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Chapter 1

An introduction to Monte Carlo
methods

This chapter begins with a presentation of Monte Carlo methods, with a particular em-
phasis on their origin, their relevance in numerical integration and optimization, and some
of their applications to Statistics. Section 1.1 introduces those notions as a motivation
for a more general purpose, which is the sampling from a given probability distribution.
Section 1.2 presents some applications of sampling-based methods to statistical inference
for partially known models, in particular intractable likelihoods. Section 1.3 discusses
the importance of obtaining explicit non-asymptotic guaranties for sampling-based pro-
cedures, especially for high dimensional probability distributions. Section 1.4 summarizes
the contributions of this thesis.

1.1 Monte Carlo methods and applications

From a computational perspective, Monte Carlo methods are algorithms based on re-
peated random sampling, performed to approximate unknown numerical values. Monte
Carlo methods, or at least those related to Markov Chains and their properties, were
invented during the Second World War. They were developed by Jon von Neumann,
Stanislaw Ulam and Nicholas Metropolis. The latter suggested the name Monte Carlo,
referring to the Monte Carlo Casino in Monaco, as a code name for their works within
nuclear weapons projects in Los Alamos. Monte Carlo methods are mainly used to
solve numerical integration, or optimization problems where the other methods require
prohibitively large computational resources. In Statistics nowadays, with the rise of
computational techniques and power, Monte Carlo methods have become widely used,
especially for Bayesian inference, model selection, and testing. Those statistical proce-
dures require generating random samples from a given probability distribution, which is
often non-trivial especially for high dimensional problems. We often encounter the word
sampling, as a designation for generating those random samples from a computer, which
is completely different from the usual sampling terminology that refers to selecting a
random subset from a statistical population. From a mathematical perspective, sampling
can be viewed as the art of transforming a uniform distribution into a given probability



distribution.
Throughout this thesis, we will assume implicitly that we have access to a random

number generator, designed to perform exact uniform sampling between zero and one.
One could argue that computers are not able to generate perfect randomness. Sad but
true, a pseudo-random uniform sequence (uj) produced by a computer is usually periodic,
and there is a deterministic map D such that uj+1 = D(uj). Another could reply that
existence of perfect randomness is highly questionable, and that randomness is mainly an
attractive way of modelling the unknown. Both statements may appear rather convincing.

In any case, the scientific community agrees on saying that pseudo-random uniform
sequences generated by computers are now so carefully designed that they share almost
the same properties as perfect randomness. The most suspicious readers should remark
that the reliability of some widely used pseudo-random generators is now such that pe-
riodicity should not pose a problem until the (219927 − 1)th generated number1. On any
computer nowadays, such an issue should not arise before a few billions of years. There-
fore, we assume in the sequel that we are able to generate random variables identically
and independently distributed (IID) with respect to the uniform distribution between
zero and one.

Let us define a random vector uniformly distributed over the k-dimensional hypercube

(U1, ..., Uk) ∼ U[0,1]k .

Let us define the measurable space Θ , Rp equipped with its Borel σ-field, that we
will denote by B(Rp). Our goal is now to sample from a given probability distribution
Π defined over Θ.

Why such a goal? This is a legitimate question. From a general perspective, sam-
pling methods are a standard basis for any Monte Carlo estimate. In Section 1.1.1 we
give a brief introduction to Monte Carlo estimation, in the context of numerical integra-
tion. In Sections 1.1.2 to 1.1.4 we present some applications of Monte Carlo methods
to statistics and machine learning. Sampling methods in statistics find most of their
applications in the Bayesian framework. We give therefore a short introduction to the
Bayesian paradigm, and emphasize the relevance of Bayesian estimators regardless of ev-
eryone’s convictions from a decision theory perspective. We also show that Monte Carlo
methods are not restricted to Bayesian inference, and present some applications in other
frameworks such as maximum likelihood approximation and PAC-Bayesian estimation.

1.1.1 Numerical integration

We assume in this section that we are able to sample from a given probability distribution
Π, defined over Θ = Rp. We turn to the problem of approximating an expectation with
respect to Π. For a given map ϕ : Θ 7→ R, we use the following notation for the
expectation of ϕ with respect to Π if it exists:

Π(ϕ) =
∫

Θ
ϕ(θ)Π(dθ).

1Based on the periodicity of the Mersenne Twister pseudo-random number generator.
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In such a setting, Monte Carlo estimation is a natural solution to approximating Π(ϕ).
Let θ1, ...,θm be m random variables identically and independently distributed from Π.
Then for any measurable map ϕ : Θ 7→ R such that Π(|ϕ|) < +∞, the law of large
numbers yields

Π̂m(ϕ) , 1
m

m∑
j=1

ϕ(θj) a.s.→ Π(ϕ)

as m goes to infinity. In other words, the approximation Π̂m(ϕ) is a consistent estimator
of Π(ϕ). Essentially, the sample (θ1, ...,θm) is to be seen as a random generation from
a m-times repeated sampling procedure executed by a computer. The estimator Π̂m(ϕ)
being a measurable function of this randomly generated sample, it is often referred to a
Monte Carlo estimator, or as a Monte Carlo approximation of Π(ϕ). If, in addition, the
map ϕ is such that Π(ϕ2) < +∞, then the central limit theorem yields

√
m
(
Π̂m(ϕ)− Π(ϕ)

)
D→ N (0,Π(ϕ2)− Π(ϕ)2)

as m goes to infinity. For such a function ϕ, this shows that the Monte Carlo approxi-
mation Π̂m(ϕ) will converge to Π(ϕ) at the rate

√
m. Therefore, getting an estimation

ten times more accurate would require sampling a hundred times more. It is not wrong
to claim that such a speed is slow, thus the problem of controlling the Monte Carlo es-
timation error will often be limited, or at least coupled to controlling the computational
complexity of such a task. Of course, Monte Carlo estimators are only useful when the
distribution Π is partially known, in the sense that the expectation Π(ϕ) does not admit
a closed form for some function ϕ. In such a setting however, and when the dimension
p is larger than one, Monte Carlo estimators are among the best known methods for
estimating Π(ϕ).

An important point to emphasize is the following. The problem of estimating an
expectation should not be seen as a restriction to probability spaces. It is actually closely
related to the problem of approximating any given integral with respect to some measure
µ defined over Θ. Indeed, if we are able to sample from a distribution Π that admits a
density π(.) with respect to a measure µ, then for any map of the form h , π · ϕ such
that Π(|ϕ|) < +∞, we are also able to approximate the integral∫

Θ
h(θ)µ(dθ) = Π(h/π)

by choosing the consistent Monte Carlo estimator Π̂m(h/π). Such a method is known
as importance sampling, see Tokdar and Kass (2010) for a review of its mathematical
foundations and properties. A straightforward remark is that we can expect such an
approximation to be efficient only if Π(h2/π2) < +∞ so that the central limit theorem
holds. That condition will be satisfied essentially if the density π has large enough tails
compared to the function of interest h. This emphasizes the motivation behind providing
a wide choice of sampling distributions to the user.

1.1.2 The Bayesian paradigm

Statistical models have nowadays a common pattern. A certain amount of data n ≥ 1
is observed by the user. The dataset itself, noted Y (n), is assumed to be a random
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realization from an unknown probability distribution, defined over a sample space X (n).
Choosing a statistical model is assuming that the unknown distribution is part of a
particular family of distributions {Pθ : θ ∈ Θ} indexed by a parameter θ that belongs to
the parameter space Θ. Inferring such a model is trying to recover which distribution,
i.e. which parameter θ was in charge of generating the random data observed by the
user.

Bayesian inference relies on the following methodology. Define a probability distribu-
tion Π0 over the measurable space Θ = Rp, called prior distribution. The parameter θ is
now viewed as a random variable with distribution Π0, and the distribution Pθ is viewed
as the conditional distribution of Y (n) given θ. In such a setting, the joint distribution of
(Y (n),θ) is fully specified, and in particular the conditional distribution of θ given Y (n),
called posterior distribution, that we will denote Π(.|Y (n)). The posterior distribution is
the heart of Bayesian inference.

From a Bayesian perspective, a distribution over Θ is viewed as an amount of knowl-
edge, or a measure of uncertainty, with respect to the unknown parameter. In that sense,
the prior distribution refers to a knowledge with respect to θ prior to any information pro-
vided by the data. Similarly, the posterior distribution refers to an amount of knowledge
with respect to θ, updated by the information provided by the data. From a frequen-
tist viewpoint, once a prior distribution Π0 is chosen, the data-dependent distribution
Π(.|Y (n)) is simply an estimator of the unknown and deterministic parameter θ. In that
sense, such an estimator should be analyzed as any other estimator, and would require
usual guarantees of convergence. Although those viewpoints may seem conflicting, not
to choose between those two is perfectly allowed. A defender of the Bayesian viewpoint
could be very interested in the fact that Π(.|Y (n)) converges at a certain speed when n
grows, or that it is robust to misspecification, as well as a defender of the frequentist view-
point could find very interesting to have another kind of inference available, especially if
it makes the inferential framework more convenient.

Above all, it is important to understand that Bayesian estimators are relevant to
Statistics, regardless of everyone’s convictions from a decision theory perspective, and
that in any cases, the posterior distribution is of central interest. It is also noteworthy that
its use is not restricted to inference. Indeed, the posterior distribution is also widely used
for testing and model selection. Most of the time, the distribution Π is not completely
known, in the sense that no simple analytic form is available for computing its moments,
or some quantiles of its marginal distributions, etc. And as a matter of fact, best known
methods for approximating those quantities involve Monte Carlo methods and require to
sample from Π.

1.1.3 Maximum Likelihood approximation

If sampling methods are particularly useful in the Bayesian framework, they find many
other applications in statistics, in the standard frequentist framework as well. One par-
ticular framework that has been extensively studied is the framework of iid statistical
models, i.e. statistical models that relies on a dataset composed by independently and
identically distributed random variables. From a mathematical perspective, this frame-
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work boils down to assuming that the dataset is composed by independent random vari-
ables Y1, ..., Yn defined on the same state space X with the same probability distribution
Pθ. The latter distribution is unknown, and as in the previous section, we assume that it
is part of a particular family of distributions {Pθ : θ ∈ Θ}. In such a setting, the main
goal is to recover the parameter θ which generated the iid dataset observed by the user.

A generic method of estimation is applicable when the underlying statistical model
admits a likelihood function, that is when for any θ ∈ Θ the distribution Pθ admits
a density fθ(.) with respect to a fixed measure µ (that does not depend on θ). The
likelihood function is a data dependent function of θ, defined in the iid framework by

L (θ;Y1, ..., Yn) ,
n∏
i=1

fθ(Yi).

The corresponding estimation method, known as maximum likelihood estimation, was
pioneered by Ronald Fisher in the beginning of the twentieth century, and later by Wilks
(1938). A Maximum Likelihood Estimator (MLE), if it exists, is a maximizer of the
map θ 7→ L (θ;Y1, ..., Yn). Provided that the MLE is unique, we will denote it by
θ̂n. Maximum likelihood estimation became widely used, mainly due to its asymptotic
properties. Under mild hypotheses on the model (Wald, 1949), it is shown that the MLE
is strongly consistent, that is

θ̂n
a.s.→ θ

when n goes to infinity. Assume that the likelihood function is twice differentiable with
respect to θ, and define the Fisher information matrix I(θ) , Eθ[−∇2

θ log fθ(Y1)]. Under
further regularity assumptions on the likelihood function, including the non singularity
of I(θ), it is also shown that the MLE is asymptotically normal in the following sense:

√
n(θ̂n − θ) D→ N

(
0p, I(θ)−1

)
(1.1)

as n goes to infinity. A particularity of the Fisher information matrix is that its inverse is
a lower bound for asymptotic variances of estimators, therefore the MLE is asymptotically
optimal. Note that this property is not a claim of supremacy of the MLE from a statistical
viewpoint. As a matter of fact, several Bayesian estimators, such as the mean of the
posterior distribution, essentially share the same properties if the prior distribution is
chosen carefully. Just as for the posterior mean, the interest of the MLE lies in the fact
that it is a very generic method of estimation that benefits from guaranties of efficiency
when n is large. The main difference from the Bayesian estimators comes from their
computation. Just as posterior distributions usually do not have closed form for their
moments, likelihoods usually do not have closed form for their maximizers, and numerical
approximations of the MLE rely on optimization procedures while the approximation of
the posterior moments rely on sampling procedures.

In appearance thus, MLE has nothing to do with sampling methods. However, when
the statistical model admits a likelihood function which is partially computable, the
MLE may not be approximated by standard optimization procedures. This is the case
for instance, when the maps fθ(.) are only computable up to a normalizing factor that
depends on θ. Stated in another form, the MLE is intractable when fθ(x) = hθ(x)/Z(θ)
for computationally tractable maps hθ(.), but a partition function Z(θ) =

∫
X hθ(x)µ(dx)

5



that cannot be computed in a reasonable time. In this setting, referred as un-normalized
model, some approximations of the MLE by sampling methods have proven their effective-
ness, e.g. Geyer and Thompson (1992); Geyer (1994); Gutmann and Hyvärinen (2010);
Gutmann and Hyvärinen (2012). Those methods rely on approximating the partition
function by Monte Carlo. This requires to sample from a distribution on the sample
space X , chosen by the user. Obviously, the precision of the approximation will depend
on the choice of the sampling distribution. Therefore, providing a wide choice of sampling
distributions to the user allows him to approximate the MLE efficiently. This framework
will be more detailed in Section 1.2 and Chapter 2.

1.1.4 The PAC-Bayesian framework

If the problem of approximating a partially known, or intractable distribution is a main
focus in statistics, it is also of direct interest in some fields of machine learning. The
machine learning framework, from a theoretical perspective, is often presented as follows.
Let us define a sample space X × Y . We assume here that X , Rd and Y , R, and we
consider a dataset Dn , (Xi, Yi)i=1,...,n identically and independently distributed from a
distribution P defined over the measurable space X ×Y , equipped with its Borel σ-field.
We also choose a set of predictors {fθ : X 7→ Y ,θ ∈ Θ} indexed over the parameter space
Θ = Rp. The choice of such a set will depend on the nature of the prediction problem.

The main question now is the following. Suppose that (X, Y ) ∼ P is a new random
vector independent fromDn, such that onlyX is observed by the user. How can we predict
Y ? To assess the quality of a given predictor, we define a loss function ` : Y2 7→ R+ and
the corresponding risk function R(θ) , E[`(Y, fθ(X))]. A predictor is identified as good,
if the error of prediction, measured by the loss function, is small in expectation. In other
words, a good predictor is a map fθ : X 7→ Y such that R(θ) is small.

If we assume that the map R has a unique minimizer θ∗ ∈ Θ, then finding the best
predictor is equivalent to finding this minimizer, also known as oracle. Unfortunately, the
risk function is unknown from the user, and the only information available concerning the
distribution P is the dataset Dn. Therefore, a natural idea is to minimize the empirical
counterpart of the risk, defined as

rn(θ) , 1
n

n∑
i=1

`(Yi, fθ(Xi)).

Empirical Risk Minimization (ERM) was pioneered by Vapnik (1992), who introduced
what is now an important field of research in machine learning theory. Essentially, such
a method relies on the fact that rn converges pointwise to R by the law of large numbers.
Therefore the minimizer of rn is expected to a consistent estimator of the oracle.

Another idea was introduced in McAllester (1999), known as the PAC-Bayesian ap-
proach. Let us choose a distribution Π0 over Θ. For some scale parameter λ > 0, we
define the probability measure Π, such that

Π(dθ) , exp{−λrn(θ)}∫
Θ exp{−λrn}dΠ0

Π0(dθ).

6



This distribution Π is known in the literature as a Gibbs distribution (Catoni, 2007), or
exponentially weighted aggregate (Dalalyan and Tsybakov, 2008). The scale parameter
λ induces a certain spread in the distribution: a large λ will make the distribution Π
more peaked around its mode. To solve the oracle learning problem, the parameter λ is
usually tuned to be an increasing and divergent function of the sample size n, such that
the distribution Π converges to a Dirac mass on θ∗ when the sample size goes to infinity.
Therefore, the distribution Π is also a consistent estimator of the oracle, as well as the
ERM. When λ = n, it may happen that exp{−λrn(θ)} has a statistical interpretation, i.e.
it may correspond to the likelihood of some IID statistical model. In such a setting, the
distribution Π would correspond to the posterior distribution in the Bayesian framework,
with prior distribution Π0. Apart from this thin connection, the distribution Π should
simply be seen as a data-dependent distribution that yields consistent estimators.

Estimators based on the Gibbs distribution Π are known as PAC-Bayesian estima-
tors. While ERM usually requires optimization algorithms to minimize the function rn,
PAC-Bayesian estimators are usually approached using Monte Carlo methods. Indeed, as
well as for the posterior distribution in the Bayesian framework, in most of applications
the Gibbs distribution Π is partially known, in the sense that its moments do not have
explicit forms. Therefore, their approximations often require sampling from Π. It is note-
worthy that some recent methods, that rely on finding tractable approximations of the
Gibbs distribution, has proven their effectiveness (Alquier et al., 2016). Those methods,
known as Variational Bayes methods, form now a relevant alternative to Monte Carlo
approximations of the Gibbs distribution. Nevertheless, the PAC-Bayesian framework
presents another application of sampling methods in the field of statistics and machine
learning.

1.1.5 From exact to approximate sampling

All those applications motivate our main goal, which is sampling from a given distribution
Π, defined on Θ = Rp. Fortunately, we usually have some information over the distribu-
tion Π. In most cases, some knowledge is available in an analytic sense: for instance, Π
admits a density function π(.) that is computationally tractable pointwise up to a nor-
malizing constant, or differentiable in a closed form. To achieve the aforementioned, we
are essentially allowed to perform any transformation of the vector (U1, ..., Uk). Stated in
another way, our task boils down to finding a measurable map T : [0, 1]k 7→ Rp such that

T (U1, ..., Uk) ∼ Π.

This task is usually referred to exact sampling. Such transformations exist, e.g. the
inverse cumulative distribution function method, the rejection sampling algorithm2.

Regrettably, in many situations, exact sampling is not possible in a feasible com-
putational time. As a matter of fact, exact sampling is mostly restricted to very low
dimension. One first issue is that T needs to be a computationally tractable map. An-
other problem is that exact sampling may require a large number k of uniform random
variables.

2In that case, k is a geometrically distributed random variable.
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In most applications of sampling methods to Statistics and Machine Learning, the
target distribution Π cannot be sampled exactly. The objective is thus relaxed, and the
challenge becomes to sample approximately from Π. Stated in an informal way, our new
goal is to design a sequence of tractable maps (Tk) such that the following holds. For
every k ≥ 1, define the corresponding iterate of the sampling procedure

θk , Tk(U1, ..., Uk)

and note D(θk) the distribution of the random vector θk, then for some k not too large
we have

D(θk) ≈ Π.
How to measure the quality of such an approximation is a central question, and theoretical
guarantees are required, some of those will be discussed shortly. We often refer to the
generation of θk as a sampling procedure, or algorithm, as it is usually done recursively
by a computer. Among best known approximate sampling methods appear the so called
Markov Chain Monte Carlo (MCMC) algorithms. The general principle of MCMC is
the following. We define a Markov Chain in such a way that the distribution Π is its
stationary distribution. A stationary distribution Π is a probability distribution that
remains invariant after an iteration of the sampling procedure, i.e. a distribution that
satisfies the following implication for any k ∈ N:

θk ∼ Π ⇒ θk+1 ∼ Π.

This property does not seem helpful, since we are still not able to sample from Π at
a given step. However, under some assumptions, the stationary distribution is unique,
and defines the long term distribution of the Markov Chain. Therefore, running the
Markov Chain for a sufficiently long time allows us to sample approximately from Π.
A particularly good review of MCMC algorithms and their theoretical guarantees was
written by Roberts and Rosenthal (2004).

From a computational viewpoint, the complexity of a sampling task is directly related
to the number k of sampled uniform variables. Computing the maps (Tk) may also be
challenging, but MCMC samplers are designed to compute those maps sequentially, so
that the overall complexity of the sampling procedure remains linear in k. Nevertheless,
this often raises a trade-off between sampling accuracy and computational complexity.

From an asymptotic viewpoint, one of the first guarantees demanded for an approxi-
mate sampling procedure is the convergence in distribution, that is

θk
D→ Π

as k goes to infinity. This guarantee may be interpreted as follows. Running the sampling
algorithm as long as possible allows us to get the best possible sampling approximation
of the target distribution Π. Another guarantee, particularly relevant concerning Monte
Carlo estimation, is the strong law of large numbers. We say that a sequence (θk) satisfies
the strong law of large numbers if for any measurable ϕ : Θ 7→ R such that Π(|ϕ|) < +∞
we have

Π̂m(ϕ) , 1
m

m∑
k=1

ϕ(θk) a.s.→ Π(ϕ) (1.2)
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as m goes to infinity.
Under mild conditions (φ-irreducibility, Harris recurrence, and aperiodicity, see Roberts

and Rosenthal (2004) for definitions), a MCMC sampler will satisfy both guarantees. Con-
vergence in distribution and a strong law of large numbers are often claimed as a proof
of validity of the sampling procedure, at least in the limit. However, such a claim should
be tempered. Those guarantees do not give any information on the speed of convergence.
In particular, those are unhelpful when it comes down to comparing two sampling pro-
cedures on a computational basis, or to finding a good trade-off between computational
complexity and sampling precision for a given algorithm.

If one hopes to get stronger guarantees, a finer analysis is required, which requires
considering a metric over the space of probability distributions on Rp. A well known
distance is the Total Variation (TV) distance, which is also a norm over the set of signed
measures on Rp. If µ and ν are two probability measures on Rp, then the TV distance
between µ and ν is defined as

‖µ− ν‖TV , sup
A∈B(Rp)

|µ(A)− ν(A)|. (1.3)

Naturally, other metrics exist, some of them will be introduced in Section 1.3 and Chap-
ters 2 and 3. In this section however, for the sake of clarity, we will consider only the
TV metric. For approximate sampling algorithms, a stronger but common guarantee is
referred to geometric ergodicity. A sequence (θk) generated by a sampling procedure
will be called geometrically ergodic, with respect to the TV distance, if there exist some
constants C > 0 and ρ ∈]0, 1[ such that for every k ≥ 1 we have

‖D(θk)− Π‖TV ≤ Cρk.

Such a result gives further information over the speed of convergence. It guarantees
that the sampling approximation will converge to the target distribution exponentially
fast with the number of iterates k. For a given MCMC sampler, there exist theoreti-
cal conditions (essentially a drift condition, defined in Roberts and Rosenthal (2004))
that ensures geometric ergodicity. For the random-walk Metropolis Hastings algorithm,
probably the most generic MCMC sampler, Mengersen and Tweedie (1996) proved that
geometric ergodicity holds essentially if and only if the distribution Π has sub-exponential
tails.

Another property, particularly appealing for Monte Carlo estimation, is the existence
of a Central Limit Theorem (CLT). We say that a sequence (θk) satisfies a

√
m-CLT with

respect to a measurable map ϕ : Θ 7→ R if there exists a positive constant σ2(ϕ) such
that √

m
(
Π̂m(ϕ)− Π(ϕ)

)
D→ N (0, σ2(ϕ)),

where Π̂m(ϕ) is the sample average defined in (1.2). For MCMC samplers, geometric
ergodicity is directly related to the existence of a central limit theorem, in the following
sense. Theorem 24 of Roberts and Rosenthal (2004) states that if a sequence (θk) is
generated by a geometrically ergodic MCMC sampler, then it satisfies a

√
m-CLT for any

measurable ϕ such that for some δ > 0 we have Π(|ϕ|2+δ) < +∞. In other words, a geo-
metrically ergodic MCMC sampler satisfies a CLT for almost every possible function. In
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such a case, the asymptotic variance σ2(ϕ) will be directly related to the autocorrelation
function of the Markov Chain. The existence of a central limit theorem is useful in the
sense that it allows the construction of asymptotic confidence intervals for Monte Carlo
estimates.

From a sampling perspective, geometric ergodicity seems particularly appealing, as
it ensures that the sampling error will decrease exponentially fast with the number of
iterates k. However, the constants C and ρ are usually not explicit. Without additional
information, geometric ergodicity is still unhelpful for determining which k to choose
to reach a given precision, and how the computational complexity will scale with the
dimension.

To answer those questions, one needs to introduce an explicit measure of the com-
putational complexity. Such a measure can be defined through the mixing time of a
sampling procedure. For a given precision level ε > 0, and a sequence (θk) generated by
a sampling procedure, the mixing time, with respect to the TV distance, is defined as

Ksam
ε , min{k ∈ N : ‖D(θk)− Π‖TV ≤ ε}.

It is the minimum number of iterations required to reach a certain precision on the
sampling approximation error. In other words, if the user knows a bound on the mixing
time then he knows when to stop the sampling algorithm. Although such a measure has a
simple interpretation, deriving bounds on the mixing time of a given sampling procedure
can actually be quite hard, or not even feasible for complex sampling procedures.

As a matter of fact, it is known that the performance of most sampling schemes
deteriorates very fast when the dimension increases. Approximate sampling for high di-
mensional probability distributions appears to be so challenging that it is often referred
to a curse of dimensionality. Unsurprisingly, it is a very active field of research. Sev-
eral approximate sampling procedures have proven their effectiveness into tackling this
issue. Well known methods include: Langevin Monte Carlo, Hamiltonian Monte Carlo
and Sequential Monte Carlo. To assess their performance, one branch of research, more
theoretical, tries to establish non-asymptotic guarantees over the approximation error.
These works are devoted to bounding the mixing times of approximate sampling proce-
dures, and to study in particular their dependence on the dimension and the precision
level. Such strong theoretical guarantees are by nature difficult to establish, and therefore
require to restrict the study to simple algorithms within a particular family of sampling
distributions. To date, explicit guarantees for mixing times are mostly restricted to uni-
modal and sub-exponential distributions. Another research branch, more methodological,
is devoted to propose and assess new samplers for high dimensional distributions, usually
through computationally intensive numerical experiments. Such a task is very valuable
as well. It implies giving user-friendly advices on how to tune those samplers. Those
two research branches are different by nature, nevertheless they are both very useful in
finding approximate sampling solutions for high dimensional probability distributions.

A significant part of this thesis concerns high dimensional sampling, and is conducted
within the first branch. Quantitative results for high dimensional sampling will be the
focus of Section 1.3, but also Chapters 3 and 4. Prior to this, we will present some statis-
tical problems posed in the framework of intractable likelihoods. We make a particular
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emphasis on the inference of un-normalized models. This framework, briefly evoked in
Section 1.1.4, will be the main focus of Section 1.2, but also Chapter 2.

1.2 Inference of un-normalized statistical models

In this section, we focus on sampling-based solutions for the inference of partially known
statistical models. The lack of knowledge of a statistical model is to be understood here
from a computational point of view. We consider the problem of inferring statistical
models that involve intractable likelihood functions. More precisely, we study models
whose likelihoods are only computable up to a normalizing factor. Several examples
of un-normalized models are presented in the sequel. Those models poses problems for
both Bayesian and frequentist inference. The problem of their inference is considered
here in a unifying framework. We firstly show how MCMC samplers can be helpful
in such a setting, before focusing on a generic method of estimation proposed by Geyer
(1994), referred as Monte Carlo Maximum Likelihood Estimation (MC-MLE). We discuss
the precision of the underlying approximation depending on the choice of the sampling
distribution. Finally, we present a recent method of approximating the MLE proposed
by Gutmann and Hyvärinen (2010); Gutmann and Hyvärinen (2012) referred as Noise
Contrastive Estimation, which was observed to be more stable. Chapter 2 provides
theoretical support to this observation.

1.2.1 A general framework

The framework of un-normalized models can be formalized as follows. We suppose in
this section that Θ can be any subset of Rp. Consider a set of non-negative functions
{hθ : X 7→ R+, θ ∈ Θ} that are integrable with respect to a fixed measure µ, and define
the function Z(θ) ,

∫
X hθ(x)µ(dx). Therefore, for any fixed θ ∈ Θ the function

fθ(x) , hθ(x)
Z(θ) , ∀x ∈ X , (1.4)

defines a probability density with respect to µ. The set of densities {fθ : θ ∈ Θ} defines
a set of corresponding probability distributions {Pθ : θ ∈ Θ}, and therefore defines a
statistical model. From a computational perspective, we assume that the maps hθ have
closed form. However, this claim does not guarantee that the partition function Z(.)
will be tractable. When the partition function is intractable, we say that the statistical
model is un-normalized. Intractable partition functions precludes standard estimation
procedures, and therefore un-normalized models are usually avoided by practitioners.
Although, it is remarkable that exponential models, that form a widely studied family
in statistics, have no guarantee of being normalized, as their canonical formulation boils
down to assuming that hθ(x) = exp{θ>S(x)} for some measurable map S : X 7→ Rp. As
a matter of fact, several exponential models used in practice are un-normalized, some of
them are introduced hereafter.

Example 1: Exponential Random Graphical Models
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A first example is the so called Exponential Random Graphical Model (ERGM),
used in social network modelling (Robins et al., 2007). Assume that X is a random
network, formalized by a random set of edges between n fixed nodes. Such a network
has n(n − 1)/2 possible edges. From a mathematical perspective, X can be defined
as a random vector with binary components, that lives in the set X = {0, 1}n(n−1)/2.
The exponential modelization of this random phenomenon boils down to assuming that
there is a map S : X 7→ Rp such that the probability of observing a network x ∈ X
is proportional to hθ(x) = exp{θ>S(x)}. In the latter case, µ is the counting measure
over X and, in the setting of networks, S(x) is a summary statistic of the structure
of the network (e.g. the number of edges, triangles, isolated nodes), that determines
its likelihood. In this example, the partition function Z(θ) is a sum over the set X ,
with cardinal 2n(n−1)/2. Obviously, when the number of edges n is large, the partition
function becomes computationally intractable, which places ERGM into the framework
of un-normalized models.

Example 2: Ising Model
A second example of un-normalized model is the so-called Ising Model, named after

the physicist Ernst Ising. In a particular field of Physics called statistical mechanics, the
Ising model refers to a physical model of ferromagnetism, that formalizes mathematically
the interaction between magnetic dipole moments of atomic spins. Fortunately, a deep
understanding of what is a magnetic dipole moment or an atomic spin is not required in
the sequel. We may limit our understanding to a modelization of very small magnetic
entities called spins, that interact with their neighbors, and that can be either positive or
negative. From a mathematical perspective, we assume that X is a random set of spins
on a square lattice. If the lattice is composed by n2 spins, then X forms a random vector
with binary components, that lives in the set X = {−1, 1}n2 . From a statistical viewpoint,
the Ising model corresponds to an exponential modelization of this random phenomenon
where the probability of observing a given lattice x ∈ X is assumed proportional to
hθ(x) = exp{θ>S(x)}, where the statistic S(x) summarizes the interactions between the
spins of x (e.g. the number of pairs of neighbours with common spin). The computational
problem faced in the Ising model is very close to the one faced for ERGM since the
partition function is a sum over 2n2 possible lattices, computationally intractable when
n is large.

Example 3: Truncated Gaussian Model
If non computable partition functions arise in statistical modelling of interactions, or

dependencies, those can arise in iid statistical models as well. A simple example is the
Truncated Gaussian Model. It is common knowledge that Gaussian distributions belong
to the exponential family, through a suitable reparametrization. A Gaussian distribution
on Rd with mean m and non singular covariance matrix Σ admits a density with respect
to Lebesgue’s measure proportional to

hm,Σ(x) = exp
{
−1

2(x−m)>Σ−1(x−m)
}
.

The partition function Z(m,Σ) =
∫
X hm,Σ(x)dx is tractable when the Gaussian measure

charges the whole space X = Rd. However, when it is truncated to a subspace of Rd, for
instance X =]0,+∞[d, the partition function is multiplied by the Gaussian probability

12



measure of X , which is intractable. The computational problem here lies in the fact
that numerical approximations of the Gaussian measure of an arbitrary subset of Rd

become inefficient when d increases. An interesting question is whether one can infer the
parameters (m,Σ) from iid observations Y1, ..., Yn with Gaussian distribution truncated to
X . In this setting, Truncated Gaussian Models also find their place among un-normalized
models.

1.2.2 MCMC sampling for un-normalized models

A very well known MCMC method that is relevant here is the Metropolis Hastings (MH)
algorithm. Let Π be a probability distribution on Rd with density π(.) with respect to a
measure ν. The MH algorithm is a generic MCMC sampler that is useful for sampling
approximately from Π, provided that its density is computable pointwise up to a normal-
izing constant. We assume therefore that, for some integrable function p(.) computable
pointwise we have π(x) = p(x)/C where C =

∫
Rd p(x)ν(dx). The use of the MH algorithm

presupposes that there is a family of conditional densities {q(x|y) : y ∈ Rd} with respect
to ν, such that we can sample from the corresponding probability distribution Q(dx|y)
for any y ∈ Rd. This distribution is called proposal distribution. The Metropolis Hastings
algorithm is defined as follows:

Algorithm 1 Metropolis Hastings algorithm
Require: An initial distribution ν0 on Rd, and a number of steps m ≥ 1.
X0 ∼ ν0
for j = 0, . . . ,m− 1 do
Z ∼ Q(dx|Xj)
U ∼ U]0,1[

α← p(Z)
p(Xj)

× q(Xj|Z)
q(Z|Xj)

Xj+1 ← Z1U<α +Xj1U>α
end for

The MH algorithm defines a Markov Chain that admits Π as an invariant distribution.
This property follows from the definition of the variable α in Algorithm 1, referred as ac-
ceptance ratio. The sample X1, . . . , Xm obtained is then particularly helpful in estimating
moments of Π, as mentioned in Section 1.1.5.

In connection to un-normalized models, the MH algorithm can be used to sample
approximately from any distribution Pψ with density fψ(x) = hψ(x)/Z(ψ) without the
knowledge of the normalizing constant Z(ψ). In other words, one may use the MH al-
gorithm to generate random data from any distribution that belongs to the statistical
model. At first sight, this property does not seem helpful in solving the problem of infer-
ence caused by the intractable partition function. However, we will see in Sections 1.2.3
and 1.2.4 that this property is actually very helpful when it comes down to approximate
the likelihood by Monte Carlo methods.

Prior to this, we briefly discuss the nature of the inferential issue inherent in an

13



un-normalized model, when it comes down to computing the MLE, or to performing
Bayesian inference. If x ∈ X is some data observed by the user, the likelihood function
θ 7→ fθ(x) is said to be intractable, in the sense that fθ(x) = hθ(x)/Z(θ) cannot be
computed in practice for a given θ ∈ Θ. It is well known that the computing of the
MLE often requires a numerical approximation by an optimization procedure, e.g. the
gradient descent algorithm. Unfortunately, if the partition function Z(.) is intractable,
the computing of its gradient at each step of the algorithm will not be feasible either.
Let us now consider the Bayesian framework. The user chooses a prior distribution Π0
on Θ with density π0(.) with respect to a measure ν. The posterior distribution Π(.|x)
is then defined by the conditional density

π(θ|x) , π0(θ)fθ(x)∫
Θ π0(u)fu(x)ν(du) , ∀θ ∈ Θ. (1.5)

The approximation of the moments of the posterior distribution often relies on sampling
methods, e.g. the Metropolis Hastings algorithm. In order to sample approximately from
the posterior distribution Π(.|x) with Algorithm 1, the computation of the denominator
in (1.5) is not necessary, but the computation of Z(.) is required in the numerator, which
is not feasible. Actually, its computation is needed twice at each step of the algorithm,
because the probability transition kernel of the underlying Markov Chain, from a state
θ to a state ψ on Θ depends on the ratio Z(ψ)/Z(θ). For that reason, this inferen-
tial problem is also known as doubly intractable distributions, in the Bayesian literature.
Ironically, despite appearing as twice as unfeasible, the problem of sampling approxi-
mately from the posterior distribution received much attention, see for instance Møller
et al. (2006); Murray et al. (2012); Lyne et al. (2015). Among the methods proposed
by those authors, we present here the Exchange algorithm, introduced by Murray et al.
(2012) as an improved version of the Auxiliary Variable algorithm proposed by Møller
et al. (2006). The main assumption to allow its use is the following. Assume we are able
to sample exactly from Pψ for any ψ ∈ Θ. This assumption will be discussed shortly.
The Exchange algorithm is defined as follows.

Algorithm 2 Exchange algorithm
Require: An initial distribution ν0 on Θ, and a number of steps m ≥ 1.
θ0 ∼ ν0
for j = 0, . . . ,m− 1 do
ψ ∼ Q(du|θj)
w ∼ Pψ
U ∼ U]0,1[

α← π0(ψ)fψ(x)
π0(θj)fθj(x) ×

fθj(w)
fψ(w) ×

q(θj|ψ)
q(ψ|θj)

θj+1 ← ψ1U<α + θj1U>α
end for

Algorithm 2 is a modified version of the Metropolis Hastings algorithm. Compared to
the MH algorithm, at each step: an artificial random data w is drawn from a distribution
Pψ, and the acceptance ratio is multiplied by fθj(w)/fψ(w). As for the MH algorithm,
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the Exchange algorithm defines a Markov Chain with Π(.|x) as a stationary distribution.
Contrary to the MH algorithm, the Exchange algorithm does not require the computation
of the partition function, because the intractable term Z(θj)/Z(ψ) cancels out in the
acceptance ratio α. In other words, replacing the maps fθj(.) and fψ(.) by hθj(.) and
hψ(.) in Algorithm 2 does not change its definition.

Therefore, the Exchange algorithm can be used to generate a sample θ1, . . . ,θm helpful
for estimating the moments of the posterior distribution Π(.|x) without any knowledge of
the partition function. However, running the Exchange algorithm requires being able to
sample exactly from Pψ for any ψ ∈ Θ. Unfortunately, this is a rather strong assumption.
As emphasized in the beginning of this section, for a fixed ψ ∈ Θ, the MH algorithm can
be used to sample generate a Markov Chain with stationary distribution Pψ, but there
are few settings for which exact sampling is feasible in a reasonable computational time.

1.2.3 Monte Carlo Maximum Likelihood Estimation

We now turn to an approximation method of the MLE, called Monte Carlo Maximum
Likelihood estimation. This method was introduced by Geyer and Thompson (1992).
Its main theoretical justification was established a few years later by Geyer (1994). The
general principle of this method is explained is the sequel. Suppose that for some ψ ∈
Θ, a sample X1, . . . , Xm is drawn by the Metropolis Hastings algorithm with target
distribution Pψ. Suppose also that the Markov Chain (Xj)j≥0 satisfies a strong law of
large numbers (see Section 1.1.5 for conditions). In this case, for any fixed θ ∈ Θ, we
have in particular

1
m

m∑
j=1

hθ(Xj)
hψ(Xj)

a.s.→ Z(θ)
Z(ψ) , (1.6)

as m goes to infinity. In connection to Section 1.1.1, the empirical average in (1.6)
can be seen as an importance sampling estimate of the intractable ratio Z(θ)/Z(ψ),
where the random variables X1, . . . , Xm are generated by a Markov Chain with long term
distribution Pψ.

Suppose now that some data x ∈ X is observed by the user, and suppose that the
likelihood θ 7→ fθ(x) has a unique maximizer, i.e. suppose that the MLE exists and is
unique. Whatever is the value of ψ, the MLE is also the maximizer of the log likelihood
ratio function defined for every θ ∈ Θ by

`(θ) , log hθ(x)
hψ(x) − log

{
Z(θ)
Z(ψ)

}
. (1.7)

From this equivalence, Geyer (1994) proposed to approximate the MLE by maximizing
the function

`IS
m(θ) , log hθ(x)

hψ(x) − log

 1
m

m∑
j=1

hθ(Xj)
hψ(Xj)

 . (1.8)

The maximizer of `IS
m(.), if it exists, is called Monte Carlo Maximum Likelihood Estimator

(MC-MLE). From (1.6), we deduce that for every fixed point θ ∈ Θ, then `IS
m(θ) is a

consistent estimator of `(θ) as m goes to infinity. In other words, the map `IS
m(.) is an
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estimator of the map `(.), that is consistent pointwise. Moreover, Geyer (1994) showed,
under mild assumptions, that the MC-MLE is also a consistent approximation of the
MLE, when m goes to infinity.

Although, a legitimate question is whether this approximation is accurate for every
sampling distribution Pψ. The answer is no, this is illustrated in the sequel. Suppose
that the Markov Chain (Xj)j≥0 generated by the Metropolis Algorithm is geometrically
ergodic. Then it follows from Roberts and Rosenthal (2004, Theorem 25), that `IS

m(θ)
is an asymptotically normal estimator of `(θ) if and only if Pψ(h2

θ/h
2
ψ) < +∞. In

other words, for a fixed sampling distribution Pψ, the map `IS
m(.) may be an acceptable

approximation of the map `(.) only on the set Θψ , {θ ∈ Θ : Pψ(h2
θ/h

2
ψ) < +∞}. On

a wide region of the parameter space, the likelihood function may not be approximated
correctly. Therefore, we can expect the MC-MLE to be accurate only if the likelihood is
well approximated around its maximizer.

Geyer (1994) emphasizes this fact, by showing that when the model is exponential,
MC-MLE is asymptotically normal essentially if and only if the MLE belongs to Θψ. In
exponential models, Θψ is a convex subset of Θ that contains ψ. This supports the idea
that MC-MLE is accurate essentially if ψ is close to the MLE. Chapter 2 provides further
insight on this intuition.

In practice, the sampling distribution Pψ is chosen by the user, and the MLE is
intractable. Therefore, the choice of the sampling distribution is an important issue. A
heuristic strategy is the following. For an initial parameter ψ0 ∈ Θ generate a sample
X1, . . . , Xm from the MH algorithm with respect to the target distribution Pψ0 . Then
compute the MC-MLE estimator, and plug its value to ψ1. Repeat the estimation process
with a new sample drawn from Pψ1 , and so on. The main hope when choosing this strategy
is that the MC-MLE estimates may stabilize when those estimates eventually get close
to the MLE. This methodology has no theoretical support from a general perspective.
In specific models however, providing further guidance on the choice of the sampling
distribution may be possible.

1.2.4 Noise Contrastive Estimation

Section 1.2.3 was devoted to present an approximation of the MLE, and to assess its
accuracy with respect to the Monte Carlo error. However, the definition of un-normalized
models proposed in (1.4) presupposes that the observed data x ∈ X is fixed. This
viewpoint does not take into account the dimension, nor the structure of the observed
data. In particular, a point that should be emphasized is the computational burden of
sampling on X .

One underlying question is whether MC-MLE can be improved if a certain structure is
assumed on the dataset. The most simple case one can consider is the framework of n iid
observations. In this framework, the computational complexity of a sampling procedure
on X is independent of the amount of observed data n. It will be mostly related to the
dimension of X .

Suppose that the dataset is constituted of n iid random variables Y1, . . . , Yn over the
space X . Suppose also that we are only able to generate m random variables X1, . . . , Xm
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in a reasonable computational time. An interesting question is: how accurate will be MC-
MLE, when the size of the dataset n is large? In particular, if the amount of data observed
n is non-negligeable with respect to m, the inferential error of the MLE is expected to
be also non-negligeable with respect to the Monte Carlo error of the MC-MLE. When
the latter happens, both errors should be studied in a common framework. This point is
discussed further in Chapter 2.

In the framework of un-normalized models for iid data, Gutmann and Hyvärinen
(2010) proposed an estimation method known as Noise Contrastive Estimation (NCE).
This method will be described in Chapter 2. As for MC-MLE, the principle of NCE relies
on approximating a likelihood by Monte Carlo methods (Barthelmé and Chopin, 2015).
A common aspect between NCE and MC-MLE is that both methods require sampling on
the space X . In Section 1.2.3, we emphasized the fact that the accuracy of MC-MLE may
be sensitive to the choice the sampling distribution Pψ. A remarkable point is that the
accuracy of NCE is much less sensitive to this choice. Gutmann and Hyvärinen (2012)
provided numerical evidence that NCE is more stable than MC-MLE, especially when
m/n is low. Chapter 2 provides a formal justification of this fact, and shows in the same
time that the two methods have a lot of connections from a theoretical perspective.

1.3 Quantitative results for high dimensional sam-
pling

In this section, we focus on the problem of controlling the approximation error of a sam-
pling procedure. This error may be measured by several distances or divergences, some of
them will be introduced in the sequel. The choice of a distance or divergence is necessary
to quantify the error of an approximate sampling procedure after a certain number of
iterations. We are interested here in providing explicit non asymptotic guarantees over
the sampling error, in order to get a reliable measure of the computational complexity of
the sampling procedure. A convenient framework to establish such results is the set of
smooth and log concave distributions. In this setting, we focus on the Langevin Monte
Carlo algorithm, whose non asymptotic study, pioneered by Dalalyan (2017b), inspired
many authors in the last few years. After an overview of those results, we end up this
introduction by presenting the Kinetic Langevin Monte Carlo algorithm, a special case
of Hamiltonian Monte Carlo introduced by Cheng et al. (2018), which was shown to have
a better scaling with the dimension. Chapters 3 and 4 provide further insight on its
quantitative guarantees.

1.3.1 Measuring distances between probability distributions

Establishing quantitative guarantees on the error of an approximate sampling procedure
requires choosing a metric over the space of probability distributions on Rp. We will
consider in this thesis mostly two well known distances. The first one is the total variation
distance, already defined in (1.3). Another distance we will consider is the so-called
Wasserstein distance. For any two probability measures µ and ν on Rp, we first define
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C (µ, ν) the corresponding set of couplings, that is the set of probability distributions on
Rp × Rp with marginal distributions µ and ν. Then for any real q ≥ 1, we define the
q-Wasserstein distance between µ and ν, with respect to the Euclidean norm noted ‖.‖2,
that is

Wq(µ, ν) ,
(

inf
%∈C (µ,ν)

∫
Rp×Rp

‖θ − θ′‖q2 d%(θ,θ′)
)1/q

.

The Wasserstein distance, also known as the Wasserstein-Monge-Kantorovich distance,
comes from optimal transport theory. For a complete introduction to its origin and
properties see the book of Villani (2008). In many applications of Statistics and Machine
Learning, the use of the Wasserstein distance has become popular, essentially because it
often simplifies the analysis compared to the TV metric, and because it is directly linked
to the moments of the distributions which are of particular interest within statistical
estimation frameworks.

When the choice of a metric between probability distributions is too constraining, it
is common to consider so called statistical divergences. Those are pseudo-metrics in the
sense that they do not satisfy symmetry nor a triangular inequality. Let µ and ν be two
probability distributions on Rp such that µ is absolutely continuous with respect to ν.
Some well known divergences between µ and ν are the Kullback-Leibler divergence

KL(µ‖ν) ,
∫
Rp

log
(
dµ

dν
(θ)

)
ν(dθ)

and the χ2 divergence

χ2(µ‖ν) ,
∫
Rp

(
dµ

dν
(θ)− 1

)2

ν(dθ).

1.3.2 Comparing the complexity of two sampling procedures

Since our main goal is to sample approximately from Π, an interesting question is how
to assess the quality of such an approximation. One convincing solution is to compute
quantitative rates of convergence to the target distribution. Let (θk) be a sequence of
random vectors on Rp, generated by an approximate sampling procedure. Once a metric,
or a divergence, is chosen, then for a given precision level ε > 0, assessing the quality of
the sampling approximation essentially boils down to controlling the mixing time of the
sampling procedure. Recall that the mixing time of the sampling procedure, with respect
to the TV distance, is

Ksam
ε = min{k ∈ N : ‖D(θk)− Π‖TV ≤ ε}.

In this section, we may refer to the mixing time with respect to another metric or diver-
gence. In this case, the TV distance should be replaced by the corresponding metric or
divergence in the definition above.

Our new task is, for a given sampling procedure, to bound the number of iterations
required to reach a certain precision, measured by a distance between probability distri-
butions. The purpose of such a task is twofold. First, it is very convenient for the user,
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because it provides a stopping rule to the sampling algorithm. Second, it is quite valuable
from the theoretician’s point of view, especially for comparing two sampling algorithms
on the computational complexity basis. In particular, determining which algorithms have
the best mixing times in terms of their scaling with the dimension is of tremendous im-
portance. Moreover, it is essentially the only way of providing guidance towards efficient
sampling procedures for (very) high dimensional distributions, simply because numerical
experiments become too costly when the dimension increases.

Before stating precise results on this topic, let us remark that the mixing time of a
sampling procedure can be related to a similar notion in optimization. Indeed, suppose
we are interested in minimizing a certain function f : Rp 7→ R, which is continuously
differentiable, and has a unique minimizer θ∗. Suppose moreover that (ϑk) is a determistic
sequence, induced by an optimization algorithm, that converges to θ∗.

In such a setting, the computational complexity will be directly related to the con-
vergence time of the optimization algorithm. For a given precision level ε > 0, we define
the convergence time with respect to the Euclidean norm, that is

Kopt
ε , min{k ∈ N : ‖ϑk − θ∗‖2 ≤ ε}.

Just as the mixing time is for the sampling problem, the convergence time is the minimum
number of iterations to reach a given accuracy. The only difference is that the approx-
imation error is measured here by a distance to the minimizer, which is the Euclidean
norm.

A priori, the optimization problem is different from the problem of sampling for a given
distribution Π. Although, when it comes down to comparing two sampling algorithms on
the computational complexity basis, the two problems should be related. The similarity
between the mixing time and the convergence time motivates the idea of comparing two
sampling algorithms in the same way as we do for comparing two optimization algorithms.
We will see that other similarities between the sampling problem and the optimization
problem appear when considering a more precise framework.

1.3.3 Focus on Langevin Monte Carlo

We now restrict our attention to the unimodal distributions Π that admit a positive and
continously differentiable density with respect to Lebesgue measure on Rp. Stated in
another way, we focus on the distributions Π that admit a density noted π with respect
to Lebesgue measure, of the form

π(θ) , e−f(θ)∫
Rp e

−f(u)du
, ∀θ ∈ Rp,

where f : Rp 7→ R is a continuously differentiable function, which has a unique minimizer
θ∗. Therefore, the map f needs to be coercive in such a way that π remains a probability
density. In this context, the problem of minimizing f and the problem of sampling from
a distribution with density π(θ) ∝ e−f(θ) actually have a particular connection. This
connection lies in several similarities between the so called gradient descent algorithm
and Langevin Monte Carlo algorithm.
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Concerning the optimization problem, a very common strategy relies on running the
Gradient Descent (GD) algorithm, defined as follows. For some deterministic ϑ0 ∈ Rp

and for some step size h > 0, define the sequence

ϑk+1 = ϑk − h∇f(ϑk), k = 0, 1, 2, ... (1.9)

Essentially, it is known that under some assumptions on f and h, the deterministic
sequence (ϑk) will converge to the minimizer θ∗.

Concerning the sampling problem, the so called Langevin Monte Carlo (LMC) algo-
rithm (also known as the unadjusted Langevin algorithm) is defined as follows. Assume
that (ξk) is a sequence of IID standard Gaussian vectors on Rp. For some θ0 ∈ Rp, that
may be either deterministic or random, and for some step size h > 0, define

θk+1 = θk − h∇f(θk) +
√

2hξk+1, k = 0, 1, 2, ... (1.10)

As its definition essentially boils down to adding a noise term to a gradient descent step,
the LMC is sometimes referred to the sampling counterpart of the GD algorithm. It is
common knowledge that under some assumptions on f and h, the sequence (θk) will be
a Markov Chain that converges in distribution to a probability measure Πh, that is close
to Π when h is small enough. This property is a consequence of the fact that (1.10) is
a discretization of the continuous-time Langevin process, defined through the following
stochastic differential equation

dLt = −∇f(Lt)dt+
√

2dW t, t ≥ 0 (1.11)

where {W t : t ≥ 0} stands for the standard p-dimensional Brownian motion. Let L0 ∈ Rp

be either deterministic or random. Then, under some assumptions on f , (1.11) has a
unique solution, which is a Markov process {Lt : t ≥ 0} converging in distribution to
Π when t goes to infinity. Unfortunately, there is no efficient method to sample exactly
from the continuous-time Langevin process.

Built upon the Euler discretization of (1.11), LMC appeared as a natural candidate for
sampling approximately from Π. From an asymptotic viewpoint, there is no convergence
to the target distribution for a fixed step size h > 0. However, one may hope reaching
a given precision by choosing first a step size h small enough such that Πh is close to
Π, then running the LMC algorithm for a sufficient number of steps so that D(θk) gets
close to Πh, and therefore close to Π. A first important contribution to the analysis of
the probabilistic properties of the LMC was done by Roberts and Tweedie (1996). The
authors show in particular that the chain may not be ergodic, or may even be transient,
if the time step h is not carefully chosen. The sensitivity of the LMC to a bad choice
of h, combined with the fact that there is no exact convergence to Π, influenced many
authors in working on a modified version of the Langevin algorithm, that ensures the
convergence in distribution to Π. This algorithm is known as the Metropolis Adjusted
Langevin Algorithm (MALA). Unsurprisingly, MALA received a lot of interest during
the following years. Several contributions to the analysis of its probabilistic properties
were made by Roberts and Rosenthal (1998); Stramer and Tweedie (1999a,b); Roberts
and Stramer (2002); Pillai et al. (2012); Eberle (2014); Dwivedi et al. (2018); Eberle and
Majka (2019). Several Langevin type algorithms exist, based on other discretizations for

20



instance. Essentially, it is known that approximate sampling algorithms based on the
properties of the continuous-time Langevin process perform well for high dimensional
distributions. A proof of this fact will be given in the sequel.

Concerning the LMC, the non-asymptotic study of its theoretical guarantees was left
out for a while, until very recently. A founding contribution to quantitative rates for LMC
was made by Dalalyan (2017b), who established that under some simple assumptions on
f , the mixing time (with respect to the TV distance) of the LMC depends polynomially
on the dimension p and the precision level ε. This result was the first of its kind for
LMC. Beside solving the problems of transience and non-ergodicity of the chain (θk)
by a simple choice of step size h > 0, it had the particular merit of providing non-
asymptotic convergence rates with explicit dependence in the dimension together with
small constants. This contribution aroused a new interest in LMC. Those results were
significantly improved and extended to the Wasserstein distance by Durmus and Moulines
(2016); Durmus and Moulines (2017); Dalalyan (2017a); Durmus et al. (2018); Dalalyan
and Karagulyan (2019). It is noteworthy that those results do not conclude that LMC is
more efficient than MALA, but they provide user-friendly bounds on the mixing time of
LMC that have no equivalents in MALA’s literature.

1.3.4 A convenient framework for quantitative rates

An interesting point from Dalalyan (2017b) was the connection made between the op-
timization and the sampling task, and the choice of assumptions on f induced by this
comparison. This is explained in the sequel. A convenient framework to get explicit rates
of convergence, for optimization problems, is to consider maps f that are both smooth
and convex. Let us note ∇f for the gradient of f . In what follows, we assume that f is
strongly convex and has a Lipschitz gradient, i.e. that for some positive constants m and
M we have

A1 :

 f(θ)− f(θ′)−∇f(θ′)>(θ − θ′) ≥ (m/2)‖θ − θ′‖2
2,

‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2,
∀θ,θ′ ∈ Rp.

Under assumption A1, the constants m and M are always such that m ≤M . Moreover,
if the map f is assumed to be twice differentiable with Hessian ∇2f , then assumption
A1 is equivalent to requiring that mIp � ∇2f(θ) � MIp for every θ ∈ Rp. This remark
brings us to consider a third parameter to measure the difficulty of the problem, for both
optimization and sampling. This parameter is defined as κ ,M/m and is called condition
number, as it relates to the conditionning of the Hessian matrix ∇2f . Essentially, it
measures how much the curvature of f may vary when visiting the space Θ = Rp.

Assuming that A1 holds, it is well known that an explicit convergence rate of the
GD algorithm can be derived. This is the point of the following result (Boyd and Van-
denberghe, 2004, Eq. 9.18). Assume that f is a continuously differentiable function
such that for some positive constants m and M , assumption A1 holds. Let (ϑk) be the
deterministic sequence defined in (1.9) with h = 1/(2M), then

‖ϑk − θ∗‖2
2 ≤

2 (f(ϑ0)− f(θ∗))
m

(
1− m

2M

)k
, ∀k ∈ N. (1.12)
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This shows that the approximation error to the minimizer of f is dimension free, and
decreases exponentially fast with the number of iterates k. The initial term (f(ϑ0) −
f(θ∗)) is bounded by (M/2)‖ϑ0−θ∗‖2

2. Therefore, if the initial distance to the minimizer
is considered as a constant, then for a given precision level ε > 0, the convergence time
Kopt
ε of the GD algorithm is dimension free and depends logarithmically on ε, but also

on κ.
Concerning the problem of sampling from Π, the first inequality of A1 requires the

density π(θ) ∝ e−f(θ) to be strongly log-concave. For a detailed review on log-concave
probability distributions and their properties, see Saumard and Wellner (2014). A main
property is that a strongly log-concave distribution is necessarily unimodal and sub-
Gaussian. A legitimate claim is that it is a major restriction in the space of probability
distributions. Another legitimate claim is that, if one considers the optimization prob-
lem, the strong convexity of f is also a major restriction in the space of continuously
differentiable functions. Just as most of geometric rates of convergence in optimization
hold for convex functions, most results of geometric ergodicity in approximate sampling
hold for sub-exponential distributions. Therefore, if one hopes to get explicit rates of
convergence to Π, some assumption close to A1 will be required, essentially.

Concerning the Langevin diffusion process, we will see that assumption A1 is very
convenient in many ways. A first remark is that if the second inequality of A1 holds,
the diffusion process (1.11) has a unique strong solution {Lt : t ≥ 0} which is a Markov
process. Moreover, if assumption A1 holds and if D(L0) is absolutely continuous with
respect to Lebesgue measure, then this diffusion Markov process is also geometrically
ergodic, in the following sense (Dalalyan, 2017b, Lemma1):

‖D(Lt)− Π‖TV ≤
1
2χ

2(D(L0)‖Π)1/2e−mt/2, ∀t ≥ 0. (1.13)

In particular, for the initial distribution D(L0) = N (θ∗,M−1Ip) then it can be shown
that χ2(D(L0)‖Π) ≤ exp{(p/2) log(M/m)}. Therefore, in such a case for any ε > 0, the
Langevin diffusion process after a time

T ≥ 2
m

{
p

4 log
(
M

m

)
+ log

( 1
2ε

)}
,

will be such that ‖D(LT )− Π‖TV ≤ ε. In other words, the mixing time of the Langevin
diffusion process for the TV distance depends linearly on the dimension p and logarith-
mically on ε and κ. This result was improved by Durmus and Moulines (2016); Durmus
and Moulines (2017), who showed that the dependence in the dimension p is actually
logarithmic, for both the TV distance and the 2-Wasserstein distance, and for any de-
terministic starting point L0 ∈ Rp. Obviously, the mixing time of the Langevin diffusion
process is of little interest from the user’s perspective since it cannot be sampled exactly.
However, those results highlight the fact that an approximate sampling algorithm based
on a discretization of (1.11) is expected to perform well for high dimensional distributions,
provided that the discretization error has also polynomial dependence in the dimension.

For LMC, the discretization error was controlled by choosing a time step h small
enough that has polynomial dependence on p and ε. Up to a logarithmic factor, the
mixing time then scales as the inverse of h. We present hereafter a summary of the
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best known rates for the mixing time of LMC, for the TV distance, Kullback-Leibler
divergence and the Wasserstein-2 distance. Those rates are the results of several works
already quoted. We emphasize here the contribution of Durmus et al. (2018), who recently
improved the dependence on the condition number κ. It is noteworthy that this result was
made possible for TV and Kullback-Leibler by considering a slightly different sampling
estimate, which relies on picking at random an element of the LMC chain after a burn-in
period of the same order as the mixing time. As the corresponding distribution is an
average of measures on the LMC chain, we refer to this sampling estimate as LMC with
averaging.

Distance Total variation Kullback-Leibler Wasserstein-2
Mixing time κp/ε2 4 κp/ε 4 κp/ε2

Table 1.1: Scaling of LMC mixing time with p, ε,κ, up to logarithmic factors. The results
indicated by 4 describe the behavior of LMC with averaging.

Several extensions of those results were studied; for instance Durmus and Moulines
(2016) improved the dependence on the precision level for the Wasserstein-2 distance
under further smoothness assumption, i.e. when the Hessian ∇2f is Lipschitz for the
spectral norm. Dalalyan and Karagulyan (2019) proposed an extension of LMC to a
case where the gradient ∇f is not known accurately. Both works also studied a varying
step size approach of the LMC, proved optimal for a step size h of order 1/k at the
k-th iterate, that essentially allows to get rid of a logarithmic factor in the mixing time.
Several works also tried to establish similar guarantees when the potential function f is
convex, but not strongly convex, that is when m = 0 in the first equation of A1. Among
them, several isolated results can be found for instance in Dalalyan (2017b); Durmus and
Moulines (2017); Durmus et al. (2018). Chapter 4 is an attempt to extend and unify
those results into a common framework. It emphasizes the fact that the mixing time will
scale polynomially with the dimension p if the moments of Π also scale polynomially with
p, therefore additional assumptions on f are required. The literature for LMC is wide
and this is by no means an exhaustive review of the works dedicated to this topic. In a
different but related direction, a recent contribution by Cheng et al. (2018) established
explicit non asymptotic guarantees for another algorithm, called Kinetic Langevin Monte
Carlo. This is the main topic of the following section.

1.3.5 Kinetic Langevin Monte Carlo

The so called Kinetic Langevin Monte Carlo (KLMC) algorithm (a.k.a underdamped
Langevin MCMC) is an approximate sampling algorithm, which belongs to a wide family
of sampling algorithms known as Hamiltonian Monte Carlo (HMC). For a detailed ex-
planation on HMC algorithms and their origin, see Duane et al. (1987); Neal (2011). As
emphasized by Eberle et al. (2017), HMC algorithms are known to perform better than
other MCMC algorithms for high dimensional distributions, although those observations
were lacking of theoretical justification. Among HMC algorithms, KLMC has the partic-
ularity of being the first for which computations made possible to derive similar results
as for LMC, i.e. explicit non asymptotic guarantees with small constants over the mixing
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time. The KLMC algorithm itself was introduced by Cheng et al. (2018), which relies on
a smart discretization of the so called kinetic Langevin diffusion process, defined by

d

[
V t

Lt

]
=
[
−(γV t + u∇f(Lt))

V t

]
dt+

√
2γu

[
Ip

0p×p

]
dW t, t ≥ 0, (1.14)

where γ > 0 is the friction coefficient and u > 0 is the inverse mass. Under the same
assumptionA1 as for the Langevin diffusion, the continuous-time Markov process (Lt,V t)
is also positive recurrent, while its invariant distribution is absolutely continuous with
respect to the Lebesgue measure on R2p. The corresponding invariant density is given by

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2u‖v‖
2
2

}
, θ ∈ Rp, v ∈ Rp. (1.15)

In other words, under the invariant distribution, the components L and V are indepen-
dent, L is distributed according to the target π(θ) ∝ e−f(θ), whereas V /

√
u is a standard

Gaussian vector. To target a probability distribution through its product density with a
Gaussian distribution on the extended space R2p is actually a common feature of HMC
algorithms. The diffusion process (1.14) cannot be sampled exactly, but a sampler can
be derived from its discretization on R2p. The discretized version of the first component
(Lt) can therefore be used for solving the problem of sampling from Π.

The algorithm of Cheng et al. (2018) will not be described here, but it relies essentially
on approximating the term ∇f(Lt) by ∇f(L0) in the stochastic differential equation
(1.14). The key property of the new process induced by this approximation is that it is a
Gaussian process with an explicit solution, that allows the computation of the conditional
distribution of (Lt,V t) given (L0,V 0). By choosing a step size h > 0, and repeating
this discretization principle at each step, one gets a tractable sequence of conditional
Gaussian distributions and therefore a sampling algorithm.

As for p-dimensional Langevin type algorithms, the quality of the resulting sampler
will depend on two key properties: the rate of mixing of (1.14) and the error induced by
its discretization. A main contribution to the rate of mixing of kinetic diffusions was made
by Eberle et al. (2017), under conditions that are more general than strong convexity of
f . Cheng et al. (2018) took care of the second part by proving that their algorithm
leads to a sampler that achieves a mixing time’s scaling of κ2p1/2/ε with respect to the
Wasserstein-2 distance.

In other words, KLMC based on (1.14) converges faster than the standard LMC based
on (1.11), at least with respect to the dimension p and the precision level ε. Emphasized
in Chapter 3, this improved rate of convergence is mainly due to the higher smoothness of
sample paths of the process {Lt : t ≥ 0}, that essentially leads to a smaller discretization
error. However, the quadratic dependence on the condition number κ for KLMC is
apparently worse than the linear dependence proven by Durmus et al. (2018) for LMC.
In other words, from the results we have to this day, it is not impossible that LMC may
behave better for very badly conditioned problems. Though, such a claim should be
placed in the context of a new field of study. Indeed, the linear dependence proven by
Durmus et al. (2018) is very recent, and therefore led Cheng et al. (2018) to formulate as
an open question whether the dependence on κ could be improved to linear for KLMC.
Chapter 3 answers partially to this question by proving that the dependence is improvable
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to κ3/2. Nevertheless, a lack of lower bounds and optimality results in this field give the
intuition that it is a bit early to draw conclusions on this fact.

A significant part of this thesis is actually devoted to the study of Kinetic Langevin
Monte Carlo properties and extensions. In particular, Chapter 3 improves the results from
Cheng et al. (2018) and proposes a second order algorithm whose mixing time’s scaling
is improved by a factor ε under further smoothness assumption, i.e. when the Hessian
∇2f is Lipschitz for the spectral norm. In another direction, an interesting question is
whether quantitative results can be established for KLMC when the potential function f
that is convex but not strongly convex, this topic is studied in Chapter 4.

1.4 Summary of the contributions

Chapter 2 presents a joint work with Nicolas Chopin, devoted to the inference of un-
normalized statistical models. Chapter 3 is a joint work with Arnak Dalalyan, while
Chapter 4 is a joint work with both Arnak Dalalyan and Avetik Karagulyan. Those
two works relates to approximate sampling for high dimensional distributions, and in
particular their non asymptotic guarantees.

1.4.1 Inference of un-normalized statistical models

In statistics and machine learning, dependency modelling is an important field of research.
Statistical models can now be designed for handling very general dependence structures
(e.g. graphical models, networks, spatial point processes). Inference in many of these
models appears to be challenging, because they involve intractable likelihoods. Among
others, these include problems caused by non computable “normalizing constants”. Par-
tition functions in graphical models are an example. Those “un-normalized” statistical
models have posed a serious challenge for both bayesian and frequentist inference. This
field raises the following central question: when a statistical model involves an intractable
partition function, how can we infer this model, and how well? This problem was studied
by several authors, e.g. Geyer (1994), Gutmann and Hyvärinen (2010), Barthelmé and
Chopin (2015). The main solutions involve sampling methods. Un-normalized models
are usually avoided by practitioners due to their difficulty for estimation. With the rise
of computational techniques and power, research on intractable normalizing constants is
useful in proposing and assessing new inferential methods.

Several inferential methods have been proposed to tackle this issue, for the most
based on Monte-Carlo methods. Among them, we study some approximations of the
Maximum Likelihood Estimator by sampling methods, especially the following two: a
standard method called Monte-Carlo MLE (Geyer, 1994), and a more recent procedure,
known as Noise Contrastive Estimation (Gutmann and Hyvärinen, 2010). Several works
(Gutmann and Hyvärinen, 2010; Gutmann and Hyvärinen, 2012), based on simulations,
observed that this new method is more stable, but no theoretical results had yet been
proven. We manage to turn this observation into a formal result: we prove that this new
estimation method is more robust to a bad choice of sampling distribution especially for
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large observed datasets. We complete those results by a numerical comparison, assessing
the gain of performance depending: on the distance between sampling and data distribu-
tions, and on the computational budget. Chapter 2 was published in Electronic Journal
of Statistics in 2018 (Riou-Durand and Chopin, 2018). From a mathematical perspec-
tive, Chapter 2 employs several concepts such as: asymptotic properties of M-estimators,
geometric ergodicity of MCMC samplers, Central Limit Theorems for Markov Chains.

1.4.2 Quantitative results for high dimensional sampling

High-dimensional models are an important focus of statistical research, emphasized in
the present era of “big-data”. In both frequentist and Bayesian settings, high dimension
remains an important inferential issue. It appears so challenging that it is often referred
as a “curse of dimensionality”. For instance, Bayesian inference often requires sampling
from a high dimensional posterior distribution. But it is known that the performance
of most sampling schemes deteriorates exponentially fast when the dimension increases.
Several approximate sampling procedures have proven their effectiveness into tackling
this issue (e.g. Sequential Monte Carlo, Hamiltonian Monte Carlo, Langevin Monte
Carlo). Among them, the (unadjusted) Langevin’s algorithm was the first for which
researchers were able to provide true non-asymptotic guarantees over the approximation
error. Some recent results made a particular focus on this research area (Dalalyan, 2017b;
Durmus and Moulines, 2016), as they showed that under some strong conditions over the
distribution, Langevin’s “mixing time” (number of iterations needed to reach a given
accuracy) grows polynomially fast (only), when the dimension increases. Researchers are
currently trying to extend these results to other algorithms, under milder hypotheses.
These non-asymptotic studies are very useful in providing guaranties and guidance to
efficient high dimensional sampling procedures.

Following several articles on the mixing time of Langevin Monte Carlo for strongly
log concave distributions (Dalalyan, 2017b; Durmus and Moulines, 2016), a new sam-
pling algorithm was very recently proposed by Cheng et al. (2018). The authors showed
that under the same assumptions, the mixing time of this algorithm with respect to the
Wasserstein-2 distance, improves the one of Langevin Monte Carlo, in terms of depen-
dence to both dimension and precision level. This sampling method, referred as Kinetic
Langevin Monte Carlo (a.k.a. underdamped Langevin MCMC), can be viewed as a spe-
cial case of Hamiltonian Monte Carlo. It was to our knowledge the first non-asymptotic
result of this type for HMC. Chapter 3 is devoted to provide a better understanding
of the properties of Kinetic Langevin Monte Carlo. In addition to that, we show that
the mixing time dependence on regularity parameters is improvable, compared to Cheng
et al. (2018), together with numerical constants. Finally, we design a second-order algo-
rithm which, under stronger regularity assumptions, leads to an improved mixing time,
in terms of dependence to the precision level. Chapter 3 was submitted to Bernoulli in
2018 (Dalalyan and Riou-Durand, 2018). From a mathematical perspective, Chapter 3
employs several concepts such as: Langevin diffusions, Couplings, Wasserstein distance.

Another interesting direction in the literature of approximate sampling is whether
quantitative results can be established under milder hypotheses than adopted by Dalalyan
(2017b); Durmus and Moulines (2016); Durmus and Moulines (2017). More precisely, a
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main question is whether polynomial rates of convergence can still be obtained when the
sampling distribution is log concave, but not strongly. For LMC, several contributions
answered partially to this question (e.g. Dalalyan (2017b); Durmus and Moulines (2017);
Durmus et al. (2018)). Chapter 4 is devoted to extend those results, but also to establish
their counterpart for KLMC. We establish non asymptotic bounds on the mixing time of
LMC and KLMC (first and second order), with respect to Wasserstein-q distances and the
bounded-Lipschitz distance. Those bounds depend on the knowledge of moments of the
sampling distribution. We provide several conditions that allows the user to bound those
moments, and obtain at the same time polynomial rates with the dimension. To this date,
Chapter 4 is still a working paper. From a mathematical perspective, Chapter 4 employs
several concepts such as: Langevin diffusions, Moments of log concave distributions,
Wasserstein and bounded-Lipschitz distances.
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1.5 Résumé substantiel des contributions

Le Chapitre 2 présente un travail réalisé conjointement avec Nicolas Chopin, consacré
à l’inférence de modèles statistiques non-normalisés. Le Chapitre 3 est un travail réal-
isé conjointement avec Arnak Dalalyan, tandis que le Chapitre 4 est un travail réalisé
conjointement avec Arnak Dalalyan et Avetik Karagulyan. Ces deux travaux portent
sur les méthodes d’échantillonnage aléatoire approché pour des distributions de grande
dimension, et en particulier leurs garanties non-asymptotiques.

1.5.1 Inférence des modèles statistiques non-normalisés

En statistique et en apprentissage, la modélisation de la dépendance est un domaine de
recherche important. Des modèles statistiques sont désormais conçus pour traiter des
structures complexes de dépendance (par exemple des modèles graphiques, des réseaux,
des processus ponctuels spatiaux). L’inférence dans la plupart de ces modèles est difficile
à réaliser, car ils impliquent des fonctions de vraisemblance incalculables. Ces problèmes
sont parfois causés par des “constantes de normalisation” non calculables. Les fonctions
de partition dans les modèles graphiques en sont un exemple. Ces modèles statistiques
“non-normalisés” sont un défi pour l’inférence Bayésienne comme fréquentiste. Ce champ
de recherche tente de répondre à la question suivante : lorsqu’un modèle statistique im-
plique une fonction de partition incalculable, comment peut-on estimer ce modèle, et à
quel coût ? Ce problème a été étudié par plusieurs auteurs, e.g. Geyer (1994), Gut-
mann and Hyvärinen (2010), Barthelmé and Chopin (2015). Les modèles non-normalisés
sont généralement évités par les praticiens en raison de leur difficulté d’estimation. Avec
l’essor de la puissance de calcul et des méthodes computationnelles en statistique, leur
inférence devient envisageable. La recherche sur les problèmes de constantes de normali-
sation incalculables est utile pour proposer et évaluer de nouvelles méthodes d’inférence.
Plusieurs méthodes ont été proposées pour pallier ces difficultés, la plupart basées sur
les méthodes de Monte-Carlo. Parmi celles-ci, nous étudions certaines approximations
de l’estimateur du Maximum de Vraisemblance, en particulier les deux suivantes : une
méthode standard appelée Monte-Carlo MLE (Geyer, 1994), et une méthode plus ré-
cente, appelée Noise Contrastive Estimation (Gutmann and Hyvärinen, 2010). Plusieurs
travaux (Gutmann and Hyvärinen, 2010; Gutmann and Hyvärinen, 2012), basés sur des
expérimentations numériques, ont observé que cette nouvelle méthode est plus stable,
mais aucun résultat théorique n’avait encore été prouvé. Le Chapitre 2 répond à cette
question : nous prouvons que cette nouvelle méthode d’estimation est plus robuste à un
mauvais choix de distribution d’échantillonnage, surtout lorsque le nombre de données
observées est grand. Nous complétons ces résultats par une étude numérique, évaluant le
gain de performance en fonction de la distance entre la distribution d’échantillonnage et
la distribution des données, et du budget computationnel. Le Chapitre 2 a été publié dans
Electronic Journal of Statistics en 2018 (Riou-Durand and Chopin, 2018). D’un point
de vue mathématique, le Chapitre 2 utilise plusieurs concepts comme : les propriétés
asymptotiques des M-estimateurs, l’ergodicité géométrique des algorithmes MCMC, les
théorèmes de la limite centrale pour les chaînes de Markov.
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1.5.2 Résultats quantitatifs pour l’échantillonnage en grande di-
mension

Les modèles statistiques de grande dimension forment un centre d’intérêt majeur pour la
recherche en statistique, particulièrement dans l’ère actuelle du “big data”. En statistique
fréquentiste comme Bayésienne, la grande dimension demeure un important problème
pour l’inférence. Les problèmes posés par la grande dimension sont si difficile qu’on les
associent souvent à une “malédiction de la dimension”. Par exemple, l’inférence Bayési-
enne passe souvent par l’échantillonnage aléatoire d’une loi a posteriori de grande di-
mension. Plusieurs procédures d’échantillonnage approché ont prouvé leur efficacité dans
la résolution de ce problème (e.g. Sequential Monte Carlo, Hamiltonian Monte Carlo,
Langevin Monte Carlo). Parmi eux, l’algorithme Langevin Monte Carlo (LMC) fut le
premier pour lequel les chercheurs ont été en mesure de fournir de véritables garanties
non-asymptotiques sur l’erreur d’approximation. Certains résultats récents ont partic-
ulièrement développé cette ligne de recherche (Dalalyan, 2017b; Durmus and Moulines,
2016) en montrant, sous certaines conditions sur la distribution d’échantillonnage, que
le mixing time de LMC (nombre d’itérations nécessaires pour atteindre une précision
donnée) a une dépendance polynomiale (seulement) en la dimension. Les chercheurs ten-
tent actuellement d’étendre ces résultats à d’autres algorithmes, sous des hypothèses plus
faibles.

Suite à plusieurs articles sur le mixing time de LMC pour les distributions forte-
ment log-concave (Dalalyan, 2017b; Durmus and Moulines, 2016), un nouvel algorithme
d’échantillonnage a été proposé très récemment par Cheng et al. (2018). Les auteurs ont
montré que, sous les mêmes hypothèses, le mixing time de cet algorithme par rapport à la
distance de Wasserstein-2, améliore le mixing time de LMC, en termes de sa dépendance
en la dimension et le niveau de précision. Cette méthode d’échantillonnage, appelée Ki-
netic Langevin Monte Carlo (KLMC) (alias underdamped Langevin MCMC ), peut être
considérée comme un cas particulier de Hamiltonian Monte Carlo (HMC). A notre con-
naissance, c’est le premier résultat non-asymptotique de ce type pour HMC. Le chapitre
3 est consacré à une meilleure compréhension des propriétés de KLMC. En outre, nous
montrons qu’il est possible d’améliorer: la dépendance du mixing time en les paramètres
de régularité de la loi cible, ainsi que les constantes numériques. Enfin, nous proposons
un algorithme de second ordre qui, dans le cadre d’hypothèses de régularité plus fortes,
conduit à un meilleur mixing time, en termes de dépendance par rapport au niveau de
précision. Le Chapitre 3 a été soumis à Bernoulli en 2018 (Dalalyan and Riou-Durand,
2018). D’un point de vue mathématique, le Chapitre 3 utilise plusieurs concepts tels que
: les processus de diffusions de Langevin, les couplages, la distance de Wasserstein.

Une autre ligne de recherche intéressante dans la littérature sur l’échantillonnage
approché concerne les résultats quantitatifs sous des hypothèses plus faibles que celles
adoptées par Dalalyan (2017b); Durmus and Moulines (2016); Durmus and Moulines
(2017). Plus précisément, une question principale est de savoir si une vitesse de con-
vergence polynomiale en la dimension peut encore être obtenue lorsque la distribution
d’échantillonnage est log concave, mais pas fortement. Pour le LMC, plusieurs contri-
butions ont répondu partiellement à cette question e.g. Dalalyan (2017b); Durmus and
Moulines (2017); Durmus et al. (2018). Le Chapitre 4 est consacré à l’extension de ces
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résultats, mais aussi au développement de leurs analogues pour KLMC. Nous établissons
des bornes non-asymptotiques sur le mixing time de LMC et KLMC (premier et deuxième
ordre), pour les distances Wasserstein-q et bounded-Lipschitz. Ces bornes dépendent des
moments de la distribution d’échantillonnage. Nous proposons plusieurs conditions qui
permettent à l’utilisateur de borner ces moments, et d’obtenir ainsi une vitesse polyno-
miale en la dimension. A ce jour, le Chapitre 4 est encore un travail en cours. D’un
point de vue mathématique, le Chapitre 4 utilise plusieurs concepts tels que : les proces-
sus de diffusions de Langevin, les moments de distributions log-concave, les distances de
Wasserstein et bounded-Lipschitz.
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Part I

Inference of un-normalized
statistical models
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Chapter 2

Noise contrastive estimation:
asymptotic properties, formal
comparison with MC-MLE

A statistical model is said to be un-normalised when its likelihood function involves an
intractable normalising constant. Two popular methods for parameter inference for these
models are MC-MLE (Monte Carlo maximum likelihood estimation), and NCE (noise con-
trastive estimation); both methods rely on simulating artificial data-points to approximate
the normalising constant. While the asymptotics of MC-MLE have been established under
general hypotheses (Geyer, 1994), this is not so for NCE. We establish consistency and
asymptotic normality of NCE estimators under mild assumptions. We compare NCE and
MC-MLE under several asymptotic regimes. In particular, we show that, when m → ∞
while n is fixed (m and n being respectively the number of artificial data-points, and ac-
tual data-points), the two estimators are asymptotically equivalent. Conversely, we prove
that, when the artificial data-points are IID, and when n→∞ while m/n converges to a
positive constant, the asymptotic variance of a NCE estimator is always smaller than the
asymptotic variance of the corresponding MC-MLE estimator. We illustrate the variance
reduction brought by NCE through a numerical study.

2.1 Introduction

Consider a set of probability densities {fθ : θ ∈ Θ} with respect to some measure µ,
defined on a space X , such that:

fθ(x) = hθ(x)
Z(θ)

where hθ is non-negative, and Z(θ) is a normalising constant, Z(θ) =
∫
X hθ(x)µ(dx). A

model based on such a family of densities is said to be un-normalised if function hθ may
be computed point-wise, but Z(θ) is not available (i.e. it may not be computed in a
reasonable CPU time).

Un-normalised models arise in several areas of machine learning and Statistics, such



as deep learning (Salakhutdinov and Hinton, 2009), computer vision (Wang et al., 2013),
image segmentation (Gu and Zhu, 2001), social network modelling (Caimo and Friel,
2011), directional data modelling (Walker, 2011), among others. In most applications,
data-points are assumed to be IID (independent and identically distributed); see however
e.g. Mnih and Teh (2012) or Barthelmé and Chopin (2015) for applications of non-IID
un-normalised models. In that spirit, we consider an un-normalised model of IID variables
Y1, . . . , Yn, with log-likelihood (divided by n):

`n(θ) = 1
n

n∑
i=1

log hθ(yi)− logZ(θ). (2.1)

The fact that Z(θ) is intractable precludes standard maximum likelihood estimation.
Geyer (1994) wrote a seminal paper on un-normalised models, in which he proposed

to estimate θ by maximising function

`IS
n,m(θ) = 1

n

n∑
i=1

log hθ(yi)
hψ(yi)

− log

 1
m

m∑
j=1

hθ(xj)
hψ(xj)

 (2.2)

where the xj’s are m artificial data-points generated from a user-chosen distribution Pψ
with density fψ(x) = hψ(x)/Z(ψ). Although notation Pψ suggests that the distribution of
the artificial data-points belongs to the considered parametric model, this is not compul-
sory. The only required assumption is that the model is dominated by Pψ (i.e. Pθ � Pψ
for every θ ∈ Θ). The empirical average inside the second log is a consistent (as m→∞)
importance sampling estimate of Z(θ)/Z(ψ). Function `IS

n,m is thus an approximation of
the log-likelihood ratio `n(θ)− `n(ψ), whose maximiser is the MLE.

In many applications, the easiest way to sample from Pψ is to use MCMC (Markov
chain Monte Carlo). Geyer (1994) established the asymptotic properties of the MC-
MLE estimates under general conditions; in particular that the xj’s are realisations of an
ergodic process. This is remarkable, given that most of the theory on M-estimation (i.e.
estimation obtained by maximising functions) is restricted to IID data.

More recently, Gutmann and Hyvärinen (2012) proposed an alternative approach to
parameter estimation of un-normalised models, called noise contrastive estimation (NCE).
It also relies on simulating artificial data-points x1, . . . , xm from distribution Pψ. The
method consists in maximising the likelihood of a logistic classifier, where actual (resp.
artificial) data-points are assigned label 1 (resp. 0). With symbols, the log-likelihood
divided by n rewrites:

`NCE
n,m (θ, ν) = 1

n

n∑
i=1

log qθ,ν(yi) + 1
m

m∑
i=1

log
{

(1− qθ,ν(xi))m/n
}

(2.3)

where qθ,ν(x), the probability of label 1 for a value x, is defined through odd-ratio function:

log
{

qθ,ν(x)
1− qθ,ν(x)

}
= log

{
hθ(x)
hψ(x)

}
+ ν + log

(
n

m

)
.

The NCE estimator of θ is obtained by maximising function `NCE
n,m (θ, ν) with respect to

both θ ∈ Θ and ν ∈ R. In particular, when the considered model is exponential, i.e.
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when hθ(x) = exp
{
θTS(x)

}
, for some statistic S, `NCE

n,m is the log-likelihood of a standard
logistic regression, with covariate S(x). In that case, implementing NCE is particularly
straightforward.

This paper has two objectives: first, to establish the asymptotic properties of NCE
when the artificial data-points are generated from an ergodic process (typically a MCMC
sampler) in order to show that NCE is as widely applicable as MC-MLE; second, to
compare the statistical efficiency of both methods.

As a preliminary step, we replace the original log-likelihood by a function defined on
the extended space Θ× R, called Poisson transform:

`n(θ, ν) = 1
n

n∑
i=1

log
{
hθ(yi)
hψ(yi)

}
+ ν − eν × Z(θ)

Z(ψ) . (2.4)

This function is so called as it corresponds to the log-likelihood (up to a linear transfor-
mation) of a Poisson process with intensity hθ(y) + ν, see Barthelmé and Chopin (2015)
for details. The main property of this transformation is that it produces exactly the same
MLE as the original likelihood: (θ̂n, ν̂n) maximises (2.4) if and only if θ̂n maximises (2.1)
and ν̂n = log

{
Z(ψ)/Z(θ̂n)

}
.

In the same way, we replace the MC-MLE log-likelihood by function

`IS
n,m(θ, ν) = 1

n

n∑
i=1

log
{
hθ(yi)
hψ(yi)

}
+ ν − eν

m

m∑
j=1

hθ(xj)
hψ(xj)

(2.5)

which has the same maximiser (with respect to θ) as function (2.2).
We thus obtain three objective functions defined with respect to the same parameter

space, Θ×R. This will greatly facilitate our analysis. The paper is organised as follows.
In Section 2.2, we introduce the set up and notations. In Section 2.3, we study the
behaviour of the NCE estimator as m → ∞ (while n is kept fixed). We prove that the
NCE estimator converges to the MLE at the same m−1/2 rate as the MC-MLE estimator,
and the difference between the two estimators converges faster, at rate m−1. In Section
2.4, we let both m and n go to infinity while m/n → τ > 0. We obtain asymptotic
variances for both estimators, which admit a simple and interpretable decomposition.
Using this decomposition, we are able to establish that when the artificial data-points
are IID, the asymptotic variance of NCE is always smaller than the asymptotic variance
of MC-MLE (for the same computational budget). Section 2.5 assesses this variance
reduction in a numerical example. Section 2.6 discusses the practical implications of our
results. All proofs are delegated to the appendix.

2.2 Set-up and notations

Unless explicitly stated, we will consider Θ to be an open subset of Rd, with natural
topology associated to the Euclidian norm. We consider a parametric statistical model
{P⊗nθ : θ ∈ Θ}, corresponding to n IID data-points lying in space X ⊂ Rk, associated with
the corresponding Borel σ-Field. We assume that the model is identifiable, and equipped
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with some dominating measure µ, inducing the log-likelihood (2.1). From now on, we
work directly with the “extended” version of approximate and exact log-likelihoods, i.e.
functions (2.3), (2.4) and (2.5), which are functions of extended parameter ξ = (θ, ν),
with ξ ∈ Ξ = Θ × R. When convenient, we also write `n(ξ) for `n(θ, ν) and so on. An
open ball in Ξ, centered on ξ and of radius ε, is denoted B(ξ, ε). We may also use this
notation for balls in Θ.

The point of this paper is to study and compare point estimates ξ̂IS
n,m and ξ̂NCE

n,m , which
maximise functions (2.5) and (2.3). For the sake of generality, we allow these estimators
to be approximate maximisers; i.e. we will refer to ξ̂IS

n,m as an approximate MC-MLE if

`IS
n,m(ξ̂IS

n,m) ≥ sup
ξ∈Ξ

`IS
n,m(ξ)− o(1) a.s. (2.6)

and with a similar definition for ξ̂NCE
n,m . The meaning of symbol o(1) in (2.6) depends on

the asymptotic regime: in Section 2.3, n is kept fixed, while m → ∞, hence o(1) means
“converges to zero as m → ∞”. In Section 2.4, both m and n go to infinity, and the
meaning of o(1) must be adapted accordingly.

In both asymptotic regimes, the main assumption regarding the sampling process is
as follows.

(X1) The artificial data-points are realisations of a Pψ−ergodic process (Xj)j≥1.

By Pψ−ergodicity, we mean that the following law of large number holds:

1
m

m∑
j=1

ϕ(Xj) →
m→∞

Eψ [ϕ(X)] =
∫
X
ϕ(x)fψ(x)µ(dx) a.s.

for any measurable, real-valued function ϕ such that Eψ [|ϕ(X)|] < +∞.
Assumption (X1) is mild. For instance, if the Xj’s are generated by a MCMC al-

gorithm, this is equivalent to assuming that the simulated chain is aperiodic and φ-
irreducible, which is true for all practical MCMC samplers; see e.g. Roberts and Rosen-
thal (2004).

2.3 Asymptotics of the Monte Carlo error

In this section, the analysis is conditional on the observed data: n and y1, ..., yn are fixed.
The only source of randomness is the Monte Carlo error, and the quantity we seek to
estimate is the (intractable) MLE. This regime was first studied for MC-MLE by Geyer
(1994). For convenience, we suppose that the MLE exists and is unique; or equivalently
that ξ̂n = (θ̂n, ν̂n) is the unique maximiser of `n.

2.3.1 Consistency

We are able to prove NCE consistency (towards the MLE) using the same approach as
Geyer (1994) for MC-MLE. Our consistency result relies on the following assumptions:
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(C1) The random sequence
(
ξ̂NCE
n,m

)
m≥1

is an approximate NCE estimator, which belongs
to a compact set almost surely.

(H1) The maps θ 7→ hθ(x) are:

1. lower semi-continuous at each θ ∈ Θ, except for x in a Pψ-null set that may
depend on θ;

2. upper semi-continuous, for any x not in a Pψ-null set (that does not depend
on θ), and for all x = yi, i = 1, . . . , n.

Theorem 1. Under assumptions (X1), (C1) and (H1), almost surely: ξ̂NCE
n,m →

m→∞
ξ̂n.

This result is strongly linked to Theorems 1 and 4 of Geyer (1994), which state that
θ̂IS
n,m → θ̂n as m → ∞ under essentially the same assumptions. These assumptions
are very mild: they basically require continuity of the maps θ 7→ hθ(x), without any
integrability condition.

Remark 1. As noticed by Geyer (1994), the proof does not require Θ to be a subset of
Rd, consistency of MC-MLE as well as Theorem 1 hold more generally as soon as Θ is a
separable metric space.

2.3.2 Asymptotic normality, comparison with MCMC-MLE

In order to compare the Monte Carlo error of MC-MLE and NCE estimators, we make
the following extra assumptions:

(H2) The maps θ 7→ hθ(x) are twice continuously differentiable in a neighborhood of
θ̂n for Pψ−almost every x, and for x = yi, i = 1, . . . , n. The Hessian matrix
H = ∇2`n(θ̂n) is invertible. Moreover, for some ε > 0∫

X
aε(x) sup

θ∈B(θ̂n,ε)
hθ(x)µ(dx) < +∞

where aε(x) = 1 + sup
θ∈B(θ̂n,ε)

‖∇θ log hθ(x)‖2 + sup
θ∈B(θ̂n,ε)

‖∇2
θ log hθ(x)‖.

(G1) Estimators ξ̂IS
n,m and ξ̂NCE

n,m converge to ξ̂n almost surely, and are such that

∇`IS
n,m(ξ̂IS

n,m) = o
(
m−1

)
, ∇`NCE

n,m (ξ̂NCE
n,m ) = o

(
m−1

)
.

(I1) For some ε > 0 the following integrability condition holds:

Eψ

bε(X) sup
θ∈B(θ̂n,ε)

(
hθ(X)
hψ(X)

)2
 < +∞

where bε(x) = 1 + sup
θ∈B(θ̂n,ε)

‖∇θ log hθ(x)‖.
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Measurability of the suprema in (H2) and (I1) is ensured by the lower semi-continuity of
the two first differentials in a neighbourhood of θ̂n. Assumption (H2) is a regularity con-
dition that ensures in particular that the partition function θ 7→ Z(θ) =

∫
X hθ(x)µ(dx) is

twice differentiable under the integral sign, in a neighbourhood of θ̂n. Following Theorem
1, Assumption (G1) is trivial as soon as Assumptions (C1) and (H1) hold and ξ̂IS

n,m and
ξ̂NCE
n,m are exact maximisers; in that case the gradients are zero. Integrability Assump-
tion (I1) is the critical assumption. It is essentially a (locally uniform) second moment
condition on the importance weights, with P

θ̂n
as the target distribution.

Theorem 2. Under assumptions (X1), (H2), (G1) and (I1):

m
(
ξ̂NCE
n,m − ξ̂IS

n,m

)
→

m→∞
n
(
−H(ξ̂n)

)−1
v(ξ̂n) a.s. (2.7)

where H(ξ) = ∇2
ξ`n(ξ), and v(ξ) is defined as follows: let gξ(x) = log hθ(x) + ν, then

v(ξ) = 1
n

n∑
i=1
∇ξgξ(yi)

(
exp{gξ(yi)}
hψ(yi)

)
− Eψ

∇ξgξ(X)
(

exp{gξ(X)}
hψ(X)

)2
 .

Before discussing the implications of Theorem 2, it is important to consider Geyer
(1994)’s result about asymptotic normality of MC-MLE, which relies on the following
assumption:

(N) For some covariance matrix A we have:
√
m∇`IS

n,m(θ̂n) D→
m→∞

Nd (0d,A)

As noticed by Geyer (1994), asymptotics of MC-MLE are quite similar to the asymp-
totics of maximum likelihood, and it can be shown that under assumptions (X1), (H2),
(G1) and (N),

√
m
(
θ̂IS
n,m − θ̂n

) D→
m→∞

Nd
(
0d,H−1AH−1

)
.

Theorem 2 shows that the difference between the two point estimates is O(m−1),
which is negligible relative to the OP(m−1/2) rate of convergence to θ̂n. This proves
that, when n is fixed, both approaches are asymptotically equivalent when it comes to
approximate the MLE. In particular, Slutsky’s lemma implies asymptotic normality of
the NCE estimator with the same asymptotic variance as for MC-MLE.

Assumptions (H2) and (I1) admit a much simpler formulation when the model belongs
to an exponential family. This is the point of the following Proposition.

Proposition 1. If the parametric model is exponential, i.e. if hθ(x) = exp
{
θTS(x)

}
for some statistic S, then assumptions (H2) and (I1) are equivalent to the following
assumptions (H2-exp) and (I1-exp):

(H2-exp) The Hessian matrix of the log-likelihood H = ∇2`n(θ̂n) is invertible.
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(I1-exp) The MLE θ̂n lies in the interior of Θψ =
{
θ ∈ Θ : Eψ

[(
hθ(X)
hψ(X)

)2
]
< +∞

}
.

The set Θψ is convex whenever Θ is. In particular, this is true when Θ coincides with
the natural space of parameters, defined as Θ̃ = {θ ∈ Rd :

∫
X exp

{
θTS(x)

}
µ(dx) < +∞}.

If Pψ ∈ {Pθ : θ ∈ Θ}, then (I1-exp) holds as soon as 2θ̂n − ψ lies in the interior of Θ̃.

Remark 2. Condition (N) requires a
√
m-CLT (central limit theorem) for the function

ϕ : x 7→
(
∇θ log hθ

)
(hθ/hψ)(x) at θ = θ̂n. There has been an extensive literature on CLT’s

for Markov Chains, see e.g. Roberts and Rosenthal (2004) for a review. In particular,
if (Xj)j≥1 is a geometrically ergodic Markov Chain with stationary distribution Pψ, then
assumption (N) holds if for some δ > 0, ϕ ∈ L2+δ(Pψ). This assumption is very similar
to assumption (I1), especially when the model is exponential.

In practice, implications of Theorem 2 must be considered cautiously, as the Eu-
clidian norm of the limit in (2.7) will typically increase with n. For several well-known
un-normalised models (e.g. Ising models, Exponential Random Graph Models), n is equal
to one, in which case NCE and MC-MLE will always produce very close estimates. For
other models however, it is known that the two estimators may behave differently, espe-
cially when the number of actual data-points is big and when simulations have a high
computational cost (see Gutmann and Hyvärinen (2012)).

To investigate to which extent both approaches provide a good approximation of the
true parameter value in these models, we will require both m and n to go to infinity. As
it turns out, this will also make it possible to do finer comparison between ξ̂IS

n,m and ξ̂NCE
n,m

(and thus between θ̂NCE
n,m and θ̂IS

n,m). This is the point of the next section.

2.4 Asymptotics of the overall error

We now assume that observations yi are realisations of IID random variables Yi, with
probability density fθ? , for some true parameter θ? ∈ Θ, while the artificial data-points
(Xj)j≥1 remain generated from a Pψ-ergodic process. We also assume that (Yi)i≥1 and
(Xj)j≥1 are independent sequences; this regime was first studied for NCE by Gutmann
and Hyvärinen (2012), although the Xj’s were assumed IID in that paper.

This asymptotic regime has some drawbacks: it assumes that the model is well spec-
ified, and that Pψ is chosen independently from the data. This is rarely true in practice,
as the user will generally try to choose Pψ as close as possible to the data distribution to
reduce the mean square error (see Section 2.5). Nevertheless, allowing both m and n to
go to infinity turns out to provide a better understanding of the asymptotic behaviours of
NCE and MC-MLE, at least for situations where the number of actual data-points may
be large.

We assume implicitly that m = mn is a non-decreasing sequence of positive integers
going to infinity when n does, while mn/n → τ ∈ (0,+∞). Every limit when n goes
to infinity should be understood accordingly. Finally, ξ? = (θ?, ν?) stands for the true
extended parameter, where ν? = log {Z(ψ)/Z(θ?)}.
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2.4.1 Consistency

Our results concerning the overall consistency (to ξ?, as both m and n→∞) of MC-MLE
and NCE rely on the following assumptions:

(C2) The random sequences
(
ξ̂IS
n,m

)
n≥1

and
(
ξ̂NCE
n,m

)
n≥1

are approximate MC-MLE and
NCE estimators, and belong to a compact set almost surely.

(H3) The maps θ 7→ hθ(x) are continuous for Pψ-almost every x, and for any θ ∈ Θ
there is some ε > 0 such that∫

X
sup

φ∈B(θ,ε)

(
log hφ(x)

hθ?(x)

)
+
hθ?(x)µ(dx) < +∞.

Theorem 3. Under assumptions (X1), (C2) and (H3), both estimators ξ̂IS
n,m and ξ̂NCE

n,m

converge almost surely to ξ? as n,m→∞, while m/n→ τ .

Our proofs of NCE and MC-MLE consistency are mainly inspired from Wald (1949)’s
famous proof of MLE consistency, for which the same integrability condition (H3) is
required. It is noteworthy that, under this regime, MC-MLE and NCE consistency es-
sentially rely on the same assumptions as MLE consistency.

Remark 3. As noticed by Wald (1949), the proof does not require Θ to be a subset of
Rd. Theorem 3 holds as soon as Θ is a metric space.

Proposition 2. If the parametric model is exponential, i.e. if hθ(x) = exp
{
θTS(x)

}
for

some measurable statistic S, then assumption (H3) always holds.

2.4.2 Asymptotic normality

To ensure the asymptotic normality of both NCE and MC-MLE estimates, we make the
following assumption.

(X2) The sequence (Xj)j≥1 is a Harris ergodic Markov chain (that is, aperiodic, φ-
irreducible and positive Harris recurrent; for definitions see Meyn and Tweedie
(2012)), with stationary distribution Pψ.
The Markov kernel associated with the chain (Xj)j≥1, noted P (x, dy), is reversible
(satisfies detailed balance) with respect to Pψ, that is

Pψ(dx)P (x, dy) = Pψ(dy)P (y, dx). (2.8)

Moreover, the chain (Xj)j≥1 is geometrically ergodic, i.e. there is some ρ ∈ [0, 1)
and a positive measurable function M such that for Pψ-almost every x

‖P n(x, .)− Pψ(.)‖TV ≤M(x)ρn (2.9)

where P n(x; dy) denote the n-step Markov transition kernel corresponding to P ,
and ‖.‖TV stands for the total variation norm.
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Under (X2), for any measurable, real-valued function ϕ such that Eψ[ϕ2] < ∞, then a√
m-CLT holds, i.e.

√
m

 1
m

m∑
j=1

ϕ(Xj)− Eψ [ϕ(X)]
 D→ N (0, σ2

ϕ) (2.10)

where
σ2
ϕ = Vψ(ϕ(X)) + 2

∞∑
i=1

Cov(ϕ(X0), ϕ(Xi)).

In the equation above, Cov(ϕ(X0), ϕ(Xi)) stands for the i-th lag autocovariance of the
chain at stationarity; that is with respect to the distribution defined by X0 ∼ Pψ and
Xi+1|Xi ∼ P (Xi, .). The sequence of artificial data-points (Xj)j≥1 is not assumed sta-
tionary. Since the chain is Harris recurrent, (2.10) holds whenever X1 = x for any x ∈ X
(see e.g. Roberts and Rosenthal (2004), especially Theorem 4 and Proposition 29).

For convenience, we choose to assume that the kernel is reversible (which is true for any
Metropolis-Hastings algorithm), but the reversibility assumption (2.8) is not compulsory,
and may be replaced by slightly stronger integrability assumptions (see e.g. Roberts and
Rosenthal (2004)); in particular, if reversibility is not assumed then (2.10) holds whenever
ϕ ∈ L2+δ(Pψ). The critical assumption is geometric ergodicity.

Geometric ergodicity is obviously stronger than assumption (X1) which only requires
a law of large numbers to hold. Nevertheless, geometric ergodicity remains a state of
the art condition to ensure CLT’s for Markov chains (see e.g. Roberts and Rosenthal
(2004) and Bradley et al. (2005)), while it can often be checked for practical MCMC
samplers. We present assumption (X2) as a practical condition for ensuring CLT’s when
the artificial data-points are generated from a MCMC sampler, while it also covers the
IID case without loss of generality. Note though that CLT’s can hold under sharper
conditions, when the Markov chain satisfies polynomial ergodicity for instance (see Jones
(2004)).

Our asymptotic normality results rely on the following assumptions:

(H4) The maps θ 7→ hθ(x) are twice continuously differentiable in a neighborhood of θ?
for Pψ-almost every x; the Fisher Information I(θ) = Vθ

(
∇θ log hθ(Y )

)
is invertible

at θ = θ?; and for some ε > 0∫
X
cε(x) sup

θ∈B(θ?,ε)
hθ(x)µ(dx) <∞

where cε(x) = 1 + sup
θ∈B(θ?,ε)

‖∇θ log hθ(x)‖2 + sup
θ∈B(θ?,ε)

‖∇2
θ log hθ(x)‖.

(G2) Estimators ξ̂IS
n,m and ξ̂NCE

n,m converge in probability to ξ?, and are such that

∇`IS
n,m(ξ̂IS

n,m) = oP
(
n−1/2

)
, ∇`NCE

n,m (ξ̂NCE
n,m ) = oP

(
n−1/2

)
.

(I3) At θ = θ?, the following integrability condition holds:

Eψ

dθ(X)
(
hθ(X)
hψ(X)

)2
 <∞
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where dθ(x) = 1 + ‖∇θ log hθ(x)‖2.

Theorem 4. Under assumptions (X2), (H4) and (G2), we have
√
n
(
ξ̂NCE
n,m − ξ?

) D→ Nd+1
(
0,VNCE

τ (ξ?)
)

where

VNCE
τ (ξ) = Jτ (ξ)−1

{
Στ (ξ) + τ−1Γτ (ξ)

}
Jτ (ξ)−1,

Jτ (ξ) = Eθ
[
(∇ξ∇T

ξ gξ)
(

τfψ
τfψ + fθ

)
(Y )

]
,

Στ (ξ) = Vθ

(
(∇ξgξ)

(
τfψ

τfψ + fθ

)
(Y )

)
,

Γτ (ξ) = Vψ

(
ϕNCE
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕNCE
ξ (X0), ϕNCE

ξ (Xi)
)
,

ϕNCE
ξ (x) = (∇ξgξ)

fθ
fψ

(
τfψ

τfψ + fθ

)
(x).

Moreover, under assumptions (X2), (H4), (G2) and (I3), we have
√
n
(
ξ̂IS
n,m − ξ?

) D→ Nd+1
(
0,VIS

τ (ξ?)
)

where

VIS
τ (ξ) = J(ξ)−1

{
Σ(ξ) + τ−1Γ(ξ)

}
J(ξ)−1,

J(ξ) = Eθ
[
∇ξ∇T

ξ gξ(Y )
]
,

Σ(ξ) = Vθ

(
∇ξgξ(Y )

)
,

Γ(ξ) = Vψ

(
ϕIS
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕIS
ξ (X0), ϕIS

ξ (Xi)
)
,

ϕIS
ξ (x) = (∇ξgξ)

fθ
fψ

(x).

Remark 4. Second moment condition (I3) is critical. It basically forbids Pψ to be chosen
as a too thin tail distribution compared to Pθ∗. Assumption (I3) is needed for establishing
MC-MLE asymptotic normality, but not for NCE (inequality 2.21 shows that condition
(H4) is enough). This already shows that, under the considered regime, NCE is more
robust (to Pψ) than MC-MLE.

Assumptions (H4) and (I3) admit a simpler formulation when the model is exponen-
tial, as shown by the following proposition.

Proposition 3. If the parametric model is exponential, i.e. if hθ(x) = exp
{
θTS(x)

}
for some statistic S, then assumptions (H4) and (I3) are equivalent to the following
assumptions (H4-exp) and (I3-exp):
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(H4-exp) Fisher Information I(θ) = Vθ

(
∇θ log hθ(Y )

)
is invertible at θ = θ?.

(I3-exp) Parameter θ? belongs to the interior of Θψ =
{
θ : Eψ

[(
hθ(X)
hψ(X)

)2
]
<∞

}
.

In particular, if Pψ ∈ {Pθ}θ∈Θ, then (I3-exp) holds as soon as 2θ? − ψ belongs to the
interior of Θ̃ =

{
θ ∈ Rd :

∫
X exp

{
θTS(x)

}
µ(dx) <∞

}
.

2.4.3 Comparison of asymptotic variances

Theorem 5. If the artificial data-points (Xj)j≥1 are IID, then under assumptions (H4)
and (I3), VIS

τ (ξ?) < VNCE
τ (ξ?), i.e. VIS

τ (ξ?)−VNCE
τ (ξ?) is a positive semi-definite matrix.

Theorem 5 shows that, asymptotically, when m/n → τ > 0, and when the artificial
data-points are IID, the variance of a NCE estimator is always lower than the variance
of the corresponding MC-MLE estimator. This inequality is with respect to the Loewner
partial order on symmetric matrices. To our knowledge, this is the first theoretical result
proving that NCE dominates MC-MLE in terms of mean square error. We failed however
to extend this result to correlated Markov chains.

This inequality holds for any fixed ratio τ ∈ (0,+∞), and any given sampling dis-
tribution Pψ, but the sharpness of the bound remains unknown. Typically, the bigger is
τ , the closer the two variances will be, as the ratio τfψ/τfψ + fθ? gets closer to one. It
is also the case when the sampling distribution Pψ is close to the true data distribution
Pθ? . Geyer (1994) noticed that MC-MLE performs better when Pψ is close to Pθ? . Next
proposition shows that when Pψ = Pθ? , both variances can be related to the variance of
the MLE.

Proposition 4. If the artificial data-points are IID sampled from Pψ = Pθ?, then under
assumptions (H4) and (I3) we have

VNCE
τ (ξ?) = VIS

τ (ξ?) = (1 + τ−1)VMLE(ξ?)

where VMLE(ξ) = J(ξ)−1Σ(ξ)J(ξ)−1.

It is straightforward to check that, under the usual conditions ensuring asymptotic
normality of the MLE, the extended maximiser of the Poisson Transform `n is also asymp-
totically normal with variance VMLE(ξ?). This proposition shows what we can expect
from NCE and MC-MLE in a ideal scenario where the sampling distribution is the same
as the true data distribution.

2.5 Numerical example

This section presents a numerical example that illustrates how the variance reduction
brought by NCE may vary according to the sampling distribution Pψ and the ratio τ .
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We consider observations IID distributed from the multivariate Gaussian distribution
Np(µ,Σ) truncated to (0,+∞)p; that is Y1, ..., Yn are IID with the following probability
density with respect to Lebesgue’s measure:

fµ,Σ(x) = 1
Z(µ,Σ) exp

{
−1

2(x− µ)TΣ−1(x− µ)
}
1(0,+∞)p(x)

where
Z(µ,Σ) = (2π)p/2|Σ|1/2P (W ∈ (0,+∞)p) , W ∼ Np(µ,Σ).

The probability P (W ∈ (0,+∞)p) is intractable for almost every (µ,Σ). Numerical ap-
proximations of such probabilities quickly become inefficient when p increases.

It is well known that (truncated) Gaussian densities form an exponential family under
the following parametrisation: for a given µ ∈ Rp and Σ ∈ S++

p (the set of positive definite
matrices of size p), define θ = (Σ−1µ, triu(−(1/2)Σ−1)), and S(x) = (x, triu(xxT )), where
triu(.) is the upper triangular part. This parametrisation is minimal and the natural
parameter space is a convex open subset of Rq where q = p + p(p + 1)/2. Indeed, under
the exponential formulation, we have Θ = Θ1 × Θ2 where Θ1 = Rp and Θ2 is on open
cone of Rp(p+1)/2, in bijection with S++

p through the function triu(.).
The observations are sampled IID from Pθ (by reject method) for some true parameter

θ = θ?, corresponding to

µ? =

 1
−1
0.5

 , Σ? =

 1 0.5 1
0.5 1.5 0.3
1 0.3 2

 ,
in the usual Gaussian parametrisation. The artificial data-points are sampled IID from
Pψ, corresponding to the density fµ,Σ with µ = 0p and Σ = λIp for some λ > 0. The
sample size is fixed to n = 1000, while m is chosen such that the ratio m/n is equal to
τ ∈ {1, 5, 20, 100}. The distribution Pψ is chosen as stated above for λ ∈ [1.5, 20].

Figure 2.1 plots estimates and confidence intervals of the mean square error ratio
(mean euclidian norm square error of the estimator divided by the asymptotic variance
of the MLE) of both estimators (NCE and MC-MLE), based on 1000 independent repli-
cations. (Regarding the denominator of this ratio, note that the variance of the MLE may
be estimated by performing noise contrastive estimation with Pψ = Pθ∗ , see Proposition
4.)

To facilitate the direct comparison between NCE and MC-MLE, we also plot in Figure
2.2 estimates and confidence intervals of the MSE ratio of MC-MCLE over NCE. As
expected from Theorem 5, this ratio is always higher than one; it becomes larger and
larger as τ decreases, or as λ moves away from its optimal value (around 4). This suggests
that NCE is more robust than MC-MLE to a poor choice for the reference distribution
(especially thin tails distributions, i.e. when λ goes to zero).

Finally, we discuss a technical difficulty related to the constrained nature of the pa-
rameter space Θ. In principle, both the NCE and the MC-MLE estimators should be
obtained through constrained optimisation (i.e. as maximisers of their respective objec-
tive functions over Θ). However, it is much easier (here, and in many cases) to perform
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Figure 2.1: Estimates and confidence intervals of the Mean Square Error ratios of MC-
MLE (left) and NCE (right), compared to the MLE. The MSE ratio depends both on the
variance of the proposal distribution λ and the number of artificial data-points m = τ ×n
(n = 1000). A log-scale is used for both axes.
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Figure 2.2: Estimates and confidence intervals of the Mean Square Error ratios of MC-
MLE, compared to the NCE. The MSE ratio depends both on the variance of the proposal
distribution λ and the number of artificial data-points m = τ ×n (n = 1000). A log-scale
is used for both axes.
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Figure 2.3: Estimates and confidence intervals of the probability of existence of MC-MLE
(left) and NCE (right) estimators. For a fixed n = 1000, the probability of belonging
to Θ is lower for MC-MLE, especially for small values of the variance of the proposal
distribution λ and the number of artificial data-points m = τ × n. A log-scale is used for
both axes.

an unconstrained optimisation (over Rq). We must check then that the so obtained solu-
tion fulfils the constraint that defines Θ (here, that the solution corresponds to a matrix
Σ which is definite positive). Figure 2.3 plots estimates and confidence intervals of the
probability that both estimators belong to Θ. We see that NCE (when implemented
without constraints) is much more likely to produce estimates that belong to Θ.

Note also that when the considered model is an exponential family (as in this case),
both functions `IS

n,m and `NCE
n,m are convex. This implies that, when the unconstrained max-

imiser of these functions do not fulfil the constraint that defines Θ, then the constrained
maximiser does not exist. (Any solution of the constrained optimisation program lies on
the boundary of the constrained set.)

2.6 Conclusion

The three practical conclusions we draw from our results are that: (a) NCE is as widely
applicable as MCMC-MLE (including when the X ′js are generated using MCMC); (b)
NCE and MC-MLE are asymptotically equivalent (as m → ∞) when n is fixed; (c)
NCE may provide lower-variance estimates than MC-MLE when n is large (provided
that m = O(n)). The variance reduction seems to be more important when the ratio
τ = m/n is small, or when the reference distribution (for generating the Xj’s) is poorly
chosen. Note that we proved (c) under the assumption that the Xj’s are IID, but we
conjecture it also holds when they are generated using MCMC. Proving this conjecture
may be an interesting avenue for future research.

As mentioned in the introduction, another advantage of NCE is its ease of imple-
mentation. In particular, when the considered model is exponential, NCE boils down to
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performing a standard logistic regression. For all these reasons, it seems reasonable to
recommend NCE instead of MC-MLE to perform inference for un-normalised models.

2.7 Main Proofs

2.7.1 Technical lemmas

The following lemmas are prerequisites for the proofs of our main theorems. Most of
them are ‘classical’ results, but for the sake of completeness, we provide the proofs of
these lemmas in the attached supplement.

All these lemma apply to a Pψ-ergodic sequence of random variables, (Xj)j≥1.
First lemma is a slightly disguised version of the law of large numbers, combined with

the monotone convergence of a sequence of test functions.

Lemma 1. Let (fm)m≥1 be a non-decreasing sequence of measurable, non negative real-
valued functions converging pointwise towards f . Then we have:

1
m

m∑
j=1

fm(Xj) a.s.−→
m→+∞

Eψ[f(X)].

This result holds whether the expectation is finite or infinite.

Second lemma is a natural generalisation of Lemma 1 to dominated convergence.

Lemma 2. Let (fm)m≥1, f and g be measurable, real-valued functions, such that (fm)m≥1
converges pointwise towards f ; for any m ≥ 1, |fm| ≤ g ; and Eψ[g(X)] < +∞. Then we
have:

1
m

m∑
j=1

fm(Xj) a.s.−→
m→+∞

Eψ[f(X)].

Third lemma is a generalisation of Lemma 1 to the degenerate case where the ex-
pectation is infinite. In that case, Lemma 3 shows that the monotonicity assumption is
unnecessary.

Lemma 3. Let (fm)m≥1, f and g be measurable, real-valued functions, such that (fm)m≥1
converges pointwise towards f ; g is non negative, Eψ[g(X)] < +∞; for any m ≥ 1,
fm ≤ g; and Eψ[f(X)−] = +∞ where f− stands for the negative part of f . Then we
have:

1
m

m∑
j=1

fm(Xj) a.s.−→
m→+∞

−∞.

Fourth lemma is a uniform law of large numbers. It is well known in the IID case. This
result does not actually require the independence assumption. We present a generalisation
of this result to ergodic processes. The proof is due to Bernard Delyon, who made it
available in an unpublished course in French (Delyon (2018)). We present an English
translation of the proof in the supplement.
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Lemma 4. Let K a compact subset of Rd; (θ, x) 7→ ϕ(θ, x) a measurable function defined
on K ×X whose values lie on Rp; and suppose that the maps θ 7→ ϕ(θ, x) are continuous
for Pψ-almost every x. Moreover, suppose that

Eψ
[
sup
θ∈K
‖ϕ(θ,X)‖

]
< +∞.

Then the function θ 7→ Eψ
[
ϕ(θ,X)

]
defined on K is continuous, and we have

sup
θ∈K

∥∥∥∥∥∥ 1
m

m∑
j=1

ϕ(θ,Xj)− Eψ [ϕ(θ,X)]

∥∥∥∥∥∥ a.s.−→
m→+∞

0.

Consequently, if there is a random sequence (θ̃m)m≥1 converging almost surely to some
parameter θ̃ ∈ Θ. Then we have∥∥∥∥∥∥ 1

m

m∑
j=1

ϕ(θ̃m, Xj)− Eψ
[
ϕ(θ̃, X)

]∥∥∥∥∥∥ →m→∞ 0 a.s.

Fifth lemma is also a well known result. It is often used to prove the weak convergence
(usually asymptotic normality) of Z-estimators.

Lemma 5. Define any probability space (Ω,F ,P), and let (`n(θ, ω))n≥1 be measurable
real-valued functions defined on Rd × Ω. Let θ? ∈ Rd and ε > 0 such that for any n ≥ 1
and for P-almost every ω ∈ Ω the map θ 7→ `n(θ, ω) is C2 on B(θ?, ε). Let (θ̂n)n≥1 be a
random sequence converging in probability to θ?. Suppose also that:

(a) {∇θ`n(θ)}|
θ=θ̂n

= oP(n−1/2),

(b) sup
θ∈B(θ?,ε)

‖∇2
θ`n(θ)−H(θ)‖ P−→ 0, for some Rd×d valued function H continuous at θ?,

such that H(θ?) is full rank,

(c)
√
n{∇θ`n(θ)}|θ=θ?

D→ Z, for some random vector Z.

Then √
n(θ̂n − θ?) +H(θ?)−1√n{∇θ`n(θ)}|θ=θ?

P−→ 0Rd ,

and, consequently √
n(θ̂n − θ?) D→ −H(θ?)−1Z.

Sixth lemma is a technical tool required for proving asymptotic normality of NCE. It
is particularly straightforward to prove in the IID case. We present a generalisation of
this result to reversible, geometrically ergodic Markov chains.
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Lemma 6. Assume that (X2) holds. Let (fn)n≥1, f and g be measurable, real-valued
functions, such that (fn)n≥1 converges pointwise towards f ; for any n ≥ 1, |fn| ≤ g; and
Eψ[g(X)2] <∞. Then we have

√
n

(
1
n

n∑
i=1

{
fn(Xi)− f(Xi)

}
− E

[
fn(X)− f(X)

]) P−→ 0,

and, consequently
√
n

(
1
n

n∑
i=1

fn(Xi)− E[fn(X)]
)
D→ N

(
0, σ2

f ),

where σ2
f = Vψ(f(X)) + 2∑+∞

i=1 Cov(f(X0), f(Xi)) < +∞.

2.7.2 Proof of Theorem 1

A standard approach to establish consistency of M-estimators is to prove some Glivenko-
Cantelli result (uniform convergence), but, to the best of our knowledge, no such result
exists under the general assumption that the underlying random variables (theXj’s in our
case) are generated from an ergodic process. Instead, we follow Geyer (1994)’s approach,
which relies on establishing that function −`NCE

n,m epiconverges to −`n. Epiconvergence
is essentially a one sided locally uniform convergence, that ensures the convergence of
minimisers; for a succint introduction to epiconvergence, see Appendix A of Geyer (1994)
and Chapter 7 of Rockafellar and Wets (2009).

We follow closely Geyer (1994). In particular, Theorem 4 of Geyer (1994) shows that:
if a sequence of functions `n,m hypoconverges to some function `n which has a unique
maximiser θ̂n and if a random sequence (θ̂n,m)m≥1 is an approximate maximiser of `n,m
which belongs to a compact set almost surely, then θ̂n,m converges to θ̂n almost surely.
Consequently, to prove Theorem 1, we only have to prove that `NCE

n,m hypoconverges to `n
(i.e. that −`NCE

n,m epiconverges to −`n); that is

`n(θ, ν) ≤ inf
B∈N (θ,ν)

lim inf
m→+∞

sup
(φ,µ)∈B

{
`NCE
n,m (φ, µ)

}
(2.11)

`n(θ, ν) ≥ inf
B∈N (θ,ν)

lim sup
m→+∞

sup
(φ,µ)∈B

{
`NCE
n,m (φ, µ)

}
(2.12)

where N (θ, ν) denotes the set of neighborhoods of the point (θ, ν).
Since Ξ = Θ × R is a separable metric space, there exists a countable base B =

{B1, B2, ...} for the considered topology. For any point (θ, ν) define the countable base
of neighborhoods Nc(θ, ν) = B ∩ N (θ, ν) which can replace N (θ, ν) in the infima of the
preceding inequalities. Choose a countable dense subset Γc = {(θ1, ν1), (θ2, ν2), ...} as
follows. For each k let (θk, νk) be a point of Bk such that:

`n(θk, νk) ≥ sup
(φ,µ)∈Bk

{`n(φ, µ)} − 1
k
.
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The proof is very similar to Theorem 1 of Geyer (1994). However, in this slightly
different proof, we will need

lim
m→+∞

 1
m

m∑
j=1

log


(

1 + eν
nhθ(Xj)
mhψ(Xj)

)m
n


 = Eψ

[
eν
hθ(X)
hψ(X)

]
= eν

Z(θ)
Z(ψ) (2.13)

and

lim
m→+∞

1
m

m∑
j=1

log
(

1 + n

m
inf

(φ,µ)∈B

[
eµ
hφ(Xj)
hψ(Xj)

])m
n

= Eψ
[

inf
(φ,µ)∈B

{
eµ
hφ(X)
hψ(X)

}]
(2.14)

to hold simultaneously with probability one for any (θ, ν) ∈ Γc and any B ∈ B. For any
fixed (θ, ν), Lemma 1 applies to the maps x 7→ (1 + x

m
)m, and since any countable union

of null sets is still a null set, convergence holds simultaneously for every element of Γc and
B with probability one. One may note that infima in the last equation are measurable
under (H1) (in that case, an infima over any set B ∈ B can be replaced by an infima over
the countable dense subset B ∩ Γc).

Proving inequality (2.11) is straightforward:

∀B ∈ B, ∀(θ, ν) ∈ B ∩ Γc, `n(θ, ν) = lim
m→+∞

`NCE
n,m (θ, ν) ≤ lim inf

m→+∞
sup

(φ,µ)∈B

{
`NCE
n,m (φ, µ)

}
and thus

inf
B∈Nc(θ,ν)

sup
(φ,µ)∈B∩Γc

{`n(φ, µ)} ≤ inf
B∈Nc(θ,ν)

lim inf
m→+∞

sup
(φ,µ)∈B

{
`NCE
n,m (φ, µ)

}
.

(Geyer, 1994) proved that θ 7→ Z(θ) is lower semi-continuous (cf Theorem 1). This
result directly implies that (θ, ν) 7→ `n(θ, ν) is upper semi-continuous as a sum of upper
semi-continuous functions. Thus the left hand side is equal to l(θ, ν) by construction of
Γc.

The proof of the second inequality also follows closely Geyer (1994):

inf
B∈N (θ,ν)

lim sup
m→+∞

sup
(φ,µ)∈B

{
`NCE
n,m (φ, µ)

}

≤ inf
B∈N (θ,ν)

 sup
(φ,µ)∈B

[
1
n

n∑
i=1

log
{
hφ(yi)
hψ(yi)

}
+ µ

]

− lim inf
m→+∞

inf
(φ,µ)∈B

[
1
n

n∑
i=1

log
{

1 + n

m
eµ
hφ(yi)
hψ(yi)

}]

− lim inf
m→+∞

1
m

m∑
j=1

log
(

1 + n

m
inf

(φ,µ)∈B

[
eµ
hφ(Xj)
hψ(Xj)

])m
n


= 1
n

n∑
i=1

log
{
hθ(yi)
hψ(yi)

}
+ ν − sup

B∈N (θ,ν)
Eψ

[
inf

(φ,µ)∈B

{
eµ
hφ(X)
hψ(X)

}]
.

The inequality follows directly from superadditivity of the supremum (and subadditivity
of the infimum) and the continuity and monotonicity of the maps x 7→ log(1 + n

m
x)mn .
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The last equality holds because the infimum over N (θ, ν) can be replaced by the infimum
over the countable set Ac(θ, ν): the set of open balls centered on (θ, ν) of radius k−1,
k ≥ 1, which means the infimum is also the limit of a decreasing sequence, which can
be splitted into three terms. The second term converges deterministically to zero, while
convergences (2.13) and (2.14) apply for the first and third terms.

To conclude, apply the monotone convergence theorem to the remaining term:

sup
B∈Ac(θ,ν)

Eψ
[

inf
(φ,µ)∈B

{
eµ
hφ(X)
hψ(X)

}]
= Eψ

[
sup

B∈Ac(θ,ν)
inf

(φ,µ)∈B

{
eµ
hφ(X)
hψ(X)

}]

= Eψ
[
eν
hθ(X)
hψ(X)

]
= eν

Z(θ)
Z(ψ) .

2.7.3 Proof of Theorem 2

Define gξ(x) = log hθ(x) + ν, and the following gradients (dropping n and m in the
notation for convenience):

ΨNCE(ξ) = ∇`NCE
n,m (ξ) = 1

n

n∑
i=1
∇ξgξ(yi)

(
mhψ(yi)

mhψ(Xj) + n exp{gξ(yi)}

)

− 1
m

m∑
j=1
∇ξgξ(Xj)

(
m exp{gξ(Xj)}

mhψ(Xj) + n exp{gξ(Xj)}

)
,

ΨIS(ξ) = ∇`IS
n,m(ξ) = 1

n

n∑
i=1
∇ξgξ(yi)−

1
m

m∑
j=1
∇ξgξ(Xj)

(
exp{gξ(Xj)}
hψ(Xj)

)
.

By Taylor-Lagrange, for any component k, 1 ≤ k ≤ d + 1, there exists (a random
variable) ξ(k)

m ∈ [ξ̂IS
n,m; ξ̂NCE

n,m ] such that

ΨIS
k (ξ̂IS

n,m) = ΨIS
k (ξ̂NCE

n,m ) +
{
∇ΨIS

k (ξ(k)
m )

}T (
ξ̂IS
n,m − ξ̂NCE

n,m

)
where ΨIS

k (ξ) denotes the k−th component of ΨIS(ξ), and [ξ̂IS
n,m; ξ̂NCE

n,m ] denotes the line
segment in Rd+1 which joins ξ̂IS

n,m and ξ̂NCE
n,m .

By assumption (G1), the left hand side is oP(m−1). The matrix form yields:

oP
(
m−1

)
= ΨIS(ξ̂NCE

n,m ) + HIS
m

(
ξ̂IS
n,m − ξ̂NCE

n,m

)
, HIS

m =


{
∇ΨIS

1 (ξ(1)
m )

}T
...{

∇ΨIS
d+1(ξ(d+1)

m )
}T

 .

Let us prove first the convergence of the Hessian matrix. Lemma 4 can be applied to
each row component of the following matrix-valued function, the uniform norm of which
is Pψ-integrable under (H2):

ϕh : (ξ, x) 7→
(

1
n

n∑
i=1
∇2
ξgξ(yi)

)
−
(
∇2
ξgξ(x) +∇ξgξ(x) {∇ξgξ(x)} T

)(
exp{gξ(x)}
hψ(x)

)
.
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Convergences of the d+ 1 rows of HIS
m can be combined to get the following result:∥∥∥HIS

m −H(ξ̂n)
∥∥∥ →
m→∞

0 a.s.

where
H(ξ) = Eψ

[
ϕh(ξ,X)

]
= ∇2

ξ`n(ξ).

It turns out that H(ξ̂n) is invertible as soon as (H2) holds. This is the point of
the following lemma. This implies in particular that HIS

m is eventually invertible with
probability one.

Lemma 7. Assume (H2) holds. At the point ξ = ξ̂n, the Hessian matrix of the Poisson
Transform ∇2

ξln(ξ) is negative definite if and only if the Hessian of the log-likelihood
∇2
θln(θ) is definite negative.

The proof of Lemma 7 follows from a direct block matrix computation (using Schur’s
complement). For the sake of completeness, we present a proof in the supplement.

Now, let us prove the convergence of the gradient. By assumption (G1), we can write
ΨIS(ξ̂NCE

n,m ) = ∆m + o
(
m−1

)
, where:

∆m = ΨIS(ξ̂NCE
n,m )−ΨNCE(ξ̂NCE

n,m )

=

 1
n

n∑
i=1
∇ξgξ(yi)

(
n exp{gξ(yi)}

mhψ(yi) + n exp{gξ(yi)}

)

− 1
m

m∑
j=1
∇ξgξ(Xj)

(exp{gξ(Xj)}
hψ(Xj)

)(
n exp{gξ(Xj)}

mhψ(Xj) + n exp{gξ(Xj)}

)∣∣∣
ξ=ξ̂NCE

n,m

hence

m

n
∆m =

 1
n

n∑
i=1
∇ξgξ(yi)

(exp{gξ(yi)}
hψ(yi)

)(
1− n exp{gξ(yi)}

mhψ(yi) + n exp{gξ(yi)}

)

− 1
m

m∑
j=1
∇ξgξ(Xj)

(exp{gξ(Xj)}
hψ(Xj)

)2(
1− n exp{gξ(Xj)}

mhψ(Xj) + n exp{gξ(Xj)}

)∣∣∣
ξ=ξ̂NCE

n,m

=

 1
n

n∑
i=1
∇ξgξ(yi)

(exp{gξ(yi)}
hψ(yi)

)
− 1
m

m∑
j=1
∇ξgξ(Xj)

(exp{gξ(Xj)}
hψ(Xj)

)2

− 1
n

n∑
i=1
∇ξgξ(yi)

(exp{gξ(yi)}
hψ(yi)

)(
n exp{gξ(yi)}

mhψ(yi) + n exp{gξ(yi)}

)

+ 1
m

m∑
j=1
∇ξgξ(Xj)

(exp{gξ(Xj)}
hψ(Xj)

)2( n exp{gξ(Xj)}
mhψ(Xj) + n exp{gξ(Xj)}

)∣∣∣
ξ=ξ̂NCE

n,m

.

The two last terms of the right hand side are residuals for which we want to bound
the uniform norm over the ball B(θ̂n, ε). The sup norm of the second term is eventually
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bounded by:
1
m

sup
ξ∈B(ξ̂n,ε)

n∑
i=1
‖∇ξgξ(yi)‖

(
exp{gξ(yi)}
hψ(yi)

)2

→
m→∞

0.

The sup norm of the third term is eventually bounded by 1
m

∑m
j=1 fm(Xj) where

fm(x) = sup
ξ∈B(ξ̂n,ε)

‖∇ξgξ(x)‖
(

exp{gξ(x)}
hψ(x)

)2 (
n exp{gξ(x)}

mhψ(x) + n exp{gξ(x)}

)

and Lemma 2 applies under (I1) to the sequence (fm)m≥1 converging pointwise towards
0, and dominated by the integrable function g(x) = sup

ξ∈B(ξ̂n,ε)
‖∇ξgξ(x)‖

( exp{gξ(x)}
hψ(x)

)2
.

The limit of (m/n)∆m is thus dictated by the behaviour of the first term. We apply
Lemma 4 to the following vector-valued function, whose uniform norm is integrable under
(I1) and under the continuity of the deterministic part assumed in (H2):

ϕg : (ξ, x) 7→
(

1
n

n∑
i=1
∇ξgξ(yi)

exp{gξ(yi)}
hψ(yi)

)
−∇ξgξ(x)

(
exp{gξ(x)}
hψ(x)

)2

.

Lemma 4 yields (m/n)∆m −→
m→+∞

v(ξ̂n) a.s. where

v(ξ) = 1
n

n∑
i=1
∇ξgξ(yi)

(
exp{gξ(yi)}
hψ(yi)

)
− Eψ

∇ξgξ(X)
(

exp{gξ(X)}
hψ(X)

)2
 .

Combination of these facts ensure that on a set of probability one, we have eventually:

m

n

(
ξ̂IS
n,m − ξ̂NCE

n,m

)
= o(1) +

(
−HIS

m

)−1
(
m

n
∆m + o(1)

)
→

m→∞

(
−H(ξ̂n)

)−1
v(ξ̂n).

2.7.4 Proof of Theorem 3

The proof of MC-MLE consistency under the considered regime is a very straightforward
adaptation of Wald’s proof of consistency for the MLE. We thus choose to present in
appendix only the proof of NCE consistency, which is slightly more technical, although
the sketch is similar. For the sake of completeness, a proof of MC-MLE consistency is
presented in the supplement.

NCE consistency

For convenience, we choose to analyse a slightly different objective function (sharing the
same maximiser with `NCE

n,m ), defined as:

MNCE
n (θ, ν) = 1

n

n∑
i=1

{
ϕ(θ,ν)(Yi)− ζ(n)

(θ,ν)(Yi)
}
−
(
mn

n

)
× 1
mn

mn∑
j=1

ζ
(n)
(θ,ν)(Xj) (2.15)

53



where ϕ(θ,ν)(x) = log
{

eνhθ(x)
eν?hθ? (x)

}
and ζ(n)

(θ,ν)(x) = log
{

mn
n
hψ(x)+eνhθ(x)

mn
n
hψ(x)+eν?hθ? (x)

}
.

We begin our proof with the following lemma.

Lemma 8. For any fixed (θ, ν), almost surely, MNCE
n (θ, ν) →

n→∞
MNCE

τ (θ, ν), where:

MNCE
τ (θ, ν) = Eθ?

 log
{
eνhθ
eν?hθ?

}
− log

{
τhψ + eνhθ
τhψ + eν?hθ?

}− τEψ
 log

{
τhψ + eνhθ
τhψ + eν?hθ?

}
Moreover, (θ?, ν?) is the unique maximiser ofMNCE

τ (θ, ν).

Proof. For any fixed (θ, ν), the sequence ζ(n)
(θ,ν) is eventually dominated (by a Pψ-integrable

function), since for any c > 0 (in particular for c = τ ± ε) we have by Jensen’s inequality:

Eψ

 log
{
chψ + eνhθ
chψ + eν?hθ?

} ≥ Eψ

 log
{

fψ
fψ + 1

c
fθ?

} ≥ − log
(

1 + 1
c

)
(2.16)

Eψ

 log
{
chψ + eνhθ
chψ + eν?hθ?

} ≤ Eψ

 log
{
fψ + eνZ(θ)

cZ(ψ) fθ

fψ

} ≤ log
(

1 + eνZ(θ)
cZ(ψ)

)
(2.17)

Moreover, ζ(n)
(θ,ν) converges pointwise to ζ∞(θ,ν)(x) = log

{
τhψ(x)+eνhθ(x)
τhψ(x)+eν?hθ? (x)

}
, thus Lemma 2

applies: the second empirical average in (2.15) converges almost surely to Eψ
[
ζ∞(θ,ν)(X)

]
.

Now, the sequence
{
ϕ(θ,ν) − ζ

(n)
(θ,ν)

}
is upper bounded by the positive part of ϕ(θ,ν)

which is Pθ?-integrable. In particular, if Eθ?
[(
ϕ(θ,ν) − ζ∞(θ,ν)

)
−

]
= +∞, then Lemma 3

applies and the first empirical average in (2.15) converges towards −∞.

Conversely, suppose that Eθ?
[(
ϕ(θ,ν)−ζ∞(θ,ν)

)
−

]
<∞. The law of large numbers would

apply directly if the sequence mn/n was exactly equal to τ . To handle this technical
issue, we can consider the two following inequalities. Note that for any a ≥ b > 0:

log
{
ahψ(x) + eνhθ(x)
ahψ(x) + eν?hθ?(x)

}
≤ log

{
a
b
bhψ(x) + a

b
eνhθ(x)

bhψ(x) + eν?hθ?(x)

}

log
{
bhψ(x) + eνhθ(x)
bhψ(x) + eν?hθ?(x)

}
≤ log

{
ahψ(x) + eνhθ(x)

b
a
ahψ(x) + b

a
eν?hθ?(x)

}

This yields a useful uniform bound for any a, b > 0:∣∣∣∣∣ log
{
ahψ(x) + eνhθ(x)
ahψ(x) + eν?hθ?(x)

}
− log

{
bhψ(x) + eνhθ(x)
bhψ(x) + eν?hθ?(x)

}∣∣∣∣∣ ≤
∣∣∣∣ log a− log b

∣∣∣∣ (2.18)

Thus, if Eθ?
[(
ϕ(θ,ν) − ζ∞(θ,ν)

)
−

]
< +∞, then the uniform bound (2.18) also ensures

that:

Eθ?

(ϕ(θ,ν) − log
{
chψ + eνhθ
chψ + eν?hθ?

})
−

 < +∞
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for any positive c > 0. The sequence can now be easily dominated and Lemma 2 applies;
the first empirical average in (2.15) converges to Eθ?

[
ϕ(θ,ν)(Y )− ζ∞(θ,ν)(Y )

]
.

Finally, let us prove that (θ?, ν?) is the unique maximiser ofMNCE
τ . We have:

MNCE
τ (θ, ν) = 1

Z(ψ)

 ∫
X
− log

{
eν

?
hθ?(x)

eνhθ(x)

}
eν

?

hθ?(x)

+ log
{
τhψ(x) + eν

?
hθ?(x)

τhψ(x) + eνhθ(x)

}(
τhψ(x) + eν

?

hθ?(x)
)
λ(dx)


≤ 1
Z(ψ)

 ∫
X
− log

{
eν

?
hθ?(x)

eνhθ(x)

}
eν

?

hθ?(x)

+ log
{
τhψ(x)
τhψ(x)

}
τhψ(x) + log

{
eν

?
hθ?(x)

eνhθ(x)

}
eν

?

hθ?(x)λ(dx)


= 0

by the log-sum inequality, which applies with equality if and only if eνhθ(x) = eν
?
hθ?(x)

for Pθ? almost every x. This occurs if and only if ν and θ are chosen such that fθ?(x) =
eν

Z(ψ)hθ(x). The model being identifiable, there is only one choice for both the unnormal-
ized density and the normalizing constant; θ = θ? and ν = ν?.

We now prove that the NCE estimator converges almost surely to this unique max-
imiser. Let η > 0, and define Kη = {ξ ∈ K : d(ξ, ξ?) ≥ η} where K is the compact set
defined in (C2).

Under (H3), monotone convergence ensures that for any ξ ∈ Kη:

lim
ε↓0

Eθ?
[

sup
β∈B(ξ,ε)

(
ϕβ(Y )− ζ∞β (Y )

)]
= Eθ?

[
ϕξ(Y )− ζ∞ξ (Y )

]

and
lim
ε↓0

Eψ
[

inf
β∈B(ξ,ε)

ζ∞β (X)
]

= Eψ
[
ζ∞ξ (X)

]
.

Indeed, since maps θ 7→ hθ(x) are continuous, the two previous expectations (on the left
hand side) are respectively bounded from above for ε small enough, and bounded from
below for any ε.

Thus, for any ξ ∈ Kη and any γ > 0 we can find εξ > 0 such that simultaneously:

Eθ?
[

sup
β∈B(ξ,εξ)

(
ϕβ(Y )− ζ∞β (Y )

)]
≤ Eθ?

[
ϕξ(Y )− ζ∞ξ (Y )

]
+ γ

2

Eψ
[

inf
β∈B(ξ,εξ)

ζ∞β (X)
]
≥ Eψ

[
ζ∞ξ (X)

]
− γ

2τ .
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The compactness assumption ensures that there is a finite set {ξ1, ..., ξp} ⊂ Kη such that
Kη ⊂

⋃p
k=1B(ξk, εξk). This yields the following inequality:

sup
ξ∈Kη

MNCE
n (ξ) ≤ max

k=1,...,p

 1
n

n∑
i=1

sup
q≥n

sup
β∈B(ξk,εξk )

(
ϕβ(Yi)− ζ(q)

β (Yi)
)

−
(
mn

n

)
× 1
mn

mn∑
j=1

inf
β∈B(ξk,εξk )

ζ
(n)
β (Xj)


Choose any x for which the map θ 7→ hθ(x) is continuous, and any ξ ∈ Kη. From the
definition of ζ(n)

β , the following convergence is trivial:

inf
β∈B(ξ,εξ)

(
ζ

(n)
β (x)

)
−→
n→+∞

inf
β∈B(ξ,εξ)

(
ζ∞β (x)

)
.

Moreover, using inequalities (2.16) et (2.17), one can easily show that the sequence{
inf

β∈B(ξ,εξ)
ζ

(n)
β

}
is dominated (by a Pψ-integrable function). Lemma 2 applies:

1
mn

mn∑
j=1

inf
β∈B(ξk,εξk )

ζ
(n)
β (Xj) −→

n→+∞
Eψ

[
inf

β∈B(ξ,εξ)
ζ∞β (X)

]
a.s.

Now, subadditivity of the supremum and inequality (2.18) yield∣∣∣∣∣ sup
β∈B(ξ,εξ)

(
ϕβ(x)− ζ(n)

β (x)
)
− sup

β∈B(ξ,εξ)

(
ϕβ(x)− ζ(∞)

β (x)
)∣∣∣∣∣

≤ sup
β∈B(ξ,εξ)

∣∣∣∣ζ(n)
β (x)− ζ∞β (x)

∣∣∣∣ ≤ ∣∣∣∣ log mn

n
− log τ

∣∣∣∣ −→n→+∞
0

while monotonicity ensures that

sup
β∈B(ξ,εξ)

(
ϕβ − ζ∞β

)
≤ sup

q≥n
sup

β∈B(ξ,εξ)

(
ϕβ − ζ(q)

β

)
≤ sup

β∈B(ξ,εξ)

(
ϕβ

)
+
.

In the last inequality, the right hand side is Pθ?-integrable under (H3), and the sequence
(in the middle) converges pointwise towards its lower bound whose negative part has
either finite or infinite expectation. In both cases, either Lemma 2 or Lemma 3 can be
applied and ensures that, almost surely:

1
n

n∑
i=1

sup
q≥n

sup
β∈B(ξk,εξk )

(
ϕβ(Yi)− ζ(q)

β (Yi)
)
−→
n→+∞

Eθ?
[

sup
β∈B(ξ,εξ)

(
ϕβ(Y )− ζ∞β (Y )

)]

Combining these convergences simultaneously on a finite set, we get almost surely:

lim sup
n→+∞

sup
ξ∈Kη

MNCE
n (ξ) ≤ max

k=1,...,p

Eθ?
[

sup
β∈B(ξk,εξk )

(
ϕβ(Y )− ζ∞β (Y )

)]

− τEψ
[

inf
β∈B(ξk,εξk )

ζ∞β (X)
]

≤ sup
ξ∈Kη
MNCE

τ (ξ) + γ
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This leads to the following inequality since γ is arbitrary small:

lim sup
n→+∞

sup
ξ∈Kη

MNCE
n (ξ) ≤ sup

ξ∈Kη
MNCE

τ (ξ) a.s. (2.19)

This last inequality is the heart of the proof. To conclude, we need only to show that
the right hand side is negative, this is the aim of the following lemma.

Lemma 9. Under (H3), the map ξ 7→ MNCE
τ (ξ) is upper semi continuous.

The proof of Lemma 9 is straightforward. For the sake of completeness, we present a
proof in the supplement.

Since an upper semi continuous function achieves its maximum on any compact set,
this lemma proves in particular that sup

ξ∈Kη
MNCE

τ (ξ) < 0.

Thus inequality (2.19) implies that we can always find some α < 0 such that eventually
sup
ξ∈Kη

MNCE
n (ξ) < α, while (C2) implies that MNCE

n (ξ̂IS
n,m) ≥ sup

ξ∈Ξ
MNCE

n (ξ) − δn where

δn → 0, and where

sup
ξ∈Ξ

MNCE
n (ξ) ≥MNCE

n (ξ?) a.s.−→
n→+∞

MNCE(ξ?) = 0.

Combination of these facts show that with probability one we have eventually:

MNCE
n (ξ̂IS

n,m) > α > sup
ξ∈Kη

MNCE
n (ξ).

This is enough to prove strong consistency. Indeed, with probability one, ξ̂NCE
n,m eventually

escapes from Kη (otherwise there would be a contradiction with the inequality above).
Since the sequence belongs to K by assumption, the sequence has no choice but to stay
eventually in the ball of radius η. Thus with probability one, for any η > 0, we have
eventually d(ξ̂NCE

n,m , ξ?) < η. This is the definition of almost sure convergence.

2.7.5 Proof of Theorem 4

The proof of MC-MLE asymptotic normality is entirely classical. We choose to present in
appendix only the proof of NCE asymptotic normality, which follows the same sketch but
is slightly more technical. For the sake of completeness, a proof of MC-MLE asymptotic
normality is presented in the supplement.

NCE asymptotic normality

Let GNCE
n (ξ) = ∇ξ`

NCE
n,m (ξ) and HNCE

n (ξ) = ∇2
ξ`

NCE
n,m (ξ). We have:

GNCE
n (ξ) = 1

n

n∑
i=1
∇ξgξ(Yi)

(
mnhψ

mnhψ + n exp{gξ}

)
(Yi)

− 1
mn

mn∑
j=1
∇ξgξ(Xj)

exp{gξ(Xj)}
hψ(Xj)

(
mnhψ

mnhψ + n exp{gξ}

)
(Xj)
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HNCE
n (ξ) = 1

n

n∑
i=1
∇2
ξgξ(Yi)

(
mnhψ

mnhψ + n exp{gξ}

)
(Yi)

− 1
n

n∑
i=1
∇ξ∇T

ξ gξ(Yi)
(

mnhψn exp{gξ}
(mnhψ + n exp{gξ})2

)
(Yi)

− 1
mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}exp{gξ(Xj)}
hψ(Xj)

(
mnhψ

mnhψ + n exp{gξ}

)
(Xj)

+ 1
mn

mn∑
j=1
∇ξ∇T

ξ gξ(Xj)
exp{gξ(Xj)}
hψ(Xj)

(
mnhψn exp{gξ}

(mnhψ + n exp{gξ})2

)
(Xj)

We firstly show that the study can be reduced to the following random sequences:

Gτ
n(ξ) = 1

n

n∑
i=1
∇ξgξ(Yi)

(
τhψ

τhψ + exp{gξ}

)
(Yi)

− 1
mn

mn∑
j=1
∇ξgξ(Xj)

exp{gξ(Xj)}
hψ(Xj)

(
τhψ

τhψ + exp{gξ}

)
(Xj)

Hτ
n(ξ) = 1

n

n∑
i=1
∇2
ξgξ(Yi)

(
τhψ

τhψ + exp{gξ}

)
(Yi)

− 1
n

n∑
i=1
∇ξ∇T

ξ gξ(Yi)
(

τhψ exp{gξ}
(τhψ + exp{gξ})2

)
(Yi)

− 1
mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}exp{gξ(Xj)}
hψ(Xj)

(
τhψ

τhψ + exp{gξ}

)
(Xj)

+ 1
mn

mn∑
j=1
∇ξ∇T

ξ gξ(Xj)
exp{gξ(Xj)}
hψ(Xj)

(
τhψ exp{gξ}

(τhψ + exp{gξ})2

)
(Xj)

To do so, we show that almost surely sup
ξ∈B(ξ?,ε)

‖HNCE
n (ξ)−Hτ

n(ξ)‖ →
n→∞

0.

Splitting the uniform norm into four parts yields:

sup
ξ∈B(ξ?,ε)

∥∥∥∥HNCE
n (ξ)−Hτ

n(ξ)
∥∥∥∥ ≤ 1

n

n∑
i=1

sup
ξ∈B(ξ?,ε)

∥∥∥∥∇2
ξgξ(Yi)

∥∥∥∥ητn(Yi)

+ 1
n

n∑
i=1

sup
ξ∈B(ξ?,ε)

∥∥∥∥∇ξ∇T
ξ gξ(Yi)

∥∥∥∥Γτ
n(Yi)

+ 1
mn

mn∑
j=1

sup
ξ∈B(ξ?,ε)

∥∥∥∥(∇2
ξ +∇ξ∇T

ξ )gξ(Xj)
∥∥∥∥exp{gξ(Xj)}

hψ(Xj)
ητn(Xj)

+ 1
mn

mn∑
j=1

sup
ξ∈B(ξ?,ε)

∥∥∥∥∇ξ∇T
ξ gξ(Xj)

∥∥∥∥exp{gξ(Xj)}
hψ(Xj)

γτn(Xj) (2.20)

where the sequences of functions

ητn = sup
ξ∈B(ξ?,ε)

∣∣∣∣ mnhψ
mnhψ + n exp{gξ}

− τhψ
τhψ + exp{gξ}

∣∣∣∣
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and

γτn = sup
ξ∈B(ξ?,ε)

∣∣∣∣ mnhψn exp{gξ}
(mnhψ + n exp{gξ})2 −

τhψ exp{gξ}
(τhψ + exp{gξ})2

∣∣∣∣
are both upper bounded by 1 and converge pointwise (for any x ∈ X ) to 0 (use the
continuity of ξ 7→ gξ(x)).

Lemma 2 applies to each empirical average in (2.20) (every integrability condition
holds under (H4)). The sum converges to 0 almost surely.

Now, we prove that ∀a ∈ Rd+1 aT
√
n
(
GNCE
n (ξ?)−Gτ

n(ξ?)
) P−→ 0.

Define η(n)
θ,τ = mnfψ

mnfψ+nfθ
− τfψ

τfψ+fθ
. At the point ξ = ξ? we have:

√
n
(
GNCE
n (ξ?)−Gτ

n(ξ?)
)

=
√
n

 1
n

n∑
i=1

(
∇ξgξ

)
η

(n)
θ,τ (Yi)− Eθ

[(
∇ξgξ

)
η

(n)
θ,τ (Y )

]
|ξ=ξ?

−
√

n

mn

×
√
mn

 1
mn

mn∑
j=1

(
∇ξgξ

) fθ
fψ
η

(n)
θ,τ (Xj)− Eθ

[(
∇ξgξ

)
η

(n)
θ,τ (Y )

]
|ξ=ξ?

The sequence
∣∣∣η(n)
θ,τ

∣∣∣ is upper bounded by 1 and converges pointwise towards 0. Moreover,
for any c > τ , the sequence

∣∣∣η(n)
θ,τ

∣∣∣ is also eventually upper bounded by 2 cfψ
cfψ+fθ

. This
ensures that both second moment conditions required holds under (H4) since:

∫
X
‖∇ξgξ‖2

(
fθ
fψ

)2 (
cfψ

cfψ + fθ

)2

fψdµ = c
∫
X
‖∇ξgξ‖2

(
cfψ

cfψ + fθ

)(
fθ

cfψ + fθ

)
fθdµ

≤ c× Eθ
[
‖∇ξgξ‖2

]
< +∞ (2.21)

We can thus apply Lemma 6:

√
n

 1
n

n∑
i=1

(
aT∇ξgξ

)
η

(n)
θ,τ (Yi)− Eθ

[(
aT∇ξgξ

)
η

(n)
θ,τ (Y )

]
|ξ=ξ?

P−→ 0

√
mn

 1
mn

mn∑
j=1

(
aT∇ξgξ

) fθ
fψ
η

(n)
θ,τ (Xj)− Eθ

[(
aT∇ξgξ

)
η

(n)
θ,τ (Y )

]
|ξ=ξ?

P−→ 0

Finally, Cramér-Wold’s device applies:
√
n
(
GNCE
n (ξ?)−Gτ

n(ξ?)
)

P−→ 0Rd+1 .

Now, we can work directly with Gτ
n and Hτ

n, which is much easier. Indeed, Lemma 4
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yields sup
ξ∈B(ξ?,ε)

‖Hτ
n(ξ)−Hτ (ξ)‖ →

n→∞
0 almost surely, where:

Hτ (ξ) = Eθ?
[
∇2
ξgξ(Y )

(
τhψ

τhψ + exp{gξ}

)
(Y )

]

− Eθ?
[
∇ξ∇T

ξ gξ(Y )
(

τhψ exp{gξ}
(τhψ + exp{gξ})2

)
(Y )

]

− Eψ
[{

(∇2
ξ +∇ξ∇T

ξ )gξ(X)
}exp{gξ(X)}

hψ(X)

(
τhψ

τhψ + exp{gξ}

)
(X)

]

+ Eψ
[
∇ξ∇T

ξ gξ(X)exp{gξ(X)}
hψ(X)

(
τhψ exp{gξ}

(τhψ + exp{gξ})2

)
(X)

]

The only condition required is that the supremum norm of each integrand is integrable,
which is satisfied under (H4) (bound the ratios by one).

Note also that, at the point ξ = ξ?, functions Hτ and −Jτ coincide, where:

Jτ (ξ) = Eθ
[
(∇ξ∇T

ξ gξ)
(

τfψ
τfψ + fθ

)
(Y )

]

A quick block matrix calculation shows that Schur’s complement in−Jτ (ξ) is proportional
to:

Iτ (θ) = VX∼Qτ

(
∇θ log hθ(X)

)
where Qτ refers to the probability measure whose density with respect to µ is defined as
qτ (x) ∝ τfψ(x)fθ(x)

τfψ(x)+fθ(x) . Note that Pθ � Qτ since the model is dominated by Pψ.

In particular, Jτ (ξ?) is invertible if and only if Iτ (θ?) is invertible. Since Iτ (θ) is a
covariance matrix, if it is not full rank, then ∇θ log hθ(X) belongs to a hyperplane Qτ -
almost surely (and thus Pθ-almost surely). This contradicts assumption (H4) since the
Fisher Information is full rank. Thus Iτ (θ?) and Jτ (ξ?) are both invertible.

Now, we prove the weak convergence of the gradient:

√
nGτ

n(ξ?) =
√
n

 1
n

n∑
i=1

(∇ξgξ)
(

τfψ
τfψ + fθ

)
(Yi)− Eθ

[
(∇ξgξ)

(
τfψ

τfψ + fθ

)
(Y )

]
|ξ=ξ?

−
√

n

mn

√
mn

 1
mn

mn∑
j=1

(∇ξgξ)
fθ
fψ

(
τfψ

τfψ + fθ

)
(Xj)− Eθ

[
(∇ξgξ)

(
τfψ

τfψ + fθ

)
(Y )

]
|ξ=ξ?

Slutsky’s lemma applies as follows. It is noteworthy that second moment conditions hold
under (H4) only (use inequality (2.21)), whereas assumption (I3) is necessary for proving
MC-MLE asymptotic normality (see 2.8.3).

√
nGτ

n(ξ?) D→ N
(

0Rd+1 ,Στ (ξ?) + τ−1Γτ (ξ?)
)
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where

Στ (ξ) = Vθ

(
(∇ξgξ)

(
τfψ

τfψ + fθ

)
(Y )

)
,

Γτ (ξ) = Vψ

(
ϕNCE
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕNCE
ξ (X0), ϕNCE

ξ (Xi)
)
,

ϕNCE
ξ = (∇ξgξ)

fθ
fψ

(
τfψ

τfψ + fθ

)
.

Finally, Lemma 5 applies:
√
n
(
ξ̂NCE
n,m − ξ?

) D→ Nd+1

(
0,VNCE

τ (ξ?)
)

where VNCE
τ (ξ) = Jτ (ξ)−1 {Στ (ξ) + τ−1Γτ (ξ)}Jτ (ξ)−1.

2.7.6 Proof of Theorem 5

For convenience, we will use some shorthand notations. Define the real-valued measurable
functions Q = fθ/fψ and R = τfψ/(τfψ + fθ). Note that we have the relationship
QR = τ(1 − R). In the following, assume that ξ = ξ?, and for any measurable function
ϕ, note that Eθ[ϕ] stands for the expectation of ϕ(X) where X ∼ Pθ, and that ∇∇Tgξ
stands for the measurable matrix-valued function x 7→ ∇ξgξ(x)(∇ξgξ(x))T . We begin
with the following computations:

J(ξ) = Eθ
[
∇∇Tgξ

]
,

Σ(ξ) = Eθ
[
∇∇Tgξ

]
− Eθ

[
∇gξ

]
Eθ
[
∇Tgξ

]
,

Γ(ξ) = Eψ
[
∇∇TgξQ

2
]
− Eψ

[
∇gξQ

]
Eψ
[
∇TgξQ

]
= Eθ

[
∇∇Tgξ(R−1 − 1)

]
× τ − Eθ

[
∇gξ

]
Eθ
[
∇Tgξ

]
,

Jτ (ξ) = Eθ
[
∇∇TgξR

]
,

Στ (ξ) = Eθ
[
∇∇TgξR

2
]
− Eθ

[
∇gξR

]
Eθ
[
∇TgξR

]
,

Γτ (ξ) = Eψ
[
∇∇TgξQ

2R2
]
− Eψ

[
∇gξQR

]
Eψ
[
∇TgξQR

]
= Eθ

[
∇∇TgξR(1−R)

]
× τ − Eθ

[
∇gξR

]
Eθ
[
∇TgξR

]
.

Fortunately, the expression of the asymptotic variances simplify, as shown by the
following lemma.
Lemma 10. Let Z be any real-valued, non-negative measurable function such that Eθ

[
∇∇TgξZ

]
is finite and invertible. Then:

M := Eθ
[
∇∇TgξZ

]−1
Eθ
[
∇gξZ

]
Eθ
[
∇TgξZ

]
Eθ
[
∇∇TgξZ

]−1
=
(

0Rd×d 0Rd

0TRd 1

)
.
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The proof of Lemma 10 follows from a direct block matrix computation. For the sake
of completeness, we present a proof in the supplement.

Let M be defined as in Lemma 10, matrix calculations yield

J(ξ)−1Σ(ξ)J(ξ)−1 = Eθ
[
∇∇Tgξ

]−1
−M,

Jτ (ξ)−1Στ (ξ)Jτ (ξ)−1 = Eθ
[
∇∇TgξR

]−1
Eθ
[
∇∇TgξR

2
]
Eθ
[
∇∇TgξR

]−1
−M,

J(ξ)−1Γ(ξ)J(ξ)−1 = τEθ
[
∇∇Tgξ

]−1
Eθ
[
∇∇Tgξ(R−1 − 1)

]
Eθ
[
∇∇Tgξ

]−1
−M,

Jτ (ξ)−1Γτ (ξ)Jτ (ξ)−1 = τEθ
[
∇∇TgξR

]−1
Eθ
[
∇∇TgξR(1−R)

]
Eθ
[
∇∇TgξR

]−1
−M.

Summing up these expressions we finally get

VIS
τ (ξ) = Eθ

[
∇∇Tgξ

]−1
Eθ
[
∇∇TgξR

−1
]
Eθ
[
∇∇Tgξ

]−1
− (1 + τ−1)M,

VNCE
τ (ξ) = Eθ

[
∇∇TgξR

]−1
− (1 + τ−1)M.

Now, to compare these variances, the idea is the following: (x, y) 7→ x2/y is a convex
function on R2, which means Jensen’s inequality ensures that for any random variables
X, Y such that the following expectations exist we have E[X2/Y ] ≥ E[X]2/E[Y ]. Here
the variances are matrices, but it turns out that it is possible to use a generalization of
Jensen’s inequality to the Loewner partial order on matrices. We introduce the following
notations:

Mn,m is the set of n×m matrices,
Sn is the set of n× n symmetric matrices,
S+
n is the set of (n× n symmetric) positive semi-definite matrices,

S++
n is the set of (n× n symmetric) positive definite matrices,

R(A) is the range of A,

∆n,m =
{

(A,B) ∈ S+
n ×Mn,m : R(B) ⊂ R(A)

}
,

A† denotes the Moore-Penrose pseudo-inverse of A,
< denotes the Loewner partial order (A1 < A2 iff A1 − A2 ∈ S+

n ).

Lemma 11. Let A,B be random matrices such that (A,B) ∈ ∆n,m with probability one
for some positive integers n,m. Let ϕ : (A,B) 7→ BTA†B defined on ∆n,m. Then
E[ϕ(A,B)] < ϕ(E[A],E[B]) provided that the three expectations exist.

Proof. We just have to prove that f is convex with respect to <, i.e. that for any
λ ∈ [0, 1], and any (A1, B1), (A2, B2) ∈ ∆n,m we have λϕ(A1, B1) + (1 − λ)ϕ(A2, B2) <
ϕ(λ(A1, B1) + (1−λ)(A2, B2)). Indeed, if this convex relationship on matrices is satisfied
then for any x ∈ Rm, the real-valued map q : (A,B) 7→ xTϕ(A,B)x is necessarily convex
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on ∆n,m. Consequently, Jensen’s inequality applies, i.e. for any random (A,B) ∈ ∆n,m

a.s. and any x ∈ Rm we have

xTE[ϕ(A,B)]x = E[q(A,B)] ≥ q(E[A],E[B]) = xTϕ(E[A],E[B])x

which is the claim of the lemma.
Now, to prove that ϕ is convex with respect to <, we use a property of the generalized

Schur’s complement in positive semi-definite matrices (see Boyd and Vandenberghe (2004)
p.651): let A ∈ Sn, B ∈Mn,m, C ∈ Sm, and consider the block symmetric matrix

D =
(

A B
BT C

)
.

Then we have

D < 0 ⇔ A < 0 , R(B) ⊂ R(A) , C −BTA†B < 0.

This leads to a straightforward proof of the convexity of ϕ. To our knowledge, the
following trick is due to Ando (1979), whose original proof was restricted to positive
definite matrices. We use the generalized Schur’s complement to extend this result to
any (A,B) ∈ ∆n,m: let λ ∈ [0, 1], and (A1, B1), (A2, B2) ∈ ∆n,m. The sum of two positive
semi definite matrices is positive semi-definite thus we have

λ

(
A1 B1

BT
1 BT

1 A
†
1B1

)
+ (1− λ)

(
A2 B2

BT
2 BT

2 A
†
2B2

)
< 0

which is the same as(
λA1 + (1− λ)A2 λB1 + (1− λ)B2

λBT
1 + (1− λ)BT

2 λBT
1 A
†
1B1 + (1− λ)BT

2 A
†
2B2

)
< 0.

Consequently, the generalised Schur’s complement in this last block matrix is also positive
semi-definite, i.e.

λBT
1 A
†
1B1 + (1− λ)BT

2 A
†
2B2 <

(
λB1 + (1− λ)B2

)T [
λA1 + (1− λ)A2

]†(
λB1 + (1− λ)B2

)
which proves the convexity of ϕ with respect to <, and thus the claim of the lemma.

Finally, we compare the asymptotic variances of the two estimators. Note that for
any (A,B) ∈ Sn × S++

n , and for every x ∈ Rn, we have

xTAx ≥ 0 ⇔ xTBABx ≥ 0.

Indeed, if A is semi definite positive then for some integer k we can find P ∈ Mk,n such
that A = P TP , moreover, B being symmetric we have xTBABx = ‖PBx‖2 ≥ 0. The
direct implication is enough since B−1 ∈ S++

n .
Consequently, the relation VIS

τ (ξ) < VNCE
τ (ξ) is equivalent to the relation

Eθ
[
∇∇TgξR

−1
]
< Eθ

[
∇∇Tgξ

]
Eθ
[
∇∇TgξR

]−1
Eθ
[
∇∇Tgξ

]
. (2.22)

Inequality (2.22) is a direct application of Lemma 11 (let B = ∇∇Tgξ, A = BR; note
that (A,B) ∈ ∆d+1,d+1 almost surely; and use basic properties of the pseudo-inverse).
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2.8 Supplementary Proofs

2.8.1 Proofs of technical lemmas

Proof of Lemma 1

For all k ∈ N, eventually (for any m ≥ k) we have

1
m

m∑
j=1

fk(Xj) ≤
1
m

m∑
j=1

fm(Xj) ≤
1
m

m∑
j=1

f(Xj).

Moreover, since (Xj)j≥1 is Pψ-ergodic, the law of large numbers applies (even if the
expectations are infinite, since fk and f are non-negative):

1
m

m∑
j=1

fk(Xj) a.s.−→
m→+∞

Eψ[fk(X)] and 1
m

m∑
j=1

f(Xj) a.s.−→
m→+∞

Eψ[f(X)].

Thus, there is a set of probability one on which for every k ∈ N,

Eψ[fk(X)] ≤ lim inf
m→+∞

1
m

m∑
j=1

fm(Xj) ≤ lim sup
m→+∞

1
m

m∑
j=1

fm(Xj) ≤ Eψ[f(X)].

Since the inequality holds for any k ∈ N, it also holds for the supremum over k:

sup
k∈N

Eψ[fk(X)] ≤ lim inf
m→+∞

1
m

m∑
j=1

fm(Xj) ≤ lim sup
m→+∞

1
m

m∑
j=1

fm(Xj) ≤ Eψ[f(X)].

Finally, the monotone convergence theorem yields

sup
k∈N

Eψ[fk(X)] = lim
k→+∞

Eψ[fk(X)] = Eψ
[
lim

k→+∞
fk(X)

]
= Eψ[f(X)].

Consequently, the lower and upper limits are both equal to Eψ[f(X)] almost surely.

Proof of Lemma 2

Since (Xj)j≥1 is Pψ-ergodic and f is dominated by the integrable function g, the law of
large numbers applies to function f . Thus, we just need to prove that∣∣∣∣∣∣ 1

m

m∑
j=1
{fm(Xj)− f(Xj)}

∣∣∣∣∣∣ a.s.−→
m→+∞

0.

To do so, use the fact that∣∣∣∣∣∣ 1
m

m∑
j=1
{fm(Xj)− f(Xj)}

∣∣∣∣∣∣ ≤ 1
m

m∑
j=1
|fm(Xj)− f(Xj)|

≤ 1
m

m∑
j=1

sup
k≥m

∣∣∣fk(Xj)− f(Xj)
∣∣∣.
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Define hm = 2g− sup
k≥m
|fk−f | and note that (hm)m≥1 is a non-decreasing sequence of non

negative functions converging pointwise towards 2g. Lemma 1 yields

1
m

m∑
j=1

hm(Xj) a.s.−→
m→+∞

Eψ[2g(X)].

Finally g is integrable, thus the remainder converges almost surely towards zero:

1
m

m∑
j=1

sup
k≥m

∣∣∣fk(Xj)− f(Xj)
∣∣∣ = 2

m

m∑
j=1

g(Xj)−
1
m

m∑
j=1

hm(Xj) a.s.−→
m→+∞

0.

Proof of Lemma 3

Since g is integrable and (Xj)j≥1 is Pψ-ergodic we have

1
m

m∑
j=1

g(Xj) a.s.−→
m→+∞

Eψ
[
g(X)

]
< +∞.

Thus we only need to show that

1
m

m∑
j=1
{g(Xj)− fm(Xj)} a.s.−→

m→+∞
+∞.

Define hm = g − sup
k≥m

fk, an increasing sequence of non negative functions converging

pointwise to g − f . Lemma 1 applies whether g − f is integrable or not:

1
m

m∑
j=1

(g(Xj)− fm(Xj)) ≥
1
m

m∑
j=1

hm(Xj) a.s.−→
m→+∞

Eψ
[
g(X)− f(X)

]
.

The following inequality shows that the expectation is indeed infinite:

Eψ
[
g(X)− f(X)

]
= Eψ

[(
g(X)− f(X)+

)
+ f(X)−

]
≥ Eψ

[
f(X)−

]
= +∞.

Proof of Lemma 4

To begin, note that measurability of the supremum is ensured by the lower semi-continuity
of the maps θ 7→ ϕ(θ, x) on a set of probability one that does not depend on θ.

For every θ ∈ K, consider the following function:

fθ(η) = Eψ
[

sup
φ∈B(θ,η)

‖ϕ(φ,X)− ϕ(θ,X)‖
]
.

Dominated convergence implies that fθ(η) converges to zero when η goes to zero. This
is enough to ensure the continuity of the map θ 7→ Eψ

[
ϕ(θ,X)

]
because of the following

inequality:
sup

φ∈B(θ,η)
‖Eψ

[
ϕ(φ,X)− ϕ(θ,X)

]
‖ ≤ fθ(η).
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Let ε > 0. For every θ ∈ K, we can always find η(θ,ε) > 0 small enough such that
fθ(η(θ,ε)) < ε. Note that the open balls centered on θ ∈ K of radius η(θ,ε), form an
open cover of K, from which we can extract a finite subcover thanks to the compactness
assumption. Thus we can build a finite set {φ1, ..., φI} ⊂ K (centers of the balls) such
that

K ⊂
I⋃
i=1

Bi, Bi = B(φi, η(φi,ε)).

Now, for any θ ∈ K define iθ as the smallest integer i ∈ {1, ..., I} such that θ ∈ Bi, and
consider the following equality:

1
m

m∑
j=1

ϕ(θ,Xj)− Eψ
[
ϕ(θ,X)

]
= 1
m

m∑
j=1

{
ϕ(θ,Xj)− ϕ(φiθ , Xj)

}

+ 1
m

m∑
j=1

ϕ(φiθ , Xj)− Eψ
[
ϕ(φiθ , X)

]
+ Eψ

[
ϕ(φiθ , X)

]
− Eψ

[
ϕ(θ,X)

]
The three last terms are functions of θ for which we want to bound the uniform norm.
The uniform norm of the third term is lower than ε since ∀θ ∈ K, d(θ, φiθ) ≤ η(φiθ ,ε).

The second term converges to zero by the law of large number since {φ1, ..., φJ} is finite.
Finally, the uniform norm of the second term can be bounded by

Um = max
1≤i≤I

 1
m

m∑
j=1

sup
θ∈Bi
‖ϕ(θ,Xj)− ϕ(φi, Xj)‖

.
The supremum are integrable by assumption, thus the law of large numbers applies:

Um
a.s.−→

m→+∞
max
1≤i≤I

fφi(η(φi,ε)) < ε.

To sum up, we have just proven that for any ε > 0, almost surely,

lim sup
m→+∞

supθ∈K

∥∥∥∥∥∥ 1
m

m∑
j=1

ϕ(θ,Xj)− Eψ
[
ϕ(θ,X)

]∥∥∥∥∥∥
 < 2ε.

Since ε is arbitrary small, we get the first claim of the lemma.
Now, if θ̃m → θ̃, we have eventually ‖θ̃m − θ̃‖ ≤ ε with probability one. This yields

the following inequality for m large enough:∥∥∥∥∥∥ 1
m

m∑
j=1

ϕ(θ̃m, Xj)− Eψ
[
ϕ(θ̃, X)

]∥∥∥∥∥∥ ≤ sup
θ∈B(θ̃m,ε)

∥∥∥∥∥∥ 1
m

m∑
j=1

ϕ(θ,Xj)− Eψ
[
ϕ(θ,X)

]∥∥∥∥∥∥
+
∥∥∥∥Eψ[ϕ(θ̃m, X)

]
− Eψ

[
ϕ(θ̃, X)

]∥∥∥∥ .
The first term converges to zero since the first claim of the lemma applies to the

compact closure of B(θ̃, ε). The continuity of the map θ 7→ Eψ
[
ϕ(θ,X)

]
ensures that the

second term also goes to zero, proving the second claim of the Lemma.
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Proof of Lemma 5

Let ε > 0, and Gn(θ, ω) = ∇θ`n(θ, ω) defined on B(θ?, ε). Define also g(n)
k (θ) as the k-th

component of Gn(θ). By assumption, for any δ > 0,{
ω ∈ Ω : max

(
‖θ̂n − θ?‖ , ‖

√
nGn(θ̂n)‖ , sup

θ∈B(θ?,ε)
‖∇2

θ`n(θ)−H(θ)‖
)
≤ δ

}

defines a sequence of sets whose probability goes to one.
On any of these sets (for a fixed ω), Taylor Lagrange’s theorem ensures that we can

find (θ̃(n)
j )j=1,...,d on the segment line [θ?, θ̂n] such that

Gn(θ̂n) = Gn(θ?) + Hn(θ̂n − θ?), Hn =


(
∇θg

(n)
1 (θ̃(n)

1 )
)T

...(
∇θg

(n)
d (θ̃(n)

d )
)T

 .

In particular, for any δ ∈]0, ε[,

‖Hn −H(θ?)‖ ≤ d sup
θ∈B(θ?,ε)

‖∇2
θ`n(θ)−H(θ)‖+

d∑
j=1
‖H(θ̃(n)

j )−H(θ?)‖.

For any j = 1, ..., d, the distance between θ̃(n)
j and θ? is at most δ, and H is continuous,

thus δ can always be chosen small enough such that Hn is invertible. We thus have:

θ̂n − θ? = H−1
n

{
Gn(θ̂n)−Gn(θ?)

}
√
n(θ̂n − θ?) +H(θ?)−1√nGn(θ?) = H−1

n

√
nGn(θ̂n)−

{
H−1
n −H(θ?)−1

}√
nGn(θ?)

The right hand side converges in probability to zero because Gn(θ̂n) = oP(n−1/2) by
assumption, and because

√
nGn(θ?) converges in distribution and is thus bounded in

probability. The last equality being true on a sequence of sets whose probability goes to
one, this implies that the left hand side must also converge to zero in probability.

The last conclusion follows from Slutsky’s lemma.

Proof of Lemma 6

Before proving the lemma, we recall a powerful result from Jones (2004). Under (X2), the
chain (Xj)j≥1 is asymptotically uncorrelated with exponential decay, i.e. there is some
γ > 0 such that

ρ(n) = sup
{
Corr(U, V ) , U ∈ L2(Fk1 ) , V ∈ L2(F∞k+n) , k ≥ 1

}
= O(e−γn)

where Fmk is the sigma-algebra generated by Xk, ..., Xm.
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Let hn = fn − f , and note that Vψ(hn(X0)) ≤ Eψ
[
(hn(X0))2

]
→
n→∞

0 by dominated
convergence. Combined with the previous result, this implies that

1
n
V
(

n∑
i=1

hn(Xi)
)

= Vψ(hn(X0))×
{

1 + 2
n∑
i=1

n− i
n

Corr(hn(X0), hn(Xi))
}
→
n→∞

0

since ∣∣∣∣∣
n∑
i=1

n− i
n

Corr(hn(X0), hn(Xi))
∣∣∣∣∣ ≤

+∞∑
i=1

ρ(i) < +∞.

The first claim of the lemma follows from Chebyshev’s inequality, since for any ε > 0

P
(

1
n

n∑
i=1

hn(Xi)− E
[
hn(X)

]
≥ ε√

n

)
≤ 1
nε2V

(
n∑
i=1

hn(Xi)
)
→
n→∞

0.

Finally, under (X2) a
√
n-CLT holds for f dominated by g

√
n

(
1
n

n∑
i=1

f(Xi)− E[f(X)]
)
D→ N

(
0, σ2

f

)
.

An application of Slutsky’s lemma yields the second claim of the lemma.

2.8.2 Proofs of the remaining lemmas

Proof of Lemma 7

Assumption (H2) ensures in particular that the partition function θ 7→ Z(θ) is differ-
entiable in a neighborhood of θ̂n. Write the Hessian of the Poisson Transform as the
following block matrix:

∇2
(θ,ν)`n(θ, ν) =

(
A b
bT c

)
where

A = ∇2
θ`n(θ, ν) = 1

n

n∑
i=1
∇2
θ log hθ(yi)− eν

Z(θ)
Z(ψ)

∇2
θZ(θ)
Z(θ) ,

b = ∇θ
∂

∂ν
`n(θ, ν) = −eν Z(θ)

Z(ψ)
∇θZ(θ)
Z(θ) ,

c = ∂2

∂ν2 `n(θ, ν) = −eν Z(θ)
Z(ψ) < 0.

The Hessian of the Poisson transform is negative definite if and only if Schur’s complement
of c in the Hessian also is. Use the following equality to compute it:

∇2
θ logZ(θ) = ∇

2
θZ(θ)
Z(θ) −

∇θZ(θ)
(
∇θZ(θ)

)T
Z(θ)2 ,
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A− bc−1bT = 1
n

n∑
i=1
∇2
θ log hθ(yi)− eν

Z(θ)
Z(ψ)∇

2
θ logZ(θ).

At the point ξ = ξ̂n, Schur’s complement of c is also the Hessian of the log likelihood:

∇2
θ`n(θ) = 1

n

n∑
i=1
∇2
θ log hθ(yi)−∇2

θ logZ(θ),
{
eν
Z(θ)
Z(ψ)

}∣∣∣
ξ=ξ̂n

= 1.

Proof of Lemma 9

Let ξn → ξ, we have

lim
n→+∞

sup
k≥n
MNCE

τ (ξk) ≤
1
Z(ψ) lim

n→+∞

{∫
X

sup
k≥n

ϕk(x)µ(dx)
}
,

where

ϕk(x) = log
{
eνkhθk(x)
eν?hθ?(x)

}
eν

?

hθ?(x) + log
{
τhψ(x) + eν

?
hθ?(x)

τhψ(x) + eνkhθk(x)

}(
τhψ(x) + eν

?

hθ?(x)
)
.

The sequence
{

supk≥n ϕk
}
is a decreasing sequence converging pointwise. It may be

bounded from above thanks to the log-sum inequality, since for any k we have

ϕk ≤ log
{
eνkhθk
eν?hθ?

}
eν

?

hθ? + log
{
τhψ
τhψ

}
τhψ + log

{
eν

?
hθ?

eνkhθk

}
eν

?

hθ? = 0.

Monotone convergence theorem applies:

lim
n→+∞

sup
k≥n
MNCE

τ (ξk) ≤
1
Z(ψ)

∫
X

lim
n→+∞

ϕn(x)µ(dx) =MNCE
τ (ξ).

Proof of Lemma 10

Without loss of generality, we may suppose that Eθ[Z] = 1. Recall the following expres-
sions:

∇gξ =
(
∇gθ

1

)
∇∇Tgξ =

(
∇∇Tgθ ∇gθ
∇Tgθ 1

)
.

We thus have

Eθ
[
∇gξZ

]
Eθ
[
∇TgξZ

]
=
(

Eθ[∇gθZ]Eθ[∇TgθZ] Eθ[∇gθZ]
Eθ[∇TgθZ] 1

)
,

Eθ
[
∇∇TgξZ

]
=
(

Eθ[∇∇TgθZ] Eθ[∇gθZ]
Eθ[∇TgθZ] 1

)
.

We use the following decomposition

Eθ
[
∇gξZ

]
Eθ
[
∇TgξZ

]
= Eθ

[
∇∇TgξZ

]
−
(
AZ 0
0 0

)
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where Schur’s complement AZ = Eθ[∇∇TgθZ]−Eθ[∇gθZ]Eθ[∇TgθZ] is definite positive.
So we can re-write the matrix M as:

M = Eθ
[
∇∇TgξZ

]−1
− Eθ

[
∇∇TgξZ

]−1
(
AZ 0
0 0

)
Eθ
[
∇∇TgξZ

]−1
.

Now, on the one hand, an inverse block matrix calculation yields

Eθ
[
∇∇TgξZ

]−1
=
(

A−1
Z −A−1

Z Eθ[∇gθZ]
−Eθ[∇TgθZ]A−1

Z 1 + Eθ[∇TgθZ]A−1
Z Eθ[∇gθZ]

)
,

while, on the other hand, a direct computation yields

Eθ
[
∇∇TgξZ

]−1
(
AZ 0
0 0

)
Eθ
[
∇∇TgξZ

]−1

=
(

A−1
Z −A−1

Z Eθ[∇gθZ]
−Eθ[∇TgθZ]A−1

Z Eθ[∇TgθZ]A−1
Z Eθ[∇gθZ]

)
.

The matrix M being the difference between these two quantities, we get the claim of the
lemma.

2.8.3 Proofs of MC-MLE consistency and asymptotic normality

MC-MLE consistency

The following proof is a straightforward adaptation of Wald’s proof of consistency for the
MLE (Wald (1949)). The sketch of proof is mainly inspired from Geyer (2012), which
has the merit of giving a very accessible presentation of this technical proof.

To begin, define the opposite of the Kullback-Leibler divergence:

λ(θ) = Eθ?
[
log fθ(Y )

fθ?(Y )

]
≤ 0.

Since the model is identifiable, λ has a unique maximizer achieved at θ?. It may be
−∞ for some values of θ, but this does not pose problems in the following proof.

For convenience, we choose to analyse the MC-MLE objective function through the
following translational motion (sharing the same maximiser with `IS

n,m):

M IS
n (θ, ν) = 1

n

n∑
i=1

log
{
eνhθ(Yi)
eν?hθ?(Yi)

}
+ 1− eν 1

rn

rn∑
j=1

hθ(Xj)
hψ(Xj)

.

For any ξ ∈ Ξ = Θ× R, the law of large numbers yields M IS
n (ξ) a.s.−→

n→+∞
MIS(ξ) where

MIS(θ, ν) = λ(θ) + ν + log Z(θ)
Z(ψ) + 1− eν Z(θ)

Z(ψ) ≤ 0.
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Note that by constructionMIS also has a unique maximiser at ξ? = (θ?, ν?).
Let η > 0. Define Kη = {ξ ∈ K : d(ξ, ξ?) ≥ η} where K is the compact set defined in

(C2). Under (H3), continuity of the maps θ 7→ hθ(x) and monotone convergence ensure
that for any ξ ∈ Kη,

lim
ε↓0

Eθ?
[

sup
(φ,µ)∈B(ξ,ε)

log eµhφ(Y )
eν?hθ?(Y )

]
= Eθ?

[
log eνhθ(Y )

eν?hθ?(Y )

]
,

while dominated convergence ensures that

lim
ε↓0

Eψ
[

inf
(φ,µ)∈B(ξ,ε)

eµ
hφ(X)
hψ(X)

]
= eν

Z(θ)
Z(ψ) .

Thus for any ξ ∈ Kη and γ > 0, we can always find εξ > 0 such that simultaneously:

Eθ?
[

sup
(φ,µ)∈B(ξ,εξ)

log eµhφ(Y )
eν?hθ?(Y )

]
≤ Eθ?

[
log eνhθ(Y )

eν?hθ?(Y )

]
+ γ

2 ,

and
Eψ

[
inf

(φ,µ)∈B(ξ,εξ)
eµ
hφ(X)
hψ(X)

]
≥ eν

Z(θ)
Z(ψ) −

γ

2 .

The set of open balls {B(ξ, εξ) : ξ ∈ K} form an open cover of Kη from which we can
extract a finite subcover by compactness, i.e. we can build a finite set {ξ1, ..., ξp} ⊂ Kη

such that Kη ⊂
⋃p
k=1B(ξk, εξk). This yields the following inequality:

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p

 1
n

n∑
i=1

sup
(φ,µ)∈B(ξk,εξk )

(
log eµhφ(Yi)

eν?hθ?(Yi)

)

+ 1− 1
rn

rn∑
j=1

inf
(φ,µ)∈B(ξk,εξk )

(
eµ
hφ(Xj)
hψ(Xj)

).
The right hand side converges almost surely as the law of large numbers applies simulta-
neously on a finite set. We can thus bound the upper limit:

lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p

Eθ?
 sup

(φ,µ)∈B(ξk,εξk )

(
log eµhφ(Y )

eν?hθ?(Y )

)
+ 1− Eψ

[
inf

(φ,µ)∈B(ξk,εξk )

(
eµ
hφ(X)
hψ(X)

)],
lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ max

k=1,...,p
MIS(ξk) + γ ≤ sup

ξ∈Kη
MIS(ξ) + γ.

Moreover γ is arbitrary small, thus the inequality still holds when γ is zero:

lim sup
n→+∞

sup
ξ∈Kη

M IS
n (ξ) ≤ sup

ξ∈Kη
MIS(ξ) a.s. (2.23)
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To conclude, let us prove that the right hand side is negative. Indeed, subadditivity of
the supremum yields

sup
ξ∈Kη
MIS(θ, ν) ≤ sup

ξ∈Kη
λ(θ) + sup

ξ∈Kη

(
ν + log Z(θ)

Z(ψ) + 1− eν Z(θ)
Z(ψ)

)

where the second term is non positive by construction. Under (H3), it is easy to check
that λ is upper semi continuous, which implies in particular that λ achieves its maximum
on any compact set. Consequently: sup

ξ∈Kη
MIS(ξ) ≤ sup

ξ∈Kη
λ(θ) < 0.

The last part of the proof is the same as for NCE consistency (see the appendix).

MC-MLE asymptotic normality

For convenience, for any ξ = (θ, ν), we note gξ(x) = ν + log hθ(x).
Let GIS

n (ξ) = ∇ξ`
IS
n,m(ξ) and HIS

n (ξ) = ∇2
ξ`

IS
n,m(ξ). We have

GIS
n (ξ) = 1

n

n∑
i=1
∇ξgξ(Yi)−

1
mn

mn∑
j=1
∇ξgξ(Xj)

exp{gξ(Xj)}
hψ(Xj)

,

HIS
n (ξ) = 1

n

n∑
i=1
∇2
ξgξ(Yi)−

1
mn

mn∑
j=1

{
(∇2

ξ +∇ξ∇T
ξ )gξ(Xj)

}exp{gξ(Xj)}
hψ(Xj)

. (2.24)

We start by proving that, almost surely,

sup
ξ∈B(ξ?,ε)

‖HIS
n (ξ)−H(ξ)‖ →

n→∞
0, (2.25)

where
H(ξ) = Eθ?

[
∇2
ξgξ(Y )

]
− Eψ

[{
(∇2

ξ +∇ξ∇T
ξ )gξ(X)

}exp{gξ(X)}
hψ(X)

]
.

To prove (2.25), split the supremum norm in two and apply Lemma 4 to both empirical
averages in definition (2.24). Both supremum norms are integrable under (H4), this is
proven in the following.

∇2
ξgξ(x) =

(
∇2
θ log hθ(x) 0

0 0

)
∇ξ∇T

ξ gξ(x) =
(
∇θ∇T

θ log hθ(x) ∇θ log hθ(x)
∇T
θ log hθ(x) 1

)

First supremum norm is integrable under (H4), since∫
X

sup
ξ∈B(ξ?,ε)

‖∇2
ξgξ(x)‖hθ?µ(dx) ≤

∫
X

sup
θ∈B(θ?,ε)

‖∇2
θ log hθ(Y )‖ sup

θ∈B(θ?,ε)
hθ(x)µ(dx) < +∞.

For the second one, use the following decomposition:

‖(∇2
ξ +∇ξ∇T

ξ )gξ(x)‖1 = ‖(∇2
θ +∇θ∇T

θ ) log hθ(x)‖1 + 2‖∇θ log hθ(x)‖1 + 1,

‖(∇2
θ +∇θ∇T

θ ) log hθ(x)‖1 ≤ ‖∇2
θ log hθ(x)‖1 + ‖∇θ log hθ(x)‖2

1,
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‖∇θ log hθ(x)‖1 ≤ 1 + ‖∇θ log hθ(x)‖2
1.

This yields a finite upper bound under (H4), since
∫
X

sup
ξ∈B(ξ?,ε)

‖(∇2
ξ +∇ξ∇T

ξ )gξ(x)‖1 exp{gξ(x)}µ(dx) ≤

eν
?+ε

∫
X

sup
θ∈B(θ?,ε)

(
‖∇2

θ log hθ(x)‖1 + 3‖∇θ log hθ(x)‖2
1 + 3

)
sup

θ∈B(θ?,ε)
hθ(x)µ(dx) < +∞.

Note also that, at the point ξ = ξ?, functions H and −J coincide, where

J(ξ) = Eθ
[
∇ξ∇T

ξ gξ(Y )
]

=

 Eθ
[
∇θ∇T

θ log hθ(Y )
]

Eθ
[
∇θ log hθ(Y )

]
Eθ
[
∇T
θ log hθ(Y )

]
1

 .
In particular, the matrix J(ξ?) is definite positive, since Schur’s complement is also the
Fisher Information, definite positive by assumption:

Eθ
[
∇θ∇T

θ gθ(Y )
]
− Eθ

[
∇θgθ(Y )

]
Eθ
[
∇T
θ gθ(Y )

]
= Vθ

(
∇θ log hθ(Y )

)
= I(θ).

Now we establish the weak convergence of the gradient. We have

√
nGIS

n (ξ?) =
√
n

(
1
n

n∑
i=1
∇ξgξ(Yi)− Eθ

[
∇ξgξ(Y )

])
|ξ=ξ?

−
√

n

mn

√
mn

 1
mn

mn∑
j=1
∇ξgξ(Xj)

fθ(Xj)
fψ(Xj)

− Eθ
[
∇ξgξ(Y )

]
|ξ=ξ?

.

Simulations and observations are assumed independent, thus Slutsky’s lemma yields the
following. Second moment conditions hold under (I3).

√
nGIS

n (ξ?) D→ Nd+1

(
0,Σ(ξ?) + τ−1Γ(ξ?)

)
,

where
Σ(ξ) = Vθ

(
∇ξgξ(Y )

)
=
(

I(θ) 0
0 0

)
,

and

Γ(ξ) = Vψ

(
ϕIS
ξ (X)

)
+ 2

+∞∑
i=1

Cov
(
ϕIS
ξ (X0), ϕIS

ξ (Xi)
)
, ϕIS

ξ = (∇ξgξ)
fθ
fψ
.

Finally, Lemma 5 applies:

√
n
(
ξ̂IS
n,m − ξ?

) D→ N(0Rd+1 ,VIS
τ (ξ?)

)
where VIS

τ (ξ) = J(ξ)−1 {Σ(ξ) + τ−1Γ(ξ)}J(ξ)−1.
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2.8.4 Proofs related to exponential families

The following calculations are entirely classical. For the sake of completeness, we present
the few tricks required for proving Propositions 1, 2 and 3.

To begin, define b(x) = sgn(S(x)), the vector composed by the signs of each compo-
nent of S(x). Note that for any θ ∈ Θ, the following supremum is necessarily achieved
on the boundary of the 1-ball, in the direction of the sign vector:

sup
‖φ−θ‖1≤ε

exp
{
φTS(x)

}
= exp

{
(θ + εb(x))TS(x)

}
. (2.26)

Since ‖S(x)‖1 = b(x)TS(x), we have (for the 1-norm for instance):

sup
φ∈B(θ,ε)

(
log hφ(x)

hθ?(x)

)
= (θ − θ?)TS(x) + ε‖S(x)‖ ≤ (‖θ − θ?‖+ ε)‖S(x)‖,

which proves the claim of Proposition 2, since
∫
X

sup
φ∈B(θ,ε)

(
log hφ(x)

hθ?(x)

)
+
hθ?(x)µ(dx) ≤ (‖θ − θ?‖+ ε)

∫
X
‖S(x)‖hθ?(x)µ(dx) < +∞.

For Propositions 1 and 3, use also the fact that ‖S(x)‖1 = b(x)TS(x) and that y ≤ ey

for any y ∈ R. We have

‖S(x)‖2
1 ≤ ε−2 exp

{
2εb(x)TS(x)

}
. (2.27)

Equations (2.26) and (2.27) can be combined as follows:
∫
X

(1 + ‖S(x)‖2) sup
φ∈B(θ,ε)

hφ(x)µ(dx) ≤
∑

b∈{−1,1}d

∫
X

exp
{

(θ + bε)TS(x)
}
µ(dx)

+ ε−2 ∑
b∈{−1,1}d

∫
X

exp
{

(θ + 3bε)TS(x)
}
µ(dx),

and

Eψ

(1 + ‖S(X)‖2) sup
φ∈B(θ,ε)

(
hφ(X)
hψ(X)

)2
 ≤ ∑

b∈{−1,1}d
Eψ


exp

{
(θ + bε)TS(X)

}
hψ(X)

2
+ ε−2 ∑

b∈{−1,1}d
Eψ


exp

{
(θ + 2bε)TS(X)

}
hψ(X)

2 .
Choosing θ = θ̂n in the preceding inequalities yields Proposition 1, while choosing θ = θ?

yields Proposition 3.
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Part II

Quantitative results for high
dimensional sampling
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Chapter 3

On sampling from a log-concave
density using kinetic Langevin
diffusions

Langevin diffusion processes and their discretizations are often used for sampling from
a target density. The most convenient framework for assessing the quality of such a
sampling scheme corresponds to smooth and strongly log-concave densities defined on
Rp. The present work focuses on this framework and studies the behavior of the Monte
Carlo algorithm based on discretizations of the kinetic Langevin diffusion. We first prove
the geometric mixing property of the kinetic Langevin diffusion with a mixing rate that
is optimal in terms of its dependence on the condition number. We then use this result
for obtaining improved guarantees of sampling using the kinetic Langevin Monte Carlo
method, when the quality of sampling is measured by the Wasserstein distance. We
also consider the situation where the Hessian of the log-density of the target distribution
is Lipschitz-continuous. In this case, we introduce a new discretization of the kinetic
Langevin diffusion and prove that this leads to a substantial improvement of the upper
bound on the sampling error measured in Wasserstein distance.

3.1 Introduction

Markov processes and, more particularly, diffusion processes are often used in order to
solve the problem of sampling from a given density π. This problem can be formulated
as follows. Assume that we are able to generate an arbitrary number of independent
standard Gaussian random variables ξ1, . . . , ξK . For a given precision level ε > 0 and
a given metric d on the space of probability measures, the goal is to devise a function
Fε such that the distribution νK of the random variable ϑK = Fε(ξ1, . . . , ξK) satisfies
d(µK , π) ≤ ε. For solving this task, it is often assumed that we can have access to the
evaluations of the probability density function of π as well as its derivatives. Among
different functions Fε having the aforementioned property, the most interesting are those
that require the smallest number of computations.



Markov Chain Monte Carlo methods hinge on random variables ϑK and associated
functions Fε defined by recursion ϑk = Gε(ϑk−1, ξk), k = 1, . . . , K, where Gε is some
function of two arguments. For a given target distribution π, if one succeeds to design a
function Gε such that the Markov process {ϑk; k ∈ N} is ergodic with invariant density π
then, for large K, the distribution of ϑK will be close to π. Therefore, if the evaluation of
Gε involves only simple operations, we get a solution of the task of approximate sampling
from π. Of course, it is important to address the problem of the choice of the number of
iterations K ensuring that the sampling error is smaller than ε. However, it is even more
important to be able to design functions Gε, often referred to as the update rule, with
desired properties presented above.

Discretization of continuous-time Markov processes is a successful generic method
for defining update rules. The idea is to start by specifying a continuous-time Markov
process, {Lt : t ≥ 0}, which is provably positive recurrent and has the target π as
invariant distribution1. The second step is to set-up a suitable time-discretization of the
continuous-time process. More precisely, since {Lt} is a Markov process, for any step-size
h > 0, there is a mapping G such that Lkh D= G(L(k−1)h, ξk), k = 1, . . . , K, where ξk is a
standard Gaussian random variable independent of L(k−1)h. This mapping G might not
be available in a closed form. Therefore, the last step is to approximate G by a tractable
mapping Gε. Langevin diffusions are a class of continuous-time Markov processes for
which the invariant density is available in closed-form. For this reason, they are suitable
candidates for applying the generic approach of the previous paragraph.

Let m and M be two positive constants such that m ≤M . Throughout this work, we
will assume that the target distribution π has a density with respect to the Lebesgue mea-
sure on Rp, which is of the form π(θ) = Ce−f(θ) for a function f that is m-strongly convex
and with an M -Lipschitz gradient. The (highly overdamped) Langevin diffusion having
π as invariant distribution is defined as a strong solution to the stochastic differential
equation

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0, (3.1)

where W is a p-dimensional standard Brownian motion. The update rule associated
to this process, obtained by using the Euler discretization, is given by the equation
Gε(L(k−1)h, ξk) = −h∇f(L(k−1)h) +

√
2h ξk with ξk

D= h−1/2(W kh −W (k−1)h) being a
p-dimension standard Gaussian vector. The resulting approximate sampling method is
often called Langevin Monte Carlo (LMC) or Unadjusted Langevin Algorithm (ULA).
Its update rule follows from (3.1) by replacing the function t 7→ ∇f(Lt) by its piecewise
constant approximation. Therefore, the behavior of the LMC is governed by the following
two characteristics of the continuous-time process: the mixing rate and the smoothness
of the sample paths. A quantitative bound on the mixing rate allows us to choose a time
horizon T such that the distribution of the random vector LT is within a distance ε/2
of the target distribution, whereas the smoothness of sample paths helps us to design
a step-size h so that the distribution of the discretized process at K = T/h is within
a distance ε/2 of the distribution of LT . For the LMC, we know that the Langevin

1More generally, one can consider a Markov process having an invariant distribution that is close to
π.
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diffusion mixes exponentially fast with the precise rate e−mt. In addition, almost all
sample paths of L are Hölder continuous of degree α, for every α < 1/2. Combining these
properties, it has been shown that it suffices Kε = O((p/ε2) log(p/ε2)) iterations for the
LMC algorithm to achieve an error smaller than ε (both in total-variation andWasserstein
distances); see (Dalalyan, 2017b) for the first nonasymptotic result of this type and
(Durmus and Moulines, 2016; Durmus and Moulines, 2017; Dalalyan and Karagulyan,
2019) for improved versions of it.

Under the same assumptions on the log-target f , one can consider the kinetic Langevin
diffusion, also known as the second-order Langevin process, defined by

d

[
V t

Lt

]
=
[
−(γV t + u∇f(Lt))

V t

]
dt+

√
2γu

[
Ip

0p×p

]
dW t, t ≥ 0, (3.2)

where γ > 0 is the friction coefficient and u > 0 is the inverse mass. As proved in (Nelson,
1967, Theorem 10.1), the highly overdamped Langevin diffusion (3.1) is obtained as a
limit of the rescaled kinetic diffusion L̄t = Lγt, where L is defined as in (3.2) with u = 1,
when the friction coefficient γ tends to infinity.

The continuous-time Markov process (Lt,V t) is positive recurrent and its invariant
distribution is absolutely continuous with respect to the Lebesgue measure on R2p. The
corresponding invariant density is given by

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2u‖v‖
2
2

}
, θ ∈ Rp, v ∈ Rp.

This means that under the invariant distribution, the components L and V are indepen-
dent, L is distributed according to the target π, whereas V /

√
u is a standard Gaussian

vector. Therefore, one can use this process for solving the problem of sampling from π.
As discussed above, the quality of the resulting sampler will depend on two key properties
of the process: rate of mixing and smoothness of sample paths. The rate of mixing of
kinetic diffusions has been recently studied by Eberle et al. (2017) under conditions that
are more general than strong convexity of f . In strongly convex case, a more tractable re-
sult has been obtained by Cheng et al. (2018). It establishes that for γ = 2 and u = 1/M ,
the mixing rate in the Wasserstein distance is e−(m/2M)t; see Theorem 5 in (Cheng et al.,
2018). On the other hand, sample paths of the process {L} defined in (3.2) are smooth
of order 1 + α, for every α ∈ [0, 1/2[. Combining these two properties, (Cheng et al.,
2018) prove that a suitable discretization of (3.2) leads to a sampler that achieves an
error smaller than ε in a number of iterations K satisfying K = O((p/ε2)1/2 log(p/ε)).

It follows from the discussion of previous paragraphs that the kinetic LMC based
on (3.2) converges faster than the standard LMC based on (3.1). Furthermore, this
improved rate of convergence is mainly due to the higher smoothness of sample paths of
the underlying Markov process. The main purpose of the present work is to pursue the
investigation of the kinetic Langevin Monte Carlo (KLMC) initiated in (Cheng et al.,
2018) by addressing the following questions:
Q1. What is the rate of mixing of the continuous-time kinetic Langevin diffusion for

general values of the parameters u and γ?
Q2. Is it possible to improve the rate of convergence of the KLMC by optimizing it over

the choice of u, γ and the step-size ?
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Q3. If the function f happens to have a Lipschitz-continuous Hessian, is it possible to
devise a discretization that takes advantage of this additional smoothness and leads
to improved rates of convergence?

The rest of the paper is devoted to answering these questions. The rate of mixing for
the continuous-time process is discussed in Section 3.2. In a nutshell, we show that if
γ ≥

√
(M +m)u, then the rate of mixing is of order e−(um/γ)t. Non-asymptotic guarantees

for the KLMC algorithm are stated and discussed in Section 3.3. They are in the same
spirit as those established in (Cheng et al., 2018), but have an improved dependence on
the condition number, the ratio of the Lipschitz constant M and the strong convexity
constant m. Our result has also improved constants and is much less sensitive to the
choice of the initial distribution. These improvements are achieved thanks to a more
careful analysis of the discretization error of the Langevin process. Finally, we present
in Section 3.4 a new discretization, termed second-order KLMC, of the kinetic Langevin
diffusion that exploits the knowledge of the Hessian of f . Its error, measured in the
Wasserstein distance W2 is shown to be bounded by ε for a number of iterations that
scales as (p/ε)1/2. Thus, we get an improvement of order (1/ε)1/2 over the first-order
KLMC algorithm.

3.2 Mixing rate of the kinetic Langevin diffusion

Let us denote by PL
t the transition probability at time t of the kinetic diffusion L defined

by (3.2). This means that PL
t is a Markov kernel given by PL

t ((x,v), B) = P(Lt ∈
B|V 0 = v,L0 = x), for every v,x ∈ Rp and any Borel set B ⊂ Rp. For any probability
distribution µ on Rp×Rp, we denote µPL

t the (unconditional) distribution of the random
variable Lt when the starting distribution of the process (V ,L) is µ (i.e., when (V ,L0) ∼
µ).

Since the process (V ,L) is ergodic, whatever the initial distribution, for large values
of t the distribution of Lt is close to the invariant distribution. We want to quantify
how fast does this convergence occur. Furthermore, we are interested in a nonasymptotic
result in the Wasserstein-Kantorovich distance W2, valid for a large set of possible values
(γ, u).

A first observation is that, without loss of generality, we can focus our attention to
the case u = 1. This is made formal in the next lemma.

Lemma 1. Let (V ,L) be the kinetic Langevin diffusion defined by (3.2). The modi-
fied process (V̄ t, L̄t) = (u−1/2V t/

√
u,Lt/√u) is an kinetic Langevin diffusion as well with

associated parameters γ̄ = γ/
√
u and ū = 1.

The proof of this result is straightforward and therefore is omitted. Note that it shows
that the parameter u merely represents a time scale (the speed of running over the path
of the process L). Therefore, in the rest of this paper, we will consider the parameter u
to be equal to 1.

Theorem 1. Assume that the function f is twice differentiable with a Hessian matrix ∇2f
satisfying mIp � ∇2f(x) �MIp for every x ∈ Rp. Let µ1, µ2 and µ′2 be three probability
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measures on Rp. Let us define the product measures µ = µ1 ⊗ µ2 and µ′ = µ1 ⊗ µ′2. For
every γ, t > 0, there exist numbers α ≤

√
2/γ and β ≥ {m ∧ (γ2 −M)}/γ such that

W2(µPL
t , µ

′PL
t ) ≤ αe−β tW2(µ, µ′). (3.3)

More precisely, for every v ∈ [0, γ/2[, we have2

W2(µPL
t , µ

′PL
t ) ≤

√
2((γ − v)2 + v2)

γ − 2v exp
{

(v2 −m) ∨ (M − (γ − v)2)
γ − 2v t

}
W2(µ, µ′).

(3.4)

The proof of this result is postponed to Section 3.7. Here, we will discuss some
consequences of it and present the main ingredient of the proof. First of all, note that
this result implies that for γ2 > 2∨M , the operator PL

t is a contraction. The rate of this
contraction is characterized by the parameter β. If we optimize the exponent in (3.4)
with respect to v, we get the optimal rates of contraction reported in Table 3.1.

If we consider the case γ = 2
√
Mu = 2

√
M previously studied in (Cheng et al., 2018),

then the best rate of contraction provided by (3.4) corresponds to v =
√
M −

√
M −m,

and the upper bound of Theorem 1 reads as

W2(µPL
t , µ

′PL
t ) ≤

(
2M −m
M −m

)1/2

exp
{
−
(√

M −
√
M −m

)
t
}
W2(µ, µ′). (3.5)

One can check that the constant
√
M −

√
M −m that we obtain within the exponential

is optimal, in the sense that one gets exactly this constant in the case where f is the
bivariate quadratic function f(x1, x2) = (m/2)x2

1 + (M/2)x2
2. This constant is slightly

better than the one obtained in (Cheng et al., 2018, Lemma 8) for the particular choice of
the time scale u = 1/M . Indeed, if we rewrite the two results in the common time-scale
u = 1, (Cheng et al., 2018, Lemma 8) provides the contraction rate β = m/(2

√
M),

which is smaller than (but asymptotically equivalent to)
√
M −

√
M −m.

Another relevant consequence is obtained by instantiating (3.3) to the case γ ≥√
M +m. This leads to the bound

γ ≥
√
M +m =⇒ W2(µPL

t , µ
′PL

t ) ≤
√

2 exp
{
− (m/γ) t

}
W2(µ, µ′). (3.6)

This result is interesting since it allows to optimize the argument of the exponent with
respect to γ for fixed t. The corresponding optimized constant is m/

√
M +m, which

improves on the constant obtained in (3.5) for γ = 2
√
M . When M/m becomes large,

the improvement factor gets close to 2.
We now describe the main steps of the proof of Theorem 1. The main idea is to

consider along with the process (V ,L), another process (V ′,L′) that satisfies the same
SDE (3.2) as (V ,L), with the same Brownian motion but with different initial conditions.
One easily checks that

d

[
V t − V ′t
Lt −L′t

]
=
[
−(γ(V t − V ′t) +∇f(Lt)−∇f(L′t))

V t − V ′t

]
dt t ≥ 0. (3.7)

2One can observe that (3.3) can be deduced from (3.4) by taking v = 0.

81



γ2 ∈ ]0,M ] ]M,m+M ] [m+M, 3m+M [ [3m+M,+∞[

rate of contraction, β NA γ2 −M
γ

γ

2 −
M −m

2
√

2(m+M)− γ2

γ −
√
γ2 − 4m
2

Obtained by Thm. 1 with - v = 0 v = γ−
√

2(m+M)−γ2

2 v = γ−
√
γ2−4m
2

Table 3.1: The rates of contraction of the distribution of the kinetic Langevin diffusion
Lt for u = 1 and varying γ. The reported values are obtained by optimizing the bound in
Theorem 1 with respect to v. In the overdamped case γ2 ≥ 3m + M , the obtained rates
coincide with those that can be directly computed for quadratic functions f and, therefore,
are optimal.

Using the mean value theorem, we infer that for a suitable symmetric matrix Ht, we
have ∇f(Lt)−∇f(L′t) = Ht(Lt −L′t). Furthermore, Ht being the Hessian of a strongly
convex function satisfies Ht � mIp. Then, (3.7) can be rewritten as

d

dt

[
V t − V ′t
Lt −L′t

]
=
[
−γIp −Ht

Ip 0p×p

] [
V t − V ′t
Lt −L′t

]
t ≥ 0. (3.8)

In a small neighborhood of any fixed time instance t0, (3.8) is close to a linear differential
equation with the associated matrix

M(t0) =
[
−γIp −Ht0

Ip 0p×p

]
.

It is well-known that the solution of such a differential equation will tend to zero if and
only if the real parts of all the eigenvalues of M(t0) are negative. The matrix M(t0) is
not symmetric; it is in most cases diagonalizable but its eigenvectors generally depend
on t0. To circumvent this difficulty, we determine the transformations diagonalizing the
surrogate matrix

M =
[
−γIp −v2Ip

Ip 0p×p

]
, for some v ∈ [0, γ/2[.

This yields an invertible matrix P such that P−1MP is diagonal. We can thus rewrite
(3.8) in the form

d

dt
P−1

[
V t − V ′t
Lt −L′t

]
= {P−1M(t)P}P−1

[
V t − V ′t
Lt −L′t

]
t ≥ 0. (3.9)

Interestingly, we prove that the quadratic form associated with the matrix P−1M(t)P is
negative definite and this provides the desired result. Furthermore, we use this same ma-
trix P for analyzing the discretized version of the kinetic Langevin diffusion and proving
the main result of the next section.
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3.3 Error bound for the KLMC in Wasserstein dis-
tance

Let us start this section by recalling the KLMC algorithm, the sampler derived from a
suitable time-discretization of the kinetic diffusion, introduced by Cheng et al. (2018). Let
us define the sequence of functions ψk by ψ0(t) = e−γt and ψk+1(t) =

∫ t
0 ψk(s) ds. Recall

that f is assumed twice differentiable and, without loss of generality, the parameter u is
assumed to be equal to one. The discretization involves a step-size h > 0 and is defined
by the following recursion:

[
vk+1

ϑk+1

]
=
[

ψ0(h)vk − ψ1(h)∇f(ϑk)
ϑk + ψ1(h)vk − ψ2(h)∇f(ϑk)

]
+
√

2γ
[
ξk+1

ξ′k+1

]
, (3.10)

where (ξk+1, ξ
′
k+1) is a 2p-dimensional centered Gaussian vector satisfying the following

conditions:
• (ξj, ξ′j)’s are iid and independent of the initial condition (v0,ϑ0),

• for any fixed j, the random vectors
(
(ξj)1, (ξ′j)1

)
,
(
(ξj)2, (ξ′j)2

)
, . . .,

(
(ξj)p, (ξ′j)p

)
are iid with the covariance matrix

C =
∫ h

0
[ψ0(t) ψ1(t)]>[ψ0(t) ψ1(t)] dt.

This recursion may appear surprising, but one can check that it is obtained by first
replacing in (3.2), on each time interval t ∈ [kh, (k + 1)h], the gradient ∇f(Lt) by
∇f(Lkh), by renaming (V kh,Lkh) into (vk,ϑk) and by explicitly solving the obtained
linear SDE (which leads to an Ornstein-Uhlenbeck process). To the best of our knowledge,
the algorithm (3.10), that we will refer to as KLMC, has been first proposed by Cheng
et al. (2018). The next result characterizes its approximation properties.

Theorem 2. Assume that the function f is twice differentiable with a Hessian matrix ∇2f
satisfying mIp � ∇2f(x) � MIp for every x ∈ Rp. In addition, let the initial condition
of the KLMC algorithm be drawn from the product distribution µ = N (0p, Ip) ⊗ ν0. For
every γ ≥

√
m+M and h ≤ m/(4γM), the distribution νk of the kth iterate ϑk of the

KLMC algorithm (3.10) satisfies

W2(νk, π) ≤
√

2
(

1− 0.75mh
γ

)k
W2(ν0, π) + Mh

√
2p

m
.

The proof of this theorem, postponed to Section 3.8, is inspired by the proof in (Cheng
et al., 2018), but with a better control of the discretization error. This allows us to achieve
the following improvements as compared to aforementioned paper:

• The second term in the upper bound provided by Theorem 2 scales linearly as a
function of the condition number κ , M/m, whereas the corresponding term in
(Cheng et al., 2018) scales as κ3/2.

83



• The impact of the initial distribution ν0 on the overall error of sampling appears
only in the first term, which is multiplied by a sequence that has an exponential
decay in k. As a consequence, if we denote by K the number of iterations sufficient
for the error to be smaller than a prescribed level ε, our result leads to an expression
of K in which W2(ν0, π) is within a logarithm. Recall that the expression of K in
(Cheng et al., 2018, Theorem 1) scales linearly in W2(ν0, π).
• The numerical constants of Theorem 2 are much smaller than those of the corre-

sponding result in (Cheng et al., 2018).

In order to ease the comparison of our result to (Cheng et al., 2018, Theorem 1), let
us apply Theorem 2 to

h = m

4M
√
m+M

∧ 0.94ε
κ
√

2p (3.11)

and γ =
√
m+M , which corresponds to the tightest upper bound furnished by our

theorem. Note that in (Cheng et al., 2018) it is implicitly assumed that p/ε2 is large
enough so that the second term in the minimum appearing in (3.11) is smaller than the
first term. From (3.11) we obtain that3

KKLMC ≥
√
m+M

0.75m

(
4M
√
m+M

m

∨ κ
√

2p
0.94ε

)
log

(
24W2(ν0, π)

ε

)
(3.12)

iterations are sufficient for having W2(νK , π) ≤ ε. After some simplifications, we get

KKLMC ≥ 3κ3/2
{

(16κ)
∨ p

mε2

}1/2
log

(
24W2(ν0, π)

ε

)
(3.13)

Remind that the corresponding result in Cheng et al. (2018) requires K to satisfy4

K ≥ 52κ2
{

p

mε2

}1/2
log

(
24W2(ν0, π)

ε

)
.

Thus, the improvement in terms of the number of iterations we obtain is at least by a
factor 17

√
κ, whenever κ ≤ p/(16mε2).

It is also helpful to compare the obtained result (3.13) to the analogous result for the
highly overdamped Langevin diffusion (Durmus and Moulines, 2016). Using (Durmus
et al., 2018, Eq. (22)), one can check that this is enough to choose an integer

KLMC ≥ 2κ
{

1
∨ 2.18p

mε2

}
log

(
24W2(ν0, π)

ε

)
, (3.14)

such that KLMC iterations of the LMC algorithm are sufficient to arrive at an error
bounded by ε. Comparing (3.13) and (3.14), we see that the KLMC is preferable to the

3This value of K is obtained by choosing h and K so that the second term in the upper bound of
Theorem 2 is equal to (1−

√
2/24)ε whereas the first term is smaller than (

√
2/24)ε.

4This lower bound on K is obtained by replacing D2 , ‖θ0 − θ∗‖2 by 0 in (Cheng et al., 2018,
Theorem 1).
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Figure 3.1: This plot represents in the plane defined by coordinates (
√
p/mε2,κ) the

regions where LMC leads to smaller error than the KLMC (in gray). Please note that the
axes are in logarithmic scale.

LMC when p/(mε2) is large as compared to the condition number κ. This is typically
the case when the dimensionality is high or a high precision approximation is required.
The order of preference is reversed when the condition number κ is large as compared
to p/(mε2). Such a situation corresponds to settings where the target log-density f is
nearly flat (m is small) or has a gradient that may increase very fast (M is large). As
an important conclusion, we can note that none of these two methods is superior to the
other in general. The plot in Figure 3.1 illustrates this fact by showing in gray the regions
where LMC outperforms KLMC.

3.4 Second-order KLMC and a bound on its error

In this section, we propose another discretization of the kinetic Langevin process, which
is applicable when the function f is twice differentiable. We show below that this new
discretization leads to a provably better sampling error under the condition that the
Hessian matrix of f is Lipschitz-continuous with respect to the spectral norm. At any
iteration k ∈ N, we define Hk = ∇2f(ϑk) and

[
vk+1

ϑk+1

]
=
[

ψ0(h)vk − ψ1(h)∇f(ϑk)− ϕ2(h)Hkvk

ϑk + ψ1(h)vk − ψ2(h)∇f(ϑk)− ϕ3(h)Hkvk

]
+
√

2γ
ξ(1)

k+1 −Hkξ
(3)
k+1

ξ
(2)
k+1 −Hkξ

(4)
k+1

 ,
(3.15)

where

• ψ0, ψ1, ψ2 are defined as in the beginning of the previous section,

• ϕk+1(t) =
∫ t

0 e
−γ(t−s)ψk(s) ds for every t > 0,

• the 4p dimensional random vectors (ξ(1)
k+1, ξ

(2)
k+1, ξ

(3)
k+1, ξ

(4)
k+1) are iid Gaussian with

zero mean,
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• for any fixed j, the 4-dimensional random vectors
(
[(ξ(1)

j )1, (ξ(2)
j )1, (ξ(3)

j )1, (ξ(4)
j )1],

. . .,
[(ξ(1)

j )p, (ξ(2)
j )p, (ξ(3)

j )p, (ξ(4)
j )p]

)
are iid with the covariance matrix

C̄ =
∫ h

0
[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)]>[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)] dt.

This definition is somewhat complicated, but it follows from an application of the second-
order Taylor approximation to the drift term of the kinetic Langevin diffusion5. At this
stage, one can note that if the Hessian Hk is zero, then the update rule (3.15) boils down
to the update rule of the KLMC algorithm in (3.10). Iterating the update rule (3.15)
we get a random variable that will be henceforth called KLMC2 or second-order kinetic
Langevin Monte-Carlo algorithm.

Theorem 3. Assume that, for some constantsm,M,M2 > 0, the function f ism-strongly
convex, its gradient is M-Lipschitz, and its Hessian is M2-Lipschitz for the spectral norm.
In addition, let the initial condition of the second-order KLMC algorithm be drawn from
the product distribution µ = N (0p, Ip)⊗ ν0. For every

γ ≥
√
m+M and h ≤ m

5γM ∧
m

4
√

5pM2
,

the distribution νKLMC2
k of the kth iterate ϑKLMC2

k of the second-order KLMC algorithm
(3.15) satisfies6

W2(νKLMC2
k , π) ≤

√
2
(

1− mh

4γ

)k
W2(ν0, π) + 2h2M2p

m
+ h2M

√
2Mp

m
+ 8M

m
he−p/2.

Several important consequences can be drawn from this result. First, the value of the
parameter γ minimizing the right hand side is its smallest possible value γ =

√
m+M .

Second, one can note that the last term of the obtained upper bound is independent of
dimension p and decreases exponentially fast in 1/h. This term is in most cases negligible
with respect to the other terms involved in the upper bound. In particular, we deduce
from this result that if the Lipschitz constants M and M2 are bounded and the strong
convexity constant m is bounded away from zero, then the KLMC2 algorithm achieves
the precision level ε after Kε iterations, with Kε being of order

√
p/ε, up to a logarithmic

factor. Finally, if we neglect the last term in the upper bound of Theorem 3, and choose
the parameters h and k so that the other terms are equal to ε/

√
4m, we get that the

number of iteration Kε to achieve an error ε/
√
m scales, up to a logarithmic factor, as√

M/(mhε) = √pκ2
2 +

√
p/εκ5/4

2 , where κ2 = (M2/3
2 + Mp−1/3)/m is a version of the

condition number taking into account the Hessian-Lipschitz assumption.
It is interesting to compare this result to the convergence result for the LMCO algo-

rithm established in (Dalalyan and Karagulyan, 2019). We can note that the number of
5For more detailed explanations, see Section 3.9.1
6One can see from the proof that e−p/2 in this inequality can be replaced by the smaller quantity

e
− m2

160M2
2 h2 .
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iterations that are sufficient for the KLMC2 to achieve the error ε is much smaller than
the corresponding number for the LMCO:

√
p/ε versus p/ε. In addition, the KLMC2

algorithm does not need to compute matrix exponentials neither to do matrix inversion.
The most costly operations are that of computing the products of the p× p Hessian and
the vectors vk, ξ3

k+1 and ξ3
k+1. In most cases, the complexity of these computations scales

linearly in p.
As a conclusion, to the best of our knowledge, the second-order KLMC algorithm

provides the best known convergence rate
√
p/ε for a target density π having a log-

density that is concave and Hessian-Lipschitz.

3.5 Related work

The idea of using the Langevin diffusion (see (Pavliotis, 2014) for an introduction to
this topic) for approximating a random variable drawn from its invariant distribution
is quite old and can be traced back at least to (Roberts and Tweedie, 1996). Since
then, many papers focused on analyzing the asymptotic behavior of the Langevin-based
methods under various assumptions, see (Lamberton and Pagès, 2003, 2002; Stramer
and Tweedie, 1999a,b; Douc et al., 2004; Pillai et al., 2012; Xifara et al., 2014; Roberts
and Stramer, 2002; Roberts and Rosenthal, 1998; Bou-Rabee and Hairer, 2013) and the
references therein. Convergence to the invariant distribution for Langevin processes is
studied in (Desvillettes and Villani, 2001; Helffer and Nier, 2005; Dolbeault et al., 2015).

Non-asymptotic and computable bounds on the convergence to equilibrium of the
kinetic Langevin diffusion have been recently obtained in (Eberle et al., 2017; Cheng
et al., 2018; Cheng et al., 2018). While (Cheng et al., 2018) considers only the convex
case, (Eberle et al., 2017; Cheng et al., 2018) deal also with nonconvexity. On the one
hand, (Cheng et al., 2018) provide results only for a fixed value of parameters (γ, u) =
(2, 1/M). On the other hand, if we instantiate results of (Eberle et al., 2017) to the case
of convex functions f , convergence to the invariant density is proved under the condition
γ2 ≥ 30Mu. This is to be compared to the conditions of Theorem 1 that establishes
exponential convergence as soon as γ2 > Mu.

Nonasymptotic bounds on the precision of the Langevin Monte Carlo under strong
convexity have been established in (Dalalyan, 2017b) and then extended and refined in
a series of papers (Durmus and Moulines, 2016; Bubeck, 2015; Dalalyan, 2017a; Cheng
and Bartlett, 2018; Durmus and Moulines, 2017; Brosse et al., 2017; Durmus et al.,
2018; Luu et al., 2017; Bernton, 2018). Very recently, it was proved in (Dwivedi et al.,
2018) that applying a Metropolis-Hastings correction to the LMC leads to improved
dependence on the target precision ε of the number of gradient evaluations. The fact
that the discretized version of the kinetic Langevin diffusion may outperform its highly
overdamped counterpart was observed and quantified in (Cheng et al., 2018).

Previous work has also studied the precision of Langevin algorithms in the case when
the gradient evaluations are contaminated by some noise (Dalalyan, 2017a; Dalalyan and
Karagulyan, 2019; Cheng et al., 2018; Baker et al., 2018; Chatterji et al., 2018) and the
relation with stochastic optimization (Raginsky et al., 2017; Zhang et al., 2017; Xu et al.,
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2017; Dieuleveut et al., 2017). There are certainly many other papers related to the
present work that are not mentioned in this section. There is a vast literature on this
topic and it will be impossible to quote all the papers. We believe that the papers cited
here and the references therein provide a good overview of the state of the art.

3.6 Conclusion

In order to summarize the content of the previous sections, let us return, on by one,
to the questions raised in the introduction. First, concerning the mixing properties of
the kinetic Langevin diffusion for general values of u and γ, we have established that
as soon as γ2 > Mu, the process mixes exponentially fast with a rate at least equal to
{mu ∧ (γ2 −Mu)}/γ. Therefore, for fixed values of m, M and u, the nearly fastest rate
of mixing is obtained for γ2 = (m+M)u and is equal to m/

√
m+M .

To answer the second question, we have seen that optimization with respect to γ and
u leads to improved constants but does not improve the rate. Indeed, if we use the values
of γ and u used in (Cheng et al., 2018) (that is γ = 2 and u = 1/M , which in view of
Lemma 1 are equivalent to γ = 2

√
M and u = 1) lead to a bound on the number of

iterates sufficient to achieve a precision ε that is of the same order as the optimized one
given in (3.12). Interestingly, our analysis revealed that not only the numerical constants
of the result in (Cheng et al., 2018) can be improved, but also the dependence on the
condition number κ = M/m can be made better. Indeed, we have managed to replace
the factor κ2 by κ3/2. Such an improvement might have important consequences in
generalizing the results to the case of a convex function which is not strongly convex.
This line of research will be explored in a future work. Our bound exhibits also a better
dependence on the error of the first step: it is logarithmic in our result while it was linear
in (Cheng et al., 2018).

Finally, we have given an affirmative answer to the third question. We have shown that
leveraging second-order information may reduce the number of steps of the algorithm by a
factor proportional to 1/

√
ε, where ε is the target precision. In order to better situate this

improvement in the context of prior work, the table below reports the order of magnitude
of the number of steps7 of Langevin related algorithms in the strongly convex case:

1st-order LMC 1st-order KLMC 2nd-order KLMC
(Durmus and Moulines, 2016) (Cheng et al., 2018) Theorem 3

(Dalalyan and Karagulyan, 2019) and Theorem 2

p/ε
√
p/ε

√
p/ε

7To ease the comparison, we consider κ as a fixed constant and do not report the dependence on κ
in this table.
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3.7 Proof of the mixing rate

This section is devoted to proofs of the results stated in Section 3.2. Let L0,L
′
0 and V 0

be three p-dimensional random vectors defined on the same probability space such that
• V 0 is independent of (L0,L

′
0),

• V 0 ∼ µ1, whereas L0 ∼ µ2 and L′0 ∼ µ′2,
• W 2

2 (µ2, µ
′
2) = E[‖L0 −L′0‖2

2].
Let W be a Brownian motion on the same probability space. We define (V ,L) and

(V ′,L′) as kinetic Langevin diffusion processes driven by the same Brownian motionW
and satisfying the initial condition V ′0 = V 0. From the definition of the Wasserstein
distance, it follows that

W 2
2 (µPL

t , µ
′PL

t ) ≤ E[‖Lt −L′t‖2
2].

In view of this inequality, it suffices to find an appropriate upper bound on the right hand
side of the last display, in order to prove Theorem 1. This upper bound is provided below
in Proposition 1.
Proposition 1. Let V 0,L0 and L′0 be random vectors in Rp. Let (V t,Lt) and (V ′t,L′t)
be kinetic Langevin diffusions driven by the same Brownian motion and starting from
(V 0,L0) and (V 0,L

′
0), respectively. Let v be an arbitrary real number from [0, γ/2). We

have

‖Lt −L′t‖2 ≤

√
2((γ − v)2 + v2)

γ − 2v exp
{

(v2 −m) ∨ (M − (γ − v)2)
γ − 2v t

}
‖L0 −L′0‖2, ∀t ≥ 0.

Remark 1. As a consequence, we can see that for γ2 ≥ 2(M +m) by setting

v = γ −
√
γ2 − 4m
2 ≥ m

γ
.

we arrive at

‖Lt −L′t‖2 ≤
(

2γ2 − 4m
γ2 − 4m

)1/2

e−vt ‖L0 −L′0‖2, ∀t ≥ 0.

Proof. We will use the following short hand notations ψt , (V t + λ+Lt)− (V ′t + λ+L
′
t)

and zt , (−V t−λ−Lt)+V ′t+λ−L′t, where λ+ and λ− are two positive numbers such that
λ+ + λ− = γ and λ+ > λ−. First note that using Taylor’s theorem with the remainder
term in integral form, we get

∇f(Lt)−∇f(L′t) = Ht(Lt −L′t)
with Ht ,

∫ 1
0 ∇2f(Lt − x(Lt −L′t))dx. In view of this formula and the fact that (V ,L)

and (V ′,L′) satisfy the SDE (3.2), we obtain
d

dt
ψt = −γ(V t − V ′t)− (∇f(Lt)−∇f(L′t)) + λ+(V t − V ′t)

= (λ+ − γ)(λ−ψt + λ+zt)
λ− − λ+

− Ht(ψt + zt)
λ+ − λ−

= (λ2
−I−Ht)ψt + (λ−λ+I−Ht)zt

λ+ − λ−
.
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In the above inequalities, we have used that λ+ − γ = −λ−. Similar computations yield

d

dt
zt = γ(V t − V ′t) + (∇f(Lt)−∇f(L′t))− λ−(V t − V ′t)

= (γ − λ−)(λ−ψt + λ+zt)
λ− − λ+

+ Ht(ψt + zt)
λ+ − λ−

= (Ht − λ−λ+I)ψt + (Ht − λ2
+I)zt

λ+ − λ−
.

From these equations, we deduce that

d

dt

∥∥∥∥∥
[
ψt
zt

]∥∥∥∥∥
2

2
= 2ψ>t

dψt
dt

+ 2z>t
dzt
dt

= 2
λ+ − λ−

{
ψ>t (λ2

−I−Ht)ψt + z>t (Ht − λ2
+I)zt

}
≤ 2
λ+ − λ−

{
(λ2
− −m)‖ψt‖2

2 + (M − λ2
+)‖zt‖2

2

}

≤
2{(λ2

− −m) ∨ (M − λ2
+)}

λ+ − λ−

∥∥∥∥∥
[
ψt
zt

]∥∥∥∥∥
2

2
.

An application of Gronwall’s inequality yields∥∥∥∥∥
[
ψt
zt

]∥∥∥∥∥
2
≤ exp

{
(λ2
− −m) ∨ (M − λ2

+)
λ+ − λ−

t

}∥∥∥∥∥
[
ψ0
z0

]∥∥∥∥∥
2
, ∀t ≥ 0.

Since V 0 = V ′0 and Lt −L′t = (ψt + zt)/(λ+ − λ−), we get

‖Lt −L′t‖2 ≤
√

2
λ+ − λ−

∥∥∥∥∥
[
ψt
zt

]∥∥∥∥∥
2

≤

√
2(λ2

+ + λ2
−)

λ+ − λ−
exp

{
(λ2
− −m) ∨ (M − λ2

+)
λ+ − λ−

t

}
‖L0 −L′0‖2, ∀t ≥ 0,

and the claim of the proposition follows.

3.8 Proof of the convergence of the first-order KLMC

This section contains the complete proof of Theorem 2. We first write

W2(νk, π) = W2(νk, µ∗PL
kh), (3.16)

where µ∗ = N (0p, Ip)⊗ π and µ∗PL
kh is the distribution8 of the kinetic Langevin process

L at time instant kh when the initial condition of this process is drawn from µ∗. In
order to upper bound the term in the right hand side of the last display, we introduce

8In other words, µ∗PL
kh is the first marginal of the distribution µ∗P(L,V )

kh , the last notation being
standard in the theory of Markov processes.
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the discretized version of the kinetic Langevin diffusion: (Ṽ 0, L̃0) ∼ µ and for every
j = 0, 1, . . . , k and for every t ∈]jh, (j + 1)h],

Ṽ t = Ṽ jhe
−γ(t−jh) −

∫ t

jh
e−γ(t−s)ds∇f(L̃jh) +

√
2γ
∫ t

jh
e−γ(t−s) dW jh+s

L̃t = L̃jh +
∫ t

jh
Ṽ jh+s ds. (3.17)

We stress thatW in the above formula is the same Brownian motion as the one used for
defining the process (V ,L). Furthermore, we choose Ṽ 0 = V 0 and (L0, L̃0) so that

W 2
2 (ν0, π) = E[‖L0 − L̃0‖2

2]. (3.18)

The process (Ṽ , L̃) realizes the synchronous coupling between the sequences {(vj,ϑj); j =
0, . . . , k} and {(V jh,Ljh); j = 0, . . . , k}. Indeed, one easily checks by mathematical in-
duction that (Ṽ jh, L̃jh) has exactly the same distribution as the vector (vj,ϑj). There-
fore, we have

W2(νk, µ∗PL
kh) ≤

(
E[‖L̃kh −Lkh‖2

2]
)1/2
, ‖L̃kh −Lkh‖L2 .

Let P be the matrix used in the proof of the contraction in continuous time for v = 0,
that is

P = 1
γ

[
0p×p −γIp
Ip Ip

]
, P−1 =

[
Ip γIp
−Ip 0p×p

]
.

We will now evaluate the sequence

Ak ,

∥∥∥∥∥∥P−1
[
Ṽ kh − V kh

L̃kh −Lkh

] ∥∥∥∥∥∥
L2

.

The rest of the proof, devoted to upper bounding the last L2-norm, is done by mathemat-
ical induction. On each time interval [jh, (j+1)h], we introduce an auxiliary continuous-
time kinetic Langevin process (V ′,L′) such that (V ′jh,L′jh) = (Ṽ jh, L̃jh) and

d

[
V ′t
L′t

]
=
[
−(γV ′t +∇f(L′t))

V ′t

]
dt+

√
2γu

[
Ip

0p×p

]
dW t, t ∈ [jh, (j + 1)h]. (3.19)

By the triangle inequality, we have

Aj+1 ≤

∥∥∥∥∥∥P−1
[
Ṽ (j+1)h − V ′(j+1)h
L̃(j+1)h −L′(j+1)h

] ∥∥∥∥∥∥
L2

+

∥∥∥∥∥∥P−1
[
V ′(j+1)h − V (j+1)h
L′(j+1)h −L(j+1)h

] ∥∥∥∥∥∥
L2

≤

∥∥∥∥∥∥P−1
[
Ṽ (j+1)h − V ′(j+1)h
L̃(j+1)h −L′(j+1)h

] ∥∥∥∥∥∥
L2

+ e−mh/γAj, (3.20)

where in the last inequality we have used the contraction established in continuous time.
For the first norm in the right hand side of the last display, we use the fact that the
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considered processes (V ′,L′) and (Ṽ , L̃) have the same value at the time instant jh.
Therefore,

‖Ṽ t − V ′t‖L2 =
∥∥∥∥∥
∫ t

jh
e−γ(t−s)

(
∇f(L′s)−∇f(L′jh)

)
ds

∥∥∥∥∥
L2

≤
∫ t

jh

∥∥∥∇f(L′s)−∇f(L′jh)
∥∥∥
L2
ds

≤M
∫ t

jh

∥∥∥L′s −L′jh∥∥∥L2
ds

≤M
∫ t

jh

∫ s

jh

∥∥∥V ′u∥∥∥L2
du ds

= M
∫ t

jh
(t− u)

∥∥∥V ′u∥∥∥L2
du

≤M
∫ t

jh
(t− u) du max

u∈[jh,(j+1)h]

∥∥∥V ′u∥∥∥L2

= M(t− jh)2

2 max
u∈[jh,(j+1)h]

∥∥∥V ′u∥∥∥L2

and

‖L̃(j+1)h −L′(j+1)h‖2 =
∥∥∥∥∥
∫ (j+1)h

jh
(Ṽ t − V ′t) dt

∥∥∥∥∥
2

≤
∫ (j+1)h

jh
‖Ṽ t − V ′t‖2 dt

≤ M

2

∫ (j+1)h

jh
(t− jh)2 dt max

u∈[jh,(j+1)h]

∥∥∥V ′u∥∥∥L2

≤ Mh3

6 max
u∈[jh,(j+1)h]

∥∥∥V ′u∥∥∥L2
.

Lemma 2. For every u ∈ [jh, (j + 1)h], we have

‖V ′u‖L2 ≤
√
p+ Aj.

Proof. We have

‖V ′u‖L2 = ‖V u‖L2 + ‖V ′u − V u‖L2

= √p+ ‖[Ip, 0p]PP−1[(V ′u − V u)>, (L′u −Lu)>]‖L2

≤ √p+ ‖[Ip, 0p]P‖ · ‖P−1[(V ′u − V u)>, (L′u −Lu)>]
≤ √p+ ‖[Ip, 0p]P‖ · ‖P−1[(V ′jh − V jh)>, (L′jh −Ljh)>]‖L2

= √p+ ‖[Ip, 0p]P‖ · Aj.

Recall that
P = 1

γ

[
0p×p −γIp
Ip Ip

]
,

which implies that ‖[Ip, 0p]P‖ = 1. This completes the proof of the lemma.
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From this lemma and previous inequalities, we infer that∥∥∥∥∥∥P−1
[
Ṽ (j+1)h − V ′(j+1)h
L̃(j+1)h −L′(j+1)h

] ∥∥∥∥∥∥
L2

≤
{(
‖Ṽ (j+1)h − V ′(j+1)h‖L2 + γ ‖L̃(j+1)h −L′(j+1)h‖L2

)2
+ ‖Ṽ (j+1)h − V ′(j+1)h‖2

L2

}1/2

≤
{(

1 + γh

3

)2
+ 1

}1/2
Mh2

2
(√

p+ Aj
)
.

Choosing h ≤ 1/(4γ), we arrive at∥∥∥∥∥∥P−1
[
Ṽ (j+1)h − V ′(j+1)h
L̃(j+1)h −L′(j+1)h

] ∥∥∥∥∥∥
L2

≤ 0.75Mh2
(√

p+ Aj
)
.

Combining this inequality and (3.20), for every h ≤ m/(4γM), we get

Aj+1 ≤ 0.75Mh2
(√

p+ Aj
)

+ e−hm/γAj (3.21)
= 0.75Mh2√p+ (e−hm/γ + 0.75Mh2)Aj. (3.22)

Using the inequality e−x ≤ 1− x+ 1
2x

2, we can derive from (3.22) that

Aj+1 ≤ 0.75Mh2√p+
(

1− hm

γ
+ h2m2

2γ2 + 0.75Mh2
)
Aj

≤ 0.75Mh2√p+
(

1− 0.75mh
γ

)
Aj.

Unfolding this recursive inequality, we arrive at

Ak ≤
Mhγ

√
p

m
+
(

1− 0.75mh
γ

)k
A0.

Finally, one easily checks that A0 = γW2(ν0, π) and

‖L̃kh −Lkh‖L2 ≤ ‖[0p×p Ip]P‖Ak = γ−1√2Ak.

Putting all these pieces together, we arrive at

W2(νk, π) ≤ ‖L̃kh −Lkh‖L2

≤ γ−1√2Ak

≤ Mh
√

2p
m

+
√

2
(

1− 0.75mh
γ

)k
(A0/γ)

= Mh
√

2p
m

+
√

2
(

1− 0.75mh
γ

)k
W2(ν0, π),

and the claim of Theorem 2 follows.
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3.9 Proofs for the second-order discretization of the
kinetic Langevin diffusion

We start this section by providing some explanations on the definition of the KLMC2
algorithm. We turn then to the proof of Theorem 3.

3.9.1 Explanations on the origin of the KLMC2 algorithm

Recall that the kinetic diffusion is given by the equation

d

[
V t

Lt

]
=
[
−(γV t +∇f(Lt))

V t

]
dt+

√
2γ
[

Ip
0p×p

]
dW t. (3.23)

From (3.23), by integration by parts, we can deduce that

eγtV t = V 0 +
∫ t

0
eγs dV s + γ

∫ t

0
eγsV s ds

= V 0 −
∫ t

0
eγs∇f(Ls) ds+

√
2γ
∫ t

0
eγs dW s.

Therefore, we have

V t = e−γtV 0 −
∫ t

0
e−γ(t−s)∇f(Ls) ds+

√
2γ
∫ t

0
e−γ(t−s) dW s, (3.24)

Lt = L0 +
∫ t

0
V s ds. (3.25)

Lemma 3. For every γ > 0 and t > 0, we have for any k, j ∈ N

ϕk+1(t) =
∫ t

0
ϕk(s)ds, ϕk+j+1(t) =

∫ t

0
ψk(s)ψj(t− s)ds

Proof. Fubini’s Theorem and a change of variables yield
∫ t

0
ϕk(s)ds =

∫ t

0

∫ s

0
e−γ(s−r)ψk−1(r)drds

=
∫ t

0

∫ t−r

0
e−γsψk−1(r)dsdr

=
∫ t

0

∫ t−s

0
e−γsψk−1(r)drds

=
∫ t

0
e−γsψk(t− s)ds = ϕk+1(t).

This is the first claim of the lemma.
The second claim of the lemma is true for j = 0 and any k ∈ N by definition. By
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induction we get∫ t

0
ψk(s)ψj(t− s)ds =

∫ t

0
ψk(s)

∫ t−s

0
ψj−1(r)drds

=
∫ t

0

∫ t−r

0
ψk(s)ψj−1(r)dsdr

=
∫ t

0
ψk+1(t− r)ψj−1(r)dr

=
∫ t

0
ψk+j(r)ψ0(t− r)dr = ϕk+j+1(t).

This completes the proof of the lemma.

If the function f is twice continuously differentiable, then, for small values of s, the
value ∇f(Ls) appearing in (3.24) can be approximated by an affine function of Ls:

∇f(Ls) ≈ ∇f(L0) +∇2f(L0)(Ls −L0)

= ∇f(L0) +∇2f(L0)
∫ s

0
V w dw

≈ ∇f(L0) + ψ1(s)∇2f(L0)V 0 +
√

2γ∇2f(L0)
∫ s

0
ψ1(s− w) dW w. (3.26)

From the above approximation, we can infer that∫ t

0
e−γ(t−s)∇f(Ls) ds ≈ ψ1(t)∇f(L0) + ϕ2(t)∇2f(L0)V 0

+
√

2γ∇2f(L0)
∫ t

0
e−γ(t−s)

∫ s

0
ψ1(s− w) dW w ds

= ψ1(t)∇f(L0) + ϕ2(t)∇2f(L0)V 0 +
√

2γ∇2f(L0)
∫ t

0
ϕ2(t− w) dW w.

(3.27)

In the last step of the above equation, we have used that∫ t

0
e−γ(t−s)

∫ s

0
ψ1(s− w) dW w ds =

∫ t

0

∫ t

w
e−γ(t−s)ψ1(s− w) ds dW w

=
∫ t

0

∫ t−w

0
e−γ(t−w−u)ψ1(u) du dW w

=
∫ t

0
ϕ2(t− w) dW w.

Combining the last approximation and the diffusion equation (3.24), we arrive at

V t ≈ e−γtV 0 − ψ1(t)∇f(L0)− ϕ2(t)∇2f(L0)V 0

−
√

2γ∇2f(L0)
∫ t

0
ϕ2(t− s) dW s +

√
2γ
∫ t

0
e−γ(t−s) dW s.

This approximation will be used for defining the discretized version of the process V . In
order to define the discretized version of L, we will simply use the plug-in approximation
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of V , and then integrate. This leads to

Lt = L0 +
∫ t

0
V s ds

≈ L0 + ψ1(t)V 0 − ψ2(t)∇f(L0)− ϕ3(t)∇2f(L0)V 0

−
√

2γ∇2f(L0)
∫ t

0
ϕ3(t− w) dW w +

√
2γ
∫ t

0
ψ1(t− w) dW w.

3.9.2 Proof of Theorem 3

Recall that we have defined in Section 3.4 the following functions

ϕk+1(t) =
∫ t

0
e−γ(t−s)ψk(s)ds, k ≥ 1.

We first evaluate the error of one iteration of the KLMC2 algorithm. To this end, we
introduce the processes

Ṽ t = e−γtṼ 0 −
(
ψ1(t)∇f(L̃0) + ϕ2(t)∇2f(L̃0)Ṽ 0

)
+
√

2γ
(∫ t

0
e−γ(t−s)dW s −∇2f(L̃0)

∫ t

0
ϕ2(t− s)dW s

)
and

L̃t = L̃0 + ψ1(t)Ṽ 0 −
(
ψ2(t)∇f(L̃0) + ϕ3(t)∇2f(L̃0)Ṽ 0

)
+
√

2γ
(∫ t

0
ψ1(t− s)dW s −∇2f(L̃0)

∫ t

0
ϕ3(t− s)dW s

)
.

In what follows, we will use the following matrices to perform a linear transformation of
the space R2p:

P = γ−1 ·
[
0p×p −γIp
Ip Ip

]
, P−1 =

[
Ip γIp
−Ip 0p×p

]
. (3.28)

We need an auxiliary process, denoted by (V̂ , L̂), which at time 0 coincides with (V ,L)
but evolves according to exactly the same dynamics as (Ṽ , L̃).

Proposition 2. Assume that, for some constants m,M,M2 > 0, the function f is m-
strongly convex, its gradient is M-Lipschitz, and its Hessian is M2-Lipschitz for the spec-
tral norm. If the parameter γ and the step size t of the kinetic Langevin diffusion are
such that

t ≤ 1
5γ ,

then ∥∥∥∥∥P−1
[
V t − V̂ t

Lt − L̂t

]∥∥∥∥∥
L2

≤ 0.25× t3(M2

√
p2 + 2p+M3/2√p).
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Proof. From the definition of P−1, we compute∥∥∥∥∥P−1
[
V t − V̂ t

Lt − L̂t

] ∥∥∥∥∥
L2

=
{
‖V t − V̂ t + γ(Lt − L̂t)‖2

L2 + ‖V t − V̂ t‖2
L2

}1/2

≤
{(
‖V t − V̂ t‖L2 + γ‖Lt − L̂t‖L2

)2
+ ‖V t − V̂ t‖2

L2

}1/2

where the upper bound follows from Minkowski’s inequality. We now give upper bounds
for the L2-norm of processes V − V̂ and L− L̂.
Lemma 4. For any time step t > 0 we have

‖V̂ t − V t‖L2 ≤
t3(M2

√
p2 + 2p+M3/2√p)

6 ,

‖L̂t −Lt‖L2 ≤
t4(M2

√
p2 + 2p+M3/2√p)

24 .

Proof. Recall that ψ1(t) =
∫ t

0 e
−γ(t−s)ds, ψ2(t) =

∫ t
0 se

−γ(t−s)ds and

V t = e−γtV 0 −
∫ t

0
e−γ(t−s)∇f(Ls)ds+

√
2γ
∫ t

0
e−γ(t−s)dW s.

We compute

V̂ t − V t =
∫ t

0
e−γ(t−s)(∇f(Ls)−∇f(L0))ds− ϕ2(t)∇2f(L0)V 0

−
√

2γ∇2f(L0)
∫ t

0
ϕ2(t− s)dW s.

By Taylor’s theorem, we have

∇f(Ls)−∇f(L0) = Hs · (Ls −L0), Hs ,
∫ 1

0
∇2f(Ls + h(L0 −Ls))dh.

This yields the following convenient re-writing of the first integral∫ t

0
e−γ(t−s)(∇f(Ls)−∇f(L0))ds

=
∫ t

0
e−γ(t−s)(Hs −∇2f(L0))(Ls −L0)ds︸ ︷︷ ︸

,At

+∇2f(L0)
∫ t

0

∫ s

0
e−γ(t−s)V rdrds︸ ︷︷ ︸

,Ct

.

Now, we replace V r by its explicit expression

V r = e−γrV 0 −
∫ r

0
e−γ(r−w)∇f(Lw) dw +

√
2γ
∫ r

0
e−γ(r−w) dW w.

By integrating twice, we compute

Ct = ϕ2(t)∇2f(L0)V 0 +
√

2γ∇2f(L0)
∫ t

0
ϕ2(t− s)dW s

−∇2f(L0)
∫ t

0

∫ s

0

∫ r

0
e−γ(t−s)e−γ(r−w)∇f(Lw)dwdrds︸ ︷︷ ︸

,Bt
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Summing the two expressions allows some terms to cancel out leading to

V̂ t − V t = At −Bt,

where

At =
∫ t

0

∫ 1

0
e−γ(t−s)

(
∇2f(Ls + h(L0 −Ls))−∇2f(L0)

)
· (Ls −L0)dhds,

Bt = ∇2f(L0)
∫ t

0

∫ s

0

∫ r

0
e−γ(t−s)e−γ(r−w)∇f(Lw)dwdrds.

We now control L2-norm of processes At and Bt. Bounding e−γ(t−s) by one, Minkowski’s
inequality in its integral version and the Lipschitz assumption on the Hessian yield

‖At‖L2 ≤
∫ t

0

∫ 1

0
E
[
‖
(
∇2f(Ls + h(L0 −Ls))−∇2f(L0)

)
· (Ls −L0)‖2

2

]1/2
dhds

≤M2

∫ t

0

∫ 1

0
E
[
(1− h)2‖Ls −L0‖4

2

]1/2
dhds

= M2

2

∫ t

0

{
E
[∥∥∥∥∫ s

0
V rdr

∥∥∥∥4

2

]1/4 }2

ds

≤ M2

2

∫ t

0

{∫ s

0
E
[
‖V r‖4

2

]1/4
dr

}2

ds

= M2

2

∫ t

0

{∫ s

0
E
[
‖V 0‖4

2

]1/4
dr

}2

ds

= M2t
3

6 E
[
‖V 0‖4

2

]1/2
,

where we have used the stationarity of the process V r. Since V 0 is standard Gaussian,
we get E [‖V 0‖4

2] = p2 + 2p.
In the same way, Minkowski’s inequality in its integral version yields

‖Bt‖L2 ≤
∫ t

0

∫ s

0

∫ r

0
‖∇2f(L0)∇f(Lw)‖L2dwdrds

≤
∫ t

0

∫ s

0

∫ r

0
M‖∇f(Lw)‖L2dwdrds

= M‖∇f(L0)‖L2

∫ t

0

∫ s

0

∫ r

0
dwdrds

= t3M

6 ‖∇f(L0)‖L2 ,

where last equalities follow from the stationarity of Lw. Since L0 ∼ π (Dalalyan, 2017a,
Lemma 2) ensures that ‖∇f(L0)‖L2 ≤

√
Mp, and the first claim of the lemma follows.

The bound for process L− L̂ follows from Minkowski’s inequality combined with the
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bound just proven:

‖L̂t −Lt‖L2 ≤
∫ t

0
‖V̂ s − V s‖L2ds

≤
∫ t

0

(
t3(M2

√
p2 + 2p+M3/2√p)

6

)
ds

=
t4(M2

√
p2 + 2p+M3/2√p)

24 .

This completes the proof of the lemma.

The claim of the proposition follows from the assumption γt ≤ 1/5 and that√(1
6 + 1

5× 24

)2
+
(1

6

)2
≤ 0.25

The next, perhaps the most important, step of the proof is to assess the distance
between the random vectors (V̂ t, L̂t) and (Ṽ t, L̃t).
Proposition 3. Assume that, for some constants m,M,M2 > 0, the function f is m-
strongly convex, its gradient is M-Lipschitz, and its Hessian is M2-Lipschitz for the spec-
tral norm. If the parameter γ and the step size t of the kinetic Langevin diffusion satisfy
the inequalities

γ2 ≥ m+M, t ≤ 1
5γκ ,

then, for the (2p)× (2p) matrix P defined in (3.28), and for every a ≥ 5p, it holds∥∥∥∥∥P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]∥∥∥∥∥
L2

≤
(

1− mt

2γ + M2
√
a t2

γ

)∥∥∥∥∥P−1
[
V 0 − Ṽ 0
L0 − L̃0

]∥∥∥∥∥
L2

+
√

2 t2(M −m)e−(a−p)/8.

Proof. Step 1: After change of basis, the new discretized process rewrites:

P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]
=
{
I2p − ψ1(t) P−1R0P︸ ︷︷ ︸

,Q0

−P−1E0(t)P︸ ︷︷ ︸
,N0(t)

}
·P−1

[
V 0 − Ṽ 0
L0 − L̃0

]

+ P−1
[
ϕ2(t)(∇2f(L0)−∇2f(L̃0))V 0
ϕ3(t)(∇2f(L0)−∇2f(L̃0))V 0

]
,

where
R0 =

[
γIp H0
−Ip 0p×p

]
, E0(t) ,

[
ϕ2(t)∇2f(L̃0) 0p×p
ϕ3(t)∇2f(L̃0) −ψ2(t)H0

]
.

By Minkowski’s inequality and the definition of P−1, we get∥∥∥∥∥P−1
[
V̂ t − Ṽ t

L̂t − L̃t

]∥∥∥∥∥
L2

≤
∥∥∥∥∥
{
I2p − ψ1(t)Q0 −N0(t)

}
·P−1

[
V 0 − Ṽ 0
L0 − L̃0

]∥∥∥∥∥
L2

+ ξ2(t)
∥∥∥(∇2f(L0)−∇2f(L̃0)

)
· V 0

∥∥∥
L2
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where
ξ2(t) ,

√(
ϕ2(t) + γϕ3(t)

)2
+ ϕ2(t)2.

We have

ϕ2(t) + γϕ3(t) =
∫ t

0
e−γ(t−s)(ψ1(s) + γψ2(s)) ds

= 1
γ

∫ t

0
e−γ(t−s)(1− e−γs + sγ − 1 + e−γs) ds ≤ t2/2.

Therefore, ξ2(t) ≤ t2/
√

2.
Step 2: We give an upper bound for the following spectral norm

‖I2p − ψ1(t)Q0 −N0(t)‖ ≤ ‖I2p − ψ1(t)Q0‖+ ‖N0(t)‖.

We will start by proving that that

‖I2p − ψ1(t)Q0‖ ≤ 1− ψ1(t)(m/γ) + 0.5ψ1(t)2M(α +m2/(Mγ2))

where α , max(1−M/γ2, 3M/γ2 − 1).
First, we control the eigenvalues of

(I2p − ψ1(t)Q0)(I2p − ψ1(t)Q0)> = I2p − 2ψ1(t)
(

Q0 + Q>0
2

)
+ ψ1(t)2Q0Q>0 .

For convenience, we use the notation Σ0 , γ−1H0 in the following. Direct computations
yield

Q0 =
[

Σ0 Σ0
−Σ0 γIp −Σ0

]
,

S0 ,
Q0 + Q>0

2 =
[

Σ0 0p×p
0p×p γIp −Σ0

]
,

Q0Q>0 =
[

2Σ2
0 γΣ0 − 2Σ2

0
γΣ0 − 2Σ2

0 (γIp −Σ0)2 + Σ2
0

]
.

Let us define the symmetric matrix

E0 ,

[
Σ2

0 H0 − 2Σ2
0

H0 − 2Σ2
0 Σ2

0

]
.

so that the following equality holds: Q0Q>0 = S2
0 + E0.

Regrouping the quadratic form yields

(I2p − ψ1(t)Q0)(I2p − ψ1(t)Q0)> = (I2p − ψ1(t)S0)2 + ψ1(t)2E0.

Lemma 5. Assume that γ2 ≥ m+M , then the following holds:

(m/γ)I2p � S0 � (γ −m/γ)I2p, ‖E0‖ ≤Mα.
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Proof. The condition γ2 ≥ m+M implies that (m/γ)Ip � Σ0 � (γ −m/γ)Ip. The first
claim of the lemma follows directly.

Now, let us compute the eigenvalues of the symmetric matrix E0. We diagonalize H0
and note (λH0

j )j=1,...,p its eigenvalues. By solving det(E0 − λI2p) = 0 we get p equations,
i.e. for every j = 1, ..., p we need to solve:

λ2 − 2ajλ+ a2
j − b2

j = 0, aj =
(
γ−1λH0

j

)2
, bj = λH0

j − 2aj.

The solutions are λj = aj ± |bj|. For every j = 1, ..., p, we get

|λj| ≤ max
(
λH0
j −

(
γ−1λH0

j

)2
, 3
(
γ−1λH0

j

)2
− λH0

j

)
.

The function x 7→ max(x− (x/γ)2, 3(x/γ)2 − x) is increasing on R+. Since λH0
j is upper

bounded by M , the second claim of the lemma follows.

Now, we apply Lemma 5. Since S0 and E0 are symmetric, we have

‖I2p − ψ1(t)Q0‖2 ≤ ‖(I2p − ψ1(t)S0)2‖+ ψ1(t)2‖E0‖
≤ (1− ψ1(t)(m/γ))2 + ψ1(t)2Mα

= 1− 2ψ1(t)(m/γ) + ψ1(t)2M(α +m2/(Mγ2)).

Finally, for any x ≤ 1,
√

1− x ≤ (1− x/2), we get

‖I2p − ψ1(t)Q0‖ ≤ 1− ψ1(t)(m/γ) + 0.5ψ1(t)2M(α +m2/(Mγ2)).

Now we turn to the bound of ‖N0(t)‖. Direct calculation yields

N0(t) = P−1E0(t)P

= γ−1
[

Ip γIp
−Ip 0p×p

] [
ϕ2(t)∇2f(L̃0) 0p×p
ϕ3(t)∇2f(L̃0) −ψ2(t)H0

] [
0p×p −γIp
Ip Ip

]

= γ−1
[
(ϕ2 + γϕ3)∇2f(L̃0) 0
−ϕ2∇2f(L̃0) 0

] [
0 −γIp
Ip Ip

]
− ψ2(t)γ−1

[
0 γH0
0 0

] [
0 −γIp
Ip Ip

]

=
[
0p×p −(ϕ2(t) + γϕ3(t))∇2f(L̃0)
0p×p ϕ2(t)∇2f(L̃0)

]
− ψ2(t)

[
H0 H0
0p×p 0p×p

]
.

Since ∇2f(L̃0) and H0 are both upper bounded by MIp and 0 ≤ ψ2(t) ≤ ϕ2(t) ≤
ϕ2(t) + γϕ3(t) ≤ t2/2, we get

‖N0(t)‖ ≤
√

2Mt2.

Summing the two upper bounds, we get

‖I2p − ψ1(t)Q0 −N0(t)‖ ≤ ρt ,

{
1− ψ1(t)m

γ
+ ψ1(t)2M

2

(
α + m2

Mγ2

)
+M

√
2 t2

}
.

Taylor’s expansion ensures that t− γt2/2 ≤ ψ1(t) ≤ t and, therefore,

ρt ≤ 1− mt

γ
+ Mt2

2

(
α + m2

Mγ2 + m

M
+ 2
√

2
)

︸ ︷︷ ︸
≤2+2

√
2≤5

.
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Finally, we use the condition t ≤ 1/(5γκ) to bound ρt by 1−mt/(2γ).
Step 3: We control the L2-norm of (∇2f(L0)−∇2f(L̃0))V 0.
Since mIp 4 ∇2f(x) 4MIp, combined with the fact that the Hessian isM2-Lipschitz,

we get ∥∥∥(∇2f(L0)−∇2f(L̃0)
)
· V 0

∥∥∥
2
≤ min

(
M −m,M2‖L0 − L̃0‖2

)
‖V 0‖2.

Using the obvious inequality ‖V 0‖2
2 ≤ a + (‖V 0‖2

2 − a)+, for every a > 0, this implies
that

E
[∥∥∥(∇2f(L0)−∇2f(L̃0)

)
V 0

∥∥∥2

2

]
≤ E

[
min

(
(M −m)2,M2

2‖L0 − L̃0‖2
2

)
‖V 0‖2

2

]
≤M2

2aE
[
‖L0 − L̃0‖2

2

]
+ (M −m)2E

[
(‖V 0‖2

2 − a)+
]

(1)
≤ M2

2a ‖L0 − L̃0‖2
L2 + 4(M −m)2e−(a−p)/4,

where inequality (1) is valid for every a ≥ 5p according to well-known bounds on the χ2

distribution; see for instance (Collier and Dalalyan, 2017, Lemmas 5-6). Finally, recall
that

‖L0 − L̃0‖L2 ≤ γ−1√2
∥∥∥∥∥P−1

[
V 0 − Ṽ 0
L0 − L̃0

]∥∥∥∥∥
L2

.

Taking square roots yields the claim of the proposition.

The last piece of the proof is the following proposition.

Proposition 4. Assume that, for some constants m,M,M2 > 0, the function f is m-
strongly convex, its gradient is M-Lipschitz, and its Hessian is M2-Lipschitz for the spec-
tral norm. If the parameter γ and the step size h of the kinetic Langevin diffusion satisfy
the inequalities

γ2 ≥ m+M, h ≤ 1
5γκ ∧

m

4
√

5pM2
.

Then∥∥∥∥∥P−1
[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥∥
L2

≤
(

1− mh

4γ

)k ∥∥∥∥∥P−1
[
V 0 − Ṽ 0
L0 − L̃0

]∥∥∥∥∥
L2

+ 4
√

2 (M −m)
m

γhe
− m2

160M2
2h

2 + γh2
(
M2

m

√
p2 + 2p+ M3/2

m

√
p

)
.

Proof. Minkowski’s inequality yields∥∥∥∥∥P−1
[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥∥
L2

≤
∥∥∥∥∥P−1

[
V̂ kh − Ṽ kh

L̂kh − L̃kh

]∥∥∥∥∥
L2

+
∥∥∥∥∥P−1

[
V kh − V̂ kh

Lkh − L̂kh

]∥∥∥∥∥
L2

.

For k ≥ 0, define

xk =
∥∥∥∥∥P−1

[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥∥
L2

.
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By Proposition 2 and Proposition 3, we thus have

xk+1 ≤
(

1− mh

2γ + M2
√
a h2

γ

)
xk+
√

2h2(M−m)e−(a−p)/8+0.25h3
(
M2

√
p2 + 2p+M3/2√p

)
.

Assuming that
√
a = m/(4M2h) ≥

√
5p and unfolding the last recursion, we get

xk+1 ≤
(

1− mh

4γ

)k+1

x0 + 4
√

2 (M −m)
m

γhe−(a−p)/8 + γh2
(
M2

m

√
p2 + 2p+ M3/2

m

√
p

)
.

Easy algebra shows that

a− p
8 = a

10 + a− 5p
40 ≥ a

10 = m2

160M2
2h

2 .

This is exactly the claim of the proposition.

To complete the proof of Theorem 3, we need to do some simple algebra. First of all,
using the relations

W2(νk, π) ≤ γ−1√2
∥∥∥∥∥P−1

[
V kh − Ṽ kh

Lkh − L̃kh

]∥∥∥∥∥
L2

, W2(ν0, π) = γ−1
∥∥∥∥∥P−1

[
V 0 − Ṽ 0
L0 − L̃0

]∥∥∥∥∥
L2

as well as the inequality p2 + 2p ≤ 2p2 (since p ≥ 2), we arrive at

W2(νk, π) ≤
√

2
(

1− mh

4γ

)k
W2(ν0, π)

+ 8 (M −m)
m

he
− m2

160M2
2h

2 +
√

2h2
(
M2p

m

√
2 + M3/2

m

√
p

)
. (3.29)

This leads to the claim of the theorem.
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Chapter 4

Bounding the error of discretized
Langevin algorithms for
non-strongly log-concave targets

In this paper, we provide non-asymptotic upper bounds on the error of sampling from
a target density using three schemes of discretized Langevin diffusions. The first scheme
is the Langevin Monte Carlo (LMC) algorithm, the Euler discretization of the Langevin
diffusion. The second and the third schemes are, respectively, the kinetic Langevin Monte
Carlo (KLMC) for differentiable potentials and the kinetic Langevin Monte Carlo for
twice-differentiable potentials (KLMC2). The main focus is on the target densities that
are smooth and log-concave on Rp, but not necessarily strongly log-concave. Bounds on
the computational complexity are obtained under two types of smoothness assumption: the
potential has a Lipschitz-continuous gradient and the potential has a Lipschitz-continuous
Hessian matrix. The error of sampling is measured by Wasserstein-q distances and the
bounded-Lipschitz distance. We advocate for the use of a new dimension-adapted scaling
in the definition of the computational complexity, when Wasserstein-q distances are con-
sidered. The obtained results show that the number of iterations to achieve a scaled-error
smaller than a prescribed value depends only polynomially in the dimension.

4.1 Introduction

The two most popular techniques for defining estimators or predictors in statistics and
machine learning are the M estimation, also known as empirical risk minimization, and
the Bayesian method (leading to posterior mean, posterior median, etc.). In practice,
it is necessary to devise a numerical method for computing an approximation of these
estimators. Optimization algorithms are used for approximating an M -estimator, while
Monte Carlo algorithms are employed for approximating Bayesian estimators. In statis-
tical learning theory, over past decades, a concentrated effort was made for getting non
asymptotic guarantees on the error of an optimization algorithm. For smooth optimiza-
tion, sharp results were obtained in the case of strongly convex and convex cases (Bubeck,
2015), the case of non-convex smooth optimization being much more delicate (Jain and



Kar, 2017). As for Monte Carlo algorithms, past three years or so witnessed considerable
progress on theory of sampling from strongly log-concave densities. Some results for non
strongly convex densities were obtained as well. However, to the best of our knowledge,
there is no paper providing a systematic account on the error bounds for sampling from
non strongly concave densities. The main goal of this paper is to fill this gap.

A good starting point for accomplishing the aforementioned task is perhaps a result
from (Durmus et al., 2018) for the sampling error measured by the Kullback-Leibler
divergence. The result is established for the Langevin Monte Carlo (LMC) algorithm,
which is the “sampling analogue” of the gradient descent. Let π : Rp → [0,+∞) be a
probability density function (with respect to Lebesgue’s measure) given by

π(θ) = e−f(θ)∫
Rp e

−f(v)dv
.

for a potential function f . The goal of sampling is to generate a random vector in Rp

having a distribution close to the target distribution defined by π. In the sequel, we will
make repeated use of the moments µk = Eϑ∼π[‖ϑ‖k2], where ‖v‖q = (∑j |vj|q)1/q is the
usual `q-norm for any q ≥ 1.

To define the LMC algorithm, we need a sequence of positive parameters h = {hk}k∈N,
referred to as the step-sizes and an initial point ϑ0,h ∈ Rp that may be deterministic or
random. The successive iterations of the LMC algorithm are given by the update rule

ϑk+1,h = ϑk,h − hk+1∇f(ϑk,h) +
√

2hk+1 ξk+1; k = 0, 1, 2, . . . (4.1)

where ξ1, . . . , ξk, . . . is a sequence of independent, and independent of ϑ0,h, centered
Gaussian vectors with identity covariance matrices. Let νK denote the distribution of
the Kth iterate of the LMC algorithm, assuming that all the step-sizes are equal (hk = h
for every k ∈ N) and the initial point is ϑ0,h = 0p. We will also define the distribution
ν̄K = (1/K)∑K

k=1 νk, obtained by choosing uniformly at random one of the elements of
the sequence {ϑ1,h, . . . ,ϑK,h}. It is proved in (Durmus et al., 2018, Cor. 7) that if the
gradient∇f is Lipschitz continuous with the Lipschitz constantM , then for everyK ∈ N,
the Kullback-Leibler divergence between ν̄K and π satisfies

DKL(ν̄K‖π) ≤ µ2

2Kh +Mph, DKL(ν̄opt
K ‖π) ≤

√
2Mpµ2

K
. (4.2)

Note that the second inequality above is obtained from the first one by using the step-size
hopt = (2KMp/µ2)−1/2 obtained by minimizing the right hand side of the first inequality.
Therefore, if we assume that the second order moment µ2 of π satisfies the condition
Mµ2 ≤ κpβ, for some dimension-free positive constants β and κ, we get

DKL(ν̄opt
K ‖π) ≤

√
2κp1+β

K
.

A natural measure of complexity of the LMC with averaging is, for every ε > 0, the
number of gradient evaluations that is sufficient for getting a sampling error bounded
from above by ε. From the last display, taking into account the Pinsker inequality,
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dTV(ν̄K , π) ≤
√
DKL(ν̄K , π)/2 and the fact that each iterate of the LMC requires one

evaluation of the gradient of f , we obtain the following result. The number of gradi-
ent evaluations KLMCa,TV(p, ε) sufficient for the total-variation-error of the LMC with
averaging (hereafter, LMCa) to be smaller than ε is

KLMCa,TV(p, ε) = κp1+β

2ε4 .

The main goal of the present work is to provide this type of bounds on the complexity
of various versions of the Langevin algorithm under different measures of the quality of
sampling. The most important feature that we wish to uncover is the explicit dependence
of the complexity K(ε) on the dimension p, the inverse-target-precision 1/ε and the
condition number κ. We will focus only on those measures of quality of sampling that
can be directly used for evaluating the quality of approximating expectations.

4.2 Further precisions on the analyzed methods

Since our main motivation for considering the sampling problem comes from statistical
applications, we will focus on the following distances between the probability distribu-
tions: Monge-Kantorovich-Wasserstein distances Wq and the bounded-Lipschitz distance
(also called Fortet-Mourier distance) defined by

Wq(ν, ν ′) = sup
{
E[‖ϑ− ϑ′‖q2]1/q : ϑ ∼ ν and ϑ′ ∼ ν ′

}
, q ≥ 1,

dbL(ν, ν ′) = sup
{
Eϑ∼ν [ϕ(ϑ)]− Eϑ∼ν′ [ϕ(ϑ)] : sup

θ∈Rp
|ϕ(θ)|+ sup

θ,θ′

|ϕ(θ)− ϕ(θ′)|
‖θ − θ′‖2

≤ 1
}
.

It is well known that the bounded-Lipschitz distance is stronger than both the total-
variation and W1 distances in the sense that dbL(ν, ν ′) ≤ dTV(ν, ν ′) ∧W1(ν, ν ′) for every
pair of probability measures (ν, ν ′). It is also clear, in view of the Hölder inequality, that
the distances Wq are increasing functions of q.

Our main contributions are upper bounds on quantities of the form Wq(νK , π) and
dbL(νK , π) where π is a log-concave target density function and νK is the Kth iterate of
various discretization schemes of Langevin diffusions. More precisely, we consider two
types of Langevin processes: the kinetic Langevin diffusion and the (standard) Langevin
diffusion. The latter is the highly overdamped version of the former, see (Nelson, 1967).
The Langevin diffusion, having π as invariant distribution, is defined as a solution1 to
the stochastic differential equation

dLt = −∇f(Lt) dt+
√

2 dW t, t ≥ 0, (4.3)

where W is a p-dimensional standard Brownian motion independent of the initial value
L0. The LMC algorithm presented in (4.1) is merely the Euler-Maruyama discretization

1Under the conditions imposed on the function f throughout this paper, namely the convexity and
the Lipschitzness of the gradient, all the considered stochastic differential equations have unique strong
solutions. Furthermore, all conditions (see, for instance, (Pavliotis, 2014)) ensuring that π and p∗ are
invariant densities of, respectively, processes (4.3) and (4.4) are fulfilled.
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of the process L. The kinetic Langevin diffusion {Lt : t ≥ 0}, also known as the second-
order Langevin process, is defined by

d

[
V t

Lt

]
=
[
−(γV t +∇f(Lt))

V t

]
dt+

√
2γ
[

Ip
0p×p

]
dW t, t ≥ 0, (4.4)

where γ > 0 is the friction coefficient. The process V t is often called the velocity process
since the second row in (4.4) implies that V t is the time derivative of Lt. The continuous-
time Markov process (Lt,V t) is positive recurrent and has a unique invariant distribution,
which has the following density with respect to the Lebesgue measure on R2p:

p∗(θ,v) ∝ exp
{
− f(θ)− 1

2‖v‖
2
2

}
, θ ∈ Rp, v ∈ Rp.

If (L,V ) is a pair of random vectors drawn from the joint density p∗, then L and V are
independent, L is distributed according to the target π, whereas V is a standard Gaussian
vector. Therefore, in equilibrium, the random variable Lt has the target distribution π.

Time-discretized versions of Langevin diffusion processes (4.3) and (4.4) are used for
(approximately) sampling from π. In order to guarantee that the discretization error is
not too large, as well as that the process {Lt} converges fast enough to its invariant
distribution, we need to impose some assumptions on f . In the present work, we will
assume that either Conditions 1, 2 or Conditions 1, 2, 3 presented below are satisfied.
Condition 1. The function f is continuously differentiable on Rp and its gradient ∇f
is M-Lipschitz for some M > 0: ‖∇f(θ)−∇f(θ′)‖2 ≤M‖θ − θ′‖2 for all θ,θ′ ∈ Rp.
Condition 2. The function f is convex on Rp. Furthermore, for some positive constants
κ and β, we have Vπ = Eϑ∼π[‖ϑ− E[ϑ]‖2

2] ≤ κpβ/M .

For m-strongly convex functions f , 2 is satisfied with κ = M/m, according to
Brascamp-Lieb inequality (Brascamp and Lieb, 1976). We will show that this condi-
tion is also satisfied for functions f that are convex everywhere and strongly convex
inside a ball, as well as functions f that are convex everywhere and strongly convex only
outside a ball.

In the next assumption, we use notation ‖M‖ for the spectral norm (the largest
singular value) of a matrix M.
Condition 3. The function f is twice differentiable in Rp with a M2-Lipschitz Hessian
∇2f for some M2 > 0: ‖∇2f(θ)−∇2f(θ′)‖ ≤M2‖θ − θ′‖2 for all θ,θ′ ∈ Rp.

The case of anm-strongly convex function f has been studied in several recent papers.
As a matter of fact, global strong convexity implies exponentially fast mixing of processes
(4.3) and (4.4), with dimension-free rates e−mt and e−mt/(M+m)1/2 , respectively. When
only simple convexity is assumed, such results do not hold in general. Therefore, the
strategy we adopt here consists in sampling from a distribution that is provably close to
the target, but has the advantage of being strongly log-concave.

More precisely, for some small positive α, the surrogate potential is defined by fα(θ) ,
f(θ) + α‖θ‖2

2/2. Therefore, the corresponding surrogate distribution has the density

πα(θ) , e−fα(θ)∫
Rp e

−fα(v)dv
. (4.5)
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The parameter α, together with the step-size h, is considered as a tuning parameter of
the algorithms to be calibrated. Too large values of α will result in fast convergence to
πα but a poor approximation of π by πα. On the other hand, too small values of α will
lead to a small approximation error but slow convergence. The next result quantifies the
approximation of π by πα, for different distances.

Proposition 5. We have the following bounds, for any α ≥ 0 and q ∈ [1,+∞[

dTV(π, πα) ≤ αµ2/2 + exp{αµ2/2} − 1
W q
q (π, πα) ≤ 2q−2αµq+2 + 2q−1µq(exp{αµ2/2} − 1).

If, in addition, αµ2 ≤ 1/5, then

dTV(π, πα) ≤ 1.03αµ2, W q
q (π, πα) ≤ 1.03 · 2q−1αµq+2 ≤ Cqαµ

(q+2)/2
2 ,

where Cq is a numerical constant depending only on q. For instance, C1 ≤ 70 and
C2 ≤ 1197.

This result allows us to control the bias induced by replacing the target distribution
by the surrogate one and paves the way for choosing the “optimal” α by minimizing an
upper bound on the sampling error. Note that the values of the constants Cq are derived
from the following version2 of a consequence of Borell’s lemma (Brazitikos et al., 2014,
Theorem 2.4.6)

µ
1/3
3 ≤ 4.1µ1/2

2 , µ
1/4
4 ≤ 5µ1/2

2 .

We draw the attention of the reader to the fact that, for Wq-distance, the dependence on
α of the upper bound is α1/q, which slows down when q increases (recall that α is a small
parameter). This explains a deterioration with increasing q of the complexity bounds
presented in forthcoming sections.

4.3 Measuring the complexity of a sampling scheme

We have already introduced the notation KMeth,Crit(p, ε), the number of iterations that
guarantee that method Meth has an error—measured by criterion Crit—smaller than ε. If
we choose a criterion, this quantity can be used to compare two methods, the iterates of
which have comparable computational complexity. For example, LMC and KLMC being
discretized versions of the Langevin process (4.1) and the kinetic Langevin process (4.4),
respectively, are such that one iteration requires one evaluation of ∇f and generation
of one realization of a Gaussian vector of dimension p or 2p. Thus, the iterations are
of comparable computational complexity and, therefore, it is natural to prefer LMC if
KLMC,Crit(p, ε) ≤ KKLMC,Crit(p, ε) and to prefer KLMC if the opposite inequality is true.

A delicate question that has not really been discussed in literature is a notion of
complexity that allows to compare the quality of a given sampling method for two different

2The corresponding result, stated in Lemma 9, is (to the best of our knowledge) the first attempt to
provide optimized constants.

109



criteria. To be more precise, assume that we are interested in the LMC algorithm and
wish to figure out whether it is “more difficult” to perform approximate sampling for the
TV-distance or for the Wasserstein distance. It is a well-known fact that the TV-distance
induces the uniform strong convergence of measures whereas the Wasserstein distances
induce the weak convergence. Therefore, at least intuitively, approximate sampling for the
TV-distance should be harder than approximate sampling for the Wasserstein distance3.
However, under condition 1 and m-strong convexity of f , the available results for the
LMC provide the same order of magnitude, p/ε2, both for KLMC,TV (Dalalyan, 2017b;
Durmus and Moulines, 2016) and KLMC,W2 (Durmus and Moulines, 2016; Dalalyan and
Tsybakov, 2009). The point we want to put forward is that the origin of this discrepancy
between the intuitions and mathematical results is the inappropriate scaling of the target
accuracy in the definition of KLMC,W2 .

To further justify the importance of choosing the right scaling of the target accuracy,
let us make the following observation. The total-variation distance serves to approximate
probabilities, which are adimensional and scale-free quantities belonging to the interval
[0, 1]. The Wasserstein distances are useful for approximating moments4 which depend
on both dimension and the scale. For this reason, we suggest the following definition of
the analogue of K in the case of Wasserstein distances:

KMeth,Wq(p, ε) = min{k ∈ N : Wq(νMeth
k , π) ≤ ε

√
µ2(π), ∀π ∈P}, (4.6)

where Meth is a Markov Chain Monte Carlo or another method of sampling, k is generally
the number of calls to the oracle and P is a class of target distributions. Examples of
oracle call are the evaluation of the gradient of the potential at a given point or the
computation of the product of the Hessian of f at a given point and a given vector.
Definition (4.6), as opposed to those used in prior work, has the advantage of being
scale invariant and reflecting the fact that we deal with objects that might be large if the
dimension is large. Note that the idea of scaling the error in order to make the complexity
measure scale-invariant has been recently used in (Tat Lee et al., 2018) as well. Indeed,
in the context of m-strongly log-concave distributions, Tat Lee et al. (2018) propose to
find the smallest k such that W2(νMeth

k , π) ≤ ε/
√
m. This is close to our proposal, since

in the case of m-strongly log-concave distributions, it follows from the Brascamp-Lieb
inequality that supπ

√
µ2 =

√
p/m.

4.4 Overview of main contributions

In this work, we analyze three methods, LMC, KLMC (Cheng et al., 2018) and KLMC2
(Dalalyan and Riou-Durand, 2018), applied to the strong-convexified potential fα(θ) =
f(θ) + (α/2)‖θ‖2

2 in order to cope with the lack of strong convexity. We briefly recall
these algorithms and present a summary of the main contributions of this work.

3We underline here that the aforementioned hardness argument is based only on the topological
argument, since it is not possible, in general, to upper bound the Wasserstein distance Wq, for q ≥ 1 by
the TV-distance or a function of it.

4Recall that by the triangle inequality, one has (Eν [‖ϑ‖q2])1/q − (Eπ[‖ϑ‖q2])1/q ≤Wq(ν, π).
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4.4.1 Considered Markov chain Monte-Carlo methods

We first recall the definition of the Langevin Monte Carlo algorithm. For some positive
parameter h, referred to as the step-size and for some initial distribution ν0 on Rp chosen
by the user, LMC algorithm starts from ϑ0 ∼ ν0. The iterations of the LMC algorithm
are defined by the update rule

ϑk+1 = ϑk − h∇f(ϑk) +
√

2h ξk+1; k = 0, 1, 2, . . . (4.7)

where ξ1, . . . , ξk, . . . is a sequence of mutually independent, and independent of ϑ0, cen-
tered Gaussian vectors with covariance matrices equal to identity.

We now recall the definition of Kinetic Langevin Monte Carlo of first and second
order. We suppose that, for some initial distribution ν0 chosen by the user, both KLMC
and KLMC2 algorithms start from (v0,ϑ0) ∼ N (0p, Ip) ⊗ ν0. Before stating the up-
date rules, we first specify the noise structure generated at each step. In what follows,
{(ξ(1)

k , ξ
(2)
k , ξ

(3)
k , ξ

(4)
k ) : k ∈ N} will stand for a sequence of iid 4p-dimensional centered

Gaussian vectors, independent from the initial condition (v0,ϑ0).
To specify the covariance structure of these Gaussian variables, we define at first two

sequences of functions (ψk) and (ϕk) as follows. For every t > 0, let ψ0(t) = e−γt, then
for every k ∈ N, define ψk+1(t) =

∫ t
0 ψk(s) ds and ϕk+1(t) =

∫ t
0 e
−γ(t−s)ψk(s) ds. Now, let

us note ξk,j for the scalar j-th component of the vector ξk, and assume that for any fixed
k, the 4-dimensional random vectors {(ξ(1)

k,j , ξ
(2)
k,j , ξ

(3)
k,j , ξ

(4)
k,j ) : 1 ≤ j ≤ p} are iid with the

covariance matrix

Ch,γ =
∫ h

0
[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)]>[ψ0(t); ψ1(t); ϕ2(t); ϕ3(t)] dt.

The KLMC algorithm is a sampler derived from a suitable time-discretization of the
kinetic diffusion, introduced by Cheng et al. (2018). Applied to the strong-convexified
potential fα, for a step-size h > 0, it is defined by the following recursion:[

vk+1

ϑk+1

]
=
[

ψ0(h)vk − ψ1(h)(∇f(ϑk) + αϑk)
ϑk + ψ1(h)vk − ψ2(h)(∇f(ϑk) + αϑk)

]
+
√

2γ
ξ(1)

k+1

ξ
(2)
k+1

 . (4.8)

The KLMC2 algorithm, introduced by Dalalyan and Riou-Durand (2018), is derived
from a second order discretization, applicable when the function f is twice differentiable.
Applied to the strong-convexified potential fα, for a step-size h > 0, it is defined as
follows. At any iteration k ∈ N, define the gradient gk,α = ∇f(ϑk) + αϑk, the Hessian
Hk,α = ∇2f(ϑk) + αIp, and the recursion[
vk+1

ϑk+1

]
=
[

ψ0(h)vk − ψ1(h)gk,α − ϕ2(h)Hk,αvk

ϑk + ψ1(h)vk − ψ2(h)gk,α − ϕ3(h)Hk,αvk

]
+
√

2γ
ξ(1)

k+1 −Hk,αξ
(3)
k+1

ξ
(2)
k+1 −Hk,αξ

(4)
k+1

 . (4.9)

4.4.2 Summary of the obtained complexity bounds

Without going into details here, we mention in the table below the order of magnitude
of the number of iterations required by different algorithms for getting an error bounded
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by ε for various metrics. For improved legibility, we do not include logarithmic factors
and report the order of magnitude of K�,�(p, ε) in the case when the parameter β in
Condition 2 is equal to 1.

LMCa LMC KLMC KLMC2
Cond. 1-2 1-2 1-3 1-2 1-3
W2 − p2/ε6 p2.5/ε5 p2/ε5 p2/ε4

W1 − p2/ε4 p2.5/ε3 p2/ε3 p2/ε2

dbL p2/ε4 4 p3/ε4 � p3/ε3 p2.5/ε3 p2/ε2

dTV p2/ε4 4 p3/ε4 � − − −

The results indicated by 4 describe the behavior of the Langevin Monte Carlo with
averaging established in (Durmus et al., 2018). The second to last row is obtained from
the last row by using the fact that the bounded-Lipschitz distance is upper bounded
by the total-variation distance. To date, these results have the best known dependence
(under conditions 1 and 2 only) on p. The results indicated by � summarize the behavior
of the Langevin Monte Carlo established in (Dalalyan, 2017b). All the remaining cells of
the table are filled in by the results obtained in the present work. It is worth mentioning
here, that using Metropolis-Hastings adjustment of the LMC (termed MALA), Dwivedi
et al. (2018) obtained the complexity

KMALA,TV(p, ε) = O

(
p3κ3/2

ε3/2 log3/2
(
pκ/ε

))
.

It is still an open question whether this type of result can be proved for Wasserstein
distances.

4.4.3 The general approach based on a log-strongly-concave sur-
rogate

We have already mentioned that the strategy we adopt here is the one described in
(Dalalyan, 2017b), consisting replacing the potential of the target density by a strongly
convex surrogate. Prior to instantiating this approach to various sampling algorithms
under various conditions and error measuring distances, we provide here a more formal
description of it. Let dist be a general distance on the set of all probability measures and
Methf be the instantiation of a sampling algorithm to the potential function f .

We will denote by νMeth
k,α the distribution of the random vector obtained after per-

forming k iterations of the algorithm Meth with the surrogate potential fα(θ) = f(θ) +
(α/2)‖θ‖2

2. Our goal is, in a first stage, to establish an upper bound on the distance
between the sampling distribution νMeth

k,α and the target π. The methods we analyze here,
being discretizations of continuous-time diffusion processes, depend on the step of dis-
cretization h. Thus, the obtained bound will depend on h. This bound should be so that
one can make it arbitrarily small by choosing small α and h and a large value of k. In a
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second stage, the goal is to exploit the obtained error-bounds in order to assess the order
of magnitude of the computational complexity K, defined in Section 4.3, as a function of
p, ε and the condition number κ.

To achieve this goal, we first use the triangle inequality

dist(νMeth
k,α , π) ≤ dist(νMeth

k,α , πα) + dist(πα, π).

Then, the second term of the right hand side of the last displayed equation is bounded
using Proposition 5. Finally, the distance between the sampling density νMeth

k,α and the
surrogate πα is bounded using the prior work on sampling for log-strongly-concave dis-
tributions. Optimizing over α leads to the best bounds on precision and complexity.

4.5 Precision and computational complexity of the
LMC

In this section we present the non-asymptotic convergence rates for non-strongly convex
LMC algorithm for Wasserstein and bounded-Lipschitz error measures under two sets of
assumptions: Conditions 1, 2 and Conditions 1-3. To refer to these settings, we will call
them “Gradient-Lipschitz” and “Hessian-Lipschitz”, respectively.

4.5.1 The case of gradient-Lipschitz potential

First we give explicit conditions on the parameters α, h and K to have convergence error
for LMC algorithm smaller than ε, in the case of Gradient-Lipschitz potential function.

Theorem 4. Suppose that the potential function f is Gradient-Lipschitz. If the following
conditions are satisfied:

α ≤ 1
5µ2

∧M

20 , h ≤ 1
M

∧ αε2

18.9Mp
, K ≥ 2

αh
log(3W0(ν0, πα)/ε),

then for any q ∈ [1, 2] the implications below are true:

α ≤ ε

3.1µ2
⇒ dbL(νK , π) ≤ ε; (4.10)

α ≤ εq

3.1 · 6q−1µq+2
⇒ Wq(νK , π) ≤ ε. (4.11)

In order to give more insight on the rates that we obtain for our algorithm, let us
derive explicit order for iteration numbers. 2 and Lemma 9 yield that in the case of Wq

error one needs to perform

K = Õ

(
κq+2pβ(q+2)+1

ε2q+2

)
gradient iterations. Similarly, for the bounded Lipschitz distance we obtain

K = Õ

(
κ2p2β+1

ε4

)
.
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Proof. We are going to prove both implications parallelly. Recalling the properties of Wq

and dbL we have

Wq(νK , π) ≤ W2(νK , πα) +Wq(πα, π),
dbL(νK , π) ≤ W2(νK , πα) + dTV (πα, π).

πα is α-strongly log-concave with fα as its potential function. By the definition fα will
also have a Lipschitz continuous gradient. As h ≤ 1/M , then (Durmus et al., 2018,
Theorem 9) implies the following bound on W2(νK , πα).

W2(νK , πα) ≤ (1− αh)K/2W (ν0, πα) + (2h(M + α)p/α)1/2

≤ (1− αh)K/2W (ν0, πα) + (2.1hMp/α)1/2 .

The latter is true, due to α ≤M/20. In order to bound the remaining terms we will use
Proposition 5. Since α ≤ 1/(5µ2) we obtain

Wq(νK , π) ≤ (1− αh)K/2W (ν0, πα) + (2.1hMp/α)1/2 +
(
1.03 · 2q−1αµq+2

)1/q

dbL(νK , π) ≤ (1− αh)K/2W (ν0, πα) + (2.1hMp/α)1/2 + 1.03αµ2.

We will now prove that the obtained bounds are smaller than ε, by showing that each
term on the right hand side is smaller than ε/3. Let us start with (1− αh)K/2W (ν0, πα):

(1− αh)K/2W (ν0, πα) ≤ exp(−αhK/2)W (ν0, πα)
≤ exp (− log(3W (ν0, πα)/ε))W (ν0, πα)

≤ ε

3 .

For the second summand we have

2.1hMp/α ≤ αε2

18.9Mp
· 2.1Mp

α
= ε2

9 .

Finally, (4.10) implies

1.03αµ2 ≤ ε/3 and
(
1.03 · 2q−1αµq+2

)1/q
≤ ε/3,

respectively. This concludes the proof.

4.5.2 The case of Hessian-Lipschitz potential

In what follows we are going to analyze the convergence of LMC algorithm, assuming
that the potential function is Hessian-Lipschitz.

Theorem 5. Suppose that the potential function f is Hessian-Lipschitz. If the following
conditions are satisfied:

α ≤ 1
5µ2

∧M

20 , h ≤ αε

3M2p

∧ αε

17M3/2p1/2 ,
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K ≥ 1
αh

log(3W (ν0, πα)/ε) ,

then for any q ∈ [1, 2] the implications below are true:

α ≤ ε

3.1µ2
⇒ dbL(νK , π) ≤ ε;

α ≤ εq

3.1 · 6q−1µq+2
⇒ Wq(νK , π) ≤ ε.

In order to give more insight on the rates that we obtain for our algorithm, let us
derive again explicit order for iteration numbers. 2 and Lemma 9 yield that in the case
of Wq error one needs to perform

K = Õ

(
κq+2pβ(q+2)+1

ε2q+1

)
gradient iterations. Similarly, for the bounded Lipschitz distance we obtain

K = Õ

(
κ2p2β+1

ε3

)
.

Proof. As in the previous case we are going to prove the implications parallelly. Again
we exploit the inequalitites below:

Wq(νK , π) ≤ W2(νK , πα) +Wq(πα, π),
dbL(νK , π) ≤ W2(νK , πα) + dTV(πα, π).

πα is α-strongly log-concave with fα as its potential function. By definition, fα is Hessian-
Lipschitz and strongly-convex. As h ≤ 1/M , then (Dalalyan and Karagulyan, 2019,
Theorem 5) implies the following bound on W2(νK , πα).

W2(νK , πα) ≤ (1− αh)KW (ν0, πα) + M2hp

2α + 13(M + α)3/2hp1/2

5α

≤ (1− αh)KW (ν0, πα) + M2hp

2α + 2.8M3/2hp1/2

α
. (4.12)

The latter is true, due to α ≤ M/20. In order to bound the remaining terms we will
use Proposition 5. We have shown already in the proof of Theorem 4, that under these
conditions on α, the errors Wq(νK , π) and dbL(νK , π) are both smaller than ε/3. Similar
to the previous case, (1 − αh)K/2W (ν0, πα) is shown to be smaller than ε. Now we will
prove that the second and the third summands of (4.12) are smaller than ε/6.

M2hp

2α ≤ M2p

2α ·
αε

3M2p
≤ ε

6 .

Similarly,
2.8M3/2hp

1
2

5α ≤ 2.8M3/2p1/2

α
· αε

17M3/2p1/2 ≤
ε

6 .

Summing up, we observe that second-order smoothness results faster convergence in
both distances in terms of ε.

115



4.6 Precision and computational complexity of the
KLMC and KLMC2

Theorem 6. Suppose that the potential function f satisfies Conditions 1, 2. Set the
parameters α, γ, h > 0 such that

α ≤ 1
5µ2

∧M

20 , γ ≥
√

1.1M, h ≤ α

4.2M ×
(

1
γ

∧ ε√
2p

)

and let νk be the distribution of the k-th iterate ϑk of the KLMC algorithm, tuned by
those parameters.

If the number of iterations K is such that

K ≥ 4γ
3αh log

(
6W2(ν0, πα)

ε

)
,

then following implications hold

α ≤ ε2/(8.3µ4) ⇒ W2(νK , π) ≤ ε,
α ≤ ε/(2.1µ3) ⇒ W1(νK , π) ≤ ε,
α ≤ ε/(2.1µ2) ⇒ dbL(νK , π) ≤ ε.

Using Condition 2 and Lemma 9 to control the moments µ2, µ3 and µ4, we compute the
scaling of the mixing time of KLMC with respect to p, ε, κ, β. Up to logarithmic factors,
the mixing time scales as κ4p4β+1/2/ε5 for the Wasserstein-2 distance, κ3p3β+1/2/ε3 for
the Wasserstein-1 distance, and κ2p2β+1/2/ε3 for the bounded Lipschitz distance.

Proof. We make use of the following relationships between distances for any two proba-
bility measures µ and ν:

dbL(µ, ν) ≤ W1(µ, ν) ≤ W2(µ, ν), dbL(µ, ν) ≤ dTV(µ, ν).

Combined with the triangular inequality, this yields

W2(νk, π) ≤ W2(νk, πα) +W2(π, πα),
W1(νk, π) ≤ W2(νk, πα) +W1(π, πα),
dbL(νk, π) ≤ W2(νk, πα) + dTV(π, πα).

We control the common term W2(νk, πα) as follows. By construction, the convexified
potential fα is α-strongly convex and its gradient ∇fα is (M +α)-Lipschitz. Therefore, a
direct application of Dalalyan and Riou-Durand (2018) (Theorem 2) ensures that, if the
parameters α, γ, h > 0 are such that

α ≤ M

20 , γ ≥
√

1.1M, h ≤ α

4.2γM ,

then the distribution of the KLMC sampler after k iterates satisfies

W2(νk, πα) ≤
√

2
(

1− 3αh
4γ

)k
W2(ν0, πα) + 1.05Mh

√
2p

α
,
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where 1.05M is an upper bound for the Lipschitz constant (M + α).
The right hand side of the resulting inequality is a sum of two terms which are both

bounded by ε/4 if

h ≤ αε

4, 2M
√

2p, k ≥ 4γ
3αh log

(
4
√

2W2(ν0, πα)
ε

)
.

Therefore, assumptions of the Theorem ensures that W2(νk, πα) ≤ ε/2.
Concerning the distances between π and πα, Proposition 5 applies since α ≤ 1/(5µ2)

by assumption. This yields the following implications, and the claim of the theorem
follows.

α ≤ ε2/(8.3µ4) ⇒ W2(π, πα) ≤ ε/2
α ≤ ε/(2.1µ3) ⇒ W1(π, πα) ≤ ε/2
α ≤ ε/(2.1µ2) ⇒ dbL(π, πα) ≤ ε/2

Theorem 7. Suppose that the potential function f satisfies Conditions 1- 3. Set the
parameters α, γ, h > 0 such that

α ≤ 1
5µ2

∧M

20 , γ ≥
√

1.1M, h ≤ α

5.25γM
∧ α

4M2
√

5p

and let νk be the distribution of the k-th iterate ϑk of the KLMC2 algorithm, tuned by
those parameters.

If the step size h is chosen small enough such that

h ≤ α

13M2 log1/2
(

10
ε
√
M

) ∧(
αε

12(M2p+M3/2p1/2)

)1/2

and the number of iterations K is such that

K ≥ 4γ
αh

log
(

12W2(ν0, πα)
ε

)

then following implications hold

α ≤ ε2/(8.3µ4) ⇒ W2(νK , π) ≤ ε,
α ≤ ε/(2.1µ3) ⇒ W1(νK , π) ≤ ε,
α ≤ ε/(2.1µ2) ⇒ dbL(νK , π) ≤ ε.

Using Condition 2 and Lemma 9 to control the moments µ2, µ3 and µ4, we compute
the scaling of the mixing time of KLMC2 with respect to p, ε, κ, β. Up to logarithmic
factors, the mixing time scales as κ4p4β+1/2/ε4 for the Wasserstein-2 distance, κ3p3β+1/2/ε2

for the Wasserstein-1 distance, and κ2p2β+1/2/ε2 for the bounded Lipschitz distance. This
improves the mixing time of KLMC by a factor ε for all three distances.
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Proof. As shown previously in the proof of Theorem 6, the following inequalities always
hold

W2(νk, π) ≤ W2(νk, πα) +W2(π, πα),
W1(νk, π) ≤ W2(νk, πα) +W1(π, πα),
dbL(νk, π) ≤ W2(νk, πα) + dTV(π, πα).

The control of the three distances between π and πα is already made in the proof of
Theorem 6. Therefore, we need only to ensure that the common term W2(νk, πα) is
bounded by ε/2, this is proved in the sequel. By construction, the convexified potential
fα is α-strongly convex and its gradient ∇fα is (M+α)-Lipschitz. Moreover, the Hessian
matrix ∇2fα is also M2-Lipschitz for the spectral norm. Therefore, a direct application
of Theorem 3 of (Dalalyan and Riou-Durand (2018)) ensures that, if the parameters
α, γ, h > 0 are such that

α ≤ M

20 , γ ≥
√

1.1M, h ≤ α

5.25γM
∧ α

4M2
√

5p

then the distribution of the KLMC2 sampler after k iterates satisfies

W2(νk, πα) ≤
√

2
(

1− αh

4γ

)k
W2(ν0, πα) + 2h2M2p

α
+ h2(1.05M)3/2√2p

α

+ 8.4hM
α

exp
{
− α2

160M2
2h

2

}
.

where 1.05M is an upper bound for the Lipschitz constant (M +α). To simplify the last
expression, we use the fact that 1.053/2√2 ≤ 2 and h ≤ α/(5.25γM) where γ ≥

√
M .

This yields

W2(νk, πα) ≤
√

2
(

1− αh

4γ

)k
W2(ν0, πα) + 2h2(M2p+M3/2p1/2)

α
+ 1.6√

M
exp

{
− (α/h)2

160M2
2

}
.

In this inequality, the right hand side is a sum of three terms that are all bounded by
ε/6 if the following two inequalities hold:

k ≥ 4γ
αh

log
(

12W2(ν0, πα)
ε

)
,

h ≤ α

13M2 log1/2
(

10
ε
√
M

) ∧(
αε

12(M2p+M3/2p1/2)

)1/2

.

This proves the claim of the Theorem.

4.7 Bounding moments

From the user’s perspective, computing the mixing time of LMC or KLMC for a convex
potential f requires the computation of some moments of the distribution π(dθ). Those
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moments usually involve intractable intergrals. In this section, we thus propose explicit
bounds on the moments

µa ,
∫
Rp
‖θ − θ∗‖a2 π(θ) dθ, a > 0.

Only assuming that f is convex ensures that π(dθ) is sub-exponential, but it does not
guarantee that the moment µa will scale polynomially with the dimension. For instance,
the distribution π(dθ) ∝ exp{−2−p‖θ‖2}dθ has moments µa = 2paΓ(p + a)/Γ(p) that
scales exponentially with the dimension. Therefore, to provide polynomial bounds, one
needs to make additional assumptions on the potential function f . We investigate the
case where f is m-strongly convex, inside, respectively outside, a ball of radius R around
the mode θ∗. We manage to provide user-friendly bounds on µa, with small constants.
If m and R are dimension free, then we show that µa scales as (p log p)a, respectively
(p log p)a/2. The dependence on the dimension is sharp within a poly-log factor.

Proposition 6. Assume that for some positive m and R, we have ∇2f(θ) � mIp for
every θ ∈ Rp such that ‖θ − θ∗‖2 ≤ R. Then for every a > 0 we have

∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ A ∨B + 2a+2

(mR)aΓ(p/2)

where
A =

{ 3
mR

(
(p+ a) log(p+ a) + p log+

( 2M
m2R2

))}a
and

B =
(
p

m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2
.

Remark 2. If the assumptions of Proposition 6 are satisfied, then

µa = Õ

((
p

mR

)a∨(
p

m

)a/2)
.

In the bound of Proposition 6, the dominant term is A when p is large, while the
dominant term is B when R is large. The residual term 2a+2/((mR)aΓ(p/2)) goes to zero
whenever p or R goes to infinity. If m and R are assumed to be dimension free constants,
then µa scales as (p log p)a. This rate is optimal within a poly-log factor, this is proven in
Lemma 8. Note that when R goes to infinity we recover exactly the bound of the strongly
convex case proven in Lemma 6.

Proposition 7. Assume that for some positive m and R, we have ∇2f(θ) � mIp for
every θ ∈ Rp such that ‖θ − θ∗‖2 > R. Then for every a > 0 we have

∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤

(
1 + 2

Γ(p/2)

)
Aa

where

A = (2R)
∨(

6(p+ a)
m

log
(

16pM2

m2

))1/2

.
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Proposition 8. Assume that for some positive m and R, we have ∇2f(θ) � mIp for
every θ ∈ Rp such that ‖θ − θ∗‖2 > R. Then for every a > 0 we have∫

Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ emR

2/2
(
p

m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2
.

Remark 3. Under the assumptions of Proposition 7, then

µa = Õ

(
Ra

∨(
p

m

)a/2)
.

In the bound of Proposition 7, if m and R are assumed to be dimension free constants,
then µa scales as (p log p)a/2. This rate is improved in Proposition 8 to pa/2, which is
optimal. Note that if R goes to zero, we recover exactly the bound of the strongly convex
case proven in Lemma 6. However, the bound of Proposition 7 is sharper when R is
large. Assuming that m is a dimension-free constant, the bound remains polynomial in
p whenever R grows at most polynomially with the dimension.

4.8 Postponed proofs

4.8.1 Proof of Proposition 6

Note that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, for the map

m(r) = m1]0,R[(r)

We begin by computing the map

m̃(r) , 2
∫ 1

0
m(ry)(1− y)dy

= 2
∫ 1

0
m1]0,R[(ry)(1− y)dy

= 2m
∫ 1∧R/r

0
(1− y)dy

= m1r<R +m

(
2R
r
− R2

r2

)
1r≥R.

Let A ≥ R and a > 0. We assume without loss of generality that θ∗ = 0p. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We split the computations into the two following parts:∫

Rp
‖θ‖a2π(θ)dθ =

∫
BA
‖θ‖a2π(θ)dθ +

∫
(BA)c

‖θ‖a2π(θ)dθ.

Concerning the second term, for any r > A, we have m̃(r)r2/2 = mRr−mR2/2 ≥ mRr/2.
Applying Lemma 7 yields∫

(BA)c
‖θ‖a2π(θ)dθ ≤

(
(2/M)p/2Γ(p/2)/2

)−1 ∫ +∞

A
rp+a−1e−mRr/2dr.
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We now use the following inequality on the incomplete Gamma function from Natalini
and Palumbo (2000), (also available in Borwein et al. (2009)). Let B > 1, and q ≥ 1,
then if x ≥ (B/(B − 1))(q − 1) then∫ +∞

x
yq−1e−ydy ≤ Bxq−1e−x.

We apply this inequality for B = 2 and q = p + a. If one assumes that A ≥ 2(p + a −
1)/(mR), then∫ +∞

A
rp+a−1e−mRr/2dr =

( 2
mR

)a+p ∫ +∞

mRA/2
yp+a−1e−ydy

≤
( 2
mR

)a+p
2
(
mRA

2

)p+a−1
e−mRA/2.

This yields∫
(BA)c

‖θ‖a2π(θ)dθ ≤ 2a+2

(mR)aΓ(p/2)

( 2M
m2R2

)p/2 (mRA
2

)p+a−1
e−mRA/2.

The last bound ensures that the inequality∫
(BA)c

‖θ‖a2π(θ)dθ ≤ 2a+2

(mR)aΓ(p/2) (4.13)

is fulfilled whenever ϕ(x) , x− c log(x)− b ≥ 0, where

x = mRA

2 , c = p+ a− 1, b = p

2 log
( 2M
m2R2

)
.

Taylor’s expansion around 1.5(c+ 1) log(c+ 1) yields

ϕ(1.5(c+ 1) log(c+ 1) + 3(b ∨ 0)) = ϕ(1.5(c+ 1) log(c+ 1)) + ϕ
′(y)× 3(b ∨ 0)

for some y ≥ 1.5(c+1) log(c+1), which implies that ϕ′(y) ≥ 1−c/(1.5(c+1) log(c+1)) ≥
1/3. We get

ϕ(1.5(c+1) log(c+1)+3(b∨0)) ≥ 1.5(c+1) log(c+1)−c log(1.5(c+1) log(c+1))+(b∨0)−b ≥ 0.

Since the map ϕ is increasing on [c,+∞[ and 1.5(c + 1) log(c + 1) + 3(b ∨ 0) ≥ c, we
conclude that (4.13) is fulfilled for any

A ≥ A∗ ,
3
mR

(
(p+ a) log(p+ a) + p log+

( 2M
m2R2

))
.

Recall that A ≥ R by assumption, this brings two cases to consider. Firstly, if R < A∗,
then for A = A∗ we have ∫

BA
‖θ‖a2π(θ)dθ ≤ Aa.

Secondly, if R ≥ A∗, then for A = R, the map f(θ) = − log π(θ) is m-strongly convex on
the ball BA = BR. Thus Lemma 6 yields∫

BA
‖θ‖a2π(θ)dθ ≤

(
p

m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2
.

Since inequality (4.13) is fulfilled in both cases, the claim of the Proposition follows.
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4.8.2 Proof of Proposition 7

Note that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip, for the map

m(r) = m1]R,+∞[(r)

We begin by computing the map

m̃(r) , 2
∫ 1

0
m(ry)(1− y)dy

= 2
∫ 1

0
m1]R,+∞[(ry)(1− y)dy

= 2m1r>R
∫ 1

R/r
(1− y)dy

= m (1−R/r)2
1r>R.

Let A ≥ 2R and a > 0. We assume without loss of generality that θ∗ = 0p. Define
BA = {θ ∈ Rp : ‖θ‖2 ≤ A}. We will use the following bound:∫

Rp
‖θ‖a2π(θ)dθ ≤ Aa +

∫
(BA)c

‖θ‖a2π(θ)dθ.

For the second term, Lemma 7 yields∫
(BA)c

‖θ‖a2π(θ)dθ ≤
(
(2/M)p/2Γ(p/2)/2

)−1 ∫ +∞

A
rp+a−1e−mr

2/8dr

since m̃(r) ≥ r2/4 for every r ≥ A ≥ 2R.
We now use the following inequality on the incomplete Gamma function from Natalini

and Palumbo (2000), (also available in Borwein et al. (2009)). Let B > 1, and q ≥ 1,
then if x ≥ (B/(B − 1))(q − 1) then∫ +∞

x
yq−1e−ydy ≤ Bxq−1e−x.

We apply this inequality for B = 2 and q = (p + a)/2. If one assumes that mA2/8 ≥
(p+ a)/2− 1, then∫ +∞

A
rp+a−1e−mr

2/8dr = 2−1
( 8
m

)(p+a)/2 ∫ +∞

mA2/8
y(p+a)/2−1e−ydy

≤
( 8
m

)(p+a)/2 (mA2

8

)(p+a)/2−1

e−mA
2/8

= Aa
( 8
m

)p/2 (mA2

8

)p/2−1

e−mA
2/8.

This yields
∫

(BA)c
‖θ‖a2π(θ)dθ ≤ 2Aa

Γ(p/2)

(4M
m

)p/2 (mA2

8

)p/2−1

e−mA
2/8.
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The last bound ensures that the inequality∫
(BA)c

‖θ‖a2π(θ)dθ ≤ 2Aa
Γ(p/2) (4.14)

is fulfilled whenever ϕ(x) , x− c log(x)− b ≥ 0, where

x = mA2

8 , c = p

2 − 1, b = p

2 log
(4M
m

)
> 0.

Taylor’s expansion around 1.5(c+ 1) log(c+ 1) yields

ϕ(1.5(c+ 1) log(c+ 1) + 3b) = ϕ(1.5(c+ 1) log(c+ 1)) + ϕ
′(y)× 3b

for some y ≥ 1.5(c+1) log(c+1), which implies that ϕ′(y) ≥ 1−c/(1.5(c+1) log(c+1)) ≥
1/3. We get

ϕ(1.5(c+ 1) log(c+ 1) + 3b) ≥ 1.5(c+ 1) log(c+ 1)− c log(1.5(c+ 1) log(c+ 1)) + b− b ≥ 0.

Since the map ϕ is increasing on [c,+∞[ and 1.5(c+ 1) log(c+ 1) + 3b ≥ c, we conclude
that (4.14) is fulfilled for any

A2 ≥ 6
m

(p log(p/2) + 2p log(4M/m))

= 6p
m

log
(

16pM2

m2

)
.

Finally, we choose A such that this inequality and the two additional assumptions: A ≥
2R and mA2/8 ≥ (p+ a)/2− 1 hold, that is

A = (2R)
∨(

6(p+ a)
m

log
(

16pM2

m2

))1/2

.

Such a choice yields the claim of the Proposition.

4.8.3 Proof of Proposition 8

Define f = − log π and for any θ ∈ Rp:

f̄(θ) = f(θ) + m

2 (‖θ‖2 −R)2
1‖θ‖2≤R.

The map f̄ is m-strongly convex, moreover f̄(θ) ≥ f(θ) for any θ ∈ Rp, this yields∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≥

∫
Rp
‖θ − θ∗‖a2e−f̄(θ)dθ

= C̄
∫
Rp
‖θ − θ∗‖a2

(
e−f̄(θ)/C̄

)
dθ

where
C̄ ,

∫
Rp
e−f̄(θ)dθ ≥ emR

2/2.

Applying Lemma 6 to the probability density e−f̄(θ)/C̄ yields the claim of the Proposition.
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4.8.4 Proof of Proposition 5

Without loss of generality we may assume that
∫
Rp exp(−f(θ))dθ = 1. We first give

upper and lower bounds to the normalizing constant of πα, that is

cα ,
∫
Rp
π(θ)e−α‖θ‖2

2/2dθ.

The constant cα is an expectation with respect to the density π, it can be trivially upper
bounded by 1, and lower bounded by Jensen’s inequality applied to the convex map
x 7→ e−x. These two facts yield

exp{−αµ2/2} ≤ cα ≤ 1.

Now we control the distance between densities π and πα at any fixed θ ∈ Rp:

|π(θ)− πα(θ)| = π(θ)
∣∣∣∣∣1− e−α‖θ‖

2
2/2

cα

∣∣∣∣∣
≤ π(θ)

{(
1− e−α‖θ‖2

2/2
)

+ e−α‖θ‖
2
2/2
( 1
cα
− 1

)}
≤ π(θ)

(
α‖θ‖2

2/2 + exp{αµ2/2} − 1
)
.

The Total Variation distance between densities π and πα is easily bounded by inte-
grating the previous inequality, that is

dTV(πα, π) =
∫
Rp
|π(θ)− πα(θ)|dθ

≤
∫
Rp
π(θ)

(
α‖θ‖2

2/2 + exp{αµ2/2} − 1
)
dθ

≤ αµ2/2 + exp{αµ2/2} − 1

which is the first claim of the proposition.
To bound Wq for any q ≥ 1, we use an inequality from Villani (2008) (Theorem 6.15,

page 115):

W q
q (µ, ν) ≤ 2q−1

∫
Rp
‖θ‖q2|µ(θ)− ν(θ)|dθ.

Combining this with the bound on |π(θ)− πα(θ)| shown above, we have

W q
q (π, πα) ≤ 2q−1

∫
Rp
‖θ‖q2π(θ)

(
α‖θ‖2

2/2 + exp{αµ2/2} − 1
)

≤ 2q−2αµq+2 + 2q−1µq(exp{αµ2/2} − 1).

which is the second claim of the proposition.
Finally, the monotonicity of the Lq norm ensures that µqµ2 ≤ µq+2. Numerical con-

stants follow from the inequality ex − 1 ≤ 1.06x for x ≤ 1/10, and from Lemma 9.
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4.8.5 Technical lemmas

Lemma 6. Let a > 0 and m > 0. Assume f = − log π is m-strongly convex. Then∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤

(
p

m

)a/2 {
2a−1

(
1 + (1 + a/p)a/2−1

)}1a>2
.

Proof. Durmus and Moulines (2016) proved the following bound on the second moment,
centered on the mode ∫

Rp
‖θ − θ∗‖2

2π(θ)dθ ≤ p

m
.

The monotonicity of the La-norm directly yields the claim of the Lemma for a ≤ 2.
Now, let a > 2. In this proof we will use the following result from Hargé (2004).

Assume that X ∼ Np(µ,Σ) with density ϕ and Y with density ϕ · ψ where ψ is a log-
concave function. Then for any convex map g : Rp 7→ R we have

E[g(Y − E[Y ])] ≤ E[g(X − E[X])].

Now f = − log π ism-strongly convex, thus for the particular choice µ = 0p and Σ = mIp,
then π/ϕ remains log-concave. Applied to the convex map g : θ 7→ ‖θ‖a2, the inequality
of Hargé (2004) yields

Eπ[‖θ − Eπ[θ]‖a2] ≤ E[‖X‖a2] =
(
p

m

)a/2 Γ((p+ a)/2)
Γ(p/2)(p/2)a/2

using known moments of the chi-square distribution.
For any y > 0 the map x 7→ x−yΓ(x+ y)/Γ(x) goes to 1 when x goes to infinity. For

convenience, we use an explicit bound from Qi et al. (2012) (Theorem 4.3), that is

∀y ≥ 1, x−yΓ(x+ y)/Γ(x) ≤ (1 + y/x)y−1 .

When applied for x = p/2 and y = a/2 > 1, this yields

Eπ[‖θ − Eπ[θ]‖a2] ≤
(
p

m

)a/2 (
1 + (1 + a/p)a/2−1

)
. (4.15)

We now bound the distance between the mean and the mode

D , ‖Eπ[θ]− θ∗‖2

≤ Eπ[‖θ − θ∗‖2]

≤
(
p

m

)1/2
. (4.16)

For any x, y ≥ 0 we have (x+ y)a ≤ 2a−1(xa + ya), this yields∫
Rp
‖θ − θ∗‖a2 π(θ) dθ ≤ 2a−1 (E[‖θ − Eπ[θ]‖a2] +Da)

Using bounds (4.15) and (4.16) in the last expression yields the claim of the lemma for
a > 2.
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Lemma 7. Assume there exists a measurable map m : [0,+∞[ 7→ [0,M ] such that such
that for any θ ∈ Rp, ∇2f(θ) � m(‖θ‖2)Ip. Let a > 0 and A > 0. Define the ball
BA , {θ ∈ Rp : ‖θ − θ∗‖2 ≤ A}. We have

∫
(BA)c

‖θ − θ∗‖a2 π(θ) dθ ≤
(
(2/M)p/2Γ(p/2)/2

)−1 ∫ +∞

A
rp+a−1e−m̃(r)r2/2dr

where
m̃(r) = 2

∫ 1

0
m(ry)(1− y)dy.

Proof. Without loss of generality, we assume that θ∗ = 0p and f(0p) = 0. Therefore, the
density π is such that π(θ) = e−θ/C where

C =
∫
Rp
e−f(θ)dθ ≥

∫
Rp
e−M‖θ‖

2
2/2dθ

by the fact that ∇2f �MIp.
Now, for any r > 0 and any θ ∈ Rp such that ‖θ‖2 = r, Taylor’s expansion around

the minimum 0p yields

f(θ)− f(0p) = θ>
(∫ 1

0

∫ 1

0
∇2f(stθ)sdtds

)
θ

≥ ‖θ‖2
2

∫ 1

0

∫ 1

0
m(st‖θ‖2

2)sdtds

= r2
∫ 1

0

∫ s

0
m(yr)dyds

= r2

2 × 2
∫ 1

0
m(yr)(1− y)dy︸ ︷︷ ︸

=m̃(r)

We combine this fact with the lower bound on C to get∫
(BA)c

‖θ‖a2π(θ)dθ ≤ C−1
∫
‖θ‖2≥A

‖θ‖a2e−f(θ)dθ

≤
(∫

Rp
e−M‖θ‖

2
2/2dθ

)−1 ∫
‖θ‖2≥A

‖θ‖a2e−m̃(‖θ‖2)‖θ‖2
2/2dθ

=
(∫ +∞

0
rp−1e−Mr2/2dr

)−1 ∫ +∞

A
ra+p−1e−m̃(r)r2/2dr

=
(
(2/M)p/2Γ(p/2)/2

)−1 ∫ +∞

A
ra+p−1e−m̃(r)r2/2dr

where the first equality comes from a change of variables in polar coordinates, where the
volume of the sphere cancels out in the ratio.

Lemma 8. Assume that π(θ) ∝ e−f(θ), where

f(θ) = 0.5‖θ‖2
21‖θ‖2≤1 + ‖θ‖21‖θ‖2>1.
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Then for any a > 0 and any p ≥ 2 ∨ (a− 1)∫
Rp
‖θ‖a2π(θ)dθ ≥ (0.1)Γ(p+ a)/Γ(p) ∼

p→+∞
0.1pa.

This proves that, under assumptions of Proposition 6 (here with m = R = 1), the depen-
dence pa is not improvable.

Proof. Remark first that f(θ) = ϕ(‖θ‖2) where

ϕ(r) , 0.5r21r≤1 + r1r>1.

We compute explicitly the moment by a change of variable in polar coordinates∫
Rp
‖θ‖a2π(θ)dθ =

(∫ +∞

0
rp−1e−ϕ(r)dr

)−1 ∫ +∞

0
rp+a−1e−ϕ(r)dr

= Γ(p+ a) +
∫ 1

0 r
p+a−1(e−r2/2 − e−r)dr

Γ(p) +
∫ 1
0 r

p−1(e−r2/2 − e−r)dr
.

Using the fact that (0.2)r ≤ e−r
2/2 − e−r ≤ r for 0 < r < 1 yields∫

Rp
‖θ‖a2π(θ)dθ ≥ Γ(p+ a) + 0.2/(p+ a+ 1)

Γ(p) + 1/(p+ 1)

≥ Γ(p+ a) + 0.1/(p+ 1)
Γ(p) + 1/(p+ 1)

≥ (0.1)Γ(p+ a)/Γ(p)

where the second inequality follows from the fact that a ≤ p+ 1 by assumption, and the
last inequality follows from the fact that Γ(.) is an increasing function on [2,+∞[. This
proves the claim of the Lemma.
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Figure 4.1: Plots of bounds from Lemma 9 for k = 3 and k = 4.

Lemma 9. Let Γ(k, x) be the upper incomplete Gamma function. If k ≥ 2 is a positive
integer, then µk ≤ Akµ

k/2
2 where Ak = minλ>2Ak(λ) with

Ak(λ) =
√
λ− 1
λ

[
2
√
λ

log(λ− 1)

]k
kΓ
(
k,

log(λ− 1)
2

)
+ λk/2. (4.17)
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Proof. Let us define A by {x ∈ Rp : ‖x‖2
2 ≤ λµ2}, for any λ > 1. From Tchebyshev’s

inequality we have

π(A) ≥ 1− Eπ[‖θ‖2
2]

λµ2
= 1− 1

λ
.

The A being symmetric, Proposition 2.14 from (Ledoux, 2001) implies the following
inequality:

1− π(tA) ≤ π(A)
(

1− π(A)
π(A)

)(t+1)/2

,

for every real number t larger than 1. Since the right-hand side is a decreasing function
of π(A), we obtain the following bound on π(tAC):

π(tAC) ≤ 1
λ · (λ− 1)(t−1)/2 .

Now let us introduce random variable η as ‖θ‖2/
√
µ2, where θ ∼ π . It is clear that

(4.17) is equivalent to

E[ηk] ≤
√
λ− 1
λ

[
2
√
λ

log(λ− 1)

]k
· kΓ

(
k,

log(λ− 1)
2

)
+ λk/2.

Since η > 0 almost surely,

E[ηk] =
∫
R
P (ηk > t)dt = k

∫
R
tk−1P (η > t)dt.

Thus the proof lemma of reduces to bound the tail of η. The definition of η yields

P (η > t) = P (‖θ‖2 > t
√
µ2) = π

(
t√
λ
· AC

)
≤ 1
λ · (λ− 1)(t−

√
λ)/2
√
λ
,

when t >
√
λ. Therefore we have

E[ηk] ≤ k
∫ ∞
√
λ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+

∫ √λ
0

ktk−1P (η > t)dt

≤ k
∫ ∞
√
λ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt+ λk/2.

One can notice that the first integral can be calculated using the upper incomplete gamma
function Γ(k, z). Indeed, the change of variable z = t log(λ− 1)/(2

√
λ) yields

∫ ∞
√
λ

tk−1

λ · (λ− 1)(t−
√
λ)/2
√
λ
dt =

√
λ− 1
λ

∫ ∞
√
λ
tk−1 exp

(
−`n(λ− 1) t

2
√
λ

)
dt

=
√
λ− 1
λ

[
2
√
λ

log(λ− 1)

]k ∫ ∞
log(λ−1)

2

zk−1e−z dz

=
√
λ− 1
λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,

log(λ− 1)
2

)
.
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Finally, bounding the incomplete Gamma function by factorial we obtain

E[ηk] ≤ k ·
√
λ− 1
λ

[
2
√
λ

log(λ− 1)

]k
Γ
(
k,

log(λ− 1)
2

)
+ λk/2.

This concludes the proof.

Remark 4. Figure 4.1 shows the shape of the function λ 7→ Ak(λ) for k = 3 and k = 4.
We see, in particular, that the optimal choice for λ is approximately 8.13 for k = 3 and
10.44 for k = 4. This leads to the numerical bounds

Ak ≤

67.7, k = 3
580.7, k = 4

.

These constants are by no means optimal, but we are not aware of any better bound
available in the literature.
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Titre : Contributions théoriques aux méthodes de Monte Carlo, et applications à la statistique
Mots Clefs : échantillonnage MCMC, M-estimateurs, ergodicité géométrique, temps de
mélange, couplages, distance de Wasserstein
Résumé :
La première partie de cette thèse concerne l’inférence de modèles statistiques non normalisés.
Nous étudions deux méthodes d’inférence basées sur de l’échantillonnage aléatoire : Monte-
Carlo MLE (Geyer, 1994), et Noise Contrastive Estimation (Gutmann et Hyvarinen, 2010).
Cette dernière méthode fut soutenue par une justification numérique d’une meilleure stabilité,
mais aucun résultat théorique n’avait encore été prouvé. Nous prouvons que Noise Contrastive
Estimation est plus robuste au choix de la distribution d’échantillonnage. Nous évaluons le
gain de précision en fonction du budget computationnel. La deuxième partie de cette thèse
concerne l’échantillonnage aléatoire approché pour les distributions de grande dimension. La
performance de la plupart des méthodes d’échantillonnage se détériore rapidement lorsque la
dimension augmente, mais plusieurs méthodes ont prouvé leur efficacité (e.g. Hamiltonian
Monte Carlo, Langevin Monte Carlo). Dans la continuité de certains travaux récents (Eberle et
al., 2017 ; Cheng et al., 2018), nous étudions certaines discrétisations d’un processus connu sous
le nom de kinetic Langevin diffusion. Nous établissons des vitesses de convergence explicites
vers la distribution d’échantillonnage, qui ont une dépendance polynomiale en la dimension.
Notre travail améliore et étend les résultats de Cheng et al. pour les densités log-concaves.

Title : Theoretical contributions to Monte Carlo methods, and applications to statistics
Keys words : MCMC sampling, M-estimators, geometric ergodicity, mixing times, couplings,
Wasserstein distance
Abstract : The first part of this thesis concerns the inference of un-normalized statistical
models. We study two methods of inference based on sampling, known as Monte-Carlo MLE
(Geyer, 1994), and Noise Contrastive Estimation (Gutmann and Hyvarinen, 2010). The latter
method was supported by numerical evidence of improved stability, but no theoretical results
had yet been proven. We prove that Noise Contrastive Estimation is more robust to the choice
of the sampling distribution. We assess the gain of accuracy depending on the computational
budget. The second part of this thesis concerns approximate sampling for high dimensional
distributions. The performance of most samplers deteriorates fast when the dimension increases,
but several methods have proven their effectiveness (e.g. Hamiltonian Monte Carlo, Langevin
Monte Carlo). In the continuity of some recent works (Eberle et al., 2017; Cheng et al., 2018),
we study some discretizations of the kinetic Langevin diffusion process and establish explicit
rates of convergence towards the sampling distribution, that scales polynomially fast when the
dimension increases. Our work improves and extends the results established by Cheng et al.
for log-concave densities.
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