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Synthèse des travaux

Introduction

Le suivi de la terre par images aériennes ou spatiales est depuis longtemps un sujet

d'intérêt dans une grande variété de disciplines allant de l'urbanisme à la séismologie

en passant par l'étude de la biodiversité. La possibilité d'observer certaines scènes

directement en trois dimensions apporte une information qui peut être très utile à

la compréhension de certains milieux. Ainsi, de même qu'observer des organes en 3-

D plutôt que de simples coupes peut être déterminant en imagerie médicale, pouvoir

exploiter di�érents angles de vues de scènes complexes telles que des zones densément

peuplées ou certains reliefs naturels trouve des intérêts dans de nombreuses applications.

Ainsi l'étude des activités humaines ou le suivi de déformation du sol ou des bâtiments

peuvent grandement béné�cier de ces techniques.

De nombreuses modalités existent pour obtenir une visualisation 3-D d'une scène.

Utiliser plusieurs images du même objet prise sous un point de vue di�érent est une

approche classique. De bons résultats sont d'ailleurs obtenus de cette façon à partir

d'images naturelles. Ainsi des algorithmes permettant d'obtenir des modèles 3-D de

zones urbaines avec une résolution centimetrique sont maintenant couramment util-

isés. Une technique d'imagerie qui a fait ses preuves depuis de nombreuses années est

l'imagerie par RAdio Detection and Ranging (RADAR) à synthèse d'ouverture ou SAR.

Bien que la résolution atteignable est généralement en deçà de ce qui peut être obtenu

en optique, cette technique d'acquisition présente d'autres avantages. Ainsi, le RADAR

étant actif, des images peuvent être prises indépendamment de la luminosité ambiante.

De plus les ondes émises ne sont pas stoppées par la couverture nuageuse ce qui peut

se révéler utile lorsque la zone imagée est soumise à des intempéries ou pour observer

un volcan actif. L'imagerie SAR peut donc être un instrument de prédilection pour

observer des zones à l'épreuve des éléments.

Les images SAR correspondent à l'addition cohérente des ondes ré�échies par les

di�érents ré�ecteurs présents au sol. Chaque pixel possède une information de phase

qui peut être liée à la distribution volumique des ré�ecteurs qui se projettent dans ce

pixel. La tomographie SAR exploite la di�érence de phase entre plusieurs images re-

calées pour extraire la localisation des objets au sol. Cette technique a été utilisée avec

succès pour reconstruire des volume de végétation (Reigber and Moreira, 2000) (Huang

et al., 2010) ou de glace (Tebaldini et al., 2016). Des paysages plus complexes comme des
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zones urbaines denses ont également pu être reconstruits avec cette technique. Toutefois

l'intensité très variable des signaux ré�échis par les bâtiments ainsi que la quasi om-

niprésence de phénomènes de layovers (di�érents ré�ecteurs se projetant dans la même

case) rend l'utilisation de la tomographie SAR plus compliquée.

Contributions Si les zones urbaines densément construites peuvent être di�ciles à

analyser, elles présentent toutefois la propriété d'être très structurées. Ainsi, il est

raisonnable de s'attendre à ce que des murs soient droits, des toits et des rues plats et

horizontaux. Cette structuration peut être essentielle pour améliorer les reconstructions

tomographiques. Deux approches peuvent être envisagées pour en tirer partie :

� Analyser les redondances dans les images SAR et se servir des pixels les plus

simmilaires pour améliorer l'estimation de signal reprojeté.

� Inverser le signal SAR en s'assurant que la reconstruction réponde à des con-

traintes structurelles.

Le premier point a été exploité pour la première contribution présentée dans ces

travaux :

Contribution (1): Critère de similarité pour large pile d'images SAR

L'algorithme Non Local - SAR (NL-SAR) est une méthode e�cace pour

débruiter des images SAR ainsi que des piles d'images interférométriques et/ou

paramétriques. La matrice de covariance du signal est fondamentale pour la

plupart des estimateurs utilisés en tomographie SAR . Une meilleure estimation

de celle-ce pourrait donc aboutir à une meilleur reconstruction tomographique.

Lorsque la dimension devient trop importante, les performances de NL-SAR ont

cependant tendancent à diminuer. Ici nous proposons un nouveau critère robuste

à l'augmentation de la dimension en modi�ant le critère de similarité entre pixel

utilisé par l'algorithme.

Ce nouveau critère est e�ectivement plus robuste à l'augmentation de la dimension

et permet une sélection prenant explicitement en compte les ré�ecteurs les plus puissants

pour chaque pixel. Cette approche reste toutefois limité car les échantillons similaires

peuvent s'avérer soit trop peu nombreux soit contraints à un ensemble depoints réparti

de façon isométrique autour du pixel d'intérêt. Les résultats tomographique ne sont

donc pas sensiblement améliorés.

Le second axe de recherche envisagé peut sembler plus prometteur pour les paysages

densément construits. En e�et, l'approche Compressive Sensing (CS) (Budillon et al.,

2011)(Zhu and Bamler, 2010a) permettant d'inverser chaque pixel sous contrainte de

parcimonie s'est imposée ces dernières années comme l'un des meilleurs estimateurs

pour la reconstruction de milieu urbain par tomographie SAR. CS s'inscrit donc com-
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plètement dans la deuxième approche. De plus, comme il ne dépend pas de la matrice

de covariance du signal il est adapté à des milieux hétérogènes.

Contribution (2): Estimation tomographique sous contraintes ex-

primées en géométrie sol

L'approche CS classique en tomographie SAR n'utilise pas d'autres a priori que

la parcimonie. Nous proposons dans ces travaux d'aller plus loin en introduisant

une régularisation géométrique du volume reconstruit. Pour cela, l'estimation est

faite directement sur un cube i.e. un ensemble de voxels et la fonction objectif

à minimiser fait intervenir la norme quadratique du gradient dans les directions

horizontales et verticale.

Cette extension naturelle de l'approche CS classique permet de favoriser des distri-

butions de ré�ectivité qui soient structurées et de réduire les erreurs de reconstruction.

Le cadre proposé dans ce nouvel algorithme pour l'introduction de contrainte spatiales

est relativement simple et peut être repris pour ajouter d'autres a priori.

L'analyse de reconstruction 3-D par tomographie SAR n'est pas toujours facile.

Ainsi, même après avoir projeté la scène dans le repère sol, la forte dynamique des

voxels, la présence de lobes secondaires et/ou d'erreurs rend l'interprétation di�cile.

Pouvoir situer la surface urbaine i.e. l'ensemble des objets (murs, toits, routes, etc)

ayant ré�échi l'onde incidente n'est donc pas exactement une tâche triviale.

Contribution (3): Segmentation de surface urbaine par graph-cut

La troisième contribution présentée dans ces travaux est un algorithme de seg-

mentation de surface urbaine dans des cubes tomographiques. Il est attendu que

la surface réponde à plusieurs contraintes :

� La surface est proche des voxels de forte intensité

� la surface est lisse et composée de zones planes selon les axes horizontaux

et verticaux

� Chaque rayon partant du capteur vers la scène intersecte la surface exacte-

ment une fois

� La surface n'intersecte pas plus d'une fois chaque ligne verticale

La fonction de coût correspondant à ces contraintes est non-convexe et di�cile

à optimiser. Toutefois ce problème après discrétisation peut s'écrire comme la

recherche d'une coupe minimale dans un graphe bien construit.

L'algorithme de segmentation proposé est très général au sens où n'importe quelle

estimation proposant une mesure physique de la ré�ectivité (amplitude ou intensité)

peut être utilisée en entrée. Associée à une approche parcimonieuse type CS, les résultats

obtenus sont particulièrement prometteurs.
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L'information apportée par la surface est, de plus, utilisable pour régler les

paramètres de certains algorithme. CS est en e�et sensible au réglage du paramètre

de parcimonie.

Contribution (4): Reconstruction 3-D et segmentation de surface al-

ternées

La quatrième contribution de cette thèse est l'association naturelle des deux

dernières. Nous proposons ainsi un algorithme itératif où après chaque recon-

struction 3-D, la surface estimée est utlisée pour ra�ner le réglage du paramètre

de parcimonie. Ainsi, la parcimonie est calculée comme une fonction croissante

de la distance à la surface. De cette façon, plus on est loin de la surface, plus il

est coûteux de trouver de la matière.

Peu d'itérations su�sent pour corriger les tomogrammes d'erreurs résiduelles et pour

diminuer les artefacts générés par la minimisation de la variation totale.

Conclusion

Au moins quatre contributions originales sont présentées dans ces travaux. Si le premier

axe de recherche n'a pas pu aboutir à une réelle amélioration des techniques d'inversion

tomographique, le deuxième axe a été plus fructueux. Ainsi, les approches développées

basées sur une régularisation structurelle exprimée en géométrie sol ont permis d'une

part d'obtenir des résultats équivalants ou au dessus de l'état de l'art et de poser un cadre

permettant l'utilisation de contraintes 3-D qui soient naturelles aux objets observés

d'autre part. Ainsi, ces travaux peuvent ouvrir sur de nombreuses perspectives portant

soit sur une amélioration des contraintes structurelles utilisées et leur optimisation, soit

sur l'analyse de pile d'images SAR à partir du volume reconstruit.



Chapter 1

Introduction

1.1 Context

Exploiting multiple views of the same object to obtain a 3-D interpretation has been a

research topic in many �elds and with quantities of applications. When the observed

object is, in fact, the earth, many di�erent imaging techniques can be consider depend-

ing on the soil, the vegetation, the relief, the luminosity... 3-D reconstruction obtained

by exploiting multiple optical images can be computed with a great precision providing

centimeter resolution. Complex landscapes such as, for instance, dense urban areas can

then be processed to retrieve the 3-D distribution of the scene. The 3-D rendering of

urban areas has many various applications such as city management, architecture, crisis

management, building and ground deformation monitoring or demography expansion.

SAR images are an other well known technique to observe the earth from the sky or

space. The resolution of SAR images is generally worse than what can be obtained

with optical sensors although modern sensors can provide images of few centimeters

resolution. The SAR imaging technique however provides other advantages. The sensor

being active, images can be taken even by night or through clouds. Depending on the

operating bandwidth, the wave emitted by the RADAR can penetrate some environ-

ments (vegetation, ice) and provide information about their structure or the presence

of underneath objects (Reigber and Moreira, 2000) (Huang et al., 2010)(Tebaldini et

al., 2016). Finally, as the obtained images are composed of the coherent summation of

back-scattered signals, the pixels have a phase information that can be linked to their

3-D distribution.

Exploiting phase di�erences between SAR images to obtain the height of the scatter-

ers is an important research �eld that backs to the 1980. SAR interferometry consists

in estimating the height of the main back-scattering object for each pixel exploiting

the phase di�erence between a pair of images. As more data with higher resolution

became available, using more than two images became possible with the advantages to

avoid fringes unwrapping, drastically lowering ambiguities or even suppressing them.

Of course with more accurate information, not only one but several scatterers height

could be evaluated. Depending on the imaged scene even a 3-D re�ectivity distribution
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could be observed.

SAR tomography is the technique consisting in evaluating the scatterers re�ectivity

in the 3-D space using a stack of co-registered SAR images. Many results have been

shown on uniform areas with a volume distribution of scatterers such as ice or forest

(Reigber and Moreira, 2000) (Lombardini and Reigber, 2003)(Guillaso and Reigber,

2005) (Huang et al., 2010)(Tebaldini and Rocca, 2012). Results on urban areas also

present accurate scatterers localization. Dense urban scene are however hard to pro-

cess due to the very heterogeneous back-scattering mechanisms and the importance of

layover phenomena. However, urban areas are very structured and geometrical priors

can be used to enhance the tomographic reconstruction. In the past years algorithms

exploiting the sparsity of the signal such as MUSIC (Schmidt, 1986) or the well-known

(Zhu and Bamler, 2010a)(Budillon et al., 2011) have led to promising results with many

scatterers being retrieved. Nevertheless, the redundancy of the buildings and geomet-

rical shapes were never used to perform the tomographic inversion. The subject of this

PhD is to explore di�erent approaches to exploit this structural information for the

SAR tomographic reconstruction of urban areas.

1.2 Contributions

At least two strategies can be tried to exploit the particular geometry of urban areas:

� Analyze the redundancies in the SAR images to select pixels presenting the same

behavior.

� Perform the tomographic inversion under some priors on the reconstructed result.

The �rst approach is motivated by the good performances of non-local denoising

algorithms such as NL-SAR (Deledalle et al., 2015). By exploiting similarities between

pixels and patches in the images, these approaches manage to obtain a good estimation

of the covariance matrix. This parameter is central for most of the estimators used in

SAR tomography

Contribution (1): Similarity criterion for large stack of SAR images

We present a similarity criterion robust to the increase of SAR images in the

tomographic stack. This new criterion is based on a decomposition of the signal

in a deterministic, stable part and a stochastic one.

This criterion is tested over di�erent con�gurations of dense urban areas.

The second approach may be actually more suited to complex landscapes such as

dense urban areas. Indeed the well-known (Zhu and Bamler, 2010a)(Budillon et al.,

2011) approaches that estimate the re�ectivity for each pixel as the sparsest projected
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vector lead to correct results for urban areas. This approach may be consider as one

of the top state-of-the-art method for urban landscape and may be the best suited for

dense concentration of buildings. Contrary to most of the other methods used in SAR

tomography, Compressive Sensing (CS) doesn't need any estimation of the covariance

matrix and thus is not impacted by inaccurate parameter estimation. The main issue

to add geometrical priors to the reconstruction is to deal with the distortions induced

by the active side-looking sensor. Once it is done, di�erent priors and optimization

strategies can be consider.

Contribution (2): Ground coordinate based geometrical priors for SAR

tomography

We present a new algorithm allowing to perform the tomographic reconstruction

of a scene under structural priors. Its spirit is very close to CS as it also takes

bene�t from the sparsity. However, we go one step further by constructing the

projection operator as a mapping from ground to radar coordinates. This allows

us to express geometrical priors in the scene frame and favor smooth vertical and

horizontal distribution of scatterers.

Having a framework in which the estimated re�ectivity is described in its natural

coordinate system opens the door to many applications. From the 3-D re�ectivity one

may want to retrieve the actual urban surface on which are located the scatterers. This

information can moreover be used to re�ne the quality of the tomographic inversion.
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Contribution (3): Graph-Cut based urban surface segmentation from

SAR tomographic reconstruction

We present a segmentation algorithm to extract the urban surface from 3-D tomo-

graphic reconstruction expressed in ground geometry. The priors on the surface

are more sophisticated than previously and allow to select shapes corresponding

to the following considerations:

� The surface is located near high intensity voxels.

� The buildings are described by smooth, uniform structures. The urban sur-

face is then expected to correspond to a Total Variation (TV) minimization

along the vertical and horizontal directions.

� The scatterers on buildings are supposed to be opaque for the electromag-

netic wave. The surface is then expected to go through each ray from the

sensor to the scene exactly once.

� To avoid distortions in the vertical structures, it is impossible for the surface

to intersect multiple time a vertical line

The cost function associated to these hypotheses is highly non-convex. However

by discretizing the problem, it can be formulated as minimum cut / maximum

�ow search on a well constructed graph. The method proves to be e�cient on

real data and performs particularly well when associated to CS like tomographic

reconstructions.

Contribution (4): Alternated 3-D reconstruction and surface segmen-

tation

The estimated urban surface can be used to tune more accurately the parameters

of the estimators used to perform the inversion. This strategy is used to design a

new algorithm that performs iteratively the reconstruction in ground coordinates

and segment the urban surface from it.

1.3 Organization of the manuscript

This manuscript is divided in two parts. First basic concepts of SAR imaging and state-

of-the-art methods for SAR tomography are presented. In chapter 2, the SAR images

acquisition is summarized. In chapter 3, the di�erent statistical models used in SAR

tomography are presented. Finally, the chapter 4 details di�erent algorithms used in

SAR tomography.

The second part is centered on the di�erent developed methods during this PhD.

Chapter 5 is a small introduction summarizing the presented research axes in this part.

Chapter 7 is focused on covariance matrix estimation. Chapter 8 presents the proposed
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tomographic reconstruction method integrating 3-D geometrical priors (submitted in

(Rambour et al., 2018a)). Finally, chapter 9 corresponds details the graph-cut based

urban surface segmentation and the AlteRnatEd 3-D REconstruction and Surface

Segmentation (REDRESS) algorithm (submitted in (Rambour et al., 2018b)).
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Part I

SAR tomography





Chapter 2

Synthetic Aperture Radar

2.1 Introduction

This chapter is an introduction to the SAR techniques. First, the bases of the SAR

images acquisition are described and the principle of the aperture synthesis are given.

Then, simple multibaseline phase model and foundation of SAR tomography are de-

scribed.

2.2 Acquisition

SAR is a coherent, microwave imaging technique that produces an image of the spatially

distributed complex re�ectivity of the scene with a resolution depending on the RADAR

characteristics. As many other active imaging techniques, the principle is to transmit

an electromagnetic wave in a direction called the Line of Sight (LOS) to an object of

interest. The time from the transmission to the reception of the wave gives an indication

on the distance between the object and the transmitter. In SAR imagery, the sensor

is embedded on a moving platform (a plane or a satellite) and illuminates the ground

according to an incidence angle θ and a squint angle α. The geometry of acquisition for

a single antenna is shown in Fig. 2.1.

Range resolution: After its transmission, the wave reaches a back-scattering object

at a given time delay, it is then received after propagating back to the sensor. The time

between the transmission and the reception is then:

∆t =
2d

c
(2.1)

with d the distance from the RADAR to the ground and c the speed of light. The

RADAR transmits short pulses towards the scene that then back-scatters part of that

incoming signal depending on its composition and geometry. To be able to separate two

scatterers in the range direction, their echoes must be temporally separated by more

than the duration τ between two pulses. The slant range resolution is then de�ned as:
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Figure 2.1 � Geometry of acquisition of a SAR image.

δr0 =
cτ

2
(2.2)

To obtain a good resolution in range one should then transmit close pulses. However, to

obtain a good Signal-to-noise ratio (SNR), the pulses should be long to transmit more

energy. To still achieve a good resolution, a frequency modulated pulse is transmitted.

With a chirp of central frequency f0 and frequency excursion [f0 − Bc
2 , f0 + Bc

2 ], the

resolution is, after signal processing (see section 2.3):

δr =
c

2Bc
(2.3)

Bc here is the chirp bandwidth de�ned as Bc = KT with T the transmission duration

and K the rate of frequency change or chirpyness. Therefore, a high bandwidth leads

to a well resolved signal. Due to the incidence angle of the sensor, the ground range

resolution is (under the assumption that the squint angle α is negligible and the ground

�at):

δgr =
c

2Bc sin(θ)
(2.4)
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Figure 2.2 � Construction of the synthetic antenna. A point seen multiple times during
the sensor motion can be localized precisely along the x axis by combining all the
received echoes.

Azimuth resolution: The angular spread given by a conventional RADAR is related

to the size of the antenna L and the wavelength λ by:

γ =
λ

L
, (2.5)

The resolution in azimuth for a scene located at a distance R from the antenna is then:

δaz0 = γR =
λR

L
, (2.6)

For SAR system in space, the order of magnitude of R can be 105m and for X-band

systems λ is a few centimeters which leads to an order of magnitude of the numerator

in (2.6) of 103m to achieve a metric resolution. Of course, such a dimension for an

antenna mounted on a satellite is not realistic. To improve this low resolution, the SAR

technique consists of coherently combine the echoes of the scatterers as they are seen

from successive azimuth positions of the RADAR. This creates a synthetic antenna of

length Lsa as illustrated in Fig. 2.2. The new angular spread is:

γsa =
λ

2Lsa
, (2.7)

where the factor 2 in the denominator comes from the return trip of the transmitted

wave. The length of the synthetic antenna correspond to the displacement of the sensor

for which a given point back-scatters a signal to the antenna. Lsa is then given by

the size of the antenna footprint Lsa = δaz0 . This gives the achievable resolution in

azimuth:

δaz = γsaR =
L

2
(2.8)

It is worth to notice that the resolution in azimuth does not depend on the distance
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between the RADAR and the ground. Moreover the smaller the antenna the larger its

footprint and then the better the resolution.

2.3 Basics of SAR raw data processing

Range compression: Let's consider that the emitted signal consists in a pulse de�ned

as:

∀t ∈ [−T
2
,
T

2
], se(t) = exp

(
2jπ(f0t+

K

2
t2)
)

(2.9)

To better identify real-valued and complex-valued variables which will be useful in the

next chapters, all complex-valued variables are underline. The received echo from a

scatterer located at a distance R to the sensor is then

sr = se

(
t− 2R

c

)
(2.10)

To exploit the phase modulation and achieve the resolution stated in (2.3) a matched

�lter is applied to the signal. This matched �lter is nothing else than the transmitted

pulse itself and one can verify that:

s∗e(−t) ? se(t) ' sincBc(t) exp
(
2jπf0t

)
(2.11)

where sincBc(x) = sin(πBct)
πBct

with Bc = KT . After convolution by the pulse replica, the

received signal becomes then:

sr = sincBc
(
t− 2R

c

)
exp
(
−2jπ(

2R

λ
− f0t)

)
(2.12)

After centering of the spectrum, the received signal is then:

sr = sincBc

(
t− 2R

c

)
exp

(−4jπR

λ

)
(2.13)

The achieved resolution is given by the width of the sinc function and corresponds then

to the one stated in (2.3).

Azimuth compression: The azimuth compression step is analog to the previous one.

The phase modulation here is introduced by the motion of the sensor. From 2.3, the

distance R from the antenna at position x and a point on the ground is given by:

R =
√
R2

0 + (x− x0)2 (2.14)

R0 is the distance from a reference point along the track to the target. As the distance

from the sensor to the target is generally higher than the synthetic antenna, a second
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Figure 2.3 � Construction of the synthetic antenna. The phase variation induced by the
motion of the sensor is exploited for the azimuth compression.

order approximation gives:

R = R0 +
(x− x0)2

2R0
(2.15)

The received signal from the antenna in x is then (by a change of origin):

sr = sincBc

(
t− 2R

c

)
exp

(−4jπR0

λ

)
exp

(
jπKxx

2

)
(2.16)

with Kx =
2

λR0

From the relation (2.14), the convolution of the signal by its replica gives then:

sr = sincBc

(
t− 2R

c

)
sincBx(x) exp

(−4jπR0

λ

)
(2.17)

The bandwidth is de�ned as Bx = KxLsa. The azimuth resolution is then:

δaz =
1

Bx
=
λR0

2Lsa
=
L

2
(2.18)

These two processes describe the basic of the range and azimuth compression for

a point like signal. In practice advanced techniques have to be employed to treat the

SAR images depending on the acquisition system.

2.4 SLC SAR images

The complex value v(x, r) obtained at pixel coordinates (x, r) after SAR synthesis of the

SAR image corresponds to the convolution of the complex 3-D re�ectivity u(x, y, z) with

the Point Spread Function (PSF) of the sensor (Reigber and Moreira, 2000; Fornaro et
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al., 2003):

v(x, r) =

∫∫∫
f(x− x′, r − ρy,z)u(x, y, z).

exp

(
−

4jπ

λ
ρy,z + jan(x, y, z)

)
dx′dydz + ε (2.19)

To avoid complicated notations x and azimuth axis coincide. Here x and r stand for the

coordinates of the focused data, ρy,z is the distance between the sensor and a scatterer

at a position (y, z) for a given x. an(x, y, z) is the phase shift corresponding to the

Atmospheric Phase Screen (APS) contribution. f corresponds to the PSF and depends

of the sensors and the processing of the data. ε is a white additive Gaussian noise and

models the thermal noise. The formula (2.19) is illustrated Fig. 2.4.

After apodisation, the PSF is approximated by a boxcar function that may have a

near zero width. The equation 2.19 is then written:

v(x, r) =

∫
(y,z)∈∆r

u(x, y, z)exp

(
−

4jπ

λ
ρy,z + ja(x, y, z)

)
dxdydz + ε (2.20)

The r-th radar resolution cell is de�ned by ∆r = {(y, z) | r − δr/2 ≤ ρy,z ≤ r +

δr/2 and z ≤ zmax(y)} with δr the step in range and zmax(y) the maximum height

for a point at (x, y) location to be illuminated by the radar. x, y and z stand for the

coordinates of a re�ector in 3-D space and x, r and h its coordinates in RADAR space.

The SAR range imaging system is the cause of geometrical distortions in the observed

images. Indeed, due to the incidence angle of the RADAR, the structured objects

presenting an angle β between their normal and the LOS inferior to 0◦ are stretched

toward the sensor whereas the ones for which β > 0◦ are compressed in the image.

These e�ects are illustrated in Fig. 2.5. Objects presenting an angle β > 0◦ are then

projected backwards in the range direction as illustrated in Fig. 2.6 where a building

is projected in decreasing range positions as its height increases.

As the emitted electromagnetic waves are coherent, the total backscattering am-

plitude is a�ected by a speckle e�ect. This phenomenon is produced by the coherent

summation of all the contributions in the radar cells that may be constructive or destruc-

tive. Depending on the application and the resolution, the speckle may be considered

as a noise. In this document, it is rather described as a phenomenon corresponding to

complex back-scattering mechanisms.

2.5 Phase model and calibration

The topography of a scene can be obtained through the analysis of the phase di�erence

in a stack of N co-registered SAR images. Even if theoretically the 3-D location of

the scatterers could be obtained directly from the di�erent ρn;y,z for n ∈ {1, · · · , N},
it is generally more convenient to work with the optical paths di�erences ie. the in-
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Figure 2.4 � The value of each pixel in the Single-Look Complex (SLC) SAR image
corresponds to the coherent summation of the back-scattered signals inside a given
radar cell of resolution.
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Figure 2.5 � The gray areas cannot be seen by the sensor as it is hidden by the stair
step structure. In the blue areas di�erent elements are projected in the same radar
resolution cells producing a layover e�ect.

1 2 3

1 2 3

a

1

2

3

123

b

Figure 2.6 � Distortions induced by the side-looking sensor. When β > 0◦ the order is
preserved (a) whereas it is inverted when β > 0◦ (b).
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terferograms. This way, the height or elevation of scatterers can be seen as directly

proportional to the phase. To be able to use classical phase calibration algorithms and

be in the same framework as the other state-of-the-art tomographic estimators, the SAR

images are used as interferometric pile through this manuscript. Starting from the set

of SAR images, the interferometric SAR stack is built by removing the phase of the

master image to every SAR image. For simplicity the �rst image of the stack is chosen

as the master one. The value of a pixel vn(x, r) from the nth is then:

vn(x, r) =

∫
(y,z)∈∆r

u(x, y, z)exp
(
−jϕn;x,y,z

)
dydz + ε (2.21)

where the interferometric phase is de�ned as:

ϕn;x,y,z = −
4jπ

λ
(ρn;y,z − ρ1;y,z) + j(an(x, y, z)− a1(x, y, z)) (2.22)

The optical path di�erence is generally split into two terms relative to the elevation

h(y, z) and the range variation of the scatterer ∆ρ1;y,z from the center of the RADAR

cell (D'Aria et al., 2010):

ρn;y,z − ρ1;y,z =
bnh(y, z)

r
+
bn∆ρ1;y,z

r tan(θ)
(2.23)

The distance di�erence in (2.23) is obtained using a �rst order approximation whereas

a second order one was used for the azimuth compression in (2.15). This means that

a phase factor depending on the square of the distance variation will corrupt the esti-

mation of u(x, y, z) and needs to be compensated via post-processing. However, here

as in the vast majority of the tomographic applications, we are mostly interested in

the amplitude of the re�ectivity and the second order term is left in the phase of the

re�ectivity.

The analysis of interferometric data has a longer history than SAR tomography and

many phase models have been proposed for various applications and the scene. Due

to the high concentration of dihedral and trihedral structures occurring in urban areas,

many bright point-like echoes appear on the corresponding SAR images. These points

are generally very stable between the acquisitions and the corresponding pixels are well

described by the PS model (D'Aria et al., 2010). The PS interferometric phase model

for a point located in (y, z) is built as a linear combination of its elevation, its potential

motion along the LOS direction and linear perturbation along the azimuth and range

direction:

ϕn;x,y,z = a0 + k(n)
x x+ k(n)

r r + ξnh(y, z) + tnv + e (2.24)

where a0 is a constant phase o�set for all the images, k(n)
x and k(n)

r are the unknown

coe�cients of the linear phase perturbation across the image, ξn
2π = 2bn

λr is the spatial

elevation frequency associated to the sampling and bn is the baseline n as illustrated
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in Fig. 2.7, tn the time between the �rst acquisition and the current one and v is the

unknown scatterer slant range velocity. This phase model makes the assumption that

only one scatterer is present in each cell. This strong hypothesis is true if the pixel

stability is high enough so that almost all the received echoes come from the same

scatterer. The system (2.24) is composed of six unknowns and has to be estimated

for the whole stack of SAR images. As there is no knowledge of the unwrapped phase

or on the number of scatterers in the PS-like cells, the problem formulated in 2.24 is

highly non-linear and cannot be inverted from a set of L bright stable pixels. Di�erent

algorithms have been proposed these last two decades to estimate the phase model

coe�cients and address the problem of optimizing the phase model given by:

(â0, k̂
(n)
x , k̂(n)

r , ĥ, t̂n, ê) = argmax

∣∣∣∣ N∑
n

L∑
l=1

vn(xl, rl) exp(−jϕn;x,y,z)

∣∣∣∣ (2.25)

where ϕn;x,y,z is given in (2.24). The spaceborne data presented in this manuscript were

processed using a similar approach as the method described in (D'Aria et al., 2010) and

the optimization was performed alternatively on the linear APS components and the

elevation. Moreover, even if this hypothesis will not always hold, the scatterers are

supposed to remain still between the acquisitions. After calibration of the data, the

complex value of a pixel in the SAR interferometric images is de�ned by:

vn(x, r) =

∫
(y,z)∈∆r

un(x, y, z)exp
(
−jξnh(y, z)

)
dydz + ε (2.26)

2.6 SAR tomography

SAR tomography is the extension of the 2-D SAR imaging to three dimensions. As

conventional 2-D SAR imaging uses a synthetic aperture in the azimuth direction, 3-D

SAR imaging is performed by a synthetic aperture in the elevation direction by collecting

several images from parallel tracks. Using multibaseline interferometry techniques on

the well-calibrated SAR images stack, it is possible to retrieve the localization of the

scatterers in the third dimension. This approach allows separating scatterers mapped

in the same resolution cell, which is likely to happen on the dense urban area due to

the layover phenomenon.

A SAR tomographic stack consists in N SAR SLC images perfectly co-registered.

Each SAR image of the stack corresponds to a slightly di�erent trajectory of the sensor

over the scene. We consider all images to have been co-registered with respect to a

master image in a preprocessing step. Each image is acquired from a slightly di�erent

angle at each pass of the sensor. This angular diversity induces a di�erent distance ρn;y,z

to each antenna thus a di�erent phase shift which can be exploited to retrieve the 3-D

location of the scatterers. After phase calibration and under a far-range approximation,

it is generally the di�erent baselines bn that are used to characterize the received echoes
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Figure 2.7 � SAR tomographic geometry of acquisition. The scene on the ground is
seen multiple times from a slightly di�erent angle by the sensor at each pass. The phase
di�erence between the images is then exploited to retrieve the 3-D distribtution of the
re�ectivity of the scene.
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rather than the di�erence in the wave propagation.

Through the equation of the SAR interferometric pixels (2.26), it can be seen that

the value of vn(x, r) is given by the Fourier transform of the 3-D re�ectivity function. A

common way to retrieve u(x, y, z) is then to apply a Discrete Inverse Fourier Transform

(DIFT) to the vector v(x, r) =
(
v1(x, r), · · · , vN (x, r)

)T
collecting the SLC values for

all the pixels located at the position (x, r) in the di�erent images. However, doing so,

the obtained estimation of the re�ectivity is described in the RADAR reference frame

(x, r, h). The interpolation of the re�ectivity function is then given by:

û(x, r, h) = a(r, h)Hv(x, r) (2.27)

where the vector a(x, r) is the steering vector associated to location (r, h) and de�ned

as:

a(r, h) =
(

exp(−jξ1h), · · · , exp(−jξNh)
)T

(2.28)

This approach only leads to poor estimation of the re�ectivity as the resolution δh is

given by the maximal orthogonal baseline ∆b:

δh =
λR

2∆b
(2.29)

The resolution associated to a maximal orthogonal baseline of 100m with a wavelength

λ = 0.0311m would then be around 55m in a spaceborn con�guration (R ' 105m).



Chapter 3

Multibaseline signal models

This chapter presents the signal statistical models used in SAR tomography.

The �rst model corresponding to distributed sources such as rugged surfaces

(�oor,street,rooftops) or volumes (forest,ice) is generic whereas the second one is a

derivation of the �rst one for strong stable scatterers.

3.1 Sensor array signal model

From now on to the end of the �rst part of this manuscript when no spatial regularization

is involved, the subscripts identifying the location of the cells are dropped and all the

equations are relative to one radar cell. In the case where di�erent pixels are involved

as in the empirical covariance matrix computation, they will receive a discrete subscript

but no 2-D or 3-D spatial information.

Under the hypothesis that there is a �nite number D of point like scatterers in the

observed cell, we de�ne the vector h =
(
h1 · · ·hD

)T
containing all the elevations of the

di�erent scatterers in the observed cell. For 1 ≤ d ≤ D, the vector ud =
(
u1,d · · ·uN,d

)T
collects the complex re�ectivity of one scatterer for each acquisition. After discretization

of (2.21), we can express vn, the SLC value of the pixel corresponding to the nth track

as the sum of the complex signals back-scattered by each of the D scatterers:

vn =
∑
d

un,d exp(−jξnhd) + ε , (3.1)

Two models can be considered depending on the behavior of the scatterers re�ectivity

from one image to another. The �rst one is general and does not make any assumption

on the scatterers correlation. The second one is adapted to very bright stable scatter-

ers or campaign where the acquisitions were close enough in time to provide coherent

images with no temporal decorrelation. The di�erent models and the type of scatterer

distribution they are considering are illustrated in Fig. 3.1.
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LOS

Figure 3.1 � Models depending on the structure of the back-scattering elements: dis-
tributed scatterers like vegetation or rough objects back-scatter the wave in all the
directions. The signal from these scatterers obeys the unconditional model where no
stability assumption can be made between the acquisitions. Dihedral or trihedral objects
re�ect most of the wave in the sensor direction. These scatterers follow the conditional
model. The signal retrieved from distributed scatterers is generally of low intensity and
poorly localized compared to conditional ones.

Figure 3.2 � Example of objects back-scattering a signal following the unconditional
model in a SAR image obtained from the sensor SETHI of the ONERA. This model
is well suited for natural rough elements such as trees or grass. Depending on their
granularity and the used bandwidth, roads may back-scatter some signal following this
model.
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3.2 Unconditional (distributed) signal model

The �rst model named unconditional or stochastic signal model corresponds to elements

presenting a varying re�ectivity across the images. Such signals are generally re�ected

by rough �at surfaces or volumic scatterer distributions as seen in Fig. 3.2. Without

any assumption on the scatterers correlation, the vector v collecting the signals received

by all the antennas is written:

v =
∑
d

ud � a(hd) + ε (3.2)

with � being the Schur-Hadamard product (elementwise multiplication). a(hd) is the

steering vector for the elevation hd:

a(hd) =
(
exp(−jξ1hd) · · · exp(−jξNhd)

)T
(3.3)

The noise ε is supposed to be a stationary, independent, white Gaussian noise with

power σ2
n and covariance matrix σ2

nIN ∈ CN , (IN being the matrix identity of size N).

The vectors ud are modeled as the product of a random vector xd times their amplitude:

ud =
√
τdxd , (3.4)

τd stand for the dth-scatterer intensity and x is the speckle e�ect associated to this

scatterer. xd is modeled as a stationary, circular Gaussian random variable with zero

mean and covariance matrix Cd = E{xdxHd } and [Cd]ii = 1, ∀1 ≤ i ≤ N . The

covariance matrix of the signal is then given by:

R = E{vvh} =
∑
d

τdCd � a(hd)a(hd)
H + σ2

nIN (3.5)

Another form of the previous equation without the Schur-Hadamard product is:

R =
∑
d

τdLdCdL
h
d + σ2

nIN (3.6)

where the matrix Ld ∈ CN is the diagonal matrix associated to a(hd).

3.3 Conditional (determinist) signal model

The second model is called conditional or deterministic by simpli�cation even though it

is not associated to a fully deterministic model since the additive noise is still present.
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Figure 3.3 � Example of objects back-scattering a signal following the conditional model
in a SAR image obtained from the sensor SETHI of the ONERA. Most of these strong
bright scatterers come from man-made objects such as buildings, cars or pylons.

The conditional model is used to describe fully coherent signals presenting no �uctuation

from one image to another. For repeat pass acquisitions, only point-like scatterers may

be seen as constant in time and are generally formed of dihedral or trihedral elements

such as corners, walls, windows... This kind of scatterer is generally found on arti�cial

structures and are characteristic of urban areas as illustrated in Fig. 3.3.

As the vectors ud are now considered constant, the former equation (3.2) can be

written as:

v =
∑
d

ud a(hd) + ε = A(h)u+ ε (3.7)

A(h) ∈ CN×D is the so-called steering matrix and its d-th column [A(h)]d corresponds

to the steering vector a(hd) associated to the elevation of the d-th scatterer:

[A(h)]d = a(hd) =
(
exp(−jξ1hd) · · · exp(−jξNhd)

)T
(3.8)

u =
(
u1 · · ·uD

)T
is the vector collecting the scatterers re�ectivity. As the only non-

deterministic part of equation (3.7) is due to the additive gaussian noise, the covariance

matrix is then σ2
nIN . Many spectral estimators however are de�ned on the non-central
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Figure 3.4 � Example of objects back-scattering a signal following the hybrid model in
a SAR image obtained from the sensor SETHI of the ONERA.

covariance matrix as the unknown parameter h is contained in the mean. The non-

central covariance matrix is then:

R = E{vvH} = A(h)SA(h)H + σ2
nIN (3.9)

with S = uuH ∈ CD×D being the signal covariance matrix.

3.4 Hybrid signal model

The hybrid model is the combination of the two preceding ones corresponding to a

mixture of Dd fully coherent and Du decorrelated signals:

v =

Du∑
d=1

ud � a(hd) +

Du+Dd∑
d=Du+1

ud a(hd) + ε (3.10)

The non-central covariance matrix is then given by:

R =

Du∑
d=1

τ dCd � a(hd)a(hd)
H +

Du+Dd∑
d=Du+1

A(h)SA(h) + ε (3.11)
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3.5 Phase Model

It is possible to link the conditional model to the phase model given in section 2.5

when the modulus of the scatterers is temporally stable. Under this consideration, the

equation (3.2) can then be written as in the conditional model with the phase model

being included in the steering vectors. As stated in the section 2.5, phase models on

urban areas may include potential movement of the scatterers. In this case the signal

model is then:

vn =
∑
d

ud exp(−jξnhd + ηnvd) + ε (3.12)

And then, v = A(h,v) + ε (3.13)

where ηn = 4πtn
λ is the so-called "velocity frequency" and tn is the time interval between

the acquisitions of the master and the nth image. The scatterers slant range velocities

correspond to the vector v =
(
v1 · · · vD

)T
. The matrix A(h,v) is again de�ne as the

concatenation of the steering vectors:

[A(h,v)]d = a(hd, vd) =
(
exp(−j(ξ1hd + η1vd)) · · · exp(−jξNhd + ηNvd)

)T
(3.14)

Here, only one extension of the phase model to include the displacement of the objects

is considered. Other models have been proposed including for instance the temperature

(Budillon et al., 2017b)(Weissgerber and Nicolas, 2016) or the clutter decorrelation

(Aghababaee et al., 2018). As stated before, only the non-moving scatterers model is

used in this manuscript. The extension described in (3.12) is conceptually easy to add

but may enlarge an already high number of unknowns when working on many pixels at

once.

3.6 Conclusion on urban signal models

Urban areas are, by de�nition, �lled with many man-made structures presenting many

straight walls, metallic objects, corners, etc. The resulting SAR images present a high

level of bright point-like scatterers. Many of those scatterers can be considered as stable

in time and are correctly described by the conditional signal model. This model or the

hybrid one are then generally used for describing back-scattering mechanisms over dense

urban areas.



Chapter 4

SAR tomographic methods

4.1 Introduction

The aim of SAR tomography is to retrieve an estimation of the 3-D re�ectivity of a

given scene. After co-registration of the SAR tomographic stack this corresponds to the

inversion of equation (2.26):

vn(x, r) =

∫
(y,z)∈∆r

un(x, y, z)exp
(
−jξnh(y, z)

)
dydz + ε (2.26)

If the phases are correctly calibrated and the APS removed, in the ideal case of

equispaced trajectories, focusing in the direction orthogonal to the line of sight can be

simply performed by application of the inverse discrete Fourier transform:

û = A(h̃)Hv (4.1)

where the vector h̃ stands for the sampling along the elevation direction. The matrix

A(h̃) is then the inverse Discrete Fourier Transform (DFT) matrix. The resolution of

this focusing is inversely proportional to the maximal orthogonal baseline. Increasing

the number of tracks within this maximal orthogonal baseline improves the sampling

in Fourier domain, hence it reduces height ambiguities. However, the vertical reso-

lution is generally much worse compared to the resolution in azimuth and range di-

rections. Moreover, the baselines are generally irregularly distributed which produces

side-lobes higher than expected and degrades the interpretation of the reconstructed

volume. Several spectral super-resolution techniques have been introduced to overcome

these phenomena. This chapter details the two main categories of approaches used in

SAR tomography. The �rst category is composed of the spectral analysis estimators

coming mainly from the Direction Of Arrival (DOA) literature, they exploit the co-

variance matrix of the received signal. The second category corresponds to the more

recent CS approaches which achieve super-resolution without resorting to an estimation

of the covariance matrix and are more suited to sparse and heterogeneous areas. In
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the previous section two signals models were described. Only the conditional model is

considered in the following tomographic approaches as it is well suited to urban areas.

Some of them are nevertheless robust to decorrelation phenomena.

Except for the unconditional Maximum Likelihood, all the presented method are

used in the presented works. The methods are illustrated on simulations and on a

real slice. The simulations are built following the conditional model with the scatterer

having their amplitude �xed for all the images. The SNR corresponding to the additive

noise is of 1.4 dB. The amplitude of the scatterers is set equal to 1 and the PSF function

is taken as a sinc function inducing a mixture between adjacent cell. Simulated slice

presents scatterers well separated in the range direction. Real data are however hard

to model accurately due to various decorrelation mechanisms. It is then useful to look

at results obtained from both a simple and a real scenario.

4.2 Spectral Analysis Techniques

Several estimation algorithm from the spectral analysis �eld that are used for SAR

tomography are presented in this section. They allow estimating the parameters of a

multibaseline SAR signal even if it is corrupted by a speckle e�ect.

4.2.1 Beamforming techniques

Beamforming is an important technique in signal array processing to estimate a DOA.

This approach has been used in many di�erent applications such as RADAR, SONAR,

wireless telecommunications or medical echography. Beamforming techniques consist

in �nding a Finite Impulse Response (FIR) �lter whose output is maximal when the

received signal originates from a source located in a direction of interest.

Beamforming �lters are the �rst algorithms used in SAR images to perform the

unmixing of scatterers (Homer et al., 1996). Many beamforming estimators are derived

in the DOA literature and the ones used in SAR tomography are designed to suppress

the noise under a directional constraint. The problem is then to �nd the �lter f(h)

that maximizes the signal to noise ratio i.e., that minimizes the noise level for a given

output level:

min
f

E{|f(h)Hε|2} s.t f(h)Ha(h) = 1 (4.2)

The solution f of the directional beamforming problem are also called Minimum Vari-

ance Distortionless Response (MVDR) �lters. The resolution of this linearly constrained

quadratic minimization uses the following results (P. Stoica, 1997):

Theorem 4.1 Let D ∈ Cn be a positive de�nite matrix, X ∈ Cn×m,G ∈ Cn×k and

C ∈ Cm×k with k ≤ n. Then the following minimization problem:
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min
X
XHDX s.t XHG = C

has a unique solution given by: X0 = D−1G
(
GHD−1G

)−1
CH

Conventional Beamforming: According to equation (3.9), the term to minimize in

the equation (4.2) can be rewriten using the noise covariance matrix Rn = σ2
nIN :

E{|f(h)Hε|2} = f(h)HRnf(h) = σ2
nf

Hf (4.3)

The previous optimization problem then becomes:

min
f
f(h)Hf(h) s.t f(h)Ha(h) = 1 (4.4)

From the Theorem 4.1, the �lter solution of the conventional beamforming problem is

then:

f
BF

(h) =
a(h)

a(h)Ha(h)
=
a(h)

N
(4.5)

The estimation of the power for the elevation h is given by the �ltered signal:

PBF (h) = E{|f
BF

(h)Hv|2} =
a(h)HRa(h)

N2
(4.6)

with R the non-centered covariance matrix of the signal R = E{vvH}. An �image�

interpretation of the conventional beamforming for an additive white gaussian noise can

be expressed through the empirical covariance matrix:

R̂ =
1

L

L∑
l=1

vlv
H
l (4.7)

where L corresponds to the number of samples used for the estimation. The expression

of the estimated power using this covariance matrix estimation is then:

PBF (h) =
a(h)HRa(h)

N2
=

1

LN2

L∑
l=1

|a(h)Hvl|2 (4.8)

When using the empirical covariance matrix the power of the �ltered signal can be seen

as an averaging of the inverse DFT of the signal for di�erent pixels. Fig 4.1 illustrates

conventional Beamforming performances for scatterer localization and on real data.
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Figure 4.1 � Unmixing power of the conventional beamforming. The �rst 4 images
present the estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times the
ambiguity height. The position of the scatterers is indicated by the dashed red lines and
the blue curves is the estimated intensity PBF . The last row illustrates the estimated
signal intensity for a simulation where the scatterers are well separated and a real urban
slice. The ground truth is indicated in white.
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Capon Beamforming: The conventional beamforming �lter is derived from a model

of the noise distribution. However when dealing with SAR images stacks, specially

when the dimension N becomes high, or when the echoes are produced by distributed

scatterers, the unconditional model is more appropriate and decorrelation must be taken

into account. When no prior on the noise is available, the beamforming �lter can be

designed to attenuate the power from every direction other than h under a unit gain

constraint (Capon, 1969):

min
f
f(h)HRf(h) s.t f(h)Ha(h) = 1 (4.9)

From the theorem 4.1, the solution is given by:

f
C

(h) =
R−1a(h)

a(h)HR−1a(h)
(4.10)

The estimated power for the elevation h is then:

PC(h) = E{|f
C

(h)Hv|2} =
1

a(h)HR−1a(h)
(4.11)

This method has empirically shown better resolution and lobe suppression than conven-

tional beamforming (P. Stoica, 1997)(Gini and Lombardini, 2005). When the covariance

matrix is poorly estimated this estimator may however presents a more hieratic behavior

than conventional beamforming due to its dependency with 1/R̂
−1
.

Fig 4.2 illustrates conventional Beamforming performances for scatterer localization

and on real data.

4.2.2 MUSIC

The MUSIC estimator (Schmidt, 1986) is designed to retrieve a �nite number of DOA

for a signal corrupted by an additive white noise. This estimator is easy to compute

and is one of the �rst to produce a sparse representation of the estimated signal. The

MUSIC estimator derivation comes from the analysis of the non-centered covariance

matrix subspaces.

The signal v consisting of the echoes produced by D < N scatterers following the

conditional model has a covariance matrix structure given by the equation (3.9):

R = E{vvH} = A(h)SA(h)H + σ2
nIN (3.9)

As R is Hermitian, there exists an orthogonal basis where this matrix is diagonal.

The eigenvalues and eigenvectors of R are denoted by λN ≥ · · · ≥ λ1 and eN , · · · , e1.

Under the assumption that the kernel of R is empty, the last N − D eigenvalues are
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Figure 4.2 � Unmixing power of the Capon beamforming. The �rst 4 images present the
estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times the ambiguity height.
The position of the scatterers is indicated by the dashed red lines and the blue curves
is the estimated intensity PC . The last row illustrates the estimated signal intensity for
a simulation where the scatterers are well separated and a real urban slice. The ground
truth is indicated in white..
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equal to σ2
n. Let us divide the subspaces of R in two groups:

� The signal subspace:

Es =
[
e1, · · · , eD

]
and λs =

[
λ1, · · · , λD

]
(4.12)

� The complementary subspace or so-called �noise subspace�:

En =
[
eN−D, · · · , eN

]
and λn =

[
λN−D, · · · , λN

]
=
[
σ2
n, · · · , σ2

n

]
(4.13)

Let Ds and Dn be the diagonal matrices built from λs and λn. The covariance matrix

R can now be written as:

R = EsDsE
H
s +EnDnE

H
n (4.14)

As the subspaces are orthogonal, multiplying the previous equation by the matrix En

from the right side leads to

REn = EnDn = σ2
nEn (4.15)

From equation (3.9) the same matrix can also be described as:

REn = σ2
nEn = A(h)SA(h)HEn + σ2

nEn (4.16)

Combining equations (4.15) and (4.16) and supposing that S is full rank leads to the

following relation from which MUSIC is derived:

A(h)HEn = 0 (4.17)

The equation (4.17) states that the steering vectors associated to the back-scatterers

are orthogonal to the noise subspace. The position of the scatterers can then be found

by minimizing the projection:

ĥ = argmin
h

A(h)HEnE
H
n A(h)H (4.18)

The problem (4.18) is non-convex and depends on the unknown number of scatterers

D. To avoid these di�culties ĥ is generally estimated by looking at the maximums of

the MUSIC Pseudo Spectrum (MUSIC-PS) de�ned as:

PMU (h) =
1

a(h)HEnE
H
n a(h)H

(4.19)

For discrete scatterer distributions, the MUSIC algorithm performs better than

beamforming estimators. Moreover, it is also robust to multiplicative noise for a small

number of scatterers as the orthogonality between the steering vectors and the noise
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subspace is likely to be preserved. When the back-scattered echoes are highly correlated,

the kernel of R can be non-empty which produces a degeneracy as the orthogonality

relation is not exclusive to the signal steering vectors.

Fig 4.3 illustrates MUSIC performances for scatterer localization and on real data.

4.2.3 WSF

The WSF methods are in the same spirit as MUSIC but introduce the empirical co-

variance matrix subspace distribution in the estimators. At least two di�erent WSF

estimators can be derived. First, it can be observed that the orthogonality relation

used in the MUSIC derivation implies that, if the rank of S is equal to D, then the

range space of A(h) coincides with the one of Es. Then it can be stated that there is

an unknown linear transformation T such that:

Es = A(h)T (4.20)

This linear relation and the orthogonal one de�ned in equation (4.18) can be used to

derived two estimators based on the distance minimization between the matrix A(h)

and the weighted subspace of the empirical covariance matrix R̂:

� The Noise Subspace Fitting (NSF) estimator obtained by minimizing the following

criterion:

||EH
n A(h)||2FW

(4.21)

� The Signal Subspace Fitting (SSF) estimator obtained by minimizing the following

criterion:

||Es −A(h)T ||2FW
(4.22)

Where ||X||2FM
= tr(XMXT ) is the weighted Froebenius norm andW is an Hermitian

positive semide�nite weighting matrix. Consistent estimates of W are based on the

empirical covariance matrix subspace distribution and allow to asymptotically reach

the Cramer-Rao lower bound. They are given by (Huang et al., 2016; Viberg and

Ottersten, 1991; Stoica and Sharman, 1990):

W SSF =
(
Ds − σ2

nIN
)2
D−1
s (4.23)

WNSF =
(
A(h)HEsW

−1
SSFE

H
s A(h)

)−1
(4.24)

WSF techniques are supposed to provide high elevation resolution in SAR tomography.

However, the cost functions are non-convex and multimodal and thus hard to optimize.

A way proposed in (Viberg et al., 1991) is to choose the result given by a suboptimal

minimization criterion such as MUSIC as an initialization.

Fig 4.4 illustrates WSF performances for scatterer localization and on real data.
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Figure 4.3 � Unmixing power of MUSIC through its pseudo-spectrum. The �rst 4
images present the estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times
the ambiguity height. The position of the scatterers is indicated by the dashed red
lines and the blue curves is the pseudo-spectrum PMU value. The last row illustrates
the estimated signal for a simulation where the scatterer are well separated and a real
urban slice. The ground truth is indicated in white.
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Figure 4.4 � Unmixing power of WSF (here SSF ). The �rst 4 images present the
estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times the ambiguity height.
The position of the scatterers is indicated by the dashed red lines and the blue dot the
estimated scatterers position and intensity. The last row illustrates the estimated signal
for a simulation where the scatterer are well separated and a real urban slice.
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4.2.4 ML

The ML techniques could refer to di�erent approaches depending on the signal model

used. For a signal following the conditional model (3.7), the negative log-likelihood is

given by (up to a constant):

L(h,u) = ||v −A(h)u||22 (4.25)

When no assumption can be made on the signal covariance matrix, the negative log-

likelihood becomes then:

L(h,u) =
(
v −A(h)u

)H
R−1

(
v −A(h)u

)
= ||v −A(h)u||2

R−1 (4.26)

where ||x||2M = xTMx is the weighted `2 norm. The minimization of L in (4.25) and

(4.26) with respect to both h and u can be hard to achieve due to the phase dependency

in h and the unknown number of scatterers. For given elevations, the conditional ML

coincides with the Least-Square (LS) estimate of the signal. A LS approximation of the

re�ectivity û can thus be computed after using a spatial component estimator such as

MUSIC or WSF .

When multiple independent and identically distributed samples are available, the

negative log-likelihood for the conditional model can be written using the empirical

covariance matrix (Stoica and Sharman, 1990):

L(h) = tr

(
IN −A(h)

(
A(h)A(h)H

)−1
A(h)R̂

)
(4.27)

This function is highly nonlinear, multimodal and hard to minimize in a reasonable

amount of time. Moreover, the conditional ML has been proven statistically less e�cient

for big number of samples than WSF techniques as it does not achieve Cramer-Rao lower

bound (Stoica and Sharman, 1990).

Fig 4.5 illustrates ML performances for scatterer localization and on real data.

4.2.5 M-RELAX

Multilook-RELAXation spectral estimator (M-RELAX) is an iterative algorithm that

can be used to minimize (4.25) or (4.27) when multiple samples sharing the same scat-

terer elevation distribution are available (Li and Stoica, 1996) (Gini et al., 2002). At

each step, the previously estimated sources are re�ned to account the newly detected

one. When the number of scatterers is high, the correction step may be time consuming

as it must be run multiple time until convergence. This procedure is described in the

following algorithm:



38 CHAPTER 4. SAR TOMOGRAPHIC METHODS

-20 -10 0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

-20 -10 0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

-20 -10 0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-20 -10 0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

0.3

1500 1520 1540 1560 1580 1600 1620
-5

0

5

10

15

20

25

30

50 100 150 200 250 300 350 400 450 500

0

20

40

60

80

100

120

Figure 4.5 � Unmixing power of ML according to formula 4.27. The �rst 4 images present
the estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times the ambiguity
height. The position of the scatterers is indicated by the dashed red lines and the
blue dot the estimated scatterers position and intensity. The last row illustrates the
estimated signal for a simulation where the scatterer are well separated and a real urban
slice.
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Algorithm 1 M-RELAX

Input: {vl}Ll=1 (L i.i.d. samples) D (maximum number of scatterers)
κ (precision)

Output: {ûl}Ll=1 ∈ CD (discrete complex vector of re�ectivity for each sample)
ĥ ∈ CD (discrete complex vector of elevation)
Initialization :

1: R̂← 1
L

∑
l

vvH

2: ĥ1 ← argmax
h

a(h)HR̂a(h)

3: û1,l ←
a(ĥ1)Hvl

N

4: d← 2

5: while d < D do
6: while κ̂ < κ do
7: k ← d

8: while k > 0 do

9: v̂
(k)
l ← v̂l −

d∑
i=1
i 6=k

ûi,l a(hi)

10: R̂
(k) ← 1

L

∑
l

v̂
(k)
l v̂

(k)H
l

11: ĥk ← argmax
h

a(h)HR̂
(k)
a(h)

12: ûk,l ←
a(ĥk)H v̂

(k)
l

N

13: k ← k − 1

14: end while

15: κ̂← 1
L

∑
l

||vl −
d∑
i=1

û
(i)
l a(h(i))||22

16: end while
17: d← d+ 1

18: end while
19: return û

M-RELAX is the extension of the single look algorithm RELAX for which the ele-

vation search steps (2) and (9) are replaced by:

ĥ(k) ← argmax
h

aH(h)v

The RELAX and M-RELAX algorithms without the correction process are forms of the

CLEAN algorithm which presents no guaranty to converge to the global minimum but

is much faster to optimize.

Fig 4.6 illustrates M-RELAX performances for scatterer localization and on real

data.
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Figure 4.6 � Unmixing power of M-RELAX . The �rst 4 images present the estimation of
two scatterers separated by 2, 1, 0.5 and 0.25 times the ambiguity height. The position
of the scatterers is indicated by the dashed red lines and the blue dot the estimated
scatterers position and intensity. The last row illustrates the estimated signal for a
simulation where the scatterer are well separated and a real urban slice. The ground
truth is indicated in white.
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4.2.6 SPICE

The recent SPICE method (Stoica et al., 2011) is a fully non-parametric sparse algorithm

based on the minimization of the covariance �tting criteria:

f = ||R−1/2
(
R̂−R

)
R̂
−1/2||2F (4.28)

The matrix R is structured as stated in the conditional model (3.9) except that sources

are fully incoherent (S is diagonal) and the noise may be colored. The covariance matrix

has then the form:

R = E{vvH} =
D∑
d=1

τd a(hd)a
H(hd) +

σ
2
1

�
σ2
N

 (4.29)

The previous equation can be rewrite into a product of matrices:

R = EDE (4.30)

with E =
[
a(h1), · · · ,a(hD), IN

]
=
[
e1, · · · , eD, eD+1, · · · , eD+N

]

and D =



τ1

�
τD

σ2
1

�
σ2
N


=



d1

�
dD

dD+1

�
dN+D


Under this covariance matrix structure assumption, a consistent estimate of the solution

of the minimization of f is given by the following optimization problem:

min
τd>0

tr
(
R̂

1
2R−1R̂

1
2
)

s.t.
D+N∑
d=1

wkdk (4.31)

with wk =
eHk R̂

−1
ek

N
(4.32)

The minimization algorithm is presented in detail in (Stoica et al., 2011). This algorithm

achieves a good performance when the covariance matrix is correctly estimated and when

the uncorrelated conditional model is respected. This method presents no parameter

tuning and is relatively easy to optimize which makes it very promising. The signal

model used however is even more restrictive than the conditional model.
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Fig 4.7 illustrates M-RELAX performances for scatterer localization and on real

data.

4.3 Compressive Sensing

Except for conventional beamforming, the estimators detailed in the previous section

may all achieve super resolution under some hypotheses. However, they all need an

estimation of the covariance matrix R and/or the number of scatterers D. Finding

D is still a hard task as the true signal distribution may be hard to model. Over

uniform areas, R can be e�ciently estimated locally and the presented spectral analysis

techniques may be used to obtain the re�ectivity distribution along the elevation. When

the scene is heterogeneous, more complex approaches are needed to estimate R (see

Chapter 7). When considering large stacks of SAR images and when the scene is

very heterogeneous, the estimation of R becomes very challenging. The CS approach

introduced more recently (Zhu and Bamler, 2010a)(Budillon et al., 2011) than most of

the previous estimators is an e�cient way to overcome this di�culty as it uses directly

the back-projection of v as stated in (4.1).

4.3.1 Projection and prior

The use of CS for SAR tomography is relatively recent. The estimation of the re�ectivity

pro�le u along the height direction, for a given SAR resolution cell, is obtained by solving

the following optimization problem:

min
u
||u||0 s.t. v = A(h̃)u (4.33)

Whereas many spectral estimators are designed to retrieve a discrete set of signal param-

eters, the CS approach tries to retrieve the sparsest re�ectivity pro�le depending on the

elevation sampling h̃ ∈ RNh . The CS theory insures the existence of an exact solution

for the problem (4.33) if the matrix A(h̃) satis�es some conditions. Chronologically,

the �rst one is the Restrictive Isometry Property (RIP) condition:

De�nition 4.1 A matrix M satis�es the RIP property of order k is there exists a

δk ∈ [0, 1] such as

(1− δk)||s||22 ≤ ||Ms||22 ≤ (1 + δk)||s||22

where s is any vector of sparsity at most k.

This property can be understood as any subset of at most k columns of M must be

as close to orthogonality as possible. A matrix satisfying the RIP of order 2k can then

be seen as preserving approximately the distance between k-sparse vectors. From the

RIP order of a matrix, one can compute a bound on the signal sparsity to ensure an

exact reconstruction. In practice, it is however very hard to verify that a given matrix
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Figure 4.7 � Unmixing power of SPICE according to formula 4.27. The �rst 4 images
present the estimation of two scatterers separated by 2, 1, 0.5 and 0.25 times the
ambiguity height. The position of the scatterers is indicated by the dashed red lines
and the curve is the estimated intensity. The last row illustrates the estimated signal
for a simulation where the scatterer are well separated and a real urban slice.



44 CHAPTER 4. SAR TOMOGRAPHIC METHODS

satisfy the RIP or to calculate the corresponding constant δk as it requires a search over

all

(
n

k

)
submatrices. The coherence is a more intuitive and more easily computable

matrix descriptor de�ned by:

Let M =
[
c1, · · · , cm

]
∈ Cn×m, (4.34)

µ(M) = max
1≤i<j≤m

|cHi cj |
||ci||2||cj ||2

The coherence basically indicates how much the columns of M are correlated. The

more they are the harder it becomes to retrieve the exact sparse signal. Again, the

coherence is an indication on how orthogonal are the columns of a matrix. In the

presence of additive noise, bound errors in the reconstruction with k-sparse vector can

be computed from the coherence (Ben-Haim et al., 2010). Other conditions that may

be more adapted to sensing matrix consisting of an oversampled DFT and thus to SAR

tomography may be found.

Going back to the SAR tomography, when a high oversampling is applied along the

elevation axis, the columns of A(h̃) are almost fully correlated with their neighboring

ones. This means that under too much oversampling, it is almost impossible to know

exactly from which direction a signal is received which corresponds to a �nite maximum

resolution. Avoiding oversampling is also not an option as the distribution of the signal

may be continuous in space.

The solution to the combinatorial problem (4.33) can be approximated using the

classical convex relaxation of the `0 pseudo-norm into an `1 norm:

min
u
||A(h̃)u− v||2 + µ1||u||1 (4.35)

Di�erent algorithms have been proposed to solve this problem such as Least Absolute

Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996), basis pursuit (Chen et

al., 1998) or greedy algorithms as matching pursuit (Mallat and Zhang, 1993).

4.3.2 Drawbacks

The matrix A(h̃) is over-complete and does not guarantee to satisfy either the RIP or

low coherence. The sparse reconstruction obtained through the resolution of (4.35) has

nevertheless led to successful reconstructions of sparse urban scenes. However, artifacts

can generally be found in those results. For instance, small spurious impulses far from

the true localization of the objects or spreading of the scatterers to adjacent lines due

to the oversampling. The parameter µ1 is also generally hard to tune globally on the

image because of the high dynamic of SAR images: a large value of µ1 leads to the

suppression of low intensity structures whereas a low value of it cannot allow outliers

suppression.
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Figure 4.8 � Unmixing power of CS . The �rst 4 images present the estimation of two
scatterers separated by 2, 1, 0.5 and 0.25 times the ambiguity height. The position of
the scatterers is indicated by the dashed red lines. The last row illustrates the estimated
signal for a simulation where the scatterer are well separated and a real urban slice.
The ground truth is indicated in white. For the simulation the SNR corresponding to
the additive white noise is 0.3 dB.
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Fig 4.8 illustrates CS performances for scatterer localization on simulations and on

real data.

4.3.3 Scatterers selection

To re�ne the results, the volume reconstructed with CS is generally post-processed by

estimating the number of scatterers in order to select only the most signi�cant points.

The result is then a set of discrete points de�ned by their 3-D localization and complex

re�ectivity. As the distribution of the re�ectivity in dense urban con�gurations is hard

to model, this approach often fails to select points with low re�ectivity.

The Scale-down by `1 norm Minimization, Model selection, and Estimation Recon-

struction (SL1MMER) algorithm (Zhu and Bamler, 2012a) estimates the number of

non-zero points D̂ in the cell using a Model Order Selection (MOS) technique. The

MOS approaches essentially consist in �nding the number of scatterers that minimize

the penalized log-likelihood of the data:

D̂ = argmin
D

− log p(v|ĥ(D)) + C(D) (4.36)

Under conditional model hypothesis, the last equation becomes:

D̂ = argmin
D

{ ||v −A(ĥ(D))||22
2σ2

n

+ C(D)
}

(4.37)

where ĥ(D) is composed of the elevations of the D most powerful pixels in the cell.

Di�erent penalties can be used for C(D) such as the Bayesian Information Criterion

(BIC) or Akaike criterion (Burnham and Anderson, 2004)(Stoica and Selen, 2004).

Close to CS , the recent FAST-SUP-GLRT detector (Budillon et al., 2017a) avoids

post processing selection by applying a sub-optimal statistical test taking into account

the distribution of the data based on an approximated `0 norm minimization. Even if

it does not take into account the geometry of the scene, the statistic of the data can be

more accurately represented than with conventional CS.

As the distribution of the re�ectivity in dense urban con�gurations is hard to model,

this approach may fail to select points with low re�ectivity.

4.4 Summary

Non-parametric estimators like conventional beamforming or Capon beamforming are

easy to implement, fast to compute and adapted to continuous re�ectivity distributions.

They can be used to give a global overview of an urban scene. Parametric spectral

estimators based on a sparse description of the data like MUSIC or WSF perform

well on urban areas that are mostly composed of point-like scatterers. Maximum-

Likelihood is computationally costly but may lead to the best re�ectivity estimate under
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Figure 4.9 � Diagram representing the estimators presented in this part around three
axes: sparsity, MOS and covariance based.
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the assumption that the signal distribution is correctly modeled. M-RELAX can be

used to maximize sequentially the likelihood but does not insure global convergence.

SPICE is a recent non-parametric algorithm optimizing the re�ectivity of the scatterers

to �t the estimated covariance matrix to its model given by (3.9). Shared priors, input

parameters and output representation between estimators are illustrated in the diagram

Fig. 4.9.



Part II

Contributions : Introducing Spatial

Regularization in SAR tomography





Chapter 5

On the road toward structural

tomography

Dense urban areas are �lled with layover areas where multiple strong intensity back-

scatterers resulting from walls and corners are projected into the same radar resolution

cells. In addition to these very bright points other echoes coming from �at smooth

objects such as ground or roof element are also present. The reconstructions obtained

from this mixed signals generally only present high intensity scatterers. Walls and

corner shape elements are then more or less well represented depending on the used

estimator whereas distributed scatterers are mostly invisible.

It is almost certain that re�ectivity �uctuations should arise in big temporal pile.

These changes can have multiple origins such as interferometric decorrelation, weather,

movement of the scatterers or phase errors. The obtained reconstructions can then be

distorted due to phase mis-modeling. Finally, decorrelations and sidelobes are likely to

cause outliers with amplitudes of the same order of magnitude as the retrieved scatterers.

Figure 5.1 shows an example of reconstructed pro�les illustrating the decorrelation, dis-

tortions and outliers issues. In this example, a building facing the sensor (the Mirabeau

Tower) sends back a strong signal whereas most of the other scatterers on the pro�le

are relatively low intensity. The reconstruction obtained with conventional beamform-

ing is then highly impacted with high side lobes propagating in the radar cells were

the building is projected. When looking at the conventional beamforming spectrum as

well as the MUSIC-PS , it appears the signal estimated is determined by the brightest

scatterers in it. This side lobe phenomena combined with the main lobe size may also

produce outliers even with sparse approaches such as MUSIC or CS .

In the �rst part, state-of-the-art estimators for SAR tomography have been de-

scribed. As stated in the preamble of chapter 3, with these methods, the estimation of

the scatterers height and re�ectivity is done pixel wise. 3-D SAR tomography is then

seen as a concatenation of local estimations. Dense urban areas are however very struc-

tured as most of scatterers are distributed along roughly vertical or horizontal plans.

The inherent di�culty induced by dense city landscape can then be reduced by taking

into account the geometrical behavior of the scene. Urban 3-D reconstruction should
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Figure 5.1 � Tomographic slice obtained from the red pro�le shown in the SAR image in
(a). The reconstructions are obtained using conventional beamforming (b), MUSIC-PS
(c), MUSIC (d), CS (e). For each slice the ground truth is printed in white.



53

also be sparse as most of the objects are punctual in ar least one direction: a wall or

a roof are seen by the sensor as a surface located inside a cube. To use these priors

at least two strategies may be considered: exploit the redundancies to have the best

representation of the data or inverse the data and regularize the estimation.

The �rst concept consists in cleverly use similar data to estimate their parameters.

This idea is at the origin of the patch based restoration methods where the neighborhood

of the pixels is used to characterize them. Similar pixels, i.e. described by akin patches,

are regrouped to estimate their parameters. For SAR tomography the desired parameter

is generally the covariance matrix as the spectral estimators are function of it. The prior

are then used in the date space to de�ne which and how patches are alike.

The second concept is closer to CS as no local or non-local average is used and the

SLC vectors are directly inverted. The priors are then used in the estimation space to

favor the reconstruction satisfying the desired behavior. With conventional CS , sparsity

is the only structural prior used whereas in the following work, geometrical constraints

are also proposed.

After presenting the data and the evaluation protocol, the �rst strategy is addressed

through chapter 7. The second approach is detailed in chapter 8 and chapter 9 for two

variation of geometrical priors.
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Chapter 6

Evaluation of tomographic

reconstructions in urban

environment

6.1 Geometric model for urban areas

Urban areas present very structured man made objects. The observed buildings can

roughly be seen as the composition of plane objects either along the horizontal plane or

along the vertical direction. Of course, a detailed 3-D representation would present many

variations such as rooftop inclinations, balconies, various window shapes, crenelations,

ornament, etc. Nevertheless these features are not expected to be retrieved with the

available resolution of modern space-borne sensors.

Arti�cial structures present many dihedral or trihedral back scatterers (conditional

model). In practice, most of the observed signal comes from building walls which are

more likely to present corner shaped elements. Other smooth surface objects such as

ground parts or rooftops back-scatter the wave in every direction and produce much

weaker signals more likely to be subject to decorrelation mechanisms (unconditional

model).

These last considerations are summed up in three hypotheses:

1. The structures illuminated by the sensor can be seen as plane smooth objects

2. The natural elongation directions of the urban structures are the horizontal plan

and the vertical direction

3. The back-scattering signal is sparse in the 3-D space

These hypotheses will guide the construction of the algorithm we developed to re-

trieve the SAR tomographic signal.
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Figure 6.1 � Two simulations of a simple 3-D scene: (a) considering a regular sampling of
trajectories along the elevation axis (Reg case); (b) using the trajectories of TerraSAR-
X satellites (TSX case). For each scene, two 3-D views are presented (left and middle)
as well as the temporal mean intensity image (right).

Figure 6.2 � Illustration of the di�ent elevation samplings in the Reg case (left) and
TSX case (right).

6.2 Presentation of the datasets

6.2.1 Simulations

Two stacks of images are simulated in two di�erent con�gurations of trajectories: a

regular sampling along the elevation axis h (referred to in the following as Reg ), and

the actual trajectories of TerraSAR-X given in Fig. 6.5 (referred to in the following as

TSX ). As in (Zhu and Bamler, 2010a), the decorrelation e�ect is introduced by adding

a Gaussian white noise and the random scatterer phase is chosen uniform between −π
and π. The re�ectivity distribution is then constituted of discrete point-like scatterers

following the conditional signal model (3.7). The re�ectivity corresponding to a scatterer

located at the position (x, y, z) has the following expression:
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u(x, y, z) =
√
τ exp(jϕ) (6.1)

with ϕ ∼ U(−π, π)

Fig. 6.1 shows the theoretical distribution of the scatterers. Both scenes are composed of

a ground at a constant altitude, a wall and a roof, resulting in a large layover area in the

SAR images. The simulated building is higher than the estimated elevation resolution

(as given by Fourier inversion) in the TSX case. The re�ectivity of the scatterers is set

constant on all the scene. The SNR for the additive noise level is 1.4 dB and is the

same for both experiments. In the Reg case, the scatterers are well separated in the

azimuth and range directions. In the TSX experiment, the density of scatterers is larger

in each cell, resulting in clusters of neighboring scatterers being projected in the same

radar cell, as illustrated in the Fig 6.2. The distance between the scatterers is set as a

third of the cell resolution. All the TSX images are thus corrupted with a speckle e�ect

induced by the coherent addition of the back-scatterered signals. Due to the relatively

strong additive noise and the geometrical decorrelation the average coherence is 0.63

for the Reg images and 0.68 for the TSX ones. Finally as the resolution is not the same

in the two experiments the TSX structure is taller (20m in the Reg case against 30m in

the TSX one) and the resulting images have a larger size in range.

6.2.2 Real data

The dataset is composed of 40 TerraSAR-X images of the south west of Paris. The

corresponding temporal mean intensity image and the optical view of the scene are

presented in Fig. 6.3 and 6.4. The images were acquired using the spotlight mode of

the sensor in which the varying squint angle allows to improve the size of the synthetic

azimuth antenna. The wavelength λ is of 3.11 cm. The images have a size 2048× 2048

pixels with a resolution of 45 cm in range and 87 cm in azimuth. The spatial and

temporal baselines are presented in Fig. 6.5. The total spatial baseline ∆b span is more

than 775 m and the total temporal baseline more than 5 years with a large gap of almost

two years. The theoretical resolutions in h and z are given by :

δh =
λR

2∆b
= 1.75m (6.2)

δz = δh sin(θ) = 6.99m (6.3)

with an incidence angle θ = 0.6 rad, a wavelength λ = 0.0311 m and a distance

R = 6.15105m. The characteristics of the sensor and of the scene are summarized in

the table 6.1.

The scene is very heterogeneous with di�erent back-scattering mechanisms. Most

of the scene is composed of buildings producing very bright point-like echoes. The

majority of the constructions are composed of either 20 m to 40 m height buildings or
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Sensor TerraSAR-X
Dates 3-4 years
Site Paris
Composition Mostly Buildings and water
Number of tracks 40
Wavelength 3.11 cm
Slant-range resolution 0.45 m
azimuth resolution 0.87 m

Table 6.1 � Global characteristics of the sensor and the observed scene

80 m to 110 m skyscrapers. Other very typical Parisian monuments can also be observed

such as the Ei�el Tower in the upper right corner or the Maison de la Radio in the

left side of the image. The Seine river with many bridges crossing it �ows from the top

right to the bottom left corner. As the water is very smooth, almost all the signal is

scattered in the specular direction which creates these typical very low intensity areas

in the image. Many vegetation areas are visible in the optical image but they produce

very low intensity and low coherency signal in the SAR images. Moreover most of the

trees answers are projected in the same radar cell as neighboring buildings (layover

phenomena) and are thus hidden by brighter scatterers. Vegetation is still visible in

some places such as on the island (l'ile aux Cygnes) where no buildings are present.

6.3 Accuracy and Completeness

In (D'Hondt et al., 2018), the authors present two metrics to compare the di�erent

SAR tomographic results: the accuracy and the completeness. These two errors give a

complementary evaluation of an estimated a point cloud.

Accuracy For a given discrete reconstruction P̂, the accuracy represents the mean

distance from each point in P̂ to the ground truth P.

A(P̂,P) =
1

Np̂

Np̂∑
j=1

min
k

dist (p̂j − pk) (6.4)

where p̂j ∈ P̂ is the jth point of the estimated point cloud P̂ and pk ∈ P is the kth

point of the ground truth. Np̂ is the number of points in the estimated reconstruction.

The function dist is the distance used to compute the evaluation. Accuracy indicates

whether reconstructed points are correctly located.

Completeness The completeness corresponds to the mean distance from each point

of the ground truth to the points in P̂:
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Figure 6.3 � Up: temporal intensity average of the stack of SAR images, bottom:
corresponding optical view of the same zone.
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Figure 6.4 � Annotated SAR and optical images of the observed scene. The position of
the sensors with respect to the scene is indicated for both images. The typical distortions
induce by the SAR ranging acquisition system are well visible as the tall structures such
as the Ei�el Tower or the Mirabeau Tower are projected along the range direction.
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Figure 6.5 � Temporal and spatial baselines

C(P̂,P) =
1

Np

Np∑
k=1

min
j

dist (p̂j − pk) , (6.5)

with Np the number of points in the ground truth. Completeness indicates whether the

ground truth is well represented by the set of points in the reconstruction.

Figure 6.6 � Accuracy (a) et completeness (b) criteria. The accuracy computes the
mean of the error for each estimated point. The completeness gives an indication on
the proportion of holes in the rendering.

In the presented work we chose to use the Euclidean distance for the evaluation.

The two metrics are illustrated in Fig. 6.6 where green dots represent estimated points

p̂j and blue squares the ground truth points pk. Accuracy and completeness provide
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complementary information: accuracy improves when reconstructed points are close to

actual points from the ground truth, but does not indicate when points are missing

(holes in the reconstruction). For instance, if we could retrieve a single point of the

scene (the strongest permanent scatterer, for example) with a location very close to

the ground truth, the accuracy would be excellent (A(P̂,P) near zero) while the com-

pleteness C(P̂,P) would be large, indicating that much of the scene is missing in the

reconstruction. Conversely, if we loosely select points (many points for each resolution

cell), we would obtain a dense volume, thus a good completeness (low completeness

value C(P̂,P)), but erroneously selected points lying far from the true surfaces would

lead to a poor accuracy score (large accuracy value A(P̂,P)).

6.4 Evaluation protocol

SAR cell tomographic
reconbstruction Set of maxima above

increasing treshold

Errors for each threshold

Ground truth

Figure 6.7 � Evaluation protocol: each RADAR cell is described by the set of its
maxima. Di�erent thresholds are applied to further select the points which are then
compared to the ground truth. This operation is done for all the cells of the image.

Tomographic SAR volume reconstructions are generally not quantitatively evalu-

ated. The works presenting error evaluations are mostly done on point clouds extracted

from the tomograms. This implies that the evaluation depends both on the signal esti-

mation technique as well as the method to estimate the number of scatterer. However

the works presented in this document focus on the tomographic reconstruction and does

not propose a point extraction step. Moreover, as stated in the section 4.3.3, the esti-

mation of the number of scatterers is not a trivial task and is still an ongoing research

topic. Using classical MOS methods, the number of re�ectors may be underestimated as

only the conditional model is used to model the signal. Here, we are more interested in

how good a tomographic estimation potentially is, i.e. if the evaluation is done with the

best number of scatterers estimation. The used strategy is then to describe a volume

reconstruction a family of sets of 3-D points.

Beforehand, 3-D points must be extracted from the volume of voxels obtained by the
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tomographic reconstruction algorithms. This extraction step is performed by �nding

the local maxima in the height direction for each radar resolution cell. This produces

a �rst point-based representation of the data. Then, to reduce the sensitivity to noise

and side-lobes, we apply a threshold on the obtained point cloud. Starting from a

reconstructed volume û, we obtain the collection of 3-D points P̂û,t:

P̂û,t =

{
pj = (xj , yj , zj) ∈ R3, such that (6.6)

|ûxj ,yj ,zj | ≥ |ûxj ,νy ,νz | and |ûxj ,yj ,zj | > t

}
(6.7)

where νy and νz are the coordinates of the direct neighboring voxels restricted to the

same radar resolution cell and t is a threshold.

Evaluating tomographic estimators can be done for di�erent regimes (accurate re-

construction of the strongest scatterers, dense reconstruction of most scatterers). To

capture these di�erent cases, rather than considering a single reconstruction obtained

with a giving threshold, the accuracy score A(P̂û,t,P) is represented as a function of the

completeness C(P̂û,t,P). Applications that focus on the reconstruction of permanent

scatterers will favor algorithms that achieve the highest accuracy values (even if the

completeness is poor). If the reconstruction of surfaces is the aim, completeness should

be favored, even if this degrades the accuracy. The evaluation protocol is summarized

in the diagram shown in Fig. 6.7.
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Chapter 7

Covariance Matrix Estimation

The spectral estimators used in SAR tomography are almost all based on the analysis of

the covariance matrix. When the observed area is very heterogeneous with a high variety

of scatterers height, material and orientation the estimation of the local covariance

matrix may be very challenging. Di�erent strategies have been proposed to perform

this estimation. Local estimation techniques exploit only the information close to the

pixel of interest whereas non-local ones are designed to exploit self similarity in the

image.

7.1 Local Approaches

The estimation of the covariance matrix in SAR tomography is often done by local

averaging using an isotropic kernel such as a boxcar or a gausscar �lter. The value of

the covariance matrix is then given by:

R̂ =
∑
p

wpvpv
H
p (7.1)

where wp are the coe�cients of the isotropic �lter and the subscript p corresponds to a

2-D shift p ∈ [−H,H]2 indicating the support of the �lter. The number of samples is

then L = (2×H+1)2. Although these �lters are fast and easy to compute, they lack of

spatial adaptivity and induce resolution loss in the images. Moreover, as SAR images

have a very high dynamic range, bright pixels may have amplitudes several orders of

magnitude larger than the background. These basic local �lters then produce blurry

estimation of point-like bright pixels.

Other local methods like the Lee �lter (Lee, 1981) are designed to adapt locally

on the content inside the support of the function. The Lee �lter is built to reduce

the speckle phenomena while preserving sharp structures in the image. This �lter is

designed to minimize the mean square error for a linear speckle noise model. The Lee

�lter gives then as output for each channel n of the tomographic image i.e. each 2-D

SAR image:
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În = In + kLee
(
In − In

)
(7.2)

where In = |v(n)|2 is the intensity of the noisy pixel, In the mean intensity within

the �lter window and În the estimated intensity. The coe�cient kLee adjusts the local

smoothing and is computed as:

kLee = 1−
γ2
S

γ2
I

(7.3)

with γ2
S standing for the theoretical coe�cient of variation of the speckle: γ2

S = 1/
√
L

and γ2
I coe�cient of variation of the current window. When no structures appear inside

the window, γ2
I should tend toward γ2

S and kLee is then equal to 0. The intensity

estimation is then given by the local averaging. When bright structures are present, the

local variance is expected to increase resulting in a coe�cient tending to 1. When k is

near 1, the subimage is too heterogeneous and intensity is left unchanged.

To improve the denoising, the smoothing can be combined with oriented windows

allowing to preserve straight edges more e�ciently. The windows are composed of a

rectangular mask and 8 edge-aligned oriented ones. Although continuous smooth edges

can be well preserved with this method, sudden discontinuities and orientation changes

produce artifacts. Moreover the limited number of orientations in the mask limits the

denoising power for complex structures and textures.

7.2 Non-Local SAR algorithm

The NL-SAR algorithm (Deledalle et al., 2015) became in the recent years one of the top

denoising algorithm for SAR images. It can be used to restore multichannel data and

has shown very good results for SLC images as well as interferometric and polarimetric

data. Due to its performances, this approach may be seen as very promising for SAR

tomography. In the following the algorithm is summed up and results for increasing

number of channels are studied.

The estimation of the pixel value can be extended to non-connected neighborhoods.

The pixels used to perform the estimation are then selected based on their similarity.

This allows to use far apart information when the local neighborhood is not su�cient

to perform a satisfactory denoising. This led to Lee's sigma �lter (Lee, 1983) where the

restoration of the image is done based on a similarity between the pixels.

Rather than using only a pixel wise similarity, using the similarity between the local

neighborhoods (i.e. patches) of the pixels allows to use the structural information to

select the pixels. This idea has been popular in various image processing algorithms

that followed the seminal �NL-means� approach (Buades et al., 2005). The NL-SAR

algorithm is an extension of this method for the SAR images restoration.
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The similarity used in NL-SAR is derived from the fully unconditional model where

the N -dimensional complex pixels follow a circular complex Gaussian distribution:

p(v|R) =
1

πN |R|
exp

(
−vHR−1v

)
(7.4)

whereR ∈ CN×N = E{vvH} is the complex covariance matrix, and |R| its determinant.

The empirical covariance matrix corresponds to the averaging of the L elements inside

a local window:

R̂ =
1

L

L∑
l=1

vlv
H
l (7.5)

L is referred as the equivalent number of looks. When N ≤ L, the empirical covariance

matrix follows a complex Wishart distribution given by:

p (R̂ |R) =
LLN |R̂|L−D

ΓN (L)|R|L
exp

(
−Ltr(R−1R̂)

)
(7.6)

When L < N , the complex empirical covariance matrix is singular. The matrix is then

said to have a degenerate distribution.

Similarity Criterion Several methods have been proposed to express a similarity

criterion between pixels corrupted by a speckle e�ect. The one used in the NL-SAR

algorithm is based on a hypothesis test on the empirical covariance matrix distribution.

For two empirical covariance matrices R̂1 and R̂2, the test is derived as follows:

{
H0 : R1 = R2 , R12 (7.7a)

H1 : R1 6= R2 (7.7b)

With independent Wishart distributed empirical covariance matrices R̂1 and R̂2,

the Generalized Likelihood Ratio (GLR) corresponding to the hypothesis test in (7.7a)-

(7.7b) is given by (Conradsen et al., 2003):

LG(R̂1, R̂2) =
|R̂1|L|R̂2|L

|12
(
R̂1 + R̂2

)
|2L

(7.8)

The closer the empirical covariances matrix R̂1 and R̂2, the larger LG is. For identical

matrices, it is equal to 1 whereas it tends toward 0 for very di�erent ones. Note that the

GLR is only de�ned if the number of samples used in the empirical covariance matrices

computation is larger than the number of channels N . The patches are then compared
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by computing the similarity between all the pixels. For two patches centered at two

positions i and i′, the similarity ∆ is then:

∆(i, i′) =
∑
p

− logLG
[
R̂(i′ + p), R̂(i+ p)

]
(7.9)

As in equation (7.1), p ∈ [−H,H] indicates a local 2-D shift for a window of size

L = (2 ×H + 1)2. The quantity ∆ is then a dissimilarity indication between patches.

As all the patches are compared, ∆ represents how much the structures surrounding

the pixels of interests are not-alike.

Weights computation A common way to de�ne the weights from the (dis)similarity

measure is to use an exponential kernel w(i, i′) = exp [−∆(i, i′)/h], with h > 0 a �ltering

parameter. The NL-SAR algorithm proposes a framework that makes the computation

of the weights independent of the parameters such as the search window and the patch

size, the number of samples used for the estimation of the empirical covariance matrices

or the number of channels. To do so the exponential kernel is composed with two other

functions:

� F the cumulative distribution function of ∆ under the hypothesis H0

� G−1 the reciprocal of the χ2 distribution.

The weight for a pixel i′ respectively to a pixel i is then de�ned as:

w(i, i′) = exp

[
−G−1 ◦ F [∆(i, i′)]

h

]
(7.10)

The χ2 function corresponds to the distribution of the dissimilarity ∆ under a Gaussian

additive noise where the exponential kernel has proven to be e�cient for denoising

(Buades et al., 2005). The NL-SAR weights computation corresponds then to a mapping

to the SAR image statistics to an additive Gaussian scenario. Finally to avoid having

any pixel having a higher weight than the central one and favor pixels following the

same distribution, the kernel is modi�ed as follow:

w(i, i′) =

exp

[
−G−1◦F[∆(i,i′)−c]

h

]
if i 6= i′

1 otherwise
(7.11)

with c = E
{

G−1 ◦ F [∆(i, i′)] |H0

}
.

The non-local estimation of the covariance matrix is then given by:
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R̂
NL

(i) =

∑
i′ w(i, i′)vi′v

H
i′∑

i′ w(i, i′)
(7.12)

Bias reduction To reduce the spreading of bright structures induced by the empirical

covariance matrix pre-estimation step, a bias correction step is applied to the non-local

estimate. This step is similar to the Lee �lter strategy and the corrected Non-Local

Bias Reduced estimation is then:

R̂
NLRB

(i) = R̂
NL

(i) + α
[
viv

H
i − R̂

NL
(i)
]

(7.13)

The parameter α computation is detailed in (Deledalle et al., 2015) and depends on the

variance of the non-local estimation.

Unsupervised local adaptation The NL-SAR algorithm present many parameters:

the size of the patches, the size of the search window, the number of samples used

for the local estimation of the empirical covariance matrices or the scale parameter h.

However, one of the strength of the method is its unsupervised adaptation to the local

context. The quality of the estimation is given in terms of variance reduction and the

set of parameters is set locally to have the best reduction. As the variance decreases

monotonously with the number of samples (or looks) used for the estimation, the best

set of parameters is the one maximizing the number of looks. After non-local estimation

and bias-reduction, the equivalent number of looks is given by (Deledalle et al., 2015):

L̂NLRB(i) =
L̂NL(i)

(1− α)2 +
(
α2 + 2α(1−α)∑

i′ w(i,i′)

) (7.14)

The set of parameters maximizing this quantity is then used for the estimation. Ex-

amples of denoising using the presented local and non-local algorithms are presented in

Fig. 7.1 and 7.2.

7.3 Proposed pixel similarity for large tomographic stacks

of urban areas

In urban areas where the amplitudes of bright pixels are signi�cantly higher than their

surrounding background and where the SAR images are very heterogeneous, �nding

similar patches may be a di�cult task. When the dimension of the SAR stack increases

patches may then appear more and more unique within the search window. From the

covariance matrix structure detailed in the MUSIC algorithm, it is possible to get an

intuition justifying the reduced e�ciency of the Wishart GLR :
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Figure 7.1 � Images of buidings near Nimes-Garon airport obtained by the Sethi airborn
sensor - ONERA. From left to right : noisy SLC SAR image and its denoised version
using a gaussian kernel, the Lee �lter or NL-SAR algorithm.
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Figure 7.2 � Images of buildings in the south-west of Paris obtained by the TerraSAR-X
spaceborn sensor - DLR. From left to right : noisy SLC SAR image and its denoised
version using a gaussian kernel, the Lee �lter or NL-SAR algorithm.
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R1 = V 1



µ1

�
µd1

σ2
n

�
σ2
n


V H

1 , R1 = V 2
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ν2

�
νd2

σ2
n

�
σ2
n


V H

2

and R12 = V 12



ρ2

�
ρd12

σ2
n

�
σ2
n


V H

12 (7.15)

where V 1, V 2 and V 12 are composed of the eigenvectors of the corresponding matrices,

d1, d2 and d12 are the number of signi�cant eigenvalues; {µn}1≤n≤d1 , {νn}1≤n≤d1 and

{ρn}1≤n≤d1 , the corresponding eigenvalues. σ2
n is the additive noise power. Now, let's

look at the simple example where R̂1 and R̂2 follow very similar distributions except

for the last subspace. Here d1 = d2 = d12 = d and

[
V 1

]H
k

[
V 2

]
k

=

1 if k 6= d

0 otherwise
and µk = νk = ρk if k 6= d (7.16)

The last assumption states that all the eigenvectors of V 1 and V 2 are the same except

for the dth ones that are orthogonal. Then the GLR under Wishart distribution for the

empirical covariance matrices as de�ned in (7.8) is:

LG(R̂1, R̂2) =
|R̂1|L|R̂2|L

|12
(
R̂1 + R̂2

)
|2L

=
d−1∏
i=1

µLi ν
L
i(µi+νi

2

)2L(24σ2
n

µdνd

)2L

(7.17)

As the noise power is generally at least 2 or 3 dB lower than the scatterers power and
µiνi(
µi+νi

2

)2 ≤ 1, LG is expected to be smaller than 1. Depending on the ratio 24σ2
n

µdνd
, LG

may be very low. Now if the dth columns of V 1 and V 2 are di�erent but not orthogonal,

the previous equation becomes:

LG(R̂1, R̂2) =
|R̂1|L|R̂2|L

|12
(
R̂1 + R̂2

)
|2L

=

d−1∏
i=1

µLi ν
L
i(µi+νi

2

)2L 24L

(
24σ2

nµdνd
ρdρd+1

)2L

(7.18)
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The ratio µdνd
ρ2d

is also smaller than 1 through Weyl's Inequalities (see below). Again the

ratio 24Lσ2
n

ρ2d+1
may be very low. The more acquisitions, the more likely the back-scattering

signals are to di�er and the more probable it becomes to �nd dissimilar subspaces.

Property 7.1 Weyl's Inequalities

LetM , N and P ∈ CN with at least two of them being Hermitian andM+N = P . Let{
µn
}

1≤n≤N ,
{
νn
}

1≤n≤N and
{
ρn
}

1≤n≤N be their respective eigenvalues in decreasing

order, then for all i = 1, · · · , N :

µi + νN ≤ ρi ≤ µi + ν1 and µN + νi ≤ ρi ≤ µ1 + νi

If the matrices are also positive de�nite then:

∀i = 1, · · · , N, µi < ρi and νi < ρi

It is also noticeable that the orthogonality example is not a theoretic con�guration

in urban areas. Indeed, let's consider two signals with only one strong contribution.

Their covariance matrices are then:

R1 = µa(h1)aH1 + σ2
nIN

R2 = νa(h2)aH1 + σ2
nIN (7.19)

where h1 and h2 stand for the elevation of the scatterer of the �rst and second pixel.

The signal subspaces are orthogonal if:

N∑
i=1

a(h1)Ha(h2) =

N∑
i=1

exp
(
− jξi(h1 − h2)

)
= 0 (7.20)

When the baselines are uniformly distributed with a sampling distance ∆b, the last

condition is veri�ed if ∆h = λR
2∆bN . For the TerraSAR-X sensors, this corresponds to a

di�erence in elevation of 5m or equivalently 3m variation with respect to the vertical

axis. For very bright scatterers with high backscattering power, this implies that they

should be seen as more dissimilar than a bright point versus pure noise. This overly

discriminative power may be softened by adapting the scale parameter and/or applying

a stronger smoothing when estimating the empirical covariance matrices. Moreover,

when the number of channels is high, empirical covariance matrices need to be estimated

with a lot of samples or need to be shrinked to ensure having non singular matrices.

Then, due to the reduction of the pre-estimation quality, it is harder to di�erentiate

neighboring pixels. Large scale and smoothing parameters tend also to make the bias

reduction parameter closer to 1 resulting in an output image closer to the input one.

Examples of denoising in a dense urban scenario and the similarity maps correspond-

ing to the GLR under Whishart distribution are presented for increasing numbers of
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Figure 7.3 � Deterioration of the denoising power of NL-SAR for an increasing number
of images. From top left to bottom right the number of channels is 2, 4, 6, 8, 10 and
12.

images in Fig. 7.3 and 7.4.

Non-local approaches and specially NL-SAR algorithm are nevertheless still of in-

terest for SAR tomography. It has proven to improve the tomographic estimation for

distributed 3-D backscattering mechanisms such as forest or ice landscapes (Aghababaee

et al., 2017). It has also been used successfully for small sets of data of hybrid areas

(D'Hondt. and Al., 2017) (D'Hondt et al., 2018). Few strategies have been proposed to

extend its good performances to high number of channels. A recently proposed approach

is to perform the denoising for each pair of interferometric images and then reconstruct

the covariance matrix (Shi et al., 2018). This however does not guaranty a coherent

estimation of the weights between pairs or to take into account long-term variation of

the data.
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Figure 7.4 � Deterioration of the discriminative power of the GLR for increasing number
of images. From top left to bottom right the number of channels is 2, 4, 6, 8, 10 and
12. On top the amplitude image and one interferogram. The central pixel in red in the
amplitude image is compared to the rest of the window.
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image SAR

Figure 7.5 � Selection of similar pixels for SAR tomography should be based on scatterers
location and re�ectivity. In this example, pixels in the window of the same color should
be seen as similar as they present the same mixture of scatterers: same height and same
buildings.
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7.4 Proposed PS and background based similarity

For SAR tomography, the interferometric phase is the most important information to

retrieve. The similarity could then be improved in focusing more on the scatterers

geometric distribution inside the SAR pixels as illustrated in Fig. 7.5. In urban areas,

most of the usable information is carried by the PS that stay highly coherent between

the acquisitions. A new similarity function could then be based on the conditional

or hybrid model to have an explicit information of the strong scatterers in the pixels

distribution. This contribution was presented in (Rambour et al., 2017). Under hybrid

model, the pixel v follows an non-centered N dimensional circular Gaussian distribution:

p (v |R,h,u) =
1

πN |R|
exp

[
−
(
v −A(h)u

)H
R−1

(
v −A(h)u

)]
(7.21)

To determine if two pixels v1 and v2 are similar or not based on their PS like

scatterers, we adopt an iterative approach where we jointly extract their PS components,

update the mean and covariance of their distribution and test if they are likely to share

the same distribution or not. Rather than testing the equality of height and re�ectivity

of the targets the similarity is based on their likelihood as in equation (7.8). The

extraction of the main components of the signal is done using the M-RELAX (Li and

Stoica, 1996) scheme to solve the following non-linear least squares:

(
û, z

)
= argmin

(u,z)
||v −A(z)u||2

R−1 (7.22)

The proposed algorithm iteratively estimates the main signal components from the

empirical covariance matrix of the two pixels v1 and v2. The extracted targets are

compared with the ones of the mixed pixel v12 = 1
2

(
v1 + v2

)
to compute the similarity.

After the �rst iteration of the algorithm, the �rst components from R̂1, R̂2 and

R̂12 = 1
2

(
R̂1 + R̂2

)
are extracted, respectively (û

(1)
1 , ẑ

(1)
1 ), (û

(1)
2 , ẑ

(1)
2 ) and (û

(1)
12 , ẑ

(1)
12 ).

The estimation of the empirical covariance matrices of v1 and v2 can then be updated

as in the algorithm M-RELAX :

v̂i
(1) = vi − û(1)

i a(ẑ
(1)
i ) (7.23)

R̂
(1)
i =

1

L

L∑
l=1

v̄
(1)
il
v̄

(1)H

il
for i = {1, 2}. (7.24)

Then, extracted scatterers similarity is derived from the following hypotheses:H
(1)
0 : u

(1)
1 = u

(1)
2 = u

(1)
12 and z

(1)
1 = z

(1)
2 = z

(1)
12

H(1)
1 : u

(1)
1 6= u

(1)
2 or z

(1)
1 6= z

(1)
2

(7.25)
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and the corresponding likelihood ratio :

L(1) =
p(v1,v2|H0,R

(1)
12 , u

(1)
12 , z

(1)
12 )

p(v1,v2|H1,R
(1)
1 , u

(1)
1 , z

(1)
1 ,R

(1)
2 , u

(1)
2 , z

(1)
2 )

(7.26)

The log of the generalized likelihood ratio test is computed by injecting the parameters

values in (7.26) and takes the following form:

logL(1)
G = log

|R(1)
1 ||R̂

(1)|

|R̂(1)
12 |2

+ ||v1 − a(ẑ
(1)
1 )û

(1)
1 ||

2

R̂
−1
1

+ ||v2 − a(ẑ
(1)
2 )û

(1)
2 ||

2

R̂
−1
2

− ||v1 − a(ẑ
(1)
12 )û

(1)
12 ||

2

R̂
−1
12

− ||v2 − a(ẑ
(1)
12 )û

(1)
12 ||

2

R̂
−1
12

(7.27)

where ||x||2M = xHMx. The procedure can be repeated for all the scatterers contained

in the tested pixels, e.g for the kth iteration the following hypothesis are tested:H
(k)
0 : u

(k)
1 = u

(k)
2 = u

(k)
12 and z

(k)
1 = z

(k)
2 = z

(k)
12

H(k)
1 : u

(k)
1 6= u

(k)
2 or z

(k)
1 6= z

(k)
2

where the covariance matrix, the altitudes and amplitudes are updated at each iteration.

As just a few strong scatterers are expected to be present in each pixel, only three targets

are tested for each pixel. The similarity criterion is then given by the sum of all the log

likelihood ratio :

L =
∑
k

logL(k)
G (7.28)

This ensures to take into account the similarity between all the di�erent contributions

and avoids to have any parameter to tune. Through the algorithm iterations and the

parameters updates, di�erent decompositions of the signal into stable strong scatterers

and residual are jointly tested. Moreover as the �rst contributions are several magnitude

higher than the following ones, the value of L is conditioned by the �rst elements in

the sum in (7.28). Examples of similarity map are presented in Fig. 7.6 and 7.7. The

similarity of the central pixel with the rest of the window is drawn using the Wishart

GLR and the proposed similarity. The window has a size 120x120 and the 2000 most

similar pixels are overlaid on the amplitude image. The number of images here is 20 and

5 iterations are done. In Fig. 7.6 the observed scene corresponds to a skyscraper (the

Keller Tower) next to a shadow area. Similar points should then correspond to part of

the building at the same altitude as the central pixel. The Wishart GLR doesn't manage

to well select the pixels containing iso-height scatterers whereas the proposed similarity

detect the correct samples on the building. More important, the shadow area is clearly

seen as dissimilar as the building which is not the case with Wishart GLR. In Fig. 7.7,
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the observed buildings are lower and closer to each others. In this example, the Wishart

GLR manages to select points corresponding to buildings but the similarity image does

not show a lot of contrast. The proposed similarity presents a more structured selection

with a clear preference for walls. The selected points are roughly concentrated at the

same height as the central pixel. Finally, the discriminative power of the proposed

similarity is robust to an increasing number of images. This point is illustrated in Fig.

7.8 on the Keller Tower and 7.9 on dense smaller buildings for tomographic stacks of

size 10, 20, 30 and 40.

7.5 Limits of Non Local approaches for urban tomography

Although we have shown that the similarity used for non-local selection can be improved,

this approach still presents drawbacks for SAR tomography over urban areas. Firstly,

the proposed similarity function is time consuming and can then hardly be consider for

a non local approach. Secondly, the current debiasing step can lead to singular matrix

specially for big dimensions which may completely distort the tomographic estimations.

The max operator used in the debiasing step of NL-SAR could thus be changed to

a less radical one for big dimensions. Moreover, even for dense urban areas, no clear

bene�t can be notice using a kernel based on the similarity as illustrated in the Fig.

7.10. Finally, for dense urban areas, �nding enough pixels containing exactly the same

distribution of scatterers may become impossible for a high number of SAR images. All

these considerations can be seen as the classical chicken or the egg problem. Indeed to

�nd the most similar samples, one needs to estimate its components. The current non-

local approaches for SAR tomography lead then to this mildly unsatisfying conclusion:

the more data, the harder it is to restore them.

Rather than trying to di�erentiate pixels based on their content to re�ne their

components estimation, a straight forward backprojection with priors on the results

should give a simpler and more e�cient framework. The good results obtained with

CS for urban areas are in favor of this strategy. In the next part this option is studied

along with the di�culty to add structural priors on results obtained in a RADAR

con�guration.
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Figure 7.6 � Comparison of the selective power of the proposed similarity and the
Wishart GLR. On top the amplitude image and one interferogram. The central pixel
indicated in red in the amplitude image is compared to the rest of the window. On
the middle the similarity map obtained with Wishart GLR and the 2000 most similar
pixels. On the bottom the similarity map obtained with the proposed method and the
2000 most similar pixels.
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Figure 7.7 � Comparison of the selective power of the proposed similarity and the
Wishart GLR. On top the amplitude image and one interferogram. The central pixel
indicated in red in the amplitude image is compared to the rest of the window. On
the middle the similarity map obtained with Wishart GLR and the 2000 most similar
pixels. On the bottom the similarity map obtained with the proposed method and the
2000 most similar pixels.
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Figure 7.8 � Comparison of the selective power of the proposed similarity for increasing
number of SAR images in the tomographic pile. From top left to bottom right the
number of images is N = 10, 20, 30, 40. The selection of the pixels is robust to the
increasing size of the images stack: most of the selected pixels are located at the same
height and on the same building.
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Figure 7.9 � Comparison of the selective power of the proposed similarity for increasing
number of SAR images in the tomographic pile for a pixel of dense buildings. From top
left to bottom right the number of images is N = 10, 20, 30, 40. The selection of the
pixels is robust to the increasing size of the images stack: most of the selected pixels
are located at the same height and on the same building.
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Figure 7.10 � Comparison of the tomographic reconstruction for one pro�le of consisting
of dense buildings. The top row has been obtained using a gausscar kernel whereas the
bottom one weighted the samples using the proposed similarity criterion. On the left
the results correspond to the MUSIC-PS and on the right to the discrete MUSIC with
3 scatterers for each cell. The ground truth is shown in green.
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Chapter 8

Tomographic inversion with spatial

regularization

The presented work in this chapter comes mostly from (Rambour et al., 2018a). Some

detailed were added in the optimization section.

In order to enforce some spatial smoothness, the tomographic inversion has to be

performed globally in ground coordinates. Rather than considering the collection of

measurements at a given radar pixel, from now on the notations u ∈ CNx.Ny .Nz and

v ∈ CNx.Nr.N will respectively refer to column vectors obtained by stacking all the

values in the 3-D volume, and all the values in the tomographic stack of SAR images.

Nx, Ny and Nz are the number of voxels in each direction in ground geometry while Nr

is the size of SAR images in the range direction and N is the number of images in the

tomographic stack. The linear operator Φ ∈ C(Nx.Nr.N)×(Nx.Ny .Nz) maps the volume of

complex re�ectivities in 3-D space to the complex amplitudes in the tomographic stack

of SAR images, see Fig 8.1. An element of Φ is de�ned as:

Φi,j =


exp(−jϕ) if xi = xj and

ri − δr
2 < ρ1;yj ,zj < ri + δr

2 ,

0 otherwise.

(8.1)

with ϕ = ξih(yj , zj) the phase shift due to the path between voxel j with coordinates

(xj , yj , zj) and antenna i. As in the previous equations, ρ1;yj ,zj corresponds to the

distance between antenna 1 (of the master image) and the point with ground coordinates

(yj , zj). The size of a radar pixel in the range direction is noted δr.

The construction of the matrix Φ is illustrated on Fig. 8.2 and Φ is sparse: only a

few entries are di�erent from zero, so that products of the form Φu can be computed

e�ciently.

The observed SAR tomographic stack v can be modeled by the following (complex-

valued) linear model:

v = Φu+ ε (8.2)
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Figure 8.1 � The operator Φ performs the projection of the voxels from the 3-D scene
in ground geometry on the SAR tomographic stack.

Figure 8.2 � Construction of the matrix Φ. The radar cell associated to each position
of the 3-D scene is computed as well as the phase term corresponding to the distance
between a point in the 3-D space and a given antenna.

where ε stands for the noise. This corresponds to a generalization of the tomographic

direct model (4.1) where we additionally consider the geometric transformation from

ground geometry to SAR geometry and model at once the measurements for all the

pixels. In order to invert this tomographic model, it is necessary to introduce some

regularization terms.

8.1 Ground base spatial priors for SAR tomography

It is often desired to reconstruct volumes with a discretization in heights that is �ner

than the resolution given by the synthetic aperture in the height direction (i.e., super-

resolution). The inversion of equation (8.2) is therefore ill-posed (more unknowns than

measurements) and requires some regularization. In the following, we denote R the

regularization function. Since the intrinsic phase of a scatterer is typically modeled
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as uniformly distributed and independent from one scatterer to another, no speci�c

regularization can be enforced on the phase of our unknown complex re�ectivities u. We

de�ne the regularization R as a function of the modulus of u only. The reconstruction

of the volume of complex re�ectivities û is thus obtained by solving an optimization

problem of the general form:

û = arg min
u

1

2
||Φu− v||22 +R(|u|) (8.3)

To design the regularization function R, we need to select a function that favors

volumes of re�ectivities |u| that are often present in urban environments. Many di�erent

such functions could be considered, we selected a function based on the two following

remarks:

� The 3-D scene can be represented as a sparse volume. Indeed a good reconstruc-

tion should retrieve only the illuminated part of the buildings and of the ground.

The estimated volume is then mostly �lled with zero intensity voxels.

� The illuminated structures are spatially smooth (continuous surfaces: frontages,

rooftops, ground).

These remarks suggest the following regularization function:

∀w ∈ RNx.Ny .Nz , R(w) =
µx
2
‖Dxw‖22 +

µy
2
‖Dyw‖22

+
µz
2
‖Dzw‖22 + µ`1‖w‖1 (8.4)

where the matrices Dx, Dy and Dz stand for the �nite di�erences operators in the x,

y and z directions, and parameters µx, µy, µz and µ`1 weight each term. The `1 norm

favors vectors w with many zeros while the terms with the �nite di�erence operators

enforce a spatial smoothness. As µ`1 controls the sparsity of the reconstructed volume,

it plays a crucial role.

In urban environments, dihedral and trihedral structures produce very strong echoes.

When only an `1 norm is minimized, it is hard to reconstruct at the same time very

strong scatterers and weaker scatterers on the ground or rooftops. The role of the

�rst three terms is thus to favor spatial smoothness and hence preserve these scatterers

whenever they are close to other scatterers. In urban areas most of the buildings are

expected to show straight walls along the z direction. Of course the true orientation of

the objects is a priori unknown and it is most likely that they may not always follow the

x and y directions. However, when the horizontal smoothing is small compared to the

power of the scatterers, the only major cost is to introduce some thickness in vertical

objects with the bene�t to ensure a global reduction of isolated outliers and retrieve

part of �at areas with a lower intensity. When reconstructing images of urban areas, we

were unable to �nd a value of the sparsity parameter µ`1 that would both preserve the

weakest scatterers and successfully suppress side-lobes in areas with strong scatterers.

To improve the reconstructions, we introduced a spatially variant regularization based
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Figure 8.3 � Illustration of the non-convexity of spatial regularizations expressed on the
modulus of the complex re�ectivities.

on the square-root of the estimated intensity of the master image which can be obtained

using a denoising algorithm such as NL-SAR (Deledalle et al., 2015) or simply using

the average intensity depending of the con�guration of the acquisitions. We de�ne

the diagonal matrix D`1 whose j-th diagonal entry is equal to the square-root of the

estimated intensity at the corresponding azimuth and range coordinates (i.e., such that

the range r veri�es r− δr
2 < ρ1;yj ,zj < r+ δr

2 ). The equation (8.4) is then modi�ed into:

∀w ∈ RNx.Ny .Nz , R(w) =
µx
2
‖Dxw‖22 +

µy
2
‖Dyw‖22

+
µz
2
‖Dzw‖22 + µ`11

TD`1w (8.5)

where 1 is the vector of size Nx.Ny.Nz with each entry equal to 1.

8.2 Optimization algorithm

The minimization problem (8.3) is not easy. It is indeed large scale (millions up to

several billions unknowns) and non-convex. The non-convexity is illustrated in a simple

case where the vector u has only two elements in Fig. 8.3: the spatial smoothness

favors vectors such that the modulus of each entry is close. Since the regularization is

independent on the phase, the minimum (for a �xed value of u1) corresponds to a set

of complex values with equal modulus (the white circle drawn on Fig. 8.3).
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We have to use an algorithm that can deal with the non-convexity of the problem.

To solve the minimization problem (8.3), we use a variable splitting approach in order

to break down the problem into a sequence of simpler problems. We introduce two new

vectors: f (complex-valued: f ∈ C(Nx.Ny .Nz)) and w (real-valued and non-negative:

w ∈ R+(Nx.Ny .Nz)). Problem (8.3) is formally equivalent to the following constrained

problem:

û = arg min
u

1

2
‖Φu− v‖22 +R(w) (8.6)

s.t.

u = f

|f | = w

Di�erent methods could be consider to �nd a solution of (8.7). The Lagrangian dual

ascent for instance would be one them if it was for the non-convexity introduced by the

modulus. To insure convergence we then look at algorithms exploiting the augmented

Lagrangian of the previous problem:

L(u,f ,w,d1,d2) =
1

2
||Φu− v||22 +

β1

2
||f − u+ d1||22

+
β2

2

∥∥w − |f |+ d2

∥∥2

2
+R(w) (8.7)

where d1 ∈ C(Nx.Ny .Nz) and d2 ∈ R(Nx.Ny .Nz) are the scaled dual variables and β1 and β2

are penalty parameters (relevant only to the optimization method, i.e., impacting the

convergence). Alternating Direction Method of Multipliers (ADMM) is a well known

augmented Lagrangian method. It backs from works in the 1970s (Glowinski, R., Mar-

roco, A., 1975)(gab, 1976) and is very close to other dual decomposition algorithms

such as the Lagrangian Methods of Multipliers (LMM) (Bertsekas, 2014), the Douglas-

Rachford splittings (Douglas and Rachford, 1956), Dykstra's alternating projections

(Boyle and Dykstra, 1986) or Bregman iterative algorithm for `1 minimization prob-

lems (Yin et al., 2008). ADMM is based on the LMM algorithm which for the current

problem consists in the following iterations:

(
u(k+1),f (k+1),w(k+1)

)
= argmin

u,f ,w
L(u,f ,w,d

(k)
1 ,d

(k)
2 ) (8.8)

d
(k+1)
1 = d

(k)
1 +

β1

2

(
f (k+1) − u(k+1)

)
(8.9)

d
(k+1)
2 = d

(k)
2 +

β2

2

(
w(k+1) − |f (k+1)|

)
(8.10)

Minimizing the augmented Lagrangian jointly with respect to u,f , and w may be

hard to achieve. The ADMM solves the last problem by taking advantages of the dual

decomposition and optimizes sequentially the primal variables. For the given problem,
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the algorithm is described by iterating the following steps:

u(k+1) = argmin
u

1

2
||Φu− v(k)||22 +

β1

2
||f (k) − u+ d

(k)
1 ||

2
2 (8.11)

d
(k+1)
1 = d

(k)
1 +

β1

2

(
f (k) − u(k+1)

)
(8.12)

f (k+1) = argmin
f

β1

2
||f − u(k+1) + d

(k+1)
1 ||22 +

β2

2
||w(k) − |f |+ d(k)

2 ||
2
2 (8.13)

d
(k+1)
2 = d

(k)
2 +

β2

2

(
w(k) − |f (k+1)|

)
(8.14)

w(k+1) = argmin
w

β2

2
||w − |f (k+1)|+ d(k+1)

2 ||22 +R(w) (8.15)

(8.16)

Di�erent convergence proofs of ADMM exist in the litterature. From (Boyd et al., 2011),

the convergence of LMM and ADMM is guaranteed under the following two hypothesis:

� The objective functions are closed, proper and convex

� The unaugmented Lagrangian L0 has a saddle point:

L0(u,f ,w,γ
1
,γ2) =

1

2
||Φu− v||22 +R(w)

+ γH
1

(
u− f

)
+ γH2

(
|f | −w

)
(8.17)

with γ
1
and γ2 the unscale dual variable.

These conditions are very general and allow to use these algorithms for many applica-

tions. An other strength of these approaches is that they converge even if the minimiza-

tion steps are inexact. In our case, the convexity assumption is not satis�ed so LMM

and ADMM can only insure local convergence and the obtained solution may depend

on the initialization.

To solve this constrained optimization problem, we apply a variation of the precedent

methods described in (Mourya et al., 2015) and minimize jointly on the variables u and

w while f is substituted with its optimal value f∗(u,w):

f∗ = arg min
f

β1

2
||f − u+ d1||22 +

β2

2

∥∥w − |f |+ d2

∥∥2

2
(8.18)

=

[
β1 · |u− d1|+ β2 · (w + d2)

β1 + β2

]+

exp
[
j · arg

(
u− d1

)]
(8.19)

where .+ is the identity on [0,+∞[ and is the constant null function on ]−∞, 0[.

Proof: The second term in (8.18) only depends on the modulus of f . The phase of

f∗ is then driven by the �rst term and must be chosen equal to that of u − d1 so as

to minimize the cost function. There remains to estimate the modulus of f∗ which is a
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solution of a 1-D quadratic problem

arg min
ρ≥0

β1

2
||ρ− |u+ d1|||22 +

β2

2

∥∥w − ρ+ d2

∥∥2

2
(8.20)

ρ is either given by the unconstrained solution:

ρ∗ = (β1 · |u− d1|+ β2 · (w + d2))/(β1 + β2),

or ρ = 0. The optimal value of ρ and of the phase together lead to the expression (8.19).

�

This leads to the following algorithm which alternates between the joint minimiza-

tion with respect to variables u and w, and the update of dual variables.

Algorithm Tomographic SAR 3-D Inversion

Input: v (stack of SLC SAR images)
Output: û (3-D cube of complex re�ectivities)

Initialization :
1: d̂1 ← 0
2: d̂2 ← 0
3: while not converged do
4: {û, ŵ} ← approximate_min(v, d̂1, d̂2, û, ŵ)
5: d̂2 ← d̂2 + ŵ − |f∗(û, ŵ)|
6: d̂1 ← d̂1 + f∗(û, ŵ)− û
7: end while
8: return û

Compared to ADMM , this hierarchical approach has been shown in (Mourya et

al., 2015) to converge faster and to be less sensitive to the tuning of the optimization

parameters β1 and β2; moreover, we improve the convergence by constraining w to be

positive, such a constraint would be costly to enforce with ADMM .

After replacing f by its optimal value f∗(u,w) and constraining w to be positive,

the objective function is di�erentiable (since w ≥ 0, ‖w‖1 = 1Tw, which is di�eren-

tiable; moreover, after substituting f by the optimal value f∗ in the quadratic terms, the

cost function becomes smooth, see (Mourya et al., 2015)). The cost function can thus

be minimized using a limited memory quasi-Newton algorithm that handles positivity

constraints, such as L-BFGS-B (Zhu et al., 1997), or the slightly more e�cient algorithm

VMLM-B (Thiébaut, 2002) that we used, with Eric Thiébaut's freely available imple-

mentation1. The minimization step described in Procedure approximate_min does not

need to be performed up to a high precision. A few (e.g., ten) iterations of the quasi-

Newton algorithm are su�cient since the algorithm is warm-restarted. In the de�nition

of the gradient of the cost function (lines 2 to 4 of Procedure approximate_min), we

used the fact that ∂C
∂[f∗]i

∂[f∗]i
∂[u]j

= ∂C
∂[f∗]i

∂[f∗]i
∂[w]k

= 0 for all i, j, k, even though f∗ depends

on variables u and w, by applying the chain rule and noting that ∂C
∂[f∗]i

= 0 for all i.

1https://github.com/emmt/OptimPackLegacy

https://github.com/emmt/OptimPackLegacy


92
CHAPTER 8. TOMOGRAPHIC INVERSION WITH SPATIAL

REGULARIZATION

Procedure approximate_min

Input: v (stack of SLC SAR images)
Input: d̂1 (vector of dual variables)
Input: d̂2 (vector of dual variables)
Input: û (current vector of primal variables)
Input: ŵ (current vector of primal variables)
Output: {û, ŵ} (approximate solution)

1: C (v, d̂1, d̂2, û, ŵ) = 1
2 ||Φu− v||

2
2 +R(w) +β1

2 ||f
∗(u,w)− u+ d̂1||22 + β2

2

∥∥w −
|f∗(u,w)|+ d̂2

∥∥2

2
,

2: ∇uC = ΦH(Φu− v) + β1(u− f∗(u,w)− d̂1)

3: ∇wC = (µxD
T
xDx + µyD

T
yDy + µzD

T
zDz)w + µ`11

+β2(w − f∗(u,w) + d̂2) .

4: ∇C (v, d̂1, d̂2, û, ŵ) =

(
∇uC
∇wC

)
,

Call quasi-Newton minimization algorithm :
5: {û, ŵ} ← quasi_Newton

[
C (v, d̂1, d̂2, û, ŵ),

∇C (v, d̂1, d̂2, û, ŵ),
constraint: ŵ ≥ 0

]

The necessary condition for f∗ being a minimizer of the augmented Lagrangian is then

respected. As the function we want to minimize is non-convex, only the convergence to

a local minimum can be expected. In practice the algorithm can then be stopped after

a �xed number of iterations (around 60) or when the distance between two iterations

falls below a given threshold.

The priors proposed in this section are designed to be simple and to lead to a

function R that is easy to optimize. In the following experiments, the relevance of this

method is shown by comparing to other state of the art estimators on simulated and

real data. The proposed framework is very general and can easily be adapted to include

other spatial regularizations expressed in ground coordinates.

8.3 In�uence of the di�erent parameters

To study the in�uence of each regularization parameter, we performed di�erent recon-

structions of the Reg scene for various combinations of regularization values (in particu-

lar, with one parameter chosen so as to illustrate the e�ect of either under-regularization

or over-regularization). In these expreriments, the phase noise is not present to show

clearly the structural in�uence of the spatial smoothing. The results are presented in

�gures 8.4, 8.5, 8.6 and 8.7. On this well-sampled scene with a good spatial resolution,

the parameter with the largest in�uence is µ`1 , associated to the sparsity constraint.

Fig. 8.4 illustrates that when µ`1 is too large, there are some holes in the reconstruc-
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tion, while a value of µ`1 that is too small leaves side-lobes and outliers. The e�ect

of over-smoothing (values of µx, µy or µz too large) is to expand the structures in the

direction of the spatial smoothing. This is visible in particular with structures whose

orientation di�ers from that of the smoothing, see in Fig. 8.6 the widening of the wall

due to excessive smoothing in the horizontal direction. The same e�ect appears on the

rooftop in Fig. 8.7. Insu�cient smoothing translates into residual �uctuations (i.e.,

large variance) that are reduced by increasing spatial smoothing, see in particular the

corner between the roof and the wall, or the ground and the wall in Fig. 8.6 and 8.7.

Outliers located far from the actual surfaces can also be observed when the spatial

regularization is too weak.

By combining sparsity and spatial smoothness constraints, our algorithm is very

�exible and applicable to the reconstruction of di�erent kinds of areas. The downside

of this �exibility is the necessity to tune four regularization parameters. In numerical

simulations, the ground-truth can be used to select the set of regularization parame-

ters {µx, µy, µz, µ`1} that o�ers the best performance, as measured by the Minimum

Accuracy / Completeness Trade-o� (MACT) (MACT) minA(P̂û,t∗ ,P)2 +C(P̂û,t∗ ,P)2.

The regularization parameters can then be tuned in order to reach the best possible

trade-o�. We recommend performing this tuning by order of importance: µ`1 , then µz,

then µx and µy. While tuning the sparsity parameter, the other smoothing parameters

should be put to 0.

Derivative-free methods can also be used to set all the parameters at once. We

compared the described alternating minimization strategy with Nelder-Mead's simplex

method by initializing with di�erent set of parameters and found similar values for the

best accuracy/completeness trade-o�. The di�erences for µ`1 is of 21% and below 14%

for the smoothing parameters. In the absence of ground truth, a simple numerical sim-

ulation using the same geometrical con�guration and SNR can be generated in order to

automatically tune the parameters. If a simulated scene is not an option, the alternat-

ing minimization strategy can still be applied in an interactive fashion: the user tunes

each parameter, by order of importance, in order to reach a satisfying reconstruction.

To further illustrate the behavior of our algorithm with respect to its regulariza-

tion parameters, we plotted accuracy as a function of completeness for di�erent sets of

parameters. These curves are drawn for our two simulation cases Reg and TSX respec-

tively in Fig. 8.8 and 8.9. We observe that the best accuracy / completeness trade-o�

(point of the curve closest to the origin of the axes) is reached for a unique set of

parameters that can thus be found for example by binary search.

The optimization parameters β1 and β2 have an impact on the convergence speed.

We found that, when starting from a volume initialized at zero, using large penalty

parameters β1 and β2 produces very quickly a sparse reconstruction while lower con-

trasted structures are correctly reconstructed after many more iterations. Smaller val-

ues of the parameters help to reconstruct those structures, at the cost of a slower

convergence (i.e., sidelobes suppression) in the brightest areas. Penalty parame-

ters β1 and β2 can be set according to methods described in (Boyd et al., 2011;
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Figure 8.4 � In�uence of the parsimony
µ`1 parameter. In (a) the parameter is
way above its optimal value resulting
in a lot of holes in the structure. In (b)
we use a small value of µ`1 resulting in
a high number of outliers.
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Figure 8.5 � In�uence of the µx param-
eter. In (a) the parameter is way above
its optimal value. In (b) the value of
the parameter is set to zero.
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Figure 8.6 � In�uence of the µy param-
eter. In (a) the parameter is way above
its optimal value. In (b) the value of
the parameter is set to zero.
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Figure 8.7 � In�uence of the µz param-
eter. In (a) the parameter is way above
its optimal value. In (b) the value of
the parameter is set to zero.
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Figure 8.8 � Study of the in�uence of each parameter on the metrics for the Reg scene
(cf. Fig. 6.1 (a)). The plots in (a), (b), (c) and (d) correspond respectively to di�erent
values of µ`1 , µx, µy and µz with the three other parameters being �xed.

He et al., 2000). Here, we �xed those parameters to 10 after having tested di�erent

values.

8.4 Comparison with other tomographic estimators

8.4.1 Simulated Data

The �gures 8.10, 8.11, 8.12 and 8.13 give the 3-D reconstructions obtained using sev-

eral state-of-the-art tomographic reconstruction methods and our spatially regularized

approach: (a) classical beamforming, (b) Capon beamforming, (c) the parametric es-

timators MUSIC, (d) Compressed Sensing, and (e) our algorithm. The corresponding

curves of accuracy as a function of completeness are presented in �gure 8.14 for the two

scenes.

In the easy case where the antennas are uniformly distributed, classical beamforming

presents good performances with respect to the accuracy-completeness metrics, achiev-

ing a smaller error than Capon beamforming or MUSIC. However this method is limited

by its available resolution introducing thickness in the wall. In the TSX case where the

theoretical resolution is worse, very little of the wall is the retrieved, leading to a poor

completeness score. A closer inspection of the TSX reconstructions indicates the pres-

ence of side-lobes (i.e., many outliers).

Both Capon beamforming and MUSIC, which rely on the covariance matrix to
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Figure 8.9 � Study of the in�uence of each parameter on the metrics for the TSX scene
(cf. Fig. 6.1 (b)). The plots in (a), (b), (c) and (d) correspond respectively to di�erent
values of µ`1 , µx, µy and µz with the three other parameters being �xed.

achieve super resolution, manage to suppress most of the outliers. However, the av-

eraging introduced for the covariance matrix estimation produces an extension of the

ground and walls. For the Reg case, this explains the bounded accuracy scores even

when the completeness is poor. Capon beamforming manages to reduce the side lobes

in the Reg case but not in the TSX simulation where the irregular sampling produces

dramatic biasing e�ects on the estimation of the position of the scatterers.

In the TSX scene, the best accuracy / completeness trade-o� from the MUSIC

pseudo-spectra corresponds to a sparse scene with no outliers. However the bias present

in the estimation of the covariance matrix strongly deforms the wall and introduces some

fake discontinuities.

All the spectral estimators presented (classical beamforming, Capon beamforming

and MUSIC) su�er from the averaging step needed to estimate the covariance matrix,

which produces noticeably distorted walls and/or rooftop in the TSX reconstruction,

and an expansion of the rooftop and a corresponding reduction of the ground in the

Reg case.

As expected, CS is one of the top estimators in accuracy and often manages to

achieve the most accurate representations. However, the precision comes with the cost

of a loss of information which explains the relatively bad scores in completeness.

The proposed 3-D inversion algorithm shows improved performances compared to

the CS approach. Some outliers that were present even when imposing an `1 penalty
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are suppressed thanks to the spatial smoothness prior.

The tuning of the parameter in the simulated experiences has been done by exploit-

ing the knowledge of the scene. Of course, when dealing with real data, this informa-

tion is not available. Then, to test if the proposed method is able to exhibit better

performances when the tuning of the parameter is not ideal, the model parameter are

modi�ed with increasing perturbation values. The results are shown in the table 8.1.

Up to an isotropic perturbation of 50, the proposed method still shows a better Min-

imum Accuracy-Completeness Tradeo� (MACT) than the other tested methods. An

other concern is whether the parameters need to be adapted to the scatterers power.

Real-data experiments conducted over a very heterogeneous scene indicate that the re-

construction doesn't present artifacts due to excessive smoothing in some areas. To

con�rm this observation with a controlled experiment, reconstruction scores of the TSX

scene with random scatterers amplitude are also tested. The amplitudes were chosen

randomly for each azimuth in a given range. The di�erent experiments correspond in-

creasing ranges. The results of the experiments are shown in table 8.2. The proposed

method still performs better, even when the amplitudes of the scatterers varies by 3

orders of magnitude and the regularization parameters are kept constant.

Estimator MACT

Beamforming 0.96
Capon Beamforming 0.98
MUSIC 0.66
CS 0.71
3-D inversion (µ∗) 0.57
3-D inversion (µ∗ − 50%) 0.62
3-D inversion (µ∗ − 100%) 0.62
3-D inversion (µ∗ + 50%) 0.59
3-D inversion (µ∗ + 100%) 0.65
3-D inversion (µ∗ + 200%) 0.74

Table 8.1 � Evolution of the Minimum Accuracy-Completeness Tradeo� (MACT) when
the parameters are getting far from their optimal value µ∗ = {µ∗`1 , µ

∗
x, µ
∗
y, µ
∗
z}. The

smaller the MACT the better.

Estimator/Amplitudes [1, 1] [10-1, 10] [10-2, 102] [10-3, 103]

Beamforming 0.96 1.09 1.10 1.25
Capon Beamforming 0.98 1.35 1.38 1.58

MUSIC 0.66 0.66 0.68 0.69
CS 0.71 0.71 0.72 0.72

3-D inversion 0.57 0.58 0.60 0.60

Table 8.2 � Evolution of the MACT value when the scatterer amplitude is �xed uniformly
for each azimuth. The experience is repeated for increasing amplitude interval size.
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Figure 8.10 � Best representation on the Reg scene using classical beamforming (a),
Capon beamforming (b), MUSIC (c), CS (d) and our tomographic 3D inversion (e).
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Figure 8.11 � Best representation on the Reg scene using classical beamforming (a),
Capon beamforming (b), MUSIC (c), CS (d) and our tomographic 3D inversion (e).
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Figure 8.12 � Best representation on the Reg scene using classical beamforming (a),
Capon beamforming (b), MUSIC (c), CS (d) and our tomographic 3D inversion (e).
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Figure 8.13 � Best representation on the TSX scene using classical beamforming (a),
Capon beamforming (b), MUSIC (c), CS (d) and our tomographic 3D inversion (e).
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Figure 8.14 � Accuracy vs. completeness for classical beamforming, Capon beamform-
ing, MUSIC, Compress Sensing and our 3-D Inversion algorithm. In (a) the evaluation
is done on the Reg scene and in (b) on the TSX scene cf. 6.1.
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8.4.2 Real Data

We now compare our algorithm to other SAR tomographic estimators on a stack of 40

TerraSAR-X images acquired in spotlight mode over the front de Seine in the south-west

of Paris, France. The slant-range resolution is 0.45 m and the azimuth resolution 0.87

m. The observed scene is presented in Fig. 6.3 and 6.4 in 6. The spatial and temporal

baselines are shown in Fig. 6.5. The total spatial baseline span ∆b is more than 775 m

and the total temporal baseline more than 5 years with a large gap of almost two years.

The theoretical resolutions in h and z are given by :

δz = δh sin(θ) =
λr sin(θ)

2∆b
= 6.99m (8.21)

with an incidence angle θ = 0.6 rad and wavelength λ = 0.0311 m. Sparse reconstruc-

tions in urban SAR tomography have been shown to signi�cantly improve this resolution

(Zhu and Bamler, 2010b).

To evaluate the di�erent tomographic estimators we use a rough ground truth of the

scene. The ground truth surface is shown in Fig. 8.152. The big structures such as the

skyscrapers or the tall buildings are well represented by smooth polygons. However, the

vegetation and the small structures on the docks, bridges or streets are not represented.

We therefore performed the evaluation only on some areas where we found the ground

truth to be accurate enough. The results of the evaluation are given in Fig. 8.15.

It is noteworthy that MUSIC performs particularly well on areas containing a lot of

ground surface. In the �rst test, the sub-scene is composed of a mixture of tall buildings,

small structures near the ground level and smooth �at areas (streets and docks). As

the di�use signal back-scattered by �at surfaces is much weaker than the one re�ected

by the dihedral or trihedral structures, it is generally not taken into account by sparse

representations of the scene. CS is then unable to correctly represent ground areas.

Taking more points into account results only in more outliers generally due to the

sidelobes of the brightest points. The averaging step used to estimate the covariance

matrix allows MUSIC to retrieve part of the ground points or to extend the signal

coming from one punctual target close to the ground to neighboring pixels. Unlike the

non-parametric beamforming methods, MUSIC is designed to retrieve a sparse scene

which removes most of the side lobes and outliers. MUSIC is then able to outperform

CS according to our evaluation method that includes scatterers on the ground. On the

second tested area corresponding to the red rectangle in Fig. 8.15, the performances of

MUSIC and CS in terms of accuracy are very similar. MUSIC seems to perform a little

bit better than CS. However, this may be due to its ability to retrieve more points on

the ground. The small di�erence between the two methods and the limited accuracy of

the ground truth makes it di�cult to draw a clear conclusion between the two methods.

In both experiments, the presented algorithm achieves the best scores in term of

accuracy and completeness. Moreover, the analysis of the metrics on real data shows

2Ground truth on Paris complimentary provided by the IGN, France.
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that our method dominates the other approaches for all accuracy/completeness trade-

o�s.

The 3-D plain representation of the scene obtained by our approach is presented in

Fig. 8.18. The heat color is chosen to be proportional to the intensity of the voxels

normalized by the averaged intensity of the corresponding radar cell. This normalization

is used only to help the visualization as the dynamic range of SAR images is very high.

In Fig. 8.19, the same image is shown except that the near zero intensity voxels are

made fully transparent and the ground truth is superimposed. The results obtained

on the same scene with conventional CS are shown in Fig. 8.16 and Fig. 8.17. The

colormap are the same for both representations and are chosen to have the dark blue

color associated with intensities below 10-4 times the maximum voxel amplitude. This

visually sets to zero dark voxels that still have a non-zero intensity as the algorithm may

have not fully converged. An other equivalent way to have a fully sparse representation

of the modulus of the signal is to look directly at the image w as an output of the

algorithm. In the 3-D representation, most of the isolated outliers are suppressed thanks

to the spatial smoothing and the buildings where most of the high re�ectivity voxels are

massed are retrieved. The smoothing denoising however comes with the cost of slightly

blurred scatterers. We can see that most of the very bright buildings present in the SAR

images in Fig. 6.3 are well reconstructed. The two towers that were mostly missing in

the 2D intensity image have a point-like representation but are fairly visible in this 3-D

rendering.

By using the georeferencing of the voxels, we can project the corresponding point

cloud into Google Earth©. The results are presented in Fig. 8.20. This step allows us

to have more details in the visualization of the scene. We can now see that some points

above the Mirabeau Tower are relevant: they correspond to the structure of its rooftop.

Our reconstruction method also correctly identi�ed parts of the structures on the dock

and several buildings hidden behind the Mirabeau tower.
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Figure 8.15 � Accuracy as a function of completeness, computed based on
the ground truth displayed in (a), for the following tomographic estimators:
classical beamforming, Capon beamforming, MUSIC, CS and the proposed 3D
inversion. In (c) the evaluation is done over the area corresponding to the red
rectangle in (b). In (d) the test area is inside the green rectangle.
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(a)
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Figure 8.16 � Visualization of the module of the reconstructed cube (Andriy Fedorov
et al., 2012) from a stack of 40 TerraSAR-X images of Paris (cf. Fig.6.3) using the
conventional CS algorithm.

(a)

(b)

Figure 8.17 � Visualization of the thresholded module of the reconstructed cube (Andriy
Fedorov et al., 2012) using the conventional CS algorithm with the ground truth.
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(a)

(b)

Figure 8.18 � Visualization of the module of the reconstructed cube (Andriy Fedorov
et al., 2012) from a stack of 40 TerraSAR-X images of Paris (cf. Fig.6.3) using the 3D
inversion algorithm.

(a)

(b)

Figure 8.19 � Visualization of the thresholded module of the reconstructed cube (Andriy
Fedorov et al., 2012) super-imposed with the ground truth.
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Figure 8.20 � Visualization of the point cloud obtained from the reconstructed cube and
projected in Google Earth© .



Chapter 9

Segmentation in urban SAR

tomography

The presented work in this chapter comes mostly from (Rambour et al., 2018b). Some

results were added in the experimental part.

9.1 Graph-cut based surface segmentation

Starting from the tomographic reconstruction (a 3-D volume u) obtained with one of

the methods described in the previous chapters (see chapters 4 and 8) we aim to re-

cover the urban surfaces (ground, building facades, roofs). Following a typical approach

in computer vision for surface reconstruction, we formulate the problem as an energy

minimization problem (Kolmogorov et al., 2014). We seek a surface S corresponding

to an elevation map: (x, y) 7→ z = E (x, y) that both �ts well the reconstructed tomo-

graphic volume and that is smooth. We �rst formulate a cost function that captures

these two properties, then we describe an e�cient graph-based algorithm to perform

the minimization of the cost function.

9.1.1 De�nition of the cost function

The �rst component of the cost function favors surfaces that are faithful to the recon-

structed tomographic volume. We seek surfaces such that, when considering a given

ray direction in 3-D space, the scatterer encountered along the ray falls close to the

ray-surface intersection, see Fig. 9.1. The re�ectivity pro�le along the ray may dis-

play several local maxima due to residual sidelobes after the tomographic inversion.

Rather than detecting these maxima and deciding for the most meaningful maximum,

we consider that a satisfying location of the surface is a location such that the re�ectiv-

ity pro�le is split into two well-balanced halves. We de�ne the cumulative re�ectivity

C−(rs) from the antenna to the surface S and the cumulative re�ectivity C+(rs) from
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Figure 9.1 � We seek a surface S that, for each ray, is close the scatterer(s) found along
the ray.

the surface to the maximum range:

C−(rs) =

∫ rs

rmin

|u(r)| dr, (9.1)

C+(rs) =

∫ rmax

rs

|u(r)| dr , (9.2)

where rs is the range of the surface, i.e., the distance from the radar to the surface, in the

direction of the ray. If the surface is such that C−(rs) < C+(rs), then it is too close to

the radar: most of the re�ectivity of the scatterers encountered along the ray is located

beyond the surface. Conversely, if C−(rs) > C+(rs), the surface is too far from the

radar: scatterers accounting for most of the re�ectivity are located before the surface.

The imbalance C−(rs) − C+(rs) is therefore an indication of bad surface localization.

In order to favor surfaces that are located close to the position of equilibrium, we de�ne

the penalty:

D(r) =

∫ r

rmin

[
C−(rs)− C+(rs)

]
+
drs

+

∫ rmax

r

[
C+(rs)− C−(rs)

]
+
drs , (9.3)

where the notation [·]+ denotes the positive part: ∀w, [w]+ = max(w, 0). The term

[C−(rs)− C+(rs)]+ in the �rst integral of equation (9.3) is non-zero only if the distance

rs is larger than the distance of equilibrium requi (where requi is such that C+(requi) =
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Figure 9.2 � Representation of the topology of the �ow network: (a) a node represents
a 3-D (x, y, z) location in ground geometry, each node is connected to its 6 closest
neighbors and also to the source s and to the sink t; (b) a cut separates the graph
into two disconnected sub-graphs, it represents a discretized version of the segmented
surface S .

C−(requi)). Then, if r > requi, the �rst integral equals
∫ r
requi

(C−(rs)− C+(rs)) drs.

Conversely, the second integral in (9.3) is non-zero only if the distance rs is smaller

than the distance of equilibrium requi. It is then equal to
∫ requi
r (C+(rs)− C−(rs)) drs.

D(r) is thus a function that monotonically increases with the distance |r − requi| and
that is minimal and equal to zero when r = requi.

The second component of the cost function guarantees that the segmented surface

be smooth. To prevent the surface from oscillating in order to pass through the position

of equilibrium requi for each ray, we penalize the area A (S ) of the surface. In order

to favor surfaces with horizontal or vertical parts, we suggest measuring the area with

respect to the `1 distance (i.e., Manhattan distance ‖p‖1 = |px|+ |py|+ |pz|).

To summarize, we suggest de�ning the segmentation as the surface S that is a

solution to the following variational problem:

min
S

∫
ray∈R

Dray(rray→S ) dR + βA (S ) , (9.4)

where S is required to be representable as an elevation map E (x, y) (formally, there

exist a function E : (x, y) 7→ E (x, y) such that S be the boundary of the epigraph of

E ). To prevent from introducing too many notations, we denote 'ray' for the generic

de�nition of a ray in an adequate parameterization (a line in 3-D space), R represents

the set of all rays, rray→S is the distance from the radar to the surface S along the

direction de�ned by 'ray', Dray is the penalty de�ned by equation (9.3) for the direction

speci�ed by 'ray'. Finally, β is a parameter that balances the �delity to the tomographic

reconstruction and the spatial smoothness of the surface.
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9.1.2 Graph-cut algorithm for minimization

The variational problem (9.4) is very challenging to solve. We show in this paragraph

that, after discretization of the surface and of the set of rays, it can be transformed

into a minimum cut problem on a particular graph. By computing the minimum cut

using available e�cient graph-cut libraries, we obtain a fast method to solve the surface

segmentation problem.

The surface is represented by an elevation map E : (x, y) 7→ z = E (x, y) (which

guarantees that it is representable as an elevation map). The horizontal location (x, y)

and the elevation z are discretized. To make an easier connection between the elevation

map and the surface it de�nes, we consider the layer cake decomposition of the elevation.

With this decomposition, a discrete elevation map corresponds to a binary volume (a

discrete version of the epigraph of E ) and the boundary in that volume de�nes the

discrete surface.

We build a graph as depicted in �gure 9.2, with a node to represent each voxel of

the binary volume of E . Two special nodes, called the source (denoted 's') and the sink

(denoted 't') are added in order to simulate a �ow from the source to the sink. Nodes

are connected together by directed edges with speci�c capacities and a �ow is said to be

admissible if and only if the �ow along each edge is non negative and smaller or equal

to the edge capacity, and there is no �ow accumulation/creation at nodes (except at the

source and at the sink). By the max-�ow min-cut theorem, algorithms that identify the

maximum admissible �ow on the graph can also identify the minimum cost cut among

all possible cuts in the graph1, see for example (Boykov and Kolmogorov, 2004). During

the graph construction, by creating edges with well-chosen capacities, we can make the

cost of any cut exactly match the cost of the corresponding surface in the variational

formulation (9.4).

To represent the �rst term in equation (9.4), we substitute Dray with its de�nition

in equation (9.3):∫
ray∈R

Dray(rray→S ) dR =

∫
ray∈R

∫ rray→S

rmin

[
C−ray(rs)− C+

ray(rs)
]
+
drs dR

+

∫
ray∈R

∫ rmax

rray→S

[
C+
ray(rs)− C−ray(rs)

]
+
drs dR . (9.5)

Each of the two terms corresponds to summations over a half-space whose boundary is

S : the half-space that contains the radar and the half-space with the farther ranges,

respectively. We add an edge directed from the source to node i, the node that represents

the 3-D position (xi, yi, zi) and that is located at the distance ri from the radar antenna.

The capacity2 of this edge is set to
[
C−i (ri)− C+

i (ri)
]
+
, where C−i and C+

i are the

cumulative re�ectivities computed along the ray directed from the radar through the

1the cost of a cut is the sum of the capacities of all edges cut that are directed from a node in the
source partition to a node in the sink partition

2note that an edge with zero capacity can be suppressed because it carries no �ow and has no
contribution to the cost of the cuts
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s

t

Figure 9.3 � The capacities of the edges are chosen so that the cost of the cut corresponds
to the energy of the surface. (a) the �delity to the tomographic reconstruction is enforced
via edges originating from the source or leading to the sink. (b) the spatial smoothness
of the surface is obtained by adding bi-directional edges between neighboring nodes in
the x and y directions. (c) to prevent the cut from severing twice a column of nodes
along the z direction, ascending edges with in�nity capacity are added. These edges are
counted in the total cost of the cut only when they go down-stream: from the partition
containing the source to the partition containing the sink.

point of coordinates (xi, yi, zi). Another directed edge is added from node i to the sink,

with capacity
[
C+
i (ri)− C−i (ri)

]
+
. To separate the graph into two parts by a cut, some

edges must be severed (unless the cut passes through the distance of equilibrium requi)

and the sum of the capacities of those edges corresponds to a discretization of equation

(9.5), see Fig. 9.3(a).

Additional edges are created to account for the regularization term βA (S ): bi-

direction edges between pairs of nodes that are direct neighbors in the x or y directions,

with capacity β, see Fig. 9.3(b). Finally, ascending edges with in�nite capacity are

included between neighboring nodes in the z direction. These edges are necessary to

guarantee that the cut de�nes a surface that is representable by an elevation map, see

9.3(c). Similar edges are added in Ishikawa's graph construction that is also based on

the layer-cake decomposition (Ishikawa, 2003).

In our implementation, we computed e�ciently the summations along the rays by

resampling the reconstructed tomographic volume in ray geometry so that sums could

be carried out along columns in this new geometry. For the construction of the graph

and the computation of the minimum cut, we used the graph-cuts library by Boykov

and Kolmogorov (Boykov and Kolmogorov, 2004).

9.2 Joint reconstruction and surface segmentation

The knowledge provided by the segmented urban surfaces can help to improve the

inversion described in chapter 8. The reconstruction algorithm that can most readily

be extended to include segmented surfaces is the 3-D inversion method described in
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equation (8.3). Under the assumption that the signal retrieved over urban areas is

mainly constituted of punctual bright points, sparsity may be an e�cient enough prior

to obtain clean tomograms. Nonetheless, this implies that the tuning of the sparsity

parameter be done locally according to the position of the scatterers. In CS for SAR

tomography, the sparsity constraint is generally set locally in the range and azimuth

direction but constant for each radar cell. Here we propose to use the 3-D information

provided by the estimated surface to go one step further and perform a spatially varying

penalization of the sparsity.

When applying CS or the 3D inversion, the sparsity parameter µ is set proportional

to the level of spurious elements in the reconstruction. Generally µ is set according to

the noise level (Zhu and Bamler, 2012b), but as decorrelation mechanisms and side-lobes

should also be discarded, the knowledge of the sensor thermal noise may not be enough.

Many SAR tomographic algorithms propose to estimate the number of backscattering

elements in order to extract the largest scatterers in each radar cell. This step cleans

the estimated tomograms from residual outliers, but is also a challenging task for large

multitemporal stacks in dense environments. Moreover the CS approach may then lose

one of its asset with respect to MUSIC or WSF if it also needs an estimation of the

number of targets.

Under the assumption that the location of the urban surface is known, the sparsity

parameter µ can be spatially tuned to lead to re�ned tomograms. Even when the surface

is roughly known, it provides information on where the reconstructed signal should be

located. In the proposed iterative algorithm, µ is computed as a function of the distance

to the surface in the 3-D space and the number of iterations:

µk(p,S ) = µ0 +
b

(n− 1)2

(
k

n− k
d(p,S )

)2

(9.6)

where d(p,S ) is the Euclidean distance from the point p = (x, y, z)T to the estimated

surface, k is the current iteration and n the total number of iterations. We de�ne by

µ(S ) ∈ RNx.Ny .Nz the 3-D sparsity parameter map. As the surface location estimation

may be subject to errors in the �rst iterations, it is important to avoid over-penalizing

points moderately close to the surface during the �rst reconstructions. This why we

use the square of the distance d multiplied b a factor smaller than 1. As the number of

iterations increases, the reconstruction and thus the surface estimation should be more

accurate (and better in match) which suggests an increase of the penalization of the

distance from a reconstructed voxel to the surface. µ0 + b is then the desired minimal

sparsity that need to be applied to voxel not on the surface.

The proposed iterative reconstruction and surface segmentation is summarized in

the following algorithm:
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Procedure REDRESS

Input: v (stack of SLC SAR images)
Output: û (3-D cube of complex re�ectivities)

S (urban surface)
Initialization :

1: k ← 0
2: while k < n do
3: û← 3-D Inversion(v,µ(S ))
4: S ← graph cut(û)
5: k ← k + 1
6: end while
7: return û, Ŝ

The re�ned tuning of the sparsity according to the surface allows to considerably

improve the scatterers localization and main lobe reduction. In some cases, however, the

segmented surface follows the lobe main extension direction and is not as localized as

would be expected for a collection of point-like scatterers. In the global reconstruction

of the scene, most of the artifacts due to the TV penalization are suppressed after 10

iterations. The obtained surface is then very close to the ground truth and provides the

lowest error according to table 9.1.

9.3 Experiments

To validate both the generality of the segmentation method and its e�ciency on real

data we present di�erent experiments performed on a set of 40 TerraSAR-X images of a

part of Paris, France. The selected area corresponds to the French Ministry of Foreign

A�airs and buildings in its neighborhood in the south west of the city. The optical view

of the scene is presented Fig. 9.4 side to side with the temporal average of the SAR

intensities. To evaluate our results we use a ground truth map extracted from Google

Earth©. Di�erent SAR tomographic reconstruction methods introduced in section 2

(Capon Beamforming, MUSIC , WSF , SPICE , CS and the 3-D inversion) are �rst

applied on the slice represented by the red line in �g. 9.4(b), then on the entire data

set. The segmentation by graph-cut is then performed in both cases. The obtained

surfaces are compared with the ground truth for each tomographic estimator.

The results are shown in Fig 9.5 for the reconstructions of the slice, and in Fig.

9.6 for the reconstruction of the whole scene. With the �rst experiment the behavior

of each estimator and the resulting surface can be observed in greater details. In the

reconstructions, the areas where the surface is occluding itself are detected as shadow

areas and removed. The resulting gaps introduced are �lled according to the height of

the �rst point outside it.

The second experiment illustrates the role of the 3-D smoothing. The surface is

shown as seen from the sensor point of view. Since some tomographic estimators pro-

vide an estimate of the re�ectivities, those re�ectivities can be plotted to illustrate the
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(a) (b) (c)

Figure 9.4 � Observed urban areas : optical image (a), temporal mean of the correspond-
ing SAR image (b), and the 3-D model from Google Earth used as a ground truth. The
red line in (b) and white one in (c) correspond to the slice shown in Fig. 9.5

distribution of scatterers on the reconstructed surfaces.

A third experiment presents the evolution of the reconstructed slice as the REDRESS

algorithm iterates cf. Fig. 9.8. It can be observed that the distribution of re�ectivities

becomes much sharper after a few iterations.

To estimate the covariance matrix at each point, we used a 7 × 7 Gaussian �lter.

For MUSIC and WSF , the number of scatterers is set constant and equal to 2 to

avoid selecting too many outliers while allowing multiple scatterers within each radar

resolution cell. For these two estimators, the re�ectivity is estimated by mean square

minimization, to keep a physical interpretation of the tomograms. As the scene is very

heterogeneous with a lot of layover, this step introduces some undesired mixing of the

information in the image. The surfaces estimated from tomographic reconstructions

using spectral analysis techniques present noticeable artifacts in the dense areas. Some

structures are too extended, partially �lling streets or the building atrium. Meanwhile,

the averaging step makes the tomographic estimation smoother in homogenous areas

for the fully sparse approaches MUSIC and WSF .

The CS technique performed on all the data set presents results that seem visually

the closest to the ground truth. Many details can be observed in this reconstruction:

most of the rooftops and visible streets are well segmented and the buildings atrium are

also retrieved.

For all the previous estimators, the TV minimization produces some building elon-

gation resulting in phantom structure in low intensity signal area. This can be seen for

instance in the bottom right part for Fig. 9.6 or around the position 450 for Fig. 9.5.
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Figure 9.5 � Urban surface estimation using graph-cut segmentation of the tomograms,
as described in section 3. The estimated surface corresponds to the red pro�le. The
ground truth for the given slice is shown in green. The tomograms are obtained using
Capon beamforming (a), SPICE (b), MUSIC (c), WSF (d), the 3-D inversion approach
(e) and REDRESS (f).

Image of the backscattering power of the surface are presented in Fig 9.7. As expected

corners such as bottom of buildings or windows send back a high intensity signal.
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Finally, the reconstructions obtained using the REDRESS algorithm presents the

closest results to the ground truth with far less TV artifacts. 3-D representation of the

tomographic reconstruction using the REDRESS algorithm are shown in Fig 9.9 and

9.10. The accuracy of the results is also illustrated by plotting the non-zero voxels into

Google Earth © cf. �g. 9.11.

To conduct a quantitative comparison of the segmentation results, we report the

mean error for each estimated surface to the ground truth cf. 9.1. The TV parameter

β is set, for each method, as the one minimizing this error.

(a) (b) (c) (d)

(e) (f) (g)

Figure 9.6 � Ground truth height (a), scene surface estimation using SPICE (b), MUSIC
(c), WSF (d), Capon beamforming (e), the 3-D inversion (f) and REDRESS (g). For
each results, the image shows the surface colored according to its height.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 9.7 � Average amplitude SAR image (a), surface amplitude estimation using
SPICE (b), MUSIC (c), WSF (d), Capon beamforming (e), the 3-D inversion (f) and
REDRESS (g). For each results, the image shows the surface colored according to its
amplitude.

9.4 Conclusion

In this chapter we introduced a graph-cut based segmentation algorithm to estimate the

urban surfaces from a SAR tomographic reconstruction. The proposed approach is very

general and can be used in combination with many di�erent tomographic algorithms.

Experiments done on a set of 40 TerraSAR-X images of Paris show good results for

di�erent tomographic estimators (Capon beamforming, MUSIC , WSF , SPICE , CS

and 3-D inversion). As the 3-D inversion algorithm is designed to use 3-D priors,

we also present an algorithm that alternatively reconstructs the 3-D distribution of

re�ectivities, segments the urban surfaces from the volume of re�ectivities and updates

the regularization so as to improve the subsequent 3-D reconstruction. While the non-

iterative 3-D inversion algorithm fails in some cases to reduce the main lobes of the

strong scatterers, the alternating scheme achieves a much sharper estimation of the

distribution of re�ectivities.
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Figure 9.8 � Three di�erent iteration steps from the alternate reconstruction algorithm.
On the left column, the estimated re�ectivities are shown for the pro�le presented
in Fig 9.4. On the right, the estimated surface (red) and the ground truth (green)
are superimposed in addition to the estimated re�ectivities. Rows (a), (b) and (c)
correspond respectively to the �rst, third and �fth iterations (last one).
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Estimator Mean Error β

Capon Beamforming 4.58 m 1.5
MUSIC 3.23 m 1.3
WSF 3.12 m 1.6
SPICE 4.24 m 12.6
3-D inversion 2.50 m 2.0
REDRESS 1.60 m 2.0

Table 9.1 � Mean errors between the estimated surfaces and the ground truth, last
column: optimal β values used for the surface segmentation.

(a) (b)

Figure 9.9 � Visualization of the module of the reconstructed cube REDRESS algorithm
(left), super-imposed with the ground truth (right) (Andriy Fedorov et al., 2012).
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(a)

(b)

Figure 9.10 � Visualization of the module of the reconstructed cube using the REDRESS
algorithm (left), super-imposed with the ground truth (right) (Andriy Fedorov et al.,
2012).
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(a)

Figure 9.11 � Plotting of the non-zero intensity scatterers in Google Earth ©. For
computational purpose 1 voxel out 10 is drawed.



Conclusion and perspectives

Conclusion

The main objective of this PhD was to provide methods to use the structural information

to perform the SAR tomographic estimation of the 3-D re�ectivity for dense urban

scenes. Two di�erent strategies were explored:

� Exploit the redundancy in the SAR images

� Regularize the estimation

The �rst method was based on the non-local estimation of the covariance matrix.

This approach proved to be challenging and didn't o�er guaranties to outperform basics

local covariance matrix estimation approaches.

The second approach was expected to be relatively successful as it was close to

the well known CS approach which may be consider as one of the top tomographic

estimator for urban areas. The proposed algorithm allowed to perform the tomographic

3-D inversion of a scene under geometrical priors described in the ground coordinate

system. This allowed to reduce the number of outliers and favor structured distribution

of scatterers.

Tomograms and volume representation of the re�ectivity may be hard to analyze,

specially with close buildings of comparable height. We proposed a post-processing

graph-cut based segmentation to extract the urban surfaces of a tomographic recon-

struction. Due to the very generic design of the method, it can used in association to

any estimator providing a measure of the scene re�ectivity (amplitude or power). The

surface is expected to be retrieved were high intensity voxels are found. The geometri-

cal priors consist of a TV minimization under constraints avoiding the structures to be

transparent for the electromagnetic wave and crenelation like distortions.

Finally, we linked the 3-D reconstruction with the surface segmentation, to design

an iterative algorithm that re�ne the re�ectivity estimation based on the estimated

surface.

All the proposed method were tested on a stack of TerraSAR-X images and the

results were compared to a ground truth. The REDRESS algorithm lead to a average

error less than 2m and preserves many details such as buildings courtyard or some roof

reliefs.
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Part of the PhD was also dedicated to the study and phase calibration to a set of

airborne SAR images obtained with the sensor SETHI from the ONERA. This work is

however still in progress and the data are not usable for SAR tomography yet.

Perspectives

SAR tomography is still a relatively recent research �eld. Its application to dense ur-

ban areas is a trending topic and new algorithms are proposed either to perform the

tomographic inversion or to apply some post-processing regularization. The framework

presented here to perform the tomographic inversion in ground coordinates allows to

used many di�erent regularization strategies in a plug-and-play fashion. Some of alter-

native to the presented priors could then be tried:

� Going back to the smoothing presented in chapter 8, strategies allowing to know

the local orientation of the scatterers distribution could be used to locally tune the

gradient parameters. This could be done �rst as an improve REDRESS algorithm.

� Rather than using the quadratic norm of the gradient, minimizing the TV for the

tomographic reconstruction should also be tried.

Besides trying sophisticated priors, the 3-D projection operator could be used to

retrieve a SAR image associated to a given sensor track. This could be useful for

several applications:

� The proposed methods may introduce an increase of the number of parameters.

We discussed how to set these parameters in chapter 8 but this remain an open

question. This consideration is also true for conventional CS . A tuning strategy

could be to �nd the set of parameters that allows to best preserve the input SAR

images.

� Being able to exploit a stack of SAR images to generate a new one could be used

for changes detection or image restoration.

When dealing with a new set of SAR images, phase calibration can be a challenging

task. An idea could be to perform iteratively the calibration and the tomographic

reconstruction. At each step the linear contribution of the APS and the scatterers

height could then be estimated using the information from the previous iteration to

enhance the results.
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Acronyms

ADMM Alternating Direction Method of Multipliers. 89�91

APS Atmospheric Phase Screen. 14, 18, 27, 125

BIC Bayesian Information Criterion. 46

CS Compressive Sensing. VIII�X, 3, 4, 27, 42, 45, 46, 51�53, 78, 114�116, 119, 124,

125

DFT Discrete Fourier Transform. 27, 29, 44

DIFT Discrete Inverse Fourier Transform. 20

DOA Direction Of Arrival. 27, 28, 31

FIR Finite Impulse Response. 28

GLR Generalized Likelihood Ratio. 67, 69, 71, 72, 74, 77�80

LASSO Least Absolute Shrinkage and Selection Operator. 44

LMM Lagrangian Methods of Multipliers. 89, 90

LOS Line of Sight. 9, 14, 17

LS Least-Square. 37

M-RELAX Multilook-RELAXation spectral estimator. 37, 39, 40, 42, 76

MACT Minimum Accuracy / Completeness Trade-o� (MACT). 93

ML Maximum Likelihood. III, 37, 38

MOS Model Order Selection. 46, 47, 62

MUSIC MUltiple SIgnal Classi�cation. III, 2, 31, 33�35, 37, 46, 51, 52, 69, 83, 114�

117, 119

MUSIC-PS MUSIC Pseudo Spectrum. 33, 51, 52, 83



MVDR Minimum Variance Distortionless Response. 28

NL-SAR Non Local - SAR. VIII, 2, 66�70, 73, 78, 88

NSF Noise Subspace Fitting. 34

PS Permanent Scatterer. IV, 17, 18, 76, 77

PSF Point Spread Function. 14, 28

RADAR RAdio Detection and Ranging. VII, 1, 9, 11, 12, 14, 17, 20, 28, 62, 78

REDRESS AlteRnatEd 3-D REconstruction and Surface Segmentation. 5, 115�118,

121, 122, 124, 125

RIP Restrictive Isometry Property. 42, 44

SAR Synthetic Aperture Radar. IV, VII�X, 1�4, 9�11, 13�15, 17�22, 24, 25, 28, 31,

34, 42, 44, 51�53, 55, 57�60, 62, 65, 66, 68�70, 73, 75, 76, 78, 81, 82, 85�87, 91,

92, 103, 104, 119, 124, 125

SL1MMER Scale-down by `1 norm Minimization, Model selection, and Estimation

Reconstruction. 46

SLC Single-Look Complex. 15, 18, 20, 21, 53, 66, 70

SNR Signal-to-noise ratio. 10, 28, 45, 57

SPICE SParse Iterative Covariance-based Estimation. IV, 41, 43, 48, 115, 117, 119

SSF Signal Subspace Fitting. 34, 36

TV Total Variation. 4, 115, 116, 124, 125

WSF Weighted Subspace Fitting. III, 34, 36, 37, 46, 114�117, 119
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Résumé: La tomographie SAR ex-

ploite plusieurs acquisitions d'une

même zone acquises d'un point de vue

légerement di�érent pour reconstru-

ire la densité complexe de ré�ectiv-

ité au sol. Cette technique d'imagerie

s'appuyant sur l'émission et la récep-

tion d'ondes électromagnétiques co-

hérentes, les données analysées sont com-

plexes et l'information spatiale man-

quante (selon la verticale) est codée

dans la phase. De nombreuse méth-

odes ont pu être proposées pour retrou-

ver cette information. L'utilisation des

redondances naturelles à certains mi-

lieux n'est toutefois généralement pas ex-

ploitée pour améliorer l'estimation tomo-

graphique. Cette thèse propose d'utiliser

l'information structurelle propre aux

structures urbaines pour régulariser les

densités de ré�ecteurs obtenues par cette

technique.

Title: Structural Approaches for SAR tomography over dense urban

areas
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Abstract: SAR tomography consists

in exploiting multiple images from a

same area acquired from a slightly dif-

ferent angle to retrieve the 3-D distribu-

tion of the complex re�ectivity on the

ground. As the transmitted waves are

coherent, the desired spatial informa-

tion (along the vertical axis) is coded in

the phase of the pixels. Many methods

have been proposed to retrieve this in-

formation in the past years. However,

the natural redundancies of the scene

are generally not exploited to improve

the tomographic estimation step. This

Ph.D. presents new approaches to regu-

larize the estimated re�ectivity density

obtained through SAR tomography by

exploiting the urban geometrical struc-

tures.
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