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Chapter 1

Introduction

Autonomous vehicles are getting more and more attention because of their potential to both
significantly reduce the number of road fatalities and improve drivers’ daily lives. Driverless cars
research field has been very active in recent years, and significant advances have been achieved.
However, there are still some significant gaps before having fully automated vehicles on public
roads.

The research on the last years has been focused on the development of multi-sensor systems able
to perceive the environment in which the vehicle is driving in, permitting to create a comprehensive
map of the traffic situation. These multi-sensor perception systems are significantly increasing
the complexity when it comes to autonomously control the vehicle. Different control systems
are activated according to a multi-target decision making system. Each of these systems follows
performance and stability criteria for its design, but they all have to work together, providing
stability guarantees and being able to handle unexpected situations as unpredicted uncertainties
or even fully outages from sensors. With these premises, the goal of this Ph.D. work is to further
investigate intelligent advanced control systems to provide stable responses for autonomous vehicles
under different circumstances.

This thesis has been developed within the Robotics and Intelligent Transportation Systems
(RITS) team/project at the French National Institute for Research in Computer Science and
Control (INRIA, from french: Institut National de Recherche en Informatique et en Automatique).
In the following, the author explains motivation, objectives, manuscript organization and main
contributions of the presented work.

1.1 Motivation

Autonomous driving aims to improve traffic flow, reduce accidents and fuel consumption, and make
possible personal car travel for everyone regardless of their abilities or conditions. An autonomous
vehicle is built by combining a set-of-sensors and actuators together with sophisticated algorithms.
These algorithms perform different functions, taking the information coming from the sensors to
make the vehicle react to different traffic situations through the actuators [Luettel et al., 2012]. A
general architecture for autonomous driving is in Fig. 1.1. Details about each of the blocks that
form this autonomous vehicle’s architecture are found below:

• Acquisition. It is the process on charge of getting information from the installed sensors in
the vehicle. Global Position Systems (GPS), Inertial Measurement Unit (IMU) and odom-
etry are used for vehicle location in a coordinate framework; Light Detection And Ranging
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1.1. MOTIVATION 3

(LiDAR) sensors, radar, ultrasounds, and cameras are employed for having a 360º view of
the environment.

• Communication. Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) wireless com-
munications are used to be able to communicate with other vehicles and road infrastructure.

• Perception. This block uses the information coming from the acquisition stage, in order
to understand and model the environment around the vehicle, being aware of its state in
such environment. Obstacles detection in the surroundings (pedestrians, vehicles. . . ), ego-
vehicle’s localization and detection of lane marks on the road, are some of the tasks linked
to this block.

• Decision. It manages the data processed in the perception stage for a dynamic behavior of
the vehicle. It is able to react and interact with unexpected situations that usually affect
the predefined driving such as: pedestrians, road works, obstacles, Human-Machine-Interface
(HMI) request, etc.

• Control. It is responsible for the reference path tracking and driving safety requirements
provided by the decision stage. Control variables as steering angle and longitudinal velocity
are obtained in order to correctly follow orders given by the decision stage.

• Actuation. The control output is sent to the different vehicle actuators: The steering wheel
for the lateral control; and throttle, brake and gear shift for longitudinal control.

This PhD work is focused in the control block design. According to different scenarios (i.e.
road layout, other traffic agents interaction), different control systems are required. Activation is
commanded by the decision system based on the information provided by the perception block.
Control systems can be divided in classical, optimal, robust, adaptive and Fault Tolerant Control
(FTC):

• Classical control is based on the use of linear differential equations describing system dynam-
ics. Control mission is to make the error between reference input and feedback sensor state
zero.

• Optimal control, on the other hand, is an extension of classical control in which you answer
the question: How do I design my controller to ensure that I optimize a performance index?
It assumes a perfect model of the system.

• Robust control, on the contrary, assumes that the model is imperfect, seeking for stability
and quality of the controller given external disturbances or uncertainty in the system model.

• Adaptive control is required in scenarios where large changes occur. Controller parameters
change with time and tracks the changes in the plant, with the goal of designing a system
which, at all instants, performs in accordance with the design constraints.

• FTC aims to increase plant availability and reduce the risk of safety hazards. Its goal is to
prevent that simple faults develop into serious failure.

Vehicle dynamic control can be divided in lateral and longitudinal controllers. The former
allows to automatically steer according to a planned trajectory. The latter acts on the throttle
and brake for folllowing a reference speed, playing a key role to ensure safety and comfort of
passengers.
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Specifically related to automated longitudinal control, Cruise control and platooning tasks are
mainly developed. Cruise control permits to set a maximum speed at which someone desires to
travel, acting over throttle and break pedals in order to maintain the speed of the vehicle even on up
and down hills. By adding a forward radar, vehicle gains environmental information – intervehicle
distance – to adapt its velocity according to the preceding’s one. This is called Adaptive Cruise
Control (ACC). ACC reduces congestion in highways by making formation of vehicles. V2V
communication is added to the existing ACC system, improving traffic flow through the formation
of a tighter string of vehicles– so-called Cooperative Adaptive Cruise Control (CACC). While
ACC/CACC are comfort systems to help the driver and reduce traffic congestion problem, they
do not have a way to prevent a crash with a forward vehicle or pedestrian. These kind of systems
are not full range, and another controller will be needed if preceding vehicle brakes suddenly or
a pedestrian passes between two vehicles. Emergency brake control needs to be developed. Once
both cruise and emergency brake control are designed, an optimization process could be carried
out in order to make maneuvers optimal. This involves completing maneuvers, such as join, split
or change lane in the minimum possible time, while maintaining as high a speed and as small
a distance from the preceding vehicle as practicable and safe. Optimal acceleration/deceleration
could be also treated in the sense of minimizing fuel consumption. All these solutions together
significantly enhance road safety and improve highway utility. However, various uncertainties and
disturbances present in the real world should be considered to have not only a optimal solution,
but robust. Uncertainties or external disturbances are for example dynamics of different vehicles,
variant delay communication between vehicles, wind gust or road slopes. When dynamics difference
are large, and adaptive control with identification process would be needed. Finally, FTC is also
employed in order to deal with communication link availability or in-wheel motor faults in electrical
vehicles, among others. This shows the need to employ different control systems in order to have
a complete solution dealing with different traffic situations, dynamics of ego and surrounding
vehicles, sensor/actuators availability, pedestrians or even driver preferences.

Lateral control is in charge to turn the steering wheel for applying path corrections to reduce or
remove errors between actual and intended paths. The intended path can change in order to avoid
obstacles or pedestrians. It is clear that GPS, camara, odometry and LiDAR is needed in order
to localize the vehicle with respect to the intended path. A classical solution should be able to
navigate soft turns and straight lines at specific velocity. It is logical that the steering wheel of our
car does not turn in the same way to take a curve, if this is done at 10km/h or 100km/h. Different
controllers would be needed depending on the longitudinal velocity of the vehicle. At the same
time, those controllers could be modified to cover a wide range of roads/situations, including sharp
turns, roundabouts, lane change and so on. Adaptive control could offer a good adaptability to
different road types and velocities. Robustness is also important in lateral control. Uncertainties
are mainly in parameters as tire cornering stiffness, vehicle longitudinal velocity and yaw rate.
A typical external disturbance is the road surface friction condition, which is uncertain and can
change extremely quickly. It is not the same to drive in icy than in rough asphalt roads. To
improve control, the road surface friction can be treated as a robust solution for a specific range,
or even as an adaptive solution if an estimation of this parameter exists. Finally, FTC solutions
would be also important to ensure accurate path tracking in the presence of faults. Faults could
go from sensors fails to wheel lock. Consequently, lateral control needs different control solutions
depending on the road form and situation, vehicle dynamics and sensor/actuators availability.
Driver preferences could be also important in order to adapt driving style.

In short, both longitudinal and lateral control solutions have many different solutions depending
on the nature of the problem, and a control/supervision structure would be necessary to deal with
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all the types of changes that may come. In this thesis, Youla-Kucera (YK) parameterization is
analysed as a methodology that could improve the security of autonomous driving systems by
providing a framework managing different sensor/actuator setups, dynamics and traffic situations
with stability guarantees.

1.2 Objectives

The objective of this Ph.D. thesis is to further investigate the YK parameterization to provide
stable responses for autonomous vehicles when dynamics or environmental changes occur. This
thesis explores the use of the YK parameterization in dynamics systems such as vehicles, with
special emphasis on stability when some dynamic change or the traffic situation demands controller
reconfiguration.

In order to meet with the idea of general control framework handling those changes into the
vehicle, different steps should be followed: First, controller reconfiguration due to different traffic
situations is explored. Then, dynamics of ego or surrounding vehicles could be important in order
to improve vehicle performance/stability. Thus, identification of unmodeled vehicle dynamics is
analysed. Finally, both controller reconfiguration and dynamics identification should be used
together following some performance/stability criteria.

Focus is in obtaining simulation and experimental results related to the use of the YK parame-
terization in the longitudinal control of an autonomous vehicle. CACC applications are targetted,
with the aim not only of using for the very first time YK parameterization in the Intelligent
Transportation Systems (ITS) domain, but improving CACC state-of-the art by providing sta-
ble controller reconfiguration results when non-available communication link with the preceding
vehicle, cut-in/out maneuvers or surrounding vehicles with different dynamics.

With the present results, the author aims to prove adaptability, stability and real implementa-
tion of the YK parameterization as control framework for secure responses in autonomous driving.

1.3 Manuscript organization

The present Ph.D. work is organized in a total of six chapters. An overview of remaining chapters
is given below:

Chapter 2. State of the art. This chapter presents a review of the YK parameterization
related to classical, optimal, adaptive, robust and FTC. The origins of this mathematical framework
are explained. Important groups worldwide are reviewed, focusing on the different types of control
applications developed, allowing the understanding of open challenges and future research work.

Chapter 3. Youla-Jabr-Bongiorno-Kucera parameterization. YK parameterization
provides all stabilizing controllers for a given plant, and this is used for performing stable con-
troller reconfiguration. YK mathematical basis is provided with emphasis in stability proof. Dif-
ferent control structures for stable switching are derived from this parameterization, dealing with
problems such order complexity, plant disconnection or matrix inversability. Different numerical
examples are given for the better understading of the stable controller reconfiguration and transient
behavior depending on the chosen YK-based control structure.

Chapter 4. Dual Youla-Jabr-Bongiorno-Kucera parameterization. Dual YK parame-
terization provides all plants stabilized by a given controller, and this is used to perform controller
design in the presence of system variations or Closed-Loop (CL) identification. The basis of this
parameterization is also explained. CL stabilization in the presence of system variations is anal-
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ysed. The dual YK parameterization properties are used for obtaining a Multi Model Adaptive
Control (MMAC) approach, and CL identification algorithms.

Chapter 5. Applications. This chapter explores the uses of YK and dual YK parameteriza-
tion in autonomous driving; specifically, CACC applications are considered in the presence of traffic
or dynamics changes. YK-based stable controller reconfiguration is used to deal with the problem
of non-available communication link with the preceding vehicle; and vehicles joining/leaving the
string. Then, as vehicles in the string could be different, dual YK parameterization is employed to
perform CL longitudinal dynamics identification. Finally, both YK and dual YK parameterization
are used in a MMAC approach to deal with vehicles heterogeneity in CACC string of vehicles.
Simulation and experimental results with different type of controllers and structures prove adapt-
ability, stability and real implementation of the YK parameterization.

Chapter 6. Conclusions. Conclusions and most important remarks, with respect to the
problems addressed in the present Ph.D. work, are given in this chapter. Also future research lines
are presented and discussed.

1.4 Contributions

In the present dissertation, YK parameterization is used as control framework able to deal with
controller reconfiguration, dynamics identification and adaptive control approaches. Contributions
are detailed below:

1. YK parameterization provides all stabilizing controllers for a given plant. This is used in
order to perform stable controller reconfiguration. Different YK-based control structures are ob-
tained for dealing with problems such order complexity, plant disconnection or matrix inversability.
Stability properties are preserved even if different structures are employed, but transient behavior
between controllers changes depending on the employed YK-based structure. One of the structures
presents the best transient behavior without oscillations, a lower order controller complexity and
no need to disconnect the initial controller, which would be important if the system shutdown is
very expensive, or the initial controller is part of a safety circuit. This structure is used together
with CACC applications improving CACC state-of-the-art. A hybrid behavior between two CACC
controllers with different time gaps is explored by means of the YK parameterization, in order to
avoid ACC degradation when communication link with preceding vehicle is lost. The proposed
system uses YK parameterization and communication with a vehicle ahead (different from the
preceding one) providing stable responses and, more interestingly, reducing intervehicle distances
in comparison with an ACC degradation. A similar idea of hybrid behavior between CACC con-
troller with different time gap is developed for entering/exiting vehicles in the string. In that case,
YK parameterization is able to ensure stability of these merging/splitting maneuvers.

2. Dual YK parameterization provides all the plants stabilized by a controller. This is employed
for solving CL identification problems, or adaptive control solutions, which integrate identification
and controller reconfiguration processes. YK-based CL identification uses classical OL identifica-
tion algorithms, providing better results than if it is used alone. Results in a CACC-equipped
vehicle prove how CL nature of the data affects a classical OL identification algorithm, and how
dual YK parameterization helps to mitigate these effects. Finally, an adaptive control application
is developed by using MMAC. Longitudinal dynamics of two vehicles in a CACC string are esti-
mated within a model set, so the good CACC sytem can be chosen even if a heterogeneous string
of vehicles is considered. Dynamics estimation results much faster than other estimation processes
in the literature.

3. Different type of controllers and structures are used throughout this thesis, proving the
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adaptability of the YK parameterization to any type of controller. Simulation and experimental
results demonstrate real implementation of stable controller reconfiguration, CL identification and
adaptive control solutions dealing with dynamics changes or different traffic situations. The author
thinks that YK is a suitable control framework able to ensure responses in autonomous driving.

1.5 Publications

As results from the work in the development of the Ph.D. thesis, the author cites the following
publications:

1.5.1 Journal articles

Title: Youla-Kucera based Advanced Adaptive Cruise Control.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Vehicular Technology.
Status: Second revision submitted October 2018.

Title: Multi Model Adaptive Control for CACC applications.
Authors: F. Navas, V. Milanés, C. Flores and F. Nashashibi.
Journal: Control Engineering Practice.
Status: Second revision submmited September 2018.

Title: Youla-Kucera based Fractional Controller for Stable Cut-in/Cut-out Transitions in
Cooperative Adaptive Cruise Control Systems.
Authors: F. Navas, R. de Charette, C. Flores, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Intelligent Transportation Systems.
Status: Submitted September 2018.

Title: A Cooperative Car-Following/Emergency Braking System With Prediction-Based
Pedestrian Avoidance Capabilities
Authors: C. Flores, P. Merdrignac, R. de Charette, F. Navas, V. Milanés and F. Nashashibi.
Journal: IEEE Transactions on Intelligent Transportation Systems
Number: 99 Pages: 1-10 Year: 2018.

1.5.2 Conference papers

Title: Youla-Kucera based lateral controller for autonomous Vehicle.
Authors: I. Mahtout, F. Navas, D. González, V. Milanés and F. Nashashibi.
Proceedings: 21st IEEE International Conference on Intelligent Transportation Systems
Place: Hawaii, USA Date: November 2018.

Title: Youla-Kucera control structures for switching.
Authors: F. Navas, I. Mahtout, V. Milanés and F. Nashashibi.
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Proceedings: 2nd IEEE Conference on Control Technology and Applications.
Place: Copenhagen, Denmark Date: August 2018.

Title: Youla-Kucera based online closed-loop identification for longitudinal vehicle dynamics.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Proceedings: 21st IEEE International Conference on System Theory, Control and Computing.
Place: Sinaia, Romania Date: October 2017.

Title: Using Plug&Play Control for stable ACC-CACC system transitions.
Authors: F. Navas, V. Milanés and F. Nashashibi.
Proceedings: 2016 IEEE Intelligent Vehicles Symposium.
Place: Gothenburg, Sweden Date: June 2016.



Chapitre. État de l’art

Below is a French summary of the following chapter "State of the art".

Au sein de l’automatisme, l’ingénierie du contrôle est considérée comme une technologie ma-
ture et cela de différentes manières. Elle s’inclut quasiment dans chaque type d’application dans
le monde de l’industrie. La littérature regorge d’algorithmes de contrôle de systèmes, aussi com-
plexes que soient les situations. Cependant, en pratique, de nombreux problémes apparaissent au
moment de l’implémentation et plus particuliérement quand le système inclut des changements
dynamiques, structuraux ou environnementaux. Pour résumer, beaucoup d’outils existent pour
concevoir des contrôleurs appliqués aux systèmes dont la structure est connue. Toutefois, ces
derniers ne fournissent pas les mêmes performances quand la structure du système contrôlé change
au fil du temps. Le probléme de concevoir un contrôleur capable de traiter ces changements n’est
pas nouveau. On peut citer le "Fault Tolerant Control" (FTC) spécialisé dans le cas des composants
tombant en panne. Cependant, le travail dans le domaine est généralement limité par un nombre
de pannes spécifiques auxquelles s’ajoute le probléme de l’apparition de nouveaux composants.
Un autre domaine qui considère le changement au sein des systèmes est le contrôle adaptatif qui
permet de suivre des changements pouvant être définis par la variation des paramètres du système
controlé. Les changements nécessaires à la reconfiguration du système doivent être identifiés d’une
manière ou d’une autre. Lorsque ces changements sont modélisés par des variations paramétriques
prédéfinis, les changements structuraux ou l’introduction d’une nouvelle dynamique ne le sont pas.
On retrouve aussi le contrôle robuste qui considère, quant à lui, un système dont les caractéris-
tiques changent avec incertitudes. Quand ces incertitudes sont limitées, ce contrôleur fixe, garantit
un comportement acceptable. Cependant, ce dernier n’est pas concevable dans les scénarios où
ces changements sont trop importants. Les structures hiérarchiques gérant les changements des
structures, à un instant précis, ont aussi été largement étudiées dans les domaines du contrôle dé-
centralisé, distribué, hiérarchique et réseau. Traiter ces changements structuraux, implique aussi
des transitions d’un système à un autre. Le domaine de "bumpless transfer" étudie le comportement
des contrôleurs pendant la transition entre différent systèmes. Pour conclure, il y a différentes solu-
tions dépendantes de la nature du problème. De plus, une structure de contrôle et de supervision,
doit être appliquée lorsque différents types de changements interviennent.

La paramétrisation de Youla-Jabr-Bongiorno-Kucera (YK) est un outil de contrôle qui est ap-
paru simultanément dans [Kučera, 1975,Youla et al., 1976a,Youla et al., 1976b]. La paramétrisation
YK fournit tous les contrôleurs stabilisant un système donné. Ces derniers sont paramétrisés par
la fonction de transfert appelée paramètre YK Q et donc : K(Q). Il peut être utilisé pour réaliser
la reconfiguration stable du contrôleur quand différents changements interviennent. Le contrôleur
en question peut être classique, adaptatif, optimal ou robuste. Mélanger différents types de con-
trôleur est permis dans cette reconfiguration. La théorie duale de la paramétrisation YK, fournit

9
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tous les systèmes stabilisés par un contrôleur donné. L’ensemble de tous les systèmes stabilisés
par un contrôleur dépend de la fonction de transfert appelée paramètre YK dual S, ce qui donne:
G(S). Ce paramètre peut représenter la variation paramétrique, les incertitudes de modélisation,
changement de point d’opération .... Ce dernier est employé pour les identifications dynamiques
et/ou l’identification de nouveaux capteurs/actionneurs connectés au système. Finalement, les
deux paramètres YK peuvent être utilisés ensemble et ainsi une structure de contrôle qui change,
basé sur des identifications dynamiques, est obtenue. Comme les capteurs/actionneurs sont iden-
tifiés, le contrôle hiérarchique et le FTC sont ainsi réalisable par la paramétrisation de YK. Le
contrôleur est modifié en fonction des nouvelles dynamiques, avec différents critères de performance
et de stabilité. Avec ces hypothèses, YK est capable de répondre à toutes les solutions proposées
au dèbut de ce chapitre avec la même structure théorique, tout en garantissant la stabilité. Par
conséquent, il peut servir d’outil général de contrôle pour les systèmes exposés aux changements
dynamiques, structuraux ou environnementaux.

Ce chapitre donne un aperçu du domaine de recherche de la paramétrisation YK. Les origines
de cette technique sont expliquées. Les travaux principaux à travers le monde sont étudiés, en se
concentrant principalement sur les différents domaines d’application du contrôle basé sur cet outil
mathématique. Les applications sont classées en fonction de l’utilisation de Q, de S ou bien des
deux.



Chapter 2

State of the art

Control engineering is considered as a mature technology in many different ways, being able of
dealing with almost any kind of application in the industrial context. The literature is rich in
algorithms to design control systems, even highly complex control problems. But, in practice,
several problems appear for its implementation, especially when the system is exposed to dynamics,
instrumental or environmental changes. In short, a lot of tools exists to design feedback controllers
for a system with a known structure, but they are not providing proper responses when the
structure of the system to be controlled changes over time. The problem of designing a controller
able to deal with these changes is not new: Fault Tolerant Control (FTC) specializes in the case of
components that fail. The work in this area, however, is usually limited to a prespecified amount of
faults, and the problem of handling new components is not addressed. Another field that considers
changing systems, it is the adaptive control area, which allows tracking changes that can be defined
as parameters in the controlled system. Changes for controller reconfiguration need to be identified
somehow. Since those changes are already set as predefined parameters, structural changes or new
dynamics introduction are not considered either. On the other hand, robust control considers
a system that changes their characteristics over time through uncertainties. These changes are
somewhat bounded, so a fixed controller can be designed, guaranteeing an acceptable behavior.
However, robust control design is not possible in scenarios where changes in the system are large.
Hierarchical structures to deal with running structural changes have been also widely studied in the
areas of decentralized, distributed, hierarchical or networked controls. Handling these structural
changes also involves dealing with the transients when changing from one system to the other.
Considerations about transient behavior when doing controller reconfiguration can be found on
the bumpless transfer control area. In short, there are many different solutions depending on the
nature of the problem, and a control/supervision structure would be necessary to deal with all the
types of changes that may come.

Youla-Jabr-Bongiorno-Kucera (YK) parameterization is a control framework that appeared
simultaneously in [Kučera, 1975, Youla et al., 1976a, Youla et al., 1976b]. YK parameterization
provides all stabilizing controllers for a given system. All stablizing controllers are parameterized
based on the transfer function called YK parameter Q, so K(Q). It can be used to perform
stable controller reconfiguration when some change occurs. The type of controller could be any–
classical, adaptive, optimal or robust control. Mixing different types of controller is allowed in
this controller reconfiguration. The dual theory, dual YK parameterization, provides all the plants
stabilized for a given controller. The class of all the plant stabilized by a controller depends
on the transfer function called dual YK parameter S, so G(S). This parameter could represent
any plant variations, uncertainties, parameter variations, change of operation point, etc. This
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is employed for dynamics identification and/or identification of new sensors/actuators connected
to a system. Finally, both can be used together, so a control structure that changes based on
identified dynamics is obtained; as sensors/actuators are identified, hierarchical and fault tolerant
control structures are also supported by YK. Controller is changed depending on new dynamics
with some performance/stability criteria. With these premises, YK is able to encompass all the
solutions proposed at the beginning of this chapter within the same theoretical framework and
with stability guarantees. Thus, it could serve as a general control framework to deal with systems
exposed to dynamics, instrumental or environmental changes.

The present chapter gives an overview of the YK parameterization research field. The origins of
this technique are explained. Important groups worldwide are reviewed, focusing on the different
type of control applications by using this mathematical framework. Applications are divided
depending on whether Q or S are used, or both.

2.1 Origins

G(s)
yu

K(s)
r

-

Figure 2.1: Negative feedback loop.

The origin of YK is in [Newton et al., 1957]. Given a Single-Input-Single-Output (SISO) stable
plant, they found a way to parameterize all the controllers that stabilize it. Let’s assume a feedback
loop as in Fig. 2.1. If a stable controller K(s) is connected to the plant G(s) in a negative feedback
loop, the transfer function of the control input u from the reference signal r yields:

Q(s) =
U(s)

R(s)
=

K(s)

1 + K(s)G(s)
(2.1)

where if Q(s) and G(s) are known, the controller transfer function K(s) can be recovered as follows:

K(s) =
Q(s)

1 − G(s)Q(s)
(2.2)

From Eq. 2.2, it is clear that if K(s) is a stabilizing controller, Q(s) is stable and proper; thus
any stable and proper transfer function Q(s) represents a stabilizing controller for G(s). The class
of all stabilizing controllers for a plant is obtained. This could seem useless, but they observed
that the nonlinear transfer function from reference r to output y in K(s) becomes linear in Q(s)
(see Eqs. 2.3 and 2.4 respectively). Thus, the design of Q(s) to achieve a desired performance is
linear, obtaining K(s) by back-substitution.

Y (s)

R(s)
(K(s)) =

K(s)G(s)

1 + K(s)G(s)
(2.3)

Y (s)

R(s)
(Q(s)) = Q(s)G(s) (2.4)
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This idea of reparameterizing a set plant-controller in order to obtain linearity reappeared
in [Zames, 1981]; and is well known as internal model control in chemical control process [Morari
and Zafiriou, 1989]. But, it was not able to be applied for Multi-Input-Multi-Output (MIMO)
systems.

[Kučera, 1975] and [Youla et al., 1976a,Youla et al., 1976b] proposed simultaneusly discrete and
continous solutions to deal with MIMO unstable plants– so-called Youla-Kucera parameterization.
There are two key points in the solutions: First, an initial stabilizing controller is considered; and
second, plants are described using stable polynomial fractional transformations. Its use permited
to see the plant as the combination of two stable transfer functions– e.g. an unstable plant
G(s) = 1/(s − 5) is represented by X(s)Y (s)−1 with X(s) = 1/(s + 1) and Y (s) = (s − 5)/(s + 1).
These factors were employed in order to obtain an equivalent to Q(s) in Eq. 2.1. This new Q(s),
called YK parameter, characterizes the class of all stabilizing controllers depending on stable
polynomial fractional factors for G(s) and an initial K(s). Linearity was preserved even if stable
polynomial fractional factors were used.

This approach was updated with coprime factors in order to avoid algebraic difficulties as
noticed by [Desoer et al., 1980] and [Vidyasagar, 1985] for SISO and MIMO systems. An efficent
method for obtaining these factors is based on a state-space representation [Nett et al., 1984].
As those coprime factors are the basis for obtaining the class of all stabilizing controllers, this
state-space representation is preserved in almost every future application.

The linearity of Q within the Closed-Loop (CL) function facilitates optimization over the class
of all stabilizing controllers. Every single controller could be augmented with Q. This Q is seen
as a stable filter that can be optimize offline or online in order to improve system’s performace.
An adaptive Q technique could be no longer useful when systems variations or uncertainites are
large. A controller solution for such situations is provided by the dual YK parameterization.

Coprime factors of an inital plant connected to a stabilizing controllers are used in order to
obtain the class of all plants stabilized by a controller. The connection between the dual YK and
YK parameterizations was first developed by [Tay et al., 1989a], giving robust stability results.
This dual YK parameter was used to suppress CL identification difficulties in [Hansen et al.,
1989, Schrama, 1991]. The identification of a plant in the presence of a feeedback loop could be
complex due to the noise. Given an initial model and controller, by identifying the dual YK S
instead of G(s), the CL problem is transformed into an Open-Loop (OL) like problem. This is
called in the literature Hansen scheme. The resulting S is used to carefully redesign the filter Q
such that a better performance is achieved without loosing the stability of the system.

Performance enhancement techniques working with an adaptive Q are seen particularly in the
work of the Australian National University. It is also there that the dual YK parameterization and
robust stability results were first developed. Later, the Technical University of Denmark analysed
Q as a fixed filter, focusing in stable controller reconfiguration properties. Stable controller recon-
figuration through Q is combined with a fault-detection system through the dual YK parameter S,
obtaining a Fault-Tolerant-Control (FTC) solution. Finally, some results are in proceeding with
structural changes through S at the University of Aalborg. A more detailed review of the YK de-
sign methodologies at the Australian National University, in the Technical University of Denmark
and at the Aalborg University is in the following three sections.

2.2 Australian National University

The department of System Engineering, Research School of Information Sciences and Engineering
at the Australian National University was the pioneer in using YK parameterization, to get what
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they called high performance control. The concept of high performance control is to use the tools
of classical, optimal, robust and adaptive control in order to deal with complexity, uncertainty
and variability of the real world. They aimed to find a mathematical framework able to join
performance and robustness.

First steps in this direction were made by John Moore at 1970s, on a high order NASA flexible
wing aircraft model with flutter mode uncertaintiess. Least square identification was used in order
to have an adaptive loop based on linear quadratic optimal control able to achieve robustness
to these uncertainties. However, the blending betweeen adaptive and robust control lacked a
mathematical framework. A collaboration with Keith Glover at Cambridge University allowed
them to discover the interpretation of the YK parameterization as a general solution to optimal
control problem provided by [Doyle, 1983]. Doyle characterized the class of all stabilizing controller
as an initial Linear-Quadratic-Gaussian (LQG) controller with a stable filter Q, what fits the
adaptive filter that they put in their solution for the aircraft model. A graduate student, Teng
Tiow Tay started working on how to use that theory, obtaining really encouraging results. Initial
point of his thesis with Moore as supervisor [Tay et al., 1989b]. Different applications related to
YK formed a new field of research. We refer to book [Tay et al., 1997] and article [Anderson, 1998]
as principal referees for undestanding how to use YK parameterization towards high performance
control. Different techniques and applications related to that are detailed below:

2.2.1 Q offline control design

An offline optimization of Q was carried out in order to achieve various performance objectives.
The idea is to design a controller in the class of all stabilizing controllers instead of over the class
of all possible controllers (which includes destabilizing controllers). Different control performance
objectives can be set in order to optimize the YK filter Q. Performance requirements can be
described in time or frequency domain. System norms in the frequency domain is directly related
to optimal control. H∞ is concerned primarily with the peaks in the frequency response, while
H2 is related to the overall response of the system. The idea is simple, once a transfer function
between different signal of interest is determined, H∞ control designs a stabilizing controller that
ensures that the peaks in the transfer function are knocked down; on the contrary, H2 or LQG
control designs a stabilizing controller that reduces the H2 of the transfer function as much as
possible. Penalization of the energy of the tracking error and control energy are examples of LQG
control; while penalizing the maximum tracking error subject to control limits is an example of
H∞ control.

The design of an LQG controller with loop transfer recovery was analysed. This LQG controller
uses a state estimator with the aim of estimating the non-accesible states of the plant. Its aim is
to minimize error tracking and control effort. The controller will be optimal if a good model of
the plant has been considered, otherwise the performance could be poor. Loop transfer recovery
refers to the idea of reconfiguring the initial LQG controller to achieve full or partial loop transfer
recovery of the original feedback loop. This is usually done through a scalar parameter as a trade-
off between performance and robustness. In [Moore and Tay, 1989], loop recovery was achieved by
augmenting the original LQG controller with the additional YK filter Q. They showed how full or
partial loop recovery may be obtained depending if minimum or non-minimum phase plants are
considered. The technique was ilustrated for the case of minimum and non-minimum phase plants
through simulation. Improvements over standard loop recovery techniques were obtained.

The CL transfer function including Q from a disturbance input to a tracking error with a H∞

norm is in chapter 4 of [Tay et al., 1997]. This equation is useful to keep the tracking error within
a given tolerance. However, minimizing the tracking error could lead sometimes to large control
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efforts, what would be unnaceptable. As weighting factors between tracking error and control effort
in a H∞ setup is not allowed [Dahleh and Pearson, 1986], a l1 equivalent was proposed in [Teo and
Tay, 1995]. This algorithm allows to choose the correct weighting factors in a l1 manner. A curve
with all the possible solutions is generated for a simulation example, analysing the limitations and
choosing the best weighting factors. This strategy is used in a hard disk servo system to minimize
the maximum position error signal [Teo and Tay, 1996], which is the deviation of the read/write
head from the center of the track.

2.2.2 Direct adaptive Q-control

In the previous section, an offline optimization of the YK parameter Q has been explained. [Wang
et al., 1991] presented the first results in online optimization of Q without an identification process.
The method is valid when the uncertainty is limited but unknown, and the plant-model mistmatch
is not important. The optimization process is based on root-mean-square signals measures. A
state-space relationship between a nominal plant with disturbances and a observer-based feedback
controller K(Q) is obtained. The order of Q should be fixed depending on the application. A
steepest descent algorithm is used to obtain the parameter values of the predefined YK parameter
Q, so the error is minimized from the disturbances on the system. Simulation results of the direct
adaptive-Q controller were presented in [Tay and Moore, 1991] to ilustrate their performance
enhancement capabilities when disturbances appear on the system. Part of these results were
previouysly validated in a 55th order aircraft model with a controller design via LQG with Q
augmentations for achieving resonance suppression in [Moore et al., 1989].

In chapter 6 of [Tay et al., 1997], this method was analyzed to discover its limitations. First,
a perfect plant model with disturbances was considered, achieving again without problems an
optimal control. Then, the model-plant mistmach case was analysed, seeing how the adaptive
mechanism breaks down under severe model-plant mismatch. An identification algorithm would
be needed when a large model-plant mistmach is present. Section below presents an extension of
the first YK-based CL identification algorithm– Hansen scheme.

2.2.3 CL identification

CL identification provided by [Hansen et al., 1989] is extended when connected to a controller
with the YK filter Q in chapter 5 of [Tay et al., 1997]. Robust stabilization results in [Tay et al.,
1989a] connecting K(Q) and G(S) are used to obtained an unbiased identification of S when a YK
parameter Q is applied. A time-invariance property of Q is considered in the result. The unbiased
CL identification of S is done through the identification of Ŝ = S(I − QS)−1, which includes Q.
In order to obtain the real value of S, Q needs to be known. This CL identification method is the
basis of the iterated (Q, S) control design shown below.

On the other hand, the original Hansen scheme is also extended with a non-linear initial
model G(s) connected to a stabilizing controller K(s) in [Linard and Anderson, 1996,Linard and
Anderson, 1997]; and [De Bruyne et al., 1998] presented a modification able to tune the order of
the resulting model given by the Hansen scheme.

2.2.4 Iterated/Nested (Q, S) control design

This section considers solutions with unmodeled dynamics in the nominal model of the plant.
K(Q) is seen as a controller where Q is changed online, as well as G(S) is seen as a nominal
plant with an augmentation related to unmodeled dynamics. The process is the following: First, a
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nominal controller K(s) is designed for a nominal plant G(s). Plant-model mistmatch is identified
through the dual YK parameter S, and then the augmented controller Q is designed to optimally
control S to some performance criteria. The performance is usually the same that the one used
for the initial controller. These ideas are based on the robust stabilization concept in [Tay et al.,
1989a]. Iterative and nested solutions are present in chapter 5 of [Tay et al., 1997].

For iterative control (Q, S) design, an initial stabilizing controller is designed for the nominal
plant G(s). Then, unmodeled dynamics represented by Ŝ are identified by using the CL identifica-
tion method proposed in [Tay et al., 1997]. It avoids bias problems in the identification process. Ŝ
is used in an iterative manner for finding the Q that improves the performance criteria. Iteration is
needed as the value of Ŝ won’t be reliable enough at the very beginning or due to new deficiencies
in the model. In each iteration the order of the controller increases as Ŝ includes the applied Q,
followed by a control update step. The sucess of this method relies on the use low-order approx-
imations of S. Controller reduction will be also crucial in practical implementation. Simulation
results related to Iterated Pole-Placement, Linear-Quadratic (LQ) control design and H∞ control
are in [Tay et al., 1997].

For nested control (Q, S) design, succesives S are identified on the residual mistmatch between
model and plant. An external signal needs to be injected in order to identify the new S. In each
step the model of the system is updated. This new model is then taken into consideration for
obtaining a new Q, until the performance criteria is fulfilled. This kind of structure is practical
when a plant is described by m recursive fractional forms. It could be the case of a complex model
composed by low order models, so the controller could be broken down into a sequence of low order
controller designs for a sequence of low-order models. Thus, a S is identified for each fractional
form of the model, and a Q affined in the nested control structure.

2.2.5 Indirect adaptive (Q, S)-control

Sometimes, the major limit is the little knowledge about the plant. In such cases, iterated and
nested control designs have been proposed. But, these algorithms are limited to a time-invariance
Q property. In order to deal with a time variance Q, an adaptive version of nested control was
proposed in [Tay et al., 1989b]. In any adaptive algorithm a fixed structure of Q is created.
Parameters in Q are the ones changing depending on the model-plant mistmach identified by S.
Notice how the unbiased identification provided in previous sections is no longer available as Q
varies with time. External excitation signals are needed in order to identify S, and this could
compromise the control performance. Two methods were proposed to solve that:

The use of two different time scales in the adaptive algorithm, a faster one for the identification
of S, and a much slower for the adaptation of Q. This idea was proposed in the PhD thesis [Wang,
1991].

In chapter 7 of [Tay et al., 1997] a different method is explored. They considered that the
model-plant mistmatch is significant in a frequency range above the passband of the nominal
control loop. In fact, if Q is present on the system, the identification of S is frustrated. In order
to solve that, the idea was to augment Q with a filter in the frequency of the excitation signals
needed for the identification of S. The filtered excitation algorithm provides a suitable method for
including external signal in a particular frequency range to identify S, without compromising the
control performance.

A 55th order aircraft model was used in the literature for obtaining results that validates indi-
rect (Q, S)- control. Adaptive LQG and pole-placements solutions were presented in [Chakravarty
and Moore, 1986] and [Chakravarty et al., 1986] to suppress wing flutter.
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2.3 Technical University of Denmark

The potential of YK were further explored in recent years. There is a large amount of work
developed by Professor Hans Henrik Niemman in the Electrical Engineering Department of the
Technical University of Denmark. Control solutions considering Q, S and both are again developed.

Related to the class of all stabilizing controller for a given plant parameterized by Q, the concern
is in stable controller reconfiguration. [Niemann and Stoustrup, 1999] showed how it is possible to
change between multivariable controllers online in a smooth way, guaranteeing CL stability. The
focus is not in the design of Q for obtaining a desired performance, but in the use of Q as a stable
transition between an initial and a final controller. Switching between two or more controllers is
considered. The stability proof is extended with a numerical example in [Niemann et al., 2004].
It is shown how linear switching between two controllers results unstable, while the use of YK
turns stable the same problem. Finally, structural changes are considered in connection with YK
in [Niemann, 2006a]. It is demonstrated how it is possible to introduce new sensors/actuators into
the system, and use them in the YK parameterization. The stability of the CL system is still affine
in Q even if new sensors or actuators are added. This work will be the basis of the Plug&Play
project presented in next section.

YK stable controller reconfiguration is based in the absence of uncertainties in the plant; other-
wise, the dual YK parameterization needs to be used. [Niemann and Stoustrup, 1999] presented a
relation between S and system variations, with robust stabilization results similar to those in [Tay
et al., 1989a]. The general model-plant mistmatch represented by S, and used by the Australian
National University, is reformulated by Niemman in [Niemann, 1999]. A connection between a nom-
inal plant model with a uncertainty block ∆ is done through a Linear-Fractional-Transformation
(LFT). The dual YK parameter S is in function of the block uncertainty ∆, yielding S(∆), which is
closer to a robust control design. CL transfer function is also analysed depending on S(∆). Eight
types of system descriptions S in function of ∆ are in [Niemann, 2003]. The method is constraint
to the exact knowledge of ∆. A literature review shows different applications in funcion of this
S(∆) as:

• H∞ control design with partial uncertainty description. There is a problem when trying to
design a H∞ controller if uncertainty description is not full complex. An iterative process
as the one in [Lin et al., 1993] could be used, but problems as increasing controller order or
non-optimal solutions will be faced up. A transformation betweem ∆ and S allows to a have
a full complex uncertain block, avoiding these problems [Niemann, 1999].

• Model validation with partial uncertainty description. The idea of model validation is to
detect/estimate variations in the system that are not described in the model. Variations could
be several: uncertainties, parameter variations, change of the operation point, etc. Model
validation can be done offline or online depending on the desired control application. FTC is
an example where an online methodology is needed. [Savkin and Petersen, 1995] presented
an online model validation algorithm based on Integral Quadratic Constraint (IQC) for full
complex uncertainty. Dual YK parameterization serves again as a conversor from partial to
full uncertainty description.

• Performance validation. [Niemann, 2003] proposed to make a connection between S(∆) and
CL performance criteria, so an upper bound of S with respect to the uncertainty can be
used for validation. An estimation of ∆ based on S could be also obtained if the system
description with respect to uncertainty is known.
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• Parameter estimation for gain scheduling. Gain scheduling techniques are motivated by
the large number of control applications that have significant nonlinearities which can not
always be handled well by linear control design techniques. [Niemann and Stroustrup, 1999]
considered the case where a gain scheduling controller is needed, but the scheduling parameter
vector cannot be directly measured. An estimation of the same is done using the dual
YK parameterization. Dual YK parameterization in connection with the paremeter gives a
validation method, which gives very precise parameter estimation. Then, this parameter can
be directly employed on a gain scheduling controller.

• Modified Hansen scheme. A modification of the Hansen scheme is carried out in [Sekunda
et al., 2015]. It gets rid of signals that are not directly measurable. Some a priori knowledge
and numerical accuracies are reduced. Basis of this method is in the CL modification already
carried out in [Tay et al., 1997].

Finally, this dual YK parameter description is connected to the class of all stabilizing controllers
K(Q). Optimal and FTC solutions are proposed:

• Optimal control design. There is a connection between S with ∆ and Q. The idea is to
find the optimal value of Q that minimized the value of S, so the nominal performance can
be preserved [Niemann and Stoustrup, 2000]. Algorithms in high performance control are
proposed as solution, but with S(∆).

• Fault tolerant control. Dual YK parameterization is used in the design of FTC systems.
When a fault appears in a system, a nonzero S results. If S is unstable, the fault makes
the CL system unstable. Then, controller reconfiguration needs to be carried out to recover
stability. This reconfiguration is done through the YK parameter Q. YK allows fault diag-
nosis and the corresponding controller reconfiguration in the same approach [Niemann and
Stoustrup, 2002]. A connection with different additive and parametric faults is in [Niemann
and Stoustrup, 2005]. The system with additive faults is directly change with Q, without
consideration of S, as it shouldn’t affect the CL stability. When it comes to parametric faults
S plays a key role, obtaining the value of Q that makes stable 1/(1 − QS). An example with
a servo is given [Niemann and Stoustrup, 2005]. Deviations on the value of tacho gain make
the system unstable. This is seen as an unstable S. Different Q’s are obtained depending
on the deviation value. The optimization of Q is done offline, so only fault diagnosis will be
needed in order to choose the proper value of Q. This method is restricted to CL system with
one fault. The fault diagnois method based on dual YK is extended in [Niemann, 2006b] to
deal with OL systems and CL systems with a feedback controller different from the nominal
one. The latter is important in FTC, as fault diagnosis should be running after the first fault
has been detected and the controller has been reconfigured.

2.4 Aalborg University

The concept of dealing with structural changes ensuring stability of the system as in [Niemann,
2006a] has been also used at the University of Aalborg (Denmark). A collaboration exists be-
tween Professor Niemann and Professor Jakob Stoustrup (check some of the references in previous
section). Professors Jan Dimon Bendsten and Klaus Trangbaek are other co-workers in the main
project related to YK: Plug and Play Process control (P&P). The project was developed by the
Department of Electronics Systems of Aalborg University from 2006 to 2011.
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The idea was to investigate control problems for complex systems with a modular structure.
Because of that, the fundamental aspect was to understand how to detect the addition of com-
ponents to the system, reconfiguring the controller to maintain the system stable and improve
performance. The addition of subsystems could be any kind of sensors or actuators. The general
theory is explained in papers [Bendtsen et al., 2013] and [Stoustrup, 2009]. In fact, three different
scenarios where sensors are included were the referenced ideas to carry out.

• Imagine a stable where the pigs are not comfortable. The farmer plugs a new sensor in a
vacant socket in that part of the stable to stabilize the indoor climate in the proximity of
the sensor. The stable ventilation system needs to automatically register the new component
and reconfigures the control law.

• Imagine the situation where biomass is being added to the fuel of a power plant causing large
thermal stresses to the boiler. Instead of shutting down the plant, the operator of the plant
sticks on a few sensors in the stressed areas. Thanks to the P&P control, after few minutes
the controller is reconfigured and the thermal stresses are within permissible bounds.

• Imagine a grocer who buys a new refrigerated display for his shop. He plugs it in himself.
His compressor rack and the condensators on the roof start sounding slightly different, and
after a couple of hours the new display case as well as all the old ones work correctly. The
eco-meter in his backstore room displays optimal power consumption for all of them.

A total of five companies participated in the P&P control research program; Danfoss, Grundfos,
Skov, DONG Energy and FLSmidth Automation, each providing different case studies. A literature
review related to the use of YK in P&P control has been carried out:

• Reconfiguration of existing controllers whenever structural changes are introduced in the
system being controlled. The class of all stabiling controllers provided by YK is used to have
stable controller reconfiguration when some change happens. The focus is in the correct
integration of sensors/actuators and corresponding controller reconfiguration trough Q. Ex-
tended results in [Niemann, 2006a] are crucial. First results related to a buffer tank model are
in [Trangbaek et al., 2008] and [Trangbaek and Bendtsen, 2009]. A manual valve is replaced
for an automatic one, augmenting the original controller through Q in order to improve the
general performance of the system. Experimental results are in [Bendtsen et al., 2013] for
laboratory-scale model of a district heating system and a livestock stable climate system:
In the district heating system, as consumers are not happy with the variable supply rate,
differential pressure sensors are added to examine the problem. That revealed a performance
problem, so control capabilites are added to another pump, improving the initial LQG con-
troller through the corresponding augmented Q; a real livestock stable is also considered,
which is not completely airtight due to crack in the walls. The climate system is initially
with a single temperature sensor; but the farmer detects another area in the stable with an
extra draft. The sensor does not reach this area, so YK is used in order to integrate a second
temperature sensor, making the livestock stable temperature homogeneous.

• CL identification. [Bendtsen et al., 2008] modified the Hansen scheme proposed in [Hansen
et al., 1989] in order to deal with new measurements that become available during online
operation. New dynamics related to new sensors are simply identified by the dual YK
parameter S. On the other hand, this Hansen scheme is extended to Linear-Parameter-
Varying (LPV) systems in [Bendtsen and Trangbaek, 2014]. LPV system is a linear state-
space representation whose dynamics vary as function of certain time-varying parameters
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called scheduling parameters. Interesting results are obtained in terms of stability, and
doubly coprime factors based on these scheduling parameters. Simulation results of coupled
dynamics identification in heat distribution systems are in [Trangbaek and Bendtsen, 2010].

• Automatic control reconfiguration to achieve optimal performance together with identifica-
tion. Here, the CL identification provided by dual YK is used in order to improve controller
performance. Controller reconfiguration is carried out in a simulation district heating sys-
tem, once couple dynamics are identified through S [Trangbaek, 2009]. Strong coupling in
the network is due to the addition of a second pump demanded by a consumption increment.
Other contribution is in the area of Multi Model Adaptive Control (MMAC). MMAC is a
supervisor who chooses the proper controller among pre-designed candidates controllers once
more information is known about the plant. Controllers are designed based on a predefined
set of linear models. Once the closer model in the set is known, the switching is direct.
Results in [Anderson et al., 2001] and [Baldi et al., 2011] are improved in [Bendtsen and
Trangbaek, 2012], as noise correlation problem in CL is supressed by employing the dual
YK parameterization. A LPV simulation example with a total of five predefined Linear-
Quadratic-Regulator (LQR) controllers is provided; the closer model in the set to the real
system is chosen, switching to the corresponding controller through the correct Q. Finally,
as in MMAC the switching is based on the closer model in a predefined set, nobody assures
that the switching of the controller with the real plant results in a stable CL. This situation
is analysed in [Trangbaek, 2011].

2.5 Discussion

This chapter reviewed the YK control framework state-of-the art. Origins of the class of all
stabilizing controllers for a plant K(Q), and its dual version, the class of all plants stabilized by a
controller G(S) are explained. Robust stabilization results between Q and S are fundamental for
the YK-based applications in the field of optimal, robust, adaptive and fault-tolerant control. These
applications are mainly developed in three different institutions: Australian National University,
Technical University of Denmark and Aalborg University. A state-of-the-art classification is in
Table 2.1. YK applications timeline from the origin to the most recent work is in Fig. 2.2.

The Australian National University was the first to use YK parameterization as a control tool
able to use classical control, optimal control, robust control and adaptive control theories together.
High performance control goes beyond all of them by blending the strengths of each to obtain the
best performance possible in a real world subject to uncertainties and system variations. Offline
methods related to optimal LQG control and robust H∞ control depending on Q are introduced to
achieve various performance objective. An adaptive version of the same is also proposed for cases
where disturbances and uncertainties are not fully known. The dual YK parameterization plays
a key role when unmodeled dynamics are present on the system. Iterative, nested and adaptive
solutions consider the identified dynamics provided by S in order to optimize the YK filter Q.
Theoretical basis present in [Tay et al., 1997] is strong and exemplified through simulation results
for a hard disk servo system and a 55th order aircraft model. Experimental results with real
applications are missing in the literature, especially for iterated/nested solutions. This is due to
the degree explosion of the solution; with each iteration the order of the resulting parameters S
and Q increase. Related also to the order, it looks complicated to get a simple representation of
S even if the model-plant mistmath is simple. Order reduction techniques and model simplication
should be carried out to make these solutions viables. There is neither an explicit parameterization
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when considering decentralized control.
On the other hand, at the Technical University of Denmark, Professor Niemann extended the

YK parameterization of all stabilzing controllers with additional sensors/actuators. This would
be useful to solve decentralized and FTC problems. Research interests are dual YK parameter
S description based on block uncertainty ∆. Several applications related to control optimization,
performance and model validation are derived, but no simulation or experimental results are present
in the literature. A YK-based fault tolerant control solution is also proposed, integrating controller
reconfiguration, fault diagnosis and isolation in the same approach. The most advance FTC control
architecture is in [Niemann, 2012]. Start-up or safe mode coexists with normal, full performance,
reduced performance and closed-down modes. Fault detection based on dual YK parameterization
determines which mode is applied through the corresponding Q. Safe mode is activated during
start-up and fault isolation. Closed-down is set when the loop becomes irremediably unstable after
a fault. Again, experimental real cases are missing.

University of Aalborg, through its project called Plug&Play control developed a novel con-
cept for process distributed control, which allows the control system to self reconfigure once an
instrumental change is introduced. The idea is similar to Niemann’s; in fact, an active collabora-
tion exists between both universities. Extended version of YK parameterization is crucial. While
Niemann’s idea is more in the field of faults (a sensor or an actuator fails), here the objective is
the opposite: a sensor or an actuator is plugged in, and the controller is reconfigured to enhance
performance. An active collaboration between both should be set up in order to get a control
system with full capabilities. Closed-down mode could be avoided if the correct sensor/actuator
is plugged in. Simulation and experimental results well exemplified the application of the theory.
It is by far, the part of the literature that presents more detailed and clear examples.

Once the state of the art of YK control framework has been carried out, current challenges
are associated to the non-linear extension of the YK parameterization; integration of intelligent
control system as fuzzy control, model predictive control, genetic algorithm or neuronal networks;
transition analysis for the different YK-based control structures for switching in the literature;
analysis of a scalar factor regulating the action between controllers through Q in order to improve
the performance of the system; and extension of YK-based FTC and P&P to a more general control
structure (they are all build with an observer-based feedback controller).

Different vehicles dynamics depending on longitudinal speed, emergency maneuvers in the sta-
bility limit of pneumatic systems, or vibrations in chassis control are some examples of what a
unique plant, as a vehicle, needs to handle through different control solutions. YK represents a
suitable technique for its application in ITS. But, almost all the studied cases are mainly focused in
system with very low dynamics, except from some simulation with an aircraft model in high perfor-
mance control. There is neither a faster dynamics case, which in the case of ITS, sensor/actuators
fails could result in a traffic accident. The application of YK in autonomous driving will not only
serves as a tool, but as extension to real fast dynamics experimental cases.
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Table 2.1: Summary table state-of-the-art Youla-Kucera.

YK Technique Technique description Implemeted in

A
u
st

ra
li
an

N
at

io
n
al

U
n
iv

er
si

ty

Q An LQG design Offline H2 control design.
Loop recovery in LQG control
through YK parameter Q.

[Moore and Tay, 1989]

An l1 design ap-
proach

Offline H∞ control design
with a l1 modification for er-
ror and control weighting.

[Dahleh and Pearson,
1986] [Vidyasagar, 1991]
[Teo and Tay, 1995] [Teo
and Tay, 1996]

Direct adaptive
Q-control

Online optimization of Q
based on averaging techniques
when disturbances are present
on the system.

[Tay and Moore, 1991]
[Wang et al., 1991] [Tay et
al., 1997]

S CL identification
tunable order

The order of the resulting
Hansen scheme model is tun-
able.

[De Bruyne et al., 1998]

CL identification
non-linear

Hansen scheme is extended
with a nonlinear initial model.

[Linard and Anderson,
1996] [Linard and Ander-
son, 1997]

(Q, S) Iterative/Nested
(Q, S) design

Q is modified depending on
the identified S following a
given performance criteria.
Q remains invariant through
time. S represents the model-
plant mistmatch. Difference
between iterated and nested is
in the identification process of
S.

[Tay et al., 1997]

Indirect adaptive-
Q control

Adaptive version of nested
(Q, S) control design. Q has
a fixed order and is time
variant; its parameters are
changed depending on S iden-
tification.

[Tay et al., 1989a] [Yan
and Moore, 1992] [Yan and
Moore, 1996]
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YK Technique Technique description Implemeted in

T
ec

h
n
ic

al
U

n
iv

er
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ty
of

D
en

m
ar

k

Q Stable controller
reconfiguration

Stable controller reconfigura-
tion through Q given two or
several controllers.

[Niemann and Stoustrup,
1999] [Niemann et al.,
2004]

System structure
changes

Sensors and actuators are in-
cluded in the class of all stabi-
lizing controllers provided by
YK.

[Niemann, 2006a]

S Relation with un-
certainty ∆

S(∆) provides a full complex
uncertainty description that
solves H∞ control and online
model validation problems.

[Niemann, 1999] [Nie-
mann, 2003]

Performance vali-
dation

A connection between S(∆)
and CL is done, so an upper
bound of S is used for perfor-
mance validation.

[Niemann, 2003]

Parameter esti-
mation for gain
scheduling

Dual YK is used in order to
get a more precise estima-
tion of non-measurable gain
scheduling parameters.

[Niemann and Stroustrup,
1999]

CL identification Hansen scheme is modified to
get rid of signals that are not
directly measurable.

[Sekunda et al., 2015]

(Q, S) Fault tolerant
control

Connection between fault di-
agnosis and controller recon-
figuration with YK and dual
YK parameterizations.

[Niemann and Stoustrup,
2002] [Niemann and Stous-
trup, 2005] [Niemann,
2006b] [Niemann and
Poulsen, 2009b] [Niemann,
2012]

Optimal con-
troller design

Connection between S(∆) and
Q. The idea is to find the opti-
mal value of Q that minimized
the value of S.

[Niemann and Stoustrup,
2000]
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YK Technique Technique description Implemeted in

U
n
iv

er
si

ty
of

A
al

b
or

g

Q Controller re-
configuration
with new sen-
sors/actuators

Integration of new sen-
sors/actuators and conse-
quence controller reconfigu-
ration. YK-based practical
examples.

[Trangbaek et al., 2008]
[Trangbaek and Bendtsen,
2009] [Bendtsen et al.,
2013]

S LPV CL Identifi-
cation

Hansen scheme is extended to
LPV systems.

[Trangbaek and Bendt-
sen, 2010] [Bendtsen and
Trangbaek, 2014]

CL identification
with new sensors

New dynamics related to new
sensors are identified in a
modified Hansen scheme.

[Bendtsen et al., 2008]

(Q, S) Optimal control YK-based controller reconfig-
uration and CL identification
are employed to improve sys-
tem performance.

[Trangbaek, 2009]

Multi model
adaptive control

A YK-based MMAC is used to
avoid noise correlation prob-
lems.

[Bendtsen and Trangbaek,
2012] [Trangbaek, 2011]
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Chapitre. Paramétrisation
Youla-Jabr-Bongiorno-Kucera

Below is a French summary of the following chapter "Youla-Jabr-Bongiorno-Kucera parameteriza-
tion".

Ce chapitre présente les bases mathématiques pour lesquelles la paramétrisation de Youla-
Jabr-Bongiorno-Kucera (YK) permet de réaliser une reconfiguration stable des contrôleurs. La
paramétrisation YK décrit l’ensemble de tous les contrôleurs qui stabilisent un modèle de système
Linéaire Invariant dans le Temps (LIT). Cette paramétrisation est basée sur la double factorisation
coprime. Cet ensemble est fonction du paramètre YK Q, qui est une fonction de transfert stable.
La reconfiguration stable des contrôleurs est réalisée entre différents contrôleurs, en choisissant
différents Q’s. Une description générale d’un modèle de système LIT est donnée en même temps
que les critères nécessaires à la conception d’un contrôleur stable. Cette description générale est
employée dans le but d’obtenir les doubles coprime facteurs nécessaires. Ces facteurs permettent
la génération de la classe des contrôleurs stabilisant le modèle. Des détails sur l’utilisation des ces
facteurs pour la reconfiguration des contrôleurs ainsi que la preuve de la stabilité sont donnés dans
ce chapitre. Le chapitre est structuré comme suit: La section 3.1 décrit un modèle ainsi qu’un con-
trôleur général. Un contrôleur stabilisant est aussi fourni vérifiant le concept de stabilité en Boucle
Fermée (BF). Dans la section 3.2, la double factorisation coprime et l’identité de Bézout associée,
sont analysées. La section 3.3 décrit la classe de tous les contrôleurs stabilisants. Elle décrit aussi
comment obtenir une reconfiguration stable des contrôleurs entre deux ou plusieurs contrôleurs.
La preuve est également donnée dans cette section. La section 3.4 montre différents exemples
numériques, pour une analyse détaillée des propriétés de YK. Enfin, quelques commentaires sont
donnés en conclusion.

27
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Chapter 3

Youla-Jabr-Bongiorno-Kucera
parameterization

This chapter presents the mathematical basis in which Youla-Jabr-Bongiorno-Kucera (YK) param-
eterization relies on for making stable controller reconfiguration. YK parameterization describes
the collection of all controllers that stabilize a Linear-Time-Invariant (LTI) plant model. This
parameterization is based on the doubly coprime factorization. This collection is a function of the
YK parameter Q, that can be any stable transfer function. Stable controller reconfiguration is
carried out between different controllers by choosing different Q’s.

A general description of a LTI plant model is given together with criteria for stable control
design. This general description is employed for obtaining the needed doubly coprime factors.
These factors permit the generation of the class of all the stabilizing controllers. Details on how
to use them to perform controller reconfiguration and stability proof are in the present chapter.

The chapter is structured as follows: Section 3.1 describes a general model/controller descrip-
tion, introducing a general plant model. A stabilizing controller is also provided, reviewing the
Closed-Loop (CL) stability concept. In section 3.2, doubly coprime factorization and the associ-
ated Bézout identity are analysed. Section 3.3 describes the class of all stabilizing controllers, and
how to obtain stable controller reconfiguration between two or several controllers. Stability proof
can be found within the section. Section 3.4 shows some numerical examples, analysing in detail
YK properties. Finally, some concluding remarks are given.

3.1 System description

This section describes some basic notation, which will be used extensively in the sequel. A general
description of a nominal plant model and a stabilizing controller is given. This notation can be
found in many books and papers; readers are referred to [Zhou et al., 1996] and [Ogata, 2013].

3.1.1 The nominal plant model

The control design begins with the modeling of a physical system. A model is a mathematical
representation of the system dynamics. Models allow to reason about a system and make pre-
dictions about how the system will behave. In this text, the interest is in models describing the
input/output behavior of physical systems. Roughly speaking, a dynamical system is one in which
the effects of actions do not occur instantly. For example, the velocity of a vehicle does not change
at the same moment that the gas pedal is pushed; or a headache does not vanish right after an

29
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aspirin is taken. Input/output behavior can be really different: from the simpliest one with a gain
and a rising time, to the more complex one with a higher order response, delays, dead time and
so on. The number of inputs and outputs can also vary, having different response models between
them. In an industrial context, the number of inputs and outputs depend on the number of sensors
and actuators: Single-Input-Single-Output (SISO) or Multi-Input-Multi-Output (MIMO) systems.
Input-output behavior is merged with some performance and external disturbances relations in a
more general plant:

P =

[

e
y

]

=

[

Gew Geu

Gyw Gyu

] [

w
u

]

=

[

Gew Geu

Gyw G

] [

w
u

]

(3.1)

where u is the variable subject to control, so-called control input, sent to the system actuators; w
is the disturbance vector, also called exogeneous input or auxiliary input; y is the measurement
vector coming from the sensors; and e is the controlled external output signal, which includes
signals of interest in system’s performance. e often coincides with the measurement signal y. Gew,
Geu and Gyw represent external disturbance effects and performance requirements, while Gyu is
the real plant. Note that Gyu = G represents the input/output behavior or internal dynamics of
the physical system to control. This model includes the modeling of all sensors and actuators for
the plant. In the case of LTI continous systems, the state space representation of G yields:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
, G =

[

A B

C D

]

(3.2)

where t indicates time, x(t) is the state vector, ẋ(t) = dx/dt is the evolution over time of the
state vector, y(t) the measurement vector and u(t) the control vector. Coefficients A, B, C and D
are constant matrices. Transfer function may be found directly from a state-space representation
through the Laplace transform s:

G(s) = C(sI − A)−1B + D =
Y (s)

U(s)
=

bmsm + bm−1sm−1 + ... + b1s + b0

sn + an−1sn−1 + ... + a1s + a0
(3.3)

where Y (s) denotes the s-transform of the filter output signal y(t) and U(s) denotes the s transform
of the filter input signal u(t). m is the numerator order, while n is the transfer function order.
U(s) and Y (s) allow to find poles and zeros of the transfer function G(s).

Definition 3.1. Zeros are the complex angular frequencies that make the overall gain of the filter
transfer function zero: The values of s where Y (s) = 0.

Definition 3.2. Poles are the complex angular frequencies that make the overall gain of the filter
transfer function infinite: The values of s where U(s) = 0.

Once both poles and zeros are found, they can be plotted onto the s-plane. The s-plane is
the complex plane on which Laplace transforms are graphed. Analysing the complex roots of an
s-plane equation and plotting them reveal information about the frequency response and stability
of the system.

Stability of G is directly related to poles position. If a small perturbation arises in the system
inputs or initial conditions, a stable system will present small modifications in its perturbed re-
sponse. In an unstable system, any perturbation, no matter how small, will make states or outputs
grow unbounded until the system saturates or stops working.

The concept of stability refers to stable response to bounded inputs, assuming zero initial
conditions; and stable response to different initial conditions, assuming inputs zero. A system
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Figure 3.1: CL map of a general plant P with a controller Ki.
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Figure 3.2: Feedback controller connection.

is asymptotically stable if its state response converges to the origin for any initial condition or
bounded input. Here, for LTI continuous systems, stability is defined as:

Theorem 3.1. A LTI continous system with a transfer function G(s) is asymptotically stable if
and only if every pole is in the left half-plane: z ∈ C : Re(z) < 0.

A LTI continous system with state space representation G is stable if and only if all the eigen-
values of A have a negative real part: | A − λI |= 0 with Re(λ) < 0.

Stability condition is equivalent to belonging to the subspace RH∞. RH∞ is a real rational
subset of H∞ with all proper and real rational stable transfer functions/matrices.

Once the plant model has been described, the objetive of a controller will be to change the
position of zeros/poles to make the system behaves according to some stability/performace criteria.

3.1.2 The stabilizing controller

In this subsection, the general plant model in Eq. 3.1 is connected to a general controller Ki.
Subindex i refers to different controllers i ∈ [0, p], where p is the number of controllers (useful
notation for subsequent controller reconfiguration). CL stability conditions for feedback control
and feedforward/feedback control are revisited. The CL map of P with a controller Ki is shown in
Fig. 3.1. Equivalently to Eq. 3.2, a LTI continous state-space representation of a general controller
is given below:

ẋ(t) = Ac
ix(t) + Bc

i y(t)

u(t) = Cc
i x(t) + Dc

i y(t)
, Ki =

[

Ac
i Bc

i

Cc
i Dc

i

]

(3.4)
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The transfer function is unique from state-space representation:

Ki(s) = Cc
i (sI − Ac

i )
−1Bc

i + Dc
i =

Ui(s)

Yi(s)
=

bmKi
,is

mKi + bmKi
−1,is

mKi
−1 + ... + b1,is + b0,i

snKi + anKi
−1,is

nKi
−1 + ... + a1,is + a0,i

(3.5)

where mKi
and nKi

are numerator and denominator orders corresponding to Ki.
Feedback control, also known as regulator problem, manipulates the system input to counteract

the effect of disturbances. Connection details are found in Fig. 3.2. In other words, the objective
is to regulate the output variables to zero in the presence of disturbances. The general controller
Ki takes as input the measurement signals y to deliver a control input u, such u = Kiy.

Let’s see the stability conditions when Ki is connected to G. The stability conditions will be
later extended to the general plant P , being defined as LTI continous systems.

Theorem 3.2. A necessary and sufficient condition to ensure stability of a feedback control loop
with G is:

[

I −Ki

−G I

]−1

∈ RH∞ (3.6)

equivalently, all the poles corresponding to (Is − KiG)−1, Ki(Is − GKi)−1, G(Is − KiG)−1 and
(Is − GKi)−1 are in the left half-plane: s ∈ C : Re(s) < 0.

CL stability when Ki is connected to the general plant P is seen as bounded disturbances
response e in function of the bounded disturbances input w:

e = f(P, Ki)w, f(P, Ki) = Gew + GeuKi(zI − GKi)
−1Gyw (3.7)

where f(P, K) is a Linear-Fractional-Transformation (LFT) with respect to Ki.

Theorem 3.3. A necessary and sufficient condition to ensure stability of a feedback controller Ki

connected to a general plant P is:







I −

[

0 0
0 Ki

]

−P I







−1

∈ RH∞ (3.8)

which is equivalent to:

[

I −Ki

−G I

]−1

∈ RH∞, with Gew, Geu and Gyw ∈ RH∞ (3.9)

Notice how stability of the the general plant P is ensured by stability of G with Ki, and stable
representations of external disturbances and performance requirements Gew, Geu and Gyw.

Let’s consider the more general tracking case, which objective is to minimize the difference
between output and a reference trajectory in the presence of disturbances. A feedforward/feedback
controller as the one in Fig. 3.3 is used to determine stability conditions. r is the reference signal
and Kf

i is the feedforward controller.
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Figure 3.3: Feedforward/feedback controller connection.

Theorem 3.4. A necessary and sufficient condition to ensure stability of a feedforward/feedback
control loop with G is:









I −
[

Kf
i Ki

]

−

[

0
G

] [

I 0
0 I

]









−1

∈ RH∞ (3.10)

which is equivalent to: all the poles corresponding to (Is − KiG)−1, (Is − KiG)−1Kf
i , Ki(Is −

GKi)−1, G(Is − KiG)−1, G(Is − KiG)−1Kf
i and (Is − GKi)−1 are in the left half-plane: z ∈ C :

Re(z) < 0.
This can be also expressed:

[

I −Ki

−G I

]

∈ RH∞,

[

I
G

]

(I − KiG)−1Kf
i ∈ RH∞ (3.11)

From this Theorem, stability condition for feedforward/feedback control is equivalent to feed-
back control condition when Ki

f is stable. On the contrary, unstability related to Kf
i should be

included in Ki. Stability condition for a general plant P connected to [Kf
i Ki] remains the same

than in Theorem 3.3:

Theorem 3.5. A necessary and sufficient condition to ensure stability of a feedforward/feedback

controller [Kf
i Ki] connected to a general plant P is:







I −

[

0 0

0 [Kf
i Ki]

]

−P I







−1

∈ RH∞ (3.12)

which is equivalent to:
[

I −Ki

−G I

]−1

∈ RH∞, with Kf
i , Gew, Geu and Gyw ∈ RH∞ (3.13)

In short, if LTI continuous systems are considered and Kf
i , Gew, Geu and Gyw ∈ RH∞, CL

stability of P depends directly on the poles position of the feedback connection between Ki and
G. Thus, feedback connection is considered as basis connection for doubly coprime factorization,
YK controller reconfiguration and stability proof.

3.2 Doubly coprime factorization

A mandatory step towards the class of all stabilizing controllers for a given plant model is the
doubly coprime factorization. In this section, guidelines are given to obtain doubly coprime factors
for a specific plant model G connected to a stabilizing controller Ki.
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For a LTI SISO continuous system, factorization leads to plant and controller being represented
as the product of two scalar transfer functions. It could be also the product of two state-space
matrix partitions as in Eqs. 3.2 or 3.4. Coprimeness refers to the absence of common zeros in
the right half-plane: z ∈ C : Re(z) > 0. For a LTI MIMO continuous system, factorization is
represented as the ratio between a transfer function matrix with another transfer function matrix
inversely stable. State-space matrix partition can be also used. Coprimeness is expressed as full
rank condition in the right half-plane. When dealing with matrices, inversability could be right or
left, and equivalently right and left coprime factorizations exist. Explicit definitions for a MIMO
system [Nett et al., 1984], also applicable to SISO, are given below together with a numerical
example.

Definition 3.3. Two different matrices Mi and Ni are right coprimes over RH∞ if they have the
same number of columns and if matrices Xr,i and Yr,i exist such that:

[

Xr,i Yr,i

]

[

Mi

Ni

]

= Xr,iMi + Yr,iNi = I (3.14)

Definition 3.4. Two different matrices M̃i and Ñi are left coprimes over RH∞ if they have the
same number of rows and if matrices Xl,i and Yl,i exist such that:

[

M̃i Ñi

]

[

Xl,i

Yl,i

]

= M̃iXl,i + ÑiYl,i = I (3.15)

Example 3.1. For a LTI SISO continous system 2.5
(s+2.5) , a coprime factorization could be Ni =

2.5
(s+1) , Mi = (s+2.5)

(s+1) , Ñi = 2.5(s+0.5)
(s+2.5)(s+1) and M̃i = (s+0.5)

(s+0.1) , as functions Xr,i = s
(s+2.5) , Yr,i = 0.4,

Xl,i = s
(s+0.5) and Yl,i = 0.4(s+2.5)

(s+0.5) exist such Eqs. 3.14 and 3.15 are fulfilled.

In order to obtain the class of all stabilizing controllers for G, these coprime factors should
represent G and Ki such that:

G = NiM
−1
i = M̃i

−1
Ñi

Ki = UiV
−1

i = Ṽi
−1

Ũi

(3.16)

These coprime factors should be stables Ui, Ũi, Vi, Ṽi, Ni, Ñi, Mi, M̃i ∈ RH∞, and satisfy the
double Bézout’s identity [Pommaret and Quadrat, 1998]:

[

Ṽi −Ũi

−Ñi M̃i

] [

Mi Ui

Ni Vi

]

=

[

Mi Ui

Ni Vi

] [

Ṽi −Ũi

−Ñi M̃i

]

=

[

I 0
0 I

]

(3.17)

Double Bézout’s identity is a relation between doubly coprime factors and stability condition
for a feedback controller:

Theorem 3.6. A necessary and sufficient condition to ensure stability of a feedback control loop

between Ki = UiV
−1

i = Ṽi
−1

Ũi and G = NiM
−1
i = M̃i

−1
Ñi with Ui, Ũi, Vi, Ṽi, Ni, Ñi, Mi,

M̃i ∈ RH∞ is:

ṼiMi − ŨiNi = I

M̃iVi − ÑiUi = I
(3.18)

which is equivalent to the double Bézout’s identity in Eq. 3.17.
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Proof. [Tay et al., 1997] by substituting Eq. 3.16 in Eq. 3.6 with Ki = Ṽi
−1

Ũi and G = NiM
−1
i :

(I − KiG)−1 = (I − Ṽi
−1

ŨiNiM
−1
i )−1 = Mi(ṼiMi − ŨiNi)

−1Ṽi

Ki(I − GKi)
−1 = Ṽi

−1
Ũi(I − NiM

−1
i Ṽi

−1
Ũi)

−1 = Mi(ṼiMi − ŨiNi)
−1Ũi

G(I − KiG)−1 = NiM
−1
i (I − Ṽi

−1
ŨiNiM

−1
i )−1 = Ni(ṼiMi − ŨiNi)

−1Ṽi

(I − GKi)
−1 = I + GKi(I − GKi)

−1 = I + NiM
−1
i Ṽi

−1
Ũi(I − NiM

−1
i Ṽi

−1
Ũi)

−1 =

= I + Ni(ṼiMi − ŨiNi)
−1Ũi

(3.19)

Thus:
[

I −Ki

−G I

]−1

=

[

Mi

Ni

]

(ṼiMi − ŨiNi)
−1
[

Ṽi Ũi

]

+

[

0 0
0 I

]

(3.20)

And by substituting Eq. 3.16 in Eq. 3.6 with Ki = UiV
−1

i and G = M̃i
−1

Ñi:

(I − KiG)−1 = (I − UiV
−1

i M̃i
−1

Ñi)
−1 = Vi(M̃iVi − ÑiUi)

−1M̃i

Ki(I − GKi)
−1 = UiV

−1
i (I − M̃i

−1
ÑiUiV

−1
i )−1 = Ui(M̃iVi − ÑiUi)

−1M̃i

G(I − KiG)−1 = M̃i
−1

Ñi(I − UiV
−1

i M̃i
−1

Ñi)
−1 = Vi(M̃iVi − ÑiUi)

−1Ñi

(I − GKi)
−1 = I + GKi(I − GKi)

−1 = I + M̃i
−1

ÑiUiV
−1

i (I − M̃i
−1

ÑiUiV
−1

i )−1 =

= I + Ui(M̃iVi − ÑiUi)
−1Ñi

(3.21)

Thus:
[

I −Ki

−G I

]−1

=

[

Vi

Ui

]

(M̃iVi − ÑiUi)
−1
[

M̃i Ñi

]

+

[

0 0
0 I

]

(3.22)

Doubly coprime factors extraction from a model G connected to a controller Ki has been stud-
ied in the literature. [Nett et al., 1984] presented a doubly coprime factorization for a LTI plant
connected to a controller with a full observer-feedback form. From this work, doubly coprime
factors related to reduced-order observer-based controllers were derived in [Telford and Moore,
1989], [Hippe, 1989] and [Fujimori, 1993]. In [Fujimori, 1993] some of the factors did not re-
sult stables, while [Telford and Moore, 1989] and [Hippe, 1989] provided stable parameters for a
reduced-order observer-based controller. Finally, [Ishihara and Sales, 1999] and [Tay et al., 1997]
extended the doubly coprime factorization to any stabilizing controller in state-space form. This
is the doubly coprime factors extraction here explained.

Theorem 3.7. Consider a plant in state space representation G as in Eq. 3.2 with A, B, C, D
stabilizable and detectable, and a stabilizing controller Ki as in Eq. 3.4. Fi, F c

i should be chosen
such that A + BFi and Ac

i + Bc
i F c

i ∈ RH∞. Then doubly coprime factors are given by:

[

Mi Ui

Ni Vi

]

=











A + BFi 0 B 0
0 Ac

i + Bc
i F c

i 0 Bc
i

Fi Cc
i + Dc

i F c
i I Dc

i

C + DFi F c
i D I











(3.23)
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[

Ṽi −Ũi

−Ñi M̃i

]

=











A + BYiD
c
i C BYiC

c
i −BYi BYiD

c
i

Bc
i ZiC Ac

i + Bc
i ZiDCc

i −Bc
i ZiD Bc

i Zi

Fi − YiD
c
i C −Cc

i I −Dc
i

C −F c
i 0 I











with Yi = (I − Dc
i D)−1 and Zi = (I − DDc

i )−1

(3.24)

Proof. For proof see [Ishihara and Sales, 1999].

In brief, the steps required to obtain the doubly coprime factors of a given feedback control
loop are: 1) construct a model-controller state-space form realization, 2) solve a pole-assignment
problem such A + BFi and Ac

i + Bc
i F c

i ∈ RH∞ , and 3) perform some algebraic manipulations
according to Eqs. 3.23 and 3.24.

3.3 All stabilizing controllers/Controller reconfiguration

Youla-Jabr-Bongiorno-Kucera parameterization provides all stabilizing controllers for a given plant
G, by interconnecting a controller K with a parameter Q, called YK parameter, which can be any
stable system with appropriate dimensions:

Theorem 3.8. Consider a fixed plant G connected to a stabilizing controller K described by their
coprime factors G = NM−1 = M̃−1Ñ and K = UV −1 = Ṽ −1Ũ . Then, the set of all stabilizing
controllers for G is described by:

K(Q) = (U + MQ)(V + NQ)−1 = (Ṽ + QÑ)−1(Ũ + QM̃) =

= K + Ṽ −1Q(I + V −1NQ)−1V −1, Q ∈ RH∞
(3.25)

Proof. Let’s see how this K(Q) stabilizes the plant G, representing the class of all stabilizing
controllers:

[

I −K(Q)
−G I

]−1

∈ RH∞ (3.26)

[

I −K(Q)
−G I

]−1

=

[

I −(Ṽ + QÑ)−1(Ũ + QM̃)
−M̃−1Ñ I

]−1

=

=

([

(Ṽ + QÑ)−1 0
0 M̃−1

] [

(Ṽ + QÑ) −(Ũ + QM̃)
−Ñ M̃

])−1

=

=

[

M (U + MQ)
N (V + NQ)

] [

(Ṽ + QÑ) 0
0 M̃

]

=

=

([

M U
N V

]

+

[

0 MQ
0 NQ

])([

Ṽ 0
0 M̃

]

+

[

QÑ 0
0 0

])

=

=

[

M U
N V

] [

Ṽ 0
0 M̃

]

+

[

MQÑ 0
NQÑ 0

]

+

[

0 MQM̃

0 NQM̃

]

=

=

[

I −K
−G I

]−1

+

[

M
N

]

Q
[

Ñ M̃
]

(3.27)
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As coprime factors are stable by definition, CL stability between G and K is guaranteed, it is
clear that any controller parameterized by Q ∈ RH∞ will stabilize G, representing the class of
all stabilizing controllers. As Q varies all over the stable space, all possible proper stabilizing
controllers are provided by K(Q).

By using the class of all stabilizing controllers, it is possible to perform stable controller re-
configuration as mentioned in [Niemann and Stoustrup, 1999]. The main goal is to guarantee
system stability whereas switching between controllers occurs. The reasons for the change could
be numerous. For instance, new sensors or actuators have been added, or a better knowledge of
the system has been obtained. Transitions between controllers are carried out through a scalar
factor γ that affects the YK parameter Q.

How to obtain the YK parameter Q is detailed in the following subsections. Different Q’s are
considered depending on the number of controllers to be implemented. Stability is studied as a
function of γ to carry out controller reconfiguration from an initial controller to a final one, or
to several ones. The different mathematical expressions derive in different YK control structures
for stable controller reconfiguration. These structures are shown and analysed in detail in section
3.3.3. The mathematical stability proof is given for each structure.

3.3.1 From a initial stabilizing controller to a final stabilizing controller

Consider that G is connected to an initial controller K0. An arbitrary final controller K1 is also
chosen. YK makes possible stable controller reconfiguration betweem K0 and K1 online, just by
choosing the appropriate Q [Niemann and Stoustrup, 1999]:

Theorem 3.9. Let G = N0M−1
0 = M̃0

−1
Ñ0 = N1M−1

1 = M̃1
−1

Ñ1 be a coprime factorization of

the plant G and K0 = U0V −1
0 = Ṽ0

−1
Ũ0 an initial stabilizing controller represented by its coprime

factors. A second controller is given by K1 = U1V −1
1 = Ṽ1

−1
Ũ1. Then, K1 can be implemented in

a stable way by calculating Q as follows:

Q = X1(Ũ1V0 − Ṽ1U0) = X1(Ṽ1(K1 − K0)V0) (3.28)

with X1 = M−1
0 M1.

Proof. A controller K1 is implemented as a stable Q parameter based on a another stabilizing
controller K0 by using Eq. 3.28 in Eq. 3.25 together with Bézout’s identity in Eq. 3.17:

K0(Q) = K0 + Ṽ0
−1

Q(I + V −1
0 N0Q)−1V −1

0 =

= K0 + Ṽ0
−1

X1Ṽ1(K1 − K0)V0(I + V −1
0 N0X1Ṽ1(K1 − K0)V0)−1V −1

0

K0(Q) = K0 + Ṽ0
−1

X1Ṽ1(K1 − K0)V0(V0 + N0X1Ṽ1(K1 − K0)V0)−1 =

= K0 + Ṽ0
−1

X1Ṽ1(K1 − K0)(I + N0X1Ṽ1(K1 − K0))−1

K0(Q) = K0 + Ṽ0
−1

X1Ṽ1(I + N0Ṽ1X1(K1 − K0))−1(K1 − K0) =

= K0 + Ṽ0
−1

X1(Ṽ1
−1

+ N0X1(K1 − K0))−1(K1 − K0)

K0(Q) = K0 + Ṽ0
−1

X1(Ṽ1
−1

+ N0X1Ṽ1
−1

Ũ1 − N0X1Ṽ0
−1

Ũ0)−1(K1 − K0) =

= K0 + Ṽ0
−1

X1(Ṽ1
−1

(I + Ũ1N1) − Ṽ0
−1

Ũ0N1)−1(K1 − K0)

K0(Q) = K0 + Ṽ0
−1

X1(M1 − Ṽ0
−1

Ũ0N1)−1(K1 − K0) =

K0 + (Ṽ0M0 − U0N0)−1(K1 − K0) = K0 + K1 − K0 = K1

(3.29)
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When switching from K0 to K1, the YK parameter Q can be scaled from 0 to 1 to smooth the
switching between controllers. This scalar factor γ is included in Eq. 3.25 resulting in:

K0(Q) = (U0 + M0γQ)(V0 + N0γQ)−1 = K0 + Ṽ0
−1

γQ(I + V −1
0 N0γQ)V −1

0 (3.30)

A complete description of the controller K0(Q) depending on γ is given below.

K0(Q) = K0 + Ṽ0
−1

γQ(I + V −1
0 N0γQ)−1V −1

0 =

= K0 + Ṽ0
−1

γX1Ṽ1(K1 − K0)V0(I + V −1
0 N0γX1Ṽ1(K1 − K0)V0)−1V −1

0

K0(Q) = K0 + Ṽ0
−1

γX1Ṽ1(K1 − K0)V0(V0 + N0γX1V1(K1 − K0)V0)−1 =

= K0 + Ṽ0
−1

γX1Ṽ1(K1 − K0)(I + N0γX1Ṽ1(K1 − K0))−1

K0(Q) = K0 + Ṽ0
−1

(I + N0γM1M−1
0 Ṽ1(K1 − K0))−1(γM1M−1

0 Ṽ1(K1 − K0)) =

= K0 + Ṽ0
−1

(M0 + N0γM1Ṽ1(K1 − K0))−1(γM1Ṽ1(K1 − K0)) =

= K0 + (M0Ṽ0 + N0γM1Ṽ1Ṽ0(K1 − K0))−1(γM1Ṽ1(K1 − K0))

K0(Q) = K0 + (M0Ṽ0 + γM1(Ũ1N0Ṽ0 − Ũ0N0Ṽ1))−1(γM1Ṽ1(K1 − K0)) =

= K0 + ((I − γM1Ṽ1)M0Ṽ0 + γM1Ṽ1 + γM1Ũ1N0Ṽ0)−1(γM1Ṽ1(K1 − K0))

K0(Q) = K0 + ((I − γM1Ṽ1)M0Ṽ0 + γM1Ṽ1 + γM1Ũ1N0Ṽ0)−1(γM1Ṽ1(K1 − K0)) =

= K0 + ((I − γM1Ṽ1)M0Ṽ0 + γM1Ṽ1 + γŨ1N1M0Ṽ0)−1(γM1Ṽ1(K1 − K0)) =

= K0 + ((I − γM1Ṽ1 + γŨ1N1)M0Ṽ0 + γM1Ṽ1)−1(γM1Ṽ1(K1 − K0)) =

= Ṽ0
−1

Ũ0 + ((I − γ)M0Ṽ0 + γM1Ṽ1)−1(γM1Ṽ1(Ṽ1
−1

Ũ1 − Ṽ0
−1

Ũ0)) =

= ((I − γ)M0Ṽ0 + γM1Ṽ1)−1((1 − γ)M0Ũ0 + γM1Ũ1)

(3.31)

K0(Q) description in Eq. 3.30 is connected to the general plant in Eq. 3.1, so CL stability
from w to e can be studied [Tay et al., 1997]:

A necessary and sufficient condition to ensure stability is given in Theorem 3.3:







I −

[

0 0
0 K0(Q)

]

−P I







−1

= Gew + GeuK0(Q)(I − GK0(Q))−1Gyw ∈ RH∞ (3.32)

Eq. 3.27 together with the CL description in Eq. 3.32 are used, yielding:

Tew = Gew + Geu(M0Ũ0 + M0γQM̃0)Gyw (3.33)

where Q is given by Theorem 3.9. Bézout’s identity is employed below, resulting:
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Tew = Gew + Geu(M0Ũ0 + M0γM−1
0 M1(Ũ1V0 − Ṽ1U0)M̃0)Gyw =

= Gew + Geu(M0Ũ0 + γM1Ũ1V0M̃0 − γM1Ṽ1M0Ũ0)Gyw =

= Gew + Geu((1 − γM1Ṽ1)M0Ũ0 + γM1Ũ1V0M̃0)Gyw =

= Gew + Geu((1 − γ(I + Ũ1N1))M0Ũ0 + γM1Ũ1V0M̃0)Gyw =

= Gew + Geu((1 − γ)M0Ũ0 − γŨ1N1M0Ũ0 + γM1Ũ1V0M̃0)Gyw =

= Gew + Geu((1 − γ)M0Ũ0 − γŨ1(N1M0Ũ0 − M1V0M̃0))Gyw =

= Gew + Geu((1 − γ)M0Ũ0 − γŨ1(N0M1Ũ0 − M1V0M̃0))Gyw =

= Gew + Geu((1 − γ)M0Ũ0 − γŨ1(M1(N0Ũ0 − V0M̃0)))Gyw =

= Gew + Geu((1 − γ)M0Ũ0 + γM1Ũ1)Gyw

(3.34)

This proves that CL stability of a general plant connected to K0(Q) depends on coprime factors
M0, Ũ0, M1 and Ũ1. These coprime factors are stable by definition, so CL stability is ensured for
every value of γ.

Theorem 3.10 (Stable controller reconfiguration between K0 and K1). CL transfer function of a
general plant connected to a feedback controller is in Eq. 3.7. Consider a controller K0(Q) given
by:

K0(Q) = (U0 + M0γQ)(V0 + N0γQ)−1 = (Ṽ0 + γQÑ0)−1(Ũ0 + γQM̃0) (3.35)

with γ ∈ [0, 1]. Then, the CL transfer function Tew depending on γ is given by:

Tew = Gew + Geu((1 − γ)M0Ũ0 + γM1Ũ1)Gyw (3.36)

CL stability is ensured for every value of γ if and only if Gew, Geu, Gyw, M0, Ũ0, M1 and
Ũ1 ∈ RH∞. As they are stable by definition, stability when doing controller reconfiguration between
K0 and K1 is ensured.

Proof. Proof is above.

The different time-variations of γ result in different transients when switching between con-
trollers. CL stability analysis is extended to any time-variation of γ in [Hespanha and Morse,
2002]. It is stated that the switching signal γ between both controllers could be simpleminded,
because stability is ensured in every moment. As example, two controllers are designed for the
control of the roll angle of an aircraft: the first, slow but with good noise rejection; and the second,
fast but sensitive to noise. By switching between them is possible to achieve good noise rejection
when noise is large, and fast response when noise is small. Stability is ensured regardless the
algorithm used to obtain the switching signal. Thus, with the YK parameterization, one can use
a simpleminded algorithm to switch between controllers whereas keeping stability.

3.3.2 From a initial stabilizing controller to several stabilizing controllers

Former sections considered the switching between two possible controllers. However, applications
where more controllers are required could exist: Ki with i ∈ [1, p]. K0 is the initial controller.
Further, each of these controllers Ki should be implemented with the appropriate Qi. Theorem
3.9 is rewritten in a more general way:
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Theorem 3.11. Let G = NiM
−1
i = M̃i

−1
Ñi be a coprime factorization of the plant G and K0 =

U0V −1
0 = Ṽ0

−1
Ũ0 an initial stabilizing controller represented by its coprime factors. p stabilizing

controllers are given by Ki = UiV
−1

i = Ṽi
−1

Ũi with i ∈ [1, p]. Then, Ki can be implemented in a
stable way by calculating Qi as follows:

Qi = Xi(ŨiV0 − ṼiU0) = Xi(Ṽi(Ki − K0)V0) (3.37)

with Xi = M−1
0 Mi.

Proof. Proof is equivalent to the one in Theorem 3.9. Replace subindex 1 by i.

Different scalar factors γi are employed for providing smoothness when doing controller recon-
figuration from K0 to Ki. Moreover, they can be also used to provide a combination of different
stabilizing controllers such Q yields:

Q =
p
∑

i=1

γiQi with
p
∑

i=1

γi = 1 (3.38)

The number of controllers is p = 2, both different from the initial controller K0. This simplifies
the controller description without loss of generality:

Q = γ1Q1 + γ2Q2 = γ1X1(Ũ1V0 − Ṽ1U0) + γ2X2(Ũ2V0 − Ṽ2U0) =

= γ1X1Ṽ1(K1 − K0)V0 + γ2X2Ṽ2(K2 − K0)V0 with γ1 + γ2 = 1
(3.39)

This new Q is included into Eq. 3.25 for having a complete description of K(Q) able to switch
between several controllers:
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K(Q) = K0 + Ṽ0
−1

Q(I + V −1
0 N0Q)−1V −1

0 =

= K0 + Ṽ0
−1

(γ1X1Ṽ1(K1 − K0) + γ2X2Ṽ2(K2 − K0))

(I + N0(γ1X1Ṽ1(K1 − K0) + γ2X2Ṽ2(K2 − K0)))−1 =

= K0 + Ṽ0
−1

(I + (γ1X1Ṽ1(K1 − K0) + γ2X2Ṽ2(K2 − K0))N0)−1

(γ1X1Ṽ1(K1 − K0) + γ2X2Ṽ2(K2 − K0)) =

= K0 + Ṽ0
−1

(M0 + (γ1M1(Ũ1 − Ṽ1K0) + γ2M2(Ũ2 − Ṽ2K0))N0)−1

(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= K0 + (M0Ṽ0 + (γ1M1(Ũ1 − Ṽ1K0) + γ2M2(Ũ2 − Ṽ2K0))N0Ṽ0)−1

(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= K0 + (M0Ṽ0 + γ1M1(Ũ1N0Ṽ0 − Ṽ1U0Ñ0) + γ2M2(Ũ2N0Ṽ0 − Ṽ2U0Ñ0))−1

(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= K0 + (γ1M1Ṽ1 + γ2M2Ṽ2 + (I − γ1M1Ṽ1 − γ2M2Ṽ2)M0Ṽ0 + (γ1M1Ũ1 + γ2M2Ũ2)N0Ṽ0)−1

(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= K0 + (γ1M1Ṽ1 + γ2M2Ṽ2 + γ1Ũ1(M̃1N0 − Ñ1M0)Ṽ0 + γ2Ũ2(M̃2N0 − Ñ2M0)Ṽ0)−1

(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= K0 + (γ1M1Ṽ1 + γ2M2Ṽ2)−1(γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)) =

= (K0(γ1M1Ṽ1 + γ2M2Ṽ2) + (γ1M1Ṽ1(K1 − K0) + γ2M2Ṽ2(K2 − K0)))(γ1M1Ṽ1 + γ2M2Ṽ2)−1 =

= (γ1M1Ṽ1 + γ2M2Ṽ2)−1(γ1M1Ũ1 + γ2M2Ũ2)
(3.40)

Without loss of generality, the solution for p = 2 can be extended to p controllers [Niemann et
al., 2004]:

K(Q) =

(

p
∑

i=1

γiMiṼi

)−1 p
∑

i=1

γiMiŨi with
p
∑

i=1

γi = 1 (3.41)

Notice how K(Q) is independent from K0. The reason is that the scaling parameters γi satisfy
∑p

i=1 γi = 1. However, if the sum is not equal to one, the final controller will be also function of
the initial controller K0.

Once a general description of K(Q) is given, CL stability from w to e is analysed. Tew for
p = 2 is equivalent to:

Tew = Gew + Geu(M0Ũ0 + γ1M1(Ũ1V0 − Ṽ1U0)M̃0 + γ2M2(Ũ2V0 − Ṽ2U0)M̃0)Gyw =

= Gew + Geu((1 − γ1M1Ṽ1 − γ2M2Ṽ2)M0Ũ0 + γ1M1Ũ1V0M̃0 + γ2M2Ũ2V0M̃0)Gyw =

= Gew + Geu((γ1M1Ũ1 + γ2M2Ũ2) + (γ1M1Ũ1 + γ2M2Ũ2)N0Ũ0 − (γ1U1Ñ1 + γ2U2Ñ2)M0Ũ0)Gyw =

= Gew + Geu((γ1M1Ũ1 + γ2M2Ũ2) + γ1U1(M̃1N0 − Ñ1M0)Ũ0 + γ2U2(M̃2N0 − Ñ2M0)Ũ0)Gyw =

= Gew + Geu((γ1M1Ũ1 + γ2M2Ũ2))Gyw

(3.42)

This is again extended to p controllers without loss of generality:
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Tew = Gew + Geu

(

p
∑

i=1

γiMiŨi

)

Gyw with
p
∑

i=1

γi = 1 (3.43)

Therefore, CL stability depends directly on the coprime factors Mi and Ũi, which are stable
by definition. The information above is summarized in the following Theorem:

Theorem 3.12 (Stable controller reconfiguration between several controllers). CL transfer func-
tion of a general plant connected to a feedback controller is in Eq. 3.7. Consider a controller K(Q)
given by:

K(Q) = (U0 + M0

p
∑

i=1

γiQi)(V0 + N0

p
∑

i=1

γiQi)
−1 = (Ṽ0 +

p
∑

i=1

γiQiÑ0)−1(Ũ0 +
p
∑

i=1

γiQiM̃0) (3.44)

with
∑p

i=1 γi = 1. Then, the CL transfer function Tew depending on γi is given by:

Tew = Gew + Geu

(

p
∑

i=1

γiMiŨi

)

Gyw (3.45)

CL stability is ensured for every value of γi if and only if Gew, Geu, Gyw, Mi and Ũi ∈ RH∞.
As they are stable by definition, stability when doing controller reconfiguration between several
controllers Ki is ensured.

Proof. Proof is above.

3.3.3 Controller structures

This subsection explores the different control structures in connection with YK parameterization
to provide stable controller reconfiguration. Some drawbacks come up when using the YK archi-
tecture: complexity of the resulting controller, matrix inversability or disconnection of the plant
for implementation. The standard structure in [Moore et al., 1990] has been modified in the liter-
ature to avoid matrix inversability [Niemann and Poulsen, 2009a], plant disconnection [Trangbaek
et al., 2008] [Trangbaek and Bendtsen, 2009], or to reduce the complexity of the resulting con-
troller [Niemann and Poulsen, 2009a]. These structures are summarized, highlighting the solved
problems, and providing mathematical proof that stability remains. For the sake of simplicity,
control structures shown in this subsection are for controller reconfiguration between K0 and K1.
It could be extended to several stabilizing controllers Ki without losing generality.

3.3.3.a Structures 1 and 2

From Theorem 3.10, the standard control structures for stable controller reconfiguration are de-
rived. Figure 3.4 shows the control structure for switching based on right coprime factors. On
the other hand, the structure in Fig. 3.5 depends on left coprime factors. Standard structures
refer to the first YK control structures that appeared in [Moore et al., 1990]. The complexity of
these control structures is defined as the order/state dimension of the switched controller K0(Q):
A non-minimal realization of structures 1 and 2 may yield a K0(Q) with 7(n + nK0

) + 3(n + nK1
)

states.
When doing controller transitions, the scalar factor γ plays a key role. It regulates the different

levels of activation of the YK parameter Q. γ may vary from 0 to 1, being 0 a 100% contribution
of K0 and 1 a 100% contribution of K1. In short, γ is the switching signal between K0 and K1.
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Figure 3.4: Structure 1.
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Figure 3.5: Structure 2.

Both implementations present some drawbacks such high order complexity of resulting con-
troller, matrix inversability or controller design from scratch. These structures are modified below,
so the associated problems can be suppressed.

3.3.3.b Structures 3 and 4

Controller reconfiguration using structures 1 and 2 requires the initial controller K0 to be divided
in its coprime factors U0, V0 or Ũ0 and Ṽ0. Even if the system is already operational with an initial
controller K0, this one should be disconnected. This is unfeasible if the system shutdown is very
expensive, or the initial controller is part of a safety circuit. Remaining the original controller
would be useful for not replicating supervisory logic already installed in the initial controller, or
to come back to the previous control system when failures occur. In several cases, the inside of
the controller could not be accessible.
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Figure 3.6: Structure 3.
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Figure 3.7: Structure 4.

[Trangbaek and Bendtsen, 2009] keep the initial controller in place, accessing at its terminal to
carry out the YK controller reconfiguration. New control dynamics can be added online, without
removing the original controller. This allows to return to the original controller in case of problems
with the new one. Control structures for right and left coprime factorizations are shown in Figs.
3.6 and 3.7 respectively. As K0 is not decomposed in coprime factors, inversion of matrices is no
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longer needed; and the complexity of the resulting K0(Q) is lower: 5(n + nK0
) + 3(n + nK1

) + nK0

for structure 3 and 6(n + nK0
) + 3(n + nK1

) + nK0
for structure 4. Notice that calculations of the

YK parameters Q′ and Q′′ differ from the standard one in Eq. 3.28:

Theorem 3.13. Let G = N0M−1
0 = M̃0

−1
Ñ0 = N1M−1

1 = M̃1
−1

Ñ1 be a coprime factorization of

the plant G and K0 = U0V −1
0 = Ṽ0

−1
Ũ0 an initial stabilizing controller that can not be disconnected.

A second controller is given by K1 = U1V −1
1 = Ṽ1

−1
Ũ1. In order to use structures 3 and 4:

When using right coprime factors M0 and N0, Q′ is calculated as:

Q′ = QV −1
0 = X1(Ũ1 − Ṽ1Ũ0Ṽ0

−1
) (3.46)

When using left coprime factors M̃0 and Ñ0, Q′′ is calculated as:

Q′′ = QṼ0
−1

= X1(Ṽ0
−1

(Ũ1V0 − Ṽ1U0)) (3.47)

with X1 = M−1
0 M1.

Proof. Proof is equivalent to stability proof below.

Once structures 3 and 4 are defined, the YK property of stable controller reconfiguration is
verified. Stability has already been demonstrated in Theorem 3.10. To prove that stability is still
preserved in these new structures, it is only necessary to check that K0(Q) remains as in Eq. 3.35.

According to the block diagram of structure 3 (Fig. 3.6), K0(Q) yields:

u = (K0 + M0γQ′)(1 + N0γQ′)−1y

u = (U0V −1
0 + M0γQ′)(1 + N0γQ′)−1y

u = (U0V −1
0 + M0γQV −1

0 )(1 + N0γQV −1
0 )−1y

u = (U0 + M0γQ)(V0 + N0γQ)−1y

(3.48)

which is equivalent to K0(Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 4 (Fig. 3.7), K0(Q) yields:

u = (K0 + γQ′′M̃0)(1 + γQ′′Ñ0)−1y

u = (Ṽ0
−1

Ũ0 + γQ′′M̃0)(1 + γQ′′Ñ0)−1y

u = (Ṽ0
−1

Ũ0 + γQṼ0
−1

M̃0)(1 + γQ′′Ñ0)−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)−1y

(3.49)

which is equivalent to K(Q) description in Eq. 3.35 for left coprime factors.
Stable controller reconfiguration property is ensured even if different structures are employed.

3.3.3.c Structures 5 and 6

Another critical point in the implementation of structures 1 and 2 is the inversion of coprime
factors V0 and Ṽ0. As a solution, two new structures related to loop transfer recovery were proposed
in [Niemann et al., 1991] and [Niemann and Poulsen, 2009a]. Structures so-called 5 and 6 do not
present matrix inversion. Block diagrams of both structures are depicted in Figs. 3.8 and 3.9
respectively. Notice that unlike structures 3 and 4 the calculation of the YK parameter Q remains
as in Eq. 3.28, and the initial controller K0 should be disconnected for structure implementation.
Besides, the resulting controller order is the same as structures 1 and 2: 7(n + nK0

) + 3(n + nK1
).
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yu

U0  + M0γQ

M0
~

G

N0
~

-

Figure 3.8: Structure 5.
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Figure 3.9: Structure 6.

Again stable controller reconfiguration property is checked with Eq. 3.35.
According to the block diagram of structure 5 (Fig. 3.8), K0(Q) yields:

u = (U0 + M0γQ)(M̃0y − Ñ0u) =

u = (I + (U0 + M0γQ)Ñ0)−1(U0 + M0γQ)M̃0y

u = (M̃0V0 + M̃0N0γQ)−1(U0 + M0γQ)M̃0y

u = (V0 + N0γQ)−1(U0 + M0γQ)y

(3.50)

which is equivalent to K(Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 6 (Fig. 3.9), K0(Q) yields:

u = M0ω

u = M0(Ũ0 + γQM̃0)(1 + (Ũ0 + γQM̃0)N0)−1y

u = M0(Ũ0 + γQM̃0)(Ṽ0M0 + γQÑ0M0)−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)−1y

(3.51)

which is equivalent to K0(Q) description in Eq. 3.35 for left coprime factors.

3.3.3.d Structures 7 and 8
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Figure 3.10: Structure 7
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Figure 3.11: Structure 8

Finally, the work in [Niemann and Poulsen, 2009a] deals with the reduction of the implemen-
tation complexity of the YK parameter Q. Notice that this parameter is derived from Eq. 3.28,
which depends on six coprime factors. Structures 7 and 8 make the YK controller reconfiguration
independent of Q. Both control structures are shown in Figs. 3.10 and 3.11 respectively. The
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equivalent complexity order results in 4(n + nK0
) + 2(n + nK1

) states. Again structure implemen-
tation requires the initial controller to be disconnected. Notice how for the special case where
X1 = I, the complexity order gets even lower.

Stable controller reconfiguration property is still preserved even if Q is no longer in the structure
for controller reconfiguration. Mathematical proof is shown below:

According to the block diagram of structure 7 (Fig. 3.10), K0(Q) yields:

u = ((1 − γ)U0 + γU1M̃1M̃0
−1

)(M̃0y − Ñ0)

u = ((1 − γ)U0 + γU1M̃1(−GU0 + V0))(M̃0y − Ñ0)

u = ((1 − γ)U0 + γ(−U1Ñ1U0 + U1M̃1V0))(M̃0y − Ñ0)

u = ((1 − γ)U0 + γ((I − M1Ṽ1)U1 + M1Ũ1V0))(M̃0y − Ñ0)

u = (U0 + γM1(Ũ1V0 − Ṽ1U0))(M̃0y − Ñ0)

u = (U0 + M0γQ)(M̃0y − Ñ0)

u = (I + (U0 + M0γQ)Ñ0)−1(U0 + M0γQ)M̃0y

u = (M̃0V0 + M̃0N0γQ)−1(U0 + M0γQ)M̃0y

u = (V0 + N0γQ)−1(U0 + M0γQ)y

(3.52)

which is equivalent to K0(Q) description in Eq. 3.35 for right coprime factors.
According to the block diagram of structure 8 (Fig. 3.11), K0(Q) yields:

u = M0ω

u = M0((1 − γ)Ũ0 + γM−1
0 M1Ũ1)

(1 + ((1 − γ)Ũ0 + γM−1
0 M1Ũ1)N0)−1y

u = M0(Ũ0 + γQM̃0)(1 + (Ũ0 + γQM̃0)N0)−1y

u = M0(Ũ0 + γQM̃0)(Ṽ0M0 + γQÑ0M0)−1y

u = (Ũ0 + γQM̃0)(Ṽ0 + γQÑ0)−1y

(3.53)

which is equivalent to K(Q) description in Eq. 3.35 for left coprime factors.
On the other hand, it has been assumed that there is no variation in the dynamic system

represented by G; when doing controller switching in a system with variations, dual YK formulation
needs to be employed. Further details are found in Chapter 4. All the plants stabilized by a given
controller are represented by G(S), where S is the dual YK parameter [Niemann, 2003]. In that
case, CL stability involves both Q and S: (I − QS)−1 ∈ RH∞ [Niemann and Stoustrup, 1999].
Thus, control structures 7 and 8 cannot be used when system variations are present, as Q is no
longer in the structure.

3.4 Numerical examples

In this section, different numerical examples are given for the better understading of the stable
controller reconfiguration provided by the YK parameterization. In particular, it is shown how YK
is able to solve a transition problem where a direct linear change between two controllers could
result in a stability problem. Root locus representation during the transition phase between initial
and final first-order controllers connected to a first-order system is also provided. It allows to
make a connection between YK stability property and zeros/poles position when doing controller
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reconfiguration. Finally, transient behavior depending on the control structure is also analysed.
A comparative study is carried out among all the structures, determining if the use of some YK
control structure improves transient performance when doing controller switching.

3.4.1 Stable transition

A linear combination between two controllers K0 and K1 could results in an unstable system.
In [Niemann et al., 2004], a theoretical example shows how the linear combination of two stabilizing
controllers does not result in a stabilizing controller of the system. The example is here reused to
show the stabilizing capabilities of the YK parameterization.

Consider the following state-space representation of a system G:

G =

[

A B

C D

]

=











7.0 0.0 0.0 1.0
1.0 −7.0 −2.4495 0.0
0.0 2.4495 0.0 0.0
1.0 −5.0 253.1139 0.0











(3.54)

The system is unstable, but it is stabilized by an initial controller K0:

K0 =

[

Ac
0 Bc

0

Cc
0 Dc

0

]

=

[

0.0 0.0
0.0 1000

]

(3.55)

such that the following stable CL poles remain:

polesCL(G,K0) =

[

−998.67
−0.6660 ± 25.027i

]

(3.56)

Later, the controller is replaced by a more advanced one. It could be the case where the initial
controller is applied in the start-up process of the system, but later replaced with a more advanced
controller. An observer-based feedback controller K1 is considered:

K1 =

[

Ac
1 Bc

1

Cc
1 Dc

1

]

=











−15.070 45.992 −2309.7 9.1283
0.3537 −3.7679 −166.07 0.64643

−0.13121 3.1056 −33.212 0.13121
−12.941 0.35054 0.85619 0.0











(3.57)

which CL poles result:

polesCL(G,K1) =











−25.1218
−0.9022

−7.7082 ± 1.01005i
−5.3047 ± 1.1643i











(3.58)

A direct linear change between controllers K0 and K1 is considered. Let the linear combination
between both controllers be as follows:

Kα = (1 − α)K0 + αK1, with α ∈ [0, 1] (3.59)

It results that CL stability is not ensured for every value of α ∈ [0, 1]. CL poles are shown
for different values of α in Table 3.1. Notice how for α ∈ [0.7, 0.9] there are poles in the right
half-plane, and therefore the response is unstable. A direct linear change between two controllers
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Table 3.1: CL poles (G, Kα). Direct linear change between K0 and K1.

α CL poles

α = 0.0 [−998.67, −0.6660 ± 25.027i]

α = 0.1 [−8.7288 ± 14.0935i, −0.6288 ± 25.0287i, −34.6057, −898.7287]

α = 0.2 [−8.7279 ± 14.0891i, −0.5825 ± 25.0304i, −34.6244, −798.8044]

α = 0.3 [−8.7268 ± 14.0835i, −0.5229 ± 25.0320i, −34.6486, −698.9015]

α = 0.4 [−8.7254 ± 14.0760i, −0.4436 ± 25.0332i, −34.6813, −599.0303]

α = 0.5 [−8.7234 ± 14.0655i, −0.3328 ± 25.0328i, −34.7276, −499.2095]

α = 0.6 [−8.7205 ± 14.0500i, −0.1673 ± 25.0278i, −34.7986, −399.4754]

α = 0.7 [−8.7157 ± 14.0245i, 0.1058 ± 25.0083i, −34.9211, −299.9088]

α = 0.8 [−8.7065 ± 13.9748i, 0.6380 ± 24.9291i, −35.1835, −200.7292]

α = 0.9 [−8.6818 ± 13.8348i, 2.0578 ± 24.4344i, −36.1582, −102.6435]

α = 1.0 [−25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

could result in a stability problem. This can be more critical in the case that one wants to change
between more than two controllers.

When using any of the control structures in subsection 3.3.3 stable transition is ensured between
controllers K0 and K1. G, K0 and K1 are defined as in Eqs. 3.54, 3.55 and 3.56 and used within
Theorem 3.7 for obtaining doubly coprime factors N0, M0, N1, M1, Ñ0, M̃0, Ñ1, M̃1, U0, V0, U1,
V1, Ũ0, Ṽ0, Ũ1, Ṽ1. These factors are used for the calculation of Q so the stable YK controller
reconfiguration can be implemented (see Theorem 3.9). CL poles are shown for different values of γ
in Table 3.2. YK paramaterization is able to stabilize a transition between controllers where direct
linear change results unstable. Independently of the value of γ, CL poles during the transition are
the combination of CL poles of (G, K0) and (G, K1) [Niemann and Stoustrup, 1999]. Poles do not
change during the controller transition. This property is detailed in the subsection below.

3.4.2 Root locus evaluation

In this subsection, a root locus comparison between direct linear change between controllers and
YK controller reconfiguration is given. For the shake of clarity, a first order plant is used for the
stability analysis.

Consider the following state space representation of a system:

G =

[

A B

C D

]

=

[

−2.5 2.0
1.25 0.0

]

(3.60)

A controller K0 was designed to make the system follow a step reference:

K0 =

[

Ac
0 Bc

0

Cc
0 Dc

0

]

=

[

0.0 1.0
−1.0 −0.4

]

(3.61)

such that the following stable CL pole remains:

polesCL(G,K0) =
[

−1
]

(3.62)
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Table 3.2: CL poles (G, K0(Q)). YK controller reconfiguration between K0 and K1.

γ CL poles

γ = 0.0 [−998.67, −0.6660 ± 25.027i]

γ = 0.1 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.2 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.3 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.4 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.5 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.6 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.7 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.8 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 0.9 [−998.67, −0.6660 ± 25.027i, −25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

γ = 1.0 [−25.1218, −0.9022, −7.7082 ± 1.01005i, −5.3047 ± 1.1643i]

Later, the controller is replaced by a slower one:

K1 =

[

Ac
1 Bc

1

Cc
1 Dc

1

]

=

[

0.0 0.5
−1.0 −0.2

]

(3.63)

which CL pole is closer to the origin:

polesCL(G,K1) =
[

−0.5
]

(3.64)

Once G, K0 and K1 are defined as in Eqs. 3.60, 3.61 and 3.62, doubly coprime factors N0, M0,
N1, M1, Ñ0, M̃0, Ñ1, M̃1, U0, V0, U1, V1, Ũ0, Ṽ0, Ũ1, Ṽ1 are obtained through Theorem 3.7. These
factors are used for the calculation of Q, so the root locus comparison is carried out.

Figure 3.12 shows the root locus representation corresponding to different values of α in Eq.
3.59. The CL pole of the system moves from its position with K0 to its position with K1 as α
increases. On the contrary, Fig. 3.13 plots the root locus representation corresponding to the
different values of γ in the YK stable controller reconfiguration. YK controller reconfiguration
includes zeros in the vicinity of the pole whose effect should cancel, instead of moving directly the
pole position. At any stage on the transition process, the CL poles of the system are the poles of
(G, K0) and (G, K1) compensated with a zero depending on the value of γ. For γ ∈ [0, 1], poles
position remains in {polesCL(G,K0) ∧polesCL(G,K1)}, so there is not posibility that an unstable pole
appears. On the contrary, for α ∈ [0, 1] in the direct linear change, CL poles move with the value
of α, leaving the possibility that they go to the unstable area.

3.4.3 Transient behavior

By exploiting the YK parameterization it is possible to change controllers without losing stability,
no matter what of the described control structures are used. As already mentioned, when doing
controller transition, γ plays the key role as switching signal between K0 and K1. But even
if stability is ensured, a step change from one controller to another can lead to unnaceptable
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Figure 3.12: Root locus representation direct linear change between K0 and K1.
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Figure 3.13: Root locus representation YK controller reconfiguration between K0 and K1.

transitions. It would cause spikes and oscillations in the output, which are not acceptable. The
rate of change of the switching signal γ could be any, without affecting the CL stability of the
system [Hespanha and Morse, 2002]. This subsection studies transient responses when using the
different YK control structures, determining if the use of some structure improves the transient
behavior when doing controller reconfiguration.

Notice that the rate of change of γ could be any, but a numerical example with the fastest γ
rate is given such that transient differences are more remarkable. G, K0 and K1 are defined as
in Eqs. 3.60, 3.61 and 3.63 respectively. Responses of both controllers are shown as black and
blue dotted lines in the middle graph of Fig. 3.14. Doubly coprime factors N0, M0, N1, M1, Ñ0,
M̃0, Ñ1, M̃1, U0, V0, U1, V1, Ũ0, Ṽ0, Ũ1, Ṽ1 are obtained through Theorem 3.7. These factors are
used for the calculation of Q, Q′ and Q′′, so all the YK control structures can be implemented and
compared in terms of transient performance.

Figure 3.14 depicts the transient behavior of each of the structures. The top graph represents
how γ is modified to carry out the switching from K0 to K1. System responses when doing the
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Figure 3.14: Comparison of transient behavior between different YK control structures. Step from
0 to 1.

transition are shown for the structures 1 to 8 at the middle graph. The bottom graph plots the
error to K1 response once the YK structure is activated. In all cases, the initial controller K0 (black
dotted line) is working until γ becomes 1 at 11s. Then, the transient to reach K1 response (blue
dotted line) is different for each of the structures: Structures 5 and 7 presents the same response,
the time to reach the desired behavior is the fastest 2s, but with an oscillation in the response;
structures 2, 6 and 8 takes twice the time but without overshoot; Structure 3 is even slower, about
8 s, but consequently transition is smoother; finally, structure 1 and 4 present oscillations over the
desired response, with times reaching 12s and 4s respectively.

When doing controller reconfiguration, one looks for a transition without overshoot between
K0 and K1 responses. This is the case of structures 2, 3, 6 and 8.

Table 3.3 gathers benefits and drawbacks of each structure seen in previous sections, as well as
transition behavior characterized by rising time and the presence of oscillations.



Table 3.3: Summary Table.

K0 disconnection Complexity Iversability YK parameter System variations (Q,S) Time Oscillations

Structure 1 Yes 7(n + nK0
) + 3(n + nK1

) Yes Q Yes 12s Yes

Structure 2 Yes 7(n + nK0
) + 3(n + nK1

) Yes Q Yes 4s No

Structure 3 No 5(n + nK0
) + 3(n + nK1

) + nK0
No Q′ Yes 8s No

Structure 4 No 6(n + nK0
) + 3(n + nK1

) + nK0
No Q′′ Yes 4s Yes

Structure 5 Yes 7(n + nK0
) + 3(n + nK1

) No Q Yes 2s Yes

Structure 6 Yes 7(n + nK0
) + 3(n + nK1

) No Q Yes 4s No

Structure 7 Yes 4(n + nK0
) + 2(n + nK1

) Yes - No 2s Yes

Structure 8 Yes 4(n + nK0
) + 2(n + nK1

) Yes - No 4s No
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3.5 Conclusions

In this chapter, YK parameterization examines the use of doubly coprime factors to parameterize
the class of all stabilizing controllers for a plant in terms of an initial stabilizing controller and a
stable filter Q, called YK parameter.

The basis for the rest of the thesis has been defined. Derivation of a plant model, with transfer
function and state space representation is provided. Stabilizing properties of feedback and feed-
forward/feedback controllers for such plant model are revisited. The process of obtaining stable
doubly coprime factors for a plant model G connected to any stabilizing controller Ki is explained;
with special emphasis in the relation between coprime representations and stability properties,
called Bézout’s identity. The entire class of stabilizing controllers for the a plant model is then
parameterized in terms of a stable filter Q using these stable coprime factors. It turns out that
this approach gives rise to CL transfer functions that are affine in the stable filter Q. By using
a scalar factor with the stable YK parameter Q, it is possible to switch between controllers in a
stable way. If a direct linear change between controllers is performed, there is no guarantee that
transition is stable. This lack of CL stability during transition is removed by using the YK param-
eterization. A numerical example is given, proving how YK parameterization is able to stabilize
a transition between two controllers where direct linear change results unstable. At any point of
the switching process, the CL poles of the system are the poles of the plant model with initial and
final controllers compensated by zeros. Zeros position depends on the value of the scalar factor
multiplying Q.

Finally, the YK mathematical basis is applied to derive the standard YK structures for con-
troller switching. Different modifications are proposed to deal with problems such as order com-
plexity, plant disconnection or matrix inversability. Eight structures are obtained, which controller
complexity results in decreasing order: structures 1, 2, 5 and 6; structure 4; structure 3; and struc-
tures 7 and 8. Stability property is still preserved despite modifications in the structure, which
means that CL poles during transition are the same even if different structures are used. Even
if stability and CL poles are maintained during transition, transient behavior of each structure is
investigated through a numerical example. Transient responses result different depending on the
applied YK controller structure. Structures 1, 4, 5 and 7 exhibit an oscillating response to be
avoided. The rest presents acceptable behaviors, but one or the other should be chosen depending
on the desired time to reach the final response, controller complexity, presence of system variations
or initial controller disconnection. Structures 2, 6 and 8 are the fastest ones without oscillation,
while structure 3 take twice the time (so smoother) with a lower controller complexity, no need
to disconnect the initial controller, and system variations included. Structure 3 will be the chosen
one throughout this thesis.
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Chapitre. Paramétrisation
Youla-Jabr-Bongiorno-Kucera Duale

Below is a French summary of the following chapter "Dual Youla-Jabr-Bongiorno-Kucera param-
eterization".

Un des problèmes fréquents du contrôle est la conception d’un modèle Linéaire Invariant dans
le Temps (LIT) pour un point d’opération donné, qui couvre rarement toute la gamme d’opération
du système. Même si le système n’a qu’un unique point d’opération, les bruits externes ou les
incertitudes peuvent exister, modifiant encore le comportement du systéme. C’est au court de ces
situations que l’identification du système et le contrôle adaptatif jouent un rôle clé.

Ce chapitre décrit les bases mathématiques de l’application de la paramétrisation duale de
Youla-Jabr-Bongiorno-Kucera (YK) dans les domaine de l’identification en boucle fermée (BF) et
le contrôle adaptatif. La paramétrisation YK duale décrit l’ensemble de tous les systèmes stabilisés
par un contrôleur LIT. Cette paramétrisation est aussi basée sur la double factorisation coprime.
Cet ensemble est fonction du paramètre YK dual S.

Une description des variations du système dans cas réel est exprimé par des incertitudes sur le
modèle ou par une représentation Linéaire à Paramétres Variants (LPV). Ceci peut être exprimé
en fonction du paramètre YK dual S. S peut être interprété comme la différence entre le système
réel et son modèle, rendant possible la connexion avec la paramétrisation YK. Ceci, dans le but de
concevoir le paramètre YK Q capable de satisfaire des critères de stabilité/performance. D’autre
part, le paramètre YK dual S peut être utilisé pour résoudre le probléme d’identification en BF et
le transformer en identification en boucle ouverte (BO).

Le chapitre est structuré comme suit: la section 4.1 décrit un système général avec ses varia-
tions. La section 4.2 reformule la double factorisation coprime pour la paramétrisation YK duale.
Dans la section 4.3, la classe de tous les systèmes stabilisés par un contrôleur donné est développée.
La section 4.4 décrit comment cette classe et la classe de tous les contrôleurs stabilisant un sys-
tème donné, peuvent être utilisées ensemble en analysant sa stabilité en BF et sa connexion avec
la conception du contrôle adaptatif. Dans la section 4.5 la paramétrisation YK duale est utilisée
pour transformer un problème d’identification BF en problème d’identification BO. Des détails à
propos des deux différentes solutions sont donnés. Enfin, différentes remarques sont fournies en
conclusion dans la section 4.6.
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Chapter 4

Dual Youla-Jabr-Bongiorno-Kucera
parameterization

One of the common problems in controllers is the design for a Linear-Time-Invariant (LTI) model
in a given operation point, which rarely covers all the operation range of the system. Even if the
plant has an unique operation point, external disturbances or uncertainties could exist, modifying
again the system behavior. It is under these situations that system’s identification and adaptive
control play a key role.

This chapter describes the mathematical basis in which the dual Youla-Jabr-Bongiorno-Kucera
(YK) parameterization relies on for making Closed-Loop (CL) identification and adaptive control.
Dual YK parameterization describes the collection of all plants stabilized by a LTI controller. This
parameterization is also based on the doubly coprime factorization. This collection is function of
the dual YK parameter S.

A description of system variations for a real plant is given as uncertainties or Linear-Parameter-
Varying (LPV) representation. These could be expressed in function of the dual YK parameter
S. S can be interpreted as the difference between the real system and its model, being possible to
make a connection with the YK parameterization in order to design the YK parameter Q able to
fulfill some stability/performance criteria. On the other hand, the dual YK parameter S can be
identified for solving CL identification problems as Open-Loop-like (OL-like) problems.

The chapter is structured as follows: Section 4.1 describes a general system with variations.
Section 4.2 reformulates the doubly coprime factorization for the dual YK parameterization. In
section 4.3, the class of all plants stabilized by a given controller is derived. Section 4.4 describes
how this class can be used together with the class of all stabilizing controllers for a given plant,
analysing its CL stability and connection with adaptive control design. In section 4.5, the dual
YK parameterization is used to transform a CL identification problem into a OL-like identification
problem. Details about two different schemes are given. Finally, some concluding remarks are in
section 4.6.

4.1 System variations

Models are an aproximation of the real physical system. Usually, LTI models are used to represent
physical systems, which are really time variant and nonlinear. As example, consider a LTI model
for describing the yaw control of a vehicle. A complete description of this model is non-linear,
and depends on variables such velocity, mass, cornering stiffness, road friction coefficient, and so
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on. A simple LTI model can at best capture only the essential behavior in the neighborhood of an
operation point.

Every model-plant mistmatch is called uncertainty in the plant model. Generally speaking, the
sources of uncertainty can be several: from plant aging, unmodeled dynamics (because the system
is too complex, no easy model), neglected dynamics (accuracy is too expensive), operation over
a large range of operation points, non-repeatable dynamics behaviours, inaccurate description of
component characteristics, shifting of operation points, time delay, parasitic coupling, hysteresis,
etc. The discrepancies between a system and its mathematical representation may lead to violation
of some performance specifications, or even to the CL instability, and thus they should be modeled
for a robust control design.

A typical procedure to represent uncertainty in models is the use of Linear Fractional Trans-
formations (LFT) [Doyle et al., 1991]. It basically separates what is known from what is unknown
in a feedback-like connection, bounding the possible values of the unknown elements. The basic
principle is to eliminate all the uncertaintites which can appear in a plant and combine them in
one uncertainty block ∆. This uncertainty block is used in robust control design, to achieve a
performance/stability level in the present of uncertainties. Uncertainty modeling could not be
simple, as in real systems all sources of uncertainty are mixed.

On the other hand, LPV representation [Bruzelius, 2004] offers a systematic way to obtain a
nonlinear model suitable for control. LPV system is a state-space representation whose dynamics
vary as function of certain time-varying parameters called scheduling parameters. It can represent
practical/real systems subject to uncertainties as parameters variations, unmodeled dynamics and
operation point shifting.

A LPV system can be expressed as:

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)

y(t) = C(p(t))x(t) + D(p(t))u(t)
(4.1)

where p(t) is a vector of time-varying parameters assumed to be bounded ∀t. These time-varying
parameters are called scheduling parameters. A LPV system is a state-space representation where
A(p), B(p), C(p) and D(p) are the state space matrices parametrized by the scheduling parameter
p. Scheduling parameters are exogenous if they are external variables. On the contrary, they are
endogenous if they are function of the state variable p = p(x(t)), and, in that case, the LPV system
is referred as a quasi-LPV system. Different system variations are considered depending on the
nature of the scheduling parameter. Slow or fast scheduling parameter can be considered. Both
related to plants which dynamics change with time, due for example the actual operation point of
the system. Other representation is considered if p is piecewise-constant, or varies in a finite set
of elements. This is a representation mainly used for switching systems.

It does not matter what type of representation is used; S describes any plant-model mistmath,
and this can be identified in order to improve controller performance.

4.2 Doubly coprime factorization

A mandatory step towards the class of all systems stabilized by a controller K is the doubly
coprime factorization. In order to obtain the class of all stabilizing controller for K, these coprime
factors should represent Gi and K such that:

Gi = NiM
−1
i = M̃i

−1
Ñi

K = UiV
−1

i = Ṽi
−1

Ũi

(4.2)
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These coprime factors should be stables Ui, Ũi, Vi, Ṽi, Ni, Ñi, Mi, M̃i ∈ RH∞, and satisfy the
double Bézout’s identity in Eq. 3.17. Notice how coprime factors change in comparison with Eq.
3.16, as a system that varies Gi is connected to a fixed controller K:

Theorem 4.1. Consider a plant in state space representation Gi with Ai, Bi, Ci, Di stabilizable
and detectable, and a stabilizing controller K. Fi, F c

i should be chosen such that Ai + BiFi and
Ac + BcF c

i ∈ RH∞. Then doubly coprime factors are given by:

[

Mi Ui

Ni Vi

]

=











Ai + BiFi 0 Bi 0
0 Ac + BcF c

i 0 Bc

Fi Cc + DcF c
i I Dc

Ci + DiFi F c Di I











(4.3)

[

Ṽi −Ũi

−Ñi M̃i

]

=











Ai + BiYiD
cCi BiYiC

c −BiYi BiYiD
c

BcZiCi Ac + BcZiDiC
c −BcZiDi BcZi

Fi − YiD
cCi −Cc I −Dc

Ci −F c
i 0 I











with Yi = (I − DcDi)
−1 and Zi = (I − DiD

c)−1

(4.4)

Proof. For proof see [Ishihara and Sales, 1999].

In short, to obtain those elements, 1) construct a model-controller in state-space form, 2) solve
a pole-assignment problem such Ai + BiFi and Ac + BcF c

i ∈ RH∞ , and 3) perform algebraic
manipulations according to Eqs. 4.3 and 4.4.

4.3 All systems stabilized by a controller

Once double coprime factors are obtained, it is possible to derive the dual theory related to Theorem
3.8. This theory allows to know the class of all the systems stabilized by a given controller [Tay
et al., 1997].

Theorem 4.2. Consider an initial plant G connected to a stabilizing fixed controller K described
by their coprime factors G = NM−1 = M̃−1Ñ and K = UV −1 = Ṽ −1Ũ . Then the set of all
plants stabilized by the controller K is described by:

G(S) = (N + V S)(M + US)−1 =

= (M̃ + SŨ)−1(Ñ + SṼ ), S ∈ RH∞
(4.5)

where S is a stable transfer function of appropiate dimensions called dual YK parameter.

Proof. Let’s see how this G(S) represents all the plants stabilized by K. CL stability between
G(S) and K is analysed (see Eq. 3.6 in the previous chapter):

[

I −K
−G(S) I

]−1

=

[

I −G(S)
−K I

]−1

∈ RH∞ (4.6)
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[

I −G(S)
−K I

]−1

=

[

I −(M̃ + SŨ)−1(Ñ + SṼ )
−Ṽ −1Ũ I

]−1

=

=

([

(M̃ + SŨ)−1 0
0 Ṽ −1

] [

(M̃ + SŨ) −(Ñ + SṼ )
−Ũ Ṽ

])−1

=

=

[

V (N + V S)
U (M + US)

] [

(M̃ + SŨ) 0
0 Ṽ

]

=

=

([

V N
U M

]

+

[

0 V S
0 US

])([

M̃ 0
0 Ṽ

]

+

[

SŨ 0
0 0

])

=

=

[

V N
U M

] [

M̃ 0
0 Ṽ

]

+

[

V SŨ 0
USŨ 0

]

+

[

0 V SṼ

0 USṼ

]

=

=

[

I −G
−K I

]−1

+

[

V
U

]

S
[

Ũ Ṽ
]

(4.7)

As coprime factors are stable by definition, CL stability between G and K is guaranteed; and then
it is clear that any system parameterized by S ∈ RH∞ is stabilized by K.

The dual YK parameter S can represent any plant-model mistmatch present in a real system,
either as a uncertainty ∆ or as LPV representation. If the resulting S is stable, it means that
uncertainty/plant-variation does not destabilize the loop. Nevertheless, the performance could be
affected.

Equivalent to the previous chapter, below it is shown the parameterization in function of Si

from a nominal/initial LTI model G0 to the one which reflects the real behavior of the system Gi.
This real model could include fixed uncertainties or linear parameter variations in function of a
scheduling parameter p(t). The mistmatch source will determine if Si is an LTI or LPV function.
Si is LTI or LPV depending on the real system Gi.

4.3.1 From a nominal model to a real model

Consider that a nominal LTI model G0 is connected to an initial controller K0. An arbitrary final
LTI or LPV model Gi represents the real system. Then, the dual YK parameterization allows to
represent Gi in function of Si as follows:

Theorem 4.3. Consider an initial plant model G0 connected to a fixed controller K0 described

by their coprime factors G0 = N0M−1
0 = M̃0

−1
Ñ0 and K0 = U0V −1

0 = Ṽ0
−1

Ũ0. The real system
connected to K0 has dynamics corresponding to a model Gi, which coprime factors are Gi =
NiM

−1
i = M̃i

−1
Ñi. Then, the real system Gi is represented in function of Si as:

Gi = G0(Si) = (N0 + V0Si)(M0 + U0Si)
−1 = (M̃0 + SiŨ0)−1(Ñ0 + SiṼ0) =

= G0 + M̃0
−1

Si(I + M−1
0 U0Si)M

−1
0

(4.8)

where Si is equivalent to:

Si = XiM̃i(Gi − G0)M0 = Xi(ÑiM0 − M̃iN0) (4.9)

with Xi = V −1
0 Vi.
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Proof. Below, it is demonstrated how is possible to represent the plant model Gi as a stable Si

based on a initial model G0 connected to a stabilizing controller K0:

G0(Si) = G0 + M̃0
−1

Si(I + M−1
0 U0Si)

−1M−1
0 =

= G0 + M̃0
−1

XiM̃i(Gi − G0)M0(I + M−1
0 U0XiM̃i(Gi − G0)M0)−1M−1

0

G0(Si) = G0 + M̃0
−1

XiM̃i(Gi − G0)M0(M0 + U0XiM̃i(Gi − G0)M0)−1 =

= G0 + M̃0
−1

XiM̃i(Gi − G0)(I + U0XiM̃i(Gi − G0))−1

G0(Si) = G0 + M̃0
−1

XiM̃i(I + U0XiM̃i(Gi − G0))−1(Gi − G0) =

= G0 + M̃0
−1

Xi(M̃i
−1

+ U0Xi(Gi − G0))−1(Gi − G0)

G0(Si) = G0 + M̃0
−1

Xi(M̃i
−1

+ U0XiM̃i
−1

Ñi − U0XiM̃0
−1

Ñ0)−1(Gi − G0) =

= G0 + M̃0
−1

Xi(M̃i
−1

+ U0V −1
0 ViM̃i

−1
Ñi − U0V −1

0 ViM̃0
−1

Ñ0)−1(Gi − G0) =

= G0 + M̃0
−1

Xi(M̃i
−1

+ UiV
−1

i ViM̃i
−1

Ñi − UiV
−1

i ViM̃0
−1

Ñ0)−1(Gi − G0) =

= G0 + M̃0
−1

Xi(M̃i
−1

+ UiM̃i
−1

Ñi − UiM̃0
−1

Ñ0)−1(Gi − G0)

G0(Si) = G0 + M̃0
−1

Xi((I + UiÑi)M̃i
−1

− UiM̃0
−1

Ñ0)−1(Gi − G0) =

= G0 + M̃0
−1

Xi(Vi − UiM̃0
−1

Ñ0)−1(Gi − G0) =

= G0 + M̃0
−1

V −1
0 Vi(Vi − UiM̃0

−1
Ñ0)−1(Gi − G0)

G0(Si) = G0 + (M̃0V0 − U0Ñ0)−1(Gi − G0) = G0 + (Gi − G0) = Gi

(4.10)

Notice how in the LPV case, the real model Gi could vary with some scheduling parameter
p(t) or a time-varying uncertainty ∆(t), and therefore the corresponding dual YK parameter Si.
Specific representations in function of a scheduling parameter p(t) or an uncertainty model ∆ are
found in [Bendtsen and Trangbaek, 2014] and [Niemann and Stoustrup, 1999] respectively. For
the sake of simplicity, in the rest of the chapter, a LTI Si is considered.

From the general description of any plant stabilized by a controller K0 in Theorem 4.3, the
structure shown in Fig. 4.1 is obtained (This is the one based on right coprime factors). The
structure based on left coprime factors is depicted in Fig. 4.2. In both, n′ represents the measure-
ment noise n relocated to affect the output of Si: n′ = (M̃0 + S̃iŨ0)n. r1 and r2, as in the previous
chapter, could be the reference input and the feedforward output respectively; and finally, ζ0 and
z0 represent Si input and output.

4.4 Adaptive control design

The dual YK parameterization is used in connection with controller design. Any system variation
can be expressed in function of the dual YK parameter S. It is then possible to use the dual
YK parameterization in connection with the YK parameterization, so the changes related to S
induce some change in Q with some stability or performance criteria. Different controller tuning
techniques based on YK are named in this section, with special emphasis in Multi Model Adaptive
Control (MMAC). But first, a connection between both classes is carried out, analysing CL stability
for a system formed by G0(Si) (Theorem 4.3) and K0(Qi) (Theorem 3.11).
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Figure 4.1: Dual YK parameterization
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Figure 4.2: Dual YK parameterization struc-
ture based on left coprime factors.

Theorem 4.4. Let (G0, K0) be a stabilizing LTI plant controller pair defined by its coprime factors

G0 = N0M−1
0 = M̃0

−1
Ñ0 and K0 = U0V −1

0 = Ṽ0
−1

Ũ0. Consider the class of all stabilizing
controllers for G0 as:

K0(Qi) = (U0 + M0Qi)(V0 + N0Qi)
−1 = (Ṽ0 + QiÑ0)−1(Ũ0 + QiM̃0) (4.11)

and the class of all the plants stabilized by K0 as:

G0(Si) = (N0 + V0Si)(M0 + U0Si)
−1 = (M̃0 + SiŨ0)−1(Ñ0 + SiṼ0) (4.12)

with Qi, Si ∈ RH∞. Then the pair (G0(Si), K0(Qi)) is CL stable if and only if the pair (Qi, Si)
is stable:





[

I −Qi

−Si I

]−1

− I



 ∈ RH∞ (4.13)

Proof. Consider CL stability condition in Theorem 3.2 together with descriptions in Eqs. 4.11 and
4.12:
[

I −K0(Qi)
−G0(Si) I

]−1

=

[

I −(Ṽ0 + QiÑ0)−1(Ũ0 + QiM̃0)
−(M̃0 + SiŨ0)−1(Ñ0 + SiṼ0) I

]−1

=

=

([

(Ṽ0 + QiÑ0)−1 0
0 (M̃0 + SiŨ0)−1

] [

(Ṽ0 + QiÑ0) −(Ũ0 + QiM̃0)
−(Ñ0 + SiṼ0) (M̃0 + SiŨ0)

])−1

=

=

([

I −Qi

−Si I

] [

Ṽ0 −Ũ0

−Ñ0 M̃0

])−1 [

(Ṽ0 + QiÑ0) 0
0 (M̃0 + SiŨ0)

]

=

=

[

I −Qi

−Si I

]−1 [

Ṽ0 −Ũ0

−Ñ0 M̃0

]−1([

I −Qi

−Si I

] [

Ṽ0 0
0 M̃0

]

+

[

QiÑ0 QiM̃0

SiṼ0 SiŨ0

])

=

=

[

M0 U0

N0 V0

] [

Ṽ0 0
0 M̃0

]

+

[

M0 U0

N0 V0

] [

I −Qi

−Si I

]−1 [

0 Qi

Si 0

] [

Ṽ0 Ũ0

Ñ0 M̃0

]

(4.14)

where:
[

M0 U0

N0 V0

] [

Ṽ0 0
0 M̃0

]

=

[

I −K0

−G0 I

]−1

(4.15)
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and
[

I −Qi

−Si I

]−1 [

0 Qi

Si 0

]

=

[

I −Qi

−Si I

]−1

− I (4.16)

From these expresions is clear that the stability of the set (G0(Si), K0(Qi)) depends on an initial
set (G0, K0) stable and stability of the pair (Qi, Si).

This theorem is the heart of different control applications already seen in the state-of-the-art:

The iterative solution presented in [Tay et al., 1997]. An initial controller K0 stabilizing both
model G0 and G0(Si) can be updated/retuned by identifying Si: This is done selecting a Qi

stabilizing Si and fulfilling some performance criteria. The design of Qi is based on the knowdlege
of Si. A simple transformation between Qi and Q′

i could be done in order to use the structure
three– Q′

i = QiV
−1

0 . Notice how low order approximations for Si should be used in order to keep a
low order controller. Even with that, for practical implementation, controller order reduction may
be required, as controller order increases with each iteration.

A direct relation between Si and uncertainty ∆ is adressed in [Niemann and Stoustrup, 1999].
This relation is used in the literature in H∞ control problems, in order to design optimal controllers
when uncertainty description is not full complex [Niemann, 1999]. A transformation between ∆
and Si permits to a have a full complex uncertain block, avoiding problems such increasing order
controller and non-optimal solution. Once a connection between ∆ and Si is obtained, the idea is
to find the optimal value of Qi that minimizes the value of Si.

Fault tolerant control applications are also found in the literature [Niemann and Stoustrup,
2005] [Niemann and Stoustrup, 2002] [Niemann and Stoustrup, 2004]. In that case, the use of the
YK parameterization allows to have both fault recognition/detection (Dual YK parameterization)
and controller reconfiguration (YK parameterization) in the same mathematical framework. An
optimization algorithm is again needed in order to obtain the Qi able to reduce the effect of the
fault in the system. If Si is unstable, the faulty system is unstable and a reconfiguration/retuning
of the controller needs to be done through Qi for stabilising the system. Plug&Play control extends
the idea to connection/disconnection of sensors and actuators [Stoustrup, 2009].

All these previous solutions cover a great dynamic range as identification and optimization
processes are carried out. With the idea of avoiding processes that could slow down the control loop,
a set of linear plants that describes a wide range of system dynamics could be defined. Controller
reconfiguration depending on a set of linear plants it is called in the literature MMAC [Lourenco
and Lemos, 2006]. MMAC is a supervisor who chooses the proper controller, among pre-designed
candidates controllers, once more information is known about the plant. Pre-designed controllers
are conceived with the set of linear plants. MMAC is able to determine the closer plant in the set,
switching to its corresponding controller to maintain a desired performance. [Anderson et al., 2001]
proposed an indirect adaptive control based on identification of linear plants by using the ν-gap
metric. As the metric is difficult to obtain in real time, [Baldi et al., 2011] proposed a similar
approach but using model unfalsification: If a model and a controller are unable to reproduce
the observed behavior in CL, then the set plant-controller is not the correct representation of
the system. However, noise correlation problems are affecting system performance. The noise
correlation problem is later solved in [Bendtsen and Trangbaek, 2012] by using the dual YK
parameterization. The latter is extended below for a general set of nominal plants and predesigned
controllers.
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Switching YK Greal
e yr

Supervisor 
Dual YK 

γ
u

Figure 4.3: Outline structure used in MMAC.

4.4.1 Multi model adaptive control

Consider a set of nominal plants represented as {G} = {G0..., Gi..., Gp}, describing different dy-
namics of a system. Gi denotes the ith LTI plant mapping input signals u in output signals y.
For each of these plants a LTI feedback controller Ki mapping error signals e in input signals u
is designed such that the CL behavior of the system is the desired one. Thus, a set of candidate
controllers is defined based on the nominal set of plants {K} = {K0..., Ki, ..., Kp}. Time variations
in the real plant Greal are considered slow compared to input-output dynamics. Nominal plants are
defined, such that once a candidate controller is selected, it remains unchanged–i.e. the variations
in Greal are smaller than those needed to change from one nominal plant to other within the set.

YK parameterization provides all stabilizing controllers for a given plant Gi within the set {G}
by interconnecting an initial controller K0 with Q′

i, called YK parameter. The initial controller
could be any in the set {K}.

Thus, different controllers Ki can be implemented just by getting the YK parameter Q′
i. Dif-

ferent Q′
i’s are obtained for each controller in the set {K}; so the YK parameter set is {Q′} =

{

Q′
0, ..., Q′

i, ..., Q′
p

}

(see Theorem 3.13 for Q′
i’s calculation). As the initial controller is K0, its

corresponding Q′
0 = 0.

When doing controller transitions, the scalar factor γi is the switching signal. If the set of
controllers is greater than 2, p > 2, a linear combination of all the controllers could be implemented
as seen in Eq. 3.38. In a MMAC approach, just one of the candidate controllers is activated at
the same time. Controller reconfiguration depends on the supervisor. It considers that the real
plant Greal belongs to a set of nominal plants {G} = {G0..., Gi..., Gp}, or at least is close to one
of them. Each of the nominal plants is associated to a controller to give a desired performance
{K} = {K0..., Ki, ..., Kp}. An outline of the structure used in MMAC is shown in Fig. 4.3. The
supervisor is at higher level, specifying which is the switching sequence γ that makes the system
converge to the best controller for the unknown real plant Greal. If Greal coincides with one of the
nominal plants in the set {G}, a good candidate controller Ki is straightforward. Otherwise, the
closest nominal plant in the set should be chosen, switching to the corresponding controller.

The switching sequence {γ} = {γ0..., γi, ..., γp} is specified by the supervisor. Supervisor is
based on the dual YK parameterization. The goal is to figure out which plant in the set {G} is
the closest to the real plant Greal. As outlined in [Bendtsen and Trangbaek, 2012], the dual YK
parameter Si does not need to be directly identified to know the closest plant in the set. If Greal

coincides with the initial plant G0, z0 should be zero for any value of u and y (see structure in
Fig. 4.2). By choosing different coprime factors M̃i and Ñi for every nominal plant in the set {G},
zi = M̃iy−Ñiu gives the closeness to these plants. The smallest truncated 2-norm Ji = (‖zi‖2)2 will
activate the signal γi corresponding to the controller Ki able to fulfill performance requirements.

The MMAC algorithm for a real plant Greal with a set of stabilizing controllers {K} designed
for a set of nominal plants {G} is described in Algo. 1. h should be h > 0, and expresses the
mandatory difference between two norms for controller change. In order to clarify the needed
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Figure 4.4: MMAC solution for Example 4.1.

coprime factors when using the YK and the dual YK parameterization in a MMAC approach, an
example is given:

Example 4.1. Consider a set composed by three models {G} = {G0, G1, G2}. A controller is
designed for each model following some performace criteria; and thus the resulting controller set
is {K} = {K0, K1, K2}.

First, the class of all stabilizing controllers for a given plant is applied, so controller reconfigura-
tion can be obtained. The controller K0 is considered as the initial controller, and the plant model
is supposed to be G0. Three different pairs plant-controller are considered: (G0, K0), (G0, K1),
(G0, K2). Coprime factors are obtained by applying Theorem 3.7:

The pair (G0, K0) is factorized in coprime factors Uk0, Ũk0, Vk0, Ṽk0, Nk0, Ñk0, Mk0, M̃k0 ∈
RH∞.

The pair (G0, K1) is factorized in coprime factors Uk1, Ũk1, Vk1, Ṽk1, Nk1, Ñk1, Mk1, M̃k1 ∈
RH∞.

The pair (G0, K2) is factorized in coprime factors Uk2, Ũk2, Vk2, Ṽk2, Nk2, Ñk2, Mk2, M̃k2 ∈
RH∞.

So, the set of YK parameters {Q′} = {Q′
0, Q′

1, Q′
2} results:

Q′
0 = M−1

k0 Mk0(Ũk0 − Ṽk0Ũk0Ṽk0
−1

) = 0 (4.17)

Q′
1 = M−1

k0 Mk1(Ũk1 − Ṽk1Ũk0Ṽk0
−1

) (4.18)

Q′
2 = M−1

k0 Mk2(Ũk2 − Ṽk2Ũk0Ṽk0
−1

) (4.19)

Once this is done, a controller structure as the one in Fig. 3.6 can be used to perform controller
switching, which is the one with the best transient behavior.

Second, the class of all the models stabilized by a given controller is used to estimate the
closest model in the set. The given controller is K0, but the real model could be any in the set
{G}. Three different pairs plant-controllers are considered: (G0, K0), (G1, K0) and (G2, K0), so
coprime factors result (Theorem 4.1):

The pair (G0, K0) is factorized in coprime factors UG0, ˜UG0, VG0, ˜VG0, NG0, ÑG0, MG0,
M̃G0 ∈ RH∞. Notice how these factors are equivalent to Uk0, Ũk0, Vk0, Ṽk0, Nk0, Ñk0, Mk0 and
M̃k0.
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Algorithm 1 Multi Model Adaptive Control

1. Initialization
γ[p] = [0] ⊲ Switching sequence initialization
K[p] = [K0, ..., Ki, ..., Kp] ⊲ Candidate controllers
M̃ [p] = [M̃0, ..., M̃i, ..., M̃p] ⊲ Left coprime factor M for Gi

Ñ [p] = [Ñ0, ..., Ñi, ..., Ñp] ⊲ Left coprime factor N for Gi

z[p] = [0] ⊲ Si output initialization
J [p] = [0] ⊲ Truncated 2-norm initialization
loop
2. YK Controller reconfiguration

UpdateController(γ) ⊲ Apply controller Ki, with i = γ
Get(u,y) ⊲ Obtain measurements u and y
3. Supervisor

3.1 Closeness to plants in set

for i in (0, n) do
z[i] = M̃ [i]y − Ñ [i]u ⊲ Output of Si

J [i] = (norm2(z[i]))2 ⊲ Compute truncated 2-norm/ Closeness to nominal plants
end for
imin = argmini{i ∈ n | J [i]} ⊲ The smallest norm corresponds to the closer plant

3.2 Evaluate switching sequence

if (J [γ[i] == 1] ≤ J [imin] + h) then
γ = γ ⊲ Previous controller remains

else
γ[imin] = 1 ⊲ Controller changes
γ[∀i except i = imin] = 0

end if
end loop
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The pair (G1, K0) is factorized in coprime factors UG1, ˜UG1, VG1, ˜VG1, NG1, ÑG1, MG1,
M̃G1 ∈ RH∞. Those coprime factors differs from the ones for the pair (G0, K1).

The pair (G2, K0) is factorized in coprime factors UG2, ˜UG2, VG2, ˜VG2, NG2, ÑG2, MG2,
M̃G2 ∈ RH∞. Those coprime factors differs from the ones for the pair (G0, K2).

Notice how the coprime factors needed for closeness (zi = M̃iy−Ñiu) are those corresponding to
sets (G1, K0) and (G2, K0), and not the ones used for controller reconfiguration. Coprime factors
Xki are only used for the calculation of Qi. A detailed block diagram of MMAC with coprime
factors is shown in Fig. 4.4.

4.5 Dynamics identification

In this section, before explaining the dual YK-based CL identification, a general OL identification
setup is compared to a general CL identification setup, so the advantages of using the second one
can be highlighted.

4.5.1 Open-loop identification

Gi
yu s

n

Figure 4.5: Setup for OL
identification.

Gi
yu s

n

K0
r

-

Figure 4.6: Setup for CL identification.

Let’s consider an OL identification case as the one described in Fig. 4.5. Control input u and
measurement noise n are assumed to be uncorrelated. Some control input u can be applied to the
system Gi, obtaining the corresponding output y with noise n:

y = Giu + n (4.20)

If measurements u and y are available, many OL identification schemes (Auto Regressive model
with eXternal inputs (ARX) [Karaboyas and Kalouptsidis, 1991], PBSIDopt [van Wingerden, 2012]
...) can be used to find cross-correlation with u, and estimate Gi

Φyu = GiΦuu + Φnu (4.21)

where Φnu = 0 as n and u are independent.

4.5.2 Closed-loop identification

Now let’s consider the case where the loop is closed with a controller K0 (see Fig. 4.6), where
reference signal r and output noise n are uncorrelated. Equation 4.21 remains, but Φnu is not
zero, as n is feedback through the controller K0 affecting the control signal u. Cross-correlation
expression results:

Φyu = GiΦuu − (1 + K∗
0G∗

i )−1Φnn (4.22)

where the superscript * denotes complex conjugation on the jω axis.
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It is obvious that the identification process becomes complex. Even if Φnn is really small, Eq.
4.22 denotes that Gi should be stable, what could not be the case. As a solution, one could seek
to estimate the CL transfer function from the reference signal r to y: Pi = K0Gi(1 + K0Gi)−1.
Once an estimation of the CL function is obtained P̂i, an estimation of the real system Ĝi would
be:

Ĝi =
P̂i

K0(1 − P̂i)
(4.23)

but problems could occur if K0 has some unstables poles/zeros; the estimation could result again
unstable.

It is then logical to disconnect the plant in order to carry out an OL identification. But
there will be cases in which this is not possible: The plant is unstable, disconnecting the plant
supposes a great economic cost, the feedback controller is embedded in the system, or an online
estimation of the system is needed for controller improvement, being necessary CL identification.
Among OL and CL identification methods, it is well-known that for model-based control design,
CL identification gives better performance [Hjalmarsson et al., 1996]; but you need to deal with
its associated difficulties: Linear matrix inequality (LMI) feasibility [Sznaier and Mazzaro, 2003],
linear fractional dependence with respect to measured variables [Salcedo and Martinez, 2008] or
linear-deterministic subspace selection [Santos et al., 2007] are some examples picturing these
difficulties.

A clever solution to suppress CL identification difficulties was given by [Hansen et al., 1989].
This solution is mentioned in the literature as Hansen scheme. Given a LTI initial model and a
controller, the key idea is to identify the dual YK Si instead of Gi. Interestingly, the identification
of Si is a standard OL identification problem, so a CL problem is transformed into an OL-like
problem.

Modifications and extensions of the Theorem have been carried in the literature. A non-linear
initial model G0 connected to a stabilizing controller K0 is considered in [Linard and Anderson,
1996] [Linard and Anderson, 1997]. [De Bruyne et al., 1998] presented a modification able to
tune the order of the resulting model given by the Hansen scheme. Several analysis have later
demonstrated how the obtained model with the Hansen scheme is superior than an OL identification
solution for subsequent control design [Gevers et al., 2001] [Douma et al., 2003]. The Hansen
scheme has been also extended to LPV systems [Bendtsen and Trangbaek, 2014] [Trangbaek and
Bendtsen, 2010], and identification of actuators/sensors connected to a system [Knudsen et al.,
2008]. The most recent work in the literature dates from the year 2015, and presents a modification
of the Hansen scheme able to get rid of signals that are not directly measurable, eliminating the
need of some a priori knowdledge and reducing numerical accuracies [Sekunda et al., 2015]. In the
following section, Hansen scheme and its most recent modification are introduced.

4.5.2.a Hansen scheme

From the general description of any plant stabilized by a controller K0 provided by the structure
in Fig. 4.1, the following relations are derived:

u − U0z0 = M0ζ0 (4.24)

y − V0z0 = N0ζ0 (4.25)

Applying the coprime factors Ñ0 and M̃0 in Eqs. 4.24 and 4.25 respectively, yields:

Ñ0(u − U0z0) = Ñ0M0ζ0 (4.26)
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M̃0(y − V0z0) = M̃0N0ζ0 (4.27)

subtracting one from the other and applying the Bézout’s identity in Eq. 3.17, results:

M̃0(y − V0z0) = Ñ0(u − U0z0)

M̃0y − Ñ0u = (V0M̃0 − U0Ñ0)z0

z0 = M̃0y − Ñ0u

(4.28)

Again from the block diagram in Fig. 4.1, the following expressions result:

N0ζ0 + V0(Siζ0 + n′) = y

(N0 + V0Si)ζ0 = y − V0n′ (4.29)

u − U0Siζ0 − U0n′ = M0ζ0

(M0 + U0Si)ζ0 = u − U0n′

(M0 + U0Si)ζ0 = r2 + Ṽ0
−1

Ũ0(y + r1) − U0n′

(4.30)

Applying coprime factors Ũ0 and Ṽ0 in Eqs. 4.29 and 4.30, the relations are:

Ũ0(N0 + V0Si)ζ0 = Ũ0y − Ũ0V0n′ (4.31)

Ṽ0(M0 + U0Si)ζ0 = Ṽ0r2 + Ũ0(y + r1) − Ṽ0U0n′ (4.32)

substituying Eq. 4.31 in Eq. 4.32, yields:

Ṽ0(M0 + U0Si)ζ0 = Ũ0r1 + Ṽ0r2 + Ũ0(N0 + V0Si)ζ0

(Ṽ0M0 + Ṽ0U0Si − Ũ0N0 − Ũ0V0Si)ζ0 = Ũ0r1 + Ṽ0r2

(Ṽ0M0 − Ũ0N0)ζ0 = Ũ0r1 + Ṽ0r2

ζ0 = Ũ0r1 + Ṽ0r2

(4.33)

Assuming that the output noise n is not correlated to r1 and r2, then ζ0 is also independent of n′.
Thus, although u and y are measured in CL, the identification of the dual YK parameter Si is OL
by using the signals ζ0 and z0. OL identification algorithms like ARX [Karaboyas and Kalouptsidis,
1991] or PBSIDopt [van Wingerden, 2012] can be used for obtaining Si. By identifying Si in OL,
advantages of CL identification are preserved with a simpler method.

Theorem 4.5. Given an initial LTI model G0 and a stabilizing LTI controller K0. A CL iden-
tification of the real system Gi connected to K0 is possible through the OL identification of the
associated dual YK parameter Si. Filtered signals ζ0 and z0 are obtained in order to estimate Ŝi

through any OL identification algorithm:

ζ0 = Ũ0r1 + Ṽ0r2

z0 = M̃0y − Ñ0u
(4.34)

where r1 and r2 are external excitation signals; and u and y are control input and output measure-
ment respectively. Then, the equivalent CL model results:

Ĝi = (N0 + V0Ŝi)(M0 + U0Ŝi)
−1 (4.35)

Proof. Proof is above.



70 CHAPTER 4. DUAL YOULA-JABR-BONGIORNO-KUCERA PARAMETERIZATION

From this Theorem, it is clear that it is impossible to obtain direct measurements of the internal
signals ζ0 and z0. These signals result from filtered information in the system. [Sekunda et al.,
2015] stated that this approach might lead to some numerical problems, as excitation signals r1

and r2 are imposed for the OL identification of Si. Sekunda scheme studies how to directly apply
a signal equivalent to ζ0 and how to measure a signal equivalent to z0.

4.5.2.b Sekunda scheme

Sekunda scheme is based on the relation between the class of all the plants stabilized by a controller
G0(Si), and the class of all the controllers stabilizing a given plant K0(Qi). This relation is first
seen in [Tay et al., 1997], as the problem of identifying Si when a controller K0(Qi) has been
implemented. Both parameterizations can be seen as LFT depending on Si and Qi:

K0(Qi) = Fl(JK0
, Qi) with JK0

=

[

K0 Ṽ0
−1

V −1
0 −V −1

0 N0

]

(4.36)

G0(Si) = Fu(JG0
, Si) with JG0

=

[

−M−1
0 U0 M−1

0

M̃0
−1

G0

]

(4.37)

A connection between Eqs. 4.36 and 4.37 is shown in Fig. 4.7. The cross coupling between
JG0

and JK0
is solved through the Redheffer star product [Redheffer, 1960] of two matrices:

JG0
∗ JK0

=

[

Fl(JG0
, K0) M−1

0 (I − K0G0)−1Ṽ0
−1

V −1
0 (I − K0G0)−1Ṽ0

−1
Fu(JK0

, G0)

]

(4.38)

where:

Fl(JG0
, K0) = −M−1

0 U0 + M−1
0 K0(I − G0K0)−1M̃0

−1
=

= −M−1
0 U0 + M−1

0 U0V −1
0 (I − M̃0

−1
Ñ0U0V −1

0 )−1M̃0
−1

=

= −M−1
0 U0 + M−1

0 U0V −1
0 V0(M̃0V0 − Ñ0U0)−1M̃0M̃0

−1
= −M−1

0 U0 + M−1
0 U0 = 0

(4.39)

Fu(JK0
, G0) = −V −1

0 N0 + V −1
0 G0(I − K0G0)−1Ṽ0

−1
=

= −V −1
0 N0 + V −1

0 N0M−1
0 (I − Ṽ0

−1
Ũ0N0M−1

0 )−1Ṽ0
−1

=

= −V −1
0 N0 + V −1

0 N0M−1
0 M0(Ṽ0M0 − Ũ0N0)−1Ṽ0Ṽ0

−1
= −V −1

0 N0 + V −1
0 N0 = 0

(4.40)

M−1
0 (I − K0G0)−1Ṽ0

−1
= M−1

0 (I − Ṽ0
−1

Ũ0N0M−1
0 )−1Ṽ0

−1
=

= M−1
0 M0(Ṽ0M0 − Ũ0N0)−1Ṽ0Ṽ0

−1
= (Ṽ0M0 − Ũ0N0)−1 = I

(4.41)

V −1
0 (I − G0K0)−1M̃0

−1
= V −1

0 (I − M̃0
−1

Ñ0U0V −1
0 )−1M̃0

−1
=

= V −1
0 V0(M̃0V0 − Ñ0U0)−1M̃0M̃0

−1
= (M̃0V0 − Ñ0U0)−1 = I

(4.42)

And then it is proved that the output of Qi is the input of Si, and the input of Qi is the output
of Si, being possible to measure the signals ζ0 and z0 from s0 and r0. Connection between Si and
Qi is in Fig. 4.8.
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Figure 4.7: Block representation of the connection be-
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Figure 4.9: General control scheme using YK structure 2 and G0(Si).

Connection of s0 and r0 with r1, r2, u and y is analysed. For doing so, a YK control structure
as the one in Fig. 3.5 is connected to G0(Si) with Qi = 0. The resulting CL structure is shown in
Fig. 4.9. The transfer function relations between all the signals are reagrupped and summarized
in a matricial form as follows:
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(4.43)

where r1, r2 and r0 are uncorrelated. By applying an excitation signals s0 it is possible to measure
r0. This method is superior as it is possible to get r0 independently of the external excitation
signals r1 and r2.

In the absence of external excitation signals r1 and r2, z0 and ζ0 yield:

z0 = r0 = M̃0y − Ñ0u

ζ0 = s0 = Ṽ0u − Ũ0y
(4.44)
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4.6 Conclusions

In this chapter, the dual YK parameterization is examined to parameterize the class of all plants
stabilized by a given controller in terms of an initial nominal model and a stable filter S, called
dual YK parameter. The use of the dual YK parameterization is justified when there is variation
in the dynamics system to control. Variations as uncertainty ∆ or LPV representations are briefly
introduced.

The process of obtaining stable doubly coprime factors for several plant models Gi connected
to a stabilizing controller K is formulated; then the dual question of describing all the plants
stabilized by a given controller is considered. As in a feedback loop, controller and plant can be
interchanged without affecting the CL stability, the dual version of Theorem 3.8 is obtained in
function of the dual YK parameter S. When a nominal initial model is compared with the real
system, the function S results to be the mistmatch between nominal plant and real system. The
mistmatch representation of S could be in function of a LPV scheduling parameter, an uncertainty
∆, or in a more general way as a LPV tranfer function. If the resulting S is stable, it means that
the mistmatch does not destabilize the loop. Nevertheless, the performance of the system will be
affected.

Once a explicit relation between system changes and the dual YK parameter is derived, the dual
YK parameterization can be applied in connection with the design of a controller. A connection
with the class of all stabilizing controllers introduced in the previous chapter is carried out, resulting
that the dual YK parameter S is the OL transfer function between input and output of the YK
parameter Q. Then, stability of the CL formed by G(S) and K(Q) requires stability of the nominal
CL system (G, K) and stability of the dual YK parameter S with the YK parameter Q. Given
S, control design should be in the direction of getting the optimal value of Q that fulfils some
stability/performance criteria; but it will require a high computational cost, that wouldn’t be
affordable for some industrial applications. So, a YK-based MMAC algorithm based on a set of
nominal plants and predefined controllers is proposed. MMAC acts as a supevisor determining
the closer plant to the real system in the set, switching to the predesigned controller that will give
the best performance possible. As identification and/or optimization processes are not needed, the
control-loop is not slowed down.

Finally, the dual YK parameterization is used to perform CL identification of system dynamics.
The CL identification provided by the Hansen scheme is based in the OL identification of the dual
YK parameter S. Mathematical proof is given of how an OL identification of S is equivalent
to a CL identification of the real system connected to a controller. Identification using Hansen
scheme was conducted using indirect excitation signals r1 and r2 for identification. This approach
makes difficult to determine the frequency response of the excitation signal, as r1 and r2 could be
already reference input and feedforward output. In order to solve so, Sekunda scheme proposed a
modification, letting to impose any desired excitation signal for the identification of S.



Chapitre. Applications

Below is a French summary of the following chapter "Applications".

Ce chapitre explore l’utilisation des deux paramétrisations Youla-Kucera (YK) et YK duale
dans les véhicules autonomes, en insistant spécialement sur la stabilité quand différents change-
ments dynamiques ou situations de trafic, nécessitent de reconfigurer le contrôleur. Des simu-
lations et résultats expérimentaux sont obtenus par différentes applications sur des Systèmes de
Transports Intelligents (STI). La paramétrisation YK est utilisée dans l’application "Cooperative
Adaptive Cruise Control" (CACC) pour résoudre différentes situations qui n’ont pas encore été
résolues dans l’état de l’art. Spécifiquement, un comportement hybride entre deux contrôleurs
CACC avec différents temps d’écart en utilisant la reconfiguration stable de YK est étudié. Ce
comportement hybride utilise les propriétés de YK pour éviter les dégradations ACC quand la
communication avec le véhicule précédent n’est plus disponible; et pour assurer la stabilité quand
les véhicules sont entrant/sortant de la chaîne de véhicules. Les deux applications sont dévelop-
pées pour des véhicules ayant la même dynamique. Cependant, il est clair qu’en situation de trafic
réel, la dynamique changera. En conséquence, l’identification en Boucle-Fermée (BF) basée sur
YK est utilisée dans le but d’identifier les dynamiques du véhicule connecté à un système CACC.
Finalement, la reconfiguration du contrôleur basé sur YK et l’identification BF sont tout les deux
utilisés, ensemble, dans le but d’obtenir une approche adaptative, capable de gérer l’hétérogénéité
dynamique dans une chaîne de véhicules CACC.

Le chapitre est structuré comme suit : la plateforme expérimentale et les modèles de simulation
utilisés pour développer les différentes applications CACC sont décrits dans la section 5.1. La
section 5.2 traite de la reconfiguration du contrôleur quand des changements spécifiés apparaissent.
Une chaine de véhicules équipée avec un système CACC est considérée. La paramétrisation YK est
utilisée pour améliorer la circulation quand la communication Vehicule-to-Vehicule (V2V) échoue
ou quand les véhicules sont entrant/sortant de la chaîne. La section 5.3 considère l’dentification
en BF de la dynamique longitudinale du véhicule . Une comparaison entre l’identification en
Boucle-Ouverte (BO) et l’identification en BF fournie par la paramétrisation YK duale est faite
durant l’utilisation du système CACC. La section 5.4 utilise la reconfiguration du contrôleur et
l’identification, ensemble, dans un Contrôle Adaptatif Multi Model (CAMM). L’idée est de pouvoir
gérer l’hétérogénéité de la chaîne de véhicules équipée du CACC. Enfin, différentes remarques sont
fournies en conclusion dans la section 5.5, déterminant si la paramétrisation YK peut être utile
comme outil général de contrôle pour sécuriser la réponse du véhicule autonome.
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Chapter 5

Applications

This chapter explores the use of both Youla-Kucera (YK) and dual YK parameterizations in
automated vehicles, with special emphasis on stability when some dynamics changes or the traffic
situation demand controller reconfiguration. Both simulation and experimental results are obtained
for different Intelligent Transportation Systems (ITS) applications.

YK parameterization is used with Cooperative Adaptive Cruise Control (CACC) application for
solving cases that have not been addressed in the state-of-the-art. Specifically, an hybrid behaviour
between two CACC controllers with different time gaps is explored by means of the YK-based
stable controller reconfiguration. This hybrid behaviour uses YK properties for avoiding ACC
degradation when communication link with preceding vehicle is not available; and for ensuring
stability when vehicles are entering/exiting the string of vehicles. Both applications are developed
for vehicles with same dynamics, but it is clear that in a real traffic situation, dynamics will change.
Consequently, YK-based Closed-Loop (CL) identification is used in order to identify the dynamics
of a vehicle connected to a CACC system. Finally, both YK-based controller reconfiguration and
CL identification are applied together in order to obtain an adaptive approach able to deal with
vehicle heterogeneity in CACC string of vehicles.

The chapter is structured as follows: Experimental platform and simulation models used to
develop the different CACC applications are described in section 5.1. Section 5.2 deals with
controller reconfiguration when a prespecified change occurs. A string of vehicles equipped with a
CACC system is considered. YK parameterization is used to enhance traffic flow when Vehicle-to-
Vehicle (V2V) communication fails or vehicles are entering/exiting the string. Section 5.3 considers
CL identification of longitudinal vehicle dynamics. A comparison between Open-Loop (OL) and
CL identification provided by dual YK is carried out when using a CACC system. Section 5.4 uses
both controller reconfiguration and identification in a Multi Model Adaptive Control (MMAC)
approach. The idea is to deal with vehicles heterogeneity in CACC-equipped string. Finally, some
concluding remarks are given in section 5.5, determining if YK parameterization could serve as
general control approach for secure responses in autonomous driving.

5.1 Experimental platform and simulation models

Different simulation models are used throughout the chapter for proving controller design in sta-
ble YK-based controller reconfiguration, dual YK-based CL identification and YK-based MMAC
approach. For simulation purpose, the system identification tool provided by MATLAB has been
used for emulating low-speed INRIA experimental platform. A Linear Time Invariant (LTI) model
describing longitudinal dynamics is obtained for subsequent controller design. With the aim of
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5.1.1.b Identified model

Friction force between tire and road is the main reason why any vehicle moves [Pacejka, 2005].
It converts the motor torque provided by the electrical machine to longitudinal force, making
possible forward vehicle movement. As physical parameters about the real experimental platform
are missing, vehicle dynamics identification from experimental data seems a viable solution for
obtaining a vehicle’s model. Cycab’s model is identified based on the response of the experimental
platform to different speed changes applied to the low-level controller. This low-level controller
is in charge of obtaining the needed electrical torque for making speed error zero. Real response
depending on this reference velocity is plotted in Fig. 5.4. This experimental data is employed
within MATLAB system identification tool, obtaining a LTI second order model as a compromise
between simplicity and goodness. Cycab LTI model response corresponding to Eq. 5.1 is also in
Fig. 5.4.

G(s) =
1

0.8768s2 + 1.252s + 1
(5.1)
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Figure 5.4: Velocity cycab response compared with identified model.

5.1.2 Nissan Infinity M56

Cycab is designed as a transportation system solution for the last mile in dense urban environments,
so reaching high speeds is not necessary, reason why its velocity is limited. As vehicle control
solutions should be tested in the whole velocity range (including high-speed solutions), a high-
speed LTI model has been chosen from the literature.

For high-speed simulation purposes, the vehicle model introduced in [Milanés et al., 2014] is
used. It is a second-order response with a time delay identification from a Nissan Infiniti M56.
Vehicle LTI model is identified based on its response to different speed changes, resulting:

G(s) =
1.136

s2 + 1.067s + 1.1385
(5.2)

5.2 YK controller reconfiguration

In this section, two applications related to CACC are developed by using the YK stable controller
reconfiguration presented in chapter 3. As concluded in section 3.4.3, among all YK-based struc-
tures for controller reconfiguration, structure 3 is employed because of its lower complexity and
better transient behaviour.
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In order to highlight the scientific contribution of these applications, section 5.2.1 summarizes
the state of the art about CACC, and gives details about the control structure and the concept
of string stability. CACC controller reconfiguration is carried out when some specific change oc-
curs. Section 5.2.2 deals with the problem of non-available communication link with the preceding
vehicle, while section 5.2.3 considers traffic perturbations as vehicles joining/leaving the string.
Different CACC controller types are used in each application, so YK adaptability can be tested.
In both applications, two different CACC controllers are designed. Those controllers correspond
to two extreme situations, focusing in how to change the scalar factor γ in the YK-based controller
reconfiguration in order to improve system performance.

5.2.1 Cooperative adaptive cruise control

Recently, the International Council on Clean Transportation has estimated that over the next two
decades vehicle ownership is expected to increase 7 million only in the European Union (EU) [ICCT,
2016]. Therefore, road transport will have to deal with these figures. Among the associated
problems, drivers will find more congested roads, resulting in an enormous waste of fuel and
productivity together with health problems. According to the European Commission, congestion
costs are equivalent to 1% of Gross Domestic Product (GDP)–in other words more than the EU
budget [Commision, 2012].

Since building new infrastructure is no longer an appropriate solution, more intelligent and
efficient options result of ITS. Specifically, related to traffic congestion, intelligent longitudinal
speed control is a suitable system to improve congestion in highways, through homogeneous speed
on the part of the driver and shorter intervehicle distances. Adaptive Cruise Control (ACC)
[Marsden et al., 2001] is a commercial system already implemented in production vehicles. An
ACC system can track the preceding vehicle, measuring the actual distance and the ego-vehicle
velocity. These inputs allow the system to maintain a selected time gap, calculating the required
acceleration or deceleration to reach the desired velocity or to prevent a collision. Recently, research
focuses on the cooperative version of the system, so-called Cooperative ACC (CACC) [Ploeg et al.,
2011a]. V2V communication is added to the existing ACC system, improving traffic flow through
the formation of a tighter string of vehicles.

CACC research has received a lot of attention in last years [Dey et al., 2016]. Related to
real vehicle implementations, first european results can be found in the Connect Drive Dutch
project where a fleet of six Toyota Prius were equipped with CACC capabilities [Ploeg et al.,
2011b] using a Proportional-Derivative (PD) feedback/feedforward controller [Ploeg et al., 2011a].
Later, the first Grand Cooperative Driving Challenge (GCDC) held in The Netherlands in 2011
showed for the very first time several vehicles from different institutions performing a two-lane
CACC string. Control algorithms were based either in the already used PD feedback/feedforward
structure [Lidstrom et al., 2012] or Model Predictive Control (MPC) algorithm [Kianfar et al.,
2012]. In United States, the California PATH carried out a four vehicle string demonstration
on California highways showing the benefits of CACC against ACC in real traffic using a PD
feedback/feedforward structure [Milanés et al., 2014]. The latter is selected for this work due to
its simplicity and proven experimental implementation; making it ideal for embedded systems.
Details are in section 5.2.1.a.

Traffic flow improvement is directly related to string stability. When tighter car-following
policies are implemented–i.e. CACC–, string stability fulfilment plays a key role to ensure a
proper response of the vehicle string [Swaroop, 1997]. On string stable car-following, the impact
of traffic perturbations is attenuated upstream, improving traffic flow and reducing traffic jams.
String stability is linked with the implemented car-following policy and vehicle dynamics. An
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homogeneus string of vehicles is considered along section 5.2. Most algorithms are based on the so-
called constant time gap policy [Swaroop and Rajagopal, 2001], which references the ideal spacing
(proportional to ego-vehicle speed) between vehicles, improving string stability with respect to
constant spacing algorithms.

Traffic flow benefits in function of the ACC-equipped vehicles market penetration have been
widely studied. [Kesting et al., 2008] [Kesting et al., 2007] stated that a 25% of market penetration
could remove congestion. Recent studies [Shladover et al., 2012] proposes a different ACC model
that provides no traffic flow benefits even with a market penetration of 100%. This model is
based on the field test of ACC driven by 16 drivers from the general public in [Nowakowski et al.,
2010b]. These drivers were encouraged to select the time gap setting that they preferred, resulting
in a time-gap close to manual driving. As quantitative example, the highway capacity with every
vehicle driven manually is 2050 veh/h, while with ACC-equipped vehicles the capacity increases
up to 2200 veh/h [Werf et al., 2002].

In contrast, the CACC system on the traffic flow characteristics presents much more optimistic
results. [Arem et al., 2006] concluded that CACC improves the highway capacity when the pene-
tration rate is greater than 60%, obtaining better results on high traffic volume because of more
vehicles participate in the string. The CACC model in [Shladover et al., 2012] validates these
results, showing a maximum lane capacity of 4000 veh/h under 100% CACC-equipped vehicles
condition. This model is again based on the chosen time-gap by the general public in the field test
in [Nowakowski et al., 2010b]. CACC can double the highway capacity in the ideal situation.

It is clear that the market penetration of CACC systems would progressively occur, making
necessary to work with mixing traffic situations. As the highway capacity is sensitive to the
percentage of CACC-equipped vehicles, it is important to preserve the CACC behaviour when there
is no communication with the preceding vehicle, but with another vehicle further on. For instance,
when a vehicle loses communication capability into a string previously formed by CACC-equipped
vehicles. As the communication with the preceding vehicle is no longer available, existing literature
on the field (see [Milanés and Shladover, 2014] and [Ploeg et al., 2013] for details) degrades the
system to a conventional ACC, removing the strong impact of CACC systems on highway capacity.

Finally, CACC systems capability of improving string stability has been widely demonstrated,
but the system stability when the string structure is modified (either a new vehicle is entering or
leaving the string) is still an open research field. First efforts on this direction using real vehicles
were carried out by California PATH, where an algorithm able to handle vehicles cutting in the
string was implemented [Milanés and Shladover, 2016]. However, the stability during time gap
transition was not demonstrated.

YK-based controller reconfiguration is proposed as solution for covering the two present gaps
in CACC state-of-the-art. Section 5.2.2 avoids ACC degradation, by employing the V2V com-
munication with a vehicle ahead (different from the preceding one). γ is designed in order to
improve traffic flow and vehicle response. Section 5.2.3 explains relation bewteen γ and time gap
to guarantee stability when vehicles are entering/exiting the string.

5.2.1.a Control structure and string stability

A string of w vehicles driving in the same lane is considered. j determines the order of a vehicle
inside of the string j ∈ [1, w]. Vehicle j denotes ego-vehicle, vehicle j − 1 preceding vehicle and
j = 1 leader vehicle. A schematic representation of a CACC-equipped string of vehicles is in
Fig. 5.5, where dj is the distance between vehicle j and j − 1 seen as the difference between
absolute positions xj and xj−1; and vj is the velocity of the vehicle j. Control velocities vc are
sent through communication between vehicles. A reference distance dj

r is followed for each vehicle.
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(see control law in Eq. 5.4); and vj−1
c the control velocity of vehicle j −1 received and processed by

means of a feedforward filter F j
i in order to get a tighter string of vehicles. Feedforward transfer

function is in Eq. 5.5. PD’s output uj
c and feedforward’s output uj

ff addition results in the control

velocity vj
c .

Kj
i (s) =

U j
c

Ej
= kj

p,i + kj
d,is (5.4)

F j
i (s) =

1

1 + hj
i s

(5.5)

Highway capacity improves when tighter gap policies can be adopted whereas keeping string
stability. String stability is defined as the attenuation of disturbances along the string of vehicles.
A sufficient condition for string stability is given in [Rajamani, 2011], which means that the
absolute position of each vehicle must not increase as it propagates through the string. Condition
is equivalent to the following equation:

‖Xj/Xj−1‖ ≤ 1 for j > 1 (5.6)

According to [Naus et al., 2010], for a PD-based feedback/feedforward CACC system, string sta-
bility function results:

Xj

Xj−1
=

Dj + (1 + hj
i s)GjKj

i

(1 + hj
i s)(1 + (1 + hj

i s)GjKj
i )

, for i > 1 (5.7)

Under the ideal situation where the communication delay is null (Dj = 1), string stability
yields:

Xj

Xj−1
=

1

(1 + hj
i s)

, for i > 1 (5.8)

Therefore, string stability is guaranteed for any hj
i > 0. The existence of communication with

preceding vehicle makes vehicle response faster, allowing any time gaps without compromising the
string stability. On the contrary, as ACC system has not communication, the achievable stable
time gap is longer, even close to the time gap of a manual driver. It explains why even with a high
market penetration of ACC-equipped vehicles the traffic flow improvement effects are not visible.

Finally, the classical feedback/feedforward CACC system is modified in Fig. 5.7 to include
the time gap hj

i into the controller. Thereby, time gap is changed when doing YK controller
reconfiguration. The extended controller is shown in Eq. (5.9). Feedforward filter is changed to
F j

i /Kj
i .

Kj
ext,i(s) =

Kj
i

1 + Gjhj
i Kj

i

(5.9)

5.2.2 Advanced cooperative adaptive cruise control

CACC provides significant traffic flow improvements when a V2V communication link exists with
the preceding vehicle (upper plot of Fig. 5.8 depicts the situation), but it degrades to ACC when
this communication link is no longer available [Milanés and Shladover, 2014] [Ploeg et al., 2013]
(middle plot of Fig. 5.8). As quantitative example, [Ploeg et al., 2011a] showed how the minimum
time gap string stable increases from 0.7s to 3.16s when communication is not available. This





84 CHAPTER 5. APPLICATIONS

5.2.2.a Problem formulation

A string of three vehicles w = 3 is considered. Problem formulation focuses on ego-vehicle situation
according to V2V communication availability with vehicle j − 1 and vehicle 1 in the string. V2V
communication between vehicle j and vehicle j − 1 is defined as Cj−1. Communication between
vehicle j and vehicle 1 is defined as C1.

In the literature, communication availability with vehicle j − 1 determines the use of ACC or
CACC controllers in the vehicle j, and therefore its time gap hj

i :

• When Cj−1 exists, a regular CACC controller can be used. Faster responses can be achieved,
allowing tighter string of vehicles by employing a time gap hCACC–i.e.

∃Cj−1 → CACC where hj
i = hCACC .

• If Cj−1 is no longer available: the system degrades to a conventional ACC algorithm [Navas
et al., 2016]. Consequently, benefits of CACC systems on highway capacity are removed
because a longer time gap hACC > hCACC needs to be set to ensure string stability– i.e.
∄Cj−1 → ACC where hj

i = hACC > hCACC .

These situations have been extensively studied (see [Marsden et al., 2001] for ACC and [Ploeg
et al., 2011a] for CACC), but potential benefits of using C1 when Cj−1 is not available have not
been further investigated. Speed oscillations on the string (i.e. the difference between v1 and vj−1)
is limited to 5m/s according to [Milanés and Shladover, 2014]. Experimental results demonstrated
that over this value, drivers disengage ACC system due to its degraded performance.

The objective of the ACACC controller is to enhance traffic flow when there is no communica-
tion with vehicle j − 1, by taking the information from the closer V2V-equipped vehicle ahead, in
that case, vehicle 1. Since V2V communication is always available (no matter from which vehicle
comes from), a CACC control structure is proposed. ACACC is composed by two CACC con-
trollers with different time gaps: A CACC controller with a short time gap hj

i = hCACC so-called
CACCST G and a CACC controller with a longer time gap hj

i = hACC so-called CACCLT G . The
proposed ACACC algorithm benefits from the YK parameterization to provide a hybrid response
between both controllers. The regulation between the effect of each controller through γ in the
control command is based on a correlation between the speed received via V2V communication
and the one detected by the on-board ego-vehicle sensor (i.e. radar). The correct tuning of γ with
a maximum speed oscillation of 5m/s, assures stability and improves traffic flow.

In brief, the application here described works when Cj−1 is lost but C1 is available, providing
a control structure of the form:

if ∄Cj−1&∃C1

ACACC = CACCST G(1 − γ) + CACCLT Gγ; γ ∈ [0, 1]
(5.10)

where hj
i ∈ [hCACC , hACC ]. Notice how the time gap would be lower than degrading the system

to a regular ACC.

5.2.2.b Control algorithm

ACACC is composed by two different CACC controllers: CACCST G and CACCLT G. Time gap
values hCACC and hACC are chosen according to the general public accepted time gaps for CACC
and ACC systems [Nowakowski et al., 2010b]. For CACC, the shortest gap is set at 0.6s, while for
ACC is set to 1.5s.
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For each of these controllers, the modified CACC controller presented in Fig. 5.7 is used to
allow stable transitions between controllers with different hj

i , kj
p,i and kj

d,i. CACCST G has the
index i = 0, while CACCLT G has the index i = 1. The information related to both controllers
is summarized in Table 5.1. Notice how the values of kj

p,0, kj
p,1, kj

d,0 and kj
d,1 will depend on the

accepted time gaps by drivers and the vehicle model Gj .
Once CACCST G and CACCLT G are defined, doubly coprime factors for pairs (Kj

ext,0, Gj/s) and

(Kj
ext,1, Gj/s) are obtained following guidelines in Theorem 3.7. Then, it is possible to change from

one to the other, without losing stability by obtaining the parameter Q′ through Theorem 3.13.
Figure 5.9 modifies the YK control structure 3 in Fig. 3.6 to allow CACC controller modification.
Please notice how the structure only differs in adding the filtered communication link with the
closest V2V-equipped vehicle, in that case, communication link C1.

Once the YK control structure for CACC is obtained, a different percentage of each of the
controllers is applied depending on the traffic situation. The percentage is chosen through the YK
gamma γ. Gamma tuning is chosen in order to improve traffic flow. A simple decision-making
system is used when Cj−1 does not exist, but there is communication with vehicle 1, C1. γ is
modified according to the following equation:

γ = 0.033(vj−1
s − v1) + 0.5 if | v1 − vj−1

s |< 5m/s

where vj−1
s is the velocity of the vehicle j −1 obtained through the on-board sensor systems, and v1

is the velocity of vehicle 1 received through C1. A maximum speed oscillation of | v1−vj−1
s |= 5m/s

is considered as the operation range for the present application.

Table 5.1: CACC parameters.

Kj
ext,u kj

p,i kj
d,i hj

i

CACCST G Kj
ext,0 kj

p,0 kj
d,0 hj

0 = hCACC = 0.6s

CACCLT G Kj
ext,1 kj

p,1 kj
d,1 hj

1 = hACC = 1.5s

Different traffic situations are pictured for understanding the tuning of γ:
When vehicle j − 1 has a behaviour similar to vehicle 1, γ is modified to response faster to

speed changes.

• If vehicle 1 accelerates, v1 will be higher than vj−1
s . So, γ decreases, making the gap time

shorter.

• If vehicle 1 brakes, v1 will be lower than vj−1
s . So, γ increases, making the gap time longer.

• When both vehicle 1 and vehicle j − 1 have similar velocities, γ results in an intermediate
value between both controllers.

Advantages of using this γ are analysed in sections below through simulation and experimental
results.

5.2.2.c Simulation results

This section presents the ACACC performance at high speeds (i.e. highway scenario). For simula-
tion purposes, the vehicle model introduced in section 5.1.2 is used. The extended control structure
in section 5.2.1.a is employed, obtaining two different CACC controllers: Kj

ext,0 and Kj
ext,1. The
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Figure 5.9: YK control structure for modifying CACC controllers online. ACACC.

Table 5.2: Nissan Infiniti M56 CACC parameters. ACACC.

Kj
ext,i kj

p,i kj
d,i hj

i dj
std,i

CACCST G Kj
ext,0 kj

p,0 = 0.45 kj
d,0 = 0.25 hj

0 = hCACC = 0.6s dj
std,0 = 5m

CACCLT G Kj
ext,1 kj

p,1 = 0.45 kj
d,1 = 0.25 hj

1 = hACC = 1.5s dj
std,1 = 5m

controller gains kj
p,i and kj

d,i correspond to those already designed for a Nissan Infinity M56 in [Mi-
lanés et al., 2014]. CACCST G and CACCLT G information is summarized in Table 5.2. Once both
controllers are defined, stability depending on γ is studied in the corresponding section. Finally,
the algorithm performance is tested by using as vehicle j − 1 a non V2V-equipped vehicle. It is
modeled as a human driver–using the Intelligent Driver Model (IDM) [Kesting et al., 2010]–or
equipped with an ACC system.

Stability CL stability for the designed ACACC is studied in function of γ. A necessary and
sufficent condition to ensure stability for a feedback/feedforward control loop as the one in Fig.
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5.9 is in Theorem 3.4. As feedforward filter is stable, CL stability condition yields:

[

I −K0(Q′)
−Gj/s I

]−1

∈ RH∞ =

=
K0(Q′)Gj/s

1 + K0(Q′)Gj/s
=

K
j
ext,0

+M0γQ′

1+N0γQ′ Gj/s

1 +
K

j
ext,0

+M0γQ′

1+N0γQ′ Gj/s

∈ RH∞

(5.11)

CL poles are shown for different values of γ in Table 5.3. As in section 3.4.1, CL poles during
the transition are the combination of CL poles of (Gj/s, Kj

ext,0) and (Gj/s, Kj
ext,1). CL stability

is ensured for every value of γ. String stability is not studied as there is not communication with
the preceding vehicle.

Table 5.3: CL poles (Gj/s, K0(Q′)). YK controller reconfiguration between Kj
ext,0 and Kj

ext,1.
Nissan Infinity M56.

γ CL poles

γ = 0.0 [−6.283e7, 0, −0.6185 ± 1.0308i]

γ = 0.1 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.2 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.3 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.4 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.5 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.6 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.7 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.8 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 0.9 [−6.283e7, −6.283e7, 0, 0, −0.7465 ± 1.1609i, −0.6185 ± 1.0308i]

γ = 1.0 [−6.283e7, 0, −0.7465 ± 1.1609i]

Using IDM as preceding non V2V-equipped vehicle First simulations consider a human
driven vehicle (modeled by the IDM) as vehicle j − 1 without communication. IDM is a well-
known car-following model in the traffic flow simulation literature [Kesting et al., 2010]. It defines
an acceleration aIDM as a continous function incorporating different driving modes for all velocities
in freeway and urban traffic. The acceleration profile depends on desired v0 and actual v velocities,
free acceleration exponent δ, mimimum spacing s0, actual distance s, desired time gap T , maximum
acceleration value a, and desired deceleration b (see Eq. 5.12). By choosing different desired
velocities v0, impatient or relaxed drivers can be emulated. The parameters in [Milanés and
Shladover, 2014] are used as reference values, and they are shown in Table 5.4.

aIDM = a



1 −

(

v

v0

)δ

−





s0 + max(0, vT + v∆v

2
√

ab
)

s







 (5.12)
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Table 5.4: IDM parameters.

Parameter Value

desired velocity v0

δ 4

T 1.1s

s0 0m

a 1m/s2

b 2m/s2

Figure 5.10 depicts the performance of the ACACC controller in comparison with ACC and
CACC (assuming V2V capabilities in the IDM vehicle, only in the CACC case) controllers when the
IDM desired velocity is v0 = 33.33m/s. The comparison is between the perfect CACC situation–
V2V communication with preceding vehicle exists; classical ACC degradation and the proposed
ACACC system (both without communication with preceding vehicle). The top graph plots the
vehicles’ speeds. The second graph plots the vehicles’ accelerations during the simulation. The
third graph shows the relative distance between vehicles. The bottom graph represents how γ
is modified together with the time gap. For notation, vehicle 1 (solid magenta line) is a V2V-
equipped vehicle and the first vehicle during the whole simulation; vehicle j − 1 (solid cyan line) is
the one that starts the string in the second position as IDM; and, the vehicle j or follower is either
an ACC-equipped vehicle (solid red line), a CACC-equipped vehicle (solid green line, assuming
than the IDM is V2V-equipped for comparison purposes) or an ACACC-equipped vehicle (solid
blue line).

The value of γ is always around 0.5, changing with acceleration or braking phases. The per-
formance of the ACACC system is a hybrid response between CACCST G and CACCLT G. Its
response comes earlier to changes in leader speed v1 than the ACC/CACC systems. For instance,
when vehicle 1 is braking at 300s, the ACACC system brakes practically at the same time, while
ACC and CACC react 5s later. Besides, the system is more damped while speed changes take
place, better preserving string stability. Finally, the main objective of the present application is
also fulfilled, instead of degrading to an ACC system, ACACC takes C1 for making the string of
vehicles tighter, improving highway capacity. The relative distance corresponds to a spacing policy
between CACCST G and CACCLT G responses.

Figure 5.11 shows a second simulation using IDM. The desired velocity parameter v0 from
[Milanés and Shladover, 2014] is changed from 33.33m/s to 28m/s, emulating a very slow vehicle
dynamic on the non V2V-equipped vehicle j − 1 when tracking changes in v1. Since the IDM
model is not correctly following vehicle 1 response, the ACACC system has a closer behaviour to
CACCLT G. This behaviour is appreciated on the lower plot of Fig. 5.11.

Using an ACC-equipped vehicle as preceding non V2V-equipped vehicle [Milanés and
Shladover, 2014] compared the car following performance among ACC and CACC systems for a
Nissan Infiniti M56s (section 5.1.2). Experimental results are used to obtain car-following models
for representing the production ACC and the new designed CACC controller, highlighting how the
production ACC results string unstable, amplifying the speed changes of the preceding vehicle.
A simulation using the ACC/CACC car-following models presented in [Milanés and Shladover,
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Figure 5.10: Simulation results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped vehicle is in front. The non V2V-equipped is a
conventional driver emulated by a IDM with the desired velocity of 33.33m/s.

2014] is carried out. Specifically, the more the ACC-equipped vehicles in the string, the bigger the
amplification. Here, instead of degrading the system to another ACC, the system is changed to
ACACC with C1.

Figure 5.12 depicts the performance of the ACACC controller in comparison with ACC and
CACC controllers when an ACC-equipped vehicle is the vehicle j − 1. For notation, vehicle 1
(solid magenta line) is a CACC-equipped vehicle following a speed reference; vehicle j − 1 (solid
cyan line) is the one that starts the string in the second position with an ACC as controller; and,
vehicle j or follower is either an ACC-equipped vehicle (solid red line), a CACC-equipped vehicle
(solid green line, only possible if vehicle j − 1 is V2V-equipped) or an ACACC-equipped vehicle
(solid blue line).

ACACC system significantly reduces speed oscillation introduced by the ACC-equipped vehicle,
providing string stability but also increasing traffic flow by reducing intervehicle distances. This
simulation represents the closer behaviour to real traffic environment with a high penetration
of ACC-equipped and CACC-equipped vehicles, giving an insight into the potential benefits of
ACACC.
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Figure 5.11: Simulation results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped vehicle is in front. The non V2V-equipped is a
conventional driver emulated by an IDM with the desired velocity of 28m/s.

Table 5.5: Cycab CACC parameters. ACACC.

Kj
ext,i kj

p,i kj
d,i hj

i dj
std,i

CACCST G Kj
ext,0 kj

p,0 = 1.5 kj
d,0 = 0.2 hj

0 = hCACC = 0.6s dj
std,0 = 4m

CACCLT G Kj
ext,1 kj

p,1 = 1.5 kj
d,1 = 0.2 hj

1 = hACC = 1.5s dj
std,1 = 4m

5.2.2.d Experimental results

Three cycabs are used as experimental vehicles. As ACACC has been designed for high-velocities,
the proposed system is adapted accordingly to these low-speed platforms. The vehicle dynamic
model for evaluating the performance of ACACC is presented in Eq. 5.1. The extended control
structure in section 5.2.1.a is employed, obtaining again two different CACC controllers: Kj

ext,0

and Kj
ext,1. Control gains were firstly designed using tuning tools from MATLAB/Simulink and

guidelines in [Naus et al., 2010]. The objective is to maintain the desired time gap to the preceding
vehicle with smoothness and accuracy. A final tuning was carried out in the experimental platform
in order to obtain the best quality riding from the driver point of view. The resulting controller
gains are shown in Table 5.5.
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Figure 5.12: Simulation results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped vehicle is in front. The non V2V-equipped is an
ACC-equipped vehicle.

Stability CL stability for the designed ACACC is studied in function of γ with Eq. 5.11.
Controller gains in Table 5.5 and model in Eq. 5.1 are considered in order to obtain the CL poles
shown in Table 5.6. CL stability is preserved for every value of γ.

Using IDM as preceding non V2V-equipped vehicle The non V2V-equipped vehicle j − 1
is a cycab with an IDM controller with the desired velocity of 33.33m/s. As IDM controllers
depend on the ego-velocity and the velocity of its preceding vehicle, both signals are scaled with
a factor of 10 for obtaining a low-velocity behaviour. In the same way, the velocities used in the
tuning of γ are scaled for proving the correct performance of the approach.

Figure 5.13 depicts the performance of the scaled ACACC controller in comparison with ACC
and CACC controllers when an IDM-equipped cycab is the vehicle j − 1. The top graph plots the
velocity responses of the three cycabs in the string. The second depicts the different accelerations
of these vehicles during the test. The third graph shows the relative distances to the preceding
vehicle. And the bottom graph represents how γ is changed over time, together with the time gap.

For notation, vehicle 1 (solid magenta line) is a cycab with a speed profile that goes from 1m/s
to 3m/s or viceversa with increasing steps of acceleration/deceleration; vehicle j − 1 (solid cyan
line) is the second cycab in the string with an IDM controller; and, vehicle j or follower in third
position is either ACC (solid red line), CACC (solid green line) or ACACC (solid blue line).

The performance of the ACACC is well-proved. The hybrid behaviour between CACCST G
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Table 5.6: CL poles (Gj/s, K0(Q′)). YK controller reconfiguration between Kj
ext,0 and Kj

ext,1.
Cycab.

γ CL poles

γ = 0.0 [−6.283e7, 0, −0.7825 ± 1.2469]

γ = 0.1 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.2 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.3 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.4 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.5 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.6 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.7 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.8 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 0.9 [−6.283e7, −6.283e7, 0, 0, −0.7825 ± 1.2469, −0.8850 ± 1.7099i]

γ = 1.0 [−6.283e7, 0, −0.8850 ± 1.7099i]

and CACCLT G responses of the ACACC controller is preserved. Its response comes earlier when
vehicle 1 is accelerating or braking. And the relative distance to vehicle j − 1 is shorter than with
the classical degradation to ACC, improving the capacity of the road.

Nevertheless, it is noteworthy to mention how at low-velocities the adapted time gap by the
system is more sensitive to any velocity change, as well to the standstill distance. It explains why
the variation of the real time gap time through γ becomes more complex for the low-velocity test
(see bottom part in Fig. 5.13).

Using an ACC-equipped vehicle as preceding non V2V-equipped vehicle A scenario
where vehicle j − 1 is an ACC-equipped cycab is carried out. Please notice that the ACC shown
here is not string unstable. The performance of the ACACC controller can be accomplished with
a stable ACC without endangering the experimental platform.

Figure 5.14 depicts the performance of the ACACC controller compared to ACC and CACC
when the non V2V-equipped vehicle is an ACC-equipped cycab. For notation, vehicle 1 (solid
magenta line) is a cycab with the speed profile showed in the previous section; vehicle j − 1 (solid
cyan line) is the second cycab with an ACC controller; and vehicle j or follower in third position
is either ACC (solid red line), CACC (solid green line) or ACACC (solid blue line).

These low-speed tests demonstrate the good performance of the proposed system. ACACC con-
troller responses faster to speed changes, while preserving better the string stability and improving
the highway capacity with a shorter distance to vehicle j − 1.

5.2.2.e Conclusions

This application explores the benefit of using V2V-equipped vehicle information from a vehicle
ahead in the string when the preceding vehicle is a non-equipped one. The proposed system
provides stable responses and, more interestingly, reduce intervehicle distances, providing tighter
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Figure 5.13: Experimental results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped cycab is in front. The non V2V–equipped is a cycab
with an IDM with the desired velocity of 33.33m/s.

strings. System performance is evaluated using either a human driven vehicle (emulated by the
IDM) or an ACC-equipped vehicle as preceding one.

Stable transition between CACC controllers with different time gaps is ensured thanks to the
use of the YK parameterization. The switching signal γ is correctly tuned in order to provide a
tighter string of vehicles, improving highway capacity.

A comparative analysis using [Milanés and Shladover, 2014] models for ACC and CACC vehicles
at high speeds and the IDM model as human driver vehicle is carried out. ACACC system exhibits
a good performance, improving ACC degradation by providing a tighter string of vehicles, a faster
response to speed changes and a better preservation of the string stability. These results are scaled
to the low-velocity experimental platform. The performance is well-proved, improving relative
distance to the preceding vehicle and obtaining faster responses.

5.2.3 Cut-in/cut-out transitions in CACC systems

Once communication availability problem has been solved by using the YK-based stable controller
reconfiguration, this section proposes a different gamma design with fractional calculus based
CACC controllers. These results validate YK adaptability to any type of controller, and provide
stable cut-in/out maneuvers.

CACC systems have already shown their benefits when it comes to improve the traffic flow with



94 CHAPTER 5. APPLICATIONS

20 40 60 80 100 120 140 160 180 200

V
el

. 
(m

/s
)

0.5

1

1.5

2

2.5

3

Leader ACC2 ACC3 CACC3 ACACC3

20 40 60 80 100 120 140 160 180 200

A
cc

el
. 

(m
/s

2
)

-0.2

0

0.2

20 40 60 80 100 120 140 160 180 200

D
is

t.
 (

m
)

4.5

6.5

8.5

20 40 60 80 100 120 140 160 180 200

Y
K

 g
am

m
a

-0.1
0.2
0.5
0.8
1.1

T
im

e 
g

ap
(s

)

Time (s)

1.5
1.1

0.3
0.7

Figure 5.14: Experimental results comparison among car-following policies using CACC, ACC and
ACACC controllers when a non V2V-equipped cycab is in front. The non V2V-equipped is an
ACC-equipped cycab.

respect to the commercially available ACC system. However, their interaction with real traffic (i.e.
their ability to manage vehicles entering and exiting the string) whereas keeping the stability has
not been fully explored. This application presents the design of a CACC algorithm using fractional
calculus for providing string stable responses to traffic perturbations. Then, the YK parameteri-
zation of all controllers is applied to assure stable transitions when other CACC-equipped vehicles
are joining/leaving the string. The proposed control algorithm has been simulated for highway
velocities by using the vehicle model in section 5.1.2. A LiDAR-based detection system as the
one in section 5.1.1 is used for both tracking the preceding vehicle in the string and detecting the
cut-in/out intention of a vehicle. This perception system is integrated with communication, so
the gap is opened only if the vehicle has sent a request and the LiDAR-based detection system
confirms it. Communication, perception and control algorithms have been implemented on the
low-speed INRIA experimental platforms, providing encouraging results.

The application is structured as follows: Section 5.2.3.a introduces the problem formulation.
The YK-based control algorithm able to provide stable cut-in/out maneuvers is detailed in section
5.2.3.b. High speed simulation results are provided in section 5.2.3.c for control validation. In
section 5.2.3.d, the whole system is implemented on INRIA’s low-speed real platform, validating
the integration of communication and perception into the designed control algorithm. Finally,
some concluding remarks are given in section 5.2.3.e.
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5.2.3.a Problem formulation

Let define a string of w vehicles driving in the same lane. Problem formulation focuses again on
vehicle j; it will be the one equipped with a CACC system that handles cut-in/out maneuvers.
These always occur in front of the ego-vehicle. A homogeneus string of vehicles is considered and
all-vehicles are V2V-equipped (including cut-in/out vehicles).

Merging maneuvers are carried out depending on the output of the LiDAR-based algorithm and
the communication protocol. Here, the algorithm described in section 5.1.1.a is used to provide
cut-in/out intentions. Cut-in intention is detected when a vehicle stands in the adjacent lane for
a specific time. Thus, when a vehicle sends its request to cut-in, and stands in the LiDAR field of
view a specific time, the gap is opened. Cut-out intention is also given when the trajectory of the
preceding vehicle diverges from the string trajectory.

In a cut-in scenario, initially ego-vehicle is following its preceding vehicle. Later, a vehicle
sends its request to go inside of the string. Then, the intention of a vehicle in the adjacent lane is
detected, so ego-vehicle slows down, making space for the cut-in vehicle. Once inside, it becomes
the new preceding vehicle, reaching again the desired time gap. In [Milanés and Shladover, 2016],
cut-in situations were solved by defining a variable time gap policy. It permits smooth transitions,
but system stability is not guaranteed.

In a cut-out scenario, the preceding vehicle already inside of the string decides to leave, so the
ego-vehicle has to cover the remaining gap. In the present work, this is considered as a preceding
vehicle change. Cut-out intention could be used in the future to decouple the lateral control when
the preceding vehicle has the intention to leave. In [Bu et al., 2010], time gap is changed depending
on a trapezoidal trajectory of the relative speed with the intervehicle distance to avoid controller
saturation and to ensure passengers’ comfort. Again performance is good, but stability is not
guaranteed in the transition. The goal is to guarantee stability when cut-in/out occurs by using
the YK parameterization.

Next steps are followed for system design:
1. A new YK structure based on fractional calculcus is proposed with the aim of improving

internal and string stability. The design is carried out with the minimum time gap accepted by the
general public for CACC applications [Nowakowski et al., 2010a], so-called hmin. It is the CACC
controller to use in a normal CACC operation.

2. Once the nominal CACC controller is defined, another CACC controller with the same
structure, but with a longer time gap is designed, hmax. The value of hmax is chosen so there is
space for another vehicle. This value differs greatly depending on whether it is a high or low speed
application.

3. By defining these controllers, limits in the time gap variation are established. Every cut-
in/out maneuvers could be seen as a combination of both controllers, or in other words, as a
time gap between [hmin, hmax]. YK parameterization is used to obtain stable transitions between
these two fractional CACC controllers. Thus, stability is proved for any time gap variation related
to cut-in/out maneuvers. The regulation between the action of each controller is based on the
detection of the entering/exiting vehicles and intervehicle distance.

5.2.3.b Control algorithm

Control algorithm focuses on the longitudinal vehicle dynamics. The control algorithm imple-
mented in the ego-vehicle must perform the following functions:

• Regulate the spacing gap with respect to preceding vehicle while ensuring string stability.
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Figure 5.15: State machine for cut-in/out maneuvers depending on γ.

• Open the gap when another vehicle wants to cut in the string, while ensuring stability once
the vehicle joins the formation.

• Reduce the inter-distance with respect to the remaining forward vehicle once the preceding
is gone, ensuring also stability in the maneuver.

To manage the different needs, a state machine is designed (see Fig. 5.15). The state machine
mainly consists in three states: FractionalCACC, OpenGap and GapClosing. The initial state
is FractionalCACC. Ego-vehicle follows its preceding vehicle while keeping the distance corre-
sponding to a minimum time gap hmin. OpenGap is activated when a vehicle sends a cut-in request
and the perception algorithm confirms it. Thus, the gap is opened by increasing the time gap until
a maximum value hmax. After, the cut-in vehicle goes inside, coming back to FractionalCACC
passing through GapClosing. GapClosing is also activated when the preceding vehicle goes away,
recovering the distance corresponding to hmin in a smooth and comfortable way. Notice that
entering/exiting vehicles are seen as ID preceding vehicle changes.

The YK class of all stabilizing controllers is used with the two designed fractional CACC
systems for ensuring stability when doing transitions between them. Doubly coprime factors
for pairs (Kj

ext,0, Gj/s) and (Kj
ext,1, Gj/s) are obtained following guidelines in Theorem 3.7. By

obtaining the parameter Q′ (Theorem 3.13), stability in the transition is ensured, and then the
time gap transition associated to cut-in/out maneuvers is also stable. Time gap modification is
done through γ, as shown in Fig. 5.16. Note as unlike the previous application, two feedforward
filters F j

0 and F j
1 with hmin and hmax are included. The effect of each of them is also regulated

through γ.
General guidelines for fractional calculus design for hmin and hmax, and remaining states

OpenGap and GapClosing are explained below. Details about how γ is changed to perform
cut-in/out maneuvers are given.

Fractional CACC This section describes the initial mode FractionalCACC, which is the ac-
tive state before and after cut-in/out maneuvers are carried out. Guidelines for the design of a
feedforward Fractional Order PD (FOPD) CACC system are given with the aim of improving the
internal and string stability of the system. The minimum time gap accepted for the general public
for CACC applications hmin = 0.6s is considered [Nowakowski et al., 2010a]. Please notice that
the design of a FOPD CACC system with a time gap hmax is also given. Depending on whether it
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Figure 5.16: YK control structure for stable cut-in/out maneuvers.

is a high or low speed application, the value of hmax changes. Even if the latter is not part of the
initial state, similar design guidelines are followed to obtain the needed controller to make room
for a cut-in vehicle. Thus, both controllers are defined for applying the YK class of all stabilizing
controllers to ensure stable time gap modification.

This work proposes a FOPD controller to keep the performance but increasing flexibility design
by moving from integer to fractional order differentiation. Notice how the law control that regulates
the distance error ej changes (see Eq. 5.4). This type of controller [Li et al., 2010] is mathematically
expressed in the Laplace domain as:

Kj
i (s) =

U j
c

Ej
= Kj

p,i + Kj
d,i · sα

j

i (5.13)

Since there are three design parameters available for tuning, three control requirements are
targeted seeking a more performing frequency-domain response. Given that lower time gaps require
a more demanding control performance, for a time gap hmin = 0.6s is proposed to employ a
design procedure that not only aims to improve stability for the CACC transfer function loop–i.e.
1 + Gj(s)Kj

i (s)(1 + hj
i s)–, but also to enhance the string stability of the system. In other words,

the controller corresponding to the initial state will maintain the desired phase margin and ensure
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the string stability even if communication delays affect the feedforward link:

• Phase margin guarantee of the system loop φm >
π
3 .

• Set the desired loop bandwidth ωgc.

• Increase the system string stability.

Table 5.7: FOPD CACC parameters. Cut-in/out.

Kj
ext,i kj

p,i kj
d,i αj

i hj
i

Kj
ext,0 kj

p,0 kj
d,0 αj

0 hj
0 = hmin = 0.6s

Kj
ext,1 kj

p,1 kj
d,1 αj

1 hj
1 = hmax

On the other hand, for cut-in maneuvers, a longer time gap is considered: hmax. The fractional
order controller DC gain could be increased to compensate the slower CL dynamics that a longer
time gap produces in the gap-regulation task. Even if the controller is faster, the phase margin
criteria should be still fulfilled. The extended controller in Eq. 5.9 is used to include the time gap
hj

i into the controller. The resulting equation for the extended controller changes as there is a new
design parameter αj

i into the controller Kj
i (s). Details about both controllers are summarized in

Table 5.7.

Open gap Vehicles cutting in is a frequent maneuver when driving. Here, the gap between
two vehicles is opened when cut-in intention of a vehicle in the adjacent lane is positive, and it
has sent its cut-in request. Normally, when a vehicle performs a cut-in in front of a vehicle, both
vehicles are driving at the same speed. Once ego-vehicle perceives that the other wants to make the
maneuver, it slows down, making space for the cut-in vehicle. With the aim of ensuring stability
in this transition, the gap is enlarged to the distance corresponding to hmax by setting γ to one.

The transition from the normal CACC operation (state FractionalCACC) to OpenGap is done
by modifying γ from 0 to 1. The change from 0 to 1 is chosen as a trade-off between smoothness
and reactivity from driver’s point of view:

γ = γmin +
1

ttransition
(γmax − γmin)t (5.14)

where γmin = 0, γmax = 1 and ttransition = 5s.
The cut-in vehicle could enter in the string once the gap is totally opened or before. Indepen-

dently, the entrance of the cut-in vehicle is represented by ID preceding vehicle change, passing to
state GapClosing.

Gap Closing The aim of the state GapClosing is to reduce the distance error when the pre-
ceding vehicle changes. ID preceding vehicle change determines communication switch between
different vehicles. By minimizing the error, controller saturation is avoided and passengers’ com-
fort achieved. Again transitions are done through γ, so stability is ensured. Three situations are
considered:

• The gap has been opened and the cut-in vehicle goes inside the string.
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• Cut-out maneuver when the preceding vehicle goes away.

• Once the preceding vehicle is gone, there is no vehicle to follow.

In the first two cases, there is a mismatch between the desired distance corresponding to hmin

and the actual one. The error is set to zero by obtaining γchange at the moment of the ID change.
γchange depends on the intervehicle distance dj , the ego-vehicle velocity vj ans standstill distance

dj
std. To come back to the state FractionalCACC, the transition is done from γchange to 0. Again

the transition between both values is set as a trade-off with smoothness and reactivity:

γ = γchange −
1

ttransition
(γchange − γmin)t, γ ∈ [0, 1] (5.15)

where ttransition = 5s and γmin = 0. Notice that the value of γ will be always between 0 and 1; if
intervehicle distance is out of the range [hmin, hmax], γ saturates.

Finally, the third situation is considered. If the preceding vehicle perfoms a cut-out and there
is no other vehicle to follow; ego-vehicle becomes the leader of the string with a specific reference
velocity.

5.2.3.c Simulation results

This section presents the YK cut-in/out performance at high speeds (i.e. highway scenario). For
simulation purposes, the vehicle model introduced in section 5.1.2 is used.

This longitufinal model and hmin = 0.6s are considered for the design of the controller cor-
responding to the initial state, Kj

ext,0. The guidelines given in the previous section are followed.

Thus, the resulting values are Kj
p,0 = 0.45, Kj

d,0 = 0.25 and αj
0 = 0.3847.

On the other hand, since for cut-in maneuvers a larger gap is needed, a longer time gap is
considered: hmax = 1.1s. This time gap is longer enough to make room for another vehicle under
high-speed condition. As there is not much difference between hmin and hmax, controller variables
remain: Kj

p,1 = 0.45, Kj
d,1 = 0.25 and αj

0 = 0.3847. Information related to both controllers is
summarized in Table 5.8.

Table 5.8: Nissan Infinity FOPD CACC parameters. Cut-in/out.

Kj
ext,i kj

p,i kj
d,i αj

i hj
i dj

std,i

Kj
ext,0 kj

p,0 = 0.45 kj
d,0 = 0.25 αj

0 = 0.3847 hj
0 = hmin = 0.6s dj

std,0 = 2m

Kj
ext,1 kj

p,1 = 0.45 kj
d,1 = 0.25 αj

1 = 0.3847 hj
1 = hmax = 1.1s dj

std,1 = 2m

String stability String stability is studied in function of every value of γ. Fig. 5.17 represents
the string stability surface in function of γ. Surface results from the string stable transfer function
in Eq. 5.16. This equation is obtained from the control structure in Fig. 5.16. As controller
reconfiguration depends on γ, stability when switching between controllers is demonstrated. In
addition, as this amplitude is always below the unity, string stability is also proved. By proving
stability when doing controller transition, stable time gap modification is also guaranteed under
cut-in/out maneuvers.

Xj

Xj−1
(s) = GjK0(Q′)

1 + (1 − γ)F j
0 /Kj

0s/Gj + γF j
1 /Kj

1s/Gj

s + GjK0(Q′)
(5.16)
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Figure 5.17: String stability’s surface depending on γ. Nissan infinity M56.

Cut-in/out results The presented control algorithm has been implemented in MATLAB/Simulink
for its validation. Perception system or communication are not integrated at this stage. Single
flags are used instead for gap opening and ID preceding vehicle change.

Figure 5.18 depicts the performance of the control algorithm under cut-in situations. Starting
from the same initial configuration, the cut-in situation occurs at different moments, ranging from
a sudden cut-in up to fully waiting to the open gap. For notation, the top graph plots the vehicles’
speeds. The second graph plots distance to preceding vehicle during the simulation. The third
graph shows how γ is changed depending on the current state. And the bottom graph represents
the time gap associated to the change in γ.

A total of three vehicles are considered; initially there is a two-vehicles CACC string: between
old preceding vehicle (solid black line) and ego-vehicle. Later, new preceding vehicle (dotted yellow
line) approaches in the adjacent lane. Both new and old preceding vehicles drive at 30m/s. A flag
is activated at 45s to simulate the cut-in intention and request; therefore the gap is enlarged by
increasing γ to one until this new vehicle enters. Once the flag is received, the cut-in occurs at
seconds 47 (solid magenta line), 53 (solid red line), 57 (solid blue line) and 65 (solid green line)
for the ego-vehicle 1, 2, 3 and 4 respectively. The ID preceding vehicle change is equivalent to the
different abrupt changes in the distance. Once it is inside, γ is modified again to come back to the
normal CACC operation. Responses from 1 to 4 represent from the most impatient driver, who
performs a cut-in without waiting for the gap opening, to the most conservative one, who even
waits few seconds once the gap is fully opened.

Figure 5.19 depicts the performance of the control algorithm under cut-out situations. A
CACC three-vehicles string is considered: Old preceding (solid black line) - new preceding (dotted
yellow line) - Ego. As in the cut-in situation, different starting distances with the new preceding
vehicle when the former one left are shown. The different responses at the ego-vehicle show how
the control algorithm behaves when new preceding goes away, leaving different distances to old
preceding vehicle. Again the ID preceding vehicle change is equivalent to an abrupt change in
distance. Responses from 1 to 4 represent from the shorter to the larger remaining distances.

These results proves how cut-in/out maneuvers are carried out through the modification of γ
while ensuring string stability by using the YK class of all stabilizing controllers. Different cases
are tested: From impatient to conservative drivers in cut-in situations; and from shorter to larger
distance to recover in cut-out situations. Inter-vehicle distances out of the range [hmin, hmax] are
also considered, seeing how gamma saturates, without effects in stability or driver comfort.
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Figure 5.18: High speed simulation results cut-in maneuvers. Nissan Infiniti M56.
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Figure 5.20: String stability’s surface depending on γ. Cycab.

5.2.3.d Experimental results

This section presents the experimental validation on the low-speed platform described in section
5.1.1. Longitudinal model in Eq. 5.1 and hmin = 0.6s are considered for the design of K0

ext.
Guidelines in section 5.2.3.b are followed. The resulting controller parameters are: Kj

p,0 = 0.505,

Kj
d,0 = 0.225 and αj

0 = 0.3847.
Again, since the gap between two vehicles needs to be enlarged to let room for another vehicle,

a longer time gap is considered: hmax = 5s. This time gap is longer enough to make room for
vehicles than can drive up to 4m/s. In this case, as the difference with hmin is larger, the DC gain
of the controller is increased to compensate the slower dynamics that a longer time gap introduces:
Kj

p,1 = 0.905, Kj
d,1 = 0.225 and αj

1 = 0.3847. Information related to both controllers is summarized
in Table 5.9.

Table 5.9: Cycab FOPD CACC parameters. Cut-in/out.

Kj
ext,i kj

p,i kj
d,i αj

i hj
i dj

std,i

Kj
ext,0 kj

p,0 = 0.505 kj
d,0 = 0.225 αj

0 = 0.3847 hj
0 = hmin = 0.6s dj

std,0 = 1.5m

Kj
ext,1 kj

p,1 = 0.905 kj
d,1 = 0.225 αj

1 = 0.3847 hj
1 = hmax = 5s dj

std,0 = 1.5m

String stability Fig. 5.20 represents the string stability surface in function of γ. Equation 5.16
is used together with the model in Eq. 5.1 and controller parameters in Table 5.9. The magnitude
of the Bode’s diagram is always finite independently of γ, so stable controller reconfiguration is
proved. Notice also that its value is always below the unity, so string stability is also ensured. As
time gap modification is done through controller reconfiguration, stable time gap modification is
guaranteed.

Cut-in/out results A complete scenario has been set to evaluate the transitions between the
three states that composes the control algorithm.

Figure 5.21 depicts the performance of the control algorithm together with communication
and perception algorithm. For notation, the top graph plots the vehicles’ speeds. The second
graph plots the distance to the vehicle in front during the test. The third graph shows how γ is
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Figure 5.21: Low-speed experimental results cut-in/out maneuvers. State machine integration:
FractionalCACC(I), OpenGap(II) and GapClosing (III).

changed depending on cut-in intention and request. The bottom graph represents the real time
gap associated to the change in γ.

A total of three cycabs is considered: 1) Leader (solid blue line) follows a velocity profile that
changes from 0 to 2m/s; 2) Preceding (solid red line) is manually driven, being the one enter-
ing/exiting the string; and 3) ego-vehicle (solid green line) with control and perception algorithms
installed. Initially there is a CACC two-cycabs string: between leader and ego, performing the state
FractionalCACC. Then, preceding sends its request to go inside the string at 25s (solid green line
3th graph), being detected by the perception system 2s later (blue solid line third graph). It is at
this moment that the system considers that preceding wants to cut-in, passing to state OpenGap,
opening the gap by setting γ to one (solid black line third graph). The gap remains open until
preceding goes inside, fact detected by the perception system as a ID preceding vehicle change.
The gap is not fully open when predecing goes inside. Once it is inside, γ is modified to zero in
the state GapClosing, recovering the distance to come back to the initial state FractionalCACC.
From 36s to 54s a normal CACC operation is performed, seeing how ego-vehicle is able to follow
the preceding manual velocity. Finally, preceding goes away at 53s, recovering the distance to
leader by modiffying γ to zero. The normal CACC operation of the system is again recovered.

These results demonstrate the correct integration of communication, perception and control
systems. The test shows good performance for both perception system and the designed state
machine for the control algorithm. These results also validate the stable cut-in/out maneuvers
carried out through γ in simulation results.
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5.2.3.e Conclusions

This application presents the design of a control algorithm able to ensure stable cut-in/out ma-
neuvers in a CACC string of vehicles. In a cut-in scenario, ego-vehicle slows down, making space
for the vehicle willing to enter; while in a cut-out scenario, ego-vehicle accelerates to cover the
remaining gap once the preceding vehicle is gone. Both merging/splitting maneuvers are seen
as time gap variations in a CACC control structure. By defining fractional CACC systems with
different time gaps hmin and hmax, and using the YK parameterization for doing stable controller
reconfiguration between them, one ensures string stable responses to these traffic perturbations.

Control algorithm is first validated through simulation results. Vehicles driving at 30m/s
are considered. It is proved how the system is able to leave space for another vehicle, perform
cut-in maneuvers with impatient or conservative drivers entering the string, and recover different
distances once the preceding vehicle is gone; all that while ensuring string stability by using the
YK class of all stabilizing controllers.

Finally, a LiDAR-based perception system is used for both tracking the preceding vehicle
and detecting cut-in/out intention of a vehicle in the adjacent lane. This cut-in intention is used
together with a communication request for opening the gap in the previous control algorithm. Per-
ception, communication and control are employed in the low-speed INRIA experimental platform,
proving its correct implementation and validating simulation results.

5.3 Closed-loop identification

Once YK-based stable controller reconfiguration has been used with CACC applications, YK-
based CL identification is reviewed. Applications in previous sections are developed for vehicles
with same dynamics; but it is clear, that in a real traffic situation vehicle dynamics can change.
Thus, YK-based CL identification is used in order to identify the dynamics of a vehicle connected
to a CACC system.

In this section, the dual YK parameterization is used to perform CL identification of longi-
tudinal dynamics of a cycab. The CL identification provided by the Hansen scheme (see section
4.5.2.a) is based in the OL identification of the dual YK parameter Si. OL and CL identification
algortihms are compared when employed in a CACC-equipped string of vehicles.

5.3.1 Online closed-loop identification for longitudinal vehicle dynamics

This application deals with the identification of longitudinal dynamics of a cycab for subsequent
control performance’s improvement. Low-speed vehicle dynamics is used as physical model which
non-linear behaviour is complex to properly identify. Among several identification techniques, CL
identification gives better performance in a model-based control design. Here, the Hansen scheme
presented in section 4.5.2.a is used to transform a CL identification problem in an OL-like. The
algorihtm is tested in a string of two cycabs equipped with a PD-based CACC system, showing
how the resulting model is improved in comparison with an OL identification algorithm–Auto
Regressive model with eXternal inputs (ARX) model.

The application is structured as follows: Section 5.3.1.a introduces the problem formulation.
The control algorithm where Hansen scheme is applied is described in section 5.3.1.b. Section
5.3.1.c shows simulation results where a classical OL algorithm and Hansen scheme are compared.
Results are validated on the INRIA low-speed experimental platform in section 5.3.1.d. Finally,
some concluding remarks are given in section 5.3.1.e.
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5.3.1.a Problem formulation

Vehicle dynamics identification is crucial for subsequent controller design. From the ego-vehicle
point of view, a single LTI model in a given operation point of the system won’t be sufficient for
an application that is supposed to work in the whole velocity range. From the string point of view,
a single LTI model won’t be a representation of all existing vehicles in the market. In this section,
INRIA’s low-speed experimental platform characterization in section 5.1.1.b continues.
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Figure 5.22: Nonlinear velocity cycab response compared with models.

When doing a characterization of the real platform described in section 5.1.1.b (see Fig. 5.22),
a non-linear longitudinal behaviour is detected with different time responses and damping factors
depending on the control velocity vj

c (solid blue line). The LTI model identified in Eq. 5.1 (solid
red line) is not able to cover the different dynamics in acceleration and braking phases. A non-
linear model suitable for non-linear control is needed to satisfy good performance in the different
operation points.

In this section, a string of two vehicles, w = 2, driving in the same lane is considered. The
CL identification algorithm provided by the dual YK parameterization (so-called Hansen scheme)
is implemented in the ego-vehicle for identification of longitudinal cycab dynamics. The same
is compared with a well-known OL identification algorithm–ARX [Karaboyas and Kalouptsidis,
1991]. Then, advantages of dual YK CL identification can be highlighted at the same time that a
more complete cycab model is obtained.

5.3.1.b Control algorithm

In this section, the control algorithm present in a cycab is explained. The vehicle is controlled in
CL to compare OL and CL identification algorithms. The signals needed for both identification
processes are clarified.

Here, a PD-based CACC as the one in section 5.2.1.a is employed: Kj
i in Eq. 5.4. First, tuning

tools in MATLAB/Simulink and guidelines in [Naus et al., 2010] are used to obtain kj
p and kj

d.
A final tuning is carried out during the experimental set-up in order to obtain smoothness and
comfort. These controller gains are shown in Table 5.10. Notice how controller parameters change
in comparison with those in Table 5.5. This is due to the use of Kj

i instead of Kj
ext,i. The transfer

function in Eq. 5.1 serves as initial model G0 for controller design. Doubly coprime factors for the
pair (K, G0) are obtained following guidelines in Theorem 4.1.

First, an OL model of the vehicle is obtained by using vj
c and vj directly in the ARX identifi-

cation algorithm (see [Karaboyas and Kalouptsidis, 1991]). Its basis is equivalent to the following
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Table 5.10: PD-based CACC parameters. CL identification.

Kj
i kj

p,i kj
d,i hj

i dj
std,i

K kj
p,0 = 0.5 kj

d,0 = 0.15 hj
0 = 1s dj

std,0 = 5m

equation:

yk+1 = Zθk + vk (5.17)

where y = vj is the output vector, Z the matrix with old inputs and output values, θk the model
parameters to identify and vk white noise. θk is found by minimizing the least squared prediction
error between real and estimated output.

Then, a CL identification is carried out applying Theorem 4.5. Note that (dj − dj
std) and uj

ff

serve as external excitation signals r1 and r2 in the CL identification (see Figs. 4.2 and 5.6 for
comparison). Instead of using vj

c and vj directly in the ARX model, filtered signals ζ0 and z0 are
obtained in Eq. 4.34, and employed to estimate the dual YK parameter Si. Once Ŝi is known, the
CL vehicle model is updated by using Eq. 4.35.

In order to evaluate the performance between both algorithms, the metric called Vinnicombe
ν-gap in [Vinnicombe, 2000] is used. ν-gap goes from 0 to 1 and expresses the difference between
two models in reference to similarity in its CL operation. The closer its value to 0, the better the
performance. It is defined for LTI system; its use into LPV systems cames with the definition of a
set of LTI systems that composes the LPV model. The ν-gap metric is used during the simulation
step with two different LTI models of a cycab. Experimental results regarding real, OL estimated
and CL estimated outputs are provided to support the simulation results.

5.3.1.c Simulation results

As mentioned aboved, two different LTI models are considered for identification comparison. The
initial LTI model G0 already described. The PD-based CACC controller K is designed under
consideration of this LTI model. A different LTI model G1 is also considered, corresponding to
the braking phase between 3m/s and 2m/s (see solid green line in Fig. 5.22). The model G1 is
used together with the controller K. Transfer function of G1 is in Eq. 5.18. White noise with
a signal-noise-ratio (SNR) of 42.42dB is added to the output. The modification from G0 to G1

emulates the case in which an erroneous model has been identified, being the real one G1. As the
real model is known, ν-gap metric comparison results reliable among OL and CL identified models.

G1(s) =
1

0.1514s2 + 0.2551s + 1
(5.18)

An OL identification has been carried out for obtaining the model G1. Signals vj
c and vj shown

in Fig. 5.23 are used into an ARX model of third order, with one sample delay. The identification
is performed using a sliding window approach of 400 samples with a sample time of 0.1s. The
resulting model is compared with G1 by calculating the corresponding ν-gap.

The proposed identification system computes ζ0 and z0 by using Eq. 4.34 with signals r1 =
dj − dj

std, r2 = uj
ff , u = vj

c and y = vj in Fig. 5.23. Notice that these signals are now input
and output of the same ARX model. Same order and delay are chosen, so advantages of CL
identification can be studied under same conditions. Results of the OL identification of the dual
YK parameter Si is provided in Fig. 5.24. The resulting Si is LTI as G1 is LTI. The identified Ŝi
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is used in Eq. 4.35, for obtaining the CL model of the vehicle. The identified model is compared
with G1 through the ν-gap metric.

ν-gap results from OL and CL identification are compared in Fig. 5.25. A better model is
obtained when using ARX model together with the Hansen scheme. Under same conditions, ν-gap
results closer to zero. CL nature of the data affects the ARX model, and the Hansen scheme helps
to mitigate these effects; obtaining a model closer to the real one.

5.3.1.d Experimental results
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Figure 5.26: Signals for identification. Experimental results with soft speed profile.
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Figure 5.27: OL identification of dual Youla-Kucera parameter Si. Experimental results with soft
speed profile.
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Figure 5.28: CL/OL comparison through estimated output. Experimental results with soft speed
profile.
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Figure 5.29: Signals for identification. Experimental results with abrupt speed profile.

ARX model, Hansen scheme and CACC controller are implemented in a string of two cycabs.
Different speeds profile are applied to the leader of the string, so the algorithm can be tested with
slower and faster velocity changes.

The signals from Fig. 5.26 correspond to the slower velocity changes case. An OL identification
through ARX model is carried out with vj

c and vj ; while the same is also used with ζ0 ans z0, for
the OL identification of Si. Its good performance is proved through results in Fig. 5.27, where
real and identified output of Si are compared. Note how the resulting Ŝi is LPV, as a single LTI
transfer function is not able to recreate cycab dynamics. Ŝi and coprime factors from the pair (K,
G0) are used in Eq. 4.35 to get the CL model of a cycab with a CACC controller. As a priori
knowledge of the real model is missing, ν-gap metric is not employed. Instead, estimated output
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Figure 5.30: OL identification of dual Youla-Kucera parameter Si. Experimental results with
abrupt speed profile.
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Figure 5.31: CL/OL comparison through estimated output. Experimental results with abrupt
speed profile.

from the model obtained by Eq. 4.35, OL model and real output are compared in Fig. 5.28.

On the other hand, Fig. 5.29 shows the signals used in the identification for the faster velocity
changes case. The procces is exactly the same than in previous cases. It is important to note that
peformance of the OL identification for Si in Fig. 5.30 is poorer than in the case of Fig. 5.27;
this is due to the faster signal changes. Even with that, the CL identified model provided by the
Hansen scheme is able to follow non-linearities, while the direct ARX model is not. Comparison
of identified outputs is shown in Fig. 5.31. Differences between OL and CL algorithm are visible
when faster changes are carried out; proving the good performance of the algorithm previously
tested in simulation.

5.3.1.e Conclusions

In this application, Hansen scheme is used for CL identification of longitudinal dynamics of a
cycab. The good performance of the algorithm is tested when connected to a PD-based CACC
controller. The CL identification provided by the Hansen scheme is based in the OL identification
of the dual YK parameter Si. Thus, the same OL algorithm–ARX model– is used for performance
comparison of CL and OL identifications. Simulation and experimental results are conducted to
validate the proposed identification algorithm. Results show the feasiblity of the proposed scheme,
improving ARX model identification. Dual YK property of identification is tested and a more
complete longitudinal cycab model is obtained.
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5.4 Adaptive control design

In this section, the dual YK parameterization is used in connection with adaptive control. A
MMAC approach, as the one in section 4.4.1, is employed to deal with dynamics heterogeneity in
CACC-equipped string of vehicles. The contribution of this application is clarified below.

5.4.1 Multi model adaptive control for cooperative adaptive cruise control ap-
plications

This application proposes a MMAC algorithm based on YK theory to deal with heterogeneity
in CACC systems. The main idea of MMAC is to choose the plant in a predefined set that
best approximates the system dynamics, applying the corresponding predesigned controller. A set
of linear plants describing different vehicle dynamics is defined. Different CACC controllers are
designed depending on these linear plants. Simulation and experimental results prove how MMAC
determines the closest plant in the set, choosing the CACC system able to ensure string stability.

Next sections detail the system design and implementation. Section 5.4.1.a gives some back-
ground for the good understanding of the application. The YK-based MMAC approach is modified
in section 5.4.1.b. for its application to CACC systems. Simulation and experimental results are
analysed in sections 5.4.1.c and 5.4.1.d. Finally, some concluding remarks are given in section
5.4.1.e.

5.4.1.a Problem formulation

A string of w vehicles driving in the same lane is considered. j determines the order of a vehicle
inside the string, j ∈ [1, w]. The solution here focuses on ego-vehicle (vehicle j) situation depending
on preceding’s (vehicle j − 1) dynamics. From now on, Greal is equivalent to ego-vehicle Gj .

When vehicles within the string have identical dynamics (i.e. homogeneous string: Gj = Gj−1),
disturbances attenuate/amplify uniformly along the string. String stability for homogeneous string
of vehicles has been widely studied [Hedrick and Swaroop, 1994] [Swaroop and Rajagopal, 2001]
[Seiler et al., 2004] [Khatir and Davison, 2004] [Barooah and Hespanha, 2005]. String stability
is ensured for any positive time gap value if no delay is introduced in the communication link
between vehicles. The statement is validated through experimental results: [Naus, 2010] carried
out a string stable CACC with two citroen C4s; [Ploeg et al., 2011a] used a test fleet of six Toyota
Prius III Executive, proving how a string-stable behaviour is achieved; a CACC system has been
implemented on four production Infiniti M56s, guaranteeing also string stability (see [Milanés et
al., 2014] for further details); three standard Scania tractor-trailer are also used in [Alam et al.,
2015], forming a string stable CACC with three trucks.

On the contrary, when vehicles in the string have not identical dynamics (i.e. heterogeneous
string: Gj 6= Gj−1), disturbances do not attenuate/amplify in the same way downstream; e.g. a
vehicle with slower dynamics will have difficulties to follow a vehicle with faster dynamics. In
the Grand GCDC competition in 2011, nine vehicles from different research institutes in Europe
performed a CACC. The ATeam remarked how string stability is explicitly affected by preceding
vehicle’s dynamics–the minimum time gap achievable goes from 0.6s to 1.5s [Nieuwenhuijze et al.,
2012]. Guidelines are given in [Shaw and Hedrick, 2007a] [Shaw and Hedrick, 2007b] about how
to change variables of a CACC controller depending on whether slower or faster vehicle dynamics
is in front of the ego-vehicle. Although the heterogeneous situation is more realistic, there is no
real implementations in the literature.
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String stability for heterogeneous string of vehicles has been addressed in two different ways:
Robust control– a fixed controller able to work under bounded uncertainties in the plant. Dynamics
difference between ego and preceding vehicle is represented as uncertainty in the platoon model;
Adaptive control– controller changes with the unknown uncertainties in the system, e.g. control
is modified depending on ego and preceding dynamics. Adaptive control is needed when robust
control is not able to offer a decent behaviour due to all the parameters changes that can occur in
the system.

Related to robust control, [Lestas and Vinnicombe, 2007] added some local conditions for
heterogeneity to a robust controller designed for a homogeneous string of vehicles. Dynamics of the
different agents within the strings need to be known to validate if the required local conditions are
fulfilled. [Guo and Yue, 2011] proposed a controller design based on Linear Matrix Inequality (LMI)
to ensure individual stability, while an H∞ control algorithm considers disturbances that affects
string stability. Again some conditions based on the components of the string should be validated.
A H∞ robust control design was presented in [Gao et al., 2015] to overcome uncertainty between
model connections. The range of model parameters needs to be known apriori. Finally, [Gao et al.,
2016] presented a H∞ control method which can guarantee both individual and string stabilities to
parameters uncertainties and communication delay. Heterogeneity is reflected by different vehicle
mass and time lag of powertrain dynamics. Wind gust and road slopes are also considered as
external disturbances.

Related to adaptive control, all the existing work takes as baseline controller a PD feed-
back/feedforward CACC (as the one in section 5.2.1.a). This type of controller has been ex-
tensively used due to its simplicity and performance. [Wang and Nijmeijer, 2015] designed a new
feedforward controller for a heterogeneous string of vehicles to minimize spacing error and make in-
dependent string stability from preceding vehicles’ dynamics. Models of ego and preceding vehicles
are included in the feedforward, so string stability remains as in a homogeneous string of vehicles.
However, there is no mention of how to obtain the dynamics of both vehicles in order to adapt the
controller. More recently, a one vehicle look-ahead topology with model reference adaptive control
is considered in [Harfouch et al., 2017]. They augmented a normal feedforward/feedback CACC
system working in the homogeneous case with an adaptive term compensating unknown driveline
vehicle dynamics. The idea is the same, but dynamics estimation for subsequent adaptation is
included. Simulation results are given, where all estimates converge to true values in 31s.

Adaptive control covers a greater dynamic range than robust control, but it is necessary to
carry out online identification together with controller reconfiguration. With the idea of avoiding
an identification process that could slow down the control loop, a set of linear plants that describes
a wide range of vehicle dynamics can be defined.

Here the MMAC algorithm based on YK in section 4.4.1 is used together with the FOPD
feedfback/feedforward CACC. A set of linear plants describing different vehicle dynamics is defined
representing heterogeneous strings for MMAC validation. MMAC should estimate the closest plant
in this set to ego and preceding vehicles, so the predesigned CACC controller able to ensure string
stability is chosen. Encouraging results are obtained both in simulation and in real tests.

5.4.1.b Control algorithm

This section describes how MMAC can be used together with a CACC feedback/feedforward
structure to address the problem of heterogeneity in CACC string of vehicles.

This work proposes a FOPD feedback/feedforward CACC as the one in section 5.2.3.b. This
FOPD CACC controller is extended with the feedforward filter in [Wang and Nijmeijer, 2015] to
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Figure 5.32: CACC MIMO structure.

ensure string stability even if different dynamics are present in the string. A model of each of the
vehicles in the string would be necessary.

In order to avoid any identificacion process that could slow down the control loop, MMAC is
used as a supervisor able to choose the proper controller among a pre-designed CACC controller
set {K}. The task of the supervisor will be to estimate the closest plant to the ego and preceding
vehicles, so the controller ensuring string stability will be chosen. Details how Algo. 1 is modified
for a CACC application are given below.

CACC control structure When ideal communication is considered (no delays are present in the
communication link), the choice of a feedforward filter as the one in Eq. 5.5 ensures string stability
for any positive value of hj

i [Öncü et al., 2011]. The statement above is no longer valid when a
heterogeneous string of vehicles is considered. [Wang and Nijmeijer, 2015] included dynamics of
ego and preceding vehicles in F j

i (see Eq. 5.19), proving string stability even when dynamics are
not the same.

F j
i (s) =

1

hj
i s + 1

Gj−1

Gj
(5.19)

Both ego Gj and preceding vehicle Gj−1 need to be known to ensure string stability. When
Gj = Gj−1, the feedforward controller reduces to the homogeneous case.

Figure 5.6 shows the classical SISO structure for CACC systems. Notice how the control signal
vj

c is the addition of uj
c and uj

ff . Here the controller structure is modified to MIMO, so FOPD
controller Kj and feedforward filter Fj can be changed at once by using the YK parameterization.
Results coming from this structure will serve as an adaptability proof of YK parameterization to
MIMO systems. The modified MIMO structure is shown in Fig. 5.32.

Notice that there are as many controllers as there are possible dynamics combinations between
ego and preceding vehicles.

MMAC modification for CACC Let’s consider p number of nominal plants in the set {G} =
{G0..., Gi..., Gp}. Preceding Gj−1 and ego Gj vehicles can be described by any of these nominal
plants; or have a close behaviour to one of them. Depending on ego and preceding dynamics
combination, a set of (p + 1)2 CACC controllers is created {K} = {Kxr}, where x is the closest
plant in {G} to the preceding vehicle Gj−1, and r the closest to the ego-vehicle Gj . Similarly, γ is
the switching sequence {γ} = {γxr}, specifying which controller in {K} is activated by modifying
to 1 the corresponding γxr at the YK controller reconfiguration structure. Only one γxr can be set
to 1 at the same time.

The switching sequence γ is specified by the supervisor. The goal is to determine which of the
plants in the set {G} is the closest to the real one Greal. As already outline, this is done through
the signal zi. The smallest its truncated 2-norm Ji the closer to the plant Gi. The same kind
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of system is installed in the preceding vehicle, sending to ego-vehicle which is the closest plant
to Gj−1. Once x and r are known, the corresponding switching signal γxr is activated, so string
stability is ensured.

The general MMAC algorithm in Algo. 1 is modified in Algo. 2 for CACC applications.
It remains the same, except for a switching sequence γ that depends on two different indexes, a
communication link added to get the value of x, and an extra condition when ego-vehicle is exactly
between two plants in the set {G}. Even if unlikely, the fastest model is chosen in order to provide
the most string stable controller in the most critical situation. The mandatory difference between
two norms h is set to 0.4.

Algorithm 2 Multi Model Adaptive Control for CACC

1. Initialization
γ[(p + 1)2] = 0 ⊲ Switching sequence initialization
K[(p + 1)2] = [K0, ..., Ki, ..., K(p+1)2 ] ⊲ Candidate controllers
M̃ [p] = [M̃0, ..., M̃i, ..., M̃p] ⊲ Left coprime factor M for Gi

Ñ [p] = [Ñ0, ..., Ñi, ..., Ñp] ⊲ Left coprime factor N for Gi

ζ[p] = [0] ⊲ Si output initialization
J [p] = [0] ⊲ Truncated 2-norm initialization
loop
2. Controller reconfiguration

UpdateController(K[γ]) ⊲ Apply controller Ki, with i = γ
Get (x) ⊲ Index preceding vehicle through communication
Get(u,y) ⊲ Obtain measurements u and y
3. Supervisor

3.1 Identification

for i in (0, p) do
z[i] = M̃ [i]y − Ñ [i]u ⊲ Output of Si

J [i] = (norm2(ζ[i]))2 ⊲ Compute truncated 2-norm/ Closeness to nominal models
end for
if J [i] == J [∀ except i] then

imin = fastest ⊲ The fastest plant is considered when norms are identical
else

imin = argmini{i ∈ n | J [i]} ⊲ The smallest norm corresponds to the closer model
end if
3.2 Evaluate switching sequence

if (J [γ] ≤ J [imin] + h) then
γ = γ ⊲ Previous controller remains

else
γ = γximin

⊲ Controller changes
end if
end loop

5.4.1.c Simulation results

This section presents the MMAC CACC performance when the string of vehicles is heterogeneous.
In the following, the sets of nominal plants and corresponding CACC controllers are introduced.
These sets are chosen according to requirements of convergence and stability. Different simulations
have been carried out. The first of them (Matching case), dynamics of both vehicles, preceding and
ego, coincide exactly with one of the plants in the set {G}. The second and last (Non-matching
plant), considers that preceding and ego-vehicle have dynamics close to one of the plants in the
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Figure 5.33: Uncertainty range string stable for pairs (G0, K0), (G1, K1) and (G2, K2).

set {G}.

Plant and controller sets Convergence and stability for MMAC algorithms is assured by
assuming that the true plant is sufficiently close to the identified model in the set [Anderson et al.,
2000] [Stefanovic et al., 2004]. Thus, determination of the correct set of nominal plants ensures
convergence and stability [Anderson et al., 2001]. The idea is to determine stability criterion for
each pair plant/model, analysing the maximum uncertainty around the plant without affecting the
performance/stability of the system. In that way, one can define the required number of plants for
the desired application range.

Vehicles with fast or slow dynamics, and with a certain overshoot are considered through
second-order transfer functions: They are LTI plants mapping control velocity signals in output
velocity signals:

Gi =
w2

n,i

s2 + 2fdamping,iwn,is + w2
n,i

(5.20)

where fdamping,i is the damping factor and wn,i is the natural frequency in rad/s. Application range
is defined by limits in fdamping,i and wn,i: fdamping,i ∈ [0.55, 0.65] and wn,i ∈ [0.9524, 6.667]. Notice
that these limits could be extended in order to deal with every possible vehicle in the market.

Once the application range is defined, string stability is analysed in order to get the minimum
number of nominal plants in {G} able to cover the whole application range with string stability
guarantee. String stability of each pair plant-controller is analysed with uncertainties in wn,i and
fdamping,i. As a CACC system, uncertainties are in both preceding and ego vehicles, analysing
the range where the homogeneous CACC controller is string stable. Three models in the set {G}
are enough to cover the application range. String stable areas for pairs (G0, K0), (G1, K1) and
(G2, K2) are depicted in Fig. 5.33.

Values for nominal plants in the set are presented in Table 5.11. G0, G1 and G2 go from faster
to slower dynamics (see the Bode diagram in Fig. 5.34). Plants Gx1 and Gx2 are also present in
the table, and they will be the non-matching cases in the corresponding subsection.

For every plant in the set {G} = {G0, G1, G2} a FOPD controller is designed with the objective
of being robust to uncertainties. Guidelines in section 5.2.3.b are followed, resulting in a controller
set {K} = {K0, K1, K2}. Controller parameters are shown in Table 5.12. This set is extended
including the feedforward filter; Eq. (5.19) depends on possible combinations between plants in
{G}, yielding {Kxr} = {K00, K01, K02, K10, K11, K12, K20, K21, K22}, where x is the plant in the
preceding vehicle, and r the plant in the ego-vehicle.

Once nominal plants and candidate controllers are defined, Theorem 3.7 is applied to get
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Table 5.11: Plants and parameters. MMAC.

Gi fdamping,i wn,i

G0 fdamping,0 = 0.6 wn,0 = 3.3333

G1 fdamping,1 = 0.6 wn,1 = 1.6667

G2 fdamping,2 = 0.6 wn,2 = 1.1111

Gx1 fdamping,x1 = 0.65 wn,x1 = 6.6667

Gx2 fdamping,x2 = 0.55 wn,x2 = 0.9524

Table 5.12: FOPD controller parameters. MMAC.

Kj
p,i Kj

d,i αj
i hj

i

K0 Kj
p,0 = 0.35 Kj

d,0 = 0.15 αj
0 = 0.3847 hj

0 = 1s

K1 Kj
p,1 = 0.5 Kj

d,1 = 0.225 αj
1 = 0.3847 hj

1 = 1s

K2 Kj
p,2 = 0.6 Kj

d,2 = 0.3 αj
2 = 0.3847 hj

2 = 1s

the coprime factors needed in Theorem 3.13, so the set of YK parameters is obtained as {Q′
xr} =

{Q′
00, Q′

01, Q′
02, Q′

10, Q′
11, Q′

12, Q′
20, Q′

21, Q′
22}. Each of them permits controller reconfiguration from

an initial controller to a controller in the set {Kxr}. This set is reduced by choosing an initial con-
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troller K00. Thus, the new set of YK parameters is {Q′
xr} = {Q01, Q′

02, Q′
10, Q′

11, Q′
12, Q′

20, Q′
21, Q′

22}.
Controller transition is done through the scalar factor γxr associated to Q′

xr. In the switching se-
quence γ only one γxr can be set to 1 at the same time. If any of them is activated, the inital
controller K00 will be applied. Table 5.13 gathers the information related to the controller set and
the corresponding YK parameter.

Table 5.13: Controller set and YK parameter. MMAC.

Kxr Gj−1 Gj Ki F j Q′
xr γxr

K00 G0 G0 K0
1

0.4s+1 – –

K01 G0 G1 K1
1

0.4s+1
G0

G1
Q′

01 γ′
01

K02 G0 G2 K2
1

0.4s+1
G0

G2
Q′

02 γ′
02

K10 G1 G0 K0
1

0.4s+1
G1

G0
Q′

10 γ10

K11 G1 G1 K1
1

0.4s+1 Q′
11 γ11

K12 G1 G2 K2
1

0.4s+1
G1

G2
Q′

12 γ12

K20 G2 G0 K0
1

0.4s+1
G2

G0
Q′

20 γ20

K21 G2 G1 K1
1

0.4s+1
G2

G1
Q′

21 γ21

K22 G2 G2 K2
1

0.4s+1 Q′
22 γ22

Matching case The matching case considers that ego and preceding vehicles have dynamics
that coincide exactly with one of the plants in the set {G}. Specifically, preceding vehicle has
dynamics corresponding to plant Gj−1 = G0, while ego-vehicle has slower dynamics like Gj = G2.

The dual YK parameterization is used in the supervisor, so identification algorithms are not
needed to determine which is the closest plant in the set. zi is used instead. By obtaining the signal
value for every plant in the set, one can easily determine closeness. The top graph in Fig. 5.35
shows the evolution of these signals through time for the ego-vehicle Gj , while the bottom graph
depicts the truncated 2-norm Ji related to zi. Different system activation times are considered to
see how the system reacts to different initial conditions. Solid-line indicates the case where MMAC
is activated at 0s, while dotted line shows the situation where MMAC is activated at 29s. In both
cases, z2 and J2 are always zero, as Gj = G2. This plant index r is used together with the received
index x to specify the switching sequence γ.

Figure 5.36 depicts the performance of MMAC CACC algorithm when preceding vehicle is
Gj−1 = G0 and ego-vehicle Gj = G2. A comparison is made between an ego-vehicle with an
erroneous controller and with the controller that makes the system string stable, observing the
transition from one to another when using MMAC. The initial and erroneus controller in the YK
controller reconfiguration is K00. The top graph plots vehicles’ speeds when using K00 (dotted red
line), K02 (dotted blue line), MMAC activated at 0s (solid green line) and MMAC activated at
29s (solid pink line). Preceding vehicle speed is also shown (black solid line). The second graph
plots the switching sequence γ given by the supervisor. The switching sequence is determined by
the signals in Fig. 5.35. Dotted line indicates the case where MMAC is activated at 29s. Only γ02

is shown to have a lighter graph; the rest are zero even when MMAC is activated at 29s. Finally,
the bottom graph represents the distance error for each of the controllers.

From these results, one observes the importance of using different controllers depending on
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Figure 5.35: ζi and Ji comparison. Gj−1 = G0 and Gj = G2. Solid-line indicates the case where
the system is activated at 0s, while dotted line shows the case where the system is activated at
29s.

vehicle dynamics. When using K00 the string of vehicles results unstable. Ego-vehicle speed is
amplified in comparison with the preceding one, and distance error tracking is large. No matter
the activation time, MMAC is able to specify in a few seconds the correct switching sequence that
makes the string stable. Distance error tends to zero and the transition between controllers is
really soft. To the best of authors’ knowledge, the only work mixing controller reconfiguration
and dynamics estimation for heterogeneous string of vehicles is the one in [Harfouch et al., 2017].
Parameters estimation takes 31s, which is much slower than the present work.

Not matching case The non-matching case considers that ego-vehicle and/or preceding vehicle
are not one of the plants in the set {G}, but within the application range: Gx1 and Gx2. The
Vinnicombe ν-gap is employed to figure out which is the closest plant in the set, so later can be
verified if the proposed MMAC algorithm is properly working. ν-gap goes from 0 to 1, and expresses
the difference between two plants; the closer to zero the more the two plants look alike. In the
case of Gx1, the lower value of ν-gap is for G0 (ν-gap(Gx1, G0)= 0.5073), so it is the closest plant
to Gx1 in the set. In the case of Gx2, the closest plant results G2 with ν-gap(Gx2, G2)= 0.1449.

Figure 5.37 shows the evolution through time of ζi and Ji when Gj−1 = G1 and ego-vehicle
Gj = Gx1. Again different system activation times are considered, 0s and 20s in solid and dotted
lines respectively. In both cases, one can observe how the minimum value corresponds to ζ0. Even
if Gx1 is not a candidate plant in the set {G}, dual YK parameterization gives a good insight of
the closest plant. Notice that ζ0 is not zero in these cases, but it is much smaller than ζ1 and ζ2.

Figure 5.38 depicts the performance of MMAC CACC algorithm when preceding vehicle is
Gj−1 = G1 and ego-vehicle Gj = Gx1. Again incorrect (K00, dotted red line) and correct controller
(K10, dotted blue line) are compared with MMAC activated at 0s (solid green line) and MMAC
at 20s (solid pink line). Indexes are identified in preceding and ego vehicles, so the corresponding
γ10 is activated in few seconds no matter the activation time, making the distance error zero in a
soft way.
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Figure 5.36: Simulation results MMAC CACC. Gj−1 = G0 and Gj = G2 .
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Figure 5.37: ζi and Ji comparison. Gj−1 = G1 and Gj = Gx1. Solid-line indicates the case where
the system is activated at 0s, while dotted line shows the case where the system is activated at
20s.
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Figure 5.38: Simulation results MMAC CACC. Gj−1 = G1 and Gj = Gx1 .
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Figure 5.39: ζi and Ji comparison. Gj−1 = Gx1 and Gj = Gx2. System shutdown at 71.5s.
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Figure 5.40: Simulation results MMAC CACC. Gj−1 = Gx1 and Gj = Gx2.

Finally, a case with two non-matching models in preceding and ego vehicles is considered:
Gj−1 = Gx1 and ego-vehicle Gj = Gx2. This is the most critical case possible, as it considers the
fastest preceding vehicle together with the slowest ego-vehicle, and different damping factors in
the limits of the application range. Evolution through time of ζi and Ji for ego-vehicle is in Fig.
5.39. The closest plant is G2 as ζ2 is the lower one.

Figure 5.40 depicts the performance of MMAC CACC algorithm when preceding vehicle is
Gj−1 = Gx1 and ego-vehicle Gj = Gx2. Incorrect (K00, dotted red line) and correct controllers
(K02, dotted blue line) are compared with MMAC solution (solid green line). Indexes are correctly
identified in preceding and ego vehicles, so the corresponding γ02 is activated, preserving string
stability. MMAC shut down is also analysed in the same figure; the system shuts off at 71.5s
passing smoothly from a string stable behaviour to an unstable one. Notice how in the unstable
case, the distance error tracking gets bigger than in previous cases. This distance error is directly
associated with an amplified ego-vehicle speed.

It has been proved the correct behaviour of MMAC for CACC applications even if the real
vehicle Gj is not exactly one of the candidate plants in the set {G}. Real vehicle dynamics should
be within the application range. A larger set of models and controllers will be needed in practice
to cover the different dynamics in a fleet of vehicles.

5.4.1.d Experimental results

A string of two cycabs is used as an experimental test platform. Experimental results serve as
convergence validation of a real system. This is a non-matching case. Since both vehicles in
the string have similar dynamics, the string will always be homogeneous, not being required the
activation of any γxr in the switching sequence γ. The initial controller is modified to K01; in that
way, a modification of γ will be mandatory to obtain the best performance possible.
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Figure 5.41 depicts the evolution through time of zi and Ji during the experimental test.
MMAC algorithm is activated at 0s. The minimum value corresponds to z0, so G0 is the closest
plant to the real dynamics of a cycab. This is again a non-matching case. It is not until 2.5s that
the differences between J0, J1 and J2 are big enough to determine the switching sequence γ.

Figure 5.42 depicts the performance of MMAC CACC algorithm when applied to a string of two
cycabs. A comparison is made between the second cycab in the string with an erroneous controller
and with the controller that makes the system string stable, showing the transition between both
when using MMAC. The top graph plots cycabs’ speeds when using K10 (dotted red line), K00

(dotted blue line) and MMAC activated at 0s (solid green line). First cycab’s speed is also shown
(black solid line). The middle graph shows the switching sequence γ determined by signals in Fig.
5.41. The bottom graph plots the corresponding distance errors when using correct, erroneous
and MMAC controllers. Notice that initial distance errors are not the same for the three tests; a
maximum error of 20cm was considered to start each of the tests.

From these results, one can see how important it is to take into account vehicle dynamics to
ensure string stability. Inappropriate performance can be clearly appreciated on the distance error
tracking. Even if this is less remarkable in the speed response, distance error is longer when the
velocity step is big enough. The difference in the second step is less remarkable, as the speed step
is smaller, but oscillations are present in the distance error. For the MMAC algorithm, it takes
2.5s to determine that both vehicles are closer to G0, switching to the homogeneous controller
K00 through γ00. The transition between both controllers is smooth. The resulting transient is a
combination of the initial distance error and the controller reconfiguration induced by γ00. These
results validate the simulation results of the previous section.

Experimental results serve as a convergence proof of a real vehicle with some of the plants in
{G}. As vehicles are homogeneous, the most important task is to detect that both vehicles have
similar dynamics, in order to switch to the classical homogeneous CACC controller.
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Figure 5.41: ζi and Ji comparison. Experimental results.
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Figure 5.42: Experimental results MMAC CACC. String of two cycabs.

5.4.1.e Conclusions

This application explores the use of MMAC for CACC applications in heterogeneous/homogeneous
string of vehicles. A YK-based MMAC algortihm is applied to a FOPD feedback/feedforward
CACC system, so a structure able to handle different dynamics in a string without need of a
identification algorithm is obtained. YK controller reconfiguration and dual YK properties are
used within a MMAC approach. A MIMO FOPD is also used in order to prove YK adaptability
to systems with more inputs.

Performance of MMAC CACC algorithm is analysed through simulation results. A set of three
linear plants is considered for validation purposes. Dynamics matching and not maching cases
with a plant in the set are considered, verifying how the supervisor is able to provide the closest
plant in the set, activating the controller that ensures string stability. Dynamics estimation results
much more faster than other estimation processes in the literature. A test setup of two cycabs is
used, showing that MMAC CACC design is not only theoretically, but also practically feasible.

5.5 Conclusions

This chapter sumarizes different applications for both the YK and the dual YK parameterizations;
different applications have been developed for CACC-equipped string of vehicles. Stable controller
reconfiguration, CL identification and controller reconfiguration depending on dynamics estima-
tion are addressed with the aim of improving the CACC state of the art. Both simulation and
experimental results are provided for each of the applications.

First, developments based on YK-based stable controller reconfiguration are developed, deal-
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ing with the problem of non-available communication link with the preceding vehicle and traffic
perturbations as vehicles joining/leaving the string.

CACC degrades to ACC when the communication link with the preceding vehicle is lost. This
degradation occurs even if communication with another vehicle ahead exists. YK-based stable
controller reconfiguration is employed to provide a hybrid behaviour between two PD-based feed-
back/feedforward CACC systems with different time gaps. It considers the V2V-equipped vehicle
information from a vehicle ahead in the string. The correct tuning of the switching signal γ
improves ACC degradation by providing tighter strings, faster responses to speed changes, and
consequently traffic flow improvement. Simulation and real experiments show the proper behaviour
of the designed control algorithm and encouraging results compared to existing ACC/CACC con-
trollers. A maximum speed oscillation range of 5m/s is considered. In the future, it could be
extended with a degradation to ACC when this value is exceeded; or with a normal CACC opera-
tion when communication with preceding vehicle is recovered. An algorithm for discriminating if
the information received via V2V is coming either from vehicle preceding or another vehicle ahead
should be included.

On the other hand, the ability to manage vehicles entering and exiting the string whereas
keeping the stability has not been fully explored. The design of a FOPD feedback/feedforward
CACC system is carried out for providing string stable responses to traffic perturbations. Then,
the YK-based stable controller reconfiguration is applied to assure stable merging maneuvers as
time gap variations. String stability for every value of γ is proved. High speed simulation results
are provided for control validation. Finally, the whole system is implemented on INRIA low-
speed real platform, validating the integration of communication and perception into the designed
control algorithm. The ability of providing stable cut-in/out maneuvers is proved. In the future,
this application could be integrated with the previous one in order to have a CACC system able
to manage entering/exiting maneuvers of both V2V-equipped and non V2V-equipped vehicles.

Second, the dual YK parameterization is employed to improve the identification process of
INRIA low-speed experimental platform. When performing and OL identification of the INRIA
low-speed experimental platform, one notices a non-linear behaviour complex to represent through
a single LTI transfer function. Hansen scheme is used to identify the longitudinal dynamics of
the vehicle for future control performance’s improvement. An OL identification of the dual YK
parameter Si allows to obtain the CL model connected to a PD-based feedback/feedforward CACC
system. It is proved how the resulting model is improved in comparison with an OL identification
algorithm– ARX. Notice that the same algorithm is used in both identification processes, but one
identifies the plant directly and other Si. As described in section 4.4, YK parameterization is
associated with the vehicle dynamics identification. Since a particular operating point was used
for modeling the experimental platform, better behaviour can be obtained if vehicle model well
captures uncertainties. Model with uncertainties can be identified by employing the dual YK
parameter Si. Any change in the dual YK parameter Si can induce a change in the YK parameter
Qi, so better performance and safe switching are ensured. However, the order of Si is crucial. A
high-order Si could slow down both the identification process and some of the iterative solutions
proposed in the literature. In a future work, it would be interesting to study order reduction
techniques in relation to both YK and dual YK parameterizations.

And finally, both theorems are merged for developing a MMAC application able to deal with
vehicles heterogeneity in FOPD feedback/feedforward MIMO CACC string of vehicles. The main
idea of MMAC is to choose the plant in a predefined set that best approximates the system
dynamics, applying the corresponding string stable predesigned controller. Matching and non-
matching cases are considered in simulation, showing how the supervisor is able to choose the closest
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model in the set to perform with stability. Dynamics estimation through dual YK parameterization
results much more faster than other methods in the literature. Controller reconfiguration is based
in the YK parameterization. Simulation results are validated at INRIA low-speed experimental
platform. Although the set {G} is composed by three plants, this could be extended to a larger
number of plants, so a larger dynamic range can be covered in heterogeneous CACC applications.
This application could be integrated with ACACC and cut-in/out maneuvers applications in order
to have a general framework for CACC applications.

Results in this chapter are useful to see the potential of this control approach. YK basis
has been applied to CACC applications. Different type of controllers and structures have been
considered in order to prove its adaptability: Classical SISO PD controller, extended SISO PD
controller, extended SISO fractional order PD controller and extended MIMO FOPD controller.

The vast majority of applications in the literature go through the design of the YK Q that
provides a performance criteria. Throughout this chapter, the idea has been rather the opposite;
let’s fix Q ensuring the stability of the system, and then let’s see how γ can be modified in order
to improve the performance of the system. In this way, in the first of the applications (ACACC) a
heuristic design of γ is highlighted to improve the traffic flow. The most part of γ is not used. On
the contrary, later, the whole range of γ is employed to perform stable cut-in/out maneuvers. A
more clear relation exists between time gap and γ. Finally, in MMAC, several γ’s are used in order
to activate the controller that makes string stable a heterogeneous string of vehicles through the
corresponding Q. The evolution is clear, from heuristic to several γ’s design, we strongly believe
that γ design plays a key role in performance improvement.

Adaptability, stability, real implementation, and extension to many other applications present
in the state of the art lead us to conclude that Youla-Kucera could serve as a general control
approach for secure responses in autonomous driving.
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Chapter 6

Conclusions

While the long-term benefits of autonomous vehicles are genuinely exciting, the route to true
autonomy in transportation will likely to be long and full of uncertainty. Nowadays solutions
are mainly oriented to advanced multi-sensor fusion systems toward multi-target decision-making
systems. These systems increase uncertainty and complexity when controlling an autonomous
vehicle, as different control systems are activated depending on the multi-sensor decision system.
Both longitudinal and lateral controls, are subdivided into simpler control systems working for a
specific operation point, traffic situation and/or sensors/actuators availability. Classical, optimal,
robust, adaptive or fault tolerant control solutions are found independently for specific use-cases,
but a general control framework integrating all solutions and providing stability guarantees is
missing. To the best of author knowledge, Youla-Kucera (YK) parameterization is the only control
framework which encompasses all single control solutions with stability proof. Chapter 2 presented
a broad overview of this mathematical framework, focusing in origins, robust stabilization results
and YK-based applications developed by the Australian National University, Technical University
of Denmark and Aalborg University. Moreover, there are still some milestones in the mathematical
framework as non-linear extension of the YK parameterization; integration of intelligent control
systems; transient bevavior for the different YK-based control structures for switching; analysis
of the scalar factor γ, regulating the action of different controllers in order to improve system’s
performance; extension of fault-tolerant control solutions to a more general control structure (they
are all based on observer-based feedback controllers); and experimental results under fast-dynamics
cases, as it could be an automated vehicle.

The present Ph.D. thesis addressed some of the aforementioned challenges by proposing YK
as methodology that could improve the security of autonomous driving systems. This control
framework manages different sensor/actuator setups, dynamics and traffic situations with stability
guarantees. Special emphasis was on stability when dynamics change or traffic situation demands
controller reconfiguration. These changes could be a priori known, or identified in order to have
an adaptive solution. Stable controller reconfiguration, adaptive control and Closed-Loop (CL)
identification were the main problems addressed in chapters 3 and 4.

Chapter 3 reviewed YK parameterization basis, examining the use of doubly coprime factors
to parameterize the class of all stabilizing controllers for a plant in terms of an initial stabilizing
controller and a stable filter Q. The filter Q was calculated in order to perform stable controller
reconfiguration between two or several controllers. Calculation of Q and coprime factors organi-
sation vary depending on the selected YK-based control structure in the literature. Each of them
can be conceived for dealing with problems such order complexity, plant disconnection or matrix
inversability. Even if stability properties were preserved when using different structures, the tran-
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sient behavior changed with the same step switching signal γ. From faster to slower responses,
oscillations or not, the best structure for controller switching resulted the number three (section
3.4.3 for details). It presented the best transient behavior wihtout oscillations, a lower order con-
troller complexity and no need to disconnect the initial controller. Consequently, this structure
was used all along this Ph.D. thesis.

A dual version of the YK parameterization (all plants stabilized by a given controller) was
presented in chapter 4. This is the basis for solving CL identification problems, by their reduction to
standard Open-Loop (OL) problems. It has also been applied to an adaptive control methodology.
Instead of having a stable filter Q, a filter S was introduced, representing mistmatch between
model and real plant. An OL identification of this parameter permits CL identification of the
real system without noise correlation problems. If the identified S is unstable, the loop would
be unstable, and a filter Q needs to found to re-stabilize the loop. On the contrary, Q should
be optimized for obtaining a better performance. Q and S could be used in an iterative/nested
algorithms as those in the state-of-the-art of this thesis. However, with the idea of remaining
close to the industrial setup, a YK-based MMAC algorithm based on a set of nominal plants and
predefined controllers was proposed. MMAC is a supevisor choosing the closer plant to the real
system in the set, switching to the best controller possible without identification or optimization
processes that slow down the control loop.

Once both YK and dual YK basis were explained; stable controller reconfiguration, CL identifi-
cation and MMAC approach were tested in Cooperative Adaptive Cruise Control (CACC) equipped
string of vehicles. Simulation and experimental results were obtained in a high-speed simulation
model and INRIA’s low-speed experimental platform respectively. These results not only helped to
obtain some of the missing experimental results in the YK state-of-the-art, but also improved the
state-of-the-art of CACC systems. Hybrid behavior between CACC controllers with different time
gaps was explored by means of the YK parameterization, in order to avoid Adaptive Cruise Control
(ACC) degradation when the communication link with the preceding vehicle was not available; and
ensure stability when other vehicles performed cut-in/out maneuvers. In both applications, Q was
fixed ensuring the stability of the system, and the scalar factor γ was designed to improve system’s
performance. A heuristic design of γ was done in the first application for reducing intervehicle
distances, and then improving traffic flow, in comparison with an ACC degradation. Communi-
cation link with a vehicle ahead (different from the preceding one) was considered. The better
performance is achieved with a limited range of γ. On the contrary, in the second application,
the full range of γ was employed, opening inter-vehicle gap when a vehicle cuts in, and recovering
distances once the cut-in is finished, or when a vehicle goes away in a stable manner. In the other
hand, dual YK properties have also been analysed; concretely, connection with a CACC system
served as a demonstration of the importance of noise correlation when doing CL identification, and
how OL identification of the dual YK parameter S avoids these problems. Finally, a Multi Model
Adaptive Control (MMAC) application considers both YK and dual YK parameterization. A set
of nominal models was used for designing CACC systems for heterogeneous string of vehicles. In
order to ensure string stability of the system, both ego and preceding vehicles models need to be
known. Longitudinal dynamics of two vehicles in a CACC string were estimated within a model
set, so the proper CACC system was chosen guaranteeing string stability. Dynamics estimation
results much more faster than other estimation processes in the literature. This last application,
not only consider a unique Q, but several from an initial homogeneous-string controller to others
considering possible dynamics combinations between ego and preceding vehicles dynamics. Sev-
eral γ’s were employed in order to activate string stable controllers. The evolution is clear, from
heuristic to several γ’s design, γ plays a key role in performance improvement.
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Through these applications different types of controllers and structures have been used, proving
the possible adaptability of the YK parameterization to any controller type/structure. Stability
and real implementation is also demonstrated in fast dynamics systems as vehicles. We strongly
believe that Youla-Kucera could serve as a general control approach for secure responses in au-
tonomous driving.

6.1 Contributions to the state of the art

Main contributions of this Ph.D. thesis are listed below:

6.1.1 Youla-Kucera parameterization

• A wide review of YK-based applications is carried out.

• Transient behavior analysis for the different YK-based control structures for switching. Struc-
ture 3 is the one which transient behavior does not present oscillations with a lower order
controller complexity and no need to disconnect the initial controller.

• The vast majority of YK-based applications in the state-of-the-art considers the optimal
value of Q for obtaining the best performance possible. Here, given a Q between different
controllers, the design of the switching signal γ is addressed for improving system’s perfor-
mance.

• State-of-the-art cases are mainly focused in systems with very low dynamics, except from
some simulation with an aircraft model in high performance control. Here, experimental
faster dynamics cases as a vehicle are considered, proving the practical application of YK
parameterization in these cases.

• YK basis has been applied to different controllers types and structures, extending state-of-
the-art results based on observer-based state feedback controllers.

6.1.2 CACC

• The benefit of using V2V-equipped vehicle information from a vehicle ahead in the string
when the preceding vehicle is a non-equipped one is explored, providing stable responses and,
more interestingly, reducing intervehicle distances in comparison with the literature CACC
degradation to ACC.

• A control algorithm able to ensure stable cut-in/out maneuvers in CACC string of vehicles.

• CL identification of longitudinal dynamics of INRIA’s low speed experimental platform.

• An adaptive approach without need of idenfification algortihms is proposed for heterogeneous
string of vehicles. An estimation process based on the dual YK parameterization is used
instead, being much faster than related works in the state-of-the-art.
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6.1.3 Autonomous driving

• A new layer connecting acquisition, perception and decision blocks with the different longi-
tudinal and lateral control applications is considered. This new layer is formed by the YK
control framework, and its objective is to ensure stable responses in autonomous driving
under dynamics, traffic or instrumental changes.

6.2 Future research directions

• Extension of YK parameterization to intelligent control systems as fuzzy control, neuronal
networks and Model Predictive Control (MPC).

• Non-linear extension of the YK parameterization according to the control objective needs.

• Controller reduction methods for iterative (Q, S) applications.

• Analysis of effects of switching signal γ frequency in CL stability.

• Stable controller reconfiguration between controllers with different purposes needs to be
studied. An example would be stable controller reconfiguration between emergency braking
and cruise control.

• Integration of the different CACC solutions in the same YK framework for having a general
CACC approach dealing with non-available communication with preceding vehicle, enter-
ing/exiting vehicles and different dynamics. The nominal model set in MMAC approach
should be increased to obtain a general solution to string heterogeneity.

• Optimal Q design depending on the identified dual YK parameter S for obtaining the best
performance possible when large systems variations are present in the vehicle.

• YK-based FTC application for dealing with different sensors/actuators availability in au-
tonomous driving.

• Application of YK parameterization to lateral control approaches in Intelligent Transpotation
Systems (ITS) domain.
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ABSTRACT 

 
Benefits of autonomous vehicles are genuinely exciting, but the route to true autonomy in transportation will 
likely be long and full of uncertainty. Research on the last years is on the development of multi-sensor 
systems able to perceive the environment in which the vehicle is driving in. These systems increase 
complexity when controlling an autonomous vehicle, as different control systems are activated depending 
on the multi-sensor decision system. Each of these systems follows performance and stability criteria for its 
design, but they all must work together, providing stability guarantees and being able to handle dynamics, 
structural and environmental changes. This thesis explores the Youla-Kucera (YK) parameterization in 
dynamics systems such as vehicles, with special emphasis on stability when some dynamics change or the 
traffic situation demands controller reconfiguration. Focus is in obtaining simulation and experimental 
results related to  Cooperative Adaptive Cruise Control (CACC), with the aim not only of using for the very 
first time YK parameterization in the Intelligent Transportation Systems (ITS) domain, but improving CACC 
state-of-the art.  Stable controller reconfiguration results are given when non-available communication link 
with the preceding vehicle, cut-in/out maneuvers or surrounding vehicles with different dynamics, proving 
adapability, stability and possible real implementation of the YK parameterization as general control 
framework for autonomous vehicles. 

MOTS CLÉS 

 
Conduite autonome, paramétrisation Youla-Kucera, reconfiguration stable des contrôleurs, identification 
Boucle-Fermée et contrôle adaptatif. 

RÉSUMÉ 

 
Les avantages des véhicules autonomes sont formidables, mais le chemin vers une vraie autonomie sera 
long et semé d'incertitudes. La recherche de ces dernières années s'est basée sur des systèmes multi-
capteurs capables de percevoir l'environnement dans lequel le véhicule est conduit. Ces systèmes 
deviennent plus complexes quand on contrôle le véhicule autonome, différents systèmes de contrôle sont 
activés dépendant de la décision du système multi-capteurs. Chacun de ces systèmes suit des critères de 
performance et de stabilité lors de leur conception. Cependant, ils doivent fonctionner ensemble, 
garantissant une stabilité et étant capable de se charger des changements dynamiques, structuraux et 
environnementaux. Cette thèse explore la paramétrisation Youla-Kucera (YK) dans des systèmes 
dynamiques comme les voitures, en insistant sur la stabilité quand la dynamique change, ou que le trafic 
impose une reconfiguration du contrôleur. Concentrons-nous sur l'obtention de résultats de simulation et 
expérimentaux en relation avec le "Cooperative Adaptive Cruise Control" (CACC), dans le but, non pas 
d'utiliser, ici, pour la première fois la paramétrisation YK dans le domaine des systèmes de transport 
intelligents (STI), mais d'améliorer l'état de l'art en CACC aussi. Des résultats de reconfiguration stable de 
contrôleurs sont données quand la communication avec le véhicule précèdent n'est plus disponible, en cas 
de manœuvre d'entrées/sorties ou lorsqu'ils sont entourés de véhicules aux dynamiques différentes. Ceci 
démontrant l'adaptabilité, la stabilité et l'implémentation réelle de la paramétrisation YK comme structure 
générale de contrôle pour les véhicules autonomes. 
 

KEYWORDS 
 
Autonomous driving, Youla-Kucera parameterization, stable controlller reconfiguration, Closed-Loop 
identification and adaptive Control. 
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