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Résumé Substantiel

Au cours des dernières décennies, la statistique a été au centre de l’attention, et ce, de
bien des façons. Grâce à des améliorations technologiques, par exemple l’augmentation
des émissions de la performance des ordinateurs et l’essor du partage de la capacité
de données, les statistiques à grande dimension ont été extrêmement dynamiques. En
conséquence, ce domaine est devenu l’un des principaux piliers du paysage statistique
moderne.

Le cadre statistique standard tient compte du cas où la taille de l’échantillon est rela-
tivement grande et que la dimension des observations est beaucoup plus petite. Comme
on l’a fait remarquer dans Giraud (2014), l’évolution technologique de l’informatique a
poussé à un changement de paradigme de la théorie statistique classique à la statistique
de grande dimension. Plus précisément, nous caractérisons un problème statistique
comme étant hautement dimensionnel lorsque la dimension des observations est beau-
coup plus grande que la taille de l’échantillon. Elle est devenue plus courante avec
l’augmentation du nombre de caractéristiques accessibles des données.

D’une manière générale, les problèmes statistiques sont mal posés dans un contexte
de grande dimension. D’autres hypothèses sur la structure du modèle sous-jacent sont
nécessaires afin de rendre le problème plus important. Par exemple, dans un problème
de régression à dimensions élevées, on peut supposer que le vecteur à estimer est parci-
monieux (c’est à dire que peu de composantes sont non nulles), ou que la matrice du
signal est de faible rang lorsqu’il s’agit d’estimer une matrice. Ces hypothèses sont
généralement très réalistes et confirmées par des données empiriques. C’est ce que l’on
peut qualifier de statistiques structurées de grande dimension.

Dans cette thèse, nous nous sommes concentrés sur certains problèmes spécifiques
aux statistiques de grande dimension et à leurs applications à l’apprentissage automa-
tique.

Notre principale contribution porte sur le problème de la sélection de variables dans
la régression linéaire à grande dimension. Nous dérivons des limites non-asymptotiques
pour le risque minimax de recouvrement du support sous la perte de Hamming en es-
pérance dans le modèle de bruit Gaussien en R

d pour les classes de vecteurs s-sparse
séparés de 0 par une constante a > 0. Dans certains cas, on trouve aussi explicite-
ment les sélecteurs minimax correspondants et leurs variantes adaptatives. Comme
corollaires, nous caractérisons précisément une transition de phase asymptotique pour
le recouvrement presque complet ainsi que le recouvrement exact.

En ce qui concerne le problème de recouvrement du support exact en acquisition
comprimée, nous proposons un algorithme de recouvrement du support exact dans le
cadre de l’acquisition comprimée bruitée où toutes les entrées de la matrice de com-
pression sont des Gaussiennes i.i.d. Notre méthode est la première procédure en temps
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2 CONTENTS

polynomial à atteindre les mêmes conditions de recouvrement exact que le décodeur de
recherche exhaustive étudié dans Rad (2011) et Wainwright (2009a). Notre procédure
a l’avantage d’être adaptative à tous les paramètres du problème, robuste et calculable
en temps polynomial.

Motivé par l’interaction entre l’estimation et le recouvrement du support, nous in-
troduisons une nouvelle notion de minimaxité pour l’estimation parcimonieuse dans le
modèle de régression linéaire à grande dimension. Nous présentons des bornes inférieures
plus optimistes que celles données par la théorie classique du minimax et améliorons ainsi
les résultats existants. Nous récupérons le résultat précis de Donoho et al. (1992) pour la
minimaxité globale à la suite de notre étude. En fixant l’échelle du rapport signal/bruit,
nous prouvons que l’erreur d’estimation peut être beaucoup plus petite que l’erreur min-
imax globale. Entre autres, nous montrons que le recouvrement exact du support n’est
pas nécessaire pour atteindre la meilleure erreur d’estimation.

En ce qui concerne le problème de clustering dans le modèle de mélange Gaussien
à deux composantes, nous fournissons une caractérisation non-asymptotique précise du
risque minimax de Hamming. En conséquence, nous récupérons la transition de phase
précise pour un recouvrement exact dans ce modèle. À savoir, la transition de phase se
produit autour du seuil � = �̄n tel que

�̄2
n = �2

✓
1 +

r
1 +

2p

n log n

◆
log n.

Notre procédure atteint le seuil précédent. C’est une variante de l’algorithme de Lloyd
initialisée par une méthode spectrale. Cette procédure est entièrement adaptative, opti-
male en termes de taux et simple en termes de calcul. Il s’avère que notre procédure est,
à notre connaissance, la première méthode rapide pour obtenir un recouvrement exact
optimal.

Une autre contribution principale est consacrée à certains effets de l’adaptabilité sous
l’hypothèse de parcimonie, où l’adaptabilité est soit par rapport au niveau du bruit, soit
par rapport à sa loi nominale. Nous dérivons les taux minimax optimaux et présentons
des estimateurs correspondants pour l’estimation de la variance du bruit �2 pour dif-
férentes classes de bruit. Par exemple, lorsque la distribution du bruit est exactement
connue, �2 peut être estimée plus précisément si le bruit a des queues polynomiales
connues plutôt que d’appartenir à la classe de bruit sous-Gaussienne. Des résultats
similaires ont été obtenus pour le problème de l’estimation minimax de k✓k2. Enfin,
nous étudions l’optimalité minimax de l’estimation de ✓ lorsque le bruit appartient à
une classe de distributions avec queues polynomiales ou queues exponentielles. Nous
calculons les taux minimax pour ces paramètres. Une conclusion inattendue est que
dans le modèle à moyenne parcimonieuse, les taux optimaux sont beaucoup plus lents
et dépendent de l’indice polynomial du bruit par opposition aux taux en régression avec
des régresseurs "bien répartis".

Dans notre dernière contribution, nous proposons une nouvelle approche pour dériver
des développements en série pour certains processus Gaussiens basée sur l’analyse har-
monique de leur fonction de covariance. En particulier, une nouvelle série simple est
dérivée pour le mouvement Brownien fractionnaire. La convergence de cette dernière
série se maintient en moyenne quadratique ainsi qu’uniformément presque sûrement,
avec un taux optimal de décroissance du reste de la série. Nous développons également
un cadre général de séries convergentes pour certaines classes de processus Gaussiens.



Chapter 1

Introduction

The aim of this chapter is to introduce some of the recent topics of interest in high-
dimensional statistics, not necessarily related to the results of the thesis. The list of
references is not exhaustive and more details are provided in the following chapters. We
inform the reader that the notation may change from chapter to chapter.

1.1 Structured High-Dimensional Models
Over the last decades, Statistics has been at the center of attention, in a wide variety
of ways. Thanks to technological improvements, for instance the increase of computer
performance and the soar of sharing data capacity, high-dimensional statistics has been
extremely dynamic. As a consequence, this field became one of the main pillars of the
modern statistical landscape.

The standard statistical framework considers the case where the sample size is rel-
atively large and the dimension of the observations substantially smaller. As pointed
out in Giraud (2014), the technological evolution of computing has urged a shift of
paradigm from classical statistical theory to high-dimensional statistics. More precisely,
we characterize a statistical problem as high-dimensional whenever the dimension of the
observations is much larger than the sample size. It has become more common with the
increase of accessible features of data.

Generally speaking, statistical problems are ill posed in the high-dimensional setting.
Further assumptions on the structure of the underlying model are required in order
to make the problem more significant. For instance in a problem of high-dimensional
regression, we may assume that the vector to estimate is sparse (i.e. only few components
are non-zero), or that the signal matrix is of small rank when dealing with matrix
estimation. These assumptions are usually very realistic and endorsed by empirical
evidence. This is what can described as as Structured High-Dimensional Statistics.

A new paradigm

One way to summarize some paradigms of modern Statistics is the following. For statis-
tical methods to be "successful", they need to fulfill the OCAR criterion, where OCAR
stands respectively for Optimality, Computational tractability, Adaptivity and Robust-
ness.

3



4 CHAPTER 1. INTRODUCTION

• Optimality
In order to evaluate and compare algorithms the oldest criterion is probably the
statistical optimality. An estimator is said to be optimal if it cannot be improved
in some sense. A widely used criterion is minimax optimality. The notion of
minimax optimality is relative to some risk. In order to make this notion more
transparent, let us assume that we observe i.i.d realizations X1, . . . , Xn of some
random variable X. Suppose moreover that the distribution of X is given by
P✓ for some parameter ✓ 2 ⇥ we are interested in. Given a semi-distance d,
the performance of an estimator ✓̂n = ✓̂n(X1, . . . , Xn) of ✓ is measured by the
maximum risk of this estimator on ⇥:

r(✓̂n) = sup
✓2⇥

E✓

⇣
d2(✓̂n, ✓)

⌘
,

where E✓ denotes the expectation with respect to (X1, . . . , Xn). The minimax risk
is given by the smallest worst-case risk reached among all measurable estimators.
It is given by:

R
⇤
n = inf

✓̂n

r(✓̂n),

where the infimum is over all estimators. In practice, we have a general framework
to derive minimax lower bounds, cf. Tsybakov (2008). We say that an estimator
✓⇤n is non-asymptotically minimax optimal if the following holds

r(✓⇤n)  CR
⇤
n,

where C > 0 is a constant.
Given this criterion, we are interested in estimators achieving the minimax optimal
rate. As an example, consider the problem of low rank matrix estimation. It turns
out that a simple spectral procedure is minimax optimal. Indeed, Koltchinskii
et al. (2011) gives a lower bound and a matching upper bound for the problem
of minimax low-rank matrix estimation through a nuclear norm penalization pro-
cedure. We recall that the notion of minimax optimality is one way to define
optimality, and one may think of other criteria, for instance a Bayesian risk in-
stead of the minimax risk.
We should point out that the notion of minimax risk is not impeccable. In general,
this notion is pessimistic since the worst case scenario may be located in a tiny
region of ⇥. In that case, the worst-case scenario is not likely to be realized. This
fact is detailed further in Chapter 5.

• Computational Tractability
Computational tractability captures whether a given algorithm can be computed
in polynomial time. For instance, a method based on a sample of size N that
runs in O(N2) is practical while another one running in O(e

p
N) is not. The

recent importance of this criterion is due to the explosion of sample sizes versus
the limited capacity of our actual machines. Indeed, for many statistical problems
computational by non-tractable exhaustive search methods (i.e. greedy methods
testing all possible solutions in a finite set of an exponential size) are shown to be
optimal from a statistical point of view.
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One of the most challenging problems related to tractability of algorithms is related
to computational lower bounds. While a large body of techniques is available to
derive general lower bounds for minimax risks, not much in known when we restrict
the class of estimators to polynomial time methods. Karp (1972) has proved, for
the specific problem of detecting the presence of a hidden clique, that there is a
non trivial gap between what could be achieved by any method and by polynomial
time methods. This breakthrough shows that it is not always possible to reach
statistical optimality through polynomial methods. Inspired by the planted clique
problem, the previous fact has been extended to Sparse PCA among many other
problems, cf. Berthet and Rigollet (2013). Apart from this reduction to the
planted clique problem, it is still unclear how to derive general computational
lower bounds having the same flavour as information-theoretical lower bounds.

• Adaptivity
In order to measure the performance of a given estimator, we may assume that the
data is generated according to some model. This model is used further to evaluate
the algorithm. Usually, a model depends on different parameters, and the proposed
estimator may depend on these parameters. The criterion of adaptivity aims to
compare two optimal algorithms through their ability to adapt to the parameters of
the model. Sometimes optimality and adaptive optimality are slightly different but
in many scenarios adaptivity is possible at almost no cost. For instance consider
the problem of high-dimensional estimation in linear regression. The performance
of LASSO and SLOPE (Bogdan et al. (2015)) estimators is studied in Bellec
et al. (2018) under similar conditions on the design. It turns out that a sparsity
dependent tuning of LASSO achieves the minimax estimation rate. While LASSO
requires a prior knowledge of the sparsity, SLOPE is adaptively minimax optimal.
Still, we may argue that SLOPE requires a higher complexity due to the sorting
step. This may be seen as the price to pay for adaptation. To the best of our
knowledge, the question of minimax adaptive optimality using a fixed complexity
has not been addressed so far. Generally speaking adaptation to sparsity can be
done through two main techniques, either by a Lepski type method or by sorted
thresholding procedures as in the Benjamini-Hochberg procedure.

• Robustness
There are two popular notions of robustness. The classical robustness is with
respect to outliers, in the sense that a small fraction of data is corrupted by outliers.
The Huber contamination model is a typical example of it (Huber (1992)). Let
X1, . . . , Xn be n i.i.d random variables and p̄ the probability distribution of Xi.
There are two probability measures p, q and a real ✏ 2 [0, 1/2) such that

p̄ = (1� ✏)p+ ✏q, 8i 2 {1, . . . , n}.

This model corresponds to assuming that (1 � ✏)-fraction of observations, called
inliers, are drawn from a reference measure p, whereas ✏-fraction of observations
are outliers and are drawn from another distribution q. In general, all the three
parameters p, q and ✏ are unknown. The parameter of interest is the reference
distribution p, whereas q and ✏ play the role of nuisance parameters. For instance,
the particular case where p is the normal distribution with unknown mean ✓ and
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variance 1 has been extensively studied in the last decade, cf. Diakonikolas et al.
(2016, 2017) and references therein.

In dimension one, it is clear that the empirical median is a robust alternative to
the empirical mean. The problem becomes more complicated in higher dimensions
since there are many generalizations of median in dimension larger than two. For
the normal mean estimation problem, Chen et al. (2018) show that robust estima-
tion can be achieved in a minimax sense through Tukey’s median (Tukey (1975)).
Unfortunately, this approach is not computationally efficient. Recently, many ef-
forts has been made to prove similar results using polynomial time methods, for
instance, filtering techniques (Diakonikolas et al. (2016)) and group threshold-
ing (Collier and Dalalyan (2017)). We should add here that the outliers may be
deterministic, random or even adversarial.

A more recent notion of robustness is with respect to heavy tailed noise. It is
pioneered by Catoni (2012). Although the sub-Gaussian noise assumption is not
always realistic, it is quite convenient in order to derive non-asymptotic results
thanks to concentration properties. These guarantees fail under heavy tail as-
sumptions of the noise. Assume that we observe X1, . . . , Xn 2 R

p such that

Xi = µ+ ⇠i,

where ⇠i are i.i.d centered sub-Gaussian random vectors with independent entries.
In that case the empirical mean X̂ satisfies, for any given confidence level � > 0,
the following:

P

 
kX̂ � µk � C

 r
p

n
+

r
log 1/�

n

!!
 �,

where C > 0 and k.k denotes the `2 norm. Recently, the Median-Of-Means esti-
mator (Nemirovskii and Yudin (1983)) was shown to achieve similar results under
very mild assumptions on the noise in dimension one, cf. Devroye et al. (2016).
Generalization to high dimensions through tractable methods has been an active
field of research in recent years. The recent paper by Cherapanamjeri et al. (2019),
exhibits a new method based on an SDP relaxation achieving similar results in
polynomial time. Their algorithm is significantly faster than the one proposed
by Hopkins (2018), which was, to the best of our knowledge, the first polynomial
method achieving sub-Gaussian guarantees for mean estimation under only the
second moment assumption.

To sum up, we have presented some criteria that we believe are in the core of mod-
ern Statistics. Following this perspective, the ideal algorithm would satisfy the OCAR.
However this is subject to further evolution. Distributional implementation along with
storage capacity are already attracting attention, cf. Szabo and van Zanten (2017)
and Ding et al. (2019) for recent advances in these directions. If the data keeps grow-
ing without improving the speed limitations then at some point distributed algorithms
will become to polynomial time methods what today polynomial time methods are for
exponential time methods.
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1.2 Interaction with other disciplines
In the previous paragraph, we described what we may consider as the modern statis-
tical paradigm. It is also important to recall that modern statistics have been shaped
through many interactions with other disciplines. We only investigate here two of these
interactions that are of interest in the rest of this manuscript.

Interaction with statistical physics and mechanics
Matter exists in different phases, different states of matter with qualitatively different
properties. A phase transition is a singularity in its thermodynamic behavior. As one
changes the macroscopic variables of a system, sometimes its properties will abruptly
change, often in a dramatic way. We devote this section to discuss some popular phase
transitions that has inspired research in Statistics.

Percolation

Among the most popular models involving phase transitions in physics are the Ising
model (a model for magnetic solids) and percolation. We only consider here the latter
model for simplicity of its phase transition.

The percolation model, is a model meant to study the spread of fluid through a
random medium. More precisely, assume that the medium of interest has different
channels with different wideness. The fluid will only spread through channels that are
wide enough. A question of interest here is whether the fluid can reach the origin starting
from outside a large region.

The first mathematical model of percolation was introduced in Broadbent and Ham-
mersley (1957). More precisely, the channels are the edges or bonds between adjacent
sites on the integer lattice in the plane Z

2. Each bond is passable with probability p
(and hence blocked with probability q = 1 � p), and all the bonds are independent of
each other. The fundamental question of percolation theory is for which p is there an
infinite open cluster?

(a) p = 0.45 (b) p = 0.6

Figure 1.1: Illustration of percolation on a square lattice of size 500 ⇥ 500. Bonds are
red if open, white if blocked and percolation paths are in green.

If we set E1 to be the event that there is an infinite open cluster, then it is trivial
that P(E1) is non-decreasing with respect to p. Moreover, by Kolmogorov’s 0/1-law
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P(E1) is 0 or 1 for any p. Hence, it is natural to expect the existence of a phase
transition around some critical threshold pc.

Inspired by a line of works, to name Harris (1960), Kesten (1980) proved the long
conjectured result that the critical probability is exactly 1/2. In other words, the ob-
served phase transition on the square lattice is the following:

• For p > 1/2, there is with probability one a unique infinite open cluster.

• For p < 1/2, just the opposite occurs, and percolation is impossible.

Connectivity in the Erdős-Rényi Model

In their seminal paper, Erdős and Rényi (1960) introduced and studied several properties
of what we call today the Erdős-Rényi (ER) Model as one of the most popular models
in graph theory.

In the ER model G(n, p), n nodes are constructed randomly, then each edge is
included in the graph with probability p independent from every other edge. This
provides us with a model described by a single parameter. This model has been (and
still is) a source of intense research activity, in particular due to its phase transition
phenomenon. A very interesting question is related to connectivity of this graph.

Obviously, as p grows the graph is most likely to be connected. One may wonder what
is the probability above which the graph is connected almost surely. Erdős and Rényi
(1960) show the existence of a sharp phase transition for the described phenomenon as
n tends to infinity. For any ✏ 2 (0, 1), they prove the following

• For p < (1�✏) lognn , then a graph in G(n, p) almost surely contains isolated vertices,
and thus is disconnected.

• For p > (1 + ✏) lognn , then a graph in G(n, p) is almost surely connected.

Thus logn
n is a sharp threshold for the connectivity of G(n, p).

There is some similarity between percolation and connectivity in the ER Model.
Indeed, we may see the latter problem as a percolation problem on the complete graph
instead of the lattice. One may also notice that the critical probability in the ER Model
is smaller than the one in percolation and the difference is mainly due to their different
geometric structures - more degrees of freedom are allowed in the ER Model. The precise
link between the two problems is beyond the scope of this introduction.

Spiked Wigner Model

Random matrices are in the heart of many problems in multivariate statistics such as
estimation of covariance matrices and low rank matrix estimation, to name a few. We
present here a phase transition phenomenon in the Wigner Model.

Wigner was the first to observe a very interesting property of the spectrum of ran-
dom matrices. Suppose that W is drawn from the n ⇥ n GOE (Gaussian Orthogonal
Ensemble), i.e. W is a random symmetric matrix with off-diagonal entries N (0, 1

n),
diagonal entries N (0, 2

n), and all entries independent (except for symmetry Wij = Wji).
Set µn to be the empirical spectral measure of W such that

µn(A) =
1

n
|{eigenvalues of W in A}| , 8A ⇢ R.
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Figure 1.2: The empirical spectral distribution of a matrix drawn from the 1500⇥ 1500
GOE.

The limit of the empirical spectral measure for Wigner matrices, as n tends to
infinity, is the Wigner semicircle distribution, as described by Wigner (1958). The
semicircle distribution is supported on [�2, 2] and is given by the density

µ(x) =
1

2⇡

p
4� x2, 8x 2 [�2, 2].

This phenomenon is more general and universal in the sense that it holds not neces-
sarily for matrices with Gaussian entries. From a physical point of view, we may view
the eigenvalues of W as an interacting system where it is possible to characterize these
interactions precisely. The previous result, in particular, states that the eigenvalues are
confined in the compact set [�2, 2] with high probability (this holds even almost surely).

A very interesting question is about the behaviour of the spectrum of W under an
external action. More precisely, for � > 0, and a spike vector x such that kxk = 1 , we
define the spiked Wigner model as follows:

Y = �xx> +W.

As above, it is not difficult to observe that the top eigenvalue of Y is 2 if � = 0 and
that it tends to infinity as � goes to infinity. Hence, we may wonder at which power �
of the spike the spectrum gets affected. This question was solved by Féral and Péché
(2007) where a new phase transition phenomenon arises as n tends to infinity.

• For �  1, the top eigenvalue of Y converges almost surely to 2.

• For � > 1, the top eigenvalue converges almost surely to �+ 1/� > 2.

It was further shown in Benaych-Georges and Nadakuditi (2011) that the top (unit-
norm) eigenvector x̂ of Y has non-trivial correlation with the spike vector almost surely,
if and only if � > 1. This phase transition is probably at the heart of a better under-
standing of spectral methods. Interestingly, in the regime where � < 1, we may not
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Figure 1.3: The empirical spectral distribution of a spiked Wigner matrix with n = 1500
and � = 2.

distinguish the presence of a spike from its absence. In Perry et al. (2018), this question
is studied in detail and it turns out that, under the Gaussian random spike, the spectral
test based on the top eigenvalue of Y is, in a certain sense, the best test that one should
use in order to test the presence of a spike.

This result is exciting but also alarming. Indeed, the spiked model is a simple
model to study the performance of Principal Component Analysis (PCA). Basically, we
assume the presence of a low rank signal corrupted by some noise, and want to recover
the underlying signal. The previous results show that, in the regime where � < 1, there
is no hope to capture non-trivial correlation with the signal and hence the resulting PCA
is meaningless. Such facts are not always known to practitioners and we believe that
a good use and interpretation of PCA should always start with a safety test asserting
whether PCA is meaningful or not.

Interaction with optimization
Statistics and Learning Theory are intimately linked with optimization when it comes
to algorithms. Indeed, in Learning Theory, a classical problem is to minimize some
empirical risk. In order to evaluate the performance of a predictor or a classifier we rely
on a specific choice of some loss function and evaluate the performance with respect to
it. In that sense the notion of goodness of training is relative to the choice of loss. As
long as we can optimize the objective loss function, we may be able to derive a good
predictor that is usually optimal in some sense.

For statisticians, the main interest is statistical accuracy. It is still important to
wonder whether we can in practice find an optimizer. For this purpose, we rely on the
wealth of results developed by the optimization community that is mostly designed for
convex objective functions (where we have existence of global minima) defined on convex
sets. Hence, as long as the goal is to minimize some convex function on a convex set,
we may assume given the corresponding minimizer.

Unfortunately, in many important problems convexity is not granted. A popular
approach is to convexify the objective function and to optimize its convex counterpart.
This is one important example of the influence of optimization on statistics. By doing
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so, one still has to prove that a good solution of the convex problem leads to a good
predictor for the original problem. In classification, SVM and boosting are examples
supporting that the convexification trick can be optimal. The previous remark does
not hold in general. As an example, Sparse PCA is a non-convex problem where its
SDP relaxation (cf. d’Aspremont et al. (2005)) leads to a strict deterioration of the
rate of estimation compared to a solution of the original problem. In simple words,
convexification is not always optimal.

Most interestingly, the interplay between statistics and optimization becomes more
beneficial when combining both realms. A popular approach handling non-convex prob-
lems is given by variants of greedy descents over the objective function. This is usually
how iterative algorithms are designed. Some popular examples are Lloyds for K-means
clustering (Lloyd (1982)) and Iterative Hard Thresholding for sparse linear regression
(Shen and Li (2017); Foucart and Lecué (2017); Liu and Barber (2018)).

These algorithms are non-convex counterparts of gradient descent methods. One may
argue that studying the statistical performance of iterative algorithms can be richer than
analyzing minimizers of objective functions. We discuss below this fact.

• Advantages of iterative algorithms:
It is common in the statistical community to evaluate the performance of esti-
mators given as solutions of optimization problems. In practice, we do not have
access to one of the optimizers but only to an approximation. The corresponding
approximation error is missing in the statistical analysis and is referred to as the
optimization error. By studying iterative algorithms, we get a precise control of
both errors after a certain number of steps.
The optimization error can be made as small as possible by running a large number
of iterations. Usually the number of iterations is set at some precision level. While
the optimization error is vanishing and depends on the speed of the algorithm, the
statistical error is intrinsic. Hence, the latter is in all cases a lower bound of
the global error. That being said, there is no need to run an infinite number of
iterations and we can always stop the algorithm once the statistical accuracy is
reached. Combining statistics and optimization, we may consider early stopping
rules saving time and efforts from the optimization side.
Following the previous fact, there is no need of global convergence of the algorithm.
Existence of global minima is not even required. Indeed, as long as local minima of
the objective function are below the optimal statistical error, then the algorithm
succeeds.
To sum up, on one hand, iterative algorithms may tolerate non-convexity for some
statistical problems, while on the other hand statistical limits and assumptions
allow for more flexibility and improvements of the algorithms.

• Defects of iterative algorithms:
Although the benefits of combining optimization and statistics are numerous, there
are still some drawbacks in using iterative algorithms. The first one is probably
related to ignoring which deterministic descent algorithm to mimic in order to con-
struct an iterative procedure. Objective function minimization is a good guideline
for that purpose, as long as we only care about the statistical performance. To
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the best of our knowledge, the choice of iterative methods is empirical and there
is no general rule to master it.

Another drawback and probably the most limiting part in the analysis of iterative
algorithms is the dependence between the steps. Indeed, while the noise is usually
assumed to have independent entries, after one iteration the estimator usually
starts depending on the noise in a complex way. It is not always trivial to handle
these dependencies but in some important examples we can use the contraction
of the objective function in order to get around it, cf. for example, Lu and Zhou
(2016).

We conclude this section by mentioning a potential direction to explore as a consequence
of the interplay between the fields of Optimization and Statistics. It is well known that
in both fields, the notion of adaptivity is of high importance. An adaptive algorithm
solving an optimization problem is probably not adaptive from a statistical perspective
and vice versa. Simultaneous analysis, through iterative algorithms for instance, may
lead to a more accurate notion of adaptivity.

1.3 Variable Selection and Clustering
Variable selection is an important task in Statistics that has many applications. Consider
the linear regression model in high dimensions, and assume that the underlying vector
✓ is sparse. There are three questions of interest that could be treated independently.

• Detection: Test the presence of a sparse signal against the hypothesis that the
observation is pure noise.

• Estimation: Estimate the sparse signal vector.

• Support recovery: Recover the set of non-zero variables (support of the true sparse
signal).

In what follows, the question of variable selection is equivalent to support recovery.
While detection and support recovery require additional separation conditions, in order
to get meaningful results, it is not the case for estimation. The three problems cannot
always be compared in terms of hardness. It is obvious that detection is easier than
support recovery in the sense that it requires weaker separation conditions, but there
are no general rules to compare these tasks.

At this stage, we want to emphasize that these three tasks may be combined for a
specific purpose but they can also be used independently following the statistical ap-
plication. Let us consider an illustrative example of these tasks. An internet service
provider routinely collects statistics of server to determine if there are abnormal black-
outs. While this monitoring is performed on a large number of servers, only very few
servers are believed to be experiencing problems if there are any. This represents the
sparsity assumption. The detection problem is then equivalent to determining if there
are any anomalies among all servers; the estimation problem is equivalent to associating
weights (probability of failure) to every server, while support recovery is equivalent to
identifying the servers with anomalies.
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Probably one of the most exciting applications of high-dimensional variable selection
is in genetic epidemiology. Typically, the number of subjects n, is in thousands, while
p ranges from tens of thousands to hundreds of thousands of genetic features. The
number of genes exhibiting a detectable association with a trait is extremely small in
practice. For example, in disease classification, it is commonly believed that only tens
of genes are responsible for a disease. Selecting tens of genes helps not only statisticians
in constructing a more reliable classification rule, but also biologists to understand
molecular mechanisms.

Apart from its own interest, variable selection can be used in estimation procedures.
For instance it can be used as a first step in sparse estimation reducing the dimension
of the problem. The simple fact that estimating a vector on its true support has a
significantly smaller error than on the complete vector, has encouraged practitioners
to proceed to variable selection as a first step. Wasserman and Roeder (2009) is an
example of works studying the theoretical aspects of methods in the same spirit. Long
story short, the main idea of this approach is to first find a good sparse estimator and
then keep its support. This step is also known as model selection. Once the support is
estimated, the dimension of the problem is much smaller than the initial dimension p.
The second step is then to estimate the signal solving a simple least-square problem on
the estimated support.

Examples of Variable Selection methods
The issues of variable selection for high-dimensional statistical modeling has been widely
studied in last decades. We give here a brief summary of some well-known procedures.
All these procedures are thresholding methods. Logically, selecting a variable is only
possible if we can distinguish it from noise. As long as we can estimate the noise level,
the variables that are above this level are more likely to be relevant. This also explains
why the threshold usually depends on the noise and not necessarily on the significant
variables.

In order to present some of these thresholding methods, assume that we observe
x 2 R

p, such that
x = ✓ + ⇠,

where ✓ is a sparse vector, and ⇠ is a vector of identically distributed noise variables,
not necessarily independent. A thresholding procedure typically returns an estimated
set Ŝ of the form

Ŝ = {j : |xj| > t(x)},

where xj is the j-th component of x. Note that the threshold t(.) may depend on
the vector x. Here are examples of thresholding procedures, where the two first are
deterministic while the others are data-dependent.

• Bonferroni’s procedure: Bonferroni’s procedure with family-wise error rate (FWER)
at most ↵ 2 (0, 1) is the thresholding procedure that uses the threshold

t(x) = F�1(1� ↵/2p).

We use the abusive notation F�1 to denote the generalized inverse of the c.d.f of
the component of ⇠.



14 CHAPTER 1. INTRODUCTION

• Sidák’s procedure (Šidák (1967)): This procedure is more aggressive (i.e. gives
higher threshold) than Bonferroni’s procedure. It uses the threshold

t(x) = F�1((1� ↵/2)1/p).

Consider the non-increasing arrangement of coordinates of x in absolute value such that
|x|(1) � · · · � |x|(p). The next procedures are data-dependent and are shown to be
strictly more powerful than Bonferroni’s procedure.

• Holm’s procedure (Holm (1979)): Let k be the largest index such that

|x|(i) � F�1(1� ↵/2(p� i+ 1)), 8i  k.

Holm’s procedure with FWER controlled at ↵ is the thresholding procedure that
uses

t(x) = |x|(k). (1.1)

• Hochberg’s procedure (Hochberg (1988)): More aggressive than Holm’s, the cor-
responding threshold is given by (1.1) where k is the largest index i such that

|x|(i) � F�1(1� ↵/2(p� i+ 1)).

Theoretical properties of these methods, in a more general setting, are analyzed in the
recent work of Gao and Stoev (2018).

Community Detection
Learning community structures is a central problem in machine learning and computer
science. The simplest clustering setting is the one where we observe n agents (or nodes)
that are partitioned into two classes. Depending on available data, we may proceed
differently. When observed data is interactions among agents (e.g., social, biological,
computer or image networks), then clustering is node-based. While, when observed data
is spacial position of agents, then clustering is vector-based. In both cases, the goal is
to infer, from the provided observations, communities that are alike or complementary.
A very popular model for the first case is the Stochastic Block Model (Holland et al.
(1983)), while the two component Gaussian mixture model is the equivalent for the
second case. The problem of community recovery can be reformulated as recovering the
set of labels belonging to the same class and hence can be seen as a variable selection
problem.

As the study of community detection grows at the intersections of various fields, the
notions of clusters and the models vary significantly. As a result, the comparison and
validation of clustering algorithms remains a major challenge.

Stochastic Block Model (SBM)

The SBM has been at the center of attention in a large body of literature. It can be seen
as an extension of the ER model, described previously. Recall that in the ER model,
edges are placed independently with probability p, providing a model described by a
single parameter. It is however well known to be too simplistic to model real networks,
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in particular due to its strong homogeneity and absence of community structure. The
SBM is based on the assumption that agents in a network connect not independently but
based on their profiles, or equivalently, on their community assignment. Of particular
interest is the SBM with two communities and symmetric parameters, also known as
the planted bisection model, denoted here by G(n, p, q), with an integer n denoting the
number of vertices.

More precisely, each node v in the graph is assigned a label �v 2 {�1, 1}, and each
pair of nodes (u, v) is connected with probability p within the clusters of labels and q
across the clusters. Upon observing the graph (without labels), the goal of community
detection is to reconstruct the label assignments. Of course, one can only hope to recover
the communities up to a global flip of labels. When p = q, it is clearly impossible to
recover the communities, whereas for p > q or p < q, one may hope to succeed in
certain regimes. While this is a toy model, it captures some of the central challenges
for community detection. In particular, it represents a phase transition similar to the
ER model. In the independent works of Abbe et al. (2014) and Mossel et al. (2015), the
phase transition of exact recovery is characterized precisely. For any ✏ > 0, we observe
the following as n tends to infinity,

• For pp�
p
q < (1� ✏)

q
2 logn

n , then exact recovery of labels in G(n, p, q) is impos-
sible.

• For pp�
p
q > (1+✏)

q
2 logn

n , then exact recovery of labels in G(n, p, q) is possible
and is achieved through a polynomial time method.

One method achieving the sharp phase transition is based on a spectral method followed
by a rounding procedure. In order to get more intuition on the construction of such a
method, let us observe that the graph adjacency matrix A can be decomposed as follows

A =
p+ q

2
11

> +
p� q

2
⌘⌘> +W,

where 1 is the vector of ones in R
n, ⌘ 2 {�1, 1}n is the vector of labels up to a sign

change and W is a centered sub-Gaussian random matrix with independent entries.
The first term, also known as the mean component can be removed if p+ q is known or
simply by projecting the adjacency matrix on the orthogonal of 1. As a consequence,
the observation A has a similar behaviour as the Spiked Wigner model. It can be
shown that spectral methods are efficient to detect the presence of the planted bisection
structure and also to get non-trivial correlation with the vector of labels. The rounding
step can be seen as a cleaning step that helps finding the exact labels once a non-trivial
correlation is captured.

Gaussian Mixture Model (GMM)

The Gaussian Mixture Model is one of the most popular statistical models. Of particular
interest is the two component Gaussian Mixture Model with two balanced communities.
Similary to SBM, assume that ⌘ 2 {�1, 1}n is a vector of labels. In a GMM with
labels ⌘, the random vectors Yi are assumed to be independent and to follow a Gaussian
distribution with variance 1 centered at ✓1 if ⌘i = 1 or centered at ✓2 if ⌘i = �1,
where ✓1, ✓2 2 R

p are the unknown center vectors. In this setting variables belonging
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to the same group are close to each other and we may rely on distances between the
observations to cluster them.

Figure 1.4: A two-dimensional projection of a two component Gaussian mixture with
n = 100 and p = 1000.

As for SBM, spectral methods used for GMM are inspired by the following fact.
Notice that the observation matrix Y 2 R

p⇥n can be decomposed as follows

Y =
✓1 + ✓2

2
1
> +

✓1 � ✓2
2

⌘> +W,

where W is a centered Gaussian random matrix with independent columns. The mean
component ✓1+✓2

2 1
> can be handled in the same way as for SBM. As a consequence,

clustering is possible when k✓1 � ✓2k is large enough. The observation Y can be viewed
as an asymmetric equivalent of the Spiked Wigner Model. We refer the reader to the
recent work of Banks et al. (2018) for phase transitions in this model.

Apart from community detection, the problem of center estimation in GMM is of
high interest as well. Although many iterative procedures, in the same spirit as K-
means, operate a center estimation step, it is not always true that the center estimation
is necessary to achieve exact recovery. As we will argue in Chapter 6 the two problems
may be considered independently.



Chapter 2

Overview of the Results

This thesis deals with the following statistical problems: Variable selection in high-
Dimensional Linear Regression, Clustering in the Gaussian Mixture Model, Some effects
of adaptivity under sparsity and Simulation of Gaussian processes. The goal of this
chapter is to provide a motivation for these statistical problems, to explain how these
areas are connected and to give an overview of the results derived in the next chapters.
Each chapter can be read independently of the others.

2.1 Variable Selection in High-Dimensional Linear
Regression

In recent years, the problem of variable selection in high-dimensional regression models
has been extensively studied from the theoretical and computational viewpoints. In
making effective high-dimensional inference, sparsity plays a key role. With regard
to variable selection in sparse high-dimensional linear regression, the Lasso, Dantzig
selector, other penalized techniques as well as marginal regression were analyzed in
detail. In some cases, practitioners are more interested in the pattern or support of the
signal rather than its estimation. It turns out, that the problem of variable selection or
support recovery are highly dependent on the separation between entries of the signal on
its support and zero. One may define optimality in a minimax sense for this problem.
In particular, the study of phase transitions in support recovery with respect to the
separation parameter is of high interest. The model of interest is the one of high-
dimensional linear regression

Y = X✓ + �⇠.

When X is an orthogonal matrix the model corresponds to the sparse vector model, while
when X is random it corresponds to noisy Compressed Sensing. Some papers on this
topic include Meinshausen and Bühlmann (2006); Candes and Tao (2007); Wainwright
(2009b); Zhao and Yu (2006); Zou (2006); Fan and Lv (2008); Gao and Stoev (2018).

Chapter 3 is devoted to derive non-asymptotic bounds for the minimax risk of sup-
port recovery under expected Hamming loss in the Gaussian mean model in R

d for
classes of s-sparse vectors separated from 0 by a constant a > 0. Namely, we study the
problem of variable selection in the following model:

Yj = ✓j + �⇠j, j = 1, . . . , d,

17
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where ⇠1, . . . , ⇠d are i.i.d. standard Gaussian random variables, � > 0 is the noise
level, and ✓ = (✓1, . . . , ✓d) is an unknown vector of parameters to be estimated. For
s 2 {1, . . . , d} and a > 0, we assume that ✓ is (s, a)-sparse, which is understood in the
sense that ✓ belongs to the following set:

⇥d(s, a) =
�
✓ 2 R

d : there exists a set S ✓ {1, . . . , d} with at most s elements
such that |✓j| � a for all j 2 S, and ✓j = 0 for all j /2 S

 
.

We study the problem of selecting the relevant components of ✓, that is, of estimating
the vector

⌘ = ⌘(✓) =
�
I(✓j 6= 0)

�
j=1,...,d

,

where I(·) is the indicator function. As estimators of ⌘, we consider any measurable
functions ⌘̂ = ⌘̂(Y1, . . . , Yd) of (Y1, . . . , Yd) taking values in {0, 1}d. Such estimators will
be called selectors. We characterize the loss of a selector ⌘̂ as an estimator of ⌘ by the
Hamming distance between ⌘̂ and ⌘, that is, by the number of positions at which ⌘̂ and
⌘ differ:

|⌘̂ � ⌘| ,
dX

j=1

|⌘̂j � ⌘j| =
dX

j=1

I(⌘̂j 6= ⌘j).

Here, ⌘̂j and ⌘j = ⌘j(✓) are the jth components of ⌘̂ and ⌘ = ⌘(✓), respectively. The
expected Hamming loss of a selector ⌘̂ is defined as E✓|⌘̂ � ⌘|, where E✓ denotes the
expectation with respect to the distribution P✓ of (Y1, . . . , Yd). We are interested in the
minimax risk

inf
⌘̃

sup
✓2⇥d(s,a)

E✓|⌘̃ � ⌘|.

In some cases, we get exact expressions for the non-asymptotic minimax risk as
a function of d, s, a and find explicitly the corresponding minimax selectors. These
results are extended to dependent or non-Gaussian observations and to the problem of
crowdsourcing. Analogous conclusions are obtained for the probability of wrong recovery
of the sparsity pattern. As corollaries, we characterize precisely an asymptotic sharp
phase transition for both almost full and exact recovery. We say that almost full recovery
is possible if there exists a selector ⌘̂ such that

lim
d!1

sup
✓2⇥d(s,a)

1

s
E✓|⌘̃ � ⌘| = 0.

Moreover, we say that exact recovery is possible if there exists a selector ⌘̂ such that

lim
d!1

sup
✓2⇥d(s,a)

E✓|⌘̃ � ⌘| = 0.

Among other results, we prove that necessary and sufficient conditions for almost full
and exact recovery are respectively

a > �
p

2 log(d/s� 1)

and
a > �

p
2 log(d� s) + �

p
2 log(s). (2.1)
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Moreover, we propose data-driven selectors that provide almost full and exact recovery
adaptively to the parameters of the classes.

As a generalization to high-dimensional linear regression, we study in Chapter 4 the
problem of exact support recovery in noisy Compressed Sensing. Assume that we have
the vector of measurements Y 2 R

n satisfying

Y = X✓ + �⇠

where X 2 R
n⇥p is a given design or sensing matrix, ✓ 2 R

p is the unknown signal, and
� > 0. Similarily to the Gaussian sequence model case, we assume that ✓ belongs to
⇥p(s, a).We are interested in the Hamming minimax risk, and therefore in sufficient and
necessary conditions for exact recovery in Compressed Sensing. Table 2.1 summarizes

SNR Upper bound for ML Lower bound
a/� = O(1/

p
s) �2 log(p�s)

a2

a/� = O(1) and a/� = ⌦(1/
p
s)

s log( p
s
)

log(1+s a2

�2 )
_

log(p�s)

log(1+ a2

�2 )

a/� = ⌦(1) s log(ps )
s log(p/s)

log(1+sa2/�2)

Table 2.1: Phase transitions in Gaussian setting.

known sufficient and necessary conditions for exact recovery in the setting where both
X and ⇠ are Gaussian.

We propose an algorithm for exact support recovery in the setting of noisy com-
pressed sensing where all entries of the design matrix are i.i.d standard Gaussian. This
algorithm is the first polynomial time procedure to achieve the same conditions of exact
recovery as the exhaustive search (maximal likelihood) decoder that was studied in Rad
(2011), Wainwright (2009a). In particular, we prove that, in the zone a/� = O(1), our
sufficient condition for exact recovery has the form

n = ⌦

✓
s log

⇣p
s

⌘
_
�2 log(p� s)

a2

◆
,

where we write xn = ⌦(yn) if there exists an absolute constant C > 0 such that xn �

Cyn. Our procedure has an advantage over the exhaustive search of being adaptive
to all parameters of the problem and computable in polynomial time. The core of
our analysis consists in the study of the non-asymptotic minimax Hamming risk of
variable selection. This allows us to derive a procedure, which is nearly optimal in a
non-asymptotic minimax sense. We develop its adaptive version, and propose a robust
variant of our method to handle datasets with outliers and heavy-tailed distributions of
observations. The resulting polynomial time procedure is near optimal, adaptive to all
parameters of the problem and also robust.

Another topic of interest is the interplay between estimation and support recovery.
As described previously, and depending on applications, practitioners may be interested
either in accurate estimation of the signal or recovering its support. It is not clear
how the two problems are connected. When the support of the signal is known, one
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may achieve better rates of estimation but it is not clear whether the knowledge of the
support is necessary for that.

A fairly neglected problem by practitioners is the bias in high-dimensional estimation.
Despite their popularity, the l1-regularization methods suffer from some drawbacks. For
instance, it is well known that penalized estimators suffer from an unavoidable bias
as pointed out in Zhang and Huang (2008), Bellec (2018). A sub-optimal remedy is to
threshold the resulting coefficients as suggested in Zhang (2009). However, this approach
requires additional tuning parameters, making the resulting procedures more complex
and less robust. It turns out that under some separation of the components this bias
can be removed. Zhang (2010) propose a concave penalty based estimator in order to
deal with the bias term. A variant of this method that is adaptive to sparsity is given
in Feng and Zhang (2017).

Alternatively, other techniques were introduced through greedy algorithms such as
Orthogonal Matching Pursuit: Cai and Wang (2011); Joseph (2013); Tropp and Gilbert
(2007); Zhang (2011b). For Forward greedy algorithm, also referred to as matching pur-
suit in the signal processing community, it was shown that the irrepresentable condition
of Zhao and Yu (2006) for l1-regularization is necessary to effectively select features.
For Backward greedy algorithm, although widely used by practitioners, not much was
known concerning its theoretical analysis in the literature before Zhang (2011a). A
combination of these two algorithms is presented in Zhang (2011a) and turns out to
be successful removing the bias when it is possible. Again, we emphasize that a pre-
cise characterization of necessary and sufficient conditions for the bias to be removed is
missing and will certainly complement the state of the art results.

Chapter 5 is devoted to the interplay between estimation and support recovery. We
introduce a new notion of scaled minimaxity for sparse estimation in high-dimensional
linear regression model. The scaled minimax risk is given by

inf
✓̂

sup
✓2⇥d(s,a)

E✓

⇣
k✓̂ � ✓k2

⌘
,

where the infimum is taken over all possible estimators ✓̂ and k.k is the `2-norm,. We
present more optimistic lower bounds than the one given by the classical minimax theory
and hence improve on existing results. We recover the sharp result of Donoho et al.
(1992) for the global minimaxity in the Gaussian sequence model as a consequence of
our study, namely

inf
✓̂

sup
|✓|0s

E✓

⇣
k✓̂ � ✓k2

⌘
= 2�2s log(d/s)(1 + o(1)) as

s

d
! 0. (2.2)

Here |.|0 is the number of non-zero components and E✓ denotes the expectation with
respect to the distribution of Y in the Gaussian sequence model. Fixing the scale of
the signal-to-noise ratio, we prove that estimation error can be much smaller than the
global minimax error. We also study sufficient and necessary conditions for an estimator
✓̂ to achieve exact estimation that corresponds in the Gaussian sequence model to the
following property:

lim
s/d!0

sup
✓2⇥d(s,a)

E✓

⇣
k✓̂ � ✓k2

⌘

�2s
= 1.
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The notion of exact estimation is closely related to the bias of estimation, since achieving
exact estimation is only possible if the bias is avoidable. Finally, we construct a new
optimal estimator for the scaled minimax sparse estimation and derive its adaptive
variant.

Among other findings, we show that exact support recovery is not necessary to
achieve the scaled minimax error. Indeed, in Chapter 5, we obtain a new phase transition
related to sparsity. Recall that we show in Chapter 3 that the necessary and sufficient
condition to achieve exact recovery is given by

a > �
p

2 log(d� s) + �
p

2 log(s),

cf. (2.1). To achieve exact estimation, we prove that a necessary condition is given by

a > �
p

2 log(d/s� 1) + 2 log log(d/s� 1) + �
p
2 log log(d/s� 1).

Hence exact recovery is not necessary for exact estimation. In fact, when s � log(d)
then exact estimation is easier and when s ⌧ log(d) exact recovery becomes easier. This
shows that there is no direct implication of exact recovery on exact estimation, and the
latter task should be considered as a separate problem.

2.2 Clustering in Gaussian Mixture Model
Gaussian Mixture Model (GMM) is one of the most popular vector clustering models.
The simple case of two components mixture is modeled as follows:

Yi = ⌘i✓ + �⇠i, 8i = 1, . . . , n, (2.3)

where ✓ 2 R
p is the center vector, ⌘ = (⌘1, . . . , ⌘n) 2 {�1, 1}n is the labels vector

and (⇠i)1in is a sequence of standard independent random Gaussian vectors. Two im-
portant questions arising in this model are related to center estimation and community
detection. Performance guarantees for several algorithmic alternatives have emerged, in-
cluding expectation maximization (Dasgupta and Schulman (2007)), spectral methods
(Vempala and Wang (2004); Kumar and Kannan (2010); Awasthi and Sheffet (2012)),
projections (random and deterministic in Moitra and Valiant (2010); Sanjeev and Kan-
nan (2001)) and the method of moments (Moitra and Valiant (2010)).

While Moitra and Valiant (2010) and Mixon et al. (2016) are interested in center
estimation, Vempala and Wang (2004); Kumar and Kannan (2010); Awasthi and Sheffet
(2012) are interested in recovering correctly the clusters. We only focus on the latter
question in this manuscript.

The paper of Lu and Zhou (2016) is one of the first works that study theoretical
guarantees of Lloyd’s algorithm in order to recover communities in the sub-Gaussian
Mixture Model. It, particularly, succeeds to handle the dependence between different
steps of the latter algorithm. Recently, Fei and Chen (2018) and Giraud and Verzelen
(2018) have investigated the clustering performance of SDP relaxed K-means in the
setting of sub-Gaussian Mixture Model. After identifying the appropriate signal-to-noise
ratio (SNR), that is different from the one given by Lu and Zhou (2016) when p > n,
Giraud and Verzelen (2018) prove that the misclassification error decays exponentially
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fast with respect to this SNR. These recovery bounds for SDP relaxed K-means improve
upon the results previously known in the GMM setting.

In high dimensional regime, the exact recovery phase transition is not known. Also,
in the same regime, there is a strict performance gap between known results for fast
iterative algorithms and SDP relaxation methods. It is of interest to know whether this
gap is crucial or not. Eventual positive answers will complement the state of the art
results.

In Chapter 6, we consider the problem of exact recovery of clusters in the two
components Gaussian Mixture Model (2.3). We denote by P(✓,⌘) the distribution of Y
and by E(✓,⌘) the corresponding expectation. We assume that (✓, ⌘) belongs to the set

⌦� = {✓ 2 R
p : k✓k � �}⇥ {�1, 1}n,

where � > 0 is a given constant. We consider the following Hamming loss of selector ⌘̂:

r(⌘̂, ⌘) := min
⌫2{�1,1}

|⌘̂ � ⌫⌘|,

and its expected loss defined as E(✓,⌘)r(⌘̂, ⌘). We are interested in the following minimax
risk:

 � := inf
⌘̃

sup
(✓,⌘)2⌦�

1

n
E(✓,⌘)r(⌘̃, ⌘),

where inf
⌘̃

denotes the infimum over all estimators ⌘̃ with values in {�1, 1}n. After

identifying the appropriate signal-to-noise ratio (SNR) rn of the problem:

rn =
�2/�2

p
�2/�2 + p/n

,

our main contribution is to prove that

 � ⇣ e�r
2
n(1/2+o(1)),

where o(1) denotes a bounded sequence that vanishes as n goes to infinity. As a conse-
quence we recover the sharp phase transition for exact recovery in the Gaussian mixture
model. Namely, we show that the phase transition occurs around the threshold � = �̄n

such that
�̄2

n = �2

✓
1 +

r
1 +

2p

n log n

◆
log n. (2.4)

Moreover, we propose a procedure achieving this threshold. It is a variant of Lloyd’s
iterations initialized by a spectral method. This procedure is a fully adaptive, rate opti-
mal and computationally simple. The main difference in the proposed method compared
to the classical EM style algorithms is the following. Most of these algorithms are based
on estimating the center at each step, and this is exactly where they loose optimality.
In the high SNR regime, there is no hope to achieve even a non-trivial correlation with
the true center vector, but exact recovery of labels is still possible. This means that in
high dimension, any algorithm relying on estimation of the center must be suboptimal.

To the best of our knowledge, the suggested procedure is the first fast method to
achieve optimal exact recovery. In addition, it achieves sharp optimality since we derive
the threshold of (2.4) with precise constant. Moreover, this procedure is as fast as any
spectral method in terms of complexity. In other words, the proposed procedure takes
the best both of the realm of SDP and of the spectral methods.
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2.3 Adaptive robust estimation in sparse vector model
For the sparse vector model

Y = ✓ + �⇠,

estimation of the target vector ✓ and of its `2-norm are classical problems that are of
interest to the statistical community. In the case where ⇠ is Gaussian and � is known,
these questions are well understood. A crucial issue arises when the noise level � and/or
the noise distribution are unknown. Then, one is also interested in the problem of
estimation of �.

The classical Gaussian sequence model corresponds to the case where the noise ⇠ is
standard Gaussian, and the noise level � is known. Then, the optimal rate of estimation
of ✓ under the quadratic loss in a minimax sense on the class of s-sparse vectors is given
in (2.2) and it is attained by thresholding estimators, cf. Donoho et al. (1992). Also, for
the Gaussian sequence model with known �, minimax optimal estimator of the norm
k✓k as well as the corresponding minimax rate are available from Collier et al. (2017).
It remains to characterize the effects of ignoring some of these parameters on different
minimax estimation rates.

We emphasize here, that the parameter ✓ can play two roles. Either it is the param-
eter of interest to estimate or a nuisance parameter if we are interested in estimation
of �2. Chen et al. (2018) explore the problem of robust estimation of variance and of
covariance matrix under Huber’s contamination model. This problem has similarities
with estimation of noise level in our setting. Another aspect of robust estimation of
scale is analyzed by Wei and Minsker (2017) who consider classes of heavy tailed dis-
tributions, rather than the contamination model. The main aim in Wei and Minsker
(2017) is to construct estimators having sub-Gaussian deviations under weak moment
assumptions. In the sparse linear model, estimation of variance is discussed in Sun and
Zhang (2012) where some upper bounds for the rates are given, while estimation of the
`2-norm is discussed in Carpentier et al. (2018). We also mention the recent papers of
Collier et al. (2018); Carpentier and Verzelen (2019) that discuss estimation of other
functionals than the `2-norm in the sparse vector model when the noise is Gaussian with
unknown variance.

In Chapter 7, we consider separately the setting of Gaussian noise, or when the
distribution of ⇠i and the noise level � are both unknown. For the unknown distribu-
tion of ⇠1, we denote by P⇠ the unknown distribution of ⇠1 and consider two types of
assumptions. Either P⇠ belongs to a class Ga,⌧ , i.e. for some a, ⌧ > 0,

P⇠ 2 Ga,⌧ iff E(⇠1) = 0, E(⇠21) = 1 and 8t � 2, P
�
|⇠1| > t

�
 2e�(t/⌧)a ,

which includes for example sub-Gaussian distributions (a = 2), or to a class of distribu-
tions with polynomially decaying tails Pa,⌧ , i.e. for some ⌧ > 0 and a � 2,

P⇠ 2 Pa,⌧ iff E(⇠1) = 0, E(⇠21) = 1 and 8t � 2, P
�
|⇠1| > t) 

⇣⌧
t

⌘a

.

We are interested in the following maximal risk functions over classes of s-sparse vectors:

sup
|✓|0s

vuut
E✓,P⇠,�

 
k✓̂ � ✓k

�

!2

, (2.5)
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for estimation of the vector ✓,

sup
|✓|0s

vuut
E✓,P⇠,�

 
T̂ � k✓k

�

!2

, (2.6)

for estimation of the `2-norm of ✓, and

sup
|✓|0s

E✓,P⇠,�
|�̂2

� �2
|

�2
, (2.7)

for estimation of �2. The studied minimax risks are obtained by taking sup
P2P

in (2.5)-(2.7)

for P = Ga,⌧ , P = Pa,⌧ and P = {N (0, 1)}, and/or sup
�>0

and then taking the infimum

over all estimators.
We summarize the major points that constitute the novelty of our contribution.

• Estimation of �2:
We consider this problem in a minimax setting. We obtain the minimax optimal
rates and exhibit minimax estimators for two classes of noise Ga,⌧ and Pa,⌧ when
P⇠ is known or unknwon. We show that when the noise distribution is exactly
known (and satisfies rather general assumption, not necessarily Gaussian - can
have polynomial tails), then, surprisingly, �2 can be estimated faster than on the
class of sub-Gaussian noise. We establish minimax rate of estimation of �2 for
the case of pure Gaussian noise, which is even faster than the rate of the previous
item.

• Estimation of the norm k✓k :
The non-asymptotic minimax rate for this problem was known only when the
noise is Gaussian with known variance �2, cf. Collier et al. (2017). We find
minimax rates and rate optimal estimators when the variance �2 is either known
or unknown, while noise distribution belongs to one of the following classes:

1. Noise with polynomial tails, P⇠ 2 Pa,⌧ .
2. Noise with exponential tails, P⇠ 2 Ga,⌧ . An unexpected finding here is that the

minimax rate on the class of sub-Gaussian noise is substantially different from
the minimax rate when the noise is Gaussian. In particular, the rate does not
exhibit an elbow between the "dense" and the "sparse" zones characteristic
for minimax rates of estimation of functionals in Gaussian noise.

3. Gaussian noise with unknown variance.

• Estimation of ✓:
We study the minimax optimality for this problem when the noise belongs to a
class of distributions Pa,⌧ or Ga,⌧ . We derive the minimax rates for these settings.
An unexpected conclusion is about the dramatic difference between the rates in
sparse regression with "well spread" regressors and in sparse mean model. It is
known from Gautier and Tsybakov (2013), Belloni et al. (2014) that in sparse
regression with "well spread" regressors (i.e. having positive variance), one can
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attain sub-Gaussian rates even when the noise has polynomial tails. We show that
the situation is completely different in the sparse mean model, where the optimal
rates are much slower and depend on the polynomial index of the noise.

We summarize all our findings in Table 2.2.

Gaussian noise Noise in class Ga,⌧ , Noise in class Pa,⌧ ,
model

p
s log

1
a (ed/s)

p
s(d/s)

1
a

✓
p

s log(ed/s)
known � Donoho et al. (1992)
unknown � Verzelen (2012) unknown � unknown �

k✓k2

q
s log(1 +

p
d
s ) ^ d1/4

p
s log

1
a (ed/s) ^ d1/4

p
s(d/s)

1
a ^ d1/4

known � Collier et al. (2017) known � known �q
s log(1 +

p
d
s ) _

q
s

1+log+(s2/d)

p
s log

1
a (ed/s)

p
s(d/s)

1
a

unknown � unknown � unknown �

1
p
d
_

s

d(1 + log+(s2/d))
1
p
d
_

s

d
log

2
a

✓
ed

s

◆
1
p
d
_

⇣s
d

⌘1� 2
a

�2

Table 2.2: Rates of convergence of the minimax risks.

2.4 Simulation of Gaussian processes
Stochastic processes are very popular for modeling dynamics, in particular, they are
used to model price fluctuations in finance. It is well known that Gaussian processes
can be discretized, then simulated when their covariance is known. Unlike the case of
Brownian motion, simulation is costly when increments of the process are no longer inde-
pendent. The papers by Ayache and Taqqu (2003); Dzhaparidze and Van Zanten (2004)
propose optimal methods, in a precise sense, to simulate fractional Brownian motion
using different series expansions. These series are complicated and use special functions
not giving any intuition on their construction which makes it difficult to generalize them
to other processes.

In Chapter 8, we present a new approach to derive series expansions for some Gaus-
sian processes based on harmonic analysis of their covariance function. In particular, a
new simple rate-optimal series expansion is derived for fractional Brownian motion:

BH
t =

p
c0tZ0 +

1X

k=1

r
�ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
, t 2 [0, T ],

where (
c0 := 0, H < 1/2

c0 := HT 2H�2, H > 1/2,
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8k � 1,

(
ck :=

2
T

R T

0 t2H cos k⇡t
T dt, H < 1/2

ck := �
4H(2H�1)T

(k⇡)2

R T

0 t2H�2 cos k⇡t
T dt, H > 1/2,

and (Zk)k2Z is a sequence of independent standard Gaussian random variables. The
convergence of the latter series holds in mean square and uniformly almost surely, with
a rate-optimal decay of the remainder term of the series. We also develop a general
framework of convergent series expansion for certain classes of Gaussian processes.

The main Chapters of this thesis are based, respectively, on the following works:

Butucea, C., Ndaoud, M., Stepanova, N. A., and Tsybakov, A. B. (2018). Variable
selection with hamming loss. The Annals of Statistics, 46(5):1837-1875.

Ndaoud, M. and Tsybakov, A. B. (2018). Optimal variable selection and adaptive noisy
compressed sensing. arXiv preprint arXiv:1809.03145.

Ndaoud, M. (2019). Interplay of minimax estimation and minimax support recovery
under sparsity. ALT 2019.

Ndaoud, M. (2018b). Sharp optimal recovery in the two component Gaussian mixture
model. arXiv preprint arXiv:1812.08078.

Comminges, L., Collier, O., Ndaoud, M., and Tsybakov, A. B. (2018). Adaptive robust
estimation in sparse vector model. arXiv preprint arXiv:1802.04230v3.

Ndaoud, M. (2018a). Harmonic analysis meets stationarity: A general framework for
series expansions of special Gaussian processes. arXiv preprint arXiv:1810.11850.
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Chapter 3

Variable selection with Hamming
loss

We derive nonasymptotic bounds for the minimax risk of variable selection under ex-
pected Hamming loss in the Gaussian mean model in Rd for classes of at most s-sparse
vectors separated from 0 by a constant a > 0. In some cases, we get exact expressions for
the nonasymptotic minimax risk as a function of d, s, a and find explicitly the minimax
selectors. These results are extended to dependent or non-Gaussian observations and to
the problem of crowdsourcing. Analogous conclusions are obtained for the probability of
wrong recovery of the sparsity pattern. As corollaries, we derive necessary and sufficient
conditions for such asymptotic properties as almost full recovery and exact recovery.
Moreover, we propose data-driven selectors that provide almost full and exact recovery
adaptively to the parameters of the classes.

Based on Butucea et al. (2018): Butucea, C., Ndaoud, M., Stepanova, N. A., and
Tsybakov, A. B. (2018). Variable selection with hamming loss. The Annals of Statistics,
46(5):1837-1875.

3.1 Introduction
In recent years, the problem of variable selection in high-dimensional regression mod-
els has been extensively studied from the theoretical and computational viewpoints.
In making effective high-dimensional inference, sparsity plays a key role. With regard
to variable selection in sparse high-dimensional regression, the Lasso, Dantzig selec-
tor, other penalized techniques as well as marginal regression were analyzed in detail;
see, for example, Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Wainwright
(2009b); Lounici (2008); Wasserman and Roeder (2009); Zhang (2010); Meinshausen
and Bühlmann (2010); Genovese et al. (2012); Ji and Jin (2012) and the references cited
therein. Several other recent papers deal with sparse variable selection in nonparametric
regression; see, for example, Lafferty and Wasserman (2008); Bertin and Lecué (2008);
Comminges and Dalalyan (2012); Ingster and Stepanova (2014); Butucea and Stepanova
(2017).

In this chapter, we study the problem of variable selection in the Gaussian sequence
model

Xj = ✓j + �⇠j, j = 1, . . . , d, (3.1)

29
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where ⇠1, . . . , ⇠d are i.i.d. standard Gaussian random variables, � > 0 is the noise level,
and ✓ = (✓1, . . . , ✓d) is an unknown vector of parameters to be estimated. We assume
that ✓ is (s, a)-sparse, which is understood in the sense that ✓ belongs to one of the
following sets:

⇥d(s, a) =
�
✓ 2 Rd : there exists a set S ✓ {1, . . . , d} with at most s elements

such that |✓j| � a for all j 2 S, and ✓j = 0 for all j /2 S
 

or

⇥+
d (s, a) =

�
✓ 2 Rd : there exists a set S ✓ {1, . . . , d} with at most s elements

such that ✓j � a for all j 2 S, and ✓j = 0 for all j /2 S
 
.

Here, a > 0 and s 2 {1, . . . , d} are given constants.
We study the problem of selecting the relevant components of ✓, that is, of estimating

the vector
⌘ = ⌘(✓) =

�
I(✓j 6= 0)

�
j=1,...,d

,

where I(·) is the indicator function. As estimators of ⌘, we consider any measurable
functions ⌘̂ = ⌘̂(X1, . . . , Xn) of (X1, . . . , Xn) taking values in {0, 1}d. Such estimators
will be called selectors. We characterize the loss of a selector ⌘̂ as an estimator of ⌘ by
the Hamming distance between ⌘̂ and ⌘, that is, by the number of positions at which ⌘̂
and ⌘ differ:

|⌘̂ � ⌘| ,
dX

j=1

|⌘̂j � ⌘j| =
dX

j=1

I(⌘̂j 6= ⌘j).

Here, ⌘̂j and ⌘j = ⌘j(✓) are the jth components of ⌘̂ and ⌘ = ⌘(✓), respectively. The
expected Hamming loss of a selector ⌘̂ is defined as E✓|⌘̂ � ⌘|, where E✓ denotes the
expectation with respect to the distribution P✓ of (X1, . . . , Xn) satisfying (3.1). Another
well-known risk measure is the probability of wrong recovery P✓(Ŝ 6= S(✓)), where
Ŝ = {j : ⌘̂j = 1} and S(✓) = {j : ⌘j(✓) = 1}. It can be viewed as the Hamming distance
with an indicator loss and is related to the expected Hamming loss as follows:

P✓

�
Ŝ 6= S(✓)

�
= P✓

�
|⌘̂ � ⌘| � 1

�
 E✓|⌘̂ � ⌘|. (3.2)

In view of the last inequality, bounding the expected Hamming loss provides a stronger
result than bounding the probability of wrong recovery.

Most of the literature on variable selection in high dimensions focuses on the re-
covery of the sparsity pattern, that is, on constructing selectors such that the proba-
bility P✓(Ŝ 6= S(✓)) is close to 0 in some asymptotic sense (see, e.g., Meinshausen and
Bühlmann (2006); Zhao and Yu (2006); Wainwright (2009b); Lounici (2008); Wasserman
and Roeder (2009); Zhang (2010); Meinshausen and Bühlmann (2010)). These papers
consider high-dimensional linear regression settings with deterministic or random co-
variates. In particular, for the sequence model (3.1), one gets that if a > C�

p
log d for

some C > 0 large enough, then there exist selectors such that P✓(Ŝ 6= S(✓)) tends to 0,
while this is not the case if a < c�

p
log d for some c > 0 small enough. More insight into

variable selection was provided in Genovese et al. (2012); Ji and Jin (2012) by consid-
ering a Hamming risk close to the one we have defined above. Assuming that s ⇠ d1��

for some � 2 (0, 1), the papers Genovese et al. (2012); Ji and Jin (2012) establish an
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asymptotic in d “phase diagram” that partitions the parameter space into three regions
called the exact recovery, almost full recovery, and no recovery regions. This is done
in a Bayesian setup for the linear regression model with i.i.d. Gaussian covariates and
random ✓. Note also that in Genovese et al. (2012); Ji and Jin (2012) the knowledge
of � is required to construct the selectors, so that in this sense the methods are not
adaptive. The selectors are of the form ⌘̂j = I(|Xj| � t) with threshold t = ⌧(�)�

p
log d

for some function ⌧(·) > 0. More recently, these asymptotic results were extended to
a combined minimax–Bayes Hamming risk on a certain class of vectors ✓ in Jin et al.
(2014).

The present paper makes further steps in the analysis of variable selection with a
Hamming loss initiated in Genovese et al. (2012); Ji and Jin (2012). Unlike Genovese
et al. (2012); Ji and Jin (2012), we study the sequence model (3.1) rather than Gaussian
regression and analyze the behavior of the minimax risk rather than that of the Bayes
risk with a specific prior. Furthermore, we consider not only s ⇠ d1�� but general s
and derive nonasymptotic results that are valid for any sample size. Remarkably, we
get an exact expression for the nonasymptotic minimax risk of separable (coordinate-
wise) selectors and find explicitly the separable minimax selectors. Finally, we construct
data-driven selectors that are simultaneously adaptive to the parameters a and s.

Specifically, we consider the minimax risk

inf
⌘̃
sup
✓2⇥

1

s
E✓|⌘̃ � ⌘| (3.3)

for ⇥ = ⇥d(s, a) and ⇥ = ⇥+
d (s, a), where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

In Section 3.2, for both classes ⇥ = ⇥d(s, a) and ⇥ = ⇥+
d (s, a) we find the upper and

lower bounds of the minimax risks and derive minimax selectors for any fixed d, s, a > 0
such that s < d. For ⇥ = ⇥d(s, a), we also propose another selector attaining the
lower bound risk up to the factor 2. Interestingly, the thresholds that correspond to
the minimax optimal selectors do not have the classical form A�

p
log d for some A > 0;

the optimal threshold is a function of a and s. Analogous minimax results are obtained
for the risk measured by the probability of wrong recovery P✓(Ŝ 6= S(✓)). Section 3.3
considers extensions of the nonasymptotic minimax theorems of Section 3.2 to settings
with non-Gaussian or dependent observations. In Section 3.4, as asymptotic corollaries
of these results, we establish sharp conditions under which exact and almost full recovery
are achievable. Section 3.5 is devoted to the construction of adaptive selectors that
achieve almost full and exact recovery without the knowledge of the parameters a and
s. Most of the proofs are given in Appendix 3.6.

Finally, note that quite recently several papers have studied the expected Hamming
loss in other problems of variable selection. Asymptotic behavior of the minimax risk
analogous to (3.3) for classes ⇥ different from the sparsity classes that we consider
here was analyzed in Butucea and Stepanova (2017) and without the normalizing factor
1/s in Ingster and Stepanova (2014). Oracle inequalities for Hamming risks in the
problem of multiple classification under sparsity constraints are established in Neuvial
and Roquain (2012). The paper Zhang and Zhou (2016) introduces an asymptotically
minimax approach based on the Hamming loss in the problem of community detection
in networks.
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3.2 Nonasymptotic minimax selectors
In what follows, we assume that s < d. We first consider minimax variable selection for
the class ⇥+

d (s, a). For this class, we will use a selector ⌘̂+ with the components

⌘̂+j = I(Xj � t), j = 1, . . . , d, (3.4)

where the threshold is defined by

t =
a

2
+
�2

a
log

✓
d

s
� 1

◆
. (3.5)

Set

 +(d, s, a) =

✓
d

s
� 1

◆
�

✓
�

a

2�
�
�

a
log

✓
d

s
� 1

◆◆
+ �

✓
�

a

2�
+
�

a
log

✓
d

s
� 1

◆◆
,

where �(·) denotes the standard Gaussian cumulative distribution function.

Theorem 3.2.1. For any a > 0 and s  d/2, the selector ⌘̂+ in (3.4) with the threshold
t defined in (3.5) satisfies

sup
✓2⇥+

d
(s,a)

1

s
E✓

��⌘̂+ � ⌘
��   +(d, s, a). (3.6)

The proof is given in Appendix 3.6.
A selector ⌘̃ = (⌘̃1, . . . , ⌘̃d) will be called separable if its jth component ⌘̃j depends

only on Xj for all j = 1, . . . , d. We denote by T the set of all separable selectors.
The next theorem gives a lower bound on the minimax risk showing that the upper

bound in Theorem 3.2.1 is tight over separable selectors.

Theorem 3.2.2. For any a > 0 and s < d, we have

inf
⌘̃2T

sup
✓2⇥+

d
(s,a)

1

s
E✓|⌘̃ � ⌘| �  +(d, s, a),

where inf ⌘̃2T denotes the infimum over all separable selectors ⌘̃. Moreover, for any s0 in
(0, s], we have

inf
⌘̃

sup
✓2⇥+

d
(s,a)

1

s
E✓|⌘̃ � ⌘| �

s0

s
 +(d, s, a)�

4s0

s
exp

✓
�
(s� s0)2

2s

◆
,

where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

The proof of the first inequality of Theorem 3.2.2 is given in Appendix 3.6, while the
proof of the second inequality is given Appendix 3.7.

As a straightforward corollary of Theorems 3.2.1 and 3.2.2, we obtain that the es-
timator ⌘̂+ is minimax among the separable selectors in the exact sense for the class
⇥+

d (s, a) and the minimax risk satisfies

inf
⌘̃2T

sup
✓2⇥+

d
(s,a)

1

s
E✓|⌘̃ � ⌘| = sup

✓2⇥+
d
(s,a)

1

s
E✓

��⌘̂+ � ⌘
�� =  +(d, s, a). (3.7)
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Remarkably, this holds under no assumptions on d, s, a except for, of course, some
minimal conditions under which the problem ever makes sense: a > 0 and s  d/2.
Analogous non-asymptotic minimax result is valid for the class

⇥�
d (s, a) =

�
✓ 2 Rd : there exists a set S ✓ {1, . . . , d} with at most s elements

such that ✓j  �a for all j 2 S, and ✓j = 0 for all j /2 S
 
.

We omit details here.
Next, consider the class ⇥d(s, a). A direct analog of ⌘̂+ for ⇥d(s, a) is a selector ⌘̂

with the components
⌘̂j = I

�
|Xj| � t

�
, j = 1, . . . , d, (3.8)

where the threshold t is defined in (3.5). Set

 (d, s, a) =

✓
d

s
� 1

◆
�

✓
�

a

2�
�
�

a
log

✓
d

s
� 1

◆◆

+ �

✓
�

✓
a

2�
�
�

a
log

✓
d

s
� 1

◆◆

+

◆
,

where x+ = max(x, 0). Note that

 (d, s, a)   +(d, s, a). (3.9)

We have the following bound.

Theorem 3.2.3. For any a > 0 and s  d/2, the selector ⌘̂ in (3.8) with the threshold
t defined in (3.5) satisfies

sup
✓2⇥d(s,a)

1

s
E✓|⌘̂ � ⌘|  2 (d, s, a). (3.10)

The proof is given in Appendix 3.6.
For the minimax risk on the class ⇥d(s, a), we have the following corollary, which is

an immediate consequence of Theorems 3.2.2, 3.2.3 and inequality (3.9).

Corollary 3.2.1. For any a > 0 and s  d/2, the selector ⌘̂ in (3.8) with the threshold
t defined in (3.5) satisfies

sup
✓2⇥d(s,a)

E✓|⌘̂ � ⌘|  2 inf
⌘̃2T

sup
✓2⇥d(s,a)

E✓|⌘̃ � ⌘|. (3.11)

Thus, the risk of the thresholding estimator (3.8) cannot be greater than the minimax
risk of separable selectors over the class ⇥d(s, a) multiplied by 2.

We turn now to exact minimax variable selection over the class ⇥d(s, a). Consider a
selector ⌘̄ = (⌘̄1, . . . , ⌘̄d) with the components

⌘̄j = I

✓
log

✓
cosh

✓
aXj

�2

◆◆
� t

◆
, j = 1, . . . , d, (3.12)

where the threshold is defined by

t =
a2

2�2
+ log

✓
d

s
� 1

◆
. (3.13)
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Set

 ̄(d, s, a) =

✓
d

s
� 1

◆
P

✓
e�

a
2

2�2 cosh

✓
a⇠

�

◆
�

d

s
� 1

◆

+P

✓
e�

a
2

2�2 cosh

✓
a⇠

�
+

a2

�2

◆
<

d

s
� 1

◆
,

where ⇠ denotes a standard Gaussian random variable. Our aim is to show that
 ̄(d, s, a) is the minimax risk of variable selection under the Hamming loss over the
class ⇥d(s, a) and that it is nearly achieved by the selector in (3.12). We first prove that
 ̄(d, s, a)d/(d� s) is an upper bound on the maximum risk of the selector (3.12).

Theorem 3.2.4. For any a > 0 and s < d, the selector ⌘̄ in (3.12) with the threshold t
defined in (3.13) satisfies

sup
✓2⇥d(s,a)

1

s
E✓|⌘̄ � ⌘|   ̄(d, s, a)

d

d� s
.

The next theorem establishes the lower bound over separable selectors on the mini-
max risk associated to the upper bound in Theorem 3.2.4.

Theorem 3.2.5. For any a > 0 and s < d, we have

inf
⌘̃2T

sup
✓2⇥d(s,a)

1

s
E✓|⌘̃ � ⌘| �  ̄(d, s, a),

where inf ⌘̃2T denotes the infimum over all separable selectors ⌘̃.

Finally, we show how the above nonasymptotic minimax results can be extended to
the probability of wrong recovery. For any selector ⌘̃, we denote by S⌘̃ the selected set
of indices: S⌘̃ = {j : ⌘̃j = 1}.

Theorem 3.2.6. For any a > 0 and s  d/2, the selectors ⌘̂ in (3.8) and ⌘̂+ in (3.4)
with the threshold t defined in (3.5), and the selector ⌘̄ in (3.12) with the threshold t
defined in (3.13) satisfy

sup
✓2⇥+

d
(s,a)

P✓

�
S⌘̂+ 6= S(✓)

�
 s +(d, s, a), (3.14)

sup
✓2⇥d(s,a)

P✓

�
S⌘̄ 6= S(✓)

�
 s ̄(d, s, a)

d

d� s
(3.15)

and
sup

✓2⇥d(s,a)
P✓

�
S⌘̂ 6= S(✓)

�
 2s (d, s, a). (3.16)

Furthermore,

inf
⌘̃2T

sup
✓2⇥+

d
(s,a)

P✓

�
S⌘̃ 6= S(✓)

�
�

s +(d, s, a)

1 + s +(d, s, a)
(3.17)

and
inf
⌘̃2T

sup
✓2⇥d(s,a)

P✓

�
S⌘̃ 6= S(✓)

�
�

s ̄(d, s, a)

1 + s ̄(d, s, a)
. (3.18)
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The proof is given in Appendix 3.6.
Although Theorem 3.2.6 does not provide the exact minimax solution, it implies

sharp minimaxity in asymptotic sense. Indeed, an interesting case is when the minimax
risk in Theorem 3.2.6 goes to 0 as d ! 1. Assuming that s and a are functions of d,
this corresponds to s +(d, s, a) ! 0 as d ! 1. In this natural asymptotic setup, the
upper and lower bounds of Theorem 3.2.6 for the class ⇥+

d (s, a) are sharp. The same
for the class ⇥d(s, a), if s and a are such that s ̄(d, s, a) ! 0 and that s/d ! 0. We
discuss this issue in Section 3.4; cf. Theorem 3.4.5.

Remark 3.2.1. Papers Genovese et al. (2012); Ji and Jin (2012); Jin et al. (2014)
use a different Hamming loss defined in terms of vectors of signs. In our setting, this
would mean considering not |⌘̂ � ⌘| but the following loss:

Pd
j=1 I(sign(✓̂j) 6= sign(✓j)),

where ✓̂j is an estimator of ✓j and sign(x) = I(x > 0) � I(x < 0). Theorems of this
section are easily adapted to such a loss, but in this case the corresponding expressions
for the nonasymptotic risk contain additional terms and we do not obtain exact minimax
solutions as above. On the other hand, these additional terms are smaller than  (d, s, a)
and  +(d, s, a), and in the asymptotic analysis, such as the one performed in Sections 3.4
and 3.5, can often be neglected. Thus, in many cases, one gets the same asymptotic
results for both losses. We do not discuss this issue in more detail here.

3.3 Generalizations and extensions
Before proceeding to asymptotic corollaries, we discuss some generalizations and exten-
sions of the nonasymptotic results of Section 3.2.

Dependent observations
It is easy to see that Theorems 3.2.1 and 3.2.3 do not use any information on the
dependence between the observations, and thus remain valid for dependent Xj. Fur-
thermore, a minimax optimality property within the class of separable selectors holds
under dependence as well. To be specific, denote by Nd(✓,⌃) the d-dimensional Gaus-
sian distribution with mean ✓ and covariance matrix ⌃. Assume that the distribution
P of (X1, . . . , Xd) belongs to the class

P
+
d

�
s, a, �2

�
=
�
Nd(✓,⌃) : ✓ 2 ⇥

+
d (s, a), �ii = �2, for all i = 1, . . . , d

 
,

where we denote by �ii the diagonal entries of ⌃. Note that, for distributions in this
class, ⌃ can be any covariance matrix with constant diagonal elements.

Theorem 3.3.1. For any a > 0 and s  d/2, and for the selector ⌘̂+ in (3.4) with the
threshold t defined in (3.5) we have

inf
⌘̃2T

sup
P2P+

d
(s,a,�2)

EP|⌘̃ � ⌘| = sup
P2P+

d
(s,a,�2)

EP

��⌘̂+ � ⌘
�� = s +(d, s, a),

where inf ⌘̃2T denotes the infimum over all separable selectors ⌘̃, and EP denotes the
expectation with respect to P. Moreover, for any s0 in (0, s], we have

inf
⌘̃

sup
P2P+

d
(s,a,�2)

EP|⌘̃ � ⌘| � s0 +(d, s, a)� 4s0 exp

✓
�
(s� s0)2

2s

◆
,
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where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

Proof. The upper bound  +(d, s, a) on the minimax risk follows from the fact that
the proofs of Theorems 3.2.1 and 3.2.3 are not affected by the dependence. Indeed,
both the selector and the Hamming loss proceed coordinate-wisely. The lower bound
on the minimax risk follows from Theorem 3.2.2 after observing that the maximum
over P

+
d (s, a, �

2) is greater than the maximum over the subfamily of Gaussian vectors
with independent entries {Nd(✓, �2Id) : ✓ 2 ⇥+

d (s, a)}, where Id is the d ⇥ d identity
matrix.

An interesting consequence of Theorem 3.3.1 and of (3.7) is that the model with
independent Xj is the least favorable model, in the exact nonasymptotic sense, for the
problem of variable selection with Hamming loss on the class of vectors ⇥+

d (s, a).
This fact was also noticed and discussed in Hall and Jin (2010) for the detection

problem. That paper considers the Gaussian model with covariance matrix ⌃ that is
not necessarily a diagonal matrix. It is shown that faster detection rates are achieved
in the case of dependent observations (under some assumptions) than in the case of
independent data. It would be interesting to extend these results to the variable selection
problem in hand.

Non-Gaussian models
As a building block for extension to non-Gaussian observations, we first consider the
following simple model. We observe independent random variables X1, . . . , Xd with
values in a measurable space (X ,U) such that at most s among them are distributed
according to the probability distribution P1 and the other are distributed according to
the probability distribution P0. We assume that P0 6= P1. Let f0 and f1 be densities
of P0 and P1 with respect to some dominating measure. Denote by ⌘ = (⌘1, . . . , ⌘d) the
vector such that ⌘j = 1 if the distribution of Xj is P1 and ⌘j = 0 if it is P0. Define ⇥d(s)
as the set of all vectors ⌘ 2 {0, 1}d with at most s non-zero components. For any fixed
⌘, we denote by E⌘ the expectation with respect to the distribution of (X1, . . . , Xd).
Consider the selector ⌘̂ = (⌘̂1, . . . , ⌘̂d), where

⌘̂j = I

✓
sf1(Xj) � (d� s)f0(Xj)

◆
, j = 1, . . . , d. (3.19)

Theorem 3.3.2. For any s < d, the selector ⌘̂ in (3.19) satisfies

sup
⌘2⇥d(s)

E⌘
1

s
|⌘̂ � ⌘|   (d, s)

d

d� s
,

and, for any s0 in (0, s],

inf
⌘̃

sup
⌘2⇥d(s)

1

s
E⌘|⌘̃ � ⌘| �

s0

s
 (d, s)�

4s0

s
exp

✓
�
(s� s0)2

2s

◆
, (3.20)

where inf ⌘̃ denotes the infimum over all selectors, and

 =  (d, s) = P1

✓
sf1(X1) < (d� s)f0(X1)

◆

+

✓
d

s
� 1

◆
P0

✓
sf1(X1) � (d� s)f0(X1)

◆
.

(3.21)



3.3. GENERALIZATIONS AND EXTENSIONS 37

The proof is given in Appendix 3.7.
Suppose now that instead of two measures P0 and P1 we have a parametric family of

probability measures {Pa, a 2 U} where U ✓ R. Let fa be a density of Pa with respect
to some dominating measure. Recall that the family {fa, a 2 U} is said to have the
Monotone Likelihood Ratio (MLR) property if, for all a0, a1 in U such that a0 < a1,
the log-likelihood ratio log(fa1(X)/fa0(X)) is an increasing function of X. In particular,
this implies (cf. Lehmann and Romano (2006), Lemma 3.4.2) that {fa, a 2 U} is a
stochastically ordered family, that is,

Fa(x) � Fa0(x) for all x if a < a0, (3.22)

where Fa is the cumulative distribution function corresponding to fa. Using these facts,
we generalize the nonasymptotic results of the previous section in two ways. First,
we allow for not necessarily Gaussian distributions and second, instead of the set of
parameters ⇥+

d (s, a), we consider the following set with two restrictions:

⇥+
d (s, a0, a1) =

�
✓ 2 Rd : 9 a set S ✓ {1, . . . , d} with at most s elements
such that ✓j � a1 for all j 2 S, and ✓j  a0 for all j /2 S

 
,

where a0 < a1. We assume that Xj is distributed with density f✓j for j = 1, . . . , d,
and X1, . . . , Xd are independent. In the next theorem, E✓ is the expectation with
respect to the distribution of such X1, . . . , Xd. In what follows, we use the notation
fj = faj , j = 0, 1.

Theorem 3.3.3. Let {fa, a 2 U} be a family with the MLR property, and let a0, a1 2 U

be such that a0 < a1. Set f0 = fa0 and f1 = fa1, then, for any s < d, the selector ⌘̂ in
(3.19) satisfies

sup
✓2⇥+

d
(s,a0,a1)

1

s
E✓|⌘̂ � ⌘|   (d, s)

d

d� s
,

and, for any s0 in (0, s],

inf
⌘̃

sup
✓2⇥+

d
(s,a0,a1)

1

s
E✓|⌘̃ � ⌘| �

s0

s
 (d, s)�

4s0

s
exp

✓
�
(s� s0)2

2s

◆
,

where inf ⌘̃ denotes the infimum over all selectors and  is given in (3.21).

The proof is given in Appendix 3.7.

Example 3.3.1. Let fa be the Gaussian N (a, �2) density with some �2 > 0, and let
a0 < a1. For f1 = fa1 and f0 = fa0, the log-likelihood ratio

log
f1
f0
(X) = X

a1 � a0
�2

�
a21 � a20
2�2

is increasing in X. By Theorem 3.3.3, the selector ⌘̂ on the class ⇥+
d (s, a0, a1) is a vector

with components
⌘̂j = I

�
Xj � t(a0, a1)

�
, j = 1, . . . , d, (3.23)

where
t(a0, a1) =

a1 + a0
2

+
�2 log(d/s� 1)

a1 � a0
.
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Note that for a0 = 0 it coincides with the selector in (3.4) with a = a1, which is minimax
optimal on ⇥+

d (s, a1). Moreover, the minimax risk only depends on a0 and a1 through
the difference � = a1 � a0:

 = �

✓
�
�

2
+
�2 log(d/s� 1)

�

◆
+

✓
d

s
� 1

◆
�

✓
�
�

2
+
�2 log(d/s� 1)

�

◆
.

Example 3.3.2. Let Pa be the Bernoulli distribution B(a) with parameter a 2 (0, 1),
and 0 < a0 < a1 < 1. Denoting by fa the density of Pa with respect to the counting
measure we have, for f1 = fa1 and f0 = fa0,

log
f1
f0
(X) = X log

✓
a1

1� a1

1� a0
a0

◆
+ log

1� a1
1� a0

which is increasing in X for 0 < a0 < a1 < 1. The nearly minimax optimal selector ⌘̂
on the class ⇥+

d (s, a0, a1) is a vector with components ⌘̂j in (3.23) where the threshold
t(a0, a1) is given by

t(a0, a1) =
log(ds � 1)� log 1�a1

1�a0

log( a1
1�a1

1�a0
a0

)
.

Note that the nearly minimax selector ⌘̂j differs from the naive selector ⌘̂nj = Xj. Indeed
since Xj 2 {0, 1} we have ⌘̂j = 1 if either Xj = 1 or t(a0, a1)  0, and ⌘̂j = 0 if either
Xj = 0 or t(a0, a1) > 1. The value  in the risk has the form

 = Pa1

�
X1 < t(a0, a1)

�
+

✓
d

s
� 1

◆
Pa0

�
X1 � t(a0, a1)

�

=

8
><

>:

d/s� 1, t(a0, a1)  0,

1� a1 + a0(d/s� 1), 0 < t(a0, a1) < 1,

1, t(a0, a1) � 1.

In the asymptotic regime when d ! 1 and s ! 1, the minimax risk is of order s and
can converge to 0 only when the parameters d, s, a0, a1 are kept such that 0 < t(a0, a1) <
1, and in addition (1 � a1)s ! 0, a0(d � s) ! 0. Thus, the risk can converge to
0 only when the Bernoulli probabilities a1 and a0 tend sufficiently fast to 1 and to 0,
respectively.

Example 3.3.3. Let Pa be the Poisson distribution with parameter a > 0, and let
a1 > a0 > 0. Denoting by fa the density of Pa with respect to the counting measure we
have

log
f1
f0
(X) = X log

✓
a1
a0

◆
� a1 + a0,

which is increasing in X. The components of the nearly minimax optimal selector ⌘̂ are
given by (3.23) with

t(a0, a1) =
log(d/s� 1) + a1 � a0

log(a1/a0)
.

Note that t(a0, a1) > 0 as soon as d/s � 2 and a1 > a0 > 0. The value of  in the risk
has the form  = Pa1(X1 < t(a0, a1)) + (d/s� 1)Pa0(X1 � t(a0, a1)).
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Crowdsourcing with sparsity constraint
The problem of crowdsourcing with two classes is a clustering problem that can be
formalized as follows; cf. Gao et al. (2016). Assume that m workers provide class
assignments for d items. The class assignment Xij of the ith worker for the jth item is
assumed to have a Bernoulli distribution B(ai0) if the jth item belongs to class 0, and a
Bernoulli distribution B(ai1) if it belongs to class 1. Here, ai0, ai1 2 (0, 1) and ai0 6= ai1
for i = 1, . . . ,m. The observations (Xij, i = 1, . . . ,m, j = 1, . . . , d) are assumed to be
jointly independent. Thus, each vector Xj = (X1j, . . . , Xmj) is distributed according to
P0 or to P1 where each of these two measures is a product of Bernoulli measures, and
P0 6= P1. We assume that there are at most s vectors Xj with distribution P1, and the
other vectors Xj with distribution P0. The aim is to recover the binary vector of class
labels ⌘ = (⌘1, . . . , ⌘d) based on the observations X = (X1, . . . , Xd). Here, ⌘j 2 {0, 1}
satisfies ⌘j = k if the jth item belongs to class k 2 {0, 1}. Thus, we are in the framework
of Theorem 3.3.2 with a particular form of the log-likelihood ratio

log
f1
f0
(Xj) =

mX

i=1

✓
Xij log

✓
ai1

1� ai1

1� ai0
ai0

◆
+ log

1� ai1
1� ai0

◆
, (3.24)

where fk is the density of Pk, k 2 {0, 1}. The following corollary is an immediate
consequence of Theorem 3.3.2.

Corollary 3.3.1. Let s < d, ai0, ai1 2 (0, 1) and ai0 6= ai1 for i = 1, . . . ,m. Then the
selector ⌘̂ in (3.19) with log f1

f0
(Xj) defined in (3.24) satisfies Theorem 3.3.2.

For suitable combinations of parameters d, s, ai0, ai1, the exact asymptotic value of
the minimax risk  can be further analyzed to obtain asymptotics of interest. Gao et
al. Gao et al. (2016) have studied a setting of crowdsourcing problem which is different
from the one we consider here. They did not assume sparsity s, and instead of the
class ⇥d(s, f0, f1) of at most s-sparse binary sequences, they considered the class of all
possible binary sequences {0, 1}d. For this class, Gao et al. Gao et al. (2016) analyzed
specific asymptotics of the minimax risk inf ⌘̃ sup⌘2{0,1}d d

�1
E|⌘̃ � ⌘| in large deviations

perspective.

3.4 Asymptotic analysis. Phase transitions
In this section, we conduct the asymptotic analysis of the problem of variable selection.
The results are derived as corollaries of the minimax bounds of Section 3.2. We will
assume that d ! 1 and that parameters a = ad and s = sd depend on d.

The first two asymptotic properties we study here are exact recovery and almost full
recovery. We use this terminology following Genovese et al. (2012); Ji and Jin (2012)
but we define these properties in a different way, as asymptotic minimax properties for
classes of vectors ✓. The papers Genovese et al. (2012); Ji and Jin (2012) considered a
Bayesian setup with random ✓ and studied a linear regression model with i.i.d. Gaussian
regressors rather than the sequence model (3.1).

The study of exact recovery and almost full recovery will be done here only for the
classes ⇥d(sd, ad). The corresponding results for the classes ⇥+

d (sd, ad) or ⇥�
d (sd, ad) are

completely analogous. We do not state them here for the sake of brevity.
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Definition 3.4.1. Let (⇥d(sd, ad))d�1 be a sequence of classes of sparse vectors:

• We say that exact recovery is possible for (⇥d(sd, ad))d�1 if there exists a selector
⌘̂ such that

lim
d!1

sup
✓2⇥d(sd,ad)

E✓|⌘̂ � ⌘| = 0. (3.25)

In this case, we say that ⌘̂ achieves exact recovery.

• We say that almost full recovery is possible for (⇥d(sd, ad))d�1 if there exists a
selector ⌘̂ such that

lim
d!1

sup
✓2⇥d(sd,ad)

1

sd
E✓|⌘̂ � ⌘| = 0. (3.26)

In this case, we say that ⌘̂ achieves almost full recovery.

It is of interest to characterize the sequences (sd, ad)d�1, for which exact recovery
and almost full recovery are possible. To describe the impossibility of exact or almost
full recovery, we need the following definition.

Definition 3.4.2. Let (⇥d(sd, ad))d�1 be a sequence of classes of sparse vectors:

• We say that exact recovery is impossible for (⇥d(sd, ad))d�1 if

lim inf
d!1

inf
⌘̃

sup
✓2⇥d(sd,ad)

E✓|⌘̃ � ⌘| > 0, (3.27)

• We say that almost full recovery is impossible for (⇥d(sd, ad))d�1 if

lim inf
d!1

inf
⌘̃

sup
✓2⇥d(sd,ad)

1

sd
E✓|⌘̃ � ⌘| > 0, (3.28)

where inf ⌘̃ denotes the infimum over all selectors.

The following general characterization theorem is a straightforward corollary of the
results of Section 3.2.

Theorem 3.4.1. (i) Almost full recovery is possible for (⇥d(sd, ad))d�1 if and only if
sd ! 1 and

 +(d, sd, ad) ! 0 as d ! 1. (3.29)

In this case, the selector ⌘̂ defined in (3.8) with threshold (3.5) achieves almost full
recovery.

(ii) Exact recovery is possible for (⇥d(sd, ad))d�1 if and only if

sd +(d, sd, ad) ! 0 as d ! 1. (3.30)

In this case, the selector ⌘̂ defined in (3.8) with threshold (3.5) achieves exact recovery.
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Although this theorem gives a complete solution to the problem, conditions (3.29)
and (3.30) are not quite explicit. Intuitively, we would like to get a “phase transition”
values a⇤d such that exact (or almost full) recovery is possible for ad greater than a⇤d and
is impossible for ad smaller than a⇤d. Our aim now is to find such “phase transition”
values. We first do it in the almost full recovery framework.

The following bounds for the tails of Gaussian distribution will be useful:
r

2

⇡

e�y2/2

y +
p

y2 + 4
<

1
p
2⇡

Z 1

y

e�u2/2 du 

r
2

⇡

e�y2/2

y +
p
y2 + 8/⇡

, (3.31)

for all y � 0. These bounds are an immediate consequence of formula 7.1.13 in
Abramowitz and Stegun (1964) with x = y/

p
2.

Furthermore, we will need some nonasymptotic bounds for the expected Hamming
loss that will play a key role in the subsequent asymptotic analysis. They are given in
the next theorem.

Theorem 3.4.2. Assume that s < d/2.

(i) If
a2 � �2

�
2 log

�
(d� s)/s

�
+W

�
for some W > 0, (3.32)

then the selector ⌘̂ defined in (3.8) with threshold (3.5) satisfies

sup
✓2⇥d(s,a)

E✓|⌘̂ � ⌘|  (2 +
p
2⇡)s�(��), (3.33)

where � is defined by

� =
W

2
p

2 log((d� s)/s) +W
. (3.34)

(ii) If a > 0 is such that

a2  �2
�
2 log

�
(d� s)/s

�
+W

�
for some W > 0, (3.35)

then, for any s0 in (0, s] we have

inf
⌘̃

sup
✓2⇥d(s,a)

E✓|⌘̃ � ⌘| � s0�(��)� 4s0 exp

✓
�
(s� s0)2

2s

◆
, (3.36)

where the infimum is taken over all selectors ⌘̃ and � > 0 is defined in (3.34).

The proof is given in Appendix 3.6.
The next theorem is an easy consequence of Theorem 3.4.2. It describes a “phase

transition” for ad in the problem of almost full recovery.

Theorem 3.4.3. Assume that lim supd!1 sd/d < 1/2:

(i) If, for all d large enough,

a2d � �2
�
2 log

�
(d� sd)/sd

�
+ Ad

q
2 log

�
(d� sd)/sd

��

for an arbitrary sequence Ad ! 1, as d ! 1, then the selector ⌘̂ defined by (3.8)
and (3.5) achieves almost full recovery:

lim
d!1

sup
✓2⇥d(sd,ad)

1

sd
E✓|⌘̂ � ⌘| = 0.
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(ii) Moreover, if there exists A > 0 such that for all s and d large enough the reverse
inequality holds:

a2d  �2
�
2 log

�
(d� sd)/sd

�
+ A

q
2 log

�
(d� sd)/sd

��
(3.37)

then almost full recovery is impossible:

lim inf
d!1

inf
⌘̃

sup
✓2⇥d(sd,ad)

1

sd
E✓|⌘̃ � ⌘| > 0.

Here, inf ⌘̃ is the infimum over all selectors ⌘̃.

The proof is given in Appendix 3.6.
Inspection of the proof shows that the lower bound in Theorem 3.4.3 holds true for

an arbitrary sd � 5 (possibly fixed), if (3.37) is satisfied for some A in (0,1).
Under the sparsity assumption that

sd ! 1, d/sd ! 1 as d ! 1, (3.38)

Theorem 3.4.3 shows that the “phase transition” for almost full recovery occurs at the
value ad = a⇤d, where

a⇤d = �
q

2 log
�
(d� sd)/sd

��
1 + o(1)

�
. (3.39)

Furthermore, Theorem 3.4.3 details the behavior of the o(1) term here.
We now state a corollary of Theorem 3.4.3 under simplified assumptions.

Corollary 3.4.1. Assume that (3.38) holds and set

ad = �
p

2(1 + �) log(d/sd) for some � > 0.

Then the selector ⌘̂ defined by (3.8) with threshold t = �
p

2(1 + "(�)) log(d/sd) where
"(�) > 0 depends only on �, achieves almost full recovery.

In the particular case of sd = d1��(1 + o(1)) for some � 2 (0, 1), condition (3.38) is
satisfied. Then log(d/sd) = �(1 + o(1)) log d and it follows from Corollary 3.4.1 that for
ad = �

p
2�(1 + �) log d the selector with components ⌘̂j = I(|Xj| > �

p
2�(1 + ") log d)

achieves almost full recovery. This is in agreement with the findings of Genovese et al.
(2012); Ji and Jin (2012) where an analogous particular case of sd was considered for a
different model and the Bayesian definition of almost full recovery.

We now turn to the problem of exact recovery. First, notice that if

lim sup
d!1

sd < 1

the properties of exact recovery and almost full recovery are equivalent. Therefore, it
suffices to consider exact recovery only when sd ! 1 as d ! 1. Under this assumption,
the “phase transition” for ad in the problem of exact recovery is described in the next
theorem.

Theorem 3.4.4. Assume that limd!1 sd = 1 and lim supd!1 sd/d < 1/2.
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(i) If
a2d � �2

�
2 log

�
(d� sd)/sd

�
+Wd

�

for all d large enough, where the sequence Wd is such that

lim inf
d!1

Wd

4(log(sd) +
p
log(sd) log(d� sd))

� 1, (3.40)

then the selector ⌘̂ defined by (3.8) and (3.5) achieves exact recovery:

lim
d!1

sup
✓2⇥d(sd,ad)

E✓|⌘̂ � ⌘| = 0. (3.41)

(ii) If the complementary condition holds,

a2d  �2
�
2 log

�
(d� sd)/sd

�
+Wd

�

for all d large enough, where the sequence Wd is such that

lim sup
d!1

Wd

4(log(sd) +
p

log(sd) log(d� sd))
< 1, (3.42)

then exact recovery is impossible, and moreover we have

lim
d!1

inf
⌘̃

sup
✓2⇥d(sd,ad)

E✓|⌘̃ � ⌘| = 1.

Here, inf ⌘̃ is the infimum over all selectors ⌘̃.

The proof is given in Appendix 3.6.
Some remarks are in order here. First of all, Theorem 3.4.4 shows that the “phase

transition” for exact recovery occurs at Wd = 4(log(sd) +
p
log(sd) log(d� sd)), which

corresponds to the critical value ad = a⇤d of the form

a⇤d = �
�p

2 log(d� sd) +
p

2 log sd
�
. (3.43)

This value is greater than the critical value a⇤d for almost full recovery [cf. (3.39)], which
is intuitively quite clear. The optimal threshold (3.5) corresponding to (3.43) has a
simple form:

t⇤d =
a⇤d
2

+
�2

a⇤d
log

✓
d

sd
� 1

◆
= �

p
2 log(d� sd).

For example, if sd = d1��(1+o(1)) for some � 2 (0, 1), then a⇤d ⇠ �(1+
p
1� �)

p
2 log d.

In this particular case, Theorem 3.4.4 implies that if ad = �(1+
p
1� �)

p
2(1 + �) log d

for some � > 0, then exact recovery is possible and the selector with threshold t =
�
p

2(1 + ") log d for some " > 0 achieves exact recovery. This is in agreement with
the results of Genovese et al. (2012); Ji and Jin (2012) where an analogous particular
case of sd was considered for a different model and the Bayesian definition of exact
recovery. For our model, even a sharper result is true; namely, a simple universal
threshold t = �

p
2 log d guarantees exact recovery adaptively in the parameters a and

s. Intuitively, this is suggested by the form of t⇤d. The precise statement is given in
Theorem 3.5.1 below.

Finally, we state an asymptotic corollary of Theorem 3.2.6 showing that the selector
⌘̂ considered above is sharp in the asymptotically minimax sense with respect to the
risk defined as the probability of wrong recovery.
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Theorem 3.4.5. Assume that exact recovery is possible for the classes (⇥d(sd, ad))d�1

and (⇥+
d (sd, ad))d�1, that is, condition (3.30) holds. Then, for the selectors ⌘̂ and ⌘̂+

defined by (3.8), (3.4) and (3.5), and for the selector ⌘̄ defined by (3.12) and (3.13), we
have

lim
d!1

sup
✓2⇥+

d
(sd,ad)

P✓(S⌘̂+ 6= S(✓))

sd +(d, sd, ad)
= lim

d!1
inf
⌘̃2T

sup
✓2⇥+

d
(sd,ad)

P✓(S⌘̃ 6= S(✓))

sd +(d, sd, ad)
= 1,

lim
d!1

sup
✓2⇥d(sd,ad)

P✓(S⌘̄ 6= S(✓))

sd ̄(d, sd, ad)
= lim

d!1
inf
⌘̃2T

sup
✓2⇥d(sd,ad)

P✓(S⌘̃ 6= S(✓))

sd ̄(d, sd, ad)
= 1

and
lim sup
d!1

sup
✓2⇥d(sd,ad)

P✓(S⌘̂ 6= S(✓))

sd +(d, sd, ad)
 2.

Note that the threshold (3.5) depends on the parameters s and a, so that the selectors
considered in all the results above are not adaptive. In the next section, we propose
adaptive selectors that achieve almost full recovery and exact recovery without the
knowledge of s and a.

Remark 3.4.1. Another procedure of variable selection is the exhaustive search estima-
tor of the support S(✓) defined as

S̃ = argmax
C✓{1,...,d}:|C|=s

X

j2C

Xj.

This estimator was studied by Butucea et al. Butucea et al. (2015). The selection
procedure can be equivalently stated as choosing the indices j corresponding to s largest
order statistics of the sample (X1, . . . , Xd). In Butucea et al. (2015), Theorem 2.5, it
was shown that, on the class ⇥+

d (sd, ad), the probability of wrong recovery P✓(S̃ 6= S(✓))
tends to 0 as d ! 1 under a stronger condition on (sd, ad) than (3.30). The rate of this
convergence was not analyzed there. If we denote by ⌘S̃ the selector with components
I(j 2 S̃) for j from 1 to d, it can be proved that E|⌘S̃ � ⌘|  2E|⌘̂+ � ⌘|, and thus the
risk of ⌘S̃ is within at least a factor 2 of the minimax risk over the class ⇥+

d (s, a).

3.5 Adaptive selectors
In this section, we consider the asymptotic setup as in Section 3.4 and construct the
selectors that provide almost full and exact recovery adaptively, that is, without the
knowledge of a and s.

As discussed in Section 3.4, the issue of adaptation for exact recovery is almost trivial.
Indeed, the expressions for minimal value a⇤d, for which exact recovery is possible [cf.
(3.43)], and for the corresponding optimal threshold t⇤d suggest that taking a selector with
the universal threshold t = �

p
2 log d is enough to achieve exact recovery simultaneously

for all values (ad, sd), for which the exact recovery is possible. This point is formalized
in the next theorem.

Theorem 3.5.1. Assume that sd ! 1 as d ! 1 and that lim supd!1 sd/d < 1/2.
Let the sequence (ad)d�1 be above the phase transition level for exact recovery, that is,
ad � a⇤d for all d, where a⇤d is defined in (3.43). Then the selector ⌘̂ defined by (3.8) with
threshold t = �

p
2 log d achieves exact recovery.
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The proof of this theorem is given in Appendix 3.6.
We now turn to the problem of adaption for almost full recovery. Ideally, we would

like to construct a selector that achieves almost full recovery for all sequences (sd, ad)d�1

for which almost full recovery is possible. We have seen in Section 3.4 that this includes
a much broader range of values than in case of exact recovery. Thus, using the adaptive
selector of Theorem 3.5.1 for almost full recovery does not give a satisfactory result, and
we have to take a different approach.

Following Section 3.4, we will use the notation

a0(s, A) , �
�
2 log

�
(d� s)/s

�
+ A

q
log

�
(d� s)/s

��1/2
.

As shown in Section 3.4, it makes sense to consider the classes ⇥d(s, a) only when
a � a0(s, A) with some A > 0, since for other values of a almost full recovery is
impossible. Only such classes will be studied below.

In the asymptotic setup of Section 3.4, we have used the assumption that d/sd ! 1

(the sparsity assumption), which is now transformed into the condition

sd 2 Sd ,
�
1, 2, . . . , s⇤d

 

where s⇤d is an integer such that
d

s⇤d
! 1 as d ! 1.

(3.44)

Assuming sd to be known, we have shown in Section 3.4 that almost full recovery is
achievable for all a � a0(sd, Ad), where Ad tends to infinity as d ! 1. The rate of
growth of Ad was allowed to be arbitrarily slow there; cf. Theorem 3.4.3. However, for
adaptive estimation considered in this section we will need the following mild assumption
on the growth of Ad:

Ad � c0

✓
log log

✓
d

s⇤d
� 1

◆◆1/2

, (3.45)

where c0 > 0 is an absolute constant. In what follows, we will assume that s⇤d  d/4, so
that the right-hand side of (3.45) is well defined.

Consider a grid of points {g1, . . . , gM} on Sd, where gj = 2j�1 and M is the maximal
integer such that gM  s⇤d. For each gm, m = 1, . . . ,M , we define a selector:

⌘̂(gm) =
�
⌘̂j(gm)

�
j=1,...,d

,
�
I
�
|Xj| � w(gm)

��
j=1,...,d

,

where

w(s) = �

s

2 log

✓
d

s
� 1

◆
.

Note that w(s) is monotonically decreasing. We now choose the “best” index m, for which
gm is near the true (but unknown) value of s, by the following data-driven procedure:

m̂ = min

(
m 2 {2, . . . ,M} :

dX

j=1

I
�
w(gk)  |Xj| < w(gk�1)

�
 ⌧gk for all k � m+ 1

)
,

(3.46)
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where
⌧ =

�
log

�
d/s⇤d � 1

��� 1
7 ,

and we set m̂ = M if the set in (3.46) is empty. Finally, we define an adaptive selector
as

⌘̂ad = ⌘̂(gm̂).

This adaptive procedure is quite natural in the sense that it can be related to the
Lepski method or to wavelet thresholding that are widely used for adaptive estimation.
Indeed, as in wavelet methods, we consider dyadic blocks determined by the grid points
gj. The value

Pd
j=1 I(w(gk)  |Xj| < w(gk�1)) is the number of observations within

the kth block. If this number is too small (below a suitably chosen threshold), we
decide that the block corresponds to pure noise and it is rejected; in other words, this
k is not considered as a good candidate for m̂. This argument is analogous to wavelet
thersholding. We start from the largest k [equivalently, smallest w(gk)] and perform this
procedure until we find the first block, which is not rejected. The corresponding value
k determines our choice of m̂ as defined in (3.46).

Theorem 3.5.2. Let c0 � 16. Then the selector ⌘̂ad adaptively achieves almost full
recovery in the following sense:

lim
d!1

sup
✓2⇥d(sd,ad)

1

sd
E✓

��⌘̂ad � ⌘
�� = 0 (3.47)

for all sequences (sd, ad)d�1 such that (3.44) holds and ad � a0(sd, Ad), where Ad satisfies
(3.45).

Remark 3.5.1. Another family of variable selection methods originates from the theory
of multiple testing Abramovich and Benjamini (1995); Abramovich et al. (2006). These
are, for example, the Benjamini–Hochberg, Benjamini–Yekutieli or SLOPE procedures.
We refer to Bogdan et al. (2015) for a recent overview and comparison of these tech-
niques. They have the same structure as the exhaustive search procedure in that they
keep only the largest order statistics. The difference is that the value s (which is usually
not known in practice) is replaced by an estimator ŝ obtained from comparing the ith
order statistic of (|X1|, . . . , |Xd|) with a suitable normal quantile depending on i. The
analysis of these methods in the literature is focused on the evaluation of false discovery
rate (FDR). Asymptotic power calculations for the Benjamini–Hochberg procedure are
given in Arias-Castro and Chen (2017). To the best of our knowledge, the behavior of the
risk P✓(S̃ 6= S(✓)) and of the Hamming risk, even in a simple consistency perspective,
was not studied.

Remark 3.5.2. In this chapter, the variance � was supposed to be known. Extension to
the case of unknown � can be treated as described, for example, in Collier et al. (2018).
Namely, we replace � in the definition of the threshold w(s) by a statistic �̂ defined in
Collier et al. (2018), Section 3. As shown in Collier et al. (2018), Proposition 1, this
statistic is such that �  �̂  C 0� with high probability provided that s  d/2, and
d � d0 for some absolute constants C 0 > 1, d0 � 1. Then, replacing � by �̂ in the
expression for w(s), one can show that Theorem 3.5.2 remains valid with this choice of
w(s) independent of �, up to a change in numerical constants in the definition of the
adaptive procedure. With this modification, we obtain a procedure which is completely
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data-driven and enjoys the property of almost full recovery under the mild conditions
given in Theorem 3.5.2. The same modification can be done in Theorem 3.5.1. Namely,
under the assumptions of Theorem 3.5.1 and ad � c0a⇤d, where c0 � 1 is a numerical
constant, the selector ⌘̂ defined by (3.8) with threshold t = �̂

p
2 log d achieves exact

recovery when � is unknown.

Remark 3.5.3. In this section, the problem of adaptive variable selection was considered
only for the classes ⇥d(sd, ad). The corresponding results for classes ⇥+

d (sd, ad) and
⇥�

d (sd, ad) are completely analogous. We do not state them here for the sake of brevity.

3.6 Appendix: Main proofs
Proof of Theorem 3.2.3. We have, for any t > 0,

|⌘̂ � ⌘| =
X

j:⌘j=0

⌘̂j +
X

j:⌘j=1

(1� ⌘̂j)

=
X

j:⌘j=0

I
�
|�⇠j| � t

�
+

X

j:⌘j=1

I
�
|�⇠j + ✓j| < t

�
.

Now, for any ✓ 2 ⇥d(s, a) and any t > 0,

E
�
I
�
|�⇠j + ✓j| < t

��
 P

�
|✓j|� |�⇠j| < t

�
 P

�
|⇠| > (a� t)/�

�

= P
�
|⇠| > (a� t)+/�

�
,

where ⇠ denotes a standard Gaussian random variable. Thus, for any ✓ 2 ⇥d(s, a),

1

s
E✓|⌘̂ � ⌘| 

d� |S|

s
P

✓
|⇠| �

t

�

◆
+

|S|

s
P

✓
|⇠| >

(a� t)+
�

◆
 2 (d, s, a). (3.48)

Indeed, for t defined in (3.5), t � (a � t)+ given that s  d/2. Here and in the sequel,
|S| denotes the cardinality of S = S(✓).

Proof of Theorem 3.2.1. Arguing as in the proof of Theorem 3.2.3, we obtain
��⌘̂+ � ⌘

�� =
X

j:⌘j=0

I(⇠j � t) +
X

j:⌘j=1

I(�⇠j + ✓j < t),

and E(I(�⇠j + ✓j < t))  P(⇠ < (t� a)/�). Thus, for any ✓ 2 ⇥+
d (s, a),

1

s
E✓

��⌘̂+ � ⌘
��  d� |S|

s
P(⇠ � t/�) +

|S|

s
P
�
⇠ < (t� a)/�

�
  +(d, s, a),

by the monotonicity of � and the condition s  d/2.

Proof of Theorem 3.2.2. We prove here the first inequality of Theorem 3.2.2. Since ⌘̃j
depends only on Xj,

E✓|⌘̃ � ⌘| =
dX

j=1

Ej,✓j |⌘̃j � ⌘j|, (3.49)

where Ej,✓j is the expectation with respect to the distribution of Xj.
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Let ⇥0 be the set of all ✓ in ⇥+
d (s, a) such that s components ✓j of ✓ are equal to a

and the remaining d� s components are 0. Denote by |⇥0
| =

�
d
s

�
the cardinality of ⇥0.

Then, for any ⌘̃ 2 T we have
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d
(s,a)
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s
E✓|⌘̃ � ⌘|

�
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s|⇥0|

X
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◆

�
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s
inf

T2[0,1]
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1�

s

d

◆
E0(T ) +

s

d
Ea(1� T )

◆
,

(3.50)

where we have used that |{✓ 2 ⇥0 : ✓j = a}| =
�
d�1
s�1

�
= s|⇥0

|/d. In the last line of
display (3.50), Eu is understood as the expectation with respect to the distribution of
X = u + �⇠, where ⇠ ⇠ N (0, 1) and infT2[0,1] denotes the infimum over all [0, 1]-valued
statistics T (X). Set

L⇤ = inf
T2[0,1]

✓✓
1�

s

d

◆
E0(T ) +

s

d
Ea(1� T )

◆

By the Bayesian version of the Neyman–Pearson lemma, the infimum here is attained
for T = T ⇤ given by

T ⇤(X) = I

✓
(s/d)'�(X � a)

(1� s/d)'�(X)
> 1

◆

where '�(·) is the density of an N (0, �2) distribution. Thus,
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◆
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P

✓
'�(�⇠)
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s
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◆
.

Combining this with (3.49) and (3.50), we get

inf
⌘̃
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Proof of Theorem 3.2.4. For any ✓ 2 ⇥d(s, a), we have

E✓|⌘̄ � ⌘| =
X

j:✓j=0

Pj,0(⌘̄j = 1) +
X

j:✓j�a

Pj,✓j(⌘̄j = 0)

+
X

j:✓j�a

Pj,✓j(⌘̄j = 0)

 dP
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a
2

2�2 cosh

✓
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>
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s
� 1

◆

+
X

j:✓j�a

Pj,✓j(⌘̄j = 0) +
X

j:✓j�a

Pj,✓j(⌘̄j = 0),

(3.51)

where Pj,✓j denotes the distribution of Xj, and ⇠ is a standard Gaussian random variable.
We now bound from above the probabilities Pj,✓j(⌘̄j = 0). Introduce the notation

g(x) = cosh

✓
(x+ �⇠)a

�2

◆
8x 2 R,

and
u = exp

✓
a2

2�2
+ log

✓
d

s
� 1

◆◆
.

We have
Pj,✓j(⌘̄j = 0) = P

�
g(✓j) < u

�
= P(�b� ✓j < �⇠ < b� ✓j),

where b = (�2/a) arccosh(u) > 0. It is easy to check that the function x 7! P(�b �
x < �⇠ < b � x) is monotonically decreasing on [0,1). Therefore, the maximum of
P(�b � ✓j < �⇠ < b � ✓j) over ✓j � a is attained at ✓j = a. Thus, for any ✓j � a we
have

Pj,✓j(⌘̄j = 0)  P
�
g(a) < u

�
= P

✓
e�

a
2

2�2 cosh

✓
(a+ �⇠)a

�2

◆
<

d

s
� 1

◆
. (3.52)

Analogously, for any ✓j  �a,

Pj,✓j(⌘̄j = 0)  P
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a
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✓
(�a+ �⇠)a

�2
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✓
(a+ �⇠)a

�2

◆
<

d

s
� 1

◆
,

(3.53)

where the last equality follows from the fact that ⇠ has the same distribution as �⇠ and
cosh is an even function. Combining (3.51)–(3.53) proves the theorem.

Proof of Theorem 3.2.5. We follow the lines of the proof of Theorem 3.2.2 with suitable
modifications.

Let ⇥+ and ⇥� be the sets of all ✓ in ⇥d(s, a) such that d � s components ✓j of ✓
are equal to 0 and the remaining s components are equal to a (for ✓ 2 ⇥+) or to �a
(for ✓ 2 ⇥�). For any ⌘̃ 2 T , we have

sup
✓2⇥d(s,a)

dX

j=1

Ej,✓j |⌘̃j � ⌘j|

�
1

2

(
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✓2⇥�
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Ej,✓j |⌘̃j � ⌘j|

)
.
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As shown in the proof of Theorem 3.2.2, for any ⌘̃ 2 T ,
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✓2⇥+

dX

j=1

Ej,✓j |⌘̃j � ⌘j| �

dX
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✓✓
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.

Analogously,
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.

From the last three displays, we obtain
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◆
,

where Ēj is the expectation with respect to the measure P̄j = (Pj,a + Pj,�a)/2. It
follows that

sup
✓2⇥d(s,a)

dX

j=1

Ej,✓j |⌘̃j � ⌘j| � inf
T2[0,1]

�
(d� s)E0(T ) + sĒ(1� T )

�
. (3.54)

Here, E0 denotes the expectation with respect to the distribution of X with density
'�(·), Ē is the expectation with respect to the distribution of X with mixture density
'̄�(·) = ('�(·+a)+'�(·�a))/2, and infT2[0,1] denotes the infimum over all [0, 1]-valued
statistics T (X). Recall that we denote by '�(·) is the density of N (0, �2) distribution.
Set

L̃ = inf
T2[0,1]

✓✓
1�
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d

◆
E0(T ) +

s

d
Ē(1� T )

◆
.

By the Bayesian version of the Neyman–Pearson lemma, the infimum here is attained
for T = T̃ given by

T̃ (X) = I

✓
(s/d)'̄�(X)
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> 1

◆
.

Thus,
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(3.55)

where Pu denotes the probability distribution of X with density '�(· � u). Note that,
for all x 2 R,

'̄�(x)

'�(x)
= e�

a
2

2�2 cosh

✓
ax

�2

◆
.
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Using this formula with x = �⇠ + a and x = �⇠ � a, and the facts that cosh(·) is an
even function and ⇠ coincides with �⇠ in distribution, we obtain
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✓
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'�(X)


d
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� 1
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= P�a
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�2

◆


d

s
� 1

◆
.

Thus, L̃ = (s/d) ̄(d, s, a). Combining this equality with (3.49) and (3.54) proves the
theorem.

Proof of Theorem 3.2.6. The upper bounds (3.14), (3.15) and (3.16) follow immediately
from (3.2) and Theorems 3.2.1, 3.2.4 and 3.2.3, respectively. We now prove the lower
bound (3.17). To this end, first note that for any ✓ 2 ⇥+

d (s, a) and any ⌘̃ 2 T we have
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�
S⌘̃ 6= S(✓)

�
= P✓
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{⌘̃j 6= ⌘j}

!
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dY

j=1

pj(✓),

where pj(✓) , P✓(⌘̃j = ⌘j). Hence, for any ⌘̃ 2 T ,
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�
= 1� p⇤, (3.56)

where ⇥0 is the subset of ⇥+
d (s, a) defined in the proof of Theorem 3.2.2, and p⇤ =

min✓2⇥0
Qd

j=1 pj(✓).
Next, for any selector ⌘̃ we have P✓(S⌘̃ 6= S(✓)) � P✓(|⌘̃ � ⌘| = 1). There-

fore,
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. (3.57)

Here, P✓(|⌘̃ � ⌘| = 1) = P✓(
Sd

j=1 Bj) with the random events Bj = {|⌘̃j � ⌘j| =
1, and ⌘̃i = ⌘i, 8i 6= j}. Since the events Bj are disjoint, for any ⌘̃ 2 T we get
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◆
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(3.58)
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where Pj,u denotes the distribution of Xj when ✓j = u. We now bound the right-
hand side of (3.58) by following the argument from the last three lines of (3.50) to
the end of the proof of Theorem 3.2.2. Applying this argument yields that, for any
⌘̃ 2 T ,

1

|⇥0|

X

✓2⇥0

P✓

�
|⌘̃ � ⌘| = 1

�
� p⇤dL̃ � p⇤s +(d, s, a). (3.59)

Combining (3.56), (3.57) and (3.59), we find that, for any ⌘̃ 2 T ,
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.

We now prove the lower bound (3.18). Let the sets ⇥+ and ⇥� and the constants
pj(✓) be the same as in the proof of Theorem 3.2.5. Then
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j=1 pj(✓).
For any selector ⌘̃, we use that P✓(S⌘̃ 6= S(✓)) � P✓(|⌘̃ � ⌘| = 1) and, there-

fore,
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We continue along the same lines as in the proof of (3.58) to get, for any separable
selector ⌘̃,
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where again Ēj denotes the expected value with respect to P̄j =
1
2(Pj,a +Pj,�a). Anal-

ogously to the proof of Theorem 3.2.5, the expression in the last display can be further
bounded from below by p̄dL̃ = p̄s ̄(d, s, a). Thus,

sup
✓2⇥d(s,a)

P✓

�
S⌘̃ 6= S(✓)

�
� min

0p̄1
max

�
1� p̄, p̄s ̄(d, s, a)

 

=
s ̄(d, s, a)

1 + s ̄(d, s, a)
.

Proof of Theorem 3.4.2. (i) It follows from the second inequality in (3.48) that
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where t = a
2 + �2

a log(ds � 1) is the threshold (3.5). Since a2 � 2�2 log(d/s � 1) we
get that a � t and that t > a/2, which is equivalent to t > a � t. Furthermore,
(ds � 1)e�t2/(2�2) = e�(a�t)2/(2�2). These remarks and (3.31) imply that
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Combining this with (3.60), we get
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Now, to prove (3.33) it remains to note that under assumption (3.32),
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Indeed, assumption (3.32) states that a � a0 , �(2 log((d � s)/s) + W )1/2, and the
function a 7! (a2 � 2�2 log((d� s)/s))/a is monotonically increasing in a > 0. On the
other hand, �

a20 � 2�2 log
�
(d� s)/s

��
/(2a0�) = �. (3.61)

(ii) We now prove (3.36). By Theorem 3.2.2,
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Observe that the function a 7! (2�2 log((d� s)/s)� a2)/a is monotonically decreasing
in a > 0 and that assumption (3.35) states that a  a0. In view of (3.61), the value of its
minimum for a  a0 is equal to ��. The bound (3.36) now follows by the monotonicity
of �(·).

Proof of Theorem 3.4.3. Assume without loss of generality that d is large enough to
have (d� sd)/sd > 1. We apply Theorem 3.4.2 with W = A

p
2 log((d� sd)/sd). Then

�2 =
A2
p
2 log((d� sd)/sd)

4(
p

2 log((d� sd)/sd) + A)
.

By assumption, there exists ⌫ > 0 such that (2 + ⌫)sd  d for all d large enough.
Equivalently, d/sd� 1 � 1+ ⌫ and, therefore, using the monotonicity argument, we find

�2
�

A2
p

2 log(1 + ⌫)p
2 log(1 + ⌫) + A

! 1 as A ! 1.

This and (3.33) imply part (i) of the theorem.
Part (ii) follows from (3.36) by noticing that �2

 supx>0
A2x

4(x+A) = A2/4 for any
fixed A > 0. Now, for s large enough, let us put s0 = (1� ")s for some " in (0,1), fixed.
Thus, the lower bound of the risk becomes

(1� ")�(��)� 4 exp
⇣
�
s

2
(1� ")2

⌘
> 0,

for s large enough.

Proof of Theorem 3.4.4. Throughout the proof, we assume without loss of generality
that d is large enough to have sd � 2, and (d � sd)/sd > 1. Set W⇤(s) , 4(log s +p

log s log(d� s)), and notice that

W⇤(sd)

2
p

2 log((d� sd)/sd) +W⇤(sd)
=

p
2 log sd, (3.62)

2 log
�
(d� sd)/sd

�
+W⇤(sd) = 2

�p
log(d� sd) +

p
log sd

�2
. (3.63)

If (3.40) holds, we have Wd � W⇤(sd) for all d large enough. By the monotonicity of
the quantity � defined in (3.34) with respect to W , this implies

�d ,
Wd

2
p
2 log((d� sd)/sd) +Wd

�
W⇤(sd)

2
p
2 log((d� sd)/sd) +W⇤(sd)

=
p

2 log sd.
(3.64)

Now, by Theorem 3.4.2 and using (3.31) we may write

sup
✓2⇥d(sd,ad)

E✓|⌘̂ � ⌘|  (2 +
p
2⇡)sd�(��d)

 3sd min

⇢
1,

1

�d

�
exp

✓
�
�2

d

2

◆

= 3min

⇢
1,

1

�d

�
exp

✓
�
�2

d � 2 log sd
2

◆
.

(3.65)
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This and (3.64) imply that, for all d large enough,

sup
✓2⇥d(sd,ad)

E✓|⌘̂ � ⌘|  3min

⇢
1,

1
p
2 log sd

�
.

Since sd ! 1, part (i) of the theorem follows.
We now prove part (ii) of the theorem. It suffices to consider Wd > 0 for all d

large enough since for nonpositive Wd almost full recovery is impossible and the result
follows from part (ii) of Theorem 3.4.3. If (3.42) holds, there exists A < 1 such that
Wd  AW⇤(sd) for all d large enough. By the monotonicity of the quantity � defined
in (3.34) with respect to W and in view of equation (3.62), this implies

�2
d � 2 log sd


A2W 2

⇤ (sd)

4(2 log((d� sd)/sd) + AW⇤(sd))

�
W 2

⇤ (sd)

4(2 log((d� sd)/sd) +W⇤(sd))

=
(A� 1)W 2

⇤ (sd)(AW⇤(sd) + 2(A+ 1) log((d� sd)/sd))

4(2 log((d� sd)/sd) + AW⇤(sd))(2 log((d� sd)/sd) +W⇤(sd))


(A� 1)AW 2

⇤ (sd)

4(2 log((d� sd)/sd) +W⇤(sd))

=
2(A� 1)A(log sd +

p
log sd log(d� sd))2

(
p

log(d� sd) +
p
log sd)2

= 2(A� 1)A log sd,

(3.66)

where we have used the fact that A < 1 and equations (3.62), (3.63). Next, by Theo-
rem 3.4.2 and using (3.31), we have for s0 = sd/2,

inf
⌘̃

sup
✓2⇥d(sd,ad)

E✓|⌘̃ � ⌘| �
sd
2

⇣
�(��d)� 4 exp

⇣
�
sd
8

⌘⌘

and

sd
2
�(��d) �

sd
8
min

⇢
1

2
,
1

�d

�
exp

✓
�
�2

d

2

◆

=
1

8
min

⇢
1

2
,
1

�d

�
exp

✓
�
�2

d � 2 log sd
2

◆
.

Combining this inequality with (3.66), we find that, for all d large enough,

inf
⌘̃

sup
✓2⇥d(sd,ad)

E✓|⌘̃ � ⌘| �
1

8
min

⇢
1

2
,
1

�d

�
e(1�A)A log sd � 2sde

�sd/8.

Since A < 1 and �d  A
p
2 log sd by (3.66), the last expression tends to 1 as sd ! 1.

This proves part (ii) of the theorem.

Proof of Theorem 3.5.1. By (3.48), for any ✓ 2 ⇥d(sd, ad), and any t > 0 we have

E✓|⌘̂ � ⌘|  dP
�
|⇠| � t/�

�
+ sdP

�
|⇠| > (ad � t)+/�

�
,
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where ⇠ is a standard normal random variable. It follows that, for any ad � a⇤d, any
✓ 2 ⇥d(sd, ad), and any t > 0,

E✓|⌘̂ � ⌘|  dP
�
|⇠| � t/�

�
+ sdP

�
|⇠| >

�
a⇤d � t

�
+
/�
�
.

Without loss of generality assume that d � 6 and 2  sd  d/2. Then, using the
inequality

p
x�

p
y  (x� y)/

p
2y, 8x > y > 0, we find that, for t = �

p
2 log d,

�
a⇤d � t

�
+
/� �

p
2
�p

log(d� sd)�
p
log d+

p
log(sd)

�

�

p
2 log(sd)� log

✓
d

d� sd

◆
/
p
log(d� sd)

�

p
2 log(sd)� (log 2)/

p
log(d/2) > 0.

From this we also easily deduce that, for 2  sd  d/2, we have ((a⇤d � t)+/�)2/2 �

log(sd)�
p
2 log 2. Combining these remarks with (3.31) and (3.43), we find

sup
✓2⇥d(sd,ad)

E✓|⌘̂ � ⌘| 
1

p
2 log d

+
sd exp(� log(sd) +

p
2 log 2)p

2 log(sd)
,

which immediately implies the theorem by taking the limit as d ! 1.

Proof of Theorem 3.5.2. Throughout the proof, we will write for brevity sd = s, ad =
a,Ad = A, and set � = 1. Since ⇥d(s, a) ✓ ⇥d(s, a0(s, A)) for all a � a0(s, A), it suffices
to prove that

lim
d!1

sup
✓2⇥d(s,a0(s,A))

1

s
E✓

��⌘̂ad � ⌘
�� = 0. (3.67)

Here, s  s⇤d and recall that throughout this section we assume that s⇤d  d/4; since we
deal with asymptotics as d/s⇤d ! 1, the latter assumption is without loss of generality
in the current proof.

If s < gM , let m0 2 {2, . . . ,M} be the index such that gm0 is the minimal element of
the grid, which is greater than the true underlying s. Thus, gm0/2 = gm0�1  s < gm0 .
If s 2 [gM , s⇤d], we set m0 = M . In both cases,

s � gm0/2. (3.68)

We decompose the risk as follows:

1

s
E✓

��⌘̂ad � ⌘
�� = I1 + I2,

where

I1 =
1

s
E✓

���⌘̂(gm̂)� ⌘
��I(m̂  m0)

�
,

I2 =
1

s
E✓

���⌘̂(gm̂)� ⌘
��I(m̂ � m0 + 1)

�
.
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We now evaluate I1. Using the fact that ⌘̂j(gm) is monotonically increasing in m and
the definition of m̂, we obtain that, on the event {m̂  m0},

��⌘̂(gm̂)� ⌘̂(gm0)
�� 

m0X

m=m̂+1

��⌘̂(gm)� ⌘̂(gm�1)
��

=
m0X

m=m̂+1

dX

j=1

�
⌘̂j(gm)� ⌘̂j(gm�1)

�

=
m0X

m=m̂+1

dX

j=1

I
�
w(gm)  |Xj| < w(gm�1)

�

 ⌧
m0X

m=m̂+1

gm  ⌧s
m0X

m=2

2m�m0+1
 4⌧s,

where we have used the equality gm = 2m and (3.68). Thus,

I1 
1

s
E✓

���⌘̂(gm̂)� ⌘̂(gm0)
��I(m̂  m0)

�
+

1

s
E✓

��⌘̂(gm0)� ⌘
��

 4⌧ +
1

s
E✓

��⌘̂(gm0)� ⌘
��.

(3.69)

Next, note that the first inequality in (3.48) is true for any t > 0. Applying it with
t = w(gm0), we obtain

1

s
E✓

��⌘̂(gm0)� ⌘
��  d

s
P
�
|⇠| � w(gm0)

�

+P
�
|⇠| >

�
a0(s, A)� w(gm0)

�
+

� (3.70)

where ⇠ is a standard Gaussian random variable. Using the bound on the Gaussian tail
probability and the fact that gm0 > s � gm0/2, we get

d

s
P
�
|⇠| � w(gm0)

�


d/s

d/gm0 � 1

⇡�1/2

p
log(d/gm0 � 1)


d

d� 2s

2⇡�1/2

p
log(d/s� 1)


4⇡�1/2

p
log(d/s⇤d � 1)

.

(3.71)

To bound the second probability on the right-hand side of (3.70), we use the following
lemma.

Lemma 3.6.1. Under the assumptions of Theorem 3.5.2, for any m � m0 we have

P
�
|⇠| >

�
a0(s, A)� w(gm)

�
+

�

�
log

�
d/s⇤d � 1

��� 1
2 . (3.72)

Combining (3.70), (3.71) and (3.72) with m = m0, we find

1

s
E✓

��⌘̂(gm0)� ⌘
�� 

4⇡�1/2 + 1p
log(d/s⇤d � 1)

, (3.73)
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which together with (3.69) leads to the bound

I1  4⌧ +
4⇡�1/2 + 1p
log(d/s⇤d � 1)

. (3.74)

We now turn to the evaluation of I2. It is enough to consider the case m0  M �1 since
I2 = 0 when m0 = M . We have

I2 =
1

s

MX

m=m0+1

E✓

���⌘̂(gm̂)� ⌘
��I(m̂ = m)

�


1

s

MX

m=m0+1

�
E✓

��⌘̂(gm)� ⌘
��2�1/2�P✓(m̂ = m)

�1/2
.

(3.75)

By definition, the event {m̂ = m} occurs implies that
Pd

j=1 I(wm  |Xj| < wm�1) >

⌧gm , vm, where we set for brevity wm = w(gm). Thus,

P✓(m̂ = m)  P✓

 
dX

j=1

I
�
wm  |Xj| < wm�1

�
> vm

!
. (3.76)

By Bernstein’s inequality, for any t > 0 we have
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dX

j=1

I
�
wm  |Xj| < wm�1

�
� E✓

 
dX

j=1

I
�
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> t

!

 exp

✓
�

t2/2
Pd

j=1 E✓(I(wm  |Xj| < wm�1)) + 2t/3

◆
,

(3.77)

where we have used that, for random variables with values in {0, 1}, the variance is
smaller than the expectation.

Now, similar to (3.48), for any ✓ 2 ⇥d(s, a0(s, A)),

E✓

 
dX
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I
�
wm  |Xj| < wm�1

�
!

 dP
�
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�
+

X
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P
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 dP
�
|⇠| � wm

�
+ sP

�
|⇠| > �

�
a0(s, A)� wm�1

�
+

�
,

where ⇠ is a standard Gaussian random variable. Since m � m0 + 1, from Lemma 3.6.1
we get

P
�
|⇠| >

�
a0(s, A)� wm�1

�
+

�

�
log

�
d/s⇤d � 1

��� 1
2 . (3.78)

Next, using the bound on the Gaussian tail probability and the inequalities gm  s⇤d 
d/4, we find

dP
�
|⇠| � wm

�


d

d/gm � 1

⇡�1/2

p
log(d/gm � 1)


(4/3)⇡�1/2gmp
log(d/s⇤d � 1)

. (3.79)
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We now deduce from (3.78) and (3.79), and the inequality s  gm for m � m0 +1, that

E✓

 
dX

j=1

I
�
wm  |Xj| < wm�1

�
!


((4/3)⇡�1/2 + 1)gmp

log(d/s⇤d � 1)
 2⌧gm. (3.80)

Taking in (3.77) t = 3⌧gm = 3vm and using (3.80), we find
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I
�
wm  |Xj| < wm�1

�
> vm

!
 exp(�C1vm) = exp

�
�C12

m⌧
�
,

for some absolute constant C1 > 0. This implies

P✓(m̂ = m)  exp
�
�C12

m⌧
�
. (3.81)

On the other hand, notice that the bounds (3.70), and (3.71) are valid not only for
gm0 but also for any gm with m � m0 + 1. Using this observation and Lemma 3.6.1 we
get that, for any ✓ 2 ⇥d(s, a0(s, A)) and any m � m0 + 1,
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��  s
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((4/3)⇡�1/2 + 1)gmp
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, ⌧ 0gm = ⌧ 02m,

(3.82)

where the last inequality follows from the same argument as in (3.79). We denote by
V ar✓

�
|⌘̂(gm)� ⌘

��� the variance of |⌘̂(gm) � ⌘
��. Observing that |⌘̂(gm) � ⌘

�� is a sum of
independent Bernoulli random variables, we get
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Using (3.82) and the fact that ⌧ 0 is bounded, we get that

E✓

��⌘̂(gm)� ⌘
��2  C2⌧

022m, (3.83)

for some absolute constant C2 > 0.
Now, we plug (3.81) and (3.83) in (3.75) to obtain

I2 
(C2⌧ 0)1/2

s
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2m exp
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�
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for some absolute constant C3 > 0. Notice that (⌧ 0)1/2 = O((log(d/s⇤d � 1))�
1
4 ) as

d/s⇤d ! 1 while ⌧�1 = O((log(d/s⇤d � 1))
1
7 ). Thus, I2 = o(1) as d ! 1. Since from

(3.74) we also get that I1 = o(1) as d ! 1, the proof is complete.
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Proof of Lemma 3.6.1. Let first s < gM . Then, by definition of m0, we have s < gm0 .
Therefore, s < gm for m � m0, and we have w(gm) < w(s). It follows that

a0(s, A)� w(gm) � a0(s, A)� w(s) �

p
A

2
p
2
min

✓p
A

p
2
, log1/4(d/s� 1)

◆
,

where we have used the elementary inequalities
p
x+ y �

p
x � y/(2

p
x+ y) � (2

p
2)�1 min(y/

p
x,
p
y)

with x = 2 log(d/s � 1) and y = A
p

log(d/s� 1). By assumption, A �

16
p

log log(d/s⇤d � 1), so that we get
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. (3.84)

This and the standard bound on the Gaussian tail probability imply
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Let now s 2 [gM , s⇤d]. Then m0 = M and we need to prove the result only for m = M .
By definition of M , we have s⇤d  2gM . This and (3.84) imply

a0(s, A)� w(gM) � a0(s, A)� w(s)�
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Now, using the elementary inequality
p

log(x+ y) �
p

log(x)  y/(2x
p

log(x)) with
x = d/s⇤d � 1 and y = d/s⇤d, and the fact that s⇤d  d/4 we find
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The last two displays yield a0(s, A)� w(gM) � (log log( d
s⇤
d

� 1))1/2, and we conclude as
in (3.85).

3.7 Appendix: More proofs of lower bounds
In this section, we derive a general lower bound for the minimax risk over all selectors
on the class of at most s-sparse vectors. The main term of this bound is a Bayes risk
with arbitrary prior and the non-asymptotic remainder term is given explicitly.



3.7. APPENDIX: MORE PROOFS OF LOWER BOUNDS 61

Nonasymptotic lower bound of the minimax risk
In the next theorem, we reduce the minimax risk over all selectors to a Bayes risk with
arbitrary prior measure ⇡ on {0, 1}d and give a bound on the difference between the two
risks. This result is true in a general setup, non necessarily for Gaussian models. For a
particular choice of measure ⇡, we provide an explicit bound on the remainder term.

Consider the set of binary vectors

⇥s =
�
⌘ 2 {0, 1}d : |⌘|0  s

 
, where |⌘|0 =

dX

j=1

I(⌘j 6= 0),

and assume that we are given a family {P⌘, ⌘ 2 ⇥s} where each P⌘ is a probability
distribution on a measurable space (X ,U). We observe X drawn from P⌘ with some
unknown ⌘ 2 ⇥s and we consider the Hamming risk of a selector ⌘̂ = ⌘̂(X):

sup
⌘2⇥s

E⌘|⌘̂ � ⌘|

where E⌘ is the expectation with respect to P⌘. Here and in what follows we denote
by |⌘ � ⌘0| the Hamming distance between two binary sequences ⌘, ⌘0 2 {0, 1}d, and we
call the selector any estimator with values in {0, 1}d. Let ⇡ be a probability measure on
{0, 1}d (a prior on ⌘). We denote by E⇡ the expectation with respect to ⇡.

Theorem 3.7.1. For any s < d and any probability measure ⇡ on {0, 1}d, we have

inf
⌘̂

sup
⌘2⇥s

E⌘|⌘̂ � ⌘| � inf
T̂2[0,1]d

E⇡E⌘

dX
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|T̂j(X)� ⌘j|� 4E⇡ [|⌘|0I(|⌘|0 � s+ 1)] , (3.86)

where inf ⌘̂ is the infimum over all selectors and inf T̂2[0,1]d is the infimum over all esti-
mators T̂ (X) = (T̂1(X), . . . , T̂d(X)) with values in [0, 1]d.

In particular, if ⇡ is a product of d Bernoulli distributions with parameters d and
s0/d where s0 2 (0, s], we have

inf
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⇣
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(s� s0)2

2s

⌘
. (3.87)

Proof of Theorem 3.7.1. Throughout the proof, we write for brevity A = ⇥s. Set ⌘A =
⌘I(⌘ 2 A) and denote by ⇡A the probability measure ⇡ conditioned by the event {⌘ 2 A},
that is, for any C ✓ {0, 1}d,

⇡A(C) =
⇡(C \ {⌘ 2 A})

⇡(⌘ 2 A)
.

The measure ⇡A is supported on A and we have
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⌘̂
sup
⌘2A
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dX
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E⇡AE⌘|T̂j � ⌘Aj |
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where inf T̂j
is the infimum over all estimators T̂j = T̂j(X) with values in R. According

to Theorem 1.1 and Corollary 1.2 on page 228 in Lehmann and Casella (2006), there
exists a Bayes estimator BA

j = BA
j (X) such that

inf
T̂j

E⇡AE⌘|T̂j � ⌘Aj | = E⇡AE⌘|B
A
j � ⌘Aj |,

and this estimator is a conditional median of ⌘Aj given X; in particular, for any estimator
T̂j(X) we have

EA
�
|BA

j (X)� ⌘Aj |
��X

�
 EA

�
|T̂j(X)� ⌘Aj |

��X
�

(3.88)

almost surely. Here, the superscript A indicates that the conditional expectation EA(·|X)
is taken when ⌘ is distributed according to ⇡A. Therefore,

inf
⌘̂
sup
⌘2A

E⌘|⌘̂ � ⌘| � E⇡AE⌘

dX

j=1

|BA
j � ⌘Aj |. (3.89)

Note that BA
j 2 [0, 1] since ⌘Aj takes its values in [0, 1]. Using this, we obtain

inf
T̂2[0,1]p

E⇡E⌘|T̂ � ⌘|  E⇡E⌘

dX

j=1

|BA
j � ⌘j|

= E⇡E⌘

⇣ dX

j=1

|BA
j � ⌘j|I(⌘ 2 A)

⌘
+ E⇡E⌘

⇣ dX

j=1

|BA
j � ⌘j|I(⌘ 2 Ac)

⌘

= E⇡AE⌘

dX

j=1

|BA
j � ⌘Aj |+ E⇡E⌘

⇣ dX

j=1

|BA
j � ⌘j|I(⌘ 2 Ac)

⌘

 E⇡AE⌘

dX

j=1

|BA
j � ⌘Aj |+ E⇡E⌘

dX

j=1

BA
j I(⌘ 2 Ac) + E⇡

dX

j=1

⌘jI(⌘ 2 Ac).

(3.90)

Our next step is to bound the term

E⇡E⌘

dX

j=1

BA
j I(⌘ 2 Ac).

For this purpose, we first note that inequality (3.88) with T̂j(X) = EA(⌘Aj |X) implies
that

BA
j (X) = EA(BA

j (X)|X)  EA
�
|EA(⌘Aj |X)|

��X
�
+ 2EA

�
|⌘Aj |

��X
�
= 3EA(⌘Aj |X)

where we have used the fact that ⌘Aj 2 [0, 1]. Since
Pd

j=1 ⌘
A
j  s (cf. definition of ⌘Aj ),

we find that
Pd

j=1 B
A
j  3s. Finally, as

Pd
j=1 ⌘j > s on Ac we get

Pd
j=1 B

A
j I(⌘ 2 Ac) 

3
Pd

j=1 ⌘jI(⌘ 2 Ac), and thus

E⇡E⌘

dX

j=1

BA
j I(⌘ 2 Ac)  3E⇡

dX

j=1

⌘jI(⌘ 2 Ac).
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Combining this inequality with (3.89) and (3.90) yields (3.86).

We now prove inequality (3.87). In this case,
Pd

j=1 ⌘j := ⇣ has the binomial distri-
bution B(d, q) with parameters d and q = s0/d. Then,

E(⇣I(⇣ � s+ 1)) =
dX

k=s+1

k

✓
d

k

◆
qk(1� q)d�k

=
dX

k=s+1

d(d� 1)!

(k � 1)!(d� k)!
qk(1� q)d�k

= dq
dX

k=s+1

✓
d� 1

k � 1

◆
qk�1(1� q)d�k

= dq
d�1X

m=s

✓
d� 1

m

◆
qm(1� q)(d�1)�m

= s0P(B(d� 1, s0/d) � s)  s0P(B(d, s0/d) � s).

Thus, to complete the proof of (3.87), it is enough to bound the probability P(B(d, s0/d) �
s). To this end, we use the following lemma, which is a combination of formulas (3) and
(10) on pages 440–441 in Shorack and Wellner (2009).

Lemma 3.7.1. Let B(d, q) be the binomial random variable with parameters d and q 2
(0, 1). Then, for any � > 0,

P
�
B(d, q) � �

p

d+ dq
�
 exp

✓
�

�2

2q(1� q)
�
1 + �

3q
p
d

�
◆
. (3.91)

Applying this lemma with q = s0/d and � = (s� s0)/
p
d we find that

P(B(d, s0/d) � s)  exp

✓
�

(s� s0)2

2s

◆
.

Thus, (3.87) follows.

Remark. If we take s0 = s � (3/2)
p

s log(s) (which is possible since for all s � 2
we have s0 > 0) inequality (3.87) implies that, for all s � 2,

inf
⌘̂

sup
⌘2As

E⌘|⌘̂ � ⌘| � inf
T̂2[0,1]d

E⇡E⌘

dX

j=1

|T̂j � ⌘j|� 4s�1/8.

Proof of the second lower bound in Theorem 3.2.2. This bound follows directly from the
lower bounds of Theorems 3.2 and 3.3 that hold for general distributions.

Proof of Theorem 3.3.2. The upper bound sup⌘2⇥s
E⌘|⌘̂ � ⌘|   (d, s)sd/(d � s) is

straightforward in view of the definition of ⌘̂.
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We now prove the lower bound of Theorem 3.2. First note that, in view of (3.87),
the proof is reduced to showing that

inf
T̂2[0,1]d

E⇡E⌘

dX

j=1

|T̂j � ⌘j| � s0 (d, s), (3.92)

where ⇡ is a product on d Bernoulli distributions with parameter s0/d and s0 2 (0, s].
We have

inf
T̂2[0,1]d

E⇡E⌘

dX

j=1

|T̂j � ⌘j| �

dX

j=1

inf
T̂j2[0,1]

E⇡E⌘|T̂j(X)� ⌘j|

�

dX

j=1

E⇡E⌘

⇣
inf

T̂j2[0,1]
E⇡E⌘

�
|T̂j(X)� ⌘j|

��{(Xj, ⌘j), j 6= i}
�⌘

.

Since the components Xj of X = (X1, . . . , Xd) are independent, the jth conditional
expectation in the last expression reduces to the unconditional expectation over (Xj, ⌘j),
which is bounded from below by

inf
T2[0,1]

⇣⇣
1�

s0

d

⌘
E0(T ) +

s0

d
E1(1� T )

⌘
= s0 (d, s0)/d.

Here, Ei is the expectation with respect to Pi, i = 0, 1. Thus,

inf
T̂2[0,1]d

E⇡E⌘

dX

j=1

|T̂j � ⌘j| � s0 (d, s0).

To finish the proof of (3.92), it remains to show that  (d, s0) �  (d, s) for all s0  s.
For this purpose, we extend  (d, ·) to R+ by defining, for all u > 0,

 (d, u) = P1 (uf1(X1)� (d� u)f0(X1) < 0) +

✓
d

u
� 1

◆
P0 (uf1(X1)� (d� u)f0(X1) � 0)

= 1� E1[I(Y (u) � 0)] +

✓
d

u
� 1

◆
E0[I(Y (u) � 0)],

where Y (u) = uf1(X1)� (d� u)f0(X1). For ✏ > 0, we define the function g✏ : R ! R+

by

g✏(u) =
2u2

✏2
I
⇣
0  u <

✏

2

⌘
+

✓
1�

2(✏� u)2

✏2

◆
I
⇣ ✏
2
 u < ✏

⌘
+ I (u � ✏) .

It is easy to check that g✏ is continuously differentiable on R and that, for all u in R,

lim
✏!0

g✏(u) = I(u � 0) and ug0✏(u) � 0.

Finally, for ✏ > 0 and u > 0, we define  ✏(d, u) by the formula

 ✏(d, u) = 1� E1 [g✏(Y (u))] +

✓
d

u
� 1

◆
E0 [g✏(Y (u))] .
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An application of the dominated convergence theorem proves that lim
✏!0
 ✏(d, u) =  (d, u)

for all u > 0, and that one can differentiate in the expression for  ✏(d, ·) under the
expectation signs on R+. We also note that  ✏(d, ·) is decreasing on R+. Indeed, for
any u > 0,

@

@u
 ✏(d, u) = �

d

u2
E0 [g✏(uf1(X1)� (d� u)f0(X1))]

�

X

i=0,1

Ei

h
g0✏(uf1(X1)� (d� u)f0(X1))

uf1(X1)� (d� u)f0(X1)

u

i
.

Using the inequality w g0✏(w) � 0 we get that  ✏(d, ·) is decreasing on R+. Finally,
pointwise convergence of  ✏(d, ·) to  (d, ·) implies that  (d, ·) is also decreasing on
R+.

Proof of Theorem 3.3.3. We have

sup
✓2⇥+

d
(s,a0,a1)

1

s
E✓|⌘̂ � ⌘| = sup

a�a1

|S|

s
Pa

⇣
log

f1
f0
(X1) < log

⇣d
s
� 1

⌘⌘

+ sup
aa0

⇣d� |S|

s

⌘
Pa

⇣
log

f1
f0
(X1) � log

⇣d
s
� 1

⌘⌘

=
|S|

s
Pa1

⇣
log

f1
f0
(X1) < log

⇣d
s
� 1

⌘⌘

+
⇣d� |S|

s

⌘
Pa0

⇣
log

f1
f0
(X1) � log

⇣d
s
� 1

⌘⌘

  (d, s)
d

d� s
,

where the last equality is due to the monotonicity of log f1
f0
(X) and to the stochastic

order of the family {fa, a 2 U}.
The lower bound on the minimax risk

inf
⌘̃

sup
✓2⇥+

d
(s,a0,a1)

1

s
E✓|⌘̃ � ⌘|

follows from the lower bound of Theorem 3.2 by taking there f0 = fa0 and f1 = fa1 .





Chapter 4

Optimal variable selection and
adaptive noisy Compressed Sensing

For high-dimensional linear regression model, we propose an algorithm of exact support
recovery in the setting of noisy compressed sensing where all entries of the design matrix
are i.i.d standard Gaussian. This algorithm achieves the same conditions of exact re-
covery as the exhaustive search (maximal likelihood) decoder, and has an advantage over
the latter of being adaptive to all parameters of the problem and computable in polyno-
mial time. The core of our analysis consists in the study of the non-asymptotic minimax
Hamming risk of variable selection. This allows us to derive a procedure, which is nearly
optimal in a non-asymptotic minimax sense. Then, we develop its adaptive version, and
propose a robust variant of the method to handle datasets with outliers and heavy-tailed
distributions of observations. The resulting polynomial time procedure is near optimal,
adaptive to all parameters of the problem and also robust.

Based on Ndaoud and Tsybakov (2018): Ndaoud, M. and Tsybakov, A. B. (2018).
Optimal variable selection and adaptive noisy compressed sensing. arXiv preprint
arXiv:1809.03145.

4.1 Introduction

Statement of the problem
Assume that we have the vector of measurements Y 2 Rn satisfying

Y = X� + �⇠ (4.1)

where X 2 Rn⇥p is a given design or sensing matrix, � 2 Rp is the unknown signal, and
� > 0. In this chapter, we mostly focus on the setting where all entries of X are i.i.d.
standard Gaussian random variables and the noise ⇠ ⇠ N (0, In) is a standard Gaussian
vector independent of X. Here, In denotes the n ⇥ n identity matrix. This setting
is typical for noisy compressed sensing, cf. references below. We will also consider
extensions to sub-Gaussian design X and to noise ⇠ with heavy-tailed distribution.

In this chapter, one of the main problems that we are interested in consists in recov-
ering the support of �, that is the set S� of non-zero components of �. For an integer
s  p, we assume that � is s-sparse, that is it has at most s non-zero components. We

67
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also assume that these components cannot be arbitrarily small. This motivates us to
define the following set ⌦p

s,a of s-sparse vectors:

⌦p
s,a = {� 2 Rp : |�|0  s and |�i| � a, 8i 2 S�} ,

where a > 0, �i are the components of � for i = 1, . . . , p, and |�|0 denotes the number
of non-zero components of �. We consider the problem of variable selection stated as
follows: Given the observations (X, Y ), estimate the binary vector

⌘� = (1{�1 6= 0}, . . . ,1{�p 6= 0}),

where 1{·} denotes the indicator function. In order to estimate ⌘� (and thus the sup-
port S�), we define a decoder (selector) ⌘̂ = ⌘̂(X, Y ) as a measurable function of the
observations (X, Y ) with values in {0, 1}p. The performance of selector ⌘̂ is measured
by the maximal risks

sup
�2⌦p

s,a

P� (⌘̂ 6= ⌘�) and sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|

where |⌘̂� ⌘�| stands for the Hamming distance between ⌘̂ and ⌘�, P� denotes the joint
distribution of (X, Y ) satisfying (4.1), and E� denotes the corresponding expectation.
We say that a selector ⌘̂ achieves exact support recovery with respect to one of the above
two risks if

lim
p!1

sup
�2⌦p

s,a

P� (⌘̂ 6= ⌘�) = 0, (4.2)

or
lim
p!1

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�| = 0, (4.3)

where the asymptotics are considered as p ! 1 when all other parameters of the prob-
lem (namely, n, s, a, �) depend on p in such a way that n = n(p) ! 1. In particular,
the high-dimensional setting with p � n is covered. For brevity, the dependence of these
four parameters on p will be further omitted in the notation. Since

P� (⌘̂ 6= ⌘�)  E�|⌘̂ � ⌘�|,

the property (4.3) implies (4.2). Therefore, we will mainly study the Hamming distance
risk.

Notation. In the rest of this paper we use the following notation. For given se-
quences an and bn, we say that an = O(bn) (resp an = ⌦(bn)) when an  cbn (resp
an � cbn) for some absolute constant c > 0. We write an ⇣ bn if an = O(bn) and
an = ⌦(bn). For x,y 2 Rp, kxk is the Euclidean norm of x, and x

>
y the corresponding

inner product. For a matrix X, we denote by Xj its jth column. For x, y 2 R, we
denote by x _ y the maximum of x and y, by bxc the maximal integer less than x and
we set x+ = x _ 0. The notation 1{·} stands for the indicator function, and |A| for the
cardinality of a finite set A. We denote by C and c positive constants that can differ on
different occurences.
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Related literature
The literature on support recovery in high-dimensional linear model under sparsity
is very rich and its complete overview falls beyond the format of this paper. Some
important common features of the obtained results are as follows.

• The existing selectors (decoders) can be split into two main families. The first
family consists of polynomial time algorithms, such as selectors based on the Lasso
Zhao and Yu (2006); Wainwright (2009b), the orthogonal matching pursuit Tropp
and Gilbert (2007); Zhang (2011b); Cai and Wang (2011) or thresholding Fletcher
et al. (2009); Joseph (2013). The second contains exhaustive search methods,
for instance, the Maximum Likelihood (ML) decoder; they are not realizable in
polynomial time. The ML decoder outputs the support S�̂ of the least squares
solution

�̂ 2 argmin
✓: |✓|0=s

kY �X✓k,

which is the ML estimator of � on the set {� : |�|0 = s} when the noise is
Gaussian.

• The available results are almost exclusively of the form (4.2), where the asymp-
totics is considered under various additional restrictions on the behavior of (n, s,
a, �) as p ! 1. One of the main restrictions concerns the asymptotic behavior of
the signal-to-noise ratio (SNR). For � ⇣ 1, the noise and the entries of the sens-
ing matrix X are of the same order as in Fletcher et al. (2009) and Wainwright
(2009a), while in Aeron et al. (2010), � ⇣

p
n, and hence the noise scales largely

compared to the signal.

We now briefly overview results for specific asymptotics, with the emphasis on the
phase transition, that is on the necessary and sufficient conditions of exact recovery. To
the best of our knowledge, they cover only the exact recovery of the type (4.2).

In the strong noise regime � ⇣
p
n, Aeron et al. (2010) show that necessary and suf-

ficient conditions for (4.2) are given by n = ⌦
�
s log(ps )

�
, and a2 = ⌦ (log(p� s)), and

the ML decoder is optimal in the sense that it achieves exact recovery under these con-
ditions. In the same regime � ⇣

p
n, Saligrama and Zhao (2011) present a polynomial

time procedure achieving (4.2) under sub-optimal sufficient conditions n = ⌦
�
s log(ps )

�
,

and a2 = ⌦ ((log p)3) . This procedure requires a prior knowledge of the threshold a.
For � ⇣ 1, which is in fact the general case (equivalent to fixed �), the results are

different. First, the following necessary condition for exact recovery (in the sense (4.2))
for any decoder is obtained in Wang et al. (2010):

n = ⌦

 
s log(ps )

log(1 + s a2

�2 )
_

log(p� s)

log(1 + a2

�2 )

!
. (4.4)

In Rad (2011), it is shown that, under the restrictions a/� = O(1) and a/� = ⌦(1/
p
s)

on the signal-to-noise ratio a/�, the ML decoder is optimal in the sense that it achieves
(4.2) under the necessary condition (4.4). Note that the second term in (4.4) satisfies

log(p� s)

log(1 + a2

�2 )
⇣
�2 log(p� s)

a2
for a/� = O(1). (4.5)
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In the general case, that is with no restrictions on the joint behavior of s, � and a, the
following sufficient condition for the ML decoder to achieve exact recovery (4.2) is given
in Wainwright (2009a):

n = ⌦

✓
s log

⇣p
s

⌘
_
�2 log(p� s)

a2

◆
. (4.6)

One can check that, for a/� = O(1/
p
s), the second terms in (4.4) and in (4.6) are

dominant, while for a/� = ⌦(1), the first terms are dominant. These remarks and (4.4)
- (4.6) lead us to the following table of phase transitions for exact recovery in the sense
of (4.2). We recall that this table, as well as the whole discussion in this subsection,
deal only with the setting where both X and ⇠ are Gaussian.

SNR Upper bound for ML Lower bound
a/� = O(1/

p
s) �2 log(p�s)

a2

a/� = O(1) and a/� = ⌦(1/
p
s)

s log( p
s
)

log(1+s a2

�2 )
_

log(p�s)

log(1+ a2

�2 )

a/� = ⌦(1) s log(ps )
s log(p/s)

log(1+sa2/�2)

Table 4.1: Phase transitions in Gaussian setting.

It remains an open question what is the exact phase transition for a/� = ⌦(1).
We also note that, in the zone a/� = O(1), the exact phase transitions in this table
are attained by the ML decoder, which is not computable in polynomial time and
requires the knowledge of s. Known polynomial time algorithms are shown to be optimal
only in the regime a/� = O(1/

p
s). In Fletcher et al. (2009), it is shown that Lasso

is sub-optimal compared to the ML decoder. For the regime a2/�2 = O( log(s)s ) and
s ⇣ p, the ML decoder requires n = ⌦(p) observations to achieve exact recovery, while
polynomial time algorithms require n = ⌦(p log(p)). In this regime, the ML decoder
is optimal, cf. Table 1. In the regime of a/� = ⌦(1), there exists an algorithmic
gap making the problem of exact recovery hard whenever the sample size satisfies n 

2�2s log(p) Gamarnik and Zadik (2017). This implies that the sample size of the order
s log(p/s)

log(1+sa2/�2) (the necessary condition 4.4 in the regime a/� = ⌦(1)) is not sufficient for
exact recovery via a computationally tractable method. Variable selection algorithms
based on techniques from sparse graphs theory such as sparsification of the Gram matrix
X>X are suggested in Ji and Jin (2012), Jin et al. (2014) and Ke et al. (2014). In those
papers, phase transitions are derived for the asymptotics where the sparsity s and the
sample size n scale as power functions of the dimension p. In general, sufficient conditions
for the ML decoder are less restrictive than conditions obtained for known polynomial
time algorithms. A more complete overview of necessary and sufficient conditions for
exact recovery defined in the form (4.2) for different models can be found in Aksoylar
et al. (2017).

Contributions
The main contribution of this paper is a polynomial time algorithm that achieves exact
recovery with respect to both criteria (4.2) and (4.3) under the same sufficient conditions



4.1. INTRODUCTION 71

(4.6) as the ML decoder. An open question stated in Fletcher et al. (2009) is whether any
computationally tractable algorithm can achieve a scaling similar to the ML decoder.
This paper answers the question positively under rather general conditions. In Fletcher
et al. (2009), a sufficient condition for exact recovery by a thresholding procedure is
obtained in the form

n >
8
p

k�k22 + �2

a2
log(p� s).

This condition cannot be satisfied uniformly on the class ⌦p
s,a since k�k22 can be arbitrar-

ily large. The selector ⌘̂ that we suggest here is defined by a two step algorithm, which
computes at the first step the Square-Root SLOPE estimator �̂ of �. At the second
step, the components of ⌘̂ are obtained by thresholding of debiased estimators of the
components of � based on the preliminary estimator �̂.

We now proceed to the formal definition of this selection procedure. Split the sample
(Xi, Yi), i = 1, . . . , n, into two subsamples D1 and D2 with respective sizes n1 and n2,
such that n = n1+n2. For k = 1, 2, denote by (X(k), Y (k)) the corresponding submatrices
X(k)

2 Rnk⇥p and subvectors Y (k)
2 Rnk . The Square-Root SLOPE estimator based on

the first subsample (X(1), Y (1)) is defined as follows. Let � 2 Rp be a vector of tuning
parameters

�j = A

s
log(2pj )

n
, j = 1, . . . , p,

for large enough constant A > 0. For any � 2 Rp, let (�⇤
1 , . . . , �

⇤
p) be a non-increasing

rearrangement of |�1|, . . . , |�p|. Consider

|�|⇤ =
pX

j=1

�j�
⇤
j , � 2 Rp,

which is a norm on Rp, cf., e.g., Bogdan et al. (2015). The Square-Root SLOPE estimator
is a solution of the convex minimization problem

�̂ 2 argmin
�2Rp

✓
kY (1)

�X(1)�k
p
n1

+ 2|�|⇤

◆
. (4.7)

Note that this estimator does not depend on the parameters s, �, and a. Details
about the computational aspects and statistical properties of the Square-Root SLOPE
estimator can be found in Derumigny (2018).

The suggested selector is defined as a binary vector

⌘̂(X, Y ) = (⌘̂1(X, Y ), . . . , ⌘̂p(X, Y )) (4.8)

with components

⌘̂i(X, Y ) = 1

n���X(2)>
i

⇣
Y (2)

�

X

j 6=i

X(2)
j �̂j

⌘��� > t(X(2)
i )kX(2)

i k

o
(4.9)

for i = 1, . . . , p, where X(2)
i denotes the ith column of matrix X(2). The threshold t(·)

in (4.9) will be defined by different expressions, with a basic prototype of the form

t(u) = t�(u) =
akuk

2
+
�2 log(ps � 1)

akuk
, 8u 2 Rn2 . (4.10)
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The decoder (4.8) - (4.9) is the core procedure of this paper. We show that it improves
known sufficient conditions of exact recovery for methods realizable in polynomial time.
We also show that it can be turned into a completely adaptive procedure (once the
sufficient conditions are fulfilled) by suitably modifying the definition (4.10) of the
threshold. Another advantage is that the decoder (4.8) - (4.9) can be generalized to
sub-Gaussian design matrices X and to heavy-tailed noise. In Section 4.2, we study the
non-asymptotic minimax Hamming distance risk, we derive a lower bound and prove
that the decoder (4.8) - (4.9) is nearly optimal. Section 4.3 gives sufficient conditions for
exact support recovery for the method (4.8) - (4.9). Section 4.4 is devoted to adaptivity
to all parameters of the setting, while, in Section 4.5, we show how to extend all previ-
ous results to sub-Gaussian Xand ⇠. Finally, in Section 4.6, we give a robust version of
our procedure when the noise ⇠ is heavy-tailed and the data are corrupted by arbitrary
outliers.

4.2 Non-asymptotic bounds on the minimax risk
Here, as well as in Sections 4.3 and 4.4, we assume that all entries of X are i.i.d. standard
Gaussian random variables and the noise ⇠ ⇠ N (0, In) is a standard Gaussian vector
independent of X.

In this section, we present a non-asymptotic minimax lower bound on the Hamming
risk of any selectors as well as non-asymptotic upper bounds for the two risks of selector
(4.8) - (4.9). In several papers, lower bounds are derived using the Fano lemma in
order to get necessary conditions of exact support recovery, i.e., the convergence of the
minimax risk to 0. However, they do not give information about the rate of convergence.
Our first aim in this section is to obtain an accurate enough lower bound characterizing
the rate. The Fano lemma is too rough for this purpose and we use instead more refined
techniques based on explicit Bayes risk calculation. Set

 + (n, p, s, a, �) = (p� s)P (�" > t (⇣)) + sP (�" � ak⇣k � t (⇣)) ,

where " is a standard Gaussian random variable, ⇣ ⇠ N (0, In) is a standard Gaussian
random vector in Rn independent of ", and t(·) is defined in (4.10).

The following minimax lower bound holds.

Theorem 4.2.1. For any a > 0, � > 0 and any integers n, p, s such that s < p we have

8s0 2 (0, s], inf
⌘̃

sup
�2⌦p

s,a

E�|⌘̃ � ⌘�| �
s0

s

✓
 +(n, p, s, a, �)� 4se�

(s�s
0)2

2s

◆
,

where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

The proof of this theorem is given in Appendix 4.8. The idea is in reduction to
considering the component-wise Bayes risk. Achieving the minimal value of the risk for
each component leads to an equivalent of the oracle (non-realizable) decoder ⌘⇤ with
components

⌘⇤i (X, Y ) = 1

⇢
X>

i

⇣
Y �

X

j 6=i

Xj�j
⌘
> t(Xi)kXik

�
, i = 1, . . . , p, (4.11)
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where t(·) is the threshold defined in (4.10). This decoder has a structure similar to
(4.9). It selects the components by thresholding the random variables

X>
i

⇣
Y �

P
j 6=i Xj�j

⌘

kXik
. (4.12)

Note that, under the model (4.1), the random variable (4.12) has the same distribution
as

�ikXik+ �"i,

where "i is a standard Gaussian random variable independent of kXik. Thus, condi-
tionally on the design X, we are in the framework of variable selection in the normal
means model, where the lower bound techniques developed in Butucea et al. (2018) can
be applied to obtain the result.

Clearly, the oracle decoder ⌘⇤ is not realizable since it depends on the unknown
�. We do not know the rest of the components of � when we try to recover its ith
component. Since the sensing matrix X is assumed Gaussian with i.i.d entries, it is
straightforward to see that

P
j 6=i Xj�j is a zero-mean Gaussian variable with variance

not greater than k�k2. Hence we can consider this term as an additive noise, but the
fact that we cannot control k�k means that the variance of the noise is not controlled
neither. In order to get around this drawback, we plug in an estimator �̂ instead of � in
the oracle expression. This motivates the two-step selector defined in (4.8) - (4.9). At
the first step, we use the Square-Root SLOPE estimator �̂ based on the subsample D1.
We have the following bound on the `2 error of the Square-Root SLOPE estimator.

Proposition 4.2.1. Let �̂ be the Square-Root SLOPE estimator defined in Section 4.1
with large enough A > 0. There exist positive constants C0, C1 and C2 such that for all
� 2 (0, 1] and n1 >

C0
�2 s log

�
ep
s

�
we have

sup
|�|0s

P�

⇣
k�̂ � �k � ��

⌘
 C1

⇣ s

2p

⌘C2s

.

This proposition is a special case of Proposition 4.5.1 below.
In what follows, for the sake of readability, we will write X and Y instead of X(2)

and Y (2) since we will condition on the first subsample D1 and only use the second
subsample D2 in our argument. We only need to remember that �̂ is independent from
the second sample of size n2. With this convention, definition (4.9) involves now the
random variables

↵i :=
X>

i

⇣
Y �

P
j 6=i Xj�̂j

⌘

kXik
= �ikXik+

1

kXik
X>

i

⇣X

j 6=i

Xj(�j � �̂j) + �⇠
⌘

(4.13)

for i = 1, . . . , p. Conditionally on �̂ and Xi, the variable ↵i has the same distribution as

�ikXik+
⇣
�2 +

X

j 6=i

|�j � �̂j|
2
⌘ 1

2
", (4.14)

where " is a standard Gaussian random variable. Hence, considering ↵i as new obser-
vations, we have a conditional normal means model, for which a natural procedure to
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detect the non-zero components consists in comparing ↵i to a threshold. Choosing the
same threshold t(·) as in the lower bound of Theorem 4.2.1 leads to the selector (4.8) -
(4.9).

Consider now a quantity close to  + given by the formula

 (n, p, s, a, �) = (p� s)P (�" > t (⇣)) + sP
�
�" > (ak⇣k � t (⇣))+

�

where t(u) = t�(u) is defined in (4.10). Note that

 (n, p, s, a, �)   + (n, p, s, a, �) .

We have the following upper bound for the minimax risks of the selector (4.8) - (4.9).

Theorem 4.2.2. Let n, p, a, � be as in Theorem 4.2.1, let s be an integer such that
s  p/2, and let ⌘̂ be the selector (4.8) - (4.9) with the threshold t(·) = t�

p
1+�2(·) defined

in (4.10), with some � 2 (0, 1]. Then there exists a constant C0 > 0 such that for all
n1 >

C0
�2 s log

�
ep
s

�
we have

sup
�2⌦p

s,a

E�|⌘̂ � ⌘�|  2 (n2, p, s, a, �
p
1 + �2) + C1p

⇣ s

2p

⌘C2s

,

and
sup
�2⌦p

s,a

P� (⌘̂ 6= ⌘�)  2 (n2, p, s, a, �
p
1 + �2) + C1

⇣ s

2p

⌘C2s

.

Proof. Define the random event A = {k�̂��k  ��}, where �̂ is based on the subsample
D1. For any � 2 ⌦p

s,a, we have

E� [|⌘̂ � ⌘�| |D1] =
X

i:�i=0

E� [⌘̂i|D1] +
X

i:�i 6=0

E� [1� ⌘̂i|D1]

=
X

i:�i=0

P�(|↵i| > t(Xi)|D1) +
X

i:�i 6=0

P�(|↵i|  t(Xi)|D1).

Here, t(Xi) � 0 since s  p/2. Using the fact that, conditionally on �̂ and Xi, the
variable ↵i has the same distribution as (4.14) we find that, for all i such that �i = 0,

P�(|↵i| > t(Xi)|D1)  P(�⇤|"| > t(Xi)|D1) = 2P(�⇤" > t(Xi)|D1)

where �⇤ = (�2+k�̂��k2)1/2 and " is a standard Gaussian random variable independent
of kXik. Analogous argument and the fact that |�i| � a for all non-zero �i lead to the
bound

P�(|↵i|  t(Xi)|D1)  P(�⇤|"| � akXik � t(Xi)|D1) = 2P(�⇤" � (akXik � t(Xi))+|D1)

valid for all i such that �i 6= 0. Therefore,

E� [|⌘̂ � ⌘�| |D1]  2(p� s)P(�⇤" > t(⇣)|D1) + 2sP(�⇤" � (ak⇣k � t(⇣))+|D1), (4.15)

where ⇣ ⇠ N (0, In2) is a standard Gaussian random vector in Rn2 independent of ".
Using this bound on the event A and taking expectations with respect to D1 yields

E�|⌘̂ � ⌘�|  2 (n2, p, s, a, �
p
1 + �2) + 2pP (Ac) .
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For P� (⌘̂ 6= ⌘�), we have an analogous bound where the factor p in the second term
disappears since we intersect only once with the event A in the probability of wrong
recovery, instead of doing it for p components. The theorem follows by applying Propo-
sition 4.2.1.

Remark 4.2.1. As we will see in the next section, the term p
�

s
2p

�C2s is small compared
to  for large p. Hence,  , or the close quantity  +, characterize the main term of
the optimal rate of convergence. Uniformly on ⌦p

s,a, no selector can reach a better rate
of the minimax risk in asymptotical regime. The discrepancy between the upper and
lower bounds comes from increasing the sample size by n1, in order to estimate � (in the
upper bound, the first argument of  + is the smaller sample size n2 < n, which makes
 + greater), and a higher variance �2(1 + �2), even if we can make it very close to �2

by choosing �.

Remark 4.2.2. Our choice of Square-Root SLOPE estimator �̂ is motivated by the fact
that it achieves the optimal rate of `2 estimation adaptively to s and �, which will be
useful in Section 4.4. Since in this section we do not consider adaptivity issues, we can
also use as �̂ the LASSO estimator with regularization parameter depending on both s
and � or the SLOPE estimator, for which the regularization parameter depends � but
not on s. Indeed, it follows from Bellec et al. (2018) that Proposition 4.2.1 holds when �̂
is such a LASSO or a SLOPE estimator. Thus, Theorem 4.2.2 remains valid for these
two estimators as well.

The values ↵i can be viewed as "de-biased" observations in high-dimensional regres-
sion. Other de-biasing schemes can be used, for example, the method considered in
Section 4.6. The most popular de-biasing technique is based on the LASSO and would
consider in our context ↵i = �̂d

i where �̂d
i are the components of the vector

�̂d = �̂L +
1

n
X>

⇣
Y �X�̂L

⌘
.

and �̂L is the LASSO estimator (see, for example, Javanmard and Montanari (2018) and
the references therein). As in our case, this reduces the initial regression model to the
mean estimation model (conditionally on �̂L), which is not exactly the normal means
model but rather its approximation. Indeed, we may equivalently write

�̂d
i = �i +

X>
i

n

⇣X

j 6=i

Xj(�j � �̂L
j ) + �⇠

⌘
+

✓
1�

kXik
2

n

◆
(�̂L

i � �i).

The difference from (4.13) is in the fact that, conditionally on �̂L and Xi, we have here
a bias

⇣
1� kXik2

n

⌘
(�̂L

i � �i), and that there is no scaling by the norm of Xi. Note that
scaling by the norm kXik instead of n is crucial in our construction. It allows us to
obtain in Theorem 4.2.2 the expression for the risk analogous to the lower bound of
Theorem 4.2.1.

Finally, note that in parallel to our work, a study of a specific type of two-stage
algorithms for variable selection in linear models is developed in Wang et al. (2017).
Our results and the questions that we address here are significantly different.
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4.3 Phase transition
Using the upper and lower bounds of Section 4.2, we can now study the phase transition,
i.e., the necessary and sufficient conditions on the sample size to achieve exact recovery
under the Hamming risk. A first lower bound is given by the following result.

Proposition 4.3.1. Let n, p, s, a, � be as in Theorem 4.2.1. If also s � 6 and n 

2�2 log( p

s
�1)

a2 , there exists an absolute constant c > 0 such that

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| �
⇣
c _

s

8

�
1� 16e�

s

8
�⌘

,

where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

Proof. We start by proving a lower bound on the function  +. We have

 +(n, p, s, a, �) � sP (�" � ak⇣k � t(⇣)) � sP(�" � 0)P (B) = s

2
P (B) .

where B = {ak⇣k  t(⇣)}. Since a chi-squared random variable with n degrees of free-
dom has a median smaller than n, we get under the conditions stated above that

P (B) = P

✓
k⇣k2 

2�2 log(ps � 1)

a2

◆
�

1

2
.

Therefore, using Theorem 4.2.1 we get

8s0 2 (0, s), inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| � s0
✓
1

4
� 4e�

(s�s
0)2

2s

◆
.

Since s � 6 we have 4e�s/2 < 1
4 . Hence,

lim
s0!0+

✓
1

4
� 4e�

(s�s
0)2

2s

◆
=

1

4
� 4e�s/2 > 0.

Thus, there exists c > 0 such that

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| � c.

By setting s0 = s/2, we also get

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| �
s

8

�
1� 16e�

s

8
�
.

The proposition follows.

Proposition 4.3.1 implies that the condition n �
2�2 log( p

s
�1)

a2 is necessary to achieve
exact recovery for the Hamming risk. We give now a more accurate necessary condition
for the regime a = O(�). This regime is the most interesting when we consider the
asymptotic setting where a is decreasing.
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Theorem 4.3.1. Let n, p, s, a, � be as in Theorem 4.2.1. If also n >
2�2 log( p

s
�1)

a2 , a <
p
2�, and s < p/2, then there exists an absolute constant c > 0 such that

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| � c

s
s7/4(p� s)1/4

n log
�
1 + a2

4�2

� exp
✓
�
n

2
log

✓
1 +

a2

4�2

◆◆
� 2se�

s

8 ,

where inf ⌘̃ denotes the infimum over all selectors ⌘̃.

The proof of Theorem 4.3.1 is given in Appendix 4.8.

Corollary 4.3.1. Let s � 6, a <
p
2�, and let

n < (1� ✏)
log(p� s) + 7 log(s)

4 log
�
1 + a2

4�2

� ,

for some ✏ 2 (0, 1). Then, there exists c > 0 such that

lim inf
p!1

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| � c.

Proof. If n 
2�2 log( p

s
�1)

a2 , then the result follows from Proposition 4.3.1. Now if n >
2�2 log( p

s
�1)

a2 , then Theorem 4.3.1 yields

inf
⌘̃

sup
�2⌦p

s,a

E� |⌘̃ � ⌘�| � c

 �
s7/4(p� s)1/4

�✏

(1� ✏) log (s7/4(p� s)1/4)

! 1
2

� 2se�
s

8 .

As 1  s < p, we have lim
p!1

s7/4(p� s)1/4 = 1. The result follows.

Corollary 4.3.1 implies the following necessary condition for exact recovery under
the Hamming risk:

n �
log(p� s) + 7 log(s)

4 log
�
1 + a2

4�2

� .

We will show now that the upper bound on the minimax risk decreases exponentially
with the sample size. This will allow us to show that the decoder (4.8) - (4.9) achieves
exact recovery under the same conditions as the ML decoder.

Theorem 4.3.2. Let s  p/2, n, p, a, � be as in Theorem 4.2.1, and a  �. Assume
that for some � 2 (0, 1] the following inequalities hold

n1 >
C0

�2
s log

⇣ep
s

⌘
and n2 �

4�2 log
�
p
s � 1

�

a2
.

Let ⌘̂ be the selector as in Theorem 4.2.2. Then,
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�2⌦p

s,a

E� |⌘̂ � ⌘�|  2
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s(p� s) exp

✓
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2
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,

and
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�2⌦p

s,a

P� (⌘̂ 6= ⌘�)  2
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s(p� s) exp
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2
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+se�
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2p
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.
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The proof of this theorem is given in Appendix 4.8.
We can notice that both types of errors decrease exponentially as the sample size

increases to 1.

Corollary 4.3.2. Under the conditions of Theorem 4.3.2, if a  �/
p
3 and n2 �

A log(p�s)+log(s)

log

✓
1+ a2

4�2(1+�2)

◆ for some A > 1, we have

sup
�2⌦p

s,a

P� (⌘̂ 6= ⌘�)  3 (s(p� s))
1�A

2 + C1

⇣ s

2p

⌘C2s

.

Proof. Since log(p� s) + log(s) � log
�
p
s � 1

�
, and log (1 + x)  x, we get

n2 �
4�2 log

�
p
s � 1

�

a2
.

Hence Theorem 4.3.2 applies. Moreover, since a  �/
p
3 we also have

e�
n2
24  exp

✓
�
n2

2
log

✓
1 +

a2

4�2 (1 + �2)

◆◆
.

We can conclude by using the lower bound on n2 and the inequality s 
p

s(p� s).

As consequence of the last corollary, sufficient conditions for the selector (4.8) - (4.9)
with threshold (4.10) to achieve exact recovery are as follows

n1 >
C0

�2
s log

⇣ep
s

⌘
and n2 > (1 + ✏)

log(p� s) + log(s)

log
⇣
1 + a2

4�2(1+�2)

⌘ ,

for some � 2 (0, 1] and ✏ > 0.
Comparing the rate of convergence in Corollary 4.3.2 to the rate for the ML decoder

established in Rad (2011), we notice that they have similar form. Indeed, Rad (2011)
proves the bound

sup
�2⌦p

s,a

P� (⌘̂ 6= ⌘�)  s

✓
(es(p� s))�B⇤

+

✓
s

e(p� s)

◆B⇤s◆
,

for some B⇤ > 0 and s  p/2.
It is interesting to compare these conditions with the best known in the literature

(where only the risk (4.2) was studied). Using (4.5), we see that, in the zone a/� = O(1),
our sufficient condition for exact recovery has the form

n = ⌦

✓
s log

⇣p
s

⌘
_
�2 log(p� s)

a2

◆
. (4.16)

As follows from the discussion in the Introduction, this gives the exact phase transition
in the zone a/� = O(1), a = O(1/

p
s), while in the zone a/� = O(1), a = ⌦(1/

p
s),

combination of the results of Wang et al. (2010) and Rad (2011) shows that the exact
phase transition (realized by the ML decoder) is given by

n = ⌦

 
s log(ps )

log(1 + s a2

�2 )
_
�2 log(p� s)

a2

!
.
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It remains an open question whether the improvement by the term log(1+s a2

�2 ) appearing
here is achievable by computationally tractable methods. Our sufficient condition (4.16)
is the same as for the ML decoder Wainwright (2009a), with the advantage that our
selector can be computed in polynomial time. Nevertheless, the knowledge of parameters
s, a and � is required for the construction. This motivates us to derive, in the next
section, adaptive variants of the proposed selector.

4.4 Nearly optimal adaptive procedures
In this section, we propose three adaptive versions of our selector. The first one assumes
that we know only a and do not know s and �, the second assumes only the knowledge
of �, and the third one is completely adaptive to all the parameters.

We first present the following a tail bound for the Student distribution that will be
useful to derive the results.

Lemma 4.4.1. Let Z be a Student random variable with k degrees of freedom. There
exist constants c, C > 0 independent of k such that for all b � 1/

p
k we have

c
(1 + b2)�

k�1
2

p
kb

 P

⇣
|Z| �

p

kb
⌘
 C

(1 + b2)�
k�1
2

p
kb

.

The proof of this lemma is given in Appendix 4.8.
The Square-Root SLOPE estimator �̂ is adaptive to the sparsity parameter s and

to the scale parameter �. The dependence of the selector ⌘̂ defined in (4.8) - (4.9) on
the parameters s, � and a only appears in the definition of the threshold t(·). Hence,
we will replace it by an adaptive threshold. In this section, we assume that n is an
even integer and the sample splitting is done in two subsamples of equal sizes such that
n1 = n2 = n/2. In Theorem 4.3.2, we have shown that the selector ⌘̂ defined in (4.8) -
(4.9) with the threshold function

t(u) =
akuk

2
+

(1 + �2)�2 log
�
p
s � 1

�

akuk
, 8u 2 Rn2 , (4.17)

achieves nearly optimal conditions of exact recovery. We now set a new threshold by
simply dropping the second term in (4.17):

t(u) =
akuk

2
, 8u 2 Rn2 . (4.18)

Then, the procedure becomes adaptive to s and �. The phase transition for this proce-
dure is given by the following proposition.

Proposition 4.4.1. Let n be an even integer and 2(1 _ 1/C2)  s < p. Set n1 = n2 =
n/2, and let the threshold t(·) be defined in (4.18). Then, the selector ⌘̂ defined in (4.8)
- (4.9) achieves exact recovery under both risks (Hamming and support recovery) if

n � 2
⇣
C0s log

⇣ep
s

⌘
_

2 log p

log
�
1 + a2

8�2

� + 1
⌘
.
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Proof. Following the lines of the proof of Theorem 4.2.2 and choosing there � = 1 we
get

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|  pP

✓
p
2� |"| �

ak⇣k

2

◆
+ C1p

⇣ s

2p

⌘C2s

, (4.19)

where " is a standard Gaussian random variable and ⇣ ⇠ N (0, In2) is a standard Gaus-
sian random vector in Rn2 independent of ". In order to prove exact recovery, we need
to show that both terms on the right hand side of (4.19) vanish as p goes to infinity.
We first consider the second term. Note that the function t 7!

�
t
2p

�t is decreasing for
1  t  p/2. Thus, if 2(1 _ 1/C2)  s  p/2 we have

p
⇣ s

2p

⌘C2s

 p
⇣1 _ 1/C2

p

⌘2

! 0 as p ! 1,

while for p/2 < s < p,

p
⇣ s

2p

⌘C2s

 p2�C2p/2.

Thus, to prove the proposition, it remains to show that the first term on the right hand
side of (4.19) vanishes. Using the independence between " and ⇣, we have

P

✓
p
2� |"| �

ak⇣k

2

◆
= P

✓
|Z| �

a
p
n2

2
p
2�

◆
,

where Z is a Student random variable with n2 degrees of freedom. To bound the last
probability, we use Lemma 4.4.1. Since log(1 + x)  x, 8x � 0, the assumption on n2

implies

n2 >
16�2 log p

a2
.

In particular, since p � 3 we have n2a2

8�2 � 1. Thus, by Lemma 4.4.1,

pP

✓
p
2� |"| �

ak⇣k
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◆


Cp�
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p
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◆�n2�1
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(4.20)

where we have used the condition n2 �
2 log p

log
⇣
1+ a2

8�2

⌘ + 1. The expression in (4.20) tends

to 0 as p ! 1. This completes the proof.

Proposition 4.4.1 shows that the condition

n = ⌦

 
s log

⇣ep
s

⌘
_

log p

log
�
1 + a2

8�2

�
!

is sufficient for exact recovery without knowing the sparsity parameter s.
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We now turn to the case where both s and a are unknown. In Proposition 4.4.1, we
have used the condition

n2 >
2 log p

log
⇣
1 + a2

8�2

⌘ ,

which is equivalent to
a2 > 8�2

⇣
p

2
n2 � 1

⌘
. (4.21)

This inspires us to replace the threshold function t(u) = akuk/2 considered in Proposi-
tion 4.4.1 by

t(u) = �

r
2
⇣
p

2
n2 � 1

⌘
kuk, u 2 Rn2 . (4.22)

Then, we get the following result analogous to Proposition 4.4.1.

Theorem 4.4.1. Let n � 4 be an even integer and 2(1 _ 1/C2)  s < p. Set n1 =
n2 = n/2, and let the threshold t(·) be defined in (4.22). Then, the selector ⌘̂ defined in
(4.8) - (4.9) achieves exact recovery under both risks (Hamming and support recovery)

if n � 2

✓
C0s log

�
ep
s

�
_

2 log p

log
⇣
1+ a2

8�2

⌘

◆
.

Proof. Acting as in the proof of Theorem 4.2.2 and choosing there � = 1 we get

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|  pP
⇣p

2� |"| > t (⇣)
⌘
+sP

⇣p
2� |"| � (ak⇣k � t (⇣))+

⌘
+C1p

✓
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◆C2s

where " is a standard Gaussian random variable and ⇣ ⇠ N (0, In2) is a standard Gaus-
sian random vector in Rn2 independent of ". Since n2 �

2 log p

log
⇣
1+ a2

8�2

⌘ , we have (4.21),

which implies ak⇣k � 2t (⇣). Therefore,

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|  2pP
⇣p

2� |"| � t (⇣)
⌘
+ C1p

✓
s

2p

◆C2s

. (4.23)

The second summand on the right hand side of (4.23) is treated in the same way as in
Proposition 4.4.1. To bound the first summand, we note that due to (4.22),

P

⇣p
2� |"| � t (⇣)

⌘
= P
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|Z| �

q
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�
p

2
n2 � 1

�◆

where Z is a Student random variable with n2 degrees of freedom. Using the inequalities
n2

�
p

2
n2 � 1

�
= n2

�
exp(2(log p)/n2) � 1

�
� 2 log p, n2 � C0 log p, and Lemma 4.4.1 we

find
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�
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2
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�◆


p�1+1/n2

p
2 log p


p�1 exp(1/C0)

p
2 log p

.

This implies that the first summand on the right hand side of (4.23) tends to 0 as
p ! 1.
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Thus, if only � is known while a and s are not, we can achieve exact recovery under
the same condition as for the ML decoder (which is not computationally tractable and
depends on s). Next, we show that, replacing � in (4.22) by a suitable estimator, we
can render the procedure completely adaptive to all parameters of the problem.

Define �̂ > 0 by

�̂2 =
1

n2

nX

i=1

⇣
Yi �

pX

j=1

Xij�̂j
⌘2

,

where �̂ is the same Square-Root SLOPE estimator as in (4.9) and consider the threshold
function

t(u) = �̂

r
2
⇣
p

2
n2 � 1

⌘
kuk, 8u 2 Rn2 . (4.24)

We get the following result for the fully adaptive procedure corresponding to this thresh-
old.

Theorem 4.4.2. Let n � 4 be an even integer and 2(1_ 1/C2)  s < p. Set n1 = n2 =
n/2, and let the threshold t(·) be defined in (4.24). Then, there exists a constant C̄0 > 0
such that the selector ⌘̂ defined in (4.8) - (4.9) achieves exact recovery under both risks

(Hamming and support recovery) if n � 2
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Proof. Define the random event

B =
n
k�̂ � �k2  �2

o
\

(�����
�̂2

k�̂ � �k2 + �2
� 1

����� 
1

2

)
.

We have
sup
�2⌦s,a

E� |⌘̂ � ⌘�|  sup
�2⌦s,a

E�

�
|⌘̂ � ⌘�|1{B}

�
+ p sup

�2⌦s,a

P� (Bc) .

To control the second term on the right hand side, note that, conditionally on �̂, the
estimator �̂2 has the same distribution as

k�̂ � �k2 + �2

n2
�2(n2),

where �2(n2) is a chi-squared random variable with n2 degrees of freedom. We will use
the following lemma, cf. Cavalier et al. (2002) or Lounici et al. (2011).

Lemma 4.4.2. For any N � 1 and t > 0,

P(
���2(N)/N � 1

�� � t)  2 exp

✓
�

t2N

4(1 + t)

◆
,

where �2(N) is a chi-squared random variable with N degrees of freedom.

From Lemma 4.4.2 with t = 1/2 and Proposition 4.2.1 we get

p sup
�2⌦s,a

P� (Bc)  C1p

✓
s

2p

◆C2s

+ 2pe�(n2�1)/24.
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Here, p
�

s
2p

�C2s
! 0 as p ! 1 (cf. the proof of Proposition 4.4.1), while pe�n2/24 ! 0

as p ! 1 provided that we choose C̄0 > 24.
To evaluate � := E�

�
|⌘̂ � ⌘�|1{B}

�
, we act similarly to the proof of Theorem 4.2.2.

We have

� =
X

i:�i=0

P�({|↵i| > t(Xi)} \ B) +
X

i:�i 6=0

P�({|↵i|  t(Xi)} \ B).

Set �⇤ =
q

k�̂ � �k2 + �2. On the event B, we have �2
⇤  2�̂2

 3�2
⇤ and �2

⇤  2�2. The
last inequality and the assumption on n2 imply that a � 2

p
2�⇤(p2/n2 � 1)1/2. Using

these remarks and the fact that, conditionally on �̂ and Xi, the variable ↵i has the same
distribution as (4.14) we obtain, for all i such that �i = 0,

P�({|↵i| > t(Xi)} \ B)  P�({|↵i| > �⇤kXik(p
2/n2 � 1)1/2} \ A)

 P�(|"| > kXik(p
2/n2 � 1)1/2}),

where A =
�
k�̂��k2  �2

 
and " is a standard Gaussian random variable independent

of kXik. Similarly, for all i such that �i 6= 0 (and thus |�i| � a) we have
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 P�(|"| � (2
p
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p
3)kXik(p

2/n2 � 1)1/2).

Combining the above inequalities we find

�  pP
�
|Z| � (p2/n2 � 1)1/2

�
+ sP

⇣
|Z| � (2

p
2�

p
3)(p2/n2 � 1)1/2

⌘
, (4.25)

where Z is a Student random variable with n2 degrees of freedom. Finally, we apply the
same argument as in the proof of Theorem 4.4.1 to obtain that the right hand side of
(4.25) vanishes as p ! 1.

4.5 Generalization to sub-Gaussian distributions
In this section, we generalize our procedure to the case where both the design (sensing)
matrix X and the noise ⇠ are sub-Gaussian. Recall that, for given � > 0, a random
variable ⇣ is called �-sub-Gaussian if

E exp(t⇣)  exp(�2t2/2), 8t 2 R.

In particular, this implies that ⇣ is centered.
In this section, we assume that both X and ⇠ have i.i.d. sub-Gaussian entries, and

as above, X is independent of ⇠.
The estimation part of our procedure (cf. Proposition 4.2.1) extends to sub-Gaussian

designs as follows.

Proposition 4.5.1. Assume that the entries of matrix X are i.i.d �X-sub-Gaussian
random variables, the entries of the noise ⇠ are i.i.d �-sub-Gaussian random variables
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for some � > 0, E(X2
ij) = 1 for all entries Xij of matrix X, and X is independent of

⇠. Let �̂ be the Square-Root SLOPE estimator defined in Section 4.1 with large enough
A > 0. There exist constants C0, C1, C2 > 0 that can depend only on �X , such that for
all � 2 (0, 1] and n1 >

C0
�2 s log

�
ep
s

�
we have

sup
|�|0s

P�

⇣
k�̂ � �k � ��

⌘
 C1

⇣ s

2p

⌘C2s

.

The proof of this proposition is based on combination of arguments from Bellec et al.
(2018) and Comminges et al. (2018). It is given in Appendix 4.8.

We will also need the following lemma proved in Appendix 4.8.
Lemma 4.5.1. Let U, V be two independent random vectors in Rn, such that the entries
of U are i.i.d. random variables and the entries of V are i.i.d. �-sub-Gaussian random
variables for some �. Assume that E(U2

i ) = 1 and E(U4
i )  �4

1 for all components Ui of
U , where �1 > 0. Then, for any t > 0,
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32�4
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◆
.

We are now ready to state a general result for sub-Gaussian designs.
Theorem 4.5.1. Let the assumptions of Proposition 4.5.1 be satisfied. Let n � 4 be an
even integer and 2(1 _ 1/C2)  s < p. Set n1 = n2 = n/2, and let the threshold t(·) be
defined in (4.18). Then, there exists a constant C > 0 such that the selector ⌘̂ defined in
(4.8) - (4.9) achieves exact recovery under both risks (Hamming and support recovery)
if n � C

⇣
s log

�
ep
s

�
_

�2 log p
a2

⌘
.

Proof. We act similarly to the proof of Theorem 4.2.2 where we set � = 1 and t(Xi) =
a
2kXik. Then, for all i such that �i = 0, we have

P�(|↵i| > t(Xi)|D1)  P

✓��U>V
��

kUk2
>

a

2

���D1
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where U = Xi and V = Y �
P

j 6=i Xj�̂j = �⇠ +
P

j 6=i Xj(�j � �̂j). For fixed �̂, the
components of V are i.i.d. �⇤-sub-Gaussian with �⇤ = (�2 + k�̂� �k2)1/2. In particular,
for fixed �̂ on the event A = {k�̂ � �k2  �2

}, they are
p
2�-sub-Gaussian. Thus, from

Lemma 4.5.1 we obtain that there exists an absolute constant c > 0 such that, for all i
with �i = 0,

P�({|↵i| > t(Xi)} \ A)  2 exp
⇣
� cn2

⇣a2

�2
^ 1

⌘⌘
.

The same bound holds for P�({|↵i|  t(Xi)}\A) for all i such that �i 6= 0. The rest of
the proof follows the same lines as the proof of Theorem 4.2.2 using Proposition 4.5.1
to evaluate P�(Ac). This yields the bound

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|  4p exp
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� cn2
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2p

⌘C2s

.

The second summand on the right hand side of this inequality vanishes as p ! 1 as
shown in the proof of Proposition 4.4.1. The second summand vanishes as p ! 1

if n2 > c0
�
�2

a2 _ 1
�
log p for some c0 > 1/c. We conclude the proof by noticing that

s log
�
ep
s

�
� log p for all 1  s  p.
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Theorem 4.5.1 shows that, with no restriction on the joint behavior of s, a and �,
a sufficient condition for exact recovery in the sub-Gaussian case is the same as in the
Gaussian case:

n = ⌦

✓
s log

⇣ep
s

⌘
_
�2 log p

a2

◆
.

On the other hand, necessary conditions of exact recovery given in (4.4) are valid for
any X with i.i.d centered entries satisfying E(X2

ij) = 1 and for Gaussian noise ⇠ Wang
et al. (2010). It follows that, if under the assumptions of Theorem 4.5.1 the noise
⇠ is Gaussian, our selector achieves exact phase transition in the zone a/� = O(1),
a = O(1/

p
s), while for other values of s, a and �, it achieves the phase transition up

to a logarithmic factor.

4.6 Robustness through MOM thresholding
In the previous section, we have shown that the suggested decoder succeeds for inde-
pendent sub-Gaussian designs. In practice, the observations we have may be corrupted
by some outliers, and the assumption of sub-Gaussian noise is not always relevant. This
motivates us to introduce a robust version of this selector. In this section, we propose a
selector that achieves similar properties as described above under weaker assumptions
on the noise and in the presence of outliers.

Suppose that data are partitioned in two disjoint groups O and I, where (xi, Yi)i2O
are outliers, that is arbitrary vectors with xi 2 Rp, Yi 2 R, and (xi, Yi)i2I are informative
observations distributed as described below. Here, |I|+ |O| = n.

We assume that the informative observations satisfy

Yi = x
>
i � + ⇠i, i 2 I, (4.26)

where � 2 Rp is an unknown vector of parameters and ⇠1, . . . , ⇠n are zero-mean i.i.d.
random variables such that for some q, � > 0 we have E(|⇠i|2+q)  �2+q, i 2 I. We
also assume that all components Xij of vectors xi are �X-sub-Gaussian i.i.d. random
variables with zero mean and E(X2

ij) = 1. Here, �X > 0 is a constant. The conditions
on the design can be further weakened but we consider sub-Gaussian designs for the
sake of readability and also because such designs are of major interest in the context
of compressed sensing. We also assume that ⇠ = (⇠1, . . . , ⇠n) is independent of X =
(x>

1 , . . . ,x
>
n )

>.
In this section, we propose a selector based on median of means (MOM). The idea

of MOM goes back to Nemirovskii and Yudin (1983), Jerrum et al. (1986), Alon et al.
(1999). Our selector uses again sample splitting. We first construct a preliminary
estimator �̂⇤ based on the subsample D1 and then we threshold debiased estimators of
the components of �. These debiased estimators are constructed using both �̂⇤ and the
second subsample D2. As a preliminary estimator, we take the MOM-SLOPE estimator
of Lecué and Lerasle (2017), for which we have the following version of Proposition 4.2.1.

Proposition 4.6.1. Let X and ⇠ satisfy the conditions stated above in this section.
Then, there exist constants c0, c1, c2 > 0 depending only on q and the sub-Gaussian
constant �X such that the following holds. If |O|  c0s log(ep/s)  n1/2, then the
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MOM-SLOPE estimator �̂⇤ defined in Lecué and Lerasle (2017) satisfies

sup
|�|0s

P�

⇣
k�̂⇤

� �k � �
⌘
 c1

⇣s
p

⌘c2s

.

The proof of this proposition is given in Appendix 4.8.
Proposition 4.6.1 holds uniformly over all outlier sets |O| such that |O|  c1s log(ep/s),

and uniformly over all distributions of ⇠i satisfying the assumptions of this section.
Based on the fact that the MOM-SLOPE estimator satisfies Proposition 4.6.1, we will
now present a robust version of our selector. We split our sample in two subsamples of
size n/2 each. The first subsample is used to construct a pilot estimator, which is the
MOM-SLOPE estimator or any other estimator �̂⇤ satisfying Proposition 4.6.1. Then,
the selector is constructed based on this estimator �̂⇤ and on the second subsample. To
simplify the notation, for the rest of this section we will consider that the size of the sec-
ond subsample is n rather than n/2 and we have an estimator �̂⇤ satisfying Proposition
4.6.1 and independent from the second subsample.

Let K = bc3 log(p)c be the number of blocks, where c3 > 0 is an absolute constant
large enough. Assume that 1 < K < n. By extracting K disjoint blocks from the ob-
servation Y corresponding to the second subsample, we get K independent observations
(Y(i))1iK , where Y

(i)
2 Rq and q = b

n
K c. Each observation Y

(i) satisfies

Y
(i) = X

(i)� + ⇠(i),

where X(i) is a submatrix of X with rows indexed by the ith block. For i = 1, . . . , K,
consider the new observations

Z
(i) =

1

q
X

(i)>
Y

(i)
�

✓
1

q
X

(i)>
X

(i)
� Ip

◆
�̂⇤.

We denote by Z(i)
1 , . . . , Z(i)

p the components of Z(i). Consider the selector defined as a
vector

⌘̂(X, Y ) = (⌘̂1(X, Y ), . . . , ⌘̂p(X, Y )) (4.27)

with components

⌘̂j(X, Y ) = 1 {|Med(Zj)| > t} , j = 1, . . . , p, (4.28)

where Med(Zj) is the median of Z(1)
j , . . . , Z(K)

j , and t = c4�
q

log p
n with an absolute

constant c4 > 0. The next theorem shows that, when the noise has polynomial tails and
contains a portion of outliers, the robust selector (4.27) - (4.28) achieves exact recovery
under the same condition on the sample size as when the noise is Gaussian.

Theorem 4.6.1. Let X and ⇠ satisfy the conditions stated at the beginning of this
section. Then, there exist absolute constants c0, c3, c4 > 0 and a constant C 0 > 0 de-
pending only on q and on the sub-Gaussian constant �X such that the following holds.
Let c0 < s < p. Then, the selector given in (4.27) - (4.28) achieves exact recovery with
respect to both risks (4.2) and (4.3) if n � C 0

⇣
s log(p/s) _ �2 log(p)

a2

⌘
and |O| < K/4.
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Proof. For all i = 1, . . . , K, we have

Z
(i) = � + "(i),

where

"(i) =

✓
1

q
X

(i)>
X

(i)
� Ip

◆⇣
� � �̂⇤

⌘
+

1

q
X

(i)>⇠(i).

The random vectors "(1), . . . , "(K) are independent conditionally on �̂⇤. Let "(i)j denote
the jth component of "(i). Note that Med(Zj) = �j +Med("j), where Med("j) denotes
the median of "(1)j , . . . , "(K)

j . Choose C 0 > 0 large enough to guarantee that a > 2t.
Then,

E� |⌘̂ � ⌘�| =
X

j:�j 6=0

P� (|Med(Zj)|  t) +
X

j:�j=0

P� (|Med(Zj)| > t)



X

j:�j 6=0

P� (|Med("j)| � a� t) +
X

j:�j=0

P� (|Med("j)| > t)

 p sup
j=1,...,p

P� (|Med("j)| � t) .

Consider the event A⇤ = {k�̂⇤
� �k2  �2

}. The following lemma is proved in Ap-
pendix 4.8.

Lemma 4.6.1. Under the conditions of Theorem 4.6.1 we have

sup
j=1,...,p

P� (|Med("j)| � t)  e�c5K +P�(Ac
⇤)

for some c5 > 0.

From Lemma 4.6.1 and Proposition 4.6.1 we get

sup
�2⌦p

s,a

E� |⌘̂ � ⌘�|  pe�c5K + pe�c2s log(ep/s).

Since K = bc3 log(p)c, and s log(ep/s) � c0 log(ep/c0) the result follows for c3, c0 > 0
chosen large enough.

We see that sufficient conditions of exact recovery for the robust selector are of
the same order as in the Gaussian case. If the risk is considered uniformly over all
noise distributions under the conditions of this section, clearly the Gaussian noise is
in this class. Hence, necessary conditions in the Gaussian case are also necessary for
such a uniform risk over noise distributions. We have proved previously that, sufficient
conditions for the selector (4.8) - (4.9) to achieve exact recovery are almost optimal in
the Gaussian case. As a consequence, the selector (4.27) - (4.28) is almost optimal in
this more general setting.
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4.7 Conclusion
In this chapter, we proposed computationally tractable algorithms of variable selec-
tion that can achieve exact recovery under milder conditions than the ones known so
far. Throughout different sections, we have investigated, respectively, the setting with
Gaussian observations, sub-Gaussian observations, and heavy-tailed observations cor-
rupted by arbitrary outliers. We have shown that the suggested selectors nearly achieve
necessary conditions of exact recovery. For the Gaussian case, we obtained not only the
conditions of exact recovery but also accurate upper and lower bounds on the minimax
Hamming risk. Furthermore, we constructed a decoder, which is fully adaptive to all
parameters of the problem and achieves exact recovery under almost the same sufficient
conditions as in the case where sparsity s and the signal strength a and the noise level
� are known.

4.8 Appendix: Proofs
In order to prove Theorem 4.2.1, we use the following result from Butucea et al. (2018).
Consider the set of binary vectors

A = {⌘ 2 {0, 1}p : |⌘|0  s}

and assume that we are given a family {P⌘, ⌘ 2 A} where each P⌘ is a probability
distribution on a measurable space (X ,U). We observe X drawn from P⌘ with some
unknown ⌘ = (⌘1, . . . , ⌘p) 2 A and we consider the Hamming risk of a selector ⌘̂ = ⌘̂(X):

sup
⌘2A

E⌘|⌘̂ � ⌘|

where E⌘ is the expectation w.r.t. P⌘. We call the selector any estimator with values
in {0, 1}p. Let ⇡ be a probability measure on {0, 1}p (a prior on ⌘). We denote by E⇡
the expectation with respect to ⇡. Then the following result is proved in Butucea et al.
(2018)

Theorem 4.8.1. Butucea et al. (2018) Let ⇡ be a product on p Bernoulli measures with
parameter s0/p where s0 2 (0, s]. Then,

inf
⌘̂
sup
⌘2A

E⌘|⌘̂ � ⌘| � inf
T̂2[0,1]p

E⇡E⌘

pX

i=1

|T̂i � ⌘i|� 4s0 exp
⇣
�

(s� s0)2

2s

⌘
, (4.29)

where inf ⌘̂ is the infimum over all selectors and inf T̂2[0,1]p is the infimum over all esti-
mators T̂ = (T̂1, . . . , T̂p) with values in [0, 1]p.

Proof of Theorem 4.2.1. Let ⇥(p, s, a) a subset of ⌦p
s,a defined as

⇥(p, s, a) = {� 2 ⌦p
s,a : �i = a, 8i 2 S�}.

Since any � 2 ⇥(p, s, a) can be written as � = a⌘�, there is a one-to-one correspondence
between A and ⇥(p, s, a). Hence,

inf
⌘̂
sup
⌘2A

E⌘|⌘̂ � ⌘| = inf
⌘̂

sup
�2⇥(p,s,a)

E�|⌘̂ � ⌘�|.
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Using this remark and Theorem 4.8.1 we obtain that, for all s0 2 (0, s],

inf
⌘̂

sup
�2⌦p

s,a

E�|⌘̂ � ⌘�| � inf
T̂2[0,1]p

E⇡E⌘

pX

i=1

|T̂i(X, Y )� ⌘i|� 4s0 exp
⇣
�

(s� s0)2

2s

⌘
,

where ⇡ a product on p Bernoulli measures with parameter s0/p. Thus, to finish the
proof it remains to show that

inf
T̂2[0,1]p

E⇡E⌘

pX

i=1

|T̂i(X, Y )� ⌘i| �
s0

s
 +(n, p, s, a, �).

We first notice that

inf
T̂2[0,1]d

E⇡E⌘

pX

i=1

|T̂i(X, Y )� ⌘i| �

pX

i=1

E⇡E⌘

h
inf

T̂i2[0,1]
E⇡E⌘

⇣
|T̂i(X, Y )� ⌘i|

��⌘(�i), X
⌘i

�

pX

i=1

E⇡E⌘

h
inf

T̃i2[0,1]
E⇡E⌘

⇣
|T̃i(X, Y, ⌘(�i))� ⌘i|

��⌘(�i), X
⌘i

=
pX

i=1

E⇡E⌘[L
⇤
i ]

where ⌘(�i) denotes (⌘j)j 6=i and L⇤
i = L⇤

i (⌘(�i), X) has the form

L⇤
i = inf

T̃i2[0,1]

⇣s0

p

Z
(1� T̃i(X, y, ⌘(�i)))'�(y � aXi �

X

j 6=i

a⌘jXj)dy

+
⇣
1�

s0

p

⌘Z
T̃i(X, y, ⌘(�i))'�(y �

X

j 6=i

a⌘jXj)dy
⌘
. (4.30)

Here, '� is the density of Gaussian distribution in Rn with i.i.d. zero-mean and variance
�2 components. By the Bayesian version of the Neyman-Pearson lemma, the infimum
in (4.30) is attained for T̃i = T ⇤

i given by the formula

T ⇤
i

�
X, Y, ⌘(�i)

�
= 1

(
(s0/p)��(Y � aXi �

P
j 6=i a⌘jXj)

(1� s0/p)��(Y �
P

j 6=i a⌘jXj)
> 1

)
.

Equivalently,

T ⇤
i = 1

(
X>

i (Y �
P

j 6=i a⌘jXj)

kXik
> t(s0, Xi)

)
,

where

t(s0, Xi) =
akXik

2
+
�2 log( p

s0 � 1)

akXik
.

Hence,

L⇤
i =

✓
1�

s0

p

◆
P

✓
XT

i �⇠

kXik
> t(s0, Xi)

◆
+

s0

p
P

✓
�
XT

i �⇠

kXik
> akXik � t(s0, Xi)

◆
.
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where ⇠ is a standard Gaussian random vector in Rn independent of Xi. Notice now
that " := XT

i
⇠

kXik is a standard Gaussian random variable and it is independent of kXik

since Xi ⇠ N (0, In). Combining the above arguments we find that

inf
T̂2[0,1]p

E⇡E⌘

pX

i=1

|T̂i(X, Y )� ⌘i| �  +(n, p, s
0, a, �).

We conclude the proof by using the fact that the function u !
 +(n,p,u,a,�)

u is decreasing
for u > 0 (cf. Butucea et al. (2018)), so that  +(n, p, s0, a, �) �

s0

s  +(n, p, s, a, �).

Proof of Theorem 4.3.1. In view of Theorem 4.2.1 with s0 = s/2, it is sufficient to
bound  + =  +(n, p, s, a, �) from below. We have

 + � (p� s)P (�" � t (⇣)) .

We will use the following bound for the tails of standard Gaussian distribution: For
some c0 > 0,

8y � 2/3, P (" � y) � c0
exp(�y2/2)

y
.

We also recall that the density fn of a chi-squared distribution with n degrees of freedom
has the form

fn(t) = bnt
n

2�1e�
t

2 , t > 0, (4.31)

and lim
n!1

bn+1

bn

p
n+ 1 = 1, so that for some c00 > 0 we have

8n � 1, bn+1 � c00
bn

p
n+ 1

.

Combining the above remarks we get

 + � (p� s)

Z 1

2/3

P

 
" �

 p
ua

2�
+
� log

�
p
s � 1

�

a
p
u

!!
fn(u)du (4.32)

� c0 (p� s)

Z 1

2/3
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1
2

⇣p
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2� +

� log( p

s
�1)

a
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u

⌘2⌘

p
ua
2� +

� log( p
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�1)
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p
u

fn(u)du

�
bn�1c
p
n

p
s (p� s)

Z 1

2/3

exp
⇣
�

u
2

⇣
1 + a2

4�2

⌘
�

�2 log( p

s
�1)

2

2a2u

⌘

p
ua
2� +

� log( p

s
�1)

a
p
u

u
n

2�1du,

where c = c0c00. Set

B =

Z 1

1

exp
⇣
�

v
2 �

�2 log( p

s
�1)

2
⇣
1+ a

2

4�2

⌘

2a2v

⌘

1 +
�2 log( p

s
�1)

⇣
1+ a2

4�2

⌘

a2v

v
n�1
2 �1dv.
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Using the change of variable v = u
⇣
1 + a2

4�2

⌘
and the assumptions of the theorem we

get

 + �
cbn�1
p
n

p
s (p� s) e

�n

2 log
⇣
1+ a

2

4�2

⌘ Z 1

2
3

⇣
1+ a2

4�2

⌘

exp
⇣
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v
2 �

�2 log( p

s
�1)

2
⇣
1+ a

2

4�2

⌘

2a2v

⌘

p
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2�
q

1+ a2

4�2

+
� log( p

s
�1)

q
1+ a2

4�2

a
p
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v
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2�1dv

� cbn�1B

s
4�2

�
1 + a2

4�2

�

na2
p

s (p� s)e
�n

2 log
⇣
1+ a

2

4�2

⌘

� cbn�1B

s
s (p� s)

n log
�
1 + a2

4�2

�e�
n

2 log
⇣
1+ a

2

4�2

⌘

,

where the second inequality uses the condition a 
p
2� to guarantee that 2

3

⇣
1 + a2

4�2

⌘


1, while the last inequality uses the fact that (1 + x) log(1 + x) � x, 8x � 0. To finish
the proof, we need to bound bn�1B from below. We have

B �

Z 1

n

exp
⇣
�

v
2 �

�2 log( p

s
�1)

2
⇣
1+ a

2

4�2

⌘

2a2v

⌘

1 +
�2 log( p

s
�1)

⇣
1+ a2

4�2

⌘

a2v

v
n�1
2 �1dv

�

exp
⇣
�

�2 log( p

s
�1)

2
⇣
1+ a

2

4�2

⌘

2a2n

⌘

1 +
�2 log( p

s
�1)

⇣
1+ a2

4�2

⌘

a2n

R1
n fn�1(u)du

bn�1
.

The last inequality is due to the fact that the function x !
e�

c
x

1+ 1
x

is increasing for x > 0,

for any fixed c > 0. Since n >
2�2 log( p

s
�1)

a2 and a2 < 2�2, we deduce from the last display
that

bn�1B �
4

7
exp

⇣
�

3

8
log

⇣p
s
� 1

⌘⌘Z 1

n

fn�1(u)du.

Proposition 3.1 from Inglot (2010) implies that, for some absolute constant c > 0,
Z 1

n

fn�1(u)du > c

(indeed, n is very close to the median of a chi-squared random variable with n � 1
degrees of freedom). Combining the above inequalities we obtain

 + � C

s
s7/4(p� s)1/4

n log
�
1 + a2

4�2

�e�
n

2 log
⇣
1+ a

2

4�2

⌘

.

Proof of Theorem 4.3.2. In view of Theorem 4.2.2, it is sufficient to bound from
above the expression

 (n, p, s, a, �) = (p� s)P (�" � t (⇣)) + sP
�
�" � (ak⇣k � t (⇣))+

�
.
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Introducing the event D = {ak⇣k � t(⇣)} we get

P
�
�" � (ak⇣k � t (⇣))+

�
 P ({�" � ak⇣k � t (⇣)} \ D) + 1

2
P (Dc) .

Using the assumption on n2 we obtain

P (Dc) = P

✓
k⇣k2 

2�2 log(ps � 1)

a2

◆
 P

⇣
k⇣k2 

n2

2

⌘
.

Here, k⇣k2 is a chi-squared random variable with n2 degrees of freedom. Lemma 4.4.2
implies

1

2
P (Dc)  e�

n2
24 .

Thus, to finish the proof it remains to show that

(p� s)P (�" � t (⇣)) + sP ({�" � ak⇣k � t (⇣)} \ D)  2
p

s(p� s)e
�n2

2 log
⇣
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2

4�2

⌘

.

The bound P (" � y)  e�
y
2

2 , 8y > 0, on the tail of standard Gaussian distribution
yields

(p� s)P (�" � t (⇣))  (p� s)

Z 1
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� 1
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✓p
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4�2

⌘

u
n2
2 �1du,

where fn2(·) is the density of chi-squared distribution with n2 degrees of freedom and
bn2 is the corresponding normalizing constant, cf. (4.31). Using again the bound
P (" � y)  e�

y
2

2 , 8y > 0, and the inequality
p
ua

2�
�
� log

�
p
s � 1

�

a
p
u

� 0, 8u �
2�2 log

�
p
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�

a2
,

we get
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e
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The change of variable, v = u
⇣
1 + a2

4�2

⌘
yields
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e
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.

That concludes the proof.
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Proof of Lemma 4.4.1. Recall that the density of a Student random variable Z with
k degrees of freedom is given by:

fZ(t) = c⇤k

✓
1 +

t2

k

◆� k+1
2

, t 2 R,

where c⇤k > 0 satisfies
lim
k!1

c⇤k =
p
2⇡. (4.33)

Define, for t > 0,

g(t) = �c⇤kt
�1

✓
1 +

t2

k

◆� k�1
2

.

It is easy to check that the derivative of g has the form

g0(t) =

✓
1 +

1

t2

◆
fZ(t).

Hence, for all b � 1/
p
k,

�2g(
p

kb) = 2

Z 1

p
kb

g0(t)dt  P

⇣
|Z| �

p

kb
⌘
 4

Z 1

p
kb

g0(t)dt = �4g(
p

kb).

The lemma follows since, in view of (4.33), there exist two positive constants c and C
such that c  c⇤k  C for all k � 1.

Proof of Lemma 4.5.1. It is not hard to check that the random variable |u>V |

kuk is
�-sub-Gaussian for any fixed u 2 Rn. Also, any �-sub-Gaussian random ⇣ variable
satisfies P(|⇣| � t)  2e�

t
2

2�2 for all t > 0. Therefore, we have the following bound for
the conditional probability:

P

 ��U>V
��

kUk
� tkUk

��� U
!

 2e�
t
2kUk2

2�2 , 8 t > 0.

This implies

P
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��

kUk2
� t

!
 2E

h
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2kUk2

2�2 1
�
kUk �

p
n/2

 i
+P

�
kUk 

p
n/2

�

 2e�
nt

2

8�2 +P
�
kUk 

p
n/2

�
. (4.34)

To bound the last probability, we apply the following inequality (Wegkamp, 2003, Propo-
sition 2.6).

Lemma 4.8.1. Let Z1, Z2, . . . , Zn be independent, nonnegative random variables with
E(Zi) = µi and E(Z2

i )  v2. Then, for all x > 0,

P

⇣ 1
n

nX

i=1

(Zi � µi)  �x
⌘
 e�

nx
2

2v2 .
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Using this lemma with Zi = U2
i , µi ⌘ 1, x = 3/4, and v2 = �4

1 we find

P
�
kUk 

p
n/2

�
 e

� 9n
32�4

1 ,

which together with (4.34) proves the lemma.

Proof of Proposition 4.5.1. Under the assumptions of the proposition, the columns
of matrix X have the covariance matrix Ip. Without loss of generality, we may assume
that this covariance matrix is 1

2Ip and replace � by �p
2
. We next define the event

A = {the design matrix X satisfies the WRE(s, 20) condition},

where the WRE condition is defined in Bellec et al. (2018). It is easy to check that the
assumptions of Theorem 8.3 in Bellec et al. (2018) are fulfilled, with ⌃ = 1

2Ip,  = 1
2 and

n1 � C0s log(2p/s) for some C0 > 0 large enough. Using Theorem 8.3 in Bellec et al.
(2018) we get

P (Ac)  3e�C0s log 2p/s,

for some C 0 > 0. Now, in order to prove the proposition, we use the bound

P�

⇣
k�̂ � �k2 � �2�2

⌘
 P�

⇣n
k�̂ � �k2 � �2�2

o
\ A

⌘
+P (Ac) .

Under the assumption n1 � C0s log(ep/s)/�2, we have

P�

⇣n
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o
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⌘
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✓⇢
k�̂ � �k2 � C0�

2 s log ep/s

n1

�
\ A

◆
.

By choosing C0 large enough, and using Proposition 4 from Comminges et al. (2018) we
get that, for some C 00 > 0,

P�

⇣n
k�̂ � �k2 � �2�2

o
\ A

⌘
 C 00

⇣
e�s log(2p/s)/C00

+ e�n1/C00
⌘
.

Recalling that n1 � C0s log(2p/s) and comibinig the above inequalities we obtain the
result of the proposition with C1 = 2C 00 + 3 and C2 = C 0

^ 1/C 00
^ C0/C 00.

Proof of Proposition 4.6.1. We apply Theorem 6 in Lecué and Lerasle (2017). Thus,
it is enough to check that items 1-5 of Assumption 6 in Lecué and Lerasle (2017) are
satisfied. Item 1 is immediate since |I| = n1 � |O| � n1/2, and |O|  c0s log(ep/s).
To check item 2, we first note that the random variable x

>
1 t is ktk�X-sub-Gaussian for

any t 2 Rp. It follows from the standard properties of sub-Gaussian random variables
(Vershynin, 2012, Lemma 5.5) that, for some C > 0,

�
E|x

>
1 t|

d
�1/d

 Cktk
p

d, 8t 2 Rp, 8d � 1.

On the other hand, since the elements of x1 are centered random variables with variance
1, �

E|x
>
1 t|

2
�1/2

= ktk, 8t 2 Rp. (4.35)

Combining the last two displays proves item 2. Item 3 holds since we assume that
E(|⇠i|q0)  �q0 , i 2 I, with q0 = 2+ q. To prove item 4, we use (4.35) and the fact that,
for some C > 0,

E|x
>
1 t| � Cktk, 8t 2 Rp,
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due to Marcinkiewicz-Zygmund inequality (Petrov, 1995, page 82). Finally we have
that, for some c > 0,

Var(⇠1x
>
1 t)  E[⇠21 ]E

⇥
(x>

1 t)
2
⇤
 cE

⇥
(x>

1 t)
2
⇤
, 8t 2 Rp.

Thus, all conditions of Theorem 6 in Lecué and Lerasle (2017) are satisfied. Application
of this theorem yields the result.

Proof of Lemma 4.6.1. We first prove that for all i 2 I and 1  j  p,

E�

�
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�
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n
, (4.36)

where C > 0 depends only on the sub-Gaussian constant �X . Indeed, the components
of "(i) have the form
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where X
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j is the jth column of X(i). Conditioning first on X
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j , we get
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Since E(X2
kl) = 1 for all k and l, we have EkX(i)

j k
2 = q. Furthermore, E(X4

kl)  C̄ where
C̄ depends only on the sub-Gaussian constant �X . Using these remarks we obtain from
the last display that
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q
.

As q = bn/Kc this yields (4.36).
Next, the definition of the median immediately implies that
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It follows that
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Since the number of outliers |O| does not exceed bK/4c there are at least K 0 := K �

bK/4c blocks that contain only observations from I. Without loss of generality, assume
that these blocks are indexed by 1, . . . , K 0. Hence

P�(|Med("j)| � t)  P�

✓ K0X

i=1

1{|"(i)
j

|�t}\A⇤
�

K

4

◆
+P�(Ac

⇤). (4.37)

Note that using (4.36) we have, for all i = 1, . . . , K 0,

P�

⇣
{|"(i)j | � t} \ A⇤

⌘
 E�

�
("(i)j )21{A⇤}

�
/t2 

CK�2

t2n


1

5
.

The last inequality is granted by a choice of large enough constant c4 in the definition
of t. Thus, introducing the notation ⇣i = 1{|"(i)

j
|�t}\A⇤

we obtain

P�

✓ K0X

i=1

1{|"(i)
j

|�t}\A⇤
�

K

4

◆
 P�

✓ K0X

i=1

(⇣i � E�(⇣i)) �
K

4
�

K 0

5

◆

 P�

✓ K0X

i=1

(⇣i � E�(⇣i)) �
K

20

◆
 e�c5K (4.38)

where the last inequality is an application of Hoeffding’s inequality. Combining (4.37)
and (4.38) proves the lemma.



Chapter 5

Interplay of minimax estimation
and minimax support recovery
under sparsity

In this chapter, we study a new notion of scaled minimaxity for sparse estimation in
high-dimensional linear regression model. We present more optimistic lower bounds than
the one given by the classical minimax theory and hence improve on existing results. We
recover sharp results for the global minimaxity as a consequence of our study. Fixing
the scale of the signal-to-noise ratio, we prove that the estimation error can be much
smaller than the global minimax error. We construct a new optimal estimator for the
scaled minimax sparse estimation. An optimal adaptive procedure is also described.

Based on Ndaoud (2019): Ndaoud, M. (2019). Interplay of minimax estimation and
minimax support recovery under sparsity. ALT 2019.

5.1 Introduction

Statement of the problem
Assume that we observe the vector of measurements Y 2 Rp satisfying

Y = � + �⇠ (5.1)

where � 2 Rp is the unknown signal, � > 0 and the noise ⇠ ⇠ N (0, Ip) is a standard
Gaussian vector. Here, Ip denotes the p ⇥ p identity matrix. This model is a specific
case of the more general model where Y 2 Rn satisfies

Y = X� + �⇠ (5.2)

where X 2 Rn⇥p is a given design or sensing matrix, and the noise is independent of
X. Model (5.1) corresponds to the orthogonal design. In this chapter, we mostly focus
on model (5.1). We denote by P� the distribution of Y in model (5.1) or of (Y,X) in
model (5.2), and by E� the corresponding expectation.

We consider the problem of estimating the vector �. We will also explore its relation
to the problem of recovering the support of �, that is the set S� of non-zero components
of �. For an integer s  p, we assume that � is s-sparse, that is it has at most s non-zero

97
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components. We also assume that these components cannot be arbitrarily small. This
motivates us to define the following set ⌦p

s,a of s-sparse vectors:

⌦p
s,a = {� 2 Rp : |�|0  s and |�i| � a, 8i 2 S�} ,

where a � 0, �i are the components of � for i = 1, . . . , p, and |�|0 denotes the number
of non-zero components of �. The value a characterizes the scale of the signal. In the
rest of the paper, we will always denote by � the vector to estimate, while �̂ will denote
the corresponding estimator. In our setting, we do not constrain �̂ to be sparse. Let us
denote by � the scaled minimax risk

�(s, a) = inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �k2

⌘
,

where the infimum is taken over all possible estimators �̂. It is easy to check that � is
increasing with respect to s and decreasing with respect to a. Note that, for Y following
model (5.1), the global minimax error over Rp is given by

inf
�̂
sup
�2Rp

E�

⇣
k�̂ � �k2

⌘
= �2p.

The previous equality is achieved for s = p and a = 0 through the naive estimator �̂ = Y .
Under the sparsity assumption, the previous result can be improved. In the seminal
paper Donoho et al. (1992), it is shown that the global sparse minimax estimation error
has asymptotics:

inf
�̂

sup
|�|0s

E�

⇣
k�̂ � �k2

⌘
= 2�2s log(p/s)(1 + o(1)) as

s

p
! 0. (⇤)

Inspecting the proof of the minimax lower bound, one can see that (⇤) is achieved for

a = �
p

2 log (p/s)(1 + o(1)).

We may also notice that the global sparse minimax estimation error is more optimistic
than the global over Rp. In this chapter, we present an even more optimistic solution
inspired by a notion of scaled minimax sparse estimation given by �. By doing so, we
recover the global sparse estimation by taking the supremum over all a. In the rest of
the paper, we will always denote by SMSE the quantity �.

It is well known that minimax lower bounds are pessimistic. The worst case is usually
specific to a critical region. Hence, a minimax optimal estimator can be good globally
but may not be optimal outside of the critical region. By studying the quantity � for
fixed sparsity, we will emphasize this phenomenon.

An optimistic lower bound for estimation of s-sparse vectors is given by �2s and can
be achieved when the support of vector � is known. We say that an estimator �̂ achieves
exact estimation in model (5.1) if

lim
s/p!0

sup
�2⌦p

s,a

E�

⇣
k�̂ � �k2

⌘

�2s
= 1.
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We also say that estimator � achieves exact support recovery in model (5.1) if

lim
p!1

sup
�2⌦p

s,a

P�

⇣
S�̂ = S�

⌘
= 1,

where the asymptotics are considered as p ! 1 when all other parameters of the
problem (namely, s, a, �) depend on p. In this chapter, we shed some light on the
relation between exact support recovery and exact estimation. Specifically, we give an
answer to the following questions that motivate the present work.

• How pessimistic is the result (⇤)? Can we do any better by fixing the scale value
a?

• Is exact support recovery necessary to achieve exact estimation?

• Can we achieve minimax optimality with respect to SMSE adaptively to the scale
value a?

In the dense regime where s ⇣ p, the minimax estimation error is of order �2p indepen-
dently of a. Hence, in the rest of the paper, we focus on the regime where s

p = o(1). All
the proofs are deferred Appendix 5.6.

Notation. In the rest of this paper we use the following notation. For given se-
quences an and bn, we say that an = O(bn) (resp an = ⌦(bn)) when an  cbn (resp
an � cbn) for some absolute constant c > 0. We write an ⇣ bn if an = O(bn) and
an = ⌦(bn). For x,y 2 Rp, kxk is the Euclidean norm of x, and x

>
y the corresponding

inner product. For q � 1, and x 2 Rp, we denote by kxkq the lq norm of x. For a matrix
X, we denote by Xj its jth column. For x, y 2 R, we denote by x _ y the maximum of
x and y and we set x+ = x _ 0. For q � 1 and ⇠ a centered Gaussian random variable
with variance �2, we denote by �q the quantity E(|⇠|q)1/q. The notation 1(·) stands for
the indicator function. We denote by C and Cq positive constants where the second one
depends on q for some q � 1.

Related literature
The literature on minimax sparse estimation in high-dimensional linear regression (for
both random and orthogonal design) is very rich and its complete overview falls beyond
the format of this paper. We mention here only some recent results close to our work.
All sharp results are considered in the regime s

p ! 0.

• In Bellec et al. (2018), the authors show that SLOPE estimator, which is defined in
Bogdan et al. (2015), is minimax optimal for estimation under sparsity constraint
in model (5.2), as long as X satisfies some general conditions. This result is
non-asymptotic.

• Bellec (2018) proves that the minimax estimation rate of convex penalized desti-
mators cannot be improved for sparse vectors, even when the scale parameter a is
large. This fact is mainly due to the bias caused by convex penalization as it is
the case for LASSO and SLOPE estimators.
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• In Su and Candes (2016), it is shown that SLOPE is asymptotically minimax
optimal on {|�|0  s} giving the asymptotic optimal estimation error 2�2s log p

s in
model (5.1). In model (5.2), where X has i.i.d standard Gaussian entries and under
the asymptotic condition s log p

n ! 0, SLOPE gives the asymptotic optimal error
2�

2

n s log
p
s , cf. Su and Candes (2016). Both results are asymptotically minimax

optimal and adaptive to the sparsity level s.

• Wu and Zhou (2013) show that the penalized least squares estimator with a penalty
that grows like 2�2s log p

s , is asymptotically minimax optimal on {|�|0  s} under
additional assumptions on s and p.

Main contribution
Inspired by the related literature, the present work is also motivated by the following
questions.

• In model (5.1), the proof of lower bounds uses a worst case vector with non-zero
components that scale as �

p
2 log p

s in order to get the best lower bound. In other
words, the worst case happens for a specific vector �. Can we do better far from
this vector?

• One of the popular approaches is to recover the support of a sparse vector and then
estimate this vector on the obtained support. In this case the error of estimation
is of order s�2 and is the best one can hope to achieve. Is it necessary to recover
the true support in order to get this error? This is an important question that we
address in this chapter.

• If the answer to the previous question is negative, can we propose an algorithm
that would be optimal in the sense of SMSE, practical and adaptive?

The main contribution in this chapter is a sharp study of the minimax risk �. What
is more, we study a more general quantity given by

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
, (5.3)

for any q � 1. We give lower bounds and corresponding upper bounds for (5.3). We
show that in the interesting regime s

p = o(1), our lower and upper bounds match not
only in the rate but also in the constant up to a factor 4 under a mild condition on
sparsity. As a result of our study, we recover two interesting phase transitions when
s
p = o(1).

The first one is that there are basically two regimes in estimation. For a  �
p
2 log(p/s)(1�

✏) and ✏ > 0, the asymptotic SMSE is 2s�2 log(p/s). This regime is called the hard re-
covery regime, where we prove that the error is due to misspecification in recovering
the support. Alternatively, for a � (1 + ✏)�

p
2 log(p/s), the error is of order s�2. This

regime is presented as the hard estimation regime. In this regime, we can recover a good
fraction of the support but still have to pay for the estimation on the support. Hence,
and surprisingly, the SMSE is almost piece-wise constant as a function of a. This shows
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that the sparse minimax risk can be made much smaller once we get far from some
critical region.

Another contribution of this paper is a new phase transition related to sparsity. In
Butucea et al. (2018), it is shown that a necessary condition to achieve exact recovery
is given by

a � �
p

2 log(p� s) + �
p

2 log(s).

To achieve exact estimation, a necessary condition is

a � �
p

2 log(p/s� 1) + 2 log log(p/s� 1) + �
p

2 log log(p/s� 1).

Hence exact recovery is not necessary for exact estimation. In fact, when s � log(p)
then exact estimation is easier and when s ⌧ log(p) exact recovery becomes easier. This
shows that there is no direct implication of exact recovery on exact estimation, hence
the latter task should be considered as a separate problem.

Finally, one more contribution of this paper is adaptivity. We give an optimal adap-
tive variant of our procedure, that achieves the sparse minimax optimal rate and when-
ever exact estimation is possible achieves it as well. By doing so, our procedure improves
on the existing literature. In fact, Lasso is known to have an unavoidable bias of order
�2s log(p/s) even on the class ⌦p

s,a, cf. Bellec (2018). We show that our procedure is
better in the sense that it gets rid of the bias whenever it is possible.

5.2 Towards more optimistic lower bounds for esti-
mation

In several papers, lower bounds for minimax risk are derived using the Fano lemma.
These lower bounds are usually far from being sharp in the non-asymptotic setting. We
establish, in this section, non-asymptotic lower bounds on the minimax risk based on
some revisited two-hypothesis testing techniques.

We derive two lower bounds for the SMSE. The scaled error of estimation of sparse
vectors can be decomposed into two types of error. A first one based on the error of
estimation when the true support S� is known and a second one is given by the error of
recovery of the true support when the vector components are known but not the support.
For this purpose, we prove first a general lower bound for constrained minimax sparse
estimation.

In the next theorem, we reduce the constrained minimax risk over all estimators to
a Bayes risk with arbitrary prior measure ⇡ on Rp and give a bound on the difference
between the two risks. This result is true in a general setup, non necessarily for Gaussian
models. For a particular choice of measure ⇡, we provide an explicit bound of the
remainder term.

Consider the set of vectors ⇥s,a ✓ Rp, and assume that we are given a family {P�, � 2

⇥s,a} where each P� is a probability distribution on a measurable space (X ,U). We
observe Y drawn from P� with some unknown � 2 ⇥s,a and we consider the risk of an
estimator �̂ = �̂(Y ):

sup
�2⇥s,a

E�k�̂ � �kqq

where E� is the expectation with respect to P�. Let ⇡ be a probability measure on Rp

(a prior on �). We denote by E⇡ the expectation with respect to ⇡.
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Theorem 5.2.1. For any s < p, q � 1 and any probability measure ⇡ on Rp, there
exists Cq > 0 such that

inf
�̂

sup
�2⇥s,a

E�k�̂ � �kqq � inf
T̂2Rp

E⇡E�

pX

j=1

|T̂j(Y )� �j|
q

� Cq E⇡
⇥�
E(k�A

k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s,a)

⇤
, (5.4)

where �A := �.1(� 2 ⇥s,a) = (�11(� 2 ⇥s,a), . . . , �p1(� 2 ⇥s,a)), inf �̂ is the in-
fimum over all estimators and inf T̂2Rp is the infimum over all estimators T̂ (Y ) =

(T̂1(Y ), . . . , T̂p(Y )) with values in Rp.

Theorem 5.2.1 is valid in a very general setting. We present now specific lower bounds
in the general model of linear regression. Assume that Y 2 Rn follows model (5.2), where
X is a deterministic design. The following lemma is useful to get more precise lower
bounds in model (5.2). It is based on the simple observation that under independent
prior distributions of the entries of � the oracle estimator of a given component does
not depend on the rest of the components.

Lemma 5.2.1. Assume that Y satisfies model (5.2) with a deterministic design X.
Then

inf
T̂2Rp

E⇡E�

pX

j=1

|T̂j(X, Y )� �j|
q
�

pX

j=1

inf
T̂j2R

E⇡jE�j |T̂j(Xj, Ỹj)� �j|
q,

where Ỹj = Y �
P

i 6=j Xi�i = �jXj + �⇠.

Using the previous lemma, we are now ready to give two sharp lower bounds for
the SMSE. A first one supposed to capture the error of estimation when the support is
known, while the second one handles the case where the support is not known.

Theorem 5.2.2. Assume that Y follows model (5.2) with a deterministic design X.
For any a > 0, q � 1 and s < p we have

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� �q

qmax
|S|=s

X

i2S

1

kXik
q
2

.

In order to derive the next lower bound, we define the quantity  introduced in
Ndaoud and Tsybakov (2018) in the context of support recovery:

 (p, s, a, �, X) :=
pX

j=1

✓
s

p
P(�" � (a� tj(a))kXjk) + (1�

s

p
)P(�" � tj(a)kXjk)

◆
,

where " is standard Gaussian random variable and

tj (a) :=
a

2
+
�2 log

�
p
s � 1

�

akXjk
2

, 8j = 1, . . . , p.

Theorem 5.2.3. Assume that Y follows model (5.2) with deterministic design X. For
any a > 0, q � 1 and s < p we have

8s0 2 (0, s), inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� aq

s0

s

✓
1

2q
 (p, s, a, �, X)� 2se�

(s�s
0)2

2s

◆
.
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The proof is based on arguments similar to Butucea et al. (2018). Assume now that
we are under model (5.1) and set

 (p, s, a, �) := (p� s)P (�" > t (a)) + sP (�" > a� t(a)) ,

where " is a standard Gaussian random variable and

t (a) :=
a

2
+
�2 log

�
p
s � 1

�

a
. (5.5)

The minimax Hamming loss for model (5.1) was studied in Butucea et al. (2018), where
it was shown that it is very linked to  . One may notice that, under model (5.1),
 (p, s, a, �, Ip) =  (p, s, a, �). We define now the following estimation rate

�(a) :=

(
aq (s, p, a, �) _ �q

qs if a � t⇤,

s�q
�
2 log(ps � 1)

� q

2 else,

where

t⇤ = �

r
2 log

p

s
� 1. (5.6)

The next proposition is a consequence of previous theorems and shows the link between
the minimax Hamming loss and the minimax estimation risk.

Proposition 5.2.1. Assume that Y follows model (5.1). For any a > 0, q � 1, s < p/2
and s � 8q log log(p), we have

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� Cq�(a),

where Cq > 0.

Remark 5.2.1. The mild condition s = ⌦(log log p) is an artifact of the proof of the
lower bound. We believe that this condition can be removed or further relaxed.

A more careful proof of the previous result can lead us to Cq = (1 + o(1)) as s
p ! 0.

We omit the proof of this, since we give a more accurate result in the next section.
Analyzing the lower bound of Proposition 5.2.1, it turns out that the minimax rate
�2s log (p/s), for q = 2, cannot be improved when a  t⇤. We will see later that this
is not the case for large values of a. The next section is devoted to closing this gap by
deriving matching upper bounds.

5.3 Optimal scaled minimax estimators
In this section, we consider upper bounds for the scaled minimax risk under model (5.1).
For a > 0 define the following estimator:

�̂a
j := Yj1{|Yj |�t(a_t⇤)}, 8j 2 1, . . . , p, (5.7)
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where t(.) and t⇤ are defined respectively in (5.5) and (5.6). The following result gives
a matching upper bound for the scaled minimax risk. Set

�+(a) :=

(
aq +(p, s, a, �) _ �q

qs if a � t⇤,

s�q
�
2 log(ps � 1)

� q

2 else,

where  + is given by

 + (p, s, a, �) := (p� s)P (�" > t (a)) + sP (�" > (a� t(a)+)) ,

and " is a standard Gaussian random variable. Notice that �+(a)  �(a). This remark,
combined with the next theorem, shows minimax optimality of the estimator (5.7).

Theorem 5.3.1. Assume that Y follows model (5.1). For all a > 0, let �̂a be the
estimator (5.7). For all q � 1 and s < p/2 we have

sup
�2⌦p

s,a

E�

⇣
k�̂a

� �kqq

⌘
 Cq�+(a),

where Cq is a universal constant depending only in q.

Combining this result with Proposition 5.2.1, we deduce the next corollary.

Corollary 5.3.1. Assume that Y follows model (5.1). For all a > 0, let �̂a be the
estimator (5.7). For all q � 1, s < p/2 and s � 8q log log(p), there exists Cq > 0 such
that

sup
�2⌦p

s,a

E�

⇣
k�̂a

� �kqq

⌘
 Cqinf

�̂
sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
.

We give now a more accurate upper bound in the regime s
p ! 0. Assume that

s  p/4. For q � 1, and ✏ 2 [0, 1] define

aq(✏) = �
p

2 log(p/s� 1) + q✏ log log(p/s� 1) + �
p
q✏ log log(p/s� 1).

Set

�o(a) :=

8
>><

>>:

s�q
�
2 log(ps � 1)

� q

2 if a  aq(0),
s�q(2 log( p

s
�1))

q

2 (1�✏)

1+�
p

⇡

2 ✏q log log(
p

s
�1)

_ �q
qs if a = aq(✏), ✏ 2 (0, 1),

s�q
q if a � aq(1).

The next theorem gives sharp upper bounds in the regime s
p ! 0.

Theorem 5.3.2. Assume that Y follows model (5.1). For all a > 0, let �̂a be the
estimator (5.7). In the regime where s

p ! 0, for all q � 1, we have

sup
�2⌦p

s,a

E�

⇣
k�̂a

� �kqq

⌘
 �o(a)(1 + o(1)).

As a consequence of previous results, we derive the next corollary that gives an
almost sharp bound for SMSE when s

p ! 0.
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Corollary 5.3.2. Assume that Y follows model (5.1). For all a > 0, q � 1 and
s � 8q log log(p), in the regime s

p ! 0, we have

1

4
+ o(1)  inf

�̂
sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘

�o(a)
 1 + o(1),

and

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘

s�q
q

= 1 + o(1) if a � aq(1).

Inspecting the proof of Corollary 5.3.2, we may notice that the discrepancy between
the bounding constants is mainly caused by values of the scale a = aq(✏) such that
✏ 2 (0, 1). Corollary 5.3.2 shows that we can construct an almost sharp optimal minimax
estimator provided a and s. The next section is devoted to the question of adaptivity.

5.4 Adaptative scaled minimax estimators
In Section 5.3 we have shown that the minimax rate is given by the quantity �o(a) in
a sharp way if s

p ! 0. Note that �o(a) is almost piece-wise constant as a function of a.
In fact the study of �o(a) gives rise to three different regimes that we describe below.

1. Hard recovery regime:

Let a  �
q

2 log
�
p
s � 1

�
. We call this the hard recovery regime. In this regime,

�o(a) is constant and has a value of order �qs
�
2 log

�
p
s � 1

��q/2. It turns out that

the worst case of estimation happens for a = �
q

2 log
�
p
s � 1

�
. This error is mainly

due to the fact the we cannot achieve almost full recovery as defined in Butucea
et al. (2018).

2. Hard estimation regime:

This regime corresponds to values of a such that

a � �
p

2 log (p/s� 1)

s

1 + 4
q log log(p/s� 1)

log(p/s� 1)
.

In this regime �o(a) is of order �q
qs. In this region, the error of estimation on a

known support dominates the error of recovering the support.

3. Transition regime:

This regime concerns the remaining values of a falling between the two previous
regimes. In this regime �o(a) is not constant any more. It represents a monotonous
and continuous transition from one regime to another.

After analyzing the SMSE, we give a couple of remarks.



106CHAPTER 5. INTERPLAY OF MINIMAX ESTIMATION AND MINIMAX SUPPORT RECOVERY UNDER SPARSITY

Remark 5.4.1. • If s = o(p) there are basically two regimes around the threshold
�
q

2 log
�
p
s � 1

�
. Notice also that the hard estimation error is very small compared

to the hard recovery error. We may notice that the SMSE is very small compared
to the minimax sparse estimation error in the hard estimation regime. This proves
how pessimistic the general minimax lower bounds are and that we can do much
better for the scaled minimax risk.

• The case s ⇠ p is of small interest. There is no phase transition in this case, since
the SMSE is of order �qp for every a.

• In the Hard estimation regime, the minimax error rate is the same as if the support
were exactly known. It is interesting to notice that we need a weaker condition to
get this rate when s � log(p), while a stronger necessary condition is needed for
exact recovery, cf. Butucea et al. (2018). Hence exact support recovery is not
necessary to achieve exact estimation.

Notice also that the transition regime happens in a very small neighborhood around
the universal threshold �

p
2 log (p/s). Thus, it is very difficult to be adaptive to a in

the transition regime. For s  p/4, define the following estimator:

�̂s
j := Yj1{|Yj |�t⇤s}, 8j 2 1, . . . , p, (5.8)

where
t⇤s := �

p
2 log(p/s� 1) + q log log(p/s� 1).

We define a more convenient adaptive estimation error. Set

�ad(a) :=

(
�q
qs if a � aq(1),

s�q
�
2 log(ps � 1)

� q

2 else.

The following result gives a matching upper bound for the adaptive scaled minimax
risk.

Theorem 5.4.1. Assume that Y follows model (5.1). Let �̂s be the estimator (5.8).
For all q � 1, a > 0 and s < p/4 we have

sup
�2⌦p

s,a

E�

⇣
k�̂s

� �kqq

⌘
 Cq ad(a),

where Cq is a universal constant depending only in q.

Since the two main regimes are hard estimation and hard recovery, we restricted the
notion of adaptivity to these regimes. By doing so, we constructed an almost optimal
estimator adaptively to the parameter a. This estimator is minimax optimal over the
set of s-sparse vectors and achieves exact estimation when necessary conditions are
satisfied. Our estimator has a phase transition around the universal threshold. Based on
a procedure similar to Butucea et al. (2018), we can also construct an optimal estimator
adaptive to sparsity. We do not give further details here for the sake of brevity.
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5.5 Conclusion
In this chapter, we define and study a new notion that we call scaled minimax sparse
estimation. We assess how pessimistic are minimax lower bounds for the problem of
sparse estimation. We also show that exact recovery is not necessary for exact estimation
in general. As a result, we construct a new estimator optimal for the SMSE and present
its adaptive version, improving on existing procedures for the problem of estimation.
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5.6 Appendix: Proofs

Sharp Gaussian tail bounds

The following bounds for the tails of Gaussian distribution will be useful:

e�y2/2

p
2⇡y + 4


1

p
2⇡

Z 1

y

e�u2/2du 
e�y2/2

p
2⇡y _ 2

.

for all y � 0. These bounds are an immediate consequence of formula 7.1.13 in
Abramowitz and Stegun (1964) with x = y/

p
2.

Proof of Theorem 5.2.1

Throughout the proof, we write for brevity A = ⇥s,a. Set �A = �.1(� 2 A) and denote
by ⇡A the probability measure ⇡ conditioned by the event {� 2 A}, that is, for any
C ✓ Rd,

⇡A(C) =
⇡(C \ {� 2 A})

⇡(� 2 A)
.

The measure ⇡A is supported on A and we have

inf
�̂
sup
�2A

E�|�̂ � �|qq � inf
�̂
E⇡AE�|�̂ � �|qq = inf

�̂
E⇡AE�|�̂ � �A

|
q
q

�

pX

j=1

inf
T̂j

E⇡AE�|T̂j � �A
j |

q

where inf T̂j
is the infimum over all estimators T̂j = T̂j(Y ) with values in R. According

to Theorem 1.1 and Corollary 1.2 on page 228 in Lehmann and Casella (2006), there
exists a Bayes estimator BA

j = BA
j (Y ) such that

inf
T̂j

E⇡AE�|T̂j � �A
j |

q = E⇡AE�|B
A
j � �A

j |
q.

In particular, for any estimator T̂j(Y ) we have

EA
�
|BA

j (Y )� �A
j |

q
��Y
�
 EA

�
|T̂j(Y )� �A

j |
q
��Y
�

(5.9)

almost surely. Here, the superscript A indicates that the conditional expectation EA(·|Y )
is taken when � is distributed according to ⇡A. Therefore,

inf
�̂
sup
�2A

E�|�̂ � �|qq � E⇡AE�

pX

j=1

|BA
j � �A

j |
q. (5.10)
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Using this, we obtain

inf
T̂2Rp

E⇡E�|T̂ � �|qq  E⇡E�

pX

j=1

|BA
j � �j|

q

= E⇡E�

⇣ pX

j=1

|BA
j � �j|

q
1(� 2 A)

⌘
+ E⇡E�

⇣ pX

j=1

|BA
j � �j|

q
1(� 62 A)

⌘

 E⇡AE�

pX

j=1

|BA
j � �A

j |
q + E⇡E�

⇣ pX

j=1

|BA
j � �j|

q
1(� 62 A)

⌘

 E⇡AE�

pX

j=1

|BA
j � �A

j |
q + E⇡E�

pX

j=1

2q�1(|BA
j |

q + |�j|
q)1(� 62 A).

(5.11)

Our next step is to bound the term

E⇡E�

pX

j=1

|BA
j |

q
1(� 62 A).

For this purpose, we first note that inequality (5.9) with T̂j(Y ) = 0 implies that

|BA
j (Y )|q = EA(|BA

j (Y )|q|Y )  2qEA(|�A
j |

q
|Y ).

Thus

E⇡E�

pX

j=1

|BA
j |

q
1(� 62 A)  2qE⇡EA(k�A

k
q
q|Y )1(� 62 A).

Combining this inequality with (5.10) and (5.11) yields (5.4).

Proof of Lemma 5.2.1
We begin by noticing that

inf
T̂2Rp

E⇡E�

pX

j=1

|T̂j(X, Y )� �j|
q =

pX

j=1

inf
T̂j2R

E⇡E�|T̂j(X, Y )� �j|
q.

It is easy to check that

8a 2 Rp, 8j = 1, . . . , p inf
T̂j2R

E⇡E�|T̂j(X, Y )� �j|
q = inf

T̂j2R
E⇡E�|T̂j(X, Y � a)� �j|

q.

(5.12)
Using conditioning, one may also notice that

inf
T̂j2R

E⇡E�|T̂j(X, Y )� �j|
q
� E⇡�j

 
inf
T̂j2R

E⇡jE�|T̂j(X, Y )� �j|
q
�����j

!
, (5.13)

where ��j represents the vector � deprived of �j and ⇡�j the corresponding prior. Hence,
we get from (5.12) and (5.13) that

inf
T̂j2R

E⇡E�|T̂j(X, Y )� �j|
q
� E⇡�j

 
inf
T̂j2R

E⇡jE�|T̂j(X, Ỹj)� �j|
q
�����j

!
,
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where Ỹj = Y �
P

i 6=j Xi�i = �jXj + �⇠. We remove the last conditional expectation
and replace the dependence on X by Xj, since the observable Ỹj depends only on �j
and Xj.

Proof of Theorem 5.2.2
We apply Theorem 5.2.1 with ⇥s,a = ⌦s,a. Let S a support of size s, and consider the
prior � such that �Sc = 0 and �S = Z, where Z 2 Rs is a Gaussian random vector
distributed following N (µ, ⌫2Is) where µ, ⌫ > 0 are defined later. We have

inf
�̂

sup
�2�s,a

E�|�̂ � �|q � inf
T̂2Rp

E⇡E�

pX

j=1

|T̂j(X, Y )� �j|
q

� Cq E⇡
⇥�
E(k�A

k
q
q|Y ) + k�kqq

�
1(� 62 ⌦s,a)

⇤
.

We first upper-bound the second term

E⇡
⇥�
E

A(k�A
k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s,a)

⇤
 2

q
E⇡k�k2qq

p
P(� 62 ⇥s, a),

since k�A
k
q
q  k�kqq. It is easy to check that for some C > 0 we have

P(� 62 ⇥s,a)  sP(|�1|  a)  Cse�
(µ1�a)2+

2⌫2 .

By choosing µ1 = a+ ⌫2, we get for some Cq > 0

E⇡
⇥�
EA(k�A

k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s,a)

⇤
 Cq

p
sp
p
a2q + ⌫4q + ⌫2qe�

⌫
2

2 .

Using lemma 5.2.1 combined with Anderson lemma for Gaussian priors we get

inf
T̂j2R

E⇡jE�|T̂j(X, Ỹj)� �j|
q = E

✓✓
⌫�

⌫kXjk+ �

◆q

|⇠1|
q

◆
.

We conclude that 8⌫ > 0, we have

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
�

X

j2S

✓
⌫�

⌫kXjk+ �

◆q

E (|⇠1|
q)� Cq

p
sp
p
a2q + ⌫4q + ⌫2qe�

⌫
2

2 .

The result follows by taking the limit ⌫ ! 1.

Proof of Theorem 5.2.3
We are going to mimic the previous proof using a different prior. We apply Theorem
5.2.1 with ⇥s,a = ⌦s,a. Consider the prior � such that � = a⌘, where ⌘ 2 {0, 1}p be a
Bernoulli random vector with i.i.d entries and E(⌘i) =

s0

p , s0 2 (0, s). We have

inf
�̂

sup
�2⇥s,a

E�|�̂ � �|q � inf
T̂2Rd

E⇡E�

pX

j=1

|T̂j(X, Y )� �j|
q

� Cq E⇡
⇥�
E(k�A

k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s, a)

⇤
.
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First notice that in this case

� 2 ⇥s, a if and only if |⌘|0  s.

Hence k�A
k
q
q  aq|⌘|0  saq. We first upper-bound the second term

E⇡
⇥�
E

A(k�A
k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s,a)

⇤
 aqE⇡ [2|⌘|01(|⌘|0 � s+ 1)] ,

since |⌘|0 > s. Using same arguments as in Butucea et al. (2018), we conclude that

E⇡
⇥�
E

A(k�A
k
q
q|Y ) + k�kqq

�
1(� 62 ⇥s,a)

⇤
 2aqs0e�

(s�s
0)2

2s .

Going back to the first term, we get the following lower bound using Lemma 5.2.1

inf
T̂j2R

E⇡jE�|T̂j(X, Ỹj)� �j|
q = aq inf

T̂j2R

✓
s0

p
Ea|T̂j(X, Ỹj)� 1|q + (1�

s0

p
)E0|T̂j(X, Ỹj)|

q

◆

Minimizing the posterior risk, the Bayes rule gives

8q > 1, T ⇤
j (X, Ỹj) =

1

1 + e
a

q�1 (tj(a)kXjk2�hỸj ,Xji)
,

and for q = 1 we get

T ⇤
j (X, Ỹj) = 1(hỸj, Xji � tj(a)kXjk

2).

Hence we deduce that

inf
T̂j2R

E⇡jE�|T̂j(X, Ỹj)� �j|
q
�

aq

2q
 ,

where

 =

✓
s0

p
Pa(hỸj, Xji  tj(a)kXjk

2) + (1�
s0

p
)P0(hỸj, Xji � tj(a)kXjk

2)

◆
.

Notice that for q = 1 the term 2q is not needed. Replacing Ỹj by its expression, we
recover the lower bound

 (p, s0, a, �, X) =
pX

j=1

✓
s0

p
P(" � (a� tj(a))kXjk) + (1�

s0

p
)P(" � tj(a)kXjk)

◆
.

Following the proof of Ndaoud and Tsybakov (2018), we may use the fact that s !  (s)
s

is decreasing to conclude the proof.

Proof of Proposition 5.2.1
Combining Theorem 5.2.2 and Theorem 5.2.3 with s0 = s/2, we get

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� s�q

q _

✓
aq

2q+1
 (p, s, a, �)� saqe�s/8

◆
.

We remind the reader the notation t⇤ := �
p

2 log (p/s� 1). In order to prove the result,
we handle several cases.
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• case a � 10t⇤:
It is easy to check that a� t(a) � a/4 and that t(a) � a/4 + t⇤. Hence

aq (p, s, a, �)  Csaqe�a2/32�2
 Cqs.

This shows that the term �q
qs is dominating. As a result

s�q
q _

✓
aq

2q+1
 (p, s, a, �)� saqe�s/8

◆
⇣ s,

and
s�q

q _ aq (p, s, a, �) ⇣ s.

This suffises to prove the lower bound.

• case t⇤  a  10t⇤:
Since s � 8q log log p, then

aqe�s/8
 Cqa

�q/2
 Cq0 .

This leads to

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� s�q

q _

✓
aq

2q+1
 (p, s, a, �)� sCq0

◆
.

We conclude by noticing that a _ b ⇣ a _ (b� a) for a, b � 0.

• case a  t⇤:
We observe that t(t⇤) = t⇤. In this case

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
�inf

�̂
sup

�2⌦p

s,t⇤

E�

⇣
k�̂ � �kqq

⌘

�
1

2q+1
st⇤qP (�" � 0)� Cq0s � Cq00st

⇤q.

Hence
inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� Cq00�

qs log
⇣p
s
� 1

⌘q/2

.

Proof of Theorem 5.3.1
Let � be a vector in ⌦p

s,a, we have

k�a
� �kqq =

X

i2S

E

����̂a
i � �i

���
q

+
X

i2Sc

E

����̂a
i � �i

���
q

.

On Sc, we have
�̂a
i � �i = ⇠i1{|⇠i|>t(a_t⇤)}.

Hence we get that
E

����̂a
i � �i

���
q

= E
�
|⇠i|

q
1{|⇠i|>t(a_t⇤)}

�
.
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Using integration by parts and induction we get

8q � 0, E
�
|⇠i|

q
1{|⇠i|>t(a_t⇤)}

�
 Cq(t(a _ t⇤)q + �q)P (|⇠i| � t(a _ t⇤)) ,

where Cq is a universal constant depending only in q. Applying this we get

E

����̂a
i � �i

���
q

= E
�
|⇠i|

q
1{|⇠i|>t(a_t⇤)}

�

 Cq(t(a _ t⇤)q + �q)P (|⇠i| � t(a _ t⇤)) .

Hence
E

X

i2Sc

����̂i � �i
���
q

 2Cq|S
c
|t(a _ t⇤)qP (�" � t (a _ t⇤)) .

The last inequality holds since t(a _ t⇤) � c� for s  p/4.
On S, we have

�̂a
i � �i = Yi1{|Yi|>t(a)} � �i = �⇠i � Yi1{|Yi|t(a)}.

Hence and since |x+ y|q  2q�1(|x|q + |y|q) we get

E

����̂a
i � �i

���
q

 2q�1�q
q + 2q�1

E
�
|Yi|

q
1{|Yi|t(a_t⇤)}

�

 2q�1�q
q + 2q�1t(a _ t⇤)qP (|Yi|  t(a _ t⇤))

 2q�1�q
q + 2q�1t(a _ t⇤)qP (|⇠i| � (a� t(a _ t⇤))+) .

We get that on S we have

E

X

i2S

|�̂a
i � �i|

q
 Cq

�
s�q

q + t(a)q|S|P (�" > (a� t(a _ t⇤)+))
�
. (5.14)

Since (a� t(a _ t⇤)+)  (a _ t⇤ � t(a _ t⇤)+), we get

E

X

i2S

|�̂a
i � �i|

q
 Cqs�

q
q + Cqt(a _ t⇤)q|S|P (�" > (a _ t⇤ � t(a _ t⇤)+)) .

We conclude that

E

⇣
k�̂a

� �kqq

⌘
 Cq�

q
qs+ Cqt(a _ t⇤)q +(p, s, t

⇤
_ a, �).

Hence for a � t⇤, the result is immediate, since t(a_ t⇤)  t(a)  a. For a < t⇤ we have

E

⇣
k�̂a

� �kqq

⌘
 Cq�

q
qs+ Cq�

q log(
p

s
� 1)q/2 +(p, s, t

⇤, �).

It is easy to verify
 +(p, s, t

⇤, �)  s+ (p� s)
s

p� s
 2s,

and hence

E

⇣
k�̂a

� �kqq

⌘
 Cq

�
�qs log(p/s� 1)q/2 + �q

qs
�
 Cq0�

qs log(p/s� 1)q/2,

since s  p
4 and log(p/s� 1) � 1.
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Proof of Theorem 5.3.2
Let us first notice that for ✏ 2 [0, 1] we have

t(aq(✏)) = �
p

2 log(p/s� 1) + q✏ log log(p/s� 1),

and
aq(✏)� t(aq(✏)) =

p
q✏�2 log log(p/s� 1).

Following the previous proof we have

E
X

i2Sc

����̂i � �i
���
q

 2Cqpt(a)
q
P (�" > t (a)) .

Since ✏ 2 [0, 1] we have that t(aq(✏))  �
p
2 log(p/s� 1)(1 + o(1)). Moreover

P (�" > t (a))  C�
e�t(a)2/2�2

t(a)


C�

t(a)

s

p� s

1

log(p/s� 1)q✏/2
.

Hence

E

X

i2Sc

����̂i � �i
���
q

 Cq
s log(p/s� 1)

q

2 (1�✏)
p

log(p/s� 1)
.

We can now notice that on Sc we have

E

X

i2Sc

����̂i � �i
���
q

= o
s

p
!0

(�o) .

In order to prove the Theorem we focus on the error in the support. Remember that on
S we have

�̂a
i � �i = Yi1{|Yi|>t(a)} � �i = �⇠i � Yi1{|Yi|t(a)}.

• case a  a(0):
In this case a(0) = t(a(0)) = �

p
2 log(p/s� 1). We use the following inequality

8a, b 2 R, q � 1, |a+ b|q  |a|q + q|a+ b|q�1
|b|.

Hence

|⇠i � Yi1{|Yi|t(a)}|
q
 |Yi1{|Yi|t(a)}|

q + q|⇠i||⇠i � Yi1{|Yi|t(a)}|
q�1

 |Yi1{|Yi|t(a)}|
q + q|⇠i|2

q
�
|⇠i|

q�1 + |Yi1{|Yi|t(a)}|
q�1

�

 t(a)q + q2q
�
|⇠i|q + |⇠i|t(a)

q�1
�
.

As a consequence

E|�̂a
i � �i|

q
 t(a)q + q2q(�q

q + �1t(a)
q�1)  t(a)q(1 + o(1)).

The last inequality holds since t(a) ! 1 as s/p ! 0. We conclude that
X

i2S

E|�̂a
i � �i|

q
 �o(1 + o(1)).
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• case a = a(✏) for ✏ 2 (0, 1):
In this case and following same steps in previous case

|⇠i � Yi1{|Yi|t(a)}|
q
 t(a)q1{|Yi|t(a)} + q2q

�
|⇠i|

q + |⇠i|t(a)
q�1

1{|Yi|t(a)}
�
.

Remember that

8q � 0, E
�
|⇠i|

q1{|⇠i|>t(a)}
�
 Cq(t(a)

q + �q
2)P (|⇠i| � t(a)) .

Hence

E(|⇠i|1{|Yi|t(a)})  E(|⇠i|1{|⇠i|�a�t(a)})

 ((a� t) + �)P(|⇠i| � a� t)  log(t)P(|Yi|  t).

We get that

E|�̂a
i � �i|

q
 t⇤q(1 + o(1))P(|Yi|  t(a)) + Cq�

q
q .

One may notice that

P(|Yi|  t(a))  2P(�✏ � (a� t(a))+).

Using the Gaussian tail inequality and the fact that ✏ > 0, we get

P(|Yi|  t(a)) 
t⇤�q✏

1 +
p

⇡
2 q✏ log log(p/s� 1)

(1 + o(1)).

Since t⇤q(1�✏)/ log(t) ! 1 we conclude that
X

i2S

E|�̂a
i � �i|

q


st⇤q(1�✏)

1 +
p

⇡
2 q✏ log log(p/s� 1)

(1 + o(1)).

• case a � a(1):
In this case it suffices to prove the result for a = a(1) since the minimax risk in
increasing with respect to a.

|⇠i � Yi1{|Yi|t(a)}|
q
 |⇠i|

q + q|Yi1{|Yi|t(a)}||⇠i � Yi1{|Yi|t(a)}|
q�1

 |⇠i|
q + Cq

�
t⇤|⇠i|

q�1
1{|Yi|t(a)} + t⇤q1{|Yi|t(a)}

�
.

In the previous case we proved that

E(|⇠i|
q�1

1{|Yi|t(a)})  log(t⇤)q�1P(|Yi|  t(a)),

and that
P(|Yi|  t(a))  C

t⇤�q

log log(p/s) + 1
.

Hence

E
�
t⇤|⇠i|

q�1
1{|Yi|t(a)} + t⇤q1{|Yi|t(a)}

�


C

log log(p/s)
= o(�q

q).

It follows that X

i2S

E|�̂a
i � �i|

q
 s�q

q(1 + o(1)).

This concludes the proof of this theorem.
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Proof of Corollary 5.3.2
Based on the fact that

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
� s�q

q ,

we observe that the second result is a direct consequence of Theorem 5.3.2. In order to
conclude, we need to show that for a < aq(1) we have

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘

�o(a)
�

1

4
+ o(1).

In what follows, we assume that a < aq(1). Going back to the initial lower bound with
s0 = s/2, and using the fact that s � 8q log log p, we have

inf
�̂

sup
�2⌦p

s,a

E�

⇣
k�̂ � �kqq

⌘
�

1

2
saqE (T q

1 )� Cq00sa(1)
qa(0)�2q,

where
8q > 1, T1 =

1

1 + e�
a

q�1 (t(a)�a+⇠1)
,

and for q = 1
T1 = 1(⇠1 � a� t(a)).

Since
sa(1)qa(0)�2q = o(s),

we get immediately that
sa(1)qa(0)�2q = o(�o(a)).

It is sufficient to prove that

saqE (T q
1 ) �

1

2
�o(a)(1 + o(1)).

For q = 1, we have E(T1) = P(⇠1 � a� t(a)) � P(|⇠1| � (a� t(a))+)/2. Using the fact
that the Gaussian tail bounds presented in the beginning of this Appendix are sharp
combined with the proof of the previous upper bound we can verify that for q = 1

saE (T1) �
1

2
�o(a)(1 + o(1)).

For q > 1 it is enough to prove that

E(T q
1 ) � P(⇠1 � a� t(a))(1 + o(1)).

For a = aq(0) we have that t(a) = a, hence

E(T q
1 ) = E

✓✓
1

1 + e
a

q�1 ⇠1

◆q◆
! P(⇠1 � 0).

The limit is a consequence of the dominated convergence theorem and proves the result.
The last case is when a = aq(✏) with ✏ 2 (0, 1). Let us just recall that a ⇣

p
log(p/s)

and a� t(a) ⇣
p

log log(p/s). Let ↵s > 0 be a sequence satisfying

↵s.a ! 1 and ↵s.(a� t) ! 0.
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We have

E(T q
1 ) � E

✓✓
1

1 + e
�a↵s

q�1

◆q

1(⇠1 � a� t(a) + ↵s)

◆
�

✓
1

1 + e
�a↵s

q�1

◆q

P(⇠1 � a�t(a)+↵s).

Using the monotony of cumulative distribution functions, we get that

E(T q
1 ) � (1 + o(1))

⇣
P(⇠1 � a� t(a))� Ce�(a�t(a)+↵s)2/2�2

↵s

⌘
.

Using the limiting behaviour of ↵s we get

E(T q
1 ) � P(⇠1 � a� t(a))(1 + o(1)).

This concludes the proof.

Proof of Theorem 5.4.1
First notice that t⇤s = t(a(1)) and that �̂s = �̂a(1). Hence and using Theorem 5.3.2 we
get for all a � a(1)

sup
�2⌦p

s,a

E�

⇣
k�̂s

� �kqq

⌘
 sup

�2⌦p

s,a(1)

E�

⇣
k�̂s

� �kqq

⌘
 Cqs�

q
q .

On S, we have
�̂s
i � �i = Yi1{|Yi|>t⇤s} � �i = �⇠i � Yi1{|Yi|t⇤s}.

Hence

E�

 
X

i2S

|�̂s
i � �i|

q

!
 Cq(s�

q
q + st⇤qs ).

On Sc, and since ts > t⇤, it is easy to check using previous proofs that

E�

 
X

i2Sc

|�̂s
i � �i|

q

!
 C 0

qst
⇤q
s .

This concludes the proof.
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Chapter 6

Sharp optimal recovery in the two
component Gaussian Mixture Model

In this chapter, we study the problem of clustering in the Two component Gaussian
mixture model when the centers are separated by some � > 0. We present a non-
asymptotic lower bound for the corresponding minimax Hamming risk improving on
existing results. We also propose an optimal, efficient and adaptive procedure that is
minimax rate optimal. The rate optimality is moreover sharp in the asymptotics when
the sample size goes to infinity. Our procedure is based on a variant of Lloyd’s iterations
initialized by a spectral method. As a consequence of non-asymptotic results, we find a
sharp phase transition for the problem of exact recovery in the Gaussian mixture model.
We prove that the phase transition occurs around the critical threshold �̄ given by

�̄2 = �2

✓
1 +

r
1 +

2p

n log n

◆
log n.

Based on Ndaoud (2018b): Ndaoud, M. (2018b). Sharp optimal recovery in the two
component Gaussian mixture model. arXiv preprint arXiv:1812.08078.

6.1 Introduction

The problems of supervised or unsupervised clustering have gained huge interest in the
machine learning literature. In particular, many clustering algorithms are known to
achieve good empirical results. A very useful model to study and compare these al-
gorithms is the Gaussian mixture model. In this model, we assume that the data are
attributed to different centers and that we only have access to observations corrupted
by Gaussian noise. For this specific model, one can consider the problem of estimation
of the centers, see, e.g., Klusowski and Brinda (2016),Mixon et al. (2016) or the prob-
lem of detecting the communities, see, e.g., Lu and Zhou (2016),Giraud and Verzelen
(2018),Royer (2017). This paper focuses on community detection.
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The Gaussian Mixture Model
We observe n independent random vectors Y1, . . . , Yn 2 R

p. We assume that there exist
two unknown vectors ✓ 2 R

p and ⌘ 2 {�1, 1}n, such that, for all i = 1, . . . , n,

Yi = ✓⌘i + �⇠i, (6.1)

where � > 0, ⇠1, . . . , ⇠n are standard Gaussian random vectors and ⌘i is the ith com-
ponent of ⌘. We denote by Y (respectively, W ) the matrix with columns Y1, . . . , Yn

(respectively, �⇠1, . . . , �⇠n). Model (6.1) can be written in matrix form

Y = ✓⌘> +W.

We denote by P(✓,⌘) the distribution of Y in model (6.1) and by E(✓,⌘) the corresponding
expectation. We assume that (✓, ⌘) belongs to the set

⌦� = {✓ 2 R
p : k✓k � �}⇥ {�1, 1}n,

where � > 0 is a given constant. The value � characterizes the separation between the
clusters and equivalently the strength of the signal.

In this chapter, we study the problem of recovering the communities, that is, of
estimating the vector ⌘. As estimators of ⌘, we consider any measurable functions
⌘̂ = ⌘̂(Y1, . . . , Yn) of (Y1, . . . , Yn) taking values in {�1, 1}n. We characterize the loss of a
given ⌘̂ by the Hamming distance between ⌘̂ and ⌘, that is, by the number of positions
at which ⌘̂ and ⌘ differ:

|⌘̂ � ⌘| :=
nX

j=1

|⌘̂j � ⌘j| = 2
nX

j=1

1(⌘̂j 6= ⌘j).

Here, ⌘̂j and ⌘j are the jth components of ⌘̂ and ⌘, respectively. Since for community
detection it is enough to determine ⌘ up to a sign change, one can also consider the loss
defined by

r(⌘̂, ⌘) := min
⌫2{�1,1}

|⌘̂ � ⌫⌘|.

In what follows, we use this loss. The expected loss of ⌘̂ is defined as E(✓,⌘)r(⌘̂, ⌘).
In the rest of the paper, we will always denote by ⌘ the vector to estimate, while ⌘̂

will denote the corresponding estimator. We consider the following minimax risk

 � := inf
⌘̃

sup
(✓,⌘)2⌦�

1

n
E(✓,⌘)r(⌘̃, ⌘), (6.2)

where inf
⌘̃

denotes the infimum over all estimators ⌘̃ in {�1, 1}n. A simple lower bound

for the risk  � is given by (cf. Proposition 6.3 below):

 � �
c

1 +�/�
e�

�2

2�2 (6.3)

for some c > 0. Inspecting the proof one may also notice that this bound is attained at
the oracle ⌘⇤ given by

⌘⇤i = sign
�
Y >
i ✓

�
.
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This oracle assumes a prior knowledge of ✓. It turns out that for p � n, there exists a
regime where the lower bound (6.3) is not optimal, as pointed by Giraud and Verzelen
(2018). The intuitive explanation is that for p larger than n, the vector ✓ is hard to
estimate. To the best of our knowledge, there are no lower bounds for  � that capture
the issue of estimating ✓. This is one of the main questions addressed in the present
paper.

Notation. In the rest of this paper we use the following notation. For given se-
quences an and bn, we write that an = O(bn) (respectively, an = ⌦(bn)) when an  cbn
(respectively, an � cbn) for some absolute constant c > 0. We write an ⇣ bn when
an = O(bn) and an = ⌦(bn). For x, y 2 R

p, we denote by x>y the Euclidean scalar
product, by kxk the corresponding norm of x and by sign(x) the vector of signs of the
components of x. For x, y 2 R, we denote by x _ y (respectively, x ^ y) the maxi-
mum (respectively, minimum) value between x and y. To any matrix M 2 R

n⇥p, we
denote by kMkop its operator norm with respect to the L2-norm , by M> its trans-
pose and by Tr(M) its trace in case p = n. Further, In denotes the identity matrix of
dimension n and 1(.) denotes the indicator function. We denote by �c(.) the comple-
mentary cumulative distribution function of the standard Gaussian random variable z
i.e., 8t 2 R,�c(t) = P(z > t). We denote by c and C positive constants that may vary
from line to line.

We assume that p, � and � depend on n and the asymptotic results correspond to
the limit as n ! 1. All proofs are deferred to Appendix 6.8.

Related literature
The present work can be related to two parallel lines of work.

1. Community detection in the sub-Gaussian mixture model:

Lu and Zhou (2016) were probably the first to present statistical guarantees for
community detection in the sub-Gaussian mixture model using the well-known
Lloyd’s algorithm, cf. Lloyd (1982). The results of Lu and Zhou (2016) require a
better initialization than a random guess in addition to the condition

�2 = ⌦
⇣
�2
⇣
1 _

p

n

⌘⌘
, (6.4)

in order to achieve almost full recovery recovery and

�2 = ⌦
⇣
�2 log n

⇣
1 _

p

n

⌘⌘
, (6.5)

in order to achieve exact recovery. The notions of almost full and exact recovery
are defined in Section 6.5 and Section 6.7. More recently, Royer (2017) and Giraud
and Verzelen (2018) have shown that conditions (6.4) and (6.5) are not optimal in
high dimension i.e. for n = o(p). In particular, Giraud and Verzelen (2018) study
an SDP relaxation of the K-means criterion that achieves almost full recovery
under a milder condition

�2 = ⌦

✓
�2

✓
1 _

r
p

n

◆◆
, (6.6)
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and exact recovery under the condition

�2 = ⌦

 
�2

 
log n _

r
p log n

n

!!
. (6.7)

To the best of our knowledge, conditions (6.6) and (6.7) are the mildest in the
literature, but no matching necessary conditions are known so far. Giraud and
Verzelen (2018) provide insightful heuristics about optimality of these conditions.
In the supervised setting, where all labels are known similar conditions seem nec-
essary to achieve either almost full or exact recovery. It is still not clear whether
optimal conditions in supervised mixture learning are also optimal in the unsu-
pervised setting.
Another difference between the previous papers is in computational aspects. While,
in Giraud and Verzelen (2018), an SDP relaxation is proposed, a faster algorithm
based on Lloyd’s iterations is developed in Lu and Zhou (2016). It remains not
clear whether we can achieve almost full (respectively, exact) recovery under con-
dition (6.6) (respectively, (6.7)) through faster methods than SDP relaxations, for
instance, through Lloyd’s iterations.
Lu and Zhou (2016) suggest to initialize Lloyd’s algorithm using a spectral method.
It would be interesting to investigate whether Lloyd’s algorithm initialized by a
spectral method, in the same spirit as in Vempala and Wang (2004), can achieve
optimal performance in the more general setting where p is allowed to be larger
than n.
In this chapter, we shed some light on these issues. Specifically, we address the
following questions.

• Are conditions (6.6) and (6.7) necessary for both almost full and exact recov-
ery?

• Are optimal requirements similar in both supervised and unsupervised set-
tings?

• Can we achieve results similar to Giraud and Verzelen (2018) using a faster
algorithm?

• In case the answer to previous questions is positive, can we achieve the same
results adaptively to all parameters?

2. Community detection in the Stochastic Block Model (SBM):
The Stochastic Block Model, cf. Holland et al. (1983), is probably the most
popular framework for node clustering. This model with two communities can be
seen as a particular case of model (6.1) when both the signal and the noise are
symmetric matrices. A non symmetric variant of SBM is the Bipartite SBM, cf.
Feldman et al. (2015). Unlike the case of sub-Gaussian mixtures where most results
in the literature are non-asymptotic, results on almost full or exact recovery for the
SBM and its variants are mostly asymptotic and focus on sharp phase transitions.
Abbe (2017) poses an open question on whether it is possible to characterize sharp
phase transitions in other related problems, for instance, in the Gaussian mixture
model.
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The first polynomial method achieving exact recovery in the SBM with two com-
munities is due to Abbe et al. (2014). The algorithm splits the initial sample into
two independent samples. A black-box algorithm is used on the first sample for
almost full recovery, then a local improvement is applied on the second sample.
As stated in Abbe et al. (2014), it is not clear whether algorithms achieving al-
most full recovery can be used to achieve exact recovery. It remains interesting
to understand whether similar results can be achieved through direct algorithms
ideally without the splitting step.
For the Bipartite SBM, sufficient computational conditions for exact recovery are
presented in Feldman et al. (2015), Florescu and Perkins (2016). While the sharp
phase transition for the problem of detection is fully answered in Florescu and
Perkins (2016), it is still not clear whether the condition they require, for exact
recovery, is optimal. More interestingly, the sufficient condition for exact recovery
is different for p of the same order as n and for p larger than n2 for instance.
This shows a kind of phase transition with respect to p, where for some critical
dimension p⇤ the hardness of the problem changes.
We resume potential connections between our work and these recent developments
in the following questions.

• Is it possible to characterize a sharp phase transition for exact recovery in
model (6.1)?

• Are algorithms achieving almost full recovery useful in order to achieve exact
recovery in the Gaussian mixture model?

• Is there a critical dimension p⇤ that separates different regimes of hardness
in the problem of exact recovery?

Main contribution
In this work, we provide a sharp analysis of almost full and exact recovery in the two
component Gaussian mixture model. Moreover, we give non-asymptotic lower bounds
for the risk  � and matching upper bounds through a variant of Lloyd’s iterations
initialized by a spectral method. To do so, we define a key quantity rn that turns out
to be the right signal-to-noise ratio (SNR) of the problem:

rn =
�2/�2

p
�2/�2 + p/n

. (6.8)

This SNR is strictly smaller than the "naive" one �/�, cf. (6.3). In particular, it states
that the hardness of the problem depends on the dimension p. Among other results, we
prove that for some c1, c2, C1, C2 > 0, we have

C1e
�c1r2n   �  C2e

�c2r2n .

Moreover, we give a sharp characterization of the constants in this relation.
Inspecting the proofs of the lower bounds in Section 6.2, one may learn that, in

a setting where no prior information on ✓ is given, the supervised learning estimator
is optimal. Interestingly, supervised and unsupervised risks are almost equal, and the
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problem of community detection in the Gaussian mixture model is almost transparent
to any supervised information on labels as long as the centers are unknown.

As for the upper bound, we introduce and analyze a fully adaptive rate optimal
and computationally simple procedure. In order to achieve optimal decay of the risk,
it turns out that it is enough to consider H(Y >Y ) where for any squared matrix M ,
H(M) = M � diag(M) and diag(M) is the diagonal of M . We set the initializer ⌘0
such that ⌘0 = sign(v̂) and v̂ is the eigenvector corresponding to the top eigenvalue of
H(Y >Y ). The risk of ⌘0 is studied in Section 6.3. In particular, we observe that ⌘0
can achieve almost full recovery but cannot show it is rate optimal. The lack of rate
optimality is probably due to the fact that spectral methods do not benefit from the
structure of binary vectors. As an improvement, we consider in Section 6.4 the iterative
sequence of estimators (⌘k)k�1 defined as

8k � 0, ⌘k+1 = sign
�
H(Y >Y )⌘k

�
.

In comparison to Lu and Zhou (2016), we get better results, in particular for large
p. In their approach, a spectral initialization on ✓ is considered and estimation of ✓ is
handled at each iteration. The main difference compared to our procedure lies in the
fact that we get around the step of estimating ✓. We only need the matrix H(Y >Y )
that is almost blind to the direction of ✓. Giraud and Verzelen (2018) present a rate
optimal procedure without capturing the sharp optimality. Our procedure differs in two
ways from Giraud and Verzelen (2018). First, it is not an SDP relaxation method and
hence is faster. Second, by using the operator H, we do not need to de-bias the Gram
matrix, as this operator handles the task.

In Section 6.5, we show the existence of a sharp phase transition for exact recovery
in the Gaussian mixture model, around the threshold � = �̄n such that

�̄2
n = �2

✓
1 +

r
1 +

2p

n log n

◆
log n.

In particular, this phase transition gives rise to two different regimes around a critical
dimension p⇤ = n log n, showing that the hardness of exact recovery depends on whether
p is larger or smaller than p⇤.

6.2 Non-asymptotic fundamental limits in the Gaus-
sian mixture model

In this section, we derive a sharp optimal lower bound for the risk  �. As stated in the
Introduction, a simple lower bound is given by (6.3). The next proposition provides a
sharper statement.

Proposition 6.2.1. For any � > 0, we have

 � � c�c(�/�),

for some c > 0.
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Following the same lines as in Ndaoud (2019), we obtain two different lower bounds
for the minimax risk. Proposition 6.2.1 gives a bound responsible for the hardness of
recovering communities due to the lack of information on the labels. It still benefits from
the knowledge of ✓. In Giraud and Verzelen (2018), it becomes clear that for large p,
the hardness of the problem results from the hardness of estimating ✓. Hence, in order
to capture this phenomenon, one may try to hide the information about the direction
of ✓ in order to make its estimation difficult.

More precisely, in order to bound the risk  � from below, we place a prior on both
⌘ and ✓. Ideally, we would choose a Gaussian prior for ✓ in order to make its estimation
harder, but one should keep in mind that ✓ is constrained to the set ⌦�. To derive
lower bounds on constrained sets, we act as in Butucea et al. (2018). Let ⇡ = ⇡✓ ⇥ ⇡⌘
be a product probability measure on R

p
⇥ {�1, 1}n (a prior on (✓, ⌘)). We denote by

E⇡ the expectation with respect to ⇡.

Theorem 6.2.1. Let � > 0 and ⇡ = ⇡✓ ⇥ ⇡⌘ a product probability measure on R
p
⇥

{�1, 1}n. Then,

 � � c

0

@ 1

bn/2c

bn/2cX

i=1

inf
T̂i2[�1,1]

E⇡E(✓,⌘)|T̂i � ⌘i|� ⇡✓ (k✓k < �)

1

A ,

where inf T̂i2[�1,1] is the infimum over all estimators T̂i(Y ) with values in [�1, 1] and
c > 0.

Theorem 6.2.1 is useful to derive non-asymptotic lower bounds for constrained min-
imax risks. For the corresponding lower bound to be optimal, we need the remainder
term ⇡✓ (k✓k < �) to be negligible. In other words, the prior on ✓ must ensure that
k✓k is greater than � with high probability. This would make the problem of recovery
easier. Hence, it is clear that there exists some trade-off concerning the choice of ⇡✓.

Let ⇡↵ = ⇡↵✓ ⇥⇡⌘ be a product prior on R
p
⇥{�1, 1}n, such that ⇡↵✓ is the distribution

of the Gaussian random vector with i.i.d. centered entries of variance ↵2, ⇡⌘ is the
distribution of the vector with i.i.d. Rademacher entries, and ✓ is independent of ⌘. For
this specific choice of prior we get the following result.

Proposition 6.2.2. For any ↵ > 0, we have for all i = 1, . . . , n,

inf
T̂i2[�1,1]

1

n
E⇡↵E(✓,⌘)|T̂i � ⌘i| �

1

n
E⇡↵E(✓,⌘)|⌘

⇤⇤
i � ⌘i|,

where ⌘⇤⇤ is a supervised learning oracle given by

8i = 1, . . . , n, ⌘⇤⇤i = sign

 
Y >
i

 
X

j 6=i

⌘jYj

!!
.

It is interesting to notice that each entry of the supervised learning oracle ⌘⇤⇤ only
depends on ✓ through its best estimator under the Gaussian prior when the labels for
other entries are known. The lower bound of Proposition 6.2.2 confirms the intuition
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that the supervised learning oracle is optimal in a minimax sense. For � > 0, define G�

by the relation:

8t 2 R, G�(t,✓) = P

 
(✓ + �⇠1)

>

 
✓ +

�

n� 1

nX

j=2

⇠j

!
 k✓k2t

!
, (6.9)

where ⇠1, . . . , ⇠n are i.i.d. standard Gaussian random vectors. Combining Theorem 6.2.1
and Proposition 6.2.2 and using the fact that all entries of the prior ⇡↵ are i.i.d. we
obtain the next proposition.

Proposition 6.2.3. Let � > 0 and let G� be the function defined in (6.9). For any
↵ > 0, we have

 � � cE⇡↵

✓
G�(0,✓)� cP

 
pX

j=1

"2j 
�2

↵2

!
,

where "j are i.i.d. standard Gaussian random variables and c > 0.

We are now ready to state the main result of this section. As explained in Giraud and
Verzelen (2018), the main limitation of the analysis in Lu and Zhou (2016) is partially
due to the choice of the signal-to-noise ratio (SNR) as �/�. We use here the SNR rn

given in (6.8). It is of the same order as the SNR presented in Giraud and Verzelen
(2018).

Theorem 6.2.2. Let � > 0. For n large enough, there exists a sequence ✏n such that
✏n = o(1) and

 � � c�c((rn(1 + ✏n)) ,

for some c > 0.

It is worth saying that the result of Theorem 6.2.2 holds without any assumption on
p and can be interpreted in a non-asymptotic sense by replacing ✏n by some small c > 0.
Moreover, since rn < �/�, it improves upon the lower bound in Proposition 6.2.1. This
improvement is most dramatic in the regime �2/�2 = o (p/n) that can be called the
hard estimation regime.

6.3 Spectral initialization
In this section, we analyze the non-asymptotic minimax risk of the spectral initializer
⌘0. As it is the case in SDP relaxations of the problem, the matrix of interest is the
Gram matrix Y >Y . It is well known that is suffers from a bias that grows with p. In
Royer (2017), a de-biasing procedure is proposed using an estimator of the covariance
of the noise. This step is important to obtain a procedure adaptive to the noise level.
Our approach is different but is still adaptive and consists in removing the diagonal
entries of the Gram matrix. We give here some intuition about this procedure. Define
the linear operator H : Rn⇥n

! R
n⇥n as follows:

8M 2 R
n⇥n, H(M) = M � diag(M),
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where diag(M) is a diagonal matrix with the same diagonal as M . Going back to
Proposition 6.2.2, we may observe that the oracle ⌘⇤⇤ can be written as

⌘⇤⇤ = sign
�
H
�
Y >Y

�
⌘
�
, (6.10)

where the sign is applied entry-wise. This suggests that the matrix H
�
Y >Y

�
appears

in a natural way. We can decompose it as follows:

H(Y >Y ) = k✓k2⌘⌘> +H(W>W ) +H(W>✓⌘> + ⌘✓>W )� k✓k2In. (6.11)

Apart from the scalar factor k✓k2, this expression is similar to SBM or symmetric spiked
model, with the noise having a more complex structure. It turns out that the main driver
of the noise is H(W>W ). A simple lemma (cf. Appendix 6.9) shows that our approach
is probably an alternative to de-biasing the Gram matrix. Specifically, Lemma 6.9.2
gives that

kH(W>W )kop  2
��W>W � E

�
W>W

���
op

for any random matrix W with independent columns. Hence, the noise term can be
controlled as if its covariance were known. Nevertheless, the operator H(.) may affect
dramatically the signal since it also removes its diagonal entries. Fortunately, the signal
term is almost insensitive to this operation since it is a rank-one matrix where the spike
energy is spread all over the spike. For instance, we have

kH(⌘⌘>)kop =

✓
1�

1

n

◆
k⌘⌘>kop.

Hence as n grows the signal does not get affected by removing the diagonal terms while
we get rid of the bias in the noise. It is worth noticing that our approach succeeds
thanks to the specific form of ⌘ and cannot be generalized to any spiked model. For
the general case, a more consistent approach is proposed in Zhang et al. (2018), where
the diagonal entries can be used to achieve optimal estimation accuracy. Motivated by
(6.11), the spectral estimator ⌘0 is defined by

⌘0 = sign(v̂), (6.12)

where v̂ is the eigenvector corresponding to the top eigenvalue of H(Y >Y ). The next
result characterizes the non-asymptotic minimax risk of ⌘0.

Theorem 6.3.1. Let � > 0 and let ⌘0 be the estimator given by (6.12). Under the
condition rn � C, for some absolute constant C > 0, we have

sup
(✓,⌘)2⌦�

1

n
E(✓,⌘)r(⌘

0, ⌘) 
C 0

r2n

+
32

n2
,

and

sup
(✓,⌘)2⌦�

P(✓,⌘)

✓
1

n

��⌘>⌘0
��  1�

log n

n
�

C 0

r2n

◆
 ✏n�

c(rn),

for some sequence ✏n such that ✏n = o(1) and C 0 > 0.
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As we may expect the appropriate Hamming distance risk is decreasing with respect
to rn. The residual term 32

n2 is due to removing the diagonal and can be seen as the
price to pay for adaptation. It is obvious that as rn gets larger than n, removing the
diagonal terms is sub-optimal.

As n, rn ! 1, ⌘0 achieves almost full recovery (cf. Definition 6.7.1). We show later
that this condition is optimal but cannot show that ⌘0 is rate optimal. In particular,
it is not clear whether ⌘0 can achieve exact recovery. To bring some evidence that
⌘0 cannot achieve exact recovery, we rely on asymptotic random matrix theory. In
Benaych-Georges and Nadakuditi (2012), it is shown that, in the asymptotics when
p/n ! c 2 (0, 1] and when the noise is Gaussian, detection is possible only for �2

�
p
c�2. Moreover, the asymptotic correlation between ⌘ and its spectral approximation is

given by
q

1� c�2+�2

�2(1+�2/�2) . When rn = ⌦(1), we observe that c�2+�2

�2(1+�2/�2) ⇣
1
r2n

. Hence,
the decay in Theorem 6.3.1 is expected for general spiked models, but not necessarily
rate optimal in our specific setting. The condition rn = ⌦(1) is very natural, since it is
necessary even for detection as shown in Banks et al. (2018).

6.4 A rate optimal practical algorithm
In this section, we present an algorithm that is minimax optimal, adaptive to � and
� and faster than SDP relaxation. In the same spirit as in Lu and Zhou (2016), we
are tempted by using Lloyd’s iterations. If properly initialized, Lloyd’s algorithm may
achieve the optimal rate under mild conditions after only a logarithmic number of steps.
We present here a variant of Lloyd’s iterations. Motivated by (6.10), and given an
estimator ⌘̂0, we define a sequence of estimators (⌘̂k)k�0 such that

8k � 0, ⌘̂k+1 = sign
�
H
�
Y >Y

�
⌘̂k
�
. (6.13)

Notice that Lloyd’s iterations correspond to the procedure (6.13), where H
�
Y >Y

�
is

replaced by Y >Y . If the initialization is good in a sense that we describe below, then
at each iteration ⌘̂k gets closer to ⌘ and achieves the minimax optimal rate after a
logarithmic number of steps. The logarithmic number of steps is crucial computationally
as it is the case in many other iterative procedures.

Theorem 6.4.1. Let � > 0 and let ⌘̂0 be an estimator satisfying

1

n
⌘>⌘̂0 � 1�

C 0

r2n

� ⌫n

for some C 0 > 0 and ⌫n = o(1). Let (⌘̂k)k�0 be the corresponding iterative sequence
(6.13). If rn � C for some C > 0, then after k = b3 log nc steps, we have

sup
(✓,⌘)2⌦�

E(✓,⌘)r(⌘̂
k, ⌘)  C 0

r
2
n sup
k✓k��

G�

✓
✏n +

C 0

rn
,✓

◆
+ ✏n�

c(rn),

for some sequence ✏n such that ✏n = o(1) and C 0 > 0.

Recall that G(t,✓) is close to G(0,✓) for small t. Theorem 6.4.1 can be interpreted as
follows. Given a good initialization, the iterative procedure (6.13) achieves an error close
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to the supervised learning risk within a logarithmic number of steps. Observing that
under the condition rn � C for some C > 0, the spectral estimator ⌘0 is a good initializer,
we state a general result showing that our variant of Lloyd’s iterations initialized with
a spectral estimator is minimax optimal.

Theorem 6.4.2. Let � > 0. Let ⌘0 be the spectral estimator defined in (6.12) and let
(⌘k)k�0 be the iterative sequence (6.13). Assume that rn > C for some C > 0. Then,
after k = b3 log nc steps we have

sup
(✓,⌘)2⌦�

E(✓,⌘)r(⌘
k, ⌘)  C 0�c

✓
rn

✓
1� ✏n �

C 0 log rn
rn

◆◆
,

for some sequence ✏n such that ✏n = o(1) and C 0 > 0.

Notice that the upper bound in Theorem 6.4.2 is almost optimal, and gets closer
to the optimal minimax rate as n, rn ! 1. Hence, under mild conditions, we get
a matching upper bound to the lower bound in Theorem 6.2.2. Moreover, we figure
out that a good initialization combined with smart iterations is almost equivalent to
the supervised learning oracle. In fact, the rate in Theorem 6.4.2 is almost the same
as the rate of the supervised oracle ⌘⇤⇤. We conclude that unsupervised learning is
asymptotically as easy as supervised learning in the Gaussian mixture model. The next
proposition gives a full picture of the minimax risk  �.

Proposition 6.4.1. Let � > 0. For some c1, c2, C1, C2 > 0 and n large enough, we
have

C1e
�c1r2n   �  C2e

�c2r2n .

Notice that the procedure we present here has a different rate of decay compared
to the spectral procedure (6.12), that may be non-asymptotically sub-optimal. Recent
papers by Xia and Zhou (2017) and Abbe et al. (2017) show that a simple spectral
algorithm can achieve exact recovery using refined sup-norm perturbation techniques.
Although their results are striking, they match the optimal conditions for exact recovery
in the Gaussian mixture model only in the zone rn ⇣ �/�.

6.5 Asymptotic analysis. Phase transitions
This section deals with asymptotic analysis of the problem of community detection in
the two component Gaussian mixture model. The results are derived as corollaries of the
minimax bounds of previous sections. We will assume that n ! 1 and that parameters
p, � and � depend on n. For the sake of readability we do not equip some parameters
with the index n.

The two asymptotic properties we study here are exact recovery and almost full
recovery. The complete characterization of the sharp phase transition for almost full
recovery is deferred to Section 6.7. We use the terminology following Butucea et al.
(2018) that we recall here.

Definition 6.5.1. Let (⌦�n
)n�2 be a sequence of classes corresponding to (�n)n�2:
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• We say that exact recovery is possible for (⌦�n
)n�2 if there exists an estimator ⌘̂

such that

lim
n!1

sup
(✓,⌘)2⌦�n

E(✓,⌘)r(⌘̂, ⌘) = 0. (6.14)

In this case, we say that ⌘̂ achieves exact recovery.

• We say that exact recovery is impossible for (⌦�n
)n�2 if

lim inf
n!1

inf
⌘̃

sup
(✓,⌘)2⌦�n

E(✓,⌘)r(⌘̃, ⌘) > 0, (6.15)

where inf ⌘̃ denotes the infimum over all estimators in {�1, 1}n.

Informally, we would like to get a “phase transition” value �̄n such that exact recovery
is possible for �n greater than �̄n and is impossible for �n smaller than �̄n. Our aim
now is to find such “phase transition” values. For the problem of exact recovery, the
“phase transition” is described in the next theorem. Let �̄n > 0 be defined by

�̄2
n = �2

✓
1 +

r
1 +

2p

n log n

◆
log n. (6.16)

The next theorem is a direct consequence of Theorem 6.7.1, cf. Section 6.7.

Theorem 6.5.1. (i) If �n � �̄n(1 + ✏) for some ✏ > 0. Then, the estimator ⌘k
defined in (6.12)-(6.13), with k = b3 log nc, achieves exact recovery.

(ii) If the complementary condition holds, i.e, �n  �̄n(1 � ✏) for some ✏ > 0, then
exact recovery is impossible.

Some remarks are in order here. First of all, Theorem 6.5.1 shows that the “phase
transition” for exact recovery occurs at �̄n given in (6.16). It is worth noticing that this
sharp threshold for exact recovery holds for all values of p. In particular, there exists
a critical dimension p⇤ = n log n. If p = o(p⇤), then �̄n = (1 + o(1))�

p
2 log n. In this

case, the phase transition threshold for exact recovery, is the same as if ✓ were known.
While if p⇤ = o(p), then �̄n = (1 + o(1))�

�
2p logn

n

�1/4. This new condition reflects the
hardness of estimation, and p⇤ can be interpreted as a phase transition with respect to
the cluster dimension p.

6.6 Discussion and open problems
A key objective of this paper was to establish sharp phase transition for exact recovery
in the two component Gaussian mixture model. All upper bounds remain valid in
the case of sub-Gaussian noise. It would be interesting to generalize the methodology
used to derive both lower and upper bounds to the case of multiple communities and
general covariance structure of the noise. We also expect the procedure (6.12)-(6.13) to
achieve exact recovery in asymptotically sharp way in other problems, for instance in
the Bipartite Stochastic Block Model.
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We conclude this paper with an open question. Let p⇤ = n log n. In the regime
p⇤ = o(p), we proved that for any ✏ > 0, the condition

�2
� (1� ✏)�2

✓
2p

p⇤

◆1/2

log n

is necessary to achieve exact recovery. This is a consequence of considering a Gaussian
prior on ✓ which makes recovering its direction the hardest. We give here a heuristics
that this should hold independently on the choice of prior as long as ✓ is uniformly
well-spread (i.e., not sparse). Suppose that we put a Rademacher prior on ✓ such that
✓ = �p

p⇣, where ⇣ is a random vector with i.i.d. Rademacher entries. Following the same
argument as in Proposition 6.2.1, it is clear that a necessary condition to get non-trivial
correlation with ⇣ is given by

�2
� c�2 p

n
,

for some c > 0. Observing that, in the hard estimation regime, we have
✓

p

p⇤

◆1/2

log n = o
⇣p
n

⌘
,

it comes that, while exact recovery of ⌘ is possible, non-trivial correlation with ⇣ is
impossible. Consequently, there is no hope achieving exact recovery through non-trivial
correlation with ✓ in the hard estimation regime.

Conjecture 6.6.1. Let � > 0. Assume that Y follows model (6.1). Let ⌘ be a random
vector with i.i.d. Rademacher random entries, and ✓ = �p

p⇣ where ⇣ is a random vector
with i.i.d. Rademacher entries and independent of ⌘. Assume that n log n = o(p). Prove
or disprove that, for any ✏ > 0,

�2
� (1� ✏)�2

r
2p log n

n

is necessary to achieve exact recovery.

In particular, a positive answer to the previous question will be very useful to derive
optimal conditions for exact recovery in bipartite graph models among other problems.

6.7 Asymptotic analysis: almost full recovery
In this section, we conduct the asymptotic analysis of the problem of almost full recovery
in the two component Gaussian mixture model. We first recall the terminology used in
Butucea et al. (2018) that we adopt for the problem of almost full recovery.

Definition 6.7.1. Let (⌦�n
)n�2 be a sequence of classes corresponding to (�n)n�2:

• We say that almost full recovery is possible for (⌦�n
)n�2 if there exists an esti-

mator ⌘̂ such that

lim
n!1

sup
(✓,⌘)2⌦�n

1

n
E(✓,⌘)r(⌘̂, ⌘) = 0. (6.17)

In this case, we say that ⌘̂ achieves almost full recovery.
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• We say that almost full recovery is impossible for (⌦�n
)n�2 if

lim inf
n!1

inf
⌘̃

sup
(✓,⌘)2⌦�n

1

n
E(✓,⌘)r(⌘̃, ⌘) > 0, (6.18)

where inf ⌘̃ denotes the infimum over all estimators in {�1, 1}n.

The following general characterization theorem is a straightforward corollary of the
results of previous sections.

Theorem 6.7.1. (i) Almost full recovery is possible for (⌦�n
)n�2 if and only if

�c(rn) ! 0 as n ! 1. (6.19)

In this case, the estimator ⌘k defined in (6.12)-(6.13), with k = b3 log nc, achieves almost
full recovery.

(ii) Exact recovery is impossible for (⌦�n
)n�2 if for some ✏ > 0

lim inf
n!1

n�c(rn(1 + ✏)) > 0 as n ! 1, (6.20)

and possible if for some ✏ > 0

n�c(rn(1� ✏)) ! 0 as n ! 1, (6.21)

In this case, the estimator ⌘k defined in (6.12)-(6.13), with k = b3 log nc, achieves exact
recovery.

Although this theorem gives a complete solution to the problem of almost full and
exact recovery, conditions (6.19), (6.20) and (6.21) are not quite explicit. The next
theorem is a consequence of Theorem 6.7.1. It describes a “phase transition” for �n in
the problem of almost full recovery.

Theorem 6.7.2. (i) If �2
⇣
1 +

p
p/n

⌘
= o(�2

n). Then, the estimator ⌘k defined in
(6.12)-(6.13), with k = b3 log nc, achieves almost full recovery.

(ii) Moreover, if �2
n = O

⇣
�2(1 +

p
p/n)

⌘
. Then, almost full recovery is impossible.

Theorem 6.7.2 shows that almost full recovery occurs if and only if

�2
⇣
1 +

p
p/n

⌘
= o(�2

n). (6.22)
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6.8 Appendix: Main proofs
In all the proofs of lower bounds, we follow the same argument as in Theorem 2 in Gao
et al. (2018) in order to substitute the minimax risk of r(⌘̃, ⌘) by a Hamming minimax
risk. Let z⇤ be a vector of labels in {�1, 1}n and let T be a subset of {1, . . . , n} of size
bn/2c+1. A lower bound of the minimax risk is given on the subset of labels Z, such
that for all i 2 T ,we have ⌘i = z⇤i . Observe that in that case

r(⌘1, ⌘2) = |⌘1 � ⌘2|,

for any ⌘1, ⌘2 2 Z. The argument in Gao et al. (2018), leads to

 � �
c

|T c|

X

i2T c

inf
⌘̃i
E⇡E(✓,⌘)|⌘̃i � ⌘i|,

for some c > 0 and for any prior ⇡ such that ⇡⌘ is invariant by a sign change. That is
typically the case under Rademacher prior on labels. As a consequence, a lower bound
of  � is given by a lower bound of the R.H.S minimax Hamming risk.

Proof of Proposition 6.2.1
Let ✓̄ be a vector in R

p such that k✓̄k = �. Placing an independent Rademacher prior
⇡ on ⌘, and fixing ✓, it follows that

inf
⌘̃j
E⇡E(✓̄,⌘)|⌘̃j � ⌘j| � inf

⌘̄j
E⇡E(✓̄,⌘)|⌘̄j(Yj)� ⌘j|, (6.23)

where ⌘̄j 2 [�1, 1]. The last inequality holds because of independence between the
priors. We define, for ✏ 2 {�1, 1}, f̃✏(.) the density of the observation Yj conditionally
on the value of ⌘j = ✏. Now, using Neyman-Pearson lemma and the explicit form of f̃✏,
we get that the selector ⌘⇤ given by

⌘⇤j = sign
⇣
✓̄
>
Yj

⌘
, 8j = 1, . . . , n

is the optimal selector that achieves the minimum of the RHS of (6.23). Plugging this
value in (6.23), we get further that

inf
⌘̄j
E⇡|⌘̄j(Yj)� ⌘j| = 2�c(�/�).

Proof of Theorem 6.2.1
Throughout the proof, we write for brevity A = ⌦�. Set ⌘A = ⌘1((✓, ⌘) 2 A) and
denote by ⇡̄A the probability measure ⇡ conditioned by the event {(✓, ⌘) 2 A}, that is,
for any C ✓ R

p
⇥ {�1, 1}n,

⇡̄A(C) =
⇡({(✓, ⌘) 2 C} \ {(✓, ⌘) 2 A})

⇡((✓, ⌘) 2 A)
.

The measure ⇡̄A is supported on A and we have

inf
⌘̃j

E⇡̄AE(✓,⌘)|⌘̃j � ⌘j| � inf
⌘̃j

E⇡̄AE(✓,⌘)|⌘̃j � ⌘Aj |

� inf
T̂j

E⇡̄AE(✓,⌘)|T̂j � ⌘Aj |
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where inf T̂j
is the infimum over all estimators T̂j = T̂j(Y ) with values in R. According

to Theorem 1.1 and Corollary 1.2 on page 228 in Lehmann and Casella (2006), there
exists a Bayes estimator BA

j = BA
j (Y ) such that

inf
T̂j

E⇡̄AE(✓,⌘)|T̂j � ⌘Aj | = E⇡̄AE(✓,⌘)|B
A
j � ⌘Aj |,

and this estimator is a conditional median of ⌘Aj given Y . Therefore,

 � � c

0

@ 1

bn/2c

bn/2cX

j=1

E⇡̄AE(✓,⌘)|B
A
j � ⌘Aj |

1

A . (6.24)

Note that BA
j 2 [�1, 1] since ⌘Aj takes its values in [�1, 1]. Using this, we obtain

inf
T̂j2[�1,1]

E⇡E(✓,⌘)|T̂j � ⌘j|  E⇡E(✓,⌘)|B
A
j � ⌘j|

= E⇡E(✓,⌘)

⇣
|BA

j � ⌘j|1((✓, ⌘) 2 A)
⌘
+ E⇡E(✓,⌘)

⇣
|BA

j � ⌘j|1((✓, ⌘) 2 Ac)
⌘

 E⇡̄AE(✓,⌘)|B
A
j � ⌘Aj |+ E⇡E(✓,⌘)

⇣
|BA

j � ⌘j|1((✓, ⌘) 2 Ac)
⌘

 E⇡̄AE(✓,⌘)|B
A
j � ⌘Aj |+ 2P((✓, ⌘) 62 A). (6.25)

The result follows combining (6.24) and (6.25).

Proof of Proposition 6.2.2
We start by using the fact that

E⇡↵E(✓,⌘)|⌘̂i � ⌘i| = Ep�i
EpiE(✓,⌘) (|⌘̂i � ⌘i||(⌘j)j 6=i) ,

where pi is the marginal of ⇡↵ on (✓,⌘i), while p�i is the marginal of ⇡↵ on (⌘j)j 6=i.
Using the independence between different priors, one may observe that ⇡↵ = pi ⇥ p�i.
We define, for ✏ 2 {�1, 1}, f̃ i

✏ the density of the observation Y given (⌘j)j 6=i and given
⌘i = ✏. Using Neyman-Pearson lemma, we get that

⌘⇤⇤i =

⇢
1 if f̃ i

1(Y ) � f̃ i
�1(Y ),

�1 else,

minimizes EpiE(✓,⌘) (|⌘̂i � ⌘i||(⌘j)j 6=i) over all functions of (⌘j)j 6=i and of Y with values
in [�1, 1]. Using the independence of the rows of Y we have

f̃ i
✏(Y ) =

pY

j=1

e�
1
2L

>
j
⌃�1

✏ Lj

(2⇡)p/2|⌃✏|
,

where Lj is the j-th row of Y and ⌃✏ = In + ↵2⌘✏⌘>✏ . We denote by ⌘✏ the binary
vector such that ⌘i = ✏ and the other components are known. It is easy to check that
|⌃✏| = 1 + ↵2n, hence it does not depend on ✏. A simple calculation leads to

⌃�1
✏ = In �

↵2

1 + ↵2n
⌘✏⌘

>
✏ .
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Hence

f̃ i
1(Y )

f̃ i
�1(Y )

=
pY

j=1

e�
1
2L

>
j
(⌃�1

1 �⌃�1
�1)Lj

=
pY

j=1

e
↵
2

1+↵2n
Lji

P
k 6=i

Ljk⌘k

= e
↵
2

1+↵2n

P
k 6=i

⌘k
P

p

j=1 LjkLji = e
↵
2

1+↵2n
hYi,

P
k 6=i

⌘kYki.

It is now immediate that

⌘⇤⇤i = sign

 
Y >
i

 
X

k 6=i

⌘kYk

!!
.

Proof of Proposition 6.2.3
Combining Theorem 6.2.1 and Proposition 6.2.2, we get that

 � � c

0

@ 1

bn/2c

bn/2cX

i=1

E⇡↵E(✓,⌘)|⌘
⇤⇤
i � ⌘i|� ⇡↵✓ (k✓k  �)

1

A .

Recall that here ✓ has i.i.d. centered Gaussian entries with variance ↵2. This yields
the second term on the R.H.S of the inequality of Proposition 6.2.3. While, for the first
term, one may notice that the vectors ⌘iYi for i = 1, . . . , n are i.i.d. and that

|⌘⇤⇤i � ⌘i| = 21

 
⌘iY

>
i

 
X

j 6=i

⌘jYj

!
 0

!
.

Then, we use the definition of G� (6.9) in order to conclude.

Proof of Theorem 6.2.2
We prove the result by considering separately the following three cases.

1. Case � 
log2(n)p

n . In this case we use Proposition 6.2.1.

Since 0 
�2

p
�2+p/n

 �, we have
������

�2
p
�2+p/n

���� 
log2(n)p

n . Hence

������
c(�)� �c

 
�2

p
�2 + p/n

!�����  c
log2(n)
p
n
�c

 
�2

p
�2 + p/n

!
,

for some c > 0. Hence we get the result with ✏n = c log
2(n)p
n .

2. Case � �

q
p logn

n . In this case, we have
p

1 + p
n�2

�2
p
�2+p/n

= �. It is easy to
check that ����

r
1 +

p

n�2
� 1

���� 
1

log n
.
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Hence
� 

�2

p
�2 + p/n

(1 + ✏n),

for ✏n = 1
logn . We conclude using Proposition 6.2.1.

3. Case log2(n)p
n < � <

q
p logn

n . Notice that p � log3(n) in this regime. We will use
Proposition 6.2.3. Set ↵2 such that

↵2 =
�2

p(1� ⌫n)
and ⌫n =

s
n�2

p log2(n)
.

It is easy to check that 0 < ⌫2n  1/ log n, Hence

P

 
pX

j=1

"2j 
�2

↵2

!
= P

 
1

p

pX

j=1

("2j � 1)  �⌫n

!
 e

�c n

log2(n)
�2

,

for some c > 0. Hence, for any ✏n ! 0 we have

P

 
pX

j=1

"2j 
�2

↵2

!
 e�c0 logn�c (�(1 + ✏n))  e�c0 logn�c

 
�2

p
�2 + p/n

(1 + ✏n)

!
,

for some c0 > 0. Since e�c0 logn
!

n!1
0, then in order to conclude, we just need to

prove that

E⇡↵

✓
G�(0,✓) � (1� ✏n)�

c

 
�2

p
�2 + p/n

(1 + ✏n)

!
,

for some sequence ✏n ! 0.
We recall that

E⇡↵

✓
G�(0,✓) = P

✓
(✓ + ⇠1)

>
✓
✓ +

⇠2
p
n� 1

◆
 0

◆
,

where ⇠1, ⇠2 are two independent random vectors with i.i.d. standard Gaussian
entries and ✓ is an independent Gaussian prior. Moreover, using independence,
we have

P

✓
(✓ + ⇠1)

>
✓
✓ +

⇠2
p
n� 1

◆
 0

◆
= P

 
"

s

k✓k2 +
k⇠2k2

n� 1
+

2
p
n� 1

✓>⇠2 � k✓k2 +
1

p
n� 1

✓>⇠2

!
,

where " is a standard Gaussian random variable. Fix ✓ and define the random
event

A =

⇢
k⇠2k2

n� 1
�

p

n� 1
(1� ⇣n)

�
\
�
|✓>⇠2| 

p
n� 1�nk✓k

2
 
,

where �n > 0 and ⇣n 2 (0, 1). It is easy to check that

P (Ac)  e�c log3(n)⇣2n + e�c�2
nnk✓k2 , (6.26)
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for some c > 0. Hence conditioning on ✓, we have

P

✓
(✓ + ⇠1)

>
✓
✓ +

⇠2
p
n� 1

◆
 0

◆
� E

2

4�c

0

@ k✓k2(1 + �n)q
k✓k2(1� 2�n) +

p
n�1(1� ⇣n)

1

AP(A)

3

5 .

where the last expectation is over ✓. Define now the random event B = {|k✓k2 ��2
|  �2�n}

where �n 2 (0, 1). Then, using (6.26), we get

P

✓
(✓ + ⇠1)

>
✓
✓ +

⇠2
p
n� 1

◆
 0

◆
� �c (Un)

⇣
1� e�c log3 (n)⇣2n � e�c�2

n(1��n) log4(n)
⌘
P(B),

(6.27)
where Un := �2(1+�n)(1+�n)p

�2(1�2�n)(1��n)+ p

n�1 (1�⇣n)
. Now we may check that

P(Bc) = P

 �����

pX

j=1

"2j �
�2

↵2

����� �
�2

↵2
�n

!
.

Hence

P(Bc)  P

 �����

pX

j=1

"2j � p

����� �
�2

↵2
�n �

����p�
�2

↵2

����

!
.

Using the definition of ↵2 we get

P(Bc)  P

 �����

pX

j=1

"2j � p

����� � p((1� ⌫n)�n � ⌫n)

!
 2e�c log3(n)�2n , (6.28)

for some c > 0 whenever 4⌫n  �n  1. Using the inequality ⌫2n  1/ log n, and
choosing �2

n = 1/ log n, �2n = 16/ log n and ⇣2n = 1/ log n, we get the desired result
by combining (6.27) and (6.28).

Proof of Theorem 6.3.1
We begin by writing that

1

n
Y >Y =

k✓k2

n
⌘⌘> + Z1,

where
Z1 =

1

n
⌘✓>W +

1

n
W>✓⌘> +

1

n
W>W.

Next observe that
H

✓
1

n
Y >Y

◆
=

k✓k2

n
⌘⌘> + Z2,

where Z2 is given by

Z2 = H (Z1)�
k✓k2

n
In.

Based on Lemma 6.9.2, we have

kZ2kop  4

����
1

n
⌘✓>W

����
op

+ 2

����
1

n
W>W � E

✓
1

n
W>W

◆����
op

+
k✓k2

n
. (6.29)
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Using the Davis-Kahan sin ✓ Theorem cf .Theorem 4.5.5 in Vershynin (2018), we obtain

min
⌫2{�1,1}

����v̂ �
1
p
n
⌫⌘

����
2

 8
kZ2k

2
op

k✓k4
. (6.30)

Hence, using Lemma 6.9.5, we get

1

n
r(⌘0, ⌘)  16

kZ2k
2
op

k✓k4


512

k✓k4

 ����
1

n
⌘✓>W

����
2

op

+

����
1

n
W>W � E

✓
1

n
W>W

◆����
2

op

!
+

32

n2
.

(6.31)
Since rn � C, for some C large enough. We may assume that k✓k2 � 1 so that
1 + p/n  k✓k2 + p/n. The inequality in expectation is a consequence of Lemma 6.9.3
and Lemma 6.9.4.

For the inequality in probability, we first observe, using (6.31), that

1

n
|⌘>⌘0| � 1� 8

kZ2k
2
op

k✓k4
.

Next, and since rn � C for some C large enough, observe that

P(✓,⌘)

✓
1

n
|⌘>⌘0|  1�

log n

n
�

C

r2n

◆
 A1 + A2,

where

A1 = P(✓,⌘)

 ����
1

n
⌘✓>W

����
op

�

r
log n

2n
k✓k2 + 2

!
,

and

A2 = P(✓,⌘)

 ����
1

n
W>W � E

✓
1

n
W>W

◆����
op

�

r
log n

2n
k✓k2 + C

⇣
1 _

p
p/n

⌘!
,

Using Lemma 6.9.3 and Lemma 6.9.4, we get

P(✓,⌘)

✓
1

n
|⌘>⌘0|  1�

log n

n
�

C

r2n

◆
 2e�c

p
n lognk✓k2(1^

p
n lognk✓k2

p
)
 e�c

p
lognr2n ,

Using the tail Gaussian function, we conclude easily that

e�c
p
lognr2n = o(�c(rn)).

Proof of Theorem 6.4.1
By the definition of r(⌘̂, ⌘), we may assume w.l.o.g that ⌘>⌘̂0 > 0. Define the random
events Ai for i = 1, . . . , n, B and C such that for all i = 1, . . . , n

Ai =

(✓
1

n
H(Y >Y )>i ⌘

◆
⌘i � k✓k2

 
8C

rn
+

C 0

r2n

+ 8c0
r

log n

n
+ ⌫n

!)
,

C =

(
1

n

nX

i=1

1Ai


C 0

4r2n

)



6.8. APPENDIX: MAIN PROOFS 141

and

B =

(
kZ2kop  c0

r
log n

n
k✓k2 + C

⇣
1 _

p
p/n

⌘)
,

where we use the same notation of the previous proof and c0 a positive constant that we
may choose large enough.

We first prove, by induction, that on the event B \C, we have

1

n
⌘>⌘̂k � 1�

C 0

r2n

� ⌫n, 8k = 0, 1, . . .

For k = 0, the result is obvious. Let k � 1. Assume that the result holds for k, and we
prove it for k + 1. Remember that

1

n
H(Y >Y ) =

1

n
k✓k2⌘⌘> + Z2.

A simple calculation leads to

1

n
H(Y >Y )>i ⌘̂

k = (Z2)
>
i (⌘̂

k
� ⌘) +

1

n
H(Y >Y )>i ⌘ � k✓k2⌘i

n� ⌘>⌘̂k

n
.

Hence if ⌘i = �1 and if Ai is true, then using the induction hypothesis we get

1

n
H(Y >Y )>i ⌘̂

k
 (Z2)

>
i (⌘̂

k
� ⌘)� k✓k2

 
8C

rn
+ 8c0

r
log n

n

!
.

Hence when ⌘i = �1 we have

1
{

1
n
H(Y >Y )>

i
⌘̂k�0}

1Ai
 1n

(Z2)>i (⌘̂k�⌘)�k✓k2
⇣

8C
rn

+8c0
p

logn

n

⌘o 

0

BB@
(Z2)>i (⌘̂

k
� ⌘)

k✓k2
✓

8C
rn

+ 8c0
q

logn
n

◆

1

CCA

2

.

similarly we get for ⌘i = 1 that

1
{

1
n
H(Y >Y )>

i
⌘̂k0}

1Ai


0

BB@
(Z2)>i (⌘̂

k
� ⌘)

k✓k2
✓

8C
rn

+ 8c0
q

logn
n

◆

1

CCA

2

.

It is clear that

1

2
|⌘̂k+1

� ⌘| =
X

⌘i=�1

1
{

1
n
H(Y >Y )>

i
⌘̂k�0}

+
X

⌘i=1

1
{

1
n
H(Y >Y )>

i
⌘̂k0}

.

Hence we get using the events Ai for i = 1, . . . , n, that

1

2n
|⌘̂k+1

� ⌘| 
kZ2k

2
op

k✓k4
✓

8C
rn

+ 8c0
q

logn
n

◆2

k⌘̂k � ⌘k2

n
+

1

n

nX

i=1

1A
c
i
. (6.32)
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Using the induction hypothesis and the events B and C, we get

1�
1

n
⌘>⌘̂k+1

 4

0

BB@
c0
q

logn
n k✓k2 + C

⇣
1 _

p
p/n

⌘

k✓k2
✓

8C
rn

+ 8c0
q

logn
n

◆

1

CCA

2

(C 0/r2n + ⌫n) +
C 0

2r2n
.

Since rn > C for C large enough, then (1 _
p
p/n)  k✓k2/rn, it comes that

1

n
⌘>⌘̂k+1

� 1�
C 0

r2n

� ⌫n.

That concludes that on B \C, for all k = 0, 1, . . . we get
1

n
⌘>⌘̂k � 1�

C 0

r2n

� ⌫n.

Hence, and using (6.32), we obtain

1

n
|⌘̂k+1

� ⌘|1B1C 
1

4

1

n
|⌘̂k � ⌘|1B1C +

2

n

nX

i=1

1A
c
i
.

As a consequence we find that for k = 0, 1, . . .

1

n
|⌘̂k � ⌘|1B1C  2

✓
1

4

◆k

+
8

3n

nX

i=1

1A
c
i
.

Observe that for k � b3 log nc, we have k � 2 logn
log 4 and

✓
1

4

◆k


1

n2
.

Hence for k � b3 log nc,

1

n
|⌘̂k � ⌘|1B1C 

2

n2
+

8

3n

nX

i=1

1A
c
i
.

Observe that if 1
n

Pn
i=1 1A

c
i
= 0 then 1

n |⌘̂
k
� ⌘|1B1C = 0. Else, 1

n

Pn
i=1 1A

c
i
�

1
n . This

leads to
1

n
|⌘̂k � ⌘|1B1C 

14

3n

nX

i=1

1A
c
i
.

Finally we get for k � b3 log nc,

1

n
E
�
|⌘̂k � ⌘|

�


14

3n

nX

i=1

P (Ac
i )+P (Bc)+P (Cc) 

✓
14

3
+

4r2n
C 0

◆
1

n

nX

i=1

P (Ac
i )+P (Bc) .

The term P (Bc) is upper bounded exactly as in the previous proof and we have

P(Bc) = o(�c(rn)).

For the other term observe that

P (Ac
i ) = G�

✓
C 00

rn
+ ✏n, k✓k

2

◆
,

for some C 00 > 0 and ✏n = o(1). That concludes the proof.
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Proof of Theorem 6.4.2
Combining Theorem 6.3.1 and Theorem 6.4.1, it is enough to prove that

r
2
n sup
k✓k��

G�

✓
✏n +

C 0

rn
,✓

◆
 �c(

✓
rn

✓
1� ✏0n �

C 00 log rn
rn

◆◆
+ ✏0n�

c(rn),

for some ✏0n = o(1) and C 00 > 0. Recall that

G�

✓
✏n +

C 0

rn
,✓

◆
= P

✓
(✓ + ⇠1)

>
✓
✓ +

⇠2
p
n� 1

◆


✓
✏n +

C 0

rn

◆
k✓k2

◆
,

where ⇠1, ⇠2 are two independent Gaussian random vector with i.i.d. standard entries
and ✓ and independent Gaussian prior. Moreover, using independence, we have

G�

✓
✏n +

C 0

rn
,✓

◆
= P

 
"

s

k✓k2 +
k⇠2k2

n� 1
+

2
p
n� 1

✓>⇠2 � k✓k2
✓
1� ✏n �

C 0

rn

◆
+

1
p
n� 1

✓>⇠2

!
,

where " is a standard Gaussian random variable. Set the random event

A =

⇢
k⇠2k2

n� 1


p

n� 1
+ ⇣nk✓k

2

�
\
�
|✓>⇠2| 

p
n� 1�nk✓k

2
 
,

where ⇣n and �n are positive sequences. It is easy to check that

P (Ac)  e�ck✓k4n2⇣2n/p + e�c�2
nnk✓k2 + e�c⇣nnk✓k2 ,

for some c > 0. Hence using the event A, we get

G�

✓
✏n +

C 0

rn
,✓

◆
 P

✓
"

r
k✓k2(1 + ⇣n + 2�n) +

p

n� 1
� k✓k2

✓
1� ✏n �

C 0

rn
� �n

◆◆
+P(Ac).

By choosing �n = ⇣n =
q

logn
n , we get that

P(Ac)  e�c
p
lognrn .

The last fact is due to the condition rn � C for some C > 0. Hence

P(Ac) = o(�c(rn)).

Moreover and since ⇣n and �n are vanishing sequences as n ! 1, we get that

P

✓
"

r
k✓k2(1 + ⇣n + 2�n) +

p

n� 1
� k✓k2

✓
1� ✏n �

C 0

rn
� �n

◆◆
= �c(

 
k✓k2p
k✓k+ p

n

✓
1�

C 0

rn
� ✏0n

◆!
,

for some ✏0n = o(1). We conclude using the fact that x !
xp
x+ p

n

is non-decreasing on

R
+ and the fact that for C < x < y, we have x2�c(y)  c1�c(y � c2 log x), for some

c1, c2 > 0.
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Proof of Proposition 6.4.1
Set n large enough. According to Theorem 6.2.2, we have

 � �
1

2
�c(2rn). (6.33)

For the upper bound. If rn is larger than 2C, then using Theorem 6.4.2, we get

 �  C 0�c(
⇣
rn

4

⌘
, (6.34)

for some C 0 > 0. Observe that for rn  2C, we have

c1  �
c(rn),

for some c1 > 0. Hence, for rn  2C, we get

 � 
�c(rn)

c1
. (6.35)

We conclude combining (6.34), (6.33) and (6.35).

Proof of Theorem 6.7.1
• Necessary conditions:

According to Theorem 6.2.2, we have

 � � (1� ✏n)�
c(rn(1 + ✏n)),

for some ✏n = o(1). If for some ✏ > 0,

lim inf
n!1

n�c(rn(1 + ✏)) > 0,

then using the monotonicity of �c(, we conclude that exact recovery is impossible.
For Almost full recovery, assume that �c(rn) does not converge to 0, and that
almost full recovery is possible. Then using continuity and monotonicity of �c(,
we get that rn(1 + ✏n) ! 1. Hence rn ! 1 and �c(rn) ! 0 which is absurd.
That proves that the condition �c(rn) ! 0 is necessary to achieve almost full
recovery.

• Sufficient conditions:
According to Theorem 6.4.2, we have that, under the condition rn > C for some
C > 0, the estimator ⌘̂k defined in the Theorem satisfies

sup
(✓,⌘)2⌦�

1

n
E(✓,⌘)r(⌘

k, ⌘)  C 0�c(

✓
rn

✓
1� ✏n �

C 0 log rn
rn

◆◆
,

for some sequence ✏n such that ✏n = o(1). If �c(rn) ! 0, then rn ! 1. Hence
for any ✏ > 0, rn(1 � ✏) ! 1. It follows that rn

⇣
1� ✏n �

C0 log rn
rn

⌘
! 1. We
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conclude that almost full recovery is possible under the condition �c(rn) ! 0, and
⌘̂k achieves almost full recovery in that case.
For exact recovery, observe that, if

n�c(rn(1� ✏)) ! 0,

for some ✏ > 0, then rn ! 1. It follows that for n large enough

rn

✓
1� ✏n �

C 0 log rn
rn

◆
� rn(1� ✏).

We conclude by taking the limit that ⌘̂k achieves exact recovery in that case, and
that exact recovery is possible.

Proof of Theorem 6.7.2 and 6.5.1
By inverting the function x !

xp
x+ p

n

, we observe that for any A > 0,

r
2
n � A , �2

n � A
1 +

q
1 + 4p

nA

2
.

Using Theorem 6.7.1 and the Gaussian tail function, we get immediately the results for
both almost full recovery and exact recovery.
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6.9 Appendix: Technical lemmas
Lemma 6.9.1. Let A be a matrix in R

n⇥n. Then

kH(A)kop  2kAkop.

Proof. From the linearity of H, we have that

kH(A)kop  kAkop + kdiag(A)kop,

where
kdiag(A)kop = max

i
|Aii|  kAkop.

Lemma 6.9.2. For any random matrix W with independent columns, we have

kH(W>W )kop  2
��W>W � E

�
W>W

���
op
.

Proof. Since E
�
W>W

�
is a diagonal matrix, it follows that

H(W>W ) = H
�
W>W � E

�
W>W

��
.

The result follows from Lemma 6.9.1.

Lemma 6.9.3. Let u 2 S
p�1 and v 2 S

n�1, and W 2 R
p⇥n a matrix with i.i.d. centered

Gaussian entries of variance at most �2. Then, for some c, C > 0

8t � 2�, P

 ����
1
p
n
W>uv>

����
op

� t

!
 e�cnt/�,

and

E

 ����
1
p
n
W>uv>

����
2

op

!
 C�2.

Proof. We can easily check that
����

1
p
n
W>uv>

����
op


1
p
n
kW>uk2.

Since kuk2 = 1, we have that W>u is Gaussian with mean 0 and covariance matrix
�2
In. We conclude using a tail inequality for quadratic forms of sub-Gaussian random

variables using the fact that t � 2�, see, e.g., Hsu et al. (2012). The inequality in
expectation is immediate by integration of the tail function.

Lemma 6.9.4. Let W 2 R
p⇥n be a matrix with i.i.d. centered Gaussian entries of

variance at most �2. For some c, C, C 0 > 0 we have

8t � C�2

✓
1 _

r
p

n

◆
, P

✓
1

n
kH(W>W )kop � t

◆
 e

�cnt/�2
⇣
1^ tn

p�2

⌘

,

and
E

✓
1

n
kH(W>W )k2op

◆
 C 0�4(1 + p/n).
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Proof. Using Lemma 6.9.2, we get

P

✓
1

n
kH(W>W )kop � t

◆
 P

✓
1

n
kW>W � E(W>W )kop � t/2

◆
.

Now based on Theorem 4.6.1 in Vershynin (2018), we get moreover that

P

✓
1

n
kH(W>W )kop � t�2

◆
 9n2e�cnt(1^tn/p),

for some c > 0. For t � C(1 _
p
p/n)�2 with C large enough, we get ct(1 ^ tn/p�2) �

4�2 log 9, hence

P

✓
1

n
kH(W>W )kop � t

◆
 e�c0nt/�2(1^tn/p�2),

for some c0 > 0. The result in expectation is immediate by integration.

Lemma 6.9.5. For any x 2 {�1, 1}n and y 2 R
n, we have

1

n
|x� sign(y)|  2

����
x
p
n
� y

����
2

.

Proof. It is enough to observe that if xi 2 {�1, 1}, then

|xi � sign(yi)| = 21(xi 6= sign(yi))  2|xi �
p
nyi|

2.
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Chapter 7

Adaptive robust estimation in
sparse vector model

For the sparse vector model, we consider estimation of the target vector, of its `2-norm
and of the noise variance. We construct adaptive estimators and establish the optimal
rates of adaptive estimation when adaptation is considered with respect to the triplet
"noise level – noise distribution – sparsity". We consider classes of noise distributions
with polynomially and exponentially decreasing tails as well as the case of Gaussian
noise. The obtained rates turn out to be different from the minimax non-adaptive rates
when the triplet is known. A crucial issue is the ignorance of the noise variance. More-
over, knowing or not knowing the noise distribution can also influence the rate. For
example, the rates of estimation of the noise variance can differ depending on whether
the noise is Gaussian or sub-Gaussian without a precise knowledge of the distribution.
Estimation of noise variance in our setting can be viewed as an adaptive variant of robust
estimation of scale in the contamination model, where instead of fixing the "nominal"
distribution in advance we assume that it belongs to some class of distributions.

Based on Comminges et al. (2018): Comminges, L., Collier, O., Ndaoud, M., and
Tsybakov, A. B. (2018). Adaptive robust estimation in sparse vector model. arXiv
preprint arXiv:1802.04230v3.

7.1 Introduction
This paper considers estimation of the unknown sparse vector, of its `2-norm and of the
noise level in the sparse sequence model. The focus is on construction of estimators that
are optimally adaptive in a minimax sense with respect to the noise level, to the form
of the noise distribution, and to the sparsity.

We consider the model defined as follows. Let the signal ✓ = (✓1, . . . , ✓d) be observed
with noise of unknown magnitude � > 0:

Yi = ✓i + �⇠i, i = 1, . . . , d. (7.1)

The noise random variables ⇠1, . . . , ⇠d are assumed to be i.i.d. and we denote by P⇠
the unknown distribution of ⇠1. We assume throughout that the noise is zero-mean,
E(⇠1) = 0, and that E(⇠21) = 1, since � needs to be identifiable. We denote by P✓,P⇠,�

the distribution of Y = (Y1, . . . , Yd) when the signal is ✓, the noise level is � and the
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distribution of the noise variables is P⇠. We also denote by E✓,P⇠,� the expectation with
respect to P✓,P⇠,�.

We assume that the signal ✓ is s-sparse, i.e.,

k✓k0 =
dX

i=1

1✓i 6=0  s,

where s 2 {1, . . . , d} is an integer. Set ⇥s = {✓ 2 Rd
| k✓k0  s}. We consider the

problems of estimating ✓ under the `2 loss, estimating the variance �2, and estimating
the `2-norm

k✓k2 =
⇣ dX

i=1

✓2i

⌘1/2

.

The classical Gaussian sequence model corresponds to the case where the noise ⇠i is
standard Gaussian (P⇠ = N (0, 1)) and the noise level � is known. Then, the optimal rate
of estimation of ✓ under the `2 loss in a minimax sense on the class ⇥s is

p
s log(ed/s)

and it is attained by thresholding estimators Donoho et al. (1992). Also, for the Gaussian
sequence model with known �, minimax optimal estimator of the norm k✓k2 as well as
the corresponding minimax rate are available from Collier et al. (2017) (see Table 1).

In this chapter, we study estimation of the three objects ✓, k✓k2, and �2 in the
following two settings.

(a) The distribution of ⇠i and the noise level � are both unknown. This is the main
setting of our interest. For the unknown distribution of ⇠i, we consider two types
of assumptions. Either P⇠ belongs to a class Ga,⌧ , i.e., for some a, ⌧ > 0,

P⇠ 2 Ga,⌧ iff E(⇠1) = 0, E(⇠21) = 1 and 8t � 2, P
�
|⇠1| > t

�
 2e�(t/⌧)a ,

(7.2)
which includes for example sub-Gaussian distributions (a = 2), or to a class of
distributions with polynomially decaying tails Pa,⌧ , i.e., for some ⌧ > 0 and a � 2,

P⇠ 2 Pa,⌧ iff E(⇠1) = 0, E(⇠21) = 1 and 8t � 2, P
�
|⇠1| > t) 

⇣⌧
t

⌘a

. (7.3)

We propose estimators of ✓, k✓k2, and �2 that are optimal in non-asymptotic
minimax sense on these classes of distributions and the sparsity class ⇥s. We
establish the corresponding non-asymptotic minimax rates. They are given in
the second and third columns of Table 1. We also provide the minimax optimal
estimators.

(b) Gaussian noise ⇠i and unknown �. The results on the non-asymptotic minimax
rates are summarized in the first column of Table 1. Notice an interesting effect –
the rates of estimation of �2 and of the norm k✓k2 when the noise is Gaussian are
faster than the optimal rates when the noise is sub-Gaussian. This can be seen by
comparing the first column of Table 1 with the particular case a = 2 of the second
column corresponding to sub-Gaussian noise.

Some comments about Table 1 and additional details are in order.
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Gaussian noise Noise in class Ga,⌧ , Noise in class Pa,⌧ ,
model

p
s log

1
a (ed/s)

p
s(d/s)

1
a

✓
p

s log(ed/s)
known � Donoho et al. (1992)
unknown � Verzelen (2012) unknown � unknown �

k✓k2

q
s log(1 +

p
d
s ) ^ d1/4

p
s log

1
a (ed/s) ^ d1/4

p
s(d/s)

1
a ^ d1/4

known � Collier et al. (2017) known � known �q
s log(1 +

p
d
s ) _

q
s

1+log+(s2/d)

p
s log

1
a (ed/s)

p
s(d/s)

1
a

unknown � unknown � unknown �

1
p
d
_

s

d(1 + log+(s2/d))
1
p
d
_

s

d
log

2
a

✓
ed

s

◆
1
p
d
_

⇣s
d

⌘1� 2
a

�2

Table 7.1: Optimal rates of convergence.

• The difference between the minimax rates for estimation of ✓ and estimation of
the `2-norm k✓k2 turns out to be specific for the pure Gaussian noise model. It
disappears for the classes Ga,⌧ and Pa,⌧ . This is somewhat unexpected since G2,⌧

is the class of sub-Gaussian distributions, and it turns out that k✓k2 is estimated
optimally at different rates for sub-Gaussian and pure Gaussian noise. Another
conclusion is that if the noise is not Gaussian and � is unknown, the minimax rate
for k✓k2 does not have an elbow between the "dense" (s >

p
d) and the "sparse"

(s 
p
d) zones.

• For the problem of estimation of variance �2 with known distribution of the noise
P⇠, we consider a more general setting than (b) mentioned above. We show that
when the noise distribution is exactly known (and satisfies a rather general as-
sumption, not necessarily Gaussian - can have polynomial tails), then the rate of
estimation of �2 can be as fast as max

⇣
1p
d
, s
d

⌘
, which is faster than the optimal

rate max
⇣

1p
d
, s
d log

�
ed
s

�⌘
for the class of sub-Gaussian noise. In other words, the

phenomenon of improved rate is not due to the Gaussian character of the noise
but rather to the fact that the noise distribution is known.

• Our findings show that there is a dramatic difference between the behavior of
optimal estimators of ✓ in the sparse sequence model and in the sparse linear
regression model with "well spread" regressors. It is known from Gautier and
Tsybakov (2013); Belloni et al. (2014) that in sparse linear regression with "well
spread" regressors (that is, having positive variance), the rates of estimating ✓ are
the same for the noise with sub-Gaussian and polynomial tails. We show that the
situation is quite different in the sparse sequence model, where the optimal rates
are much slower and depend on the polynomial index of the noise.
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• The rates shown in Table 1 for the classes Ga,⌧ and Pa,⌧ are achieved on estimators
that are adaptive to the sparsity index s. Thus, knowing or not knowing s does
not influence the optimal rates of estimation when the distribution of ⇠ and the
noise level are unknown.

We conclude this section by a discussion of related work. Chen et al. (2018) explore
the problem of robust estimation of variance and of covariance matrix under Hubers’s
contamination model. As explained in Section 7.4 below, this problem has similarities
with estimation of noise level in our setting. The main difference is that instead of
fixing in advance the Gaussian nominal distribution of the contamination model we as-
sume that it belongs to a class of distributions, such as (7.2) or (7.3). Therefore, the
corresponding results in Section 7.4 can be viewed as results on robust estimation of
scale where, in contrast to the classical setting, we are interested in adaptation to the
unknown nominal law. Another aspect of robust estimation of scale is analyzed by Wei
and Minsker (2017) who consider classes of distributions similar to Pa,⌧ rather than the
contamination model. The main aim in Wei and Minsker (2017) is to construct esti-
mators having sub-Gaussian deviations under weak moment assumptions. Our setting
is different in that we consider the sparsity class ⇥s of vectors ✓ and the rates that we
obtain depend on s. Estimation of variance in sparse linear model is discussed in Sun
and Zhang (2012) where some upper bounds for the rates are given. We also mention
the recent paper Golubev and Krymova (2017) that deals with estimation of variance
in linear regression in a framework that does not involve sparsity, as well as the work
on estimation of signal-to-noise ratio functionals in settings involving sparsity Verzelen
and Gassiat (2018); Guo et al. (2018) and not involving sparsity Janson et al. (2017).
Papers Collier et al. (2018); Carpentier and Verzelen (2019) discuss estimation of other
functionals than the `2-norm k✓k2 in the sparse vector model when the noise is Gaussian
with unknown variance.

Notation. For x > 0, let bxc denote the maximal integer smaller than x. For
a finite set A, we denote by |A| its cardinality. Let inf T̂ denote the infimum over all
estimators. The notation C, C 0,c, c0 will be used for positive constants that can depend
only a and ⌧ and can vary from line to line.

7.2 Estimation of the sparse vector

In this section, we study the problem of estimating a sparse vector ✓ in `2-norm when the
variance of noise � and the distribution of ⇠i are both unknown. We only assume that
the noise distribution belongs a given class, which can be either a class of distributions
with polynomial tails Pa,⌧ , or a class Ga,⌧ with exponential decay of the tails.

First, we introduce a preliminary estimator �̃2 of �2 that will be used to define
an estimator of ✓. Let � 2 (0, 1/2] be a constant that will be chosen small enough
and depending only on a and ⌧ . Divide {1, . . . , d} into m = b�dc disjoint subsets
B1, . . . , Bm, each of cardinality |Bi| � k := bd/mc � 1/� � 1. Consider the median-of-
means estimator

�̃2 = med(�̄2
1, . . . , �̄

2
m), where �̄2

i =
1

|Bi|

X

j2Bi

Y 2
j , i = 1, . . . ,m. (7.4)
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Here, med(�̄2
1, . . . , �̄

2
m) denotes the median of �̄2

1, . . . , �̄
2
m. The next proposition shows

that the estimator �̃2 recovers �2 to within a constant factor.

Proposition 7.2.1. Let ⌧ > 0, a > 2. There exist constants � 2 (0, 1/2], c > 0
and C > 0 depending only on a and ⌧ such that for any integers s and d satisfying
1  s < b�dc/4 we have

inf
P⇠2Pa,⌧

inf
�>0

inf
k✓k0s

P✓,P⇠,�

⇣
1/2 

�̃2

�2
 3/2

⌘
� 1� exp(�cd),

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

���̃2
� �2

��  C�2,

and for a > 4,
sup

P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

�
�̃2

� �2
�2

 C�4.

Note that the result of Proposition 7.2.1 also holds for the class Ga,⌧ for all a > 0
and ⌧ > 0. Indeed, Ga,⌧ ⇢ Pa,⌧ for all a > 2 and ⌧ > 0, while for any 0 < a  2 and
⌧ > 0, there exist a0 > 4 and ⌧ 0 > 0 such that Ga,⌧ ⇢ Pa0,⌧ 0 .

We further note that assuming s < cd for some 0 < c < 1 is natural in the context
of variance estimation since � is not identifiable when s = d. In what follows, all upper
bounds on the risks of estimators will be obtained under this assumption.

Consider now an estimator ✓̂ defined as follows:

✓̂ 2 arg min
✓2Rd

⇣ dX

i=1

(Yi � ✓i)
2 + �̃k✓k⇤

⌘
. (7.5)

Here, k · k⇤ denotes the sorted `1-norm:

k✓k⇤ =
dX

i=1

�i|✓|(d�i+1), (7.6)

where |✓|(1)  · · ·  |✓|(d) are the order statistics of |✓1|, . . . , |✓d|, and �1 � · · · � �p > 0
are tuning parameters.

Set
�⇤
exp(s, d) =

p
s log1/a(ed/s), �⇤

pol(s, d) =
p
s(d/s)1/a. (7.7)

The next theorem shows that ✓̂ estimates ✓ with the rates �⇤
exp(s, d) and �⇤

pol(s, d) when
the noise distribution belongs to the class Ga,⌧ and class Pa,⌧ , respectively.

Theorem 7.2.1. Let s and d be integers satisfying 1  s < b�dc/4 where � 2 (0, 1/2] is
the tuning parameter in the definition of �̃2. Then for the estimator ✓̂ defined by (7.5)
the following holds.

1. Let ⌧ > 0, a > 0. There exist constants c, C > 0 and � 2 (0, 1/2] depending only
on (a, ⌧) such that if �j = c log1/a(ed/j), j = 1, . . . , d, we have

sup
P⇠2Ga,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

⇣
k✓̂ � ✓k22

⌘
 C�2

�
�⇤
exp(s, d)

�2
.
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2. Let ⌧ > 0, a > 2. There exist constants c, C > 0 and � 2 (0, 1/2] depending only
on (a, ⌧) such that if �j = c(d/j)1/a, j = 1, . . . , d, we have

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

⇣
k✓̂ � ✓k22

⌘
 C�2

�
�⇤
pol(s, d)

�2
.

Furthermore, it follows from the lower bound of Theorem 7.3.1 in Section 7.3 that
the rates �⇤

exp(s, d) and �⇤
pol(s, d) cannot be improved in a minimax sense. Thus, the

estimator ✓̂ defined in (7.5) achieves the optimal rates in a minimax sense.
From Theorem 7.2.1, we can conclude that the optimal rate �⇤

pol under polynomially
decaying noise is very different from the optimal rate �⇤

exp under exponential tails, in
particular, from the rate under the sub-Gaussian noise. At first sight, this phenomenon
seems to contradict some results in the literature on sparse regression model. Indeed,
Gautier and Tsybakov (2013) consider sparse linear regression with unknown noise level
� and show that the Self-Tuned Dantzig estimator can achieve the same rate as in the
case of Gaussian noise (up to a logarithmic factor) under the assumption that the noise
is symmetric and has only a bounded moment of order a > 2. Belloni et al. (2014) show
for the same model that a square-root Lasso estimator achieves analogous behavior
under the assumption that the noise has a bounded moment of order a > 2. However,
a crucial condition in Belloni et al. (2014) is that the design is "well spread", that is all
components of the design vectors are random with positive variance. The same type of
condition is needed in Gautier and Tsybakov (2013) to obtain a sub-Gaussian rate. This
condition of "well spreadness" is not satisfied in the sparse sequence model that we are
considering here. In this model viewed as a special case of linear regression, the design is
deterministic, with only one non-zero component. We see that such a degenerate design
turns out to be the least favorable from the point of view of the convergence rate, while
the "well spread" design is the best one. An interesting general conclusion of comparing
our findings to Gautier and Tsybakov (2013) and Belloni et al. (2014) is that the optimal
rate of convergence of estimators under sparsity when the noise level is unknown depends
dramatically on the properties of the design. There is a whole spectrum of possibilities
between the degenerate and "well spread" designs where a variety of new rates can arise
depending on the properties of the design. Studying them remains an open problem.

7.3 Estimation of the norm
In this section, we consider the problem of estimation of the `2-norm of a sparse vector
when the variance of the noise and the form of its distribution are both unknown. We
show that the rates �⇤

exp(s, d) and �⇤
pol(s, d) are optimal in a minimax sense on the classes

Ga,⌧ and Pa,⌧ , respectively. We first provide a lower bound on the risks of any estimators
of the `2-norm when the noise level � is unknown and the unknown noise distribution P⇠
belongs either to Ga,⌧ or Pa,⌧ . We denote by L the set of all monotone non-decreasing
functions ` : [0,1) ! [0,1) such that `(0) = 0 and ` 6⌘ 0.

Theorem 7.3.1. Let s, d be integers satisfying 1  s  d. Let `(·) be any loss function
in the class L. Then, for any a > 0, ⌧ > 0,

inf
T̂

sup
P⇠2Ga,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,� `
⇣
c(�⇤

exp(s, d))
�1
���
T̂ � k✓k2

�

���
⌘
� c0, (7.8)
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and, for any a � 2, ⌧ > 0,

inf
T̂

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,� `
⇣
c̄(�⇤

pol(s, d))
�1
���
T̂ � k✓k2

�

���
⌘
� c̄0. (7.9)

Here, inf T̂ denotes the infimum over all estimators, and c, c̄ > 0, c0, c̄0 > 0 are constants
that can depend only on `(·), ⌧ and a.

The lower bound (7.9) implies that the rate of estimation of the `2-norm of a sparse
vector deteriorates dramatically if the bounded moment assumption is imposed on the
noise instead, for example, of the sub-Gaussian assumption.

Note also that (7.8) and (7.9) immediately imply lower bounds with the same rates
�⇤
exp and �⇤

pol for the estimation of the s-sparse vector ✓ under the `2-norm.
Given the upper bounds of Theorem 7.2.1, the lower bounds (7.8) and (7.9) are tight

for the quadratic loss, and are achieved by the following plug-in estimator independent
of s or �:

N̂ = k✓̂k2 (7.10)

where ✓̂ is defined in (7.5).
In conclusion, when both P⇠ and � are unknown the rates �⇤

exp and �⇤
pol defined in

(7.7) are minimax optimal both for estimation of ✓ and of the the norm k✓k2.
We now compare these results with the findings in Collier et al. (2017) regarding

the (nonadaptive) estimation of k✓k2 when ⇠i have the standard Gaussian distribution
(P⇠ = N (0, 1)) and � is known. It is shown in Collier et al. (2017) that in this case the
optimal rate of estimation of k✓k2 has the form

�N (0,1)(s, d) = min

⇢q
s log(1 +

p

d/s), d1/4
�
.

Namely, the following proposition holds.

Proposition 7.3.1 (Gaussian noise, known � Collier et al. (2017)). For any � > 0 and
any integers s, d satisfying 1  s  d, we have

c�2�2
N (0,1)(s, d)  inf

T̂
sup

k✓k0s
E✓,N (0,1),�

�
T̂ � k✓k2

�2
 C�2�2

N (0,1)(s, d),

where c > 0 and C > 0 are absolute constants and inf T̂ denotes the infimum over all
estimators.

We have seen that, in contrast to this result, in the case of unknown P⇠ and �
the optimal rates (7.7) do not exhibit an elbow at s =

p
d between the "sparse" and

"dense" regimes. Another conclusion is that, in the "dense" zone s >
p
d, adapta-

tion to P⇠ and � is only possible with a significant deterioration of the rate. On the
other hand, for the sub-Gaussian class G2,⌧ , in the "sparse" zone s 

p
d the non-

adaptive rate
q

s log(1 +
p
d/s) differs only slightly from the adaptive sub-Gaussian ratep

s log(ed/s); in fact, this difference in the rate appears only in a vicinity of s =
p
d.

A natural question is whether such a deterioration of the rate is caused by the
ignorance of � or by the ignorance of the distribution of ⇠i within the sub-Gaussian
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class G2,⌧ . The answer is that both are responsible. It turns out that if only one of the
two ingredients (� or the noise distribution) is unknown, then a rate faster than the
adaptive sub-Gaussian rate �⇤

exp(s, d) =
p

s log(ed/s) can be achieved. This is detailed
in the next two propositions.

Consider first the case of Gaussian noise and unknown �. Set

�⇤
N (0,1)(s, d) = max

⇢q
s log(1 +

p

d/s),
r

s

1 + log+(s2/d)

�
,

where log+(x) = max(0, log(x)) for any x > 0. We divide the set {1, . . . , d} into two
disjoint subsets I1 and I2 with min (|I1|, |I2|) � bd/2c. Let �̂2 be the variance estimator
defined by (7.15), cf. Section 7.4 below, and let �̂2

med,1, �̂
2
med,2 be the median estimators

(7.12) corresponding to the samples (Yi)i2I1 and (Yi)i2I2 , respectively. Consider the
estimator

N̂⇤ =

8
>><

>>:

r���
Pd

j=1(Y
2
j 1{|Yj |>⇢j})� d↵�̂2

��� if s 
p
d,

r���
Pd

j=1 Y
2
j � d�̂2

��� if s >
p
d,

(7.11)

where ⇢j = 2�̂med,1

p
2 log(1 + d/s2) if j 2 I2, ⇢j = 2�̂med,2

p
2 log(1 + d/s2) if j 2 I1 and

↵ = E

⇣
⇠21 1{|⇠1|>2

p
2 log(1+d/s2)}

⌘
. Note that Yj is independent of ⇢j for every j. Note

also that the estimator N̂⇤ depends on the preliminary estimator �̃2 since �̂ > 0 defined
in (7.15) depends on it.

Proposition 7.3.2 (Gaussian noise, unknown �). The following two properties hold.

(i) Let s and d be integers satisfying 1  s < b�dc/4, where � 2 (0, 1/2] is the
tuning parameter in the definition of �̃2. There exist absolute constants C > 0
and � 2 (0, 1/2] such that

sup
�>0

sup
k✓k0s

E✓,N (0,1),�

⇣
N̂⇤

� k✓k2
⌘2

 C�2
�
�⇤
N (0,1)(s, d)

�2
.

(ii) Let s and d be integers satisfying 1  s  d and let `(·) be any loss function in the
class L. Then,

inf
T̂

sup
�>0

sup
k✓k0s

E✓,N (0,1),� `

✓
c(�⇤

N (0,1)(s, d))
�1

����
T̂ � k✓k2

�

����

◆
� c0,

where inf T̂ denotes the infimum over all estimators, and c > 0, c0 > 0 are constants
that can depend only on `(·).

Proposition 7.3.2 establishes the minimax optimality of the rate �⇤
N (0,1)(s, d). It also

shows that if � is unknown, the knowledge of the Gaussian character of the noise leads to
an improvement of the rate compared to the adaptive sub-Gaussian rate

p
s log(ed/s).

However, the improvement is only in a logarithmic factor.
Consider now the case of unknown noise distribution in Ga,⌧ and known �. We show

in the next proposition that in this case the minimax rate is of the form

��
exp(s, d) = min{

p
s log

1
a (ed/s), d1/4}
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and it is achieved by the estimator

N̂�
exp =

8
<

:

k✓̂k2 if s 
p
d

log
2
a (ed)

,
���
Pd

j=1 Y
2
j � d�2

���
1/2

if s >
p
d

log
2
a (ed)

,

where ✓̂ is defined in (7.5). Note ��
exp(s, d) can be written equivalently (up to absolute

constants) as min{
p
s log

1
a (ed), d1/4}.

Proposition 7.3.3 (Unknown noise in Ga,⌧ , known �). Let a, ⌧ > 0. The following two
properties hold.

(i) Let s and d be integers satisfying 1  s < b�dc/4, where � 2 (0, 1/2] is the
tuning parameter in the definition of �̃2. There exist constants c, C > 0, and
� 2 (0, 1/2] depending only on (a, ⌧) such that if ✓̂ is the estimator defined in (7.5)
with �j = c log

1
a (ed/j) , j = 1, . . . , d, then

sup
P⇠2Ga,⌧

sup
k✓k0s

E✓,P⇠,�

⇣
N̂�

exp � k✓k2
⌘2

 C�2
�
��
exp(s, d)

�2
.

(ii) Let s and d be integers satisfying 1  s  d and let `(·) be any loss function in the
class L. Then, there exist constants c > 0, c0 > 0 depending only on `(·), a and ⌧
such that

inf
T̂

sup
P⇠2Ga,⌧

sup
k✓k0s

E✓,P⇠,� `

✓
c(��

exp(s, d))
�1

����
T̂ � k✓k2

�

����

◆
� c0,

where inf T̂ denotes the infimum over all estimators.

Proposition 7.3.3 establishes the minimax optimality of the rate ��
exp(s, d). It also

shows that if the noise distribution is unknown and belongs to Ga,⌧ , the knowledge
of � leads to an improvement of the rate compared to the case when � is unknown.
In contrast to the case of Proposition 7.3.2 (Gaussian noise), the improvement here is
substantial; it results not only in a logarithmic but in a polynomial factor in the dense
zone s >

p
d

log
2
a (ed)

.
We end this section by considering the case of unknown polynomial noise and known

�. The next proposition shows that in this case the minimax rate, for a given a > 4, is
of the form

��
pol(s, d) = min{

p
s(d/s)

1
a , d1/4}

and it is achieved by the estimator

N̂�
pol =

8
<

:
k✓̂k2 if s  d

1
2�

1
a�2 ,���

Pd
j=1 Y

2
j � d�2

���
1/2

if s > d
1
2�

1
a�2 ,

where ✓̂ is defined in (7.5).

Proposition 7.3.4 (Unknown noise in Pa,⌧ , known �). Let ⌧ > 0, a > 4. The following
two properties hold.
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(i) Let s and d be integers satisfying 1  s < b�dc/4, where � 2 (0, 1/2] is the
tuning parameter in the definition of �̃2. There exist constants c, C > 0, and
� 2 (0, 1/2] depending only on (a, ⌧) such that if ✓̂ is the estimator defined in (7.5)
with �j = c(d/j)

1
a , j = 1, . . . , d, then

sup
P⇠2Pa,⌧

sup
k✓k0s

E✓,P⇠,�

⇣
N̂�

pol � k✓k2
⌘2

 C�2
�
��
pol(s, d)

�2
.

(ii) Let s and d be integers satisfying 1  s  d and let `(·) be any loss function in the
class L. Then, there exist constants c > 0, c0 > 0 depending only on `(·), a and ⌧
such that

inf
T̂

sup
P⇠2Pa,⌧

sup
k✓k0s

E✓,P⇠,� `

✓
c(��

pol(s, d))
�1

����
T̂ � k✓k2

�

����

◆
� c0,

where inf T̂ denotes the infimum over all estimators.

Note that here, similarly to Proposition 7.3.3, the improvement over the case of
unknown � is in a polynomial factor in the dense zone s > d

1
2�

1
a�2 .

7.4 Estimating the variance of the noise

Estimating �2 when the distribution P⇠ is known
In the sparse setting when k✓k0 is small, estimation of the noise level can be viewed
as a problem of robust estimation of scale. Indeed, our aim is to recover the second
moment of �⇠1 but the sample second moment cannot be used as an estimator because
of the presence of a small number of outliers ✓i 6= 0. Thus, the models in robustness
and sparsity problems are quite similar but the questions of interest are different. When
robust estimation of �2 is considered, the object of interest is the pure noise component
of the sparsity model while the non-zero components ✓i that are of major interest in the
sparsity model play a role of nuisance.

In the context of robustness, it is known that the estimator based on sample median
can be successfully applied. Recall that, when ✓ = 0, the median M -estimator of scale
(cf. Huber (2011)) is defined as

�̂2
med =

M̂

�
(7.12)

where M̂ is the sample median of (Y 2
1 , . . . , Y

2
d ), that is

M̂ 2 argmin
x>0

��Fd(x)� 1/2
��,

and � is the median of the distribution of ⇠21 . Here, Fd denotes the empirical c.d.f. of
(Y 2

1 , . . . , Y
2
d ). When F denotes the c.d.f. of ⇠21 , it is easy to see that

� = F�1(1/2). (7.13)

The following proposition specifies the rate of convergence of the estimator �̂2
med.
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Proposition 7.4.1. Let ⇠21 have a c.d.f. F with positive density, and let � be given by
(7.13). There exist constants � 2 (0, 1/8), c > 0, c⇤ > 0 and C > 0 depending only on
F such that for any integers s and d satisfying 1  s < �d and any t > 0 we have

sup
�>0

sup
k✓k0s

P✓,F,�

 ���
�̂2
med

�2
� 1

��� � c⇤

 r
t

d
+

s

d

!!
 2(e�t + e�cd),

and if E|⇠1|2+✏ < 1 for some ✏ > 0. Then,

sup
�>0

sup
k✓k0s

E✓,F,� |�̂2
med � �2

|

�2
 Cmax

✓
1
p
d
,
s

d

◆
.

The main message of Proposition 7.4.1 is that the rate of convergence of �̂2
med in

probability and in expectation is as fast as

max

✓
1
p
d
,
s

d

◆
(7.14)

and it does not depend on F when F varies in a large class. The role of Proposition 7.4.1
is to contrast the subsequent results of this section dealing with unknown distribution
of noise and providing slower rates. It emphasizes the fact that the knowledge of the
noise distribution is crucial as it leads to an improvement of the rate of estimating the
variance.

However, the rate (7.14) achieved by the median estimator is not necessarily optimal.
As shown in the next proposition, in the case of Gaussian noise the optimal rate is even
better:

�N (0,1)(s, d) = max

⇢
1
p
d
,

s

d(1 + log+(s2/d))

�
.

This rate is attained by an estimator that we are going to define now. We use the obser-
vation that, in the Gaussian case, the modulus of the empirical characteristic function
'd(t) =

1
d

Pd
i=1 e

itYj is to within a constant factor of the Gaussian characteristic function
exp(� t2�2

2 ) for any t. This suggests the estimator

ṽ2 = �
2 log(|'d(t̂1)|)

t̂21
,

with a suitable choice of t = t̂1 that we further set as follows:

t̂1 =
1

�̃

q
log

�
4(es/

p

d+ 1)
�
,

where �̃ is the preliminary estimator (7.4) with some tuning parameter � 2 (0, 1/2].
The final variance estimator is defined as a truncated version of ṽ2:

�̂2 =

⇢
ṽ2 if |'d(t̂1)| > (es/

p
d+ 1)�1/4,

�̃2 otherwise. (7.15)

Proposition 7.4.2 (Gaussian noise). The following two properties hold.
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(i) Let s and d be integers satisfying 1  s < b�dc/4, where � 2 (0, 1/2] is the
tuning parameter in the definition of �̃2. There exist absolute constants C > 0
and � 2 (0, 1/2] such that the estimator �̂2 defined in (7.15) satisfies

sup
�>0

sup
k✓k0s

E✓,N (0,1),� |�̂2
� �2

|

�2
 C�N (0,1)(s, d).

(ii) Let s and d be integers satisfying 1  s  d and let `(·) be any loss function in the
class L. Then,

inf
T̂

sup
�>0

sup
k✓k0s

E✓,N (0,1),� `

✓
c(�N (0,1)(s, d))

�1

����
T̂

�2
� 1

����

◆
� c0,

where inf T̂ denotes the infimum over all estimators, and c > 0, c0 > 0 are constants
that can depend only on `(·).

Estimators of variance or covariance matrix based on the empirical characteristic
function have been studied in several papers Butucea et al. (2005); Cai and Jin (2010);
Belomestny et al. (2017); Carpentier and Verzelen (2019). The setting in Butucea et al.
(2005); Cai and Jin (2010); Belomestny et al. (2017) is different from the ours as those
papers deal with the model where the non-zero components of ✓ are random with a
smooth distribution density. The estimators in Butucea et al. (2005); Cai and Jin (2010)
are also quite different. On the other hand, Belomestny et al. (2017); Carpentier and
Verzelen (2019) consider estimators close to ṽ2. In particular, Carpentier and Verzelen
(2019) uses a similar pilot estimator for testing in the sparse vector model where it
is assumed that � 2 [��, �+], 0 < �� < �+ < 1, and the estimator depends on �+.
Although Carpentier and Verzelen (2019) does not provide explicitly stated result about
the rate of this estimator, the proofs in Carpentier and Verzelen (2019) come close to it
and we believe that it satisfies an upper bound as in item (i) of Proposition 7.4.2 with
sup�>0 replaced by sup�2[��,�+].

Distribution-free variance estimators

The main drawback of the estimator �̂2
med is the dependence on the parameter �. It

reflects the fact that the estimator is tailored for a given and known distribution of
noise F . Furthermore, as shown below, the rate (7.14) cannot be achieved if it is only
known that F belongs to one of the classes of distributions that we consider in this
chapter.

Instead of using one particular quantile, like the median in Section 7.4, one can
estimate �2 by an integral over all quantiles, which allows one to avoid considering
distribution-dependent quantities like (7.13).

Indeed, with the notation q↵ = G�1(1 � ↵) where G is the c.d.f. of (�⇠1)2 and
0 < ↵ < 1, the variance of the noise can be expressed as

�2 = E(�⇠1)
2 =

Z 1

0

q↵ d↵.
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Discarding the higher order quantiles that are dubious in the presence of outliers and
replacing q↵ by the empirical quantile q̂↵ of level ↵ we obtain the following estimator

�̂2 =

Z 1�s/d

0

q̂↵ d↵ =
1

d

d�sX

k=1

Y 2
(k), (7.16)

where Y 2
(1)  . . .  Y 2

(d) are the ordered values of the squared observations Y 2
1 , . . . , Y

2
d .

Note that �̂2 is an L-estimator, cf. Huber (2011). Also, up to a constant factor, �̂2

coincides with the statistic used in Collier et al. (2017) .
The following theorem provides an upper bound on the risk of the estimator �̂2 under

the assumption that the noise belongs to the class Ga,⌧ . Set

�exp(s, d) = max

✓
1
p
d
,
s

d
log2/a

✓
ed

s

◆◆
.

Theorem 7.4.1. Let ⌧ > 0, a > 0, and let s, d be integers satisfying 1  s < d/2.
Then, the estimator �̂2 defined in (7.16) satisfies

sup
P⇠2Ga,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

�
�̂2

� �2
�2

�4
 C�2

exp(s, d) (7.17)

where C > 0 is a constant depending only on a and ⌧ .

The next theorem establishes the performance of variance estimation in the case of
distributions with polynomially decaying tails. Set

�pol(s, d) = max

✓
1
p
d
,
⇣s
d

⌘1� 2
a

◆
.

Theorem 7.4.2. Let ⌧ > 0, a > 4, and let s, d be integers satisfying 1  s < d/2. Then,
the estimator �̂2 defined in (7.16) satisfies

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

�
�̂2

� �2
�2

�4
 C�2

pol(s, d), (7.18)

where C > 0 is a constant depending only on a and ⌧ .

We assume here that the noise distribution has a moment of order greater than 4,
which is close to the minimum requirement since we deal with the expected squared
error of a quadratic function of the observations.

We now state the lower bounds matching the results of Theorems 7.4.1 and 7.4.2.

Theorem 7.4.3. Let ⌧ > 0, a > 0, and let s, d be integers satisfying 1  s  d. Let
`(·) be any loss function in the class L. Then,

inf
T̂

sup
P⇠2Ga,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,� `
⇣
c(�exp(s, d))

�1
���
T̂

�2
� 1

���
⌘
� c0, (7.19)

where inf T̂ denotes the infimum over all estimators and c > 0, c0 > 0 are constants
depending only on `(·), a and ⌧ .
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Theorems 7.4.1 and 7.4.3 imply that the estimator �̂2 is rate optimal in a minimax
sense when the noise belongs to Ga,⌧ , in particular when it is sub-Gaussian. Interestingly,
an extra logarithmic factor appears in the optimal rate when passing from the pure
Gaussian distribution of ⇠i’s (cf. Proposition 7.4.2) to the class of all sub-Gaussian
distributions. This factor can be seen as a price to pay for the lack of information
regarding the exact form of the distribution. Also note that this logarithmic factor
vanishes as a ! 1.

Under polynomial tail assumption on the noise, we have the following minimax lower
bound.

Theorem 7.4.4. Let ⌧ > 0, a � 2, and let s, d be integers satisfying 1  s  d. Let
`(·) be any loss function in the class L. Then,

inf
T̂

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,� `
⇣
c(�pol(s, d))

�1
���
T̂

�2
� 1

���
⌘
� c0 (7.20)

where inf T̂ denotes the infimum over all estimators and c > 0, c0 > 0 are constants
depending only on `(·), a and ⌧ .

This theorem shows that the rate �pol(s, d) obtained in Theorem 7.4.2 cannot be
improved in a minimax sense.

A drawback of the estimator defined in (7.16) is in the lack of adaptivity to the
sparsity parameter s. At first sight, it may seem that the estimator

�̂2
⇤ =

2

d

X

1kd/2

Y 2
(k) (7.21)

could be taken as its adaptive version. However, �̂2
⇤ is not a good estimator of �2 as can

be seen from the following proposition.

Proposition 7.4.3. Define �̂2
⇤ as in (7.21). Let ⌧ > 0, a � 2, and let s, d be integers

satisfying 1  s  d, and d = 4k for an integer k. Then,

sup
P⇠2Ga,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

�
�̂2
⇤ � �2

�2

�4
�

1

64
.

On the other hand, it turns out that a simple plug-in estimator

�̂2 =
1

d
kY � ✓̂k22 (7.22)

with ✓̂ chosen as in Section 7.2 achieves rate optimality adaptively to the noise distri-
bution and to the sparsity parameter s. This is detailed in the next theorem.

Theorem 7.4.5. Let s and d be integers satisfying 1  s < b�dc/4, where � 2 (0, 1/2]
is the tuning parameter in the definition of �̃2. Let �̂2 be the estimator defined by (7.22)
where ✓̂ is defined in (7.5). Then the following properties hold.

1. Let ⌧ > 0, a > 0. There exist constants c, C > 0 and � 2 (0, 1/2] depending only
on (a, ⌧) such that if �j = c log1/a(ed/j), j = 1, . . . , d, we have

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

���̂2
� �2

��  C�2�exp(s, d).
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2. Let ⌧ > 0, a > 4. There exist constants c, C > 0 and � 2 (0, 1/2] depending only
on (a, ⌧) such that if �j = c(d/j)1/a, j = 1, . . . , d, we have

sup
P⇠2Pa,⌧

sup
�>0

sup
k✓k0s

E✓,P⇠,�

���̂2
� �2

��  C�2�pol(s, d).

7.5 Appendix: Proofs of the upper bounds

Proof of Proposition 7.2.1
Fix ✓ 2 ⇥s and let S be the support of ✓. We will call outliers the observations Yi with
i 2 S. There are at least m � s blocks Bi that do not contain outliers. Denote by J a
set of m� s indices i, for which Bi contains no outliers.

As a > 2, there exist constants L = L(a, ⌧) and r = r(a, ⌧) 2 (1, 2] such that
E|⇠21 � 1|r  L. Using von Bahr-Esseen inequality (cf. Petrov (1995)) and the fact that
|Bi| � k we get

P

⇣���
1

|Bi|

X

j2Bi

⇠2j � 1
��� > 1/2

⌘


2r+1L

kr�1
, i = 1, . . . ,m.

Hence, there exists a constant C1 = C1(a, ⌧) such that if k � C1 (i.e., if � is small
enough depending on a and ⌧), then

P✓,P⇠,�(�̄
2
i /2 I) 

1

4
, i = 1, . . . ,m, (7.23)

where I = [�
2

2 ,
3�2

2 ]. Next, by the definition of the median, for any interval I ✓ R we
have

P✓,P⇠,�(�̃
2 /2 I)  P✓,P⇠,�

⇣ mX

i=1

1�̄2
i
/2I �

m

2

⌘
 P✓,P⇠,�

⇣X

i2J

1�̄2
i
/2I �

m

2
� s

⌘
. (7.24)

Now, s 
b�dc
4 = m

4 , so that m
2 � s �

m�s
3 . Set ⌘i = 1�̄2

i
/2I , i 2 J . Due to (7.23) we

have E(⌘i)  1/4, and (⌘i, i 2 J) are independent. Using these remarks and Hoeffding’s
inequality we find

P

⇣X

i2J

⌘i �
m

2
� s

⌘
 P

⇣X

i2J

(⌘i � E(⌘i)) �
m� s

12

⌘
 exp(�C(m� s)).

Note that |J | = m� s � 3m/4 = 3b�dc/4. Thus, if � is chosen small enough depending
only on a and ⌧ then

P✓,P⇠,�(�̃
2 /2 I)  exp(�Cd).

This proves the desired bound in probability. To obtain the bounds in expectation, set
Z = |�̃2

� �2
|. Let first a > 4 and take some r 2 (1, a/4). Then

E✓,P⇠,�

�
Z2
�

�4

4
+ E✓,P⇠,�

⇣
Z21

Z��2

2

⌘


9�4

4
+ 2

�
E✓,P⇠,�

�
�̃4r

��1/r �
P✓,P⇠,�

�
Z � �2/2

��1�1/r


9�4

4
+ 2

�
E✓,P⇠,�

�
�̃4r

��1/r
exp(�Cd).
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Since m � 4s, we can easily argue that �̃4r

P

i2J �̄
4r
i . It follows that

E✓,P⇠,�

�
�̃4r

�
 C�4rd2.

Hence E✓,P⇠,� (Z
2)  C�4. Similarly, if a > 2, then E✓,P⇠,� (Z)  C�2.

Proof of Theorem 7.2.1
Set u = ✓̂ � ✓. It follows from Lemma A.2 in Bellec et al. (2018) that

2kuk22  2�
dX

i=1

⇠iui + �̃k✓k⇤ � �̃k✓̂k⇤,

where ui are the components of u. Next, Lemma A.1 in Bellec et al. (2018) yields

k✓k⇤ � k✓̂k⇤ 
⇣ sX

j=1

�2j

⌘1/2

kuk2 �
dX

j=s+1

�j|u|(d�j+1)

where |u|(k) is the kth order statistic of |u1|, . . . , |ud|. Combining these two inequalities
we get

2kuk22  2�
dX

j=1

⇠juj + �̃
n⇣ sX

j=1

�2j

⌘1/2

kuk2 �
dX

j=s+1

�j|u|(d�j+1)

o
. (7.25)

For some permutation ('(1), . . . ,'(d)) of (1, . . . , d), we have

���
dX

i=1

⇠juj

��� 
dX

j=1

|⇠|(d�j+1)|u'(j)| 
dX

j=1

|⇠|(d�j+1)|u|(d�j+1), (7.26)

where the last inequality is due to the fact that the sequence |⇠|(d�j+1) is non-increasing.
Hence

2kuk22  2�
sX

j=1

|⇠|(d�j+1)|u|(d�j+1) + �̃
⇣ sX

j=1

�2j

⌘1/2

kuk2 +
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�
|u|(d�j+1)



(
2�
⇣ sX

j=1

|⇠|2(d�j+1)

⌘1/2

+ �̃
⇣ sX

j=1

�2j

⌘1/2

+
⇣ dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

⌘1/2
)
kuk2.

This implies

kuk22  C

(
�2

sX

j=1

|⇠|2(d�j+1) + �̃2
sX

j=1

�2j +
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

)
.

From Lemmas 7.7.1 and 7.7.2 we have E(|⇠|2(d�j+1))  C�2j . Using this and Proposition
7.2.1 we obtain

E✓,P⇠,�

�
kuk22

�
 C

 
�2

sX

j=1

�2j + E✓,P⇠,�

 
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

!!
. (7.27)
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Define the events Aj =
n
|⇠|(d�j+1)  �j/4

o
\

n
1/2  �̃2/�2

 3/2
o

for j = s+1, . . . , d.
Then

E✓,P⇠,�

 
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

!
 4�2

E✓,P⇠,�

 
dX

j=s+1

|⇠|2(d�j+1)1Ac

j

!
.

Fixing some 1 < r < a/2 we get

E✓,P⇠,�

 
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

!
 4�2

dX

j=s+1

E
�
|⇠|2r(d�j+1)

�1/r
P✓,P⇠,�

�
A

c
j

�1�1/r
.

Lemmas 7.7.1, 7.7.2 and the definitions of parameters �j imply that

E
�
|⇠|2r(d�j+1)

�1/r
 C�2s, j = s+ 1, . . . , d.

Furthermore, it follows from the proofs of Lemmas 7.7.1 and 7.7.2 that if the constant
c in the definition of �j is chosen large enough, then P(|⇠|(d�j+1) > �j/4)  qj for
some q < 1/2 depending only on a and ⌧ . This and Proposition 7.2.1 imply that
P✓,P⇠,�(A

c
j)  e�cd + qj. Hence,

E✓,P⇠,�

 
dX

j=s+1

�
2�|⇠|(d�j+1) � �̃�j

�2
+

!
 C�2�2s

dX

j=s+1

(e�cd + qj)1�1/r
 C 0�2

sX

j=1

�2j .

Combining this inequality with (7.27) we obtain

E✓,P⇠,�

�
kuk22

�
 C�2

sX

j=1

�2j . (7.28)

To complete the proof, it remains to note that
Ps

j=1 �
2
j  C(�⇤

pol(s, d))
2 in the polyno-

mial case and
Ps

j=1 �
2
j  C(�⇤

exp(s, d))
2 in the exponential case, cf. Lemma 7.7.3.

Proof of part (i) of Proposition 7.3.2

We consider separately the "dense" zone s >
p
d and the "sparse" zone s 

p
d. Let

first s >
p
d. Then the rate �⇤

N (0,1)(s, d) is of order
q

s
1+log+(s2/d) . Thus, for s >

p
d we

need to prove that

sup
�>0

sup
k✓k0s

E✓,N (0,1),�

✓����
N̂⇤

� k✓k2
�

����
2◆


Cs

1 + log+(s2/d)
. (7.29)

Denoting ⇠ = (⇠1, . . . , ⇠d) we have

���N̂⇤
� k✓k2

��� =

����
���

dX

j=1

Y 2
j � d�̂2

���
1/2

� k✓k2

���� (7.30)

=

����
q��k✓k22 + 2�(✓, ⇠) + �2k⇠k22 � d�̂2

��� k✓k2

����



����
q��k✓k22 + 2�(✓, ⇠)

��� k✓k2

����+ �
q��k⇠k22 � d

��+
p

d|�2 � �̂2|.
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The first term in the last line vanishes if ✓ = 0, while for ✓ 6= 0 it is bounded as follows:

����
q��k✓k22 + 2�(✓, ⇠)

��� k✓k2

���� = k✓k2

����

s���1 +
2�(✓, ⇠)

k✓k22

���� 1

���� 
2�|(✓, ⇠)|

k✓k2
(7.31)

where we have used the inequality |
p

|1 + x|�1|  |x|, 8x 2 R. Since here |(✓, ⇠)|/k✓k2 ⇠
N (0, 1) we have, for all ✓,

E

 ����
q��k✓k22 + 2�(✓, ⇠)

��� k✓k2

����
2
!

 4�2, (7.32)

and since k⇠k22 has a chi-square distribution with d degrees of freedom we have

E

⇣��k⇠k22 � d
��
⌘



⇣
E

⇣��k⇠k22 � d
��2
⌘⌘1/2

=
p

2d.

Next, by Proposition 7.4.2 we have that, for s >
p
d,

sup
�>0

sup
k✓k0s

E✓,N (0,1),�

✓���
�̂2

�2
� 1

���
◆


Cs

d(1 + log+(s2/d))
(7.33)

for some absolute constant C > 0. Combining (7.30) – (7.33) yields (7.29).
Let now s 

p
d. Then the rate �⇤

N (0,1)(s, d) is of order
p

s log(1 + d/s2). Thus, for
s 

p
d we need to prove that

sup
�>0

sup
k✓k0s

E✓,N (0,1),�

✓����
N̂⇤

� k✓k2
�

����
2◆

 Cs log(1 + d/s2). (7.34)

We have

���N̂⇤
� k✓k2

��� =

����
���

dX

j=1

(Y 2
j 1{|Yj |>⇢j})� d↵�̂2

���
1/2

� k✓k2

���� (7.35)

=

����
���
X

j2S

(Y 2
j 1{|Yj |>⇢j}) + �2

X

j 62S

(⇠2j 1{�|⇠j |>⇢j})� d↵�̂2
���
1/2

� k✓k2

����



������

sX

j2S

(Y 2
j 1{|Yj |>⇢j})� k✓k2

������
+

������
2
X

j 62S

(⇠2j 1{�|⇠j |>⇢j})� d↵�̂2

�����

1/2

.

Here,
������

sX

j2S

(Y 2
j 1{|Yj |>⇢j})� k✓k2

������


������

sX

j2S

(Yj 1{|Yj |>⇢j} � ✓j)2

������
(7.36)



sX

j2S

⇢2j + �

sX

j2S

⇠2j .
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Hence, writing for brevity E✓,N (0,1),� = E, we get

E

0

@

������

sX

j2S

(Y 2
j 1{|Yj |>⇢j})� k✓k2

������

21

A  16E
�
�̂2
med,1 + �̂2

med,2

�
s log

�
1 + d/s2

�
+ 2�2s

 C�2s log(1 + d/s2),

where we have used the fact that E
�
|�̂2

med,k � �2
|
�
 C�2, k = 1, 2, by Proposition 7.4.1.

Next, we study the term � =
����2

P
j 62S(⇠

2
j 1{�|⇠j |>⇢j})� d↵�̂2

���. We first write

� 

������
2
X

j 62S

⇠2j ( 1{�|⇠j |>⇢j} � 1{�|⇠j |>t⇤})

�����+

������
2
X

j 62S

(⇠2j 1{�|⇠j |>t⇤})� d↵�̂2

����� ,(7.37)

where t⇤ = 2�
p

2 log(1 + d/s2). For the second summand on the right hand side of
(7.37) we have
������

2
X

j 62S

(⇠2j 1{�|⇠j |>t⇤})� d↵�̂2

�����  �2

�����
X

j 62S

(⇠2j 1{�|⇠j |>t⇤})� (d� |S|)↵

�����+
���2

� �̂2
�� d↵+|S|↵�2,

where |S| denotes the cardinality of S. By Proposition 7.4.2 we have E(|�̂2
� �2

|) 

C/
p
d for s 

p
d. Hence,

E

������
2
X

j 62S

(⇠2j 1{�|⇠j |>t⇤})� d↵�̂2

�����  �2

r
dE

⇣
⇠41 1{|⇠1|>

p
2 log(1+d/s2)}

⌘
+ C↵�2

⇣p
d+ s

⌘
.

It is not hard to check (cf., e.g., (Collier et al., 2017, Lemma 4)) that, for s 
p
d,

↵  C(log
�
1 + d/s2

�
)1/2

s2

d
,

and
E

⇣
⇠41 1{|⇠1|>

p
2 log(1+d/s2)}

⌘
 C(log

�
1 + d/s2

�
)3/2

s2

d
,

so that

E

������
2
X

j 62S

(⇠2j 1{�|⇠j |>t⇤})� d↵�̂2

�����  C�2s log(1 + d/s2).

Thus, to complete the proof it remains to show that

�2
X

j 62S

E
��⇠2j (1{�|⇠j |>⇢j} � 1{�|⇠j |>t⇤})

��  C�2s log(1 + d/s2). (7.38)

Recall that ⇢j is independent from ⇠j. Hence, conditioning on ⇢j we obtain

�2
E
���⇠2j (1{�|⇠j |>⇢j} � 1{�|⇠j |>t⇤})

�� ⇢j
�
 |⇢2j � t2⇤|e

�t2⇤/(8�
2) + �21{⇢j<t⇤/2}, (7.39)

where we have used the fact that, for b > a > 0,
Z b

a

x2e�x2/2dx 

Z b

a

xe�x2/4dx  |b2 � a2|e�min(a2,b2)/4/2.
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Using Proposition 7.4.1 and definitions of ⇢j and t⇤, we get that, for s 
p
d,

E
�
|⇢2j � t2⇤|

�
e�t2⇤/(8�

2)
 8max

k=1,2
E(|�̂2

med,k � �2
|)
s2

d
log(1 + d/s2) (7.40)

 C�2 s

d
log(1 + d/s2).

Next, it follows from Proposition 7.4.1 that there exists � 2 (0, 1/8) small enough such
that for s  �d we have maxk=1,2 P(�̂2

med,k < �2/2)  2e�c�d where c� > 0 is a constant.
Thus, �2

P(⇢j < t⇤/2)  2�2e�c�d  C�2(s/d) log(1 + d/s2). Combining this with (7.39)
and (7.40) proves (7.38).

Proof of part (i) of Proposition 7.3.3 and part (i) of Proposi-
tion 7.3.4
We only prove Proposition 7.3.3 since the proof of Proposition 7.3.4 is similar taking
into account that E(⇠41) < 1. We consider separately the "dense" zone s >

p
d

log
2
a (ed)

and

the "sparse" zone s 
p
d

log
2
a (ed)

. Let first s >
p
d

log
2
a (ed)

. Then the rate ��
exp(s, d) is of order

d1/4 and thus we need to prove that

sup
P⇠2Ga,⌧

sup
k✓k0s

E✓,P⇠,�

�
|N̂�

exp � k✓k2|
2
�
 C�2

p

d.

Since � is known, arguing similarly to (7.30) - (7.31) we find

|N̂�
exp � k✓k2| 

����
2�|(✓, ⇠)|

k✓k2

����1✓ 6=0 + �
q��k⇠k22 � d

��.

As E(⇠41) < 1, this implies

E✓,P⇠,�

�
|N̂�

exp � k✓k2|
2
�
 8�2 + C�2

p

d,

which proves the result in the dense case. Next, in the sparse cas s 

p
d

log
2
a (ed)

, we need
to prove that

sup
P⇠2Ga,⌧

sup
k✓k0s

E✓,P⇠,�

�
|N̂�

exp � k✓k2|
2
�
 C�2s log

2
a (ed).

This is immediate by Theorem 7.2.1 and the fact that |N̂�
exp�k✓k2|2  k✓̂�✓k22 for the

plug-in estimator N̂�
exp = k✓̂k2.

Proof of Proposition 7.4.1
Denote by G the cdf of (�⇠1)2 and by Gd the empirical cdf of ((�⇠i)2 : i 62 S), where S
is the support of ✓. Let M be the median of G, that is G(M) = 1/2. By the definition
of M̂ ,

|Fd(M̂)� 1/2|  |Fd(M)� 1/2|. (7.41)
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It is easy to check that |Fd(x)�Gd(x)|  s/d for all x > 0. Therefore,

|Gd(M̂)� 1/2|  |Gd(M)� 1/2|+ 2s/d. (7.42)

The DKW inequality (Wasserman, 2013, page 99), yields that P(supx2R |Gd(x)�G(x)| �

u)  2e�2u2(d�s) for all u > 0. Fix t > 0 such that
q

t
d +

s
d  1/8, and consider the event

A :=

(
sup
x2R

|Gd(x)�G(x)| 

s
t

2(d� s)

)
.

Then, P(A) � 1� 2e�t. On the event A, we have

|G(M̂)� 1/2|  |G(M)� 1/2|+ 2

 s
t

2(d� s)
+

s

d

!
 2

 r
t

d
+

s

d

!


1

4
, (7.43)

where the last two inequalities are due to the fact that G(M) = 1/2 and to the assump-
tion about t. Notice that

|G(M̂)� 1/2| = |G(M̂)�G(M)| =
��F (M̂/�2)� F (M/�2)

��. (7.44)

Using (7.43), (7.44) and the fact that M = �2F�1(1/2) we obtain that, on the event A,

F�1(1/4)  M̂/�2
 F�1(3/4). (7.45)

This and (7.44) imply

|G(M̂)� 1/2| � c⇤⇤
��M̂/�2

�M/�2
�� = c⇤⇤�

���̂2
med/�

2
� 1

��. (7.46)

where c⇤⇤ = minx2[F�1(1/4),F�1(3/4)] F 0(x) > 0, and � = F�1(1/2). Combining the last
inequality with (7.43) we get that, on the event A,

���̂2
med/�

2
� 1

��  c�1
⇤⇤ �

 r
t

d
+

s

d

!
.

Recall that we assumed that
q

t
d + s

d  1/8. Thus, there exists a constant c⇤ > 0

depending only on F such that for t > 0 and integers s, d satisfying
q

t
d +

s
d  1/8 we

have

sup
�>0

sup
k✓k0s

P✓,F,�

 ���
�̂2
med

�2
� 1

��� � c⇤

 r
t

d
+

s

d

!!
 2e�t. (7.47)

This and the assumption that s
d  � < 1/8 imply the result of the proposition in

probability. We now prove the result in expectation. Set Z = |�̂2
med � �2

| /�2. We have

E✓,F,� (Z)  c⇤s/d+

Z c⇤/8

c⇤s/d

P✓,F,� (Z > u) du+ E✓,F,�

�
Z1Z�c⇤/8

�
.

Using (7.47), we get
Z c⇤/8

c⇤s/d

P✓,F,� (Z > u) du 
2c⇤
p
d

Z 1

0

e�t2dt 
C
p
d
.



172CHAPTER 7. ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL

As s < d/2, one may check that �̂2+✏
med 

�
maxi 62S(�⇠i)2/�

�1+✏/2
 (�2/�)1+✏/2

Pd
i=1 |⇠i|

2+✏.
Since E|⇠1|2+✏ < 1 this yields E✓,F,� (Z1+✏)  Cd. It follows that

E✓,F,�

�
Z1Z�c⇤/8

�

�
E✓,F,�

�
Z1+✏

��1/(1+✏)
P✓,F,� (Z � c⇤/8)

✏/(1+✏)
 Cde�d/C .

Combining the last three displays yields the desired bound in expectation.

Proof of part (i) of Proposition 7.4.2
In this proof, we write for brevity E = E✓,�,N (0,1) and P = P✓,�,N (0,1). Set

'd(t) =
1

d

dX

i=1

eitYj , '(t) = E('d(t)), '0(t) = e�
t
2
�
2

2 .

Since s/d < 1/8 and '(t) = '0(t)
�
1� |S|

d + 1
d

P
j2S exp(i✓jt)

�
, we have

3

4
'0(t) 

⇣
1�

2s

d

⌘
'0(t)  |'(t)|  '0(t). (7.48)

Consider the events

B1 =
n
�2/2  �̃2

 3�2/2
o

and Au =
n
sup
v2R

|'d(v)� '(v)| 

r
u

d

o
, u > 0.

By Proposition 7.2.1, B1 holds with probability at least 1� e�cd if the tuning parameter
� in the definition of �̃2 is small enough. Using Hoeffding’s inequality, it is not hard to
check that Au holds with probability at least 1� 4e�u. Moreover,

E

⇣p
d sup

v2R
|'d(v)� '(v)|

⌘
 C. (7.49)

Notice that on the event D = {|'d(t̂1)| > (es/
p
d + 1)�1/4} we have �̂2 = ṽ2  2�̃2.

First, we bound the risk restricted to D \ B
c
1. We have

E
�
|�̂2

� �2
|1D\Bc

1

�
 E

�
|2�̃2 + �2

|1Bc

1

�
.

Thus, using the Cauchy-Schwarz inequality and Proposition 7.2.1 we find

E
�
|�̂2

� �2
|1D\Bc

1

�
 C�2e�d/C


C 0�2

p
d
. (7.50)

Next, we bound the risk restricted to D
c. It will be useful to note that Alog d \ B1 ⇢ D.

Indeed, on Alog d \ B1, using the assumption s < d/8 we have

|'d(t̂1)| �
3

4
'0(t̂1)�

r
log d

d
�

3

4(es/
p
d+ 1)1/3

�

r
log d

d
>

1

4(es/
p
d+ 1)

.

Thus, applying again the Cauchy-Schwarz inequality and Proposition 7.2.1 we find

E
�
|�̂2

� �2
|1Dc

�
= E

�
|�̃2

� �2
|1Dc

�

�
E
�
|�̃2

� �2
|
2
��1/2

(P(Dc))1/2 (7.51)

 C�2
q

P(Ac
log d) +P(Bc

1)  C�2

r
4

d
+ e�cd 

C 0�2

p
d
.
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To complete the proof, it remains to handle the risk restricted to the event C = D \B1.
We will use the following decomposition

|�̂2
� �2

| 

���
2 log(|'d(t̂1)|)

t̂21
�

2 log(|'(t̂1)|)

t̂21

���+
����

2 log(|'(t̂1)|)

t̂21
� �2

���. (7.52)

Since �2 log(|'0(t̂1)|)/t̂21 = �2, it follows from (7.48) that

����
2 log(|'(t̂1)|)

t̂21
� �2

��� 
Cs

d t̂21
=

Cs�̃2

d log(4(es/
p
d+ 1))

.

Therefore,

E

⇣����
2 log(|'(t̂1)|)

t̂21
� �2

���1C

⌘


Cs�2

d log(es/
p
d+ 1)

. (7.53)

Next, using the inequality

�� log(|'d(t)|)� log(|'(t)|)
��  |'d(t)� '(t)|

|'(t)| ^ |'d(t)|
, 8t 2 R,

we find
���
log(|'d(t̂1)|)

t̂21
�

log(|'(t̂1)|)

t̂21

���1C 
supv2R |'d(v)� '(v)|

t̂21|'(t̂1)| ^ |'d(t̂1)|
1C


C�2U

p
d log(es/

p
d+ 1)

✓
es
p
d
+ 1

◆
,

where U =
p
d supv2R |'d(v)� '(v)|. Bounding E(U) by (7.49) we finally get

E

���
log(|'d(t̂1)|)

t̂21
�

log(|'(t̂1)|)

t̂21

���1C

�
 C�2 max

✓
1
p
d
,

s

d log(es/
p
d+ 1)

◆
. (7.54)

We conclude by combining inequalities (7.50) - (7.54).

Proof of Theorems 7.4.1 and 7.4.2
Let k✓k0  s and denote by S the support of ✓. Note first that, by the definition of �̂2,

�2

d

d�2sX

i=1

⇠2(i)  �̂2

�2

d

X

i2Sc

⇠2i , (7.55)

where ⇠2(1)  · · ·  ⇠2(d) are the ordered values of ⇠21 , . . . , ⇠2d. Indeed, the right hand
inequality in (7.55) follows from the relations

d�sX

k=1

Y 2
(k) = min

J :|J |=d�s

X

i2J

Y 2
(i) 

X

i2Sc

Y 2
(i) =

X

i2Sc

�2⇠2i .

To show the left hand inequality in (7.55), notice that at least d�2s among the d�s order
statistics Y 2

(1), . . . , Y
2
(d�s) correspond to observations Yk of pure noise, i.e., Yk = �⇠k. The
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sum of squares of such observations is bounded from below by the sum of the smallest
d� 2s values �2⇠2(1), . . . , �

2⇠2(d�2s) among �2⇠21 , . . . , �
2⇠2d.

Using (7.55) we get
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Note that under assumption (7.2) we have E(⇠41) < 1 and Lemmas 7.7.1 and 7.7.3 yield
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This proves Theorem 7.4.1. To prove Theorem 7.4.2, we act analogously by using
Lemma 7.7.2 and the fact that E(⇠41) < 1 under assumption (7.3) with a > 4.

Proof of Theorem 7.4.5
With the same notation as in the proof of Theorem 7.2.1, we have
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It follows from (7.25) that
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Arguing as in the proof of Theorem 7.2.1, we obtain
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Using the Cauchy-Schwarz inequality, Proposition 7.2.1 and (7.28) and writing for
brevity E = E✓,P⇠,� we find
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Since E(⇠41) < 1 we also have E
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d. Finally, using again (7.28) we get,
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where the last inequality follows from the same argument as in the proof of Theorem
7.2.1. These remarks together with (7.56) imply
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We conclude the proof by bounding
Ps

j=1 �
2
j in the same way as in the end of the proof

of Theorem 7.2.1.

7.6 Appendix: Proofs of the lower bounds

Proof of Theorems 7.4.3 and 7.4.4 and part (ii) of Proposition
7.4.2
Since we have `(t) � `(A)1t>A for any A > 0, it is enough to prove the theorems for
the indicator loss `(t) = 1t>A. This remark is valid for all the proofs of this section and
will not be further repeated.

(i) We first prove the lower bounds with the rate 1/
p
d in Theorems 7.4.3 and 7.4.4.

Let f0 : R ! [0,1) be a probability density with the following properties: f0 is contin-
uously differentiable, symmetric about 0, supported on [�3/2, 3/2], with variance 1 and
finite Fisher information If0 =

R
(f 0

0(x))
2(f0(x))�1dx. The existence of such f0 is shown

in Lemma 7.7.7. Denote by F0 the probability distribution corresponding to f0. Since
F0 is zero-mean, with variance 1 and supported on [�3/2, 3/2] it belongs to Ga,⌧ with
any ⌧ > 0, a > 0, and to Pa,⌧ with any ⌧ > 0, a � 2. Define P0 = P0,F0,1, P1 = P0,F0,�1

where �2
1 = 1 + c0/

p
d and c0 > 0 is a small constant to be fixed later. Denote by

H(P1,P0) the Hellinger distance between P1 and P0. We have

H2(P1,P0) = 2
�
1� (1� h2/2)d

�
(7.57)

where h2 =
R
(
p

f0(x) �
p

f0(x/�1)/�1)2dx. By Theorem 7.6. in Ibragimov and
Has’Minskii (2013),

h2


(1� �1)2

4
sup

t2[1,�1]
I(t)

where I(t) is the Fisher information corresponding to the density f0(x/t)/t, that is
I(t) = t�2If0 . It follows that h2

 c̄c20/d where c̄ > 0 is a constant. This and (7.57)
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imply that for c0 small enough we have H(P1,P0)  1/2. Finally, choosing such a small
c0 and using Theorem 2.2(ii) in Tsybakov (2008) we obtain
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(ii) We now prove the lower bound with the rate s
d log

2/a(ed/s) in Theorem 7.4.3. It
is enough to conduct the proof for s � s0 where s0 > 0 is an arbitrary absolute constant.
Indeed, for s  s0 we have s

d log
2/a(ed/s)  C/

p
d where C > 0 is an absolute constant

and thus Theorem 7.4.3 follows already from the lower bound with the rate 1/
p
d proved

in item (i). Therefore, in the rest of this proof we assume without loss of generality that
s � 32.

We take P⇠ = U where U is the Rademacher distribution, that is the uniform distri-
bution on {�1, 1}. Clearly, U 2 Ga,⌧ . Let �1, . . . , �d be i.i.d. Bernoulli random variables
with probability of success P(�1 = 1) = s

2d , and let ✏1, . . . , ✏d be i.i.d. Rademacher
random variables that are independent of (�1, . . . , �d). Denote by µ the distribution of
(↵�1✏1, . . . ,↵�d✏d) where ↵ = (⌧/2) log1/a(ed/s). Note that µ is not necessarily sup-
ported on ⇥s = {✓ 2 Rd

| k✓k0  s} as the number of nonzero components of a vector
drawn from µ can be larger than s. Therefore, we consider a restricted to ⇥s version of
µ defined by

µ̄(A) =
µ(A \⇥s)

µ(⇥s)
(7.58)

for all Borel subsets A of Rd. Finally, we introduce two mixture probability measures

Pµ =

Z
P✓,U,1 µ(d✓) and Pµ̄ =

Z
P✓,U,1 µ̄(d✓). (7.59)

Notice that there exists a probability measure P̃ 2 Ga,⌧ such that

Pµ = P0,P̃ ,�0
(7.60)

where �0 > 0 is defined by
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. (7.61)

Indeed, �2
0 = 1+ ↵2s

2d is the variance of zero-mean random variable ↵�✏+⇠, where ⇠ ⇠ U ,
✏ ⇠ U , � ⇠ B

�
s
2d

�
and ✏, ⇠, � are jointly independent. Thus, to prove (7.60) it is enough

to show that, for all t � 2,

P
�
(⌧/2) log1/a(ed/s) �✏+ ⇠ > t�0

�
 e�(t/⌧)a . (7.62)

But this inequality immediately follows from the fact that for t � 2 the probability in
(7.62) is smaller than

P(✏ = 1, � = 1)1(⌧/2) log1/a(ed/s)>t�1 
s

4d
1⌧ log1/a(ed/s)>t  e�(t/⌧)a . (7.63)
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Now, for any estimator T̂ and any u > 0 we have
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where the last inequality uses (7.60). Write �2
0 = 1 + 2� where � = ⌧2s

16d log
2/a(ed/s)

and choose u = �/�2
0 � �/(1 + ⌧ 2/8). Then, the expression in (7.64) is bounded from

below by the probability of error in the problem of distinguishing between two simple
hypotheses Pµ and Pµ̄, for which Theorem 2.2 in Tsybakov (2008) yields

max
n
Pµ(|T̂ � �2

0| � �),Pµ̄(|T̂ � 1| � �)
o
�

1� V (Pµ,Pµ̄)

2
(7.65)

where V (Pµ,Pµ̄) is the total variation distance between Pµ and Pµ̄. The desired lower
bound follows from (7.65) and Lemma 7.7.5 for any s � 32.

(iii) Finally, we prove the lower bound with the rate ⌧ 2(s/d)1�2/a in Theorem 7.4.4.
Again, we do not consider the case s  32 since in this case the rate 1/

p
d is dominating

and Theorem 7.4.4 follows from item (i) above. For s � 32, the proof uses the same
argument as in item (ii) above but we choose ↵ = (⌧/2)(d/s)1/a. Then the variance of
↵�✏+ ⇠ is equal to

�2
0 = 1 +

⌧ 2(s/d)1�2/a

8
.

Furthermore, with this definition of �2
0 there exists P̃ 2 Pa,⌧ such that (7.60) holds.

Indeed, analogously to (7.62) we now have, for all t � 2,

P
�
↵ �✏+ ⇠ > t�0

�
 P(✏ = 1, � = 1)1(⌧/2)(d/s)1/a>t�1 

s

4d
1⌧(d/s)1/a>t  (t/⌧)a. (7.66)

To finish the proof, it remains to repeat the argument of (7.64) and (7.65) with � =
⌧2(s/d)1�2/a

16 .

Proof of Theorem 7.3.1

We argue similarly to the proof of Theorems 7.4.3 and 7.4.4, in particular, we set ↵ =
(⌧/2) log1/a(ed/s) when proving the bound on the class Ga,⌧ , and ↵ = (⌧/2)(d/s)1/a

when proving the bound on Pa,⌧ . In what follows, we only deal with the class Ga,⌧ since
the proof for Pa,⌧ is analogous. Consider the measures µ µ̄, Pµ, Pµ̄ and P̃ defined in
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Section 7.6. Similarly to (7.64), for any estimator T̂ and any u > 0 we have
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where �0 is defined in (7.61), U denotes the Rademacher law and minB is the minimum
over all Borel sets. The third line in the last display is due to (7.60) and to the inequality
�0 � 1. Since minB

�
Pµ(B) + Pµ̄(Bc)

 
= 1� V (Pµ,Pµ̄), we get
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Consider first the case s � 32. Set u = ↵
p
s

4�0
. Then (7.94) and (7.97) imply that

V (Pµ,Pµ̄)  e�
3s
16 , µ̄(k✓k2 < 2�0u)  2e�

s

16 ,

which, together with (7.68) and the fact that s � 32 yields the result.
Let now s < 32. Then we set u = ↵

p
s

8
p
2�0

. It follows from (7.95) and (7.98) that
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.

It is not hard to check that the minimum of the last expression over all integers s, d such
that 1  s < 32, s  d, is bounded from below by a positive number independent of d.
We conclude by combining these remarks with (7.68).

Proof of part (ii) of Proposition 7.3.2

The lower bound corresponding to the sparse regime (i.e. s 
p
d) is already proven in

Collier et al. (2017) for known variance �. Hence, we only focus on the dense regime
where we may assume without loss of generality that s �

p
d for d large enough. The

proof is inspired by ideas from Cai and Jin (2010) even if their original proof does not
apply in our setting. In what follows,we will use the Fourier transform defined for any
integrable function f as

f̂(t) =

Z

R
e�itxf(x) dx. (7.69)

In the following, C is an absolute constant whose value may change from line to line.
We denote by ��2 the density of N (0, �2). Moreover, we set ✏ = s

2d  1/2, ⌧ =p
↵ log(es2/d) with ↵ large enough, and ', c0 are defined in Lemma 7.7.9.
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First, we build some probability distributions on ⇥s. If �1, . . . , �d
iid
⇠ B(✏), we define

µi, i = 1, 2 respectively the distribution of (�1X(i)
1 , . . . , �dX

(i)
d ) where

X(1)
1 , . . . , X(1)

d
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⇠ (�' ⇤ g1d�)

d, X(2)
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d
iid
⇠ (g2d�)

d (7.70)

where g1, g2 are density functions given by Lemma 7.7.9 and � is the Lebesgue mea-
sure. Then, we consider the probability distributions P1 := Pµ1,N (0,1),1 and P2 :=
Pµ2,N (0,1),

p
1+' whose density functions are respectively

f1 = (1� ✏)�1 + ✏�1+' ⇤ g1, f2 = (1� ✏)�1+' + ✏�1+' ⇤ g2. (7.71)

Then, µ̄1 and µ̄2 defined by

µ̄i(A) =
µi

�
A \⇥s

�

µi

�
⇥s

� (7.72)

are supported on ⇥s. Now, using Theorem 2.15 in Tsybakov (2008) and the fact that
`(t) � l(a)1t>a for any a > 0, we get
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where for some v, w 2 R,

V 0 = V (P1,P2) + µ̄1(k✓k2  w + 2��⇤
N (0,1)v) + µ̄2(k✓k2 � w). (7.74)

Decomposing in particular the total-variation distance, we have
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The first two terms in the right-hand side are upper bounded using Lemma 7.7.5 by
4e�

3s
16 . Then, we choose
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Moreover, since by definition,
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Lemma 7.7.9 implies that
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and v, and thus `(v), is lower bounded by a positive absolute constant. Finally, by
Markov’s and von Bahr-Esseen’s inequalities von Bahr and Esseen (1965), we have

µ1
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�
= µ1
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�


µ1

���k✓k22 �m1

��5/4 

u5/4
(7.82)


s

2u5/4

Z ��x2
� ✏

Z
x2g1 ⇤ �'(x) dx

��5/4g1 ⇤ �'(x) dx (7.83)


Cs

u5/4

h Z
|x|5/2g1 ⇤ �'(x) dx+

⇣
✏

Z
x2g1 ⇤ �'(x) dx

⌘5/4i
, (7.84)

and using Lemma 7.7.9 again, this is smaller than C�2s/(⌧ 3/4u5/4)  C⌧ 7/4s�1/4. Ap-
plying similar arguments for the second probability and because s �

p
d with d large

enough, we get that
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�
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N (0,1)v
�
+ µ2

�
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�


C
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We conclude by applying Lemma 7.7.10 to bound �2(Pµ̄1 ,Pµ̄2) = (1 + �2(f1, f2))d � 1,
so that for d large enough, V 0

 1/2.

Proof of part (ii) of Proposition 7.3.3 and part (ii) of Proposi-
tion 7.3.4
We argue similarly to the proof of Theorems 7.4.3 and 7.4.4, in particular, we set ↵ =
(⌧/2) log1/a(ed/s) when proving the bound on the class Ga,⌧ , and ↵ = (⌧/2)(d/s)1/a

when proving the bound on Pa,⌧ . In what follows, we only deal with the class Ga,⌧ since
the proof for Pa,⌧ is analogous. Without loss of generality we assume that � = 1.

To prove the lower bound with the rate ��
exp(s, d), we only need to prove it for s such

that (��
exp(s, d))

2
 c0

p
d/ log2/a(ed) with any small absolute constant c0 > 0, since the

rate is increasing with s.
Consider the measures µ µ̄, Pµ, Pµ̄ defined in Section 7.6 with �0 = 1. Let ⇠1 be

distributed with c.d.f. F0 defined in item (i) of the proof of Theorems 7.4.3 and 7.4.4.
Using the notation as in the proof of Theorems 7.4.3 and 7.4.4, we define P̃ as the
distribution of ⇠̃1 = �1⇠1 + ↵�1✏1 with �2

1 = (1 + ↵2s/(2d))�1 where now �1 is the
Bernoulli random variable with P(�1 = 1) = s

2d(1 + ↵2s/(2d))�1. By construction,
E⇠̃1 = 0 and E⇠̃21 = 1. Since the support of F0 is in [�3/2, 3/2] one can check as in item
(ii) of the proof of Theorems 7.4.3 and 7.4.4 that P̃ 2 Ga,⌧ . Next, analogously to (7.67)
- (7.68) we obtain that, for any u > 0,

sup
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sup
k✓k0s

P✓,P⇠,1

�
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�
�
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2
.

Let P0 and P1 denote the distributions of (⇠1, . . . , ⇠d) and of (�1⇠1, . . . , �1⇠d), respec-
tively. Acting as in item (i) of the proof of Theorems 7.4.3 and 7.4.4 and using the
bound

|1� �1|  ↵2s/d =
⌧ 2

4

s

d
log2/a(ed/s)  Cc0/

p

d
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we find that V (P0,P1)  H(P0,P1)  2c20 for some  > 0. Therefore, V (Pµ, P0,P̃ ,1) =
V (P0⇤Q,P1⇤Q)  V (P0,P1)  2c20 where Q denotes the distribution of (↵�1✏1, . . . ,↵�d✏d).
This bound and the fact that V (Pµ̄, P0,P̃ ,1)  V (Pµ̄,Pµ) + V (Pµ, P0,P̃ ,1) imply

sup
P⇠2Ga,⌧

sup
k✓k0s

P✓,P⇠,1

�
|T̂ � k✓k2| � u

�
�

1� V (Pµ,Pµ̄)� µ̄(k✓k2 < 2u)

2
� c20.

We conclude by repeating the argument after (7.68) in the proof of Theorem 7.3.1 and
choosing c0 > 0 small enough to guarantee that the right hand side of the last display
is positive.

Proof of part (ii) of Proposition 7.4.2

The lower bound with the rate 1/
p
d follows from the argument as in item (i) of the

proof of Theorems 7.4.3 and 7.4.4 if we replace there F0 by the standard Gaussian
distribution. The lower bound with the rate s

d(1+log+(s2/d)) follows from Lemma 7.7.8
and the lower bound for estimation of k✓k2 in Proposition 7.3.2.

Proof of Proposition 7.4.3
Assume that ✓ = 0, � = 1 and set

⇠i =
p
3✏iui,

where the ✏i’s and the ui are independent, with Rademacher and uniform distribution
on [0, 1] respectively. Then note that

E0,P⇠,1

�
�̂2
⇤ � 1

�2
�
�
E0,P⇠,1(�̂

2
⇤)� 1

�2
=
⇣
E0,P⇠,1

n
�̂2
⇤ �

3

d

dX

i=1

u2
i

o⌘2

, (7.86)

since E(u2
i ) = 1/3. Note also that �̂2

⇤ = 3
d/2

Pd/2
i=1 u

2
(i). Now,

1

d/2

d/2X

i=1

u2
(i) �

1

d

dX

i=1

u2
i =

1

d

d/2X

i=1

u2
(i) �

1

d

dX

i=d/2+1

u2
(i)


1

d

d/4X

i=1

u2
(i) �

1

d

dX

i=3d/4+1

u2
(i)


1

4
(u2

(d/4) � u2
(3d/4)).

Since u(i) follows a Beta distribution with parameters (i, d � i + 1) we have E(u2
(i)) =

i(i+1)
(d+1)(d+2) , and

E0,P⇠,1

⇣ 1

d/2

d/2X

i=1

u2
(i) �

1

d

dX

i=1

u2
i

⌘


1

4
E0,P⇠,1(u

2
(d/4) � u2

(3d/4)) = �
d

8(d+ 2)
 �

1

24
.

This and (7.86) prove the proposition.
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7.7 Appendix: Technical lemmas

Lemmas for the upper bounds

Lemma 7.7.1. Let z1, . . . , zd
iid
⇠ P with P 2 Ga,⌧ for some a, ⌧ > 0 and let z(1)  · · · 

z(d) be the order statistics of |z1|, . . . , |zd|. Then for u > 21/a⌧ _ 2, we have

P

⇣
z(d�j+1)  u log1/a

�
ed/j

�
, 8 j = 1, . . . , d

⌘
� 1� 4e�ua/2, (7.87)

and, for any r > 0,

E
�
zr(d�j+1)

�
 C logr/a

�
ed/j

�
, j = 1, . . . , d, (7.88)

where C > 0 is a constant depending only on ⌧ , a and r.

Proof. Using the definition of Ga,⌧ we get that, for any t � 2,

P
�
z(d�j+1) � t

�


✓
d

j

◆
P

j(|z1| � t)  2
⇣ed
j

⌘j

e�j(t/⌧)a , j = 1, . . . , d.

Thus, for v � 21/a _ (2/⌧) we have

P(z(d�j+1) � v⌧ log1/a(ed/j))  2
⇣ed
j

⌘j(1�va)

 2e�jva/2, j = 1, . . . , d, (7.89)

and

P

⇣
9 j 2 {1, . . . , d} : z(d�j+1) � v⌧ log1/a(ed/j)

⌘
 2

dX

j=1

e�jva/2
 4e�va/2

implying (7.87). Finally, (7.88) follows by integrating (7.89).

Lemma 7.7.2. Let z1, . . . , zd
iid
⇠ P with P 2 Pa,⌧ for some a, ⌧ > 0 and let z(1)  · · · 

z(d) be the order statistics of |z1|, . . . , |zd|. Then for u > (2e)1/a⌧ _ 2, we have

P

⇣
z(d�j+1)  u

⇣d
j

⌘1/a

, 8 j = 1, . . . , d
⌘
� 1�

2e⌧a

ua
(7.90)

and, for any r 2 (0, a),

E
�
zr(d�j+1)

�
 C

⇣d
j

⌘r/a

, j = 1, . . . , d, (7.91)

where C > 0 is a constant depending only on ⌧ , a and r.

Proof. Using the definition of Pa,⌧ we get that, for any t � 2,

P
�
z(d�j+1) � t

�


⇣ed
j

⌘j⇣⌧
t

⌘ja

.

Set tj = u
⇣

d
j

⌘1/a

and q = e(⌧/u)a. The assumption on u yields that q < 1/2, so that

P

⇣
9 j 2 {1, . . . , d} : z(d�j+1) � u

⇣d
j

⌘1/a⌘


dX

j=1

⇣ed
j

⌘j⇣ ⌧
tj

⌘ja

=
dX

j=1

qj  2q.

This proves (7.90). The proof of (7.91) is analoguous to that of (7.88).
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Lemma 7.7.3. For all a > 0 and all integers 1  s  d,
sX

i=1

log2/a
�
ed/i

�
 Cs log2/a

⇣ed
s

⌘

where C > 0 depends only on a.
The proof is simple and we omit it.

Lemmas for the lower bounds
For two probability measures P1 and P2 on a measurable space (⌦,U), we denote by
V (P1,P2) the total variation distance between P1 and P2:

V (P1,P2) = sup
B2U

|P1(B)� P2(B)| .

Lemma 7.7.4 (Deviations of the binomial distribution). Let B(d, p) denote the binomial
random variable with parameters d and p 2 (0, 1). Then, for any � > 0,

P
�
B(d, p) � �

p

d+ dp
�
 exp

✓
�

�2

2p(1� p)
�
1 + �

3p
p
d

�
◆
, (7.92)

P
�
B(d, p)  ��

p

d+ dp
�
 exp

✓
�

�2

2p(1� p)

◆
. (7.93)

Inequality (7.92) is a combination of formulas (3) and (10) on pages 440–441 in Shorack
and Wellner (2009). Inequality (7.93) is formula (6) on page 440 in Shorack and Wellner
(2009).
Lemma 7.7.5. Let Pµ and Pµ̄ be the probability measures defined in (7.59). The total
variation distance between these two measures satisfies

V (Pµ,Pµ̄)  P

⇣
B

⇣
d,

s

2d

⌘
> s

⌘
 e�

3s
16 , (7.94)

and
V (Pµ,Pµ̄)  1�P

⇣
B

⇣
d,

s

2d

⌘
= 0

⌘
�P

⇣
B

⇣
d,

s

2d

⌘
= 1

⌘
. (7.95)

Proof. We have

V (Pµ,Pµ̄) = sup
B

����
Z

P✓,U,1(B)dµ(✓)�

Z
P✓,U,1(B)dµ̄(✓)

����  sup
|f |1

����
Z

fdµ�

Z
fdµ̄

���� = V (µ, µ̄).

Furthermore, V (µ, µ̄)  µ(⇥c
s) since for any Borel subset B of Rd we have

��µ(B) �
µ̄(B)

��  µ(B \⇥c
s). Indeed,

µ(B)� µ̄(B)  µ(B)� µ(B \⇥) = µ(B \⇥c)

and
µ̄(B)� µ(B) =

µ(B \⇥)

µ(⇥)
� µ(B \⇥)� µ(B \⇥c) � �µ(B \⇥c).

Thus,
V (Pµ,Pµ̄)  µ(⇥c

s) = P

⇣
B

⇣
d,

s

2d

⌘
> s

⌘
. (7.96)

Combining this inequality with (7.92) we obtain (7.94). To prove (7.95), we use again
(7.96) and notice that P

⇣
B

⇣
d, s

2d

⌘
> s

⌘
 P

⇣
B

⇣
d, s

2d

⌘
� 2

⌘
for any integer s � 1.
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Lemma 7.7.6. Let µ̄ be defined in (7.58) with some ↵ > 0.Then

µ̄
⇣
k✓k2 <

↵

2

p
s
⌘
 2e�

s

16 , (7.97)

and, for all s  32,

µ̄
⇣
k✓k2 <

↵
p
s

4
p
2

⌘
= P

⇣
B
�
d,

s

2d

�
= 0

⌘
. (7.98)

Proof. First, note that

µ
⇣
k✓k2 <

↵

2

p
s
⌘
= P

⇣
B
�
d,

s

2d

�
<

s

4

⌘
 e�

s

16 (7.99)

where the last inequality follows from (7.93). Next, inspection of the proof of Lemma 7.7.5
yields that µ̄(B)  µ(B)+ e�

3s
16 for any Borel set B. Taking here B = {k✓k2  ↵

p
s/2}

and using (7.99) proves (7.97). To prove (7.98), it suffices to note that µ
⇣
k✓k2 <

↵
p
s

4
p
2

⌘
=

P

⇣
B
�
d, s

2d

�
< s

32

⌘
.

Lemma 7.7.7. There exists a probability density f0 : R ! [0,1) with the following
properties: f0 is continuously differentiable, symmetric about 0, supported on [�3/2, 3/2],
with variance 1 and finite Fisher information If0 =

R
(f 0

0(x))
2(f0(x))�1dx.

Proof. Let K : R ! [0,1) be any probability density, which is continuously differen-
tiable, symmetric about 0, supported on [�1, 1], and has finite Fisher information IK , for
example, the density K(x) = cos2(⇡x/2)1|x|1. Define f0(x) = [Kh(x+(1�"))+Kh(x�
(1�"))]/2 where h > 0 and " 2 (0, 1) are constants to be chosen, and Kh(u) = K(u/h)/h.
Clearly, we have If0 < 1 since IK < 1. It is straightforward to check that the vari-
ance of f0 satisfies

R
x2f0(x)dx = (1 � ")2 + h2�2

K where �2
K =

R
u2K(u)du. Choosing

h =
p
2"� "2/�K and "  �2

K/8 guarantees that
R
x2f0(x)dx = 1 and the support of f0

is contained in [�3/2, 3/2].

Lemma 7.7.8. Let ⌧ > 0, a > 4 and let s, d be integers satisfying 1  s  d. Let P

be any subset of Pa,⌧ . Assume that for some function �(s, d) of s and d and for some
positive constants c1, c2, c01, c

0
2 we have

inf
T̂

sup
P⇠2P

sup
�>0

sup
k✓k0s

P✓,P⇠,�

 �����
T̂

�2
� 1

����� �
c1
p
d

!
� c

0

1, (7.100)

and

inf
T̂

sup
P⇠2P

sup
�>0

sup
k✓k0s

P✓,P⇠,�

 �����
T̂ � k✓k2

�

����� � c2�(s, d)

!
� c

0

2. (7.101)

Then

inf
T̂

sup
P⇠2P

sup
�>0

sup
k✓k0s

P✓,P⇠,�

 �����
T̂

�2
� 1

����� � c3 max

✓
1
p
d
,
�2(s, d)

d

◆!
� c

0

3

for some constants c3, c03 > 0.
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Proof. Let �̂2 be an arbitrary estimator of �2. Based on �̂2, we can construct an esti-
mator T̂ = N̂⇤ of k✓k2 defined by formula (7.11), case s >

p
d. It follows from (7.30),

(7.31) and (7.101) that

c02  P (2|(✓, ⇠)| � c2k✓k2�(s, d)/3) +P

✓q
|k⇠k22 � d| � c2�(s, d)/3

◆

+P

 s

d

����
�̂2

�2
� 1

���� � c2�(s, d)/3

!
,

where we write for brevity P = P✓,P⇠,�. Hence

P

✓����
�̂2

�2
� 1

���� � c22�
2(s, d)/(9d)

◆
� c02 � c⇤ max

✓
d

�4(s, d)
,

1

�2(s, d)

◆

for some constant c⇤ > 0 depending only on a and ⌧ . If �2(s, d) > max
⇣q

2c⇤d
c02

, 2c
⇤

c02

⌘
,

then
P

✓����
�̂2

�2
� 1

���� � Cmax

✓
1
p
d
,
�2(s, d)

d

◆◆
� c02/2.

If �2(s, d)  max
⇣q

2c⇤d
c02

, 2c
⇤

c02

⌘
, then max

⇣
1p
d
, �

2(s,d)
d

⌘
is of order 1p

d
and the result

follows from (7.100).

Lemma 7.7.9. If c0 is small enough, then there exist two density functions such that

1. max
� R

R x
2g1 ⇤ �'(x) dx,

R
R x

2g2(x) dx
 


�1
⌧2 ,

2.
R
R x

2g1 ⇤ �'(x) dx�
R
R x

2g2(x) dx = c0
⌧2 ,

3. max
� R

R |x|
5/2g2(x) dx,

R
R |x|

5/2g1 ⇤ �'(x) dx
 


�2
⌧3/4

where �1 and �2 are absolute constants and ' = c0✏/⌧ 2.

Proof. In the following, C denotes an absolute constant whose value may change from
line to line. We define

g1(x) =

(
0 if |x|  ⇡

10⌧
c

⌧3x4 if |x| > ⇡
10⌧

, c =
3⇡3

16000
, g2 = g1 + g (7.102)

with

g =
1

2
ĥ, h(t) =

8
><

>:

`(t) if |t|  ⌧

j(t) if ⌧  |t|  2⌧

0 if 2⌧  |t|

, `(t) =
1� ✏

✏
(e

't
2

2 � 1), (7.103)

and

j(t) = (1� ✏)
X

n�1

✏n�1cn0
2nn!

⇥
c1,n

(2⌧ � t)2

⌧ 2
+ c2,n

(2⌧ � t)3

⌧ 3
+ c3,n

(2⌧ � t)4

⌧ 4
⇤

(7.104)
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where

c1,n = 2n2 + 5n+ 6, c2,n = �4n2
� 8n� 8, c3,n = 2n2 + 3n+ 3. (7.105)

Direct computations show that g1 is a density function, and the first part of this proof
is dedicated to proving that g2 is a density too, if c0 is small enough.

First note that j is bounded on [�2⌧, 2⌧ ] so that ĥ is well defined. Then, we can
write g(x) as

g(x) =

Z ⌧

0

`(t) cos(tx) dt+

Z 2⌧

⌧

j(t) cos(tx) dt. (7.106)

Using integration by part, we have
Z 2⌧

⌧

(2⌧ � t)n

⌧n
cos(tx) dt = �

sin(⌧x)

x
+ n

cos(⌧x)

x2⌧
+

n(n� 1)

⌧ 2x3
sin(⌧x) + an(x) (7.107)

and
Z ⌧

0

t2n

⌧ 2n
cos(tx) dt =

sin(⌧x)

x
+ 2n

cos(⌧x)

x2⌧
� 2n(2n� 1)

sin(⌧x)

x3⌧ 2
+ bn(x) (7.108)

with
|an(x)| 

2n3

x4⌧ 3
, |bn(x)| 

16n3

⌧ 3x4
, (7.109)

so that

g(x) = (1� ✏)
X

n�1

cn0✏
n�1

2nn!
·

hsin(⌧x)
x

(1� c1,n � c2,n � c3,n) (7.110)

+
cos(⌧x)

⌧x2
(2n+ 2c1,n + 3c2,n + 4c3,n) (7.111)

+
sin(⌧x)

⌧ 2x3
(�2n(2n� 1) + 2c1,n + 6c2,n + 12c3,n) (7.112)

+
�
an(x) + bn(x)

�i
. (7.113)

The choices of the ci,n’s make the first three parts vanish, hence

|g(x)| 
Cc0
⌧ 3x4

. (7.114)

On the other hand, if 0  x  ⇡/(10⌧) and 0  t  2⌧ , then 0  xt  ⇡/5, so that

I :=

Z ⌧

0

t2

⌧ 2
cos(tx) dt+

Z 2⌧

⌧

⇣
13

(2⌧ � t)2

⌧ 2
� 20

(2⌧ � t)3

⌧ 3
+ 8

(2⌧ � t)4

⌧ 4

⌘
cos(tx) dt

(7.115)

� cos(⇡/5)
h Z ⌧

0

t2

⌧ 2
dt+ 13

Z 2⌧

⌧

(2⌧ � t)2

⌧ 2
dt+ 8

Z 2⌧

⌧

(2⌧ � t)3

⌧ 3
dt
i
� 20

Z 2⌧

⌧

(2⌧ � t)4

⌧ 4
dt

(7.116)

�

⇣94
15

cos(⇡/5)� 5
⌘
⌧, (7.117)
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and using in particular the elementary inequality |ex � 1� x|  ex2/2 for x 2 [0, 1] and
the fact that |ci,n|  20n2,

��g(x)� (1� ✏)c0I/2
��  e

2

Z ⌧

0

⇣c0✏t2

2⌧ 2

⌘2

dt+
X

n�2

20cn0n
2

2nn!

⇥1
3
+

1

4
+

1

5

⇤
(7.118)



⇣94
15

cos(⇡/5)� 5
⌘
⌧ (7.119)

for c0 small enough. Finally, combining (7.114), (7.117) and (7.119) yields that g2 is
positive on R. Furthermore,

Z

R
g = ĝ(0) = ⇡h(0) = 0, (7.120)

so that
R
g1 =

R
g2 = 1, and g1, g2 both are density functions.

We now turn to the properties of g1, g2. We first have
Z

x2g1(x) ⇤ �'(x) dx = �(ĝ1�̂')
00(0) = �ĝ001(0)�̂'(0)� �̂00

'(0)ĝ1(0)� 2ĝ01(0)�̂
0
'(0)

(7.121)

=

Z
x2g1(x) dx+ ' 

C

⌧ 2
(7.122)

and similarly
Z

x2g2(x) dx =

Z
x2g1(x) dx� h00(0) =

Z
x2g1(x) dx�

(1� ✏)'

✏


C

⌧ 2
, (7.123)

which yields the first desired property. From the same computations, we get
Z

x2g1 ⇤ �'(x) dx�

Z
x2g2(x) dx =

'

✏
=

c0
⌧ 2

, (7.124)

which is exactly the second property. Furthermore, we have in particular from (7.114)
and the fact that g  C⌧ on [�⌧�1, ⌧�1] that

Z

R
|x|5/2g1(x) dx 

C

⌧ 5/2
,

Z

R
|x|5/2g(x) dx 

C

⌧ 5/2
, (7.125)

and thus
R
R |x|

5/2g2(x) dx  C⌧�3/4. To finish establishing the last property, we note
that

���
Z

|y|x/2

(g1(x� y)� g1(x))�'(y) dy
��� 

Z

R

C

x4⌧ 3
�'(y) dy =

C

x4⌧ 3
, (7.126)

and that, denoting Z ⇠ N (0, 1) and using the fact that g1  C⌧ ,
���
Z

|y|>x/2

(g1(x� y)� g1(x))�'(y) dy
���  C⌧P

�
|Z| > x/2

p
�
�

(7.127)

 C⌧
p
�x�1e�x2/8' (7.128)


C

x4⌧ 2
(7.129)



188CHAPTER 7. ADAPTIVE ROBUST ESTIMATION IN SPARSE VECTOR MODEL

in the case when x � ⌧�1/2. Consequently, if x � ⌧�1/2, then

|g1 ⇤ �'(x)|  |g1 ⇤ �'(x)� g1(x)|+ |g1(x)| 
C

x4⌧ 2
(7.130)

Finally, using the inequality kg1 ⇤ �'||1  kg1k1k�'k1  C⌧ for the first integral, we
get
Z +1

0

|x|5/2g1 ⇤ '(x) dx 

Z ⌧�1/2

0

|x|5/2g1 ⇤ '(x) dx+

Z +1

⌧�1/2

|x|5/2g1 ⇤ '(x) dx 
C

⌧ 3/4
.

(7.131)

This completes the proof.

Lemma 7.7.10. Let f1 and f2 defined in (7.71) with g1, g2 as in Lemma 7.7.9. Then
there exists an absolute constant �3 > 0 such that, if c0 is small enough and ↵ is large
enough, then

�2(f1, f2) 
�3c0
d

. (7.132)

Proof. Note that f1 � (1� ✏)�1. Since ��1
1 (t) =

p
2⇡

P
n�0

t2n

2nn! and ✏  1/2, we get

�2(f1, f2) =

Z

R

(f1 � f2)2

f1
 2

p
2⇡

X

n�0

Z

R

t2n

2nn!
(f1 � f2)

2(t) dt. (7.133)

But as f̂2 � f̂1 = (1 � ✏)([�1+' � b�1) + ✏[�1+'(ĝ2 � ĝ1) with ĝ2 � ĝ1 = h defined in
Lemma 7.7.9, it holds that f̂1 � f̂2 is infinitely differentiable everywhere except in ±⌧
and in ±2⌧ . Thus

�2(f1, f2)  C
X

n�0

1

2nn!

Z

R
[f̂ (n)

2 (t)�f̂ (n)
1 (t)]2 dt = C

X

n�0

1

2n�1n!

Z +1

⌧

[f̂ (n)
2 (t)�f̂ (n)

1 (t)]2 dt,

(7.134)
since by construction (1� ✏)([�1+' �

b�1) + ✏[�1+'` = 0 (cf. Lemma 7.7.9). Furthermore,
for every n � 0,

Z +1

⌧

[f̂ (n)
2 (t)� f̂ (n)

1 (t)]2 dt  2✏2
Z +1

⌧

�
[[�1+'(t)(ĝ2 � ĝ1)]

(n)
�2
(t) dt (7.135)

+ 2

Z +1

⌧

⇥
([�1+' �

b�1)
(n)(t)

⇤2
dt. (7.136)

Then, note that on [⌧, 2⌧ ], |j(m)(t)|  C
P

n�1
✏n�1cn0n

2

2nn!  Cc0 so that

Z +1

⌧

�
[[�1+'(ĝ2 � ĝ1)]

(n)
�2

=

Z 2⌧

⌧

�
[[�1+'ĵ]

(n)
�2

 Cc0 sup
n�4mn

✓
n

m

◆2 Z 2⌧

⌧

�
[[�1+']

(m)
�2
.

(7.137)
Recall that the Hermite polynomials Hm are defined by

Hm(x) = (�1)mex
2/2 dm

dxm

⇣
e�x2/2

⌘
, (7.138)
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so that if n� 4  m  n,
Z 2⌧

⌧

�
[[�1+']

(m)
�2

 (1 + ')n
Z 2⌧

⌧

H2
m(t

p
1 + ')e�t2(1+') dt  (1 + ')nn! e�⌧

2/2.

(7.139)

Therefore, if ↵ is large enough and c0 small enough,

✏2
X

n�0

1

2nn!

Z +1

⌧

�
[[�1+'(ĝ2 � ĝ1)]

(n)
�2

 Cc0✏
2e�⌧

2/2


Cc0
d

. (7.140)

Coming back to the second integral in (7.136), we can apply the mean-value theorem to
the k-th derivative of f(t) = exp(�t2/2) so that for t � 0
��([�1+' �

b�1)
(n)(t)

��  [(1 + ')n/2 � 1].
��f (n)(t

p
1 + ')

��+ t(
p
1 + '� 1) sup

u2[t,t
p
1+']

|f (n+1)(u)|

(7.141)

 [(1 + ')n � 1].
��Hn(t

p
1 + ')e�

(1+')t2

2

��+ t' sup
u2[t,t

p
1+']

|Hn+1(u)e
�u2/2

|.

(7.142)

But, integrating the square of the first term in the right-hand side, we get
Z +1

⌧

[(1 + ')n � 1]2H2
n(t

p
1 + ')e�t2(1+') dt  (1 + ')2ne�⌧

2/2

Z +1

0

H2
n(t

p
1 + ')e�

t
2(1+')

2 dt

(7.143)

 C(1 + ')2nn! e�⌧
2/2. (7.144)

On the other hand, using the fact that Hn(u) =
Pbn/2c

l=0 (�1)l n!
2ll!(n�2l)!u

n�2l, we have

Z +1

⌧

t2 sup
u2[t,t

p
1+']

|Hn(u)|
2e�t2 dt  (1 + ')ne�⌧

2/2n

bn/2cX
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⌘2
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0

t2n�4l+2e�t2/2 dt

(7.145)

 C(1 + ')ne�⌧
2/2n
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(7.146)
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2/22nn3 sup

0lbn/2c

(n!)2
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(7.147)

 C(1 + ')ne�⌧
2/2(2e)nn5n! (7.148)
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if ↵ is large enough and c0 small enough. Furthermore, using in particular the mean-
value theorem,

Z +1

⌧

⇥
([�1+' �

b�1)
(n)(t)

⇤2
dt  2⇡

Z

R
t2n(�1+' � �1)

2(t) dt (7.150)

 C'2

Z

R
t2n+2e�t2/(1+') dt (7.151)

 C'2(1 + ')n+1(n+ 1)! , (7.152)

so that if c0 is such that '  1/4,

X

n�blog
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es2

d

�
c

1

2nn!

Z 1

⌧

⇥
([�1+' �
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. (7.153)

The result follows from the last formula, (7.140) and (7.149).
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Chapter 8

Harmonic analysis meets
stationarity: A general framework
for series expansions of special
Gaussian processes

In this chapter, we present a new approach to derive series expansions for some Gaus-
sian processes based on harmonic analysis of their covariance function. In particular, a
new simple rate-optimal series expansion is derived for fractional Brownian motion. The
convergence of the latter series holds in mean square and uniformly almost surely, with a
rate-optimal decay of the remainder of the series. We also develop a general framework
of convergent series expansion for certain classes of Gaussian processes. Finally, an
application to functional quantization is described.

Based on Ndaoud (2018a): Ndaoud, M. (2018a). Harmonic analysis meets station-
arity: A general framework for series expansions of special Gaussian processes. arXiv
preprint arXiv:1810.11850.

8.1 Introduction
Let B = (Bt)t2R+ be a centered Gaussian process. B is called fractional Brownian motion
(fBm) with Hurst exponent H 2 (0, 1) if it has the following covariance structure

8t, s 2 R+, EBsBt =
1

2

✓
t2H + s2H � |t� s|2H

◆
.

Fractional Brownian motion is a self-similar process i.e. 8c, t > 0, Bct
d
= cHBt, with

stationary increments i.e. 8s, t > 0, Bt � Bs
d
= Bt�s, where d

= denotes equality in
distribution. When H = 1/2, fractional Brownian motion coincides with the standard
Brownian motion. Sample paths of fBm are almost surely Hölder-continuous of any
order strictly less than H, and hence are almost surely everywhere continuous.

One of the main challenges with fBm is its simulation, as it is the case for Gaussian
processes with a complex covariance structure in general. The circulant embedding
method, described in Dietrich and Newsam (1997), is one of the most efficient algorithms
to simulate either stationary Gaussian processes or Gaussian processes with stationary
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increments on a finite interval [0, T ] for some T > 0. In particular, the latter algorithm
has an N logN complexity, where N is the number of time steps discretizing [0, T ]. This
complexity is to be compared with linear complexity for the standard Brownian motion
due to the independence of its increments. Besides, circulant embedding does not allow
local refinement.

Alternative approximation methods to simulate a Gaussian process involve its Karhunen-
Loève expansion. The latter expansion is explicitly known for some processes such as the
Brownian motion, the Brownian bridge Deheuvels (2007) and the Ornstein-Uhlenbeck
process Corlay (2010), to name a few. Unfortunately, this expansion is not explicit for
fBm.

Notation. In the rest of this paper we use the following notation. For given se-
quences an and bn, we say that an = O(bn) (resp an = ⌦(bn)) when an  cbn (resp
an � cbn) for some absolute constant c > 0. We write an ⇣ bn when an = O(bn) and
an = ⌦(bn). For X 2 Rp, we denote by kXk the Euclidean norm of X. For x, y 2 R,
we denote by x _ y the maximum value between x and y. In particular x _ 0 will be
denoted by x+. Re(z) denotes the real part of complex variable z. Finally, we denote
by C[0, T ] the space of continuous functions on [0, T ] endowed with the sup-norm.

Related literature
In Ayache and Taqqu (2003), one of the first rate-optimal series expansion of fBm based
on Wavelet series approximations is presented. For the sake of brevity, we only present
, in what follows, trigonometric series, since they can be compared to the framework we
expose further.

The first trigonometric series expansion for fBm on [0, 1] was discovered in Dzha-
paridze and Van Zanten (2004). For 0 < H < 1, the series (BH

t )t2[0,1] is given by

BH
t =

1X

n=1

sin xnt

xn
Xn +

1X

n=1

1� cos ynt

yn
Yn, t 2 [0, 1],

where (Xn)n�1 and (Yn)n�1 are i.i.d centered Gaussian random variables, (xn)n�1 is
the sequence of positive roots of the Bessel function J�H , and (yn)n�1 the sequence
of positive roots of the Bessel function J1�H . The variance of the Gaussian variables
involved in the series is given by

8n � 1, V arXn = 2c2Hx
�2H
n J�2

1�H(xn) and V arYn = 2c2Hy
�2H
n J�2

�H(yn),

where c2H = ⇡�1�(1+2H) sin(⇡H), and � is the gamma function. Dzhaparidze and Van
Zanten (2004) prove rate-optimality of the above series expansion in the following sense.
Definition 8.1.1. Let H 2 (0, 1) and BH a fBm with Hurst exponent H on [0, T ] for
some T > 0. Assume that BH is given by the series expansion

8t 2 [0, T ], BH
t =

1X

i=0

Ziei(t),

where (Zi)i2N is a sequence of independent Gaussian random variables and (ei)i2N a
sequence of continuous deterministic functions. BH is said to be uniformly rate-optimal
if

E sup
t2[0,T ]

�����

1X

i=N

Ziei(t)

����� ⇣ N�H
p
logN.
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In Kühn and Linde (2002), the rate N�H
p
logN is shown to be optimal. Rate-

optimality also means that no other series expansion of fBm has a faster rate of con-
vergence. We show later how rate-optimality implies uniform convergence of the series,
almost surely.

Another rate-optimal trigonometric series expansion for fBm, in the case 1/2 < H <
1, is derived in Iglói (2005), that is close to our representation. For 1/2 < H < 1, this
expansion takes the form

Bt = a0tX0 +
1X

k=1

ak

✓
sin(k⇡t)Xk + (1� cos(k⇡t))X�k

◆
, t 2 [0, 1],

where

a0 =

s
�(2� 2H)

B(H �
1
2 ,

3
2 �H)(2H � 1)

,

8k 2 N⇤, ak =

s
�(2� 2H)

B(H �
1
2 ,

3
2 �H)(2H � 1)

2Re(i exp�i⇡H �(2H � 1, ik⇡))(k⇡)�H� 1
2 ,

and (Xk)k2Z is a sequence of independent standard Gaussian random variables. The
functions �, B, and � are the gamma, beta, and complementary (lower) incomplete
gamma functions, respectively. Even if this representation is easier to evaluate than the
previous one, it still requires computation of special functions.

Main contribution
In this chapter, we give a constructive representation of fBm for all 0 < H < 1 which is
only based on harmonic analysis of its covariance function. Our approach is inspired by
the Karhunen-Loève expansion. The latter expansion is obtained through an interesting
application of the spectral theorem for compact normal operators, in conjunction with
Mercer's theorem. We give here a sketch of its proof. Let KB(., .) be the covariance
function of the process B of interest on [0, 1]2. Mercer's theorem is a series representation
of KB based on the diagonalization of the following linear operator

TKB
: L2 [0, 1] ! L2 [0, 1]

f !
R 1

0 KB (s, .) f(s)ds,

where L2[0, 1] is the space of square-integrable real-valued functions on [0, 1]. In particu-
lar, it states that there is an orthonormal basis (ei)i2N of L2[0, 1] consisting of eigenfunc-
tions of TKB

such that the corresponding sequence of eigenvalues (�i)i2N is nonnegative.
Moreover KB has the following representation

8s, t 2 [0, 1], K(s, t) =
1X

i=0

�iei(t)ei(s),

where the series converges in L2. Considering (Zi)i2N a sequence of independent standard
Gaussian random variables, and assuming the uniform convergence of the following series

8t 2 [0, 1], Xt =
1X

i=0

p
�iZiei(t),
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one may observe that X is a centered Gaussian process on [0, 1] with a covariance
function equal to KB. Hence X and B have the same distribution on [0, 1]. Since
the corresponding eigenfunction sequence (ei)i2N is not explicit for fBm, we follow an
alternative approach.

In the case where B is a stationary process or has stationary increments, TKB
be-

comes similar to a convolution operator. It is well known that the Fourier basis is a basis
of eigenfunctions for the convolution operator, when the convolution kernel is periodic.
In general, we may extend the kernel to an even periodic kernel. Since this modification
applies to the covariance function KB, there is no guarantee that the new symmetric
function K̃B(., .) is positive. In particular, the corresponding eigenvalues are not neces-
sary positive. The last condition is crucial in our approach, since we need to take the
square root of the Fourier coefficients, as described in the Karhunen-Loève proof.

One of the main contributions, is to exhibit a new class � of functions such that the
Fourier coefficients are all negative. Let T > 0 and � be a real valued function on (0, T ].
We say that � satisfies property (?) if

• � is continuously differentiable, increasing and concave.

• x��0(x) = O (1) as x ! 0+, for some � 2 [0, 2).

We denote by � the class of such functions. As a consequence, we derive a new series
expansion for fBm given by

BH
t =

p
c0tZ0 +

1X

k=1

r
�ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
, t 2 [0, T ],

where (
c0 := 0, H < 1/2

c0 := HT 2H�2, H > 1/2,
(8.1)

8k � 1,

(
ck :=

2
T

R T

0 t2H cos k⇡t
T dt, H < 1/2

ck := �
4H(2H�1)T

(k⇡)2

R T

0 t2H�2 cos k⇡t
T dt, H > 1/2,

(8.2)

and (Zk)k2Z is a sequence of independent standard Gaussian random variables. This
series is rate-optimal and its convergence holds uniformly almost surely. More generally,
we also derive series expansion for a general class of Gaussian processes with covariance
operator linked with the class �.

Section 8.2 is devoted to the study of harmonic properties of the class �. In Section
8.3, we present our series expansion for fBm, where we prove both uniform convergence
and rate-optimality. Next, we generalize this series expansion to a large class of Gaussian
processes, before applying it to functional quantization.

8.2 On harmonic properties of the class Gamma
The present section is devoted to general harmonic properties of the class �. Let T > 0
and � 2 �. Consider the corresponding Fourier sequence

8k 2 N, ck(�) :=
2

T

Z T

0

�(t) cos
k⇡t

T
dt. (8.3)
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The next Proposition states some important properties of c(�) = (ck(�))k2N when �
satisfies (?). In what follows, we write for brevity ck = ck(�), as long as there is no
ambiguity.

Proposition 8.2.1. Let � be a function satisfying (?) and c(�) the sequence defined in
(8.3), then

• c(�) is well defined.

• 8k 2 N⇤, ck  0.

• |ck| = O
�

1
k2��

�
.

The proof is given in Appendix 8.7. It is usually not easy to reveal the sign of the
Fourier coefficients of a given function. For the class of functions satisfying (?), it turns
out that the previous question can be answered, based on Proposition 8.2.1. The more
general question of characterizing the class of functions with negative Fourier coefficients
is beyond the scope of this paper. It is also interesting to notice that for � 2 �, the
singularity around 0+, captures the asymptotic behaviour of c(�) that is not trivial in
general.

Inspection of the proof of Proposition 8.2.1, shows that � has a finite limit at 0+, if
� 2 [0, 1).We will use in that case the notation �(0) := lim

x!0+
�(x). The next lemma gives

a useful Fourier expansion for functions in �.

Lemma 8.2.1. Let � be a function satisfying (?) for some � 2 [0, 1). Then

8t 2 [�T, T ], �(|t|) = �(0) +
1X

k=1

ck

✓
cos

k⇡t

T
� 1

◆
,

where the series converges uniformly.

Proof. Let g : R ! R be a function such that

8t 2 [�T, T ], g(t) = �(|t|).

Extending g into a 2T -periodic function, it can be defined on R. Since g is an even
function, its Fourier expansion is given by

8t 2 [�T, T ], g(t) =
1X

k=0

ck cos
k⇡t

T
, (8.4)

where c0 = 1
T

R T

0 �(t)dt and ck = 2
T

R T

0 �(t) cos k⇡t
T dt, k = 1, 2, . . . Using Proposition

8.2.1, we have

|ck| = O

✓
1

k2��

◆
.

Since 0  � < 1, the Fourier expansion of g is normally convergent and hence converges
uniformly. Replacing t by 0 in (8.4) we get that

c0 = �(0)�
1X

k=1

ck.
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It follows that

g(t) = �(0) +
1X

k=1

ck

✓
cos

k⇡t

T
� 1

◆
.

Let � := (�k)k2N be a sequence of real numbers and e := (ek)k2N a family of uniformly
bounded and continuous functions on [0, T ]. We say that (�, e) satisfies (??) if

• 9H > 0, such that |�k| = O
�

1
kH+1/2

�
.

• 9L > 0, such that

8k 2 N, 8s, t 2 [0, T ], |ek(t)� ek(s)|  L |t� s| .

Notice that for � 2 �, and setting e = (cos(.), sin(.), 1� cos(.)), it is easy to check that
(
p

�c(�), e) satisfies (??) for � 2 [0, 1).

Theorem 8.2.1. Let (�k)k2N be a sequence of real numbers, (Zk)k2N a sequence of
centered standard Gaussian random variables, and (ek)k2N a family of continuous func-
tions on [0, T ]. Assume that (�, e) satisfies (??) for some H > 0. Then the seriesPN

k=0 �kek
�
k⇡.
T

�
Zk converges almost surely in C[0, T ]. Moreover, we have

E sup
t2[0,T ]

�����

1X

k=N

�kek

✓
k⇡t

T

◆
Zk

����� = O
N!1

⇣
N�H

p
logN

⌘
.

The proof is deferred to Appendix 8.7. In what follows, we will repeatedly use
Proposition 8.2.1 along with Theorem 8.2.1. In fact, Proposition 8.2.1 describes the
asymptotic behaviour of c(�) for � 2 �, while Theorem 8.2.1 characterizes the rate of
convergence of given series expansions based on the asymptotic behaviour of c(�).

8.3 Constructing the fractional Brownian motion

In this section, we present our first series expansion for fBm and prove its convergence.
The construction is based on harmonic decomposition of the auto-covariance function �
on [0, T ] such that �(t) = |t|2H for some 0 < H < 1. As described in the Introduction,
the diagonalization of the operator TKX

is not explicit for fbm. In order to benefit from
the diagonalization of the convolution operator, we need to extend the auto-covariance
function to a periodic function. The resulting function K̃(., .) is not guaranteed to be
a covariance function. Luckily, harmonic properties of the class � will be useful to get
around this drawback.

Since our approach does not hold for both cases, we give results separately for both
fBm with 0 < H < 1/2 and 1/2 < H < 1, assuming that the series converge. We prove
later the convergence and rate-optimality of these series.
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The series expansion

The following theorem gives an explicit series expansion for fBm when 0 < H < 1/2,
assuming the series convergence.

Theorem 8.3.1. Let H 2
�
0, 12

�
. Consider the function � given by �(t) = t2H , 8t 2

[0, T ]. Denote by c(�) the sequence of its Fourier coefficients. Let B be a stochastic
process given by the series expansion

8t 2 [0, T ], Bt =
1X

k=1

r
�
ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
,

where (Zk)k2Z denotes a sequence of independent standard Gaussian random variables.
Then

8(s, t) 2 [0, T ]2, EBsBt =
1

2

�
t2H + s2H � |t� s|2H

�
.

Proof. For H 2
�
0, 12

�
, we denote by �(t) := |t|2H . It is easy to check that � satisfies (?).

Using Proposition 8.2.1, the above series is well-defined since 8k � 1, ck  0. Because
of the independence between the Gaussian random variables Z, it follows immediately
that

EBsBt =
1X

k=1

�
ck
2

✓
sin

k⇡s

T
sin

k⇡t

T
+

✓
1� cos

k⇡s

T

◆✓
1� cos

k⇡t

T

◆◆

=
1X

k=1

�
ck
2

✓
1� cos

k⇡s

T
� cos

k⇡t

T
+ cos

k⇡(t� s)

T

◆

=
1X

k=1

ck
2

✓✓
cos

k⇡s

T
� 1

◆
+

✓
cos

k⇡t

T
� 1

◆
�

✓
cos

k⇡(t� s)

T
� 1

◆◆
.

(8.5)

We conclude using Lemma 8.2.1.

The previous proof does not hold for the case 1/2 < H < 1. In fact, the Fourier
coefficients c(�) have alternating signs in this case. For H > 1/2, � does not satisfy
property (?). In particular, the change in the sign of c(�) is partially due to the smooth-
ness of �0 around 0. One may still notice that �00 satisfies (?). The next Lemma, gives
a link between c(�) and c(�00).

Lemma 8.3.1. Let � be a twice differentiable function on (0, T ) such that �0(0) 6= �0(T ).
Define f such that

8t 2 [0, T ], f(t) = �(t)�
�0(T )� �0(0)

2T

✓
t+

T�0(0)

�0(T )� �0(0)

◆2

,

then 8k 2 N⇤ we have

ck(f) =

✓
T

k⇡

◆2

ck(��
00).
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Proof. The function f is constructed in such a way that f 0(0) = f 0(T ) = 0. For all
k 2 N⇤, integration by parts yields

Z T

0

f(t) cos

✓
k⇡t

T

◆
dt =

T

k⇡


f(t) sin

✓
k⇡t

T

◆�T

0

�
T

k⇡

Z T

0

f 0(t) sin

✓
k⇡t

T

◆
dt

=

✓
T

k⇡

◆2 
f 0(t) cos

✓
k⇡t

T

◆�T

0

�

✓
T

k⇡

◆2 Z T

0

f 00(t) cos

✓
k⇡t

T

◆
dt

= �

✓
T

k⇡

◆2 Z T

0

�00(t) cos

✓
k⇡t

T

◆
dt.

The last equality is a consequence of orthogonality between constant functions and
harmonics.

The following theorem gives an explicit series expansion for fBm when 1/2 < H < 1,
assuming the series convergence.

Theorem 8.3.2. Let H2
�
1
2 , 1

�
. Consider the function � given by �(t) = �2H(2H �

1)t2H�2, 8t 2 [0, T ]. Denote by c(�) the sequence of its Fourier coefficients. Let B be a
stochastic process given by the series expansion

8t 2 [0, T ], Bt =
p

HT 2H�2tZ0 +
1X

k=1

T

k⇡

r
�
ck
2

✓
sin

k⇡t

T
Zk +

✓
1� cos

k⇡t

T

◆
Z�k

◆
,

where (Zk)k2Z denotes a sequence of independent standard Gaussian random variables.
Then

8(s, t) 2 [0, T ]2, EBsBt =
1

2

�
t2H + s2H � |t� s|2H

�
.

Proof. By considering �(t) = �2H(2H � 1)t2H�2, we notice that � satisfies (?) for
1/2 < H < 1. Moreover

|�0(t)| = O

✓
1

t3�2H

◆
,

as t ! 0+. Since 1 < 3 � 2H < 2, we get using Proposition 8.2.1 that ck  0 for all
k = 1, 2, . . . , and |ck| = O

�
1

k2H�1

�
. We also obtain, using Lemma 8.3.1 that

2

T

Z T

0

�
t2H �HT 2H�2t2

�
cos

✓
k⇡t

T

◆
dt =

✓
T

k⇡

◆2

ck.

Since |ck|
k2 = O

�
1

k2H+1

�
, the Fourier series converges uniformly and we can apply Lemma

8.2.1 to get

8t 2 [�T, T ], |t|2H = HT 2H�2t2 +
1X

k=1

✓
T

k⇡

◆2

ck

✓
cos

k⇡t

T
� 1

◆
.
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Since ck  0 the series expansion is well defined and we have

EBtBs = HT 2H�2ts�
1

2

1X

k=1

✓
T

k⇡

◆2

ck

✓
sin

k⇡t

T
sin

k⇡s

T
+

✓
1� cos

k⇡t

T

◆✓
1� cos

k⇡s

T

◆◆

= HT 2H�2ts�
1

2

1X

k=1

✓
T

k⇡

◆2

ck

✓
1� cos

k⇡t

T
� cos

k⇡s

T
+ cos

k⇡(t� s)

T

◆

=
1

2

 
HT 2H�2(t2 + s2 � (t� s)2) +

1X

k=1

✓
T

k⇡

◆2

ck

✓
cos

k⇡t

T
+ cos

k⇡s

T
� cos

k⇡(t� s)

T
� 1

◆!

=
|t|2H + |s|2H � |t� s|2H

2
.

Convergence and rate-optimality

After giving a new explicit representation of fBm, we prove its convergence in both mean
square sense and almost surely. We also show its uniform rate-optimality. For the rest
of the section, we denote more precisely by (ck)k�0 the following sequence

(
c0 := 0, 0 < H < 1/2,

c0 := HT 2H�2, 1/2 < H < 1,
(8.6)

and for k = 1, 2, . . . ,

(
ck :=

2
T

R T

0 t2H cos k⇡t
T dt, 0 < H < 1/2,

ck := �
4H(2H�1)T

(k⇡)2

R T

0 t2H�2 cos k⇡t
T dt, 1/2 < H < 1.

(8.7)

One may first notice, based on previous results, that |ck| = O
�

1
k2H+1

�
. We will now

consider the series expansion constructed in this section and given by

8t 2 [0, T ], Bt =
p
c0tZ0 +

1X

k=1

r
�
ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
. (8.8)

The following theorems show the convergence of the series in mean square and almost
surely uniformly. Let N 2 N⇤. In what follows, we denote by BN the truncated series
of B that is given by

BN
t =

p
c0tZ0 +

NX

k=1

r
�
ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
. (8.9)

Theorem 8.3.3. Let Bt and BN
t be defined by (8.6)-(8.9), and H 2 (0, 1)\{1/2}. Then,

sup
t2[0,T ]

q
E
�
Bt � BN

t

�2
= O

�
N�H

�
.
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Proof. As we did previously, we will use the independence of Gaussian random variables
(Zk)k2Z. It is straightforward to see that, for all t 2 [0, T ],

E
�
Bt � BN

t

�2
=
X

k>N

�
ck
2

✓
(sin

k⇡t

T
)2 + (1� cos

k⇡t

T
)2
◆

=
X

k>N

�ck

✓
1� cos

k⇡t

T

◆
.

Hence
sup

t2[0,T ]

q
E
�
Bt � BN

t

�2


sX

k>N

|ck|.

Since |ck| = O
�

1
k2H+1

�
, the result follows.

The previous theorem shows the mean square convergence of BN . Since BN is
a centered Gaussian process, and using the fact that the Gaussian Hilbert space is
complete, we deduce that B is a centered Gaussian process with the same covariance as
fBm. It follows that B is a fractional Brownian motion on [0, T ]. We turn now to the
question of rate-optimality of the series expansion.

Theorem 8.3.4. Let B be the series expansion defined in (8.8). Almost surely, BN
t

converges uniformly, and its rate of convergence is given by

E sup
t2[0,T ]

��Bt � BN
t

��⇣N�H
p
log(N).

Proof. We will only need to prove that the rate of convergence of the above series is
faster than N�H

p
log(N) since the latter is the optimal rate of convergence for fBm as

shown in Kühn and Linde (2002). By truncating the series, we have

8t 2 [0, T ], Bt � BN
t =

1X

k=N+1

r
�
ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
.

Since
p

�
ck
2 = O

k!1

�
1

kH+1/2

�
, and using the fact that t ! sin(t) and t ! 1� cos(t) are

1-Lipschitz functions we can directly use Theorem 8.2.1 to conclude the proof.

Finally, we have derived a new series expansion for fBm. Theorem 8.3.4 shows that
this series is moreover rate-optimal.

8.4 Generalization to special Gaussian processes
In this section, we develop a general framework for series expansion of special classes
of Gaussian processes. For all these classes, we prove almost sure uniform convergence
and give the corresponding rate of convergence. The question of rate-optimality of the
presented series expansions is beyond the scope of this paper. We refer the reader to
Proposition 4 in Luschgy and Pagès (2009) that gives some hints on rate-optimality.

The next theorem generalizes the case of fBm. We derive a series expansion for a
class of Gaussian processes with stationary increments. Let � be a function satisfying
(?) for some � 2 [0, 1), and let X be a centered Gaussian process. We say that X is a
Gaussian process of type (A), if it is characterized by the following covariance structure

8t, s 2 [0, T ], EXtXs =
1

2
(�(t) + �(s)� �(|t� s|)) .
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Theorem 8.4.1. Assume that � satisfies (?) for some � 2 [0, 1), and let c(�) be the
sequence of its Fourier coefficients. Let (Zk)k2Z be a sequence of independent standard
Gaussian random variables. Then, the series expansion

Xt =
1X

k=1

r
�ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆
, t 2 [0, T ],

converges uniformly in [0, T ] almost surely and Xt is a Gaussian process of type (A).
Moreover its rate of convergence is given by

E sup
t2[0,T ]

��Xt �XN
t

�� = O

⇣
N� 1��

2

p
log(N)

⌘
,

where XN
t is the truncated series of Xt.

Proof. Applying Proposition 8.2.1, we obtain that ck  0 for k = 1, 2, . . . . Hence, the
series is well defined. Moreover, we also have that |ck| = O

�
1

k2��

�
. Since � 2 [0, 1) we

can use Theorem 8.2.1 to get that

E sup
t2[0,T ]

�����

1X

k=N+1

r
�ck
2

✓
Zk sin

k⇡t

T
+ Z�k

✓
1� cos

k⇡t

T

◆◆����� = O

 p
log(N)

N
1��

2

!
,

and that the series converges almost surely and uniformly in [0, T ]. It follows that Xt

is a centered Gaussian process. Its covariance function is

8s, t 2 [0, T ], EXsXt =
1X

k=1

�ck
2

✓
1� cos

k⇡t

T
� cos

k⇡s

T
+ cos

k⇡(t� s)

T

◆
.

We can conclude using Lemma 8.2.1 that

8s, t 2 [0, T ], EXsXt =
1

2
(�(t) + �(s)� �(|t� s|)) .

Hence Xt is a Gaussian process of type (A).

The next class of interest is a subclass of stationary Gaussian processes. Let � be a
function such that �� satisfies (?) for some � 2 [0, 1), and let X be a centered Gaussian
process. We say that X is a Gaussian process of type (B), if it is characterized by the
following covariance structure

8t, s 2 [0, T ], EXtXs = �(|t� s|).

Theorem 8.4.2. Assume that � is such that �� satisfies (?) for some � 2 [0, 1), and let
c(�) be the sequence of its Fourier coefficients. Let (Zk)k2Z be a sequence of independent
standard Gaussian random variables. If c0 � 0, then the series

Xt =
p
c0Z0 +

1X

k=1

p
ck

✓
sin

k⇡t

T
Zk + cos

k⇡t

T
Z�k

◆
, t 2 [0, T ],

converges uniformly in [0, T ] almost surely, and Xt is a Gaussian process of type (B).
Moreover the convergence is rate-optimal, and its rate is given by

E sup
t2[0,T ]

��Xt �XN
t

�� = O
N!1

⇣
N� 1��

2

p
log(N)

⌘
,

where XN
t is the truncated series of Xt.
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Proof. Using the same steps as for Theorem 8.4.1, we get that the series is well defined,
and that it converges uniformly almost surely. Hence Xt is a Gaussian process. Moreover
we have

8s, t 2 [0, T ], EXsXt =
1X

k=0

ck cos
k⇡(t� s)

T
= �(|t� s|).

It follows that Xt is a Gaussian process of type (B). Since the basis (ek)k2Z used in
this expansion is orthogonal, we may apply the same argument as in Proposition 4 in
Luschgy and Pagès (2009), and deduce that the convergence is rate-optimal.

One immediate consequence is a series expansion for a stationary fractional Ornstein-
Uhlenbeck process Xt with 0 < H < 1/2, where a stationary fOU is a centered Gaussian
process such that

8s, t 2 [0, T ], EXsXt = e�|t�s|2H .

The last series expansion was already derived in Luschgy and Pagès (2009).
The framework we are proposing here can also be applied to Gaussian processes that

are neither stationary nor with stationary increments. As an example we apply it to
another class of Gaussian processes. Let � be a function defined on (0, 2T ), such that
�� satisfies (?) for some � 2 [0, 1), and let Xt be a centered Gaussian process. We
say that Xt is a Gaussian process of type (C), if it is characterized by the following
covariance structure

8t, s 2 [0, T ], EXsXt =
1

2

✓
�(|t� s|)� �(t+ s)

◆
. (8.10)

Theorem 8.4.3. Assume that � is such that �� satisfies (?) on (0, 2T ) for some � 2

[0, 1), and let c(�) be the sequence of its Fourier coefficients on the interval (0, 2T ). Let
(Zk)k2N⇤ be a sequence of independent standard Gaussian random variables. Then, the
series

Xt =
1X

k=1

p
ck sin

k⇡t

2T
Zk, t 2 [0, T ],

converges uniformly in [0, T ] almost surely, and Xt is a Gaussian process of type (C).
Moreover its rate of convergence is given by

E sup
t2[0,T ]

��Xt �XN
t

�� = O
N!1

⇣
N� 1��

2

p
log(N)

⌘
,

where XN
t is the truncated series of Xt.

Proof. Using the same steps as for Theorem 8.4.1, we get that the series is well defined,
and that it converges uniformly almost surely. Hence Xt is a Gaussian process. Moreover
we have

8t, s 2 [0, T ], EXsXt =
1X

k=1

ck

✓
sin

k⇡t

2T
sin

k⇡s

2T

◆
=

1

2

1X

k=1

ck

✓
cos

k⇡(t� s)

2T
�cos

k⇡(t+ s)

2T

◆
.

As a consequence we get that

8t, s 2 [0, T ], EXsXt =
1

2

✓
�(|t� s|)� �(t+ s)

◆
.

It follows that Xt is a Gaussian process of type (C).
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Remark 8.4.1. One may notice that, in Theorem 8.4.3, we have considered a 4T -
periodic basis instead of 2T -periodic because 80 < t, s < T, 0  s+ t  2T .

In order to illustrate Theorem 8.4.3, we give below two examples of corresponding
series expansions.

Example 8.4.1. Karhunen-Loève expansion of the Brownian motion.
In this example, we consider the function �(t) = �|t| on [0, T ]. It is easy to check that
� satisfies the conditions of Theorem 8.4.3. One may also notice that this process is a
Brownian motion on [0, T ] since

8t, s 2 [0, T ],
1

2
(�|t� s|+ |t+ s|) = min(t, s).

An explicit evaluation of the sequence (ck)k2N⇤ gives

8k 2 N⇤, ck =
1

T

Z 2T

0

�t cos
k⇡t

2T
dt

=
2

k⇡

Z 2T

0

sin
k⇡t

2T
dt

=
�
1� (�1)k

�✓ 2

k⇡

◆2

T.

(8.11)

Applying Theorem 8.4.3, it follows that

8t 2 [0, T ], Xt =
p
2

1X

k=1

p
T

(k �
1
2)⇡

Zk sin
(k �

1
2)⇡t

T
,

is a series expansion for Brownian motion on [0, T ], where (Zk)k2N⇤ is a sequence of
independent standard Gaussian random variables.

Example 8.4.2. A new series expansion for the generalized Ornstein-Uhlenbeck process.
In this example we consider the non-stationary Ornstein-Uhlenbeck process (Yt)t�0 where
Y0 is a Gaussian random variable with the following distribution N (µ, �2

0). This process
is a Gaussian process characterized by

8t � 0, EYt = µe�✓t + ↵(1� e�✓t),

and

8s, t � 0, E (Ys � EYs, Yt � EYt) = �2
0e

�✓(t+s) +
�2

2✓

�
e�✓(|t�s|)

� e�✓(t+s)
�
,

for some ✓ > 0 and ↵, � 2 R. By setting �(t) = �2

✓ e
�✓t, we have that �� satisfies con-

ditions of Theorem 8.4.3. Hence, and applying Theorem 8.4.3, the following expansion

8t 2 [0, T ], Xt = Y0e
�✓t + ↵(1� e�✓t) +

1X

k=1

p
ckZk sin

k⇡t

2T
, (8.12)

is a series expansion of the generalized Ornstein-Uhlenbeck process on [0, T ], where
(Zk)k�1 is a sequence of independent standard Gaussian random variables, that are also
independent from Y0.
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An explicit evaluation of the sequence (ck)k2N⇤ gives

8k � 1,
✓

�2
ck =

1

T

Z 2T

0

e�✓t cos
k⇡t

2T
= Re

✓
1

T

Z 2T

0

e(�✓+i k⇡2T )tdt

◆

= Re

 
1� (�1)ke�2✓T

✓T �
ik⇡
2

!
=

1

1 +
�

k⇡
2✓T

�2
1� (�1)ke�2✓T

✓T
.

(8.13)

The expansion (8.12) is easier to use compared to the one known so far that includes
the zeros of Bessel functions.

8.5 Application: Functional quantization
Quantization consists in approximating a random variable taking a continuum of values
in R by a discrete random variable. While vector quantization deals with finite di-
mensional random variables, functional quantization extends the concept to the infinite
dimensional setting, as it is the case for stochastic processes. Quantization of random
vectors can be considered as a discretization of the probability space, providing in some
sense the best approximation to the original distribution. The quantization of a random
variable X taking values in R consists in approximating it by the best discrete random
variable Y taking finite values in R. If we set N to be the maximum number of values
taken by Y , the problem is equivalent to minimizing the following error

⇠N(X) =
�
E (X � Proj�(X))2 , � ⇢ R such that |�|  N

 
. (8.14)

A solution of (8.14) is an L2-optimal quantizer of X.
For a multidimensional Gaussian random variable X optimal quantization is expen-

sive. One way to mitigate this cost, is to consider product-quantization, that is to use a
cartesian product of one-dimensional optimal-quantizers of each marginale as in Print-
ems (2005). The resulting quantizer is stationnary when marginals of X are independent.
In Luschgy and Pagès (2007), it is shown that Karhunen-Loève product-quantization,
while it is sub-optimal, remains rate-optimal in the case of Gaussian processes.

We consider now a continuous Gaussian process (Xt)t2[0,T ] such that
R T

0 E|X2
t |dt <

1, and its expansion

8t 2 [0, T ], Xt =
1X

i=0

�iei(t)Zi,

where (�i)i2N is a sequence of real numbers such that
P1

i=0 �
2
i < 1, (ei)i2N is an

orthonormal sequence of continuous functions, and (Zi)i2N a sequence of independent
standard Gaussian random variables. Notice that the Karhunen-Loève expansion is a
special case of what we are introducing. In this case the error induced by replacing the
process by a rate-optimal quantizer of its truncation up to order m is given by

⇠N(X)2 =

Z T

0

E

 
Xt �

mX

i=0

�iei(t)Yi

!2

dt,

where 8 0  i  m, Yi is an optimal quantizer of Zi taking Ni values and
Qm

i=0 Ni  N .
More precisely we get that

⇠N(X)2 =
1X

i=m+1

�2i +
mX

i=0

⇠Ni
(N (0,�2i )).
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If moreover �2N ⇣
1
N� , with 1 < � < 3, it is shown in Luschgy and Pagès (2002) that, the

optimal product-quantization of level N is achieved when the dimension of the quantizer
m is of order logN and that it satisfies

⇠N(X) ⇣ (logN)
1��

2 .

When the basis (ek)k2N chosen in the series expansion is not orthonormal, an alternative
rate-optimal quantization method is presented in Junglen and Luschgy (2010). The idea
consists in truncating the series up to the optimal order m ⇣ logN and to consider the
finite-dimensional covariance operator Km of the truncation given by

8t, s 2 [0, T ], Km(t, s) =
mX

i=0

�2i ei(t)ei(s).

More specifically, consider H a linear subspace of L2 defined by H = Span((ei)0im).
The operator TKm is given by

TKm :

(
H ! H

f !
R T

0 Km(s, .)f(s)ds.

TKm is clearly an endomorphism. Unlike the Karhunen-Loève theorem, in this case
we deal with a linear and symmetric operator in finite dimension. Hence there exists
(µm

i )0im a sequence of positive real numbers and (fm
i )0im an orthonormal basis of

H such that

8t, s 2 [0, T ], Km(t, s) =
mX

i=0

µm
i f

m
i (t)fm

i (s).

We can then assert that there exists (Y m
i )0im a sequence of independent standard

Gaussian random variables such that

8t 2 [0, T ],
mX

i=0

�iei(t)Zi =
mX

i=0

p
µm
i f

m
i (t)Y m

i a.s.

Following the same argument as in Junglen and Luschgy (2010), if we set m ⇣ logN
and replace the process by a rate-optimal quantizer of

Pm
i=0

p
µm
i f

m
i (t)Y m

i , we will get
the quadratic quantization error

⇠N(X)2 = O
N!1

 1X

i=m+1

�2i +
mX

i=0

⇠Ni
(N (0, µ2

i ))

!
.

Moreover, this error is rate-optimal. As an illustration, we give a rate-optimal quanti-
zation for both fBm and generalized Ornstein-Uhlenbeck with T = 1 and N = 20.

8.6 Conclusion
This paper presents a new framework to derive series expansions for a specific class of
Gaussian processes based on harmonic analysis. One of the main results is a new, simple
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(a) generalized OU ✓ = 2,↵ = 0 (b) fBm H = 0.4

Figure 8.1: Product quantization of a centered Ornstein-Uhlenbeck process, starting
from Y0 = 0 (left), and a fBm (right).

and rate-optimal series expansion for fractional Brownian motion. One of the advan-
tages of this expansion is that its coefficients are easily computed which can reduce the
complexity of simulation, especially for the case H < 1/2 where no other trigonometric
series expansion is known. Our approach is general and gives series expansions for a large
class of Gaussian processes, in particular to the generalized Ornstein-Uhlenbeck process.
The application to quantization is interesting in particular for fBm, where the series ba-
sis is not orthonormal. In this case, we show how to deal with non-orthonormality and
construct a rate-optimal quantizer.
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8.7 Appendix: Proofs
Proof of Proposition 8.2.1. We first prove that � is integrable. The function �0 is con-
tinuous on (0, T ], positive and for � 2 (0, 2) we have that there exists M > 0 and ✏ > 0
such that

8x 2 (0, ✏), 0  �0(x) 
M

x�
. (8.15)

By integrating (8.15), we get

�(x) = O
�
1 + x1��� ,

as x ! 0+. The last result holds also for � = 0. Since 0  � < 2 and � is continuous, it
comes out that � is integrable on (0,T]. It follows that c(�) is well defined.

Before showing the second part, one may first notice that �0 is positive and decreasing
since � is concave and increasing. By a change of variable in (8.3), we get

8k 2 N⇤, ck =
2

T

T

k⇡

Z k⇡

0

�

✓
Tu

k⇡

◆
cos(u)du.

Since
�(u) sin(u) = O

�
sin(u) + u1�� sin(u)

�
,

as u ! 0+, then
lim
u!0+

�(u) sin(u) = 0.

Using integration by parts we obtain, for all k 2 N⇤,

ck = �
2

T

✓
T

k⇡

◆2 Z k⇡

0

�0
✓
Tu

k⇡

◆
sin(u)du

= �
2

T

✓
T

k⇡

◆2 k�1X

n=0

(�1)n
Z ⇡

0

�0
✓
T (u+ n⇡)

k⇡

◆
sin(u)du.

(8.16)

For 0  n < k, we define

vk,n :=

Z ⇡

0

�0
✓
T (u+ n⇡)

k⇡

◆
sin(u)du.

It is immediate that, 8k 2 N⇤, (vk,n)n<k is nonnegative and decreasing with respect to
n. Regrouping each pair of elements in (8.16), we get

ck = �
2

T

✓
T

k⇡

◆2
0

@
b k

2 c�1X

n=0

(vk,2n � vk,2n+1) +
1� (�1)k

2
vk,k�1

1

A .

It follows that ck  0, 8k 2 N⇤. For the last point, we use again the second part of
(8.16) and get

ck = �
2

T

✓
T

k⇡

◆2 k�1X

n=0

(�1)nvk,n.
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Since the sequence ((�1)nvk,n)n<k has alternating signs and a decreasing modulus, it
turns out that

|ck| 
2T 2

k2⇡2
vk,0 

2T 2

k2⇡2

Z ⇡

0

�0
✓
Tu

k⇡

◆
sin(u)du.

In order to conclude, it is enough to prove that
Z ⇡

0

�0
✓
Tu

k⇡

◆
sin(u)du = O(k�).

Since � 2 �, we can check that x ! x��0(x) is uniformly bounded on [0, T ]. Let M be
this uniform bound, then

0 

Z ⇡

0

�0
✓
Tu

k⇡

◆
sin(u)du  M

✓
k⇡

T

◆� Z ⇡

0

sin(u)

u�
du.

As � belongs to [0, 2), it follows that

|ck| = O(k��2).

This concludes the proof.

Proof of Theorem 8.2.1. We will use the following standard bound on the maximum
of centered Gaussian random variables. If X1, . . . , XM are centered Gaussian random
variables, then there exists c > 0, such that

E max
1iM

|Xi|  c
p
logM max

1iM

q
EX2

i . (8.17)

We denote by vk(t) := �kek(
k⇡t
T )Zk for k 2 N and t 2 [0, T ]. The proof is divided in two

parts. We first show that, for some A > 0, we have

8n 2 N⇤, E sup
t2[0,T ]

�����

2n+1�1X

k=2n

vk(t)

�����  A
p
n2�nH . (8.18)

Let N 2 N, for all 0  j  N � 1, we denote by Ij =
⇥
j T
N , (j + 1) T

N

⇤
and tj the

corresponding center i.e. tj = (j + 1/2) T
N . Let n 2 N⇤, we have
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(8.19)
Using (8.17) we get
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(8.20)



8.7. APPENDIX: PROOFS 211

for some C 0 > 0. The last inequality comes from the fact that Evk(tj)2  �2k||ek||
2
1 

C
k1+2H , for some C > 0.
For the second part of (8.19), we have
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Observing that 8t 2 Ij we have |t� tj| 
T
N , we get that

sup
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(8.22)

Replacing in (8.21), it follows that
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(8.23)

Combining (8.20) and (8.23) we deduce that
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Replacing N = 22n in (8.24), we prove (8.18).
The previous result holds even if we replace

���
P2n+1�1

k=2n vk(t)
��� by

���
P2n+1�1

k=M vk(t)
��� for

some M 2 [2n, 2n+1
� 1]. Let N be a positive integer. By taking m = blogN/ log 2c, we

get
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We can conclude, using (8.18), that

E sup
t2[0,T ]

�����

1X

k=N+1

vk(t)

�����  A
1X

i=m

p

i2�iH
 A0pm2�mH . (8.26)

It suffices to observe that 2m  N < 2m+1, to obtain the rate of the uniform convergence.
The uniform tightness implies that

PN
k=0 vk has a weak limit in C[0,T] the space of

continuous functions on [0,T]. We remind the reader that we endow this space with the
supremum metric. By the Itô-Nisio theorem, we get, as in Itô et al. (1968), that the
process

PN
k=0 vk converges in C[0, T ] almost surely.





Conclusion

In this thesis, we focused on some problems specific to high-dimensional statistics and
their applications to machine learning.

Our main contribution is with respect to the problem of variable selection in high-
dimensional linear regression. We derive non-asymptotic bounds for the minimax risk
of support recovery under expected Hamming loss in the Gaussian mean model in R

d

for classes of s-sparse vectors separated from 0 by a constant a > 0. In some cases,
we also find explicitly the corresponding minimax selectors and their adaptive variants.
As corollaries, we characterize precisely an asymptotic sharp phase transition for both
almost full and exact recovery.

As for the problem of exact support recovery in Compressed Sensing, we propose an
algorithm for exact support recovery in the setting of noisy compressed sensing where
all entries of the design matrix are i.i.d standard Gaussian. This algorithm is the first
polynomial time procedure to achieve the same conditions of exact recovery as the
exhaustive search (maximal likelihood) decoder that were studied in Rad (2011) and
Wainwright (2009a). Our procedure has an advantage over the exhaustive search of
being adaptive to all parameters of the problem, robust and computable in polynomial
time.

Motivated by the interplay between estimation and support recovery, we introduce a
new notion of scaled minimaxity for sparse estimation in high-dimensional linear regres-
sion model. We present more optimistic lower bounds than the one given by the classical
minimax theory and hence improve on existing results. We recover the sharp result of
Donoho et al. (1992) for global minimaxity as a consequence of our study. Fixing the
scale of the signal-to-noise ratio, we prove that estimation error can be much smaller
than the global minimax error. Among other findings, we show that exact support
recovery is not necessary to achieve the optimal scaled minimax rate.

As for the problem of clustering in the two components Gaussian Mixture Model,
we provide a precise non-asymptotic characterization of the minimax Hamming risk. As
a consequence we recover the sharp phase transition for exact recovery in this model.
Namely, the phase transition occurs around the threshold � = �̄n such that

�̄2
n = �2

✓
1 +

r
1 +

2p

n log n

◆
log n.

Our procedure achieves the previous threshold. It is a variant of Lloyd’s iterations
initialized by a spectral method. This procedure is fully adaptive, rate optimal and
computationally simple. It turns out that our procedure is, to the best of our knowledge,
the first fast method to achieve optimal exact recovery.

Another main contribution is devoted to some effects of adaptivity under sparsity,
where adaptivity is either with respect to the noise level or its nominal law. We derive
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the minimax optimal rates and exhibit minimax estimators for estimation of the noise
variance �2 for different classes of noise. For instance, when the noise distribution is
exactly known, then �2 can be estimated faster if the noise have known polynomial tails
rather than belongs to the class of sub-Gaussian noise. Similar results are derived for
the problem of minimax estimation of k✓k2. Finally, we study the minimax optimality
of estimation of ✓ when the noise belongs to a class of distributions with polynomial tails
or exponential tails. We derive the minimax rates for these settings. An unexpected
conclusion is that in the sparse mean model, the optimal rates are much slower and
depend on the polynomial index of the noise as opposed to the rates in regression with
"well spread" regressors.

In our last contribution, we propose a new approach to derive series expansions for
some Gaussian processes based on harmonic analysis of their covariance function. In
particular, a new simple rate-optimal series expansion is derived for fractional Brown-
ian motion. The convergence of the latter series holds in mean square and uniformly
almost surely, with a rate-optimal decay of the remainder term of the series. We also de-
velop a general framework of convergent series expansion for certain classes of Gaussian
processes.
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