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Résumé

Cette thèse a pour but de développer un ensemble de méthodes permettant de
gérer les problèmes de contact et de couplage de maillages dans le cadre de la
méthode des éléments finis classiques et étendus. Ces problèmes d’interfaces sont
traités le long de surfaces réelles et virtuelles, dites “surfaces immergées”. Le pre-
mier objectif est d’élaborer une formulation de Mortar tridimensionnelle, efficace
et parfaitement cohérente en utilisant la méthode du Lagrangien augmenté mono-
lithique (ALM) pour traiter les problèmes de contact et de frottement. Cet objectif
est réalisé dans le cadre de la méthode des éléments finis classique. Divers aspects
du traitement numérique du contact sont discutés : la détection, la discrétisation,
l’évaluation précise des intégrales de Mortar (projections, découpage, triangula-
tion), la parallélisation du traitement sur des architectures parallèles à mémoire
distribuée et l’optimisation de la convergence pour les problèmes impliquant à
la fois le contact/frottement et les non-linéarités de comportement des matéri-
aux. Grâce aux formulations de Mortar tirées des méthodes de décomposition
de domaines, les problèmes de couplage de maillage pour la classe des interfaces
non-compatibles sont également présentés.

En outre, une nouvelle méthode numérique a été élaborée en 2D : nous la
dénommons “MorteX”, car elle rassemble à la fois des fonctionnalités de la méth-
ode Mortar et de la méthode X-FEM (méthode des éléments finis étendus). Dans
ce cas, le couplage des maillages entre des domaines qui se chevauchent ainsi que
le contact frottant entre des surfaces réelles d’un solide et certaines surfaces im-
mergées au sein du maillage d’un autre corps peuvent être traités efficacement.
Cependant, la gestion du couplage/contact entre des géométries non conformes
à l’aide de surfaces immergées pose des problèmes de stabilité numérique. Nous
avons donc proposé une technique de stabilisation qui consiste à introduire une
interpolation des multiplicateurs de Lagrange à grains grossiers. Cette technique
a été testée avec succès sur des “patch-tests” classiques et elle s’est également
avérée utile pour les méthodes Mortar classiques, ce qui est illustré par plusieurs
exemples pratiques.

La méthode MorteX est aussi utilisée pour traiter des problèmes d’usure en
fretting. Dans ce cas, l’évolution des surfaces de contact qui résulte de l’enlèvement
de matière dû à l’usure est modélisée comme une évolution de surface virtuelle qui
se propage au sein du maillage existant. L’utilisation de la méthode MorteX
élimine donc le besoin de recourir aux techniques complexes de remaillage. Les
méthodes proposées sont développées et implémentées dans le logiciel éléments
finis Z-set. De nombreux exemples numériques ont été considérés pour valider
la mise en œuvre et démontrer la robustesse, la performance et la précision des
méthodes Mortar et MorteX.
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Abstract

In this work we develop a set of methods to handle tying and contact problems
along real and virtual (embedded) surfaces in the framework of the finite ele-
ment method. The first objective is to elaborate an efficient and fully consistent
three-dimensional mortar formulation using the monolithic augmented Lagrangian
method (ALM) to treat frictional contact problems. Various aspects of the numer-
ical treatment of contact are discussed: detection, discretization, accurate evalu-
ation of mortar integrals (projections, clipping, triangulation), the parallelization
on distributed memory architectures and optimization of convergence for problems
involving both contact and material non-linearities. With mortar methods being
drawn from the domain decomposition methods, the mesh tying problems for the
class on non-matching interfaces is also presented.

A new two-dimensional MorteX framework, which combines features of the
extended finite element method (X-FEM) and the classical mortar methods is
elaborated. Within this framework, mesh tying between overlapping domains and
contact between embedded (virtual) boundaries can be treated. However, in this
setting, severe manifestation of mesh locking phenomenon can take place under
specific problem settings both for tying and contact. Stabilization techniques
such as automatic triangulation of blending elements and coarse-grained Lagrange
multiplier spaces are proposed to overcome these adverse effects. In addition, the
coarse graining of Lagrange multipliers was proven to be useful for classical mortar
methods, which is illustrated with relevant numerical examples.

The MorteX framework is used to treat frictional wear problems. Within this
framework the contact surface evolution as a result of material removal due to wear
is modeled as an evolving virtual surface. Use of MorteX method circumvents the
need for complex remeshing techniques to account for contact surface evolution.
The proposed methods are developed and implemented in the in-house finite el-
ement suite Z-set. Numerous numerical examples are considered to validate the
implementation and demonstrate the robustness, performance and accuracy of the
proposed methods.
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Chapter 1

Introduction

Résumé: Dans ce chapitre, les éléments qui ont motivé ce travail sont exposés.
Deux types de problèmes d’interface sont présentés: le raccord de maillages non-
conformes et le contact entre des domaines qui se chevauchent. Les méthodes
numériques permettant de traiter les problèmes d’interface ainsi que les difficultés
qui se posent sont présentées. Quelques applications sont également présentées.

1.1 Motivation and objectives
Among a wide spectrum of engineering applications, the class of problems dealing
with interface mechanisms (e.g. composites, fracture, contact) is complex both
with regard to their mathematical description and numerical treatment. Inter-
face phenomena spanning wide spectrum of spatial scales (macro to nano) can
manifest differently at each of these scales. Phenomena such as micro-structure
modeling involving material interface, delamination along interfaces in compos-
ite structures and multi-body contact with friction demand accurate resolution
of interface mechanics to understand the physical behavior/response of the sys-
tem. Capturing the realistic physical behavior at the interfaces through accurate
modeling of these phenomena would contribute significantly to the progress across
all fields of mechanical engineering and accuracy of their analysis. Conventional
numerical methods like the finite element methods (FEM) are constrained in han-
dling many problems involving interfaces. These limitations stem from its inability
to independently represent the interface and geometry discretizations.

In this thesis the focus is laid on developing a new computational framework to
address both general and specific issues concerning interfaces. This framework is
intended for the two classes of interface problems, namely: mesh tying and contact
problems. Firstly, a three-dimensional mortar discretization framework is devel-
oped. Its ingredients include algorithms of projection, clipping and triangulation
needed for accurate evaluation of interface integrals. The mesh tying problem
is resolved using the standard Lagrange multiplier method. For the non-linear
contact problem, a fully consistent linearization scheme is implemented within a
monolithic augmented Lagrangian (ALM) [Pietrzak and Curnier, 1999] resolution
scheme. The resulting framework enables to treat contact problems in an accurate
and robust way. In particular, the monolithic ALM scheme, renders the contact
problem fully unconstrained and does not require additional active set strategy
inherent to the standard Lagrange multiplier method. The requirement of en-
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14 CHAPTER 1. INTRODUCTION

suring conformal interfaces in case of node based discretization methods such as
node-to-surface , are removed within the mortar method, in which the constraints
are imposed in a weak sense [Bernardi et al., 2005].

The implemented mortar method is then extended to handle a particular case
of non-conformal geometries. Here, we propose a two dimensional unified frame-
work, which will be referred as MorteX, to mitigate the stringent requirements of
conformity both at the level of geometric representation and interface discretiza-
tions. This framework combines the features of the Generalized/Extended Finite
element Methods (GFEM/X-FEM) [Dolbow, 1999, Belytschko et al., 2009] and
the mortar method [Bernardi, 1994, Belgacem, 1999]. Both the classical mor-
tar and the MorteX methods and all related algorithms are implemented in an
in-house finite element suite Z-set [Besson and Foerch, 1997]. In the following sec-
tions of this chapter, emphasis is laid on introducing the two interface problems
of interest (tying and contact) and discussing relevant applications. The involved
computational challenges and strategies to tackle them are elaborated.

1.1.1 Mesh tying
The finite element method is used to solve a wide range of physical and engi-
neering problems. Based on a variational formulation and a discretized repre-
sentation of the geometry, this method is extremely flexible in handling com-
plex geometries, non-linear and heterogeneous constitutive equations and multi-
physical/multi-field problems. A classification of finite element models can be
proposed based on the strategy to represent the boundary of the computational
mesh. Classical FE meshes fall into the category of “boundary fitted” (BF) meth-
ods, where the boundaries of the physical and computational domains coincide
[Fig. 1.1(a)]. Alternatively, for “embedded/immersed boundary” (EB) methods,
the computational domain is a mesh or a Cartesian grid hosting another physical
domain [Fig. 1.1(b)]. Here, the portion of the physical domain (grid mesh) encom-
passed by the embedded boundary represents the computational domain. Note
that material properties or even the governing equations of the host medium and
the embedded one can be different. Within the EB method, the geometry contour
can be embedded either fully or partially. The BF methods [see Fig. 1.1(a)] can
be used to solve boundary value problems where the boundary conditions are pre-
scribed on surfaces, which are explicitly represented by a mesh. The EB methods
[see Fig. 1.1(b)] can handle a broader class of problems. First, it can be used to
solve the same boundary value problems as BF methods but with the boundary
represented by a rather general level-set function independent of the discretization
of the physical domain. Second, the embedded boundary can serve as a material
interface to model features such as inclusions, voids or even cracks. All these par-
ticular features can be achieved within the Generalized/Extended Finite Element
framework. In addition, within the so-called CutFEM method [Burman et al.,
2015, Claus and Kerfriden, 2018], even more complex problems can be handled,
including for example, modeling of woven composites [Claus and Kerfriden, 2018]
with interface debonding and contact. In summary, this class of methods dealing
with embedded surfaces/interfaces can be easily used to create complex geome-
tries [Belytschko et al., 2003], however prescription of boundary conditions on the
embedded surfaces is not straightforward [Duboeuf and Béchet, 2017a, Duboeuf
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(a) (b) (c)

Figure 1.1: Illustration of meshes with (a) fitted boundary; (b) embedded bound-
ary (for example, level set); (c) embedded mesh.

and Béchet, 2017b].

Here, in the MorteX framework we consider a particular combination of BF and
EB methods shown in Fig. 1.1(c) which deals simultaneously with two or several
superposed meshes, which can represent different physics or physical properties.
This is achieved by using the features of mortar methods in the context of mesh ty-
ing, and of X-FEM in the context of void/inclusion modeling. A striking example
of similar framework is the fictitious domain method, which is based on the idea of
overlapping meshes [Voitsekhovskii, 1992, Glowinski et al., 1994]. This framework
is created for applications involving fluid-structure interactions (FSI) [Baaijens,
2001, Fournié et al., 2014], where the background mesh represents the fluid and
the embedded mesh represents the solid. Here, however we limit ourselves to the
context of solid mechanics. With the emphasis laid on the interface discretiza-
tions handled by the combination of the X-FEM and the mortar methods, many
applications could be cited for mesh tying applications: sub-structuring, inclusion
of arbitrary geometrical features into the existing mesh, meshing complex micro-
structures, localized mesh refinement near crack tips, general static and dynamic
mesh refinements [see Fig. 1.2] . Another class of applications deals with contact
problems. The MorteX framework creates a comprehensive framework which en-
ables handling complex contact problems involving complex surface geometries,
for example, rough topographies [Fig. 1.3(a)] which can be incorporated implic-
itly in an existing mesh. In addition, the MorteX contact framework enables to
treat computationally challenging wear problems without recourse to remeshing
techniques.
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Figure 1.2: Few applications: (a) sub structuring and inclusion of arbitrary geo-
metrical features; (b) micro structure modeling; (c) localized mesh refinement, for
example, around an inserted crack.

Within the MorteX framework, the primary issue addressed is the continuity
and smoothness of displacement fields across the embedded boundaries. The stan-
dard methods to impose stiff continuity or Dirichlet boundary conditions along
embedded surfaces include the penalty method, the method of Lagrange mul-
tipliers, Nitsche methods and their variants [Moës et al., 2006, Sanders et al.,
2009, Haslinger and Renard, 2009, Ramos et al., 2015]. Here, we impose the con-
tinuity with the Lagrange multipliers. The challenges associated with this choice
are briefly presented in Section 1.3.

Few contributions harnessing the advantages of the mortar method and the
X-FEM (but in a different way from what is presented here) are listed below.
In [Chahine, 2008, Chahine et al., 2011] the authors used the mortar methods to
ensure weak continuity conditions across the interface between a coarser mesh do-
main and non-intersecting finer mesh surrounding the crack, which in turn is repre-
sented by the X-FEM formulation. The tying in this case is limited to the interface
with matching geometries but non-conformal discretizations, which is a classical
application of the mortar method. A dual mortar contact formulation integrated
into X-FEM fluid-structure interaction approach is introduced in [Mayer et al.,
2010]. There, the combined X-FEM fluid-structure-contact interaction method
(FSCI) allows to compute contact of arbitrarily moving and deforming structures
embedded in a fluid.

The proposed method of coupling mortar and X-FEM competes with the volu-
metric coupling via the Arlequin method [Dhia and Rateau, 2005] and the Polytope
FEM for embedded interfaces [Zamani and Eslami, 2011]. The Arlequin method
involves superpositioning of mechanical states in transition zone, and involving
energy redistribution between these states using weight functions. The Polytope
FEM involves the decomposition of elements cut by the embedded interface into
new polytope elements. It involves creation of new degrees of freedom (DoFs)
along the interface lines. In a more general and flexible framework [Sanders
et al., 2012], the authors used Nitsche method for imposing tying constraints for
the overlapping domains circumventing mesh-locking; this method, however, re-
quires appropriate and material dependent stabilization.
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1.1.2 Contact

Figure 1.3: (a) Example of a rough surface finite element mesh used to solve
contact problems at microscale similar to [Yastrebov et al., 2011b]; (b) example
of a finite element mesh of turbine blade-disk assembly used for fretting analysis
[Source: Safran].

The transfer of mechanical forces, thermal and electrical conduction, tectonic plate
motion, touching and walking are merely a few examples of the ubiquity of con-
tact in nature, engineering and everyday life. The vast majority of phenomena
occurring at the contact interface, such as wear, adhesion, damage, lubrication and
fretting, as well as mass and energy transfer [Rabinowicz and Tanner, 1966, Raous
et al., 1999, Sacco and Lebon, 2012], determine to the greater extent the service
life of engineering components. This lays a strong emphasis on the importance to
gain a fine understanding of these mechanisms for the accurate analysis and timely
prediction of failure. The first work in contact mechanics dates back to 1882 with
the publication of the paper by Hertz [Hertz, 1882]. Hertz in his attempt to under-
stand the interference fringes formed between stacked lenses, solved the contact
problem of two elastic bodies with curved surfaces. The further progress is as-
sociated with the initial contributions from Signorini, who formulated the general
frictionless contact with rigid foundation [Signorini, 1933]. Subsequent works in
the field have broadened the scope of the contact formulations beyond its origi-
nal limitations such as pure elasticity, absence of friction and small deformations.
One of the first numerical treatment of contact problems within the finite element
framework appeared in 70s [Francavilla and Zienkiewicz, 1975]. It was a node
based approach which requires conformal meshes at the contact interface. These
methods were restricted to small deformations. Interesting to note, that the first
engineering problem solved by the code developed by Hibbit and Karlsson, which
became later Abaqus, also included frictional contact between rods and also be-
tween rods and restraint ring for nuclear power plants. The node based methods
were followed by the node-to-surface techniques, which could handle large defor-
mations and sliding [Bathe and Chaudhary, 1985, Wriggers et al., 1990, Laursen,
1992, Laursen and Simo, 1993].

In the last decade, a class of surface-to-surface contact discretizations [Simo
et al., 1985, Papadopoulos and Taylor, 1992, Zavarise and Wriggers, 1998], such
as mortar method, coupled with appropriate treatment of inequality contact con-
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straints has been well established and proved its ability to efficiently treat contact
problems [Puso and Laursen, 2004, Fischer and Wriggers, 2006, Popp, 2012]. Nev-
ertheless, the numerical treatment of the contact and related phenomena remains
particularly challenging when it involves complex surfaces, especially if they evolve
in time [Fig. 1.3]. Within the standard finite element framework, these complexi-
ties require to use advanced remeshing algorithms and field transfer procedures, as
for instance those encountered in the context of wear. In addition, construction of
adequate finite element meshes near contact interfaces and stability of the contact
formulations are necessary ingredients to ensure the overall efficiency, accuracy
and robustness of the numerical procedures.

In analogy to mortar methods, which were extended to contact problems, the
MorteX method, developed first for mesh tying of overlapping domains [Akula
et al., 2019b], is extended here to solve contact problems between a virtual surface
(represented by the X-FEM) and an explicitly represent surface of the homologue
solid [Akula et al., 2019a].

1.2 Methodology

1.2.1 Mortar domain decomposition methods

The notion of domain decomposition (DD) changes with the context of the field
of application. In general, it can refer to the parallel and scalable methods for the
solution of initial value problems (IVP) and boundary value problems (BVP). It is
a “divide and conquer” method for concurrent solving of discretized sub-problems.
In this regard, the applications of DDM have a long history in computational field.
DDM in a form of sub-structuring [Przemieniecki, 1963] was a technique to ad-
dress the small memory of computers in the initial days. With emergence of high
computing power, the parallel computing has become a dominant paradigm in nu-
merical engineering. Synchronized with these architectures, DDM leads to radical
time reductions with multiprocessor computations. The DDMs are broadly classi-
fied into overlapping and non-overlapping classes, see e.g. [Toselli and Widlund,
2006].

In DDM the analysis is done by decomposing the global domain into several lo-
cal subdomains, which are coupled ensuring weak/strong continuity of the solution
across the interface. In the standard DDM, discretizations of jointed surfaces are
obliged to match and conform at the interface between subdomains [see Fig. 1.4].
This restriction is often infeasible or inconvenient to coordinate the decomposi-
tion and reassembly processes. The use of methods enabling coupling/tying of
non-conforming surfaces circumvents this difficulty. The class of non-conforming
methods includes the mortar method [McGee and Seshaiyer, 2005], which belongs
to non-overlapping DDMs and forms the central part of this thesis.



1.2. METHODOLOGY 19

Standard DDM

D1 D2 D3

Mortar DDM
C

O
N

FO
R

M
A

L
 interface

N
O

N
-C

O
N

FO
R

M
A

L
 interface

Figure 1.4: A square domain is split into subdomains with conformal and non-
conformal interface discretizations.

The word “mortar” is the translation of the original French word “joint” into
English. The expression illustrates the agglutinative character of this method
irrespective of the meshes (the bricks of the wall) being conformal/non-conformal.

The mortar method provides us with a comprehensive framework to address the
limitations of incompatible spatial interface discretizations [Bernardi, 1994]. It was
originally introduced for spectral elements [Belgacem and Maday, 1994, Bernardi
et al., 1990]. The coupling and tying of different physical models, discretization
schemes, and/or non-matching discretizations along interfaces between domains
can be ensured by this method. The mathematical optimality and applicability
of the mortar method in spectral and finite element frameworks were studied
extensively for elliptic problems in [Bernardi et al., 1990, Belgacem and Maday,
1994, Wohlmuth, 2001].
The added advantages of the mortar method over standard DDMs are the follow-
ing:

• it possesses lesser restrictions on mesh generation by circumventing the re-
quirement of conformity at the interface. The interfaces of subdomains hav-
ing different element types like tetrahedral and hexahedral and also different
interpolation orders (linear/quadratic) can be handled;

• it permits flexible mesh refinements in zones of interest or independent mesh
refinement in subdomains;

• it enables tying of independently analyzed structures, for example the as-
sembly of the fuselage and wing structure, avoiding the need for complex
and costly transition mesh regions.
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Figure 1.5: (a) Hertz contact set-up with non-matching interface discretization;
(b) the stress distribution at the interface which is sensitive to the choice of master
slave in case of node-to-surface; (c) smooth interfacial stress distribution irrespec-
tive of the choice of mortar and non-mortar sides in case of surface-to-surface.
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Figure 1.6: (a) Compression patch test set-up with non-matching interface dis-
cretization; (b) the node-to-surface contact discretization does not pass the patch
test, i.e. non-uniform stress distribution; (c) the surface-to-surface mortar dis-
cretization passes the patch test, i.e. a uniform stress distribution.

The mortar methods were brought into the contact realm with the initial con-
tributions from [Belgacem et al., 1998, Hild, 2000, McDevitt and Laursen, 2000].
Subsequent works [Fischer and Wriggers, 2006, Puso and Laursen, 2004, Doca
et al., 2014] have extended the application of mortar methods considering higher
interpolation order elements along with geometric and material non-linearities.
The work of [Popp, 2012] dealt with the class of dual Lagrangian resolution
schemes [Wohlmuth, 2000]. As opposed to the node-to-node discretization which
is limited to small sliding and the node-to-surface which is sensitive to the choice
of master and slave [see Fig. 1.5] and also does not pass patch test [see Fig. 1.6],
the surface-to-surface based mortar methods are stable and very accurate in treat-
ing contact problems even under finite sliding conditions [El-Abbasi and Bathe,
2001].
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1.2.2 The extended finite element method

Problem FEM X-FEM

Blending elements

Standard elements

Figure 1.7: Representation of geometric features like voids and notches within
FEM and X-FEM.

The FEM, despite its applicability to a broad spectrum of engineering problems,
has few drawbacks. The optimal convergence of FEM, is subject to the smoothness
of the problem solution represented by the polynomial approximation functions
employed. Solutions containing non-smooth behavior like strong discontinuities
in the displacement field as in the case of cracks, pose a computational challenge
to attain optimal convergence or simply cannot be modeled. Moreover, material
interfaces in the classical FEM can be located only at interfaces between elements,
i.e. all the interfaces should be geometrically conformal (at least approximately) to
the mesh. The extended finite element method (X-FEM) presents an efficient alter-
native to handle such discontinuities. The X-FEM is an enrichment method based
on the partition of unity (PUM) for discontinuous fields [Melenk and Babuška,
1996, Babuška and Melenk, 1997]. In this framework, material interfaces or other
discontinuities should not be conformal to the mesh but can be implicitly included
in the given discretization [see Fig. 1.7]. Moreover, specific displacement/stress
fields even including discontinuities of displacements like in case of cracks can be
captured by enrichment functions. In X-FEM, enrichment functions are added to
the finite element interpolation using the framework of PUM, to account for non-
smooth behavior without compromising on the optimal convergence [Ferté et al.,
2014]. The X-FEM methods are extensively used in applications such as fracture
mechanics, shock wave front and oxidation front propagation, and other appli-
cations involving discontinuities both strong and weak [Daux et al., 2000, Suku-
mar et al., 2001, Diez et al., 2013, Gross and Reusken, 2007, Ji et al., 2002],
and even frictional contact and crack modeling [Dolbow et al., 2001, Ribeaucourt
et al., 2007, Khoei and Nikbakht, 2006, Liu and Borja, 2008, Gravouil et al.,
2011, Mueller-Hoeppe et al., 2012]. The ability of the X-FEM to model geomet-
ric features (e.g. inclusions and voids) independently of the underlying mesh will
be exploited in the proposed unified framework to describe complex and evolving
surfaces.
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1.3 Challenges
The above two classes of interface problems: mesh tying and contact are unified
by common computational challenges. For the mesh tying problem, we use the
standard Lagrange multiplier methods to impose equality constraints, whereas
for contact problems involving inequality constraints the augmented Lagrangian
method is used. These Lagrange multiplier based methods result in the so-called
mixed finite element formulation [Brezzi and Fortin, 2012]. The choice of Lagrange
multipliers functional space strongly affects the convergence rate and can lead to
loss of accuracy in the interfacial tractions. These difficulties arise from a locking
type phenomena reported for mixed variational formulations as a result of non-
satisfaction of Ladyzhenskaya-Babuška-Brezzi (LBB) [Babuška, 1973, Brezzi and
Fortin, 2012]. In particular, the issues resulting from the imposing of Dirichlet
boundary conditions using Lagrange multipliers methods has been a topic of in-
terest in various domains, such as the classical FEM [Barbosa and Hughes, 1991],
Interface-enriched Generalized Finite Element Method (IGFEM) [Ramos et al.,
2015], the fictitious domain methods [Burman and Hansbo, 2010], the mesh free
methods [Fernández-Méndez and Huerta, 2004], etc. More importantly, this prob-
lem has been dealt extensively within the context of the X-FEM. In [Moës et al.,
2006, Béchet et al., 2009, Hautefeuille et al., 2012], the authors propose a strategy
to construct an optimal Lagrange-multiplier space for the embedded interfaces
which permits to apply Dirichlet boundary conditions. As opposed to the strat-
egy of modifying the Lagrange multiplier spaces, the authors in [Sanders et al.,
2009] propose a stabilization method to mitigate the oscillatory behaviour of the
standard spaces.

In this work, we propose a coarse-grained interpolation for the Lagrange mul-
tipliers and triangulation of blending elements as stabilization strategies to mit-
igate the adverse effects of mesh-locking within the MorteX framework for mesh
tying problems. The coarse grained interpolations is an extension of the strat-
egy of modifying Lagrange multiplier spaces [Moës et al., 2006, Béchet et al.,
2009, Hautefeuille et al., 2012]. This strategy allows us to address specific prob-
lems of mesh-locking, which are inherent to mortar methods for overlapping do-
mains, particularly in presence of a strong contrast of material properties and
mesh densities in the vicinity of the interface. In addition, the manifestation of
mesh locking effects when imposing contact constraints using Lagrange multipliers
within a classical mortar method will be demonstrated for the first time to the
best of our knowledge. The proposed coarse graining techniques is shown to be
helpful in this context as well.

1.4 Thesis outline
The thesis is organized as follows. In Chapter 2, a brief overview of the re-
quired notions from the continuum solid mechanics is given. The majority of the
chapter focuses on introducing boundary value problems with tying and contact
constraints, that are solved within the thesis. The classical governing equations,
the strong and weak forms of the problem settings are recalled here and they are
slightly adjusted to handle overlapping domains. The continuous weak forms serve
as a starting point, for the numerical framework developed in subsequent chapters.
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In Chapter 3, the three dimensional classical mortar discretization methods are
presented. The discrete forms of the virtual work for the tying of non-overlapping
domains and contact problems are derived here. The former one using the method
of Lagrange multipliers, and the latter one using the monolithic augmented La-
grangian method. Relevant aspects of the numerical procedures such as detection,
geometrical operations involved in evaluation of mortar integrals, and resolution
are discussed. The accuracy and robustness of the implementation are demon-
strated using various numerical examples.

In Chapter 4, the two dimensional MorteX framework is presented for mesh ty-
ing between overlapping domains. The selective integration scheme of the X-FEM
and enhancements to the classical mortar methods to handle constraints along
a real and an embedded interface pair are elaborated. The stabilization tech-
niques to mitigate the adverse effects of mesh-locking are introduced here.Patch
tests and numerous examples are considered to validate the MorteX framework, to
demonstrate its performance, and to prove the favorable effect of coarse-graining
of Lagrange multipliers.

In Chapter 5, the MorteX framework is extended to solve contact problems
between a real (boundary fitted) and virtual (embedded) surfaces. Discrete kine-
matic quantities related to the contact problem are redefined to account for the
embedded interface. Few numerical examples are presented to demonstrate the
performance of the framework. Results are compared with those obtained using
the classical mortar method for analogous problems. The applicability of the
stabilization techniques to avoid mesh-locking for both the MorteX and mortar
frameworks is demonstrated. Wear problem, the key application of this frame-
work, is also presented here: a frictional reciprocal contact is simulated between
surfaces, which change as a result of material removal process due to wear.

In Chapter 6, the contributions of the thesis are summarized. Prospective
work and further extensions of the elaborated methods are discussed.



24 CHAPTER 1. INTRODUCTION



Chapter 2

Continuum framework

Résumé: Dans ce chapitre, un abrégé de la mécanique non-linéaire des milieux
continus est présenté. Quatre problèmes de valeurs aux limites contraints sont con-
sidérés dans la thèse: (1) le couplage de domaines non-chevauchants, (2) le contact
entre des solides le long de leurs limites extérieures, (3) le couplage de domaines qui
se chevauchent et (4) le contact entre des solides le long de paires surface externe
/ surface interne. Les quantités cinématiques et les contraintes sont exposées dans
leur forme forte. Les méthodes permettant la prise en compte des contrainte, par
exemple la méthode de pénalisation et les méthodes basées sur les multiplicateurs
de Lagrange, sont discutées. Les formulations faibles des problèmes introduits
sont dérivées en utilisant le principe du travail virtuel et des fonctionnelles non-
contraintes obtenues en appliquant les techniques d’optimisation.

In this chapter, a brief overview of the non-linear continuum solid mechanics is
given. A significant part of this chapter is focused on introducing the continuum
description of the four constrained boundary value problem settings considered in
the thesis: (1) tying of non-overlapping solids, (2) classical contact between solids
along their outer boundaries, (3) tying problems of overlapping solids, and (4) con-
tact between solids along outer and inner surface pair. This chapter also includes
a description of necessary kinematic quantities, followed by the constraint defini-
tions formulated within a strong form. The constrained optimization techniques:
penalty method, Lagrange multiplier method and augmented Lagrangian method
are discussed. The weak formulations of the introduced problems is derived using
the principle of virtual work and unconstrained functionals obtained by applying
the optimization techniques.

2.1 Basics of solid mechanics

This section introduces the basic governing equations for non-linear solid mechan-
ics. Description is confined to necessary details to elaborate on the following
boundary value problems with constraints. A comprehensive introduction and
an overview of these basic concepts can be found in, e.g. [Truesdell and Noll,
2004, Bonet and Wood, 1997, Holzapfel, 2002]. The mathematical foundation of
the elasticity theory can be found, for example, in [Marsden and Hughes, 1994].

25
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2.1.1 Kinematics
Kinematics is a study of motion, regardless of what is causing it. This section is
concerned with the mathematical description of this motion. Each of relevant
quantities, for example velocity, deformation gradient or rate of deformation ten-
sor, equips us to describe the motion of solids in general and their deformation in
particular and enables formulating constitutive behaviors.

Motion and deformation

In the continuum framework a body is described by a set of continuously dis-
tributed points, which are referred to as material points. The location of the body
in space can be described by a mapping called configuration. An Euclidean two-
or three-dimensional space R2,3 equipped with a Cartesian coordinate system is
considered. With the knowledge of location of a body in space, the motion can
be described as a continuous set of configurations through which a body can pass
in a given time interval. Here, the two configurations, namely the reference con-
figuration Ω representing the domain occupied by the material points X at t = 0
and the current configuration ω, which can be considered as a bijective mapping
of the reference configuration points to the changed position x for t ∈ R+ [see
Fig. 2.1]. For a solid, the undeformed configuration is a natural choice for the
reference configuration. The motion and deformation can be obtained using the
deformation map ϕt:

x = ϕt(X, t). (2.1)

x X

X
e2

e3

e1

u X

Figure 2.1: Reference (Ω) and current (ω) configurations.

It is possible to formulate the equations of continuum mechanics using ei-
ther material coordinates (Lagrangian, which fit better to solid mechanics) or the
spatial coordinates (Eulerian, which fits better to fluid mechanics). Here, the La-
grangian frame is used to describe various kinematic relations. The displacement
u is defined as the difference in position vectors of the material point in current
and reference configurations.

u(X, t) = x(X, t)−X. (2.2)
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Deformation gradient

The mapping between the line elements of initial and current configurations called
the deformation gradient F is used to quantify deformation in continuum mechan-
ics. This mapping is one-to-one (i.e. F cannot be singular, J = detF > 0)

dx = F · dX. (2.3)

The deformation gradient tensor F , whose components are finite, characterizes
the deformation in the neighborhood of a point X, mapping infinitesimal line
elements dX emanating fromX in the reference configuration to the infinitesimal
line elements dx emanating from x in the current configuration. The deformation
gradient F is expressed as the partial derivative of the current configuration with
respect to the reference configuration:

F = ∂x

∂X
= ∂(u +X)

∂X
= I + ∂u

∂X
= I +H , (2.4)

whereH is the displacement gradient. Similarly, a mapping for the area elements
between the configurations is given by the Nansons formula [Ogden, 1997]

da = nda = JF−ᵀ ·NdA = J F−ᵀ · dA, (2.5)

where N and n are unit normals to the area elements dA and da in reference and
current configurations, respectively. The transformation between volume elements
of initial and current configuration is provided by the relation

dv = JdV. (2.6)

2.1.2 Strain measures
The strain measure for the reference configuration is the Green-Lagrange strain
E, defined as:

E = 1
2(F ᵀ · F − I). (2.7)

Similarly, the Euler-Almansi strain tensor determines the strain in the current
configuration and is defined as:

e = 1
2(I − F−ᵀ · F−1). (2.8)

Both the strain tensors E and e are symmetric and give information about the
change in the squared length of line elements (along with the included angle be-
tween them) between the reference and current configurations.

2.1.3 Stress measures
Cauchy stress tensor

First, the traction vector on an imaginary cut through a point is defined here as a
limit value of the ratio of force vector over area; for force ∆F acting on a surface
element of area ∆A, it is given as:

t(n) = lim
∆A→0

∆F
∆A , (2.9)
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where n denotes the normal to the imaginary cut. An infinite number of traction
vectors act at a point, each acting on different cuts through the point associated
with different normals. The traction vector defined on a surface element with area
da in the current configuration is called the Cauchy traction vector. The Cauchy’s
theorem states that there exists a Cauchy stress tensor σ which maps the normal
of the cut surface to the traction vector acting on that surface, according to:

t = σ · n. (2.10)

The Cauchy stress σ is also called the true stress. Among many available material
stress tensors the First and Second Piola-Kirchhoff tensors are presented here.

The first Piola-Kirchhoff stress tensor

Consider a vector surface elementNdA in the reference configuration. As a result
of deformation, it changes into nda. Assuming that an infinitesimal force df is
acting on the surface element in the current configuration. Then according to
Cauchy’s theorem:

df = σ · n da = P ·N dA, (2.11)

where P is the first Piola-Kirchhoff stress tensor. It is a two field tensor relating
the force acting in the current configuration to the surface element in the reference
configuration. Similar to the Cauchy stress vector t, the first Piola-Kirchhoff
traction vector T is given as:

T =
df

dA
= P ·N . (2.12)

Whereas the Cauchy traction t carries a physical significance, representing the
actual force per area on the element in the current configuration, the traction T
is a fictitious quantity with no physical significance.

The second Piola-Kirchhoff stress tensor

Due to the unsymmetrical nature of P , a symmetrical second Piola-Kirchhoff
stress tensor S is generally used. Like the Cauchy stress tensor quantifies the
stress in the current configuration, the second Piola-Kirchhoff stress tensor S is
symmetric and is quantifies the stress in the reference configuration. They are
related through the following expression:

S = JF−1 · σ · F−ᵀ. (2.13)

The first and second Piola-Kirchhoff stress tensors are related as:

P = F · S, S = F−1 · P . (2.14)

2.1.4 Balance laws
Here the fundamental balance laws of linear momentum, and angular momentum
are briefly reviewed. A comprehensive overview of these laws can be found in,
e.g. [Holzapfel, 2002, Belytschko et al., 2013].
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Balance of of linear momentum

The balance of linear momentum states that the rate of change of momentum is
equal to the forces acting on the solid. If there are no forces applied to a system,
the total momentum of the system remains constant; the law in this case is known
as the law of conservation of (linear) momentum. For an arbitrary control volume
ω, with spatial density ρ(x, t) and spatial velocity field ẋ(x, t) the principle of
linear momentum states:

d

dt

∫
ω

ρ(x, t)ẋ(x, t) dω =
∫
ω

b dω +
∫
∂ω

t da, (2.15)

where t represents the surface tractions acting on the boundary and b represents
the density of body force acting on the control volume. Using the definition of
Cauchy traction vector t = σ ·n and applying the Gauss divergence theorem, we
get: ∫

ω

(
∇ · σ + b

)
=
∫
ω

ρẍ. (2.16)

Since every part of the solid should be in equilibrium, the above equation (2.16)
should hold for any ω in the solid, therefore for every point of the solid the following
equation should hold:

∇ · σ + b = ρẍ. (2.17)

Similarly, for the reference configuration

∇ · P +B = ρ0ü, (2.18)

where B is the corresponding body force acting per unit volume in the reference
configuration.

Balance of angular momentum

The resultant moment acting on a solid or any of its parts equals the rate of change
of the total angular momentum. This is obtained by taking a cross product of each
term in (2.15) with a position vector r ∈ ω:

d

dt

∫
ω

r × ρ(x, t)ẋ(x, t) dω =
∫
ω

r × b dω +
∫
∂ω

r × t da. (2.19)

The balance of angular momentum is automatically verified, in absence of vol-
umetric moments [Forest and Amestoy, 2018], as the stress tensor is symmetric
according to the Cauchy’s second law.

2.1.5 Constitutive laws
The equations introduced so far are essential to characterize kinematics, stresses
and balance principles. However, they lack a physical significance i.e. they do not
distinguish one material from another. Hence, they must be equipped with addi-
tional equations, called constitutive relations or equations of state, which depend
on the material that the body is made of. A constitutive relation approximates
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the observed physical behaviour of a material under specific conditions of interest.
They are incorporated in the stress-strain relation and complete the required set
of equations to formulate the boundary value problem for a single body.

In this work we consider isotropic continua, under the infinitesimal and fi-
nite deformation frameworks. The Saint-Venant-Kirchhoff constitutive law in this
regard can be considered as a basic constitutive equation that employs the same
stress-strain relationship as the Hook’s law but not only for small but also for large
strain regimes. Its general form includes the second Piola-Kirchhoff stress tensor
S (2.13) and the Green-Lagrange strain tensor E (2.7) for finite deformations:

S = λtr(E)I + 2µE. (2.20)

where I is the identity tensor, and λ and µ are the Lamé constants, which can be
expressed through Young’s modulus E and Poisson’s ratio ν as:

λ = νE

(1 + ν)(1− 2ν) , µ = E

2(1 + ν) .

2.1.6 Boundary value problem
In addition to the equations governing the kinematics, the equilibrium and the con-
stitutive behavior, the boundary conditions are required for the boundary value
problem (BVP) set-up. For this purpose we consider a domain Ω in the reference
configuration. Its closure ∂Ω is constituted of Dirichlet boundary Γu and Neu-
mann boundary Γt. The displacements û and tractions T̂ are prescribed on them,
respectively. The boundaries Γu and Γt are defined such that:

Γu ∪ Γt = ∂Ω, Γu ∩ Γt = ∅. (2.21)

Note that the BVP can be analogously stated in the current configuration using
the counterparts of ω for the domain and γu and γt for the Dirichlet and Neumann
boundaries, respectively. Neglecting the inertia terms, the boundary value problem
in the reference configuration reads as follows:

∇ · P +B = 0 in Ω, (2.22)
P ·N = T̂ on Γt, (2.23)

u = û on Γu. (2.24)

Equations (2.67)-(2.69), are referred to as a strong form. A closed form solution
to these equations can only be found for simple problem settings and in certain
special cases [Muskhelishvili, ]. Numerical solution to these partial differential
equations (PDE) typically involves discretization techniques. The finite difference
method, is one such technique where the discrete linear/non-linear algebraic equa-
tions from the PDE’s are derived. In this work we use the Finite Element Method
(FEM) as the numerical framework which relies on an integral representation of
these equations called the weak form. This framework requires interpolation func-
tions that are combined with the weak form to obtain the discrete finite element
equations [Holzapfel, 2002, Reddy, 2014].
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2.2 Boundary value problems with constraints
In this section a boundary value problems with constraints1 are formulated: namely,
a tying problem and a contact problem. Both these problems involve additional
constraints being imposed on the solution. Equality constraints are imposed at
the interface in mesh tying problems, while inequality constraints are needed in
contact problems. Constraint enforcement strategies similar to those of the op-
timization theory can be directly used for the tying and contact problems which
are typically solved as constrained minimization problems. Formulating suitable
minimization functionals in these cases using the principle of virtual work renders
the problem unconstrained or semi-unconstrained.

The penalty method is a widely used technique to handle constraints in the op-
timization theory. Owing to a formulation solely based on the primal displacement
variables, the penalty methods are amongst the easiest techniques to implement.
The constraint violations are penalized by a fast increase of the objective function
determined by penalty parameters. The main drawback of the method, is that it
does not ensure exact fulfillment of constraints. For contact problems in particu-
lar, this translates into unphysical penetrations. This can be minimized by using
higher values of penalty parameters, which could however lead to ill conditioned
system of equations. Its application to mesh tying problems can be found e.g.
in [Pantano and Averill, 2007, Prokopyshyn, 2016], and for contact problems e.g.
in [Chabrand et al., 1998, Yang et al., 2005, Fischer and Wriggers, 2006, Kuss and
Lebon, 2009].

The Lagrange multiplier method fulfills the contact constraints exactly by in-
troducing additional variables, called Lagrange multipliers. This leads to a mixed
variational formulation and a saddle point type system of equations. These meth-
ods are very popular for imposing equality constraints like in the mesh tying prob-
lems [Puso, 2004, Parks et al., 2007, Boer et al., 2007] . The Lagrange multiplier
method was applied to frictionless problems e.g. in [Fischer and Wriggers, 2005]
and for frictional case e.g. in [Tur et al., 2009]. For the contact problem with in-
equality constraints, this method does not render the problem fully unconstrained,
since the Lagrange multiplier field should still satisfy inequality λ ≤ 0. Hence,
in the discretized setting the resolution needs to be complemented with an active
set strategy to resolve the active and passive constraints within the convergence
loop [Björkman et al., 1995, Dumont, 1995, Wriggers, 2012]. In the thesis, the
Lagrange multiplier method is employed solely for the tying problem to enforce
equality constraints along the tying interfaces.

A particular combination of the penalty method and the Lagrange multipliers
method leads to the so-called augmented Lagrangian method (ALM), which was
first proposed in [Hestenes, 1969, Powell, 1969] for equality constraints and later
extended to inequality constraints [Rockafellar, 1973]. It converges to the exact
solution for a finite value of the penalty parameter (also called augmentation pa-
rameter) and renders the problem completely unconstrained and equipped with
a smooth functional, which proves to be an advantage from the numerical point
of view. With a smooth minimization functional in place, the standard New-
ton’s technique can be applied. However, for the case of contact problems with

1To keep it concise, we will also term this problem as a “constrained boundary value prob-
lem”, however this terminology could be considered non-rigorous.
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non-smooth functionals, a generalized Newton scheme was proposed by Alart and
Curnier for the ALM methods [Alart and Curnier, 1991, Alart, 1997]. The first ap-
plications of the ALM method for frictionless problems can be found in [Glowinski
and Le Tallec, 1989], and in the report by Wriggers [Wriggers et al., 1985]. Within
the Uzawa algorithm [Wriggers, 2012], which uses nested update of dual degrees of
freedom, the ALM was also implemented in [Simo and Laursen, 1992]. The mono-
lithic ALM method, which handles simultaneously the primal and dual degrees of
freedom, was applied to frictional problems in [Alart, 1988, Alart and Curnier,
1991, Pietrzak and Curnier, 1997] within node-to-segment contact discretization.
In this work, a monolithic augmented Lagrangian method is implemented for
treating contact problems within the mortar framework.

2.2.1 Tying of non-overlapping domains
Fig. 2.2 shows a three dimensional tying problem set-up between two non-overlapping
open domains Ω1 and Ω2 (Ω1∩Ω2 = ∅). Without loss of generality, only the case of
a single tied interface is presented, an extension to multiple interfaces is straight-
forward. Each subdomain Ωi is constituted of closed boundaries, the Dirichlet
boundary (Γiu), Neumann boundary (Γit) and the interface Γig (the subscript ”g”
refers to the “gluing”), i.e. ∂Ωi = Γiu ∪ Γit ∪ Γig. In the continuum setting there
exist no gaps between the two subdomain, i.e. Γ1

g ≡ Γ2
g. The tying problem is con-

cerned with the enforcement of displacement continuity along the interface made
of boundaries Γig.

e2
e3

e1

Figure 2.2: 3D continuum setting for tying of two non-overlapping domains Ω1
and Ω2 (reference configuration).

Kinematics

The gap is the fundamental quantity that determines the kinematics along tying
interface formed from the surfaces Γ1

g and Γ2
g. It is defined as the relative displace-

ment between the two sub domains assuming that in the reference configuration
the two surfaces Γig (i = 1, 2) coincide. The gap function is given as:

g(X1,X2) = u1(X1)− u2(X2), (2.25)

where X1 = X2 and X i ∈ Γig. The displacement continuity of the tying problem
translates into ensuring that the gap between the two bodies is zero at every point



2.2. BOUNDARY VALUE PROBLEMS WITH CONSTRAINTS 33

g = 0. However, extending the idea of constraining the displacements we could
use the framework to impose periodic boundary conditions [see Section 3.7.3]. In
this case the value of the gap function will be equal to a predefined value of the
period based on the initial configuration.

Strong form

The constrained BVP for the tying problem involving two bodies (i = 1, 2), taking
into account the displacement continuity along the interface Γ1

g is:

∇ · P i +Bi = 0 in Ωi, (2.26)

P i ·N i = T̂
i on Γit, (2.27)

where the displacements are selected from

Ki = {ui ∈ H2(Ωi) |ui = ûi0 on Γiu and u1 = u2 on Γ1,2
g }, (2.28)

where H2 is the second order Sobolev space. Alternatively, u1 = u2 can be
rewritten as g(X1,X2) = 0.

Weak form

The boundary problem with equality constraints is resolved using the Lagrange
multiplier method. The equality constraints are imposed by the Lagrange multipli-
ers representing tractions. It leads to a mixed variational saddle point formulation.
The Lagrangian of the problem is given by:

L = Ws +Wg, (2.29)

whereWs is the underlying potential energy of the system, and the tying constraint
is given by the following integral Wg =

∫
Γ1
g

λ · g dΓ = 0.

The weak form derivation requires the following solution space U i and the test
function space V i definitions:

U i = {ui ∈ H1(Ωi) |ui = ûi0 onΓiu}, , (2.30)
V i = {δui ∈ H1(Ωi) | δui = 0onΓiu} (2.31)

where δui represents the virtual displacements and H1(Ωi) denotes the first order
Sobolev space. The Lagrange multiplier is chosen from the trace space W1 =
H1/2(Γ1

g) of U1.
The weak form of the BVP is accordingly divided into the standard solid

mechanics part (δWs) and the contribution from the tying (δWg). The virtual
work of the system is obtained by variating the Lagrangian:

δL(u,λ) = δWs + δWg. (2.32)

where

δWs =
2∑
i=1

(∫
Ωi
Si : δE dΩ

︸ ︷︷ ︸
δWint

−
∫
Ωi
Bi · δui dΩ−

∫
Γit

T̂ i · δui dΓ

︸ ︷︷ ︸
δWext

)
, (2.33)
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where δWint, δWext are the change in internal energy and the virtual work of forces,
respectively. The tying virtual work is given as:

δWg =
∫
Γ1
g

λ · δg dΓ +
∫
Γ1
g

δλ · g dΓ. (2.34)

The first term in Eq. 2.34 represents the virtual work contribution from the tying
interface, and the second term represents the weak form of the equality constraints.

2.2.2 Contact along real interfaces
Without loss of generality, we confine the continuum description of the contact
problem to contact between two deformable bodies, along a single contact zone.
Fig. 2.3 shows the current deformed configuration. The domains ωi, i = 1, 2 have
Dirichlet boundary (γiu), Neumann boundary (γit) and potential contact boundaries
(γic), such that ∂ωi = γiu ∪ γit ∪ γic.

e2
e3

e1

τ τ
n

Figure 2.3: 3D continuum setting of two body contact problem (current configu-
ration).

Kinematics

Unlike the tying problem, where the tying boundary is known a priori in the
reference configuration, the contact surface γic for each contacting body is unknown
and may continuously change with time, making the contact problem non-linear.
The active contact surface is determined as a part of the solution scheme. Note
that the inactive part of the potential contact surface γic will be interpreted as a
Neumann boundary. The gap function defines the signed distance between the
two surfaces and is the fundamental measure that defines the status of contact.
Here, we define the gap vector (2.35) as a vector pointing from a point onto the
surface γ1

c to its projection along the local normal on the surface γ2
c (the choice of
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these surfaces is arbitrary). Within a discrete setting, the surfaces γ1
c and γ2

c will
be referred to as mortar and non-mortar surfaces, respectively.

g(x1, γ2
c ) = x1 − x̂2(x1, γ2

c ). (2.35)

where x̂2 is the projection of x1 onto the surface γ2
c . The projection is defined by a

mapping ψ : γ1
c → γ2

c along the surface normal n [Yang et al., 2005]. Other possible
projection methods are a essentially similar ray-tracing projection [Poulios and
Renard, 2015], the standard closest point projection [Konyukhov and Schweizerhof,
2008], and shadow projection method [Yastrebov, 2013] . The gap function is thus
obtained as a dot product of the gap vector g and the outward unit normal n to the
surface γ1

c . Based on this normal gap function, there exists three possible statuses
of contact, namely: no contact (gn > 0), in contact (gn = 0) and penetration
(gn < 0) [see Fig. 2.4].

gn(x1, γ2
c ) = g · n. (2.36)

gn > 0
no-contact

gn < 0
penetration

gn = 0
in contact

projection of point on ontopoint on  

-
g

n-

Figure 2.4: Contact status based on gn.

For the frictional contact, an additional measure called the tangential relative
velocity is required. It is given as:

ġ
τ
(x1) = (I − n⊗ n) · [ẋ1(x1)− ˙̂x2(x1)], (2.37)

where (I − n ⊗ n) is the projection tensor and I the identity tensor [Laursen,
2013]. In order to preserve the consistency of units in the weak form, hereinafter
the incremental slip will be used instead of the tangential slip velocity as below:

g̊
τ
(x1) = (I − n⊗ n) · [x̊1(x1)− ˚̂x2(x1)], (2.38)

where
(̊·) = d(·)

dt
∆t, (2.39)

where 0 < ∆t < ∞ is an arbitrary time increment. This replacement does not
change the physical sense of all following equations. The normal vector n, and
tangent vectors τ ξ = ∂x1/∂ξ and τ η = ∂x1/∂η form a local basis at the material
point x1, and is referred to as the slip advected basis vectors. The plane defined
by the vectors (τ ξ, τ η), is the tangential slip plane [see Fig. 2.3]. Ensuring frame
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indifference for measures such as the incremental slip is crucial for accurate fric-
tional contact formulation. The incremental slip g̊

τ
is only frame indifferent under

perfect sliding conditions (gn = 0). Appropriate modifications to this definition
within a discretized setup will be introduced and discussed in Section 3.3.2.

In addition to the classification of the kinematic quantities into the normal and
tangential components, the contact traction vector t1c = σ ·n1 is also decomposed
into its respective counterparts:

t1c = pnn+ p
τ
; pn = t1c · n, pτ = pξττ

ξ + pηττ
η. (2.40)

The balance of the linear momentum on the contact surface implies

t1c = −t2c , (2.41)

where t2c = σ ·x2 is the contact traction on the surface γ2
c . It is worth noting that

in a 2D setting, the incremental slip g̊τ and the tangential contact traction pτ are
scalar quantities.

Normal contact constraints

Along the contact interface, the classical Hertz-Signorini-Moreau conditions [Kikuchi
and Oden, 1988] also known as KKT conditions in the theory of optimization [Hestenes,
1969, Powell, 1978] have to be satisfied. These conditions are formulated using
the gap gn and the contact pressure pn as [see Fig. 2.5]:

gn ≥ 0, pn ≤ 0, pngn = 0. (2.42)

gap

co
nt

ac
t

Figure 2.5: Graphical representation of the KKT normal contact conditions.

Tangential contact constraints

The friction is described using the Coulomb’s friction law. The frictional con-
straints are formulated using tangential sliding velocity or equivalently incremen-
tal slip g̊

τ
, tangential traction p

τ
and contact pressure pn. The incremental slip

vanishes ||̊g
τ
|| = 0 when the tangential traction is below the frictional threshold

||p
τ
|| ≤ µ|pn|, non-zero incremental slip ||̊g

τ
|| 6= 0 is possible when ||p

τ
|| = µ|pn|.

These conditions can also be formulated as KKT conditions [see Fig. 2.6]:

||̊g
τ
|| ≥ 0, ||p

τ
|| − µ|pn| ≤ 0,

(
µ|pn| − ||pτ ||

)
||̊g

τ
|| = 0, (2.43)

where µ is the Coulomb’s coefficient of friction.
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- contact
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Figure 2.6: (a) Graphical representation of KKT tangential contact conditions;
(b) Coulomb friction cone in traction space {pn, pξτ , pητ}.

Strong form

The BVP for the two body (i = 1, 2) contact problem taking into account the
contact constraints (2.42),(2.43) is stated as following:

∇ · σi + bi = 0 in ωi, (2.44)

σi · ni = t̂
i on γit, (2.45)

(2.46)

where the displacements are selected from

Ki = {ui ∈ H2(Ωi) |ui = ûi0 onΓiu and gn ≥ 0 on γ1
c} (2.47)

The contact between the bodies imposes constraints which can be treated as ad-
ditional configuration-dependent non-adhesive tractions σi · ni = tic on γic, which
ensure non-penetration of solids.

Weak form

The boundary value problem with contact inequality constraints is reformulated in
a weak form using the monolithic augmented Lagrangian method. The weak form
derivation requires the following solution space U i and the test function space V i

definitions:

U i = {ui ∈ H1(Ωi) |ui = ûi0 onΓiu}, , (2.48)
V i = {δui ∈ H1(Ωi) | δui = 0onΓiu} (2.49)

where H1(Ωi) denotes the first order Sobolev space. Note that the contact con-
straints are already removed from these spaces as they will be included in the
weak formulation using the ALM. The virtual work contribution from the struc-
tural part, which contains only primal variables is given as:

δWs =
2∑
i=1

(∫
ωi

σi : δe dω

︸ ︷︷ ︸
δWint

−
∫
ωi

bi · δui dω −
∫
γit

t̂i · δui dγ

︸ ︷︷ ︸
δWext

)
, (2.50)
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Unlike the equality constraints in the tying problem, the contact problem leads
to a constrained problem with inequality constraints, also referred to as the vari-
ational inequalities. This implies restrictions on the associated functional spaces
for the displacements, that need to satisfy the non-penetration contact condi-
tions [Fichera, 1973, Kikuchi and Oden, 1988]. However, as already stated, using
the augmented Lagrange method as the resolution scheme removes these addi-
tional restrictions on the functional spaces for the displacements. The Lagrange
multipliers are chosen from the trace space W1 = H1/2(γ1

c ) of U1.
For the virtual work contribution from the resulting contact forces we consider

the generalized Newton method proposed by Alart and Curnier within the aug-
mented Lagrangian method (ALM) framework [Alart and Curnier, 1991]. The
ALM is a mixed dual formulation that introduces Lagrange multiplier vector λ as
dual variables along with the primal displacement variables. Lagrange multiplier
vector fields can also be decomposed into normal and tangential components as:

λ = λnn+ λτ . (2.51)

λn = λ · n. (2.52)

λτ = (I − n⊗ n) · λ. (2.53)

The fields of Lagrange multipliers λn, λτ are equivalents of contact pressure pn
and the tangential friction shear p

τ
introduced earlier (2.40). The augmented

Lagrangian pseudo functionals ln and lτ for the normal and frictional contact,
respectively, are given by the following expressions [Pietrzak and Curnier, 1997,
Pietrzak and Curnier, 1999]:

ln(gn, λn) =

λngn + εn
2 g

2
n, λ̂n ≤ 0,

− 1
2εnλ

2
n, λ̂n > 0.

(2.54)

lτ (̊gτ ,λτ , p̂n) =


 λτ · g̊τ + ετ

2 (̊g
τ
· g̊

τ
), ||λτ || ≤ −µp̂n

− 1
2ετ (λτ · λτ + 2µp̂n||λτ ||+ µ2p̂2

n), ||λτ || ≥ −µp̂n

 , λ̂n ≤ 0

− 1
2ετλτ · λτ , λ̂n > 0,

(2.55)
where λ̂n, λ̂τ , p̂n are the augmented normal and tangential Lagrange multipliers,
and the augmented pressure, respectively:

λ̂n = λn + εngn, λ̂τ = λτ + ετ g̊τ , p̂n = pn + εngn, (2.56)

where εn and ετ are the normal and tangential augmentation parameters, respec-
tively. The augmented pressure determining the frictional threshold is replaced by
the corresponding augmented Lagrange multiplier λ̂n, however p̂n is not subjected
to variation, therefore a different notation is used to highlight this subtle differ-
ence [Pietrzak and Curnier, 1997]. Integrating the functionals (2.54) and (2.55)
over the contact surface γ1

c incorporates the contact constraints in the Lagrangian:
Frictionless:

Laug = Ws +Wc = Ws +
∫
γ1
c

ln(gn, λn). (2.57)
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Frictional:

Laug = Ws +Wc = Ws +
∫
γ1
c

ln(gn, λn) + lτ (̊gτ ,λτ , p̂n) dγ. (2.58)

The problem of constrained optimization transforms into the min-max or sad-
dle point problem for the Lagrangian, whose solution is equivalent to the solution
of the variational inequality optimization problem on a non-convex domain and
its boundary [Hestenes, 1969, Powell, 1978, Pietrzak and Curnier, 1997]. The
min-max problem is solved by searching the stationary point minimizing the La-
grangian with respect to primal (displacement) field and maximizing it with re-
spect to the dual field (Lagrange multipliers). The contact virtual work for the
frictionless case is:

δWc =
∫
γ1
c

δ [ln(gn, λn)dγ] = (2.59)

=
∫
γ1
c

λnδgn dγ + gnδλn dγ + gnλn︸ ︷︷ ︸
0

δdγ (2.60)

Note that the last term in the frictionless weak form represents the complementary
KKT condition (2.42) and is always zero in the weak form. This term is dropped
for implementation purposes, and thus results in a non symmetric tangent operator
for the frictionless case, in the incremental solution procedure. However, as was
remarked in [Fischer and Wriggers, 2005], a consistent linearization with this term
included, results in a symmetric tangent matrix. The contact virtual work for the
frictional case is given by:

δWc =
∫
γ1
c

[
δln(gn, λn) + δlτ (̊gτ ,λτ , p̂n)

]
dγ = (2.61)

=
∫
γ1
c

[
λnδgn + λτδg̊τ

]
dγ+ (2.62)

+
∫
γ1
c

gnδλn dγ+ frictional contact virtual work

weak normal contact contribution

+
∫
γ1
c

g̊
τ
δλτ dγ (2.63)

weak tangential contact contribution.

The contact virtual work (2.61) is expressed as a summation of the contact contri-
bution to the virtual work resulting from the variations of the positions (2.62), the
weak contribution of normal contact constraints from the variation of the normal
Lagrange multiplier (frictional contact virtual work) and the weak contribution of
tangential contact constraints from the variation of the tangential Lagrange multi-
plier (2.63). Note that the variations and derivatives of piece-wise smooth pseudo
potentials ln and lτ can be seen as sub-derivatives [Pietrzak and Curnier, 1997].
We recall that the variation of p̂n is not required. For the frictionless case, the
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possible statuses are “in contact” and “no contact” and for the frictional case they
are “stick”, “slip” and “no contact”. For the frictional case the contact surface γ1

c

is divided into three distinct sub surfaces:

γ1
c = γslip ∪ γslip ∪ γnc.

Based on the contact statuses, the contact contribution to the virtual work can
be split as follows for frictionless and frictional cases:

δWc =



∫
γ1
c

λ̂nδgn + gnδλn dγ, λ̂n ≤ 0 (in contact),
∫
γ1
c

− 1
εn
λnδλn dγ, λ̂n > 0.

(2.64)

δWc =



∫
γstick

[
λ̂nδgn + gnδλn + λ̂τδg̊τ + g̊

τ
δλ̂τ

]
dγ,

λ̂n ≤ 0, ||λ̂τ || < −µλ̂n (stick),∫
γslip

λ̂nδgn + gnδλn − µp̂n
λ̂τ

||λ̂τ ||
δg̊

τ
− 1
ετ

(
λ̂τ + µp̂n

λ̂τ

||λ̂τ ||

)
δλ̂τ

 dγ,
λ̂n ≤ 0, ||λ̂τ || ≥ −µλ̂n (slip),∫

γnc

[
− 1
εn
λnδλn −

1
ετ
λτδλτ

]
dγ,

λ̂n > 0.
(2.65)

2.2.3 Tying of overlapping domains

We consider two open domains Ω1 and Ω2 with an overlap region Ω1 ∩ Ω2 6=
∅ [Fig. 2.7(a)]. Solid Ω1 has only outer surfaces which are split into Dirichlet,
Neumann and tying boundaries Γ1

u,Γ1
t ,Γ1

g, respectively, which are such that Γ1
u ∪

Γ1
t ∪ Γ1

g = ∂Ω1. We refer to the domain Ω2 as the “host” domain as it hosts the
partially embedded domain Ω1. In addition to outer boundaries (the Dirichlet
boundary Γ2

u and Neumann boundary Γ2
t ), the host domain has the embedded2

boundary Γ̃2
g = Γ1

g ∩ Ω2. We assume that two solids are glued together along the
interface formed by the boundaries Γ̃2

g and Γ1
g; the physics in the overlap zone is

determined by solid Ω1. Therefore, in the reference configuration Γ̃2
g = Γ1

g and
must remain so in any configuration.

2We adapt the tilde •̃ notations for representing all the quantities concerning the embedded
surfaces within the host domain.
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Figure 2.7: (a) Continuum setting of the two overlapping domains with applied
boundary conditions; (b) an equivalent continuum problem without overlap.

Strong form

The constrained BVP for the tying problem of overlapping domains, ensuring the
displacement continuity along the embedded interface Γ1

g is:

∇ · P 1 +B1 = 0 in Ω1 (2.66)
∇ · P 2 +B2 = 0 in Ω̃2 (2.67)

P i ·N i = T̂
i on Γit, (2.68)

ui = ûi on Γiu, (2.69)
u1 = u2 on Γ1

g. (2.70)

where Ω̃2 = Ω2 \ Ω̄1 is the effective non-overlapping region of the host domain
volume [Fig. 2.7(b)], where the bar-notation denotes the open domain united with
its closure, i.e. Ω̄1 = Ω1 ∪ ∂Ω1. The advantage of such formulation involving
tying between overlapping domains lies in the greater flexibility of the associated
discretized problem.

Weak form

The virtual work of the structural part given in (2.33) has to be modified to
account for the effective volume of the host domain Ω̃2 only and the effective
continuum domain (Ω1 ∪ Ω̃2) respectively:

˜δW s =
∫

Ω1

P 1 : δE1 dΩ +
∫

Ω̃2

P 2 : δE2 dΩ

︸ ︷︷ ︸
δWint

−
∫

Ω1∪Ω̃2

Bi · δui dΩ−
∫
Γit

T̂ i · δui dΓ

︸ ︷︷ ︸
δWext

.

(2.71)

Similar to the non-overlapping tying problem, the Lagrange multiplier method is
applied here to enforce the displacement continuity along Γ1

g.

δL(u,λ) = δW̃ s + δW̃ g = δW̃ s +
∫
Γ1
g

[
λ · δg̃ + δλ · g̃

]
dΓ = 0. (2.72)
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2.2.4 Contact between an outer and an internal/embedded
surfaces

Fig. 2.8(b), shows the classical continuum contact setting where the solids come
in contact along the domain-fitted boundary. Here we propose an equivalent,
from continuum point of view, setting where contact boundary γ1

c is still an outer
boundary of ω1, while the homologue deformable body is now ω̃2 and its contact
boundary γ̃2

c is embedded in the domain ω2, whose part ω2\ω̃2 is discarded from the
computation. This setting of contact along embedded boundaries is presented for
the two dimensional case only. Its extension to 3D case is straightforward for the
continuum formulation, but becomes complicated in a discrete setting. In contrast
to the tying of overlapping domains formulated on the reference configuration, the
contact is formulated on the current configuration.

t

t

t
τ

x
n

x

t

g~

e2

e1

Figure 2.8: (a) Continuum setting of contact between a domain-fitted boundary
and an embedded boundary γ̃2

c ; (b) an equivalent continuum problem with contact
between domain-fitted boundaries.

The contact related kinematicquantities are slightly modified as a result of
introducing embedded boundary in the domain. The gap vector is defined as a
vector pointing from a point on the domain-fitted boundary γ1

c to its projection
along the local normal onto the embedded surface γ̃2

c :

g̃(x1, γ̃2
c ) = x1 − x̂2(x1, γ̃2

c ), (2.73)

where x̂2 is the projection of x1 onto the embedded surface γ̃2
c . The gap function

is thus obtained as a dot product of the gap vector g̃ (2.73) and the outward unit
normal n to the surface γ1

c .

g̃n(x1, γ̃2
c ) = g̃ · n. (2.74)

The incremental slip is given as:

˚̃gτ (x1) = τ (x1) ·
(
x̊1 − ˚̂x2(x1)

)
, (2.75)

where τ (x1) is a unit tangential vector to γ1
c at point x1. In comparison to

the vector valued incremental slip in (2.38) in a three dimensional setting, here
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in (2.75) is simply a scalar value. With these notations at hand, the contact
traction in 2D can be decomposed into normal and tangential contributions:

t1c = pnn+ pττ . (2.76)

The normal (2.42) and tangential (2.43) contact conditions for the two dimensional
embedded case remain the same:

g̃n ≥ 0, pn ≤ 0, png̃n = 0. (2.77)

|̊g̃τ | ≥ 0, |pτ | − µ|pn| ≤ 0, (µ|pn| − |pτ |) |̊g̃τ | = 0. (2.78)

Strong form

The BVP for the two body contact problem along embedded surfaces, taking into
account the contact constraints (2.77),(2.78), reads as:

∇ · σ1 + b1 = 0 in ω1 (2.79)
∇ · σ2 + b2 = 0 in ω̃2 (2.80)

σi · ni = t̂
i on γit, (2.81)

ui = ûi on γiu, (2.82)
σ1 · n1 = t1c on γ1

c , (2.83)
σ2 · n2 = t2c on γ̃2

c . (2.84)

Weak form

Similar to the domain tying problem, the virtual work of the structural part given
in (2.50) has to be modified to account for the effective volume of the host domain
ω̃2 only:

˜δW s =
∫
ω1

σ1 : δe1 dω +
∫
ω̃2

σ2 : δe2 dω

︸ ︷︷ ︸
δWint

−
∫

ω1∪ω̃2

bi · δui dω −
∫
γit

t̂i · δui dγ

︸ ︷︷ ︸
δWext

, (2.85)

The contact constraints imposed between the domain-fitted boundary γ1
c and

the embedded boundary γ̃2
c are resolved using the augmented Lagrangian scheme.

The scalar fields of Lagrange multipliers λn, λτ are introduced. They are equiva-
lent to the components of the contact traction vector resolved into contact pressure
pn and the tangential friction shear pτ introduced in (2.76). The associated pseudo
potentials in 2D setting are:

ln(g̃n, λn) =

λng̃n + εn
2 g̃

2
n, λ̂n ≤ 0,

− 1
2εnλ

2
n, λ̂n > 0.

(2.86)

lτ (̊g̃τ , λτ , p̂n) =




λτ˚̃gτ + ετ

2
˚̃g2
τ , | λ̂τ | ≤ −µ p̂n

− 1
2ετ

(
λ2
τ + 2µp̂n| λ̂τ |+ µ2p̂2

n

)
, | λ̂τ | > −µ p̂n

 , λ̂n ≤ 0

− 1
2ετ λ

2
τ , λ̂n > 0.

(2.87)
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Accordingly, the Lagrangian’s (2.57), (2.58), and virtual works (2.64), (2.65) for
the frictionless and frictional cases are also adopted for the two dimensional case
involving contact along embedded boundaries as follows:
Frictionless:

Laug = W̃s + W̃c = W̃s +
∫
γ1
c

ln(g̃n, λn). (2.88)

δW̃c =



∫
γ1
c

λ̂nδg̃n + g̃nδλn dγ, λ̂n ≤ 0 (in contact),
∫
γ1
c

− 1
εn
λnδλn dγ, λ̂n > 0.

(2.89)

Frictional:

Laug = W̃s + W̃c = W̃s +
∫
γ1
c

ln(g̃n, λn) + lτ (̊g̃τ , λτ , p̂n) dγ. (2.90)

δW̃c =



∫
γstick

[
λ̂nδg̃n + g̃nδλn + λ̂τδ˚̃gτ +˚̃gτδλτ

]
dγ,

λ̂n ≤ 0, | λ̂τ | ≤ −µ p̂n (stick),∫
γslip

[
λ̂nδg̃n + g̃nδλn − µ p̂nsign( λ̂τ )δ˚̃gτ −

1
ετ

(
λτ − µ p̂nsign( λ̂τ )

)
δλτ

]
dγ,

λ̂n ≤ 0, | λ̂τ | > −µ p̂n (slip),∫
γnc

[
− 1
εn
λnδλn −

1
ετ
λτδλτ

]
dγ,

λ̂n > 0.
(2.91)

2.3 Summary
In this chapter we have formulated the continuous strong and weak forms for
the four classes of interface problems. The tying of non-overlapping domains [Sec-
tion 2.2.1] and contact between outer surfaces of solids [Section 2.2.2] are presented
in a general three-dimensional context. Whereas, tying of overlapping domains
[Section 2.2.3], contact along embedded surfaces [Section 2.2.4] are presented (and
subsequently implemented) only in a two-dimensional context. Note, however,
that the difference in the formulation between the three and two dimensions is
very subtle and is completely missing for the tying problem. On the contrary,
the implementation of the two latter problems presents a really challenging task
in three-dimensions and is not addressed in this thesis. The required ingredients
for the formulation such as the derivation of kinematics quantities, and the modi-
fied Lagrangian functionals accounting for the imposed constraints are presented.
This chapter equips us with the continuous set of equations describing the problem
statement. In the subsequent chapters, the discretized versions of the introduced
problems will be derived, and solved within the FEM framework.



Chapter 3

Classical mortar method

Résumé: Dans ce chapitre, la formulation de la méthode Mortar dans le cadre
de la méthode des éléments finis est présentée. Les formes discrètes du travail
virtuel pour le couplage des domaines qui ne se chevauchent pas, le contact sans
frottement et les problèmes de contact frottant sont aussi dérivées. Les algorithmes
numériques nécessaires à l’évaluation des intégrales résultant de ces dérivations
seront également présentés. Outre la mise au point de la méthode de Mortar,
les aspects de détection et de parallélisation du traitement sur des architectures
parallèles à mémoire distribuée seront discutés. Quelques aspects intéressants du
traitement de contact seront présentés sous forme d’études de cas simples. La
performance des méthodes élaborées sera démontrée sur des cas test numériques.

In this chapter a classical mortar finite element discretization framework will be
presented. Discrete forms of virtual work for the tying of non-overlapping domains,
the frictionless contact and the frictional contact problems will be derived here.
The numerical algorithms required for the evaluation of the resulting integrals will
also be presented. Apart from elaborating the mortar discretization framework,
the aspects of contact detection and parallel resolution will be discussed. Few
interesting aspects of the contact treatment will be presented in the form of simple
case studies. The performance of the elaborated methods will be demonstrated
on selected numerical test cases.

3.1 Mortar framework
Here emphasis is laid on introducing the spatial discretizations employed within
the mortar finite element discretization techniques for the interfaces. For this we
use the subspaces Uh (Uh ⊂ U) and Vh (Vh ⊂ V), which are the approximations
of the solution and test function spaces introduced in Equations (2.30),(2.31). The
details of the underlying standard finite element discretization1 can be found in
the classical textbooks on FEM [Zienkiewicz et al., 1977, Bathe, 1995, Belytschko
et al., 2013] and others.Here, we will present the tying and contact interface prob-
lems between incompatible meshes/discretizations using the mortar method.

Within the mortar discretization framework the interfaces are typically classi-
fied into mortar and non-mortar sides. In this work, the superscript ”1” refers to

1Note that for brevity and simplicity hereinafter we preserve the same notations for dis-
cretized entities as were introduced in the continuous problem statement.
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the mortar side of the interface and ”2” to the non-mortar side. Without loss of
generality, the choice of mortar and non-mortar sides is arbitrary. For a problem
assumed in Rdim, the resulting interfaces γic will be Rdim−1 dimensional manifolds
in Rdim. Concerning the two classes of interfaces problems of tying and contact,
the kinematic quantities of interest are the displacements and current interfacial
nodal coordinates respectively. By virtue of iso-parametric elements employed in
this work, the same shape functions are applied for both as:

x1(ξ1) = N1
m(ξ1)x1

m, x2(ξ2) = N2
i (ξ2)x2

i , (3.1)
u1(ξ1) = N1

m(ξ1)u1
m, u2(ξ2) = N2

i (ξ2)u2
i , m ∈ [1,M], i ∈ [1,N]. (3.2)

N1
m(ξ1) and N2

i (ξ2) are the interpolation functions of mortar and non-mortar
sides, respectively; whereas M and N is the number of nodes per segment of the
mortar and non-mortar sides, respectively. Hereinafter, Einstein summation over
repetitive index is used. The parameterizations ξi in case of three dimensions
can be equivalently expressed as as vector with components (ξi, ηi) and simply as
scalar (ξi) in case of two dimensional problems. The Lagrange multiplier vector
λ (2.51) is interpolated using functions Φl:

λ(ξ1) = Φl(ξ1)λl, l ∈ [1,L], (3.3)

where L is the number of nodes used for interpolation over every edge, where L
can be less than or equal to M. Similar to the primal displacement interpolation
functions chosen from a finite dimensional subspace, the Lagrange multiplier inter-
polation functions are chosen from the subspace Wh (Wh ⊂W). This particular
choice is guided by the requirement of the mixed formulations to fulfill the inf-
sup stability conditions [Bathe, 2001]. Note that the mortar side of the interface
carries the dual degrees of freedom (DoFs) the Lagrange multipliers, and all the
interface related evaluations of virtual work are carried out on the mortar side of
the interface. Also though out the thesis, the primal and dual DoFs of the mortar
side are accompanied by the superscript m and l, respectively, and for the primal
DoFs on the non-mortar side accompanied by superscript i.

3.1.1 Mortar interface element
A mortar interface element is formed between segments (1D line elements in case of
two dimension and 2D surface elements in case of three dimension) of the mortar
and non-mortar sides [see Fig. 3.1]. Each contact interface element consists of
(M + N) nodes, each with “dim” (spatial dimension of the problem) primal DoFs
in 2D, and of L dual DoFs associated with Lagrange multipliers. Accounting for the
accurate areas of contact between the discretized mortar and non-mortar surfaces,
requires a virtual sub-discretization. This is achieved by projections in 2D and by
projections and clipping in 3D (see Section 3.4). The sub-discretized mortar side
representing the accurate areas of contact will be referred to as mortar domain
(Sel). Moreover, for the sake of simplicity, we omitted averaging of normals at
nodes and their interpolation, which was elaborated in [Yang et al., 2005, Popp,
2012]. The normal averaging has many numerical advantages, but complicates the
implementation.
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Non-mortar nodes

Mortar nodes

Projection of non-mortar nodes

Clip intersections
2D mortar domain
1D mortar domain

Figure 3.1: Mortar domain (Sel) in 2D and 3D.

3.2 Discrete mesh tying problem

3.2.1 Discrete virtual work
Substituting the displacement (3.2) and Lagrange multiplier interpolations (3.3)
into the weak form (2.34)

δW el
g =

(
λl · δum + δλl · um

)
Dlm −

(
λl · δui + δλl · ui

)
Mli, (3.4)

l ∈ [1,L], i ∈ [1,N], m ∈ [1,M]
where Dlm and Mli are the integrals evaluated over the mortar domain Sel

Dlm =
∫
Sel

Φ1
l (ξ1)N1

m(ξ1) dΓ, (3.5) Mli =
∫
Sel

Φ1
l (ξ1)N2

i (ξ2) dΓ. (3.6)

The evaluation of the integralsDlm andMli forms the core of the mortar discretiza-
tion scheme. The used for their evaluations is detailed out in the Section 3.4. The
nodal blocks of the mortar matrices denoted as D (L×M) and M (L×N) can be
expressed as:

D(l,m) = DlmI, (3.7)
M(l, i) = MliI, (3.8)

where I is the identity tensor of the spatial dimension of the problem. Using the
matrix notations, Eq. (3.4) reads

δW el
g =

 Dᵀ · L
−Mᵀ · L

D ·U1 −M ·U2


ᵀ

·

δU
1

δU2

δL

 (3.9)

where arrays U1,U2,L store current values of associated nodal primal (on mortar
and non-mortar sides) and dual (mortar) DoFs:

U1 =
[
u1

1, . . . ,u
1
M

]ᵀ
, U2 =

[
u2

1, . . . ,u
2
N

]ᵀ
, L =

[
λ1, . . . ,λL

]ᵀ
,
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whereas their variations are denoted δU1, δU2, δL. The tangent operator for the
mortar interface element is obtained by taking the derivatives of the vector from
(3.9) with respect to its DoFs:

K =

0 0 Dᵀ

0 0 −Mᵀ

D −M 0

 . (3.10)

This tangent operator has zero blocks for primal DoFs, non-zero blocks to link
primal with dual DoFs, and zero blocks on the main diagonal, which is a typical
structure for the saddle-point system.

3.3 Discrete contact problem

3.3.1 Discrete normal contact constraints
As a first step towards the elaboration of the contact part of the virtual work, the
interpolations (3.1) and (3.3) are inserted in the continuous weak form representing
the normal contact condition (frictional contact virtual work). First, we focus on
the derivation of a single term of this integral, which enables us to introduce
concise notations and simplifications to be used for the other terms. It is obtained
for every active contact element by integrating over the mortar domain Sel.∫
γ1
c

gnδλn dγ ≈
∫
Sel

gnδλn dγ =
∫
Sel

(
Φl(ξ1)N1

m(ξ1)x1
m − Φl(ξ1)N2

i (ξ2)x2
i

)
· n δλln dγ =

(3.11)

= n ·


∫
Sel

Φl(ξ1)N1
m(ξ1) dγ

x1
m −

∫
Sel

Φl(ξ2)N2
i (ξ2) dγ

x2
i

 δλln.
(3.12)

where n is the unit outward normal of the mortar segment. The definition of the
integral gap for a mortar node l is then given as:

ḡl =
[
Dlmx

1
m −Mlix

2
i

]
, (3.13)

where Dlm and Mli are the mortar integrals given by:

Dlm =
∫
Sel

Φ1
l (ξ1)N1

m(ξ1) dγ, (3.14) Mli =
∫
Sel

Φ1
l (ξ1)N2

i (ξ2) dγ. (3.15)

Using the introduced notations, the continuous weak form representing the normal
contact condition (frictional contact virtual work) takes a simple form:∫

Sel

gnδλn dγ = ḡlnδλ
l
n, (3.16)

where
ḡln = ḡl · n (3.17)
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is the integral normal gap. The variation of the integral normal gap is given
by [Puso and Laursen, 2004]:

δḡln =
[
Dlmδx

1
m −Mliδx

2
i

]
· n+

[
Dlmx

1
m −Mlix

2
i

]
· δn︸ ︷︷ ︸

0

. (3.18)

3.3.2 Discrete tangential contact constraints
In analogy, inserting the interpolations into the weak tangential contact condi-
tion (2.63)∫
γ1
c

g̊
τ
· δλτ dγ ≈

∫
Sel

g̊
τ
· δλτ dγ =

∫
Sel

(
Φl(ξ1)N1

m(ξ1)x̊1
m − Φl(ξ1)N2

i (ξ2)x̊2
i

)
· δλlτ dγ =

(3.19)

= (I − n⊗ n) ·


∫
Sel

Φl(ξ1)N1
m(ξ1) dγ

 x̊1
m −

∫
Sel

Φl(ξ2)N2
i (ξ1) dγ

 x̊2
i

 · δλl.
(3.20)

Eq. (3.20) is obtained by substituting (2.53) and grouping terms of (3.19). Using
the concise mortar integral notations, the integral incremental slip for a mortar
node l is:

˚̄gl
τ

= (I − n⊗ n) ·
[
Dlmx̊

1
m −Mlix̊

2
i

]
. (3.21)

We recall that the notation (̊·) is used for the incremental form given as:

(̊·) = d(·)
dt

∆t. (3.22)

Frame-indifferent measure

The definition in Eq. 3.21 for the incremental slip lacks invariance, i.e. x̊ = 0 is
not ensured for rigid body motions. Therefore an alternative approach similar to
the one proposed in [Puso and Laursen, 2004]is used here. An incremental form
of the integral gap (3.13) is used for this purpose. In case of flat surfaces that
remain in contact ˚̄gl = 0 (for curved surfaces ˚̄gl ≈ 0 ).

˚̄gl =
[
Dlmx̊

1
m −Mlix̊

2
i

]
+
[
D̊lmx

1
m − M̊lix

2
i

]
= 0. (3.23)

=⇒
[
Dlmx̊

1
m −Mlix̊

2
i

]
= −

[
D̊lmx

1
m − M̊lix

2
i

]
(3.24)

The left side of (3.24) resembles the non-invariant measure in (3.21). Since inte-
grals Dlm andMli are invariant under rigid body motion, their incremental change
is zero, i.e. D̊lm = 0 and M̊li = 0 under such motion. Thus the right hand side
of (3.24) is taken as the frame invariant measure of the incremental slip. Project-
ing the right hand side of (3.24) on to the tangential plane, the nodal integral
incremental slip can be written as:

˚̄gl
τ

= −(I − n⊗ n) ·
[
D̊lmx

1
m − M̊lix

2
l

]
. (3.25)
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Using the backward Euler time discretization, the incremental form can be equiv-
alently represented as:

(̊·) = d(·)
dt

∆t = (·)(tj)− (·)(tj−1). (3.26)

Expanding (3.25) we get:

˚̄gl
τ

= −(I−n⊗n)·
[
(Dlm(tj)−Dlm(tj−1))x1

m(tj−1)− (Mli(tj)−Mli(tj−1))x2
i (tj−1)

]
.

(3.27)
Eq. 3.27 is used for the incremental slip. Substituting (3.26) in (3.21) we get:

˚̄gl
τ

= (I − n⊗ n) ·
[
Dlm(x1

m(tj−1)− x1
m(tj))−Mli(x2

i (tj−1)− x2
i (tj))

]
. (3.28)

Taking variation of (3.28) and neglecting variations of quantities from previous
time increment (·)(tj−1), we get [Puso and Laursen, 2004]:

δ˚̄gl
τ

= (I − n⊗ n) ·
[
Dlmδx

1
m −Mliδx

2
i

]
. (3.29)

3.3.3 Discrete contact virtual work
Within the ALM formulation all the interface contact elements contribute to the
system virtual work, irrespective of the contact status (active or inactive). This
feature of the ALM results in a smoother energy potential and continuity of virtual
work. The discretized form of the virtual work for every contact elementfor the
frictionless case is:

δW el
c =


δx1

m

δx2
i

δλln


ᵀ

·


(
λ̂lnn

)
Dlm

−
(
λ̂lnn

)
Mli

ḡln

 , λ̂ln ≤ 0 (in contact), (3.30)

δW el
nc =


δx1

m

δx2
i

δλln


ᵀ

·

 0
0

− 1
εn
λln

 , λ̂ln > 0 (no contact). (3.31)

In the frictional case, the discretized form of the virtual work for every contact
elementcan be obtained for three different contact statuses, namely the stick, slip
and no contact as follows:

δW el
stick =


δx1

m

δx2
i

δλl


ᵀ

·


(
λ̂lnn+ λ̂lτ

)
Dlm

−
(
λ̂lnn+ λ̂lτ

)
Mli

ḡlnn+ ˚̄gl
τ

 , λ̂ln ≤ 0 , ||λ̂lτ || ≤ −µλ̂ln (stick),

(3.32)

δW el
slip =


δx1

m

δx2
i

δλl


ᵀ

·



(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
Dlm

−
(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
Mli

ḡlnn− 1
εt

(
λlτ + µλ̂ln

λ̂lτ
||λ̂lτ ||

)

 , λ̂ln ≤ 0 , ||λ̂lτ || > −µλ̂ln (slip),

(3.33)



3.3. DISCRETE CONTACT PROBLEM 51

δW el
nc =


δx1

m

δx2
i

δλl


ᵀ

·

 0
0

− 1
εn
λl

 , λ̂ln > 0 (no contact).

(3.34)

Note, the concise notations of variations of δgln and δ˚̄gl
τ
in Equations (2.64), (2.65)

are replaced with the underlying variations of the nodal positions of the mortar
and non-mortar segments given in (3.18) and (3.29). Note also that the status
detection and the evaluation of the residual vector is based on the nodal integral
quantities (3.17),(3.27):

λ̂ln = λln + εnḡ
l
n, (3.35) λ̂lτ = λlτ + εn˚̄glτ . (3.36)

where εn, ετ are the augmentation parameters of the mortar interface element. In
this thesis, we propose to assign values to these parameters based on the stiffness
contributions from primal DoFs of mortar interface element. The local augmen-
tation parameters for each mortar interface element is evaluated as:

εn = ετ = ksegmortark
seg
non-mortar

ksegmortar + ksegnon-mortar
(3.37)

where ksegmortar and ksegnon-mortar represent the stiffness contributions from the mortar
and non-mortar segments that constitute the mortar interface element. Eq. 3.37
is problem dependent and can serve the purpose of an initial guess. A manual
tuning like scaling for these parameters might be necessary to ensure better con-
vergence. Also it could be beneficial to chose different augmentation parameters
for the normal and tangential directions [Wriggers, 2012]. This strategy is applied
selectively to some of the numerical examples [see Section 3.7] presented in this
thesis.

The status check is done for every element independently. Unlike the linear
mesh tying problem, the contact forces are evaluated on the unknown contact
surface which constitutes the solution of the problem. This makes the contact
problem non-linear in nature. However, the contact between conformal surfaces
can be considered linear in absence of friction. Whereas, for friction problems even
for conformal surfaces the problem remains non-linear as the stick and slip zones
of contact are not known in advance. A generalized Newton-Raphson method is
employed for the resulting system of non-linear equations. This procedure involves
an adequate linearization needed to replace the actual non-linear problem with a
set of linear equations, which can then be solved by the standard linear algebra
tools. This approach is often referred to as the linear iteration approach. For
the frictionless case, taking the second variation of the contact force vectors (in
contact and no contact), we derive the expression for the tangent operator for the
mortar contact element:

Kel
c =


(
λ̂lnn

)
∆Dlm + ∆

(
λ̂lnn

)
Dlm

−
(
λ̂lnn

)
∆Mli −∆

(
λ̂lnn

)
Mli

∆ḡnj

 , (3.38)
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Kel
c =

 0
0
− 1
εn

I

 . (3.39)

For the frictional case based on the three possible contact statuses, the corre-
sponding tangent operators are:

Kel
stick =


(
λ̂lnn+ λ̂lτ

)
∆Dlm + ∆

(
λ̂lnn+ λ̂lτ

)
Dlm

−
(
λ̂lnn+ λ̂lτ

)
∆Mli −∆

(
λ̂lnn+ λ̂lτ

)
Mli

∆(ḡlnn+ ˚̄gl
τ
)

 , (3.40)

Kel
slip =



(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
∆Dlm + ∆

(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
Dlm

−
(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
∆Mli −∆

(
λ̂lnn− µλ̂ln

λ̂lτ
||λ̂lτ ||

)
Mli

∆ḡlnn− 1
εt

∆
(
λlτ + µλ̂ln

λ̂lτ
||λ̂lτ ||

)

 , (3.41)

Kel
nc =

 0
0

− 1
εn

∆λl

 . (3.42)

3.4 Mortar integrals

The evaluation of mortar integrals [(3.5), (3.6), (3.14), (3.15)] forms the central
part of the mortar discretization method. Although the problems of tying and
contact differ, the numerical procedures to evaluate the mortar integrals remain
practically the same for both. In the following sections, we will recall the proce-
dures introduced and used in [Puso, 2004, Yang et al., 2005, Popp, 2012].

3.4.1 Evaluation of integrals in 2D

The evaluation of the mortar side integrals Dlm is straightforward as it involves
the product of shape functions from the mortar side only (3.5), (3.14). This is
in contrast with the evaluation of the mortar integral Mli which combines shape
functions from both the mortar and non-mortar sides [(3.6), (3.15)]. Its evaluation
requires a mapping between them. For this purpose, the non-mortar nodes x2

i (i ∈
[1, N ]) are projected onto the mortar segment along the mortar segment normal
n. [see Fig. 3.2]. The local coordinates ξ1

i of the projections are found by solving

(
N1
m(ξ1

i )x1
m − x2

i

)
× n = 0. (3.43)
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Figure 3.2: The nodes of the non-mortar segment are projected onto mortar seg-
ment, establishing a mapping and determining the mortar domain χ.

The limits of the mortar domain Sel are defined either by mortar segment
nodes or the projection of non-mortar nodes. The mortar integrals are evaluated
over the mortar domain Sel, and is parametrized by χ ∈ [−1; 1]. The projection
coordinates ξ1

a/bdetermine the limits of the mortar domain. The mapping between
original parameterization ξ1 and new parameterization χ is given by:

ξ1(χ) = 1
2(1− χ)ξ1

a + 1
2(1 + χ)ξ1

b . (3.44)

To evaluate the integrals using Gauss quadrature, the mortar-side Gauss points
ξ1
G are projected along mortar segment normal n onto the non-mortar side and
the corresponding local coordinates ξ2

G are determined by:[
N2
i (ξ2

G)x2
i −N1

m(ξ1
G)x1

m

]
× n = 0. (3.45)

The mortar integrals, evaluated using the Gauss quadrature rule, take the follow-
ing form:

Dlm =
∫
Sel

Φl(ξ1)N1
m(ξ1) dΓ =

NG∑
G=1

wGΦl(ξ1
G)N1

m(ξ1
G)Jseg(ξ1

G), (3.46)

Mli =
∫
Sel

Φl(ξ1)N2
i (ξ2) dΓ =

NG∑
G=1

wGΦl(ξ1
G)N2

i (ξ2
G)Jseg(ξ1

G), (3.47)

where wG is Gauss integration weight and as previously, l ∈ [1, L], m ∈ [1,M ],
i ∈ [1, N ] and G ∈ [1, NG], where NG is number of Gauss integration points, Jseg

is the normalized Jacobian

Jseg(ξ1
G) =

∣∣∣∣∣∂N1
i

∂ξ1
∂ξ1

∂(χ)xi
∣∣∣∣∣. (3.48)

The factor ∂ξ1/∂(χ) reflects the fact that the integral can be evaluated only
over a part of the mortar segment, the mortar domain. Note that the inte-
grals (3.46), (3.47) and the Jacobian are evaluated in the reference or in the current
configuration depending the problem being solved: tying or contact, respectively.
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Linearization

Having derived the expressions for the mortar integrals Djk andMjl, the necessary
linearization of the integrals for evaluating the tangent operator for the mortar
element is presented here [Yang et al., 2005, Popp, 2012].

∆Dlm = wG∆Φl(ξ1
G)N1

m(ξ1
G) Jseg(ξ1

G)+

+ wGΦl(ξ1
G) ∆N1

m(ξ1
G) Jseg(ξ1

G)+

+ wGΦl(ξ1
G)N1

m(ξ1
G) ∆Jseg(ξ1

G).

(3.49)

∆Mli = wG∆Φl(ξ1
G)N2

i (ξ2
G) Jseg(ξ1

G)+

+ wGΦl(ξ1
G) ∆N2

i (ξ2
G) Jseg(ξ1

G)+

+ wGΦl(ξ2
G)N2

i (ξ2
G) ∆Jseg(ξ1

G).

(3.50)

Evidently for the mesh tying problems the mortar integrals remain unchanged and
their variation is zero.

3.4.2 Evaluation of integrals in 3D
Conceptually the 3D implementation is similar to the 2D one, but involves imple-
mentation of additional algorithms like clipping and triangulation to determine
the mortar domain. The steps involved in numerical mortar integral evaluation
for the three-dimensional case are shown in Fig. 3.3 [Puso, 2004, Popp, 2012].

1. An auxiliary plane is constructed passing through the center of the mortar
segment xc with mortar segment normal n. The auxiliary plane is used to
avoid any possible warping of the interface facets. The elimination of mortar
side warping is important since the mortar integrals are evaluated on this
geometrically approximated area.

2. Projecting the mortar segment and the non-mortar segment nodes onto the
auxiliary plane along the normal n.

3. To construct the mortar domain, we need to clip the overlapping 2D segments
on the auxiliary plane.

4. The resulting intersection polygon is triangulated to obtain the integration
cells for the overlap area of the two segments. Each integration cell consists
of three vertices.

5. The Gauss integration points have to be projected from the auxiliary plane
space along the normal n onto the mortar and non-mortar segments to
obtain the Gaussian integration point in the parametric spaces of mortar
(ξ1) and non-mortar (ξ2) segments.

The numerical integration is performed over each cell (triangle). For a pair of
overlapping 2D segments the entries of D and M matrices are

Dlm =
Ncell∑
cell=1

(
wGΦl(ξ1

G
)N1

m(ξ1
G

)Jcell(ξ1
G

)
)
, (3.51)
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Figure 3.3: Algorithmic steps in numerical evaluation of mortar integrals for 3D.

Mli =
Ncell∑
cell=1

(
wGΦl(ξ1

G
)N2

i (ξ2
G

)Jcell(ξ1
G

)
)
, (3.52)

where Jcell is the Jacobian of the integration point.

Linearization

In line with the 2D linearizations, the 3D mortar integral evaluations are derived
as follows:

∆Dlm =
Ncell∑
cell=1

wG∆Φl(ξ1
G

)N1
m(ξ1

G
) Jcell(ξ1

G
)+

+
Ncell∑
cell=1

wGΦl(ξ1
G

) ∆N1
m(ξ1

G
) Jcell(ξ1

G
)+

+
Ncell∑
cell=1

wGΦl(ξ1
G

)N1
m(ξ1

G
) ∆Jcell(ξ1

G
).

(3.53)

∆Mli =
Ncell∑
cell=1

wG∆Φl(ξ1
G

)N2
i (ξ2

G
) Jcell(ξ1

G
)+

+
Ncell∑
cell=1

wGΦl(ξ1
G

) ∆N2
i (ξ2

G
) Jcell(ξ1

G
)+

+
Ncell∑
cell=1

wGΦl(ξ1
G

)N2
i (ξ2

G
) ∆Jcell(ξ1

G
).

(3.54)

For the linearizations of the mortar integrals (3.49), (3.50), (3.53) and (3.54), the
reader is referred to [Puso, 2004, Yang et al., 2005, Popp, 2012].
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3.4.3 Clipping
The clipping of overlapping polygons is an important algorithmic aspect of the
mortar based discretization scheme. It is essential to capture the true area of
contact or tying between two overlapping discretized segments for accurate eval-
uation of mortar integrals. For the employed linear elements within the thesis,
the two dimensional faces of the contact surfaces are always convex. For the
case of quadratic elements, the faces are split into linear elements for the clipping
procedures [Puso et al., 2008]. This simplifies the complexity of the polygon clip-
ping algorithms required. Among many clipping algorithms, the ones proposed
by Weiler and Atherton [Weiler and Atherton, 1977], Liang and Barsky [Liang
and Barsky, 1983] and Sutherland and Hodgman are well known [Sutherland and
Hodgman, 1974].

Here we employ the Sutherland-Hodgman algorithm as it is a simpler and
straightforward algorithm to implement. The algorithm steps are given in Algo-
rithm 1. Here two polygons are the input for the algorithm. One of the them is
called the clipper which clips the other polygon called the subject. It works by
infinitely extending each edge of the clipper in turn and selecting only vertices
from the subject polygon that are on the visible side. A new intermediate polygon
is created at the end of each iteration, with the vertices lying on the visible side
along with the intersections between the extended edge and the subject polygon.
After looping through all the edges of the clipper, the resulting polygon represents
the overlap region of the two polygons [see Fig. 3.4].

Algorithm 1 Sutherland-Hodgman clipping algorithm
1: procedure clip_polygon(clipper,subject) . subject clipped with clipper.

2: for each edge in clipper do
3: clippedpolygon.clear() . reset the clipped polygon for the next edge

4: for (i=0 ; i<subject.length - 1 ; i++) do
5: Pi = subject.vertex[i]
6: Pi+1 = subject.vertex[i+1]
7: if Pi in clipper then . verify if a vertex is inside the clipper (polygon)

8: if Pi+1 in clipper then
9: clippedpolygon.add(Pi+1)
10: else
11: clippedpolygon.add(intersectionpoint(Pi, Pi+1, edge)
12: end if
13: else
14: if Pi+1 is inside clipper then
15: clippedpolygon.add(intersectionpoint(Pi, Pi+1, edge)
16: clippedpolygon.add(Pi+1)
17: end if
18: end if
19: end for
20: subject = clippedpolygon . The clipped polygon becomes the subject for the

subsequent iterations.

21: end for
22: end procedure
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Figure 3.4: Illustration of Sutherland-Hodgman algorithm for clipping of two over-
lapping convex polygons.

3.4.4 Triangulation
The intersection of convex polygons always results in convex polygon. The result-
ing polygon has arbitrary number of edges. In order to be able to use the standard
numerical quadrature rules of integration for the evaluation of the mortar inte-
grals, the clipped polygon is triangulated. For the clipped convex polygon, the
triangulation is straight forward. It involves selection of a vertex and creating a
triangle fan outward [see Fig. 3.5]. The steps are listed in Algorithm 2. Differ-
ent triangulation techniques can be used [Bykat, 1976, Lee and Schachter, 1980].
Alternatively, the polygons can be split into quadrilateral elements.

Algorithm 2 Convex polygon triangulation algorithm
1: procedure triangulate polygon(vertex_list) . vertices stacked in clockwise order

2: base_vertex = vertex_list[0] . the vertex is deleted from vertex_list

3: mid_vertex = vertex_list[0] . the vertex is deleted from vertex_list

4: while vertex_list not empty do
5: temp_vertex = vertex_list[0] . the vertex is deleted from vertex_list

6: create_triangle(base_vertex, mid_vertex, temp_vertex)
7: mid_vertex = temp_vertex
8: end while
9: end procedure

Each triangle acts as an integration cell, for the mortar integral evaluation.
Each vertex of the cells is either a projection of the mortar and non-mortar seg-
ments onto the auxiliary plane or an intersection of the polygon edges. This
classification of the integration cell vertices is necessary as the underlying ele-
mentary linearizations in 3D case, requires linearization of the positions of these
vertices [Puso and Laursen, 2004, Popp, 2012].
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Figure 3.5: Illustration of convex polygon triangulation.

3.5 Aspects of detection and parallel resolution

3.5.1 Efficient contact detection
The contact detection is a crucial ingredient of the numerical framework for treat-
ing contact problems. It is a starting point that is followed by the discretization
and resolution steps. The lack of adequate detection schemes could potentially
have a cascading effect on the subsequent steps leading to e.g. unrealistic inter-
penetrations between contacting bodies when a potential contact is not detected.
Numerical algorithms for detection are quite complex in nature as the contact de-
tection has to be done on flight at every iteration or load step for elements which
are already in contact and those which can potentially come in contact [Plimpton
et al., 1998, Williams and O’Connor, 1999, Fujun et al., 2000, Yastrebov et al.,
2011a, Kopačka et al., 2016]. Here we briefly outline our approach based on a
partition of space using a binary search tree (type "KD-Tree") and the definition
of a "Bounding box".

Bounding box

Here we define a simple offset box enveloping each non-mortar surface. For this a
“warning distance” is defined. The algorithm treats a pair of contacting segments
as potential contact pair, when the distance between them is below the warning
distance. An offset distance is defined using the warning distance. The key here is
to define an optimum warning distance which determines the offset surface. Other
complex and optimized variants of bounding box like the axis-aligned bounding
box, oriented bounding box and k faced discrete orientation polytopes can be
found in the works of Yang and Laursen [Yang and Laursen, 2008]. In the case of
a bounding box containing a mortar side node, the corresponding non-mortar and
mortar segments are considered as potential contact pairs and processed further
(clipping and triangulation).

KD-tree

In order to accelerate contact recognition, we use a variant of the data structure
"KD-tree" (tree has K dimensions). This structure is constructed by looking for
the median of the centers of segments along each axes (x, y, z) to create a partition
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of the space. Each partition is in turn under-cut along the median of the following
axis until a single segment is obtained per partition. Special attention is given to
the search algorithm of the median of a set of nodes. A simplistic approach would
consist in sorting out segments along one of the axes and then divide the whole into
two parts of equal number of constituents. We optimized this approach by deriving
a "quick select" algorithm from the original "quick search" algorithm [Knuth, 1998],
this algorithm focuses on the objective of finding the median element along an
axis without sorting all the constituents of a subspace. This approach allows to
reach a complexity of O(n log(n)) for the construction of the binary tree. Once
the individual segment bounding boxes are created, the tree is crossed from the
bottom up by merging the bounding boxes of individual segments then those of
the following levels. This allows to create enclosing boxes for each partition of
the space up to that encompassing the entire non-mortar surface. The search
procedure is simple: if a mortar node is inside the bounding box of a level of
the tree, we test the lower levels attached to it until the segments potentially
in contact with the node are determined. If the node is outside of any segment
bounding box, the search is stopped. The search algorithm is also very efficient
with a complexity of O(n) in the worst case.

Contact patch test

The primary issue addressed here is to confine the number of potential non-mortar
segments for each mortar segment to a minimum. The confined set of non-mortar
segments are considered for further numerical procedures like the clipping and
triangulation to precisely evaluate the contact kinematic quantities like gap and
formulate corresponding contact elements, residuals and tangent operators. To
illustrate the performance of the implemented KD-tree algorithm, we consider a
contact patch test setup [Fig. 3.6(a)]. This consists of two square plates of side L =
1 mm and thickness h = 0.01 mm, with flat contacting surfaces. The flat surfaces
imply maximum contact area. A vertical displacement component uy is applied
on the top surface of the upper plate. This results in a uniform stress p MPa in
the bodies [Fig. 3.6(b)]. In case of brute detection scheme, every mortar segment
is checked against every non-mortar segment for projections. On the other hand,
with a preliminary segregation of non-mortar segments based on bounding boxes
and KD-tree formation confines the potential non-mortar segments for projections.
This fact is reflected in gains achieved in the detection time shown in Fig. 3.7.

y
x

z

L

uy

h

1.03p0.97p

[MPa]

Figure 3.6: (a) Contact patch setup; (b) Uniform stress distribution for the contact
patch test.
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Figure 3.7: Comparison of detection time for the brute force and KD-tree scheme
for increasing number of DoFs.

3.5.2 Parallel resolution

The mortar algorithms presented in the earlier sections are computationally in-
tensive, as they involve operations like projections, clipping and triangulation,
which need performed at every iteration of each increment. Within the general-
ized Newton-Raphson scheme employed, these operations could be invoked several
times resulting in too long computation time on a single-processor based architec-
ture. Within the FE formulations different parallel computing paradigms exist.
These are classified based on the type of concurrency imposed: node/element-
wise [Ortiz and Nour-Omid, 1986, Abel et al., 1991], column-wise [Farhat and
Wilson, 1988, Farhat and Crivelli, 1989] and domain-wise [Farhat and Wilson,
1987, Sun and Mao, 1988, Yagawa et al., 1991]. With the domain decomposition
being the underlying philosophy of the mortar methods, it becomes the natural
choice of parallel implementation of the mortar methods for both mesh tying and
contact problems.

The domain decomposition method (DDM) paradigm can be applied as a "con-
tinuous" version (at the level of PDE problem) or "discrete" version (at the level
of underlying discretization ). In the continuous approach the PDE is subdivided
into a number of smaller coupled PDE problems. Within the discrete setting the
mesh is subdivided and the corresponding computations are assigned to different
nodes/cores/processors on distributed or shared memory architectures.

In the geometry partitioning strategy, the discretized FEM domain Ω0 is
subdivided into P overlapping or non-overlapping subdomains sharing interface
nodes [Farhat, 1988, Simon, 1991, Gupta and Ramirez, 1995]. Here, we exclu-
sively focus on non-overlapping domain decomposition. Few important criteria
should be respected in this subdivision to make the parallel architectures efficient
(balanced work between nodes, minimal communication):
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• the subdomains shall have approximately the same number of elements,

• the number of nodes in the interface between subdomains should be as small
as possible,

• the number of adjacent subdomain to each subdomain should be kept mini-
mal,

• the communication requirements of the underlying computation on a given
architecture (processor interconnection graph) should be minimized.

Typically, the DDM is combined with iterative solvers. Within such a frame-
work the finite element analysis is performed separately on each processor, while
ensuring displacement continuity and thus force balance between subdomains is
achieved in an iterative manner. The monolithic augmented Lagrangian scheme
employed here results in a typical saddle point operator structure that is not pos-
itive definite. This makes it a poor candidate for iterative solvers. This leaves
us with the option of distributed sparse direct solver. The distributed sparse di-
rect solver decomposes a large sparse matrix into smaller sub-matrices, and then
sends these sub-matrices to multiple nodes on either shared-memory (e.g., server)
or distributed-memory (e.g., cluster) hardware [Amestoy et al., 2000]. Here, in
the considered DDM paradigm each sub matrix represents the finite element
sub domain. During the matrix factorization phase, each process factorizes its
sub-matrices simultaneously and communicates the information as necessary [see
Fig. 3.9(a)]. This communication is ensured by message passing, normally using
MPI. Avoiding the use of iterative based DDM, circumvents the need to ensure
minimum number of iterations required to enforce continuity across subdomains
and related convergence issues. However, it comes at a price of additional MPI
calls initiated by the distributed solver to assemble the global matrix on a single
processor.

Set-up

In order to parallelize the computationally intensive mortar algorithms, the mortar
data structures have to be adapted to accommodate the Message Passing Interface
(MPI) communication. The parallelization of the contact resolution enables the
following algorithm executions in parallel:

• the geometrical mortar procedures of projection, clipping and triangulation
along interface are performed simultaneously on each sub-domain,

• linearization of contact residuals for each sub-domain,

• factorization of the local sub-domain operators (internal MPI calls are initi-
ated by the distributed solver MUMPS [Amestoy et al., 2000] for the interface
factorizations).

The first step towards achieving a parallelization is to partition the domain into
sub-domains. Graph methods are widely used for domain partitioning. The RGB
(recursive graph bisection) and RGL (recursive graph labeling) are the two com-
monly used methods [Simon, 1991, Nikishkov et al., 1999]. The primary require-
ment of a DDM procedure is to ensure optimal balancing of computations among
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the processors and minimal communication. The computational time is a direct
reflection of the quality of the partitioning algorithm [Schloegel et al., 2000]. Here
we use a regular user defined split domain partitioning technique. For the exam-
ples considered, this gives a better control on ensuring an optimal load balance
among the various nodes.

Data exchange

The mortar MPI communication involves packing of non-mortar interface data
for sharing among processes [see Fig. 3.9(b)]. The data includes the non-mortar
surface nodes, their ranks and DoFs and nodal connectivity information from each
non-mortar sub-domain. The data exchange is categorized into pre and post MPI
exchanges. Each sub-domain has a set of preliminary data set-up steps, to enable
it to share its data with other sub-domains. This includes:

• creating a data structure of vectors, that define uniquely each segment of
the discretized surface.

• creating a list of integers (IDs, global ranks) and vectors (DoFs).

The post MPI data exchange involves:

• assembly of the received data into separate global containers, to be used for
the mortar algorithms.

For each sub-domain containing the non-mortar segments, the following data
is packed:

• A unique nodal ID that recognizes the node in the global unpartitioned mesh.
This is essential to track the node being shared across different sub-domains.

• The initial position of a node is also shared, as this is essential for ob-
taining the position of node at any given instance during the simulation
(BEGINNING-OF-INCREMENT, END-OF-INCREMENT, BEGINNING-
OF-PROBLEM). The position at any of the these instances is obtained by
appending the initial position with the displacement DoF value.

• The segment definitions are required by the receiving sub-domain in order
to construct an internal geometric surface on which the mortar algorithms
operate. Unlike the node-to-segment scheme where only the node data is
shared, the mortar method requires complete geometric surface information.
This requirement increases the volume of data exchanges done over MPI.

Contact patch test

The same contact patch set-up considered for detection schemes [see Fig. 3.6(a)]
is used for the illustrating the parallel performance. For this particular problem,
the non-mortar side Ω1 of the domain is not partitioned, where it is treated as a
single sub-domain [see Fig. 3.8]. This choice is is partially justified by the fact that
the non-mortar side is coarser compared to the mortar side. Also this particular
configuration, could result in a minimum exchange of MPI data of the non-mortar
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side quantities and maximum parallelization of mortar algorithms (projections,
clipping, triangulations, linearization etc). However, the implementation can han-
dle arbitrary partitioning in which both mortar and non-mortar are partitioned
into multiple subdomains.

The bottom plate is considered as the mortar side of the interface and is divided
into 4 sub-domains. The mortar side is approximately 4 times finer than the non-
mortar side. Also there is only one element in the thickness direction. Fig. 3.10(b),
shows the CPU time comparison for the cases of sequential and parallel contact
resolution for increasing number of DoFs (increased proportionally for the mortar
and non-mortar sides). On the other hand, Fig. 3.11 shows the effect of domain
partitioning on the CPU time. Interestingly, the gain in CPU time stabilizes
beyond a certain number of sub-domains into which the domain is partitioned.
Note that in the figures, the number of mortar side sub-domains are referred to
as “cores”.

Figure 3.8: Ω partitioned into Ωi (i = 1, 2, 3, 4, 5).

Mortar MPI callsMUMPS MPI calls

Figure 3.9: (a) MPI calls initiated between sub-domains by MUMPS, for matrix
factorization; (b) MPI calls to transfer non-mortar interface definitions between
all the sub-domains.
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Figure 3.10: (a) Uniform stress distribution of the contact patch test; (b) compar-
ison between sequential and parallel resolution of the contact problem.

Figure 3.11: Effect of the number sub-domains into which Ω is partitioned on: (a)
CPU time; (b) MPI exchange time.
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Figure 3.12: (a) the FE mesh of a block with rough contact surface (roughness scale
factor = 2) along with the boundary conditions; (b) closer view of the discretized
rough contact surface; (c) mortar side partitioned into 9 sub-domains.
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Here, we consider a frictionless normal contact problem setup between a rough
surface and a rigid plane. The block has a square cross section of side 1 mm
and height 1.478 mm. As shown in Fig. 3.12, a fine mesh discretization with
256× 256 elements is used for the contacting surface. The bottom face is fixed in
the x and y directions and vertical displacement of uz = 0.02 mm is applied on the
bottom surface, in order to make contact with the rigid surface. The rough surface
is considered as the mortar side of the interface. A linear elastic material with
E = 1 MPa and ν = 0.3 is used for the rough surface block. This set-up is used
to illustrate the effect of number of partitions on the CPU time. The mortar side
of the problem is divided into [4, 9, 16, 25, 36] domains. Exemplarily, the domain
partitioned into 9 sub domains is shown in Fig. 3.12(c). The contour stress plots
of the stress component σzz Fig. 3.13(a) , demonstrates both the peaks of the
rough surface getting into contact with the rigid plane resulting in a negative σzz
stress, and the no-contact regions with zero stress. The reduction in CPU time as
a function of the number of cores is shown on Fig. 3.13(b).

0.0-0.1
zz[MPa]

Figure 3.13: (a) Contour stress plot of contact stress σzz; (b) the effect of parti-
tioning on the CPU time.

3.6 Case studies

3.6.1 Incremental/Iterative update of mortar elements

Within the generalized Newton-Raphson scheme employed for solving the contact
non-linear problem, the mortar contact interface elements are reinitialized at the
beginning of each load step. The initialization is based on the stable equilibrium
configuration obtained from the previous converged load increment. However, this
kind of incremental update of the mortar interface contact elements could com-
promise the accuracy of the solution in certain cases and might not converge in
others. Here we illustrate both the cases of loss of accuracy and lack of conver-
gence (for frictionless contact problem). The main steps involved in resolution of
frictionless contact problem are listed in Algorithm 3. Note that separate resid-
ual norms for the primal ||r||primal|| and duals ||r||dual DoFs are checked against
tolerances within the Newton-Raphson iteration scheme.
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Algorithm 3 Frictionless contact problem resolution of an increment
Update boundary conditions
Update λn from previous converged increment
create_mortar_elements( ) . involves projections, clipping, triangulation.

1: procedure Newton_Raphson_loop( )
2: while (||r||primal > tol1 and ||r||dual > tol2) do
3: if (iterative-update) then
4: create_mortar_elements( ) . For iterative update, the mortar interface

elements are created at the beginning of each Newton iteration.

5: end if
6: for el in mortar_elements do . loop over each mortar interface element.

7: rel = 0
8: Dlm, Mli ←evaluate_integrals( ) (3.14), (3.15) . involves

projections, clipping, triangulation

9: for (l=0 ; l<L ; l++) do . Loop over each mortar side node

10: ḡln ←compute_gap( )(3.17)
11: λ̂ln ←compute_aug_LM( )(3.35)
12: if (λ̂ln ≤ 0) then
13: rel+ =evaluate_residual( ) (3.30)
14: else
15: rel+ =evaluate_residual( ) (3.31)
16: end if
17: end for
18: if (λ̂ln ≤ 0) then
19: evaluate_Kel( )(3.38)
20: else
21: evaluate_Kel( )(3.39)
22: end if
23: end for
24: if (iterative-update) then
25: reintialize_interface( ) . For iterative update, the mortar interface

elements are deleted at end of each Newton iteration.

26: end if
27: end while
28: end procedure

Case 1: Accuracy

The problem under consideration is the frictionless Hertzian contact between two
cylinders [see Fig. 3.14]. The cylinders are of equal radius R = R1 = R2 = 8
mm. Linear elastic materials are used for both the domains ω1 (E1, ν1) and ω2

(E2, ν2). A material contrast is introduced by choosing E2/E1 = 100 (E1 = 10
MPa). The problem is considered under plane strain assumption. The same
Poisson’s ratio of ν1 = ν2 = 0.3 is used for both the domains. The volumes in the
vicinity of the contact zone are meshed with bilinear quadrilateral elements, with
comparable mesh densities for both the mortar (ω1) and non-mortar (ω2) domains.
The bottom surface of the lower half cylinder is fully fixed. A downward vertical
displacement uy = 0.01 mm is applied on the surface of the top cylinder, while
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fixing the center of the top surface in x direction. This results in a total reaction
force of P = 0.00341678 N, in the y direction. The analytical solution for this

x

y

Figure 3.14: Hertzian contact: (a) cylinder on cylinder contact setting; (b) Dis-
cretization of the cylinders with comparable mesh densities (zoom at the interface
mesh).

problem is derived from the Hertzian contact formulae for two cylinders, which
defines the maximum contact pressure (p0), the semi contact width a and the
contact pressure distribution p along the x coordinate [Johnson, 1985].

p0 =
√
PE∗

πR∗
, (3.55) a =

√
4PR∗
πE∗

, (3.56) p = p0

√√√√1−
(
x

a

)2

.

(3.57)

The effective elastic modulus E∗ is introduced as below:

E∗ = E1E2

E1(1− ν2
2) + E2(1− ν2

1) , (3.58)

and the effective radius R∗, is evaluated as:

R∗ = R1R2

R1 +R2
. (3.59)

Here we consider the two sub cases which differ in the number of load steps,
within which the total displacement uy is applied. The Lagrange multipliers (λn)
are plotted for both the sub cases at the end of load step, for the incremental and
iterative update of contact elements. For the case of one single load increment,
the incremental update of contact elements results in oscillatory λn profile, with
a poor approximation of the analytical Hertz solution. In contrast the iterative
update of contact elements, has a smoother λn profile and approximates better
the analytical Hertz solution [Fig. 3.15(a)].

This behaviour results from the fact that the incremental update, uses only
the initial set of contact elements created at the beginning of increment. This has
two consequences:

• during the iterative process a possible loss of contact between existing con-
tact pairs is not taken into account.
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Figure 3.15: Contact tractions comparison at t = 1 seconds: (a) one load incre-
ment; (b) two load increments.

• the parts newly entering in contact during the convergence are not taken
into account.

Both of the above consequences lead to a faulty active set of interface segments
at the current iteration. The iterative update is more accurate as the contact
elements are recreated based on the current configuration, and the above two
issues are addressed. Displacements of the order of the interface element sizes can
experience the above issues within the incremental update. To ensure accuracy in
case of incremental update, the load step size should be small. This is illustrated
in second sub case, where the displacement is applied in two load increments
[Fig. 3.15(b)]. This results in a smoother profile for the incremental update as
well, which is however, still outperformed by the iterative update.

Case 2: Convergence

Here, we consider a simple setting involving two bodies discretized by one ele-
ment each. The problem setting and the boundary conditions are shown in Fig-
ure 3.16(a). The dimensions of the bodies are: L1 = 2, L2 = 1, L3 = 0.7, L4 = 0.5
mm respectively. The boundary conditions are intended to bring them in normal
contact during the first sequence and to loose the contact as a result of sliding at
the end of second sequence. Each load sequence is applied in 10 load steps. The
first load sequence applies a vertical displacement uy (t = [0, 1.0 s]) followed by
the second sequence of horizontal displacements ux (t = [1.0, 2.0 s]), maintaining
the vertical displacements. .
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t = 1 t = 2

t = 1 t = 2

Figure 3.16: (a) Problem setting of two bodies coming into contact and loosing
contact; (b) configurations at t = 1, 2 sec for the incremental update; (c) configu-
rations at t = 1, 2 sec for the iterative update.

Iteration 2

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

Iteration 1 Iteration 2 Iteration 3

Figure 3.17: Configurations for load increment 10 at the end of each Newton-
Raphson iteration (the dotted lines indicate the equilibrium configuration of the
previous load increment): (a) incremental update; (b) iterative update; (c) closeup
look at the interface for Iteration 2.

Fig. 3.16(b), indicates that at the end of the load sequence 2, the bodies are
still in contact for the incremental update contrary to the iterative update in
Fig. 3.16(c) where the bodies lose contact. Having a closer look at the intermediate
configurations of the Newton-Raphson scheme provides us with plausible explana-
tions. Fig. 3.17 shows these configurations during the Newton-Raphson procedure
for the incremental and iterative updates of the contact interface elements. The
incremental update fails to converge within the limit of 5 iterations. The dotted
lines in these figures indicate the equilibrium configuration of the previous con-
verged increment. This is the configuration on which the mortar algorithms of
projections are performed. It is evident from Fig. 3.17(c), that the application
of boundary condition leads to loss of contact. However, in case of incremental
update the mortar element formed in the first iteration cannot be “broken”, while
the iterative update allows to reinitialise the contacting pairs, rendering the loss of
contact possible. The iterative update on the other hand, reconstructs the mortar
element on the actual configuration.
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The price paid for the accuracy and convergence is in terms of the computa-
tional time of the iterative update. The reconstruction of mortar interface contact
elements invokes the underlying operations of projections, clipping and triangula-
tions during every Newton-Raphson iteration.

3.6.2 Tangential slip history

ux
uz

a

y x

z

Figure 3.18: (a) Problem setting of the sliding cube problem; (b) FE discretization
of the mortar and non-mortar sides.

In case of frictional problems, the incremental slip value ˚̄gl
τ
of a mortar node l

is stored, between each load step, i.e. at the end of each converged increment ˚̄gl
τ

are stored. The evaluation of tangential augmented Lagrange multiplier λ̂lτ (3.36)
requires the incremental slip value. This evaluation of λ̂lτ is very crucial, as the
tangential contact status of slip and stick within the ALM method is decided by
it. During the first load step increment, all the mortar nodes that are in contact
have a default stick status. In the subsequent load steps, the history of slip for a
mortar element from the previous converged increment has to be stored and used
for initializing the slip. The following problem setting is used to emphasize on the
necessity to store the tangential slip history of an interface element to accelerate
the simulation. A deformable cube of side a = 1 mm is pressed vertically and
slided horizontally on a rigid plane surface. A linear elastic material with E = 1
MPa and ν = 0.3 is used for the cube. In a first load sequence (t = [0, 1] s) a
vertical displacement of uz = 0.05 mm is applied on the top surface of the cube
in 10 load steps, while preserving the vertical displacement. During the second
load sequence (t = [1, 2] s) a horizontal displacement of ux = 0.2 mm is applied
on the top surface in 100 load steps [see Fig. 3.18(a)]. The rigid plane surface γ2

c

is chosen as non-mortar side and is discretized with a single element. The surface
of the cube γ1

c is chosen as the mortar side and has a finer discretization [see
Fig. 3.18(b)]. Here we consider two cases:

• Case 1: the nodal incremental slip values ˚̄gl
τ
are not stored.

• Case 2: the nodal incremental slip values ˚̄gl
τ
are stored.
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The Newton convergence summary is presented in Table (3.1) for selected load
increment steps. The residual norm considered here is given as below:

||r|| =


||rint−rext||2
||rext||2 , ||rext|| > 0

||rint − rext||∞, ||rext|| = 0.
(3.60)

increment 1 increment 2 increment 50
Iteration Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 2.444e-02 2.444e-02 1.249e-02 2.476e-04 8.068e-03 1.398e-08
2 1.846e-02 1.846e-02 9.391e-03 8.672e-08 3.169e-03 -
3 8.751e-03 8.751e-03 4.573e-03 - 7.005e-04 -
4 3.421e-03 3.421e-03 1.693e-03 - 9.152e-08 -
5 1.833e-03 1.833e-03 8.942e-04 - - -
6 8.791e-04 8.791e-04 3.678e-04 - - -
7 1.698e-04 1.698e-04 1.623e-04 - - -
8 4.890e-05 4.890e-05 2.004e-05 - - -
9 9.223e-08 9.223e-08 6.365e-08 - - -

Table 3.1: The Newton-Raphson convergence loop for various load steps: 1, 2 and
50 (of load sequence two i.e. at t = 1.5 seconds).

During the first increment of vertical displacement sequence, all the mortar side
nodes are in the stick status. As seen in Fig. 3.19, for both the cases the evolution
of the slip and stick status of the frictional problem are the same. However, in
the following load step, for the Case 1 where the nodal slip incremental values are
not stored, it takes again nine Newton-Raphson iterations to converge, compared
to only two iterations for Case 2 (see Fig. 3.20, Table 3.1). The greater number of
iterations in Case 1 can be attributed to the fact that in the absence of previously
converged values of nodal incremental slips, the current load step is initialized
with faulty contact statuses. However, both of the simulations converge to the
same solution.

Also, we consider the second load sequence. The problem setting involving
tangential displacement boundary conditions results in eventual full sliding mode
of the cube when (µ|P | > |Tx|). Here P is the total vertical reaction scaled by the
friction coefficient µ|P | and the |Tx| is the tangential reaction force [see Fig. 3.22].
Once the Coulomb threshold is reached, the subsequent load steps would need
minimum iterations to converge as the contact status change between stick and slip
is no longer present here. This can be seen for the Case 2, as seen in Fig. 3.21(b).
However, for Case 1 the convergence is longer as previously observed, the lack of
initialization of nodal incremental slip values from the previous converged load
step, results in faulty contact status that manifests itself in additional Newton
iterations for convergence.

3.6.3 Friction vs Frictionless: incremental and iterative
updates

It was illustrated in Section 3.6.1, that the iterative update of the interface ele-
ments has some advantages compared to the incremental update. The purpose of
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SlipGap Stick

Iteration 1 Iteration 9

Iteration 1 Iteration 9

Figure 3.19: The evolution of stick and slip status during the Newton-Raphson
iterations of a load increment 1: (a) Case 1; (b) Case 2.

SlipGap Stick

Iteration 1 Iteration 9

Figure 3.20: The evolution of stick and slip status during the Newton-Raphson
iterations of a load increment 2: (a) Case 1; (b) Case 2.

SlipGap Stick

Iteration 1 Iteration 4

Iteration 1

Figure 3.21: The evolution of stick and slip status during the Newton-Raphson
iterations of a load increment 50: (a) Case 1; (b) Case 2.

this case study is to understand the additional numerical complexities that mani-
fest under a frictional contact (µ = 0.2) setting compared to the frictionless one.
See Algorithm 4 for the various steps involved in resolution of frictional contact
problem.

To demonstrate it we consider a cube on a rigid plane similar to the one
presented in Section 3.6.2 (the dimensions of the cube and material properties
are preserved). However, the rigid surface has more elements along the sliding
direction x in order to place the problem under a more realistic numerical setting,
i.e. to allow formation of new interface elements as the cube slides along the rigid
surface. The cube is represented by a single element [see Fig. 3.23].
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Figure 3.22: Evolution of the scaled normal reaction µ|P | and tangential reaction
|Tx|.
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Figure 3.23: FE discretization of the cube and rigid surface along with boundary
conditions.
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Figure 3.24: Intermediate configurations for load increment n the dotted lines
indicate the boundaries of the integration cells formed by triangulation, and the
shaded region denotes the mortar domain for the current iteration: (a) incremental
update; (b) iterative update.

Figure 3.25: Normal reaction forces Rn on the cube for 25 load steps (sequence
2): (a) frictionless case; (b) frictional case.

In a first load sequence (t = [0, 10] s) a vertical displacement of uz = 0.01 mm
is applied on the top surface of the cube in 20 load increments and maintained
for the subsequent load steps. During the second load sequence (t = [10, 20] s)
a horizontal displacement of ux = 10 mm is applied on the top surface in 25
load step increments. The rigid plane surface γ2

c is chosen as non-mortar side
and γ1

c as the mortar side. Fig. 3.24, shows intermediate configurations (iteration
0-configuration at the beginning of the increment, iteration 1-configuration after
the application of boundary conditions) of the cube in sliding motion for the
load increment n. As shown in Fig. 3.24(a), for the incremental update, the
mortar algorithms are performed on the equilibrium configuration of the previous
increment represented as Iteration 1. The incremental update avoids formation of
a new mortar interface element for the subsequent Newton iterations. However,
the mortar integrals are computed on the updated configuration, but inaccurate
contact area which is also smaller in this case (shaded region in Fig 3.24(a)).
Therefore the reaction drops as seen in Fig. 3.25 and recovers in the next increment.
This is reflected in Fig. 3.24(a), where a new mortar interface element is not formed
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and equilibrium is achieved on a faulty set of mortar elements. On contrary, for the
iterative update, the mortar algorithms of clipping and triangulation are performed
iteratively capturing accurately the contact area by forming two mortar elements
in this case. The lack of accuracy in capturing the true contact area is reflected
in the form of oscillatory and smooth reaction profiles for the incremental and
iterative updates, respectively [see Fig. 3.25].
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Algorithm 4 Frictional contact problem resolution of an increment
Update boundary conditions
Update λn and λτ from previous converged increment
create_mortar_elements( ) . involves detection, projections, clipping, triangulation.

1: procedure Newton_Raphson_loop( )
2: while (||r||primal > tol1 and ||r||dual > tol2) do
3: if (iterative-update) then
4: create_mortar_elements( ) . For iterative update, the mortar interface

elements are created at the beginning of each Newton iteration.

5: end if
6: for el in mortar_elements do . loop over each mortar interface element.

7: rel = 0
8: Dlm, Mli ←evaluate_integrals( ) (3.14), (3.15)
9: for (l=0 ; l<L ; l++) do . Loop over each mortar side node

10: ḡln ←compute_gap( )(3.17)
11: if (el is NEW) then . verify if the pair of mortar, non-mortar segments have

formed a mortar element in the previous converged configuration

12: ˚̄gl
τ

= 0
13: else
14: ˚̄gl

τ
←retrieve_incremental_slip( ) (3.27)

15: end if
16: λ̂ln ←compute_aug_LM( )(3.35)
17: λ̂lτ ←compute_aug_LM( )(3.36)
18: if (λ̂ln ≤ 0) then
19: if (||λ̂lτ || ≤ −µλ̂ln) then
20: rel+ =evaluate_residual( ) (3.32)
21: else
22: rel+ =evaluate_residual( ) (3.33)
23: end if
24: else
25: rel+ =evaluate_residual( ) (3.34)
26: end if
27: end for
28: if (λ̂ln ≤ 0) then
29: if (||λ̂lτ || ≤ −µλ̂ln) then
30: evaluate_Kel( ) (3.40)
31: else
32: evaluate_Kel( ) (3.41)
33: end if
34: else
35: evaluate_Kel( ) (3.42)
36: end if
37: end for
38: if (iterative-update) then
39: reinitialize_interface( ) . For iterative update, the mortar interface

elements are deleted at end of each Newton iteration.

40: end if
41: end while
42: end procedure
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3.7 Numerical examples
In this section we present few selected numerical examples, to demonstrate the
robustness and performance of the implemented mortar discretion method. Few
examples and applications are shown in Fig. 3.26; among them 2D and 3D patch
tests and sub-structuring simulations for mesh tying; and for contact problems we
solved 2D and 3D Charpy fracture tests simulated for highly non-linear elasto-
viscoplastic anistropic pipeline steel with integrated Gurson-type ductile fracture
model, wheel-tyre-road rolling contact, and various modifications of 2D and 3D
ironing problems. Those are only a few examples which were used to validate
and test the elaborated mortar tying and contact framework. Below we present
different selected tests.

pressure

Mesh tying

Contact

Figure 3.26: Few interface problems solved within Z-set finite element suite using
mortar method.

3.7.1 Tying of multiple domains
In this example, we illustrate the mesh tying capabilities of the mortar meth-
ods. The problem set-up involves multiple domains tied along the common shared
interfaces. The boundary conditions are chosen in such way as to result in a con-
stant stress field in the domain. Such a set-up is often referred to as patch test
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[see Fig. 3.27(a)]. A displacement uy is applied on the top surface. The sides are
fixed laterally and the bottom is fully fixed. The applied displacement results in
a constant stress field σ. The solutions for both the 2D and 3D cases using the
mortar implementation are demonstrated in Fig. 3.27(b).

u
y

1.010.99

Figure 3.27: Patch test: (a) problem set-up; (b) constant stress field σ.

3.7.2 3D cylinder plate tying

In this example we consider a square plate of side L = 40 mm and cylinder
(outer radius R = 8 mm, thickness t = .5 mm, height h = 20 mm) with its axis
perpendicular to the plate [see Fig. 3.28(a)]. Same linear elastic material properties
E = 100 MPa and ν = 0.3 are used for the cylinder and plate. The lateral
surfaces of the plate are fixed and an axial displacement uz = 10 mm is applied
on the top surface of the cylinder. The tying constraints are imposed between the
bottom surface of the cylinder and top surface of the plate. Strict adherence to
the imposed tying constraints is reflected in the smooth axial displacement and
stress fields shown in Fig. 3.28(b) and (c), respectively.
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[MPa]zz
-1.0 3.00.0 10.0
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Figure 3.28: Plate and cylinder tied at the interface: (a) problem set-up with
boundary conditions; (b) uz field; (c) σzz field.
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3.7.3 Periodic boundary conditions

2
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Rigid inclusions

L1
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Figure 3.29: Discretized problem setup for periodic boundary conditions applied
along Γ1

g and Γ2
g.
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uy [µm]

Figure 3.30: Smooth stress σyy and displacement uy fields across periodic boundary
regardless non-conformal discretizations.

In this example we demonstrate the applicability of the mortar mesh tying algo-
rithms to impose periodic boundary conditions. For this we consider a plate, with
two stiff circular inclusions [see Fig. 3.29]. Linear elastic material properties are
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assigned to both the inclusions (E1 = E2 = 1000 MPa, ν1 = ν2 = 0.31) and the
plate (E3 = 1 MPa, ν3 = 0.31). The geometric dimensions are: L1 = 8 mm, L6 = 8
mm and R = 1 mm. The periodic boundary conditions are imposed between the
boundaries Γ1

g and Γ2
g separated by a distance L2. Smooth and continuous fields of

displacements and stresses across the periodic boundary can be seen in Fig. 3.30.

3.7.4 Frictional beam contact

In this example we demonstrate the robustness of the proposed mortar contact
algorithm within the context of large deformations with finite frictional sliding.
The setup consists of a curved beam (E = 2250 MPa, ν = 0.125) and a straight
beam (E = 2700 MPa, ν = 0.35), see Fig. 3.31 [Yang et al., 2005, Gitterle et al.,
2010]. The straight beam is simply supported. The top left of the curved beams
is fixed in y direction, and right top of the beam is subjected to a vertical dis-
placement of uy = 1.2t. Simultaneously, a horizontal displacement of ux = 2.0t is
applied on both left and right top surfaces of the beam. At time tmax = 8 s, the
maximal displacements are uxmax = 16 mm and uymax = 9.6 mm. Coulomb friction
with friction coefficient µ = 0.5 is used. The configurations at t = 2.0, 4.0, 6.0 and
8.0 s, are shown in Fig. 3.32. The horizontal reaction forces at the left corner of
the flat beam are compared for both the cases of curved beam and flat beam con-
sidered as mortar side with the original results obtained in [Yang et al., 2005] [see
Fig. 3.33]. The comparison shows good agreement and also the choice of mortar
and non-mortar sides is negligible as expected.

R1

R2

x

y

ux uxuy

L1 L2

L3

Figure 3.31: (a) Problem setup of the frictional beam contact (R1 = 8, R2 =
10, L1 = 23, L2 = 7, L3 = 2 mm); (b) FE mesh of the beams.
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Figure 3.32: Deformed configurations: (a) t = 2; (b) t = 4; (c) t = 6; (d) t = 8 s.

Mortar [Yang et al, 2005]

Figure 3.33: Comparison of the horizontal reaction forces at the left corner of the
flat beam with solution from [Yang et al., 2005]: for both the cases of curved beam
and flat beam considered as mortar side.
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3.7.5 Axisymmetric deep cup drawing
The underlying forming process is contact driven, and is numerically challeng-
ing as it involves all the non-linearities: geometric (large deformations within the
updated Lagrangian framework), material (elasto-visco-plastic model with expo-
nential hardening) and frictional contact. We illustrate the method’s robustness in
terms of handling all the non-linearities occurring simultaneously. This particular
problem was also considered in [Rousselier et al., 2009, Yastrebov, 2013]. The
problem setting and the FE mesh are shown in Fig. 3.34 and Fig. 3.35, respec-
tively. The geometric dimensions are: die diameter d = 97.46 mm, fillet radius
R = 12.7 mm, die opening w = 101.48 mm, sheet diameter L = 158.76 mm and
sheet thickness h = 1.6 mm. A mixed force-displacement type boundary condi-
tions are employed: a pressure p = 1.86e−2 MPa is applied on the holding surfaces
during t ∈ [0, 100] s and maintained for the complete duration of the simulation.
A vertical displacement uy = 42.0 mm is applied on the die during t ∈ [0, 420] s.
This is then followed by unloading, where the die is pulled back until uy = 35 mm
during t ∈ [420, 500] s.

R

R

d

w

L

h

p p

uy

Figure 3.34: Problem setting and boundary conditions for the deep draw simula-
tion [Yastrebov, 2013].

Figure 3.35: Finite element mesh for the axisymmetric deep cup drawing problem.
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In order to stabilize the solution a soft spring (700 times softer than the ma-
terial of the sheet) is attached to the edge of the sheet. A friction coefficient of
µ = 0.1 is used. For this simulation we use local tuning of augmentation param-
eters according to (3.37) and also use different augmentation parameters for the
normal and tangential directions (ετ = .5 ∗ εn). An elasto-visco-plastic material
model with exponential hardening is used for the sheet.

Young’s modulusE = 69.GPa
Poisson’s ratio ν = 0.33
Yield criterion: von MisesR0 = 0.22GPa
Norton creep power law: λ̇ = 〈f/K〉 , K = 0.5GPa, n = 7
Isotropic power hardening lawR = R0 +K(e0 + p)n, K = 0.99GPa, e0 = 7e− 4, n = 7

Fig. 3.36, shows the accumulated plastic strain at various time steps. As can be
seen, the necking of the sheet happens for the drawing depth greater than 33.5 mm
uy ∈ [33.5, 42.0] mm. Fig. 3.37 shows the reaction forces in the vertical direction
on the die. On an average each load step takes 5 iterations (for a tolerance of 0.1)
to converge.

t = 200 sec
εp = 30 %
uy = 20 mm
 

0.0 160.0%40.0% 80.0% 120.0%

t = 335 sec
εp = 63 %
uy = 33.5 mm
 

t = 420 sec
εp = 163 %
uy = 42 mm
 

t = 500 sec
εp = 163 %
uy = 35 mm
 

εp 

Figure 3.36: Distribution of accumulated plastic strain at different time steps.
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Figure 3.37: Evolution of the reaction on the punch with time.

3.7.6 3D Hertzian contact
A Hertz contact problem with a sphere pressed into a flat deformable support
is considered here. The analytical solution to this problem is derived under few
assumptions, that include small deformations, infinite parabolic contacting solids,
and a very small radius of contact area compared to the radius of sphere [Hertz,
1882]. The geometry settings for the problem are shown in Fig. 3.38 (L1 = L5 =
400, L2 = 250 and R = 300 mm). The sphere radius R is truncated when its radius
reaches L4 = 75 mm in the yz plane. This additional approximation is introduced
to reduce the problem size.A layer of thickness L3 = 20 mm is added on the top
of the sphere’s segment. A linear elastic material with Young’s modulus E = 100
GPa and Poisson’s ration ν = 0.3 is used for both the sphere and the support.
Augmentation parameter εn = 1e6 is used for the simulation. We use this set-up to
carry out a mesh convergence study. For this purpose we generate seven meshes
with average mesh sizes in the contact zone of : h ∈ [3, 2, 1.6, 1.2, 1.0, 0.8, 0.6]
mm. The coarsest mesh (h = 3.0 mm) has 18180 primal DoFs and the finest
mesh (h = 0.6 mm) has 422766 primal DoFs. The mesh refinements are shown in
Fig. 3.39.

A pressure p = 5.659 MPa, is applied on the surface of the truncated sphere.
This results in a force P = 100 kN. The motion of the bottom face of the block is
restricted in all directions. For a qualitative comparison of the obtained numer-
ical results we use the analytical solution. For this purpose, the effective elastic
modulus E∗ is introduced as below:

E∗ = E

2(1− ν2) ≈ 54.9GPa. (3.61)

The resulting contact surface is a circle with radius given as:

a =
(3PR

4E∗
) 1

3
= 7.43mm. (3.62)
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The contact pressure distribution for this circle centered at (x, y) = (0, 0) is give
by:

p(x, y) = p0

√√√√1−
(
x2 + y2

a2

)
, (3.63)

where the maximum contact pressure p0 is given as:

p0 =
(

6PE∗2
π3R2

) 1
3

≈ 865.85MPa. (3.64)

The Fig. 3.40, shows the results obtained using the fine mesh (h = 0.6 mm). The
numerically obtained contact area radius and the maximum stress σzz bear an error
of ≈ 1.5% in comparison to the analytical solution. The error can be attributed
to the geometrical assumptions made for the numerical set-up. A rather good
convergence to the analytical solution for p0 is demonstrated in Fig. 3.41.
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Figure 3.38: Geometry view in plane parallel to zy coordinate plane.
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p0

Figure 3.39: (a) Finite element mesh with applied boundary conditions; (b) coarse
mesh refinement near the contact zone (h = 3.0 mm); (c) intermediate mesh
refinement near the contact zone (h = 1.6 mm); (d) very fine mesh refinement
near the contact zone (h = 0.6 mm).
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Figure 3.40: 3D Hertzian problem results: (a) radius of the contact area; (b) the
contour stress plot of σzz.
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Figure 3.41: The mesh convergence study for the maximum contact stress
σzz(max).

3.7.7 Frictional sliding of a cube on a rigid plane

Here we revisit the frictional sliding of a cube on a rigid plane problem, considered
in Section 3.6.2 [see Fig. 3.18(a)]. Additionally, to the coefficient of friction µ = 0.2
we consider a case of higher coefficient of friction µ = 0.7, between the cube and
rigid plane. The case with µ = 0.7 leads to partial detachment of contacting
surfaces during the sliding motion. These two cases are used to illustrate the nodal
transitions between the three contact statuses namely: gap, slip and stick, during
the course of the simulation. The material, geometrical and FE discretization
set-up remains the same as in Section 3.6.2. However the boundary conditions are
slightly modified. In a first load sequence (t = [0, 1] s) a vertical displacement of
uz = 0.05 mm is applied on the top surface of the block in 10 increments. During
the second load sequence (t = [1, 2] s) a horizontal displacement of ux = 0.33
mm is applied on the top surface in 100 increments.Augmentation parameters
εn = ετ = 10000 are used for the simulation.
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Figure 3.42: Initial configuration (blue line) and the contour stress plots of shear
stress σzz at t = 1, 1.5, 2 s for: (a) µ = 0.2; (b) µ = 0.7.
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Figure 3.43: Initial configuration (blue line) and the contact status of the mortar
side nodes at t = 1, 1.5, 2 s for: (a) µ = 0.2; (b) µ = 0.7.

Fig. 3.42, shows the shear stress distribution on the deformed configurations
at various time intervals of the simulation. The case with µ = 0.7 is qualitatively
different from the one with µ = 0.2, as it leads to detachment in the contact zone.
As a consequence, there is some stress redistribution in the contact interface and
an decrease (for the case with µ = 0.2) in the normal reaction due to the coupling
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between normal and tangential reactions, see Fig. 3.44. However, for the case with
µ = 0.7, as the trailing edge looses contact results in an increase in the contact
pressure (due to redistribution over a smaller contact area).
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Figure 3.44: Evolution of the scaled normal reaction µ|P | and tangential reaction
|Tx|.
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3.7.8 Frictional contact: Turbine blade disk
In this example we consider a frictional contact between a model blade disk as-
sembly, a critical component of the aircraft engine. Accurate analysis of the stress
levels induced due to the complex loading cycles is very crucial for efficient design
of these components and their life cycle assessment. Here, we consider the loading
conditions shown in Fig. 3.45. There are a total of four loading sequences. Dis-
placements are applied on the top surface of the blade. During the first loading
sequence t ∈ [0, 1] sec, a vertical displacement uz = 0.35 mm is applied. For
the second load sequence t ∈ [1, 2] sec, a vertical displacement uz = −0.70 mm
is applied and maintained for the rest of the load sequences. For the third load
sequence t ∈ [2, 3] sec, a displacement uy = −0.75 mm is applied. For the fourth
load cycle t ∈ [3, 4] sec, a displacement uy = 1.50 mm is applied. Through out
the load sequences, the outer surfaces of the disk’s part are fixed as shown in
Fig. 3.45, while symmetry boundary conditions are applied on the center surface
of the blade and the disk. Same linear elastic material properties are assigned for
both the disk and blade (E = 1 GPa, ν = 0.3). A coefficient of friction µ = 0.2
is used. The geometric dimensions are: L1 = 35 mm, L2 = 12 mm, L3 = 14 mm,
L4 = 10 mm and L5 = 5 mm. Augmentation parameters εn = ετ = 10000 are
used for the simulation.
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Figure 3.45: Disk blade contact problem set-up; the deformed configurations at
various load sequences.

The following aspects of this problem set-up are interesting to test the mortar
implementation:

• handling multiple separate contact zones.

• handling status change from no-contact to contact and in turn alternating
from slip and stick statuses.
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• handling curved interfaces in 3D is particularly challenging in terms of en-
suring accurate clipping and triangulation on auxiliary planes.

The stress profiles achieved are smooth, which is important for the analysis of such
crucial components. This is achieved in spite of the computational challenges in
terms of problem resolution and continuously evolving contact surfaces in response
to loading. The contour stress plots for σyy and σyz are shown in Fig. 3.46 and
Fig. 3.47, respectively.
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Figure 3.46: σyy contour stress plots at: (a) t = 1; (b) t = 2; (b) t = 3; (d) t = 4
seconds.
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Figure 3.47: σyz contour stress plots at: (a) t = 1; (b) t = 2; (b) t = 3; (d) t = 4
seconds.

3.8 Summary
We presented the mortar finite element discretization framework for the mesh-
tying of non-overlapping domains and the contact problems. The numerical al-
gorithms of projection, clipping and triangulation essential for accurate integra-
tion of the mortar integrals are discussed. Particularly for the contact problems,
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a fully linearized discrete monolithic augmented Lagrangian scheme was imple-
mented within the mortar framework. Apart from the discretization, other nu-
merical aspects of the contact problem like the detection, parallel resolution are
also presented. Optimized variants of the “quick search” algorithm have been
adapted for the KD-tree construction, which enables to achieve an algorithmic
complexity of O(n log(n)) [Section 3.5.1]. The efficiency of the KD-tree scheme
was demonstrated on contact patch test set-up, with good gains in terms of overall
search time as a function of the system size. The aspects of parallel resolution
were discussed and tested on the contact patch test set-up and the rough surface
problems (with≈ 1.5 million DoFs), with satisfactory gains in simulation times
[Section 3.5.2]. Emphasis was laid on algorithmic details of resolving contact in-
equalities with the aid of case studies presented in Section 3.6. The importance
of iteratively constructing the contact interface discretization for both friction-
less and frictional cases is demonstrated. The robustness of the implementation
is demonstrated in the form of numerical examples spanning various aspects of
interface problems with and without friction in 2D and 3D [Section 3.7].



Chapter 4

Extended mortar methods for
tying

Résumé: Dans ce chapitre, nous présentons une nouvelle méthode numérique
que nous appellerons MorteX. Cettee méthode est developée pour le couplage de
maillages entre des domaines qui se chevauchent. Le cadre MorteX nécessite des
composants numériques supplémentaires tels que la méthode des éléments finis
étendus (X-FEM) afin de prendre en compte la présence des surfaces immergées
dans le volume. Cette méthode nécessite également quelques modifications des
schémas classiques de la méthode Mortar introduits dans le chapitre 3, afin de
pouvoir appliquer des contraintes sur des surfaces immergées.

In this chapter we present the numerical framework MorteX that is specifically
developed to address the embedded class of interface problems. The MorteX
framework, requires additional numerical ingredients such as the extended finite
element methods (X-FEM) to account for the presence of embedded surfaces.
This also requires few adaptations of the classical mortar schemes introduced in
Chapter 3, to be able to enforce constraints along embedded surfaces.

The MorteX framework is presented for the problem setting of tying between
overlapping domains (see Section 2.2.3). Various aspects of the framework and
involved complexities are elaborated using the same problem setting.

4.1 MorteX framework
The evaluation of the internal virtual work restricted to the effective volume of
the host solid Ω̃2 is accomplished with the X-FEM method. The mortar method is
extended to enforce the displacement equality constraint over the interface between
the overlapping domains, i.e. between the boundary of the embedded domain
(patch) Γ1

g and the corresponding virtual surface Γ̃2
g of the host solid.

The main features of the proposed method are illustrated on an example shown
in Fig. 4.1. It represents the discretized finite-element setting for the overlapping
domains. A discretized square patch with a circular hole Ω0 ∪ Ω1 with surfaces
Γ0 = ∂Ω0 and Γ1

g = ∂
{

Ω1 ∪ Ω̄0
}
is embedded into a host mesh Ω2. As before

the bar notation is used to denote the open domain united with its closure, here
Ω̄0 = Ω0 ∪ ∂Ω0. Note that the necessity to consider explicitly the hole as an extra
domain comes from the particularities of the problem and was introduced for the
sake of avoidance of misinterpretation: the physics inside the contour Γ1

g is fully

93
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determined by the patch with a circular hole. The intersection of the patch’s
boundary Γ1

g and the host domain represents the virtual surface Γ̃2
g = Γ1

g ∩ Ω2.
The X-FEM is used to account for the virtual work only in the effective domain
volume Ω̃2 = Ω2 \ {Ω̄0 ∪ Ω̄1}. The mortar method is is brought into play to tie
together the two domains Ω1 and Ω̃2 along the interface made of Γ1

g and Γ̃2
g. Note

that in the presented example, the tying boundary is fully embedded.

x
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z x

y

z
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y

z

g

g

g
~ 2

Figure 4.1: (a) Two overlapping meshes: the host Ω2 and the patch Ω1 with a
circular hole Ω0 are tied along interface Γ1

g; (b) zoom on the interface between the
host and patch meshes; (c) effective volume of the host mesh Ω̃2 = Ω2 \{Ω̄0∪ Ω̄1}.

4.1.1 Extended finite element method
The virtual surface Γ̃2

g of the host domain is treated as an internal discontinuity.
This is modeled within the X-FEM framework, thereby nullifying the presence
of the overlap region

(
Ω̄1 ∪ Ω̄0

)
∩ Ω2 in the domain Ω2 [see Fig. 4.1(c)]. The X-

FEM relies on enhancement of the FEM shape functions used to interpolate the
displacement fields. Here the enrichment functions describing the field behavior
are incorporated locally into the finite element approximation. This feature allows
the resulting displacement to capture discontinuities. The subdivision of the host
mesh is defined by indicator function φ(X) : Rdim → {0, 1} (whereX is the spatial
position vector in the reference configuration in domain Ω2) [Sethian, 1999]. The
indicator function is non-zero only in the non-overlapping part of domain Ω2:

φ(X) =

1, if X ∈ Ω̃2;
0, elsewhere.

The discontinuity surface Γ̃2
g can be seen as a level-set defined as follows:

Γ̃2
g =

{
X ∈ Ω2 : ∇φ(X) 6= 0

}
As a result, the indicator function φ(X) partitions the elements of the host domain
Ω2 into three distinct categories [Fig. 4.2(a)], namely standard elements, blending
elements and discarded elements.
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In practice, the enrichment of shape functions in case of void/inclusion problem
can be simply replaced by a selective integration scheme [Sukumar et al., 2001].
For the standard elements, there is no change in volume of integration and the
discarded elements are simply excluded from the volume integration procedure.
In order to obtain the effective volume of integration for each blending element,
we perform the clipping of the blending elements by the discretized surface Γ̃2

g

[Fig. 4.2(b)]. The clipping of a single element could result in one or several various
polygons1 both convex, and non-convex, which represent the effective volumes of
integration.

 Kink points
Clip intersections

Host mesh nodes

x

y

z

Standard element Blending element
Discarded element(a) (b) (c)

(b.1)

(b.2)

(b.3)

Figure 4.2: (a) Element classification in X-FEM framework; (b) clipping of blend-
ing elements by Γ̃2

g, the volume colored in blue in (b.1-3) is the effective volume of
integration (Ω̃e): (b.1) a convex polygon, (b.2) a non-convex polygon, (b.3) dis-
joint polygons; (c) selective integration is carried out over re-triangulated blending
elements with reinitialized Gauss integration points (shown in red).

To selectively integrate the internal virtual work in the effective volume only,
the resulting polygons are virtually remeshed into standard convex elements (for
example, triangles). Note that this remeshing is merely performed to use a Gauss
quadrature for integration [Fig. 4.2(c)], and does not imply the creation of addi-
tional degrees of freedom, and as such does not change the topological connectivity
of nodes. The displacement field is evaluated using the standard shape functions
and the original DoFs; only the integration is changed. To carry out this remesh-
ing, we applied the ear clipping triangulation algorithm [Mei et al., 2013] to the
polygons. The DoFs associated with the elements outside the integration domain
Ω̃2 [marked with red crosses in Fig. 4.2(a)] are removed from the global system of
equations.

4.1.2 MorteX discretization
Within the mortar discretization framework, the tied domains are classified into
mortar and non-mortar sides. The superscript ”1” refers to the mortar side of
the interface and ”2” to the non-mortar side; the former stores the Lagrange
multipliers (dual DoFs) in addition to displacement degrees of freedom (primal
DoFs). If the host is selected as a mortar side, the context of the problem becomes

1Hereinafter, we assume that all elements use first order interpolation, therefore all edges of
elements are straight. It enables us to assume that an intersection or difference of elements can
be always represented as one or several polygons.
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similar to the one considered in [Moës et al., 2006, Béchet et al., 2009, Hautefeuille
et al., 2012], where it was shown that strong restrictions apply on the choice of
Lagrange multiplier spaces in order to fulfill the inf-sup condition. The algorithm
for construction of such spaces is not straightforward. Therefore, to avoid these
difficulties, we select the patch side as the mortar surface, which provides us with
a more flexible setting. This choice was already reflected in the fact that the host
boundary was chosen as the integration side for tying conditions (2.72). However,
under specific problem settings, the choice of employing standard interpolation
functions for the Lagrange multipliers on the embedded interface still leads to
spurious oscillations of interfacial tractions. Remedies for this problem will be
discussed in Section 4.4.

Displacements on the mortar side Γ1
g are given by classical one-dimensional

shape functions with the interpolation order equal to that of the underlying mesh:

u1(ξ1) = N1
m(ξ1)um, m ∈ [1,M], (4.1)

where M is the number of nodes per mortar element’s edge and ξ1 ∈ [−1; 1] is
the parametric coordinate of the mortar side. The displacements along the virtual
surface Γ̃2

g running through the host mesh elements are characterized by the two
dimensional host mesh interpolations, and can be expressed as follows:

u2(ζ) = N2
i

(
µ2(ζ), η2(ζ)

)
ui, i ∈ [1,N], (4.2)

where ζ is the one-dimensional parametric coordinate of integration segment of
non-mortar side, µ2, η2 ∈ [−1; 1] are the classical two-dimensional parametric co-
ordinates of the host element, and N is the number of nodes of this element. The
use of two-dimensional interpolation on the non-mortar side marks the difference
between the classical mortar and the presented MorteX frameworks. The Lagrange
multipliers (defined on the mortar side) are interpolated using shape functions Φ:

λ(ξ1) = Φl(ξ1)λl, l ∈ [1,L], (4.3)

where L can be less than or equal to M. It enables to select shape functions for
dual variables independently of the primal shape functions.

Clip intersections

Non-mortar side nodes

Kink points

Mortar side nodes

Γ2
g

~

Figure 4.3: Illustration of a single host element intersected by the virtual surface
Γ̃2
g: (a) quadrilateral host element intersected by several mortar side segments; (b)

quadrilateral host element intersected by a single mortar segment; (c) triangular
host element intersected by a single mortar segment.

Few remarks could be made here. In the absence of a real non-mortar side,
we redefine the notion of segment: it is a straight line whose vertices can either
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be a clip intersection2 or a kink point, the latter being a node of the mortar side
lying inside the host element. This 1D non-mortar segment also represents the
mortar domain Sel. Since a host element can be intersected by several patch
segments Si [Fig. 4.3(a)], the functions µ2(ζ), η2(ζ) can be piece-wise smooth,
which implies that the underlying displacement (and coordinate) can also be piece-
wise smooth. Second remark: if the host elements are quadrilateral, then each
segment interpolation is given by p1×(p2 +1), where p1 is the mortar interpolation
order, and p2 is the non-mortar interpolation order; the later is augmented by
one since the virtual interface passes inside the element, where the interpolation
order in quadrilateral 2D elements is one order higher than along the edges. For a
triangular host mesh, the interpolation order is simply the product of interpolation
orders of the host and patch meshes p1 × p2. To give an example, let us assume
that the patch mesh is linear and the host mesh is linear quadrilateral; then let us
imagine that a host element is cut into two parts by a (straight) patch segment.
Then the displacement in the host element along this straight segment will be
second order polynomial function of the parameter ζ [see Fig. 4.3(b)]. However,
the displacement along such a cut would remain linear for triangular linear host
elements [see Fig. 4.3(c)].

MorteX interface element

A mortar element is formed with a single mortar segment (on the patch side) and
a single non-mortar element (on the host side). Each tying element consists of
(M+N) nodes, M from the mortar segment, and N from non-mortar element, and
stores (L× dim) Lagrange multipliers, where (dim) is the spatial dimension. The
choice of L is guided by the inf-sup condition requirement of the discrete Lagrange
multiplier spaces (usually L ≤ M).

Substituting the interpolations (4.1), (4.2), (4.3) into the weak form (2.72) and
extracting only the terms related to the mesh tying of a single mortar element, we
obtain

δW̃ el
g =

(
λl · δum + δλl · um

)
Dlm −

(
λl · δui + δλl · ui

)
M̃li, (4.4)

l ∈ [1,L], i ∈ [1,N], m ∈ [1,M]

where Dlm and M̃li are the mortar integrals evaluated over the mortar domain
Sel ⊂

(
Γ1
g ∩ Ω̃e

i

)
, where Ω̃e

i is the current host element forming the mortar element.
The integral Dlm on the mortar side is the 2D variant of integral in Eq. 3.5 .

Dlm =
∫
Sel

Φ1
l (ξ1)N1

m(ξ1) dΓ, (4.5) M̃li =
∫
Sel

Φ1
l (ξ1)N2

i

(
µ2(ζ2), η2(ζ2)

)
dΓ.

(4.6)

The nodal blocks of the mortar matrices denoted as D (L ×M) and M (L × N)
can be expressed as:

D(l,m) = DlmI, (4.7)
2The clip intersection points are located on the edges of blending elements intersected by

the virtual surface Γ̃2
g.
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M̃(l, i) = M̃liI, (4.8)

where I is the identity tensor of the spatial dimension of the problem. Using
matrix notations, Eq. (4.4) reads

δW̃ el
g =

 Dᵀ · L
−Mᵀ · L

D ·U1 −M ·U2


ᵀ

·

δU
1

δU2

δL

 , (4.9)

where arrays U1,U2,L store current values of associated nodal primal (on mortar
and non-mortar sides) and dual (mortar) DoFs:

U1 =
[
u1, . . . ,uN

]ᵀ
, U2 =

[
u1, . . . ,uM

]ᵀ
, L =

[
λ1, . . . ,λL

]ᵀ
whereas their variations are denoted δU1, δU2, δL. The tangent operator for the
mortar interface element is obtained by taking the derivatives of (4.9) with respect
to its DoFs:

K =

0 0 Dᵀ

0 0 −M̃ᵀ

D −M̃ 0

 . (4.10)

Evaluation of integrals

The mortar integrals are evaluated over the mortar domain Sel [see Figs. 4.3, 4.4].
In comparison to the evaluation of integrals in classical mortar framework, the
evaluation within MorteX framework has the following differences:

• the non-mortar side integral M̃li (4.6) involves second order interpolation
functions N2

i (µ2(ζ2), η2(ζ2)) compared to the first order in (3.6).

• the operator M̃ (4.8) in the MorteX framework is always rectangular, com-
pared to the square operator (3.8).

• the evaluation of the integrals (4.5) (4.6) in MorteX framework does not
require a projection step (3.43) to determine the mortar domain Sel. It
is readily available as a complementary output of the clipping (selective
integration) step. This also circumvents the need for projecting the Gauss
points as done in (3.45).

• the limits of mortar domain Sel are clip intersections or kink points (mortar
nodes) [see Fig. 4.4], while in classical mortar schemes they are projections
of non-mortar nodes or mortar nodes [see Fig. 3.2].

The mortar domain is parametrized by χ ∈ [−1, 1] [Fig. 4.4], which needs to
be linked with the parametrization of the mortar side, which is given by:

ξ1(χ) = 1
2(1− χ)ξ1

a + 1
2(1 + χ)ξ1

b , (4.11)

where ξ1
a and ξ1

b define the limits of the integration on the mortar side as shown
in Fig. 4.4. To evaluate the integrals using the Gauss quadrature, we need to find
the location of Gauss points χG in terms of mortar (ξ1

G) and non-mortar (µ2
G, ν

2
G)
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Sel

Clip intersections

Non-mortar side nodes

Kink points

Mortar side nodes
χ

Gχ

Figure 4.4: Example of mortar domain Sel with a clip intersection ξ1
a and kink

point ξ2
b as its limits (Gauss points are shown as triangles).

parametrization. While the former is straightforward using (4.11), the latter can
be done by solving the following equation:

N1
m(ξ1

G)X1
m = N2

i (µG, ηG)X2
i , (4.12)

where the physical location of the Gauss point is given by XG = N1
m(ξ1

G)X1
m.

With these notations, the mortar integrals can now be evaluated using the Gauss
quadrature rule as:

Dlm =
∫
Sel

Φl(ξ1)N1
m(ξ1) dΓ =

NG∑
G=1

wGΦl(ξ1
G)N1

m(ξ1
G)Jseg(ξ1

G), (4.13)

M̃li =
∫
Sel

Φl(ξ1)N2
i (µ2, η2) dΓ =

NG∑
G=1

wGΦl(ξ1
G)N2

i

(
µ2
G, η

2
G

)
Jseg(ξ1

G), (4.14)

where as previously l ∈ [1, L], m ∈ [1,M ], n ∈ [1, N ] and NG is the number of
Gauss integration points, wG are the Gauss weights, Jseg is the Jacobian of the
mapping from the parent space ξ1 to the real space including the adjustment of
the integral limits:

Jseg(ξ1) =
∣∣∣∣∣∂Nm

∂ξ1
∂ξ1

∂χ
Xm

∣∣∣∣∣. (4.15)

In the classical mortar framework, the numerical procedure to evaluate the inte-
grals remained same for both the classes of tying and contact problems. Within
MorteX framework, the above numerical procedure cannot be used as is for the
contact problems within the MorteX framework. Details of the procedure are
presented in Chapter 5.
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4.2 Intra-element interpolation of displacements
in the host mesh

For the overlapping domains the coupling is made between the patch mesh bound-
ary and virtual surface running through the host mesh elements. This is reflected
in the mortar matrix M (4.14) that contains the integral of a product of volumet-
ric (in the host mesh) and surface (patch mesh) shape functions. To demonstrate
the effect of the interpolation choice, we use the set-up shown in Fig. 4.5(a). The
following dimensions are used: h1 = 1 mm, h2 = 1.25 mm, h∗ = 0.25 mm and
l = 1.5 mm. A uniform pressure of σ0 = 1 MPa is applied on the top surface of
Ω1. The meshes Ω1 and Ω2 are tied along the interface Γ1

g.

y

x

h1

l

h2

h*

0

Figure 4.5: Illustration of the effect of underlying mesh interpolations: (a) problem
setting: tying of two rectangular overlapping domains; (b) discretized patch (upper
solid) and host (lower solid) domains; (c) triangulated effective volume of the
host domain Ω̃2; note that in (b,c) the two meshes are shown separated only for
convenience.

The domain Ω2 is discretized with a triangular (T1) and two quadrilateral (Q1,
Q2) elements, all elements use first order interpolation, and the patch domain is
discretized into a rectangular elements [Fig. 4.5(b)]. The two domains are made
of the same linearly elastic material (E = 1 GPa, ν = 0); the reference solution
for the selected boundary conditions is a uniform stress field (σxx = σxy = 0 and
σyy = σ0) whether it be under plane strain or plane stress formulation. Of course,
the displacement along the tying line is uniform. However, as shown in Fig. 4.6
the selected discretization does not allow to obtain the reference solution. The
solid line in Fig. 4.6 shows the resulting vertical displacement along the tying line
Γ1
g; it consists of a combination of linear and non-linear portions. We hypothesize

that the inability to reproduce the reference solution is somehow related to the
interpolation order of displacement in host elements. As seen from the figure, the
order of the solution is matching the maximum available interpolation order of
displacements pmax. This maximum interpolation order is one (pmax = 1) along
any straight line inside a linear triangle (T1). However, this order raises to two
(pmax = 2) along straight lines inside quadrilateral elements, as long as both
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parent coordinates µ and η change along these lines (Q2). This is not the case in
Q1 (pmax = 1), where one of parent coordinates remains constant along the virtual
interface, i.e. µ2(ζ) = const or η2(ζ) = const.

This observation motivates us to test triangulation of blending element to
limit the maximum interpolation order in host element to one (pmax = 1). This
operation does not change the number of DoFs and is easy to handle in practice.
This procedure enables us to obtain the reference solution in the considered case as
demonstrated in Fig. 4.6. The general applicability of this method will be tested
in the following sections.

u y
, µ

m

Triangulation
Standard procedure

x, mm

Q1 Q2 T1

Figure 4.6: Displacement uy profile along nodes of Γ1
g,h for the set-up shown in

Fig. 4.5: direct tying using the MorteX method results in non-linear displacement
field (solid line); triangulation of blending elements results in a perfect match
(dash-dotted line) with the reference solution uy = −1 µm.

4.3 Coarse Grained Interpolation of Lagrange
multipliers

The stability of the proposed mixed formulation is guided by the requirement
to satisfy the inf-sup condition [Babuška, 1973], which is not a trivial task. For
example, the use of Lagrange multipliers with standard interpolation leads to non-
physical oscillations along the interface when used to enforce Dirichlet boundary
conditions [Barbosa and Hughes, 1991]. Having a much stiffer patch than the
host material represents a case approximately similar to the imposition of Dirich-
let boundary conditions, therefore in most presented examples stiffer patch will
be used. The technique presented in [Moës et al., 2006, Béchet et al., 2009] for
the X-FEM framework, involves coarsening of the Lagrange multipliers to avoid
spurious oscillations. This is achieved by algorithmically selecting nodes referred
to as "winner nodes" along the Dirichlet boundary. The algorithm favors nodes
close to the boundary, or nodes from which many edges intersecting the boundary
emanate. The Lagrange multiplier space is built using the winner nodes. The
size of the multiplier space is the size of the winner nodes set. Inspired from this
technique, we suggest to use coarse grained interpolation (CGI) for Lagrange mul-
tipliers (dual DoFs) to avoid spurious oscillations. In Fig. 4.7, for example, the
number of mortar nodes (each of which carries Lagrange multipliers in the stan-
dard approach) per host element considerably outnumbers the associated DoFs to
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render the associated constraints independent of physical deformations the host
elements allow [Sanders et al., 2012]. Therefore the system shown in this fig-
ure is overconstrained and requires an appropriate stabilization. Coarse graining
of Lagrange multiplier interpolation functions enables to reduce the number of
constraints and thus improves the problem stability. In this approach, not every
mortar node is equipped with a Lagrange multiplier. Therefore, the interpolation
functions become non-local, i.e. they span more than one patch segment. For
this purpose, we choose a 1D parametric space ξCG ∈ [−1, 1], spanning multiple
mortar-side segments. Such parametrization can be chosen such that length Li of
the corresponding super-segment in the physical space is comparable to the size
of host elements. As shown in Fig. 4.7(a), the mortar-surface is segmented into
three super-segments of lengths L1, L2 and L3. The end nodes of these segments
are termed the “master” nodes (they carry the dual DoFs λ), other mortar-nodes
are termed “slave” nodes. We introduce the local coarse-graining parameter κ
that determines the number of segments contained in a super-segment, and thus
(κ − 1) determines the number of slave nodes per super-segment. In Fig. 4.7(a),
the coarse-graining parameter takes the values κ = 4, 9, 5, for the super-segments
of lengths L1, L2 and L3, respectively.

In theory, the coarse graining is achieved through defining dual DoFs only on
master nodes. In practice, this can also be done by keeping the Lagrange multi-
pliers at all mortar nodes and using a multi-point constraint (MPC) to enforce a
linear interpolation between the master nodes. Hence, for a given slave node, the
dual DoFs are given by:

λslave(ξCG) = ΦCG
l (ξCG)λ l

master, l = 1, 2. (4.16)

The parametrization of the super-segment can be chosen such that ∀i: (ξCGi+1 −
ξCGi )/Li+1,i = const, where the numerator represents the spacing between two
mortar (patch) nodes in the coarse-grained parametric space and Li+1,i corre-
sponds to the physical length of the corresponding segment. An average ratio of
number of mortar segments per number of blending elements, which is termed
“mesh contrast” mc, can be used to guide the selection of the coarse-graining pa-
rameter κ: for example, mc = 6 (18 mortar segments per 3 host elements) in the
example shown in Fig. 4.7. The coarse-graining parameter κ, for an open mortar
surface, can take values in the range κ ∈ [1, Nm], where Nm is the number mortar
segments; for a closed mortar surface the upper limit is one less.

The optimal choice of coarse-graining parameter κ is studied on particular
problem settings in Sections 4.4 and 4.5 for open and closed mortar surfaces. The
limit case κ = 1 corresponds to the standard Lagrange interpolation (SLI). For the
case of approximately regular discretization on both sides, a global coarse-graining
parameter can be chosen, and its value is set to be approximately equal to the
mesh contrast parameter κ ≈ mc as shown in Fig. 4.7(b). In case of non-regular
mesh discretizations on mortar or/and on host sides, the coarse-graining parameter
should be selected element-by-element according to the local mesh contrast as
shown in Fig. 4.7(a). However, in all the examples considered below, we use regular
discretizations, and thus the global coarse-graining parameter will be used.
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Master mortar nodes with λ

 

Host mesh nodes Slave mortar nodes with interpolated λ

L1
L2

L3

≈ L3≈ L2L1

(a)

(b)

Figure 4.7: An example illustrating the embedded surface Γ1
g cutting through the

blending elements (shaded in yellow) of the coarser host mesh. The coarse graining
of Lagrange multipliers can be implemented with respect to the local (a) or global;
(b) contrast in mesh densities.

4.4 Patch tests

In this section, the algorithms introduced in the previous sections, are tested
on simple problems of tied overlapped domains of different discretizations and
different material contrasts subject to bending or tensile/compressive boundary
conditions: the patch mesh is Ω1 and the host mesh is Ω2. Linear elastic material
properties are used for both the patch (E1, ν1) and the host (E2, ν2). The geo-
metric set-up of the patch and host domains are illustrated in [Fig. 4.8(a)]. The
following two extreme cases will be considered: Case 1. a finer and stiffer patch
mesh is superposed onto the host mesh, and Case 2. a coarser and stiffer patch
mesh is superposed onto the host mesh.

These two particular cases are chosen for the validation since they are prone
to severe manifestations of the mesh locking [Sanders et al., 2012] as in the case
of enforcing Dirichlet boundary conditions using Lagrange multipliers along em-
bedded surfaces [Moës et al., 2006, Béchet et al., 2009, Hautefeuille et al., 2012].
Additionally, the host domain is meshed with ”distorted“ quadrilaterals which is
classical in patch test studies to exacerbate potential anomalies. Moreover, as
was shown by a simple example Section 4.2 the tying along distorted quadrilateral
elements is prone to considerable errors if the mortar-type tying is used directly.
The material contrast is introduced by choosing E1/E2 = 1000, and E1 = 1 GPa,
both domains have the same Poisson’s ratio ν1 = ν2 = 0.3. The discretizations
for the two cases are shown in Fig. 4.8(b, c). The mesh contrast mc ≈ 11 and
mc ≈ 0.1 and the number of mortar segments Nm = 191 and Nm = 35 are used
for Case 1 and 2, respectively. Note that all the stress fields σxx, σyy along the
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tying interface, which are presented on the plots below, are found by the data
extrapolated from Gauss points and averaged at mortar nodes.

h1

h2

l

h*

Figure 4.8: Validation tests set-up: (a) problem setting h1 = 1.0 mm, h2 = 1.25
mm, h∗ = 0.25 mm, l = 5.0 mm, the elastic contrast between the patch and the
host is given by E1/E2 = 1000; finite-element discretizations of the patch and
host solids are shown in (b) for Case 1 ( the patch mesh is finer than that of the
host, mc ≈ 11, Nm = 191), and in (c) for Case 2 (the host mesh is finer than that
of the patch, mc ≈ 0.1, Nm = 35).
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Figure 4.9: Validation tests boundary conditions: (a) bending patch test, (b)
compression patch test.

4.4.1 Tension/compression patch test
A uniform pressure σ0 is applied on the top surface, the bottom surface is fixed in
all directions u = 0 [Fig. 4.9(a)]. This is a classical patch test in contact mechanics,
which is used here to test the tying of different materials. This material contrast
requires additional lateral conditions (lateral sides are fixed in normal direction
ux = 0) to avoid singularities at extremities of the interface. The reference solution
for σyy is a uniform field σyy = σ0. As expected, in case of stiffer and finer patch
mesh (Case 1), spurious oscillations are observed. They have large amplitude that
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reaches 300 % of the reference solution, moreover, they are not confined to the
interface but propagate into the bulk [Figs. 4.10(a), 4.11(a)]. In case of stiffer and
coarser patch mesh (Case 2), the spurious oscillations are of considerably lower
amplitude (under 1 %), they are rather localized in the host mesh in close vicinity
of the interface and do not extend in the patch mesh [Figs. 4.10(b), 4.11(b)].

1.030.97

[MPa]

Figure 4.10: Compression patch test: contour plots of stress component σyy in (a)
Case 1; (b) Case 2.
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Figure 4.11: Compression patch test: distribution of σyy along the tying interface
in (a) Case 1 for standard (SLI) and coarse-grained (CGI) Lagrange interpolation,
and (b) in Case 2 for SLI.

In order to quantify the improvement achieved with the suggested coarse
grained interpolation (CGI) and with triangulation technique, we introduce the
L2-norm of the error in the σyy stress component:

Er(σyy) =

∥∥∥σref
yy − σyy

∥∥∥
L2(Γ1

g)∥∥∥σref
yy

∥∥∥
L2(Γ1

g)

, (4.17)

where the norm means ‖f(x)− g(x)‖L2(Γ1
g) =

√∑
i [f(xi)− g(xi)]2, where xi ∈

[0, L] are the x-coordinate of mortar nodes, and L is the length of the surface Γ1
g. In

Fig. 4.12 we demonstrate the performance of the CGI technique. As seen from the
figure, the error in stress greatly reduces compared to the standard interpolation
(SLI), when coarse-graining parameter κ increases. However, the error saturates at
≈ 10−3 and the convergence to the reference solution is missing. On the contrary,



106 CHAPTER 4. EXTENDED MORTAR METHODS FOR TYING

the triangulation technique [Fig. 4.13] enables to achieve a superior precision as
shown in Figs. 4.12(a) and 4.14.

[MPa]

1.030.97

Figure 4.12: Compression patch test: (a) decay and saturation of the relative
error Er(σyy) for κ = {1, 6, 12, 24, 48, 96, 192} for CGI in comparison with the
error obtained with triangulation of blending elements; (b,c) contour plots of stress
component σyy for (b) κ = 12 and (c) κ = Nm = 192.

g
~ 2

Figure 4.13: (a) Blending elements; (b) Triangulated blending elements.

1.030.97
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Figure 4.14: Patch test stress σyy with Triangulation of blending elements: (a)
Case 1; (b) Case 2.

4.4.2 Bending patch test
A linear distribution of pressure

σyy = 2σ0(x/l − 1/2), (4.18)
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with σ0 = 1 MPa is applied on the bottom surface, while keeping the top surface
fixed in vertical direction, only the corner point is fixed in horizontal direction, the
lateral sides remain free σxy = σxx = 0 [Fig. 4.9 (b)]. The same linear distribution
of the vertical stress component (4.18) through the two solids should take place.
This case study (Case 1, 2) was inspired from the work [Sanders et al., 2012],
where the authors also used the combination of the mortar method and the selec-
tive integration. It was shown that Case 1, in particular, results in high-amplitude
spurious oscillations in the interface contrary to Case 2 that has a smoother stress
profile along the interface. Under the standard Lagrangian interpolation set-up
we could reproduce similar results, see Fig. 4.15, 4.16. These oscillations could
be removed with Nitsche method provided some adjustment of the stabilization
penalty parameters on each side of the interface [Sanders et al., 2012]. We demon-
strate below that using the coarse-grained interpolation for Lagrange multipliers,
as suggested in Section 4.3, also permits avoiding these oscillations in the MorteX
framework. As discussed in Section 4.3, the choice of the optimal coarse-graining
parameter is governed by local or global mesh contrast, which can be easily de-
termined either for every segment or for the whole interface. It renders the choice
of the coarse-graining parameter κ fully automatic. Contrary to the stabilized
Nitsche method, no knowledge about local material contrast is needed.

[MPa]
-

Figure 4.15: Bending stresses σyy: (a) Case 1; (b) Case 2.
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Figure 4.16: Bending stress σyy along the tying interface, comparison with the
reference solution.

In Fig. 4.17, the vertical stress component is shown for the Case 1 when the
coarse-graining parameter for Lagrange multipliers is set to (a) κ = 6 and (b)
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κ = 12. It is clearly seen in the figures that κ = 6 does not sufficiently relaxes the
over-constraining of the Lagrange multipliers space (we recall that mr = 11) to
obtain a smooth reference solution, even though the amplitude of oscillations is
slightly reduced compared to standard Lagrange multipliers, which can be seen in
Fig. 4.18(a) where the standard solution (obtained with the standard interpolation
of Lagrange multipliers SLI) is compared with the coarse-grained interpolation
(CGI). With the coarse-graining parameter κ = 12 we obtain a much improved
result comparable to the reference solution.

[MPa]
-

Figure 4.17: Coarse grained Lagrange multiplier space for Case 1: (a) κ = 6; (b)
κ = 12.

Figure 4.18: (a) Case 1: comparison of bending stresses (σyy) for SLI and
CGI with the reference solution; (b) decay of the relative error Er(σyy) for
κ = {1, 6, 12, 24, 48, 96, 192} for CGI in comparison with the error obtained with
triangulation of blending elements.

The relative L2 error Er(σyy) Eq. (4.17) is shown in Fig. 4.18(b) for different
values of κ. The error becomes acceptable only for κ ≥ mc, however, the accuracy
of the solution constantly improves with a further increase of κ. The fast drop
of the error for κ ∈ [1,mc] is associated with the graduate removal of spurious
oscillations in the stress distribution, whereas for κ > mc improves further the
error by better approximation of stresses at extremities of the interface. Since the
reference stress distribution is linear, only two Lagrange multipliers are sufficient to
capture it, leading to an error reduction up to κ = Nm. In general, as will be shown
later, too coarse a representation of Lagrange multipliers leads to deterioration of
the solution (see Section 4.5). The triangulation of blending element is also tested
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in the bending patch test, see Fig. 4.19. In contrast to the compression patch test,
triangulation here does not help with the removal of spurious oscillations.

-

[MPa]

Figure 4.19: Bending stresses σyy in Case 1 for triangulated blending elements:
(a) stress distribution along the tying interface; (b) contour plot of the stress
component.

4.4.3 Summary of patch tests
Here, we present the ensemble of patch-test results for various combinations of
host/patch meshes and material contrasts. As before, we consider two cases: Case
1 corresponds to a fine patch mesh [mesh-density contrast mc = 10, Fig. 4.20(a)]
which is tied with a coarser host mesh made of triangular, aligned or distorted
quadrilateral elements Fig. 4.20(b,c,d), respectively. Results of Case 1 are pre-
sented in Table 4.1. In Case 2, the patch mesh [mesh-density contrast mc = 0.1,
Fig. 4.21(a)] is coarser than the host mesh, which again can be made of trian-
gles, aligned or distorted quadrilateral elements, see Fig. 4.21(b,c,d), respectively.
Results of Case 2 are presented in Table 4.2. Softer (E1/E2 = 10−3) and stiffer
(E1/E2 = 1000) patch materials are compared to the host material were consid-
ered. We also tested different interpolation order (p0 and p1) for standard La-
grange interpolation (SLI), and p1-interpolation for coarse-grained interpolation
(CGI) in which the coarse-graining parameter takes its maximum value κ = Nm.
The table clearly demonstrates that the tying performance is strongly depen-
dent on the type of patch test. Cases which show a small error in bending test
can demonstrate a slightly higher error in compression test as in case mc = 10,
E1/E2 = 1000 for distorted quads with CGI scheme. However, with a high fidelity
it could be stated that if the tying method passes the bending patch test then it
passes the compression patch test. The inverse is, in general, false. Interestingly,
the triangulation of quadrilateral elements can considerably increase the error in
case of SLI scheme, it does not happens with the CGI scheme. Clearly, from these
tables it can be concluded that the CGI scheme outperforms the standard SLI
scheme (both p0 and p1) in all studied combinations of mesh, element types and
patch-test type (48 tests in total).
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Triangulation Dual
E1/E2 Host-mesh type of blending interpolation L2 error Er(σyy) L2 error Er(σyy)

elements (bending patch test) (compression patch test)
1000 Triangles No SLI (p0) 1.668e+01 3.57e-06
∼ Aligned quads No ∼ 3.357e-01 0.00
∼ Distorted quads No ∼ 2.95e+00 1.064e+00
∼ ∼ Yes ∼ 7.66e+00 4.76e-05

1000 Triangles No SLI (p1) 1.266e+01 3.55e-06
∼ Aligned quads No ∼ 2.789e-01 0.00
∼ Distorted quads No ∼ 2.30e+00 7.627e-01
∼ ∼ Yes ∼ 4.786e+00 4e-06

1000 Triangles No CGI (p1) 4.53e-05 0.00
∼ Aligned quads No ∼ 4.51e-05 0.00
∼ Distorted quads No ∼ 2.4e-04 1.e-3
∼ ∼ Yes ∼ 2.3e-04 3.e-4

1.e-3 Triangles No SLI (p0) 2.192e-01 0.00
∼ Aligned quads No ∼ 2.192e-01 0.00
∼ Distorted quads No ∼ 2.186e-01 2.9e-05
∼ ∼ Yes ∼ 2.192e-01 2.4e-05

1.e-3 Triangles No SLI (p1) 2.193e-01 0.00
∼ Aligned quads No ∼ 2.194e-01 0.00
∼ Distorted quads No ∼ 2.191e-01 1.15e-05
∼ ∼ Yes ∼ 2.194e-01 0.00

1.e-3 Triangles No CGI (p1) 4.51e-05 0.00
∼ Aligned quads No ∼ 4.51e-05 0.00
∼ Distorted quads No ∼ 2.4e-04 2.8e-4
∼ ∼ Yes ∼ 2.3e-04 2.8e-4

Table 4.1: Patch test performance for overlapping domains with a finer patch
(mc = 10).



4.4. PATCH TESTS 111

Triangulation Dual
E1/E2 Host-mesh type of blending interpolation L2 error Er(σyy) L2 error Er(σyy)

elements (bending patch test) (compression patch test)
1000 Triangles No SLI (p0) 2.122e-01 2.34e-05
∼ Aligned quads No ∼ 2.113e-01 0.00
∼ Distorted quads No ∼ 2.114e-01 3.58e-04
∼ ∼ Yes ∼ 7.66e+00 4.76e-05

1000 Triangles No SLI (p1) 2.493e-01 1.63e-05
∼ Aligned quads No ∼ 2.481e-01 0.00
∼ Distorted quads No ∼ 2.483e-01 5.00e-04
∼ ∼ Yes ∼ 4.786e+00 4e-06

1000 Triangles No CGI (p1) 6.00e-04 7.42e-07
∼ Aligned quads No ∼ 6.00e-04 0.00
∼ Distorted quads No ∼ 6.00e-04 1.75e-06
∼ ∼ Yes ∼ 6.00e-04 0.00

1.e-3 Triangles No SLI (p0) 1.702e-01 0.00
∼ Aligned quads No ∼ 1.702e-01 0.00
∼ Distorted quads No ∼ 1.702e-01 1.72e-06
∼ ∼ Yes ∼ 2.192e-01 2.4e-05

1.e-3 Triangles No SLI (p1) 1.734e-01 0.00
∼ Aligned quads No ∼ 1.734e-01 0.00
∼ Distorted quads No ∼ 1.735e-01 0.00
∼ ∼ Yes ∼ 2.194e-01 0.00

1.e-3 Triangles No CGI (p1) 5.5e-04 0.00
∼ Aligned quads No ∼ 5.5e-04 0.00
∼ Distorted quads No ∼ 5.5e-04 0.00
∼ ∼ Yes ∼ 5.5e-04 0.00

Table 4.2: Patch test performance for overlapping domains with a coarser patch
mesh (mc = 0.1).
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Figure 4.20: Discretized setting of coarse host mesh and finer patch mesh (mc ≈
10): (a) patch mesh (Ω1); (b) host mesh with linear triangular elements (Ω2); (c)
host mesh with bilinear quadrilateral elements (Ω2); (d) host mesh with bilinear
distorted quadrilateral elements (Ω2).

Figure 4.21: Discretized setting of fine host mesh and coarse patch mesh (mc ≈
0.1): (a) patch mesh (Ω1); (b) host mesh with linear triangular elements (Ω2); (c)
host mesh with bilinear quadrilateral elements (Ω2); (d) host mesh with bilinear
distorted quadrilateral elements (Ω2).

4.5 Circular inclusion in infinite plane: conver-
gence study

Having demonstrated a general good performance of the coarse-graining inter-
polation, here we carry out a mesh-convergence study. We focus on the worse
case scenario (see Section 4.4) when the patch mesh is finer and stiffer than the
host mesh. We consider a circular inclusion embedded in an infinite softer matrix
in plane strain formulation, and subject to a uniform traction applied at infin-
ity [Sharma, 1979, Kachanov et al., 2013, Hervé and Zaoui, 1995]. This particular
problem represents a sub-case of a general Eshelby problem of an ellipsoidal in-
clusion in a matrix [Eshelby, 1959, Muskhelishvili, ]. Fig. 4.22(a) shows the used
computational set-up: a circular inclusion Ω1 (patch) with radius R = 0.1 mm,
centered at origin, is superposed on a matrix Ω2 (host) represented by a square of
side L = 10 mm (L � R). Linear elastic material properties are applied to both
the inclusion (E1, ν1) and the matrix (E2, ν2). The inclusion is made more rigid
than the matrix by choosing E1/E2 = 1000, E1 = 1 GPa, the same Poisson’s ratio
is used for both ν1 = ν2 = 0.3. A uniform pressure σ0 = 0.1 MPa is applied on
the right side as shown in Fig. 4.22(a), displacements on the left side are fixed in
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horizontal direction ux = 0 and the lower left corner is fixed. The inclusion patch
is tied to the host matrix along the boundary of the inclusion Γ1

g.

σ0

x

y

Figure 4.22: Square matrix with circular inclusion: (a) problem setting (not to
scale) with inclusion domain Ω1 (radius R = 0.1 mm) superposed over the matrix
domain Ω2 (L = 10 mm); (b) inclusion and matrix domain discretizations, where
Γ1
g is the tying boundary and Γ∗ ⊂ Γ1

g (θ ∈ [−π/2, π/2]).

The analytical solution for the stress state inside and outside the inclusion is
given below in polar coordinates (r, θ) [Kachanov et al., 2013]. Stress components
inside the inclusion (r < R) are given by:

σ−rr = σ0

2

(
β1 + δ1 cos 2θ

)
(4.19)

σ−θθ = σ0

2

(
β1 − δ1 cos 2θ

)
(4.20)

σ−rθ = −σ0

2 δ
1 sin 2θ (4.21)

where
β1 = µ1(k2 + 1)

2µ1 + µ2(k1 − 1) , δ1 = µ1(k2 + 1)
µ2 + µ1k2 . (4.22)

Outside the inclusion (r > R), the stress components are given by:

σ+
rr = σ0

2

[
1− γ2R

2

r2 +
(

1− 2β2R
2

r2 − 3δ2R
4

r4

)
cos 2θ

]
(4.23)

σ+
θθ = σ0

2

[
1 + γ2R

2

r2 +
(

1− 3δ2R
4

r4

)
cos 2θ

]
(4.24)

σ+
rθ = −σ0

2

(
1 + β2R

2

r2 + 3δ2R
4

r4

)
sin 2θ (4.25)

(4.26)
where

β2 = −2(µ1 − µ2)
µ2 + µ1k2 , δ2 = µ1 − µ2

µ2 + µ1k2 , γ2 = µ2(k1 − 1)− µ1(k2 − 1)
2µ1 + µ2(k1 − 1) . (4.27)

For the considered plane strain formulation the material constants µ1,2 and k1,2

are given by
µ1,2 = E1,2

2(1 + ν1,2) , k1,2 = 3− 4ν1,2. (4.28)
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4.5.1 Mesh convergence
We are particularly interested in the stress state along the tying boundary (r = R)
where possible spurious oscillations take place. The distribution of the radial stress
component σrr(θ) at r = R can be obtained either from3 Eqs. (4.19) or (4.23). This
analytical solution is compared with the numerical one obtained using MorteX
method along the interface Γ∗ ⊂ Γ1

g, for which θ ∈ [−π/2, π/2] [see Fig. 4.22(b)].
For this purpose we use the L2 error norm as in (4.17) defined along Γ∗:

Er(σrr) =
||σrr − λrr||L2(Γ∗)

||σrr||L2(Γ∗)
, (4.29)

where σrr is the analytical solution, and λrr is the radial component of Lagrange
multiplier vector obtained by projecting it on the radial basis vector of polar
coordinates λrr = λ · er. The mesh refinement is carried out maintaining a con-
stant mesh contrast between the patch and the host meshes, i.e. the ratio of
the mortar segments to the number of blending elements is fixed to be mc ≈ 3
[Fig. 4.23]; the number of mortar segments was varied Nm ∈ {256, 512, 1024, 2048}
(in Fig. 4.22(b) and 4.23 the coarsest mesh with Nm = 256 is shown). Four cases
are considered for this convergence study: (i) standard p1 interpolation (SLI) is
used for Lagrange multipliers; (ii) blending elements are triangulated; (iii) coarse
grained interpolation (CGI) is used for Lagrange multipliers with various coarse
graining parameter κ; (iv) both triangulation and coarse graining are used.

mc  = 3loc

mc  = 6loc

mc  = 6loc

Figure 4.23: Illustration of the local mesh density contrast. The ratio of mortar
segment per number of blending elements is mc ≈ 3, but locally the number of
mortar segments intersecting different blending elements can vary considerably
mloc
c = 3, 6, 6 in zooms shown on the right.

We recall that to represent the interfacial tractions in compression and bend-
ing patch tests one or two Lagrange multipliers, respectively, were enough. In
contrast to these patch tests, here the stress distribution is no longer affine along
the tying interface, therefore it is expected to obtain a more practical result for
the selection of the coarse graining parameter κ, which ensures optimal conver-
gence. Results obtained for mesh contrast mc ≈ 6 and for Nm = 1024 and

3Note however that σθθ is not continuous across the interface
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different coarse-graining are shown in Fig. 4.24. The oscillations are clearly seen
near the inclusion/matrix interface, especially inside the inclusion. However, for
high enough κ these oscillations are completely removed and a uniform stress field
is recovered inside the inclusion. A quantitative convergence study is presented
in Fig. 4.25(a). It clearly demonstrates that for standard interpolation (SLI, i.e.
κ = 1) or coarse-grained interpolation (CGI) used with small values of κ = {2, 4},
the presence of spurious oscillations induces very high errors in interfacial trac-
tions [see Fig. 4.26(a)]. When κ = 16, 32, the error reaches its minimum. This
is due to the fact that for the given discretization, this level of coarse graining
offers an appropriate balance between on the one hand the relaxation of the over-
constraining of the Lagrange multipliers, and on the other hand the ability to
accurately describe the complex traction field at the interface. For higher values
of κ = {64, 128} the error increases again because of too coarse representation
of interfacial tractions. It is thus expected that, in general case, there exists a
range for κ which ensures oscillation free and accurate enough solution. It is also
expected that optimal κ is determined by the global mesh density contrast mc.
However, as demonstrated in Fig. 4.23, the local mesh density contrast can be
more pronounced than the average one, therefore it is expected that the optimal
value of coarse graining parameter κ lies in the range κ > mc; for the considered
case the error is minimized for κ/mc = {2.667, 5.333}, probably, the optimal value
lies in between. The effect of optimal κ is clearly demonstrated in Fig. 4.26(b)
where interfacial tractions λrr for different κ are plotted.

[MPa]xx
0.150

x

y

x

y

x

y

Figure 4.24: Stress component σxx computed using MorteX method: (a) standard
interpolation (SLI); (b) coarse grained interpolation (CGI) for κ = 4; (c) CGI for
κ = 16.

For the fixed mesh contrast mc = 6 and optimal κ = 16 and sub-optimal
κ = 8, the mesh convergence was carried out with meshes of different densities
Nm ∈ {128, 256, 512, 1024, 2048}. In Fig. 4.25(b) we plot the error decay with de-
creasing mesh size, for which we select the length of mortar edge normalized by the
total length of the interface h/2πR = 1/Nm. For the selected error-measure along
the inclusion/matrix interface, the standard interpolation for Lagrange multiplier
(SLI) results in optimal convergence (Er ∼ h). However, even though the con-
vergence is optimal, the error remains very high due to the spurious oscillations,
implying that an excessively fine mesh would be required to achieve an acceptable
error. For example, to reach Er = 0.1 % in case of SLI, 51 200 elements on the
mortar side would be needed. Moreover, for quadrilateral host mesh in absence of
triangulation of blending elements, the convergence is lost for very fine meshes. In
contrast, the coarse graining technique (CGI) used with optimal κ = 16 results in
the error below 0.1 %, even with the coarsest mesh used in our study Nm = 128.
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At the same time, the optimal convergence is preserved. As expected, the trian-
gulation of the blending elements slightly deteriorates the quality of the solution,
but preserves the optimality of the convergence.

1

1

1

1

Figure 4.25: Convergence study results for the circular inclusion problem for mesh
contrast mc ≈ 6: (a) Er(σrr) error change with coarse-graining parameter κ; (b)
comparison of convergence of SLI and CGI with and without triangulation of
blending elements, the mesh size along the interface is normalized by the circum-
ference h/2πR = 1/Nm which is equivalent to the inverse of the number of mortar
segments.

Figure 4.26: Comparison of λrr with analytical solution for various values of
κ along Γ∗ (for the mesh with Nm = 1024): (a) the standard Lagrange mul-
tiplier spaces (κ = 1); (b) the coarse grained Lagrange multiplier solution for
κ ∈ [8, 32, 64, 128, 256].

The effect of the parameter mc on the amplitude of spurious oscillations is
demonstrated in Fig. 4.27. For a fixed host-mesh discretization we increase the
number of mortar edges Nm = [64, 128, 256], which correspond to mc ≈ {1, 3, 6}.
Fig. 4.27(a) demonstrates the increase in the amplitude of oscillations with increas-
ing mesh contrast mc for SLI interpolation. The removal of spurious oscillations
with the CGI scheme is shown in Fig. 4.27(b) for reasonable choice of coarse
graining parameter κ = {2, 4, 8} for mc ≈ {1, 3, 6}, respectively.
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Figure 4.27: The effect of mc on λrr along Γ∗: (a) with standard Lagrange multi-
plier spaces (κ = 1); (b) with coarse grained Lagrange multiplier spaces (κ≈mc).

4.6 Numerical examples
In this section we illustrate the method of mesh tying along embedded interfaces in
light of potential applications. In all the presented examples, we use a linear elastic
material model under plane strain assumption. All triangular and quadrilateral
elements used in simulations possess three and four Gauss points for integration,
respectively. The triangulated blending elements also use three Gauss points. The
MorteX interface uses three integration points to evaluate the MorteX integrals.

4.6.1 Plate with a hole
As a first example, we solve the problem of a square plate with an embedded
square patch containing a circular hole, which was used to illustrate the method
in Section 4.1 [Fig. 4.1]. This example demonstrates the ease with which arbitrary
geometrical features can be included into the host mesh. Classically, in the X-FEM
method a void can be easily included in the host mesh, however, in the vicinity
of the void a stronger stress gradients take place, therefore the mesh around the
void should be properly refined. It can be easily achieved by surrounding the void
with a finer patch mesh, as done here, and by embedding this refined geometry
in a coarse host mesh. The geometric dimensions used in the problem are the
following: the plate’s side is LH = 12 mm, the hole’s radius is R = 0.75 mm and
the patch’s side is LP = 4.5 mm [Fig. 4.28(a)]. The patch and the host are made
of the same material with Young’s modulus E = 1000 MPa and Poisson’s ratio
ν = 0.3. The left edge of the host domain is fixed in x (ux = 0), the lower left
corner is fixed, and a uniform traction σ0 = 1 MPa is applied on the right edge, the
upper and lower boundaries remain free σxy = σyy = 0. For comparison purposes,
a reference solution is obtained with a classical monolithic mesh [Fig. 4.28(c)].

Fig. 4.29(a) shows a rather smooth contour of stress component σxx, which was
obtained using MorteX tying with SLI scheme. However, the seemingly smooth
stress field near the interface, exhibits oscillations near the interface as can be
seen in Fig. 4.29(b), where σxx was plotted over a part of the interface Γ∗. These
oscillations have a smaller amplitude than in cases with high material contrast,
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Figure 4.28: Plate with a hole: (a) overlapping domain setting; (b) discretized
overlapping domains; (c) monolithic discretization used to obtain the reference
solution.

0 3.12
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Figure 4.29: Regular host mesh with an embedded patch containing a circular hole
(mc ≈ 3): (a) contour plot of σxx stress component obtained using MorteX (SLI
scheme), (mesh is shown only in the second quadrant, the interface is marked with
a dashed line; (b) comparison of σxx distributions along Γ∗ between the solution
obtained with a monolithic mesh [Fig. 4.28(b)] and MorteX solution obtained with
overlapping meshes [Fig. 4.28(a)] using SLI and CGI schemes.

and as previously, they can be efficiently removed when coarse-grained interpola-
tion CGI is used, what is shown in the same figure. Coarse-graining parameter
κ = 3 appears to be sufficient to remove them. Note that the slight difference be-
tween the MorteX tying and the monolithic mesh comes from inherently different
extrapolation/interpolation of stresses to the interface nodes.
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4.6.2 Crack inclusion in a complex mesh
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Figure 4.30: Problem setting for the model blade-disk assembly with an embedded
patch mesh with a crack: (a) shows stress component σyy contour plot and a zoom
near the tying interface; (b) shows used host and patch mesh.

In many engineering applications, the solids are subjected to cyclic loads and
therefore modeling of structures with fatigue cracks appears essential for compu-
tational lifespan prediction. The structural finite element analysis can indicate
potential locations of the onset of fatigue cracks, however, insertion of cracks is
not always trivial [Proudhon et al., 2016, Feld-Payet et al., 2015], especially, in
the common case where the original CAD model is not available. Moreover, the
position of the onset of the crack is subjected to statistical perturbations, there-
fore it is often of interest to probe various scenarios in which the crack starts
at different locations. Within the proposed framework, studying various fracture
scenarios (crack in this case) merely implies placing the patch at a different lo-
cation on a host mesh, avoiding potential creation of conformal geometries. Here
we demonstrate an example of incorporating a crack in a model blade-disk fir-tree
connection subject to a vertical tensile load. The frictionless contact is handled
using the augmented Lagrangian method in the framework of the standard mortar
method. The following dimensions [see Fig. 4.30(a)] are used for the blade disk
assembly: L1 = 35 mm, L2 = 12 mm, L3 = 14 mm and L4 = 10 mm. The
Young’s modulus is E = 1000 MPa and ν = 0.3 for the blade, disk, and the patch
containing the crack of length a = 0.3 mm. A vertical displacement uy = 0.2 mm
is applied on the top surface of the blade. In Fig. 4.30(a) we present the resulting
stress field for the case of intact structure and for the case of a structure with
embedded crack, respectively. As seen in the later case, the stress fields are very
smooth across the tying interface (shown as white dashed boundary) ensured by
MorteX with SLI only. The coarse graining is not needed here as the mesh densi-
ties are comparable and the same material is used for the patch and for the host.
Similarly to the presented case of crack insertion, the method can be used in gen-
eral for introducing various other geometric features into the existing mesh. Using
the MorteX method, the location/orientation of these features can be adjusted
with ease and without remeshing to perform a sensitivity analysis.
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4.6.3 Multi-level submodeling: patch in a patch
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Figure 4.31: (a) Multi-level overlapping domain set-up; (b) finite element meshes
to be coupled (shown not in proportion), Γ3∗, Γ4∗ denote interfaces over which
CGI and SLI are compared in Fig. 4.33.

In this example we demonstrate the ability of the MorteX method to handle
multi-level overlapping domains, i.e. when an embedded patch mesh hosts other
domains. In Fig. 4.31(a) we present such a scenario where a patch with a notch
(Ω2) is embedded into a host domain Ω1, both made of the same material. At
the same time, the patch Ω2 itself hosts 2 circular inclusions (Ω3,4), which are
stiffer than the surrounding material. The following dimensions are used: L1 = 5
mm, L2 = 3 mm, L3 = 1 mm, L4 = 3 mm, R3 = 0.2 mm, and R4 = 0.4
mm. The material properties used are: E1 = 1.0 MPa, E2 = 1.0 MPa, E3 =
100.0 MPa, E4 = 1000.0 MPa (the upper indices correspond to the domains
Ω1, Ω3, Ω3, and Ω4 respectively). A Poisson’s ratio of ν = 0.3 is used for all the
domains. A vertical displacement uy = 0.1 mm is applied on top surface of the Ω1,
while the left surface is fixed in the x direction and bottom is fixed in all directions.
The contour plots of σyy for the cases of SLI and CGI are shown in Fig. 4.32(a)
and (b), respectively. The oscillations in the stress are distinctly seen in case
of SLI, but they are removed by applying CGI with κ = 4. Fig. 4.33 compares
σyy along Γ3∗, Γ4∗, which form π/2 portions of matrix/inclusion interfaces. This
example illustrates the case where a host mesh with embedded domains of different
material properties can be dealt within CGI MorteX scheme. Note that in contrast
to the Nitsche method where the stabilization parameter needed to avoid mesh
locking is dependent on the local material contrasts [Sanders et al., 2012], the CGI
stabilization does not require the knowledge of this contrast. In the CGI scheme,
knowing a local or a global contrast of mesh densities across the tying interface mc

is enough to automatically select the coarse graining parameter κ, which efficiently
stabilizes the mixed formulation and removes spurious oscillations present in the
standard mortar scheme.
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Figure 4.32: Contour plots of σyy for multi-level overlapping domains: (a) SLI;
(b) CGI used with κ = 4.

SLI
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Figure 4.33: Comparison of σyy stress for standard (SLI) and coarse grained (CGI)
interpolations along : (a) Γ3∗; (b) Γ4∗.

4.7 Summary
We presented a unified framework for mesh tying between overlapping domains.
This framework was entitled MorteX as it combines features of the mortar and
X-FEM methods. As known, the resulting mixed finite element problem may be
prone to mesh locking phenomena especially for high material or mesh-density
contrasts between the host and the patch meshes. Manifestation of the emerg-
ing spurious oscillations for different element types and various material as well
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as mesh contrasts was illustrated on two patch tests (bending and compression)
and on selected examples. These oscillations strongly deteriorate solution in the
vicinity of interfaces resulting in poor mesh convergence. Even though triangular
elements help to avoid oscillations in compression patch tests, they do not perform
well in bending patch test, nor in more complicated examples. These oscillations
comes from the over-constraining of the interface in case of mesh-density contrast,
when few mortar-side nodes located on the patch mesh are tied to displacement
field of a single host element. To get rid of the resulting mesh locking, we suggested
to coarse-grain interpolation (CGI) of Lagrange multipliers by interpolating the
associated field along few mortar edges. It implies that only every (κ + 1) node
along the mortar side stores a Lagrange multipliers and a linear interpolation is
used in between. The value of coarse-graining spacing parameter κ controls the
performance of the scheme. If κ is too small compared to mesh-density contrast,
the spurious oscillations persist as in standard interpolation of Lagrange multipli-
ers (SLI). If the value of κ is too high, the spatial variation of resulting interface
tractions cannot be captured properly. Therefore, in general problem, there exists
an optimal choice for the spacing parameter κ which can be automatically deter-
mined either by local mesh-density contrast between the patch and the host mesh
or by the global mesh-density contrast. The performance of the MorteX method
with coarse-grained interpolation was demonstrated on Eshelby problem for a stiff
inclusion in a softer matrix (elastic contrast of 1000). Few other examples, demon-
strating the ease with which the method can be used for: submodeling, local mesh
refinement and inclusion of arbitrary geometrical features in the existing mesh,
without remeshing. Among these examples, a multi-level/hierarchical overlapping
is shown, where a patch is inserted into a host mesh, which in turn is inserted
into another host mesh. The MorteX method equipped with CGI demonstrates
a very good performance, removes the mesh locking oscillations, and ensures op-
timal convergence. The important feature of the method is that its stabilization
requires knowledge of local mesh densities only, thus it presents a good alternative
to the Nitsche method, which requires stabilization constructed on a priori knowl-
edge of material stiffness in the interface. In analogy with the classical mortar
method, the MorteX method can be extended to handle contact problems along
virtual interfaces embedded in a mesh; this extension is presented in Chapter 5.



Chapter 5

Extended mortar methods for
contact

Résumé: Dans ce chapitre, le cadre MorteX présenté dans le chapitre 4 est
élargi afin de traiter les problèmes de contact le long des surfaces immergées.
L’application de contraintes d’inégalité le long des surfaces immergées rajoute des
difficultés supplémentaires et nécessite d’affiner le cadre de calcul. L’applicabilité
des techniques de stabilisation proposées pour le problème de couplage dans le
cadre MorteX sera démontrée pour les problèmes de contact.

In this chapter we extend the MorteX framework presented in Chapter 4 to
treat contact problems along the embedded surfaces. Enforcing inequality con-
straints along embedded surfaces brings in additional complexities and requires
refinement of the computational framework. The applicability of the stabilization
techniques proposed for the tying problem within the MorteX framework will be
demonstrated for contact problems.

5.1 MorteX framework

It consists of two distinct procedures as for the tying problem in MorteX frame-
work. The first procedure accounts for the internal virtual work on the effective
volume ω̃2 of the host mesh: the one hosting the embedded surface γ̃2

c which is
accomplished with the X-FEM method. The second procedure deals with the
enforcement of the contact constraints between the “real” surface γ1

c (explicitly
represented by mesh edges) and the embedded virtual surface γ̃2

c (geometrically
non-adhering internal surface).

123
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Discarded element
Blending element
Standard element

Mortar side nodes
Non-mortar side nodes
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Figure 5.1: (a) Discrete contact interface pair: Real γ1
c (mortar) and embedded

γ̃2
c (non-mortar); (b) effective volume of the host domain ω̃2.

5.1.1 Extended finite elements
The underlying numerical philosophy of selective integration remains the same for
the contact problem as for the tying one. However, unlike in the setting of tying
between overlapping domains, the embedded surface γ̃2

c is not an imprint of the
surface of the other body ω1 (referred to as “patch” for the tying problems) under
consideration. Instead, it is independently and explicitly defined based on the
surface contour desired [see Fig. 5.1].

5.1.2 MorteX interface discretization

Non-mortar side nodes

Projections

Gauss points

Mortar side nodes

Kink point

χ

Clip intersections

x
x

x~
x~

Figure 5.2: Example of mortar domain.

Similar to the tying problem in the MorteX framework, the rationale behind the
choice of mortar and non-mortar sides, holds for the contact problems as well [Sec-
tion 4.1.2]. The interpolations of the nodal positions in the current configuration
and the Lagrange multipliers along the mortar side γ1

c remain the same as for the
classical schemes, and are given by:

x1(ξ1) = Nm(ξ1)x1
m, m ∈ [1,M], (5.1)
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λn,τ (ξ1) = Φl(ξ1)λln,τ , l ∈ [1,L]. (5.2)

where as previously M and L is the number of nodes per mortar segment and
those carrying Lagrange multipliers respectively. Vector x1

m represents the nodal
positions of the mortar segment and ξ1 ∈ [−1; 1] is the parametric coordinate of
the mortar side. The parametrization on the non-mortar side requires more con-
sideration. As shown in Fig. 5.2, the embedded surface γ̃2

c is divided into straight
segments, whose vertices can either be a clip intersection (i.e. the intersection
between γ̃2

c and the edge of a bulk element of the non-mortar side) or a kink point
(a vertex of the discrete virtual surface γ̃2

c that lies inside a blending element).
Hereafter, we will refer these vertices as “points of interest”, without distinction
between kink and clip intersection points. Here, we introduce notations for the
points of interest x̃2

j , j ∈ [1, 2]. As a result, the geometric interpolation in the cur-
rent configuration along the embedded surface γ̃2

c , parametrized by ζ ∈ [−1; 1] can
be defined using two-dimensional quantities inherited from on the host element
[see Fig. 5.2]:

x2(ζ) = Ni

(
µ2(ζ), η2(ζ)

)
x2
i . (5.3)

Irrespective of the fact that the embedded surface is assumed piece-wise linear
in the reference configuration, it can become piece-wise non-linear in the current
configuration, therefore the displacement along this line cannot be parameterized
by linear shape functions. The kink points here in MorteX contact set-up represent
the vertices of the discretized surface γ̃2

c , whereas they represented the mortar side
nodes in case of MorteX tying set-up [see Section 4.1.2].

MorteX contact element

Here, a mortar contact element is formed with a single mortar segment and a
blending element. Each contact element consists of (M + N) nodes, M from the
mortar segment, and N from blending element. In addition the contact element
stores L, L× dim Lagrange multipliers for the frictionless and frictional cases, re-
spectively. As was shown in Chapter 4, to avoid mesh-locking (or over-constraining
of the interface), which results in spurious oscillations, the efficient choice of the
number of Lagrange multipliers should be balanced by the number of blending
elements, i.e. often it is reasonable to use one set per blending element.

Discrete integral kinematic quantities

The aforementioned selective integration scheme, used to accommodate for the
presence of an embedded virtual interface, leads to changes in the discrete contact
integral quantities: the integral gap vector (3.13), the integral normal gap (3.17)
and the incremental slip (3.27). For a MorteX contact element, these nodal quan-
tities are now evaluated along the interface formed by a pair of real and embedded
segments. Tilde notations are used for denoting these quantities.

˜̄gl =
[
Dlmx

1
m − M̃lix

2
i

]
, (5.4)

(integral gap vector)
˜̄gln = ˜̄gl · n, (5.5)
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(integral normal gap)
˚̄̃glτ = −τ ·

[
(Dlm(tj)−Dlm(tj−1))x1

m(tj−1)−
(
M̃li(tj)− M̃li(tj−1)

)
x2
i (tj−1)

]
(5.6)

(nodal incremental slip)

where Dlm (4.5) and M̃li (4.6) are the mortar integrals in the MorteX framework.
Note that within the MorteX framework, the definitions of purely mortar side
quantities, like the mortar segment normal n, remain the same.

Discrete contact virtual work

The MorteX residual vector is larger than the standard mortar one as it involves
the displacement DoFs from the bulk of the non-mortar side of the interface. The
discretized form of the virtual work for a contact element for the frictionless case
is:

δW̃ el
c =


δx1

m

δx2
i

δλln


ᵀ 

(
λ̂lnn

)
Dlm

−
(
λ̂lnn

)
M̃li

˜̄gln

 , λ̂ln ≤ 0 (in contact) (5.7)

δW̃ el
nc =


δx1

m

δx2
i

δλln


ᵀ  0

0
− 1
εn
λln

 , λ̂ln > 0 (no contact). (5.8)

The residuals for stick, slip and no contact statuses in case of frictional contact
are:

δW̃ el
stick =


δx1

m

δx2
i

δλln

δλlτ



ᵀ


(
λ̂lnn+λ̂lττ

)
Dlm

−
(
λ̂lnn+λ̂lττ

)
M̃li

˜̄gln
˚̄̃glτ

 , λ̂ln ≤ 0, |λ̂lτ | ≤ −µλ̂ln (stick)

(5.9)

δW̃ e
slip =


δx1

m

δx2
i

δλln

δλlτ



ᵀ


(
λ̂lnn− µλ̂lnsign(λ̂τ )τ

)
Dlm

−
(
λ̂lnn− µλ̂lnsign(λ̂τ )τ

)
M̃li

˜̄gln
− 1
ετ

(
λlτ + µλ̂lnsign(λ̂lτ )

)

 , λ̂ln ≤ 0, |λ̂lτ | > −µλ̂ln (slip)

(5.10)

δW̃ e
nc =


δx1

m

δx2
i

δλln

δλlτ



ᵀ 
0
0

− 1
εn
λln

− 1
ετ
λlτ

 , λ̂ln > 0 (no contact).

(5.11)
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It is important to remark that the contact status is again based on the integral
quantities (5.5, 5.6):

λ̂ln = λln + εn ˜̄gln, λ̂lτ = λlτ + ετ
˚̄̃glτ .

Evaluation of integrals

The numerical procedures of the classical mortar framework to evaluate the mortar
integrals need to be adapted for the MorteX framework similar to what was done
for the tying problem. However, the numerical procedure adapted for the tying
problem in MorteX framework cannot be used directly for the contact problems.
The tying problem does not require any projections between the tying surfaces Γ̃2

g

and Γ1
g. This simplification for linear tying problem can be attributed to the fact

that Γ̃2
g is an imprint of the embedded surface of the patch domain (Γ̃2

g ≡ Γ1
g) in

the reference configuration and remains so in any configuration. However, for the
non-linear contact problem, where the contact interface continuously changes in
response to the deformations the bodies undergo, the conformity of the surfaces
cannot be ensured in the reference configuration and certainly not in the current
configuration (γ̃2

c 6≡ γ1
c ). This implies a need for a projection step similar to the

classical mortar framework to determine the limits of mortar domain Sel. The
quantities projected are points of interest rather than non-mortar segment nodes
like it was in the classical mortar. The mortar projection coordinates are found
by solving the following equation:[

Nm(ξ1)x1
m − x̃2

i

]
× n = 0, (5.12)

for ζ = −1 and ζ = 1. The resulting projections ξ1
a/b serve as limits of the mortar

domain, parametrized by χ ∈ [−1, 1]. They are mapped onto the segment space
χ according to (3.44). To evaluate the integrals using Gauss quadrature, the
mortar-side Gauss points ξ1

G are projected along mortar segment normal n onto
the non-mortar side and the corresponding local coordinates ζG are determined
by solving for each Gauss point ξ1

G:[
N2
i (µ2(ζG), η2(ζG))x2

i −Nm(ξ1
G)x1

m

]
× n = 0. (5.13)

The Gauss point location obtained in the parametric space ζ is mapped onto the
underlying parameterization of the non-mortar element (µ2, η2).

µ2
G(ζG) = 1

2(1−ζG)µ2
1 + 1

2(1+ζG)µ2
2, η2

G(ζG) = 1
2(1−ζG)η2

1 + 1
2(1+ζG)η2

2, (5.14)

where (µ2
j , η

2
j ) are the coordinates of the points of interest x̃2

j j ∈ [1, 2] in the
parent domain. The integrals are evaluated as:

Dlm =
∫
Sel

Φl(ξ1)N1
m(ξ1) dΓ =

NG∑
G=1

wGΦl(ξ1
G)N1

m(ξ1
G)Jseg(ξ1

G) (5.15)

M̃li =
∫
Sel

Φl(ξ1)N2
i (µ2(ζ), η2(ζ)) dγ =

NG∑
G=1

wGΦl(ξ1
G)N2

i

(
µ2
G, η

2
G

)
Jseg(ξ1

G) (5.16)

where Jseg is the normalized Jacobian (3.48).
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5.2 Numerical examples

In this section, we carefully selected numerical tests to demonstrate the accuracy,
the robustness and the efficiency of the method. Linear elements are used in all
the examples. All the examples are set-up using both boundary-fitted domains
and embedded surfaces, solved within classical mortar and MorteX frameworks,
respectively. In the figures displaying contour stress plots, transparency is used
to visually differentiate between the “discarded” (most transparent), “blending”
(semi transparent) and “standard” (opaque) elements.

5.2.1 Frictionless contact of cylinders

As demonstrated in Chapter 4 for mesh tying problems, set-up involving a host
that is softer and coarser than the patch tend to exhibit spurious interface oscil-
lations as a result of mesh-locking. In order to illustrate the mesh-locking effect
within the context of contact problems, we choose the below set-ups for mortar
[Fig. 5.3] and MorteX [Fig. 5.4]. The problem under consideration is the fric-
tionless Hertzian contact between two infinite cylinders. For the MorteX set-up,
the bottom cylinder surface is embedded into a host rectangular domain ω2. The
cylinders are of equal radius R1 = R2 = 8 mm. Linear elastic materials are used
for both the domains ω1 (E1, ν1) and ω2 (E2, ν2). A material contrast is introduced
by choosing E1/E2 = 100. The same Poisson ratio of ν1 = ν2 = 0.3 is used for
both the domains. The top cylinder has a finer discretization compared to the
bottom cylinder, with the mesh contrast parameter mc ≈ 3. A vertical displace-
ment uy = 0.005 mm is applied on the surface of the top cylinder. This results in
a total reaction force of P ≈ 0.016512 N. The bottom surface is fully fixed. The
middle point of the top surface is fixed in x direction. For the classical mortar
framework contact is enforced between the real-real surface pair (γ1

c/γ
2
c ), while for

MorteX the contact is enforced between the real-virtual surface pair (γ1
c/γ̃

2
c ).

x

y

Figure 5.3: Mortar Hertzian contact: (a) problem set-up and boundary conditions;
(b) FE discretization, with mesh contrast parametermc ≈ 3 (zoom at the interface
mesh).
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x

y
~

Figure 5.4: MorteX Hertzian contact: (a) problem set-up and boundary condi-
tions; (b) FE discretization, with mesh contrast parameter mc ≈ 3 (zoom at the
interface mesh).

The analytical solution for this problem is derived from the Hertzian contact
formulae for two cylinders, which defines the maximum contact pressure (p0),
the semi contact width a and the contact pressure distribution p along the x
coordinate [Johnson, 1985].

p0 =
√
PE∗

πR∗
, (5.17) a =

√
4PR∗
πE∗

, (5.18) p = p0

√√√√1−
(
x

a

)2

.

(5.19)

In the above equations, the effective elastic modulus E∗ is defined as

E∗ = E1E2

E1(1− ν2
2) + E2(1− ν2

1) (5.20)

and the effective radius R∗, is evaluated as:

R∗ = R1R2

R1 +R2
. (5.21)
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[MPa]

-0.12 0.00

Figure 5.5: Contact stresses (λn, σyy) for the standard Lagrange multiplier inter-
polations (SLI): (a) Mortar; (b) MorteX methods.

Using the standard Lagrange multiplier interpolation in which every mortar
side node holds a Lagrange multiplier results in spurious oscillations in the stresses
[see Fig. 5.5]. Similar oscillations have been demonstrated in Chapter 4 for the
mesh tying problems. The stabilization technique, coarse graining of Lagrange
multiplier interpolations [see Section 4.3], has been proved efficient in removing
these oscillations on various problem settings for mesh tying problems. We adapt
the same stabilization technique for contact problems, to both the mortar and
MorteX frameworks. The plots in Fig. 5.6, shows the results obtained by applying
the CGI scheme for two values of spacing parameter κ = 2, 3 [see Section 4.3].
The amplitude of spurious oscillations are reduced for κ = 2 (κ < mc) and they
are almost eliminated for κ = 3 (κ = mc), enabling an accurate representation of
the analytical contact pressure distribution. The results corroborate the facts es-
tablished by the patch and Eshelby tests [see Chapter 4], concerning the minimum
value that κ needs to take for minimizing the effect of mesh-locking (κ ≈ mc). Note
that the change in vertical stress in the MorteX framework on the non-mortar side
is simply a visualization issue.
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κ=3
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Figure 5.6: Contact stresses (λn, σyy) for the coarse grained Lagrange multiplier
interpolations (CGI): (a) Mortar; (b) MorteX methods.

5.2.2 Frictional contact of cylinders

A set-up similar to the frictionless case [Fig. 5.4(a)] is considered for the frictional
contact. The Coulomb’s friction law is used with the coefficient of friction µ = 0.2.
The same linear elastic material is assigned to the two cylinders with E = 200 MPa
and ν = 0.3. The two cylinders are discretized ensuring equal meshes densities
(mc ≈ 1). This test was also considered in [Yang et al., 2005, Gitterle et al., 2010].
In the first load sequence, a vertical displacement uy = 0.182 mm is applied on
the top surface of the upper cylinder in 100 load steps, which results in a total
reaction force of P ≈ 10.0 N (p0 ≈ 0.625 N/mm). This is followed by a second
sequence of loading where a horizontal displacement uy = 0.03 mm is applied
in 100 load steps. This results in a total reaction force of Q ≈ 0.936 N (q0 ≈
0.05851 N/mm). The bottom surface of the lower cylinder is fixed throughout the
simulation. The contact pressure profile p(x) and the contact semi-width a are
still given by Eqs. (5.19)-(5.18).

According to the analytical solution [Johnson, 1985], the contact zone is divided
into a stick zone in the central area |x| ≤ c and two peripheral slip regions c <
|x| ≤ a , where the semi-width of the stick zone is given by:

c = a

√
1− q0

µp0
. (5.22)
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The tangential traction pτ is given as:

pτ (x) =



µ
4Rp0

πa2 (
√
a2 − x2 −

√
c2 − x2) , if |x| ≤ c

µ
4Rp0

πa2 (
√
a2 − x2) , if c < |x| ≤ a

0 , elsewhere.

(5.23)
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Figure 5.7: Contour stress plots σyy, σxy for results obtained by Mortar method.
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Figure 5.8: Contour stress plots σyy, σxy for results obtained by MorteX method.

Fig. 5.7 and 5.8 show the contour stress plots for σyy and σxy at the end of the
second load sequence, obtained with Mortar and MorteX methods, respectively.
The results obtained by the Mortar and MorteX methods are very similar to each
other, and provide a descent approximation of the analytical solution in terms of
contact tractions [see Fig. 5.9].
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Figure 5.9: Normal and tangential contact tractions: (a) Mortar; (b) MorteX
methods.

5.2.3 Ironing a wavy surface
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Figure 5.10: MorteX frictionless ironing of wavy surface set-up, equivalent Mortar
set-up (inset).

In this example we consider a frictionless sliding contact between an elastic slider
and an elastic wavy substrate [see Fig. 5.10]. Within the MorteX framework, a dis-
cretized surface γ1

c comes in contact and slides along a virtual surface γ̃2
c embedded

inside a rectangular block. The slider and substrate are meshed with a compa-
rable mesh density (mc ≈ 1). The geometric dimensions used are: l1 = 12, l2 =
4.5, l3 = 4, l4 = 0.2, l5 = 0.3, l6 = 0.9, l7 = 0.2, l8 = 1.2 (all the length dimension
are in mm). The wavy surface is described by y(x) = ∆(y/l3) sin(2πx/λ), with
λ = 1.5 mm and ∆ = 0.05 mm. Both solids are made of the same material:
Young’s modulus E = 100 kPa and Poisson’s ratio ν = 0.3. A vertical displace-
ment of uy = −0.75 mm is applied on the top of the slider within first 20 load steps
(t ∈ [0, 1]) while the horizontal displacement of the same boundary is kept zero.
During the following sequence (t ∈ [1, 2]), the vertical displacement is maintained
and the horizontal displacement of ux = 10 mm is applied in 100 load steps. The
bottom surface of the rectangular block is fixed throughout the simulation.
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For the sake of comparison, the same problem is also solved within the classical
mortar contact formulation, in which the contact occurs between two surfaces ex-
plicitly represented by body-fitted meshes [see Fig. 5.10, inset]. The contour plots
of stresses σyy, at t = 1.0, 2.0 seconds, for both the Mortar and MorteX methods
are shown in Fig. 5.11-5.12. These fields are very smooth and indistinguishable
by naked eye. The normalized contact tractions (λn/E) and the displacements in
y-direction (uy) along the real surface γ1

c are compared between the two methods.
In order to quantify the difference, we introduce the L2 norm of the error in the
displacements and contact tractions as below:

uy(L2) =
||uMortar

y − uMorteX
y ||L2(γ1

c )

||uMortar
y ||L2(γ1

c )
,

(5.24)

λn(L2) =
||λMortar

n − λMorteX
n ||L2(γ1

c )

||λMortar
n ||L2(γ1

c )
.

(5.25)

where the norm means ‖f(x)− g(x)‖L2(γ1
g ) =

√∑
i [f(xi)− g(xi)]2, where xi ∈

[0, L] are the x-coordinate of mortar nodes, and L is the length of the surface γ1
g .

The displacement and traction error norms [see Fig. 5.13], reflects the accuracy
and robustness of the MorteX framework.

0.0-2.5e+04

[MPa]

Figure 5.11: σyy contour plots at t = 1 seconds (a) Mortar; (b) MorteX methods.
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Figure 5.12: σyy contour plots at t = 2 seconds (a) Mortar; (b) MorteX methods.

(L2)  1.e-2 uy(L2) 1.e-4

(L2) 1.e-3 uy(L2) 1.e-5

Figure 5.13: Comparison of normalized contact tractions (λ/E) and displacements
(uy) along slider surface γ1

c : (a) t=1.0; (b) t=2.0 seconds.
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5.2.4 Frictional shallow ironing
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Figure 5.14: MorteX frictional ironing set-up, equivalent Mortar set-up (inset).

Here we consider the same geometrical set-up as in the previous example (Sec-
tion 5.2.3), but here the virtual surface γ̃2

c embedded into the host domain ω2 is
flat [see Fig. 5.14]. The slider and substrate properties are respectively E1 = 68.96
MPa, ν1 = 0.32 and E2 = 6.896 MPa, ν1 = 0.32 (E1/E2 = 10). In addition, the
slider has a finer mesh than the substrate: so that the mesh contrast is mc ≈ 3. A
coefficient of friction µ = 0.3 is used. The contrast in material and mesh density is
introduced purposefully to better illustrate the manifestation of the mesh locking
phenomenon. A vertical displacement of uy = −0.75 mm is applied on the top of
the slider within first 50 load steps (t ∈ [0, 1]), while the horizontal displacement
of the same boundary is kept zero. During the following sequence (t ∈ [1, 2]), the
vertical displacement is maintained and the horizontal displacement of ux = 10
mm is applied in 500 load steps. The bottom surface of the rectangular block is
fixed in all directions throughout the simulation.

Fig. 5.15, shows the oscillation in the stress field σyy for the standard Lagrange
multiplier interpolations, both in the context of Mortar and MorteX. These results
suffer from spurious oscillations. Similar to the Hertzian contact problem setting
in Section 5.2.1, we use the coarse grained Lagrange multiplier interpolations to
both the Mortar and MorteX formulations. It results in a reduced amplitude of
oscillations, as seen in Fig. 5.16, and 5.17 where the contact tractions are presented
for different coarse grain spacing parameter κ. A good agreement between the
Lagrange multiplier field λn and hence the reaction forces (Rx, Ry) on the slider
for the Mortar and MorteX methods can bee seen in Fig. 5.18. In this example,
the applicability of CGI for Lagrange multipliers is once again proved efficient for
both the MorteX and for the classical Mortar frameworks.
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Figure 5.15: Standard Lagrange multiplier space (κ = 1), σyy contour plots at
t = 2 seconds (a) Mortar; (b) MorteX methods.
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Figure 5.16: Coarse grained Lagrange multiplier space (κ = 3), σyy contour plots
at t = 2 seconds (a) Mortar; (b) MorteX methods.

Figure 5.17: Comparison of λn at nodes along γ1
c for κ = 1 and κ = 3: (a) Mortar;

(b) MorteX methods.
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Figure 5.18: Comparison of fields between Mortar and MorteX methods for κ = 3:
(a) contact tractions λn along γ1

c ; (b) reaction forces in x and y along the top
surface of the slider.

5.3 Simulation of wear using MorteX method
In the numerical examples presented in the previous section the virtual surface
was embedded in the host mesh once in the beginning of the simulation. However,
this needs not always be the case, i.e. the embedded surface can evolve during
the simulations either from one time step to another or even within the iterative
procedure at every iteration, like for e.g. in wear problems. Wear is a complex
interfacial phenomenon resulting from relative motion between contacting bodies,
and manifests itself in material removal. This phenomenon is observed specifically
in mechanical assemblies such as the rivets, bearing and gears, turbine blade fix-
ings, etc. Accurate representation of contact tractions while accounting for the
continuously evolving geometrical changes due to wear, is challenging. The most
commonly used wear criterion is the one proposed by Archard [Archard, 1953]. It
is formulated at the scale of entire contact interface (global/macro scale) as:

V = K
P

H
δ, (5.26)

where V is the total worn out volume at the interface, K is a dimensionless wear
coefficient, P is the normal load, H is the hardness of the material and δ is the ac-
cumulated sliding distance. In [Fouvry et al., 1996], the authors proposed a rather
similar wear law which links the worn volume with the dissipated energy. The Ar-
chard’s law and the energetic laws for wear are equivalent under the assumption of
constant and uniform coefficient of friction. Alternatively, these macroscopic laws
can be assumed valid at the micro/local scale, which is essential for the numerical
treatment of the wear problem. Hence, the worn out volume (5.26) can be repre-
sented in terms of the local wear depth increment dh for a local slip increment dδ
and the local contact pressure p(x):

dh = kµp(x)dδ = kdWd, (5.27)

where µ is the coefficient of friction, k is local wear coefficient with units (1/Pa),
and dWd = µp(x)dδ is an increment of the surface density of the dissipated energy.
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The localized nature of this approach allows local update of the worn geometry.
Such localized Archard’s wear law was first implemented within the FEM frame-
work in [Johansson, 1994]. Subsequent works were based on an iterative simu-
lation of wear surface evolution using updated geometry [Podra and Andersson,
1999, Öqvist, 2001, Kim et al., 2005, Lengiewicz and Stupkiewicz, 2013, Farah
et al., 2016, Farah et al., 2017]. However the numerical complexities involved in
these classical approaches are considerable: remeshing procedures to capture the
geometrical changes and field remapping of history variables.

Here, the MorteX method is intended to mitigate the numerical complexi-
ties accompanied with the remeshing techniques only. This requires imposing the
contact constraints between real and virtual surfaces when the latter evolves be-
tween the load steps. A local “dissipated energy” wear criterion (5.27) is used.
The process of wear profile evolution and its incorporation into the underlying
geometry will be detailed. The methodology will be demonstrated on a classical
fretting-wear set-up (cylinder on flat plate) for the gross-slip regime.

5.3.1 Problem set-up
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Figure 5.19: Wear problem setup: (a) FE mesh; (b) Boundary conditions, the nor-
mal load P is applied and maintained throughout the simulation. The δ sawtooth
horizontal displacement is applied for many fretting cycles.

We consider a cylinder-plate fretting wear example. The modeling framework
assumes that only the plate wears out as a result of frictional contact. This
assumption is made in order to restrict the problem setting to the bounds of
the MorteX framework, which is capable of treating contact between a real and
virtual surface. A linear elastic material model under plane strain assumption is
considered here with Young’s modulus E = 119 GPa and Poisson’s ratio ν = 0.29.
This choice confines the modeling to the problematic of material removal or the
evolution of virtual interface due to wear and does not involve extra difficulties
from variables transfer. A coefficient of friction µ = 0.8 is considered between
the contacting surfaces, and the Coulomb’s friction law is used. The geometric
dimensions are: radius R = 10 mm for the half cylinder and 12 mm×8 mm along x
and y directions respectively for the rectangular plate. A finer mesh discretization
with quadrilateral element is chosen around the contact zone [Figure 5.19(a)].
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The boundary conditions are applied in two sequences. In the first sequence a
a normal load of P = 300 N/mm is imposed on the central point of the top surface
of the cylinder. Equality of displacements uy for the nodes of the top surface is
ensured with multi-point constraints. This is followed by a second sequence, when
a periodic saw-tooth horizontal displacements of amplitude δ is applied on the
top of the cylinder. A fretting load cycle is constituted of one complete horizontal
displacement cycle as illustrated in Fig. 5.19(c). The sides and bottom of the plate
are kept fixed through out the simulation. The choice of δ = 100µm is made to
reproduce the gross sliding conditions.

5.3.2 Methodology of MorteX wear-modeling
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Intial geometry
Contact surface definitions
Material model
Boundary conditions
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FEM

Calculate accululated dissipated 
energy

Generate wear depth profile (
virtual surface) from accumulated 
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Post processing

Gauss point reintialization

Clipping
Triangulation

X-FEM

N > Nmax
Redine contact between real
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Figure 5.20: The flowchart illustrating the incremental wear modeling within the
MorteX framework.

The main steps involved in the numerical wear modeling within the framework of
MorteX are shown in Fig. 5.20. The accumulated dissipated energy during a load
sequence is very slow, i.e. the evolution of the wear profile is practically negligible.
To accelerate the simulations, we use the concept of the effective fretting cycle,
where each numerical cycle represents N real cycles. Each effective fretting cycle
is divided into N∗ load steps. During the first effective fretting cycle, contact is
imposed between the boundary-fitted mortar and non-mortar surfaces. Therefore
the classical mortar methods are used for resolving the contact problem. This
implies the use of standard discrete kinematic quantities (3.18), (3.27). After the
end of a load step increment, the linear density of the dissipated energy ∆W incr

d

of the mortar element in sliding state is evaluated as an integral of the product
between the tangential contact tractions λlτ (= µλln) and the incremental slip ˚̄glτ
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over the mortar domain Sel as:

∆W incr
d =

∫
Sel

λlτ˚̄g
l

τ dγ =
∫
Sel

∆wd dγ, (5.28)

The Gauss quadrature for the above integral follows as:

∆W incr
d =

NG∑
G=1

wGNm(ξ1
G)∆wmd Jseg(ξ1

G), (5.29)

where as previously m ∈ [1,M ] and G ∈ [1, NG] (NG is number of Gauss integra-
tion points), Jseg is the normalized Jacobian. After the completion of an effective
fretting cycle, the accumulated dissipated energy of the mortar element is summed
over all the load steps that constitute the cycle.

∆Wd =
N∗∑

incr=1
∆W incr

d (5.30)

The accumulated dissipated energy is then divided equally among the non-mortar
nodes of the contact element. In the case of linear meshes, each non-mortar node
i of the contact element is assigned with ∆Wd

2 . This manner of assigning is chosen
to simplify the implementation, and a split of the energy between the non-mortar
nodes can be based on geometrical considerations. Finally, the total dissipated
energy for every non-mortar node is the summation of the energies from all the
mortar elements sharing it. The nodal dissipated energy ∆W i

d is converted into
an equivalent wear depth ∆hi of the node as [Fig. 5.21(a)]:

∆hi = −kβ(N)∆W i
dn

i∗, (5.31)

where ni∗ is the average nodal normal of the non-mortar node i and k is the local
wear coefficient calibrated by integrating the model on the whole wear scar and
by adjusting the result to experimental data [McColl et al., 2004]. An acceleration
factor β(N,∆h(t)) is, in general, a function of the number of real cycles in the
effective cycle and also of the wear history. In the simplest case, it can be assumed
to be equal to the number of real cycles β = N . Note, that the average nodal
normal ni∗ is computed for the non-mortar side of the interface only for the virtual
surface definition. For the contact related integral evaluations, the non-averaged
mortar segment normal n is used. The positions of the virtual nodes is obtained
by adding the nodal wear depth ∆hi (5.31) to the positions of the corresponding
non-mortar node i. A new virtual 1D surface γ̃2

c , is formed by joining the virtual
points of the non-mortar side nodes. The limits of the each virtual non-mortar
segment are the “points of interest” [see Fig. 5.21(b)]. The volume lying outside
the virtual surface is considered as the worn out volume. Accounting for the worn
out volume within the MorteX framework involves clipping, triangulation and
Gauss point reinitializations as a part of the selective integration scheme. The
worn out volume is excluded from the weak form integration.

Starting from the second effective fretting cycle onwards, the frictional contact
is considered between the unworn real mortar side surface and the worn out geome-
try represented by a virtual surface γ̃2

c [Fig. 5.21(b)]. Unlike the three non-mortar
segments S1, S2, S3 in the first fretting cycle, the virtual non-mortar segments
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defined by the non-mortar nodes and the points of interest (S1, S2, S3, S4, S5) in-
crease in number at every update [see Fig. 5.22(a)]. For subsequent cycles, this
increase can become unbounded. To limit this, the points of interest lying close to
each other are combined into a single point. The dissipated energy for a MorteX
contact element (∆W̃ incr

d ) is now evaluated using the modified integral incremental
slip ˜̄̊glτ (5.6). Then, Eq. (5.29) changes as follows:

∆W̃ incr
d =

NG∑
G=1

wGNm(ξ1
G)∆w̃md Jseg(ξ1

G). (5.32)

The accumulated dissipated energy over the effective fretting cycle is calculated
similar to (5.30), using ∆W̃ incr

d . The dissipated energy density ∆W̃d is split be-
tween the limits of the non-mortar segment namely: non-mortar nodes or points of
interest. The non-mortar segment limits are translated along the averaged normal
defined at the limits of the virtual non-mortar segment ñi∗ (5.33). A new virtual
surface is formed by joining the translated positions [see Fig. 5.22(b)].

∆h̃i = −kβ(N)∆W̃ i
dn

i∗. (5.33)
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Figure 5.21: First effective fretting cycle: (a) The mortar segmentation process;
involving projections of the non-mortar side nodes along mortar segment normal
n; (b) worn out surface formed by joining translated (by ∆h) non-mortar segment
nodes.
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Figure 5.22: Second effective fretting cycle: (a) The mortar segmentation process;
involving projections of the non-mortar nodes/point of interest along mortar seg-
ment normal n; (b) new worn out surface formed by joining translated (by ∆h̃)
point of interest.
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5.3.3 Wear simulation

Here we summarize the steps involved in simulation of material removal process
for the introduced wear problem set-up [see Fig. 5.19]. The wear simulation pa-
rameters used are: k = −5 · 10−8 Pa−1, β = 100. The three steps are:

1. Evaluation of dissipated energy (∆Wd) during a effective fretting cycle along
the entire contact interface [see Fig.5.23(a)].

2. Conversion of ∆Wd into an equivalent wear depth profile [see Fig.5.23(b)].

3. Superposition of the depth profile onto the current plate mesh, followed by
clipping and triangulation [see Fig.5.24(a), (b)].

-0.01

0.00

x

Figure 5.23: Wear simulation: Equivalent wear depth profile.

Figure 5.24: Wear simulation: (a) Clipping of the underlying mesh with the virtual
surface; (b) Triangulation of the clipped polygons for selective integration.

The mesh configurations at three different stages of the cyclic loading are shown
in Fig. 5.25. The material removal as a result of frictional contact (wear) is clearly
seen as the top cylinder penetrates into the volume of plate. The material removal
is mimicked by the evolving virtual surface, where contact is redefined between
the newly formed virtual surface after each effective fretting cycle. The contact
stress σyy redistribution in response to the evolving contact interface can be seen
in Fig. 5.26.
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Figure 5.25: Mesh configuration after: (a) 300; (b) 1500; (c) 2500 fretting cycles.

58.7-550.8

[MPa]

Figure 5.26: Contour stress (σyy) after: (a) 300; (b) 1500; (c) 2500 fretting cycles.

5.4 Summary
We extended the MorteX framework to treat contact problems along real-embedded
interfaces. The algorithmic differences compared to the tying problem in terms
of integral evaluation which now involves extra projections are discussed. The
applicability of the coarse graining strategy for the contact problems is demon-
strated with numerical examples both for the mortar and MorteX methods has
been demonstrated with numerical examples. The dependency of the coarse grain
Lagrange multiplier strategy on the parameter κ was demonstrated with the fric-
tionless Hertz problem. The minimum value that κ needs to take is approximately
mc, the mesh contrast parameter. This corroborates the findings from the mesh
tying problem settings considered in Chapter 4.

A prototype wear simulation, between a half cylinder and a flat plate in gross
slip regime was solved within the MorteX framework. Within the MorteX frame-
work the evolution of surface as a result of material removal due to wear is modeled.
This circumvents the need for conventional remeshing procedures to account for
material removal.



Chapter 6

Conclusion and perspectives

6.1 Conclusions
Résumé: Cette thèse a pour but de développer un ensemble de méthodes per-
mettant de gérer les problèmes de contact et de couplage de maillages dans le
cadre de la méthode des éléments finis classiques et étendus. Dans ce chapitre,
les contributions originales de la thèse ainsi que les perspectives pour les travaux
futurs sont présentés.

In this thesis, the focus is laid on development of a robust three-dimensional
numerical framework to treat contact problems. For this purpose, we coupled the
accurate mortar discretization scheme with the monolithic augmented Lagrangian
resolution strategy. A fully consistent linearization of the contact residuals is de-
rived and implemented for the first time within this setting (to the best of our
knowledge). Various aspects of the numerical treatment of contact are discussed:
detection, discretization, accurate evaluation of mortar integrals (projections, clip-
ping, triangulation), and the parallelization on distributed memory architectures.
The method’s performance under various problem settings involving material and
geometric non-linearities was demonstrated. Few algorithmic nuances arising in
the presented framework, such as an iterative update of contact interface elements
and the importance of slip history storage for frictional problems are discussed and
illustrated under simple problem settings. Slip storage enables a more accurate
initiation of contact statuses in the beginning of the following load step and thus
accelerates the convergence of the Newton method. The classical formulation of
the mortar method for mesh tying applications is also recalled and demonstrated
for two and three-dimensional set-ups and is also used to impose periodic boundary
conditions.

The main novelty of this thesis is the development of a new two-dimensional
MorteX framework, which combines features of the extended finite element method
(X-FEM) and the classical mortar methods. This framework enables handling
such interface problems as mesh tying between overlapping domains as well as
frictional contact between embedded (virtual) boundaries. The inherent stabil-
ity issues resulting from the Lagrange multiplier based mixed formulations, and
their manifestations in the form of spurious oscillations are illustrated under var-
ious problem settings. These settings also include two patch tests (bending and
compression), which were studied in detail for different mesh density contrasts,
interpolations and mesh types. Two stabilization techniques, namely automatic
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triangulation of blending elements and coarse-grained Lagrange multiplier inter-
polation are proposed to overcome these adverse effects. The novel contribution of
coarse graining Lagrange multipliers enables to efficiently avoid overconstraining
in the interface and obtain smooth and oscillation-free stress fields for arbitrary
mesh and material contrast. The optimal choice of coarse graining parameter,
which determines the number of master mortar nodes storing Lagrange multi-
pliers, is fully determined by the local relevant mesh density of overlapping or
coming in contact domains. Therefore, this technique can be used with a greater
ease compared to the Nitsche method [Sanders et al., 2012], which requires for the
stabilization a prior knowledge of material contrast. This coarse-graining tech-
nique is successfully validated and tested on numerous problem settings. Mesh
convergence tests is also carried our on Eshelby inclusion problem. The MorteX
method is further extended to treat contact problems along embedded boundaries.
Numerical examples demonstrate its flexibility in integrating complex geometries
within a simple mesh and its performance in context of contact problems. Every
frictionless and frictional contact problem is solved both using MorteX and mor-
tar method, for which a conformal mesh of comparable density was used. The
results demonstrate that the MorteX method ensures the same accuracy as the
classical mortar method. In addition, the coarse graining of Lagrange multipliers
is demonstrated to be useful for both the MorteX and classical mortar methods in
the context of contact problems involving elevated material and mesh contrasts.

With the inherent ability of the MorteX method to handle contact along vir-
tual boundaries, this framework is particularly suitable to handle wear problems
with involving in time worn surfaces. Therefore, an algorithmic scheme enabling
accurate update of the worn geometry using a local energy based wear law is pre-
sented. Related issues for the surface update are discussed and a fretting wear
problem for gross slip regime is presented. The use of MorteX method circum-
vents the need for complex remeshing techniques to account for contact surface
evolution.

6.2 Perspectives

The novel methods and regularization techniques developed in this thesis are
promising and are worth further exploration in the future work. In particular, the
following aspects of the novel and classical methods are of interest. The augmenta-
tion parameters εn and ετ needed in the monolithic augmented Lagrangian scheme,
theoretically do not effect the accuracy of the converged solution. However, their
choice could potentially influence the convergence of the iterative scheme: a poor
choice could in some cases lead to the lack of convergence. In this regard, we
used an original automatic way of choosing the augmentation parameters based
on the effective local stiffness of mortar/non-mortar elements forming the contact
element. However, an extensive testing of this method is yet missing. The situa-
tion is similar with a novel technique used to improve the convergence of contact
problems involving strong material non-linearities. We used an original way of fix-
ing material non-linearity in the first iterations of the Newton solver to enable an
approximate convergence of the contact statuses, after which both non-linearities
are “switched on” together. In some problems this approach was shown beneficial
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but a consistent testing is also missing. The contact formulation is implemented
only for the first interpolation order in 3D; in 2D it is implemented for both linear
and quadratic interpolation functions. Therefore, a further generalization follow-
ing the classical scheme elaborated in [Puso et al., 2008]. Finally, a smoothing
technique for the normal field as the one used in [Popp, 2012] would be desired to
render the contact treatment even more robust.

The MorteX framework is presented in two dimensions only. The results ob-
tained in terms of having a stable, accurate and flexible formulation are encourag-
ing both for tying and contact. A natural course would be to extend this framework
to three dimensions. This however, poses challenges on the technical front. For
example, finding an optimal coarse graining parameter κ in case of 3D is not as
trivial as in 2D but is still feasible. In addition, the complexity of clipping (non-
convex polygons) algorithms for selective integration increases. Another possible
extension is handling higher order interpolations of the underlying meshes. Fi-
nally, a more flexible definition of virtual surfaces which can be embedded in the
non-mortar side mesh is required, for example NURBS/spline curve/surface can
be used to define the contact surface. Currently, the definition of such surfaces is
limited to a piece-wise linear line.

The wear problem solved within MorteX framework serves a prototype for fur-
ther investigations. Currently, only a linear elastic material was considered for
the wear problem, which simplifies to a great extend the numerical treatment.
This confines the problematic to only handling surface evolution as a result of
material removal. However, non-linear materials, common in most industrial ap-
plications, would require field transfer procedures, which have to be integrated
in the update of the surface geometry within the MorteX framework. Compared
to the conventional field transfer procedures where the transfer happens between
two completely different meshes (both in terms of nodal positions and element
size), the remapping in MorteX is confined to the blending elements only: for
each blending element, history variables need only be transferred from the older
integration points to the newer ones resulting from the triangulation of the effec-
tive volume. Currently, only one of the bodies is subject to wear as a result of
frictional contact. Considering wear on both sides requires the extension of the
concept of embedded surfaces to both the bodies, thereby imposing contact con-
straints between a virtual-virtual pair compared to the current state where only
real-virtual pair can be treated. A virtual-virtual contact pair would imply that
the Lagrange multipliers can no longer be directly associated with reactions on
nodes, which places the problem in a more stringent setting in terms of available
spaces for Lagrange multipliers that satisfy the inf-sup conditions.
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RÉSUMÉ

Cette thèse a pour but de développer un ensemble de méthodes permettant de gérer les problèmes de contact et de couplage de
maillages dans le cadre de la méthode des éléments finis classiques et étendus. Ces problèmes d’interfaces sont traités le long de
surfaces réelles et virtuelles, dites “surfaces immergées”. Le premier objectif est d’élaborer une formulation de Mortar tridimensionnelle,
efficace et parfaitement cohérente en utilisant la méthode du Lagrangien augmenté monolithique (ALM) pour traiter les problèmes
de contact et de frottement. Cet objectif est réalisé dans le cadre de la méthode des éléments finis classique. Divers aspects du
traitement numérique du contact sont discutés : la détection, la discrétisation, l’évaluation précise des intégrales de Mortar (projections,
découpage, triangulation), la parallélisation du traitement sur des architectures parallèles à mémoire distribuée et l’optimisation de la
convergence pour les problèmes impliquant à la fois le contact/frottement et les non-linéarités de comportement des matériaux. Grâce
aux formulations de Mortar tirées des méthodes de décomposition de domaines, les problèmes de couplage de maillage pour la classe
des interfaces non-compatibles sont également présentés.
En outre, une nouvelle méthode numérique a été élaborée en 2D : nous la dénommons “MorteX”, car elle rassemble à la fois des
fonctionnalités de la méthode Mortar et de la méthode X-FEM (méthode des éléments finis étendus). Dans ce cas, le couplage des
maillages entre des domaines qui se chevauchent ainsi que le contact frottant entre des surfaces réelles d’un solide et certaines surfaces
immergées au sein du maillage d’un autre corps peuvent être traités efficacement. Cependant, la gestion du couplage/contact entre des
géométries non conformes à l’aide de surfaces immergées pose des problèmes de stabilité numérique. Nous avons donc proposé une
technique de stabilisation qui consiste à introduire une interpolation des multiplicateurs de Lagrange à grains grossiers. Cette technique
a été testée avec succès sur des “patch-tests” classiques et elle s’est également avérée utile pour les méthodes Mortar classiques, ce
qui est illustré par plusieurs exemples pratiques.
La méthode MorteX est aussi utilisée pour traiter des problèmes d’usure en fretting. Dans ce cas, l’évolution des surfaces de contact
qui résulte de l’enlèvement de matière dû à l’usure est modélisée comme une évolution de surface virtuelle qui se propage au sein du
maillage existant. L’utilisation de la méthode MorteX élimine donc le besoin de recourir aux techniques complexes de remaillage. Les
méthodes proposées sont développées et implémentées dans le logiciel éléments finis Z-set. De nombreux exemples numériques ont
été considérés pour valider la mise en œuvre et démontrer la robustesse, la performance et la précision des méthodes Mortar et MorteX.

MOTS CLÉS

Méthode mortar, contact, frottement, couplage des maillages, méthode MorteX.

ABSTRACT

In this work we develop a set of methods to handle tying and contact problems along real and virtual (embedded) surfaces in the
framework of the finite element method. The first objective is to elaborate an efficient and fully consistent three-dimensional mortar
formulation using the monolithic augmented Lagrangian method (ALM) to treat frictional contact problems. Various aspects of the
numerical treatment of contact are discussed: detection, discretization, accurate evaluation of mortar integrals (projections, clipping,
triangulation), the parallelization on distributed memory architectures and optimization of convergence for problems involving both contact
and material non-linearities. With mortar methods being drawn from the domain decomposition methods, the mesh tying problems for
the class on non-matching interfaces is also presented.
A new two-dimensional MorteX framework, which combines features of the extended finite element method (X-FEM) and the classical
mortar methods is elaborated. Within this framework, mesh tying between overlapping domains and contact between embedded (virtual)
boundaries can be treated. However, in this setting, severe manifestation of mesh locking phenomenon can take place under specific
problem settings both for tying and contact. Stabilization techniques such as automatic triangulation of blending elements and coarse-
grained Lagrange multiplier spaces are proposed to overcome these adverse effects. In addition, the coarse graining of Lagrange
multipliers was proven to be useful for classical mortar methods, which is illustrated with relevant numerical examples.
The MorteX framework is used to treat frictional wear problems. Within this framework the contact surface evolution as a result of material
removal due to wear is modeled as an evolving virtual surface. Use of MorteX method circumvents the need for complex remeshing
techniques to account for contact surface evolution. The proposed methods are developed and implemented in the in-house finite
element suite Z-set. Numerous numerical examples are considered to validate the implementation and demonstrate the robustness,
performance and accuracy of the proposed methods.

KEYWORDS

Mortar method, contact, friction, mesh tying, MorteX method.
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