
HAL Id: tel-02274370
https://pastel.hal.science/tel-02274370

Submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic management of tracking ressources for
hyper-manoeuvring targets

Marion Pilté

To cite this version:
Marion Pilté. Dynamic management of tracking ressources for hyper-manoeuvring targets. Automatic.
Université Paris sciences et lettres, 2018. English. �NNT : 2018PSLEM068�. �tel-02274370�

https://pastel.hal.science/tel-02274370
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres
PSL Research University

Préparée à MINES ParisTech

Dynamic management of tracking resources for hyper-manoeuvring targets
Gestion dynamique des ressources de poursuite pour cibles hyper-manœuvrantes

École doctorale no432

SCIENCE DES MÉTIERS DE L’INGÉNIEUR

Spécialité MATHÉMATIQUES, INFORMATIQUE TEMPS-RÉEL, ROBOTIQUE

Soutenue par Marion PILTÉ
le 14 Novembre 2018

Dirigée par Silvère BONNABEL

COMPOSITION DU JURY :

M Stéphane PUECHMOREL
ENAC, PRÉSIDENT DU JURY

M NICOLAS LE BIHAN
CNRS/GIPSA-LAB, RAPPORTEUR

M DANIEL CLARK
TELECOM SUD-PARIS, EXAMINATEUR

MME AUDREY GIREMUS
IMS BORDEAUX, EXAMINATEUR

M SILVÈRE BONNABEL
MINES PARISTECH, EXAMINATEUR

M FRÉDÉRIC BARBARESCO
THALES, EXAMINATEUR

Abstract

The new generation of radars is facing increasingly threatening targets. These radars are asked
to perform several tasks in parallel, including surveillance and tracking. To this aim, they can
be equipped with staring antennas, so they overcome the constraints induced by the rotation of
the antenna. The tracking function of the radar has thus to be upgraded to respond to the double
issue of tracking highly manoeuvring targets and managing the resources to balance time between
tasks.

In this context, this thesis investigates new means of tracking highly manoeuvring targets. A
new target model based on intrinsic coordinates to perform target tracking is proposed. This new
target model is expressed in the frame of the target itself, and uses the Frenet-Serret frame, which
is well suited to the description of highly dynamic manoeuvres involving normal accelerations
that are much larger than earth gravity. A filtering algorithm using the special intrinsic formula-
tion of the target model is developed. This filtering algorithm is very similar in terms of imple-
mentation to an Extended Kalman filter, and was implemented using real data. The comparison
with standard target models and filtering algorithms show improvements over simple models and
algorithms on a large set of trajectories. A new estimation method, relying on the least squares
formulation of the smoothing approach, and taking into account kinematic jumps in the trajec-
tory is also developed. This method also shows improvements over a set of common algorithms
based on standard manoeuvre detection. Independently, we investigate the issue of update rate
adaptation for radar measurements. A very general update rate adaptation algorithm is derived
to optimise the time of revisit of each target, allowing to preserve the radar time budget for other
tasks simultaneously performed, such as surveillance.

Keywords: State estimation, Target tracking, Kalman filter, Lie groups, Update rate adaptation

i

ii

Remerciements

Mener à bien une thèse n’est pas chose aisée. Cela n’aurait pu être possible sans l’aide et le soutien
de nombreuses personnes, que je tiens à remercier ici.

Tout d’abord, je remercie particulièrement mon directeur de thèse, Silvère Bonnabel, sans qui
les travaux présentés dans ce document n’auraient pas eu la même allure. Merci d’avoir relu et
minutieusement corrigé les différents articles, journaux, et autres rapports. Merci aussi pour tous
les conseils avisés et l’aide précieuse apportée pendant ces trois années. Je remercie également
mon encadrant chez Thales, Frédéric Barbaresco, pour m’avoir proposé ce sujet de thèse passion-
nant, et pour m’avoir donné la possibilité de tester mes méthodes dans diverses unités de Thales
avec des problématiques à chaque fois différentes.

Mes remerciements vont également aux ingénieurs de Thales Guillaume Foliard et François
Gosselin, assidus dans leurs suivi, avec des remarques toujours pertinentes, et qui m’ont permis
d’apporter des améliorations à mes résultats. Merci aussi d’avoir courageusement et patiemment
tenté de suivre des explications parfois un peu compliquées au début. Merci aussi à Mathieu Klein,
Roch Settineri, ainsi que Loïc Zimmer pour avoir proposé de nouvelles pistes de réflexion pendant
la thèse.

Je suis très reconnaissante aux membres du jury d’avoir accepté d’évaluer mon travail de thèse.
En particulier, je remercie les rapporteurs Stéphane Puechmorel et Nicolas le Bihan qui ont con-
sacré du temps à la lecture de mon manuscrit, ainsi que Audrey Giremus et Daniel Clark pour
la participation au jury de thèse. Enfin, merci à Frédéric Livernet, avec qui j’ai eu l’occasion
d’échanger, et de confronter nos points de vue pendant ma thèse.

Que serait une thèse sans collègues doctorants ? Je tiens à remercier tous les doctorants du
CAOR, qui m’ont permis de passer trois années de thèse très agréables. Tout d’abord, les doctor-
ants de mon année, Philip, Florent, Xavier, Daniele, et Mathieu, avec qui j’ai partagé les mêmes
doutes au cours de ces années. Je n’oublie pas les autres doctorants : Guillaume, Aubrey, Grégoire,
Eva, Paul, Martin, Marin, Hassan, Salwa, Houssem, Olivier. Je remercie également les doctorants
de Thales, Hour, Fabien, Yanis et Alice pour les pauses passées à argumenter sur la supériorité de
nos villes respectives.

Enfin, un mot pour mes parents et mon frère, qui ont commencé à me soutenir bien avant le
début de cette thèse, et qui ont continué durant ces années.

iii

iv

Contents

Contents v

1 Introduction 1
1.1 Résumé en français . 2
1.2 Foreword . 3
1.3 Radar systems . 3

1.3.1 History . 3
1.3.2 General description of radar systems . 3
1.3.3 Digital processing . 5
1.3.4 Target tracking . 5

1.4 Motivations and objectives . 7
1.4.1 State estimation . 7
1.4.2 Update rate adaptation . 7

1.5 Contributions of the thesis . 8
1.6 Papers published during the thesis . 8
1.7 Organisation of the document . 9

I State estimation: target models and filtering algorithms 11

2 Target model in intrinsic coordinates 13
2.1 Résumé en français : Modèle de cible en coordonnées intrinsèques 14
2.2 Introduction . 14
2.3 State of the art . 16

2.3.1 Model without manoeuvres . 16
2.3.2 Manoeuvre models with decoupled coordinates 17
2.3.3 Non-linear models, intrinsic models . 20
2.3.4 Models with jumps . 21
2.3.5 Lie group based models . 22

2.4 Radar industrial tracking models . 23
2.4.1 3D target model . 23
2.4.2 Multiple target models . 23

2.5 Radar measurement models . 25
2.6 New target model in intrinsic coordinates . 27

2.6.1 2D target model . 27
2.6.2 3D target model . 29
2.6.3 Generalisations . 31

2.7 Conclusion . 32

3 Filtering algorithms 35
3.1 Résumé en français : Algorithmes de filtrage . 36
3.2 Introduction . 36
3.3 The estimation problem for single target tracking . 37

v

CONTENTS

3.3.1 Optimal filter . 37
3.3.2 Suboptimal filters . 38

3.4 State of the art . 38
3.4.1 Linear Kalman Filter . 38
3.4.2 Interacting Multiple Model Filter (IMM) . 39
3.4.3 Non-linear filters . 40

3.5 IEKF applied to the 2D Frenet-Serret model . 46
3.5.1 Position observations in Cartesian coordinates 48
3.5.2 Range and bearing observations . 49
3.5.3 Comparison with an EKF derived from the same target model 50
3.5.4 Discussion . 51

3.6 IEKF applied to the 3D Frenet model . 52
3.6.1 Similarities with the Invariant theory . 52
3.6.2 Derivation of the algorithm . 53
3.6.3 Discussion on the filter’s expected stability . 55

3.7 Simulations . 55
3.7.1 2D simulations and comparison with the EKF on the same target model . . . 56
3.7.2 3D simulations . 56

3.8 Left-invariant UKF on a 2D model . 61
3.8.1 Derivation of the filter . 61
3.8.2 Results . 63

3.9 Conclusion . 63

4 Comparison with other existing algorithms and models 65
4.1 Résumé en français : Comparaison avec d’autres modèles et algorithmes existants . 66
4.2 Introduction . 66
4.3 Process noise tuning . 67

4.3.1 Issues of noise tuning . 67
4.3.2 Castella noise tuning . 69

4.4 Test on a real scenario . 71
4.5 The models and algorithms used for comparison . 72

4.5.1 Constant velocity and the EKF . 72
4.5.2 Multiple model and the IMM . 72
4.5.3 The Frenet-Serret target model with an IEKF . 72
4.5.4 The Frenet-Serret target model with an EKF . 73

4.6 Set of trajectories . 73
4.6.1 Simulators . 74
4.6.2 Kinematic characteristics . 75

4.7 Results . 76
4.7.1 Set of trajectories to tune the process noise . 76
4.7.2 Set of trajectories to test the tunings . 77

4.8 Conclusion . 81

II Alternative state estimation: Smoothing 83

5 Smoothing applied to target state estimation 85
5.1 Résumé en français : Lissage appliqué à l’estimation d’état 86
5.2 Introduction . 86
5.3 Smoothing as an estimation procedure for target tracking 87

5.3.1 Smoothing as an alternative to filtering algorithms 87
5.3.2 Classical smoothing approach . 87

vi

CONTENTS

5.3.3 Restriction to a deterministic evolution model over a sliding window as a tun-
ing strategy . 89

5.4 Smoothing applied to deterministic systems with random jumps 91
5.4.1 Considered systems and simplifying assumptions 91
5.4.2 Corresponding smoothing problem . 91

5.5 Proposed algorithm . 92
5.6 Application to a linear target model . 95

5.6.1 Target model . 95
5.6.2 Full resolution of the deterministic problem . 95
5.6.3 Linear target model with jumps . 96

5.7 Application to the 2D Frenet-Serret target model . 97
5.7.1 Solving the smoothing problem without jumps 97
5.7.2 Accounting for jumps . 99

5.8 Comparison with other algorithms . 99
5.8.1 Comparison with the IEKF . 100
5.8.2 Comparison with an IMM . 101

5.9 Discussion . 105
5.9.1 Comparison with other filters . 105

5.10 Conclusion . 105

III Update rate adaptation 107

6 Update rate real-time optimisation 109
6.1 Résumé en français : Optimisation en temps réel de la fréquence des mesures 110
6.2 Introduction . 110
6.3 Fixed update optimisation criterion . 111

6.3.1 General formulation of the optimisation problem 111
6.3.2 Resolution . 112
6.3.3 Practical use of the criterion . 114

6.4 Discussion . 114
6.5 Conclusion . 114

7 Adaptive update rate 117
7.1 Résumé en français : Cadence adaptative . 118
7.2 Introduction . 118

7.2.1 Links with prior literature . 119
7.2.2 Organisation and contributions of the chapter 119

7.3 Update rate adaptation with a non-linear model . 119
7.3.1 Method: an adaptive criterion for update rate adaptation 120
7.3.2 Underlying search strategy . 120

7.4 Application: Non-linear target model . 121
7.5 Experiments . 122

7.5.1 Tracking results with a Linear Kalman filter and an IEKF 122
7.5.2 Update rate adaptation . 126

7.6 Discussion . 129
7.7 Conclusion . 129

8 Conclusion 131
8.1 Résumé en français . 131
8.2 Summary of the main contributions of the thesis . 131
8.3 Future work . 132

vii

CONTENTS

A Mathematical definitions: Lie groups 135
A.1 General definitions . 135
A.2 Specific Lie groups used in the thesis . 135

A.2.1 Group of 2D rotations SO(2) . 135
A.2.2 Group of 2D rotations and translations SE(2) 136
A.2.3 Group of 3D rotations SO(3) . 136
A.2.4 Group of 3D rotations and translations SE(3) 137

B More details about the Kalman Filter 139
B.1 Maximum Likelihood Estimator . 139
B.2 Algorithm derivation . 139

C Linearisation of the 2D Frenet-Serret model for smoothing 141

D Particle filters with jumps 143
D.1 The Rao-Blackwell particle filter . 143

D.1.1 Description . 143
D.1.2 Results on piecewise linear trajectories . 145

D.2 Variable Rate Particle Filter . 148

viii

Chapter 1

Introduction

Sommaire
1.1 Résumé en français . 2

1.2 Foreword . 3

1.3 Radar systems . 3

1.3.1 History . 3

1.3.2 General description of radar systems . 3

1.3.3 Digital processing . 5

1.3.4 Target tracking . 5

1.4 Motivations and objectives . 7

1.4.1 State estimation . 7

1.4.2 Update rate adaptation . 7

1.5 Contributions of the thesis . 8

1.6 Papers published during the thesis . 8

1.7 Organisation of the document . 9

1

CHAPTER 1. INTRODUCTION

1.1 Résumé en français

Ce travail est le résultat de trois années de thèse CIFRE-Défense menée avec Thales Land and Air
Systems, et l’école des Mines ParisTech et en partie financée par la DGA (Direction Générale de
l’Armement).

Le mot radar est l’acronyme anglais de "RAdio Detection And Ranging", et est apparu en 1940.
L’histoire du radar remonte pourtant au début du vingtième siècle, avec les expériences de Nikola
Tesla et de Christian Hülsmeyer. Cependant, les principales avancées des systèmes radars ont
eu lieu avec la demande militaire dans les années 1930. Les radars modernes n’ont cessé de se
développer depuis lors. Ces radars modernes sont des radars à compression d’impulsion, et ont
mené aux radars à balayage électronique actuels. La théorie radar comprend de multiples champs
de recherche, comme par exemple la théorie des antennes, le traitement du signal, le traitement
numérique. Le travail présenté dans ce document traite principalement du traitement numérique,
et notamment de la conception d’algorithmes dédiés aux besoins actuels en termes de perfor-
mances de suivi de cibles, et de capacité de charge des radars.

Un radar envoie des ondes électromagnétiques dans l’espace et analyse les ondes réfléchies
par les objets présents dans son champ de vision. Notamment, la position de la cible peut être
connues en coordonnées (distance, azimut, élévation), correspondant aux mesures effectuées par
le radar. Ces mesures n’étant pas infiniment précises, il est nécessaire de tenir compte du bruit
de mesure, dont on connaît les caractéristiques dans ce système de coordonnées. Le pistage de
cible consiste alors à former des "pistes" à partir de ces mesures de position bruitées. Une piste
correspond à la trajectoire d’un objet d’intérêt, accompagnée de caractéristiques calculées par le
radar, comme par exemple la cinématique de la cible considérée (vitesse, accélération, ...). Dans
cette thèse, on s’intéresse à la phase d’estimation de l’état cinématique des cibles. On cherche
donc à estimer des paramètres cinématiques choisis à partir de mesures de position bruitées, dans
le but de prédire la position de la cible pour la poursuite active, qui nécessite d’orienter le faisceau
du radar spécifiquement vers la cible que l’on veut suivre.

Les motivations de ce travail sont multiples. D’une part, de nouveaux types de radars voient
le jour, notamment les radars multifonctions à panneaux fixes. Ces radars doivent faire face à de
multiples tâches en parallèle. Un gestionnaire de ressources est donc utilisé afin d’ordonner les
différentes tâches. Mais chacune des tâches doit également être optimisée en temps de façon à
permettre au radar d’effectuer un maximum de tâches. Une partie du travail a donc été consacrée
à la recherche d’une méthode pour optimiser le temps utilisé par l’antenne radar pour effectuer la
poursuite active. D’autre part, les menaces ont également évolué. En effet, les cibles sont de plus
en plus manœuvrantes, et peuvent avoir des accélérations, notamment normales, supérieures à
15g . Du côté des applications civiles, les drones représentent une menace, avec des comporte-
ments différents des cibles usuelles traitées dans le cadre du contrôle de trafic aérien. Les solu-
tions de pistage utilisées actuellement ne sont pas entièrement satisfaisantes pour ces nouvelles
menaces, il s’agit donc dans la thèse de proposer d’autres méthodes pouvant répondre de façon
plus adaptée aux problèmes de pistage des cibles hyper-manœuvrantes.

Les contributions de la thèse peuvent donc se résumer aux points suivants :

• Modèle de cible : un nouveau modèle de cible est proposé dans ce document. Ce modèle est
exprimé en coordonnées intrinsèques, et est conçu pour représenter tous les mouvements
possibles d’un objet en 2D ou en 3D.

• Algorithme de filtrage : l’espace mathématique utilisé pour décrire le modèle de cible étant
différent des espaces vectoriels habituels, un algorithme de filtrage tirant parti de la formu-
lation du modèle est développé. La formulation de cet algorithme est proche de celle du
filtre de Kalman, et le filtre peut donc être implémenté assez facilement sur des simulateurs
de pistage existants.

• Algorithme de lissage : afin de prendre en compte des sauts importants dans la dynamique
des cibles, un algorithme reposant sur l’optimisation et spécialement conçu pour les mod-

2

CHAPTER 1. INTRODUCTION

èles à sauts est proposé. L’algorithme de lissage ainsi obtenu détecte les sauts très rapide-
ment, et permet une convergence rapide de l’estimation après un saut.

• Cadence adaptative : cette contribution est indépendante des précédentes, et propose une
méthode d’optimisation de la cadence de mesure de pistage, dans le but de réduire le temps
du radar consacré à cette tâche.

• Expériences industrielles : des expérimentations de l’algorithme de filtrage présenté ont
été réalisées dans différentes équipes de Thales. Ces résultats sont partiellement présen-
tés dans ce document, et conduisent également à une discussion sur l’enjeu du réglage de
paramètres des différents algorithmes.

1.2 Foreword

This work has been done in collaboration between Thales Land and Air Systems, the Ecole des
Mines ParisTech PSL University, and has been partly supported by the DGA (Direction Générale de
l’Armement), part of the French defence ministry. The main application of the work is ground and
naval radars. In this introduction, the general principles of radar systems are presented, to have
an overview of the main issues addressed in this work. The objectives and the main contributions
of the thesis are presented. Finally, the organisation of the document is outlined.

1.3 Radar systems

1.3.1 History

The word Radar is an acronym for Radio Detection and Ranging. For a full introduction to the
history of radar, please refer to [41] or to [17]. The word appeared in 1940 in the US army, it was
in fact a code name. However, radar systems have begun to emerge much earlier. The earliest
radar systems were developed to detect objects, without their participation, to avoid collisions for
navigation purpose in the early 20th century. First experiments have been held by Nikola Tesla
in 1900 and Christian Hülsmeyer in 1904. Yet, the main advances in radar systems are due to the
military requirements of the 1930s, and of the second world war. Several countries developed their
own radar systems simultaneously.

The modern radars have been developed in the second part of the 20th century. These modern
radars are pulse compression radars. Their development have led to nowadays radars, such as
scanned array radars. There are now very different types of radars, bistatic or monostatic radars,
active or passive radars, primary or secondary radars. These radars have different use, including
both military and civilian (for air traffic control) applications.

Radar theory deals with different scientific fields. Antenna theory, signal processing, digital
processing, including algorithm design, statistical analysis are the main scientific domains that
are used to design a complete radar system. This work is mostly concerned with digital processing,
however, some fundamental notions about radar systems are necessary to understand the ins and
outs of the applications developed in this document. They are briefly presented thereafter.

1.3.2 General description of radar systems

Numerous books are dedicated to radar, such as [41] or [105], and provide a thorough description
of radar systems. A radar sends electromagnetic waves in the air. The wave is reflected when it
encounters an object, as represented by figure 1.1. The radar can then analyse the reflected signal.
The radar is thus composed of a transmitter and a receptor that are responsible for the creation
and the analysis of the electromagnetic wave.

The design of the antenna and the transmitted signal have to be carefully devised, since the
signal is polluted with noise in the atmosphere, and the reflected signal has a very lower amplitude

3

CHAPTER 1. INTRODUCTION

Figure 1.1 – Radar fundamental principle

than the transmitted one, depending on the distance of the object. The energy of the received
signal is proportional to the energy of the transmitted signal divided by the distance to the power
4. The receptor is thus very sensitive, and amplifies the received signal, but also adds some noise
to it, due to the processing applied.

The primary radars measure the position of the target without any cooperation of the target.
The position is usually given as the range (distance from the target to the radar), the azimuth of the
target with respect to the radar, and the elevation of the target. Azimuth and elevation are angles.
The range, azimuth and elevation coordinates are represented on figure 1.2.

Figure 1.2 – Radar measurements

The range measurement is done by measuring the time the wave takes to go back and forth.
This time is then multiplied by the velocity of the wave propagation, assumed to be the light veloc-
ity, and divided by two (to take into account the round trip). The angle measurements (azimuth
and elevation) are possible because of the directivity of the beam of the radar. The radar sends
energy in a given direction, and the measured azimuth and elevation thus lie in a limited angle.
This measurement is results in a lesser precision in the final position measurement than the range
measurement, and the precision is degraded with the distance of the target to the radar, as will be
developed in the radar measurement models in section 2.5.

The secondary radars do not measure directly the position of the target. They ask for the pres-
ence of a target, and for its position, and wait for the target answer. The target itself measures its
own position. Secondary radars information relies on cooperation. This is the case (most often)
for civilian traffic control, but not for military surveillance. Even for civilian applications, a non-

4

CHAPTER 1. INTRODUCTION

cooperative handling must be performed just in case. The advantage of using secondary radars
is the greater precision of the measurements, especially for the altitude information. Secondary
radars are also able to receive ADS-B (Automatic Dependent Surveillance - Broadcast) data from
an aircraft that provides extensive information about its state, among which its position.

1.3.3 Digital processing

The digital processing unit receives raw information from the receptor. The digital processor is in
charge of creating the plots, which are objects that represent a detection, with a radar observation
associated to it. A plot represents one object, with diverse attributes, which may include its posi-
tion, identification, the uncertainty of the measurement, the Doppler measurement, and possibly
other useful information.

The atmosphere estimation is used to evaluate the level of noise present in a scene (for ex-
ample, the presence of clouds in the sky can bring some noise to the signal). The detection test
is a logical test of Neyman-Pearson, which is done thanks to a threshold. The Neyman-Pearson
test consists of setting the false alarm probability and maximising the detection probability (this is
possible because statistical noise models exist). The elementary hits correspond to zeros or ones
that indicates the presence or not of an object (or part of an object).

Figure 1.3 – Digital processing

The signal received is digitised on an intermediate carrier (on R). Then, several treatments
are applied to process the data and convert it into the description of one detection of one phys-
ical object (indeed, a single object is illuminated by several elementary signals, that have to be
agglomerated). The elementary treatments are summarised on figure 1.3.

1.3.4 Target tracking

The radar can operate two different tasks: search and tracking. Search consists of detecting the
presence of objects and reporting the detections. Tracking has to follow a given object, which is
labelled, and infer its kinematic parameters.

The tracker then has to generate tracks from the plots. A track corresponds to the evolution
of one given detected object in time. The observations are polluted by noise. There are two types
of uncertainties: first the presence or not of an object of interest, when a detection does not cor-
respond to such an object, it is called false alarm; and second, the uncertainties on the measure-
ments, created by the radar itself. Indeed, the observations are not infinitely precise, and the val-
ues are polluted by some noise, that must be estimated (it depends on the radar used), and this
noise has to be taken into account in the algorithms. The noise comes from different factors, as
explained in [40]. There is a part of the error dependent on the signal-to-noise ratio, a random part
due to the noise in the final steps of the receiver (but it leads to relatively small errors, and gives
mostly a limit on the achievable precision), some bias can be due to the calibration and measure-
ment steps, some errors are due to propagation or uncertainties in the correction of propagation
errors, and finally errors due to interferences or clutter are also present. Usually, only the first
source of error (dependent on the signal-to-noise ratio) is modelled in the observation equation.

The objective of tracking is to analyse the plots, and output the tracks. A track contains the
label of the object, some kinematic description (position, velocity ...), possibly the identification of

5

CHAPTER 1. INTRODUCTION

the object (aircraft, missile, boat for instance), and other useful information for the radar operator.
Some of this information is directly output for the operator, and the rest is only used to feed the
tracker. The chain for tracking is represented on figure 1.4.

Figure 1.4 – Tracking chain

A track has first to be initialised. This is done during the initialisation phase, and the initial
values of the kinematic parameters are computed, with their covariance. The association is the
step where the plots are associated to the existing tracks. Indeed, assume there are at one point 6
identified tracks. The extractor gives a plot to the tracker. This plot has to be either associated to
one of the 6 tracks, or considered as false alarm. This is the role of the association. The filtering
part corresponds to the estimation of the different useful kinematic parameters of one track (for
instance position, velocity, or acceleration ...). Finally the beam scheduler manages the order of
the tasks that must be done, as detailed in the following. When the track is lost for several time
steps, which means the radar cannot recover sight of the target, the track is killed.

There are two modes in which the tracking can be done. The first mode is the track while scan
mode (TWS). It is used to perform tracking during the search task. The second mode is Active
Tracking (AT). It consists of dedicating the illuminations for one target. This mode can be used
when the targets are menacing. The radar beam is oriented specifically in the direction of the
target. The beam is thinner, so that the position measurement is more precise. This means that the
radar has to know in which direction it should send its beam to find the target. The role of tracking
is then both to tell the radar this direction, as shown on figure 1.5, and estimate the kinematics of
the target.

Figure 1.5 – Active track

If the radar antenna is non-rotating, the rate of the measurements can be made fully adaptive,
in this case, the update rate adaptation for active tracking is part of the beam scheduling. The
update rate is computed by the filtering algorithm, which tells the beam scheduler at what time
the target should be next illuminated. The scheduler has to decide which task to perform in which
order. There might be several targets in the active track mode, and the track while scan mode has
to have enough time budget to detect any target that enters the sight of the radar. Moreover, in
case of losses in detection, reacquisition beams or reacquisition patterns are scheduled.

6

CHAPTER 1. INTRODUCTION

1.4 Motivations and objectives

New types of radars are arising, and specifically fixed antenna, multifunction radars. This new gen-
eration of radars require new algorithms, for two reasons. The first one is a necessity, since these
radars are designed to perform several tasks in parallel. As concerns the tracking, the surveillance
task and the active tracking tasks have to be done simultaneously (almost). This requires a careful
management of the tasks the radar has to achieve. To do that, a resource manager (or a sched-
uler) is used. But each task has to be optimised in itself, in order to save the radar’s time budget.
The second reason is the new possibilities they offer. Indeed, the observations of the radar are no
longer conditioned by the rotation of the antenna, so the observations update rate can be more
easily adapted.

Another change in the environment of both military and civilian radars is the evolution of the
threats. For the civilian application, drones are becoming more and more present in the air, and
the airports are already faced with a drone problem. Indeed, their kinematics are different from
the other targets, and there will also be the challenge to track a lot of targets at the same time.
In the military world, the targets are becoming always more threatening, adopting unpredictable
motions and manoeuvres to make the tracking fail and the radar lose the track.

In this context, new hyper-manoeuvring targets have emerged. Those targets can have accel-
erations higher than 15g, that cannot be supported by pilots in an aircraft, even during a few tenth
of seconds. This concerns mostly missiles that can have really any kind of motion. The tracking
solutions used in the radars nowadays are not always satisfying against these targets. In particular,
the state estimation task has to be thought over again.

1.4.1 State estimation

State estimation consists of estimating the main kinematic parameters of a target, thanks to partial
observations. The radar observes the position of the target, the state estimator will have to predict
and estimate the position, but also the velocity, or the acceleration if needed. For active tracking,
the state estimation has to be fairly precise, because the challenge is to guide the radar beam for
the next observation, to make sure not to lose the target.

Usually, in radar applications, the state estimation is performed using a filtering algorithm,
such as the Kalman filter. One of the main objective of the thesis is to provide a state estimation
method that is robust, precise, and that is able to keep track of highly-manoeuvring targets.

We identified several drawbacks of the target models usually used in industry, or developed in
the literature to tackle the specific problem of estimating the state of highly-manoeuvring targets.
These elements will be developed in detail within the document. Briefly, the models tend to be
very simplistic, and do not allow enough degrees of freedom for the motion of the target, the chal-
lenge was to build a target model which is also very simple, but that is more general and able to
consider more class of targets and manoeuvres.

1.4.2 Update rate adaptation

The other task was to provide an update rate adaptation method that is efficient with the proposed
estimation algorithm. The role of update rate adaptation is to minimise the radar load for the
Active Tracking task. Indeed, to let the radar have enough time for all the tracks in AT, and for the
surveillance, the duration for each task has to be optimised.

An adaptation algorithm is already used, but it is in fact not really adapted to the state estima-
tion algorithms that are commonly adopted. The challenge is then to build an algorithm that is
general, and that is suitable for all state estimation algorithms.

7

CHAPTER 1. INTRODUCTION

1.5 Contributions of the thesis

The work has led to contributions both for the state estimation task in itself, and for the adaptation
of the update rate.

Target model The present work proposes a novel target model, expressed in intrinsic coordi-
nates. This target model is designed to represent the possible motions of the target directly in its
local frame. It uses the Frenet-Serret frame, which can describe any curve in the 2D or the 3D
space. Indeed, it appears that the targets very often follow piecewise constant motions, which
means that the commands that are applied to it are piecewise constant. The model is meant to
represent these commands in the best possible way.

Filtering algorithm The state estimation methods usually applied to other target models are not
appropriate for the one we propose. A new filtering algorithm is created to perform filtering for
our target model. This algorithm is designed as a geometric version of the extended Kalman filter,
and easily implementable for industrial applications.

Smoothing algorithm To account for jumps in the dynamic features governing the target motion
such as acceleration or jerk, and to consider accurately the fact that the command parameters may
often be modelled as piecewise constant, an optimisation based smoothing algorithm has been
constructed for the 2D target model. This smoothing algorithm has the ability to detect jumps in
the motion and to react very rapidly when a jump occurs, so that the estimation converges faster
after the jump.

Update rate adaptation Besides the preceding contributions related to filtering, this work pro-
poses a new update rate adaptation algorithm that is compatible with any target model. The new
algorithm is designed to be very general, and can cooperate with all the estimation algorithms that
are presented in this document (the algorithms developed in this work, but also the ones presented
as bibliographic references).

Industrial experiments Experiments have been done with Thales, in several teams coordinated
by a working group on tracking, both for civilian and military applications on real tracking simula-
tors, a result on a real trajectory is presented in this document. Some other extensive experiments
with other algorithms on several different simulated trajectories have been done and the results
are also presented in a separate chapter. A discussion on the tuning issue is presented, since it has
been one of the major subject of discussion when the algorithm was presented and tested in the
different teams.

1.6 Papers published during the thesis

Several publications have been made during this thesis. They are listed here, with the following
corresponding chapters:

Conference papers:

• Pilté, M., Bonnabel, S., Barbaresco, F. (2017, June). An innovative nonlinear filter for radar
kinematic estimation of maneuvering targets in 2D. In Radar Symposium (IRS), 2017 18th
International (pp. 1-10). IEEE, [94]. This paper presents the 2D Frenet-Serret target model,
with the 2D Invariant Extended Kalman Filter (IEKF) applied to target tracking, results can
be found in chapter 2 and 3.

8

CHAPTER 1. INTRODUCTION

• Pilté, M., Bonnabel, S., Barbaresco, F. (2017, November). Drone Tracking Using an Innova-
tive UKF. In International Conference on Geometric Science of Information (pp. 301-309).
Springer, Cham, [93]. This paper exposes an extension of the IEKF with the 2D Frenet-Serret
target model, with the use of the update step of an Unscented Kalman Filter adapted to the
Lie group space. Results can be found in chapter 3.

• Pilté, M., Bonnabel, S., Barbaresco, F. (2017, December). Tracking the Frenet-Serret frame
associated to a highly maneuvering target in 3D. In Decision and Control (CDC), 2017 IEEE
56th Annual Conference on (pp. 1969-1974). IEEE, [91]. This paper presents a 3D target
model based on the Frenet-Serret frame, with the IEKF algorithm to perform estimation.
Results can be found in chapters 2 and 3.

• Pilté, M., Bonnabel, S., Barbaresco, F. (2018, June). Maneuver Detector for Active Track-
ing Update Rate Adaptation. In 2018 19th International Radar Symposium (IRS) (pp. 1-10).
IEEE, [95]. This paper proposes a manoeuvre detector based on a particle filtering algorithm
designed to track kinematic jumps in the trajectory. This paper was not reproduced in this
document.

Journal papers:

• Pilté, M., Bonnabel, S., Barbaresco, F. (2018). Fully-Adaptive Update Rate for Nonlinear
Trackers. IET Radar, Sonar & Navigation, [90]. This paper explores the update rate adap-
tation problem to optimise the radar load for active tracking. The results can be found in
chapters 6 and 7.

• Pilté, M., Bonnabel, S., Livernet, F. A novel nonlinear least squares approach to highly ma-
neuvering target target tracking. Submitted upon invitation to Comptes Rendus Physique
(Elsevier-Académie des Sciences), 2018. This paper exposes a new method for target track-
ing, based on a modified smoother that tracks jumps. The results are explained in chapter
5.

1.7 Organisation of the document

This document is organised in three parts:

• Part I focuses on state estimation. The construction of a new target model in intrinsic co-
ordinates, adapted to nowadays manoeuvring targets, is presented in chapter 2. This target
model is expressed in 2D and in 3D. The two models designed in this chapter will be used
throughout the entire document. Then, a filtering algorithm that is adapted to this target
model is derived in chapter 3. Firsts results on toy examples are presented. Some extensive
tests and comparison with other commonly used target models and filtering algorithms are
also presented in chapter 4.

• Part II introduces an estimation method that has not been much used in the radar com-
munity: smoothing. We take inspiration from the use of optimisation based smoothing
methods that have become prevalent in the robotics community for robot localisation and
mapping since the beginning of the 2010s. In this work, we have applied it to radar target
tracking, and modified the algorithm to suit the problem of tracking manoeuvring and un-
predictable targets. A smoothing algorithm is presented, first for a linear target model, and
then applied to the 2D target model derived in Part I. This smoothing algorithm is more
specifically constructed to track kinematic and/or dynamic jumps in the motion of the tar-
gets, to be able to provide accurate estimations right after the jumps.

• Part III is dedicated to the update rate adaptation problem. The algorithm of Blackman and
Van Keuk, used in industry, is first pedagogically and thoroughly explained in chapter 6. We

9

CHAPTER 1. INTRODUCTION

thus point out the approximations that were made in their paper [108]. Then a more general
algorithm is derived in chapter 7. This algorithm is compatible with any filtering algorithm
or target model, and experiments show that the radar load is lower using this new algorithm.

Finally, a synthesis of the work and a discussion on possible future leads are presented in the
conclusion of the document, in chapter 8.

10

Part I

State estimation: target models and
filtering algorithms

11

Chapter 2

Target model in intrinsic coordinates

Sommaire
2.1 Résumé en français : Modèle de cible en coordonnées intrinsèques 14

2.2 Introduction . 14

2.3 State of the art . 16

2.3.1 Model without manoeuvres . 16

2.3.2 Manoeuvre models with decoupled coordinates 17

2.3.3 Non-linear models, intrinsic models . 20

2.3.4 Models with jumps . 21

2.3.5 Lie group based models . 22

2.4 Radar industrial tracking models . 23

2.4.1 3D target model . 23

2.4.2 Multiple target models . 23

2.5 Radar measurement models . 25

2.6 New target model in intrinsic coordinates . 27

2.6.1 2D target model . 27

2.6.2 3D target model . 29

2.6.3 Generalisations . 31

2.7 Conclusion . 32

13

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

2.1 Résumé en français : Modèle de cible en coordonnées intrinsèques

L’estimation d’état nécessite deux composants principaux : un modèle d’évolution de cible d’une
part, et un algorithme de filtrage (ou d’estimation en général) d’autre part. Ce chapitre est dédié à
l’élaboration d’un modèle adapté aux cibles hyper-manœuvrantes. D’une façon générale, on peut
identifier trois grands types de modèles de cible :

• Les modèles linéaires, qui sont aussi les plus simples, peuvent être en 2D, ou en 3D, et de
dimension variée dans l’état (modèle linéaire de vitesse, ou d’accélération, ou de jerk ...).

• Les modèles non-linéaires plus complexes, qui décrivent des mouvements plus complexes,
comme des virages coordonnés par exemple.

• Enfin, les modèles à sauts, qui permettent de décrire des trajectoires qui ont une com-
posante discontinue (par exemple avec des sauts de vitesse ou d’accélération), ou des tra-
jectoires avec des sauts entre modèles.

Il est aussi nécessaire de définir le modèle de mesure, permettant de relier les mesures radar à
l’état du système. Souvent, il se résume à donner les équations de passage du repère des mesures
radars (distance, azimut, élévation) au repère cartésien fixe dans lequel est exprimé la position de
la cible dans l’état. On y ajoute un bruit Gaussien pour modéliser l’imprécision des mesures radar.

Le modèle de cible proposé dans cette thèse utilise le repère de Frenet-Serret, qui permet de
décrire n’importe quelle trajectoire en 2D ou en 3D. Le modèle de cible a donc été développé en
2D et en 3D. Deux hypothèses communément admises sont également appliquées pour établir le
modèle : d’une part, la cible ne glisse pas (on appelle cette hypothèse la contrainte non-holonome),
c’est-à-dire que le vecteur vitesse de la cible est toujours colinéaire au vecteur tangent du repère de
Frenet-Serret. D’autre part, on fait une hypothèse sur la cinématique de la cible, dans notre cas, on
suppose que la norme de la vitesse, la courbure et la torsion de la trajectoires sont (presque) con-
stantes. Cette seconde hypothèse peut être légèrement relâchée et remplacée par une hypothèse
d’évolution linéaire. Cependant, il n’est pas toujours intéressant de complexifier les équations du
modèle car cela rend le problème d’estimation plus difficile. Le modèle ainsi obtenu est parti-
culièrement adapté aux virages, contenus dans un plan ou non. C’est une des particularités de
ce modèle par rapport à d’autres modèles de virages : il peut décrire un virage avec de la torsion
(dans le cas 3D). Du bruit blanc peut être rajouté au modèle afin de tenir compte des écarts en-
tre la réalité et le modèle construit. Ce modèle a une forme particulière, due à la présence de la
matrice du repère de Frenet-Serret dans la formulation de l’état. L’état est donc partiellement à
valeurs dans le groupe de Lie SE(2) pour le cas 2D, ou SE(3) pour le cas 3D, et partiellement dans
l’espace vectoriel R2 ou R3. Le modèle nécessite donc une adaptation des algorithmes de filtrage
traditionnels, c’est l’objet du chapitre suivant.

2.2 Introduction

To perform state estimation, two main components are needed: a target evolution model, and
an estimation algorithm, based on this model an on the radar observations. In this chapter, we
concentrate on the target model. The model describes the possible motions of a target, considered
as a point object, in space. For example, an overview of missile motion equations is given in [104].
The most basic motion comes from Newton’s laws, which can lead to complex equations, specific
to one category of targets. However, to perform state estimation, we seek the simplest models as
possible, that take into account a large class of targets. The model has to be simple enough, so
that the estimation problem is kept tractable. Indeed, very high derivation orders of the position
are very difficult to estimate because the radar only measures the position of the target, polluted
by noise (and sometimes the Doppler velocity), so variables coming from complex equations are
difficult to estimate. However, if the model is too rigid because of its simplicity, and does not allow
enough degrees of freedom in the motion of the target, the estimation algorithm might not be able

14

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

to keep the track, because of the lack of adequacy between the model and the real trajectory. This
can lead to divergence or very poor precision. The difficult part when designing a target model is
thus to find a balance between the simplicity and the universality of the model.

The quality of the target model and its adequacy to the real movement are decisive for the
tracking. The target models possibilities are virtually infinite. In this chapter, we list the ones that
seem most pertinent, and we group them into different categories:

• The simplest models are the linear models, that can be formulated in 2D, in 3D, and of in-
creasing dimension (linear model of velocity, of acceleration, of jerk, ...).

• There are more complex non-linear models, that account for more complex motions, such
as coordinated turns.

• Finally, the jumping models can account for trajectories that have a discontinuous compo-
nent (for instance that have jumps in the velocity or in the acceleration).

To describe the target evolution and derive the so-called target and measurement models, we
use a state space representation. The targets are considered as point objects, and target models
describe the motion of a point moving in space. This is a general setting in which the state Xt ∈Rn

is the solution of a stochastic differential equation, and can be defined as one realisation of the
underlying stochastic process, so it is an element of a vector space (or an element of a more general
space, as we will see later), and the observation is a vector yt ∈Rm , and the equations write

Ẋt = f (Xt ,ut , wt) (2.1)

yt = h(Xt ,ut , vt) (2.2)

where ut is an input vector, f is the evolution function, h is the measurement function, wt , vt are
independent white Gaussian noises. wt is called the process (or model) noise, and vt is called the
observation (or measurement) noise. The process noise is used to compensate for the differences
between the model and the real trajectory of the target. The observation noise is used to model
the imprecisions of the radar measurement process. Usually, the noises are chosen to be additive,
because it is more convenient for the state estimation algorithm.

Nowadays, the air defence radar industry is facing new challenges with ever increasingly ma-
neuvering targets. Some targets can reach Mach 8 velocities with 30g accelerations, and this will
increase even more in the future years. The target models that are currently used are not always
entirely satisfactory when it comes to track these targets, and new models have to be designed. A
way to inject some structure through a motion model into a trajectory that is deliberately trying to
make the radar lose track of it, is to resort to physical considerations: the changes in aerodynamic
lift and thrust-drag accelerations are limited, and those accelerations can in fact be expected to be
piecewise nearly constant.

In the present work, we propose, as a very simple geometric model, to use the Frenet-Serret
frame to describe the motion and to assume nearly constant curvature and torsion. This model
includes helical motions that are particularly challenging to track. Our model can be related to
[31], [16], or more recently [32].

Target models can be expressed either in continuous or in discrete time. In this chapter, we
will use one or the other. The discretisation of continuous models is usually quite simple and
straightforward, or the estimation algorithms can accommodate a continuous target model. It is
also quite widespread to describe the target evolution in continuous time. The radar measurement
model is always expressed in discrete time. In this case, we have Xn = Xtn in the measurement
equation.

This chapter first presents the most well-known target models in literature in section 2.3, and
class them into categories, and the target models widely used in industry are detailed in section
2.4. Then, the radar measurement model is described in section 2.5, and finally the target model
created during this thesis is developed in section 2.6.

15

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

In this work, the state will be denoted by Xt ∈ Rn for the continuous time or Xk ∈ Rn for the
discrete time, where n is the dimension of the state. The measurements will be denoted yk ∈ Rp ,
where p = 2 or 3, depending on the dimension of the measurements (2D or 3D). The cartesian

position is denoted by x = (
x1 x2 x3

)T
.

2.3 State of the art

2.3.1 Model without manoeuvres

A point in space can be described by its position and velocity vectors. For example the vector

Xt =
(
x1

t ẋ1
t x2

t ẋ2
t x3

t

)T
can be used as a state vector in a Cartesian coordinate system. When

the target is considered as a punctual object, the non-manoeuvring motion is described by the fact
that the velocities along the first two coordinates x1 and x2 are constant, and that the velocity is
null for the x3 coordinate. Indeed, in target tracking, we consider there is no manoeuvre when the
target stays in a horizontal plane, see [80]. So this means:

ẍ1
t = 0

ẍ2
t = 0

ẋ3
t = 0

Usually, in practice this ideal equation is modified to add a white noise w(t), that accounts for
small unpredictable errors, such as turbulences. The equations then become

ẍ1
t = 0+w1

t

ẍ2
t = 0+w2

t

ẋ3
t = 0+w3

t

The corresponding state space representation is given by:

Ẋt = AXt +Bwt (2.3)

where wt = [w1
t , w2

t , w3
t]T is a white continuous Gaussian noise, with

A =

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 , B =

0 0 0
1 0 0
0 0 0
0 1 0
0 0 1

The discrete time equivalent for this model is, see for instance [6]

Xk+1 = FXk +Gwk (2.4)

where

F =

1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

 , G =

T2/2 0 0

T 0 0
0 T2/2 0
0 T 0
0 0 T

 (2.5)

and wk = [w1
k , w2

k , w3
k]T is a white discrete Gaussian noise and T is the sampling time. w1

k and w2
k

correspond to noisy accelerations, whereas w3
k corresponds to a noisy velocity along the x3-axis.

16

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

If the coefficients of w are uncorrelated, the covariance matrix Q associated to Gw is

Q =

q1T4/4 q1T3/2 0 0 0
q1T3/2 q1T2 0 0 0

0 0 q2T4/4 q2T3/2 0
0 0 q2T3/2 q2T2 0
0 0 0 0 q3

 (2.6)

with q1, q2, q3 the variances of w1, w2, w3 respectively.
These models are known to be models with (almost) constant velocity. Adding non-essential

components in the state vector (for instance the acceleration or the jerk) would add complexity in
the model and decrease the performances for constant velocity trjectories.

2.3.2 Manoeuvre models with decoupled coordinates

The manoeuvres of a target are triggered by the control input u, which is most often unknown to
the user. There are then two main solutions to tackle this problem:

• Input estimation: this consists in modelling the input as an unknown but deterministic pro-
cess, that will be estimated along with the state during the estimation. Such methods are
called input estimation methods, see for instance [20]. However, it is hard to model an un-
known process, and it often amounts to estimating jumps and values of the input.

• Stochastic process: the other solution is to model the input as a stochastic process. This is
more often used in practice, and it comes to using noise models. In the literature, there are
three groups of methods:

1. White noise models: the control input added to the state evolution equation is mod-
elled as a white noise. This includes constant velocity or acceleration models and poly-
nomial models.

2. Markov process models: the control input is modelled as a Markov process, autocorre-
lated in time. This includes the Singer model.

3. Semi-Markovian jumping models: the control input is modelled as a semi-Markovian
process with jumps.

A lot of target models assume the coupling between the coordinates is low and can be ne-
glected. It is the case for those for which the control input u is modelled as a random process. In
the reminder of this section, the models will be presented in one dimension. The generalisation
in 2D or 3D consists only in concatenating the directions x1, x2, x3 to form one state vector.

Let x, ẋ and ẍ be the position, velocity and acceleration of a target in one dimension. We have:

ẍt = at (2.7)

The possible definitions of at will lead to different target models, listed in this section. In the
following paragraphs, the state vector will always be X = [x, ẋ, ẍ]T.

Before going further, let us first give the definition of a stochastic process. This notion will be
used several times in the sequel.

Definition 2.1. Stochastic process: it is a parametrised collection of random variables {Xt }t∈T de-
fined on a probability space. A complete definition and examples are provided in [89]. An intuitive
interpretation is to see a stochastic process as a mathematical object that represents the evolution
of a random variable. A family of random variables (Xt)t∈R+ is a continuous stochastic process,
(Xk)k∈N is a discrete stochastic process. A basic example is the random walk.

The target state is the solution of a stochastic differential equation, and it is defined as one
realisation of the underlying stochastic process.

17

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

White noise acceleration model

The simplest model for a target manoeuvre is to consider a model with white noise acceleration.
This model assumes that the acceleration of the target ẍ(t) is only white noise, see [6]. This means
that

a(t) = 0+w(t)

or in other words
ẍ(t) = 0+w(t)

The acceleration is thus constant up to a white noise. The difference with the non-manoeuvring
model is the level of the noise added: the white noise process w is used to model the effects of a
manoeuvre (a switch from a given acceleration to another one for instance). A manoeuvre has the
aim to achieve a task and is rarely independent of the state variables in time. The major appeal for
this model is its simplicity. It is nonetheless used quite often in practice. This is also referred to as
the (almost) constant velocity model.

Almost constant acceleration

The second simplest model is the acceleration model along a Wiener process, see [6]. It assumes
the acceleration is a process with independent increments. It is also simply called the (nearly)
constant acceleration model. This model has too widely used versions. The first one, the jerk
model with white noise, assumes the derivative of the acceleration (the jerk) ȧt is an independent
process: ȧt = wt . The evolution equation is Ẋt = AXt +Bwt , where

A =
0 1 0

0 0 1
0 0 0

 , B =
0

0
1

The discrete equivalent for this model is

Xk+1 = F3Xk +wk , F3 =
1 T T2/2

0 1 T
0 0 1

 (2.8)

The second version is the acceleration model of the Wiener sequence. The acceleration incre-
ment is supposed to be an independent process. An acceleration increment on a time range is the
integral of the jerk on this interval. This model is directly expressed in discrete time by

Xk+1 = F3Xk +G3wk , G3 =
T2/2

T
1

 (2.9)

The models above are simple but rough. Real maneuvers have almost never almost constant
accelerations that are decoupled along the different directions.

Polynomial models

Any target trajectory can be approximated by a polynomial with a given and known precision. It
is thus possible to model the movement of the target by a polynomial of degree n in Cartesian
coordinates: x1

t
x2

t
x3

t

=
a0 a1 . . . an

b0 b1 . . . bn

c0 c1 . . . cn

1
t
...

t n/n!

+
w1

t
w2

t
w3

t

 (2.10)

with a specific choice of coefficients ai ,bi ,ci , where (x1, x2, x3) are the position coordinates and
(w1, w2, w3) are the corresponding noises.

18

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

These polynomials models, of degree n means that the n-th time derivative of the position is
(almost) constant. Constant velocity or acceleration models described in the previous sections are
particular cases of this model (for n = 1,2 respectively).

In the general case, this model does not seem very satisfying for the tracking application. This
type of method is of better use when confronted to smoothing problems, when one needs to fit a
smooth curve to a set of data. It is hard to design an efficient method to determine the coefficients
ai , bi and ci in the general case.

The Singer model

The white noise models presented earlier are the simplest class of random processes in time. An-
other class contains the Markov processes, including Wiener processes and the white noises as
particular cases.

The Singer model, fully explained in [103], assumes the acceleration of the target at is a sta-
tionary Markov process of zero mean. The Singer model is based on the assumption that the ac-
celeration is an Ornstein-Uhlenbeck process. See for example [57] for a definition of the Ornstein-
Uhlenbeck process. Indeed, this means that each coordinate of the acceleration a1, a2, a3 is an
Ornstein-Uhlenbeck process and that the coordinates are mutually independent. We have:

ȧt =−αat +wt ,α> 0 (2.11)

with wt a continuous white Gaussian noise, and the autocorrelation of each acceleration coordi-
nate thus writes:

E[ai
t a j

t+τ] = δi jΣ
2e−ατ

where Σ is the acceleration noise standard deviation and 1/α is a manoeuvre time constant. Such
a model accounts for the fact that accelerations in one direction tend to last for some time 1/α, but
on average the acceleration of the target is 0. This gives the following discrete evolution equation
(2.12) for each position coordinate, and between two time instants k and k +T:

xk+T = Fxk +wk (2.12)

with

F =

1 T αT−1+e−αT

α2

0 1 1−e−αT

α

0 0 e−αT

The process noise covariance matrix Q (from which the Gaussian white noise wk is drawn) writes
Qk = E[wk wT

k]. The expectation can be explicitly computed as a time integral, as shown in the
Appendix I of [103], and finally the matrix writes

Qk = 2αΣ2

T5

20
T4

8
T3

6
T4

8
T3

3
T2

2
T3

6
T2

2 T

From equation (2.12), we see that:

1. When the manoeuvre duration constant 1/α increases to the infinity (which means that αT
decreases), the Singer model becomes a constant acceleration model. This is normal since
the deterministic part of the acceleration in the Singer model becomes constant when τ goes
to the infinity.

2. When 1/α decreases (which means that αT increases), the Singer model goes to the constant
velocity model. In this case, the acceleration becomes a white noise.

19

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

The Singer model is thus a mix of a (almost) constant velocity and (almost) constant accelera-
tion model. It is thus more general than one or the other, and is more suited to track manoeuvring
targets.

This is why this acceleration Singer model has become popular for target manoeuvre models,
and has led to the development of update rate adaptation method, specifically designed for this
model, see chapter 6. It also led to the development of other target manoeuvre models.

The Singer target model is by construction an a priori model. Indeed, real time information
about the target behaviour is not used to tune the model. The parameter Σ can be made adaptive.
The adaptation is however limited because in the model, the acceleration has a zero-mean at each
time instant. Indeed, for an a priori model, it is the natural approximation.

2.3.3 Non-linear models, intrinsic models

Coordinated turn model

The constant turn model assumes the target undergoes a turn manoeuvre, with constant angu-
lar velocity, and constant speed, in a 2D plane, see for instance [6], [87]. The state is defined to
be Xt = (

x1
t , ẋ1

t , x2
t , ẋ2

t ,ωt
)
, where ω is the (constant) angular rate. The equations in continuous

representation are

Ẋt = AXt

with

A =

0 1 0 0 0
0 0 0 −ω 0
0 0 0 1 0
0 ω 0 0 0
0 0 0 0 0

The discrete equation writes

Xk+1 = Fk Xk (2.13)

with (if ω is not too small, otherwise a Taylor development can be performed):

Fk =

1 sin(ωt)

ω 0 −1−cos(ωt)
ω 0

0 cos(ωt) 0 −sin(ωt) 0
0 1−cos(ωt)

ω 1 sin(ωt)
ω 0

0 sin(ωt) 0 cos(ωt) 0
0 0 0 0 1

Of course as always, white Gaussian noise can be added to the evolution equation, to account for
differences between the real motion and the model. This model is very useful in practice, as we
will see for multiple models. When it is used as a single model, some significant noise should be
added to ω and to the velocity, to allow manoeuvres.

Intrinsic coordinate model

The simplest 2D intrinsic coordinate model considers the target as a point mass subject to two
accelerations, one tangential, aT,tk and one normal, aN,tk , and to the current velocity, see [59]. The
accelerations are known. The continuous kinematic state of the target is described by its direction,
θt (in the trigonometric way from the x1-axis), its velocity ṡt , and its cartesian coordinates x1

t and
x2

t . The state and parameter vectors thus are

Xt =
(
x1

t , x2
t ,θt , ṡt

)T

utk = [aT,tk , aN,tk]T

20

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

The dynamics of the target are described by the usual differential equations for a curvilinear mo-
tion:

s̈t = aT,tk

ṡt θ̇t = aN,tk

ẋt = ṡt cos(θt)

ẏt = ṡt sin(θt)

These equations can then be integrated to get the corresponding discrete time target model.
This model can of course be extended to lie in the 3D space, but it can also be augmented to avoid
a degeneration problem due to the fact that all values of Xk cannot be reached. The accelerations
aT,tk , aN,tk are here supposed to be known, or measured, we will see in section 2.3.4 how they can
enter the state (or the estimation in general).

2.3.4 Models with jumps

Jump Markov linear systems

Jump Markov linear systems are linear systems with parameters that evolve in time according to
a Markov chain, with a finite state space, as explained in [50]. Let rk ,k = 1,2, . . . be a discrete time
Markov chain with known transition probabilities. A linear system with markovian jumps can be
modelled in the following way:

Xk+1 = F(rk+1)Xk +B(rk+1)uk+1 +G(rk+1)wk+1 (2.14)

yk = C(rk)Xk +A(rk)uk +D(rk)vk (2.15)

where uk is a known input, and wk and vk are sequences of white Gaussian independent noises.
A jump Markov linear system can be seen as a linear system whose matrices (A(rk),B(rk),C(rk),
D(rk),F(rk),G(rk)) evolve in time according to a Markov chain with finite state space rk . Neither
the process Xk nor the process rk are observed, only the noisy measurements yk are observed. rk

represents in fact pieces of trajectory, on which one model is true. So changes in the Markov chain
(when rk 6= rk−1) implies jumps in the trajectory from one model to another.

Variable rate models

In [32], [58] and [59], the authors have designed some models that take into account the temporal
structure of a manoeuvring target trajectory. The variable rate models consider that the target
motion is deterministic when it is conditioned by a sequence of change-points and manoeuvre
parameters. It is similar to Jump Markov Linear Systems, except that we have non-linear equations
(also possible for the latter), and more importantly, continuous time changes.

Tracking is the step where the kinematic state of a target is estimated (its position, velocity,
. . .) from a set of noisy or incomplete observations. The state of the target is continuous. How-
ever, as we saw in the last section, a lot of tracking systems model the dynamics of a target as a
discrete Markov process. This hypothesis is indeed quite simple: when the state is discretised at
the instants of the observations, we come to consider a Hidden Markov Model (HMM), which can
then be used to design a standard Kalman filter or a particle filter. HMM methods are explained
in [34]. The drawback of such an hypothesis is that the dynamics of the system may not be as ac-
curate as using a continuous-time model (the equations of motion of a continuous system being
continuous in time).

The principle of variable rate models is the following: consider a general model from 0 to T,
time between which some observations {y1, . . . , yN} are made at time instants {t1, . . . , tN = T}. Dur-
ing this time period, an unknown number of changes, K, occur at time instants {τ0 = 0,τ1, . . . ,τK},
each change is associated to change parameters, {u0,u1, . . . ,uK}. We assume the trajectory can be
entirely recovered, knowing the initial conditions at τk and the parameters uk . Pairs {τk ,uk } are

21

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

elements of a Marked Point Process (MPP). The hidden state is a continuous process called Xt .
Discrete sets containing multiple values will be called y1:n = {y1, . . . , yn}. The variable rate model is
an example of a hybrid dynamic system, used to model at the same time continuous and discrete
behaviours.

The objective for inference will be to estimate the sequence of change-points until the current
time tn : θn = {τ j ,u j ,∀ j : 0 ≤ τ j < tn}. It will also be useful to define a variable for the changes that
occur in the time interval [tn−1, tn) : θn\n−1 = {τ j ,u j ,∀ j : tn−1 ≤ τ j < tn}.

To simplify the notations, let us introduce the following notations, to keep in mind the most
recent changes:

Kt = max(k : τk < t)

Kn = K(tn)

The sequence of changes is supposed to be a Markov process:

{τk ,uk } ∼ p(uk |τk ,τk−1,uk−1)p(τk |τk−1,uk−1)

Now, it is possible to write the a priori density for the sequence of changes, p(θn) and the extent
of the sequences p(θn\n−1|θn−1). The dynamics of the state is governed by a differential equation
which depends on the most recent change-point.

Ẋt = f (Xt ,τKt ,uKt) (2.16)

With a new sequence {X0,X1, . . . ,XK}, which is the value of the state at each change-point (i.e. xτk)
and assuming that an analytical solution exists, a transition function can be derived:

Xt = f (XKn ,uKn ,τKn , t), τKn ≤ t ≤ τKn+1 (2.17)

2.3.5 Lie group based models

These late years, work has been done to model the motion of objects with rigid transformations
and the associated appropriate spaces. Especially in the robotic field, Lie groups have appeared to
be the right spaces to describe the possible moves of a robot. Indeed, one of the most well-known
Lie groups, SE(2), represents all possible translations and rotations in 2D. The definition of Lie
groups and the main results used in this document are provided in appendix A. This thus appears
the right frame to work in. The works of [10], or [36] are examples of Lie group models developed
in robotics.

More recently, target models on Lie groups have emerged in the radar target tracking commu-
nity. This includes the very recent (2018) work of [42]. In this paper, the authors use a coordinated
turn target model, and show it can be embedded in a Lie group setting. The state is set to be

Xk = (
xk θk ωk uk

)T
, with xk the Cartesian position, θk the orientation of the target, ωk the

angular rate, and uk the translational speed. It can be represented in G = SE(2)×R2, with the
following 6×6 matrix:

gk =

cosθk −sinθk x1
k 0 0 0

sinθk cosθk x2
k 0 0 0

0 0 1 0 0 0
0 0 0 1 0 uk

0 0 0 0 1 ωk

0 0 0 0 0 1

The authors model then the dynamics with the following equation on Lie groups

gk+1 = gk expG

(
LG(Ω(gk)+qk)

)
(2.18)

22

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

where qk is a white Gaussian noise in the Lie algebra, andΩ : G →Rp is a non-linear function. The
Lie group and Lie algebra definitions and notations are explained in appendix A. In the coordi-
nated turn case, it writes

Ω(gk) =

uk T

0
ωk T

0
0

with T the time between two predictions. It is easy to verify that (2.18) is equivalent for the discrete
case to the coordinated turn equation (2.13). As we will see in section 2.6, this is closely related to
our model, which was introduced before, see [91].

2.4 Radar industrial tracking models

In industry, the target models tend to be the simplest ones, notably for simplicity of use and im-
plementation, robustness, and safety reasons.

2.4.1 3D target model

One of the simplest, but one of the most used target model in industry is the 3D constant velocity
model with white Gaussian noise. The state is composed of the cartesian position and velocity,
as in (2.19). The evolution of the state is linear, with constant velocity. A white Gaussian noise is
added independently on the three components of the velocity, as in (2.20).

Xt =
(
x1

t , x2
t , x3

t , ẋ1
t , ẋ2

t , ẋ3
t

)T
(2.19)

Ẋt = FXt +wt (2.20)

where wt is a white Gaussian noise. wt has independent components, and it is used as in the
constant acceleration model of section 2.3.2: to account for the possible manoeuvres of the target,
and F is defined as

F =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

This model is the simplest 3D model that can be designed, it is in fact a white noise acceleration

model. However, it is not the best model to track simple manoeuvres, such as constant turns for
instance, because the model is not appropriate, and somehow very reductive. One trick so to say,
is to use a process noise adaptation heuristic, known as Castella’s noise adaptation, described in
[35], and further developed in section 4.3.2. The idea is that the process noise is increased during
manoeuvres, and decreased during constant velocity motions.

2.4.2 Multiple target models

Another widely used model in industry is to use a Jump Markov Linear model, as in [18]. In prac-
tice, several models are designed, and the estimation algorithm is then in charge to tell in which
model the target most probably evolves. This is usually called a Multiple Model.

For example one frequently used association of models can be:

• Constant velocity model

23

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

• Constant horizontal turn model (a 2D motion)

• Constant vertical turn model (a 2D motion)

• Constant acceleration model

The equations for each of the four models can be found in [102]: for each model, the state is
denoted Xk . The discrete time equation is

Xk+1 = Fk Xk +Gk wk (2.21)

where Fk and Gk are explicitly given for each model below, and wk ∈R3 is a white Gaussian noise.
We will also denote d t the duration between two predictions.

Constant acceleration model

The state Xk is of dimension 9 and contains the Cartesian position x, the Cartesian velocity v and
the Cartesian acceleration a. The evolution matrix Fk of (2.21) is given by

Fk =

1 0 0 d t 0 0 d t 2/2 0 0
0 1 0 0 d t 0 0 d t 2/2 0
0 0 1 0 0 d t 0 0 d t 2/2
0 0 0 1 0 0 d t 0 0
0 0 0 0 1 0 0 d t 0
0 0 0 0 0 1 0 0 d t
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

, Gk =

d t 2/2 0 0
0 d t 2/2 0
0 0 d t 2/2

d t 0 0
0 d t 0
0 0 d t
1 0 0
0 1 0
0 0 1

Constant Horizontal Turn

In this case, the target is supposed to perform a constant turn in the horizontal Cartesian (x, y)-
plane. The state Xk is composed of the Cartesian position, the Cartesian velocity, and the angular
velocity ωk .

If the angular velocity ωk is not too small, and letting c = cos(ωk d t) and s = sin(ωk d t), the
evolution matrices write

Fk =

1 0 0 s/ωk (c −1)/ωk 0 0
0 1 0 (1− c)/ωk s/ωk 0 0
0 0 1 0 0 d t 0
0 0 0 c −s 0 0
0 0 0 s c 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, Tk =

d t 2/2 0 0
0 d t 2/2 0
0 0 d t 2/2

d t 0 0
0 d t 0
0 0 d t
0 0 0

(2.22)

To define properly Gk , we need the following rotation matrix, and the heading and the speed in

the horizontal plane h = atan2(vy , vx), sp =
√

v2
x + v2

y .

Rk =

cos(h) −sin(h) 0 0 0 0 0
sin(h) cos(h) 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 cos(h) −sin(h) 0 0
0 0 0 sin(h) cos(h) 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1/sp

(2.23)

and Gk can now be expressed as
Gk = Rk Tk

24

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

Constant Vertical Turn

The target has a constant turn in the vertical Cartesian plane, it is again a 2D motion. The state
Xk is composed of the Cartesian position, the Cartesian velocity, and the angular velocity ωk .
We suppose again that the angular velocity is not too small. Let Rz be the change of basis from
(Xlong ,Z,Yl at) to (Xlong ,Yl at ,Z):

Rz =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1

Let us call F̃k and T̃k the evolution matrices already defined for the constant horizontal turn in
(2.22), and Rk the rotation matrix defined by (2.23). Then the full matrices for the constant vertical
turn write:

Fk = Rk Rz F̃k RT
z RT

k

Gk = Rk T̃k

Constant Velocity Model

The state is composed of the Cartesian position and velocity and the angular velocity. The evolu-
tion matrices are defined by

Fk =

1 0 0 d t 0 0 0
0 1 0 0 d t 0 0
0 0 1 0 0 d t 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, Gk =

d t 2/2 0 0
0 d t 2/2 0
0 0 d t 2/2

d t 0 0
0 d t 0
0 0 d t
0 0 0

Then the state is a weighted sum of these models, and the weights are computed thanks to the

estimation algorithm. It is not strictly a Jump Markov Linear model as in section 2.3.4 since we do
not completely switch between models, but it is inspired by this type of models.

The equations for each of the four models can be found in [102], and they have all been de-
scribed in 2.3. Usually, the process noise added on the constant acceleration model is tuned quite
high. Indeed, this model is used to consider all motions that do not enter the three other models.

2.5 Radar measurement models

After having presented the different classes of possible target models, we can now present the
radar measurement (also called observation) models. The measurement equation also plays an
important role in the quality of the tracking. The measurement noise, which depends on the radar
and on the processing that is done until the information received is converted into plots, has to be
modelled carefully.

The simplest model is to consider Cartesian position measurements yn . The information
transmitted by an aircraft, via the ADS-B, to the air traffic control is the Cartesian coordinates
for instance. The ADS-B (for Automatic Dependent Surveillance - Broadcast) is a transmitter that
broadcasts position information to the receiver. White Gaussian noise is added independently

25

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

on each observation coordinate, in order to model the measurement noise. So the observation
equation writes

yn =
x1

n

x2
n

x3
n

+
v1

n

v2
n

v3
n

 (2.24)

with vn = [v1
n , v2

n , v3
n]T is a white Gaussian noise, with independent coordinates. Usually, ADS-B

informations are fairly precise (in any case, much more precise than any primary radar observa-
tions), so the measurement noise is quite low. Unfortunately, this requires a cooperative aircraft,
so another method has to be used for military applications. Moreover, this does not truly corre-
spond to radar observations.

For military applications, only primary radars are used, due to the presence of non-cooperative
targets, and they do not measure the Cartesian position of the target, but rather its position in
range r , azimuth az, and elevation el coordinates. Sometimes, the radial velocity (also called
range rate, or Doppler) is added to the observation equation. The coordinates are represented on
figure 2.1. The transformation that converts Cartesian position to range, azimuth and elevation is:

r =
√

x2
1 +x2

2 +x3
3

az = arctan(x1/x2)

el = arcsin(x3/r)

Figure 2.1 – Range, azimuth and elevation coordinates

One must then have an appropriate noise model, which has to be realistic. In the range, az-
imuth, elevation and Doppler measurements case, [40] gives approximations to model the noise
for the different coordinates. These approximations can be refined, when knowing the radar’s
characteristics, but it represents well the order of magnitude of the amplitude of the noise in a
first approximation. Let S/N be the signal-to-noise ratio. S/N can be approximated by S/N ≈
k×RCS/r 4 at each instant, with k a constant depending on the radar, RCS, the radar cross-section
depending on the target, and r the range.

The noise for the range measurement is Gaussian, with a standard deviation given by

σRange = ∆Rp
2(S/N)

(2.25)

where ∆R is the range resolution of the radar.

26

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

The noise for the azimuth measurement is also assumed Gaussian and dependent on the ratio
S/N, its standard deviation can be modelled by

σaz = θ

kM
p

2(S/N)
(2.26)

where θ is the beam-width and kM is a dimensionless parameter. This formula is also used for
the elevation measurement noise, with a different θ. An angular noise cannot be Gaussian strictly
speaking, but it seems a good approximation at first.

Finally, the standard deviation for the Doppler measurement noise is

σDop = ∆Vp
2(S/N)

(2.27)

where ∆V is the velocity resolution. See for example [103] or [53] for tracking problems using the
Doppler measurement. In this document however, the Doppler measurement will not be used in
the measurement equations.

The noise increases with the distance of the target to the radar. Indeed, for angle measure-
ments, the width of the beam is greater when the target is far away, and for the range measure-
ment, the precision of the velocity and the time measurement lead to lesser precision when the
distance increases.

2.6 New target model in intrinsic coordinates

In order to track manoeuvring targets, a model representing 3D motions is needed. Indeed, during
a manoeuvre, the target does not necessarily stay in a 2D plane. This has to be made possible
directly in a single model, instead of using several models in parallel representing 2D motions.
Moreover, we want to express the manoeuvres directly in the frame of the target, to represent them
in a more accurate way, but in a simple manner at the same time. To this aim, intrinsic coordinates
have been preferred. Two assumptions have been made to design the target models:

1. There is no sliding during the turns, which means that the velocity vector is always co-linear
to the vector tangent to the trajectory.

2. The commands are piecewise constant. This idea comes from the example of an aircraft,
where the pilot orders piecewise constant commands to the aircraft. To some extent, this
also applies to highly manoeuvring targets, such as missiles, which tend to concatenate ma-
noeuvres, each being based on constant control inputs. Thus we will have a simple model,
yet realistic.

This leads to the use of the Frenet-Serret frame to represent the target motions. More precisely,
the speed and the turn rate of the target are assumed to be piecewise constant. All these parame-
ters are the parameters described by the evolution of the Frenet-Serret frame, as will be shown in
the next section. In fact, in the equations they are considered to be constant, and a white noise is
added to account for the jumps.

We first present a 2D model (some tracking applications use only 2D models), and then we will
present the 3D model, that is a generalisation of the 2D model.

2.6.1 2D target model

In the 2D case, the motion is similar to the one of a non-holonomous car. This model represents in
fact a coordinated turn model, with a slightly different state vector, this model is also used in [42],

as explained in section 2.3.4. The state vector for our model is Xt =
(
θt xT

t ωt ut
)T

with θt the
orientation of the target, i.e. the angle of the velocity vector with respect to the first coordinate

27

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

axis, xt =
(
x1

t x2
t

)T
its Cartesian position, ωt its angular velocity and ut the norm of its velocity.

Let us call wt =
(
wθ

t w x
t wω

t wu
t

)T
a white Gaussian noise. The vectorial equations are

d

d t
θt =ωt +wθ

t

d

d t
xt =

(
cos(θt)
sin(θt)

)
(ut +w x

t)

d

d t
ωt = 0+wω

t

d

d t
ut = 0+wu

t

(2.28)

In this 2D case, the (almost) constant parameters are the angular velocity ωt and the norm of the
velocity ut .

The model seems quite simple, but the equation giving the derivative of xt is not linear, owing
to the presence of the transcendental functions sine and cosine. The cosine and sine functions
can be avoided by introducing the rotation matrix

Rt =
(
cosθt −sinθt

sinθt cosθt

)
∈ SO(2)

The state evolution will still be non-linear, but the formulation is more friendly, and it will lead to
a special type of estimation algorithm that is generalisable in 3D, as we will see in section 3.5.

The evolution of this rotation matrix writes

d

d t
Rt = Rt (Ωt + (wR

t)×)

where

Ωt =
(

0 −ωt

ωt 0

)
wR

t ∈ R is a white Gaussian noise. The notation (.)× is explained extensively in the appendix A. It
is linked with the matrix Lie group SO(2), it represents a skew-symmetric matrix belonging to the
Lie algebra se(2). Here,

(wR
t)× =

(
0 −wR

t
wR

t 0

)
The evolution of the position henceforth writes

d

d t
xt = Rt

((
ut

0

)
+

(
w x

t
0

))
A more appropriate form to represent these equations is to use the matrix Lie group of 2D rota-

tions and translations, SE(2), which can be alternatively seen as SE(2) = SO(2)nR2. The definition
and the principle results for SE(2) and matrix Lie groups in general can be found in appendix A,
and a more thorough description of Lie groups can be found in [3] and [54]. Let us introduce the
matrix χt , which represents the rotation and translation part of the state, and the vector ζt which
represents the angular velocity and the norm of the velocity:

χt =
cosθt −sinθt x1

t
sinθt cosθt x2

t
0 0 1

 , ζt =
(
ωt

ut

)
(2.29)

The matrix χt lies in the matrix Lie group SE(2), and ζt is in R2.
The equations can then be written using this state formulation:

d

d t
χt = χt

(
νt +Lse(2)(wχ

t)
)

,
d

d t
ζt = 0+wζ

t (2.30)

28

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

where the notation Lse(2)(.) is fully explained in appendix A, and wχ
t = (

wθ
t w x

t 0
)T

and wζ
t =(

wω
t wu

t

)
, and νt is the evolution matrix defined by

νt =
 0 −ωt ut

ωt 0 0
0 0 0

 ∈ se(2)

se(2) is called the Lie algebra associated with the Lie group SE(2), it is also defined in appendix A.
Lse(2)(wχ

t) ∈ se(2) writes

Lse(2)(wχ
t) =

 0 −wR
t w x

t
wR

t 0 0
0 0 0

To sum up, the state is

χt =
cosθt −sinθt x1

t
sinθt cosθt x2

t
0 0 1

 , ζt =
(
ωt

ut

)

and the evolution equation is

d

d t
χt = χt

(
νt +Lse(2)(wχ

t)
)

,
d

d t
ζt = 0+wζ

t

The Lie group part of equation (2.30) can be written alternatively as

χ−1
t

d

d t
χt =

(
νt +Lse(2)(wχ

t)
)

This shows the right hand side of the equation is in the Lie algebra because it is equal to the deriva-
tive application of the left translation on the Lie group Lχ−1

t
: A → χ−1

t A.
The 2D target model based on (piecewise -) constant control commands, and in intrinsic co-

ordinates is now fully established. However, we have seen that we need to have a target model that
allows motions that do not lie in a plane. So the 3D model is also derived. The Frenet-Serret frame
seems most appropriate to transpose the 2D model into the 3D one.

2.6.2 3D target model

The 3D Frenet-Serret frame is represented on figure 2.2. The evolution equations of the Frenet-
Serret frame are known, they are reminded in (2.31). The three vectors of the frame are T, the
tangent vector, N the normal vector and B the binormal vector. In equations (2.31), u denotes the
norm of the velocity of the centre of the frame, κ the curvature of the trajectory, and τ̃ the torsion
of the trajectory.

Remark 2.1. : The parameters κ and τ̃ are attached to the trajectory, and not to the target. This
means that if the target (an aircraft for instance) has a non-zero roll, this is not observable in the
Frenet-Serret frame. That is convenient for us, because the roll of the target is anyway not observ-
able with radar position measurements.

d

d t
T = uκN,

d

d t
N = u(−κT+ τ̃B),

d

d t
B =−uτ̃N (2.31)

Using a concise matrix notation, equations (2.31) can be re-written

d

d t

(
T N B

)= u
(
T N B

)0 −κ 0
κ 0 −τ̃
0 τ̃ 0

29

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

B
T

N

Figure 2.2 – Frenet-Serret frame in 3D

Defining γ and τ as γ= uκ and τ= uτ̃, we finally get

d

d t

(
T N B

)= (
T N B

)0 −γ 0
γ 0 −τ
0 τ 0

 (2.32)

In the sequel, the parameters γ and τ will still be referred to as curvature and torsion with a slight
abuse of language.

Using the Frenet-Serret formulas, we let Rt ∈ SO3 be the matrix Rt =
(
Tt Nt Bt

)
. We then

assume nearly constant tangential velocity, curvature and torsion, leading to the following model
for the dynamics (the notation (.)× is explained in appendix A):

d

d t
xt = Rt (vt +w x

t)

d

d t
Rt = Rt (ωt +wω

t)×

d

d t
γt = 0+wγ

t

d

d t
τt = 0+wτ

t

d

d t
ut = 0+wu

t

(2.33)

where the curvature γt , the torsion τt and the velocity norm ut are unknown parameters, ωt =(
τt 0 γt

)T
, vt =

(
ut 0 0

)T
, and wω

t ∈ R3, w x
t = (

w x
t 0 0

)T ∈ R3, wγ
t ∈ R, wτ

t ∈ R, wu
t ∈ R are

white noises that account for changes over time in the motion parameters. Moreover, we let (a)× ∈
R3×3 denote the skew-symmetric matrix associated with cross product with the vector a ∈R3. This
notation is again explained extensively in appendix A, along with the definitions of the Lie groups.

As for the 2D model, we can embed the rotation and position of this model into a Lie group,
SE(3). Indeed, SE(3) is the group of 3D rotations and translations, so it seems perfectly appropriate
for this model. Let us call χt and ζt the matrix and vector parts of the state, as for the 2D model.

χt =
(

Rt xt

01,3 1

)
, ζt =

γt

τt

ut

From (2.33), we can derive more compact equations:

d

d t
χt = χt (νt +Lse(3)(wχ

t)),
d

d t
ζt = 0+wζ

t (2.34)

30

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

with

νt =

0 −γt 0 ut

γt 0 −τt 0
0 τt 0 0
0 0 0 0

 ∈ se3

and the noises are

wχ
t =

wω

t
w x

t
0
0

 ∈R6, wζ
t =

wγ
t

wτ
t

wu
t

 ∈R3

Remark 2.2. The model (2.33) can be easily extended to accommodate nearly constant acceler-
ation or acceleration of the Singer model type [103], by replacing d

d t ut = 0+ wu
t with d

d t ut = at

and d
d t at = −αat +w a

t . The general form of the model then stays the same. The model with ac-
celeration will be more thoroughly described in section 2.6.3. In fact, the equations giving the
evolution of γt ,τt ,ut can be replaced by any linear evolution. One must however be careful, since
it is preferable to avoid introducing too difficult parameters to track, as explained in section 3.7.

Associated difficulties and links with prior literature

There have been various prior attempts to use intrinsic coordinates to describe the target motion.
The most prominent work in this direction is, to our best knowledge, the pioneering work of An-
toulas and Bishop, see e.g. [16] and [88]. If we assume the acceleration of the target is large with
respect to the gravity vector field g , which is the case for highly maneuvering targets, the model of
[16] writes

...
x t = ẋt × ẍt

‖ẋt‖2 × ẍt (2.35)

This equation is obtained assuming the kinematic acceleration ẍt , when projected onto the body
frame, is constant. Although the motivations for this model is akin to ours, the obtained equations
are slightly different, with different parameters. Note indeed that, first the velocity of the target ẋt

must always be different from zero for the model to be valid, which is not the case with equations
(2.33). Moreover, the model (2.35) is based on a zero torsion assumption. As a result quoting [88]
”necessary condition for the model to be an accurate representation of actual trajectories is for the
real trajectories to have small torsions”. It is easily seen that the retained model (2.35) does not lend
itself very well to extended Kalman filtering due to its strong non-linearities. Finally, the authors
thus propose a geometric filter, which is in fact a deterministic observer (of the Luenberger type
[82]), but for a non-linear model, see [14].

2.6.3 Generalisations

Until now, we have supposed the parameters representing control commands were constant, i.e.
that the torsion, the curvature and the norm of the velocity were constant. It is possible to relax
this assumption, and replace the constant evolution by any linear evolution. This is specifically
useful for the norm of the velocity, indeed, the norm of the velocity is rarely constant in most
applications. To have a more general model, we add the norm of the acceleration to the state,
and assume that the norm of the acceleration is almost constant, which seems a more consensual
model.

However, this should not be pushed too far, and it seems inefficient to add more terms in
the state that are high derivatives of the position. Indeed, the torsion, which comes from a third
derivative of the position is already weakly observable.

The definition of the state and the evolution equations are given thereafter. The state is thus
composed of the same rotation matrix Rt , the target’s position xt , the curvature γt , the torsion τt ,
the norm of the velocity ut and the norm of the acceleration at .

31

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

d

d t
xt = Rt vt +w x

t

d

d t
Rt = Rt (ωt +wω

t)×

d

d t
γt = 0+wγ

t

d

d t
τt = 0+wτ

t

d

d t
vt = at +wu

t

d

d t
at = 0+w a

t

(2.36)

Or, if we prefer the more concise version:

χt =
(

Rt xt

01,3 1

)
, ζt =

γt

τt

ut

at

νt =

0 −γt 0 ut

γt 0 −τt 0
0 τt 0 0
0 0 0 0

 , wχ
t =

(
wR

t
w x

t

)
, wζ

t =

wγ

t
wτ

t
wu

t
w a

t

d

d t
χt = χt (νt + (wχ

t)×),
d

d t
ζt = 0+wζ

t (2.37)

2.7 Conclusion

In this chapter, new target models have been designed. The first one is built for 2D trajectories.
Sometimes, radar measurements are expressed in 2D, so this is not a fruitless model. Moreover,
as we will see in the next chapter, we can easily build a standard non-linear Kalman filter on this
model, using the vectorial formulation (2.28). It has also served as a basis in our work to build the
3D model, namely the idea to use the Frenet-Serret frame in 3D has arisen from the 2D formula-
tion.

The 3D target model, albeit quite simple, seems to have not appeared and been used in the
tracking literature so far. It has several advantages. First, the model is fairly elementary. Indeed, it
uses the Frenet-Serret frame to express any possible motion in the 3D space. Then, it is expressed
in intrinsic coordinates, which means that the motions of the object are represented directly in the
frame of the target. This will be proved to yield better accuracy, namely for the orientation angle
of the velocity vector during turns.

We have made several assumptions to build our model. First, the assumption that the target
cannot slide is common, and all other target models also make the same assumption. Moreover,
the process noise included into the model allows modelling a certain extend of sliding. It would
add too much complexity to add in the kinematic model a sliding factor, and tracking too many
parameters may lead to inefficient state estimation. The other assumption concerns the fact that
the norm of the velocity, the curvature and the torsion are (almost) constant. This is less realis-
tic, because it is often not the case in practise, but in chapters 3, and 4, we will discuss on the
implications of this assumption on the tuning of the estimation algorithm.

Despite these assumptions, the new target model seems more appropriate to track manoeu-
vring targets than the ones presented in sections 2.3 and 2.4. Indeed, the models used in industry
are also very simple, but they are more rigid in terms of degrees of freedom than the Frenet-Serret
target model. Models with jumps are very appealing, but our target model can also be adjusted to
take into account jumps in the piecewise constant parameters, as we will see in chapter 5.

32

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

The target model is also very versatile, as some new parameters can be added to it. Indeed,
we can replace any of the linear equations by other linear equations without changing the general
form and framework of the model.

33

CHAPTER 2. TARGET MODEL IN INTRINSIC COORDINATES

34

Chapter 3

Filtering algorithms

Sommaire
3.1 Résumé en français : Algorithmes de filtrage . 36

3.2 Introduction . 36

3.3 The estimation problem for single target tracking 37

3.3.1 Optimal filter . 37

3.3.2 Suboptimal filters . 38

3.4 State of the art . 38

3.4.1 Linear Kalman Filter . 38

3.4.2 Interacting Multiple Model Filter (IMM) . 39

3.4.3 Non-linear filters . 40

3.5 IEKF applied to the 2D Frenet-Serret model . 46

3.5.1 Position observations in Cartesian coordinates 48

3.5.2 Range and bearing observations . 49

3.5.3 Comparison with an EKF derived from the same target model 50

3.5.4 Discussion . 51

3.6 IEKF applied to the 3D Frenet model . 52

3.6.1 Similarities with the Invariant theory . 52

3.6.2 Derivation of the algorithm . 53

3.6.3 Discussion on the filter’s expected stability . 55

3.7 Simulations . 55

3.7.1 2D simulations and comparison with the EKF on the same target model . . 56

3.7.2 3D simulations . 56

3.8 Left-invariant UKF on a 2D model . 61

3.8.1 Derivation of the filter . 61

3.8.2 Results . 63

3.9 Conclusion . 63

35

CHAPTER 3. FILTERING ALGORITHMS

3.1 Résumé en français : Algorithmes de filtrage

L’objectif d’un algorithme de filtrage est de filtrer la position bruitée de la cible mesurée par le
radar, et d’estimer également d’autres caractéristiques cinématiques de la cible, qui sont présentes
dans le vecteur d’état. Le filtrage est une méthode probabiliste qui permet d’estimer les paramètres
d’un système physique évoluant au cours du temps à partir de mesures bruitées. Considérons
l’état (Xk)k≥0 qui évolue de façon probabiliste, et les mesures (yk)k≥0 qui dépendent de façon prob-
abiliste de l’état. On cherche la distribution de probabilité p(Xk |y0, . . . , yk). C’est ce que donne
exactement le filtre optimal. Malheureusement, ce filtre ne peut être calculé que dans deux cas :
quand l’espace d’état est fini et discret, ou quand les modèles de cible et de mesure sont linéaires,
avec des bruits blancs Gaussiens. Dans le second cas, le filtre de Kalman linéaire peut être ap-
pliqué, et il est alors optimal. Dans tous les autres cas, on ne peut espérer qu’une approxima-
tion de la distribution p(Xk |y0, . . . , yk). On peut identifier deux familles de méthodes permettant
d’obtenir cette approximation :

• Les méthodes qui approximent la distribution par une Gaussienne, et qui donnent une es-
timation des deux premiers moments (la moyenne et la covariance). Ce sont toutes les vari-
antes du filtre de Kalman. L’EKF (Extended Kalman Filter) est le filtre non-linéaire le plus
répandu, et il consiste à calculer des linéarisations à l’ordre un de l’erreur, et d’appliquer un
filtre de Kalman sur le système d’erreur approximativement linéaire.

• Les méthodes qui approximent la distribution par des particules, ce sont les filtres particu-
laires.

Les filtres fonctionnent récursivement et en deux étapes : dans un premier temps, le modèle
d’évolution de cible retenu est propagé dans le temps, on appelle cela l’étape de prédiction. Puis
lorsqu’une mesure est disponible, la prédiction est corrigée avec la mesure, c’est l’étape de mise à
jour.

Afin de développer un algorithme de filtrage adapté à la formulation de notre modèle, il faut
revoir la définition de l’erreur habituellement utilisée. En effet, pour un filtre de Kalman non-
linéaire usuel (de type EKF par exemple), l’erreur est définie par et = X̂t −Xt , avec Xt l’état réel au
temps t , et X̂t l’état estimé au temps t . L’état étant composé d’une matrice de rotation, il n’est pas
possible de définir l’erreur de cette façon, en effet, la différence entre deux matrices de rotation
ne représente pas une valeur ayant du sens. Il est nécessaire d’utiliser l’opération adaptée sur le
groupe de Lie. L’erreur effectuée sur la partie de l’état dans le groupe de Lie, appelée χt est donc
définie par ηt = χ−1

t χ̂t . L’erreur étant alors bien définie, il suffit ensuite de calculer son évolution,
et de linéariser pour pouvoir obtenir un filtre de type Kalman, appelé l’IEKF (Invariant Extended
Kalman Filter). Le filtre est construit exactement de la même façon que l’EKF.

Les premières expérimentations sur des trajectoires simulées montrent que ce filtre est adapté
aux trajectoires de cibles manœuvrantes, même en présence de sauts dans la trajectoire. En 2D, il
est en particulier possible de comparer les résultats de l’EKF et de l’IEKF sur le même modèle (car
il peut être écrit sous forme vectorielle aussi bien que sous forme groupe de Lie), et on montre que
l’IEKF donne de meilleurs résultats que l’EKF, en ce qui concerne le cap ainsi que la vitesse. Des
résultats plus approfondis et détaillés sont présentés dans le chapitre suivant.

3.2 Introduction

In radar applications, track maintenance is one essential component of the process. Mathemati-
cally, it boils down to a filtering problem, where one must filter the current position of the target as
well as its velocity and possibly higher order derivatives, from noisy position measurements. We
will refer to this problem simply as "target tracking". When the target is manoeuvring, the prob-
lem is difficult due to the unpredictable nature of the motion. This area has been the object of
extensive research over the four past decades, see [8]. The main degrees of freedom for tracking
are 1- the dynamical model describing the motion of the target, and 2- the (statistical) filter used.

36

CHAPTER 3. FILTERING ALGORITHMS

In this document, only the single target tracking problem is addressed, and we assume that the
plot to track association problem has been solved.

As concerns the models, an extensive presentation has been made in chapter 2. As concerns
the filters, the subject of this chapter, a straightforward solution is to use a Kalman filter (or ex-
tended Kalman filter for the non-linear models). More modern approaches include particle filters
[50] and the reference filter for tracking which is the Interacting Multiple Model (IMM), see e.g. [6].
As we will see, the latter filter runs banks of (extended) Kalman filters in parallel based on various
models and assess weights to each model by evaluating likelihood of the measured outputs. This
allows accommodating the various types of targets and degrees of manoeuvrability a single radar
can be confronted with. The academic community has now largely turned to the challenges of
multi-target tracking, with joint applications in video, see [83] for the description of the Probabil-
ity Hypothesis Density filter. Filters performing association along with tracking for multi-target
scenarios are becoming widely studied, see for example [38], or [98], which uses the theory of
random finite sets, very popular for multi-target tracking.

Our target model described in chapter 2 being partially an element of a matrix Lie group, it is
then also possible to cast (partially) the tracking problem into a filtering problem on Lie groups.
Slightly extending the Invariant Kalman Filter (IEKF), introduced in [24] and [22], we obtain a novel
tracking algorithm. The IEKF is indeed a recent methodology that accounts for the geometric
nature of the state space, and comes with convergence properties [11]. It can also be related to the
discrete EKF on Lie groups of [26], [27], or to the generalised multiplicative EKF of [84], see also
[56].

This chapter will thus be organised in seven different sections. In section 3.3, the general esti-
mation problem is introduced. In section 3.4, the most popular filtering algorithms are presented,
along with less used ones, but which have been investigated more in depth in this thesis. In section
3.5, the filter used for our 2D target model is presented. In section 3.6, the filter for the 3D target
model is derived. The theory to obtain the estimation filters is explained with different viewpoints
for the 2D and the 3D target models. In section 3.7, we present some toy simulations to show the
behaviour that can be expected from the model and the filter. Finally, in section 3.8, we present a
slight modification of the filter previously presented to avoid computing the Jacobian when using
range and bearing observations in 2D.

3.3 The estimation problem for single target tracking

Filtering is a probabilistic method that estimates parameters of a physical system that evolves
in time from partial and noisy measurements. For the radar application for instance, important
parameters to estimate can be the position, the velocity and the heading angle of a target. Like for
target models, there are numerous algorithms to perform filtering, we present in the beginning of
this chapter the principle solutions adapted to the filtering problem.

3.3.1 Optimal filter

The setting is the following: consider a state (Xk)k≥0 that evolves in a probabilistic way. On an other
side, there are some measurements (yk)k≥0 that depend probabilistically on the state. The objec-
tive is to find the probability distribution p(Xk |y0, ..., yk). The optimal filter solves the mean-square
estimation problem, see [89], and it gives exactly this probability. Unfortunately, in practice, the
optimal filter can be computed for only two cases:

• the discrete finite case,

• the linear Gaussian case.

The Kalman filter used with a linear target model and a linear observation model, with additive
Gaussian white noises is optimal, as we will see in section 3.4.1.

37

CHAPTER 3. FILTERING ALGORITHMS

3.3.2 Suboptimal filters

In all other cases, we can only obtain an approximation of p(Xk |y0, ..., yk). We can identify two
families of methods to obtain this approximation:

• the first way to perform filtering is to compute the first two moments of the distribution (i.e.
the mean X̂ and the covariance P), assuming that the distribution is Gaussian. This gives all
the filters derived from the Kalman filter,

• the second way to perform filtering is to approximate the distribution with particles. This
leads to the particle filters.

We will thus present the general description of filters from this two families, and we will present
some specific filters more extensively, because they have retained our attention for this work.

3.4 State of the art

3.4.1 Linear Kalman Filter

Suppose we have the following discrete linear target model, with Xk the state at time instant k, of
dimension n:

Xk+1 = Fk Xk +Bk uk +wk

yk = Hk Xk + vk

Fk is the evolution matrix, uk is a known command input, Bk is the matrix that links the input to
the future state, Hk is the observation matrix, wk and vk are white Gaussian noises. If the state is
of dimension n and the observation of dimension p, then Hk is of dimension p ×n.

The principle of the filter is recalled below, a complete description can be found in [71]. The
idea is to find an iterative algorithm to compute the least mean square error between the estima-
tion and the observations.

The filter proceeds in two steps. First, the prediction step propagates the model, then when
an observation is available, the update step corrects the prediction thanks to the observation. The
equations are:

1. Prediction step:
X̂k|k−1 = Fk−1X̂k−1|k−1 +Bk uk−1

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk

2. Update step:
νk = yk −Hk X̂k|k−1

Sk = Hk Pk|k−1HT
k +Nk

Kk = Pk|k−1HT
k S−1

k

X̂k|k = X̂k|k−1 +Kkνk

Pk|k = (In −Kk Hk)Pk|k−1

Where In is the identity matrix of size n×n, Pk|k−1 is the predicted covariance, X̂k|k−1 the predicted
state, Qk the process noise covariance matrix, Pk|k the estimated covariance, X̂k|k the estimated
state, Nk the measurement noise covariance matrix, νk the innovation, Sk the covariance of the
innovation, and Kk the Kalman gain.

Proposition 3.1. For linear Gaussian systems, the Kalman filter is optimal.

Proof. This is a consequence of the theory of Gaussian vectors and Gaussian conditioning in the
field of probability. In appendix B, we provide the proof partially.

38

CHAPTER 3. FILTERING ALGORITHMS

3.4.2 Interacting Multiple Model Filter (IMM)

It is one of the reference filters in industry. Although it was developped decades ago, it is consid-
ered as state of the art for industrial implementations. The IMM filter, developed by Bar-Shalom
in the end of the 1980s, and presented in [6] and [5], is designed to take into account several mod-
els ni parallel. Indeed, the standard Kalman filter assumes the target follows a "best" model. The
IMM allows to overcome this constraint. However, one needs to know the transition probabilities
between the models. As for the standard Kalman filter, the choice of models is decisive. This filter
implies to let several Kalman filters run in parallel, as many as the number of models: the state and
covariance estimations are done for each model, and then a weight computation allows to know
which one is the best model. The final state is the weighted sum of the different estimates. A brief
description of the IMM is provided in figure 3.1. And the complete cycle of the IMM is described
below. For this, let us assume there are r different models M1, . . . ,Mr .

Figure 3.1 – Interacting Multiple Model

1. Mixing probabilities computation (for i , j = 1, . . . ,r): the probability that the model Mi is
used at time k −1, knowing that M j is used at time k, conditioned by y1:k−1 is:

µi | j (k −1|k −1), P(Mi (k −1)|M j (k), y1:k−1)

= 1

c j
P(M j (k)|Mi (k −1), y1:k−1)P(Mi (k −1)|y1:k−1)

The mixing probabilities can be written

µi | j (k −1|k −1) = 1

c j
pi jµi (k −1) for i , j = 1, . . . ,r

where the normalizing constants are

c j =
r∑

i=1
pi jµi (k −1) for j = 1, . . . ,r

2. Mixing (j = 1, . . . ,r): from X̂i (k−1|k−1), the mixed initial condition is computed for the filter
for M j (k) with:

X̂0 j
k−1|k−1 =

r∑
i=1

X̂i
k−1|k−1µi | j (k −1|k −1) for j = 1, . . . ,r

39

CHAPTER 3. FILTERING ALGORITHMS

The associated covariance is

P0 j
k−1|k−1 =

r∑
i=1

µi | j (k −1|k −1)×(
Pi (k −1|k −1)+ [X̂i

k−1|k−1 − X̂0 j
k−1|k−1][X̂i

k−1|k−1 − X̂0 j
k−1|k−1]T

)
3. Filtering associated to a model j = 1, . . . ,r : the estimate X̂0 j

k−1|k−1 and its covariance P0 j
k−1|k−1

are used as an input for the filter for model M j (k). The filter uses y(k) to output X̂ j
k|k and P j

k|k .
The likelihood functions corresponding to the r filters defined by∆ j (k) = P(yk |M j (k), y1:k−1)
are computed with the formula:

∆ j (k) = P(yk |M j (k), X̂0 j
k−1|k−1,P0 j

k−1|k−1)

with P corresponding to the normal distribution.

4. Update of the models probabilities for j = 1, . . . ,r :

µ j (k) = 1

c
∆ j (k)c j for j = 1, . . . ,r

where c =∑r
i=1∆ j (k)c j .

5. The output state and covariance estimations are then given by:

X̂k|k =
r∑

i=1
X̂i

k|kµi (k)

Pk|k =
r∑

i=1
µ j (k)Pi

k|k + [X̂i
k|k − X̂k|k][X̂i

k|k − X̂k|k]T

This step serves only for the output of the filter, and is not part of the recursions of the algo-
rithm.

Remark 3.1. : Here, a reduction of hypothesis is made. Indeed, we normally have a Gaus-
sian mixture: at each time instant, there are r densities on Rn . The densities on Rn are rarely
Gaussian. Even if p(X0|y0) is Gaussian, p(Xk |y1:k) is in general a sum of r k−1 weighted Gaus-
sians. However, we approximate this mixture with a single Gaussian.

This algorithm is one of the most used in radars: it is a fairly simple improvement of the
Kalman filter, and enables to take into account several models at once, without introducing too
much extra complexity, and without changing the paradigm, since it consists of running a few
Kalman filters in parallel, and of computing weights quite easily. However, the models must be
elaborately chosen, and the possible transitions between the models must be modelled. And since
the target has behaviours that always deviate from one of the chosen model, it is often necessary
to introduce a model with a high process noise, that deals with all motions that do not correspond
to the other models. Particle filters presented in section 3.4.3 permit to overcome these kind of
constraints. Moreover, authors of [81] present motion models coupled with other multi-model
filters.

3.4.3 Non-linear filters

When the model equations are non-linear, other algorithms are used. The general form of the
model is {

Xk = f (Xk−1,uk)+wk

yk = h(Xk)+ vk
(3.1)

In the non-linear case, wk and vk are not necessarily Gaussian, but we assume they are mutually
independent and with known probability density functions, and f and h are not necessarily linear.
As explained in section 3.3, non-linear filters can be divided in two categories:

40

CHAPTER 3. FILTERING ALGORITHMS

• Gaussian filters;

• Particle filters.

We will first describe two of the most popular Gaussian filters, the Extended Kalman Filter
(EKF), the Unscented Kalman Filter (UKF), and the more specific Invariant Extended Kalman Filter
(IEKF), then we will present the general particle filter, and the more specific Rao-Blackwell Particle
Filter, and Variable Rate Particle Filter.

Extended Kalman Filter

To derive the Extended Kalman Filter (EKF), we assume again the noises are Gaussian and addi-
tive. The EKF is based on linearisations of the non-linear functions. This includes computing the
Jacobian of these functions. It is one of the most used filters in practice (and especially in indus-
try). The equations are very similar to that of the linear Kalman filter, except that the matrices Fk

and Hk of the Kalman filter are replaced by the Jacobians of the non-linear functions intervening
in the equations. Let us call Fk−1 and Hk the Jacobians defined as:

Fk−1 =
∂ f

∂x

∣∣∣∣
X̂k−1|k−1,uk

Hk = ∂h

∂x

∣∣∣∣
X̂k|k−1

The equations of the filter are as follows:

1. Prediction step:
X̂k|k−1 = f (X̂k−1|k−1,uk)

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 +Qk

2. Update step:
νk = yk −h(X̂k|k−1)

Sk = Hk Pk|k−1HT
k +Nk

Kk = Pk|k−1HT
k S−1

k

X̂k|k = X̂k|k−1 +Kkνk

Pk|k = (In −Kk Hk)Pk|k−1

The EKF is not a very stable filter, especially when the non-linearities are strong. Indeed,when
looking with more depth into the computations leading to the algorithm, we see that the error is
defined as

ek|k−1 = Xk − X̂k|k−1 (3.2)

and
ek−1|k−1 = Xk−1 − X̂k−1|k−1 (3.3)

This error has to be linearised to derive the covariance evolution. This linearisation is:

ek|k−1 =
∂

∂x
f (X̂k−1|k−1,uk)ek−1|k−1 +wk

The error evolution depends on the Jacobian Fk−1 = ∂
∂x f (X̂k−1|k−1,uk) of the evolution function f .

The problem is that this Jacobian can only be computed at the point X̂k−1|k−1, that is an estimate. If
the estimate is wrong, then the error becomes wrong also, and the covariance no longer represents
the actual incertitude over the estimate. The problem is of course the same with the linearisation
of the measurement function h. This can lead to the filter’s divergence.

To avoid the linearisation problem, a lot of filters have been developed, including the Un-
scented Kalman Filter (UKF), see [66] or [67], that we present in the next paragraph, the Geometric
Non-linear Filter (GNF), see [15] or [16], or the Invariant Extended Kalman Filter (IEKF), see [11]
that we will develop later.

41

CHAPTER 3. FILTERING ALGORITHMS

Remark 3.2. : It is perfectly possible to use an IMM with non-linear target models. Instead of
running Kalman filters in parallel, Extended Kalman filters have to be used. The other equations,
giving the mixing of the state and covariance do not change.

Unscented Kalman Filter

Developed by Julier and Uhlmann in [66] and [67] to avoid the problems of stability of the EKF,
and to avoid the problem of bias when computing the association window, the UKF is becoming
increasingly used. This filter is also well described in [109], or [106]. The noises do not necessarily
need to be Gaussian.

Let us consider again the target model (3.1). The idea of the UKF is to sample the distribution
deterministically, thanks to the use of so-called sigma points. In this aim, an augmented state,
including the process and observation noises is defined:

Xa
k =

Xk

wk

vk

 (3.4)

We then define a set of 2n +1 sigma points αk (n is the dimension of the augmented state), and
their weights Wk :

α0
k = Xk

αi
k = Xk + (

√
(n +λ)Pk)i , i = 1, . . . ,n

αi
k = Xk − (

√
(n +λ)Pk)i−n , i = n +1, . . . ,2n

Wm
0 = λ

n +λ
Wc

0 = λ

n +λ + (1−β2 +γ)

Wm
i = Wc

i = 1/(2(n +λ)), i = 1, . . . ,2n

where λ= β2(n+κ)−n is a scaling parameter. The parameters β,γ,κ are used to set the dispersion
of the sigma points.

The filter then operates in two steps, as any filter. During the prediction step, the sigma points
are propagated through the non-linear evolution function:

αi
k = f (αi−1

k)

The mean and covariance for the prediction can be deduced from these propagated sigma points:

Xk =
2n∑

i=0
Wm

i α
i
k

Pk =
2n∑

i=0
Wc

i (αi
k −Xk)(αi

k −Xk)T

Then the sigma points are propagated through the measurement function h:

zi
k = h(αi

k)

zk =
2n∑

i=0
Wm

i zi
k

And the update equations thus are:

Pz =
2n∑

i=0
Wc

i (zi
k − zk)(zi

k − zk)T

42

CHAPTER 3. FILTERING ALGORITHMS

Px,z =
2n∑

i=0
Wc

i (αi
k −Xk)(zi

k − zk)T

Kk = Px,z P−1
z

X+
k = Xk +Kk (yk − zk)

P+
k = Pk −Kk Pz KT

k

Remark 3.3. Another advantage of the UKF over the EKF is that there is no need to compute Jaco-
bians. The Jacobians can indeed be tricky to compute, depending on the evolution or observation
functions.

Invariant Extended Kalman Filter

The general setting of the Invariant Extended Kalman Filter (IEKF) is presented in [11], and in [9].
The idea is to develop a filter adapted to models that have an invariant property. We summarise
here the results obtained for specific invariant models of these papers. All the necessary mathe-
matical tools to understand what a Lie group is are given in appendix A.

Let us consider the following target model, expressed on a Lie group:

d

d t
χt = fut (χt)+χt Lg(wt) (3.5)

with the state χt ∈ G ⊂ Rn×n , wt a white noise belonging to the Lie algebra g with covariance Qt ,
ut is a known control input, and f a function that verifies fu(ab) = a fu(b)+ fu(a)b − a fu(Id)b.
The latter property of f is called the affine invariance property of the model, and was shown in
[11] to be the proper generalisation of linear systems on Lie groups. Let us consider left-invariant
observations (Cartesian position observations are left-invariant observations if the state contains
the Cartesian position):

ytn = χtn d + vn (3.6)

where d is a known vector, and vn a white Gaussian noise with covariance Nn . The left-IEKF is
defined by the state propagation and update:

d

d t
χ̂t = fut (χ̂t) (3.7)

χ̂+tn
= χ̂tn exp(Ln(χ̂−1

tn
ytn −d)) (3.8)

where Ln is the Kalman gain. The left-invariant error is defined by

ηL
t = χ−1

t χ̂t (3.9)

The error evolution can be computed, and the result is:

d

d t
ηL

t = fut (ηL
t)− fut (Id)ηL

t −wtη
L
t

So the error is independent from the state trajectory. The natural way to represent the error as a
vector, is to linearise the error ηt on the Lie algebra g. This gives a vector ξt ∈Rdimg such that

ηL
t = exp(ξt) = expm(Lg(ξt))

This linearised error propagates as
d

d t
ξt = Atξt +wt (3.10)

where At is defined by gut (exp(ξt)) = Lg(Atξt)+O(||ξt ||2), where the terms of order O(||ξt ||2) and
O(||wt ||||ξt ||) have been neglected. The error update can be computed as follows:

(ηL
tn

)+ = χ−1
tn
χ̂+tn

= ηL
tn

exp
(
Ln

(
(ηL

tn
)−1d −d + χ̂−1

tn
vn

))
43

CHAPTER 3. FILTERING ALGORITHMS

which can be linearised in
ξ+tn

= ξtn +Ln(Hξtn + χ̂−1
tn

vn)

with H the observation function, defined such that Hξ = −Lg(ξ)d . The Kalman gain Ln can be
computed with the following equations (similar to the standard Kalman filter):

d

d t
Pt = At Pt +Pt AT

t +Qt

P+
tn
= (I−LnH)Ptn

Sn = HPtn HT +Nn

Ln = Ptn HTS−1
n

The IEKF has stability properties that an EKF does not have. In particular, it is asymptotically
stable under quite loose conditions. This means that the filter will not diverge if the true trajectory
is close to the model. This is a quite strong property, since there is no analogous property for the
EKF.

Moreover, this filter has the advantage of being close to a Kalman filter, and in practice, it
is quite easy to implement. The theory that underlies it is powerful, and allows to prove some
stability results, but the method is the same as the Kalman filter: it is a recursive Bayesian filter,
and we compute the first two moments of the probability distribution of the state, assuming it is
Gaussian.

Other filters have been developed on Lie groups. This includes the work of [42]. The authors
estimate the state of their Lie group model (based on Coordinated turns), with a filter called a Dis-
crete Lie Group EKF. They modify the distribution of the noises to take into account the Lie group
formalism of their state. Another approach, yet very close to the one presented in this section, is
presented in [26] and [27]. One other method proposed is to model the observations on a mani-
fold (when the target evolves in a Lie group SO(n)), and use a sampling filtering method to perform
state estimation, as explained in [25].

Particle filters

Another way to cope with the non-linearities is to use random sampling. The particle filter is
described in [50], [61] and [4]. This sampling method appeared at the end of the nineties. We sum
up here the principal contribution of this type of filtering. Let us call y1:k = {y0, . . . , yk } the set of the
measurements from time 0 to time k, and X1:k = {X0, . . . ,Xk } the set of states from time 0 to time k.
The particle filter approximates p(Xk |y1:k). The Xk are the hidden parameters, and the yk are the
observed data. Let us assume the following hypotheses are valid:

1. The states X0,X1, . . . , form a Markov chain such that Xk |Xk−1 ∼ p(Xk |Xk−1) of known initial
distribution;

2. The observations yk depend only on Xk .

Equation (3.1) does satisfy these hypotheses. The particles, i.e. a sum of Dirac measures are used
to sequentially approximate the distribution p(Xk |y1:k). The final state is a weighted sum of parti-
cles, after a re-sampling step for which there are plenty of solutions, listed for instance in [48]. An
illustration explaining how the filter works is provided in figure 3.2, with an importance distribu-
tion q(Xk+1|X1:k , yk+1) = p(Xi

k+1|Xi
k).

A tutorial on particle filters can be found in [51], or in [62]. We propose here to describe the
basic particle filter, which belongs to a larger class of algorithms, namely the Sequential Monte-
Carlo (SMC) algorithms. Before running the algorithm, we must define an importance distribution
called q(Xk+1|X1:k , yk+1), from which we are able to sample, and a re-sampling strategy. The num-
ber of particles is N. To initialise the particle filter, we must first generate samples with Xi

1 ∼ px0

for i = 1, . . . ,N, and initialise the weights at w1|0 = 1/N. Then the algorithm iterates as follows:

44

CHAPTER 3. FILTERING ALGORITHMS

Figure 3.2 – Particle filter

1. Measurement update: For i = 1, ...,N,

w i
k|k = 1

ck
w i

k|k−1p(yk |Xi
k)

where ck is a normalization constant

ck =
N∑

i=1
w i

k|k−1p(yk |Xi
k)

2. Estimation of the distribution: p(X1:k |y1:k) ≈ ∑N
i=1 w i

k|kδ(X1:k −Xi
1:k), and the mean of the

state is X̂1:k =∑N
i=1 w i

k|k Xi
1:k .

3. Re-sampling (optional, depends on the resampling strategy): delete the particles with the
lowest weights and duplicate those with the highest weights. The number of particles should
be kept constant. At the end of this step, the weights are w i

k|k = 1/N.

4. Prediction:
Xi

k+1 ∼ q(Xk+1|Xi
k , yk+1)

5. Weight update:

w i
k+1|k = w i

k|k
p(Xi

k+1|Xi
k)

q(Xi
k+1|Xi

k , yk+1)

Remark 3.4. Some convergence results can be obtained for a large class of particle filters, among
which the basic result presented in [64], which proves that the solution to the estimation problem
given by the particle filter converges towards the optimal solution when the number of particles
increases to infinity, for a large class of unbounded functions.

Rao-Blackwellized Particle Filter

The Rao-Blackwellized particle filter is explained in detail in [49]. The idea is to separate the
state in two parts, Xk = (rk ,θk) such that p(Xk |Xk−1) = p(θk |rk−1:k ,θk−1)p(rk |rk−1). The two parts

45

CHAPTER 3. FILTERING ALGORITHMS

are chosen also so that once r1:k is known, the distribution p(θ0:k |y1:k ,r0:k) can be easily com-
puted. The Bayes rule is then used: p(r0:k ,θ0:k) = p(θ0:k |y1:k ,r0:k)p(r0:k |y1:k), and the sampling is
used only to estimate p(r0:k |y1:k), which is a reduced problem compared to the sampling of the
probability for the whole state. In our case, it is convenient to use a Kalman filter to compute
p(θ0:k |y1:k ,r0:k).

The idea of this filter is quite close to that of the IMM, in the sense that several Kalman filters
run in parallel. The IMM is based on a finite choice of models, and computes the probabilities of
each model. The Rao-Blackwellized particle filter samples a continuous parameter and computes
the likelihood of each particle thanks to a Kalman filter. The sampled parameter is chosen so that
once this parameter is known, the state can be fully estimated with a Kalman filter. This filter is
fully developed in the appendix D.1.

Variable Rate Particle Filter

[32] develops models based on the use of intrinsic coordinates that are akin to our 3D Frenet-
Serret model presented in the preceding chapter. The target model proposed by the authors has
been detailed in section 2.3.4. The proposed model is based on piecewise constant tangential
and normal accelerations and constant-plane motions, and differs from [5] and [6] only in the
way the noise enters the system. The authors assume indeed the system to be deterministic, and
the acceleration to jump from time to time. It is thus a variable rate model. They then use a
particle filter to select the most likely accelerations. The method is very close to the Rao-Blackwell
Particle Filter, except that there is no process noise, and the jumps are allowed in continuous time
resorting to the use of marked point processes (the time of jumps are also sampled). This filter is
also detailed more explicitly in appendix D.2.

In this work, we have focused on the Frenet-Serret model, and we aim at developing an estima-
tion filter suited to this model. The IEKF seems to be the most suited filter to achieve estimation.
Indeed, the state of the Frenet-Serret model fits partly the requirements of the filter, and the pres-
ence of the rotation matrix in the state requires a special treatment. However, since the setting
does not fully satisfy the conditions to apply directly the IEKF, we need to adapt and extend it to fit
our model.

3.5 IEKF applied to the 2D Frenet-Serret model

Let us first concentrate on the 2D model derived in section 2.6.1. We recall the 2D Frenet-Serret
model equations (2.30):

d

d t
χt = χt

(
νt +Lse(2)(wχ

t)
)

,
d

d t
ζt = 0+wζ

t (3.11)

where

χt =
cosθt −sinθt x1

t
sinθt cosθt x2

t
0 0 1

 , ζt =
(
ωt

ut

)
(3.12)

and

νt =
 0 −ωt ut

ωt 0 0
0 0 0

 ∈ se(2)

The predicted state equation in continuous time writes:

d

d t
χ̂t = χ̂t ν̂t ,

d

d t
ζ̂t = 0 (3.13)

46

CHAPTER 3. FILTERING ALGORITHMS

with

ν̂t =
 0 −ω̂t ût

ω̂t 0 0
0 0 0

In order to derive the equations of the IEKF for our model, let us first define the error ηt =(

η
χ
t η

ζ
t

)
on the state

(
χt ζt

)
: {

η
χ
t = χ−1

t χ̂t ∈ SE(2)

η
ζ
t = ζ̂t −ζt ∈R2

(3.14)

The reason why the error is defined in two parts is that the χ-part of the state follows a left-invariant
evolution equation assuming that ζ is known, as defined in [11], and the ζ-part of the state follows
a linear vectorial equation.

Let us compute the evolution of the error ηt : the evolution of ηζt is quite easy to derive:

d

d t
η
ζ
t =

d

d t
ζ̂t − d

d t
ζt =−wζ

t (3.15)

The evolution of ηχt is a little more subtle, it writes:

d

d t
η
χ
t =

d

d t
(χ−1

t χ̂t)

=−χ−1
t

d

d t
χtχ

−1
t χ̂t +χ−1

t
d

d t
χ̂t

=−χ−1
t χt (νt +L (wχ

t))χ−1
t χ̂t +χ−1

t χ̂t ν̂t

So finally, we obtain the following equation for the evolution of ηχt :

d

d t
η
χ
t =−νtη

χ
t −Lse(2)(wχ

t)ηχt +ηχt ν̂t (3.16)

Equation (3.16) can be written differently, to make appear a perturbation term:

d

d t
η
χ
t = [ηχt ,νt]−Lse(2)(wχ

t)ηχt +ηχt (ν̂t −νt)

Equations (3.15) and (3.16) have to be linearised to compute the evolution of the covariance.

To perform linearisation, we introduce the linearised error ξt =
(
ξ
χ
t ξ

ζ
t

)T ∈ R3+2, because

dimse(2) = 3. Lse(2)(ξ
χ
t) lies in the Lie algebra se(2). As for the other variables, the notation means

that ξχt is the linearisation of the error made on χt which is ηχt , and that ξζt is the linearisation of the

error made on ζt , which is ηζt . The ζ-part of the state follows a linear evolution equation, so in fact

we have ξζt = ηζt . ξχt is defined such that:

η
χ
t ≈ I3 +Lse(2)(ξ

χ
t)

Let us first assume that the norm of the velocity and the angular velocity are known. The compu-
tations in [11] show that the linearised error evolution is

d

d t
ξ
χ
t = Atξ

χ
t −wχ

t (3.17)

where

At =−
 0 0 0

0 0 ωt

ut −ωt 0

47

CHAPTER 3. FILTERING ALGORITHMS

Thanks to this formula we can derive the global linearised error evolution equation for the 2D
Frenet-Serret model. The computations are detailed below:

Lse(2)

(
ξ
ζ
t

0

)
=

 0 −(ω̂t −ωt) ût −ut

ω̂t −ωt 0 0
0 0 0

= ν̂t −νt

So we obtain:

νt = ν̂t −Lse(2)

(
ξ
ζ
t

0

)
It is possible to re-write equation (3.16) using this formulation:

d

d t
η
χ
t = ηχt ν̂t −

(
ν̂t −Lse(2)

(
ξ
ζ
t

0

))
η
χ
t −Lse(2)(wχ

t)ηχt (3.18)

A mere analogy with the results of equation (3.17) shows that the linearised equation writes:

d

d t
ξ
χ
t = Atξ

χ
t +

(
ξ
ζ
t

0

)
−wχ

t (3.19)

This gives
d

d t
ξt = Ãtξt −

(
wχ

t

wζ
t

)
(3.20)

with

Ãt =−

0 0 0 −1 0
0 0 ω̂t 0 −1

ût −ω̂t 0 0 0
0 0 0 0 0
0 0 0 0 0

The matrix Ãt is independent of x̂t and θ̂t . This is a property inherited from the Invariant The-

ory and the Invariant Extended Kalman Filter of [11]. However, for the tracking problem, ut andωt

are unknown parameters, and they enter the estimation problem. So the filter is not completely
invariant. But the presence of these parameters are of a lesser concern, because they are time
derivatives of the position, and not directly observed, so they have a lesser impact on the filter.

3.5.1 Position observations in Cartesian coordinates

In this section, the observations are Cartesian positions:

yn = (
x1

tn
x2

tn

)T + vn

with vn a white Gaussian noise of covariance Nn with independent coordinates in 2D. To mimic
the description of the IEKF in section 3.4.3, they can also be written:y1

n

y2
n

0

= χtn

0
0
1

+
v1

n

v2
n

0

In this case, the observation matrix is

H =
(
0 1 0 0 0
0 0 1 0 0

)
Applying standard Kalman equations to the obtained linearised model yields the following algo-
rithm:

48

CHAPTER 3. FILTERING ALGORITHMS

1. Propagation:
d

d t
θ̂t = ω̂t ,

d

d t
x̂t =

(
cos θ̂t

sin θ̂t

)
ût ,

d

d t
ω̂t = 0,

d

d t
ût = 0 (3.21)

d

d t
Pt = Ãt Pt +Pt Ãt +Qt (3.22)

where Qt is the covariance matrix of the Gaussian process noise wt .

2. Update:
Kn = Ptn H(HPtn HT +R(θ̂tn)NnR(θ̂tn)T)−1 (3.23)

zn = R(θ̂tn)T(yn − x̂t tn) (3.24)

e = Kn zn (3.25)

χ̂+tn
= χtn expm((e1:3)×), ω̂+

tn
= ω̂tn +e4, û+

tn
= ûtn +e5 (3.26)

P+
tn
= (I5 −KnH)Ptn (3.27)

In these equations, Kn is the Kalman gain, zn is the innovation, expm is the matrix exponen-

tial, e = (
e1 e2 e3 e4 e5

)T
, e1:3 =

(
e1 e2 e3

)T
, and R(θ̂tn) =

(
cos(θ̂tn) −sin(θ̂tn)
sin(θ̂tn) cos(θ̂tn)

)
.

3.5.2 Range and bearing observations

In general, 2D radar observations are provided in range and bearing (also called azimuth) coor-
dinates. This means that the noises on the observations are Gaussian in the range and bearing
coordinates, and the transformation into Cartesian coordinates is non-linear, so the noise does
not stay Gaussian if we perform coordinate transformation. We thus need to adapt the filter’s
equations to these new non-linear observations.

Let us call rn and αn respectively the range and bearing observations provided at time n. The
measurement expression is then:

yn =
(

rn

αn

)
+ vn

with vn a Gaussian white noise, of covariance matrix Nn . rn and αn can be obtained from the
Cartesian position thanks to the following transformation:

(
rn

αn

)
= h

(
x1

tn

x2
tn

)
=

√

(x1
tn

)2 + (x2
tn

)2

arctan

(
x2

tn

x1
tn

) (3.28)

In order to compute the Kalman gain, we perform the linearisation of the function h. The com-
putations are slightly different than for an EKF, but here the idea is the same, we linearise the
measurement function to derive the Kalman equations.

Let us call H̃n the linearised measurement matrix. Simple computations show that

yn −h(x̂1
tn

, x̂2
tn

) = H̃nξtn +O
(||ξtn ||2

)
and

H̃n =∇hx̂tn
R(θ̂tn)

(
0 1 0 0 0
0 0 1 0 0

)
(3.29)

with ∇hx̂tn
the Jacobian of h at the point x̂tn defined by

∇hx̂tn
=

(−x̂1
tn

/rn x̂2
tn

/rn

−x̂2
tn

/r 2
n x̂1

tn
/r 2

n

)
(3.30)

The propagation step of the IEKF (equations (3.21) and (3.22)) is not modified, however the
update step is slightly modified as follows:

49

CHAPTER 3. FILTERING ALGORITHMS

Kn = Ptn H̃n(H̃nPtn H̃T
n +Nn)−1 (3.31)

zn = yn −h(x̂tn) (3.32)

e = Kn zn (3.33)

χ̂+tn
= χtn expm((e1:3)×), ω̂+

tn
= ω̂tn +e4, û+

tn
= ûtn +e5 (3.34)

P+
tn
= (I5 −KnH̃n)Ptn (3.35)

Note that only the equations of the Kalman gain (3.23) and the innovation (3.24) have changed into
(3.31) and (3.32), and that we replaced H by H̃n . The innovation has changed because we transform
the Cartesian position estimate into range and bearing estimates. The Kalman gain equation has
changed because we do not transpose the observation noise covariance matrix into the Frenet-
Serret frame. Indeed, this matrix is now expressed in the range and bearing coordinates, and the
rotation to the Frenet frame is already taken into account in the linearised observation matrix H̃n .
In fact, instead of performing the transformation on the observations (that are now non-linear),
we perform it on the state to express it in the range and bearing coordinates.

3.5.3 Comparison with an EKF derived from the same target model

In 2D, the equations can be expressed in a vectorial form as well as in the matricial form. This
allows us to derive an EKF for this same model. We shall thus see the differences between the two
filters, both theoretically and experimentally.

Let us recall the vectorial 2D equations:

d

d t
θt =ωt +wθ

t

d

d t
xt =

(
cos(θt)
sin(θt)

)
(ut +w x

t)

d

d t
ωt = 0+wω

t

d

d t
ut = 0+wu

t

(3.36)

Let us call

f :

R5 →R5

x 7→

x4

x5 cos x1

x5 sin x1

0
0

The Jacobian for this evolution function can be easily computed:

∇ fX̂t
=

1 0 0 1 0

−sin(θ̂t)ût 1 0 0 cos θ̂t

cos(θ̂t)ût 0 1 0 sin θ̂t

0 0 0 1 0
0 0 0 0 1

Let us call rn the range as in (3.28). The Jacobian of the measurement function h for the range and
bearing measurements is given by (3.30). As the Jacobians can be computed, an EKF can then be
derived to perform state estimation.

To sum up, we can draw a chart, presented in table 3.1, that compares the main characteristics
of the EKF and the IEKF. To simplify, we assume here that the state for the IEKF can be fully written

50

CHAPTER 3. FILTERING ALGORITHMS

as a matrix χt . It is possible to add the angular velocity ωt and the norm of the velocity ut in the
matrix, and to compute the associated evolution matrix νt . This gives

χt =

cosθt −sinθt x1

t 0 ut

sinθt cosθt x2
t ωt 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , νt =

0 −ωt ut 0 0
ωt 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

However, this formulation is only used to draw a comparison between the EKF and the IEKF, and
it is preferable to use χ ∈ SE(2) to derive the algorithm, even if the two formulations are strictly
equivalent in terms of computations.

EKF (vectorial formulation) IEKF (matricial formulation)

Kinematic model d
d t Xt = f (Xt , wt) d

d t χt = χt (νt + (wt)×)

State prediction d
d t X̂t = f (X̂t) d

d t χ̂t = χ̂t ν̂t

Error definition ηt = X̂t −Xt ηt = χ−1
t χ̂t

Error evolution d
d t ηt = f (X̂t)− f (Xt) d

d t ηt = ηt ν̂t −νtηt − (wt)×ηt

Linearised error d
d t ξt = Ftξt +Qt

d
d t ξt = Atξt +Qt , At indep. of x̂t , θ̂t

Covariance prediction d
d t Pt = Ft Pt +Pt Ft +Qt

d
d t Pt = At Pt +Pt At +Qt

Table 3.1 – Comparison between the EKF and the IEKF equations

The main difference lies in the definition of the error ηt and in its linearisation. the other
equations are only transposition of the vectorial equations in the Lie group/algebra setting.

3.5.4 Discussion

For the IEKF, the linearised error evolution does not depend on the predicted position nor on the
predicted orientation. In the target tracking problem, it depends on the predicted angular and
tangential velocities ω̂t and ût . It is thus not possible to derive any convergence properties for the
IEKF for this application, contrary to the application presented in [11]. This will be discussed in
more details in section 3.6, with the algorithm for the 3D target model.

The EKF performs a linearisation around the predicted state, assuming the error made by the
prediction (and the previous estimation) is sufficiently low. However, this can lead to divergence.
Indeed, if the prediction is in fact far from the real state, then the linearisation is no longer valid,
and can induce divergence, because the covariance matrix becomes inaccurate. Indeed, it might
not reflect the uncertainty of the filter, since it is based on an approximation.

For the update part, in the range and bearing case, the IEKF works as the EKF, meaning that
we need to linearise the observation function, and compute its Jacobian. This cannot be avoided,
since the range and bearing observations cannot be embedded in the Lie group setting. However,
we shall see in section 3.8 that we can replace the update step by the one of an UKF, for both the
EKF and the IEKF.

In the next section, we consider the 3D Frenet-Serret target model, and derive the equations.
We add more arguments for the use of the IEKF with such a model, and present the derivations
with a different viewpoint.

51

CHAPTER 3. FILTERING ALGORITHMS

3.6 IEKF applied to the 3D Frenet model

The proposed model (2.33) seems well suited to the tracking of highly maneuvering targets. In-
deed it is closely related to constant commands in the body frame of the target, albeit different.
Devising a filter to track equations (2.32), or more precisely the retained model (2.33), from po-
sition measurements is difficult for various reasons. First, because there are many quantities to
be estimated only from position measurements and which appear non-linearly in the equations.
Then, because of the constraint of T,N,B forming an orthonormal base of the 3D space. It is not
trivial to encode such non-linear constraints in an extended Kalman filter. Using the model (2.33),
we see that the pair (xt ,Rt) defines an element of the Lie group SE(3). This indicates (part of) the
state could be estimated by bringing to bear the Lie group structure underlying the state space.
There has been extensive work on observers on Lie groups over the past years, see [21], [23], [74]
or [73]. However, for target tracking applications it is important that the filter outputs a covari-
ance matrix, preventing the use of deterministic observers. Indeed, radar tracking involves the
non-trivial task of associating radar reports (the plots) with actual target tracks. This task (which
is not considered in the present thesis) is critical and requires an acceptance gate based on the
estimated error dispersion (covariance). This is why we will resort to a Lie group based extended
Kalman filter - the invariant EKF of [11] - for the tracking task.

The model considered is (2.34):

d

d t
χt = χt (νt +Lse(3)(wχ

t)),
d

d t
ζt = 0+wζ

t (3.37)

with

χt =
(

Rt xt

01,3 1

)
, ζt =

γt

τt

ut

and

νt =

0 −γt 0 ut

γt 0 −τt 0
0 τt 0 0
0 0 0 0

3.6.1 Similarities with the Invariant theory

χt verifies an equation of the type
d

d t
χt = fi t (χt)+χt wt (3.38)

where it = ζt ∈R3 is a known input (let us assume ζt is known for the moment). wt is a continuous
white Gaussian noise, and f : χt → χtνt satisfies the condition:

fi (ab) = a fi (b)+ fi (a)b −a fi (Id)b (3.39)

for all (i , a,b) ∈R3 ×SE(3)×SE(3). An IEKF can thus be designed to estimate χt .
In the case where the input ζt is not known (for the tracking problem for instance), the algo-

rithm can be adapted to treat χt as a Lie group part, and ζt as a standard vectorial part, as was
done for the 2D case. The system thus satisfies (3.40).

d

d t
χt = fζ(χt ,ζt)+χt wχ

t

d

d t
ζt = g (ζt)+wζ

t

(3.40)

where in our case

fζ :

(
R x

01,3 1

)
→

(
R(ω)× Rv

01,3 0

)
, g (ζ) = 03,1

52

CHAPTER 3. FILTERING ALGORITHMS

We can also write the Cartesian observations (2.24) with the help of the Lie group setting, and with
vn ∈R3 being a white Gaussian noise:

yn = χtn

(
03,1

1

)
+

(
vn

0

)
The condition (3.39) is easily verified.

3.6.2 Derivation of the algorithm

Error definition

The classical definition of the error for a vector state Xt , ηt = X̂t −Xt does not hold here. Indeed,
if χ1 and χ2 belong to the Lie group SE(3), there is no reason why χ1 − χ2 should also belong to
this same Lie group. We define the error differently depending on which part of the state we are
considering:

η
χ
t = χ−1

t χ̂t ∈ SE(3)

η
ζ
t = ζ̂t −ζt ∈R3

More explicitly, the global error ηt = (ηχt ,ηζt) is defined as:

ηt =

ηR

t
ηx

t
η
γ
t
ητt
ηu

t

=

RT

t R̂t

RT
t (x̂t −xt)
γ̂t −γt

τ̂t −τt

ût −ut

 (3.41)

where ηR
t ∈ SO(3), ηx

t ∈R3, ηγt ∈R, ητt ∈R and ηu
t ∈R.

Linearisation of the error and propagation step

The propagation equations are:

d

d t
χ̂t = fζt (χ̂t) = χ̂t ν̂t ,

d

d t
ζ̂t = g (ζt) = 0 (3.42)

Now let us assume once again (for the last time) that ζt is known. We can compute the error ηχt
evolution. This gives:

d

d t
η
χ
t = ηχt νt −νtη

χ
t −Lse(3)(wχ

t)ηχt

This equation has the particular property that it does not depend on the predicted state χ̂t at all.
This is due to the property (3.39) of the evolution function f .

As for our radar tracking application ζt is not known, the evolution of ηχt is slightly modified
and it writes

d

d t
η
χ
t =−νtη

χ
t −Lse(3)(wχ

t)ηχt +ηχt ν̂t (3.43)

indeed, the matrix νt depends on the vector ζt , so it has to be estimated as well. The evolution of
η
ζ
t is more conventional:

d

d t
η
ζ
t = 0+wζ

t (3.44)

To linearise equations (3.43) and (3.44), see [11], or refer to section 3.4.3, we let ηR
t = I3 + (ξR

t)×.
This means that ξR

t ∈ R3 is a small instantaneous rotation vector. We also let ξx
t = ηx

t , ξγt = η
γ
t ,

ξτt = ητt and ξu
t = ηu

t . Then we mimic the EKF methodology, and perform a first order linearisation
in the components of ξ, and we also neglect terms of order ||ξ||.||w ||. To do this, we use a property

53

CHAPTER 3. FILTERING ALGORITHMS

of Lie groups: (ξR
t)×(ω̂t)× − (ω̂t)×(ξR

t)× = (ξR
t × ω̂t)×. This allows to identify the term d

d t ξ
R
t using

(a)× = (b)× =⇒ a = b. We use the same denomination for ξ as for η:

ξt =

ξR

t
ξx

t
ξ
γ
t
ξτt
ξu

t

 ∈R9

During the propagation step, the error evolves as:

d

d t
ξt = Atξt +wt

with

At =−

0 −γ̂t 0 0 0 0 0 −1 0
γ̂t 0 −τ̂t 0 0 0 0 0 0
0 τ̂t 0 0 0 0 −1 0 0
0 0 0 0 −γ̂t 0 0 0 −1
0 0 −ût γ̂t 0 −τ̂t 0 0 0
0 ût 0 0 τ̂t 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

This permits to write the covariance evolution during the propagation step: the covariance matrix
evolves with the Riccati equation (3.45).

d

d t
Pt = At Pt +Pt AT

t +Qt (3.45)

Remark 3.5. At is a sparse matrix. Although the model is non-linear, it only depends weakly on the
trajectory, because it depends only on intrinsic quantities, and not on the position or the velocity
vectors that are linked to the choice of a terrestrial reference frame.

Gain computation and update step

An observation yn = xtn + vn is available at time tn . The update of the state writes:

χ̂+tn
= χ̂tn exp(Lχn(χ̂−1

tn
yn)), ζ̂+tn

= ζ̂tn +Lζn(χ̂−1
tn

yn) (3.46)

more explicitly, this can be developed as:
R̂+

tn

x̂+
tn

γ̂+tn

τ̂+tn

û+
tn

=

R̂tn expm [(δω)×]
x̂tn + R̂tn B(δω)δx

γ̂tn +δγ
τ̂tn +δτ
ûtn +δu

 (3.47)

where
(
δω δx δγ δτ δu

)T = Ln(R̂tn (yn − x̂tn)), expm denotes the matrix exponential map in
M3, and

B(δω) = I3 + 1−cos ||δω||
||δω||2

(δω)×+ δω− sin ||δω||
||δω||3 [(δω)×]2

The gain matrix Ln ∈R9×3 derives from with the Riccati equation (3.45), as will be explained in the
following. The innovation is defined as χ̂−1

tn
yn = R̂T

tn
(yn − x̂tn), it verifies:

R̂T
tn

(yn − x̂tn) = R̂T
tn

(xtn − x̂tn)+ R̂T
tn

vn =−(ηR
tn

)−1ηx
tn
+ R̂T

tn
vn

54

CHAPTER 3. FILTERING ALGORITHMS

thus, as ηx
t = ξx

t and (ξR
t)×ξx

t is of order two, the linearisation gives R̂T
t (yn−x̂tn) ≈−Hξ+R̂T

tn
vn , where

H ∈R3×9 is defined as H = (
03,3 I3 03,3

)
. We are now able to derive the update ξ+t of ξt from (3.47)

and (3.41), and using the fact that the first order approximation of B be the identity, which gives:

ξ+tn
= ξtn −Ln

[
Hξtn − R̂T

tn
vn

]
Finally , the Kalman gain can be computed with the full Riccati equations, with Qt and Nn the
process and measurement noise covariances respectively:

d

d t
Pt = At Pt +Pt AT

t +Qt

Sn = HPtn HT + R̂T
tn

NnR̂tn

Ln = Ptn HTS−1
n

P+
tn
= (I9 −LnH)Ptn

Summary of the filter’s equations

To sum up the results obtained before, we can write extensively the filter’s equations for cartesian
coordinates observations.

1. Propagation step:

• Solve d
d t χ̂t = χ̂t ν̂t and d

d t ζ̂t = 0

• Solve the Riccati equation d
d t Pt = At Pt +Pt AT

t +Qt

2. Update step:

• Compute the innovation zn = R̂tn (yn − x̂tn)

• Compute the Kalman gain Ln = Ptn H(HPtn HT + R̂T
tn

NnR̂tn)

• Update the state χ̂+tn
= χ̂tn exp(Ln zn)1:6 and ζ̂+tn

= ζ̂tn + (Ln zn)7:9

• Update the covariance P+
tn
= (I9 −LnH)Ptn

3.6.3 Discussion on the filter’s expected stability

The following proposition show our filter possesses convergence properties conditionally on the
Frenet parameters ut , γt and τt , which is an indication of stability for the full state estimation.

Proposition 3.2. Consider model (2.33) with noise turned off, measurements with noise turned off
too, and assume that the quantities ut ,γt ,τt are known at all times, and may be freely varying
inside an interval (α,β) with α,β > 0. Assume also that the lowest eigenvalues of Qt and Nn are
lower bounded by some ε> 0. Then the IEKF proposed above when reduced to the task of estimating
xt and Rt , locally converges around any trajectory of the (non-linear) system.

Proof. The reduced system can be viewed as a non-holonomic car in 3D, that is, evolving in SE(3)
instead of SE(2). The result appears then to be a simple extension of the simplified car example of
[11].

3.7 Simulations

In the previous sections, we derived the filter equations for the tracking problem. In the present
section, we test the IEKF algorithm on trajectories with motions close to real challenging tracking
problems, simulated using the Frenet-Serret 2D and 3D models, with jumps in the parameters.
Other simulations with more trajectories are presented in chapter 4. The 2D model is compared
here with the EKF on the same target model.

55

CHAPTER 3. FILTERING ALGORITHMS

3.7.1 2D simulations and comparison with the EKF on the same target model

In this section, we compare the IEKF on the 2D Frenet-Serret model (2.30), with an EKF built on
the same model, as proposed in section 3.5.3.

(a) (b)

Figure 3.3 – Reference trajectory fig. 3.3a and trajectory with measurement noise added in polar coordinates
fig. 3.3b. The simulated trajectory is strongly inspired by real data from a fighter jet.

The trajectory presented in this section is synthetic, and inspired by a real fighter trajectory.
The trajectory was made using a trajectory simulator, with its own kinematic model. The mea-
surements are in meters and give the Cartesian coordinates, and the radar is centred at the origin.
The measures were manually transformed in range and bearing coordinates with the function h of
equation (3.28). Some realistic measurement noise in range and bearing was also added by hand,
as an additive noise.

The trajectory of the target is presented on figure 3.3. The amplitude of the measurement
noise is visible on figure 3.3b. The results are presented for a measurement noise close to real
measurement noises, and we see indeed that the noise is greater when the target is far from the
radar (located in (0,0)), and that it is mostly spread in the angular direction. The orientation an-
gle θ is modulo 2π. On figure 3.4, the results are presented for an EKF with the 2D Frenet-Serret
target model, and on figure 3.5, the results are presented for the IEKF. The process noises are op-
timised for this particular trajectory by maximising the measurement likelihood, with the method
proposed in [1]. Indeed, in the model, ωt and ut are supposed to be constant, so we need to add
some sufficiently high process noise to these variables to account for their variations. The Root
Mean Square Errors (RMSE) for each parameter are presented in table 3.2. The IEKF performs
globally better, especially for the estimation of the norm of the velocity, the orientation and the
angular velocity. This is corroborated by the results on figures 3.4 and 3.5, where we see that the
velocity estimation is more precise for the IEKF, and the angular velocity converges faster after a
jump. The position is less critical to compare the filters accuracy. More complete experiments will
be presented in chapter 4.

This experiment shows also that the target model expressed in intrinsic coordinates is suitable
for manoeuvring targets. Indeed, the filtering works quite well on this trajectory that is close to the
one of a real fighter. This trajectory has accelerations up to 5g . The filters are moreover compatible
with realistic measurement noise.

3.7.2 3D simulations

Helical trajectory

To simulate a 3D trajectory, we describe the evolution of a manoeuvring target by (2.33). We add
some measurement Gaussian noise, on Cartesian measurements. The noise added is greater along
the third coordinate, x3 (as it is the case in practice), the standard deviations for the measurement

56

CHAPTER 3. FILTERING ALGORITHMS

(a) (b)

(c) (d)

Figure 3.4 – EKF tests. Estimations (in red) of the position fig. 3.4a, of the norm of the velocity fig. 3.4b, of
the orientation angle fig. 3.4c, and of the angular velocity fig. 3.4d. The true values for the parameters are
in blue.

Parameter EKF IEKF

x (m) 143 193
θ (RMSE for 1−cosθ) 0.0243 0.0193

ω (rad/s) 0.044 0.038
u (m/s) 7.2 2.5

Table 3.2 – RMSE for each parameter on 100 Monte-Carlo simulations and on the whole trajectory for an EKF
and an IEKF with optimised process noise. We see the IEKF recovers with much more accuracy the difficult
to track parameters θ, ω and u which are derivatives of the position x, which is the measured quantity. The
EKF has a better estimate for x, but this is because it "sticks" more to measured data. As in modern radars
x is accurately measured, and may be directly used for target localisation, the interest of a filter is above all
to provide the radar with accurate estimates of the velocity and if possible curvature. This allows the radar
to anticipate the motion of the target.

57

CHAPTER 3. FILTERING ALGORITHMS

(a) (b)

(c) (d)

Figure 3.5 – IEKF tests. Estimations (in red) of the position fig. 3.5a, of the norm of the velocity fig. 3.5b, of
the orientation angle fig. 3.5c, and of the angular velocity fig. 3.5d. The true values for the parameters are
in blue.

58

CHAPTER 3. FILTERING ALGORITHMS

noise are 20,20,40 for the coordinates x1, x2, x3 respectively. The reference trajectory and the noisy
measured trajectory are presented on figure 3.6. We have simulated two consecutive manoeuvres.
The first one switches from a constant velocity straight line motion to a helical motion with non-
zero (but nevertheless constant) curvature and torsion, along with a jump in the norm of the ve-
locity. The second manoeuvre switches from this last motion to a motion with another constant
curvature. This last motion lies in a plane (the torsion is zero). Such trajectories can be truly en-
countered in current air defence applications, and are considered as very challenging to track, as
the acceleration may go up to 16g .

(a) (b)

Figure 3.6 – Reference trajectory fig. 3.6a and trajectory with measurement noise added in Cartesian coor-
dinates fig. 3.6b

We then perform filtering with the IEKF algorithm presented in section 3.6. the estimations of
the position x, of the norm of the velocity u, of the curvature κ and of the torsion τ̃ are displayed
on figure 3.7. Note that we plot here the curvature and the torsion that correspond to the usual
definitions, and that appear in (2.31).

The norm of the velocity converges quite fast after initialisation, or after a jump. The curvature
is also quite well estimated, even though it is a little less precise than the norm of the velocity. The
torsion is the most difficult parameter to estimate, and although it eventually converges, it is not
well estimated by the filter. This stems from the fact that it is weakly observable.

To understand why the convergence of the curvature and even more of the torsion are slower,
let us look at how they are derived from the position. The equations are given in (3.48) and (3.49)
for the curvature and the torsion respectively, with . × . the cross product, and [., ., .] the scalar
triple product. These equations underline that the curvature comes from a second derivative of
the position, and the torsion from a third derivative of the position. This shows that the torsion is
hardly observable when it is estimated from noisy position measurements.

κ= ||x ′(t)×x ′′(t)||
||x ′(t)||3 (3.48)

τ̃= [x ′(t), x ′′(t), x ′′′(t)]

||x ′(t)×x ′′(t)||2 (3.49)

The process noise has to be adjusted when confronted to this kind of trajectory with jumps.
A discussion on the tuning of this process noise is provided in section 4.3. Indeed, a balance has
to be found between the accuracy wanted for the estimations and the ability to converge after a
jump.

Comparison with other filtering algorithms

Few filtering algorithms are designed to estimate this kind of target model. Indeed, most of the
time the models are expressed in two dimensions, or are linear in three dimensions. The well-

59

CHAPTER 3. FILTERING ALGORITHMS

(a) (b)

(c) (d)

Figure 3.7 – Estimations (in red) of the position fig. 3.7a, of the norm of the velocity fig. 3.7b, of the curvature
fig. 3.7c, and of the torsion fig. 3.7d. The true values for the parameters are in blue.

60

CHAPTER 3. FILTERING ALGORITHMS

Parameter IEKF Castella

x1 15.8 18.4
x2 15.3 18.0
x3 26.0 24.4
ẋ1 7.5 13.4
ẋ2 8.5 12.6
ẋ3 8.9 7.1

Table 3.3 – Comparison of the RMSE for the position and the velocity for the IEKF and Castella’s Kalman
filter

known IMM of [6] uses 2D turn models, and so is the one presented in [19]. It is also difficult to
build an Extended Kalman filter in the 3D case from the Frenet-Serret equations above, because
there are orthogonality constraints for the Frenet-Serret frame that cannot be easily dealt with
the standard EKF formulation. In chapter 4, we nevertheless build an EKF from a model derived
from the 3D Frenet-Serret one. But here, we show only a comparison with an algorithm using a
well-known trick in industrial radars.

This trick is called the process noise adaptation of Castella, from the author of [35]. Just to have
an idea of what it might yield, we have compared the RMSE of both filters in table 3.3. The model
used with the Castella noise adaptation is a constant acceleration model, with a linear Kalman
filter. The noises have been tuned manually to get the best possible results with both filters. The
Castella seems to slightly perform better for the third coordinate x3. It is due to the fact that the
noise along this coordinate is higher, and the estimations of Castella’s Kalman filter tend to follow
the measurements. However, for the velocity and the other position coordinates, the IEKF gives
better results.

3.8 Left-invariant UKF on a 2D model

Let us go back to the 2D target model (2.30). We consider in this section range and bearing mea-
surements. These are non-linear measurements, and their form does not allow us to use the in-
variant theory, so the update step is close to the one of an EKF, with the same stability problems.
To avoid that, we can resort to the Unscented Kalman Filter (UKF), presented in the bibliographic
part of this chapter. The filter has to be adapted to the Lie group formulation. We present in this
section how to use the update step of a left-invariant UKF along with the propagation step of our
IEKF algorithm on the 2D Frenet-Serret target model.

Indeed, the strength of the IEKF is that in a perfect theoretical setting, the linearisations (they
intervene in the equations as At for the propagation step and as Hn for the update step) do not
depend on the predicted state (χ̂t ,ω̂t , ût). In the equations of the IEKF with polar measurements
however, we see that with our model, the matrices At and Hn depend on the predicted state. For
At , this does not seem too preoccupying, since it only depends on ω̂t and ût , and not directly on
the position. However, for Hn , the problem is different, since it depends directly on (x̂1

t , x̂2
t), and

we have the same approximation and stability problems as for the EKF. We thus designed another
method to avoid computing the Jacobian of h. The UKF update step seems most appropriate for
this.

3.8.1 Derivation of the filter

The Unscented Kalman Filter allows to approximate the posterior (Gaussian) distribution p(X|Y)
thanks to the use of so-called sigma points. This UKF is adapted here as in [30] to suit the Lie
group formulation of the model, this adaptation is called the left-UKF (l-UKF). We combine the
prediction step of the IEKF with the update step of the left-UKF.

61

CHAPTER 3. FILTERING ALGORITHMS

Instead of performing a linearisation of the non-linear model, the unscented transform is used
to pick a minimal set of sigma points around the mean state. These sigma points are updated
through the non-linear function h, and a new mean and covariance are derived from this update,
as in the regular UKF.

Let us call χ̄ the mean of the whole state put in matrix form, that is:

χ̄=

cos θ̄ −sin θ̄ x̄1 0 ū
sin θ̄ cos θ̄ x̄2 ω̄ 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3.50)

We now define the augmented covariance as Pa
n = diag(Pn ,Nn), with Nn the covariance of the mea-

surement noise at time n.
We then construct a set of 2L+1 sigma points (in our model L = 7, it is the dimension of the

state augmented by the measurement noise), as in (3.51), and where λ is a scaling factor.

ᾱ= [0T, vT]

α0
n = ᾱ

αi
n = ᾱ+

(√
(L+λ)Pa

n

)
, i = 1, . . . ,L

αi
n = ᾱ−

(√
(L+λ)Pa

n

)
, i = L+1, . . . ,2L

(3.51)

Let us introduce ξi
n and v i

n such that [ξi
n , v i

n] = αi
n , and our state at time n is χ̄n . Then these

sigma points go through the measurement function h:

y i
n = h(χ̄n expξi

n)+ v i
n , i = 0, ...,2L

The expected measure is thus ȳn =∑2L
i=0 Wi

s y i
n . The values for the weights Wi

s can be found explic-
itly in [30], they are:

W0
s = λ

λ+L
, W0

c = λ

λ+L
+ (2− λ

L
)

Wi
s = Wi

c =
1/2

λ+L

The state and covariance are then updated as:

Py y =
2L∑

i=0
Wi

c (y i
n − ȳn)(y i

n − ȳn)T

Pαy =
2L∑

i=0
Wi

c (αi
n − ᾱn)(y i

n − ȳn)T

[ξ̄T
n ,∗]T = Pαy P−1

y y (yn − ȳn)

χ+n = χ̄n exp ξ̄n

P+
n = Pn −Pαy (Pαy P−1

y y)T

The final filter, that we call the l-UKF (left-Unscented Kalman Filter), is composed of the propaga-
tion step of the IEKF (equations (3.21) and (3.22)) and of the left-UKF update step. This does not
interfere with the consistency properties of the IEKF in the optimal setting, but this allows to get
around the approximations of the measurement function linearisation.

62

CHAPTER 3. FILTERING ALGORITHMS

Parameter EKF IEKF l-UKF

x 143 193 191
θ (RMSE for 1−cosθ) 0.0243 0.0193 0.0242

ω 0.044 0.038 0.038
u 7.2 2.5 1.9

Table 3.4 – RMSE for each parameter on 100 Monte-Carlo simulations and on the whole trajectory for an
EKF, an IEKF, and an l-UKF with optimised process noise

3.8.2 Results

We take again the trajectory from section 3.7.1. We test the l-UKF on this trajectory, the RMSE for
the EKF and the IEKF are recalled, along with the results for the l-UKF in table 3.4. The results are
slightly better for the l-UKF, but not with a great order of magnitude.

This shows that the use of sigma points instead of the linearisation of the measurement func-
tion does not enhance the performances of the estimation a lot. The IEKF alone being simpler to
implement, closer to the EKF which engineers are used to, and quite faster to run, we will thus use
the IEKF in the sequel.

3.9 Conclusion

This chapter describes the construction of Kalman type filtering algorithms to perform state esti-
mation with the new target models of chapter 2. Some discussion on the stability of the filters have
been presented. Basic simulations have also been presented to show how the filters perform, and
how they react to jumps in the trajectory. Indeed, as mentioned in chapter 2, the target model was
built on assumptions of constant norm of velocity and constant turns. However, in reality, this is
not the case, and we have shown that the filter can adapt to these differences between the target
model and the real trajectories, thanks to the tuning of the process noise.

Comparing the filters on the same target model is not easy, due to the particular form of the
model, especially in 3D. In the next chapter, we compare other filtering algorithms built on other
models, but we also show how to derive an EKF from the 3D target model (allowing a slight change
in the formulation of the model).

A more thorough discussion on the tuning of process noises will be provided in the next chap-
ter. The process noises will no longer be tuned on the trajectories used to test the filters, but on
a bank of other trajectories, that are used only for noise tuning. The implications of the process
noise on the performances of the filters will also be presented.

63

CHAPTER 3. FILTERING ALGORITHMS

64

Chapter 4

Comparison with other existing
algorithms and models

Sommaire
4.1 Résumé en français : Comparaison avec d’autres modèles et algorithmes exis-

tants . 66

4.2 Introduction . 66

4.3 Process noise tuning . 67

4.3.1 Issues of noise tuning . 67

4.3.2 Castella noise tuning . 69

4.4 Test on a real scenario . 71

4.5 The models and algorithms used for comparison 72

4.5.1 Constant velocity and the EKF . 72

4.5.2 Multiple model and the IMM . 72

4.5.3 The Frenet-Serret target model with an IEKF 72

4.5.4 The Frenet-Serret target model with an EKF 73

4.6 Set of trajectories . 73

4.6.1 Simulators . 74

4.6.2 Kinematic characteristics . 75

4.7 Results . 76

4.7.1 Set of trajectories to tune the process noise . 76

4.7.2 Set of trajectories to test the tunings . 77

4.8 Conclusion . 81

65

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

4.1 Résumé en français : Comparaison avec d’autres modèles et algo-
rithmes existants

Dans ce chapitre, la question du réglage des paramètres des filtres est évoquée, en particulier pour
le réglage des bruits de modèle. En effet, si le bruit de modèle est très faible, l’estimation est très
précise sur les parties correspondant parfaitement au modèle, mais les écarts entre la trajectoire
réelle et le modèle théorique provoquent de mauvaises estimations. Dans le cas inverse où le bruit
de modèle est très élevé, le filtre aura tendance à trop faire confiance aux mesures, et à ne pas
filtrer le bruit de mesure, ce qui conduit également à une dégradation de l’estimation de tous les
paramètres de l’état. Il est donc nécessaire de trouver un juste milieu, qui peut dépendre aussi de
l’application envisagée : est-il nécessaire d’avoir une estimation très précise pour la position, ou
au contraire pour la vitesse, le cap ? Une méthode assez couramment utilisée, appelée adaptation
de Castella, consiste à adapter le bruit en fonction des performances du filtre, et donc à augmenter
le bruit de modèle pendant les écarts entre le modèle et la trajectoire, et à le diminuer dans les
phases où le modèle correspond à la réalité.

Une comparaison entre le filtre proposé dans le chapitre précédent, appliqué au modèle de
Frenet-Serret en 3D et d’autres modèles et filtres souvent utilisés en pratique est présentée. Le
modèle en 3D exprimé dans le repère de Frenet-Serret assorti du filtre IEKF développé dans le
troisième chapitre est comparé avec trois autres associations de modèles et filtres :

• un modèle vecteur vitesse constant, avec un filtre EKF,

• un modèle à sauts markoviens (modèle multiple) à trois modèles : un modèle vitesse con-
stante, un modèle virage coordonné dans le plan horizontal, un modèle virage coordonné
dans le plan vertical, avec un filtre multi-modèles IMM (Interacting Multiple Model).

• Le modèle de Frenet-Serret en 3D, mais exprimé avec des quaternions plutôt qu’avec une
matrice de rotation, ce qui permet d’utiliser un EKF comme filtre.

La comparaison est menée sur un ensemble de trajectoires provenant de trois simulateurs dif-
férents. Le premier simulateur permet de générer des trajectoires déterministes par morceaux,
avec entre les sauts, un modèle avec accélérations normales et tangentielles constantes. Le deux-
ième simulateur fournit des trajectoires rectilignes ou circulaires par morceaux, avec possibilité de
rajouter de l’accélération tangentielle. Enfin, le dernier simulateur génère des trajectoires de cibles
balistiques, comprenant une phase de boost, pendant laquelle la cible a une accélération tangen-
tielle forte, puis une phase purement balistique. Le modèle de Frenet-Serret couplé à l’IEKF est
meilleur, notamment en cap, sur les trajectoires des deux premiers simulateurs. Ces résultats sur
la précision en cap ont été observés sur la plupart des expériences menées, et en particulier dans
le cas du contrôle de trafic aérien civil, sur des trajectoires réelles. En revanche, pour les cibles
balistiques, l’IEKF est moins bon que les autres algorithmes. Un autre point à noter est le fait que
l’EKF avec le modèle à vitesse constante est assez facile à régler, et relativement robuste (même
pour les cibles balistiques), au prix de résultats parfois un peu moins précis, et de bruit de modèle
extrêmement élevé. L’IMM en revanche est le filtre le plus difficile à régler, notamment à cause de
la présence de bruits de modèle pour chacun des trois modèles, mais aussi à cause du réglage de
la matrice de transition entre les modèles. Enfin, la comparaison entre le modèle de Frenet-Serret
avec l’IEKF et avec l’EKF montre que l’IEKF est un filtre plus adapté à ce type de modèle que l’EKF.

4.2 Introduction

In chapters 2 and 3, new target models and filtering algorithms have been presented. Some first
results have been presented at the end of chapter 3. However, we need to lead more tests, to really
compare the performances of the algorithms. To achieve this, we have selected two target models
and filtering algorithms that are widely used in industry, and we have slightly modified our 3D
Frenet-Serret target model to apply the EKF algorithm with it.

66

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

We have also selected different trajectories, coming from three different trajectory simulators,
and which have different trajectory models. We are not able to present real trajectories, however,
the simulators selected are used to test the algorithms in industry, so the trajectories produced cor-
respond to real issues radar engineers are confronted to. We generated trajectories with different
kinematic characteristics, to be as comprehensive as possible.

Tuning the filters is one of the major issues for all filtering algorithms. Indeed, a bad tuning
can lead to the divergence of the algorithm, or to very poor precision. Moreover, the tuning has
to be valid for a set of different trajectories. A discussion on tuning is thus provided in section 4.3.
There are mainly two important issues that we have been confronted to during this work:

1. How to tune a filter, so that it is precise enough on all trajectories ?

2. How to make the tuning fair to compare different algorithms ?

In particular in this chapter, we show that the tuning may depend on the target considered,
and we tune our algorithms on a specific set of representative trajectories, different from the set
used to compare the performances.

The chapter is organised as follows: first, the tuning issue is discussed in section 4.3. In section
4.4, some preliminary results obtained on a real air traffic control scenario are presented. Then,
we present the models and algorithms selected to perform an extensive comparison in section 4.5.
The set of trajectories used is also briefly described in section 4.6. Finally, the results are given in
section 4.7 for spherical coordinates observations with realistic observation noise, on a training
set (used to tune the algorithms) and a testing set to compare the performances of all algorithms.

4.3 Process noise tuning

4.3.1 Issues of noise tuning

To see the implications of noise tuning on the performances of the estimation, let us use a very
simple linear model. We generate a trajectory with piecewise constant velocity, in two dimensions.
The trajectory and the velocity for the first coordinate are represented on figure 4.1.

(a) (b)

Figure 4.1 – Reference trajectory 4.1a and velocity on the first coordinate 4.1b

Let us use a linear Kalman filter to perform state estimation on this 2D trajectory. The tar-
get model used is a constant velocity model, with white Gaussian noise on the velocity only, and
Cartesian measurements:

Xn =

x1

n

ẋ1
n

x2
n

ẋ2
n

67

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Xn+1 =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

Xn +wn

yn =
(
1 0 0 0
0 0 1 0

)
Xn + vn

wn and vn are white Gaussian noises with covariances Qn and Nn respectively. In the absence of
jumps, the Kalman filter is optimal. We perform three experiments with Gaussian noise on the
velocity only. The results are presented on figure 4.2. The standard deviation of the process noises
are 0 for 4.2a, 0.01 for 4.2b, and 1 for 4.2c.

(a) (b)

(c)

Figure 4.2 – Velcotiy estimation with a Kalman filter with no process noise fig. 4.2a, intermediate process
noise fig. 4.2b, and high process noise fig. 4.2c.

The Kalman filter with no process noise does not adapt to the jumps. Indeed, the Kalman filter
being optimal, when there is no process noise, its covariance matrix, and its gain go to zero, when
the time n goes to infinity. This a problem here, as the trajectory has some jumps, that are not
contained in the model. However, we see that after an initialisation phase the estimation becomes
very precise on the first constant part.

We see that the jumps can be taken into account, by increasing the process noise. This is
known as robust tuning, see for instance [97]. When the process noise is increased, the filter can
adapt to the jumps, but the estimation for the linear motions becomes less precise. There is thus a
compromise to find between the speed of convergence of the filter after a jump, and the required
precision on the rest of the motion.

In fact, when the process noise is high, the precision of the position estimation on the con-
stant parts cannot be greater than the one of the measurement noise. Indeed, a high model noise

68

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

implies that the filter has more confidence in the observations that in the target model provided,
and the estimation tend to follow the measurements. This also leads in a reduced accuracy of the
other state parameters (notably the derivatives of the position).

4.3.2 Castella noise tuning

The Castella noise tuning is used to adapt the process noise to the manoeuvres of the target.
Indeed, as we have seen in the previous section, we seek to have good precision during non-
manoeuvre phases, but at the same time, we want the model to be able to adapt when a ma-
noeuvre occurs. This is not possible with one single tuning for the whole trajectory. In [35], the
author proposes a way to adapt the process noise during the estimation.

The principle of the Castella noise tuning is presented on figure 4.3. The idea is to compute
the normalised innovation NIS. When it is below a given threshold NISlow, the process noise co-
variance σγ is tuned low σγ =σγmin , when it exceeds another threshold NIShigh, the process noise
is tuned high σγ =σγmax . Between the two thresholds, the process noise increases linearly.

Figure 4.3 – Castella noise tuning

This method seems reasonable, as it gives more flexibility to the estimation filter in the case
when the model does not correspond to the real trajectory. For example, when using a constant
velocity model, this increases the process noise during turns. This allows the filter to adapt to the
real trajectories, and deviations to the target model. However, the accuracy during manoeuvres
is not optimal, since the estimations will tend to follow the measurements, and the measurement
noise will not be smoothed, so the accuracy is degraded for the velocity vector, compared to a
model adapted to the manoeuvre.

To understand the impact of the Castella noise adaptation, let us take an example. We use a
linear Kalman filter, with Cartesian position measurements, and a constant velocity model in 3D.
The trajectory used is the same as in section 3.7.2. We plot the RMSE for three different cases:
the first one is a low process noise tuning during all the trajectory, the second one is the Castella
process noise tuning, and the third one is a high process noise tuning. The process noise is added
only on the velocity evolution, and is kept null for the position evolution. The RMSE are collected
in table 4.1. We see that the Castella tuning does not give the best RMSE values. For the position,
this is natural, since the high process noise filter will tend to be closer to the measurements, and
far from the model. For the velocity vector, we can see on figure 4.4, that the Castella filter is more
accurate than the high process noise on the straight line, and then the process noise adapts to
the helix, contrary to the low process noise filter. The velocity vector and the position for the low
process noise filter are late during the helix motion (this can be seen with the RMSE values). For
the high process noise tuning, the estimations are less smoothed on the first motion, but they
accommodate well during the manoeuvre.

69

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Parameter Low process noise Castella process noise High process noise

x1(m) 262 32 26
x2(m) 251 29 25
x3(m) 19 22 26

v1(m/s) 83 23 21
v2(m/s) 80 21 20
v3(m/s) 3 6 8

Table 4.1 – RMSE for the position and velocity for 100 Monte-Carlo simulations

The Castella noise tuning permits to adapt to the manoeuvres and takes the best of low and
high process noise, however, during the turns, a turn model is still better suited to perform accu-
rate estimations, than simply adding more process noise.

(a) (b)

(c)

Figure 4.4 – Velocity vector (and position) estimation for low process noise tuning fig. 4.4a, Castella process
noise tuning fig. 4.4b, and high process noise tuning fig. 4.4c.

In the sequel, we do not use the Castella noise adaptation, even though it is commonly used
in radars. Indeed, this implies even more tuning issues (to tune the thresholds and the different
values of the process noise), and it can be applied to any of the filtering algorithms used in this
chapter.

70

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

4.4 Test on a real scenario

The IEKF has been inserted in a simulator in the Air Traffic Management Unit of Thales. The sim-
ulator implements all the tracking chain of the radar, including the initialisation, the association
and the end of the tracks. The code is in C. Some preliminary results have been obtained, and
show improvements compared to an EKF, as shown on figure 4.5. This trajectory is taken from a
real flight scenario in the neighbourhood of an airport, and it corresponds to the trajectory of a
small private jet. The positions of the aircraft given to the tracker come from the ADS-B, they are
thus in Cartesian coordinates.

The 3D Frenet-Serret model with the IEKF algorithm is compared to the constant velocity with
the EKF algorithm, which will be also used for comparisons on a wider set of trajectories in section
4.7. These two filters are tuned with the Castella noise adaptation algorithm described in section
4.3.2. This permits to tune the process noise accordingly to the performances of the filter. These
preliminary results are encouraging, and further tests are in progress. The IEKF is more accurate
during the turns than the EKF, even when considering all the tracking chain. The accuracy of the
IEKF during manoeuvres will be confirmed in section 4.7. A closer look on the last turn is given on
figure 4.6.

Figure 4.5 – Results of the IEKF with a Frenet-Serret model, and the EKF with a constant velocity model. The
IEKF results are in blue, the EKF results are in green. We see that the IEKF tends to be more accurate during
the turns.

Figure 4.6 – Results of the IEKF with a Frenet-Serret model, and the EKF with a constant velocity model.
The IEKF results are in blue, the EKF results are in green. This is a closer look of the last turn in figure 4.5.
The IEKF in this case provides much better estimations than the EKF, even with a Castella adaptation noise
tuning.

71

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

4.5 The models and algorithms used for comparison

In this section, we present the four models and algorithms that we will use to perform a compar-
ison of the filters. All models used are expressed in 3D. The first model is the constant velocity
model, and the associated filter is the EKF. The second model is a multiple model, with three mod-
els, along with an IMM. The third one is our 3D Frenet-Serret model, with the IEKF. And the fourth
one is a slightly modified 3D Frenet-Serret model, with an EKF.

The tests will be performed with noisy range, azimuth and elevation observations. The de-
scription of the observation equations and the associated observation noises are provided in sec-
tion 2.5.

4.5.1 Constant velocity and the EKF

This first model is still today one of the most used in industry. Its simplicity is appealing and
makes it quite easy to tune. Moreover, it performs fairly well on non-challenging scenarios. We

use a 3D constant velocity model, see section 2.3. The state is Xt =
(
x1

t ẋ1
t x2

t ẋ2
t x3

t ẋ3
t

)T
.

The evolution equation is:
Ẋt = AXt +wt (4.1)

with

A =

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

When considering spherical observations, the measurement equation becomes non-linear, so

an EKF has to be used, even though the model is linear. This will be referred to as the constant
velocity (CV) EKF model.

4.5.2 Multiple model and the IMM

We use a multiple model, with three models:

• a 3D constant velocity model,

• a coordinated turn in the horizontal plane,

• a coordinated turn in the vertical plane.

This second type of model we consider is also widely used. Usually, it is used with four models,
these three and a constant acceleration model with a high process noise, which is used when none
of the other models corresponds to the real trajectory. However, here we seek to compare the IEKF
with an equivalent filter (with the same kinematic assumptions), so we do not use the constant
acceleration model.

The natural algorithm to perform the estimation is the IMM. We will have to tune the process
noises differently for each model. Indeed, one of the models will have to take into account the
motions that do not correspond to any of the models, and thus have more process noise than the
other two. The IMM has three models, so there are three process noise covariance matrices that
have to be tuned. Moreover, the transition matrix between the models has also to be tuned for the
IMM.

4.5.3 The Frenet-Serret target model with an IEKF

The new target model expressed in the 3D Frenet-Serret frame of section 2.6.2 is used. The estima-
tion is performed by the IEKF of section 3.6. Indeed, we have seen in chapter 3 that it is appropriate
to track maneuvering targets.

72

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

4.5.4 The Frenet-Serret target model with an EKF

Quaternions are often used to represent rotations. We take advantage of them here to derive an
EKF algorithm from our 3D Frenet-Serret target model, this is also a contribution of this thesis.
Quaternions as random variables have been studied, for example in [78].

It is possible to express the 3D Frenet-Serret target model using quaternions. This work has
been done during an internship within the team ADW of Thales. This formulation is useful to
compare the same target model with two algorithms, the IEKF on the one hand, and the EKF on
the other hand, that is applied to the quaternion formulation. We explain how to have a vectorial
formulation here:

Let us start from equations (2.33) reminded here:

d

d t
xt = Rt (vt +w x

t)

d

d t
Rt = Rt (ωt +wω

t)×

d

d t
γt = 0+wγ

t

d

d t
τt = 0+wτ

t

d

d t
ut = 0+wu

t

The quaternions are used to replace the rotation matrix, to avoid having to work in the Lie

group and Lie algebra spaces. The state is Xt =
(
xt ẋt Qt pt rt ut

)T
, with xt the Cartesian

position, ẋt the Cartesian velocity, Qt the quaternion, pt the first component of the angular veloc-
ity vector, rt its second component, and ut the norm of the velocity. The evolution of the position
is thus modified into:

d

d t
xt =Θt

u
0
0

The matrix Θt is expressed as:

Θ=
q2

0 +q2
1 −q2

2 −q2
3 2(q2q3 +q0q3) 2(q1q3 −q0q2)

2(q1q2 −q0q3) q2
0 −q2

1 +q2
2 −q2

3 2(q2q3 +q0q1)
2(q1q3 +q0q2) 2(q2q3 −q0q1) q2

0 −q2
1 −q2

2 +q2
3

The evolution of the quaternions is given by

d

d t
Qt = 1

2
Ωt Qt

with q = (
q0 q1 q2 q3

)T
and

Ω=

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0

For the Frenet-Serret model, the rotation around the roll is not considered, so here q = 0. The evo-
lution of pt and rt are considered (almost) constant, as well as the one of ut , to mimic equations
(2.33). This model will be referred to as the Frenet-EKF model.

4.6 Set of trajectories

The trajectories used in this chapter to compare the algorithms described previously have been
simulated with three different simulators. The models used in the simulators, and the kinematic
characteristics of the trajectories are detailed in this section.

73

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

4.6.1 Simulators

The first simulator uses the variable rate model of [59], also presented in section 2.3.4. This model
represents piecewise deterministic trajectories with piecewise constant normal and tangential ac-
celerations and orientation angle, with occasional jumps. To generate a trajectory with this simu-
lator, there are several degrees of freedom: the initialisation of the kinematic parameters, the jump
times, and the values of the jumping parameters. One example of trajectory simulated with this
generator is provided on figure 4.7. This simulator will be called simulator 1.

Figure 4.7 – Trajectory generated with the first simulator

The second simulator is also based on a jumping model. The portions of trajectories between
the jumps are either straight line motions with constant velocities or accelerations, or portions of
circles with constant radius. An example of trajectory is given on figure 4.8. It will be referred to as
simulator 2.

Figure 4.8 – Trajectory generated with the second simulator

Finally, we use a generator of ballistic trajectories. This is simulator 3. The ballistic trajectories
are characterised by a boost phase very far from the radar with a high tangential acceleration, and
then a ballistic motion, when they obey the equations given by Newton’s laws. An example is given
on figure 4.9.

74

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Figure 4.9 – Trajectory generated with the third simulator

4.6.2 Kinematic characteristics

The trajectories have different kinematic characteristics, and mainly different accelerations, which
characterize the most manoeuvring targets. As we have briefly mentioned in the introduction,
the highly-manoeuvring targets are the ones which have normal accelerations beyond 15g . We
have thus collected all the accelerations of the different trajectories simulated, to be sure there
are both highly and slowly manoeuvring targets (even though our solution is designed for highly-
manoeuvring targets, we do not want the tracking to be degraded for targets that do not manoeu-
vre too much). We have selected approximately 30 different trajectories to perform the tests. The
maximal accelerations for each trajectory are given in table 4.2. We have also played on the dura-
tion of each portion of the trajectory, meaning that the jumps are more or less close to one another,
depending on the trajectory considered. Finally, the acceleration of ballistic trajectories are mainly
tangential.

The sampling time is constant for each trajectory. We thus perform simulations with two differ-
ent observation update rates: 1s and 0.5s. This is to represent the different possibilities of radars.
Indeed, the radars with rotating antennas cannot have observation periods below 1s for instance.

75

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Trajectory Acceleration Trajectory Acceleration

Trajectory 1 from simulator 1 6.8g Trajectory 1 from simulator 2 10.4g
Trajectory 2 from simulator 1 9.7g Trajectory 2 from simulator 2 0.39g
Trajectory 3 from simulator 1 18.2g Trajectory 3 from simulator 2 0.23g
Trajectory 4 from simulator 1 9.7g Trajectory 4 from simulator 2 0.19g
Trajectory 5 from simulator 1 9.8g Trajectory 5 from simulator 2 1.3g
Trajectory 6 from simulator 1 20.0g Trajectory 6 from simulator 2 9.4g
Trajectory 7 from simulator 1 20.0g Trajectory 7 from simulator 2 21.0g
Trajectory 8 from simulator 1 26.7g Trajectory 1 from simulator 3 18.6g
Trajectory 9 from simulator 1 17.1g Trajectory 2 from simulator 3 22.4g

Trajectory 10 from simulator 1 16.1g Trajectory 3 from simulator 3 13.3g
Trajectory 11 from simulator 1 17.1g Trajectory 4 from simulator 3 19.3g
Trajectory 12 from simulator 1 10.3g Trajectory 5 from simulator 3 14.0g
Trajectory 13 from simulator 1 14.8g Trajectory 6 from simulator 3 19.0g
Trajectory 14 from simulator 1 5.2 Trajectory 7 from simulator 3 6.3g
Trajectory 15 from simulator 1 7.3g Trajectory 8 from simulator 3 1.1g
Trajectory 16 from simulator 1 10.4g

Table 4.2 – Accelerations for the trajectories used in this chapter

4.7 Results

To tune the process noises for the different algorithms used, we have made two distinct groups of
trajectories. The first group is used for tuning (we call it the "train set’), and the other group is used
to test the algorithms with the tuning obtained with the train set. This second set of trajectories is
thus called the test set.

We compute the Root Mean Square Errors (RMSE) of three different parameters: the position
estimation, the norm of the velocity vector estimation, and the heading estimation.

4.7.1 Set of trajectories to tune the process noise

The trajectories used to tune the process noise are the following:

• Trajectories from simulator 1: trajectories 1, 2, 5, 7, 10, 12, 13.

• Trajectories from simulator 2: trajectories 1, 2, 6.

• Trajectories from simulator 3: trajectories 1, 2, 3, 5.

For the train set, we selected the process noise tuning for each trajectory which minimises the
overall RMSE on all the trajectories.

First, the tests performed showed that we have to separate the trajectories from simulators 1
and 2 on the one hand, and trajectories from simulator 3 on the other hand. Indeed, simulator 3
generates ballistic trajectories with a boost phase at the beginning, which results in a high longitu-
dinal acceleration. The filters thus need to be tuned differently for this phase, and for the ballistic
trajectories.

The results for the best tuning for each algorithm are collected in table 4.3 for trajectories from
simulators 1 and 2. The train tests were made for 10 Monte-Carlo on each trajectory, with an
update rate of 1s. The first important observations is that the IEKF has the lowest RMSE for the
orientation. As we will see in the next section, this is one of the major strengths of the IEKF. In-
deed, during turns, the orientation is kept very accurate thanks to the Frenet-Serret frame being
included in the target model. Finally, we notice that the quarternion model, close to the Frenet-
Serret one is a little less precise than the IEKF, which confirms the fact that the IEKF is the natural
algorithm to use with the Frenet-Serret model.

76

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Parameter CV + EKF IMM IEKF Frenet + EKF

Position (m) 324 55 57 53
Norm of velocity (m/s) 63 106 80 203

Orientation (r ad) 0.54 0.49 0.46 0.51

Table 4.3 – RMSE for the training set for each algorithm, on trajectories from simulators 1 and 2. The al-
gorithm CV + EKF corresponds to the constant velocity model with an EKF, the IMM is composed of three
models (constant velocity, horizontal turn, vertical turn), the IEKF is the 3D Frenet-Serret model with an
IEKF, and the term Frenet + EKF refers to the model with quaternions, tracked with an EKF, and explained
in section 4.5.4.

Parameter CV + EKF IMM IEKF Frenet + EKF

Position (m) 421 382 586 900
Norm of velocity (m/s) 56 62 614 866

Orientation (r ad) 0.13 0.17 0.48 0.38

Table 4.4 – RMSE for the training set for each algorithm, on trajectories from simulator 3.

The particular case of ballistic targets

Ballistic targets have a boost phase, very far from the radar (around 100km for the closest ones),
then they follow a purely ballistic trajectory. This impacts the tuning of the algorithms, and it
appeared very awkward to use the same tunings for these trajectories and the ones from the other
simulators for all the algorithms tested. In this case, we have to say that the IEKF is very sensitive
to the noise tuning, and is more difficult to tune than the EKF with a constant velocity model.
Indeed, it is not sufficient to add a great noise on one variable to have an appropriate tuning. The
RMSE computed for each algorithm are given in table 4.4.

The results for the IEKF are not as good as the ones for the other algorithms. Indeed, the
underlying target model was not designed to track ballistic missiles. The boost phase, with high
tangential acceleration, at a great distance is not really compatible with the target model formu-
lation. This is confirmed by the fact that the same model with an EKF does not show very good
performances too. Indeed, the Frenet-Serret model is designed to be accurate for turn motions.
The "turn phase" of ballistic trajectories is not very challenging for a constant velocity model such
as the ones used in the EKF of the IMM, so these filters perform well on this type of trajectory.

For simulators 1 and 2, some tangential acceleration is also present, but at a lower level. De-
spite this tangential acceleration, the Frenet-Serret model-based algorithms preformed well. So
up to a certain point, the model is still valid for low tangential accelerations.

4.7.2 Set of trajectories to test the tunings

The trajectories used to test the performances of the algorithms with the process noise obtained
on the training set are:

• Trajectories from simulator 1: trajectories 3, 4, 6, 8, 9, 11, 14, 15, 16.

• Trajectories from simulator 2: trajectories 3, 4, 5, 7.

• Trajectories from simulator 3: trajectories 4, 6, 7, 8.

The results for the best tuning for each algorithm are collected in table 4.5 for trajectories from
simulators 1 and 2, and an update rate of 1s.

One first observation concerns the RMSE for the norm of the velocity of the IMM. Since there
is no acceleration model in the IMM, we had to tune one of the models with high process noise.
This explains this poor result, but it can be avoided by adding a constant acceleration model that

77

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Parameter CV + EKF IMM IEKF Frenet + EKF

Position (m) 218 56 158 63
Norm of velocity (m/s) 41 902 51 210

Orientation (r ad) 0.38 0.36 0.32 0.37

Table 4.5 – RMSE for the testing set for each algorithm, on trajectories from simulators 1 and 2, with an
update rate of 1s.

manages the change of models in the trajectory. The second observation is that once again, the
orientation accuracy is best for the IEKF. The norm of the velocity precision is a little less precise
for the IEKF than for the EKF, but the lack of precision is minor compared to the gain obtained for
the heading.

Figure 4.10 – Trajectory 11 from simulator 1, with the position estimations of all four algorithms.

Let us look closer to what happens during a manoeuvre. We use trajectory 11 from simulator
1, and have a closer look at the velocity vectors of each algorithm during a turn. The trajectory
and position estimations for the four algorithms are presented on figure 4.10. The velocity vec-
tors for all algorithms during one particular turn of the trajectory is provided on figure 4.11. We
have focused on one turn, in the 2D plane. This figure shows that the EKF algorithm with the
constant velocity model has some delay during the turn motion. Indeed, its target model is not at
all adapted to turns, and the algorithm adjusts its estimation thanks to the observations and the
process noise. The estimations for the IMM and the quaternions model with an EKF seem more
accurate, namely concerning the position estimation, however, their velocity vector are less pre-
cise during the turn. This is corroborated by the errors in heading and norm of velocity, shown on
figure 4.12.

We have also tested the algorithms with a different update rate t = 0.5s. We use the same
tunings obtained with the training set for 1s. The results are provided in table 4.6. These tests
confirm the fact the the IMM can provide reliable velocity estimations, in particular for the norm,
when its tuning correspond more to the manoeuvres of the trajectory (less visible for a reduced
update rate). The IEKF is still the best algorithm for the orientation precision.

Ballistic trajectories

Once again the results for the ballistic trajectories of simulator 3 are reported in table 4.7. As for
the training set, the results for the IEKF are not as good as for the EKF or the IMM. One solution

78

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

(a) (b)

(c) (d)

Figure 4.11 – Velocity vector represented for the four algorithms, for one of the turns of trajectory 11 from
simulator 1. Fig. 4.11a is the EKF with the constant velocity model, fig. 4.11b is the IMM, fig. 4.11c is the
IEKF and fig. 4.11d is the EKF with the quaternions model. The IEKF is the filter whose velocity vector is the
most accurate during the turn.

Parameter CV + EKF IMM IEKF Frenet + EKF

Position (m) 134 45 102 56
Norm of velocity (m/s) 33 31 43 206

Orientation (r ad) 0.36 0.35 0.31 0.39

Table 4.6 – RMSE for the testing set for each algorithm, on trajectories from simulators 1 and 2, with an
update rate of 0.5s. Once again, we notice the IEKF is appropriate to estimate the heading of the velocity
vector.

79

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

(a) (b)

(c)

Figure 4.12 – Errors in position fig. 4.12a, in norm of velocity fig. 4.12b and in heading fig. 4.12c. This
corroborates the IEKF with the Frenet-Serret model perform better than the other filters.

80

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

Parameter CV + EKF IMM IEKF Frenet + EKF

Position (m) 589 463 696 424
Norm of velocity (m/s) 105 149 820 654

Orientation (r ad) 0.21 0.24 0.50 0.30

Table 4.7 – RMSE for the testing set for each algorithm, on trajectories from simulator 3.

would be to couple the IEKF with a constant acceleration model in an IMM, to ensure the boost
phase is compatible with the models proposed. The fact that the results are less accurate for the
testing set confirm that the IEKF is hard to tune on this kind of trajectories. In industry however, a
specific treatment is applied to ballistic trajectories.

4.8 Conclusion

In this chapter, we have discussed the tuning issues for the filtering algorithms. Target models
are usually designed with assumptions that some kinematic parameters are constant. However,
the real trajectories have non-constant motions. Some process noise thus has to be added to the
model to take into account the variations of the true trajectories.

The Frenet-Serret target model and the IEKF have been conceived for manoeuvring targets,
but we have also seen that they are well suited to a civilian application as well. This field of civil-
ian air traffic management addresses also other problems than the military application, including
trajectory prediction, which might seem a similar problem, but that must be achieved for a longer
time scale. Solutions to the trajectory prediction problem differ from the ones of target tracking,
and can be based on regression, as in [45], and more generally to air traffic optimisation in [52].

We have simulated trajectories with different simulators to perform tests on four different al-
gorithms to compare them. The first result is that tunings can differ from one simulator to the
other. Indeed, when targets have very different behaviours, a single tuning is generally not satis-
fying. For this reason, tunings for ballistic missiles and other trajectories are different, since the
acceleration is in one case tangential, and in the other cases lateral. For this same reason, the
results of the IEKF on ballistic targets are not entirely satisfying.

When tested on trajectories with high manoeuvres (turns), the IEKF proved to be more accu-
rate than the other algorithms. In particular, the heading precision is very high. This is of crucial
importance, since it is required for several needs. The first need is to anticipate the location of
the next observation, i.e. to direct the radar beam to be sure to find the target again during active
tracking. This is decided by the heading of the target. Another important aspect is the display for
an operator. An operator always prefer an accurate velocity vector that does not change directions
from one moment to the other. Finally, heading is one crucial factor for fire-control radars, so that
the target can be intercepted.

81

CHAPTER 4. COMPARISON WITH OTHER EXISTING ALGORITHMS AND MODELS

82

Part II

Alternative state estimation: Smoothing

83

Chapter 5

Smoothing applied to target state
estimation

Sommaire
5.1 Résumé en français : Lissage appliqué à l’estimation d’état 86

5.2 Introduction . 86

5.3 Smoothing as an estimation procedure for target tracking 87

5.3.1 Smoothing as an alternative to filtering algorithms 87

5.3.2 Classical smoothing approach . 87

5.3.3 Restriction to a deterministic evolution model over a sliding window as a
tuning strategy . 89

5.4 Smoothing applied to deterministic systems with random jumps 91

5.4.1 Considered systems and simplifying assumptions 91

5.4.2 Corresponding smoothing problem . 91

5.5 Proposed algorithm . 92

5.6 Application to a linear target model . 95

5.6.1 Target model . 95

5.6.2 Full resolution of the deterministic problem 95

5.6.3 Linear target model with jumps . 96

5.7 Application to the 2D Frenet-Serret target model 97

5.7.1 Solving the smoothing problem without jumps 97

5.7.2 Accounting for jumps . 99

5.8 Comparison with other algorithms . 99

5.8.1 Comparison with the IEKF . 100

5.8.2 Comparison with an IMM . 101

5.9 Discussion . 105

5.9.1 Comparison with other filters . 105

5.10 Conclusion . 105

85

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

5.1 Résumé en français : Lissage appliqué à l’estimation d’état

Le filtre présenté dans le troisième chapitre permet de réaliser l’estimation de trajectoires où la
norme de la vitesse, la courbure et la torsion sont presque constantes. On a vu que le filtre pouvait
gérer les sauts ou écarts entre modèle et réalité grâce au bruit de modèle. Cependant, dans le cas
de sauts très importants, on peut envisager une autre méthode pour permettre une convergence
plus rapide de l’estimation après un saut, en détectant directement la présence du saut. Pour
cela, on reprend le modèle (en 2D) du deuxième chapitre, et on adapte la formulation de façon
à inclure directement la possibilité de sauts dans les équations du modèle, à l’aide de modèles
stochastiques par processus ponctuels. Ce type de modèle est appelé "modèle à taux variable", et
le modèle est déterministe par morceaux, c’est-à-dire que le bruit de modèle est supprimé dans
les équations. L’adaptation aux légères déviations de modèle peut s’effectuer grâce à l’utilisation
d’une fenêtre glissante d’horizon plus ou moins important.

L’algorithme de lissage classique, qui consiste à trouver le meilleur état possible en minimisant
directement l’équation aux moindres carrés est adapté afin de détecter la présence de sauts. On
utilise l’algorithme de lissage classique comme base. Pour détecter les sauts, on calcule la distance
de Mahalanobis à chaque instant entre la dernière mesure, et la prédiction faite grâce à la propa-
gation du modèle d’évolution. Cette distance suit une loi du χ2 dans ce cas, et lorsque le seuil de
la table du χ2 est dépassé, un saut est détecté, et la fenêtre de calcul pour le lissage est réinitialisée.
Dans un premier temps, on conserve une solution sans saut en parallèle de la solution avec saut,
afin d’éviter des sauts intempestifs dus à des mesures aberrantes. Puis au bout d’un temps donné,
seule la meilleure solution des deux est conservée.

L’algorithme ainsi obtenu permet de réaliser l’estimation de trajectoires avec des sauts abrupts
et de forte amplitude. La précision de l’algorithme de lissage dépasse celle de l’IEKF avec le modèle
de Frenet-Serret en 2D avec bruit de modèle, ainsi que celle d’un IMM avec trois modèles (vitesse
constante, virage coordonné et accélération constante). De plus, il y a moins de paramètres à
régler pour l’algorithme de lissage que pour les filtres, étant donné qu’il n’y a pas de bruit de mod-
èle. Il faut régler la taille de l’horizon maximal de la fenêtre glissante, ainsi que la fréquence des
sauts, et la durée pendant laquelle deux solutions peuvent cohabiter, mais ces réglages nécessitent
moins de précision que les réglages des bruits de modèle des filtres.

5.2 Introduction

In chapter 2, we have proposed a target model that tackles trajectories that are designed with al-
most constant control commands. The underlying idea is to handle piecewise constant control
commands. In chapter 3, we have presented a filtering algorithm to perform state estimation.
We have seen in this chapter, and in chapter 4 that this filter can accommodate the jumps of the
real trajectories. However, we would like to detect when jumps occur, and have a filter that reacts
instantaneously to the jumps, which leads to faster convergence after the jumps.

One first method to perform this is to use a Rao-Blackwell particle filter, see [49]. This filtering
method is based on sampling, and samples the time of the jumps. It is presented in more details in
appendix D of this document. However, this filter requires a lot of particles. Moreover, the noise,
necessary for a nonlinear target model makes the detection of the jumps sometimes difficult, when
used with a non-linear target model.

The authors of [32] have used Piecewise Deterministic Markov Models (PDMM) to model the
target’s behaviour, resulting in Variable Rate models. Between jumps, trajectories are modelled by
ordinary differential equations driven by constant inputs. This kind of trajectories have long been
a key model in tracking: see for example the constant velocity model of [7], the coordinated turn
model in [87], and the 2D Frenet-Serret model presented in chapter 2. Adapting particle filter’s
techniques to the continuous-time setting of the PDMM, the authors of [33] have proposed the
Variable Rate Particle Filter (VRPF). However, such filters are also computationally demanding, as
many particles are needed to fully cover the space of possible jumps and parameters.

86

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

In this chapter, we consider PDMM that are akin to those considered in the VRPF literature. In-
stead of using a particle filtering approach, we opt for a smoothing optimisation-based approach.
The use of such techniques for filtering and tracking have long been known, but only recent ad-
vances in computers have allowed them to be fully implementable. We thus use smoothing meth-
ods to track the state of a PDMM driven by unknown constant inputs, and we use a probabilistic
approach for jump detection. In the stationary phase, the state is well tracked as our deterministic-
based model provides smooth trajectories that are not fluctuating, and in turn, the accuracy of the
state estimates helps to rapidly detect jumps.

This chapter is structured as follows. We first present state of the art smoothing techniques in
the field of robotics in section 5.3. Then in sections 5.4 and 5.5, we introduce a slightly different
version of smoothing that we have imagined during this thesis, i.e. with a handling of jumps ap-
propriately added in the model. An application for a linear target model is presented in section 5.6.
Finally, in section 5.7, we use the vectorial formulation of the 2D Frenet-Serret model developed
in section 2.6.1 to apply the jumping smoother developed.

5.3 Smoothing as an estimation procedure for target tracking

5.3.1 Smoothing as an alternative to filtering algorithms

The first works introducing smoothing in robotics were concerned with trajectory smoothing only,
see for instance the works of [37], [55] or [75]. But smoothing can also be used as a solution to full
estimation problems, such as the SLAM (Simultaneous localisation and Mapping) problem, see
[46], [107], [69], [68]. The SLAM problem is the problem of computing a map of an unknown
environment and of a robot position inside the map, given some known landmarks observed by
the robot. This is a trending topic, since it is used for robot navigation, drone navigation, au-
tonomous vehicles... Optimisation based smoothing [69] is considered as state of the art for SLAM
and this field has boosted algorithmic developments in the realm of smoothing based techniques.
The optimisation-based smoothing approaches have virtually replaced the once extremely popu-
lar particle filter, see [86].

Smoothing consists of solving a least squares problem on (a portion of) a trajectory to estimate
both measured and hidden parameters. The formulation of the least squares problem comes from
the model and measurement equations. It is equivalent to the Kalman filter for a linear and Gaus-
sian problem (as we have seen in appendix B, the Kalman filter is a least squares error minimiser).
In the case where it solves an estimation problem, smoothing can be used as an alternative to the
Kalman filter. The main difference is that the Kalman filter is recursive and requires only the use
of the last measurement point and estimation, whereas the smoother needs to have in memory
the whole trajectory to perform its estimation. However, some linear algebra techniques, such as
the Cholesky factorisation, the use of the sparsity of the matrices, and the square root form of the
matrices can provide very fast computations. The authors of [46] thus claim that the square root
smoothing and mapping is a more efficient and precise approach to the SLAM problem than the
Extended Kalman Filter.

Some refinements for computational efficiency have been proposed in [69] and [68]. The idea
is to derive an incremental algorithm based on matrix factorisation, to avoid computing the en-
tire least squares problem at each time step. This solution includes both the estimation and the
association problem, which is not dealt with in this work.

We present the general formulation and resolution of the smoothing problem used for state
estimation in the remainder of this section.

5.3.2 Classical smoothing approach

Consider a target that one must track. Assume a discrete time model, and let the target’s state at
time i be denoted Xi ∈Rp . Consider a non-linear evolution model for the target of the form

Xi+1 = fi (Xi)+wi , (5.1)

87

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

with noisy radar (range and bearing) measurements of the form

yi = h(Xi)+ vi (5.2)

The goal of any filter, such as the EKF or the IMM, is to compute the distribution p(Xn |y0:n)
of the present state Xn conditionally on past and present measurements y0:n := {y1, . . . , yn}. In
contrast, a smoother (sometimes referred to as Kalman smoothing) computes the distribution
p(X0:n |y0:n) of the entire past trajectory X0:n := {X0, . . . ,Xn}, conditionally on past measurements
y0:n := {y1, . . . , yn}. Both a filter and a smoother allow us to find the best estimate of the state, that
is, the most likely state Xn in the light of the information y0:n we have collected so far. This is re-
ferred to as the maximum a posteriori (MAP) estimate Xn . The MAP estimate of the entire past
trajectory X0:n is thus defined as argmaxX0,...,Xn

P(X0:n |y0:n), i.e.:

X∗
0:n = argmin

X0:n

− logP(X0:n |y0:n) (5.3)

Under standard assumptions of independence of noises wi , vi we get

P(X0:n |y0:n) = P(X0)
n∏

i=1
P(Xi |Xi−1)

n∏
k=1

P(yk |Xk)

In this equation P(X0) is a prior knowledge that we have on the initial state.
Under the assumption of Gaussian noises wi ∼ N (0,Qi) and vi ∼ N (0,Ni) to represent re-

spectively model and measurements uncertainties, from equation (5.1) we have that P(Xi |Xi−1) =
C̃ exp

(
|| fi (Xi−1)−Xi ||2Qi

)
and from (5.2), we have P(yk |Xk) = C̄ exp

(
||h(Xtk)− yk ||2Nk

)
. Thus we end

up with the following non-linear least squares problem

X∗
0:n = argmin

X0:n

{
||X0 − X̄0||2P0

+
n∑

i=1
|| fi (Xi−1)−Xi ||2Qi

+
n∑

k=1
||h(Xk)− yk ||2Nk

}
(5.4)

where the norm is the Mahalanobis distance defined by ||e||Σ = eTΣ−1e for Σ a covariance matrix,
where the initial distribution P(X0) is assumed to be Gaussian with mean X̄0 and covariance matrix
P0.

If the dynamical model fi and measurement function h are non-linear, and a linearisation
point is not available, one must resort to non-linear optimisation methods such as Gauss-Newton
or Levenberg-Marquardt algorithm. The algorithm is based on successive linear approximations
to (5.4), that iteratively improve the estimate X0:n . Indeed, at each iteration, by denoting X̂0:n =
{X̂0, · · · , X̂n} the current estimate, the problem may be linearised around X̂0:n as follows. We let:

Fi = ∂ fi (X)

∂X

∣∣∣∣
X̂i−1

, Hk = ∂h(X)

∂X

∣∣∣∣
X̂k

Letting ai = X̂i − fi (X̂i−1), ck = yk −h(X̂k), and p0 = X̂0 − X̄0, we have first orders linearisations of
the terms in (5.4):

fi (Xi−1)−Xi ≈ (fi (X̂i−1)+FiδXi−1)− (X̂i +δXi) = FiδXi−1 −δXi −ai

h(Xk)− yk ≈ (h(X̂k)+HkδXk)− yk = HkδXk − ck

So the optimisation problem can be approximated as

δX∗ = argmin
δX

{
||p0||2P0

+
n∑

i=1
||FiδXi−1 −δXi −ai ||2Qi

+
n∑

k=1
||HkδXk − ck ||2Nk

}
(5.5)

yielding at each iteration a linear least squares problem to solve. Noting that we can re-write norms
as follows

||e||2Σ = eTΣ−1e = (Σ−T/2e)T(Σ−T/2e) = ||Σ−T/2e||2,

88

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

and stacking the matrices Fi and Hk in a large matrix A and the vectors p0, ai and ck in a large
vector b, (5.5) may be re-written as

δX∗ = argmin
δX

||AδX−b||2 (5.6)

The solution of this linear least squares problem is then notoriously obtained by equating the
gradient of ||AδX−b||2 to 0, which yields

δX∗ = (ATA)−1ATb (5.7)

A is a large but sparse matrix, and linear algebra methods can be used to compute efficiently this
solution, as explained in e.g., [69], the Cholesky decomposition or the QR matrix factorisation
allow us to efficiently compute (ATA)−1. The obtained solution δX∗ of (5.7) depends on a particular
realisation of random noises wi , vi , and varies due to fluctuations in the data yi which are stacked
in vector b. Its variability over a large number of noise realisations is encoded in the covariance
matrix Cov(δX∗) = (ATA)−1. The standard smoothing algorithm is summarised in algorithm 1.

Algorithm 1 Smoothing algorithm to perform state estimation

Input: Observations y1, . . . , ym , initial state X0, model (f ,h,Q,N)

1: Set X∗
0 = X0

2: for k = 1, . . . ,m do
3: Perform prediction X̂k = fk (X∗

k−1)

4: Set i = 0 and X̂i
j = X̂ j for j = 0, . . . ,k

5: while The linearisation has not converged do
6: i := i +1
7: Linearise f and h around X̂i

k
8: Solve δX∗ = argminδX ||AδX−b||2
9: Update Xi

j = Xi−1
j +δX∗ for j = 0, . . . ,k

10: end while
11: Set X∗

j = X̂i
j for j = 0, . . . ,k

12: end for
Output: X∗

0 , . . . ,X∗
m

As already mentioned, the objective of a filter is to return the state that maximises the pos-
terior distribution P(Xn |y0:n), whereas a smoother returns the maximum argument (argmax) of
P(X0:n |y0:n). As time passes, n grows boundlessly and re-estimating the entire trajectory may be-
come intractable. Typically, the matrix A that appears in (5.6) at each iteration is of dimension
O(n2), yielding a O(n3) complexity to evaluate (5.7). As a result there have been various attempts
to compute incrementally the MAP estimate for the smoothing problem. Notably, in robotics, the
well-studied problem of SLAM has a structure that lends itself to such incremental methods, as
proved in [69].

Another popular solution is to use a fixed-lag smoother, which aims to compute P(Xn−k:n |y0:n)
for some fixed lag k ∈N. Such smoothers are obtained by marginalising the old states X0:n−k−1 out,
see e.g. [47], see also [101].

5.3.3 Restriction to a deterministic evolution model over a sliding window as a tuning
strategy

Actual motion of objects such as aircrafts and marine vehicles typically consist of a succession of
distinct manoeuvres commanded by an operator. As a result, the trajectories of objects look like a
succession of smooth trajectories that are well described by continuous time ordinary differential
equations (ODE). In section 5.4.1, we will take into account the possibility of abrupt changes in the
trajectory, but for now let us consider only the phase in between manoeuvres where the trajectory

89

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

is governed by deterministic equations. Prosaically, this means that the covariance matrix Qi of
process noise wi in (5.1) is null. Thus (5.4) becomes:

minimize
X0:n

{
||X0 − X̄0||2P0

+
n∑

k=1
||h(Xk)− yk ||2Nk

}
subject to Xi = fi (Xi−1), i = 1, . . . ,n.

(5.8)

Of course, such a model is too rigid in practice, as there are always fluctuations in the target be-
haviour with respect to a model specified in advance. A boat or a plane may deviate slightly from
its planned trajectory due to perturbations, or to slight motion adaptations from the pilot. This is
why in the target tracking literature, the covariance Qi of noise wi is always positive, and serves as
a tuning parameter.

Let us temporarily assume we are dealing with problem (5.8). To simplify the exposure, assume
fi ,hk are linear and let Fi ,Hk denote the corresponding matrices. This means Xk = Fk · · ·F1X0, and
thus h(Xk) = Hk Fk · · ·F1X0. Equivalently fi ,h may be considered as non-linear and Fi and Hk then
represent their first-order expansion at convergence of the Gauss-Newton algorithm. As a result,
solving problem (5.8) is equivalent to minimising ||X0 − X̄0||2P0

+∑n
k=1 ||Hk Fk · · ·F1X0 − yk ||2Nk

with

respect to X0. Let H̃0 = Id , H̃1 = H1F1, · · ·H̃k = Hk Fk · · ·F1. We see by applying the results of Sec-
tion 5.3.2 that Cov(X∗

0:n) = (
∑n

i=0 H̃T
i H̃i)−1, and as X∗

n is obtained deterministically from X∗
0 , it has a

similar covariance. As a result, when there is no process noise, the confidence about the current
state X∗

n obtained by solving problem (5.8) grows as 1/n where n is the number of measurements.
Indeed as n grows new observations yi do not modify much the value of X∗

0 : the algorithm has
gathered sufficient data to be totally confident about its estimate. However, as the model cannot
be completely accurate due to unpredictability of the target’s behaviour, new observations need
to constantly impact the estimate for accurate tracking.

On the other hand, if process noise is considered, the covariance of X∗
n obtained by solving

problem (5.4) is lower bounded by some matrix C∗ that depends on the magnitude of the Qi ’s.
Matrix C∗ is known as the Cramér-Rao bound. As a result, we see there are two different routes for
the practitioner to tune its estimator. Either, one can attempt to solve (5.4) and tune the process
noise Qi , leading to an asymptotic confidence C∗ about the estimate. Or we can consider the
estimation problem with no process noise Qi = 0, leading to (5.8) , but only on a sliding window of
size k̄, that is,

minimize
Xn−k̄:n

 n∑
j=n−k̄

||h(X j)− y j ||2N j

subject to Xi = fi (Xi−1), i = n − k̄, . . . ,n.

(5.9)

Of course those two routes are not strictly equivalent mathematically, but they may be viewed as
different and equally valid ways to tune the smoother. The second route that consists in solving
(5.9) at each time step n, is the one that we advocate in the present paper. In this case, the depth
of the window k̄ is the tuning parameter which appears as an alternative to process noise Qi : one
should bear in mind the resulting uncertainty about the current state Xn is of magnitude 1/k̄, and
this should be tuned in accordance with the fit between evolution model Xi = fi (Xi−1) and the
true motion of the target (in the extreme case where the motion of the target is exactly modelled
by this deterministic approach, one may set k̄ = n, on the other hand if the evolution is uncertain
k̄ should be set small).

In the literature devoted to systems identification, the use of recursive least squares is pivotal.
For real-time implementation, where one must track a parameter that varies (slowly) over time, it
is common to use a “forgetting factor" that gives less weight to old observations. Our approach
may be related to this practice, by setting a forgetting factor as 1 for the k̄ latest observations and
0 for the preceding ones.

90

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

5.4 Smoothing applied to deterministic systems with random jumps

5.4.1 Considered systems and simplifying assumptions

As already explained, actual motions of objects such as aircrafts and marine vehicles typically
consist of a succession of distinct manoeuvres commanded by an operator. As a result, the tra-
jectories of objects are in fact smooth and well described by continuous time ordinary differential
equations (ODE) driven by constant inputs between change-points. This was advocated in partic-
ular by S. Godsill with various co-authors who proposed the variable rate particle filter [58], [32],
[33], a sequential Monte-Carlo (SMC) method, well suited to piecewise deterministic models, and
explained also in appendix D. Following [58], the target behaviour is modelled by the following
piecewise deterministic Markov model:

d

d t
xt = f (xt ,uK(t)) (5.10)

where xt ∈ Rp is the continuous time state, K(t) ∈ N is a stochastic point process that counts the
number of random jumps up to time t , and u0,u1, · · · is a sequence of random inputs that drive the
ODE (5.10). Moreover, at discrete time instants t0, t1, · · · , we get (range and bearing) measurements
of the form

yn = h(xtn)+ vn (5.11)

The goal is to estimate the most likely state value, that is argmax p(xt | y0:n) for tn ≤ t < tn+1. To
simplify the estimation task, we will assume jumps can only occur at pre-specified discrete times.
This may look like a harmful approximation, but we will see in the sequel it is easy to modify the
least squares problem to mitigate its impact on the estimation. Furthermore, to keep the nota-
tion simple we will assume jump times coincide with observation times t1, t2, · · · . We let rk be
the random variable indicating jump at time k (rk = 1 if there is a jump). K(t) is the number of
jumps between times 0 and t . We also let K̃n to be the number of jumps between 0 and tn . We
obviously have K(tn) = K̃n . Note that, K̃n is a function of r0:n . For simplicity, and as done in the
variable rate particle filter literature [58], we assume the initial state x0 to be known. Finally, we
let θn = (r0:n ,u0:K̃n

, x0) be the parameters we seek to estimate. Indeed, for known x0, xt is a (deter-
ministic) function of θn for t ≤ tn , so to recover xt , we only need to integrate (5.10) based on the
knowledge of θn for t < tn+1.

5.4.2 Corresponding smoothing problem

For the problem described at the preceding paragraph, our goal is to find the most likely state xt

at present time, and for tn ≤ t < tn+1 this amounts to finding the parameter θn . We have

log p(y0:n |θn) = log p(y0:n |r0:n ,u0:K̃n
, x0) =−

n∑
k=1

||yk −h(xtk)||2Nk
+Cste (5.12)

where Nk is the covariance matrix of the Gaussian measurement noise vk , and the xtk are obtained
by integrating (5.10), since K(tk) is a function of r0:k . Trying to estimate θn by maximising the
likelihood (5.12) is not suitable. Indeed, the optimal solution will keep jumping to stick to the
observations. Obviously, we need a prior on the average time between successive manoeuvres.
Letting 0 < p < 1 be the probability of a jump at each observation time ti , we have the following
prior

p(K̃n = j) = p({r0:n contains j ones and n − j zeros}) = P(bin(n, p) = j) =
(

n

j

)
p j (1−p)n− j (5.13)

91

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Let us assume a prior on the initial state: x0 ∼ N (x̄0,P0). Estimating the most likely state for the
piecewise deterministic model of section 5.4.1 amounts to the following optimisation problem:

θ∗n = argmin
r0:n ,u0:K̃n ,x0

− log p(r0:n ,u0:K̃n
, x0|y0:n)

= argmin
r0:n ,u0:K̃n ,x0

[− log p(y0:n |r0:n ,u0:K̃n
, x0)− log p(u0:K̃n

|r0:n)− log p(r0:n)− log p(x0)
]

= argmin
r0:n ,u0:K̃n ,x0

[
n∑

k=1
||yk −h(xtk)||2Nk

− log

((
n

K̃n

)
p K̃n (1−p)n−K̃n

)
−||x0 − x̄0||2P0

] (5.14)

with the xtk are obtained by integrating (5.10) with parameters r0:n ,u0:K̃n
. The justification for

removing the term log p(u0:K̃n
|r0:n) from the optimisation problem is that we assume a flat prior

on the parameters u0,u1, · · · , as we assume at each jump they can completely shift. Of course
alternative priors might be considered depending on the application.

5.5 Proposed algorithm

The optimisation problem (5.14) is not tractable, owing to the combinatorics in the jump times.
Unfortunately, this remains true even if the optimisation is restricted to a sliding window along
the lines of section 5.3.3. Over a window of size k, there are 2k possibilities for the discrete variable
rn−k:n , each leading to a continuous optimisation problem with respect to uKn−k :K̃n

. To efficiently
approximate the optimisation problem, we propose the following tractable strategy.

Setting a horizon We first choose a size k̄ for a sliding window for the reasons explained in sec-
tion 5.3.3, corresponding to the forgetting horizon of the smoother in the absence of jumps: even
if there are no jumps this allows the state to deviate from deterministic model (5.10) while contin-
uing to be efficiently tracked.

Continuity assumption of xt at jumps In our model described in section 5.4.1 we made the sim-
plifying assumptions that jumps only occurred at discrete time instants t0, t1, · · · while they actu-
ally can occur at any time. We also said there was a way around the issue this poses. Indeed, the
"true" considered model (5.10) implies continuity in xt , since its derivative is bounded. If a jump
actually occurs between tn−1 and tn , for instance at time (tn−1 + tn)/2, assuming it has occurred
at time tn and the trajectory is continuous may result in degraded accuracy. However, by relaxing
the continuity assumption and assuming small jumps in the state xt may occur as well at jumping
times, i.e. when u is jumping, may compensate for the assumption that jumps may only occur at
pre-specified instants. See figure 5.1 for a graphical illustration.

Figure 5.1 – Trajectory with velocity u jumping strictly between the observations at times tn−1 and tn . Under
the assumption that a jump may only occur at tn and the trajectory xt is continuous we obtain the dotted
line which is a poor trajectory estimate. However if we assume u jumps at time tn but we relax the assump-
tion that the trajectory xt must be continuous and allow it to jump - see (5.15) - we obtain a much better
estimate (dashed line).

92

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Assuming a jump has occurred at a time between tl−1 and tl , and given that no other jump has
occurred until current time n, to find the most likely state xtn we relax the continuity assumption
and solve the optimisation problem

argmin
u,xtl

[
||xtl − x̄tl ||2P j ump

+
n∑

j=l
||y j −h(xt j)||2N j

]
, (5.15)

where x̄tl is the value obtained at instant index l by integrating (5.10) until time tl based on the for-
mer value of u (i.e. extension by continuity), and where P j ump is a covariance matrix that must be
tuned to represent the typical squared distance xt may achieve between successive observations.

Jump detection Assume n denotes the current time step, and the last jump occurred at time
l > n − k̄. This means rl :n contains only zeros, and the state is since driven by equation (5.10) with
input uK̃n

. Using (5.12) we may solve the problem

argmin
u,xtl

− log p(u, xtl |yl :n ,rl :n) = argmin
u,xtl

[
||xtl − x̄tl ||2P j ump

+
n∑

k=l
||yk −h(xtk)||2Nk

]
(5.16)

where the xtk are obtained by integrating ẋt = f (xt ,u) with initial condition xtl , and x̄tl corre-
sponds to the estimate obtained by continuity with the model before the jump. As explained in
section 5.3.2, it is possible to assess a covariance matrix P̃ to the couple (u, xtl). As in the absence
of jumps xtn = φ(u, xtl) is a deterministic function of the parameters (u, xtl), the corresponding
covariance matrix is given by Pn = DφP̃DφT where Dφ denotes the differential of φ at the optimal
values (u∗, x∗

tl
). This allows us to compute the associated Mahalanobis distance

∆=
√

(yk −h(x∗
tn

))T(DhTPnDh)−1(yk −h(x∗
tn

)) (5.17)

where Dh denotes the differential of h at x∗
tn

. We may then apply the χ2-test with a given threshold
to determine if there is a jump in the parameters u that are considered piecewise deterministic in
the model.

Proposed strategy We approximate the solution to the true optimisation problem (5.14) by first
restricting it to a sliding window of horizon k̄. Then, we assume jumps are scarce (that is, the
jump probability p is small) and we let Tn ∈N denote the time index at which the last jump before
current (observation) time tn occurred. At each jump time Tn , the window is re-initialised, since
u jumps to an unknown arbitrary value. As a result, at time tn , the current optimal parameter u∗

K̃n

is obtained as a solution to problem (5.16) with l = max(n − k̄,Tn). Assume according to the χ2

test a possible jump is detected at time index n as (5.17) goes above some predefined quantile q ,
corresponding to, say 95%. As this does not mean a jump has necessarily occurred, we initialise a
second smoother based on jump at time n. The former smoother is assumed not to have jumped
and u continues to be re-evaluated given new observations yi , i ≥ n.

Suppose we are at time n + k, and let l = max(Tn−1,n + k − k̄). The smoother assuming "no
jump has occurred at n" solves the problem:

argmin
u,xtl

(
||xtl − x̄tl ||2P j ump

+
n+k∑
j=l

||y j −h(xt j)||2N j

)

where xt j are obtained by integrating ẋt = f (xt ,u). Recalling computations (5.14) the associated
log likelihood writes

Lno jump(n +k) = log p(yl :n+k |u∗, x∗
tl

)+ (n +k − l) log(1−p)+ log p(x∗
tl

) (5.18)

93

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Figure 5.2 – Smoothing with jumps and underlying non-jumping smoother.

On the other hand, the candidate "jumping" smoother which assumes one jump occurred at time
index n solves the optimisation problem

argmin
u,xtn

(
||xtn − x̄tn ||2P j ump

+
n+k∑
j=n

||y j −h(xt j)||2N j

)
(5.19)

where xt j are obtained by integrating ẋt = f (xt ,u). The associated log likelihood writes

Ljump(n +k) = log p(yn:n+k |u∗, x∗
tn

)+ log
(
kp(1−p)k−1

)
+ log p(x∗

tn
) (5.20)

We clearly see the benefit of the prior: as the size of window for the jumping smoother is
smaller, the residual of the least squares will be smaller, as it is easier to find a u∗ fitting with less
data. But its likelihood will be penalised by the jump assumption as p is assumed small, that is,
as long as kp < 1−p. This will favor the non jumping smoother, and prevent the estimation from
constantly jumping, which may end up in yielding meaningless estimates. As p is assumed small,
the likelihood of smoothers corresponding to two or more jumps is considered as negligible.

Note that there must be a minimum time elapsed after the candidate jump at n for comparing
the smoothers. We will denote by index k.

After a possible jump detection at time n, our strategy is to let j increase until either Ljump(n+
j) > Lno jump(n + j) and then a jump at n is validated, leading to Tn = Tn+ j = n, or until j = k in
which case both smoothers yield the same estimates and the jumping smoother is suppressed.
The strategy is illustrated by figure 5.2.

Algorithm The pseudo code is displayed in algorithm 2. After a jump, during the phase when
two smoothers run in parallel, we can either decide to output the estimations of the jumping or
the non jumping smoother. The complexity of this algorithm corresponds to the complexity of the
smoothing problem on a sliding window, multiplied by two, because two smoothers at most can
be kept in parallel for a few time steps.

94

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Algorithm 2 Smoothing algorithm with jumps

Input: Observations y1, y2, · · · , x̄0, P0

1: Set P j ump = P0, T0 = 0, n = 0

2: Solve (u∗, x∗
tl

) = argminu,xtl

[
||xtl − x̄tl ||2P j ump

+∑n
j=l ||y j −h(xt j)||2N j

]
with l = max(0,n − k̄) and

where x̄tl is either x̄0 or obtained by continuity through model (5.10) if l > 0.
3: while ∆2 < q with ∆ defined by (5.17) and q the quantile for the χ2-test do
4: Set Tn = Tn−1

5: n = n +1
6: if ∆2 > q , with q the quantile for the χ2-test, i.e. a candidate jump is detected at time index

n then
7: for j = n : n +k do
8: Compute estimations for a smoother with jump and with no jump.
9: end for

10: if for some j we have Ljump(j) > Lno jump(j) for one jump (see (5.18), (5.20) for a definition)
then

11: Set T j = n and select the jumping smoother by selecting (u∗, x∗
tl

) =
argminu,xtn

[
||xtn − x̄tn ||2P j ump

+∑n
j=n ||y j −h(xt j)||2N j

]
where x̄tn is obtained by con-

tinuity through model (5.10) with optimal u∗.
12: end if
13: Set n = j
14: end if
15: end while

Output: xt is obtained for tl ≤ t < tn+1 with l = min(Tn ,n − k̄) by integrating (5.10) with pa-
rameters (u∗, x∗

tl
).

5.6 Application to a linear target model

We propose in this section to apply this least squares formulation to the target tracking problem.
We first present results on a linear target model, for visual understanding. For simplicity, we as-
sume 2D Cartesian observations.

5.6.1 Target model

The target model is supposed to be linear, and deterministic, i.e. without process noise. The model
and observation equations are:

Xk+1 = Fk Xk (5.21)

yk = Hk Xk + vk (5.22)

vk is a white Gaussian noise with covariance N. The corresponding least squares problem is

L(N) = ||X0 − X̂0||2P0
+

N∑
k=1

||yk −Hk Xk ||2N (5.23)

5.6.2 Full resolution of the deterministic problem

This problem is relatively easy to solve. Indeed, we can express the state at each time instant as a
function of the state at the first instant, like this:

Xk = Fk Fk−1 . . .F0X0

So the function to optimise L(N) can be re-written in the following way, assuming the initial state
X0 is known:

L(N) =
N∑

k=1
||yk −Hk Fk Fk−1 . . .F0X0||2N

95

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Let us call
H̃k = Hk Fk Fk−1 . . .F0

y =

 y1
...

yN

A =

H̃1
...

H̃N

The function L(N) writes

L(N) = ||y −AX0||2N
The solution is given by

X̂0 = (ÃT Ã)−1Ãỹ (5.24)

with Ã = (
Ã1 . . . ÃN

)T
, ỹ = (

ỹ1 . . . ỹN
)T

, Ãk = N−T/2H̃k and ỹk = N−T/2 yk .
In this particular case, it is possible to propagate the state, knowing only the initial state X0.

This is due to the fact that the target model equation is deterministic (no process noise is added).
So the smoothing algorithm only has to estimate the best X0 that minimises the error between the
estimated trajectory and the observations.

An example of an estimation coming from a linear smoothing algorithm without process noise
is given on figure 5.3. The model chosen is a constant velocity model. The trajectory is generated
with a piecewise constant velocity model. We see that the algorithm performs well until a jump
occurs. This is similar to what a linear Kalman filter without process noise would do, as presented
in section 4.3.

(a) (b)

Figure 5.3 – Estimations of the position for the smoothing algorithm at different time steps. The true trajec-
tory is in blue, the measurements are in yellow, and the estimation in red. On fig. 5.3a the smoother works
well because the model is still valid, however, with time increasing and jumps in the trajectory, we see the
smoothing algorithm is very wrong. The final estimation is on fig. 5.3b.

This solution is a very rigid one, since no process noise is added, and the sliding window is very
large. Indeed, in the case of a constant velocity model for instance, the smoothing algorithm will
select the best straight line that goes through the trajectory. One way to avoid this rigidity problem
is to allow jumps in the model, and use algorithm 2 developed in section 5.5.

5.6.3 Linear target model with jumps

We generate a trajectory with piecewise constant velocity. We apply algorithm 2 to perform estima-
tion on this trajectory, with a target model containing the target position and piecewise constant

96

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

velocity. The results at two different moments in the estimation process are presented on figure
5.4. This shows the algorithm performs quite well. However, we notice that in the trajectory, two
jumps occur, whereas our algorithm detect only one. It is due to the fact that the amplitude of the
first jump is quite low, and is hidden in the measurement noise. It would be hard for any change
detection algorithm to detect a jump like this.

(a) (b)

Figure 5.4 – Estimations of the position for the smoothing algorithm at different time steps. The true tra-
jectory is in blue, the measurements are in yellow, and the estimation in red. On fig. 5.4a the smoothing
estimation is presented when no jump has yet occurred. On fig. 5.4b, the final estimation is presented.
The estimation of the first part has not changed after the jump. Indeed, the window on which smoothing is
performed has be re-initialised at the moment of the jump.

The algorithm thus performs almost optimally on piecewise linear trajectories. In the next
section, we use the jumping smoothing algorithm for a non-linear target model, and compare it
with two filtering algorithms, the IEKF of section 3.6, and the IMM.

5.7 Application to the 2D Frenet-Serret target model

Let us apply the smoothing algorithm to the 2D non-linear Frenet-Serret model, expressed with
a vectorial state, and vectorial equations (2.28), but without process noise. The model is recalled
here:

d

d t
θt =ωt ,

d

d t
xt = ut

(
cosθt

sinθt

)
,

d

d t
ωt = 0,

d

d t
ut = 0

The measurements are supposed to be Cartesian position, with additive Gaussian noise, as in
(2.24), but in 2D.

5.7.1 Solving the smoothing problem without jumps

Let us first consider the problem without jumps, to explain the linearisations performed. We use
only discrete time, so the state is

Xk =

θk

xk

ωk

uk

The corresponding least squares problem is

||X0 + X̂0||2P0
+

N∑
k=0

||yk −h(Xk)||2N (5.25)

97

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

In order to solve the least squares problem (5.25), we have to linearise h(Xk). In our case, since
the model is deterministic, we can even approximate h(Xk) as a linear function of X0. For Cartesian
measurements, h(Xk) = xk . We have

xn = x0 +u0∆t
n−1∑
k=0

(
cos(θ0 +kω0∆t) sin(ω0∆t)

ω0
− sin(θ0 +kω0∆t) 1−cos(ω0∆t)

ω0

sin(θ0 +kω0∆t) sin(ω0∆t)
ω0

+cos(θ0 +kω0∆t) 1−cos(ω0∆t)
ω0

)
(5.26)

Then we can perform linearisation. Let us suppose for simplification thatω0 is small, which means
that

xn = x0 +u0∆t
n−1∑
k=0

(
cos(θ0 +kω0∆t)
sin(θ0 +kω0∆t)

)
The full computations for ω0 6= 0 are provided in appendix C. Let us set

x0 = x̃0 +δx0

θ0 = θ̃0 +δθ0

ω0 = ω̃0 +δω0

u0 = ũ0 +δu0

We inject this in the formula giving xn , and we get:

xn = x̃0 +δx0 + (ũ0 +δu0)∆t
n−1∑
k=0

(
cos(θ̃0 +δθ0 +k(ω̃0 +δω0)∆t)
sin(θ̃0 +δθ0 +k(ω̃0 +δω0)∆t)

)
With order 1 linearisation, we finally get:

xn = x̃0 + ũ0∆t
n−1∑
k=0

(
cos(θ̃0 +kω̃0∆t)
sin(θ̃0 +kω̃0∆t)

)

+ ũ0∆t
n−1∑
k=0

(δθ0 +kδω0∆t)

(−sin(θ̃0 +kω̃0∆t)
cos(θ̃0 +kω̃0∆t)

)
+δu0∆t

n−1∑
k=0

(
cos(θ̃0 +kω̃0∆t)
sin(θ̃0 +kω̃0∆t)

)
Let us call

C1(n) =
n−1∑
k=0

cos(θ̃0 +kω̃0∆t)

S1(n) =
n−1∑
k=0

sin(θ̃0 +kω̃0∆t)

C2(n) =
n−1∑
k=0

k cos(θ̃0 +kω̃0∆t)

S2(n) =
n−1∑
k=0

k sin(θ̃0 +kω̃0∆t)

Assuming the initial position is known, the problem we seek to minimise thus writes:

N∑
k=0

||yk − x̃0 − ũ0∆t

(
C1(k)
S1(k)

)
− ũ0∆tδθ0

(−S1(k)
C1(k)

)
− ũ0δω0(∆t)2

(−S2(k)
C2(k)

)
−δu0∆t

(
C1(k)
S1(k)

)
||2N (5.27)

This can be simplified into
||AX−b||2N (5.28)

with

A =

A1
...

AN

 , b =

b1
...

bN

98

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

An = N−T/2Gn

and

bn = N−T/2
(

yn −x0 −u0∆t

(
C1
S1

))
with

Gn =
(−u0∆tS1(n) 1 0 −u0(∆t)2S2(n) ∆tC1(n)

u0∆tC1(n) 0 1 u0(∆t)2C2(n) ∆tC1(n)

)
It is of course possible to add the initial state in this problem by integrating ||X0 − X̂0||2P0

in these
matrices.

At time instant n, we can then estimate δX0 =
(
δθ0 δx0 δω0 δu0

)T
by finding the argument

that minimises (5.28) around the linearisation point X̃0 = (
θ̃0 x̃0 ω̃0 ũ0

)T
. A Gauss-Newton

algorithm iterates the resolution to finally give X∗
0 . Algorithm 2 can be applied to this linearised

problem.

5.7.2 Accounting for jumps

For the 2D Frenet-Serret target model, with Cartesian observations, we have formulated the prob-
lem in the same way as the linear problem, meaning that we can recover the full trajectory from
the knowledge of the state at the origin, X0. This means that algorithm 2 can be applied to this
model. The jumping parameters are (ω,u), as they are considered constant in the deterministic
target model.

An example is provided on figure 5.5. The trajectory presented has been created with a 2D
Frenet-Serret target model, with random jumps for the angular velocity ω and the norm of the
velocity u. The algorithm applied for the estimation is algorithm 2, with the non-linear Frenet-
Serret model. The sliding window horizon is tuned very long (more than the entire size of the
trajectory).

(a) (b)

Figure 5.5 – The results for the precision estimation is given in fig. 5.5a, and for the velocity estimation in
fig. 5.5b. The real trajectory has two jump. The smoothing algorithm detects also two.

5.8 Comparison with other algorithms

In this section, we lead two different comparisons: the first one is performed with an IEKF, a filter
which is adapted to the Frenet-Serret target model, but which does not inherently adapt to the
jumps. We of course add process noise to the model to run the IEKF. The second one is performed
with an IMM. The IMM deals naturally with jumps, and it should perform well on trajectories with
jumps.

99

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Parameter Smothing: smoothed Smoothing: real time IEKF

Position (m) 35 51 45
Norm of velocity (m/s) 15 29 31

Orientation (r ad) 0.077 0.16 0.12

Table 5.1 – RMSE for the smoothing algorithm and the IEKF on 100 trajectories simulated with random
jumps in the angular and tangential velocities

In this section, the smoothing algorithm 2 is tuned as follows: the sliding window horizon is
taken to be the entire trajectories, and we tune the number of observations we need to wait after
a candidate jump to accept or reject as k = 7. The jump probability is tuned very low: the average
jump probability by unit step p is tuned such that the average number of jumps over the whole
trajectory is 0.02, whereas the actual number of jumps in the trajectory is around 2.

5.8.1 Comparison with the IEKF

Let us first compare this estimation method with the filter adapted to the Frenet-Serret target
model, the IEKF. The IEKF is a priori not adapted to trajectories with very abrupt jumps, although
we have seen in chapters 3 and 4 that it can still converge quite rapidly after a jump if some large
enough process noise is added to the model.

Trajectories with jumps in the norm of the velocity and the angular velocity

To draw a first comparison between the IEKF and the smoothing algorithm, let us generate tra-
jectories as in section 5.7.2, i.e. with jumps on the norm of the velocity and on the angular ve-
locity. We run 100 Monte-Carlo experiments with random jumps in the trajectory. The RMSE for
the position, the norm of the velocity and the orientation angle are gathered in table 5.1. Since
the smoothing algorithm has an impact on previously computed estimates (the entire estimations
from the last jump are updated at each step), we present the results for the final estimation of the
trajectory, the smoothed one, and also for the estimations made gradually as time advances, that
are output by the algorithm in real time. The "real time" smoother is thus an implementation of
algorithm 2, whereas the "smoothed" smoother is the one that returns the estimations at the end
of the experiment. Thus, it may be viewed as nearly optimal. For the comparison to be fair, we
need to compare the real-time smoother with the IEKF.

Unsurprisingly, the accuracy of the smoothing algorithm for the estimations considered after
the entire smoothing process is much better than for the estimations being output in real time. In-
deed, the estimations when a jump is detected and finally rejected or accepted can lead to (slightly)
degraded accuracy for the real-time smoother. Moreover, the smoothing is more and more precise
with the size of the window, so the first estimations output are less precise than the last ones.

The performances of both algorithms for this sort of trajectory are very similar. Indeed, we
have seen in chapters 3 and 4 that the IEKF is accurate for trajectories with jumps in the angular
velocity and the norm of the velocity (in 3D, jumps on the curvature and the torsion). It is thus not
surprising that it can perform as well (even better) than the smoothing algorithm giving real time
estimations. The smoothed estimations are nonetheless better than the IEKF estimations.

Trajectories with very abrupt jumps

To compare more deeply the two algorithms, we generate trajectories as in the previous paragraph,
i.e., we use the 2D Frenet-Serret target model to which we add random jumps of the norm of the
velocity and of the angular velocity. In this section, we also add jumps on the orientation of the
target, i.e. on the heading of the velocity vector directly to generate the trajectories. We use a set
of 100 randomly generated trajectories, and we present the RMSE for the position, the orientation
and the norm of the velocity in table 5.2.

100

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Parameter Smoothing: smoothed Smoothing: real time IEKF

Position (m) 46 70 142
Norm of velocity (m/s) 16 33 46

Orientation (r ad) 0.16 0.31 0.34

Table 5.2 – RMSE for the smoothing algorithm and the IEKF on trajectories generated with 100 Monte-Carlo
simulations of random jumps and random changes of heading

A visual result is presented on figure 5.6, in particular to show the velocity vector for both
algorithms. The errors computed for this particular trajectory are gathered in table 5.3.

(a) (b)

(c)

Figure 5.6 – Velocity vector along the trajectory for the IEKF fig. 5.6a, for the smoothing algorithm, with the
results output in real time fig. 5.6b, and for the smoothing algorithm with the final result fig. 5.6c. This
is one realisation of the Monte-Carlo experiments performed with random jumps. The results are more
precise for the smoothing algorithm, even when considering the real time output.

The process noise added for the IEKF induces a lesser precision for the velocity vector on con-
stant phases for the IEKF than for the smoothing algorithm. Moreover, the filter reacts less rapidly
to the jumps.

5.8.2 Comparison with an IMM

The same sort of comparison is held with a filtering algorithm handling the jumps, namely the
IMM. The IMM should be performing well on this type of trajectories. However, a model with high
process noise is needed to accommodate the jumps. Indeed, at the moment of the jumps, none
of the models is correct, so one of them has to be tuned with high process noise, so that the filter

101

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

Parameter Smoothing: smoothed Smoothing: real time IEKF

Position (m) 33 55 48
Norm of velocity (m/s) 8 24 29

Orientation (r ad) 0.10 0.31 0.34

Table 5.3 – RMSE for the smoothing algorithm and the IEKF for the trajectory of figure 5.6

Parameter Smoothing: smoothed Smoothing: real time IMM

Position (m) 40 60 43
Norm of velocity (m/s) 15 32 75

Orientation (r ad) 0.12 0.24 0.26

Table 5.4 – RMSE for the smoothing algorithm and the IMM on trajectories simulated with 100 Monte-Carlo
simulations of random jumps and random changes of heading

converges. This model is usually a constant acceleration model.
We thus compare here an IMM with three models (constant velocity, constant turn and con-

stant acceleration) with our smoothing algorithm. The transition probability matrix for the IMM

is

0.4 0.3 0.3
0.3 0.4 0.3
0.3 0.3 0.4

.

We again provide RMSE values computed for 100 different trajectories with random jumps as
in the previous section, with the same amplitude and frequency, they are gathered in table 5.4.
One example is given on figure 5.7, with the RMSE computed for this trajectory gathered in table
5.5. The smoothing algorithm here again is more accurate than the IMM. However, for the position
precision, we observe that the estimations provided in real time of the smoothing algorithm are a
little less accurate than the ones of the IMM. Indeed, the IMM has a quite large process noise, so
the position sticks to the observations, whereas the smoothing position estimation can deviate a
little.

To make this comparison complete, we also show one particular example where the trajectory
is generated as follows: first, a constant velocity linear motion, then an abrupt 90° turn that occurs
between two observations, followed by another straight line motion, and a slow turn, containing
several observations. Results are on figure 5.8. There again, we see that the smoothing is better
suited to this type of trajectories than an IMM, especially after a jump in the trajectory. The error
values for this trajectory are collected in table 5.6. This sort of trajectories is used by the French
department of defence (DGA) to challenge tracking algorithms.

For all the comparisons that were made, the IEKF and the IMM were tuned so that the conver-
gence after the jumps is fairly fast. This implies high process noise, so it introduces less accuracy
during constant motions. This is the role of the standard tuning process necessary for filtering
algorithms, as already discussed in section 4.3. Moreover, the transition probabilities of the IMM
have also to be tuned.

Parameter Smoosthing: smoothed Smoothing: real time IMM

Position (m) 44 69 45
Norm of velocity (m/s) 19 52 92

Orientation (r ad) 0.15 0.37 0.44

Table 5.5 – RMSE for the smoothing algorithm and the IMM for the trajectory of figure 5.7

102

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

(a) (b)

(c)

Figure 5.7 – Velocity vector along the trajectory for the IMM fig. 5.7a, for the smoothing algorithm, with the
results output in real time fig. 5.7b, and for the smoothing algorithm with the final result fig. 5.7c. This one
realisation of the Monte-Carlo experiments. As with an IEKF, the results are more precise for the smoothing
algorithm, even when considering the real time output, and not the final smoothed estimation.

Parameter Smoothing: smoothed Smoothing: real time IMM

Position (m) 33 49 46
Norm of velocity (m/s) 13 35 81

Orientation (r ad) 0.18 0.45 0.67

Table 5.6 – RMSE for the smoothing algorithm and the IMM for the trajectory of figure 5.8

103

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

(a) (b)

(c)

Figure 5.8 – Velocity vector along the trajectory for the IMM fig. 5.8a, for the smoothing algorithm, with the
results output in real time fig. 5.8b, and for the smoothing algorithm with the final result fig. 5.8c. As with an
IEKF, the results are more precise for the smoothing algorithm, even when considering the real time output,
and not the final smoothed estimation.

104

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

5.9 Discussion

5.9.1 Comparison with other filters

During model changes, the sampling of the observations (that might be over one second, for ro-
tating antenna radars) usually engender erroneous estimations. Indeed, during these transition
phases, there exist an infinite number of likely solutions, when the exact time of the transition is
not known. During these transition phases, recursive Kalman filters estimate a unique solution,
which has a high probability to be erroneous. To overcome this problem, and avoid the divergence
of the Kalman filters during transitions, IMM filters are commonly used. A model that accounts
for transition is often used, with a high process noise, usually a constant acceleration model. This
ensures there is at least one of the filters of the IMM that does not diverge. Engineers sometimes
compare this filter with a "garbage collector" model, which is a security when none of the other
models is giving proper estimations. The problem is that this model adds uncertainty on the esti-
mate and usually delays the convergence of the filter after a transition during phases with constant
kinematic model.

The jumping smoother with the Frenet-Serret model allows to optimise these transition phases.
The conception of the algorithm is designed to be optimal during constant phases, and to handle
the jumps optimally as well. The smoothing algorithm with jumps should thus work very well in
the presence of very abrupt jumps. This has been confirmed by the comparisons between smooth-
ing and filtering that we have performed, and presented in the preceding section.

Tuning

Another advantage of the smoothing algorithm proposed in this chapter is that there are very few
parameters to tune. There are three scalar parameters to tune: the number of observations we
wait after a possible jump to accept the jump or to reject it, called k in algorithm 2, the size of the
sliding window k̄, and the probability p of a jump, that intervene in equation (5.13), and which
is used to compare the smoother that has just jumped with the older one. This parameter can
be tuned quite low, even if it does not correspond exactly to the true probability used to generate
the trajectory. Moreover, our experience is that the smoother is robust to small variations in the
parameters. The IEKF and the IMM had to be tuned according to the amplitude of the jumps.
Indeed, if the process noise is too low, then the filters cannot accommodate the jumps, whereas if
it is too high, the accuracy elsewhere is degraded.

5.10 Conclusion

In this chapter, a new estimation method has been applied to the tracking problem based on real-
time smoothing. The standard smoothing algorithm has been extended to take into account the
possible jumps in the trajectory. The model is considered to be piecewise deterministic, i.e. there
is no process noise on the constant parts. This allows to detect jumps in the trajectory, and to
be very accurate on constant parts. Some types of modern targets, such as missiles, can have
trajectories with sudden change of heading between two observations. This estimation algorithm
is meant for this type of targets.

The smoothing algorithm with jumps has been compared with filtering algorithms. The com-
parison with the IEKF as well as with the IMM shows its superiority in the presence of very abrupt
jumps. Although the two latter filters can also cope with softer jumps, when confronted to a jump
of heading between two observations, they are less accurate, since it does not correspond to their
target models. However, they have similar performances for more usual trajectories.

This smoothing algorithm has for the moment only been derived for a 2D target model, in a
vector space. Switching to the Lie group setting requires being able to perform the linearisation
on the target model, which is quite difficult, since it is a mix of a Lie group element and a vector
space element. However, the method is generalisable as long as the linearisation is found. This

105

CHAPTER 5. SMOOTHING APPLIED TO TARGET STATE ESTIMATION

would open the way to a generalisation to the 3D target model proposed in this thesis, the 3D
Frenet-Serret model.

106

Part III

Update rate adaptation

107

Chapter 6

Update rate real-time optimisation

Sommaire
6.1 Résumé en français : Optimisation en temps réel de la fréquence des mesures . . 110

6.2 Introduction . 110

6.3 Fixed update optimisation criterion . 111

6.3.1 General formulation of the optimisation problem 111

6.3.2 Resolution . 112

6.3.3 Practical use of the criterion . 114

6.4 Discussion . 114

6.5 Conclusion . 114

109

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

6.1 Résumé en français : Optimisation en temps réel de la fréquence
des mesures

Les deux derniers chapitres sont relativement indépendants des premiers chapitres et adressent
un problème différent, celui de l’optimisation des ressources radar consacrées à la poursuite ac-
tive.

Les radars multifonctions doivent accomplir plusieurs tâches en parallèle. La poursuite de
cibles est seulement l’une de ces tâches. Blackman et Van Keuk ont proposé une méthode afin
d’optimiser le temps du radar consacré à la poursuite. L’idée est d’exprimer la charge du radar
comme un ratio entre le nombre d’illuminations nécessaire pour trouver une cible au moment
d’une mesure et la durée entre deux mesures consécutives. Le raisonnement est le suivant : plus la
durée entre deux mesures est élevée, plus la charge radar devrait être faible, mais plus il est difficile
de retrouver la cible au moment voulu, et il est parfois nécessaire de faire plusieurs tentatives pour
la détecter à nouveau. Ce raisonnement est valide pour des radars à faisceau focalisé, et à partir
du moment où on autorise plusieurs illuminations au moment d’une mesure. De plus, la méthode
de résolution proposée fait l’hypothèse que la cinématique critique est uniquement angulaire (on
suppose donc qu’il n’est pas possible de perdre la cible sur l’axe distance), ce qui conduit à prendre
en compte uniquement la difficulté de retrouver la cible dans une zone angulaire donnée, quelle
que soit sa distance. Cette hypothèse est réaliste, car les faisceaux radars sont généralement moins
focalisés en distance qu’en écartement angulaire.

Blackman et Van Keuk ont résolu le problème d’optimisation dans le cas d’un modèle de cible
linéaire, à savoir le modèle de Singer. En effet, dans ce cas, il est possible d’exprimer à la fois le
nombre d’illuminations et la durée entre deux mesures directement comme des fonctions de la
covariance prédite de la position. En effet, on peut exprimer la covariance prédite en fonction du
temps (elle grandit avec le temps, ce qui traduit l’incertitude qui augmente lorsque l’on repousse
le moment de la mesure), et on peut inverser la fonction pour obtenir le temps en fonction de la
covariance. Blackman et Van Keuk ont ainsi identifié la valeur optimale de la covariance prédite
en position angulaire de la cible afin de minimiser la charge radar. Il est ensuite possible de cal-
culer en temps réel le temps de revisite optimal à chaque étape, en faisant des projections de la
covariance prédite grâce aux équations de l’algorithme de filtrage et du modèle de cible.

6.2 Introduction

The idea of cognitive radar has been defined in [63], and further developed in [60]. The ability to
adjust the illuminations in an intelligent manner is one of the characteristics that distinguishes a
cognitive radar from an adaptive one. Update rate adaptation falls into this category. Indeed, the
beam can be controlled to illuminate the most interesting regions of the space in an intelligent
manner, so that radar time budget is saved and tracks are all maintained. This is possible thanks
to the emergence of phased-array fixed antennas that allow illuminating any region of the space
at any time, as illuminations are no longer imposed by the rotation of the antenna.

Phased-array multifunction radars are designed to perform several tasks in parallel, such as
surveillance, Track While Scan (TWS), and active tracking (AT). There is thus a competition be-
tween these different tasks regarding the resources of the radar. The role of the resource manager
is then to study and organize the different requests. And notably as the radar beam is needed for
surveillance, TWS and AT, its update frequency for active tracking has to be carefully controlled, as
well as for the TWS task. The beam scheduler is in charge of ordering all the tasks asked, via the re-
source manager. Optimisation to cover the entire space during surveillance has already been stud-
ied, see [28], [29]. In the case of AT, the illuminations requested have a label containing a duration
and an update period, and the adaptive resource manager uses a scheduling algorithm to deter-
mine in which order these illuminations should be performed. Moreover, priority requirements
may be accounted for. This priority can for example be the result of a degradation in the tracking
performances detected by an update rate adaptation algorithm or a change detector. Indeed, the

110

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

radar must definitely not drop a track, especially when performing active tracking. The drop prob-
ability, or equivalently the detection probability, are determined in function of the performances
of the filtering algorithm used to estimate the target’s state, and other fixed characteristics of the
radar, such as the Signal to Noise Ratio (SNR) for a beam pointing in the direction of the target.

The work of Blackman and Van Keuk in [108] provide a method to perform update rate adapta-
tion. The authors assume a Singer tracking model with a Kalman filter to perform estimation. They
derive a criterion to optimise the radar load. This criterion gives the optimal time period to refresh
the observations. In this chapter, we propose to analyse pedagogically the method to derive this
criterion, and explain how it is applicable in practice. We also point out the approximations that
were made to derive the criterion.

We thus derive the fixed update rate criterion of Blackman and Van Keuk, using the Singer
model, and Cartesian observations. We have described the Singer model in section 2.3.2. This
method is meant to be applied to pencil beams radars, where it is possible to have several illumi-
nations to detect a target at a given moment.

6.3 Fixed update optimisation criterion

The problem of estimating the state of a Singer model using a Kalman filter is linear, Gaussian and
time-invariant, the Kalman covariance matrix converges to a fixed value, called P∞ (see [70]). It
turns out that the latter convergence property allows deriving a fixed criterion for the optimisation
of the update rate.

The rationale of Blackman and Van Keuk in [108] is to find a balance between the time during
two observations and the number of illuminations necessary to find a target when ordering the
observation. In target tracking, the limitations in term of radar load, and the number of illumina-
tions are due to the angular motions of the target, indeed, the distance is usually not a problem,
especially with a pencil beam. So the more time we wait between two observation, the more the
incertitude over the angular position of the target is large. To express this, we need to use another
coordinate system, close to the range, azimuth and elevation coordinate system, called the (r,u, v)
coordinates. r still represents the distance from the radar to the target, and (u, v) are angles taken
from the radar, and defined as follows:

u = cosel sin az

v = sinel

where el and az are the elevation and azimuth angles respectively.

6.3.1 General formulation of the optimisation problem

In [108], Blackman and Van Keuk define the radar load Lc as

Lc = E(n)

E(T)
(6.1)

where E(n) is the average number of illuminations to find a target and T is the duration between
two measurements. The problem is feasible, as the more time T we wait between two measure-
ments, the less energy is spent, but the more difficult it is to find the target again, and the number
of illuminations has to be increased to recover sight of the target. It is possible to express E(n) and
E(T) as a function of a common variable, V0, explained thereafter. Blackman and Van Keuk have
introduced the quantity V0 to evaluate the angular precision of the relative prediction with respect
to the beamwidth B such that G(k) = V0B, where G(k) is the principle axis of the 1σ ellipse defined
by the covariance matrix of the prediction error at time Tk given by the Kalman filter, and associ-
ated to coordinates in the angular (u, v) space. One can assume that the probability distributions
of the measurement and the process noise are isotropic in the angular coordinate system (u, v),
so the ellipse is in fact a circle. It is then possible to choose arbitrarily any coordinate axis as the

111

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

principal axis, say , u. G(k) can thus be expressed from the filter’s covariance P(k) as follows. Re-
call that, P̃(k) = HP(k)HT is the position covariance matrix according to the filter, with H defined

in (6.3). We have G(k) =
√

H̃uv (k)P̃(k)H̃T
uv , with H̃uv the Jacobian of the function that relates the

Cartesian to the spherical (r,u, v) coordinates, i.e.,

H̃uv (k) =

x1
r

x2
r

x3
r

x2
2+x2

3

r 3 − x1x2
r 3 − x1x3

r 3

− x1x3

r 3 − x2x3

r 3

x2
1+x2

2
r 3

 (6.2)

H =
 H1 01,3 01,3

01,3 H1 01,3

01,3 01,3 H1

 ,H1 =
(
1 0 0

)
(6.3)

6.3.2 Resolution

Estimation of E(n)

[108] proposes a way to estimate E(n). It may depend on the radar and on the repointing strategy.
The strategy used in [108] is to search the target at the maximum of the probability density function
(pdf) of its predicted position in (u, v). If the target is not found at the first illumination, then
a slightly modified pdf is computed, and we try again until the target is found, or a maximum
number of illuminations is reached.

The search strategy is based on the pdf of the predicted position in (u, v) coordinates. We call
this pdf pd f (1). The radar beam points towards the maximum of this pdf in order to maximise
the chance to detect the target. If we denote by (u, v) the angles of the beam of the radar and by
(û, v̂) the predicted position of the target, then following [108], the Signal-to-Noise Ratio (SNR) can
be computed as in (6.4) to get the detection probability PD(u, v) in (6.5), with PF the false alarm
probability.

SNR(u, v) = SN0 exp

(
−2

(u − û)2 + (v − v̂)2

B2

)
(6.4)

PD(u, v) = P
1

1+SNR(u,v)

F (6.5)

If the target is not detected on the first illumination, then the pdf is slightly changed into

pd f (2)(u, v) := C(1−PD(u, v))pd f (1)(u, v) (6.6)

The constant is used to normalize the pdf, and of course PD depends on the position because the
SNR does. This is iterated until the target is found or a maximum number of authorised illumina-
tions is reached.

Experiments allow to compute E(n) for a given radar, and for a Swerling target model 0, that
allows to define PD by (6.5). In [108], the authors found that the expectation of the number of
illuminations to find a target is given by (6.7), with α̃ ≈ 1+14(| lnPF|/SN0)1/2, and PD = P1/(1+SN0)

F
where PF is the probability of false alarm, PD the detection probability, and SN0 the Signal to Noise
Ratio at the centre of the beam.

E(n) = 1

PD
(1+ α̃V2

0)1/2 (6.7)

Estimation of E(t)

It depends on the chosen target model. Blackman and Van Keuk use a Singer target model. For
the Singer linear model with Cartesian observations, the covariance matrix of the full state con-
verges towards a fixed matrix P∞ so the variance of the predicted angular dispersion of the target’s

112

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

position also converges towards a value P̃∞, which depends on T, the duration between two mea-
surements (the larger T, the larger the eigenvalues of P̃∞). It means that at the measurement time,
the position of the target can be modelled by a Gaussian random variable of variance P̃∞. The
formula giving P̃∞(T) can be inverted to get T(P̃∞), which is also a non-trivial property due to the
use of the Singer model. The inversion of the formula P̃∞(T) will not be possible with other models
indeed.

Using the two latter components, we can evaluate Lc of equation (6.1) as a function of P̃∞. As
will be shown in the sequel, this is equivalent to express Lc as a function of V0.

The time between two revisits, which depends on the average number of illuminations neces-
sary to find the targets, also converges to a stable value when the error’s variance filter becomes
stationary. So let us focus on the stationary asymptotic phase. Define

P∞ = lim
k→∞,αT→0

P(k)

Using the asymptotic Riccati algebraic equation, the stationary position covariance P̃∞ is given by
(6.8), where α and Σ are the parameters of the Singer model, and (.)pos extracts the coefficients
corresponding to the position variable in the covariance matrix, i.e., (C)pos := HCHT, and diag(a)
is the matrix with a on its diagonal.

P̃∞ = (
F(P−PHT(HPHT +N)−1HP)FT)

pos +diag

(
2αΣ2 T5

20

)
(6.8)

N =σ2I3 is the measurement covariance matrix. Moreover, as we are only interested in the angular
variability, we select the second diagonal element of H̃uv (k)P̃(k)H̃uv (k)T which is the variance of
the asymptotic error in the u variable, hence:

G =
√

[H̃uv P̃∞H̃T
uv]2,2 = V0B (6.9)

The idea is that P̃∞ is a good approximation for the position uncertainty of the radar. The uncer-
tainty in (r,u, v) coordinates is H̃uv P̃∞H̃T

uv . since we are only interested in the angular uncertainty,
we suppose that r is nearly constant (the same assumption is made in [108] where all formulas de-
pend in fact of r).

Let also C̃ = (
F(P−PHT(HPHT +N)−1HP)FT

)
pos . One can isolate T from equation (6.8), which

gives (6.10).

T = (10)1/5

(p
1/α

Σ

)2/5

(P̃∞− C̃)1/5 (6.10)

Moreover, from (6.9), and given that the range r is supposed to be approximately constant, we
have

P̃∞ ≈ r 2V2
0 B2

Finally, (6.10) becomes

T = (10)1/5

(
σ
p

1/α

Σ/r

)2/5 (
V2

0 B2

σ2 − C̃

σ2r 2

)1/5

(6.11)

From now on, let v0 = V0B
σ . Blackman and Van Keuk argue that over a large set of parameters, the

following approximation is valid

T ≈ 0.4PD

(
σ
p

1/α

Σ/r

)0.4
v2

0

1+ v2
0

2

(6.12)

where PD is the detection probability, r is the distance between the target and the radar (in m), ξ
is the slope factor associated with the mono-pulse measurement process (ξ= 1.37). Moreover the
measurement noise standard deviation in angular coordinates σ can be expressed as follows:

σ= B

ξ
p

2(SNR+1)
, SNR ≈ SN0 − lnPF

1+2V2
0

113

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

6.3.3 Practical use of the criterion

Finally using (6.7) and (6.12), the expression of the radar load Lc is given by (6.13), with B the half-
beamwidth.

Lc ≈
(

Σ

Br
p

1/α

)0.4 1

PD
f (V0,SN0,PF) (6.13)

The paper [108] states that for a quite large set of parameters (SN0 ∈ [10,160], PF ∈ [10−8,10−4]),
the optimal V0 is 0.3, which gives the optimal revisit period T = 4.6s for r = 60km, Σ = 10m/s2,
α= 1/60s, PF = 10−5, SN0 ≈ 30(15dB), and B = 1°.

The Blackman Van Keuk-criterion thus gives the optimal track sharpness in the (u, v) space.
Whatever the value of the beamwidth, the optimal track sharpness is one sixth of the beamwidth.
The corresponding revisit period is also fixed (T = 4.6s). However, the criterion giving the opti-
mal track sharpness can be used to adapt the revisit time. Indeed, the revisit time can then be
computed on-line thanks to this criterion and to the predicted covariance matrix. The idea is to
compute the covariance matrix at a thinner time step, and to order a new measurement just be-
fore the covariance exceeds the optimal track sharpness. This limits the use of approximations,
especially those done to have formula (6.12).

This is the optimised revisit period for a Singer linear model, and the one sixth of the beam-
width sharpness provides the practitioner with a useful general rule for design purposes, but it
should be refined when one wants to use alternative models and filters. In a non-linear context;
the simplifications of the convergent covariance matrix and the inversion of the formula giving P̃∞
will no longer be possible, and we have to use numerical integration to derive the optimal revisit
time at each time step. The advantage of this method will be to have a totally adaptive revisit
time period, that will vary at each time step, and evolve with the measurements, instead of using
a fixed criterion. Moreover, it is much more versatile, as it suits any model and filtering algorithm,
contrary to the previous criterion.

6.4 Discussion

The method developed by Blackman and Van Keuk gives a fixed criterion to perform update rate
adaptation. It can be implemented very easily. However it suffers from several disadvantages:

• The Singer model is used, and the computations to obtain the optimal track sharpness to-
tally depend on the use and properties of this target model. So the method is not really gen-
eralisable to any target model, or at the price of even more approximations. For the moment,
this criterion is applied to any target model directly, without considering the implications of
such approximations, which can seem awkward.

• As we have pointed out in the development of the computations for E(t), there have been
some approximations made even with the Singer model. Indeed, the covariance is expressed
in (u, v) coordinates, which depend non-linearly on the Cartesian position that appears in
the Singer model. Because of this, to derive E(t), we have made the approximation that the
range is almost constant during all the trajectory, which is not always a reasonable assump-
tion.

• Finally, the values for optimising Lc of equation (6.13) have been made by performing many
experiments, but with a given radar and setting. If the maximum number of illuminations is
changed, these tests have to be performed again.

6.5 Conclusion

Blackman and Van Keuk have introduced a strategy to optimise the update rate for a given target
in active track. They propose to find a balance between the time between two observations and

114

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

the difficulty to find the target again, modelled by the number of illuminations required. How-
ever, their method is based on the use of the linear Singer target model, and at the cost of several
approximations.

In this work, we need an update rate adaptation algorithm which is not dependant on the
target model. So we need to derive another method to perform update rate adaptation, this is the
subject of chapter 7.

115

CHAPTER 6. UPDATE RATE REAL-TIME OPTIMISATION

116

Chapter 7

Adaptive update rate

Sommaire
7.1 Résumé en français : Cadence adaptative . 118

7.2 Introduction . 118

7.2.1 Links with prior literature . 119

7.2.2 Organisation and contributions of the chapter 119

7.3 Update rate adaptation with a non-linear model 119

7.3.1 Method: an adaptive criterion for update rate adaptation 120

7.3.2 Underlying search strategy . 120

7.4 Application: Non-linear target model . 121

7.5 Experiments . 122

7.5.1 Tracking results with a Linear Kalman filter and an IEKF 122

7.5.2 Update rate adaptation . 126

7.6 Discussion . 129

7.7 Conclusion . 129

117

CHAPTER 7. ADAPTIVE UPDATE RATE

7.1 Résumé en français : Cadence adaptative

Dans cette thèse, les travaux de Blackman et Van Keuk ont été repris, puis généralisés à tout
type de modèle de cible et d’algorithme de filtrage. La seule condition requise sur l’algorithme
d’estimation est qu’il fournisse la propagation de la matrice de covariance à l’étape de prédic-
tion, ce qui est le cas pour tous les algorithmes de filtrage présentés dans ce document. La réso-
lution du problème d’optimisation dans le cas de modèles non-linéaires ne peut pas se faire de
façon directe. La méthode proposée dans ce chapitre utilise la probabilité de détection comme
critère de renouvellement de la mesure. En effet, la probabilité de détection dépend de la co-
variance prédite, et du nombre d’illuminations autorisées pour retrouver la cible. On veut donc
trouver la durée maximale entre deux mesures permettant d’assurer une probabilité de détection
donnée minimale. Pour cela, on propage la covariance petit à petit dans le temps, on calcule la
probabilité de détection associée pour une, deux, trois ... illuminations autorisées, on s’arrête
lorsque la probabilité de détection devient en deçà d’un seuil fixé à l’avance quel que soit le nom-
bre d’illuminations.

Le critère de renouvellement de mesure développé dans ce chapitre et le critère d’origine de
Blackman et Van Keuk ont été comparé sur deux algorithmes : un algorithme de filtrage avec mod-
èle linéaire de Singer, et un algorithme de filtrage avec modèle non-linéaire (celui de Frenet-Serret
construit dans le chapitre 2). Les résultats obtenus montrent que les deux méthodes pour cal-
culer la cadence de mesure donnent des résultats similaires sur le modèle linéaire (c’est-à-dire
que la charge radar est équivalente). En revanche, sur le modèle non-linéaire, la charge radar
obtenue avec le nouveau critère de cadence est réduite par rapport à la charge radar obtenue avec
l’ancien critère du chapitre 6, ce qui montre que le nouveau critère est plus adapté aux modèles
non-linéaires.

7.2 Introduction

In this chapter, we generalise the work of [108], presented in chapter 6, to optimise the update
rate of the radar. In [108]; the update rate adaptation method is designed for one particular type
of target model, namely the Singer model [103], or refer to section 2.3.2, combined with a Kalman
tracking algorithm. Since, it has been used as an efficient (yet suboptimal) rule, even when using
a different (possibly non-linear) target model. Owing to the progresses of computers over the past
25 years, we show it is now possible to extend the method to any target model and estimation
algorithm. Moreover, one must bear in mind that the goal of update rate optimisation is rather
to save radar budget, than to enhance the performances of the state estimation. Nevertheless,
the tracking estimation precision has to stay within an acceptable range, as also ensured with the
algorithm proposed in this chapter.

A Kalman-type filtering algorithm provides the estimated distribution of the state, assuming
that this distribution is Gaussian. It thus provides the mean of the distribution, which is usually
called the estimated state, and the covariance of the distribution. Although the method of Black-
man and Van Keuk relies on a fixed criterion, because of the particular form of the state evolution
model chosen, it is possible to compute the detection probability for one target with respect to the
covariance output by any filter in real time. The update rate adaptation introduced in the present
chapter, that allows for the criterion to adapt over time, builds upon the latter idea.

Target tracking typically relies on an accurate motion model and a robust filtering algorithm.
In this chapter, the general methodology will be applied to the 3D target model in intrinsic co-
ordinates based on the Frenet-Serret frame, described in section 2.6.2, with the use of the IEKF
algorithm of section 3.6. However, it may in principle be applied to any model combined with any
other filtering algorithm that provides a covariance to the user.

118

CHAPTER 7. ADAPTIVE UPDATE RATE

7.2.1 Links with prior literature

To optimise the update rate of observations during Active Tracking, one has to define an optimi-
sation problem. In this chapter, we use the same criterion as in chapter 6, where the load of the
radar is modelled as a ratio between the number of illuminations necessary to find a target (at
each measurement instant) and the time elapsed between two measurements. The rationale is
that scarce measurements lead to low radar load, but they also lead to an increased number of il-
luminations at each measurement epoch to find the target. As a result, finding the optimal update
rate (i.e., time between two consecutive measurements) is a feasible optimisation problem. Other
optimisation schemes may be designed on the radar’s performances and on the user’s objectives,
but in this work we focus on the optimisation problem as posed by Blackman and Van Keuk.

Other update rate adaptation algorithms have been developed in the literature. [39] uses an
alpha-beta filter and an adaptation scheme so that the residual error of the filter remains constant.
Another type of algorithm consists in using an IMM, as in [110], or later [13], where the idea is also
to maintain a given level of filtering precision, thanks to the covariances computed by the IMM.
the IMM is also used in [99] to control the size of the validation region, to address the association
problem. Our problem is slightly different, since we are not only interested in maintaining a given
precision, but also in reducing the overall radar time spent for each measurement. In [100], the
IMM is used to compute an adaptive update rate related to the manoeuvres of the target, and
based on the Blackman and Van Keuk approach. However, contrary to the latter, we propose a
versatile algorithm that applies to virtually all kinds of filtering algorithms, and we rely on the
filter to return necessary mathematical quantities.

Another method to adapt the update rate is to use a manoeuvre detection algorithm. Change
detectors are a very wide class of algorithms, that are described in the book [12], or more precisely
in [76] for the Generalized Likelihood Ratio (GLR) algorithm, or [2] for the CUSUM algorithm. An-
other change detection method based on the computation of appropriate distances between the
outputs of Kalman filters can also be designed, as stated in [92]. All these detectors perform quite
well when applied with an IMM algorithm. We will not discuss these methods in this chapter,
since we opted for a wholly different route. Increasing the measurement rate when a change is de-
tected is quite basic, and change detectors are rarely used as update adaptation means but rather
as urgent pointing commands.

7.2.2 Organisation and contributions of the chapter

The update rate adaptation of Blackman and Van Keuk is generalised in section 7.3, and results in
a versatile adaptive algorithm. More precisely our algorithm informs the radar resource manager
what the (maximum) measure update should be in real time so that the detection probability of
a given target stays above a given threshold. Then, in section 7.4 this novel algorithm is applied
to the non-linear 3D Frenet-Serret model of chapter 2. The state estimation task is performed
by a non-linear filtering algorithm, the IEKF of chapter 3. Finally, in section 7.5, the proposed
algorithm is compared to the Blackman and Van Keuk criterion, using both the Singer model and
the non-linear Frenet-Serret model.

7.3 Update rate adaptation with a non-linear model

The Singer model is a specific target model, that dates back to the seventies, and is not pervasively
used nowadays. The aim of this section is to propose a generalisation of the previous method to
any target model, given that the estimation algorithm can provide a predicted covariance matrix
whenever it is required. The method of Blackman and Van Keuk to establish a fixed criterion is
indeed too simplistic to be applied straightforwardly to any model. However, their initial idea to
compute the optimal load with the covariance matrix of the filter can be used to derive another
algorithm that can be applied to virtually any filtering algorithm. The computational power to

119

CHAPTER 7. ADAPTIVE UPDATE RATE

compute a criterion on-line and to perform the necessary numerical integrations might have been
too demanding in the nineties, but can be considered as unproblematic with modern computers.

7.3.1 Method: an adaptive criterion for update rate adaptation

Figure 7.1 – Method used for the adaptive update rate adaptation algorithm

Let us call PD(t) the detection probability to find a target at a time t . Let us assume that there
are a minimum and maximum authorised update rates. The rationale is as follows. We compute
the predicted covariance associated to the minimum inter-measurement time, and then increase
it gradually until the detection probability drops below a threshold given by client specifications
or set by an engineer for example. The method is illustrated in figure 7.1. More precisely, we can
compute PD(t) at each time step, and even more often than it is needed. Let us take a smaller time
step than the minimum sampling rate. One can integrate the Riccati equation giving the predicted
covariance at this short time step and compute the corresponding detection probability easily.
A threshold can be used for the detection probability to request a new measurement when it is
not satisfying. The new algorithm computes the maximum duration between two measurements,
under the constraint that the detection probability, whose computation depends on the number
of illuminations, stays high enough. In that sense, it mimics the criterion of Blackman and Van
Keuk that minimises the radar load Lc .

Let us call dT the maximal revisit period between two measurements. We perform covari-
ance prediction every t +k.d t < dT, with k ∈N, and d t the duration between two computations.
The covariance prediction gives the detection probability. The algorithm to compute the time of
the next target revisit is explained in Algorithm 3, where s is the acceptable detection probability
threshold. Suppose we are at time t and we want to refresh the measurement to ensure a detection
probability PD > s. The next revisit time is called T.

We use the same optimisation criterion as in [108], so we allow several illuminations to find a
target. We use the same search strategy as for the fixed criterion derivation. This includes express-
ing the covariance in (u, v) coordinates, the transformation matrix is given by (6.2) in section 6.3,

with r =
√

x2
1 +x2

2 +x2
3 .

We also assume that we have an upper bound to the number of illuminations necessary to
find a target if the first ones give no detection. This superior bound is called Nmax . The detection
probability also depends on the target search strategy.

7.3.2 Underlying search strategy

As detailed in section 6.3, the search strategy is based on the pdf of the predicted position in (u, v)
coordinates. We use the same search strategy and notations as in section 6.3.

Now, we have to compute explicitly the constant C of equation (6.6). We can compute the
normalising constant C of the pdf online, and find its mean µ2 and covariance σ2 and thus find
the SNR with (7.1) or (6.4), that permits to compute PD, with (6.5) again. This operation can be

120

CHAPTER 7. ADAPTIVE UPDATE RATE

Algorithm 3 Computation of the next revisit time T

Input: X̂t ,Pt

1: while PD > s and k < kmax do
2: k := k +1
3: Compute X̂t+k.d t and Pt+k.d t with the propagation equations of the filter applied to X̂t ,Pt

4: Compute H̃uv , the measurement matrix in the (u, v) space, see (6.2)
5: Compute σ2 = H̃uv Pt+k.d t (pos)H̃T

uv

6: for ni = 1 to Nmax do
7: Compute the SNR and the detection probability, according to the number of the illumi-

nation ni : Compute pd f (ni), find its covariance σ2 and compute SNR and PD with (7.1)
and (6.5)

8: end for
9: Compute the overall probability detection: PD = max(PD(ni))

10: Compute the next time revisit: T = t +k.d t
11: end while

Output: T

Algorithm 4 Algorithm to perform update rate adaptation for a generic model

1: while T(h) ≤ N do
2: h := h +1
3: Apply algorithm 3, which gives T(h), with inputs X̂+

T(h−1),P+
T(h−1)

4: Propagation phase : Compute X̂T(h) and PT(h)

5: Request a measurement at time T(h)
6: Compute the update X̂+

T(h) and P+
T(h)

7: end while

performed as long as the target is not found, and the maximum number of illuminations Nmax is
not reached either.

SNR ≈ SN0 − ln(PF)

1+2(σ2/B)2 (7.1)

Let N be the duration of the whole trajectory, T be the function relating the number of the
update with the time of the update. The adaptation algorithm is summed up in Algorithm 4.

The main difference between this adaptive method and the regular Blackman and Van Keuk
criterion is that in our method, the optimisation is performed at each time step, and the update
rate is thus perfectly suited to the instantaneous performances of the underlying estimation al-
gorithm. It is possible to link experimentally the detection probability threshold required for the
adaptive criterion and the threshold on the covariance matrix in the fixed criterion derivation.
This will be explained in greater detail in section 7.4.

As an application of the proposed method, we use the non-linear target model, based on the
use of the 3D Frenet-Serret frame presented in chapter 2. The method presented in chapter 6 will
be referred to as the fixed criterion, and the one presented in this chapter as the adaptive criterion.

7.4 Application: Non-linear target model

To apply the algorithm of the previous section to a non-linear target model, we use the 3D Frenet-
Serret model described in section 2.6.2, and the estimation algorithm is the IEKF of section 3.6.

We can compute approximately the detection probability threshold induced by the use of the
fixed criterion, thanks to (7.2). On a trajectory simulated with a Singer model, the results obtained
should be very similar. Indeed, the Singer model and the linear Kalman filter match the hypothesis
of section 6.3.

121

CHAPTER 7. ADAPTIVE UPDATE RATE

PD0 = P
1

1+SN0
F (7.2)

When using the Frenet-Serret based model instead, we anticipate an improvement of the op-
timisation rate Lc when we move from the fixed criterion to the adaptive one. An advantage of
the adaptive criterion is also to adapt the detection probability threshold to the requirements of
the client. This detection probability could also serve as an indication of the performance of the
estimation filter.

Finally, for the fixed as for the adaptive criteria, the update rate adaptation algorithm is very
dependent on the quality of the filtering algorithm, since it is based on its results. Indeed, if the
algorithm provides erroneous covariance predictions, then the update rate computations will also
be erroneous. And once again, what we expect of this update rate adaptation is an improvement
of the radar load Lc and not of the precision of the estimation. So the filtering algorithm has to
be reliable to perform these update rate algorithms. This is why we begin by assessing the perfor-
mances of the linear Kalman filter on a Singer model trajectory, and the IEKF on a Frenet-Serret
model trajectory, with a fixed update rate.

We have performed several experiments to show the differences between the filtering algo-
rithms and the update rate adaptation methods, they are described in the next section.

7.5 Experiments

In this section, the adaptation algorithm is tested for the two different study cases mentioned in
the previous section. The first study case is the linear Singer model tracked with the linear Kalman
filter, and the second study case is the non-linear Frenet-Serret model tracked with the IEKF. We
show the results for the fixed criterion and adaptive algorithms for both cases, and compare the
results obtained. The trajectories are built differently for the two models, as will be explained in
the following sections.

To begin with, we show the tracking performances of the linear Kalman filter with the Singer
model and of the IEKF with the Frenet-Serret model without any update rate adaptation. Then,
the update rate will be adaptive and the behaviours of the fixed and adaptive methods along with
the radar load will be compared.

7.5.1 Tracking results with a Linear Kalman filter and an IEKF

In this part, we only illustrate the relevance of the models and filters involved, without any concern
about the update rate adaptation problem yet.

Tracking with the Singer model with jumps

To test the filters, we first build a trajectory using the Singer model: we include one manoeuvre that
occurs at time t = 200s, in which the two first coordinates of the acceleration undergo a sudden
jump from a1 =−0.8m/s2 and a2 =−0.9m/s2 to a1 = 2.2m/s2 and a2 = 2m/s2. The position is ini-
tially

(
x1 x2 x3

)= (
6000 6000 6000

)
m, and the velocity

(
v1 v2 v3

)= (
0.5 0.5 0.5

)
m.s−1.

The parameters for the Singer model are α = 1/60s−1 and Σ = 1.0. The acceleration on the third
coordinate does not jump and is initially equal to a3 = −0.9m.s−2. The measurement noise is of
variance 1000m. This trajectory is presented in figure 7.2.

122

CHAPTER 7. ADAPTIVE UPDATE RATE

Figure 7.2 – Measured trajectory with the Singer model and one maneuver

The tracking results of the position, the velocity and the acceleration on the first coordinate
of the Kalman filter for this trajectory are presented in figure 7.3. The update rate is set to be one
measurement every ten seconds. The filter estimates quite well the position and the velocity. The
estimation of the acceleration is more difficult, especially when the jump occurs. As for all Kalman-
based filters, the tuning of the model noise covariance matrix plays a high role in finding a balance
between the precision of the estimation and the ability to react efficiently when manoeuvres occur.
For further information about noise tuning for Kalman filters, see [85], [72].

The lack of precision in the acceleration coordinate is not of crucial importance, as long as
it does not result in a reduced precision for the velocity coordinate, which is a parameter that is
relevant for some applications (among which intercepting missiles for instance).

Tracking with the Frenet-Serret model with jumps

We test our IEKF algorithm with the trajectory presented in figure 7.4. The trajectory is made of
three Frenet-parameters constant parts. In the first part, the target has a constant velocity straight
line motion. In the second part, the target has an helix trajectory, with constant velocity, cur-
vature and torsion, and finally, the target does a constant planar turn. The maneuvers occur at
times t = 200s and t = 450s respectively. The initial state is R0 = I3, x0 = (

104 104 104
)

m, u0 =
100m.s−1, γ0 = 0.02s−1 and τ0 = 0. The first jump at t = 200s is characterized by u200 = 500m.s−1,
γ200 = 0.07s−1 and τ200 = 0.005, and the second jump by u450 = 200m.s−1, γ450 = 0.002s−1 and
τ450 = 0, elsewhere, the velocity, curvature and torsion are constant. We assume Cartesian posi-
tion measurements, and we add Gaussian measurement noise of variance 1000m independently
on the three axis.

123

CHAPTER 7. ADAPTIVE UPDATE RATE

(a) (b)

(c)

Figure 7.3 – Results of the linear Kalman filter estimations for the position in x fig. 7.3a, velocity in x fig. 7.3b
and acceleration in x fig. 7.3c

124

CHAPTER 7. ADAPTIVE UPDATE RATE

Figure 7.4 – Measured trajectory with two maneuvers

We show the performances of the IEKF, used with a fixed update rate of T = 5s. The tracking
results of the IEKF alone are presented on figure 7.5. We see that the torsion is very difficult to
track accurately, indeed, it is a third derivative of the position, and thus it is barely observable. The
same problem as the linear Kalman filter with the noise tuning occurs because of the presence of
jumps. However once again, the tracking results are satisfying to perform update rate adaptation
with the same noise tunings. Indeed, the position and the norm of the velocity, and to a certain
extent also the curvature are well estimated with this fixed update rate.

(a) (b)

(c) (d)

Figure 7.5 – Results for the tracking with the IEKF, with the x position fig. 7.5a, the curvature fig. 7.5b, the
norm of the velocity fig. 7.5c and the torsion fig. 7.5d

125

CHAPTER 7. ADAPTIVE UPDATE RATE

7.5.2 Update rate adaptation

We now implement the two update rate adaptation methods presented in chapters 6 and 7. The
first one uses the fixed criterion of Blackman and Van Keuk described in section 6.3, and the sec-
ond one is the adaptive criterion of algorithm 4. We test the algorithms on the trajectories pre-
sented in the previous section, and keep the same process noise tunings for the filtering algo-
rithms.

Update rate adaptation with the Singer trajectory

We first present the results obtained with the Singer model based trajectory. We compare the fixed
criterion with the adaptive one. The Singer model being the model used to compute the fixed
criterion, the results should be very similar for both methods. The parameters used for the update
rate adaptation for both algorithms are summarised in table 7.1.

Fixed update criterion The fixed criterion has been first implemented. We plot the duration
computed by the algorithm between two measurements as a function of the time elapsed since
the beginning of the trajectory. The higher bound for the duration is T = 10s and the lower bound
is T = 0.01s and d t = 0.01s. The graph for the time interval between measurements is presented in
figure 7.6a.

(a) Fixed criterion (b) Adaptive criterion

Figure 7.6 – Comparison of the duration between two measurements for the Singer model, with the fixed
criterion on fig. 7.6a and for the adaptive criterion on fig. 7.6b. We see the behaviour of the adaptation is
very similar for the two criteria. This was expected since the fixed criterion is derived for a Singer model.
The peak corresponds to the moment the target becomes very close to the radar, so the angular covariance
becomes large.

We can note that the adaptation is not necessarily linked to the presence of a manoeuvre (the
update rate decreases before the manoeuvre occurs). In fact, it is due to an increase of the covari-
ance in the u-coordinate at t = 175s, because the target is very close to the radar at this point, and
we consider the angular dispersion. Let us now compare this behaviour to the one obtained with
the adaptive algorithm described in this paper.

Adaptive criterion We make the same experiment, but we replace the fixed criterion with the
adaptive one of algorithm 4, and plot the result in figure 7.6b. In order to achieve this, we compute
the detection probability PD that corresponds to V0 = 0.3 thanks to the formula PD0 = P1/(1+SN0)

F ,
which gives the threshold in algorithm 3 to be s = 0.72.

We also plot the lateral position covariances for both algorithms in figure 7.7. The duration
general form curve echoes the covariance curve. When the covariance is low, then the maximum
duration between two measurements is reached (in the first 150 seconds for instance).

126

CHAPTER 7. ADAPTIVE UPDATE RATE

(a) Fixed criterion (b) Adaptive criterion

Figure 7.7 – Comparison of the covariances for the angular coordinate for the Singer model, with the fixed
criterion on fig. 7.7a and for the adaptive criterion fig. 7.7b.

As expected, the update rate is very similar in both cases. Indeed, the fixed criterion is adapted
to this Singer model, and the adaptive criterion is designed to match any model formulation. This
shows our method encompasses and generalises the model of Blackman and Van Keuk indeed.

Optimisation ratio We have performed 100 Monte-Carlo experiments to compute the value of
the rate Lc = E(n)/E(T) for both methods in order to compare them. The loads Lc computed are
given in table 7.2. The small difference is due to the approximations that are made in the fixed
criterion derivation, and also to the fact that we are not necessarily in a stationary regime during all
the trajectory, but the results are nevertheless very similar. We also collect the position estimation
Root Mean Square Error, to ensure there is no major degradation of performance when using the
adaptive criterion. Indeed, the radar load is optimised, but the tracking performances need to stay
at least in the same magnitude order. The RMSE can be found in table 7.3.

Update rate adaptation with the Frenet-Serret trajectory

The present experiment serves as an example for other models than the Singer model, that are
non-linear, have to be estimated using a non-linear filtering algorithm and cannot have the same
properties of convergence than the linear Kalman filter. The duration between two consecutive
measurements can vary from Tmax = 5s to Tmi n = 0.005s and d t = 0.005s. We perform again the
simulations with the Blackman Van Keuk fixed criterion and with the adaptive algorithm. The
results are presented in the following paragraphs. The values of the other parameters are gathered
in table 7.1.

Parameter Value

PF 10−6

SN0 40
B 0.0175
s 0.72

Table 7.1 – Parameters for the update rate adaptation

Fixed criterion The results are given on figures 7.8a and 7.9a. We can allow the duration between
the measurements up to T = 5s on some portions of the trajectory.

127

CHAPTER 7. ADAPTIVE UPDATE RATE

(a) Fixed criterion (b) Adaptive criterion

Figure 7.8 – Comparison of the duration between two measurements for the Frenet-Serret model, with the
fixed criterion on fig. 7.8a and the adaptive one on fig. 7.8b. The experiments give two different behaviours
of the duration between two observations. Indeed, the fixed criterion is not suited to this model, and the
adaptive criterion is required, as it directly minimizes Lc , contrary to the fixed criterion.

(a) Fixed criterion (b) Adaptive criterion

Figure 7.9 – Comparison of the covariances for the angular coordinate for the Frenet-Serret model, with the
fixed criterion on fig. 7.9a and for the adaptive criterion on fig. 7.9b.

Adaptive criterion Thanks to (7.2), we can compute the threshold s = 0.72 that we apply for the
adaptive algorithm. The results are presented in figure 7.8b. The angular covariances are also
displayed in figure 7.9. In this case, the covariances computed are still very similar, because they
are the result of the filter, and the difference is only due to the period of refreshment.

However, contrary to the Singer model, the update rate results are quite different. The duration
between maneuvers is often lower for the adaptive criterion, however, the number of necessary il-
luminations to find a target again is also lower. We see that the two algorithms lead to two different
strategies, even though the general form of the adaptation is the same.

Optimization ratio The optimisation rate Lc is again computed with 100 Monte-Carlo simula-
tions for the fixed and adaptive algorithms. The radar loads Lc obtained for the Frenet-Serret
model are again collected in table 7.2. This shows that the optimisation is much better with an
adaptive criterion, and that the fixed criterion is not sufficient to achieve the best radar load. The
difference between the rates multiplied by the number of possible targets in a challenging scenario
is therefore not negligible at all. The position RMSE are also collected in table 7.3, again no loss in
the performances is observed.

128

CHAPTER 7. ADAPTIVE UPDATE RATE

Fixed criterion Adaptive criterion

Linear model 0.20 0.16
Nonlinear model 0.44 0.25

Table 7.2 – Radar load Lc computed for the experiments presented in this paper

Fixed criterion Adaptive criterion

Linear model 132 63
Nonlinear model 105 104

Table 7.3 – Position RMSE (in m) computed for the experiments presented in this paper

7.6 Discussion

The results obtained in the previous section show that the fixed criterion of Blackman and Van
Keuk and the adaptive criterion proposed in this chapter are equivalent for the Singer model. How-
ever, with non-linear target models, the adaptive algorithm performs better than the fixed one, as
anticipated. This saves the radar time budget: the update rate can be more decreased than when it
is fixed, and the adaptive criterion algorithm is better suited to non-linear models and algorithms
than the fixed one.

However, such adaptation algorithms can only adapt the update rate once the performances
are beginning to decrease, they are thus not suited to detect or track high and abrupt manoeuvres.
They are designed to detect a degradation in the filter’s confidence of its own estimations, and
to increase the update rate, so that the filter is updated more often, and the target has a higher
probability to be in the radar beam for the next measurement, and so less energy is spent to find
it again. Moreover, the covariance of the filter needs to be quite accurate, since it feeds the update
rate adaptation algorithm. If the filter diverges, this means the covariance is not accurate anymore,
so the update rate adaptation fails along with the filter.

This is corroborated by the results obtained in the previous section. Indeed, the update rate
is not necessarily modified only during manoeuvres, but more generally whenever the angular
covariance of the filtering algorithm is increasing.

7.7 Conclusion

In this chapter, we have first adapted the algorithm of chapter 6 to suit other types of models and
estimation algorithms. This is required for industrial applications, since non-linear target models
are used.

We have then applied the proposed algorithm to a model based on intrinsic coordinates, rely-
ing on the Frenet-Serret frame, along with an Invariant Extended Kalman Filter. The results both
with the Singer model and the Frenet-Serret model corroborate the accuracy of the adaptive al-
gorithm. The fixed and adaptive algorithms give the same results on the Singer model, and the
adaptive algorithm gives better results on the Frenet-Serret model.

To develop the adaptive update rate algorithm, we have used the same optimisation criterion
as in chapter 6. This criterion assumes the radar has a pencil beam, and the target search method
is to look in a neighbourhood of the first guess given by the estimation algorithm. This search
method is the optimal one, as stated in [108], so the same search method is used in this chapter.
These two assumptions have not been questioned in this chapter, but some work can be done
to have another optimisation function that takes into account the new possibilities of the newer
generations of radars, that are becoming even more cognitive, including the fact that future radars
will not necessarily be equipped with pencil beams, and so the radar load will have to be expressed
differently.

129

CHAPTER 7. ADAPTIVE UPDATE RATE

130

Chapter 8

Conclusion

8.1 Résumé en français

Les travaux menés pendant cette thèse ont permis de proposer des solutions pour le pistage des
cibles hyper-manœuvrantes. Le modèle de cible qui a été conçu est en effet dédié à ces cibles,
et notamment à la description des mouvements en 3D, et aux virages avec de fortes vitesses an-
gulaires. Un premier algorithme d’estimation a été proposé, utilisant le principe du filtrage, et
construit spécifiquement à partir du modèle de cible développé. Cet algorithme donne des per-
formances satisfaisantes et supérieures à des algorithmes couramment utilisés. Une autre méth-
ode d’estimation, reposant sur un modèle de cible légèrement modifié a permis de prendre en
compte des manœuvres extrêmes de cibles, comme des sauts dans le cap des cibles. Cette seconde
méthode d’estimation d’état, du lissage avec sauts, est conçue pour des trajectoires avec des sauts
extrêmes. On a observé que les algorithmes développés sont très performants pour l’estimation
du cap de la cible, qui est indispensable pour avoir une bonne prédiction de position, dans le but
d’orienter le faisceau de la poursuite active, pour avoir un bon affichage sur l’écran de l’opérateur
radar, ou encore pour les radars de conduite de tir. Enfin, le travail sur la cadence adaptative per-
met d’envisager de réduire le budget du radar consacré à la tâche de poursuite active.

Plusieurs perspectives pour des travaux futurs peuvent être envisagées. Tout d’abord, il est
possible de travailler à l’incorporation de l’IEKF à un IMM avec un EKF à modèle accélération
constante, afin de permettre un réglage de bruit de modèle relativement faible pour l’IEKF, et avoir
un fort bruit de modèle sur l’autre modèle pour pouvoir faire converger l’algorithme dans le cas
de manœuvres extrêmes. Il est également possible de travailler sur le réglage du bruit de modèle
de l’IEKF seul, afin de rendre le filtre encore plus robuste aux manœuvres. L’algorithme de lissage
peut être généralisé en 3D, il faut alors être capable d’exprimer le flot de forme close dans l’espace
mathématique du modèle de Frenet-Serret 3D. Enfin, on peut imaginer un algorithme de cadence
adaptative encore plus général, et ne se limitant plus aux radars à faisceaux focalisés, mais étendus
à des radars qui ont la capacité d’élargir leur faisceau si nécessaire.

8.2 Summary of the main contributions of the thesis

The challenge for modern multifunction radars is to face an increasing number of parallel tasks
as well as a greater complexity of each task, including tracking highly manoeuvring targets. The
arrival of phased-array fixed antenna radars brings new opportunities for numerical processing.
The objective of this thesis was to exploit these state-of-the-art possibilities to provide more per-
forming algorithms to track new targets, with high and unpredictable manoeuvres.

The new possibilities of modern radars include more computing power, a non-rotating an-
tenna, dynamical beam-forming, among others. The radars are thus much more flexible in all
these domains. This allows the design of more sophisticated algorithms to perform the tasks of
tracking, and dynamic management of resources. The use of slightly more greedy algorithms is
allowed, as long as it stays reasonable, and this opens the way to more suitable solutions to the

131

CHAPTER 8. CONCLUSION

new stakes.
One of the main contributions of this work has been to propose a novel target model, based

on intrinsic coordinates, and flexible to adapt different configurations. This model is adapted
to highly manoeuvring targets, especially when they have very high normal accelerations. This
target model can represent virtually any target motion, since the Frenet-Serret frame can be used
to describe any continuous curve in the space. We have nonetheless restricted the model and
made some light and frequently used assumptions to derive the equations to make the estimation
problem tractable.

A robust filtering algorithm taking advantage of the mathematical space in which the target
model is expressed has been developed to perform state estimation. This algorithm has been suc-
cessfully tested on real scenarios. The IEKF used with the Frenet-Serret frame gives encouraging
results, especially for the heading precision. This is one of the required performances of the track-
ing, and it is important for several reasons. First, the operator has a better readability on his screen
when the heading is precise, and does not oscillate, then it is crucial for the radar to point in the
right direction during active tracking, and if the covariance is thinner for the heading, then the
beam formed will be thinner, thus saving the radar time budget, and facilitating the association
problem. The filtering algorithm proposed can be easily implemented, since its structure is the
same as the one of the widely used EKF. It has thus been successfully tested in a real tracking sim-
ulator for Air Traffic Control in Thales, which includes all the tracking process.

In a more academic field, target models modelling possible jumps in the trajectory have also
been discussed, leading to algorithms that can handle the jumps, such as the Rao-Blackwell par-
ticle filter, and the smoothing algorithm. This latter algorithm performs very accurately on tra-
jectories with really huge manoeuvres, that are the future targets the radars will have to face. The
smoothing algorithm is more greedy in terms of computations than Kalman filters. However, the
computation time can be reduced thanks to the use of sliding windows, or to the optimisation of
matrix computation, especially to compute the inverse of sparse matrices. The computation time
of the smoothing algorithm remains much smaller than the one of particle filters, even when con-
sidering the Rao-Blackwell particle filter, for which the number of required particles is reduced
compared to standard particle filters. This smoothing algorithm is however more difficult to em-
bed in an existing simulator, since its structure is completely different from that of a Kalman filter.

The last contribution is the development of a general update rate adaptation algorithm that
can be applied to any filtering algorithm. This update rate adaptation algorithm computes the best
update time to optimise the radar time budget spent on active tracking for one particular target.
This is also of crucial importance for multifunction radars that are asked to perform surveillance
as well as tracking, and are confronted to scenarios with a high number of targets.

8.3 Future work

Various questions and remarks have arisen from the contributions presented in this document.
Some concern academic aspects, such as future development for the algorithms, and other con-
cern more industrial issues that have been discussed with different teams inside Thales.

One of the first aspect that can be further investigated is the smoothing algorithm. Future
research can be performed to extend it to the Lie group setting used for the 3D target model de-
veloped in this work. The solution is not straightforward, as the model is expressed partly in a Lie
group and partly in a vector space.

The definition and tuning of the noises of the Frenet-Serret target model when used with an
IEKF can be further examined. Indeed, as was shown in the simulation chapter, noise tuning is an
issue with every filtering algorithm. The noises for the Frenet-Serret target model have been, in
this document, defined partly in the Lie algebra, which might be an issue because when projected
on the Lie group, the property of being white and Gaussian does not fully hold. It is indeed a
theoretical difficulty of this model formulation that can lead to other research on the definition of
the noises on a Lie group.

132

CHAPTER 8. CONCLUSION

Another aspect already discussed in the document is the use of the IEKF inside an IMM. In-
deed, we have seen that the IEKF has better performances than three models of the IMM, the
constant velocity model, the horizontal turn and the vertical turn. However, to secure the algo-
rithm, one can use a constant acceleration model in parallel. We have seen that the constant
velocity Frenet-Serret model is not really adapted to targets which have a high tangential accel-
eration. Two solutions are possible: use the constant acceleration Frenet-Serret model, but this
degrades the performances on constant parts, or couple the IEKF inside an IMM with a constant
acceleration model. Work has to be done to provide a real mixing stage in the IMM, to merge the
state of the IEKF and the one of a constant acceleration linear model.

Concerning the update rate adaptation, the method proposed in this document is very general,
but it can be made even more adaptive if the beam forming (including the waveform for instance)
in itself is included in the adaptation algorithm. One future field of research in this domain would
be to link the time of refreshment of the observations with the formation of the radar beam.

Finally, all the methods presented in this document are designed for surface radars, which
means they are not moving. One possible generalisation would be to extend the methods and test
them for mobile radars, for instance embarked in an aircraft.

133

CHAPTER 8. CONCLUSION

134

Appendix A

Mathematical definitions: Lie groups

A.1 General definitions

A matrix Lie group G is a set of matrices, stable by multiplication and inversion, and having a
tangent space at the neutral element.

G is a matrix group means that its group operation is the matrix multiplication and that:

Id ∈ G, ∀g ∈ G, g−1 ∈ G, ∀g1, g2 ∈ G, g1g2 ∈ G

The Lie algebra g associated to the group is the tangent space at the neutral element. The Lie
algebra is anR-algebra, which means that it is a vectorial space with an intern multiplication which
is bilinear. For a matrix Lie group, it is possible to represent the vectors of Rdimg under the form
of a matrix belonging to the Lie algebra, that is strictly equivalent, but may be more convenient
to write the operations. If ω ∈ Rdimg, then we note Lg the associated matrix in the Lie algebra g.
In other words, we have a linear mapping Lg : Rdimg → g. The linear mapping will be detailed for
each Lie group used in this thesis.

Finally, we also need the definition of the exponential on the Lie algebra. The Lie group ex-
ponential is defined in the Lie algebra and has values in the Lie group. For matrix Lie groups, this
exponential is in fact expm , the matrix exponential defined by the Taylor series:

expm(A) =
∞∑

n=0

An

n!

We can also define an exponential exp :Rdimg → G as follows:

exp(ω) = expm(Lg(ω)), ∀ω ∈ g

The description of the Lie groups encountered in this document, and the useful operations are
provided in the following paragraphs.

A.2 Specific Lie groups used in the thesis

A.2.1 Group of 2D rotations SO(2)

The rotations in 2D form a matrix Lie group, SO(2), that is defined by:

SO(2) = {
R ∈M2|RRT = RTR = I2,det (R) = 1

}
Matrices in this group can all be written in the following way, as a rotation of angle θ, assuming
θ ∈R:

R =
(
cosθ −sinθ
sinθ cosθ

)

135

APPENDIX A. MATHEMATICAL DEFINITIONS: LIE GROUPS

The Lie algebra is of dimension 1, it is composed of the skew-symmetric matrices of size 2×2.
The notation (.)× corresponding to the linear mapping from R to so(2) is defined as:

(ω)× =
(

0 −ω
ω 0

)
It in fact corresponds to the linear mapping Lso(2) for this Lie group, but the notation is more
convenient.

The group exponential writes:

expm

(
0 −ω
ω 0

)
=

(
cosω −sinω
sinω cosω

)
As we have said, the exponential belongs indeed to the Lie group.

A.2.2 Group of 2D rotations and translations SE(2)

We can add the 2D translations to SO(2) to form the group of 2D rotations and translations, SE(2).
This group is defined by

SE(2) =
{(

R x
01,2 1

)
,R ∈ SO(2), x ∈R2

}
The associated Lie algebra, called se(2) is

se(2) =

0 −ω α

ω 0 β

0 0 0

 ,ω ∈R,

(
α

β

)
∈R2

It is thus of dimension 3. In this case, Lse(2) is defined by:

Lse(2)

ωα
β

=
0 −ω α

ω 0 β

0 0 0

The exponential of (ω,u) ∈R×R2 is defined by

expm

(
(ω)× u
01,2 0

)
=

(
R(ω) V
01,2 1

)
with

R(ω) =
(
cosω −sinω
sinω cosω

)
and

V =
(
u1

sinω
ω −u2

1−cosω
ω

u1
1−cosω

ω +u2
sinω
ω

)
if ω 6= 0, otherwise we have

expm

(
02,2 u
01,2 0

)
=

1 0 u1

0 1 u2

0 0 1

A.2.3 Group of 3D rotations SO(3)

The group of rotations SO(3) is composed of the rotation matrices of dimension 3×3:

SO(3) = {R ∈M3|RRT = RTR = I3,det(R) = 1}

136

APPENDIX A. MATHEMATICAL DEFINITIONS: LIE GROUPS

The associated Lie algebra is of dimension 3 and is defined by:

so(3) =

 0 −c b
c 0 −a
−b a 0

 ,

a
b
c

 ∈R3

It is again possible to define the notation (.)×. If ω ∈R3, then

(ω)× =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

One also needs the definition of the matrix exponential exp : so(3) → SO(3). Let Ω ∈ so(3), and
θ= ‖Ω‖. The exponential map is:

expm(Ω) = I3 + sinθ

θ
Ω+ 1−cosθ

θ2 Ω2

expm(03,3) = I3

A.2.4 Group of 3D rotations and translations SE(3)

SE(3) is the group that describes the possible motions of a point mass in the 3D space. It represents
the rotations and the translations:

SE(3) =
{(

R x
01,3 1

)
,R ∈ SO(3), x ∈R3

}
The associated Lie algebra is of dimension 6 and is defined by:

se(3) =

0 −c b α

c 0 −a β

−b a 0 γ

0 0 0 0

 ,

a
b
c

 ∈R3,

αβ
γ

 ∈R3

The mapping Lse(3) is defined by

Lse(3)

a
b
c
α

β

γ

=

0 −c b α

c 0 −a β

−b a 0 γ

0 0 0 0

The exponential map of (ω,u) ∈R3 ×R3 is defined as follows

exp

(
ω

u

)
= expm

(
(ω)× u
01,3 0

)
=

(
expm((ω)×) Vu

01,3 1

)

with θ=
p
ωTω if ω 6= 0 and

V = I3 + 1−cosθ

θ2 (ω)×+ θ− sinθ

θ3 (ω)2
×

exp

(
03,1

u

)
=

(
I3 u

01,3 0

)

137

APPENDIX A. MATHEMATICAL DEFINITIONS: LIE GROUPS

138

Appendix B

More details about the Kalman Filter

In this appendix, we show how the filter’s equations are derived. A tutorial paper fort this is [77].
The problem we want to solve is to estimate a vector xk from partial and noisy observations yk .

yk = Hxk + vk (B.1)

xk evolves according to equation

xk+1 = Fxk +wk (B.2)

vk and wk are assumed to be white Gaussian noises, with covariances N = E[vk vT
k] and Q =

E[wk wT
k] respectively. We do not consider the input vector uk in this appendix.

B.1 Maximum Likelihood Estimator

We seek to compute the probability distribution P(xk |y1, . . . , yk). Due to the fact that the noises are
Gaussian and independent, and that Gaussians are stable by linear transformations, we can show
that this distribution is a Gaussian N (x̂k|k ,Pk|k).

Otherwise, because the distribution is Gaussian, the conditional mean x̂k|k corresponds to the
most probable value of xk given the past observations y1, . . . , yk . This is also the best least squares
estimate.

B.2 Algorithm derivation

Let us define the error as ek = xk − x̂k|k . The covariance matrix associated to the error is Pk|k =
E[ek eT

k]. This gives:

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T]

We first need to compute the step going from x̂k|k to x̂k+1|k , and the prediction of the covariance
matrix P. The state projection is

x̂k+1|k = Fx̂k|k

For the error, we have

ek+1|k = xk+1 − x̂k+1|k
= (Fxk +wk)−Fx̂k|k
= Fek|k +wk

139

APPENDIX B. MORE DETAILS ABOUT THE KALMAN FILTER

So, using the fact that E[ek|k wk] = 0, we obtain:

Pk+1|k = E[ek+1|k eT
k+1|k]

= E[(Fek|k +wk)(Fek|k +wk)T]

= E[Fek|k (Fek|k)T]+E[wk wT
k]

= FE[ek|k eT
k|k]FT +Q

= FPk|k FT +Q

The observation must now be taken into account to obtain the update equations, for the state
x̂ and the covariance P. Kalman proved that the updated state has the form:

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 −Hx̂k+1|k)

where Kk is the Kalman gain. Once this form is assumed, the optimal Kalman gain is easily derived
as follows, and using equation (B.1):

x̂k+1|k+1 = x̂k+1|k +Kk+1(Hxk+1 + vk+1 −Hx̂k+1|k)

We now use this equation, and the fact that xk+1 − x̂k+1|k and vk+1 are uncorrelated to compute
Pk+1|k+1:

Pk+1|k+1 = E
[
[(I−Kk+1H)(xk+1 − x̂k+1|k)−Kk+1vk+1][(I−Kk+1H)(xk+1 − x̂k+1|k)−Kk+1vk+1]T]

= (I−Kk+1H)E[xk+1 − x̂k+1|k](I−Kk+1H)T +Kk+1E[vk+1vT
k+1]KT

k+1

= (I−Kk+1H)Pk+1|k (I−Kk+1H)T +Kk+1NKT
k+1

= Pk+1|k −Kk+1HPk+1|k −Pk+1|k HTKT
k+1 +Kk+1(HPk+1|k HT +N)KT

k+1

As we want the mean squared error minimiser, we want to minimise E[||xk+1 − x̂k+1|k+1||2],
which is the same as minimising the trace of Pk+1|k+1. So we have to solve the equation

∂tr (Pk+1|k+1)

Kk+1
= 0

The matrix derivative rules give

0 = ∂tr (Pk+1|k+1)

Kk
=−2(HPk+1|k)T +2Kk+1(HPk+1|k HT +N)

Solving this equation, we can obtain the value of the gain Kk+1:

Kk+1 = Pk+1|k HT(HPk+1|k HT +N)−1

The quantity HPk+1|k HT+N is often denoted Sk+1 and corresponds to the measurement prediction
covariance. Finally, we can compute the updated covariance matrix:

Pk+1|k+1 = Pk+1|k −Kk+1HPk+1|k −Pk+1|k HTKT
k+1 +Kk+1(HPk+1|k HT +N)KT

k+1

= Pk+1|k −Pk+1|k HT(HPk+1|k HT +N)−1HPk+1|k
= Pk+1|k −Kk+1HPk+1|k
= (I−Kk+1H)Pk+1|k

When deriving the optimal filtering algorithm, we find the Kalman equations, for the predic-
tion and the update steps.

140

Appendix C

Linearisation of the 2D Frenet-Serret
model for smoothing

We present in this appendix the linearisation of the 2D Frenet-Serret model to apply the smoothing
algorithm. We take the notations of section 5.7.

Let us linearise the full system defined by (5.26), assuming that ω0 6= 0, which is recalled here:

xn = x0 +u0∆t
n−1∑
k=0

(
cos(θ0 +kω0∆t) sin(ω0∆t)

ω0
− sin(θ0 +kω0∆t) 1−cos(ω0∆t)

ω0

sin(θ0 +kω0∆t) sin(ω0∆t)
ω0

+cos(θ0 +kω0∆t) 1−cos(ω0∆t)
ω0

)
(C.1)

Let us call

An =
n−1∑
k=0

cos(θ0 +kω0∆t)
sin(ω0∆t)

ω0
− sin(θ0 +kω0∆t)

1−cos(ω0∆t)

ω0

Bk = cos(θ0 +kω0∆t)
sin(ω0∆t)

ω0

Ck = sin(θ0 +kω0∆t)
1−cos(ω0∆t)

ω0

and
θ0 = θ̃0 +δθ0

ω0 = ω̃0 +δω0

We want to linearise An around θ̃0 and ω̃0. We have:

Bk = cos
(
θ̃0 +∆θ0 +k(ω̃0 +δω0)δt

) sin((ω̃0 +δω0)∆t)

ω̃0 +∆ω0

Bk ≈ [
cos(θ̃0 +kω̃0∆t)− (δθ0 +kδω0∆t)sin(θ̃0 +kω̃0∆t)

] sin(ω̃0∆t)+ (δω0∆t)cos(ω̃0∆t)

ω̃0 +δω0

Bk ≈ [
cos(θ̃0 +kω̃0∆t)− (δθ0 +kδω0∆t)sin(θ̃0 +kω̃0∆t)

] sin(ω̃0∆t)+ (δω0∆t)cos(ω̃0∆t)

ω̃0

1

1+ δω0
ω̃0

Bk ≈ [
cos(θ̃0 +kω̃0∆t)− (δθ0 +kδω0∆t)sin(θ̃0 +kω̃0∆t)

]
× [sin(ω̃0∆t)+ (δω0∆t)cos(ω̃0∆t)]

[
1

ω̃0
− δω0

ω̃0

]

Bk ≈ cos(θ̃0 +kω̃0∆t)sin(ω̃0∆t)

ω̃0
−cos(θ̃0 +kω̃0∆t)sin(ω̃0∆t)

δω0

ω̃2
0

+cos(θ̃0 +kω̃0∆t)
δω0

ω̃0
∆t cos(ω̃0∆t)− (δθ0 +kδω0∆t)sin(θ̃0 +kω̃0∆t)

ω̃0∆t

ω̃0

141

APPENDIX C. LINEARISATION OF THE 2D FRENET-SERRET MODEL FOR SMOOTHING

and:
Ck ≈ [

sin(θ̃0 +kω̃0∆t)+ (δθ0 +kδω0∆t)cos(θ̃0 +kω̃0∆t)
]

×1−cos(δθ0∆t)+δω0∆t sin(ω̃0∆t)

ω̃0

1

1+ δω0
ω̃0

Ck ≈ sin(θ̃0 +kω̃0∆t)

(
1

ω̃0
− δω0

ω̃2
0

)
− sin(θ̃0 +kω̃0∆t)

1

ω̃0
cos(ω̃0∆t)

+sin(θ̃0 +kω̃0∆t)
δω0

ω̃2
0

cos(ω̃0∆t)+ sin(θ̃0 +kω̃0∆t)
δω0∆t sin(ω̃0∆t)

ω̃0

+(δθ0 +kδω0∆t)cos(θ̃0 +kω̃0∆t)

(
1

ω̃0
(1−cos(ω̃0∆t))

)
Finally, we obtain the approximation for An with (C.2), and the following notations:

C1 =
n−1∑
k=0

cos(θ̃0 +kω̃0∆t)

C2 =
n−1∑
k=0

k cos(θ̃0 +kω̃0∆t)

S1 =
n−1∑
k=0

sin(θ̃0 +kω̃0∆t)

S2 =
n−1∑
k=0

k sin(θ̃0 +kω̃0∆t)

An = (
sin(ω̃0∆t)

ω̃0
C1 − 1−cos(ω̃0∆t)

ω̃0
S1)

+ (−sin(ω̃0∆t)

ω̃0
S1 − 1−cos(ω̃0∆t)

ω̃0
C1)δθ0

+ (−sin(ω̃0∆t)

ω̃2
0

C1 + ∆t cos(ω̃0∆t)

ω̃0
C1 + 1−cos(ω̃0∆t)

ω̃2
0

S1

− ∆t sin(ω̃0∆t)

ω̃0
S1 − ∆t sin(ω̃0∆t)

ω̃0
S2 − ∆t (1−cos(ω̃0∆t))

ω̃0
C2)δω0

(C.2)

The same linearisation apply to the second coordinate of xn , and the end of the linearisation, and
the concatenations to obtain the final matrices for the least squares problem is the same as in
section 5.7.

142

Appendix D

Particle filters with jumps

D.1 The Rao-Blackwell particle filter

D.1.1 Description

The Rao-Blackwell particle filter is a special particle filter, introduced in [49]. The principle of
this filter is to isolate one or several parameters that, being known, allow to derive the entire state
distribution.

For our problem, the idea is to use the Kalman filter in an optimal way during piecewise con-
stant motions and use the Rao-Blackwell particle filter to detect the jumps. Indeed, we know that
in the linear Gaussian case, the Kalman filter is optimal, we thus seek to use this property as widely
as possible, or to get close to it. The isolated parameter is sampled, and approximated by particles.
The Rao-Blackwell particle filter associates a weight to each particle. A resampling step is neces-
sary to keep only the most likely particles. The final state is a weighted sum of the states associated
to each particle.

Let us present the algorithm on the simple generic model (D.1), this is the jump Markov linear
system of section 2.3.4. uk is an input, xt is the state of the system, yt is the observation, wt and
vt are white Gaussian noises. rk is a Markov chain with discrete states. F,B,G,C, A,D are matrices
that represent the evolution of the state and of the observations.

{
xk+1 = F(rk+1)xt +B(rk+1)uk+1 +G(rk+1)wk+1

yk = C(rk)xk +A(rk)uk +D(rk)vk
(D.1)

In our case, the sampled parameter is rk . Indeed, when the instant of the jumps are fixed, then
the trajectory is deterministic, and piecewise linear. The particles thus sample the presence of a
jump.

Let a1:n = {a1, . . . , an}. We want to evaluate p(xk ,rk |y1:k). The Bayes formula gives (D.2). We
can compute p(xk |r1:k , y1:k) with a standard Kalman filter. The remaining part p(r1:k |y1:k) has to
be evaluated, which will be done by sampling. A standard particle filter would directly sample
p(xk ,r1:k |y1:k), which is more demanding computationally. The Rao-Blackwell particle filter sam-
ples only along one dimension, rk .

p(xk ,r1:k |y1:k) = p(xk |r1:k , y1:k)p(r1:k |y1:k) (D.2)

143

APPENDIX D. PARTICLE FILTERS WITH JUMPS

Figure D.1 – Rao-Blackwell Particle Filter

Let us describe more precisely how this partial sampling works. Suppose we have an approxi-
mation of p(r1:k−1|y1:k−1) thanks to the particles r i

1:k−1. The sampling steps are detailed thereafter,
and summarised on figure D.1. We detail the step from time instant k to k +1. N is the number of
particles.

1. Importance sampling step:

• For i = 1, . . . ,N, sample ρi ∼π(rk |y1:k ,r i
1:k−1) and let ρi

1:k ,
(
r i

1:k−1,ρi
k

)
.

• For i = 1, . . . ,N, evaluate the importance weights (up to a normalising constant):

ω̃i
t ∝

p(yk |y1:k−1,ρi
k)p(ρi

k |ρi
k−1)

π(ρi
k |y1:k ,ρi

1:k−1)
(D.3)

• For i = 1, . . . ,N, normalise the importance weights:

ωi
k =

[
N∑

j=1
ω̃

j
k

]−1

ω̃i
k (D.4)

2. Selection step: duplicate/suppress the particles (ρi
1:k , i = 1, . . . ,N) given their normalised

weights ωi
k to obtain N particles (r i

1:k , i = 1, . . . ,N). This step can be done in different ways.

The probability π is called the importance distribution. It can be chosen freely, as long as it
can be sampled from. Some distributions reduce the variance of the samples, as the two ones that
we will present later.

Where is the Kalman filter used ?

• It is used to compute the weights ωi
k associated to each particle. Indeed, the probability

p(yk |y1:k−1,ρi
1:k) is exactly the probability given by the Kalman filter (it is a normal law, with

mean x̂k − yk and variance S, with S the prediction variance).

• It can also be used to compute the sampling distribution π, before the sampling step.

In the two following paragraphs, the choice of the importance distribution π is detailed, one is
based on the prior distribution, the other one on the optimal distribution.

144

APPENDIX D. PARTICLE FILTERS WITH JUMPS

Prior importance distribution

The prior distribution is
π(ρi

k |y1:k ,ρi
1:k−1) = p(ρi

k |ρi
k−1)

It is the simplest choice for the importance distribution. From a practical point of view, this means
that particle i has a given probability q to jump, with q the a priori jumping probability. The weight
of the particle i is

ωi
k = p(yk |y1:k−1,ρ1:k)

The use of this prior distribution requires the use of one Kalman filter per particle, to compute the
sampling weight.

D.1.2 Results on piecewise linear trajectories

Let us use the following toy model, with piecewise constant velocity in 2D. The target model and
observation model are given in (D.5).{

xk+1 = F(rk)xk +B(rk)wk

yk = Hxk + vk
(D.5)

The state xk contains the position and the velocity: xk = (
x1

k ẋ1
k x2

k ẋ2
k

)T
, and wk is the noise

on the velocity. yk = (
x1

k x2
k

)T
is the Cartesian observation. vk is a Gaussian white noise. This

type of model, without model noise, is inspired from the variable rate model of [32], that will be
detailed in section D.2.

To represent piecewise constant velocity, we use a Markov chain rn with values 0 or 1:

rn =
{

1 with probability q

0 with probability 1−q
(D.6)

The matrices F, B and H are defined as follows:

F(0) =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 , F(1) =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

B(0) =

0 0
0 0
0 0
0 0

 , B(1) =

0 0
σ 0
0 0
0 σ

H =

(
1 0 0 0
0 0 1 0

)
where σ is the variance of the jump allowed for the velocity. This parameter depends typically on
the type of target considered.

Since the trajectory is straight with piecewise constant velocity, the stake of the filtering is to
detect the jump as early as possible, and re-initialise the velocity in the best possible way once the
jump is detected, so that the Kalman filter can operate in the optimal way.

An example of a trajectory is given on figure D.2, along with the velocity along the x-axis.
We perform estimation on this trajectory with different number of particles. The estimation of

the position is very accurate whatever the number of particles. This position estimation is shown
on figure D.3. The velocity estimation, on figure D.4, especially at the moment of the jumps depend
on the number of particles used. We used 10, 100 and 1000 particles. For the case where only 10
particles are used, the jumps are detected with a delay, and the convergence takes time after a

145

APPENDIX D. PARTICLE FILTERS WITH JUMPS

(a) (b)

Figure D.2 – Measured trajectory fig. D.2a and real x-velocity fig. D.2b

jump. For 100 or 1000 particles, the results are quite equivalent, and the jump detection is faster,
and the velocity is better estimated right after the jumps. We also observe that when the number
of particles is low (10 particles for instance), there are more jumps. This is due to the observation
noise.

Figure D.3 – Estimated position by a Rao-Blackwell Particle Filter

The same results can be observed with piecewise constant accelerations. Piecewise constant
accelerations give smoother trajectories than piecewise constant velocities, but account for less
brutal jumps.

Does this filter converges to the optimal filter ? It is first necessary to specify what "conver-
gence" means. If pN(xn |y1:n) is the distribution given by the Rao-Blackwell Particle Filter for N
particles, then the convergence to the optimal filter means that pN(xn |y1:n) → p(xn |y1:n) when N
goes to the infinity. We need to specify in which sense this convergence has to be considered. A
common approach is to use the Total Variation norm, see [34], or the Hilbert metric, see [79]. Un-
der fairly large hypotheses, this convergence is easily obtained for fixed n, see [65]. However, what
would be really interesting would be to have uniform convergence in time, i.e. uniform on n, so
that the filter can be used online. This last type of convergence is much more difficult to prove,
even if it is often observed in practice, if we look at the beautiful results obtained with particle
filters in recent years, see [96].

The convergence that we are mentioning here is thus not the convergence of the industrials,
who want to know the convergence time of a filter when initialised far from the true state.

146

APPENDIX D. PARTICLE FILTERS WITH JUMPS

(a) (b)

(c)

Figure D.4 – Estimated velocities in the x-coordinate for a particle filter with 10 particles fig. D.4a, 100
particles fig. D.4b and 1000 particles fig. D.4c

147

APPENDIX D. PARTICLE FILTERS WITH JUMPS

We did not have time to investigate deeply these aspects, but some results can already be found
in the literature, see for example [43], [44] and [34]. This type of convergence is intimately related
to the fact that the exponential is memoryless with respect to the initial state of the system.

However, when applied to a non-linear Frenet-Serret model, the convergence properties no
longer hold. For the Frenet-Serret model, when confronted to real trajectories, the model noise is
imperative. So the Rao-Blackwell particle filter has troubles to detect the jumps, because they can
be hidden in process noise.

D.2 Variable Rate Particle Filter

The Variable Rate Particle Filter (VRPF) is extensively described in [59], and we will here recall
the basics of this filter. True target trajectories look like deterministic trajectories, with jumps that
occur at some times. These jumps may take place at any moment. The VRPF accommodates these
jumps in a continuous time setting. Indeed, it computes jumping times, with the hypothesis that
these jumps can occur at any moment, unlike the Jump Markov linear models, which consider
a discrete-time model where jumps and output measurements are synchronized, which leads to
algorithms such as the Rao-Blackwell Particle Filter described in the previous section.

The Variable Rate Particle Filter (VRPF), see [58], [59] and [32], is a particle filter used to track
dynamical systems subject to jumps at unknown random times. It is in particular well suited to
the case where the target’s dynamics are governed by a deterministic differential equation d

d x x =
f (x,θ) whose model parameters θ are fixed between two successive jumps, i.e. the dynamics are
deterministic between the jumps. The VRPF samples the jumping times and the parameters θ,
and evaluates likelihoods based on measurements that occur at times that differ from the jumping
times.

To describe the Variable Rate Particle Filter, we apply it directly to our Frenet-Serret target
model (2.33).

The state for the VRPF is defined as xk = (δk ,θk) ∈ R+×E. k ∈N is a discrete state time index,
δk > δk−1 > ... > δ0 denote the state jump times, and θk is the vector of parameters necessary to
recover the complete target state. We make a Markov assumption and denote xk ∼ f (xk |xk−1). At
time tn , we let Ntn = {k,k −1;δk > tn ≥ δk−1} and denote N +

tn
:= k the maximum of Ntn .

Like standard particle filters, this one works in two steps. In the first step, the particles’ states
are propagated with the model given to the filter. In the second step, weights are computed for
each particle, according to their position with respect to the measurement. The particles can then
be resampled according to their weights (the resampling can be done with many different tech-
niques, see for instance [48]). The simplest way to implement the VRPF for our specific model
would be to use the pseudo code given in algorithm 5, where N is the number of particles.

With the Frenet-Serret model, we let θk = (
γk ,τk ,uk

)T
. Indeed, when (γk ,τk ,ut) is known, the

trajectory follows a fully specified deterministic equation given by (2.33). Denoting by Γ(α,β) a
Gamma law of parameters α and β, the sampling distributions defining f are assumed to be

δk −δk−1 −δmin ∼ Γ(α,β),δmin > 0

γk −γk−1 ∼ N(γk−1,σ2
γ)

τk −τk−1 ∼ N(τk−1,σ2
τ)

uk −uk−1 ∼ N(uk−1,σ2
u).

(D.7)

Let also g (yn |xtn) ∼N (xtn ,Nn) be the measurement density.
This VRPF works fine on deterministic trajectories with random jumps. However, it is compu-

tationally demanding, especially when the initial parameters are not known.

148

APPENDIX D. PARTICLE FILTERS WITH JUMPS

Algorithm 5 VRPF to perform estimation at time t

1: for i = 1 to N do
2: k =N +,(i)

tn−1

3: while δ(i)
k < tn do

4: k ← k +1
5: If r and < q Draw x(i)

k ∼ f (xk |x(i)
k−1) and integrate (2.33) between times δ(i)

k−1 and δ(i)
k .

6: end while
7: N +,(i)

tn
= k

8: Add the new states to the particles: x(i)

0:N +,(i)
tn

=
(

x(i)

0:N +,(i)
tn−1

,x(i)

N +,(i)
tn−1

+1:N +,(i)
tn

)
9: Compute the weights, and then normalize them: w (i)

tn
∼ w (i)

tn−1
g (yn |x(i)

tn
), w (i)

tn
:=

w (i)
tn

/
∑N

j=1 w (j)
tn

,
10: Resample is necessary.
11: end for

149

APPENDIX D. PARTICLE FILTERS WITH JUMPS

150

Bibliography

[1] Pieter Abbeel, Adam Coates, Michael Montemerlo, Andrew Y. Ng, and Sebastian Thrun. Dis-
criminative training of kalman filters. In Robotics: Science and systems, volume 2, page 1,
2005. 56

[2] Cesare Alippi and Manuel Roveri. An adaptive cusum-based test for signal change detection.
In 2006 IEEE International Symposium on Circuits and Systems, pages 4 pp.–, May 2006. 119

[3] Vladimir I Arnold. Sur la géométrie différentielle des groupes de lie de dimension infinie et
ses applicationsa l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier, 16(1):319–361,
1966. 28

[4] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, February 2002. 44

[5] Yaakov Bar-Shalom, Kevin C. Chang, and Henk A. P. Blom. Tracking a maneuvering tar-
get using input estimation versus the interacting multiple model algorithm. Aerospace and
Electronic Systems, IEEE Transactions on, 25(2):296–300, 1989. 39, 46

[6] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with Applica-
tions to Tracking and Navigation: Theory Algorithms and Software. Wiley, 2004. 16, 18, 20,
37, 39, 46, 61

[7] Yaakov Bar-Shalom, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with Applica-
tions to Tracking and Navigation: Theory Algorithms and Software. Wiley, 2004. 86

[8] Yaakov Bar-Shalom, Peter K Willett, and Xin Tian. Tracking and data fusion. YBS publishing,
2011. 36

[9] Axel Barrau. Non-linear state error based extended Kalman filters with applications to navi-
gation. Theses, Mines Paristech, September 2015. 43

[10] Axel Barrau and Silvère Bonnabel. Navigating with highly precise odometry and noisy GPS:
a case study. In IFAC Proceedings Volumes. IEEE, 2016. 22

[11] Axel Barrau and Silvère Bonnabel. The invariant extended kalman filter as a stable observer.
IEEE Transactions on Automatic Control, 62(4):1797–1812, 2017. 37, 41, 43, 47, 48, 51, 52, 53,
55

[12] Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and applica-
tion, volume 104. Prentice Hall Englewood Cliffs, 1993. 119

[13] H Benoudnine, M Keche, A Ouamri, and MS Woolfson. Fast adaptive update rate for tracking
a maneuvering target with a phased array radar, using imm and mrimm algorithms. Journal
of Applied Science, 9(2), 2009. 119

[14] Dieter Bestle and Michael Zeitz. Canonical form observer design for non-linear time-
variable systems. International Journal of control, 38(2):419–431, 1983. 31

151

BIBLIOGRAPHY

[15] Robert H. Bishop. Geometric nonlinear filtering theory with application to the maneuvering
aircraft tracking problem. PhD thesis, Rice University, 1990. 41

[16] Robert H. Bishop and A.C. Antoulas. Nonlinear approach to aircraft tracking problem. Jour-
nal of Guidance, Control, and Dynamics, 17(5):1124–1130, 1994. 15, 31, 41

[17] Yves Blanchard. Le radar, 1904-2004: Histoire d’un siècle d’innovations techniques et opéra-
tionnelles. Ellipses, 2004. 3

[18] Henk AP Blom and Yaakov Bar-Shalom. The interacting multiple model algorithm for
systems with markovian switching coefficients. IEEE transactions on Automatic Control,
33(8):780–783, 1988. 23

[19] Yvo Boers and Johannes N. Driessen. Interacting multiple model particle filter. IEE
Proceedings-Radar, Sonar and Navigation, 150(5):344–349, 2003. 61

[20] Philip L. Bogler. Tracking a maneuvering target using input estimation. IEEE transactions
on Aerospace and Electronic Systems, (3):298–310, 1987. 17

[21] Silvère Bonnabel, Philippe Martin, and Pierre Rouchon. Symmetry-preserving observers.
IEEE Transactions on Automatic Control, 53(11):2514–2526, 2008. 52

[22] Silvère Bonnabel. Left-invariant extended kalman filter and attitude estimation. In Decision
and Control, 46th IEEE Conference on, pages 1027–1032. IEEE, 2007. 37

[23] Silvère Bonnabel, P. Martin, and P. Rouchon. Non-linear observer on lie groups for left-
invariant dynamics with right-left equivariant output. In IFAC World Congress, pages 8594–
8598, 2008. 52

[24] Silvère Bonnabel, P. Martin, and E. Salaün. Invariant extended Kalman filter: theory and
application to a velocity-aided attitude estimation problem. In Decision and Control, 2009
held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of
the 48th IEEE Conference on, pages 1297–1304. IEEE, 2009. 37

[25] Jérémie Boulanger, Salem Said, Nicolas Le Bihan, and Jonathan H Manton. Filtering from
observations on stiefel manifolds. Signal Processing, 122:52–64, 2016. 44

[26] Guillaume Bourmaud, Rémi Mégret, Marc Arnaudon, and Audrey Giremus. Continuous-
discrete extended Kalman filter on matrix lie groups using concentrated gaussian distribu-
tions. Journal of Mathematical Imaging and Vision, 51(1):209–228, 2014. 37, 44

[27] Guillaume Bourmaud, Rémi Megret, Audrey Giremus, and Yannick Berthoumieu. Discrete
extended Kalman filter on lie groups. In Signal Processing Conference (EUSIPCO), 2013 Pro-
ceedings of the 21st European, pages 1–5, September 2013. 37, 44

[28] Yann Briheche, Frederic Barbaresco, Fouad Bennis, and Damien Chablat. Update rates con-
straints in fixed-panel radar search pattern optimization with limited time budget. In Radar
Symposium (IRS), 2017 18th International, pages 1–10. IEEE, 2017. 110

[29] Yann Briheche, Frederic Barbaresco, Fouad Bennis, Damien Chablat, and François Gosselin.
Non-uniform constrained optimization of radar search patterns in direction cosines space
using integer programming. In Radar Symposium (IRS), 2016 17th International, pages 1–6.
IEEE, 2016. 110

[30] Martin Brossard, Silvère Bonnabel, and Jean-Philippe Condomines. Unscented kalman fil-
tering on lie groups. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, pages 2485–2491. IEEE, 2017. 61, 62

152

BIBLIOGRAPHY

[31] TE Bullock and S Sangsuk-Iam. Maneuver detection and tracking with a nonlinear target
model. In Decision and Control, 1984. The 23rd IEEE Conference on, volume 23, pages 1122–
1126. IEEE, 1984. 15

[32] Pete Bunch and Simon Godsill. Dynamical models for tracking with the variable rate particle
filter. In Information Fusion (FUSION), 2012 15th International Conference on, pages 1769–
1775. IEEE, 2012. 15, 21, 46, 86, 91, 145, 148

[33] Pete Bunch and Simon Godsill. Particle smoothing algorithms for variable rate models. IEEE
Transactions on Signal Processing, 61(7):1663–1675, 2013. 86, 91

[34] Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden markov models, 2009.
21, 146, 148

[35] Frank R. Castella. An adaptive two-dimensional Kalman tracking filter. IEEE Transactions
on Aerospace and Electronic Systems, (6):822–829, 1980. 23, 61, 69

[36] Josip Cesic, Ivan Markovic, and Ivan Petrovic. Moving object tracking employing rigid body
motion on matrix lie groups. CoRR, abs/1708.05548, 2017. 22

[37] Raja Chatila and Jean-Paul Laumond. Position referencing and consistent world modeling
for mobile robots. In Robotics and Automation. Proceedings. 1985 IEEE International Con-
ference on, volume 2, pages 138–145. IEEE, 1985. 87

[38] Daniel Clark. Bayesian filtering for multi-object systems with independently generated ob-
servations. 02 2012. 37

[39] S. A. Cohen. Adaptive variable update rate algorithm for tracking targets with a phased array
radar. Communications, Radar and Signal Processing, IEE Proceedings F, 133(3):277–280,
June 1986. 119

[40] Richard G. Curry. Radar System Performance Modeling. Number vol. 1 in Artech House radar
library. Artech House, 2005. 5, 26

[41] Jacques Darricau. Physique et théorie du radar: principes et éléments de base. Ed. Deniaud,
2002. 3

[42] Giorgio de Moura Magalhães, Eloi Dranka, Yusef Cáceres, João B. R. do Val, and Rafael S.
Mendes. Ekf on lie groups for radar tracking using polar and doppler measurements. In
2018 IEEE Radar Conference (RadarConf18), pages 1573–1578, April 2018. 22, 27, 44

[43] Pierre Del Moral. Non-linear filtering: interacting particle resolution. Markov processes and
related fields, 2(4):555–581, 1996. 148

[44] Pierre Del Moral and Alice Guionnet. On the stability of interacting processes with appli-
cations to filtering and genetic algorithms. In Annales de l’IHP Probabilités et statistiques,
volume 37, pages 155–194, 2001. 148

[45] Daniel Delahaye, Stéphane Puechmorel, and Loïc Boussouf. Trajectory prediction: a func-
tional regression approach. In ICRAT 2008, International Conference on Research in Air
Transportation, pages pp–xxxx, 2008. 81

[46] Frank Dellaert and Michael Kaess. Square root sam: Simultaneous localization and map-
ping via square root information smoothing. The International Journal of Robotics Research,
25(12):1181–1203, 2006. 87

[47] Tue-Cuong Dong-Si and Anastasios I Mourikis. Motion tracking with fixed-lag smoothing:
Algorithm and consistency analysis. In Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, pages 5655–5662. IEEE, 2011. 89

153

BIBLIOGRAPHY

[48] Randal Douc and Olivier Cappé. Comparison of resampling schemes for particle filtering. In
ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing
and Analysis, 2005., pages 64–69. IEEE, 2005. 44, 148

[49] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. Rao-blackwellised
particle filtering for dynamic bayesian networks. In Proceedings of the Sixteenth conference
on Uncertainty in artificial intelligence, pages 176–183. Morgan Kaufmann Publishers Inc.,
2000. 45, 86, 143

[50] Arnaud Doucet, Neil J Gordon, and Vikram Krishnamurthy. Particle filters for state estima-
tion of jump Markov linear systems. Signal Processing, IEEE Transactions on, 49(3):613–624,
2001. 21, 37, 44

[51] Arnaud Doucet and Adam M Johansen. A tutorial on particle filtering and smoothing: Fif-
teen years later. Handbook of nonlinear filtering, 12(656-704):3, 2009. 44

[52] Nour Elhouda Dougui, Daniel Delahaye, Marcel Mongeau, and Stéphane Puechmorel. Air-
craft trajectory planning under uncertainty by light propagation. Procedia-Social and Be-
havioral Sciences, 54:201–210, 2012. 81

[53] Zhansheng Duan, X Rong Li, Chongzhao Han, and Hongyan Zhu. Sequential unscented
kalman filter for radar target tracking with range rate measurements. In Information Fusion,
2005 8th International Conference on, volume 1, pages 8–pp. IEEE, 2005. 27

[54] Johannes Jisse Duistermaat and Johan AC Kolk. Lie groups. Springer Science & Business
Media, 2012. 28

[55] Ryan M Eustice, Hanumant Singh, and John J Leonard. Exactly sparse delayed-state filters.
2005. 87

[56] James Richard Forbes, Anton HJ de Ruiter, and David Evan Zlotnik. Continuous-time norm-
constrained kalman filtering. Automatica, 50(10):2546–2554, 2014. 37

[57] Crispin Gardiner. Stochastic methods, volume 4. springer Berlin, 2009. 19

[58] Simon Godsill and Jaco Vermaak. Variable rate particle filters for tracking applications. In
IEEE/SP 13th Workshop on Statistical Signal Processing, 2005, pages 1280–1285. IEEE, 2005.
21, 91, 148

[59] Simon J Godsill, Jaco Vermaak, William Ng, and Jack F Li. Models and algorithms for tracking
of maneuvering objects using variable rate particle filters. Proceedings of the IEEE, 95(5):925–
952, 2007. 20, 21, 74, 148

[60] Maria S Greco, Fulvio Gini, Pietro Stinco, and Kristine Bell. Cognitive radars: A reality? arXiv
preprint arXiv:1803.01000, 2018. 110

[61] Frederik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell, Jonas Jansson,
Rickard Karlsson, and P.-J. Nordlund. Particle filters for positioning, navigation, and track-
ing. IEEE Transactions on signal processing, 50(2):425–437, 2002. 44

[62] Fredrik Gustafsson. Particle filter theory and practice with positioning applications. IEEE
Aerospace and Electronic Systems Magazine, 25(7):53–82, 2010. 44

[63] Simon Haykin. Cognitive radar: a way of the future. IEEE Signal Processing Magazine,
23(1):30–40, Jan 2006. 110

[64] Xiao-Li Hu, Thomas Schön, and Lennart Ljung. A basic convergence result for particle fil-
tering. IEEE Transactions on Signal Processing, 56(4):1337–1348, 2008. 45

154

BIBLIOGRAPHY

[65] Xiao-Li Hu, Thomas Schön, and Lennart Ljung. A general convergence result for particle
filtering. IEEE Transactions on Signal Processing, 59(7):3424–3429, 2011. 146

[66] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the kalman filter to nonlinear
systems. In AeroSense’97, pages 182–193. International Society for Optics and Photonics,
1997. 41, 42

[67] Simon J. Julier and Jeffrey K. Uhlmann. Unscented filtering and nonlinear estimation. Pro-
ceedings of the IEEE, 92(3):401–422, 2004. 41, 42

[68] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John J Leonard, and Frank
Dellaert. isam2: Incremental smoothing and mapping using the bayes tree. The Interna-
tional Journal of Robotics Research, 31(2):216–235, 2012. 87

[69] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. isam: Incremental smoothing and
mapping. IEEE Transactions on Robotics, 24(6):1365–1378, Dec 2008. 87, 89

[70] Rudolf E. Kalman and Richard S. Bucy. New results in linear filtering and prediction theory.
J. Basic Eng., 1961. 111

[71] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1):35–45, 1960. 38

[72] Bernt M. Åkesson, John Bagterp Jørgensen, Niels Kjølstad Poulsen, and Sten Bay Jørgensen.
A tool for kalman filter tuning. In Valentin Pleşu and Paul Şerban Agachi, editors, 17th Eu-
ropean Symposium on Computer Aided Process Engineering, volume 24 of Computer Aided
Chemical Engineering, pages 859 – 864. Elsevier, 2007. 123

[73] Alireza Khosravian, Jochen Trumpf, Robert Mahony, and Christian Lageman. Observers for
invariant systems on lie groups with biased input measurements and homogeneous out-
puts. Automatica, 55:19–26, 2015. 52

[74] Mikhail Koldychev and Christopher Nielsen. Local observers on linear lie groups with lin-
ear estimation error dynamics. IEEE Transactions on Automatic Control, 59(10):2772–2777,
2014. 52

[75] Kurt Konolige. Large-scale map-making. In AAAI, pages 457–463, 2004. 87

[76] Jonathan Korn, Sol W. Gully, and Alan S. Willsky. Application of the generalized likelihood ra-
tio algorithm to maneuver detection and estimation. In 1982 American Control Conference,
pages 792–798, June 1982. 119

[77] Tony Lacey. Tutorial: The kalman filter. Georgia Institute of Technology. 139

[78] Nicolas Le Bihan. The geometry of proper quaternion random variables. Signal Processing,
138:106–116, 2017. 73

[79] François Le Gland, Nadia Oudjane, et al. Stability and uniform approximation of nonlin-
ear filters using the Hilbert metric and application to particle filters. The Annals of Applied
Probability, 14(1):144–187, 2004. 146

[80] X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking. part i. dynamic mod-
els. IEEE Transactions on Aerospace and Electronic Systems, 39(4):1333–1364, October 2003.
16

[81] X Rong Li and Vesselin P Jilkov. Survey of maneuvering target tracking. part v. multiple-
model methods. IEEE Transactions on Aerospace and Electronic Systems, 41(4):1255–1321,
October 2005. 40

155

BIBLIOGRAPHY

[82] David G Luenberger. Observing the state of a linear system. IEEE transactions on military
electronics, 8(2):74–80, 1964. 31

[83] Ronald Mahler. Phd filters of higher order in target number. IEEE Transactions on Aerospace
and Electronic Systems, 43(4), 2007. 37

[84] Philippe Martin and Erwan Salaün. Generalized multiplicative extended kalman filter for
aided attitude and heading reference system. In AIAA Guidance, Navigation, and Control
Conference, page 8300, 2010. 37

[85] Peter Matisko and Vladimír Havlena. Noise covariances estimation for kalman filter tuning.
IFAC Proceedings Volumes, 43(10):31 – 36, 2010. 10th IFAC Workshop on the Adaptation and
Learning in Control and Signal Processing. 123

[86] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, et al. Fastslam: A fac-
tored solution to the simultaneous localization and mapping problem. In Aaai/iaai, pages
593–598, 2002. 87

[87] Mark R. Morelande and Neil J. Gordon. Target tracking through a coordinated turn. In
Proceedings. (ICASSP ’05). IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2005., volume 4, pages iv/21–iv/24 Vol. 4, March 2005. 20, 86

[88] Nassib Nabaa and Robert H. Bishop. Validation and comparison of coordinated turn aircraft
maneuver models. IEEE Transactions on aerospace and electronic systems, 36(1):250–259,
2000. 31

[89] Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations, pages
65–84. Springer, 2003. 17, 37

[90] Marion Pilté, Silvere Bonnabel, and Frederic Barbaresco. Fully-adaptive update rate for non-
linear trackers. IET Radar, Sonar & Navigation, 2018. 9

[91] Marion Pilté, Silvère Bonnabel, and Frédéric Barbaresco. Tracking the frenet-serret frame
associated to a highly maneuvering target in 3d. In 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), pages 1969–1974, Dec 2017. 9, 23

[92] Marion Pilté and Frédéric Barbaresco. Tracking quality monitoring based on information
geometry and geodesic shooting. In Radar Symposium (IRS), 2016 17th International, pages
1–6. IEEE, 2016. 119

[93] Marion Pilté, Silvere Bonnabel, and Frédéric Barbaresco. Drone tracking using an innova-
tive ukf. In International Conference on Geometric Science of Information, pages 301–309.
Springer, 2017. 9

[94] Marion Pilté, Silvère Bonnabel, and Frédéric Barbaresco. An innovative nonlinear filter for
radar kinematic estimation of maneuvering targets in 2d. In Radar Symposium (IRS), 2017
18th International, pages 1–10. IEEE, 2017. 8

[95] Marion Pilté, Silvère Bonnabel, and Frédéric Barbaresco. Maneuver detector for active track-
ing update rate adaptation. In 2018 19th International Radar Symposium (IRS), pages 1–10.
IEEE, 2018. 9

[96] Patrick Rebeschini, Ramon Van Handel, et al. Can local particle filters beat the curse of
dimensionality? The Annals of Applied Probability, 25(5):2809–2866, 2015. 146

[97] Konrad Reif, Frank Sonnemann, and Rolf Unbehauen. An EKF-based nonlinear observer
with a prescribed degree of stability. Automatica, 34(9):1119–1123, 1998. 68

156

BIBLIOGRAPHY

[98] Branko Risti, Daniel Clark, and Ba-Ngu Vo. Improved smc implementation of the phd filter,
08 2010. 37

[99] Peter Sarunic. Adaptive update rate target tracking for a phased array radar. Master’s thesis,
University of South Australia, 1995. 119

[100] H. J. Shin, S. M. Hong, and D. H. Hong. Adaptive-update-rate target tracking for phased-
array radar. IEE Proceedings - Radar, Sonar and Navigation, 142(3):137–143, Jun 1995. 119

[101] Gabe Sibley, Larry Matthies, and Gaurav Sukhatme. Sliding window filter with application
to planetary landing. Journal of Field Robotics, 27(5):587–608, 2010. 89

[102] Iliyana Simeonova and Tzvetan Semerdjiev. Specific features of imm tracking filter design.
Information and Security, 9:154–165, 2002. 24, 25

[103] Robert A Singer. Estimating optimal tracking filter performance for manned maneuvering
targets. IEEE Transactions on Aerospace and Electronic Systems, (4):473–483, 1970. 19, 27,
31, 118

[104] George M Siouris. Missile guidance and control systems. Springer Science & Business Media,
2004. 14

[105] Merrill Ivan Skolnik. Radar handbook. 1970. 3

[106] Gabriel A Terejanu. Unscented kalman filter tutorial. University at Buffalo, Buffalo, 2011. 42

[107] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications to
large-scale mapping of urban structures. The International Journal of Robotics Research,
25(5-6):403–429, 2006. 87

[108] Guenter van Keuk and Samuel S Blackman. On phased-array radar tracking and parameter
control. IEEE Transactions on Aerospace Electronic Systems, 29:186–194, 1993. 10, 111, 112,
113, 114, 118, 120, 129

[109] Eric A. Wan and Rudolph Van Der Merwe. The unscented kalman filter for nonlinear esti-
mation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communi-
cations, and Control Symposium (Cat. No.00EX373), pages 153–158, 2000. 42

[110] Gregory A. Watson and W. Dale Blair. Tracking performance of a phased array radar with
revisit time controlled using the imm algorithm. In Proceedings of 1994 IEEE National Radar
Conference, pages 160–165, Mar 1994. 119

157

Résumé

Les nouvelles générations de radars sont
confrontées à des cibles de plus en
plus menaçantes. Ces radars doivent
effectuer plusieurs tâches en parallèle,
dont la veille et la poursuite. Pour cela, ils
peuvent être équipés de panneaux fixes,
pour éviter les contraintes liées à la ro-
tation de l’antenne. Le pistage du radar
doit donc être renouvelé pour répondre à
la double difficulté posée par le pistage
des cibles très manoeuvrantes et la ges-
tion des ressources.
Dans ce contexte, cette thèse étudie de
nouvelles méthodes de pistage pour les
cibles hyper-manoeuvrantes. Un nou-
veau modèle de cible, en coordonnées
intrinsèques, est proposé. Ce modèle
est exprimé directement dans le repère
de la cible, afin de décrire au mieux des
manoeuvres fortes avec des accéléra-
tions normales bien supérieures à la
gravité terrestre. Un algorithme de fil-
trage utilisant la formulation intrinsèque
du modèle est développé. Cet algo-
rithme ayant la même structure qu’une
filtre de Kalman étendu, il a été testé
sur de vraies données. La comparaison
avec d’autres algorithmes de filtrage a
montré de réelles améliorations sur un
ensemble important de trajectoires. Une
nouvelle méthode d’estimation, reposant
sur la formulation en termes de moindres
carrés de l’approche de lissage, et per-
mettant de tenir compte de sauts dans
la trajectoire est également proposée,
et les bénéfices sur des méthodes plus
classiques de sauts entre modèles sont
montrés. Indépendamment, le problème
de cadence adaptative est également
traité. Un algorithme très général perme-
ttant d’optimiser la cadence de mesure
pour ménager le budget temps du radar
pour la surveillance est présenté.
Mots clefs : Estimation, pistage de
cibles, filtre de Kalman, groupes de Lie,
cadence adaptative

Abstract

The new generation of radars is facing
increasingly threatening targets. These
radars are asked to perform several
tasks in parallel, including surveillance
and tracking. To this aim, they can be
equipped with staring antennas, so they
overcome the constraints induced by the
rotation of the antenna. The tracking
function of the radar has thus to be up-
graded to respond to the double issue of
tracking highly manoeuvring targets and
managing the resources to balance time
between tasks.
In this context, this thesis investigates
new means of tracking highly manoeu-
vring targets. A new target model based
on intrinsic coordinates to perform tar-
get tracking is proposed. This new tar-
get model is expressed in the frame of
the target itself, and uses the Frenet-
Serret frame, which is well suited to the
description of highly dynamic manoeu-
vres involving normal accelerations that
are much larger than earth gravity. A fil-
tering algorithm using the special intrin-
sic formulation of the target model is de-
veloped. This filtering algorithm is very
similar in terms of implementation to an
Extended Kalman filter, and was imple-
mented using real data. The comparison
with standard target models and filtering
algorithms show improvements over sim-
ple models and algorithms on a large set
of trajectories. A new estimation method,
relying on the least squares formulation
of the smoothing approach, and taking
into account kinematic jumps in the tra-
jectory is also developed. This method
also shows improvements over a set of
common algorithms based on standard
manoeuvre detection. Independently, we
investigate the issue of update rate adap-
tation for radar measurements. A very
general update rate adaptation algorithm
is derived to optimise the time of revisit
of each target, allowing to preserve the
radar time budget for other tasks simulta-
neously performed, such as surveillance.
Keywords: State estimation, Target
tracking, Kalman filter, Lie groups, Up-
date rate adaptation

	Contents
	Introduction
	Résumé en français
	Foreword
	Radar systems
	History
	General description of radar systems
	Digital processing
	Target tracking

	Motivations and objectives
	State estimation
	Update rate adaptation

	Contributions of the thesis
	Papers published during the thesis
	Organisation of the document

	I State estimation: target models and filtering algorithms
	Target model in intrinsic coordinates
	Résumé en français : Modèle de cible en coordonnées intrinsèques
	Introduction
	State of the art
	Model without manoeuvres
	Manoeuvre models with decoupled coordinates
	Non-linear models, intrinsic models
	Models with jumps
	Lie group based models

	Radar industrial tracking models
	3D target model
	Multiple target models

	Radar measurement models
	New target model in intrinsic coordinates
	2D target model
	3D target model
	Generalisations

	Conclusion

	Filtering algorithms
	Résumé en français : Algorithmes de filtrage
	Introduction
	The estimation problem for single target tracking
	Optimal filter
	Suboptimal filters

	State of the art
	Linear Kalman Filter
	Interacting Multiple Model Filter (IMM)
	Non-linear filters

	IEKF applied to the 2D Frenet-Serret model
	Position observations in Cartesian coordinates
	Range and bearing observations
	Comparison with an EKF derived from the same target model
	Discussion

	IEKF applied to the 3D Frenet model
	Similarities with the Invariant theory
	Derivation of the algorithm
	Discussion on the filter's expected stability

	Simulations
	2D simulations and comparison with the EKF on the same target model
	3D simulations

	Left-invariant UKF on a 2D model
	Derivation of the filter
	Results

	Conclusion

	Comparison with other existing algorithms and models
	Résumé en français : Comparaison avec d'autres modèles et algorithmes existants
	Introduction
	Process noise tuning
	Issues of noise tuning
	Castella noise tuning

	Test on a real scenario
	The models and algorithms used for comparison
	Constant velocity and the EKF
	Multiple model and the IMM
	The Frenet-Serret target model with an IEKF
	The Frenet-Serret target model with an EKF

	Set of trajectories
	Simulators
	Kinematic characteristics

	Results
	Set of trajectories to tune the process noise
	Set of trajectories to test the tunings

	Conclusion

	II Alternative state estimation: Smoothing
	Smoothing applied to target state estimation
	Résumé en français : Lissage appliqué à l'estimation d'état
	Introduction
	Smoothing as an estimation procedure for target tracking
	Smoothing as an alternative to filtering algorithms
	Classical smoothing approach
	Restriction to a deterministic evolution model over a sliding window as a tuning strategy

	Smoothing applied to deterministic systems with random jumps
	Considered systems and simplifying assumptions
	Corresponding smoothing problem

	Proposed algorithm
	Application to a linear target model
	Target model
	Full resolution of the deterministic problem
	Linear target model with jumps

	Application to the 2D Frenet-Serret target model
	Solving the smoothing problem without jumps
	Accounting for jumps

	Comparison with other algorithms
	Comparison with the IEKF
	Comparison with an IMM

	Discussion
	Comparison with other filters

	Conclusion

	III Update rate adaptation
	Update rate real-time optimisation
	Résumé en français : Optimisation en temps réel de la fréquence des mesures
	Introduction
	Fixed update optimisation criterion
	General formulation of the optimisation problem
	Resolution
	Practical use of the criterion

	Discussion
	Conclusion

	Adaptive update rate
	Résumé en français : Cadence adaptative
	Introduction
	Links with prior literature
	Organisation and contributions of the chapter

	Update rate adaptation with a non-linear model
	Method: an adaptive criterion for update rate adaptation
	Underlying search strategy

	Application: Non-linear target model
	Experiments
	Tracking results with a Linear Kalman filter and an IEKF
	Update rate adaptation

	Discussion
	Conclusion

	Conclusion
	Résumé en français
	Summary of the main contributions of the thesis
	Future work

	Mathematical definitions: Lie groups
	General definitions
	Specific Lie groups used in the thesis
	Group of 2D rotations SO(2)
	Group of 2D rotations and translations SE(2)
	Group of 3D rotations SO(3)
	Group of 3D rotations and translations SE(3)

	More details about the Kalman Filter
	Maximum Likelihood Estimator
	Algorithm derivation

	Linearisation of the 2D Frenet-Serret model for smoothing
	Particle filters with jumps
	The Rao-Blackwell particle filter
	Description
	Results on piecewise linear trajectories

	Variable Rate Particle Filter

