée dans [107].

B.2. ACHEMINEMENT GÉOGRAPHIQUE DANS LES RÉSEAUX DE CAPTEURS SANS-FIL125

B.2.1 L’architecture SLICT

Afin de mettre en œuvre l’acheminement géographique dans un réseau centré
contenu de capteurs sans fil, l’architecture SLICT (pour objets localisées, sécu-
risées et centrés contenu) est introduite. Cette architecture repose sur quatre
piliers : un protocole d’association sécurisée, un protocole de balisage sécurisé,
un algorithme d’acheminement géographique, et une pile ICN implémentée dans
le système d’exploitation RIOT.

Association sécurisée entre capteurs

Le but d’un protocole d’association sécurisé entre capteurs est d’assurer que
l’ensemble des appareils qui participent au réseau sans-fil à plusieurs sauts sont
des nœuds de confiance. Pour ce faire, une approche dite "réseau de confiance"
est utilisée : chaque paire de capteurs en ligne de mire l’un de l’autre (i.e., phy-
siquement capables de communiquer) effectue un protocole d’authentification
mutuelle. Ainsi, Compagno et al., ont proposé OnboardICNg, un protocole d’as-
sociation qui repose sur de la cryptographie symétrique. Dans cette thèse, un
protocole similaire est proposé, fondée lui sur de la cryptographie asymétrique
(plus adaptée à l’authentification mais plus coûteuse pour des capteurs à éner-
gie limitée). La comparaison de ce protocole à OnboardICNg met en lumière un
compromis intéressant. D’un côté, l’utilisation de la cryptographie asymétrique
permet d’échanger moins de message et d’avoir un échange local aux deux nœuds
s’authentifiant alors que la cryptographie symétrique nécessite de se connecter à
une tierce partie qui sert d’ancre mutuelle de confiance. De l’autre côté, malgré
l’apparition récente de modules physiques pour faire de la cryptographie asy-
métrique à moindre coût, OnboardICNg est beaucoup moins coûteux en termes
d’énergie et de latence.

Balisage sécurisé

Le balisage permet aux nœuds d’informer régulièrement leurs voisins de leur
position actuelle. C’est un mécanisme essentiel pour pouvoir réaliser l’achemine-
ment géographique. Néammoins, les réseaux ICN sont fondés sur une approche
par tirage alors que le balisage est une opération de poussée de données. Pour
résoudre ce conflit, SLICT utilise des entrées persistantes dans la PIT, crée
à la suite du protocole d’association sécurisée. Afin de garantir la sécurité de
ce balisage, les balises sont encryptées avec une clé créée pendant le processus
d’association.

Algorithme d’acheminement géographique

SLICT utilise le protocole GPSR [108] pour acheminer les paquets géogra-
phiquement. Ce protocole a deux principaux modes de fonctionnements : le
routage glouton, où chaque nœud choisit son voisin le plus proche de la destina-
tion comme prochain relais d’un paquet, et le routage dit de périmètre, utilisé
pour sortir des puits. Si le lecteur est renvoyé à [108] pour plus d’information
sur GPSR, il est important de noter que le routage de périmètre nécessite de
transporter de l’état à l’intérieur de chaque paquet, encodé sous la forme d’un
champ Type-Longueur-Valeur (TLV).

126 APPENDIX B. RÉSUMÉ ÉTENDU EN FRANÇAIS

Pile ICN dans le système d’exploitation RIOT

L’ensemble de ces modules a été codé dans une pile ICN dans le système
d’exploitation RIOT [58]. En particulier, pour permettre la cohabitation entre
diverses stratégies d’acheminement, le préfixe /g/ est utilisé pour tout routage
géographique. Ce préfixe est associé dans la FIB ICN à une entrée virtuelle
qui représentent tous les voisins capables de faire du routage géographique. Le
prochain saut est choisi parmi ces voisins en utilisant GPSR dans la couche de
stratégie d’acheminement.

B.2.2 Évaluation de l’acheminement géographique

Pour évaluer une stratégie d’acheminement, deux critères principaux sont
utilisés : la faisabilité (en termes de mémoire et de calcul sur les capteurs)
et l’efficacité (en termes de coût énergétique de l’apprentissage des chemins).
Ces coûts sont calculés à l’aide d’un modèle mathématique. En particulier, le
modèle est construit pour deux stratégies principales : l’acheminement géogra-
phique (telle qu’introduit dans SLICT), et l’acheminement de type "inonde-et-
apprends", correspondant à la référence dans la littérature sur ICN-IoT.

Inonde-et-apprends

L’approche dite "Inonde-et-apprends" (I&A) est l’approche la plus fréquem-
ment trouvée dans la littérature ICN-IoT [24, 134–136]. Elle repose sur l’inon-
dation du réseau pour des Intérêt ICN pour lesquels aucune route n’existe. La
route est apprise grâce à la réponse au dit Intérêt : le voisin qui transmet le
paquet Donnée correspondant (i.e., portant le même nom ICN) est enregistré
comme prochain saut pour ce nom.

Pour compenser la naïveté de l’approche inonde-et-apprends, une version op-
timisée du processus d’inondation est aussi considérée. Elle utilise l’algorithme
MPR (multi-point relais) [137] qui permet d’optimiser l’inondation en ne choi-
sissant qu’un sous-ensemble des voisins pour propager les Intérêts pour lesquels
aucune route n’est établie.

Modèle mathématique

Un modèle mathématique est proposé pour représenter la performance des
trois stratégies considérées : GPSR, I&A, et MPR. Ce modèle dépend de trois
variables principales : le taille du réseau (le nombre de noms ICN à supporter),
la densité du réseau (le nombre moyen de voisins de chaque capteur), et son
dynamisme (la fréquence avec laquelle une route pour un nom donné change).
Il est construit en deux parties : la première modélise le coût de relai d’un
Intérêt pour un nœud donné en fonction de la stratégie d’acheminement, et
la deuxième regarde le coût global d’acheminement en étudiant comment les
Intérêts se propagent dans le réseau sans-fil. En particulier, pour les stratégies
I&Aet MPR, une campagne de simulation est menée pour mieux représenter le
coût énergétique du processus d’inondation.

B.3. CONTRÔLE D’ADMISSION POUR APPLICATIONS À TEMPS DE RÉPONSE CONTRAINT127

Résultats principaux

Le modèle permet de montrer deux résultats principaux. D’abord, en termes
de faisabilité, l’acheminement géographique offre des avantages en termes d’uti-
lisation mémoire pour les topologies denses et/ou larges. Ceci est dû à la localité
de la stratégie d’acheminement, qui ne demande que de connaître des informa-
tions locales (i.e., la position des voisins) plutôt que des informations globales
(un prochain saut pour chaque nom supporté sur le réseau IoT). De plus, l’ache-
minement géographique offre des avantages pour les réseaux très dynamique
grâce à son trafic de contrôle local moins couteux que l’inondation – même opti-
misée avec MPR – du réseau de capteurs sans-fil. Pour les réseaux plus stables,
l’état additionnel dans le paquet nécessaire pour GPSR rend l’acheminement
géographique marginalement plus couteux en énergie que MPR.

B.3 Contrôle d’admission pour applications à temps
de réponse contraint

Dans un second temps, le problème du contrôle d’admission dans des plate-
formes de type Fog est traité. En effet, pour être utiles, les données produites par
les capteurs doivent pouvoir être traitées en temps limité. Dans ce but, le Fog a
été inventé [17]. Il s’agit d’une plateforme de calcul et de stockage distribué se
situant au bord du réseau, proche dans l’endroit où les données IoT sont pro-
duites et consommées afin de réduire la latence. Néanmoins, et en comparaison
avec le Cloud, le Fog manque d’élasticité. Il est donc important de contrôler la
charge du Fog pour garantir le temps de réponse de l’application. En particulier,
cette section contient une proposition de contrôle d’admission de requêtes dans
un nœud de type Fog, conçue pour optimiser l’utilisation des ressources sous
contrainte de temps de réponse.

B.3.1 Contrôle d’admission dans le Fog et modélisation

La situation considérée est la suivante : un utilisateur envoie une requête
pour une certaine donnée IoT. Pour produire cette donnée, il est nécessaire de
récupérer une ou plusieurs mesures brutes de capteurs et d’effectuer des calculs
sur ces mesures brutes. Comme souvent dans les interactions hommes-machine,
l’utilisateur attend une réponse dans une latence de l’ordre de 100 ms [34]. Deux
solutions de calcul et de stockage sont disponibles : le Fog, qui fournit une
capacité de calcul et de cache fixe mais sans frais, et le Cloud, qui fournit une
capacité de calcul et de cache infinie mais avec un coût qui croit en fonction de
leur utilisation. Afin de répartir les requêtes entre Fog et Cloud, une stratégie de
contrôle d’admission est déployée devant le Fog. Pour chaque requête, la stratégie
décide ou bien d’accepter la requête dans le Fog, ou bien de la rediriger vers le
Cloud. La problématique à résoudre est donc la suivante : comment trouver une
stratégie qui minimise les coûts de Cloud tout en gardant le temps de réponse
moyen sous une limite donnée ?

Pour répondre à cette problématique, un modèle mathématique est proposé,
fondée sur un réseau de file d’attentes. Chaque file du modèle est choisie à partir
d’exemples pertinents dans la littérature. En particulier, le réseau est représenté
par une file M/G/1-PS, représentant le partage du réseau entre les différents

128 APPENDIX B. RÉSUMÉ ÉTENDU EN FRANÇAIS

flux [149,163,164]. Pour les plateformes de calcul, le Fog est représenté par une
file M/G/1-PS, qui représente sa capacité finie [149,162], tandis que l’élasticité
parfaite du Cloud est représentée par une file M/G/∞. Enfin, la stratégie de
contrôle d’admission est représentée par une fonction φ : r → [0, 1] qui à une
requête pour une donnée r associe une probabilité d’être accepté dans le Fog. Le
modèle de file d’attente peut ainsi être utilisé pour calculer le temps de réponse
moyen et le coût associé à chaque stratégie.

B.3.2 La stratégie LRU-AC

Il y a trois chemins possibles pour une requête dans le système Fog-Cloud :
le Cloud, le cache du Fog, ou le système de calcul du Fog. Comme le système de
calcul du Fog a une capacité fixe, l’unique solution pour augmenter la capacité
globale de Fog est d’augmenter le taux de succès du cache. Pour ce faire, une
stratégie de contrôle d’admission pour le Fog est de sélectionner uniquement
les requêtes pour des données populaires, qui auront une probabilité plus élevée
d’être dans le cache.

Pour faire cette sélection, il faut donc être capable de (i) identifier la donnée
cible pour chaque requête et (ii) d’en extraire des prédictions de popularités. La
solution présentée dans cette thèse, appelée le LRU-AC, remplit ces deux condi-
tions, avec l’avantage supplémentaire d’avoir une implémentation performante
en termes de débit et de latence car elle peut être réalisée sur du matériel de
type FPGA [153].

Identification des données cibles

Pour identifier les données cibles, le LRU-AC repose sur une architecture ICN
spécifique, appelée hICN (pour Hybride-ICN) [154]. hICN est une architecture
ICN construite dans IPv6/TCP, c’est à dire que les champs des en-têtes IP et
TCP sont utilisé pour fournir une sémantique ICN. En particulier, les données
sont nommées en utilisant (pour un Intérêt) l’adresse IPv6 de destination sous
la forme d’une location (préfixe de 64 bits) et d’un identifiant (suffixe de 64
bits). Cette architecture est particulièrement intéressante pour le cas d’usage
du contrôle d’admission en FPGA, car elle permet d’accéder à une sémantique
applicative dans l’en-tête réseau grâce à des champs qui ont une position et
une taille constante. En particulier, cela permet de réutiliser tous les outils
développés pour IP comme la plateforme P4 [155].

Prédiction de popularité

Pour prédire la popularité des requêtes, le LRU-AC utilise un filtre LRU, i.e.,
un méta-cache sur les identifiants des données avec la politique d’éviction dite
de l’objet utilisé le moins récemment (LRU). En effet, la présence (resp. absence)
d’un identifiant dans un tel cache indique qu’il s’agit probablement d’une donnée
populaire à accepter dans le Fog (resp. impopulaire à rediriger dans le Cloud).
En particulier, le comportement d’un tel cache peut être prédit en fonction de
la distribution de popularité des requêtes grâce à l’approximation de Che [165],
ce qui permet d’intégrer cette stratégie dans le modèle de file d’attente présenté
plus haut.

B.4. ORCHESTRATION D’APPLICATIONS ET GESTION DE RÉSEAUX CENTRÉS CONTENUS129

Pour implémenter le filtre LRU en FPGA, le LRU-AC utilise des filtres de
Bloom vieillissant (ABF) [152]. Grâce à un modèle mathématique, il est montré
qu’il est possible de paramétrer un ABF pour avoir un comportement identique
à un filtre LRU. Une implémentation du LRU-AC est donc proposée en FPGA,
ce qui permet d’obtenir un module de contrôle d’admission avec un débit de
ligne de 16 Mpps et un temps de traitement d’une requête de moins de 3 µs.

B.3.3 Principaux résultats

Pour analyser les performances du LRU-AC, deux méthodes sont employées.
Tout d’abord, le modèle mathématique est soumis à un processus d’optimisa-
tion pour comparer les performances moyennes du LRU-AC par rapport à une
stratégie omnisciente et une stratégie naïve. Ensuite, pour comprendre le com-
portement plus précis du LRU-AC, une campagne de simulation est menée. En
particulier, l’évaluation montre que le LRU-AC fonctionne quasiment aussi bien
qu’une stratégie omnisciente (avec connaissance parfaite de la distribution de
popularité). De plus, l’étude des distributions de temps de réponse simulé du
système valide le choix d’implémenter le filtre LRU avec un ABF et montre un
taux de dépassement de la limite de seulement 5%.

B.4 Orchestration d’applications et gestion de ré-
seaux centrés contenus

Enfin, la problématique de l’orchestration et de la gestion de réseaux IoT-
ICN est abordée. Ceci est particulièrement important dans l’Internet des Objets
centrés contenu, entre autres à cause de l’échelle et de la diversité des réseaux
IoT, du manque d’outils existant dans le monde d’ICN, ou du fort potentiel
d’interaction entre application et réseaux ICN qui requiert une unification de la
gestion des réseaux et de l’orchestration des applications.

B.4.1 Orchestration fondée sur l’intention

La diversification grandissante des utilisations et des technologies réseaux
a rendu la gestion de réseau trop complexe pour l’être humain. Pour répondre
à ce défi, de nouveaux paradigmes de gestion sont apparus, en particulier les
réseaux définis par logiciel (SDN) [185] avec leurs orchestrateurs centralisés et
riches en fonctionnalités. En particulier, des interfaces fondées sur l’intention
ont été développées [190]. Dans une plateforme intentionnelle, le gestionnaire de
réseau spécifie des objectifs abstraits au lieu de spécifier la procédure nécessaire
pour atteindre ces objectifs. La plateforme est ensuite capable de configurer et
de réguler le déploiement réseau de manière à atteindre ces objectifs.

B.4.2 La plateforme vICN

Dans cette optique, la plateforme vICN est introduite dans cette section. Il
s’agit d’une suite logicielle d’orchestration et de gestion de réseau ICN à partir
de l’intention.

En particulier, vICN utilise un modèle d’intention qui permet à l’utilisa-
teur de spécifier son intention avec une granularité sur-mesure, de l’intention

130 APPENDIX B. RÉSUMÉ ÉTENDU EN FRANÇAIS

abstraite à la configuration détaillée. Ce modèle d’intention est central au fonc-
tionnement de vICN. Il est fondé sur un modèle relationnel objet [206]. Ce
modèle a pour principal composant les objets, définis comme un ensemble d’at-
tributs typés et de méthodes. Les attributs typés sont ou bien de type standard
(chaîne de caractère, entier, etc.) ou des références à d’autres objets. Ces objets
bénéficient ainsi de l’ensemble des avantages de la programmation orienté objet
(héritage, abstraction, composition). De plus, le modèle est augmenté par la défi-
nition de relations entre les objets, par exemple de dépendance. La combinaison
de l’héritage et des relations entre objets est l’élément principal qui permet de
transformer une intention abstraite en plan de configuration fonctionnelle.

Pour garantir la mise en place de la configuration et l’état du système, chaque
objet instancié dans le modèle est associé à un automate, qui garde en mémoire
l’état dans lequel se trouve la ressource déployée. Les transitions entre états
dudit automate correspondent à des actions sur le réseau – par exemple la
création d’un conteneur Linux qui fait passer de l’état d’initialisation à l’état de
création. Chacun des attributs de l’objet est aussi muni de son propre automate.
L’utilisation d’automates permet de fournir des garanties en termes d’exécution
d’un modèle. En particulier, les actions sur le réseau sont effectuées par de
multiples fils d’exécution. La répartition des tâches entre fils d’exécution est
faite par un ordonnanceur qui utilise le modèle pour apprendre l’ordre entre les
différentes tâches à effectuer.

L’ensemble de ces mécanismes a été implémenté et est distribué sous licence
libre dans le cadre du projet FD.io de la Linux Foundation [194]. Le code source,
écrit en Python, contient une libraire fournie de ressources qui permettent de
déployer des réseaux virtualisés complexes. En particulier, vICN a montré de
bonnes performances sur un déploiement d’environ 50 nœuds virtualisés repré-
sentant un réseau de distribution de vidéo.

Titre : Routage centré-contenu pour l’Internet des Objets

Mots clés : Réseaux-Centrés contenus, Internet des objets, routage

Résumé : Les réseaux centrés contenus (ICN) sont
considérés comme une solution aux nouveaux défis
et modes de communication liés à l’émergence de
l’Internet des Objets (IoT). Pour confirmer cette hy-
pothèse, la problématique fondamentale du routage
sur les réseaux ICN-IoT doit être abordée. Cette thèse
traite de ce sujet à travers l’architecture IoT.
Premièrement, une méthode sécurisée est introduite
pour acheminer des paquets ICN à partir de co-
ordonnées géographiques dans un réseau sans-fil
de capteurs à faible puissance. Elle est comparée
à une inondation optimisée du réseau inspirée des
approches existant dans la littérature. En particulier,
leur faisabilité et passage à l’échelle sont évalués via
un modèle mathématique. Le modèle est paramétré
grâce à des données réalistes issues de simulation,
de la littérature, et d’expériences sur des capteurs. Il
est montré que le routage géographique permet de di-
viser la mémoire nécessaire sur les capteurs par deux
et de réduire considérablement le coût énergétique
du routage, en particulier pour des topologies dyna-
miques.

Ensuite, ICN est utilisé pour contrôler l’admission à
une plate-forme de calcul de type Fog afin de ga-
rantir le temps de réponse. La stratégie de contrôle
d’admission proposée, le LRU-AC, utilise l’algorithme
Least-Recently-Used (LRU) pour apprendre en direct
la distribution de popularité des requêtes. Son effica-
cité est démontrée grâce à un modèle fondé sur un
réseau de files d’attente. Une implémentation du LRU-
AC est proposé, utilisant des filtres de Bloom pour sa-
tisfaire aux contraintes des cartes FPGA. Son bien-
fondé est prouvé par un modèle mathématique et son
efficacité en termes de latence et débit démontrée.
Enfin, on présente vICN, un outil pour la gestion et
la virtualisation de réseaux ICN-IoT. Il s’agit d’une
plate-forme qui unifie la configuration et la gestion des
réseaux et des applications en exploitant les progrès
des techniques d’isolation et de virtualisation. vICN
est flexible, passe à l’échelle, et peut remplir différents
buts : expériences à grande échelle reproductibles
pour la recherche, démonstrations mélangeant ma-
chines émulées et physiques, et déploiements réels
des technologies ICN dans les réseaux IP existants.

Title : On Information-Centric Routing and Forwarding in the Internet of Things

Keywords : Information-Centric Networking, Internet of Things, Forwarding

Abstract : As the Internet of Things (IoT) has brought
upon new communication patterns and challenges,
Information-Centric Networking (ICN) has been tou-
ted as a potential solution. To confirm that hypothesis,
the fundamental issue of routing and forwarding in the
ICN-IoT must be addressed. This thesis investigates
this topic across the IoT architecture.
First, a scheme to securely forward ICN interests pa-
ckets based on geographic coordinates is proposed
for low-power wireless sensor networks (WSN). Its ef-
ficiency is compared to an optimized flooding-based
scheme similar to current ICN-WSN approaches in
terms of deployability and scalability using an analyti-
cal model. Realistic data for the model is derived from
a mixture of simulation, literature study, and experi-
ments on state-of-the-art sensor boards. Geographic
forwarding is shown to halve the memory footprint of
the ICN stack on reference deployments and to yield
significant energy savings, especially for dynamic to-
pologies.
Second, ICN is used to enhance admission control
(AC) to fixed-capacity Edge-computing platforms
to guarantee request-completion time for latency-

constrained applications. The LRU-AC, a request-
aware AC strategy based on online learning of
the request popularity distribution through a Least-
Recently-Used (LRU) filter, is proposed. Using a
queueing model, the LRU-AC is shown to decrease
the number of requests that must be offloaded to the
Cloud. An implementation of the LRU-AC on FPGA
hardware is then proposed, using Ageing Bloom Fil-
ters (ABF) to provide a compact memory representa-
tion. The validity of using ABFs for the LRU-AC is pro-
ven through analytical modelling. The implementation
provides high throughput and low latency.
Finally, the management and virtualization of ICN-IoT
networks are considered. vICN (virtualized ICN), a
unified intent-based framework for network configu-
ration and management that uses recent progress in
resource isolation and virtualization techniques is in-
troduced. It offers a single, flexible and scalable plat-
form to serve different purposes, ranging from repro-
ducible large-scale research experimentation to de-
monstrations with emulated and/or physical devices
and network resources and to real deployments of
ICN in existing IP networks.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Acknowledgements
	Résumé / Abstract
	List of Acronyms
	Introduction
	The Internet-of-Things
	IoT applications
	IoT networks
	Challenges

	Information-Centric Networking for the IoT: motivation
	Information-Centric Networking
	ICN for the IoT

	ICN for the IoT: background
	ICN for the WSN
	ICN for the Fog
	ICN for specific IoT applications

	Thesis contribution
	Forwarding and routing in the ICN-IoT: challenges
	Contribution and organization

	Publications

	Geographic routing
	Geographic routing
	Reference WSN deployments
	Reference Information-Centric Things (ICN-WSN) Architecture
	Secure neighbour discovery
	Secure beaconing
	Forwarding

	Methodology overview
	Experimental setup
	Memory
	Computation
	Energy

	Cost of forwarding a single ICN packet
	Frame transmission and reception
	Data Encryption and Decryption
	Forwarding algorithm
	Overall cost

	Cost of control traffic
	Geographic forwarding
	Flood and learn

	Guidelines for ICN-WSN operation
	Energy cost
	Memory and CPU complexity

	Summary

	Fog admission control
	Admission control for QoS in Fog deployments
	Problem description
	Reference Fog architecture
	Fog vs Cloud admission control

	An analytical model
	Application model and request distribution
	Queueing model
	Computing the statistical latency
	Computing the cost function
	An example application - Numerical parameters

	Popularity-based Fog admission
	Optimizing Fog resources
	Blind admission control
	LFU-AC strategy
	The LRU-AC strategy
	Preliminary evaluation of the admission control strategies

	Ageing Bloom-Filters for an hardware-accelerated LRU-AC
	Ageing-Bloom filters
	Hit-rate approximation for the ABF
	Model verification for =1
	ABF - memory usage vs LRU

	Hardware-implementation of the LRU-AC
	Using hICN as the underlying network layer
	Hardware-implementation of the LRU-AC

	Evaluation
	Packet-level simulation
	Implementation evaluation

	Related Work
	Summary

	Intent-based ICN
	Intent-Based Networking and ICN
	Related work
	The vICN framework
	Functional architecture
	Resource model
	Resource processor
	Orchestrator and Scheduler

	Implementation
	vICN codebase
	Slicing
	IP and ICN topologies
	Link emulation
	Monitoring capabilities

	Examples
	Use case description
	Scalability
	Programmability
	Monitoring and Reliability

	An Intent-Centric network management protocol
	Intent-based network model
	Model-based routing and forwarding

	Summary and future work

	Conclusion
	Geographic routing for the ICN-enabled WSN
	Popularity-based latency control for Fog applications
	Intent-based management of ICN
	Future research directions

	Appendices
	Appendix of Chapter 3
	Computing the Fog hit rate for the LRU-AC
	Proof of Equation (3.6)
	Proof of Equation (3.7)
	The case = 1
	The case =1

	Numerical evaluation of tC(r)

	Résumé étendu en Français
	Introduction
	Acheminement géographique dans les réseaux de capteurs sans-fil
	L'architecture SLICT
	Évaluation de l'acheminement géographique

	Contrôle d'admission pour applications à temps de réponse contraint
	Contrôle d'admission dans le Fog et modélisation
	La stratégie LRU-AC
	Principaux résultats

	Orchestration d'applications et gestion de réseaux centrés contenus
	Orchestration fondée sur l'intention
	La plateforme vICN

