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Chapitre 1: Introduction Générale

1. Motivation et Objectifs

Un grand nombre d’études et de recherches sont menées pour améliorer la performance des
systémes énergétiques et optimiser leur efficacité, en profitant de 'avancement des algorithmes
mathématique d’optimisation et de la capacité de calcul des ordinateurs. Cependant 80% de
l'utilisation de 1'énergie est impliquée dans le transfert de chaleur. Cela souligne l'importance
majeure des échangeurs de chaleur et leur implication dans presque tous les systemes
énergétiques. Ils sont utilisés dans des applications telles que les procédés, la production et la
conversion d'énergie, le transport, la climatisation et la réfrigération, la récupération de chaleur
et les industries de stockage et de fabrication. Les échangeurs de chaleur sont des dispositifs
utilisés pour transférer de la chaleur entre deux fluides ou plus, ou entre un objet solide et un
fluide, généralement sans interaction de travail.

Le plus simple échangeur de chaleur est celui a double tuyau, un pour le flux froid et un autre
pour le flux chaud séparés par une certaine épaisseur. Ce type d’échangeur est le moins efficace
et compact, par conséquent, plusieurs technologies de construction d'échangeurs de chaleur ont
été développées au cours des années, parmi lesquelles on peut citer les plus importantes :
échangeur a plaques, échangeur tubes ailettes, échangeur tubes calandre, etc.

De nombreuses études et recherches ont été menées pour améliorer le transfert de chaleur
dans les échangeurs de chaleur, par l'insertion de dispositifs de perturbation de 1'écoulement
(ailettes persiennes, générateurs de tourbillons, etc.) et la modification de la rugosité des
surfaces de transfert de chaleur. Néanmoins, il existe beaucoup de théories d'idéalisation dans la
conception des échangeurs de chaleur pour obtenir une meilleure performance globale. Par
exemple, concevoir des échangeurs de chaleur ayant des débits égaux dans tous les canaux [14],
ou régler 1'équilibre du coefficient de transfert thermique de chaque c6té de I'échangeur de
chaleur [15]. Cependant, I'amélioration de la performance des échangeurs de chaleur est une
procédure plus sophistiquée que de simplement utiliser des techniques pour augmenter le
coefficient de transfert de chaleur, ou considérer des théories d'idéalisation. Ceci est dii a de
nombreux facteurs intervenant dans I'échangeur de chaleur. Le taux de transfert de chaleur et la
perte de charge due au frottement du fluide, sont les phénomeénes physiques, toujours en
opposition, influencant le plus les caractéristiques de I’échangeur. Ainsi l'optimisation des
échangeurs de chaleur a été un domaine d'étude et de recherche intensif, pour sa capacité a
améliorer la performance des échangeurs de chaleur et leur efficacité en prenant compte de tous
les facteurs en opposition et les limitations de conception.

C’est pourquoi I'amélioration des performances des systémes, y compris les échangeurs de
chaleur, dépend de la capacité a répondre aux spécifications demandées pour 1'échangeur de
chaleur lui-méme. L'objectif de cette recherche est de repousser les limites des connaissances et
de développer des outils et des méthodes pour permettre la création d'une nouvelle génération
d'échangeurs de chaleur. Le nouveau concept développé est basé sur les méthodes les plus
récentes et les plus complexes dans le domaine de l'optimisation de la configuration, les



techniques d'optimisation topologiques qui ne sont pas basées sur une géométrie prédéfinie. Ces
méthodes permettent d'atteindre une architecture complexe et efficace basée strictement sur les
objectifs et contraintes définis. L'état actuel des travaux scientifiques permet l'application de
'optimisation topologique aux échangeurs de chaleur comprenant un seul fluide et un solide. Le
présent travail vise a étendre les méthodes d'optimisation topologique en mécanique des fluides
a des cas incluant deux fluides, ce qui est le cas pour les échangeurs de chaleur fluide-fluide.
Cependant, une attention devrait étre accordée a la complexité des géométries générées par
I'optimisation de la topologie. Une grande question se pose donc: comment ces structures
seront-elles fabriquées en particulier pour la production a grande échelle? L'avancement dans la
technologie de fabrication additive est la réponse évidente a cette question. Il est donc trés utile
d'associer l'impression 3D a I'optimisation topologique, pour le développement d'une nouvelle
méthode innovante dans la conception et I'optimisation des échangeurs de chaleur.

2. Optimisation des échangeurs de chaleur

L'optimisation est le mécanisme de sélection de la meilleure solution dans une situation
particuliére soumise a un certain nombre d'obstacles et de limitations. Le critere qui définit la
meilleure solution est la fonction objectif. Les limitations sur les solutions disponibles sont
définies par les contraintes. Ce qui décrit différentes solutions sont les variables de probléme
auxquelles nous essayons d'assigner les meilleures valeurs pour minimiser ou maximiser la
fonction objectif. La fagon dont nous pouvons réaliser le processus d'optimisation est définie par
I'algorithme d'optimisation que nous utilisons. Si l'on veut optimiser une fonction objectif f (x) =
%, la meilleure solution est simplement infinie. Ainsi, un probleme d'optimisation n'a aucun sens
s'il n'y a pas de conflit entre plusieurs fonctions objectifs ou entre une fonction objectif et une
contrainte. De méme, dans les échangeurs de chaleur, s'il n'y a pas de limitation sur le volume ou
la masse ou si I'on ne tient pas compte de la perte de charge, I'échangeur de chaleur optimal
pour avoir un transfert de chaleur maximal est celui ayant une longueur infinie. Les variables du
probléeme d’optimisation des échangeurs de chaleur peuvent étre les conditions de
fonctionnement de I'échangeur, propriétés physiques des matériaux et les fluides et les
paramétres géométriques du dispositif.

Les problemes d'optimisation, dans lesquels les parameétres géométriques sont les
parameétres d'optimisation, sont classés en trois catégories selon le degré de liberté et la
possibilité de modifier la géométrie: optimisation de taille, de forme et topologique. Dans
I'optimisation de la taille, les variables du probléeme mathématique sont les parametres
géométriques de la structure telle que la longueur, la largeur, le rayon, etc. La forme et la
connectivité des éléments entre elles sont connues et fixées. Par conséquent, la solution
optimale finale est trés similaire a la conception de base initiale. L'optimisation de forme
augmente le degré de liberté du probléme, ou elle peut changer la taille et la forme
simultanément en ajoutant des variables capables de déformer la forme de la structure (par
exemple modifier la forme des canaux d’écoulement). Cependant, l'architecture de la structure
est toujours similaire a la conception initiale, puisque la topologie globale de I'échangeur de
chaleur ne peut pas étre modifiée. Enfin, en optimisation topologique, chaque maille du domaine
d'optimisation est un paramétre de conception; ce qui permet d'ajouter ou de supprimer du
matériel dans chaque point de l'espace de conception sans étre limité a une topologie initiale.
Cela augmente considérablement le nombre de variables dans le probléme d'optimisation, ce qui
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rend la convergence plus difficile. Cependant, l'optimisation topologique est devenue si
attrayante pour sa capacité a atteindre des configurations innovantes et complexes basées
strictement sur les objectifs et contraintes définis. L'optimisation de la taille et de la forme a été
largement appliquée a l'optimisation des échangeurs de chaleur, tandis que I'optimisation
topologique est encore limitée aux échangeurs de chaleur fluide-solide.

Les deux criteres principaux les plus utilisés dans les problémes d’optimisation des
échangeurs de chaleur sont les suivants: les criteres basés sur les irréversibilités
thermodynamiques, comme la minimisation de la génération d’entropie et/ou de la dissipation
de I'entrasse, et les critéres économiques qui consistent a minimiser le cotlit du fonctionnement
et le coft initial de 'échangeur. Il existe de nombreux autres criteres d'optimisation, comme la
diminution de la perte de charge totale, augmentation du taux de transfert thermique,
diminution de la température maximale ou moyenne, ou par exemple minimisation de la masse
totale de 1'échangeur de chaleur dans l'industrie aéronautique, etc.

3. Optimisation topologique

L'optimisation topologique a été développée a l'origine pour I'optimisation des problemes de
structures mécaniques. L'objectif était de trouver la forme qui utilise le minimum de matiere
tout en maintenant les contraintes mécaniques inférieures a un niveau acceptable.
L'optimisation topologique a été définie par Bendsoe et Sigmund [45] comme une optimisation
de forme des structures qu'elle devrait définir a chaque point de I'espace de conception s'il
existe un matériau ou non, la topologie de la structure n'étant pas fixée a priori. Ainsi, a partir
d'un domaine initial vide, complet ou dans n'importe quel état intermédiaire, les parameétres de
controéle utilisés permettent de créer sans restriction des créations de trous et d'agglomérats de
matériaux, afin de trouver la meilleure topologie possible. REcemment, le concept d'optimisation
topologique a été appliqué a un large éventail de disciplines physiques comme les mécaniques
des fluides, le transfert de chaleur, l'acoustique, 1'électromagnétique et I'optique. Dans les
problémes de transport de masse et chaleur en optimisation topologique, 'objectif était de
trouver 'architecture optimale qui correspond a un compromis entre la minimisation de la perte
de charge et la maximisation de transfert de chaleur. Cependant, la mise en ceuvre de méthodes
d'optimisation topologique est assez complexe car elle nécessite un algorithme capable d'allouer
et de réallouer efficacement le matériel dans un domaine ayant les dimensions et les conditions
aux limites prédéfinies.

En optimisation topologique, 1'espace de domaine est discrétisé en des petites mailles,
également appelés cellules, ou chaque cellule contient une variable de conception
adimensionelle. Les valeurs de toutes les variables de conception dans toutes les cellules
définissent la forme de la structure entiére. Ainsi, le probléme d'optimisation est de trouver les
valeurs optimales de toutes les variables de conception, en minimisant une certaine fonction
objectif en respectant les fonctions contraintes, qui sont généralement des fonctions de
porosités qui limitent le volume maximal de I'une des matiéres dans le domaine d’optimisation.

Il existe deux grandes familles de méthodes de la résolution du probléme d'optimisation
topologique: les approches discretes et les approches continues, qui correspondent



respectivement aux méthodes dans lesquelles le parametre local contrélant le matériau dans
chaque cellule peut prendre des valeurs discretes, ou des valeurs bornées continues. Ces
méthodes dépendent du gradient des fonctions objectifs et des contraintes. Le grand nombre de
variables de conception et la nécessité de calculer la dérivée totale de la fonction objectif par
rapport aux variables nécessitent des techniques mathématique avancées pour assurer la
convergence du vecteur de variables vers la solution optimale. L'optimisation topologique est
devenue un domaine de recherche bien développé avec de nombreuses techniques pour traiter
les problémes d'instabilité numérique fréquemment rencontrés dans 1'optimisation topologique
tels que les damiers, les dépendances de maillage et les minima locaux.

4. Méthodes d’optimisation topologiques

Les méthodes d'optimisation topologiques visent a forcer le parametre de conception a
prendre progressivement des valeurs discreétes, éliminant ainsi les régions grises et conduisant a
un domaine noir et blanc, ou les variables de conception dans chaque cellule sont égales a 0 ou 1
(solution 0-1). Cependant, il existe aussi des méthodes qui peuvent résoudre des problemes
combinatoires discrets et qui sont appelés approches discretes. Nous allons considérer un
probléme d'optimisation topologique ou nous cherchons la distribution optimale des deux
phases A et B. Dans les approches discrétes, la phase a l'intérieur de la cellule est modifiée en
une seule étape entre A et B (hard-kill). Dans les approches continues, une petite quantité de
phase A est remplacée par la phase B ou vice-versa dans chaque étape, jusqu'a ce que nous
atteignions a la fin du processus d'optimisation une cellule complétement correspondante a A ou
B (soft-kill).

Les méthodes d'optimisation topologique reposent sur trois parties principales: le solveur
direct du probleme physique (éléments finis, volumes finis, ..), la méthode d'analyse de
sensibilité (adjoint discret, adjoint continu, ..) pour calculer la dérivée totale des fonctions
objectifs et contraintes par rapport aux variables de conception, et un optimiseur numérique.

La méthode la plus rencontrée en optimisation topologique en transfert de masse et chaleur
est la méthode de densité. Cette méthode consiste a utiliser une fonction d'interpolation
pénalisée pour calculer les quantités physiques dans chaque cellule, par ex. la rigidité du
matériau dans les problemes de structure mécanique et la conductivité thermique dans les
problémes de conduction de chaleur etc., en fonction des variables de conception continue. Le
principal défi des méthodes de densité est l'introduction d'une fonction d'interpolation capable
d'orienter la solution vers des valeurs 0-1 discretes et d'omettre des valeurs intermédiaires de la
variable de conception, tout en assurant une représentation physique réelle des matériaux fictifs
correspondant a des densités intermédiaires, connus sous le nom de matériaux gris, qui doivent
étre entiérement éliminés quand le probléme converge vers la solution finale. Un schéma
d'interpolation populaire pour satisfaire les conditions ci-dessus est la formule SIMP (Solid
Isotropic Material with penalization).

Les méthodes de level set sont des techniques computationnelles introduites en 1988 par
Osher et Sethian [58] pour le suivi des interfaces mobiles. L'idée principale des méthodes level



set est d'introduire une fonction dépendant du temps et de 'espace @ (x, t) qui définit l'interface
entre les deux matériaux présents dans le probléme d'optimisation.

L’approche évolutive ESO (Evolutionary structural optimization) qui utilise des variables de
conception discrétes, a été introduite par Xie et Steven [61] pour l'optimisation des structures
mécaniques. Cette méthode est basée sur le concept simple de retrait progressif d’'un matériau
inefficace d'une structure jusqu'a ce que la contrainte déterminant le volume de matériau dans
le domaine de conception soit satisfaite. Yang et al. a développé I'Optimisation structurelle
évolutive bidirectionnelle (BESO), une version améliorée de I'ESO, qui permet de retirer et
d'ajouter le matériau simultanément [62]. Le retrait et I'addition de matiére sont basés sur la
valeur du nombre de sensibilité. Les approches évolutives (ESP et BESO) ont été largement
appliquées aux problémes de structures mécaniques avec de nombreuses techniques
développées pour faire face aux difficultés rencontrées en raison de l'aspect discret du
probléme. Dans la conduction de chaleur pure, les approches évolutives étaient également
applicables mais les résultats ont montré que la méthode conduit a l'optimum local. Par
conséquent, les approches évolutives ne se sont pas intéressantes pour l'optimisation de la
topologie de la mécanique des fluides.

5. Conclusion

L'optimisation topologique dans les problemes d'écoulement était initialement limitée a de
faibles nombres de Reynolds et a un état stationnaire (écoulement de Stokes) sans tenir compte
des effets d'inertie. Ensuite, divers auteurs ont étendu la procédure d'optimisation pour couvrir
une plus large gamme de nombre de Reynolds, des effets d'inertie (flux de Darcy-Stokes et de
Navier-Stokes), des forces corporelles non uniformes et des flux instationnaires.

Malgré l'attention portée aux techniques évolutives dans les problemes de structure
mécanique et problémes de transfert de chaleur par conduction, elles n'ont pas été prises en
compte dans les problémes d'écoulement des fluides selon la revue de la littérature. La méthode
Level Set a été trouvée attrayante pour les problémes d'écoulement en raison de leurs résultats
dans des simulations numériques 2D et 3D pour divers types de flux. Cependant, cette méthode
peut seulement évoluer a partir des interfaces existantes et n’est pas capable de générer de
nouveaux trous, ce qui signifie qu'il est impossible de générer de nouveaux canaux dans
'optimisation des écoulements. Ceci est considéré comme un inconvénient conceptuel de la
méthode, surtout si elle sera utilisée pour l'optimisation topologique des échangeurs de chaleur.
La nucléation de nouveaux trous dans Level Set a été possible en la combinant avec la méthode
Topological Sensitivity. Cette méthode combinée a été appliquée et testée par divers auteurs. Les
résultats montrent que la solution finale reste fortement dépendante de I'estimation initiale.

La méthode de densité est complétement indépendante de l'estimation initiale et la
génération de canaux et de structures complexes dépend uniquement des fonctions d'objectifs et
des contraintes. De plus, la revue littérature a montré que la méthode de densité a été appliquée
sur la majorité des problémes liés au transfert de chaleur et de masse. Malgré la nécessité d'un
temps de calcul élevé, la méthode de densité semble étre la méthode la plus appropriée pour



étendre l'application de l'optimisation topologique en mécanique des fluides au domaine bi-
fluide, ce qui n'était pas envisagé auparavant.

6. Plan de la thése

L'algorithme général de la méthode de densité est composé de trois étapes principales :

Le solveur CFD utilisant la méthode des volumes finis.
L'analyse de sensibilité basée sur la méthode d’adjoint discret.
La méthode des asymptotes mobiles comme optimiseur numérique.

Le reste du document est divisé comme suit:

L'algorithme détaillé de la méthode d'optimisation présenté ci-dessus et le
développement détaillé de chaque partie de la méthode sont présentés au chapitre 2.
Deux formulations différentes seront comparées, I'une utilisant une variable de
conception unique dans chaque cellule de conception et la seconde utilisant deux
variables de conception. Dans chaque cellule de conception qui double le nombre de
variables du probléme.

La séparation des fluides sera examinée au chapitre 3, ou chaque fluide doit prendre
son propre trajet dans le domaine d’optimisation indépendamment de 'autre.

Dans le chapitre 4, la maximisation du transfert de chaleur entre les deux fluides
séparés sera considérée.

Enfin conclusion et perspectives dans le chapitre 5.



Chapter

General
Introduction

1.1. Introduction

1.1.1. Motivation

In the 2015 United Nations climate change conference held in Paris, representatives of 196
nations adopted a long term strategy to respond to the threats of climate change and deal with
greenhouse gas emissions mitigation plans. The agreement, known as “Paris agreement”, aimed
to limit the rise in global average temperature by holding it this century below 2°C above pre-
industrials level [1]. As part of this agreement, the French environment minister announced in
July 2017 his country plan to attain neutral carbon equilibrium in 2050, by reducing human
carbon emissions to the level of ecosystems carbon’s absorption capacity [2]. The French plan
also considered a four billion Euros investment to increase energy efficiency and stop coal usage
for electricity production by 2022 [3]. Beside the problems related to global warming and
climate change, energy management policies face various challenges. First, population growth
increases the demand for energy services [4]. Furthermore, the increase in the ratio of urban
population to rural population augments the demand on energy even more. Second, an increase
in gross domestic product (GDP) is associated with an increase in energy consumption, which
tend to vary according to the GDP growth in different economy sectors [5]. Energy market is also
influenced by many other sectors, as technology innovations, oil and gas prices, carbon
emissions pricing by some governments, etc. All these reasons explain the studies and
researches conducted to improve the performance of energy systems and optimize their
efficiency, by taking advantage of advancements in mathematical optimization tools and
computers calculation capacities.



On the other hand, about 80% of energy utilization is involved in heat transfer. This
highlights the major importance of heat exchangers and their involvement in nearly every
energy system. They are used in applications such as processes, energy production and
conversion, transport, air conditioning and refrigeration, heat recuperation and storage and
manufacturing industries. Heat exchangers are devices used to transfer heat between two or
more fluids, or between a solid object and a fluid usually without work interactions. Usually,
fluids do not mix in heat exchangers, and heat is transferred through a dividing wall without
fluid leakage. However, there are still some types of heat exchangers where fluids enter in direct
contact and are later separated. In this case, heat transfer is mainly caused by phase change
enthalpy[6]. Figure 1.1 shows a general representation of a fluid to fluid heat exchanger. T, P and
Q stand respectively for temperature, pressure and thermal heat transfer load. Subscripts i, o0, ¢
and h stands respectively for inlet, outlet, cold and hot. The heat exchanger is characterized by
the total heat thermal power transferred from the hot stream to the cold stream, the pressure
drop of both fluids: AP = AP, + AP, = (Pi,C - PO,C)+(Pi,h - Po,h): and other geometrical

parameters like its mass, volume and compactness.

Ti,h TO,h
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Figure 1.1: Fluid to fluid heat exchanger

The simplest heat exchanger is a double pipe exchanger, with one pipe for cold stream and
another one for hot stream. This type of heat exchangers has the lowest efficiency and
compactness, hence, a wide range of heat exchangers construction technologies have been
developed over the years. Among these technologies, the following are the most known and used
(Figure 1.2): tubular heat exchangers, as shell and tubes used for high pressure and temperature
flow conditions [6], plate type heat exchangers characterized by a high transfer coefficient but
cannot endure high pressure and temperatures flows neither high temperature gradient. There
exist many other technologies as extended surface heat exchangers that use fins to increase heat
transfer surface, regenerators and adiabatic wheels where heat transfer process is not
continuous, etc. Heat exchangers are also characterized by their flow arrangement. We can
distinguish three different types: parallel flow where the fluids flow parallel to each other in the
same direction, counter flow where fluids flow parallel but in opposite direction and cross flow
where fluids flow in perpendicular direction.
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Figure 1.2:Examples of heat exchangers construction technologies [6]

Heat exchanger design is a complex iterative procedure, due to many physical phenomena
occurring inside the device, and due to the interactions between these phenomena and their
mutual dependency. Thermal design of heat exchangers aims to determine the required heat
transfer surface for a fixed heat load duty, or determine the rate of heat transfer for a fixed heat
transfer surface. The most used basic thermal design methods are logarithmic mean
temperature difference method (LMTD) and effectiveness-number of transfer units’ method (e-
NTU). Mechanical design has also a major importance in heat exchangers design. It aims to
handle thermal and pressure stresses, and ensure durability of the device at different
operational phases [6].

Many studies and researches were conducted to enhance heat transfer in heat exchangers, by
insertion of flow disturbance devices and modification of the roughness of heat transfer
surfaces. These techniques enhance heat transfer by making the flow turbulent near heat
transfer surface, by breaking the laminar layer of the flow to reduce the thermal resistance and
by increasing the residence time of heat transfer fluids. Among these devices we mention: vortex
generators [7] (Figure 1.3), louvered fins [8] twisted tapes [9], ribs [10][11], spiral fins[12],
circular fins[13], etc. Nevertheless, there exist a lot of idealization theories in heat exchangers
design to get a better overall performance. For example designing heat exchangers with equal
flow rates in all channels [14], or setting equilibrium in heat transfer coefficient at each side of
the heat exchanger [15], etc.
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Figure 1.3: Common vortex generators used [16]

Enhancing the performance of heat exchangers is quite a more sophisticated procedure than
simply using techniques for increasing heat transfer coefficient, or considering idealization
theories. This is caused by many trade-off factors occurring inside the heat exchanger. The most
important one is the trade-off between heat transfer rate and pressure drop due to fluid friction.
If the designer wants to increase heat transfer rate, he could simply decrease the diameter of the
tubes but the pressure drop will then increase. In this case, what determines the enhancement of
the heat exchanger’s performance is the cost of the pumping power due to the pressure drop
versus the benefit of the recovered thermal power. Another example is the trade-off between the
capital cost and the operating cost where a more efficient heat exchanger may decreases the
operating cost but requires a higher capital cost and vice versa. Design of heat exchangers is also
subject to many constraints, which vary according to the application, like total weight and
volume, design limitations to avoid corrosion, fatigue failure, etc. Optimization of heat
exchangers consists of finding a compromise between all trade-off factors within the feasible
solutions that respect all design constraints, by minimizing a certain objective or optimization
criteria.

Heat exchangers optimization has been an intensive field of study and research, for its
capability to improve the performance of heat exchangers and their efficiency while taking into
account all trade off factors and design limitations. Dimitrios et al. [17] conducted an
optimization of heat exchangers mounted on the hot gas exhaust nozzle of an intercooled
recuperated aero engine. The optimization resulted in two new recuperators, which were
compared with the initial baseline design on the basis of their weight and specific fuel
consumption of the aero engine. The initial non-optimized heat recuperator was capable of
achieving 12.3% reduction in fuel consumption in relation to a non intercooled aero engine. The
first optimized recuperator increased fuel consumption reduction to 13.1% in relation to non
intercooled aero engine, while reducing the weight of the recuperator by 5%. The second
optimized recuperator was less efficient regarding fuel consumption, whose reduction in
relation to a non intercooled engine dropped to 9.1%, but on the other hand the total weight was
reduced by 50% in relation to the initial non optimized recuperator.

Ghadamian et al [18] optimized the operation conditions of heat exchanger used for heat
recuperation in a cement industry. They were able to increase heat recuperation by 592.2
Kw/year without any increase in cost. Heat exchanger used for waste heat recovery in industry
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was also considered by Yildirim and Soylemez [19]. Their resulted optimized plate heat
exchanger achieved approximately 0.91 million $ net profit over 10 years life cycle, whereas the
initial heat exchanger was only capable of saving around 0.78 millions.

Caputo et al. [20] tested the effectiveness of an optimization method on several heat
exchangers installed in chemical plants. A shell and tube Soda-water heat exchanger weight was
reduced from 5.287 Kg to 2.697 Kg, whereas pressure drop was decreased from 5.5 kPa to 1.7
kPa on shell side and remained approximately the same on tube side. Another potassium
hydroxide-water heat exchanger was studied, where a 58% reduction in weight was achieved.
The pressure drop in the optimized heat exchanger was increased from 5 to 8 kPa on the shell
side, but on the tube side the pressure drop was significantly reduced from 48.4 kPa to 7 kPa. All
this improvement resulted in a better performance regarding operational cost, and the heat
exchanger became shorter and more compact.

Gholap and Khan [21] provided a multi-objective optimization of a heat exchanger used in
refrigeration where they showed the trade-off between energy consumption and material cost.
Regarding energy consumption, the best design presented a reduction of 8.92 % in relation to
the baseline design, but it needed a 50.19 % increase in material cost. The best achievement in
term of material cost was a reduction by 41.82% at the expense of a 6.15% increase in energy
consumption on a daily basis. In that case, heat exchangers optimization provides best trade-off
solutions, and the choice of a final design is based on the designer strategy regarding the
competing objectives. This brief literature review shows the advantage and profit gained by
using advanced optimization tools in heat exchangers design.

1.1.2. Research objectives

As seen in the last paragraph, improving the performances of systems including heat
exchangers depends on the ability to meet the specifications requested for the heat exchanger
itself. The objective of this research is to push the limits of the knowledge base and develop tools
and methods to enable the creation of a new generation of heat exchangers. The new design
concept developed is based on most recent and complex methods in the field of configuration
optimization, the topology optimization techniques which are not based on predefined
geometry. These methods allow reaching a complex and efficient design based strictly on the
defined objectives and constraints. The current state of scientific work allows the application of
topology optimization to heat exchangers including a single fluid and a solid. The present work
aims to extend the topology optimization methods in fluid mechanics to cases including two
fluids, which is the case for fluid-fluid heat exchangers. Meanwhile, an attention should be given
to the complexity of geometries generated by topology optimization. Hence, a big question
arises: how these structures will be manufactured especially when it comes to large scale
production? The advancement in additive manufacturing technology is the obvious answer to
this question. Additive manufacturing is the process of adding layer upon layer of a given
material. It reads information from a computer-aided design (CAD) file to add successive layers
of materials to fabricate the designed object. The first use of additive manufacturing was limited
to create prototype or visualize a part for presentations purposes. However, currently the
additive manufacturing is used to produce end-use products for a wide range of applications
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such as aircraft parts, automobile, medical equipments etc. Therefore, the advance in 3D printers
technologies raised interest in topology optimization development and application in various
engineering industries. It is then very useful to associate 3D printing with topology optimization,
for the development of a new generation in heat exchangers design and optimization.

1.2. Heat exchangers optimization

1.2.1. Introduction to optimization problem

Initial
variables X,

A\ 4

Optimization algorithm Objective function evaluation
= change X (CFD, correlations ...)

A

Optimal
criterion met?

END

Figure 1.4: General algorithm for heat exchanger optimization

Optimization is the mechanism of selecting the best solution in a particular situation subject
to a number of obstacles and limitations. The criterion that defines the best solution is the
objective function. The limitations on available solutions are defined by the constraints. What
describe different solutions are the problem variables to which we are trying to assign the best
values to minimize or maximize the objective function. How we can achieve the optimization
process is defined by the optimization algorithm we’re using. If one wants to optimize an
objective function f(x) = x, the best solution is simply infinite. Hence, an optimization problem
has no sense if there is not a conflict between many objective functions or between an objective
function and a constraint. Similarly, in heat exchangers, if there is no limitation on volume and
mass or there is no consideration to pressure drop, the optimal heat exchanger regarding heat
transfer is the one having an infinite length. Figure 1.4 represents a general schematic for heat
exchangers optimization. In next paragraphs most encountered optimization variables, criteria
and numerical algorithms in heat exchangers optimization are presented.
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1.2.2. Optimization variables

The design variables in heat exchangers optimization problems are classified as follows:
e Operating conditions of the heat exchanger (mass flow rate of hot or cold stream,
terminal temperatures, etc...)
e Material properties (thermal conductivity, surface roughness, etc....)
e Geometrical parameters that defines the optimal architecture of the heat exchanger.

‘ Topology

Design freedom &
Complexity ® Shape

° Size
Optimization difficulty &

Result’s performance
Figure 1.5: Comparison of size, shape and topology optimization

Optimization problems, in which the geometrical parameters are the optimization
parameters, are classified under three categories according to the degree of freedom, and the
capability of changing the geometry: size, shape and topology optimization, represented in
Figure 1.6. In size optimization the problem variables are the geometrical parameters of the
structure such as length, width, radius etc. The shape and the connectivity of the elements
between them are known and fixed. Hence, the final optimal solution is very similar to the initial
baseline design.

Shape optimization increases the degree of freedom of the problem, where it can change the
size and the shape simultaneously by adding variables able to deform the boundaries of the
structure. However, the architecture of the structure is still similar to the initial design, since the
global topology of the heat exchanger cannot be varied. Finally, in topology optimization, every
mesh in the optimization domain is a design parameter; which allows adding or removing
material in every point in the design space without being limited to an initial topology. This
increases significantly the number of variables in the optimization problem what make it more
difficult to converge, as seen in Figure 1.5. However, topology optimization has become so
appealing for its capacity to reach innovative and complex configurations based strictly on the
defined objectives and constraints. Size and shape optimization have been widely applied on
optimization of heat exchangers, whereas topology optimization is still limited to fluid to solid
heat exchangers.

13



(A) Size optimization: Initial design

¥
’

hd
.

(C) Shape optimization: Initial design

b

»

hd

(E) Topology optimization: Initial design

R 2

A 4

a

(B) Size optimization: Final design

|

¥
L 2

¥

-

(D) Shape optimization: Final design

e 4

5

i

hd
.

(F) Topology optimization: Final design

Figure 1.6: Size, shape and topology optimization applied on heat exchangers
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1.2.3. Numerical optimization algorithms

Optimization techniques were subject to a considerable progress since early fifties of the
twelve century, with the advancement in digital computers and electronic calculation capacities.
Optimization algorithms vary according to the information and the method used to search for
the next better solution. There exist in literature a wide variety of available optimization
algorithms, classified under many criteria, as their capability to reach local of global optimum,
their dependency or no on gradient information, the use of single trajectory or a population, etc.
In the following, the most used optimization algorithms in engineering problems will be
presented and classified as gradient-based and gradient-free algorithms.

e Gradient-based algorithms: this family of optimization algorithm uses the derivative of
the objective function as a direction to reach the optimum. The major advantage of these
methods is that they can solve optimization problems with an extremely large number of
variables. However, their major drawbacks are that they can locate a local optimum and
that they are complex to implement. The essential part in calculation time in these
algorithms is dedicated to the evaluation of the sensitivity of the objective function.
Among most popular gradient based algorithms used, Fletcher-Reeves for unconstrained
problem and the Sequential Linear Programming (SLP) and Sequential Quadratic
Programming (SQP) [22] for constrained optimization problems..

e (Gradient-free algorithms: the most popular family of this type of optimization techniques
are the evolutionary algorithms, which are based on phenomena from nature to evolve
toward optimal solution. Evolutionary algorithms are easy to implement, and can reach
usually global or near global optimal solution. On the other side, evolutionary algorithms
suffer from not being able to handle high number of variables and are computational
costly. Genetic algorithm [23] is the most efficient and popular type of evolutionary
algorithms. It is inspired from science of genetics for the survival of the fittest, more
specifically Darwin’s theory and Mendel’s law for genetic evolution and inheritance. It
uses biological operators such as crossover, mutation and selection. Design points having
the best performance regarding the objective function, are used for the next generation
of the optimization. Other popular evolutionary algorithms frequently used are the
Particle Swarm Optimization and simulated annealing.

1.2.4. Optimization criterions

In this paragraph, the objective functions usually encountered in the optimization of heat
exchangers are presented. The two main criterions are thermodynamic and economic aspects,
which could also be coupled in the same problem as it will be seen later. There exist many other
optimization criterions depending on the application of the heat exchanger, like decreasing the
total pressure drop, increasing the heat transfer rate, decreasing the maximum temperature or
average temperature, or for example the minimization of total heat exchanger weight in
aeronautical industry, etc.
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1.2.4.1. Thermodynamic criteria

We will start by presenting the thermodynamic irreversibility occurring in a heat exchanger.
In heat exchangers, there are two types of losses: losses associated to irreversibility due to heat
transfer between two fluids having a certain temperature difference, and losses associated to
mass transfer due to friction between fluids and internal walls of the heat exchanger. Regarding
fluid flow, the mechanical energy is not conserved, and a part of it is transformed into thermal
energy. This part of energy lost during fluid transport process is considered as a measure for
irreversibility. Usually, in most physical phenomena, the quantity of energy turned into heat is
considered as the quantity of irreversibilities. When it comes to heat transfer itself,
thermodynamic quantities as entropy production and exergy destruction are considered as
irreversibilities. Heat exchangers optimization using thermodynamic criteria are based on the
minimization of these quantity of irreversibilities, more specifically entropy generation and
entransy dissipation.

Entropy production was developed by Bejan [24] who defined it as “the thermodynamics
imperfection to heat transfer, mass transfer and fluid flow irreversibilities”. Entropy production
parameter takes into account both transport processes, heat transfer and mass transfer. Hence,
in any variation in the heat exchanger’s geometry to increase heat transfer, associated
mechanical energy dissipation is simultaneously evaluated and taken into consideration. It
should be noted that the distribution of entropy production itself inside the exchange influences
the overall exchanger effectiveness. In fact, the minimal total entropy production of the entire
system corresponds to the one having the most uniformly possible local entropy production
distribution [25].

Entransy dissipation is another physical quantity developed in 2007 by Guo et al. [26] to
measure the irreversibilities in a heat transfer process. It is developed to measure the ability of
an object (fluid in case of a heat exchanger application) to transfer heat in analogy with the
electric capacitance of a body, which describes its charge transfer ability. Xu et al. [27] applied
the entransy dissipation theory of Guo. et al. on internal and external fluid flow. Hence, entransy
dissipation was able to take into account irreversibilites due to heat and mass transfer
simultaneously.

Before the introduction of entransy dissipation, entropy generation number was considered
as the main criterion in heat exchanger optimization based on thermodynamic irreversibilities
minimization. The recent studies have shown a preference of methods based on entransy
dissipation over entropy generation methods. Twenty different heat exchangers were analyzed
by Qian et Li [28]. The results showed that the minimum entransy rate corresponds in all the
heat exchangers tested to the highest heat transfer rate. The minimum entropy generation
suffered for many cases from the entropy generation paradox, where the efficiency of the heat
exchangers can be at its maximum, minimum or anything between when entropy generation
reaches its minimum [29]. However, it was demonstrated that the two physical quantities are
needed to evaluate irreversibility in heat transfer [30]. When the purpose of heat transfer is for
heat-work conversion, the entropy generation is a better irreversibility measurement, whereas
the entransy dissipation is better when the heat transfer is for heating and cooling purposes [30]
[31].
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1.2.4.2. Economic criterion

The economic criterion consists of minimizing the total cost of a heat exchanger which is the
sum of the capital cost and the operating cost. Economic objective is a widely used criterion in
optimization of heat exchangers as it reflects directly the purpose of using heat exchangers in
the majority of energy systems. In some applications, it is necessary to take into consideration
the economic benefit from each degree of temperature recovered by the heat exchanger, versus
the price of each kW needed to operate the exchanger. This is not possible in the methods based
on the minimization of irreversibility rate alone. The cost function could be used alone as single
objective function [32] or used in multi-objective design optimization to find a trade-off between
the exchanger cost and its effectiveness [33].

1.2.5. Literature review on fluid-to-fluid heat exchangers optimization

Size optimization

Huang et al. [34] optimized a vertical ground heat exchanger used in HVAC systems, by
minimizing entropy generation number using a genetic algorithm. The variables are a set of
geometrical parameters and the material conductivity. The entropy generation expression is
coupled with the irreversibility caused by fluid friction and heat transfer as a single objective
function. His optimal design has an entropy generation number of 12.2% less than the initial
design. He analyzed the advantage made by the optimization method from an economical point
of view over a 10 years operation period. The results showed that the capital cost is 1.67 %
higher for the optimal design, but the operation cost was 7.2% lower. Thus, he achieved a 5.5%
net profit in total cost over the operation period. Guo et Xu [35] applied theory of entransy
dissipation on size optimization of a shell and tube heat exchanger using a genetic algorithm. He
also showed the benefit of splitting entransy dissipation due to heat transfer and fluid flow as
two objective functions and used them in a multi-objective optimization instead of a single
objective optimization. The advantage of a multi-objective function is that the designer can
control the preferences of maximization of heat transfer and minimization of pressure drop.
Results showed that in the design of a heat exchanger with fixed heat load, the single objective
optimization improves the performance of the heat exchanger. However, when the heat transfer
area is fixed, the improvement of the heat exchanger effectiveness is at the expense of increasing
the pumping power. The multi objective optimization design can achieve the same effectiveness
as single objective design with less consumption in pumping power, in case of fixed heat transfer
area.

Huang [36] compared two different optimization methods: a single objective optimization in
which entropy generation is the optimization criterion, and a multi objective method where the
entropy generation and the total heat exchanger cost are the objective functions. Optimization
procedures were applied on a vertical ground heat exchanger to find the optimal values of
various geometrical parameters using a genetic algorithm. The heat exchanger optimized by a
single objective method has an operating cost 0.8 % lower than a heat exchanger optimized by
the multi-objective method, and a 0.82% lower entropy generation number. On the other side,
the capital cost is 10% lower for the heat exchanger optimized by the multi-objective method.
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Hence, the multi-objective optimization design has a 6.22% lower total cost in relation to the
design of the single objective optimization method, and a 9.5% lower total cost in relation to the
original design. This result shows the importance of associating the economical criterion to the
thermodynamic quantities in size optimization of heat exchangers. Thermal-economic multi-
objective optimization was also considered by Ghanei et al. [33] in size optimization of a shell
and tube heat exchanger using particle swarm optimization algorithm. He achieved a 7.36%
improvement in the total heat transfer rate while reducing the total cost by 0.36%. Juan and Qin
[37] optimized four geometrical parameters in a plain fin-and-a tube heat exchanger using
genetic algorithm. The objectives functions were the maximum total heat transfer rate and the
minimum total pressure drop. The optimized heat exchanger has increased the heat transfer
rate by 2.1-9.2% and the total pressure drop was reduced by 4.4 to 8 % for a Reynolds number
ranging between 1200 and 14000.

Shape optimization

Bau [38] optimized the shape of the cross section of the conduits in a micro heat exchanger
by minimizing the maximum surface temperature of the conduit. He also found that the objective
function could be further reduced by varying the width of the conduit in function of the axial
coordinate. Hilbert et al. [39] optimized the shape of blades in a tube bank heat exchanger, using
a genetic algorithm suitable for multi-objective optimization. The two objectives functions are
the temperature difference and the pressure difference at the optimization domain boundaries.
The design variables are four geometrical parameters that define the shape of the blades. The
optimization domain consists of four blades, whose position along the domain is fixed and all
having the same shape. Gambit 2.1 was used for geometry and mesh generation, and Fluent 6.1
for solving the physical equations. The set of optimal solution formed the optimal Pareto front,
which shows the conflict between heat transfer enhancement and pressure drop, as seen in
Figure 1.7. Examples of resulting blades solutions from the Pareto front are sketched in Figure
1.8.

Lee et al. [40] optimized the shape of pins and their arrangement in the channel in a plate
heat exchanger. The design variables consisted of three parameters that define the shape of the
pin and one parameter that defines the spacing between the pins. The optimization is based on
the minimization of correlations for Nusselt number and friction factor, coupled in a single
objective function. They used augmented Lagrange multiplier method to minimize the objective
function. The optimum design variables defined the new shape and distribution of pins, which
resulted in a 227.9 % enhancement in heat transfer and a 32.9% reduction in pressure drop,
with respect to the baseline non-optimized design. Dlugosz [41] used a sequential genetic
algorithm for the optimization of a heat exchanger under thermomechanical load. He obtained
three different shapes according to three optimization criteria: minimization of the maximal
value of the temperature, minimization of the total volume of the heat exchanger and
minimization of the maximal value of the equivalent stress.
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Figure 1.7: Pareto optimal front in shape optimization[39]
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AP =10.29 Pa. AP =10.39 Pa. AP =049 Pa.

Figure 1.8: Example of resulting blades from tube tank heat exchanger shape optimization[39]

Kwasi et al. [42] used evolutionary algorithms to find the optimal shape of a separator
between hot and cold side in a micro heat exchanger. The optimization was based on a multi-
objective optimization technique, for simultaneously maximizing heat transfer and minimizing
pressure drop. The design parameters that define the shape of the separator are represented by
two “Non-Uniformal Rational B-splines, which consist of a number of points that define the polygon
control shape”. Optimization results were a set of optimal points that form the Pareto curve that
shows the conflict between the objectives.

CFD-based optimization

Bougerard et al. [43] used numerical simulation in size optimization of the canals of a heat
exchanger. The study is performed under a fixed pressure difference equal to 40 Pa, for four
types of canals: circular, square, isosceles right-angled triangle and equilateral triangle. The
problem aims to find the optimal width of the heat exchanger canal using Gambit as the mesh
generation software, Fluent as the CFD software and an optimization software, i-SIGHT-FD, in
which multiple optimization algorithms are implemented. The optimization procedure consists
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of computing heat flux using CFD for a given value of the design parameter, then the
optimization program generates a new value of the design parameter based on the value of the
heat flux computed. Size optimization using CFD was also considered by Kwasi et al. [42] in
micro heat exchanger. The objective was to find the optimal aspect ratio, defined as the height of
the channel to its width, for a constant and variable volume of microchannels.

Topology optimization

To the author knowledge, topology optimization was never applied in optimization of fluid-
to-fluid heat exchangers, beside a single research project [44] where the method aims only to
optimize the interfaces inside the optimization domain. On the other hand, topology
optimization was widely applied in optimization of solid to fluid heat exchangers, as it will be
seen later in this chapter. Next paragraph introduces in details the field of topology optimization,
and the different methods used to solve this type of problem in order to select the best suitable
strategy in applying topology optimization technique to the design of fluid to fluid heat
exchangers.

1.3. Topology optimization

1.3.1. Introduction

Topology optimization was originally developed for the optimization of mechanical
structures problems. The objective was to find the shape that uses minimum material while
maintaining the mechanical stresses lower than an acceptable level (Figure 1.9). Topology
optimization was defined by Bendsoe and Sigmund [45] as shape optimization of continuum
structures, which it should defines in every point in design space if there is a material in that
point or not, the topology of the structure being not fixed a priori. Thus, from an initial field that
is empty, full or in any intermediate state, the used control parameters allow the creations of
holes and agglomerates of material without limitation, in order to find the best possible
topology. The material distribution problem was the first application for topology optimization
method in 1988 by Bendsge and Kikuchi [46]. Recently topology optimization concept was
applied to a wide range of physical disciplines like fluids, heat transfer, acoustics,
electromagnetic, optics. However the implementation of topology optimization methods is quite
complex as it requires an algorithm capable of efficiently allocating and reallocating the material
inside a predefined domain.

In topology optimization the domain space is discretized into finite meshes, also called cells,
(cf. Figure 1.10) where each cell holds a design variable. The values of all design variables in all
the cells define the shape of the entire structure. Thus the optimization problem is to find the
optimal values of all the design variables, which minimize a certain objective function.
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Figure 1.9: Topology optimization on mechanical structures problems [47]

= Material A or B?

Figure 1.10: Discretized domain in topology optimization.

Mainly there are two big families in topology optimization techniques: discrete approaches
and continuous approaches, which stand respectively for methods in which the local parameter
controlling the material in each cell has discrete values, or continuous bounded values. Those
methods are gradient based optimization problems, thus the big number of design variables and
the necessity to compute the derivative of the objective function with respect to the variables
requires advanced mathematical techniques and software tools to ensure the convergence of the
variables vector toward the optimal solution. Topology optimization has become a well
developed area of research with many techniques developed to deal with numerical instabilities
problems frequently encountered in topology optimization such checkerboards, mesh-
dependencies and local minima.

1.3.2. Application in heat and mass transfer problems

Figure 1.11 represents typical topology optimization results in heat and mass transfer
problems. Figure 1.11.A represents an application of topology optimization on pure heat
conduction problems. The final solution shows the optimal distribution of limited amount of
high conductive material (in black) to evacuate the heat generated in low conductive material
(in white) through a small patch (heat sink) located in the middle of the left boundary of the
domain [48].
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(A) Conductive heat transfer [48] (B) Mass transfer [49] (C) Mass transfer and conducto-

convectif heat transfer [50]

Figure 1.11: Topology optimization in heat and mass transfer

Recently topology optimization was applied to fluid problems where the objective was to
find the optimum layout of fluid channels to have the minimum pressure loss as shown in Figure
1.11.B [49]. The white color represents the fluid that enters the domain from the entire left side
and leaves it from a portion of right side, and the black color represents the solid. The shape of
fluid channel is found by minimizing the total power dissipated by friction losses due to fluid
flow through the domain. In [37] a coupled thermal-fluid flow problem was solved using
topology optimization as shown in Figure 1.11.C. It should be noted that in this type of problems
the enhancement in heat transfer could be achieved only at the expense of pressure drop
degradation and vice versa. Those examples make of topology optimization a promising
methodology to solve optimization problems involving heat and mass transfer. A more detailed
literature review on topology optimization of heat exchangers will be presented in the next
paragraph.

1.4. Topology optimization methods

1.4.1. Problem formulation

Topology optimization problem is defined as follows: the domain is discretized into finite
elements meshes; generally the same meshes used to solve the differential equations of the
physical problem, in which a design parameter is stored. Those parameters are the design
variables of the topology optimization problem. The design variables can take only discrete
values; 0 or 1. In mechanical structure problem when the value of the design variable in a cell is
1, it means that the cell is made of material, while the 0 value means the cell is void. Similarly in
fluid problems, 1 means the cell is solid and 0 the cell is fluid. The discrete nature of the problem
makes it difficult to solve, therefore the design parameter is made continuous between 0 and 1
where the intermediate values of the design parameter represents a porous media or
intermediate state.
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The topology optimization methods aim to force the design parameter to take discrete values
progressively, hence eliminate the grey regions and leads to a black and white domain where the
design variables in each cell is either 0 or 1 (0-1 solution). However there also exist methods
that can solve discrete combinatorial problems and are known as discrete approaches. We will
consider a topology optimization problem where we’re searching for the optimal distribution of
two phases A and B. In discrete approaches the phase inside the cell is changed in a single step
between A and B (hard-kill). In continuous approaches, a small quantity of phase A is replaced by
phase B or vice versa in each step, until we reach at the end of the optimization process a cell
completely made of A or B (soft-kill).

The general design problem is now defined as follows: find the material distribution; hence
the optimal design variables, that minimizes an objective function F, subject to a porosity
constraint G, < 0, and possibly m other constraints G; < 0. The optimization problem can be
written in mathematical form as:

min  F(u(n),n)

n

subjectto G, (z(),7)=0, I=1,...,K
l N
Go(U)ZWZm— ? <0 (1.1)
i=1

G, (u(n).n)<0, i=1...M
0<7 <1, i=1..,N

where u(n) satisfies linear or non-linear state equations, z(n) represents the physical equations
of the problem, n the design variables, N number of meshes and ¢, the maximum allowed
porosity of material.

Topology optimization methods lie on three main parts: the direct solver of the physical
problem (finite element, finite volume, ...), the sensitivity analysis method (discrete adjoint,
continuous adjoint, ...) to compute the total derivative of the objective and constraint functions
with respect to design variables, and a numerical optimizer to update the values of design
variables at each iteration. Next we will present the most common methods present in the
literature to solve problem (1.1).

1.4.2. Density method

The density method was initially developed by Bendsge in 1989 [51] in mechanical structure
problem to find the optimum distribution of two materials, where one of them is void. The
method uses continuous design variables taking values between 0 and 1. Those continuous
variables are interpreted as material densities as they corresponds to void when having 0 value,
to pure material when having 1 value and a composite material made of void and initial material
when having intermediate values. The key part of this method is to introduce an interpolation
function that computes various physical quantities in each cell, e.g. material stiffness in
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mechanical structure problems and thermal conductivity in heat conduction problems etc., as
function of the continuous design variables:

o(n)=90m)o,+(1-9(7)) 0% (12)

Where 7; is the density at node i, 0(n;) a physical quantity, g, and gz the physical quantities of
the two phases at n equal 0 and 1, and g(n;) the interpolation function. The main challenge in
density methods is the introduction of an interpolation function able to steers the solution to
discrete 0-1 values and omits intermediate values, called a black-and-white design, with a real
physical representations of composite materials corresponding to intermediate densities, known
as grey material. A popular interpolation scheme to satisfy the above conditions is the penalized
proportional “fictitious material” formula, known as the Solid Isotropic Material with
Penalization (SIMP) defined as follows:

ag(m)=n’ (1.3)

where p is the penalization parameter. Literature review shows that the optimal number that
ensures good convergence to almost 0-1 solution is p = 3. However it is also preferred to begins
the optimization with a low number of p and increases it gradually. Bendsge and Sigmund [52]
provided a physical justification of SIMP and showed that for p = 3 physical realizability of
intermediate densities elements is ensured. It is important to mention that without the presence
of a volume constraint that limits material quantity the penalization effect in SIMP interpolation
formula doesn’t work out.

Stolpe and Svanberg [53] introduced another interpolation function, Rational Approximation
of Material Properties (RAMP) which is quite similar to SIMP in the principle of penalization
effect to converge toward a black-and-white design. The interpolation function of RAMP is
defined as follows [53]:

i

g(ﬁi)=m

(1.4)

RAMP function was introduced after Stolpe and Svanberg demonstrated that SIMP interpolation
scheme is non concave and the trajectory of global optimal solution in SIMP may be
discontinuous [54]. Pedersen [55] analyzed convergence problems associated with SIMP function
at low density values, he suggested the use of density values higher than zero ( 7,,,;, = 0.01 ) and
low penalization parameters for densities lower than 0.1.

It should be noted that there is no general rule for the choice of penalization parameter p
that ensures a good convergence to 0 -1. Several other interpolation schemes have been
developed for the same purpose of providing continuous interpolation with penalization effects
(for example SINH method developed by Bruns [56] using hyperbolic sinus function) and they
are all stated as SIMP method.

Another approach used in density method is to add a concave function that serves as a
penalty function that suppresses intermediate values in order to have a black-and-white-design.
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The penalty function is added to the objective function or as an explicit constraint to the
optimization problem [57]. However this technique is not used in literature as much as the SIMP
and RAMP interpolation functions.

1.4.3. Level set method

Level set methods are computational techniques introduced in 1988 by Osher and Sethian
[58] for tracking moving interfaces. The main idea of level set methods is to introduce a time and
space dependent function @(x, t) that defines the interface between the two materials present in
the topology optimization problem T (e.g. fluid and solid, solid and void etc.) by the zero level
contour of the @(x,t) called level set function. Having two material A and B in the optimization
problem, the level set function is then defined as follows:

#(x,t)<0 if xeQ”
op(x,t)=0 if xeoQ=T (1.5)
#(x,t)>0 if xeQ®

where (4 and 8 represent respectively the domains of material A and material B. The evolution
of level set function during the time defines the changes in the interface between the two
materials. The level set function is updated from the solution of the Hamilton-Jacobi equation:

(Zt—¢+u.|v¢|:0 (1.6)

where u is the desired normal velocity on the boundary in which the zero level set propagates.
The main idea of level set as an optimization technique is to iteratively update the velocity u, i.e.
the direction, of the boundary propagation in order to decrease the objective function of the
problem. Hence the geometry is defined through the optimization process by finding the optimal
definition of material A - material B interface (e.g. solid - void interface in mechanical structure
problems).

Level-set method is coupled in some applications with topological derivatives method to
create new interfaces. Topological derivatives was first introduced by Eschenauer et al. [59] for
mechanical structure topology optimization and was recently used in fluid flow problems. The
approach which is also known as ‘bubble method’ consists of finding the placement of insertion
of infinitesimal hole in the design domain (small hole of phase A inside phase B sub-domain or
vice versa). Coupling level set method with topological derivatives in fluid mechanics problem
will be seen later in literature review.

1.4.4. Evolutionary approaches

Evolutionary approaches [60] are considered among the most important branches of
topology optimization using discrete design variables. Evolutionary Structural Optimization
(ESO) was introduced by Xie and Steven [61] for optimization of mechanical structures. This
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method is based on the simple concept of removing inefficient material gradually from a
structure until the constraint determining the volume of material in the design domain is no
longer satisfied. Yang et al. developed the Bi-directional Evolutionary Structural Optimization
(BESO), an improved version of ESO, which allows material to be removed and added
simultaneously [62]. The material removal and addition is based on the value of sensitivity
number, where material is removed from elements with the lowest stresses (for mechanical
structure problems for which the method was initially developed), and added into elements
where the stresses are high. The sensitivity numbers in solid elements are estimated by the
approximate variation of the objective function due to the removal of elements whereas in void
elements sensitivity numbers are set to zero.

The same approach was used in topology optimization of conductive heat transfer problems,
allowing adding or removing elements in function of their effective contribution to the heat
transfer [63], [64]. In comparison with SIMP method, BESO could be categorized as a discrete
version of SIMP scheme. Furthermore Huang and Xie introduced a version of BESO [65] called
soft-kill BESO in which they use a power law interpolation parameterization (SIMP) for the
computation of gradients to update the design variables. In soft-kill BESO the design variables
still have discrete values only but the gradients are derived from continuous variables in
function of penalization parameter p. Hence, the original BESO method, called hard-kill BESO in
which the gradient have discrete values similar to design variables, is a special case of the soft-
kill BESO method where the penalty exponent p tends toward infinity.

Many works in topology optimization of mechanical structure problems used the
evolutionary approaches with many techniques developed to deal with the difficulties
encountered due to the discrete aspect of the problem. In pure heat conduction, evolutionary
approaches were also applicable but the results showed that the method leads to local optimum.
Therefore evolutionary approaches have not gained interest in topology optimization of fluid
mechanics.

1.5. Topology optimization in heat and mass
transfer problems, case of two fluids

As already mentioned, the aim of this thesis is to apply topology optimization technique on
design and optimization of fluid to fluid heat exchangers. This requires three main steps:

1. Formulation of a suitable topology optimization method able to consider the
distribution of three phases in the domain, two fluids and one solid.

2. Separation of fluids sub-domains to allow each fluid to connect its predefined inlet
sections to outlet sections while avoiding any fluid mixture inside the domain.

3. Coupling heat transfer to mass transfer problem in case of two fluids, which
correspond to the design of a fluid to fluid heat exchanger.

Next a literature review on each step of the thesis objective will be presented, in order to
select the best strategy regarding every step. It should be noted that to the author knowledge, no
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work have been done in phase separation, hence literature review is limited on the first and
third steps.

1.5.1. Literature review on topology optimization in mass transfer
problems

Density method

v‘
Mo,

(A) Bend pipe (B) Parallel pipes, square (C) Parallel pipes, rectangular

domain domain

Figure 1.12: Topology optimization results in Stokes flow [66]

The application of topology optimization was first performed by Borrvall and Petersson [66]
on Stoke flows. Stokes flow is a type of fluid flow where the advective inertial forces are
insignificant compared to viscous forces, thus having low Reynolds number (Re << 1). Borrvall
and Petersson provided mathematical proofs of existence of an optimal solution for topology
optimization in fluid using density approach and an appropriate penalized interpolation
function. The optimization problem consists of minimizing the dissipated power in a fluid
domain; the total volume of fluid should not exceed a maximum value considered as a constraint.
Figure 1.12.A shows the optimal solution of a pipe bend which corresponds to a straight line
having the minimum distance between inlet and outlet [66]. Figure 1.12.B and Figure 1.12.C
show that when the domain is square the optimal shape of pipes is two straight parallel lines,
whereas when the domain is rectangular with length 1.5 times bigger than the width, the
minimum pressure drops is reached by joining the two pipes in the middle[66].

Aage et al. [67] solved the same problem for large scale domains using parallel computations
techniques. Gresborh-Hansen et al. [68] used outflow rate as optimization target.

Guest et al. [69] proposed to treat the solid phase in the optimization domain as a porous
medium with flow governed by Darcy’s law. Fluid phase and solid phase are then treated in a
single equation created by combining Stokes and Darcy equations. The resulted Darcy-Stokes
equation leads to an appropriate modeling for no-slip boundary condition along the fluid-solid
interface inside the domain.



Wiker et al [70] also treated Darcy-Stokes topology optimization problem. Their work
included solution to an area to point drainage problem, where the goal was to transport all fluid
out from the domain through a single part of the boundary with minimal power consumption
possible. They also studied the impact of many geometrical and mathematical parameters on the
final solution. Contrary to [69], their results showed that regularization is needed in topology
optimization of fluid problems to avoid numerical problems.

Evgrafov et al. [71] stated that the problem of Darcy-Stokes flow in topology optimization
admit solutions even if the limiting zero and infinite permeabilities of Darcy’s law are included in
the design domain.

Topology optimization of fluids in Stokes flow in Borrvall and Petersson work was extended
by Gersborg-Hansen et al. [72] to Navier-Stokes flows by describing a topology optimization
method for steady, incompressible laminar viscous flows at low to moderate Reynolds number
with inclusion of inertia effects which made the flow problem nonlinear. The use of high-level
programming frameworks for topology optimization of steady-state Navier-Stokes flow
problems were considered in [73].

The articles on topology optimization for Navier-Stokes flow stated so far refers only to
steady state problems. However unsteady flow could also be implemented in topology
optimization methods where the feasibility of the problem is well demonstrated in [74]. The
results showed that the final optimum design of unsteady Navier-Stokes flow is influenced by
the dynamic effect and Reynolds number. Kreissl et al. [75] studied the feasibility of density
approach for optimizing the topology of unsteady flows. Results showed that structures
optimized for unsteady flow differ increasingly from corresponding steady-state design as the
problem becomes more unsteady.

Deng et al. [76] added to the unsteady problem flows driven by body forces. The physical
body forces in the equations were penalized using power law approach, and results showed that
for both steady and unsteady flows, optimal topology designs depend on the type of the body
forces.

Level-set

Zhou and Li [77] performed 2D and 3D numerical experiments in topological design using
level set method, and proved a relatively good agreement of their results with those obtained by
density methods. Figure 1.13 and Figure 1.14 show respectively the topology optimization
results using level set method of bend pipe and a diffuser [78], which was previously studied
using density method [66], [72]. However, even if for some specific examples level set method
showed agreement with density method, the performance of this technique is still significantly
limited by its incapacity of creating new holes in the design domain. Hence the topology
optimization procedure is strongly dependent on the initial guess. However this issue was first
solved in topology optimization of mechanical structure problems by incorporating topological
derivative method into level set method to reduce its dependency on the initial guess [79], then it
was applied to fluid problems by various authors [80], [81].Topological derivative indicates then
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the location where new holes should be nucleated using two different strategies: even including
topological sensitivity information in the evolution equation of level set method, or using this
information at discrete places in the optimization algorithm [81].
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Figure 1.13: Design of a bend pipe using level set method [78]
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Figure 1.14: Design of a diffuser using level set method [78]

1.5.2. Literature review on topology optimization in heat and mass
transfer problems

Topology optimization of convective heat transfer was first solved by Bruns in 2007 [82]. The
author introduced a method for solving conductive and convective non linear steady state heat

29



transfer problems by adding a convection term to heat transfer equation but without evaluating
the fluid motion.

Matsumori & al. [83] used the density approach to solve fluid thermal interaction topology
optimization problems. Instead of taking two objective functions for power dissipation and heat
transfer in a multi-objective optimization approach, they proposed a method to keep the input
power constant within the optimization process and solved the optimization problem by
maximizing only heat transfer objective function. The optimization problem was formulated for
two types of heat conditions: temperature dependent heat sources and temperature
independent heat sources. Okkels et al. [84] optimized micro-cooling system using a high level
programming language for the implementation of non linear topology optimization using Matlab
and the commercial finite element software Femlab.

Dede [50] solved heat and mass transfer problem in topology optimization problem by
coupling. the mean temperature and power dissipation simultaneously using a weighted sum
approach for multi-objective optimization. The method was applied to the design of hierarchical
microchannel system [85] and to a submerged jet impingements to remove heat from an
electronic package that generate heat to ensure that the maximum device temperature does not
exceed an allowable limit [86].

In [87] Dede used two different interpolation schemes, one for the calculation of thermal
conductivity and another one for the calculation of the inverse permeability using the same
design variable. He applied the same procedure as in [50] for optimizing microchannels for the
cooling high heat generation electronics devices. Yoon [88] studied the minimization of thermal
compliance in a heat dissipating structure under constant mass flow using SIMP formula for the
interpolation of material properties that varies between solid and fluid phases. The method was
then extended and applied to the design of an electro-thermal-compliant actuator device [89].

Koga et al. [90] developed a heat sink device for small scale applications considering low
velocities and low Reynolds number neglecting inertial forces, thus the study is limited to Stokes
flow. The results that combined multi-physics objective function involving the pressure drop
and heat transfer performance showed that when the weight of heat transfer criterion is
increased in the multi-objective function, small auxiliary channels appear inside the domain.
These ramifications increase the heat distribution which leads to a more efficient heat transfer
over the domain but increases the fluid flow pressure drops. Yaji et al. [91] developed a method
for solving the coupled thermal fluid topology optimization problem using level set method in
contradiction with the methods stated above in which they used material interpolation schemes.

As mentioned previously, topology optimization are in generally gradient-based
optimization methods, because of the high number of design variables This is seen from
literature review, in which all works presented used gradient-based numerical optimization
algorithms, especially the method of moving asymptotes. However, Yoshimura [92] used genetic
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algorithm instead of gradient based optimization algorithm to solve topology optimization
problems in fluid flow using level set approach. To reduce the computational cost caused by the
evaluation of the objective function, he assisted the genetic algorithm by Kriging surrogate
model to estimate the objective function values and their uncertainties. However, due to the low
number of design variables, the results were less accurate than those obtained in conventional
methods that use gradient information in the optimization process.

. CFD Sensitivity Optimization . ;
Article TO Method Solver analysis Algorithm Application
[82] Density FEM Ad]ollvrllgt‘}/lir;able MMA Cooling fins
[83] Density n/a. Discrete adjoint SNOPT Mono-fluid heat
exchanger
[84] Density FEM Discrete adjoint MMA Micro-cooling device
[50] Density FEM n/a. MMA Mono-fluid heat
exchanger
. Hierarchical
[85] Density FEM n/a. MMA microchannel
) Jet impingement
[86] Density FEM n/a. MMA target surfaces
Multipass branching
) microchannel heat
[87] Density FEM n/a MMA sink for electronics
cooling
. Adjoint Variable Heat dissipating
[88] Density FEM Method MMA structure
: Electro-fluid thermal
[89] Density FEM n/a. n/a. compliant actuator
[90] Density FEM Co;;;gil;(‘)cus SLP Heat sink device
[91] Level set FEM Cont}nluous i Mono-fluid heat
adjoint exchanger
[92] Level set FEM ) Gen(.atlc Mono fluid heat
algorithm exchanger

Table 1.1: Summary of applications of topology optimization on heat and mass transfer problems
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Table 1.1 provides a summary on applications of topology optimization on heat and mass
transfer in mono-fluid domain.

1.5.3. Conclusion

After being initially developed for mechanical structure optimization problems, topology
optimization approaches are now widely used to various flow optimization problems.
Optimization for flow problems was initially limited to low Reynolds numbers and steady state
(Stokes flow) without taking into consideration inertia effects. Then various authors have
extended the optimization procedure to cover wider range of Reynolds number, inertia effects
(Darcy-Stokes and Navier-Stokes flows), non-uniform body forces and unsteady state flows.

Density approach, level set, topological derivatives and evolutionary approaches especially
BESO method are the most used approaches. The main difference between these different
approaches is the design variables update schemes. Evolutionary approaches use discrete design
variable whereas the rest of methods uses bounded continuous design variables. It's important
to point that filtering and smoothing techniques are applied in the majority of topology
optimization approaches to deal with numerical problems and instabilities such as convergence
toward local minimum, mesh dependencies solutions and checkerboard problems.

Despite gaining attention in mechanical structure and pure diffusion heat transfer problems,
evolutionary techniques have not been considered in fluid flow problems according to literature
review. Level set are found to be appealing for flow problems due to its results in 2D and 3D
numerical simulations for various type of flows. However, level set methods can only evolve
from existing boundaries and is not able to generate new holes, which means unable to generate
new channels in fluid topology optimization. This is considered as a conceptual drawback for the
method, especially if it will be used for topology optimization of heat exchangers. Nucleation of
new holes in level set method was possible by combining level set method with topological
sensitivity information method. This combined method was applied and tested by various
authors. Results show that the combined method still strongly dependent on the starting guess
[93].

The density method is completely independent from the initial guess and the generation of
channels and complex structures is only dependent from the objective and constraint functions.
Moreover Table 1.1 shows that density method was applied on majority of problems that
coupled heat and mass transfer. Despite requiring high computation time, density method
appeared to be the most suitable method to extend the application of topology optimization in
fluid mechanics to bi-fluid domain, which to the author knowledge was not considered before

1.6. Outline of the research

As concluded in last paragraph, the density approach is the most suitable method for
topological optimization of bi-fluid heat exchangers and it will be considered in this work. The
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general algorithm of density method we applied to heat and mass transfer problems is

composed of three main steps:

The CFD solver using a finite volume method.

The sensitivity analysis based on discrete adjoint method.

The optimizer that computes the new values of the design variables 7 on the basis of
objective function, the constraints functions and their derivatives. The method of
moving asymptotes was chosen.

The remaining of the document is divided as follows:

The detailed algorithm of optimization method presented above, and detailed
development of each part of the method are presented in chapter 2. Two different
formulations will be compared, one using a single design variable in each design cell
and the second one uses two design variables in each design cell which double the
number of variables of the problem.

Fluid separation will be considered in chapter 3. Three different methods are
formulated and implemented in the optimization algorithm.

In chapter 4 maximization of heat transfer between the two separated fluids will be
considered.

Finally the conclusion and perspectives in chapter 5.
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Chapitre 2: Optimisation topologique bi-fluide

1. Introduction

Ce chapitre introduit une méthode d'optimisation topologique basée sur l'approche de la
densité appliquée aux problémes de mécanique des fluides pour I'écoulement laminaire bi-
fluidique. L'algorithme général de la méthode sera présenté avec des explications détaillées sur
la mise en ceuvre de chaque étape de la méthode. Deux formules d'interpolation reliant les
variables de conception et les variables physiques des deux fluides et du solide sont générées,
testées et comparées afin de sélectionner la plus appropriée pour la résolution du probleme bi-
fluide. Les fonctions de contraintes qui limitent le volume maximum de fluide seront également
décrites.

2. Formulation du probleme mathématique

Le probleme d'optimisation est maintenant défini comme suit: trouver les valeurs optimales
des variables de conception qui définissent la distribution optimale des trois phases, fluide
solide 1 et fluide 2, afin de minimiser la dissipation de puissance du fluide dans le domaine, sans
dépasser les porosités maximales autorisées de chaque fluide. La fonction objectif dépend
explicitement des champs de vitesses et de pression. Le calcul des paramétres physiques dans
les mailles de conception utilisant la fonction d'interpolation pénalisée, fait que la fonction
objectif dépend implicitement de la variable de conception 1. Le probléme d'optimisation est
résumé dans (2.8).

3. Modélisation de I’écoulement et de transfert thermique

Les équations physiques qui représentent I'écoulement du fluide et le transfert thermique
par conduction et transport, sont I'équation de continuité (2.4), de Navier-Stokes (2.5) et
I’équation d’énergie (2.7).

Pour modéliser les mailles solides et fluides en utilisant la méme équation de quantité de
mouvement, Borrvall et Petterson [66] ont proposé d’ajouter a cette équation un coefficient
inverse de perméabilité a similaire a la loi de Darcy dans un milieu poreux. Ainsi pour une maille
fluide a sera égal a 0, et une pour une maille solide o sera égal a une valeur suffisamment grande
pour le solide, donc a la limite, la vitesse dans les régions solides sera nulle. Par conséquent,
lorsque la variable de conception prend une valeur intermédiaire, la perméabilité inverse
prendra une valeur entre zéro et sa limite maximale, de sorte que la cellule de conception
correspondante sera un milieu poreux dans lequel la vitesse du flux est ralentie en fonction de la
quantité de solide dans la cellule poreuse. Le terme de perméabilité mathématiquement inverse
agit comme un terme d'absorption de vitesse. Physiquement, cela pourrait étre vu comme une
force interne du corps, ou une force de friction proportionnelle a la vitesse du fluide entre le
fluide et un petit obstacle solide a l'intérieur du flux
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Il convient de noter qu'il n'est pas nécessaire d'insérer le terme de diffusion pour la
modélisation de I'écoulement de plusieurs fluides a travers un milieu poreux. En fait, dans la
méthode d'approche de densité appliquée aux probléemes d'écoulement de fluide, dans un état
intermédiaire, le fluide 1 et le fluide 2 formeront un troisiéme fluide équivalent, qui forme a son
tour avec le solide un matériau poreux unique. Les propriétés physiques sont ainsi interpolées
entre le solide, le fluide 1 et le fluide 2. Ainsi, la cellule entiere a un seul vecteur de vitesse et il
n'y a pas de vitesse de circulation pour chaque fluide.

4. Algorithme d’optimisation

L'approche de densité consiste a faire varier de fagon continue le parameétre de pénalisation

p de la fonction d'interpolation, jusqu'a ce qu'il atteigne sa valeur la plus appropriée pour

assurer une convergence en douceur vers la solution en noir et blanc. L'algorithme

d'optimisation est donc divisé en deux boucles:

e Une boucle principale (Figure 2.2) qui consiste a répéter une boucle secondaire en
changeant progressivement le parametre de pénalisation p. Le nombre d'itérations de la
boucle principale est évalué au moyen d'un nombre entier allant de 0 a un nombre préfixé
permettant au parameétre de pénalisation d'atteindre successivement sa valeur la plus
appropriée.

e Une boucle interne (Figure 2.3) qui permet de trouver les valeurs optimales des variables
d’optimisation pour un parametre de pénalisation fixe p a travers un nombre d'itérations
successives, chacune comprenant les étapes suivantes:

1. Calcul des propriétés physiques dans chaque maille en utilisant la fonction
d'interpolation bi-fluide (présentée dans le paragraphe suivant) et les parameétres de
conception de l'itération précédente.

2. Résolution des équations physiques du probléeme en utilisant la méthode des
volumes finis afin de calculer les champs de vitesse, pression et température. Les
schémas de différenciation CDS et QUICK (respectivement schéma central de
différentiation et schéma quadratique en amont) sont considérés dans ce travail.

3. Evaluation de la fonction objectif, qui correspond a la puissance totale dissipée par le
fluide en raison de son écoulement dans le domaine. Cette dissipation est évaluée soit
par un critére global calculé sur les frontieres du domaine a l'aide de I'équation
(2.36), soit par un critére local en évaluant la dissipation dans chaque maille par
I’équation (2.35).

4. Evaluation de la dérivée de la fonction objectif par rapport aux variables de
conception en utilisant la méthode d’adjoint discret. La méthode consiste a calculer
d’abord le vecteur adjoint par résolution du systéme d’équation (2.41) puis calculer
la dérivée totale de la fonction objectif par 'équation (2.42). La résolution des deux
équations nécessite le calcul de la dérivée des équations physiques discrétisées dans
chaque maille par rapport aux champs physiques X (vitesse, pression et
température) et par rapport aux variables de conception 71, ainsi que la dérivée
partielle de la fonction objectif par rapporta X et 7.

5. Optimisation numérique : la méthode des asymptotes mobiles (MMA) adoptée dans
ce travail, a été développée par Svanberg en 1987. La méthode est basée une
approximation complexe, et peut considérer une ou plusieurs contraintes [110]
[111]. MMA a montré une grande efficacité dans les problémes d’optimisation
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topologiques, et ainsi elle est devenue un outil numérique standard pour ce type des
problémes.

En optimisation topologique, plusieurs problémes numériques peuvent étre rencontrés tels
I'apparition d’'une succession de régions solides et fluides dans des mailles adjacentes. Ce
probléme est résolu en utilisant les techniques de filtrage numériques. Dans cette these, des
filtres de densité et de sensibilité sont utilisés. Le filtre de densité (équation (2.53)) consiste a
remplacer la variable de conception dans chaque maille du domaine par une moyenne pondérée
en fonction des variables de conception dans les mailles voisines. Ce filtre est appliqué entre la
5eme étape et la 1¢re étape de boucle interne. D’autre part, le filtre de sensibilité (équation (2.55))
est la redéfinition de la dérivée par rapport a la variable de design dans une maille en fonction
des valeurs de la dérivée dans les mailles voisines. Ce filtre est appliqué sur le champ de dérivé
entre la 4¢me et 5éme étape de la boucle interne. Le voisinage d'une maille est défini en général
comme les éléments dont les centres sont a une distance prédéfinie du centre de la maille
concernée (équation (2.54)).

5. Fonction d’interpolation pénalisée

a) Fonction d'interpolation mono-eta

Le premier schéma d'interpolation utilise une seule variable de conception dans chaque
maille, de méme que dans les problémes mono-fluide. Ce schéma est basé sur la fonction de
distribution normale (2.9). Dans cette fonction 7 est la variable de design, f est 'abscisse de la
pique de la courbe et p le parametre qui détermine la forme de la courbe (Figure 2.4). Yin et al
[96] ont utilisé la méme fonction de distribution dans I'optimisation topologique des problémes
de structure multimatériaux. Ainsi la fonction d’interpolation sera la superposition de trois
fonctions normales, chacune correspondante a l'une des trois phases (fluide 1, fluide 2 ou le
solide), et chacune multipliée par la propriété physique de la phase qui lui correspond. Il reste a
déterminer la distribution des valeurs discretes de n correspondant aux phases fluide et solide,
c.a.d. déterminer l'abscisse de la pique de chaque phase. La distribution qui assure la
représentation physique la plus pratique des valeurs intermédiaires de 7 est la suivante : pour le
fluide 1 n = 0, pou le solide n = 0.5 et pour le fluide 2 n = 1. Ainsi pour 0 < 7 < 0.5 on aura un
milieu poreux fluide 1-solide et pour 0.5 <7 <1 on aura un milieu poreux solide-fluide 2.
Finalement la fonction d’interpolation est exprimée en (2.12) et les fonctions contraintes en
(2.13) et (2.14).

Pour assurer la convergence des variables de conception dans toutes les cellules vers 0, 0.5
ou 1 et omettre toutes les valeurs intermédiaires de 7, la fonction d’interpolation avec laquelle le
coefficient de perméabilité est calculé doit avoir une pente négative continue pour 0 <7 < 0.5
et 0.5 <7 < 1 pour que la valeur minimale @ = 0 soit strictement a n = 0 et n = 1. Ainsi, cette
fonction d’interpolation ne doit pas diminuer rapidement vers son minimum au voisinage de
n = 0.5, pour éviter d’avoir des cellules intermédiaires dans la solution finale ce qui nécessite
une valeur p > 0.15 comme le montre la Figure 2.4.
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Une autre caractéristique importante de la fonction d'interpolation qui doit étre discutée est
le point stationnaire a n = Bgoiiqe = 0.5 ayant da/0n = 0. En effet, 'algorithme d’optimisation
complet qui cherche la valeur optimale de n dépend de la dérivée locale au voisinage de la
variable de conception sur la fonction d’interpolation. Ainsi la pente nulle pour n = 0.5
représente une grande difficulté pour I'algorithme de franchir ce point pour faire une transition
du fluide 1 au fluide 2 et vice versa. Ainsi la solution finale sera fortement dépendante de
'estimation initiale.

b) Fonction d’interpolation bi-eta

Dans [66] Borrvall et Peterson ont introduit la premiere fonction d'interpolation aux
problémes d'écoulement des fluides. Ils ont également fourni les preuves mathématiques que la
fonction permet la convergence vers une solution optimale. De nombreux auteurs ont adopté ce
schéma d'interpolation dans lequel 7 = 0 correspond a la phase solide, et = 1 a la phase fluide
et 0 <7 <1 aun milieu poreux ayant des parametres physiques intermédiaires entre le fluide
et le solide, comme le montre I'équation (2.15). La convexité de la courbe de la fonction est
ajustée a l'aide d’'un parametre de pénalisation p qui joue un réle décisif dans la convergence de
la méthode d’optimisation (Figure 2.7).

D’autre part, Sigmund [52] a proposé un schéma d'interpolation pour les problémes de
structure mécaniques multi-matériaux (2 matériaux et le vide). Ce schéma consiste a interpoler
d’abord entre les deux matériaux, puis entre le matériau équivalent et le vide. En appliquant la
méme logique, le schéma d’interpolation bi eta consistera alors a interpoler premierement entre
le fluide 1 et le fluide 2 et ensuite interpoler entre le fluide équivalent et le solide, comme le
montre l'équation (2.18). L’expression g(n) introduite par Borrvall et Peterson pour les
problémes mono fluide est remplacé dans I'expression générique du schéma bi-fluide (2.18).
Ainsi deux variables de conception 7, et n, définissent la nature de la phase dans une maille :
(n1,m2) = (0,Vn,) pour le solide, (n1,n,) = (1,0) pour le fluide 1 et (n4,n,) = (1,1) pour le
fluide 2. La forme finale de la fonction d’interpolation bi-eta bi-fluide est présentée dans
I’équation (2.19). Enfin les fonctions contraintes de porosité qui limitent les porosités maximales
du fluide 1 et fluide 2 sont formulées en fonction de 1, et ,, comme le montre 'équation (2.21)

6. Résultats

a) Formulation mono-eta

La configuration présentée dans la Figure 2.12 est un domaine carré de 36 mm de longueur
ayant une entrée et une sortie pour chaque fluide. La porosité maximale de chaque fluide est
égale @¢ = @5, = 1/6, ce qui est équivalent au volume de fluide requis par un canal droit reliant
I'entrée et la sortie de chaque fluide. La masse volumique, la viscosité dynamique et le coefficient
de perméabilité sont égaux pour les deux fluides. Afin d’analyser le comportement de la
formulation mono eta en ce qui concerne le point stationnaire, quatre études ont été réalisées,
chacune correspondante a une initialisation différente de la variable de conception. La Figure
2.13 montre les solutions finales de chaque cas d’étude. Dans le cas ou 1jp;tiare = 0.5, aucun
changement n’a eu lieu dans les valeurs des parametres de conception en raison de la dérivée
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nulle da/dn =0 pour n =0.5, ainsi la dérivée de la fonction objectif sera nulle. Pour
Ninitiate = 0.51, I'algorithme distribue toute la quantité permise du fluide 2, représentée par la
couleur rouge, entre les sections d’entrées et sorties des deux fluides. Cependant, les deux
tuyaux formés par le fluide 2 ne remplissent pas la section compléte entre les sections d'entrée
et de sortie de chaque tuyau, en raison de la contrainte de porosité du fluide 2 qui est égale
seulement au volume d'un tuyau complet. La quantité de fluide 1 représentée par la couleur
bleue, qui a été ajoutée aux étapes ultérieures du processus d'optimisation n'a pas pu étre
ajoutée a l'endroit optimal dans les régions d’écoulement afin de minimiser la perte de charge.
Cela montre la difficulté d'ajouter du fluide 1 lorsque la valeur initiale de la variable de
conception est supérieure a 0,5, a cause de la forme de la courbe de la fonction d’interpolation.
Pour njpitiaie = 0.49, le méme comportement est observé mais cette fois pour une convergence
optimale vers le fluide 1. Enfin pour le cas ou 7j,itiqie = 0.51 dans les régions au voisinage de
I'entrée et la sortie du fluide 2 et 1jyitiqie = 0.49 dans les régions au voisinage de I'entrée et la
sortie du fluide 1, deux tuyaux sont formés, chacun comprenant la quantité maximale totale
permise de l'un des deux fluides. Cela montre que la formulation mono-eta est fortement
dépendante sur I’estimation initiale, comme déja discuté ci-dessus.

b) Formulation bi-eta

La méme configuration que le cas précédent est reconsidérée, cette fois le probléme est
résolu par la formulation bi-eta. La solution finale dans la Figure 2.15 montre la convergence de
1, a son optimum global. Cependant dans toutes les mailles fluides 7, est égale a 0.5, ce qui
signifie que chaque maille fluide consiste en un mélange 50% fluide 1 et 50% fluide 2. En fait, ce
résultat était attendu puisque les deux fluides ont des propriétés physiques et des limites de
porosités égales, ce qui signifie que la séparation des fluides n’au aucun effet sur la fonction
objectif ou contraintes.

Dans la deuxieme étude, un déséquilibre est créé dans les propriétés et les limites de
porosités des deux fluides afin d’observer la convergence de 71,. La configuration initiale est
représentée dans la Figure 2.18.A. Trois cas de calcul ont été considérés :

o CasA:ap =ap =0,a, =107 ety = @f, = 0.18.

e CasB:ias =0,ap, =103, a5 = 107 et 95y = @, = 0.18.

e CasC:ap =dasp =0,a, =107, ¢ = 0.1etgs, = 0.26.

Les solutions finales des cas A, B et C sont respectivement présentées dans Figure 2.18.B,
Figure 2.19 et Figure 2.20. Pour le cas A, n;a convergé vers 0 et 1 alors que n,e est égale a 0.5
dans tout le domaine vers 0 et 1, ce qui signifie que la convergence des mailles fluides vers le
fluide 1 ou le fluide 2. Le minimum de perte de charge correspond a I'accumulation du fluide 1
au milieu du canal d’écoulement et le fluide 2 dans le reste du canal. Dans le cas C, pour pouvoir
utiliser toutes les quantités du fluide 1 et du fluide 2, 1, prend des valeurs entre 0.71 et 0.74
dans toutes les mailles fluides. Ainsi les valeurs de 7, était proches du rapport de limite de
porosité du fluide 2 et la porosité totale des deux fluides (fluide 1 + fluide 2).

Ces trois exemples montrent la possibilité de la convergence des champs n; et 7,
simultanément, donc la possibilité de distribuer de facon optimale deux fluides et un solide dans
le domaine d’optimisation en utilisant la fonction d'interpolation pénalisée bi-eta.
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Chapter

Bi-fluid Topology
Optimization

2.1. Introduction

This chapter introduces a topology optimization method based on density approach applied
on mechanical fluid problems for bi-fluidic laminar flow. The general algorithm of the method
will be presented with detailed explanation on the implementation of the direct solver based on
finite volume method and sensitivity analysis using discrete adjoint approach. Two interpolation
formulas relating the design variables and the physical variables of the two fluids and the solid
are generated, tested and compared in order to select the most suitable one for the problem.
Constraints functions that limit the maximum fluid volume will be also described.

2.2. Problem formulation

The domain {2 is made of three subdomains: solid subdomain (2, first fluid subdomain
representing the cold stream ()¢;, and the second fluid subdomain representing the hot stream
Qf,. The subdomains represented in Figure 2.1 verify the materials conservation equation:
2 =05 U fs1 ULl It should be noticed that in the final solution there is no intersection
between the three subdomains. Boundary conditions could be:

o Walls at constant temperature T,,,.

e Walls subject to normal heat flux q,,.

e Adiabatic walls (dT /dn = 0).

e Inlet flows with parabolic profile u;; at constant temperature T;; for first fluid.

o Qutlet flows with parabolic profile ug;.
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o Inlet flows with parabolic profile u;, at constant temperature T;, for second fluid.
e Qutlet flows with parabolic profile u,.

Fluid is assumed to be Newtonian and incompressible under steady state laminar regime.
Furthermore the whole domain can be subject to a constant heat generation rate. Figure 2.1.A
shows a grey uniform initial domain and Figure 2.1.B shows an arbitrary possible final solution.

oo, fluid 2

ui,fluid 2

i, fluid 2

o . uo, fluid 1
Ui g1 ¢
Ti, fluid 1

(A) Initial domain

uo,fluid 2

o, fluid 1

(B) Arbitrary layout of possible final solution

Figure 2.1: Initial guess and final solution of bi-fluid topology optimization problem
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2.2.1. Fluid flow modeling

The fluid flow problem is solved using the Navier-Stokes equations, described by the
continuity equation (2.1) and momentum equation (2.2) as follows [94]:

P _
?+V.(me)—0 (2.1)

ou (g—l:+u.Vuj:—VP+yV2u +Y (2.2)

where p,, is the density of fluid mixture supposed constant (in intermediate state both fluids can
exist in the same cell), u and P are respectively velocity and pressure fields, u the fluid dynamic
viscosity and Y the fluid body forces.

For modeling the solid regions and fluid regions using the same momentum equation,
Borrvall and Petersson [66] proposed to add to the momentum equation an inverse permeability
coefficient a similar to the Darcy’s law within a porous media. Inverse permeability coefficient
ranges from zero value for fluid to a sufficiently large value for solid, thus at the limit, velocity in
solid regions goes to zero. Hence when the design variable takes intermediate value, the inverse
permeability will take a value between zero and its maximum limit, so the corresponding design
cell will be a porous media in which the velocity of the flow is slowed down in function of the
quantity of solid in the porous cell. Mathematically inverse permeability term acts like a velocity
absorption term. Physically this could be seen as internal body force, or a friction force
proportional to fluid velocity between the fluid and a small solid obstacle inside the flow. Y in
equation (2.2) is expressed as follows:

Y =—au (2.3)

Finally considering a steady state flow the derivative of the velocity with respect to time in
equation (2.2) will be equal to zero, and considering an incompressible Newtonian fluid the
derivative of density with respect to time in equation (2.1) is also null. Combining equation (2.3)
with equation (2.1), the fluid flow equations are expressed as follows:

Vu=0 (2.4)

P (uV)u +a(n)u=-VP+u(n)Viu (2.5)

It should be noted that fluid density and dynamic viscosity values in equations (2.4) and
(2.5) are function of the properties of the first and second fluids (equivalent fluid is mixture of
both fluids). Inverse permeability is function of equivalent fluid properties, solid material
properties or intermediate porous state between fluid and solid. The variables p,,, 4 and a are
then function of the variable design according to density approach.

Theoretically in order to have zero velocity in solid regions, ¢ should be a = oo for solid and
a = 0 for fluid to model pure fluid flow without obstacles. In practice the two limits cannot be
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applied, so @ should be bounded so that the lower value is @ = a < u and upper value is
a = a > u, as suggested in [66]. The inverse permeability value to enforce zero velocity in solid
regions depends on Reynolds number. Kreissl et al. [75] studied the variation of velocity with
respect to a for different Reynolds number and showed that when Reynolds number decreases
larger value of a are needed to force the velocity to go to zero in solid regions. However results
showed that @ = 10° is sufficient to ensure zero velocity in a solid cell for all Reynolds number.

It should be noted that it isn’t necessary to insert the diffusion term in left side of continuity
equation (2.1) similarly to multi-component fluids flow through a porous medium. Actually in
density approach method applied to fluid flow problems, in intermediate state both fluid 1 and
fluid 2 will form a third equivalent fluid, which in his turn form with the solid a single porous
material. The physical properties of the porous are interpolated between the solid, fluid 1 and
fluid 2. Hence the entire cell has a single velocity vector and there isn’t a flowing velocity for
each fluid apart.

2.2.1. Heat transfer modeling

For an isotropic porous medium where the radiative effects, viscous dissipation, and the
work done by pressure changes are negligible, assuming a thermal equilibrium between the
solid and fluid phases, the energy equation is expressed as follows [95]:

oT
(PCP)mEJF(PCP)f u.vT =V.(k,VT)+q, (2.6)
where p is the density, C,is the specific heat, k is the thermal conductivity, q the heat
production per unit volume, T the temperature and t the time. Subscript m corresponds to a
mixture of solid and two fluids. Subscript f corresponds to the mixture of two fluids without
solid. In real physical application (pCp),, and q,, are weighted mean values of solid and fluid

properties function of porosity.

The evaluation of the (equivalent) thermal conductivity of the porous medium k,, is a more
complicated task and depends in a complex fashion on the geometry of the medium [95]. For the
simple case where the medium is homogeneous, the overall thermal conductivity k,, is
evaluated by the weighted average value of the solid and fluids conductivities. This is considered
as the upper bound of the actual overall thermal conductivity according to [95].

In the present work, porous medium exists for intermediate design only and can then be
considered as a homogeneous material. Therefore homogeneous porous material properties will
be calculated using the penalized interpolation function instead of weighted average value
function. All the physical quantities of equation (3.6) are evaluated in the same manner. It should
finally be noted that in steady state condition the term 9T /dt will be equal to zero. Equation
(3.6) becomes:

(P(M)Cp (M) u.VT =V.(k(n)VT)+a(n) 2.7)
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2.2.1. Optimization problem

The topology optimization problem aims finding the optimum distribution of 2, ¢, and (2f,
subdomains defined by a vector of local design parameter 7, in order to maximize or minimize
an objective function F. The objective function depends explicitly on u, P and T respectively the
flow velocity, pressure and temperature fields computed by equations (2.4), (2.5) and (2.7). F
depends implicitly on n through the physical quantities computed by the interpolation function,
which are present in Navier-Stokes and energy equations, and also could depend explicitly on
the design parameter 7. Finally the problem is subjected to two porosity constraints for fluid 1
and fluid 2 respectively. The optimization problem (1.1) is now defined as follows:

min  F(z(n).,n) withz(n)=f(u,PT)

n

subjectto  Equations (2.4) (2.5) (2.7)
G, (1) <oy
Gy, (7)) <oy,

(2.8)

where @ and @f, represent respectively the maximum allowed porosity of fluid 1 and fluid 2 in
the design domain.

2.3. Algorithmic scheme

Topology optimization method consists of modifying the three sub-domains in order to
minimize the objective function in problem statement (2.8). The density approach discussed in
detail in paragraph 1.4.2 consists of changing continuously a local design parameter 1 stored in
each element over the discritized domain. The impact of each element subdomain’s belonging on
the objective function is provided by the objective function’s gradient and serves as the
convenient information to the numerical optimization method to converge design parameter
vector towards its optimal solution. It should be noted that density approach method consists of
varying continuously the penalization parameter p of the interpolation function, until it reaches
its most convenient value that ensures smooth convergence to black-and-white solution. The
different steps required to apply density approach using the penalization effect is divided into
two loops:

e Main loop (cf. Figure 2.2) consists of repeating the inner loop by changing the
penalization parameter p progressively. The number of iterations of the main loop is
evaluated by means of an integer s ranging from 0 to a prefixed number allowing
penalization parameter to reach successively its most convenient value. f(X) is the value
of the objective function computed in each iteration of the inner loop. &; and ¢, are the
residuals of the objective function in inner and outer loops respectively, to test the
convergence of the problem. f; and f; are initialized with 6, which stands for a number
larger than the objective function, in order to prevent the convergence from the first
iteration. This loop is repeated until reaching the global convergence.
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/INITIALIZATIO}' /

Jo=0
s=0
=1

A

fi=6
p=pls]

k

Jo=S(X)

s=s5+1

Inner loop

Figure 2.2 Main Loop

e Inner loop (Figure 2.3) enables to find the optimum values for the local design
parameters for a fixed penalization parameter p through a number of successive
iterations, which each one consists of the following steps:

1. Computing porous media properties using the interpolation function and the
design parameters from the previous iteration.

2. Solving the direct problem using finite volume method to find velocity, pressure
and temperature fields.

3. Evaluation of the objective function.

4. Evaluations of the derivative of the objective function with respect to the design
parameter using discrete adjoint approach.

5. Numerical optimization algorithm: Create the subproblem of the method of
moving asymptotes, which consists of finding an approximate convex function for
the objective and constraint functions, then solving the subproblem using the
interior point method..

Several regularization functions (filters) are used at different level of the algorithm. These
regularization functions allow better convergence of the optimization problem.
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Figure 2.3 Inner Loop

2.4. Interpolation functions with penalization

Topology optimization method applied to fluid flow problems have to decide whether to
place solid or fluid in each element of the domain. Fluid and solid phases are directly defined
using a discrete design variable stored in the design cell. The density approach with penalization
aims to replace the discrete variables by continuous variables. Penalization function coupled
with porosity constraints will then forces these variables to converge to desired discrete values.

The physical properties of each element of the porous media as well as its permeability are
defined as a function of this continuous design variable using an interpolation function.

In mono fluid optimization problem the design variable varies between 0 and 1, where 0
corresponds to solid phase, 1 corresponds to fluid phase and intermediate values of design
variable corresponds to a porous medium for the case in which fluid and solid exist
simultaneously in the same design cell.

The actual problem needs an interpolation function able to assign physical quantity in each
cell in function of the properties of the three phases : solid phase, fluid 1 phase and fluid 2 phase.
In this work, two interpolation schemes were developed and tested: The peak function based on
normal distribution function using a single design variable in each cell, and the multi-phases
interpolation function that uses two designs variables in each cell.
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2.4.1. Mono-eta interpolation function

The first interpolation scheme uses a single design variable in each cell, similarly to two
materials phases case (fluid and solid). The interpolation scheme is based on the normal
distribution function given as follows:

2
N =exp —% (2.9)

where 7 is the design variable, § the location parameter of the peak and p is a scale parameter. 8
and p determine the shape of the normal distribution function, as shown in Figure 2.4.

Normal Distribution function

0.8

0.6

p=0.15
04 -

p=0.1
02 - p=0.05

p=0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Variable design n

Figure 2.4 Normal Distribution function for § = 0.5,andn =0 ... 1.

Yin et al [96] used the same function for topology optimization of compliant mechanisms
with multiple material. The constitutive linear material property tensor is the sum of the
properties of n materials from which the mechanism is formed multiplied by the normal
distribution function, as follows:

(ni _ﬂm)2
2p, °

m

(2.10)

n
o, =) 0, eXp|—
m=1

When the design variable in a particular cell n; approaches S,,, which correspond to a phase
m, its normal distribution function approaches 1, which means the physical property in this cell
will be equal the physical property of m'’s phase. In case of interpolation of 2 fluids and 1 solid,
considering a design cell in the domain, x € £2:
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n=0 if xeQ
n=05if xeQ
n=1 if xeQ,,

(2.11)

hence: fry = 0,5 = 0.5 and 5, = 1. This distribution of each phase’s peak location along 1 axis
was chosen to have the most convenient physical representation of intermediate values of 7;: for
0 < n; < 0.5 we will have a porous media solid - fluid 1 and for 0.5 < ; < 1we will have porous
media solid-fluid2. Finally the mono-fluid interpolation scheme is expressed as follows:

5 3 2 1)
i > |+ o,exp ——(ni 0;5) +0,,EXp ——(77' Y

O, =0 EXp| —
. 2p,, 2p, 2p,,’

(2.12)

Equation (2.12) is drawn in Figure 2.5.A for arbitrary values of of;, 0f, and o, and for
Pr1 = Pr2 = Ps = p = 0.05. For the same values of variance parameter, interpolation function of
inverse permeability coefficient is sketched in Figure 2.5.B in which o7, = o5, = 0.

p=0.05 p=0.05
A1,y
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Design variable n Design variable n
(A) Mono-eta interpolation function for (B) Mono-eta interpolation function for
05 # 0f1 # Op; Os # 01 = Of3

Figure 2.5 Mono-eta interpolation function for inverse permeability coefficient

Finally fluids porosity constraints are expressed as follows:

G :—1 jexp ——(77)2 dQ<e (2.13)
1 n-1 ?
Gra=y E[exp (=) 2pf) dQ<g,, (214)
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where ¢fq and ¢y, are respectively the maximum allowable volume of fluid 1 and fluid 2 in the
optimization domain. It should be noted that N is the number of design variables N = N, X N,
N, and N, being respectively the number of horizontal and vertical design cells for a 2D design
domain.

A special attention should be given to the choice of the penalization parameters of the
interpolation function and the constraint functions. Figure 2.6 shows the constraint functions for
both fluid 1 and fluid 2 for p, = 0.16. Both functions goes approximately to 0 at n = 0.5, which
corresponds to the peak point of solid phase, thus this value of penalization parameter could be
considered as the ideal value for a good representation of fluid 1 and fluid 2 volume percentage
in a cell in function of design variable 7. Penalization parameters of interpolation function (2.12)
Ds,Pr1 and py, which correspond respectively to solid, fluid 1 and fluid 2 peaks could be taken
equal to a single value p. In order to ensure the convergence of design variables in all cells to 0,
0.5 or 1 and to omit all intermediate values of 7, the interpolation function of inverse
permeability coefficient should have a continuous negative slope between n = 0 and 0.5 and
between n = 0.5 and 1, thus the minimum value of a should strictly be at n = 0 and n = 1. The
slope of the interpolation function should also not decrease dramatically near 0.5, to prevent
reaching the minimum of permeability at ; > 0 or n; < 1, otherwise high level of intermediate
material will remain in the final solution. This requires a large value of p as shown in Figure 2.4.

Another important feature of the interpolation function that should be discussed is the
stationary point at 7 = B,;i4 = 0.5 that have null derivative do/dn = 0. The entire optimization
algorithm that search for the optimal value of ny depends on the slope of the local point on the
interpolation function. Thus the zero slope of 1 = 0.5 represents a major difficulty for the
algorithm to cross the stationary point and make transition from fluid 1 phase to fluid 2 and vice
versa. Hence the algorithm will be strongly dependent on the initial guess, for example if the
initial value of 7 is taken somewhere between 0 and 0.49 the algorithm will have difficulty to add
fluid 2 in optimal location, similarly if # initial is taken between 0.51 and 1 the algorithm will
easily add fluid 2 and will have difficulty to add fluid 1. This behavior will be clearly shown later
in application part where weak and tough points of mono-eta interpolation function will be
discussed.

0.8

06 - fluid 1

----- fluid 2

04

0.2 +

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Design variable n

Figure 2.6: Constraint functions for fluid 1 and fluid 2.
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2.4.2. Bi-eta interpolation function

2.4.2.1. Mono fluid interpolation function

In [66] Borrvall and Peterson introduced the first interpolation function to fluid flow
problems, they also provided the mathematical proofs that function allow the convergence to an
optimal solution. Many authors have latter adopted this interpolation scheme. According to this
function, the physical properties in each element of the domain vary continuously as a function
of a design variable n ranging in interval [0,1]. The interpolation convex function is defined as
follows:

1+p
n+p

o(n, p):as+(af—0'3)77 with 0<7 <1 and p>0 (2.15)

where o is a scalar standing for physical properties (for example inverse permeability
coefficient) with o; and oy the corresponding values for solid and fluid phases respectively. The
parameter p is a penalty parameter added to adjust the convexity of this function as presented in
Figure 2.7, and plays a decisive role in the convergence of the entire method. When the
penalization parameter tends to zero, the penalization function become more convex and the
optimization algorithm allows higher number of gray cells. At high values of penalization
parameter (p = 1), the interpolation function will have pseudo linear shape and will reduce the
number of gray cells. The level of grey material in function of the penalization parameter p, is
well studied and demonstrated in [66]. Borrvall and Peterson suggested starting the
optimization with low penalty values and gradually modifying the penalization parameter to
higher values. The function (2.15) could be written in general form:

. 1+
o(1.p)=90)o, +(1-g)o,  with gl =n-"— (2.16)
o c
GS
1 75 0 1 n
(A) Penalization function for o; > of (B) Penalization function for o; < of

Figure 2.7: Interpolation function (2.15) for different values of p
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2.4.2.2. Bifluid interpolation function

The development of multi fluid interpolation function is based on interpolation functions
already used in topology optimization of mechanical structure for multi material. Sigmund [52]
proposed a SIMP like interpolation model for three-phase interpolation, two materials and void.
He stated that it is most convenient to first interpolate between the two materials and then
interpolate between the resulting material and void. This formulation appears to be convenient
with fluid flow and heat transfer modeling where it was assumed that fluid 1 and fluid 2 form
together a single third fluid whose properties are interpolated between the two fluids, and the
third resulted equivalent fluid forms a porous medium with the quantity of solid present in the
cell. Following this assumption, the multi-material interpolation function introduced by Sigmund
in [52] appears to be convenient to the bi-fluid problem. It allows to interpolate first between
the two fluids and then to interpolate between the resulting equivalent fluid and the solid. The
interpolation function as expressed in [52]:

E(n,m,)=nd [772"2 E, +(1-75*) Ez] (2.17)

where E; and E, are respectively the elasticity of the two materials, and E the resulting elasticity
of the entire cell. ; and 7, are the design variables and p; and p, are their relative penalization
parameters. It should be noted here that void has zero value for the elasticity, therefore no
physical quantity for void phase appears in the formula. Therefore, for the case of two fluids and
one solid, where the solid phase has a value for its physical quantity, the general form of the
interpolation function could be expressed as follows:

o (m,,1,) = 9(my, pl)[g(ﬂz' pz)o_f1+(1_g(772’ pz))gfzj"'(l_g(’h’ pl))as (2.18)

whereay4, 05, and o, correspond respectively to fluid 1, fluid 2 and solid physical quantities.

It is clearly shown in equation (2.18) that 7, is used to interpolate between fluid 1 and fluid
2, and n, to interpolate between the resulting fluid mixture and solid. Replacing g(n,p) in
equation (2.18) by its expression used by Borrvall and Petersson for mono fluid interpolation
(equation (2.16)), equation (2.18) becomes:

1+ 1+ 1+ 1+
o (1111,) = 1 —2 {772 Pe 0f1+(1—f72 Pe ]sz}(l—m P ]GS (2.19)
m+p m,+ P, mn,+ P, m+p

Equation (2.19) is presented in Figure 2.8.A for o, = 10° and 0r1 = 0, = 0 as an example

for interpolation of inverse permeability coefficient. In Figure 2.8.B equation (2.19) is presented
for three different values of the physical constants: o5 = 50, o5y = 10 and oy, = 20. The local

design parameter 7 is now defined as follows:
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(0,Vn,(x)) if xeQ

n(x) = (1,(x),77,(x)) =1(1,0) if xeQg

(1,1) if xeQ,,

(2.20)

where x € 2,1, € [0,1] and n, € [0,1].n; could be considered as porosity of fluid mixture in the
cell and 1 — 1, as porosity of solid, whereas 7, is considered as the porosity of fluid 1 in the 1,
portion of fluid mixture present in the cell and 1 — 1, percentage of fluid 2 in n; quantity of fluid.
The porosity constraints represented in Figure 2.9, limiting the volumes of fluid 1 and fluid 2 can
now be defined as function of design parameters.

0 o 0 0

(A) Interpolation function for o¢; = oy, # Oy (B) Interpolation function for o¢; # o, # Oy

Figure 2.8:Bi-eta interpolation function

Optimization problem (2.8) can be expressed as follows:

min F(Z(ﬂ1’772)a771'772) with z(s,,77,) = f(u, P, T)

h’l2
subjectto  Equations (3.4) (3.5) (3.7)

1 (2.21)
Gy (m,1,) = WI% (1_772) dQ< o
Q

1
Gy, (m,m,) = Wj’?ﬁz dQ< ¢,
Q
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(A) Fluid 1 constraint (B) Fluid 2 constraint

Figure 2.9 Constraint function for fluid 1 (A) and fluid 2 (B) in a single cell

2.5. Finite volume discretization, direct problem

This paragraph presents the finite volume method applied to fluid dynamics problem as
introduced by Versteeg and Malalasekera [97]. The discretisation of the physical equations is
repeated to take into account the inverse permeability coefficient added to Navier-Stokes
equations. Equations (2.5) and (2.7) are discretized using finite volume method over a uniform
cartesian grid with control volumes at fixed size Ax X Ay. Temperature and pressure fields are
evaluated on the same control volume, named scalar control volume. The velocity components
are evaluated on staggered grids, where the control volume of the horizontal component of the
velocity is centered on the east face of the scalar control volume and the vertical component is
centered on the north face of the scalar control volume. The reason to use staggered grid for
velocity is to avoid the “checker-board” problem defined by the non physical behavior when
computing the pressure field if velocities are evaluated at original scalar control volumes, as
discussed in [97]. Design variables and physical parameters such as density, thermal
conductivity, etc are stored on the scalar grid.

Equation (2.5) is projected on x-axis and y-axis which leads to two equations respectively for
U and V, the horizontal and vertical component of velocity field, thus equations (2.5) and (2.7)
are represented in generic form as follows:

2 gl _0(p.08), 000
aX(l//U.¢)+ay(l//V.¢)+ﬁ¢ 8X(F'8Xj+6y(r'6yj+R (2.22)

where @ denotes for U,V and T and 3, I, and R are physical constants. They could be
summarized as follows (7 = (111, 7;) in bi-eta formulation):
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¢, =U w, = p(n) L, =u(n) B, =a(mn) R, =—0P/ox
¢ =V v, = p(n) L, = u(n) B, = a(n) R ==0P/oy ;3
¢r =T Yy =,0Cp(77) I'; = k(7) ﬂT =0 R, = a(7)
N
2 ) Tvn
|
R
w e #
K
s/ [ v,
)

Figure 2.10: Representation of a @; jcontrol volume

where subscripts u,vand T denotes respectively for U,V and T fields. Equation (2.22) is
integrated over a control volume represented in Figure 2.10 where its central node is P, its west,
east, north and south faces are respectively w, e, n and s and its W, E, S and N are its neighbor
nodes. It is then represented as follows:
[Ce¢e - Cw¢w] + [Cn¢n - Cs¢s ] + Sp¢P + Su =
[ D.(¢e ~¢5) =D (¢ by ) |+[ D, (4 ¢4 )~ D (=) |

(2.24)

where C and D represent respectively the advection and diffusive terms at cell faces and Sp and
Sy to represent source terms, expressed as follows:

C,=(yU)'Ay C,=(yU)Ay C,=(wW)Ax C,=(pV) Ax (2.25)
(2.26)
D,=Yrv p,=Yre p - p-Xp
AX AX Ay Ay
(2.27)

S,=fAXAy S, =—RAXAY
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Figure 2.11: Distribution of transport quanitites and their coefficients
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Figure 2.11 represents a spatial distribution of temperature, horizontal velocity component
and vertical velocity component and their conduction, advection and source terms over their
respective calculation grids. It should be noted that the understanding of spatial distribution of
all physical quantities, design variables, physical fields and their coefficients is very important in
the formulation of the discrete adjoint method, presented later in this chapter.

T control volume is the rectangle defined by the points A1, C1, C3 and A3 and its central node
at B2, U control volume is the rectangle defined by the points B1, D1, D3 and B3 and its central
node at C2, and finally V control volume is the rectangle defined by the points A2, C2, C4 and A4
and its central node at B3. Pressure P, ; is also evaluated at C2, similarly to the temperature T; ;.
At the same point the following parameters are stored:n; ;, nil_]-, 771-2,}-, @i jr Pijr Mijo ki jand Cp ;. It's
clearly shown that U-grid and V-grid are shifted respectively by half mesh in x-direction and half
mesh in y-direction in relation to the scalar grid. i and j are indexes used to locate the position of
each physical quantity and their terms on the corresponding calculation grid. For an
optimization domain having N, design cells in x direction and N, design cells in y direction,. i
and j vary as follows for every physical field grid’s:

U-grid: 1<i<N,-1 1<j<N, — Ny =(N,-1)xN,

V-grid: 1<N 1<j<N,-1 —N,=N,x(N, -1) (2.28)

X

T-grid: 1<i<N, 1<j<N, — N; =N, xN,

Where Ny, Ny and Ny are the grid size of U,V and T fields. For more details on calculation of
discretized terms, and considerations that have to be taken due to staggered grids, refer to [98].

2.5.1. Differencing scheme

To solve equation (2.24), transported property @ must be calculated at control volume faces
(D, D, D, D, at left hand side of the equation). This requires the use of an appropriate
differential scheme to compute those properties in function of properties at surrounding nodes

(QEJ ®W; ®Sl ®N' @p)!

¢face = f(¢nb) (2.29)

The choice of differential scheme becomes more critical in problems involving convection in
comparison with pure diffusion problems, because transported quantity is distributed in all
directions in diffusion process, whereas in convection the quantity is transported only in flow
direction [97]. Available numerical schemes used are: Central differencing scheme (CDS),
Upwind differencing scheme (UDS), Hybrid differentiable scheme (HDS), Quadratic upwind
differencing scheme (QUICK), etc. In this work two schemes were considered: the central
differencing scheme (CDS) for low Reynolds number flows and Quadratic scheme (QUICK) for
higher Reynolds number flows.
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2.5.1.1. Central Differencing Scheme

In central differencing scheme, the transport properties at cell faces are expressed as
follows:

_dotde
2

_dotdh

_ bt _ bty
2 - ¢s

A > >

Pu &,

(2.30)

Replacing cell faces properties expressions above in equation (2.24) for (i,j) control volume in
the discretized equation is then expressed as follows (see [97] for further details):

A:3J¢i,j = A\:\}J¢i—1,j + A;’J¢|+l,j + A§I’1¢|,j—l + A:]J¢|,j+1 +35,’ (2.31)
Where indexes (i,j), (i — 1,j), (i + 1,j),(i,j — 1) and (i,j + 1) corresponds respectively to indexes
P,W,E,S and N in equation (2.24). The coefficients of equation (2.31) are expressed as follows
[97]:

A= A4 A AT AV CH - ClT 4 Cl - ClT 4 ST

A\j\/’jID\i\;j+£C‘i\;j
2
A:J — Di’j _lcivi
e T e (2.32)
I p 1 e g3
A% s 278
L pid =gl
A\] n o

2.5.1.2. Quadratic upwind differencing scheme

Despite the advantage of CDS related to its differentiable and continuous formulation, it
suffers from not taking into consideration flow direction in the computation of transport terms,
and being limited to low Peclet numbers (Pe = C/D < 2) [98]. Thus for the same geometry and
same control volume dimensions (which defines the number of cells) and same physical
properties, increasing the velocity of the fluid requires decreasing the dimensions of the cell so
the Peclet number in each cell remains less than 2. Thus increasing the velocity of the fluid
requires increasing the number of cells. However the maximum number of cells in the domain is
limited by the maximum number of variables the optimization algorithm could handle, in
addition to the increasing in computational time when the number of cells increases. Therefore
Hayase et al [99] QUICK scheme (Quadratic Upstream Interpolation for Convective Kinetics),
which stability is independent from Peclet number, is implemented to be used in topology
optimization flows with high Reynolds number. Further details about QUICK scheme are
presented in appendix C1.
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2.5.2. Resolution of the equations system

After applying boundary conditions relative to every field, the problem becomes to solve the
equation system Ay.@ = By made of Ny = N, X N,, equations (N, and N,, are the number of

horizontal and vertical elements), where @ = U,V or T. @ is a vector made of Q)l-’j and By is a
vector made of source terms S}fj and constant @ corresponding to boundary conditions. Ay is a
non symmetrical pentadiagonal matrix made of coefficients A (equation (2.32)) having the

following form:

1,1 1,1 1,1
AVY -4 —Ak
2,1
Aw
1,2
_AS
A=
mmn—1
_An
m—1,n
_Ae
mn mn mn
—A7 —A™ A7

It should be noted that Ay and Ay, respectively the matrices of U and V velocity component
are diagonally dominant, which satisfies the boundedness property for differencing scheme. This
is ensured by the presence of inverse permeability a in S, coefficient which increases the value
of A,. The system is solved using the Biconjugate Gradient Stabilized method [100].

Velocity components of equation (2.5) verify continuity equation (2.4) if the pressure field of
equation (2.5) is correct. It could be seen from equations (2.4) and (2.5), that pressure and
velocity variables are higher than the number of equations. Therefore, an iterative method is
needed to solve the underdetermined system of equations (2.4) and (2.5) and find U,V and P
fields. Thus the velocity-pressure coupling problem is solved using SIMPLER (Semi-Implicit
Method for Pressure-Linked Equations Revised) [98], which is an improved version of SIMPLE
algorithm introduced in 1972 by the same authors based on guess-and-correct iterative
procedure for the calculation of pressure. A new equation system relative to pressure is
introduced by SIMPLER. Finally the four systems solved in finite volume problem are:

AU =B,
AV =B (2.33)
AP=B,
AT=B
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The discretized coefficients of matrix Ap and vector Bp are presented in details in [97].

In order to improve the convergence of the resolution procedure of the system of equations,
under relaxation factor is introduced which allows equation (2.31) to take into consideration
@; j computed on previous iteration of SIMPLER iterative procedure. Equation system becomes
expressed as follows [101]:

M = Z A1b¢nb +B+ 1;U/1UR Ap¢old (2-34)

R nb R

where Ayg is the under relaxation factor that varies between zero and one, A, the central
coefficient (equation (2.31)) and A4,,,corresponds to side coefficients (equation (2.32)).

2.6. Objectives functions

The total power dissipated in a porous fluid system is expressed as follows [102]:

2
. ou.
d)(u,a):j %,u E (%Jra—x‘] + E au’ |dQ (2.35)
— i i .
Q

L] i

where i and j denotes for the directions and u the velocity. Equation (2.35) evaluates power
dissipation locally at each cell inside the domain. Olesen et al. [73] stated that under steady state
condition and for the case where no slip condition u = 0 is applied on all external solid walls and
where velocity vector is perpendicular to surface at inlet and outlet, equation (2.35) could be
evaluated as follows on the inlet and outlet flow sections:

1 1
fd(u,P)zIu(P+5pu2de—J.U(P+§PU2jdr (2.36)

out lqln

where T',,; denotes the outlet sections of fluid 1 and fluid 2 at the boundaries and T;,, the inlet
sections of fluid 1 and fluid 2. In this work evaluation of fluid power dissipation will be evaluated
by both local (equation (2.35)) and global (equation (2.36)) criterion.

2.7. Sensitivity analysis

The next step in topology optimization algorithm requires the evaluation of the objective
function’s derivative with respect to the design variables. It could be seen from paragraph 2.6
that F = f,; depends explicitly from U, V, P and T hence depend implicitly from design vector (1)
in mono-eta formulation and the vector (14,7,) in bi-eta formulation, through the physical
parameters computed by the interpolation function. Hence the gradient of the objective function
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cannot be computed analytically. A simple method for computing the gradient is to take a small
variation in each design variable in turn and recalculate the objective function F, hence the
partial derivative is computed using the finite difference fomula:

dF _F(n+6m)—F()
dn on

(2.37)

However the computation time can be excessive, in fact the calculation of sensitivities of N
variables, requires N + 1 CFD calculations. A widely used technique in shape and topology
optimization for computing the sensitivity of the objective function is the adjoint method, in its
two forms: continuous form and discrete form. In both adjoint methods, the objective function
and physical (flow and thermal) equations are combined through the use of adjoint variables.
The entire combination creates the Lagrange function. The partial derivative of both physical
and objective functions with respect to physical variables (U,V, P and T) produces the adjoint
vector. Their partial derivative with respect to design variables and the adjoint vector computed
produces the gradient. However the difference between continuous and discrete adjoint is the
following: in continuous adjoint, all the equations are derived analytically from their initial
forms (equations (2.5),(2.7) and (4.6)), and then discretized and solved. In discrete adjoint
method, the same mathematical formulation is applied, but it's directly applied to the set of
discretized equations (finite volume discretization method in the present case). According to
Nadarajah and Jameson [103], the discrete gradients have better agreement with finite difference
gradients than the continuous gradients. However it was shown that this difference is small and
the difference between the three methods is reduced when the mesh sized is decreased. In this
work discrete adjoint approach is adopted for the calculation of the gradient, and is presented in
details below.

2.7.1. Discrete adjoint approach

Consider an objective function f(X(n)) subject to J(X,n) = AX — B = 0, the residual of the
resolution of system of equations in finite volume method. The Lagrange function is introduced
and defined as follows [104]:

L(X,n)=f(X)+2"3(X,n) (2.38)

where 2! is the adjoint vector, with the same dimension as the X vector. When X satisfies J, the
Lagrange function L is equal to the objective function f. The total derivative of equation (2.38)
with respect to 7 is:

b _d a9 2.39
dg dp  dp (259

Equation (2.39) could be written as follows in function of partial derivatives of the objective
and residual functions:
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dL (0J of of oJ 6X
— = | ==+ A= (2.40)
dn on on | oX oX 877
The critical term to evaluate in equation (2.40) is dX/n. Discrete adjoint approach suggests

that the adjoint vector verifies the equation multiplied by dX/dn, hence it doesn’t need to be
evaluated:

t t
A 2Py o (ﬂj 1= _(ﬂj (241)
X X oX oX

Finally after computing the adjoint vector using equation (2.41), known as adjoint equation
the total derivative of the objective function is established by the following equation

af _p ., 2.42
dn on Oon (242)

df
2.7.1.1. Calculation of —

dr

The direct variable vector X, design variable 7 and adjoint vector A are expressed as follows

A

U
n
X = V ﬂ: ﬂv 77:( lj n:(n)mono—eta
=) /Ip m, bi—eta

The residual function J(X,7n), which should verify X, is the discretized system of equations of
finite volume method:

(2.43)

Ju =AU-B,
J(X,7)=|J, =AV-B, (2.44)
J,=AP-B,

The evaluation of df /dn aims at solving the following systems of equations

()15

i:/’ita_\]_Fi

(2.45)
dn on on

With matrix % expressed as follows:
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8, 83, &,
ou oV oP
8l &), &, &,

— = (2.46)
oX o ov oP
o, dJ, 0dJ;
o ov oP
aJ . : .
And the vector 3 is expressed as follows for mono eta and bi -eta fomulations:
n
on,  om, on
oJ oJ 0J oJ oJ
S| %y Yy A 2 (2.47)
on | on  On, on | on
oJ oJ
el &]_P
8771 6772 bi-eta 877 mono—eta
Finally the partial derivatives of the objective functions are the following:
o
a U
of (o of | O of | of
—=|— —= — == (2.48)
01 \0M Jnono ta on | of oX | oV
6772 bi—eta o
oP

.0f /0X is a vector which elements are evaluated by deriving equation (2.36) with respect to
U,V and P over their calculation grid. The matrix d//dn has the same number of rows in mono-
eta and bi-eta formulations, but the number of columns doubles in case of bi-eta formulation
because each cell holds two design variables. In next paragraph details about the calculation of
0] /90X, and 0] /0n are presented.

dJ 0J

2.7.1.2. Calculation of — and —

oX on

The assembly of d//dX, and 0] /0dn lies on the derivatives of Jy = Ayx.X — By with respect to
every term of a vector y where X = U,V or P and y = X or 5. The derivative of Jy with respect to
y is expressed as follows:
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Ny _ A X - By + A, X (2.49)
oy Oy oy oy

It should be noted that 0X/dy = 1 if X =y and 0 otherwise. The critical term of equation

(2.49) is the evaluation of matrix dAyx/dy, which requires first to evaluate the derivative of the
coefficients Co”, €&, C&P, ¢, Dy’ DP, DEP, DEP, 537 and S&” of field X for a = 1 - N(X)
and b = 1 > N, (X) with respect to y; j, ( = 1 > N,(y) and j = 1 - N, (¥) )then to evaluate the
derivative of interfacial and center coefficients.. The derivatives of coefficients relative to central

differencing scheme are:

GAa’b ab a,b a,b ab a,b ab ab ab 6Sa'b
P _ oA, N oA N oA N oA N oC, B oC,, N oC; B oC, )
a7/i,j a7/i,j a?/i,j a7/i,j a7/i,j a7/i,j 67/i,j a7’i,j a7/i,j a7/i,j

OAY®  oDL" ! oc2®
a7’i,j a7/i,j 2 a7’i,j

8Afw B 6D:'b _1 8C:'b
a7/i,j a7/i,j 2 a7/i,j

(2.50)
OAM®  oD2" ! oc2®
a7’i,j a7/i,j 2 a7/i,j

aAf'b _ﬁDf‘b _18Cr‘?’b
a7’i,j a?”i,j 2 a7/i,j

oB&P B 8Sj’b
a7’i,j a7/i,j

The same method is applied for QUICK scheme, but using the derivative of its corresponding
interfacial and center coefficients, presented in Appendix C1. The matrix dAyx/dy;; is
constructed in a similar manner to the matrix A in finite volume method. Thus for every element
vi,; of y the following set of equations are computed:

oA ALY X, 0By a,
oA o | |l T
XX -——2=| : . : = s =] o (2.51)
i i laa oA 0B,
0% o7:; )\ X, 0% ,

The result of (2.51) is a vector which dimension is equal to r the number of elements of X grid.
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Finally the matrix Wy is constructed as follows:

oy
oA, , B,
87’i,j. 87/i,j
d
\ _ (2.52)

AN A if X =y
A —| ... =N, 0if X %7
oy

I
Z 3

With Ny = N, (X) X N,,(X) and N, = Ny(y) X N,,(y)For X = U,V or P and fory = U,V or P,
the sub matrices are evaluated and then the big matrix dJ/0X is assembled as seen in equation
(2.46). Simlarly, for X = U,V or P and for y = n the sub matrices that computes derivative of
discritized finite volume equations with respect to design variables are evaluated and the matrix
d//0n is assembled as seen in equation (2.47). For a domain having N, X N,, design variables,
d]/0X is a square matrix W x W with W = 3N, N,, — N, — N,,, and 9] /97 is a rectangular matrix
W x N, for mono eta formulation and W X 2N,, for bi fluid formulation with N, = N, X N,,.
Finally it should be noted that a special attention should be given to the spatial distribution of all
finite volume coefficients, physical and design parameters.

2.8. Regularization techniques

In topology optimization the following numerical problems could be encountered:
checkerboard that happens when solid and void appear in adjacent meshes (or solid and fluid),
mesh dependency when different results are obtained when using different mesh sizes for the
same problem and the appearance of intermediate state or porous cells in the final design [105].
Regularization techniques are used in order to avoid the checkerboard problem.

In their work [66], Borrvall and Petersson concluded that there is no need for regularization
techniques in fluid mechanics topology optimization problems for solving checkerboard. On the
contrary Wiker et al. [70] proved that regularization techniques are needed in such problems.
However, filtering can still be applied in order to ensure that no checkerboard will appear in the
final solution. Filtering methods for topology optimization are divided into two categories,
density based and sensitivity based. Density based filters [106], [107] are directly applied to the
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design variables, while sensitivity filters [105], [108] are applied to the computed sensitivities.
Density filters consist of replacing the design variable in each element of the domain by a
weighted average of the elements in a mesh-independent neighborhood of this element. It is
applied to the design variable in each iteration after the optimal solution is recalculated by the
optimizer and before CFD solution is calculated. Sensitivity filter on the other hand, is the
redefinition of the sensitivity at an element as a weighted-average of the sensitivities in a mesh-
independent neighborhood of this element. The neighborhood of an element is defined in
general as the elements whose centers are in a pre-defined distance from the center of this
element. In this work both sensitivity and design filters were used. Density filter of Bruns et al.
[106] was considered, which is defined as follows:

N
7, = Zwijni (2.53)
i1

where w;; is a weighting factor, 7); is the new density after applying the filter at i-th node and 7;
the initial density value at the same node. It exist in literature a wide range of weighting factors
w applied to filters, as linear weighting, Gaussian weighting, etc. In this work the following
weight factor is used [109]:

_r- d;
W _—Zr‘dn (2.54)
|

where 7 is the filter radius defined by the user and d;; is the distance between the central nodes
of i and j cells, where j is a cell that exist within a circle R of radius r centered at the central
node of cell i. w;; is equal to O for j elements outside the circle R. d;; is the distance between i
and ! elements, where [ denotes for all elements within the circle R. It should be noted that the
choice of the filter radius is very delicate and has a major impact on the convergence to the
optimal solution. Usually the filter radius varies dynamically throughout the optimization and it
should have a low value at the final iterations to allow the algorithm to reach black and white
solution. Using the same weighting factor, the following filter is applied on sensitivity field [109]:

o1, o .
A7, w = i 7 dn, (2.55)

2.9. Optimizer

The Method of Moving Asymptotes (MMA), adopted in this work, was developed by Svanberg
in 1987. The method is based on a special type of convex approximation [110] [111]. It can fit
single and multiple constraints, and proved to be efficient in topology optimization problems.
Svanberg proposed a better convergent version of MMA in 2002, the globally convergent version
of the method of moving asymptotes (GCMMA) [112]. However GCMMA needs relatively higher

66



calculation time. MMA has become a standard optimization tool for topology optimization
problems, especially with density based methods [113].

MMA solves the optimization problem as follows: suppose having the following optimization
problem:

minimize f ()
subjectto f*(r7)—b <0 i=1..,m (2.56)
n:f,min < 77:( < n;(max ] =1,..., n

where m is the number of constraints, n the number of variables and k the index of the iteration
in the optimization loop.

At each iteration a subproblem is created, in which the functions f(x) (objective function
and constraint functions) are replaced by an approximated convex function f*(x) [111]. The
approximated functions are computed on basis of the gradient information of the current
iteration point and the moving asymptotes of the current iteration. The moving asymptotes are
the lower and upper asymptotes in function of current iteration point r]}‘, the previous iteration
point r];-‘_l and the asymptotes of the previous iteration, and a dimensionless parameter to limit
the search area of optimal point between the asymptotes. Many authors proposed new methods
to update the approximation functions [113] [114], and to improve the convergence of the
original method proposed by Svanberg [111]. The subproblem generated by MMA is then solved
using “primal-dual-interior-point method” to find the optimal point n*** that will be used in
next iteration.

2.10. Results

2.10.1. Mono-eta formulation

The configuration presented in Figure 2.12. is a square domain of 36 mm side length having
an inlet and outlet section for each fluid respectively at west and east sides The maximum
porosity for each fluid is is ¢f1 = @5, = 1/6, which is equivalent to the volume of fluid required

by a straight line between the inlet and outlet of each fluid. Both fluids enter and leave the
domain with same velocity profile: u;fiq1 = Uo fiuia 1 = Wifiuid 2 = Yo fluid 2- The inverse
permeability coefficients are: af; = ar, =0 and ag = 107. The remaining of fluid physical
properties are considered constant in equation (2.5) pg = ps, = p = 1000 kg/m3 and
Ur1 = Uz = 0 = 0.001 Pa/s. This means that only « is interpolated using equation (2.12) The

size of the design grid is 36 X 36. Four different simulations were conducted in the present case
study, which initial configuration is depicted in Figure 2.13. The four simulations differ by the
initial guess of n field, in order to analyze the behavior of mono-eta interpolation function
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regarding its stationary point, as discussed in the previous paragraph. The first column in Figure
2.13 shows the homogeneous initial domains whereas the second column shows their
corresponding topology optimization results

|
6
— | —
Ujf2 —— —~ | ——=Uof2
— 6, —
|
3
— | —
Uj 1 —— — —— Ug 1
— 6 ——-
|
! 5

Figure 2.12: Initial configuration of double pipe example for mono-eta formulation

The objective function minimized is the global fluid power dissipation (F = f;).The color
map used to represent the values of design variables field  in the domain varies from blue to
grey passing by light blue (0 to 0.5) and from grey to red passing by light red (0.5 to 1). It could
be clearly seen from topology optimization results in Figure 2.13 that approximately all cells
converged to one of the three phases: fluid 1, solid or fluid 2. As discussed before, the
convergence to pure solid, pure fluid 1 or pure fluid 2 cells(n equal to 0, 0.5 or 1) has some
requirements on the shape of the interpolation function. It has been found that p > 0.15 is
required to ensure the total convergence to the discrete values that defines the three phases.
However despite reaching 0-0.5-1 discrete solution with p = 0.16, it was not sufficient to reach
the global optimum and further increasing of p was required. Finally the optimal solution seen in
Figure 2.13.D was reached with p = 0.25. For this value of p, inverse permeability coefficient at
n=0 and n=1 is much higher than af, = ar, =0, which will lead to unrealistic and
underestimated values in velocity fields. Hence the values of the objective function in Table 2.1
are much higher than the real values of fluid power dissipation caused by fluid motion. Figure
2.13.B and C showed that topology optimization results reached in cases B and C are not global
optimums, and their corresponding values of the objective function is higher than in case D
represented in Figure 2.13.D, which is the global optimal solution for this problem.

Figure F=f4
Figure 2.13.A 0.00081224
Figure 2.13.B 0.00030124
Figure 2.13.C 0.00030125
Figure 2.13.D 0.00021481

Table 2.1: Objective function of topology optimization result of Figure 2.13
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Figure 2.13: Topology optimization results for various initial values of
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Figure 2.14: Mono-eta interpolation function for double pipe configuration

Regarding the final optimal shape reached in function of initial value of 7, results showed:

o  Forn,itiar = 0.5, the optimization algorithm was not able to add nor fluid 1 nor fluid
2 in the domain and all cells remained pure solid, (Figure 2.13.A). The reason is the
null derivative of the objective function at this point.

o  Forn,itiar = 0.51, the algorithm begins to add only fluid 2, represented by red color,
between inlet and outlet sections of fluids. However the two pipes formed by fluid 2,
don’t fill the complete section between the inlet and outlet boundaries of each pipe,
due to the porosity constraint of fluid 2 that is equal only to the volume of one
complete pipe. Fluid 1 quantity represented by blue color, which was added at later
stages of optimization process couldn’t be added in the optimum place to complete
fluid pipes which show the difficulty to add fluid 1 when the initial value of design
variable is greater than 0.5, as seen in Figure 2.14. It should be noted that same
structure is reached when the initial value of n is higher than 0.51.

o  For niuitiar = 0.49 the same behaviour as for 1n;,itiq; = 0.51 is observed but with
convergence towards fluid 1 instead of fluid 2.

o For the case where 1;itiq; = 0.51 in the upper half of the domain and 71;,;¢i4; = 0.49
in the lower half of the domain, the algorithm was able to reach global optimal
solution and to optimally distribute fluid 2 in the region where 1;,itiq; > 0.5 and
fluid 1 in the region where n;,itia; < 0.5. It could be clearly seen from Figure 2.13.D
that the allowable porosity of each fluid occupied the straight line between inlet and
outlet section, which is the optimum solution for this kind of configuration. This
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means that the optimization algorithm was able to easily reach the global optimal
solution and to distribute fluid 1 and fluid 2 simultaneously but with the help of the
initial guess.

2.10.2. Bi-eta formulation

2.10.2.1. Double pipe example: symmetric properties of fluids

Figure 2.15: Bi-eta topology optimization of double pipe domain

The initial configuration for this case is the same presented in Figure 2.12, but with side
length 96 mm, and a design grid size 96 X 96. The maximum porosities are @s; = @5, = 1/6.
The objective function minimized is the global fluid power dissipation (F = f;). Figure 2.15
shows the final result of n, field, where the black color represents solid cells (7; = 0) and white
color represents fluid cells (n; = 1). It should be noted here that white color cells are made of 50
% fluid 1 and 50 % fluid 2, which means a mix of both fluids. The design variables ; converged
to their upper and lower limits, known as black-and-white solution, whereas 7, remains equal to
0.5, its initial value, in all design cells. Density and dynamic viscosity are constants in equation
(2.5) (p = 1000 kg/m3 and u = 0.001 Pa/s), whereas a is computed using equation (2.19), with
apy = s, = 0and ag = 107.

Topology optimization result of bi-fluid problem using bi-eta interpolation function depends
on the convergence of two design variables in each cell: n; for the separation of solid and
equivalent fluid phases, and 7, for the separation of fluid 1 and fluid 2 phases in the fluid portion
of the cell. It is obvious here that n; converged to a discrete solution, whereas 1, remained equal
to its initial value in all design cells. This behavior was predictable because the term
9(2,02)04 — (1 — g(n2,p2))0p is constant, hence equation (2.19) is similar to (2.15), which
means the gradients of the objective and constraint functions with respect to 7, are null
(0r1 = 05, and @5y = @f;) Thus separation of fluid 1 and fluid 2 phases has no effect on the
minimization of the objective function nor on constraint functions.
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Regarding the convergence of 14, it could be seen that the quantity of each fluid occupy the
straight line between the inlet and outlet sections, which is equal to the maximum volume of
fluid allowed by the porosity constraints. This means that the final solution reached by the
algorithm is the real optimal solution which is known a priori for this configuration. Figure 2.16
shows the minimization of the power dissipation function. At first the objective function
decreases quickly while the algorithm tends to reallocate the fluid from the entire domain to
form a continuous fluid flow between the inlet and outlet boundaries. After iteration 24, an
approximated architecture for the channel is visible, and the algorithm changes the values of
design variable at the solid fluid interfaces to get the optimal shape of Figure 2.15. Figure 2.17
shows that f; (F = f;) continue decreasing after iteration 24, to reach the optimal solution after
61 iterations approximately. It should be noted also that sensitivity filter was used at the
beginning of the optimization to help the algorithm avoiding checkerboard problem. This filter
was omitted later to allow the convergence to a discrete 0-1 solution for 1, field.
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Figure 2.16: Variation of power dissipation objective function f; throughout the optimization process
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Figure 2.17: Variation of power dissipation objective function f; from iterations 24 to 60
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2.10.2.2. Single pipe example: non-symmetric properties for fluids

In the second example, an imbalance in fluid 1 and fluid 2 properties and maximum
porosities is created to study the convergence of 1, design field. In the previous example inverse
permeability coefficients of both fluids af; and ay, where equal to 0, and the maximum
allowable porosities of each fluid in the domain ¢, and ¢f, were also equal, 7, remained equal
to 0.5 in all cells, hence all fluid cells were made of a mixture of 50 % fluid 1 and 50 % fluid 2.

The configuration presented in Figure 2.18 consists of a single inlet and single outlet for fluid
flow located respectively at west and east sides of the domain. The remaining boundaries are
adiabatic non slip walls. The Reynolds number of the fluid based on the average inlet velocity
and its inlet dimension [/5 is Re = 12. The dimension of design variable grid is 60 X 60. Figure
2.18.B shows the topology optimization result of design field n, for equal values of the inverse
permeability coefficients ar; = as, = 0, and equal maximal global porosities of fluid 1 and fluid
2 ¢ = @f, = 0.18. The inverse permeability of solid is set to a; = 107. Similarly to the
previous example, 1, field remains equal to 0.5 in all cells, thus all fluid cells are half fluid 1 and
half fluid 2. To study the convergence of 1, when the distribution of different fluids phases has
an impact on objective and constraint functions, the simulation of single pipe example is
repeated with different inverse permeability coefficients for fluid 1 and fluid 2 where: a, = 107,
ar1 =0 and ap, = 103, and for different maximum porosity constraints: ®r1 = 0.1 and

@2 = 0.26.In all three cases p = 1000 kg/m3 and u = 0.001 Pa/s (Independent from 7, and 7,

uj

I
I

Ug

N

(A) Initial configuration (B) Topology optimization result

Figure 2.18 Single pipe configuration (A) and its optimisation result (B) (1, field) using bi-eta
interpolation function for as; = ar, and @f1 = @f;

Figure 2.19 show the optimization results in case where a, = 107, ar1 = 0 and a5, = 103.
The presence of only white and black color, and the absence of any grey cells in Figure 2.19.B
and Figure 2.19.C show the complete separation of fluid 1 and fluid 2 phases, which means
complete converge of 1, field to 0-1 solution. Fluid 1 with lowest permeability among the three
phases is accumulated in the middle of the fluid channel and fluid 2 which has ay, > ay; is
accumulated in the remaining space between fluid 1 and solid-fluid interface at the upper and
lower boarders of the channel. Figure 2.19.D shows the three phases simultaneously in the
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domain where black color represents solid phase, white represents fluid 1 and red represents
fluid 2.

(A) Design field n, (B) Fluid 1 field

(C) Fluid 2 field (D) All three phases

Figure 2.19: Topology optimization result for as; # ay,

In order to explain the distribution of fluid phases in Figure 2.19 obtained by the
optimization method, fluid power dissipation due to fluid friction F; = 2.19 x 1078 W, is
compared with the fluid power dissipation of the following cases:

g = 103 and ap, = 0, thus the fluid in the centre of the channel has the higher
permeability coefficient. The power dissipation in this case is F, = 1.02 x 1077 W.

ar; = 0and ayp, = 103 similarly to the study case, but with 17, equal to 0.5 in all cells.

This means all fluids cells are made of the equivalent fluid, which corresponds to a
mixture of 50% fluid 1 and 50 % fluid 2. The power dissipation in this case is
F; =221 x1077 W.
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The comparison cases show that F, and F; are 10 times bigger than F; which explains the
distribution of fluid 1 and fluid 2 inside the fluid channel in Figure 2.19.D.

The optimization of single pipe configuration is performed again with equal inverse
permeability coefficients for fluids af; = ay, =0, but with different porosity constraints:

@51 = 0.1 and @, = 0.26. The sum of total fluids porosity is still the same, equal to 0.36, as for
the case when porosity constraints were equal for fluid 1 and fluid 2. Topology optimization
results are presented in Figure 2.20.

(A) n, field (B) Fluid 1 field (C) Fluid 2 field

Figure 2.20 Topology optimization of single pipe with @¢; # @f,

The color map is defined as follows: when the values go from 0 to 1, representative color
goes from black, to dark red, then red, then yellow, then light yellow and finally to white. Figure
2.20.A shows the complete convergence of n, field to black-and-white solution, where the shape
of the fluid channel is similar to the channel in the structure of Figure 2.18.B. Figure 2.20.B and
Figure 2.20.C show that the fluid inside the channel is a mixture of fluid 1 and fluid 2 with the
major quantity belongs to fluid 2. In fact to take advantage of the ¢, — ¢y = 0.16 excess
porosity of fluid 2, n, varies between 0.71 and 0.74 in all fluid cells which have n; = 1. This
means that in average each cell is made of 72.5 % of fluid 2 and 27.5 % of fluid 1, which is
approximately equal to the ratio of fluid 2 mean porosity over the calculation domain:

Pt 0.26
@i+, 026401

=0.722 (2.57)

These three examples shows the possibility of the convergence of 1, and 7, fields
simultaneously, hence to optimally distribute two fluids and one solid phase in a fixed domain
using the bi-eta penalized interpolation function developed in paragraph 2.4.2.
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2.11. Case studies

As seen in last paragraph, bi-fluid topology optimization problem is solved similarly to
mono-fluid problem in bi-eta formulation when the two fluids have similar physical properties
and maximum porosity limit. In this paragraph, identical properties and porosities limits for
fluid 1 and fluid 2 will be considered, which allow comparing the results of the method with
mono fluid literature results. Evaluation of fluid power dissipation by global and local objective
functions (respectively equations (2.35(2.36) will be considered. CDS and QUICK schemes and
their corresponding discrete adjoint method will be also considered. It should be noted that in
previous results global objective function and CDS scheme were used.

2.11.1. Diffuser

w|rr w|r

TR

w|rr-

AR EEREERRERERA R

Figure 2.21: Initial configuration of diffuser case

The diffuser case depicted in Figure 2.21 was studied in [66] and [69] for low Reynolds
numbers. The fluid enters the square shaped domain from the whole west edge, and leaves it
from a section located at the center of the east edge and covering one third of its length. To
ensure mass continuity through the domain, the velocity at outlet section is three times bigger
than the inlet velocity. The density of both fluids is p = 1000 kg/m3 and the dynamic viscosity
p = 0.001 Pa.s. The maximum porosities of fluid 1 and fluid 2 are respectively ¢, = 0.25 and
@2 = 0.25. 7, have an initial value in the whole domain equal to 0.5, and because of the equality
of fluids properties and maximum porosities, 17, remains constant throughout the optimization.
Hence the problem is similar to a mono fluid optimization problem with an equivalent fluid
having the same density and dynamic viscosity as fluid 1 and fluid 2, and having a maximum
porosity limit ¢f., = 0.5. The inverse permeability coefficient is equal to 0 for the equivalent
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fluid and 107 for the solid phase. The Reynolds number based on inlet section length L and the
average velocity at the inlet section is Re = 2.9. The domain has 96 mm side length and is
discretized into 96 X 96 design cells.

Global and local fluid power dissipation are considered in this example. For global power
dissipation function, the velocity components U and V belongs to the boundaries outside the
design domain, which means that the partial derivative of the global power dissipation function
with respect to velocity is null. Pressure components are shifted by half mesh from velocity
components, hence they are evaluated at meshes inside the design domain facing fluid inlet and
outlet boundaries. Figure 2.22 shows an example of the spatial distribution of pressure and
velocity components involved in the calculation of global power dissipation. i and j are indexes
to locate the meshes at inlet and outlet velocity boundary conditions. It should be noted also that
the global power dissipation function doesn’t depend directly from design parameter, hence its
partial derivative with respect to 7 is null. Equation (2.48) for global power dissipation is then
expressed as follows (f = f;):

0 0
i | g
on X (258)
d 0 bi—eta 6fd
oP
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U, ®
- @
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| | |
\ \ \Z
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Figure 2.22: Calculation of global power dissipation

Local power dissipation function is computed in function of velocity field, the partial
derivatives of velocity components and the inverse permeability coefficient a. The partial
derivatives of U and V (0U/dx, dU/dy, dV/dx and 0V /dy) are discretized using a central
scheme of second order. The velocities are linearly interpolated to move them to the center of
the design cells. Hence the partial derivatives are expressed as follows (see Figure 2.23):
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Figure 2.23: Calculation of local power dissipation
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The presence of inverse permeability coefficient in the expression of local fluid power
dissipation function makes it directly dependent from design variables; hence the
equation(2.48) is expressed as follows (f = @):

15,0
o ou
op | O ob | o
—= —=| = (2.60)
on o0 oX oV
8772 bi—eta 0

Optimization results using both objective functions are presented in Figure 2.24. The
simulations were conducted using central differencing scheme. The only difference that could be
seen between the two structures is that in case of local evaluation of objective function, the fluid
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channel’s upper and lower limits at west side are located at the north west and south west
corners of the domain, whereas for global objective function these limits are a little bit shifted
toward the center of the west edge. However this could be considered as a minor difference
which has not a significance impact on fluid power dissipation. Hence both objective functions
had led to the same structures which are similar to the result of Borrvall and Petersson in [66].
Finally it should be noted that the number of iterations to reach the final optimal solution for
both simulations were similar too (72 iterations for the global objective function and 78
iterations for the local objective function).

Minimization of global fluid power (B) Minimization of local fluid power
dissipation dissipation

Figure 2.24 Topology optimization results of the diffuser case

2.11.2. Bend pipe

L/10

1 1
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Figure 2.25: Initial configuration of bend pipe case
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The second case is the bend pipe pictured in Figure 2.25 which was considered in [66] for
low Reynolds numbers and in [76], [72] and [116] for low to moderate Reynolds number. The
domain is square shaped with side length L = 100 mm. The fluid enters the domain from the
west side and leaves it from the south. The same equivalent fluid properties of diffuser case are
considered in this example. The maximum equivalent fluid porosity is @f.q = 0.25. In this
example QUICK scheme was used in finite volume method with its corresponding discrete
adjoint in sensitivity analysis, which allows to consider higher Reynolds number than in the case
of using CDS scheme. Fluid power dissipation was evaluated using the global criteria.

A. Re=2 B. Re =200 C. Re =1000

Figure 2.26 Topology optimization results of bend pipe case

Figure 2.26.A, B and C show the optimization results respectively for Reynolds number equal
to 2,200 and 1000. We can see that for low Reynolds the pipe is straight, whereas for Re = 1000
the pipe has an arc shape. The same shape variation of the bend pipe with respect to the increase
of Reynolds number were observed in [76], [72] and [116]. Sigmund [116]. stated that the bend
has sharp corners for low Reynolds number, but the corners become rounder when the inertia
term increases, which are also observed in this study. To investigate the topology optimization
results, fluid power dissipation was computed for Re = 2,200 and 1000 for the structures seen
in Figure 2.26.A, B and C. Table 2.2 shows an analogy between the results of topology
optimization in Figure 2.26 and the results of the investigation conducted.

Re =2 Re =200 Re = 1000

Figure 2.26.A fa=382x10"10Ww fa=532%x107% W  f,=2754%x10"%"W
Figure 2.26.B fa=384x10"10Ww fa=431x107°W  f, =1.649 x 107% W

Figure 2.26.C  f;=541x10"1W  f,=541x107°°W  f, = 1.556 x 10~ W

Table 2.2: Investigation of topology optimization results of the bend pipe case
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2.11.1. Conclusion

In this chapter the method of bi-fluid topology optimization was introduced, with detailed
explanation of each part of the algorithm. The method is based on coupling the Finite Volume
Method for the direct solver, the discrete adjoint method for sensitivity analysis and the method
of moving asymptotes for the non linear optimization problem. In order to introduce three-
phase (two fluids and one solid) to the fluid flow problems, two interpolation functions for
density approach were developed, implemented an tested : mono-eta interpolation function
(using a single design variable 7 in each cell), and bi-eta interpolation function (using two design
variables 1, and 7, in each cell).

Mono-eta formulation has the advantage that it uses fewer variables than the bi-eta
formulation but suffers from major drawbacks that limit its use. First the convergence shows
high dependency to initial guess of the design field 1;,itiq;, Where the convergence of the
algorithm to the global optimal solution was possible only when the initial design field is set up
with convenient values. Second the convergence to global optimal solution needs high values of
penalization parameter p, in this case the permeability coefficients of the two fluids are not
equal to 0, which affect the modelling of fluid phases in Navier Stokes equation. Despite these
inconvenient mono-eta interpolations function stills an interesting formulation, especially when
higher number of phases has to be handled.

In Bi-eta interpolation function each design cell holds two design variables, 1, to interpolate
between solid and fluids phases, and 7, to interpolate between fluid 1 and fluid 2 phases. Results
showed the capability of convergence of both design fields simultaneously to optimal solution
without being affected by the initial guess, hence this method optimally distribute one solid
phase and two fluids phases only in function of minimizing the objective function subject to
constraint functions and physical equations of the problem.

For designing bi-fluid engineering devices using bi-fluid topology optimization an important
feature should be considered: separation of fluid phases under any set of parameter values and
forcing each fluid to take its own path throughout the domain without crossing or mixing with
the channel of the second fluid. Fluid 1 channel should consist only of 100 % fluid 1 cells, and
similarly fluid 2 channels should be made only of 100 % fluid 2. This will be the topic of the next
chapter, in which many methods will be implemented to force the separation of fluids
subdomains, avoid their intersection and preserve a minimal solid thickness (at least one solid
cell) between them.
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Chapitre 3: Séparations des sous-domaines fluides

1. Introduction

La méthode d'optimisation topologique bi-fluide présentée dans le 2é¢me chapitre manque
encore d'une caractéristique tres importante: sa capacité a séparer les deux fluides. Par
conséquent la méthode ne peut pas encore étre considérée comme une méthode d'optimisation
de topologie bi-fluide capable de créer des canaux indépendants de chaque fluide. Les résultats
du chapitre précédent ont montré que le probléme bi-fluide est encore résolu comme dans le cas
d’optimisation topologique mono-fluide, avec un seul fluide équivalent, dans le cas ou les
propriétés physiques et les limites de porosité du fluide 1 et fluide 2 sont égales. L'objectif de ce
chapitre est de trouver la méthode la plus appropriée pour :

o Premierement, empécher le mélange du fluide 1 et du fluide 2 dans la méme cellule

lorsque I'algorithme converge vers la solution finale.

e Deuxiemement, assurer la continuité de chaque fluide, c.a.d. que chaque fluide soit
transporté dans un ou plusieurs tuyaux qui relient les sections d'entrées et de sorties de
ce fluide, qui sont prédéfinies par le concepteur sur les limites du domaine.

e Troisitmement, s'assurer que les canaux de deux fluides différents ne puissent pas se
mélanger ou se croiser, et que l'algorithme doit étre capable de maintenir une épaisseur
solide minimale entre les canaux.

Pour cela, trois méthodes différentes ont été suggérées dans ce chapitre, pour assurer la
séparation des fluides :

1. En introduisant une nouvelle fonction objectif qui pénalise la présence de deux fluides
différents dans la méme cellule, ou dans des cellules voisines.

2. En prenantl'effet de pénalisation comme une fonction de contrainte.

3. En modifiant le coefficient de perméabilité inverse (paragraphe 2.2.1) ou le fluide 1 sera
un obstacle pour le fluide 2 et vice versa, ce qui affectera directement la fonction objectif
de dissipation de puissance totale du fluide f;.

Afin de sélectionner la technique la plus appropriée, les trois méthodes ont été testées et
comparées pour divers cas d’études.

2. Fonction objectif de continuité

a) Formulation et implémentation

En partant d'un domaine initial homogéne d’'un matériau intermédiaire, la méthode
d’optimisation topologique bi-fluide doit séparer les deux fluides et le solide en minimisant la
fonction objectif et en respectant les fonctions contraintes. Le calcul de coefficient inverse de
perméabilité a par la fonction d’'interpolation pénalisée assure la convergence de n; a 0 ou 1,
c.a.d. a la phase solide ou fluide, sans distinction entre fluide 1 et fluide 2. Cependant il n’y a
aucune raison mathématique ou physique a faire converger n, vers 0 ou 1, c.a.d faire converger
le fluide vers le fluide 1 ou fluide 2, ce qui fait que toutes les cellules fluides sont constituées d'un
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mélange de 50% fluide 1 et de 50% fluide 2. Par conséquent, une fonction objectif est formulée
et ajoutée au probléme d'optimisation multi-objectif afin d'empécher mathématiquement le
mélange des fluides. La fonction objectif, appelée fonction de continuité f. est exprimé dans les
équations (3.1),(3.2),(3.3)et (3.4). La Table 3.1 montre que la fonction de continuité n’aura pas
des valeurs positives sauf dans le cas ou deux fluides différents sont présents dans deux mailles
voisines. La fonction multi-objectif, couplant la fonction de perte de charge et la nouvelle
fonction de continuité, est exprimée dans (3.6).

b) Résultats

Le probléme d’optimisation consiste maintenant a minimiser la fonction de perte de charge
en assurant que la fonction de continuité converge vers 0 dans la solution finale Figure 3.2.A
représente le domaine d’optimisation du premier cas d’étude ayant une entrée et une sortie
pour chaque fluide. La solution finale, représentée dans la Figure 3.2.B, montre la création de
deux canaux paralleles : le premier reliant 'entrée et la sortie du fluide 1 formé par des mailles
100% fluide 1 (n; = 1 etn, = 0) et un deuxieme reliant 'entrée et la sortie du fluide 2 formé par
des mailles 100% fluide 2 (n; =1 et n, = 1). Ainsi 'architecture des canaux générés est
similaire a celle du paragraphe 2.10.2.1, et la seule différence demeure dans la nature du fluide
dans chaque canal. Ainsi, la fonction de continuité avait un effet uniquement sur les variables de
conception 7,, c.a.d sur la composition des mailles fluides, et n’avait aucun effet sur 5, c.a.d sur
la forme des canaux d’écoulement. Cependant, ce n'est pas le cas pour toutes les configurations,
ou pour certaines géométries une contradiction entre la fonction de dissipation de puissance du
fluide et celle de la continuité peut se produire. Cela conduira a différentes architectures de
canaux de fluide avec et sans séparation des fluides, comme le montre le deuxiéme cas d’étude.

La deuxiéme configuration est présentée dans la Figure 3.5. Les résultats d’optimisation
topologique avec et sans séparation des fluides par la fonction de continuité, sont présentés
respectivement dans les Figure 3.6 et 3.7. Sans séparation des fluides, I'algorithme joint les
canaux d’écoulement en un seul canal au milieu du domaine, puis le sépare avant la sortie. Or, en
considérant la fonction de continuité dans la fonction multi-objectif, chaque fluide est transporté
par son propre canal reliant I'entrée et la sortie de ce fluide, indépendamment du canal
d’écoulement de 'autre fluide. Au moins, une maille solide sépare les canaux d’écoulement des
différents fluides. Cet exemple montre que l'utilisation de la fonction objectif de continuité
assure la séparation totale des fluides et omettra toutes les valeurs intermédiaires de 7,.
L'algorithme recherchera la forme des canaux de fluide pour avoir la perte de charge minimale
mais en respectant la condition de séparation des fluides.

3. Modification du coefficient inverse de perméabilité.

Dans le paragraphe précédent, les sous-domaines fluide 1 et fluide 2 sont séparés en utilisant
une fonction objectif qui pénalise la présence de deux fluides différents dans des mailles
voisines. Cette fonction objectif a été ajoutée a la fonction multi-objectif unique minimisée par
'optimiseur. Dans ce paragraphe, une autre méthode est formulée pour forcer la séparation des
sous-domaines fluides, en agissant indirectement sur la fonction de dissipation de puissance du
fluide par I'intermédiaire du coefficient de perméabilité inverse a dans 1'équation de Navier-
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Stokes. Le coefficient de perméabilité initial ralentit la vitesse d’écoulement
proportionnellement a la quantité de solide dans la maille. Cependant, un autre terme
proportionnel a la vitesse du fluide est ajouté a ’équation (2.5), et agit comme une force interne
ou un terme d'absorption au champ de vitesse lorsque deux fluides différents sont présents dans
la méme cellule ou des cellules adjacentes. Ceci pourrait étre vu comme si le fluide 1 agissait
comme un mur pour le fluide 2 et vice versa, ce qui augmenterait la dissipation de puissance
totale du fluide. La nouvelle expression du coefficient inverse perméabilité est présentée dans
les équations (3.8) a (3.13).

Les cas d’études des doubles tuyaux et des doubles diffuseurs sont reconsidérés dans la
validation de la 2¢me méthode de séparation. Dans le cas des doubles tuyaux, la géométrie des
canaux et le positionnement des deux fluides sont similaires aux résultats de I'optimisation
utilisant la premiére méthode de séparation. Toutefois, pour le cas des doubles tuyaux, la
séparation des canaux des différents fluides est assurée, mais la forme des canaux n’est pas de la
méme efficacité que celle obtenue par la premiere méthode de séparation des fluides.

4. Fonction contrainte

a) Formulation et implémentation

La fonction de continuité (3.1), est considérée ici comme une fonction contrainte au lieu
d’étre intégrée dans la fonction multi-objectif comme dans la premiére méthode de séparation.
Le nouveau probleme d’optimisation est défini dans (3.15). € est un petit nombre, par exemple
1075, pour forcer la fonction contrainte de continuité a converger vers 0 et ainsi assurer la
séparation des fluides.

b) Résultats

La configuration initiale est représentée dans la Figure 3.13, et les résultats d’optimisation
topologique dans la Figure 3.14. Les résultats montrent que 7, a convergé vers 0 et 1 alors que
1, a convergé vers 0.95 et 0.05, c.a.d. que la séparation totale des deux fluides n’est pas assurée.
De plus, la méthode a besoin d'un grand nombre d’itérations en comparaison avec les deux
premieres méthodes de séparation. Enfin, le processus d’optimisation montre que la séparation
des fluides ne commence qu’aprés que I'architecture des canaux soit connue, ce qui signifie dans
la configuration des doubles diffuseurs que la méthode de séparation par fonction contrainte ne
pourra pas empécher la fusion des deux tuyaux au milieu du domaine.

5. Cas d’étude

Le domaine d’optimisation étudié est rectangulaire ayant un rapport d’aspect AR=1.5. Les
porosités maximales des fluides sont @f; = @, = 1/6, ce qui correspond a un tuyau droit
rempli de fluide entre 'entrée et la sortie de chaque fluide. Le probléme est résolu avec et sans
séparation des fluides pour des écoulements a co-courant et a contre courant. Les configurations
initiales des deux arrangements d’écoulement sont représentées dans les Figure 3.15 et 3.17. Le
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résultat d’optimisation topologique du cas a co-courant montre que sans séparation des fluides,
I'optimiseur a joint les deux canaux dans la zone voisine des sections d’entrées des deux fluides
et les a séparé dans la zone voisine des sections de leurs sorties (Figure 3.16.A). Cependant pour
le méme cas d’écoulement mais avec séparation, I'optimiseur assure le transport de chaque
fluide par son propre canal en créant deux canaux paralléles, comme le montre la Figure 3.16.B.
Pour I'écoulement a contre courant sans séparation des fluides, deux raccourcis reliant les
entrées et les sorties des différents fluides sont crées, respectivement dans les régions voisines
des frontieres gauche et droite (Figure 3.18.A). Enfin, la Figure 3.18.B montre que la fonction de
continuité évite la création de ces raccourcis, ainsi la séparation des fluides est assurée dans
’écoulement contre courant.

La minimisation de la dissipation de puissance avec séparation des fluides en écoulement
parallele a nécessité 59 itérations, alors qu'a contre-courant il a fallu 374 itérations pour mettre
en place la solution finale. Le nombre élevé d'itérations a contre-courant refléte la difficulté de
l'algorithme d'optimisation a éviter le raccourci du canal du fluide, car les entrées et les sorties
sont du méme coté et proches l'une de l'autre.

La Figure 3.19 montre les fonctions de dissipation de puissance tout au long du processus
d’optimisation pour les cas des flux a co-courants et a contre courants avec séparation des
fluides. La courbe rouge, celle du cas a co-courant, montre une convergence facile et rapide vers
la solution optimale finale. Cependant la courbe bleue, celle du cas a contre courant, montre un
nombre extrémement élevé d'oscillations entre les itérations 1 et 80. Le conflit entre les
fonctions objectifs conduit a ces oscillations: la fonction objectif de dissipation de puissance du
fluide oblige le fluide a prendre le raccourci entre les bornes d'entrée et de sortie, alors que la
fonction objectif de continuité construit une couche solide horizontale pour interdire au fluide
de prendre le chemin du raccourci. Cependant, apres l'itération 80, deux tuyaux horizontaux
sont créés et le reste des itérations ajuste l'interface solide-fluide dans chaque tuyau pour
finalement converger vers deux tuyaux paralléles et droits.
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Chapter

Separation of

fluids subdomains

3.1. Introduction

Bi-fluid topology optimization method presented in chapter 2 still lacks to one of its most
important features: its ability to separate the two fluids; hence it cannot be considered bi-fluid
topology optimization method yet. Paragraph 2.10 shows that the problem is still solved
similarly to mono-fluid topology optimization, where the fluid present in the domain is a
mixture of fluid 1 and fluid 2 (equivalent fluid). The objective of this chapter is to find the most
suitable method to:

First to prevent fluid 1 and fluid 2 from mixing in the same cell when the algorithm
converges to the final solution.

Second to ensure the continuity of each fluid, which means that each fluid is transported
in a single or multiple pipes that connect inlet and outlet sections of the corresponding
fluid, which are predefined by the user on domain’s boundaries.

Third to ensure that the channels of two different fluids should not mix or cross, and the
algorithm should be able to maintain a minimal solid thickness between the channels.

For this purpose, three different methods were suggested in this chapter; hence fluid

separation can be achieved:

1.

By introducing a new objective function that penalizes the existence of two fluids in the
same cell, or neighboring cells.

By taking the penalization effect as a constrain function.

By modifying the inverse permeability coefficient (paragraph 2.2.1) where fluid 1 will be
an obstacle for fluid 2 and vice versa, which will affect directly the total fluid power
dissipation objective function f;.
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In order to select the most suitable technique, the three methods were tested and compared for
various case studies.

3.2. Continuity objective function

3.2.1. Implementation

The optimization method starts with an initial domain in which all cells have the same
material composition, made of a mixing of the two fluids and the solid. Progressively throughout
the optimization process the method should completely separates the two fluids and the solid
phases. The separation of both fluids phases from solid phase is acheived thanks to the presence
of the inverse permeability coefficient in Navier-Stokes equation and to its penalized
interpolation function, while there are no physical or mathematical reasons to separates fluid 1
and fluid 2 phases or to prevent them from existing in the same cell or in two neighboring cells.
Therefore an objective function is formulated and added to the multi-objective optimization
problem in order to mathematically prevent the mixing. The objective function, called continuity
function f,, for a domain having N, horizontal meshes and N,, vertical meshes is expressed as
follows:

N, N,

fr (3.1)

"N xN,

Figure 3.1: (i,j) Mesh and its neighbor meshes

where f/ is computed in each cell, in function of fluid 1 and fluid 2 quantities in (i, j) mesh and
its neighboring meshes, sketched in Figure 3.1 as follows:

i _ 1 Niir A i-1,j ij+ i,j- 1 NiirAii i1, ij+ ij
P =20 [ Q3 + Qi + Qi+ Qi [+ Qi [QiY + Qi + Q"+ Qi | 32

where Qf; and Qf, are respectively the quantity of fluid 1 and fluid2, expressed as follows in
(i,j) mesh:
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Iff = UJI.J (1_ 77&’ ) (3.3)

Qs =m'n;’ (3.4)

Table 3.1 shows the values of f*/ for mesh (i,j) in function of all possible combinations of
phases in a particular cell (y; = 1 or 0 and 5, = 1 or 0 ) and its neighbors, as seen in Figure 3.1.

Neighboring

Mesh (i,j) o eshes As Az B, B; fij
Fluid 1 Fluid 1 1 0 0 1 0
Fluid 1 Fluid 2 1 1 0 0 1
Fluid 1 Solid 1 0 0 0 0
Fluid 2 Fluid 1 0 0 1 1 1
Fluid 2 Fluid 2 0 1 1 0 0
Fluid 2 Solid 0 0 1 0 0

Solid Fluid 1 0 0 0 1 0
Solid Fluid 2 0 1 0 0 0
Solid Solid 0 0 0 0 0

Table 3.1: Continuity function coefficients at extremum values of n; and 1,

where A4, A,, B; and B, are expressed as follows:

i i o LA i-L,j i j+ i j- i o LA i1, ij+ i j-
' =Qy XZ[szl’J "'szl’J +Qr3 1+Qf’é 1]+Qf’é XZ[QMLJ +Qfll’J +Qi1 1+Qf’11 1]
Ai Az Bl Bz

(3.5)

It could be clearly seen from Table 3.1 that the continuity objective function takes values
greater than 0 when the cell (i,j) and is neighbors are made from different fluids; hence the
objective function will only prevent two adjacent cells from containing two different fluids. It
should be noted also that equation (3.5) prevents also that two fluids exist simultaneously in the
same cell when the algorithm converges to the final optimum.solution Finally continuity
function is minimized simultaneously with the minimization of fluid power dissipation function
using a multi-objective optimization. Hence the multi-objective function is expressed as follows:
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F=1f,+wf, (3.6)

where w, is a constant weight to control the preference of continuity function in the mutli-
objective function. Continuity function depends directly from design parameter, hence its
derivative with respect to n is computed analytically. The gradient of the multi objective function
with respect to design variable is then expressed as follows:

dF df,  df,

—=—Y 4w —=
iy % dn (3.7)

3.2.2. Results

3.2.2.1. Double pipe

The double pipe example presented in Figure 3.2.A, already considered in chapter two, is
reconsidered here, with the implementation of continuity objective function in the multi-
objective optimization process. The final result is shown in Figure 3.2.B. White color represents
pure cold fluid cell (fluid 1), the red color represents pure hot fluid cell (fluid 2) and the black
represents pure solid cell.

J
_ 6
oy I =.
i,f2 — 6 — o,f2
4
3
Ui 11 % 1 :—3 U, 11
' — 6 — '
\Y)
(A) Initial configuration (B) Final topology optimization results

Figure 3.2: Double pipe example with fluid separation using continuity objective function

Each fluid occupies the maximum allowed volume between its corresponding inlet and
outlet. The design variables n; and 7, converged to their upper and lower limits, known as
black-and-white solution where each cell is either solid, fluid 1 or fluid 2 without existence of
two or three different materials simultaneously in the same cell. In comparison with the results
of the same example without taking into account continuity objective function (paragraph 2.10),
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we could see that the same architecture is generated, at one exception: the fluids are separated
in this case.

It should be noted that attention must be given here to careful choice of the values of all
numerical parameters and filters applied, to ensure the convergence of the problem. We
mention the most critical ones:

e Numerical simulations showed that the best suitable value of the ratio f./F is around 0.1 (at
the exception of first 20% of the iterations where f; drops quickly due to the reallocation of
the fluid). However this could slightly vary for a different configuration. It should be noted
that choosing a small value of continuity function weight w, will not lead to fluid separation,
or it needs an extremely high number of iterations for separating fluids subdomains. In
contrary choosing a big value leads to a failure in the resolution of the main physical
problem of minimization of the total pressure drop and creation of fluid channels.

e A density filter must be applied on 1, field, to prevent the convergence to a local minimum,
which leads to fluid 1 and fluid 2 cell in the same fluid channel. The filter radius depends on
the mesh size, and is progressively reduced throughout the optimization, to be completely
omitted at final iteration to permit the total convergence of n, values to 0 and 1.

Figure 3.3 and Figure 3.4 show respectively the variation of fluid power dissipation function
fq and the total multi objective function F that includes the sum of f; and f;. It could be clearly
seen that the shape of multi objective function curve is similar to power dissipation objective
function curve, because of the weight w, that has to be relatively small, hence power dissipation
objective function is the dominant term in the multi objective function. Finally it should be noted
that 105 iterations were required to reach the global optimal solution, whereas in the case of
minimization of fluid power dissipation alone 61 iterations were sufficient, as shown in Figure
2.16. It should be mentioned that at iteration 40 the shape of channels is approximately known
and the remaining of iterations aim to adjust fluid-solid interface and to fully converge 1, to a
discrete 0-1 solution.
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Figure 3.3: Variation of power dissipation objective function f; throughout the optimization process
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Figure 3.4: Variation of Multi objective function F throughout the optimization process

3.2.2.2. Double diffuser
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Figure 3.5: Double diffuser configuration

Previous example showed that mono-fluid and bi -fluid topology optimization (with and
without continuity objective function) leads to the same device architecture, the only difference
is the nature of fluid filled in the channels. However this is not the case for all configurations,
where for certain domain geometries a contradiction between fluid power dissipation and
continuity objective functions may occur, which will lead to different fluid channels architecture.
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The design domain presented in Figure 3.5 has a rectangular shape of width [ and length 1.5
and a maximum porosity of 0.2 for each fluid. The domain is discretized into 100 x 150 square
meshes of 1mm side length. The inlet areas for each fluid are equal and three times bigger than
their respective outlet sections, hence the velocity at the exit is u, a1 = Uo fruiaz = 3 X
U, fruign = 3 X U fiyigz to ensure the mass flow continuity through the domain. The Reynolds
number at the inletis Re = 19.2.

Figure 3.6: Results of double diffuser example without continuity objective function

Figure 3.7: Results of double diffuser example with continuity objective function

Topology optimization results with and without continuity objective function are presented
respectively in Figure 3.6 and Figure 3.7. Black color represents solid, white and red colors
represent respectively fluid 1 and fluid 2 and orange represents a mixture of 50% fluid 1 and
50% fluid 2 (equivalent fluid). It could be clearly seen that for the first case in which continuity
objective function is not considered, the two fluids form a single equivalent fluid and takes a
single path inside the domain by joining the pipes in the middle and disjoining them near outlet
region. However, for the second case where continuity objective function is considered, each
fluid takes a separate path between its corresponding inlet and outlet sections, thus two
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different geometries are generated. For the first case total fluid power dissipation is
fa = 1.35 x 1077, whereas for the second case f; = 1.5 X 10~7, which justify the fusion of both
fluid channels in the first case. However with the insertion of continuity function, the minimum
of the global multi-objective function corresponds to the structure that avoids pipes fusion.

This example showed that using continuity objective function as a penalty function will
ensure the total separation of fluids and omit all intermediate values of 7,. The algorithm will
search for the distribution of fluid channels to have the minimal pressure drop but with
respecting the condition of fluid separation

3.3. Modification of the inverse permeability
coefficient

3.3.1. Implementation

Inverse permeability « is added to Navier-Stokes equation, to act like a friction force
between the fluid and the solid in cells having intermediate values of 1;. The shape of the
interpolation function, ensures the convergence of 7; to 0-1 solution (or near 0 and near 1
solution). Using this form of inverse permeability coefficient will lead to an optimal convergence
of n, field, without having any effect on 7, field. In fact, the inverse permeability coefficient of
fluid 1 and fluid 2 are both equal to zero (a(n; = 1) = 0), the presence of fluid 1, fluid 2 or any
mixture of them will have no effect on velocity and pressure fields, thus no effect on power
dissipation objective function. Therefore the gradient of power dissipation objective function
with respect to 7, is null.

Atid1
Sid 45 or Audl— s Aud2 Aud2— s FAuid1
FLid2

a.f 7/1Cf1] 7/2Cf2j
!
oy,

Figure 3.8: Summary of separation of fluids subdomains using the inverse permeability coefficient
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In the previous paragraph fluids subdomains are separated using an objective function that
penalizes the presence of two different fluids in the same cell or in two neighbor cells. This
objective function was added to the single multi-objective function minimized by the optimizer.
In this paragraph another method is formulated to force the separation of fluids subdomains, by
acting indirectly on the fluid power dissipation function throughout the inverse permeability
coefficient « in Navier-Stokes equation. Similarly to the initial expression of a that slows down
the velocity proportionally to the quantity of solid in each design cell, another term proportional
also to fluid velocity, is added to Navier-Stokes (equation (2.5)), and acts like an internal force or
absorption term to velocity field when two different fluids are present in the same cell or
adjacent cells. This could be seen as if fluid 1 acting as a wall for fluid 2 and vice versa, which will
increases the total power dissipation.

The new expression for the inverse permeability coefficient is expressed as follows:
L 0 Liei] Dol
X" =a"+y,"Cii +7,°Cy; (3.8)

where the coefficients are defined as follows:

a =a, +(0¢f - s) - n?j_fp (3.9)
n=yn+(re —7”)(1—77;"')(1_;ﬁ (3.10)
v =+ (o —va)m ;T—f;y (311)

CH =Qi[ Q) +Qi + Qi +Qit™ ] (312)
Ci=Qu[ Qi + Qi + Q™ +Qjl7 ] (3.13)

Qf1 and Qf, are respectively the quantity of fluid 1 and fluid 2 inside the cell, defined in
equations (3.3) and (3.4) in function of 7, and 7,. The penalization parameters p and p, are used
to adjust the convexity of the functions as pictured in Figure 3.9. Navier-Stokes equation (2.5)
becomes:

P(Ul,ﬂz)(U-V)U + Xy, m)u = —VP+/,[(771,772)VZU (3.14)

Figure 3.8 summarizes the method of fluids subdomains separation using the inverse
permeability coefficient.
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Figure 3.9: Penalization functions, &, y; and y,

The lower limits a; and yy, are usually taken equal to 0, whereas the choice of the values of
the upper limits a5 and yf, controls the relative importance of each term in the expression of X.
If ag > yp,, then fluid solid interface will leads to bigger increasing in power dissipation function
than fluid 1-fluid 2 interfaces. In contrary if a; < ys, then two neighbor cells having different
fluids will have a major negative impact on fluid power dissipation objective function than solid-
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fluid 1 or solid-fluid 2 interfaces or solid and any fluid mixture interfaces. Finally a special
attention must be taken in the calculation of the gradient of the objective function using the
discrete adjoint method when using the new inverse permeability coefficient. The reason is that
the new coefficient depends on design variables of the neighbors cells and not only the cell itself
as in the initial coefficient.

3.3.1. Results

3.3.1.1. Double pipe

(A) fa =7.0126 X 107° W (B) f; = 2.3541 x 1077

(O)fq =5.5579 x 1077 W (C) f1=26377x1075 W

Figure 3.10: Comparison of fluid dissipation function for different fluid mixtures

Double pipe example of paragraph 3.2.2.1, depicted in Figure 3.2, is reconsidered here using
the modification of inverse permeability coefficient instead of continuity objective function for
the separation of fluids subdomains. The boundary conditions are the same of paragraph 3.2.2.1.
The constants of equation (3.8) are taken as follows: af = yfy =0, a5 = 107, Yi2 = 10* and
py = 0.01. It could be seen that a; > yy,, which means that a preference was given to channels
architecture optimization over the optimization of the nature of fluid flowing in each channel,
otherwise no fluid channels will be created. However the problem converged progressively to
the optimal solution by creating two straight pipes and totally separating the cold and hot
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streams, similarly to example 3.2.2.1. The final solution is shown in Figure 3.10 A. In comparison
with the method of fluid separation using continuity objective function (paragraph 3.2), this
method was able to converge to the same global optimal solution.

Figure 3.10 compares the values of power dissipation function between the global optimal
solution (Figure 3.10.A) and other undesired solutions. In Figure 3.10.B the fluids are permuted,
where fluid 1 flows through the inlet and outlet sections of fluid 2 initially predefined, and vice
versa for fluid 2. The fluid 1-fluid 2 interfaces at the inlets and outlets boundaries of fluids have
increased f; by 335 %. For the same reason, f; is increased by 692 % in Figure 3.10.C when
inserting a small portion of fluid 1 in the channel of fluid 2 and a small portion of fluid 2 in the
channel of fluid 1, which will act like an obstacle to the flow. Finally in Figure 3.10.D, the fluid
flowing in both pipes is made of 50 % fluid 1 and 50 % fluid 2 (, = 0.5). It could be clearly seen
that the fluid power dissipation function increases dramatically by 37517 %. This explains why
the algorithm will begin to separate the fluids from the first stages of the optimization process
by converging the values of n, to 1 near the inlet and outlet sections of fluid 2 and to 0 near the
inlets and outlets sections of fluid 1, and later along the entire pipes as long as they are created
progressively by the convergence of 1, field. However small convergence steps in MMA method
and a density filter on 5, field are applied to avoid the convergence to local optimal solution
similar to Figure 3.10.C.
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Figure 3.11: Comparison of power dissipation due to fluid friction, with and without fluid separation

Figure 3.11 compares the minimization of f; in cases of using the initial permeability
coefficient ( X%/ = a*/(,,1,) ) used in double pipe example in paragraph 2.10 and the actual
inverse permeability coefficient used in this example to separate fluids subdomains. It should be
noted that in both cases, the domain is initialized with the same fields of ; and 7,. For the initial
configuration, f; = 1.71 X 10~* W in case of using the inverse permeability coefficient of
equation (3.8), whereas f; = 1.08 x 10~* W when the physical problem is solved with the initial
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inverse permeability coefficient presented in chapter 2. The big difference in the values of both
cases is caused by the presence of a fluid mixture in all cells in the initial configuration. Hence,
the flow is disturbed in case of using the coefficient of equation (3.8), because fluid 1 and fluid 2
are present simultaneously in all design cells. However both curves converge to the same
minimal value of f; by reaching the same shape for fluid channels. It should be noted that the
effect of fluid 1-fluid 2 interfaces on velocity and pressure fields using inverse permeability
coefficient reformulated is totally omitted as the two subdomains are completely separated at
the end of the optimization process.

3.3.1.2. Double diffuser

The configuration of double diffuser case depicted in Figure 3.5, for which optimization
process leads to different channels architecture when mixing the fluids and when separating
them, is reconsidered using the modified inverse permeability coefficient of equation (3.8) to
separate fluid subdomains. The same boundary conditions and meshing size of paragraph 3.2.2.2
are used in this example.

The result is similar to the optimization result using continuity objective function for fluid
separation. However a slight difference still exists in the architecture of the channels, where
power dissipation in the domain of Figure 3.12 is 2.1 x 1077 W, whereas in Figure 3.7 the
dissipation is equal to 1.5 X 10~7 W. In fact in the case of fluid separation using the continuity
objective function, the method was able to preserve a more uniform width of both pipes and to
get them closer by keeping only one solid mesh between fluid 1 and fluid 2. However both
methods could be considered effective in optimizing channels shapes and separating fluid
subdomains simultaneously. It should be noted also that both methods have the same
performance regarding time calculation.

Figure 3.12: Topology optimization result for double diffuser configuration with the modified inverse
permeability coefficient
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3.4. Constraint function

3.4.1. Implementation

The penalty objective function (3.1) is taken here as a constraint function instead of being
inserted in the multi-objective optimization equation (paragraph 3.2). The optimization problem
now is the following:

min  F(z(n).n) withz(n)=f(u,P,T)

n

subjectto  Equations (3.4) (3.5) (3.7)

1
G, (m.m,) = anl (1_772) dQ< ¢,
o (3.15)

1
Gf2(7711772)zﬁj771772 dQ< ¢,
Q
G,,(m) =T, :ij flidQ<e

N2

where F = f; and f; is the continuity function as defined in equation (3.1). ¢¢; and ¢y, are
respectively fluid 1 and fluid 2 maximum permissible volume; whereas ¢ is a very small number,
i.e.1075, to force continuity function to converge to 0, hence ensuring the separation of fluids
subdomains.

3.4.2. Results

Ui f2 ; 6 ; Uo, 12
12 E
Ui f1 ——= 6 Euo,fl
38 7

Figure 3.13: Initial domain configuration
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To investigate its validity, the method of fluid separation using constraint penalty function is
applied on the configuration sketched in Figure 3.13. The domain is square-shaped of side length
l = 38mm, and the design grid is made of 38 X 38 elements. There are 4 flow boundaries of
width 6 mm, one inlet and one outlet section for each fluid. The maximum allowable values for
the three constraints are: ¢ = 0.158, ¢, = 0.158 and ¢ = 107°. The Reynolds number based

on pipe width and average inlet velocity is R, = 6 for both fluids.

(A) 7, field (B) Fluid 1 field (C) Fluid 2 field

Figure 3.14: Optimization results for double pipe configuration using constraint function technique for
fluid separation

Figure 3.14.AFigure 3.14.B and Figure 3.14.C show respectively optimization results of solid,
fluid 1 and fluid 2 subdomains. Contrary to the previous results, here all three subdomains are
shown separately and are subjected to a special color map to show the residual of fluid 1 in the
channel of fluid 2 and vice versa. The color map is defined as follows: when the values go from 0
to 1, representative color goes from black, to dark red, then red, then yellow, then light yellow
and finally to white. First Figure 3.14.A shows total convergence of n, field to a black and white
solution; the two white pipes are made of 100 % fluid (n;=1) and the remain cells are pure solid
(71=0). Then it could be clearly seen from Figure 3.14.B, that full black color is present only in
solid domain where there is no fluid at all, whereas for the pipe between the inlet and outlet
section of fluid 1, the color is light yellow which means the fluid is not 100 % fluid 1 but there is
a small portion of fluid 2 in the fluid mixture, otherwise the pipe color would had been white
similarly to Figure 3.14.A. The remaining quantity of fluid 1 is clearly present in the upper pipe
represented by dark red. Similarly in Figure 3.14.C the upper pipe that should correspond
theoretically to fluid 2 only, is not made of pure fluid 2 and a small quantity of fluid 2 could be
seen in the lower pipe. Thus the main conclusion of the above results is that fluid subdomains
are not fully separated. In fact in fluid 1 field, the lower and upper pipes are made respectively of
95.5 % and 4.5 % of fluid 1, and vice versa for fluid 2 field. It could be concluded that the
presence of continuity function as a constraint function in the optimization problem resulted in
the convergence of 7, field to an upper limit 7, ,,, = 0.955 and a lower limit 7, ;,;, = 0.045,
whereas the same function taken as an objective function in paragraph 3.2 allowed 7, to reach 0
and 1, thus total separation of fluids subdomains.

The second drawback of the method is the extremely high number of iterations needed to
reach the global optimal solution. In the example considered above, the algorithm reached the

101



solution presented in Figure 3.14 after 365 iterations. In comparison with the first two methods,
fluid separation using constraint function is extremely costly in time, especially for big size mesh
grids. Finally it is important to mention that the first variation in 75, field occurred after 157
iterations, which means the method begun to separate fluids after the shape of pipes is
approximately completely known. Thus, for configuration similar to double diffuser (paragraph
3.2.2.2) in which a conflict exist between fluid separation and absolute minimal fluid power
dissipation in the domain, current method cannot prevent fusion of both pipes.

3.5. Case study

3.5.1. Double pipe with AR=1.5: parallel flow
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Figure 3.15: Initial configuration of double pipe example with AR=1.5; parallel flow

The rectangular optimization domain of length L and width [ sketched in Figure 3.15, has an
aspect ratio of 1.5 (L = 1.5 x [). Both fluids enter the domain from from the west edge and leave
it from the east edge. The domain is discretized into 72 design cells in horizontal direction and
48 design cells in vertical direction. Inlet and outlet sections of fluid 1 are located in the lower
part of the domain, whereas those of fluid 2 are located in its upper part. Both fluids have same
velocity profiles at inlet and outlet boundaries. Reynolds number is equal to Re = 48. Maximum
porosities of both fluids are ¢y =1/6 and ¢s, = 1/6, which correspond to the volume
occupied by a straight line between inlet and outlet sections of each fluid.

The topology optimization problem described above was studied in mono-fluid topology
optimization in [49], [66], [69], [116]. Mono-fluid results in literature showed that for an aspect
ratio equal to 1, the optimal structure is two parallel straight pipes, similarly to the results in
paragraph 3.2.2.1. However, for an aspect ratio AR=1.5, to get the lower fluid power dissipation,
it is better to join the two pipes in a single wider pipe in the middle of the domain and to disjoin
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them near outlet region. Figure 3.16 shows topology optimization result in bi-fluid topology
optimization method, with and without separation of fluids subdomains Continuity objective
function method was used in the case of fluid phases separation (Figure 3.16.B). Without
considering separation of fluid subdomains, the result of the optimization method is similar to
the mono-fluid topology optimization result obtained in literature, as seen in Figure 3.16.A. In
this case, all fluid cells are made of a single equivalent fluid, which is a mixture of 50 % fluid 1
and 50 % fluid 2 (1, = 0.5). However when continuity objective function is included in the
multi-objective function, each fluid is transported in its own straight pipe, as seen in Figure
3.16.B. This structure has the lower pressure drop in case of forcing each fluid to enter and leave
the domain from its predefined inlet and outlet boundaries. Fluid power dissipation objective
functions without and with fluid separation are respectively f; =8.6x 1078 W and
fa =9.4x10"8 W. Lower pressure drop in case of minimization of fluid power dissipation
without fluid separation explains the preference of joining the two pipes in Figure 3.16.A.

(A) Without fluid separation (B) With fluid separation

Figure 3.16: Topology optimization results of double pipe example in parallel flow, (A) without fluids
phases separation and (B) with fluid phases separation.

3.5.1. Double pipe with AR=1.5: counter flow

The example of the previous paragraph is repeated, with two fluids flowing in opposite
directions. The flowing direction of fluid 2 is inverted; it enters the domain from the east edge
and leaves it from the west edge, as seen in Figure 3.17. All remaining geometrical
characteristics, flow conditions and optimization parameters are similar to the previous
paragraph.

Figure 3.18 shows the topology optimization results with and without fluid separation. In
case of no fluid separation, it is clearly seen that two pipes are created, respectively near west
and east domain edges. The first pipe, begins at fluid 1 inlet boundary and ends at fluid 2 outlet
boundary, both on the west edge. Similarly, the second pipe begins at fluid 2 inlet boundary and
ends at fluid 1 outlet boundary, both on east edge. Both pipes are made of the equivalent fluid
(50 % fluid 1 and 50 % fluid 2). Joining inlet and outlet sections of different fluids was permitted
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because in absence of continuity objective function, the algorithm makes no difference between
inlet and outlet boundaries of fluid 1 and fluid 2. Fluid power dissipation objective function for
the optimal structure in Figure 3.18.A is f; = 1.4 X 108 W, which is much lower than the fluid
power dissipation in case of two parallel pipes. However with fluid phases separation, two
straight pipes for each fluid are generated, similarly to parallel flow case
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Figure 3.17: Initial configuration of double pipe example with AR=1.5; counter flow

(A) Without fluid separation (B) With fluid separation

Figure 3.18: Topology optimization results of double pipe example in counter flow, (A) without fluids
phases separation and (B) with fluid phases separation.

Minimization of power dissipation with fluid separation in parallel flow, required 59
iterations, whereas in counter flow it required 374 iterations to set up the final solution
presented in Figure 3.18.B. High number of iterations in counter flow, reflects the difficulty of
the optimization algorithm to avoid the fluid channel shortcut (similarly to Figure 3.18.A)
because inlet and outlet velocity boundaries are on the same edge and close to each other.
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Figure 3.19: Minimization of fluid power dissipation with fluid phases separation, in parallel flow (red
curve) and counter flow (blue curve)

In Figure 3.19 fluid power dissipation throughout the optimization process is sketched for
the cases of parallel and counter flows with fluid separation. The red curve shows a smooth and
fast convergence to the optimal solution. However, the blue curve shows an extremely high
number of oscillations between iterations 1 and 80. The conflict between objective functions
leads to these oscillations: fluid power dissipation objective function forces the fluid to take the
shortcut path between inlet and outlet boundaries at the same edge, whereas continuity
objective functions builds an horizontal solid layer to forbid the fluid from taking the shortcut
path. However after iteration 80, two horizontal pipes are created and the rest of iterations
adjusts the solid-fluid interface in each pipe to finally converges to two parallel and straight
pipes, as presented in Figure 3.18.B.

3.6. Conclusion

This chapter focused on the separation of fluid 1 and fluid 2 subdomains, an essential part
that should be implemented in the algorithm presented in chapter 2, hence to be considered “bi-
fluid” topology optimization method. Three different methods were implemented and tested.
The first one by adding a continuity function to the multi-objective function that penalizes the
existence of two different fluids in the same cell or neighbors cells. The second one by adding
velocity absorption term to the inverse permeability coefficient of Darcy’s law, which increases
the power dissipation function when two different fluids are present in the same cell or in
neighbor cells. Finally the last method consisted of taking the continuity function considered in
the first method as a constraint function instead of an objective function. The first two methods
showed approximately similar performance regarding the convergence of 7, field, total
separation of fluid subdomains, calculation time and forbidding the fusion of different fluid’s
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pipes in the domain. However the first method was slightly better than the second one in the
convergence of 1, field (pipe architecture). The method of constraint function is found to be less
attractive due three important drawbacks. First its inability to completely separate fluid
subdomains, where a small fluid mixture will remain in fluid pipes. Second, the high number of
iterations needed to reach the optimal solution. Finally, the method will begin to separate fluids
after setting up the architecture of the pipes, which will lead in some configuration to join them
instead of forcing each fluid to take its own independent path from the first stages of the
optimization process. In the next chapter, maximization of heat transfer rate between the fluids
will be considered, which will lead to the design of a fluid-fluid heat exchanger device optimized
topologically using density method.
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Chapitre 4: Transfert de masse et de chaleur en
optimisation topologique bi-fluide

1. Introduction

Dans chaque échangeur de chaleur, un phénomene physique se produit toujours: pour
chaque diminution infinitésimale de la différence de températures entre les deux fluides a la
sortie de 1'échangeur de chaleur, correspond une augmentation infinitésimale de la perte de
charge quand la géométrie optimale est changée. Il existe donc toujours un compromis entre
I'amélioration du transfert de chaleur et la chute de pression dans un échangeur de chaleur. De
ce comportement se pose la question suivante: quelle est la structure qui assure une chute de
pression minimale pour un taux de transfert de chaleur requis entre les fluides? Ou pour une
puissance de pompage fixe, quelle est la structure qui fournit la différence minimale entre la
température de sortie du flux chaud et celle du flux froid? Ces questions mettent en place un
probléme d'optimisation mathématique afin d'obtenir une réponse, qui est la géométrie
optimale.

2. Fonction multi-objectif

La fonction objectif utilisée pour la maximisation du transfert de chaleur est celle qui
correspond a la quantité récupérée par le fluide froid ou celle dissipée par le fluide chaud.
Cependant pour des raisons numériques concernant l'analyse de sensibilité, le taux de transfert
de chaleur sera calculé sur les deux fluides, donc la fonction objectif de récupération d’énergie f,
exprimée en (4.3) sera égale au double de la quantité de chaleur transmise.

La solution d’optimisation multi-objectif qui correspond a la minimisation de la perte de
charge et de maximisation de la récupération d’énergie, est nommée la solution optimale de
Pareto. L'ensemble des solutions optimales de Pareto forment la frontiere de Pareto, a partir de
laquelle une solution devrait étre choisie.

Il existe deux grandes familles d’optimisation multi objectif : I'articulation de préférence a
priori qui consiste a choisir la préférence de chaque objectif avant le lancement du processus
d’optimisation, et I'articulation de préférence a posteriori qui consiste a choisir une solution de
la courbe de Pareto aprés l'optimisation. Dans ce travail, la méthode des sommes pondérées
(4.4) qui appartiennent a la famille d’articulation de préférence a priori est adoptée. La partie
critique de 'approche de la somme pondérée est le choix des poids ou il pourrait étre difficile de
distinguer si l'effet des poids dans l'optimisation est de compenser les différences de grandeur
des fonctions ou d'indiquer l'importance relative d'un objectif. Pour cela on a recours a la
normalisation des fonctions objectifs, ainsi la fonction multi-objectif (4.6) unique a minimiser ne
sera pas dominée par une fonction objectif au détriment d'une autre, ce qui permettra aux
facteurs de pondération de refléter plus précisément les préférences. La dérivée totale de la
fonction multi-objectif par rapport aux variables de design est exprimée dans (4.10).
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3. Transfert de masse et de chaleur en optimisation topologique bi-fluide
sans séparation des fluides

a) Minimisation de récupération d’énergie

Dans ce paragraphe la séparation des fluides n’est pas prise en compte afin d’étudier la
capacité de la méthode a répondre au bon positionnement des fluides ayant des conductivités
thermiques différentes dans un seul canal d’écoulement. La configuration comprenant une seule
entrée et une seule sortie pour les fluides est représentée dans la Figure 4.1. La température du
fluide a l'entrée est T; = 0°C. Les frontiéres nord et sud du domaine sont soumis a une
température fixe T,, = 200°C. Les propriétés du fluide 1, du fluide 2 et du solide sont résumées
dans le tableau 4.1. Pour minimiser la récupération de chaleur par le fluide durant son
écoulement a travers le domaine, l'algorithme préférera le fluide ayant la conductivité
thermique la plus faible, donc une quantité plus limitée de fluide 2 est autorisée a suivre sa
distribution optimale. Ainsi les limites maximales de porosité sont ¢ = 0.27 et @5, = 0.18.
Dans le cas de minimisation de récupération d’énergie, le signe de f, est inversé, ainsi la fonction
multiobjectif dans ce cas est exprimée dans (4.11)

Les résultats de l'optimisation topologique sont présentés dans la Figure 4.2. Le fluide 2
ayant une conductivité thermique 100 fois inférieure a celle du fluide 1, est accumulé sur les
périphéries inférieures et supérieures du tuyau. En fait, le fluide 2 agit comme une couche
isolante pour empécher la chaleur d’atteindre les régions a haute vitesse au milieu du canal. La
valeur de f, de ma solution finale est comparée avec celle des deux autres cas : premierement en
inversant la conductivité des deux fluides en laissant le méme positionnement et deuxiemement
en prenant 7, = 0.5, c.a.d comme si on avait un seul fluide ayant une conductivité thermique
équivalente k., = 0.35 W /kg.m. Dans les deux cas, la récupération d’énergie a augmenté, ce
qui montre que l'optimiseur était capable de trouver le meilleur positionnement des deux fluides
dans le tuyau.

b) Maximisation de récupération d’énergie

La méme configuration est reconsidérée afin de maximiser la récupération d’énergie, ainsi la
fonction multi objectif minimisée est celle exprimée en (4.6) avec w, = 0 (sans séparation). Les
trois cas d’études sont les suivants :

A ke =1W/kg.m ks =1 W/kg.metw = 0.8.

B. kf =0.01W/kg.m ke =1 W/kg.metw = 0.8.

C. kf =001W/kg.m ks, =1 W/kg.metw =0.7.

La température d’entrée du fluide est T; = 0°C. et celle des parois nord et sud est T,, = 10°C.
Dans cette étude le probleme d’optimisation comprend une seule contrainte, celle de la porosité
minimale du solide exprimée en (4.12), avec ¢, = 0.6.

Les Figure 4.5 et 4.6 montrent les résultats de 1'optimisation topologique pour les cas A et B
respectivement. Pour le cas A, 1'égalité des propriétés du fluide, n, = 0.5 dans toutes les cellules
fluides signifie que chaque cellule est constituée d'un fluide équivalent constitué d'un mélange
de 50% de fluide 1 et 50% de fluide 2 (@7, = @f, = 0.142). Cependant, dans le cas B
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I'optimiseur a utilisé les deux fluides ayant des conductivités thermiques différentes
(@f1 = 0.142 et @f, = 0.257) sans avoir aucun melange des deux fluides dans la méme cellule de
conception. Pour les deux cas le tuyau d’écoulement est divisé en deux petits tuyaux pour se
rapprocher de la source de température et augmenter la récupération d’énergie (champs 1,
similaire). Cependant pour le cas B, la distribution des deux fluides n’était pas homogéne comme
pour le cas A. Le fluide 1 a la faible conductivité thermique pour isoler thermiquement le noyau
central afin que la chaleur récupérée par le fluide ne soit pas dissipée dans le noyau central pour
augmenter sa température. La Figure 4.9 montre la diminution de la fonction de récupération
d’énergie quand la conductivité thermique de fluide isolant augmente.

La Figure 4.10 montre le résultat d’optimisation topologique du cas C. La solution optimale
finale montre qu'une barriere de fluide est créée au milieu du noyau central afin d’empécher le
refroidissement du fluide chaud a la sortie par le fluide froid a I'’entrée a travers ce noyau ayant
une haute conductivité thermique. La Figure 4.11.A montre qu’il n y a pas un écoulement dans la
barriére centrale, ainsi cette quantité de fluide n’a aucun effet sur la diminution de fonction de
dissipation de la puissance du fluide. Par contre la Figure 4.11.B montre 'importance de cette
barriére centrale afin d’éviter le flux de chaleur horizontale inverse a travers le noyau central.
Les solutions finales des cas B et C montrent une contradiction entre I'utilisation d’'une quantité
du fluide pour créer une barriere centrale ou utiliser cette quantité dans les régions principales
de I'écoulement pour diminuer la perte de charge et rapprocher le fluide de la source de
température. La variation de la fonction multi objectif pour w = 0.75 en fonction de la
conductivité thermique du fluide isolant (Figure 4.12) montre que la solution du cas B est
meilleure seulement pour kg; < 0.2.

4. Transfert de masse et de chaleur en optimisation topologique bi-fluide
avec séparation des fluides

La configuration initiale pour ce paragraphe est présentée dans la Figure 4.13. Les fluides 1
et 2 sont considérés respectivement comme étant les débits froid et chaud. Les températures
d’entrées des deux fluides sont respectivement T; s, = 0°C et T;r, = 150°C. Le reste des
propriétés physiques des deux fluides est identique. Les porosités maximales des deux fluides
sont pgq = @5, = 0.21.

Le probleme est résolu premiérement sans séparation des fluides (w, = 0). Les résultats de
I'optimisation dans la Figure 4.15 montrent la création de deux tuyaux paralléles : le premier
reliant 'entrée du fluide 1 a la sortie du fluide 2 et le deuxiéme reliant I'entrée du fluide 2 a la
sortie du fluide 1. En effet, afin d’augmenter f,, la température de la sortie flux chaud doit
diminuer et celle du fluide froid doit augmenter, c.a.d. maximiser la température de sortie du
fluide 1 T, 4 et minimiser la température de la sortie du fluide 2 T, r,. Cependant la distribution
des sections d'entrée et de sortie des deux fluides permet la création de deux tuyaux paralleles
entre les frontieres des différents fluides sans aucune intersection entre ces tuyaux. Ainsi, afin de
maximiser f,, le fluide chaud quitte le domaine de la section de sortie du fluide 1, et le fluide
froid quitte le domaine de la section de sortie du fluide 2. Dans ce cas, 'augmentation de T, 7, et
la diminution de T, s, nécessitent la minimisation du taux de transfert de chaleur. Ainsi pour
w = 0.3 les deux tuyaux sont éloignés l'un de I'autre.
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Dans ce qui suit, la fonction de continuité est utilisée pour assurer la séparation des fluides
(w, > 0). La Figure 4.17 montre la solution finale pour w = 0.5. Il est clair qu'un tuyau est
généré dans la région gauche pour le fluide froid (fluide 1) et dans la région droite pour le fluide
chaud (fluide 2). L'utilisation de la fonction objectif de continuité a assuré la convergence vers
une solution physique réelle, dans laquelle chaque fluide prend son propre chemin
indépendamment de 'autre, ainsi f, représente la quantité de chaleur transférée du débit chaud
au débit froid.

Les résultats d’optimisation topologique pour plusieurs valeurs de w sont présentés dans la
Figure 4.19. Les fonctions objectifs f; et f, et les températures de sortie du fluide 1 et du fluide 2
des structures optimales de la Figure 4.19, sont présentées dans le tableau 4.4. Lorsque w
diminue, 1'épaisseur de la paroi solide séparant les fluides est réduite en rapprochant les tuyaux
les uns des autres. Pour w < 0.3, la longueur des canaux est augmentée et leur diametre est
diminué afin de maximiser le transfert de chaleur.

5. Cas d’étude : double tuyaux

Dans cet exemple, le fluide 1 et le fluide 2 entrent et sortent du domaine par leurs sections
d'entrée et de sortie prédéfinies a la limite du domaine. La séparation des fluides dans le
domaine est assurée en utilisant la fonction objectif de continuité. Par conséquent, I'’équation
(4.6) est utilisée comme fonction multi-objectif unique a minimiser. Deux arrangements
d'écoulement ont été considérés: écoulement a co-courant dans lequel les fluides chauds et
froids entrent au niveau de la frontiere gauche et quittent le domaine au niveau de la frontiere
droite, et I'écoulement a contre courant en inversant le sens d’écoulement du fluide chaud.
Toutes les propriétés des deux fluides sont égales, ainsi que leurs limites de porosité
@51 = @5, = 0.23. La température d’entrée du fluide froid (fluide 1) est T; . = 0°C et celle du
fluide chaud (fluide 2) est T; , = 200°C.

a) Ecoulement a co-courant :

La configuration initiale est présentée dans la Figure 4.20. Les résultats d’optimisation
topologique pour plusieurs valeurs de poids de pondération w sont présentés dans la Figure
4.21 et le tableau 4.5. Pour w < 0.6, I'optimiseur va changer la géométrie afin de diminuer la
distance solide entre le fluide chaud et le fluide froid. Le tableau 4.6 montre 'augmentation de
I'angle de courbure des canaux et la longueur de la section droite et la diminution de la distance
entre les tuyaux quand w diminue. Ces parameétres structurels témoignent de 'opposition entre
la maximisation de perte de charge et la maximisation du transfert de chaleur pour les
structures optimales. Pour w > 0.6, 'augmentation du poids de transfert de chaleur produit des
géomeétries de plus en plus onduleuses, ce qui entraine des augmentations tres importantes dans
la fonction de dissipation de puissance dans le fluide. La Figure 4.24 montre la courbe de Pareto,
qui correspond a 'ensemble des solutions optimales, c.a.d. la géométrie qui assure le maximum
de transfert de chaleur pour une perte de chaleur fixe et vice-versa.

b) Ecoulement d contre-courant :
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La configuration initiale est présentée dans la Figure 4.25. Les résultats d’optimisation
topologique pour plusieurs valeurs de poids de pondération w sont présentés dans la Figure
4.26 et le tableau 4.7. Les résultats sont semblables au cas de I'’écoulement a co-courant: en
donnant un poids plus important au transfert de chaleur au détriment de la perte de charge,
I'optimiseur va rapprocher les tuyaux des différents fluides au début, puis la création des
ondulations pour les petites valeurs de w, en diminuant le diametre des canaux et en
augmentant la longueur des tuyaux dans le domaine. La Figure 4.27 montre la courbe de Pareto
pour le cas a contre courant.

c¢) Comparaison entre I'écoulement a co-courant et d contre courant :

La Figure 4.28 montre la variation des fonctions objectifs de perte de charge et de
récupération d’énergie en fonction de w pour les géométries optimales dans les deux cas
d’arrangement des écoulements. Le graphique montre que les courbes de dissipation de
puissance de fluide pour les deux arrangements ont des valeurs approximativement similaires.
Cependant, le transfert de chaleur est plus important pour le cas a contre-courant, en particulier
pour les faibles valeurs de w. Ceci montre clairement qu'un agencement a contre-courant est
capable de fournir un flux de chaleur entre les fluides plus élevé que 1'agencement a écoulement
parallele, avec une chute de pression similaire et parfois inférieure. Par conséquent, un
écoulement a contre-courant est préféré a un écoulement parallele dans un échangeur de
chaleur fluide-fluide.

La variation de la température moyenne aux sections de sortie du fluide froid (fluide 1) et du
fluide chaud (fluide 2) en fonction du facteur de pondération w, pour les écoulements paralleles
et a contre-courant, est illustrée dans la Figure 4.29. Le graphique montre que pour toute la
plage de w entre 0 et 1, les températures de sortie du flux froid sont plus élevées a contre-
courant et les températures de sortie des flux chauds sont supérieures en flux parallele, ce qui
signifie un taux de transfert de chaleur plus important pour I'écoulement a contre courant.
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Chapter

Heat and mass
transfer in bi-fluid
topology
optimization

4.1. Introduction

In every heat exchanger device a physical phenomenon always occurs: for every infinitesimal
decreasing in temperature difference between the two fluids at the exit of the heat exchanger,
corresponds an infinitesimal increasing in pressure drop. Hence a trade off always exists
between heat transfer enhancement and pressure drop in a heat exchanger. From this behavior
arises the following question: what is structure that has the minimal possible pressure drop for a
required heat transfer rate between the fluids? Or for a giving pumping power, what is the
structure that provides the minimal temperature difference at outlet sections of hot and cold
streams? These questions set up a mathematical optimization problem in order to be answered

In this chapter, heat transfer will be considered with and without separation of fluid phases.
First a single pipe will be studied without fluids separation to show the distribution of fluids
having different thermal conductivities inside the pipe. Second, fluid phase separation will be
considered in the maximization of heat transfer between the fluids, which will force each fluid to
have his own channel.
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4.2. Objective function

4.2.1. Heat transfer rate

For an incompressible fluid flowing through a solid domain having T; temperature at inlet
and T, at exit, and not submitted to phase change, the total thermal power recovered is the
following [117]:

Q=mAh=mC, (T,-T,) (4.1)

Replacing m by its expression: m = upS where S is the area surface, u the velocity and p the
density, equation (4.1) is written in its integral form as follows for T; < T,:

Q= j u(pC,T)dI' - J u(pC,T)dr (4.2)

I'=outlet T=inlet

The objective function representing maximization of heat transfer is the amount of heat
recovered by the cold fluid or amount of heat dissipated by the hot fluid. However for numerical
reasons regarding the sensitivity analysis, the heat transfer rate will be computed on both fluids,
hence the objective function will be equal to the double of Q and is expressed as follows:

fe(u,T)=jn.u(pCPT)dFl—jn-U(PCpT)sz (4.3)
I

I,

where n is a vector normal to the surface, which means n.u is always positive at fluid outlet
boundaries and negative at fluid inlet boundaries. I'; and I', denotes for fluid inlet and outlet
sections, respectively for fluid 1 and fluid 2. It should be noted that fluid 1 is always considered
the cold fluid, and fluid 2 the hot fluid to have a positive value of f,.

4.2.2. Multi-objective function

Fluid power dissipation and heat transfer objective functions present a trade-off, in which
the optimization of the first one will be at the detriment of the second, and vice versa. This
means any optimal solution design that leads to a decreasing in pressure drop, will lead to a
decreasing in thermal energy transferred from hot fluid to cold fluid, and conversely. Hence the
solution from optimizing simultaneously pressure drop and heat transfer in multi-objective
optimization procedure is known as Pareto Optimal solution. Pareto Optimal is defined as
follows in [118]: A vector is considered Pareto Optimal if there is not another solution vector that
would minimize an objective function f; (1 < i < n), without simultaneously causing an increase in
at least one other objective function. Pareto is defined by the following statement: “Take from
Peter to pay Paul” in order to show that the advantage in an objective function is taken from the
pocket of the second objective function. The set of Pareto optimal solutions form the Pareto
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frontier, from which one solution should be picked. The choice of desirable point from Pareto
curve is up to the decision maker. In literature there exist two main families of methods to
choose a single solution [119]: Methods a priori articulation of preferences where a preference
for every objective function is determined before running the optimization. Thus the final single
solution reflects the preferences settled a priori. The second family of methods is a posteriori
articulation of preferences that allows drawing the entire Pareto curve, than to choose manually
a single solution from the curve. In this work a priori articulation of preference strategy is
adopted. A widely used method in multi-objective optimization with a priori articulation of
preferences is the weighted sum method defined as follows [119]:

F=dwf 2w =1 (+4)
i=1 i

where n is the number of objective functions and w; are the weights that reflect the preference
of every function.

The optimization problem aims now to minimize the single objective function F, known as
aggregate objective function. The critical part of weighted sum approach is the choice of weights
w;, where it could be difficult to distinguish if the effect of the weights in the optimization is to
compensate the differences in objective-function magnitudes or to indicate the relative
importance of an objective [120]. Many methods were suggested in literature for assessing
weight [121]. However the most used method is to transform the functions, in order to have the
same magnitudes in all functions. Then the aggregate objective function can’t be dominated by
an objective function at the detriment of another which will allow the weights factors to reflect
more accurately the preferences. The transformation procedure, known as normalization of
objective functions, allows them to vary between zero and one. The normalization procedure is
the following [122]:

f- _ fimin

T

(4.5)

where (f™7", M%) are the limits of Pareto optimal set and are determined as follows:

minimization of f,; alone gives (fI™", ™) and maximization of f, alone gives (fJ"%%, fmex),
Finally combining equations (4.4) and (4.5), the multi-objective function is expressed as follows
in the case of fluid separation using continuity function:

fd _ fdmin .I: _ fmin
—_— 4l —& & 4w f 4.6
.I:dmax _ fdmln ( ) femax _ femln c C ( )

F=w
It should be noted that f. does not need normalization because its bounded between 0 and 1.
Furthermore, w, is not included in )’ ; w;, because continuity objective function is a penalty
function that has no contradiction with the other objectives when the problem converges to the
optimal solution. Objective function of heat transfer has a minus sign because it is maximized,
whereas fluid power dissipation and continuity functions are minimized.
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4.3. Sensitivity analysis

The gradient of f, with respect to design variables is computed according to the method
presented in paragraph 2.7, with the adjoint vector A and residual function J have the following

forms:
ﬂu AXU - Bu
AX, —
A= A J=| "V B (4.7)
Ao AX, -B,

X AX, B,

The matrices d//dX and 9] /dn are expressed as follows:

&, , A Ay 4y

U v oP O O,

3, a, A, 8, a
o _[eu ov 0P o3 _| on On, 48)
X |, &, A, on | 3, 8y

oU oV oP on, on,

9y 8y W G

o oV oT on, on,

The matrices of partial derivatives of Jr with respect to U,V,T,n,; and 5, are computed
according to paragraph 2.7.1.2.

In the calculation of f,, the velocity is located on the boundaries of the design domain but
temperature needs to be interpolated between the values at fluid boundaries and the
temperature values at the first cell inside the design domain in order to get the temperature
exactly at the domain boundary. Hence f, have a partial derivative with respect only to the
temperature field. The vectors df,/0X and df,/dn are expressed as follows:

(4.9)

)
Xmgg

I
R o o o
)
S

I
7 N\

o o
N—

(o))
3

Finally after computing the total derivative df,/dn, the gradient of the multi-objective
function is computed as follows:

= W . dfd 1-w . df w, dfc (4.10)
fdmax . fdmln d?] femax . femln d?] d’]



4.4. Heat and mass transfer in bi-fluid topology
optimization without fluids separation

4.4.1. Single pipe: Minimization of energy recovery

uj

i

TW

Figure 4.1: Configurations of single pipe case

The first case studied is the single pipe whose square shaped domain is pictured in Figure
4.1. The fluid inlet and outlet boundaries are located respectively at the center of west and east
edges. The fluid at inlet section has a parabolic velocity profile and a fixed temperature T; = 0°C.
The fluid at outlet section has the same velocity profile as at the inlet section and a null
temperature gradient. The rest of west and east edges are adiabatic walls. South and north edges
of the domain are subject to a constant wall temp&erature T,, = 200°C. The fluid 1, fluid 2 and
solid properties are summarized in Table 4.1 below. For minimizing heat recovery by the fluid
the algorithm will prefer the fluid having the lowest thermal conductivity, hence a more limited
quantity of fluid 2 is allowed to observe its optimal distribution. The maximum porosity limits
are ¢ = 0.27 and @f, = 0.18. The Reynolds number based on inlet velocity and characteristic
length /5 is R, = 10. The thermal conductivity at inlet velocity boundaries is equal to k¢;. The
domain is discretized into 50 X 50 design cells

a p (kg/m?) u (Pa/s) k(W/K.m)  C,(J/K.Kkg)
Fluid 1 107 1000 0.001 1 5000
Fluid 2 107 1000 0.001 0.01 5000
Solid 0 - - 10 -

Table 4.1: Properties of fluid 1, fluid 2 and solid
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Because both objectives are minimized, the multi objective function in this case is the
following:

F=f,+wf, (4.11)

It should be noted that in the case of minimization of energy recovery, there is no trade off
between the two objectives because f; and f, can be minimized simultaneously. w, is a constant
to control the preference of each objective, such that fluid distribution corresponds to the
minimal fluid power dissipation, and f, affects only the distribution of the two fluids within the
pipe. Finally, the equivalent thermal conductivity in each design cell and all other physical
parameters are computed using equation (2.19).

(A) Design field n, (B) Fluid 1 field

(C) Fluid 2 field (D) All three phases

Figure 4.2: Topology optimization result for single pipe by minimization of f,

Topology optimization results are sketched in Figure 4.2. It could be clearly seen that fluid 2,
which have a thermal conductivity 100 times lower than the thermal conductivity of fluid 1, is
accumulated on the lower and upper boarder of the fluid channel. In fact fluid 2 acts like an
insulation layer to prevent heat from reaching high velocity regions in the middle of the channel.
To investigate the results above, three cases are considered:

118



e C(ase A: the optimization case

e (Case B: Inverting fluid conductivities: kg, = 0.01 and k¢, = 1. (the fluid in the middle
have the lowest thermal conductivity)

e (ase C: A constant 1, = 0.5 is considered in all design cells, which means all fluid
cells within the fluid pipe are made of 50% fluid 1 and 50 % fluid 2. The equivalent
thermal conductivity in this case for p, = 1is k., = 0.35 W /K .m.

The fluid power dissipation, which is similar for the three cases, is f; = 7.66 X 107° W.
Energy recovery for case A is f, = 7.53 x 10~> W, for case B is f, = 3.61 x 10~* W and for case
Cisf, =274 x 1074 W.
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Figure 4.3: Temperature and velocity profiles at velocity exit boundary for cases A, B and C for Re=10

Figure 4.3 shows the velocity and temperature profiles for the three cases at the velocity exit
boundary. The meshes indexes at the horizontal axis denotes the meshes at the exit boundary
from its north edge (x = 1) to its south edge ( x = 10). The graph shows that the product U,. T,
is the approximately the same in the middle of the pipe’s exit boundary (x = 5,x = 6) for the
three cases, but decreases significantly for case A as we move toward the upper and lower
extremities of the outlet boundary (x =1 — 4,x = 7 — 10). This explains the lowest energy
recovery for case A and the optimal fluids subdomains distribution within the pipe obtained by
bi fluid topology optimization method.

However, when Reynolds number increases, Nusselt number in fluid increases and the heat
transfer process became more dominated by transport than diffusion. Hence the distribution of
fluids having different thermal conductivities within the pipe became less important. Calculation
made in cases A, B and C are repeated for R, = 500. Energy recovery for case A is f, = 4.9 X
10~* W, for case B is f, = 5.65 X 10~* W and for case C is f, = 5.68 X 10~* W. Thus, energy
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recovery in case A has decreased by 13.27 % in relation to case B for R, = 500, whereas for
R, = 10 it has decreased by 79.14%. Similarly, the energy recovery has decreased by 13.73 % in
case A in relation to case C for R, = 500, and it has decreased by 72.51% for R, = 10. Figure 4.4
shows that the temperature at exit boundary has more similar profiles and magnitudes for
R, = 500 in comparison with R, = 10, which explains the results regarding energy recovery
decreasing stated above.

Temp. (°C) Vel. (m/s)

40 0.06

35 4
- 0.05

30

- 0.04
25

Temp. case A

20 - - 0.03 Temp. case B

Temp. case C

s4 N, N eee=- velocity

+ 0.02
10 4

- 0.01

Figure 4.4: Temperature and velocity profiles at velocity exit boundary for cases A, B and C for Re=500

4.4.2. Single pipe: Maximization of energy recovery

Single pipe example is reconsidered in this paragraph with maximization of heat transfer.
The optimization function is the multi-objective function defined in equation (4.10) with w = 0.8
and w, = 0. Two cases were considered:

e Case A: Thermal conductivities of the fluids are: ks = 1W/K.m and kg, =
1 W/K.m.

e Case B: Thermal conductivities of the fluids are: kg =0.01 W/K.m and
ki, =1 W/K.m.

The rest of fluids and solid properties are the same as defined in Table 4.1. The Reynolds
number based on inlet velocity and characteristic length [/5 is R, = 10. Wall and fluid inlet
temperatures are respectively T,, = 10°C and T; = 0°C. The rest of boundary conditions are the
same as the previous paragraph. Solid porosity is the single constraint considered in this
optimization problem, which is defined as follows:
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1
Gs(ﬂ1)=WJ.1—771 dQ = ¢ (4.12)
Q

with ¢ = 0.6. Hence the optimization algorithm is free to use any fluid he desires.

Figure 4.5: Topology optimization result of single pipe by maximization of f,: case A

Figure 4.5 and Figure 4.6 show topology optimization result for cases A and B respectively.
For case A, because of equality of fluid properties, 17, is equal to 0.5 in all fluid cells, which means
each cell is made of an equivalent fluid that consist of a mixture 50% fluid 1 and 50 % fluid 2.
(@51 = D5, = 0.199) However for case B the optimizer used both the non conductive fluid (fluid
1) and the fluid with higher thermal conductivity (fluid 2) (@5, = 0.142 and @;, = 0.257). For
both cases, the fluid pipes have approximately similar shapes (similar n, field) as seen in Figure
4.5 and Figure 4.6.A. However the difference is in the distribution of fluid phases within the fluid
pipe. In case B, the algorithm used the low conductive fluid to thermally isolate the high velocity
regions of the pipe from the central core, to decrease heat transfer between the fluid and the
central core. This means less energy is loosed by the fluid to increase the temperature of the
central core, hence a higher heat recovery objective function, as seen in Table 4.2.

Optimal results of cases: LT3 fa (W) fe (W)
0.01 2.5%x 1078 3.47 x 1075
A
1 2.5%x 1078 401 %1073
0.01 2.6 X 1078 413 x107°
B
1 2.6 x 1078 4x107°

Table 4.2: Investigation of topology optimization results
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Figure 4.7 shows the temperature fields of the optimization results of cases A and B. It's
clearly seen that in case B, the temperature gradient within the central core is lower than in case
A, especially the horizontal temperature gradient. The horizontal temperature in the middle of
the central core from its west edge to its east edge is drawn in Figure 4.8. The graph clearly
shows a more stable temperature along the central core, for case B.

(A) Design field n, (B) Fluid 1 field

(C) Fluid 2 field (D) All three phases

Figure 4.6: Topology optimization result of single pipe by maximization of f,: case B

This example illustrates the advantage of using high conductive and low conductive fluids in
the maximization of heat recovery by the fluid, instead of using only high conductive fluid
(4.13 x 10~5 W for case B versus 4.01 X 10~° W for case A). Figure 4.9 shows the decreasing of
thermal energy recovery function with the increasing of the thermal conductivity of fluid 1.

It can be observed from the result of case B, that low conductive fluid is not distributed
uniformly along the interface of the pipe and the central core. In fact, fluid 1 phase is thicker
near west and east edges of the central core, than at near its north and south edges. This
explains that the horizontal heat flux inside the central core has a much higher negative effect on
fluid energy recovery than the vertical heat flux. The vertical heat flux in the central core takes
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place from the upper and lower fluid pipes toward the center of the central core. The horizontal
heat flux in the central core, takes place from near fluid outlet region to near fluid inlet region.
Hence the outlet flow is cooled by conduction through the high conductive solid phase in the
central core, which decreases energy recovery. Thus, the thick low conductive fluid in the pipe
near east and west edges of the central core, acts like an insulation layer to minimize the effect of
the horizontal heat flux that takes place.

T T
E 10 E 10
—f7.50 -57.50
5.00 ES.OD
—2.50 EZ.SCI
0 0
(A) Temperature field: case A (kf; = 1) (B) Temperature field: case B (k¢ = 0.01)

Figure 4.7: Temperature fields of optimal results of cases A and B
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Figure 4.8: Horizontal temperature of the central core for structures A and B

123



f. x105(w)

4.2

4.1

0.01 0.21 0.41 0.61 0.81
k.

Figure 4.9: Variation of f, in function of k¢, for structure B

(A) Design field n, (B) Fluid 1 field

(C) Fluid 2 field (D) All three phases

Figure 4.10: Topology optimization result of single pipe by maximization of f,: case C

124



£
8
o
o

o
P
(4]

E

g
tn

0.00026

W‘f‘rmmnlu‘m ®

8.199e-10

mmnmmmtmrmhmm -

0.000

(A) Velocity field of case C (B) Temperature field of case C

Figure 4.11: Velocity and temperature fields of case C

To further show the role of low conductive fluid in limiting the effect of horizontal heat flux
inside the central core, the weight of energy recovery function 1-w is is increased. Figure 4.10
shows the topology optimization result of case C, which is similar to case B with w = 0.7. In this
case, the algorithm used the low conductive fluid to split the central core into two parts, to the
same reason to limit the effect of the horizontal heat flux discussed above. Figure 4.11.A shows
that there is no velocity in the vertical fluid barrier in the central core. This means that this
quantity of fluid used has no effect on decreasing fluid power dissipation, and has only effect on
the temperature field, as seen in Figure 4.11.B. The fluid power dissipation function in this case
is f; = 5.05x 1078 W, which is higher by 48%, in relation to fluid power dissipation of the
optimal result of case B. However heat recovery is f, = 4.43 X 107> W, which means an
increment by 25.9 % in relation to case B.
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-0.128

-0.130
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-0.140 e Strcuture C

Structure B

-0.142

Figure 4.12: Variation of F in function of k; for optimal structures of cases B and C forw = 0.75
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A study was conducted in order to show the conflict between using a fluid quantity to create
an insulation layer in the middle of the central core (case C), or use the same quantity in the
main flow regions to decrease pressure drop and drive fluid pipes toward heat source (case B).
The latter also increases f,, but less than the increment caused by splitting the central core. The
study consist of computing energy recovery objective function for ks, = 0.01 - 1 (100 values of
ks, were considered) in optimal structures of cases B and C, than to compute the total multi

objective function for w = 0.75. The assumption made in this study is to consider a fixed upper
bound of energy recovery fJ"®* for all values of k¢;. The results are sketched in Figure 4.12. It

can be seen from the curves that for kf1 > 0.25, optimal structure of case B is not sufficient

anymore to provide the required heat transfer rate, and optimal result of case C has a lower
objective function despite having a much higher fluid power dissipation.

4.5. Heat and mass transfer in bi-fluid topology
optimization with fluids separation

4.5.1. Initial configuration

)
—r
—Tit2
16 48
Uj f1 i :Uo f2
Tit1 — — To,f2
Il \Il_.-_ ——————— 72 ;li-.- O’

Figure 4.13: Initial configuration of double pipe with fluid inlet and outlet boundaries on the same edge

The initial configuration for topology optimization problem studied in this paragraph is
depicted in Figure 4.13. The dimensions of the domain are in mm, and the design grid size is
72 X 48.u and T stand respectively fluid velocity and fluid terminal temperature. i, 0, f1 and f2
stand respectively for inlet, outlet, fluid 1 and fluid 2. The velocity profile is similar on inlet and
outlet boundaries of both fluids and the Reynolds number is Re = 13. Fluid 1 is considered the
cold fluid, and fluid 2 as the hot fluid. The inlet temperatures of both fluids are T; s, = 0°C and
T; s, = 150°C. Outlet fluid boundaries are characterized by a null temperature gradient. Fluid 1
and fluid 2 properties are the following: psq = ps; = 1000 kg/m3, U1 = Urz = 0.001 Pa.s,
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Cor1) = Cp(r2) = 4200 /K . kg and ksy = kg, = 1W /K .m. Maximum porosities of both fluids
are g1 = @, = 0.21. Solid thermal conductivity is ks = 10 W /K .m. The problem will be solved

first by minimizing fluid power dissipation only, and then maximization of heat transfer will be
considered with and without separation of fluids subdomains, which will lead to different
architectures.

4.5.2. Minimization of fluid power dissipation

(A) Without fluid separation (B) With fluid separation

Figure 4.14: Topology optimization results: Minimization of fluid power dissipation without fluid
separation (A) and with fluid separation (B)

Figure 4.14 shows topology optimization result for mass transfer problem without
consideration of heat transfer (w = 1). Results show similar pipes architecture in both cases (for
w, = 0 and w, > 0), and the only difference remains in the nature of the fluid in each pipe:
without fluid separation both pipes are filled with the equivalent fluid (50 % fluid 1 and 50 %
fluid 2), whereas in case of fluid separation, the pipe on the west edge is made of fluid 1 (the cold
fluid) and the pipe on the east edge is made of fluid 2(hot fluid).

4.5.3. Heat and mass transfer without separation of fluids subdomains

In this study, equation (4.6) is used as the multi-objective function to be minimized, with
w, = 0 (without fluid separation). Topology optimization results are presented in Figure 4.15.
The results are characterized by two main features. First the creation of two parallel pipes
between fluid 1 inlet and fluid 2 outlet sections and between fluid 1 inlet and fluid 2 outlet
sections. Second, when w decreases, the pipes are driven toward south and north edges in order
to increase solid thickness between the pipes, which means minimization of heat transfer rate.
To explain this behavior, we consider,T; ¢y, Ty 2, Tif1 , and T, s, are respectively average
temperatures at fluid 1 inlet, fluid 1 outlet, fluid 2 inlet and fluid 2 outlet sections, and U average
inlet and outlet velocities at both fluids inlet and outlet boundaries. Heat transfer objective
function (equation (4.3)) could be approximated as follows:
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(A) w=0.8 (B) w=03

Figure 4.15: Topology optimization results of heat and mass transfer without fluid separation for w = 0.8
(A)andw = 0.3 (B)

fNe =pCU (To,fl _Ti,fl)_pCpU (To,fz _Ti,fZ)

(4.13)

ForT; sy = 273 K and T; s, = 423 K, equation (4.13) becomes:

f,=pCU (T, T, , —273+423)
3 (4.14)
f,=pCU(T,,-T,,+150)

Hence, f, increases when Ty 1 increases and T, ¢, decreases. Normally T, ¢4 should correspond
to the outlet temperature of the cold fluid (7,.) and T, s, should correspond to the outlet
temperature of the hot fluid (7T, ,). However the distribution of inlet and outlet boundaries of
both fluids, allows the creation of continuous pipes between inlet and outlet sections of different
fluids, without intersection of the pipes. Thus, there is a great advantage for the maximization of
fe, that hot fluid leaves the domain from outlet boundary of fluid 1, and the cold fluid leaves the
domain from the outlet boundary of fluid 2. Furthermore, in this case increasing T, r; and
decreasing T, r, requires minimization of heat transfer rate, thus in case of w = 0.3 the two

pipes are driven away from each other, as seen in Figure 4.15.B.

w fa (X1077W) fe(X 1074W) Tozq1 (°C) Top2 (°0)
1 0.33 2.29 15.3 134.7

0.8 2.139 20.3 114.6 35.4

0.3 2.217 20.56 116.2 339

Table 4.3: Thermal and hydraulic performance of topology optimization results for w = 1,0.8 and 0.3
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Table 4.1, shows that for w = 0.8, f; increased by 6.48 times whereas f, increased by 8.86
times. However, it will be seen later that in fluid-fluid heat exchangers a small increasing in heat
transfer objective function requires a huge increasing in fluid power dissipation. It should be
noted that in this example f, has no physical meaning and doesn’t represent heat transfer rate
between the streams. In fact, optimization results in Figure 4.15 are a clear example of failure of
the optimization problem of heat and mass transfer in bi-fluid topology optimization in absence
of continuity objective function, which ensures that each fluid enters and leaves the domain from
its predefined boundaries without any intersection with the other fluid. Hence fluid-fluid heat
exchangers cannot be designed and optimized using mono-fluid topology optimization method,
even for the same fluids properties.

fax107w) £ x104w)
8 25
7 4
20
6 | —
5
15
2 —_—d
— fe
3 10
T
5
Fs
1 4
0 . ; ; ; ; ; 0
0 50 100 150 200 250 300
Iterations

Figure 4.16: Variation of f; and f, throughout the optimization process for w = 0.3 without fluid
separation

The graph in Figure 4.16 shows the variation of f; and f, throughout the optimization
process for w = 0.3. For iterations 1 to 105, the two vertical pipes on east and west edges are
driven closer to each other to increase heat transfer rate. Until this point f, represents heat
transfer load from the hot stream to the cold stream. Between iterations 105 and 110, the two
vertical pipes merge together, and both objective functions undergoes a fast increasing in their
values. After iteration 110, the fluids are transported by two horizontal pipes, which are driven
away from each other between iterations 110 and 314. This increases f, by a small quantity
because it does not represent heat transfer rate anymore and is only valid from a mathematical
point of view. It also leads to a huge decreasing in pressure drop because the pipes become
straight.

4.5.1. Heat and mass transfer with separation of fluids subdomains

In this paragraph fluid subdomains separation will be included in the optimization problem
of heat and mass transfer, using continuity objective function method (w, > 0 in equation (4.6)).
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(A) Design field n, (B) Fluid 1 field
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(C) Fluid 2 field (D) All three phases

Figure 4.17: Topology optimization result of heat and mass transfer with fluid separation for w = 0.5
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Figure 4.18: Variation of f; and f, throughout the optimization process for w = 0.5 with fluid separation
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The results of topology optimization for w = 0.5 are sketched in Figure 4.17. We can notice
that a single pipe for each fluid is generated, connecting its inlet and outlet boundaries located
on the same edge of the domain. Using continuity objective function ensured the convergence to
a realistic physical solution, in which each fluid takes its own path independently from the
second, hence f, represents the heat transfer rate between the streams. The variations of f; and
f. throughout the optimization process are sketched in Figure 4.18. The first initial configuration
is the optimal solution of minimization of fluid power dissipation alone (Figure 4.14.B). The
graph shows that f, increases progressively until reaching a trade-off solution between f,; and f,
for w = 0.5. It can be noticed that for every infinitesimal increasing in f,, corresponds an
infinitesimal increasing in f;, which is a normal and realistic physical behavior in heat and mass
transfer, as discussed in the first chapter. It should be noted that f; and f, have increased
respectively by 1791% and 175% in relation to the optimal configuration in case of
minimization of pressure drop alone (Figure 4.14.B). This shows that pressure drop and heat
transfer don’t vary proportionally; in fact a small decreasing in outlet temperature difference
between the fluids requires a much higher increasing in pumping power.

w fa (X1077W)  fo(x 107*W) Tos1 (°C) Tof2 (°C) AT (°C)
0.88 0.674 2.88 18.37 131.64 113.27
0.83 1.134 3.43 21.07 128.94 107.87
0.75 2.396 4.53 27.09 122.94 95.85
0.67 5.181 6.01 30.86 120.37 89.51
0.6 5.383 6.11 38.13 111.42 73.29
0.5 6.241 6.31 41.19 108.01 66.82
0.3 17.24 7.08 43.79 105.79 62
0.15 32.94 9.83 49.57 102.23 52.66

Table 4.4: Thermal and hydraulic performance of topology optimization results for various values of
weighting factor w

Topology optimization results for a wide range of values of w are presented in Figure 4.19.
fa, fo and outlet temperatures of both fluids of the structures in Figure 4.19 are summarized in
Table 4.4. When w decreases, the thickness of solid wall separating the fluids is reduced by
driving the pipes closer to each other. At the closet distance between the pipes, a single solid cell
separates fluid 1 and fluid 2 cells. For w = 0.3 the residence time of fluid in the domain is
increased, by increasing the total distance of the pipe in which the fluid is transported. The
optimal structure of w = 0.15, is similar to the structure of w = 0.3 with lower diameter and
higher total length, in order to increase furthermore heat transfer rate.
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(A) w=0.88 (B) w = 0.83

(C) w=0.75 (D) w = 0.67

(E) w=0.6 () w=05

(G) w=10.3 (H) w =0.15

Figure 4.19: Topology optimization result of heat and mass transfer with fluid separation for
w = 0.88 - 0.15

132



4.6. Case study: Double pipe

In this example, fluid 1 and fluid 2 enter and leave the domain by their predefined inlet and
outlet sections at domain’s boundary. The continuity of each fluid in the domain is ensured using
continuity objective function. Hence equation (4.6) is used as mutli-objective function. Two flow
arrangements were considered: parallel flow in which cold and hot fluids enter the domain from
west edge and leave it from the east edge, and counter flow in which cold and hot fluids enter the
domain from west and east edges respectively and leave it from east and west edges
respectively. Fluid 1 and fluid 2 properties are the following: pr; = pr, = 1000 kg/m3,
Hr1 = Hfp = 0.001 Pa.s, Cpcr1y = Cp(rz) = 4200)/K . kg and ksy = ks, = 1W /K. m. Maximum
porosities of both fluids are ¢f; = @¢, = 0.23. Solid thermal conductivity is ks = 10 W /K .m.
The Reynolds number based on inlet velocity and the length of inlet section is Re = 15. Cold and
hot fluids inlet temperatures are respectively T; . = 0°C, and T; , = 200°C. All domains’ walls are

adiabatic, and the outlet flow section is characterized by zero temperature gradient. Velocities at
inlet and outlet sections of both fluids are fixed.

4.6.1. Parallel flow

The initial configuration of double pipe with parallel flow arrangement is depicted in Figure
4.20. u and T at inlet and outlet boundaries denote respectively for velocity and temperature.
Indices i, 0, c and h stand respectively for inlet, outlet, cold(fluid 1) and hot(fluid 2).

Uh = | =
Tin ] — Ton
34 70
We — | — uge
E: 15 :

Ti,C — 110 — To,c

Figure 4.20: Initial configuration of double pipe with parallel flow arrangement

Figure 4.21 combined subdomains of solid, fluid 1 and fluid 2 for the optimal structures that
correspond different values of weighting factor w. Power dissipation and heat transfer objective
functions, hot and cold fluids outlet temperatures and temperature difference AT =T, — T, .
for the optimal structures of Figure 4.21 are summarized in Table 4.5.
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w fa (X1077W)  fo(x 107*W) Ty, (°C) Ton (°C) AT (°C)

1 1.3783 6.6031 36.37 163.63 127.26
0.95 1.5667 7.1935 38.02 161.99 123.97
0.94 1.747 7.629 39.86 160.13 120.27
0.92 1.8735 7.8654 41.24 158.75 117.51
0.88 2.2234 8.4958 43.76 156.23 112.47
0.82 2.7179 8.9403 45.48 154.51 109.03
0.7 3.5407 9.3732 47.55 152.44 104.89
0.6 7.3929 10.429 53.18 146.81 93.63
0.45 12.398 11.182 56.97 143.02 86.05
0.3 18.633 11.744 59.53 140.46 80.93
0.15 35.644 12.316 61.85 137.66 75.81
0.05 41.327 12.402 62.48 136.45 73.98

Table 4.5: Thermal and hydraulic performance of topology optimization results for various values of w

A)w=1 (B) w = 0.95

(C) w=0.94 (D) w = 0.92
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(E) w = 0.88 (F) w=0.82

(G) w=10.7 (Hhw=0.6

() w =045 0 w=03

(K) w = 0.15 ' (L) w = 0.05

Figure 4.21: Double pipe configuration with parallel flow arrangement: structure variation with respect
to the weighting factor w
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The maximization of heat transfer between fluid streams at the detriment of fluid power
dissipation by minimizing the weight w, passes by two main stages as follows:

For1l <w <0.6:

Figure 4.22: Geometrical parameters that reflect the trade-off between pressure drop and heat transfer

For this range of w, the optimal structures are characterized by three geometrical
parameters, as seen in Figure 4.22:
e The minimum solid thickness t between upper layer of cold pipe and lower layer of
hot pipe.
e Thelength [ when t reaches its minimum, which describes the distance for which hot
and cold pipes stay as close as possible to each other.
e The bending angle 8 in which the pipe diverts from its inlet and outlet sections to go
closer to the other pipe

(A) w = 0.92 (B) w=10.7

Figure 4.23: Fluid power dissipation for various bending angles

To maximize heat transfer between fluids, both pipes should have the minimal solid
thickness t for the longest distance possible [. Decreasing t and increasing [ requires a higher
bending pipe angle 6. Higher bending angle leads to higher pressure drop, hence higher fluid
power dissipation. Thus, the trade-off between geometrical parameters reflects the trade off
between heat transfer maximization and pressure drop minimization. To show the effect of
bending pipe on pressure drop, fluid power dissipation function is computed between sections A
and B for pipes of optimal structures of w = 0.92 and w = 0.7, as seen in Figure 4.23. For the
structure of w = 0.92 sketched in Figure 4.23.A, fluid power dissipation in bending section is
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fas(A—B) =3.12x 1078 W for a bending angle 8 ~ 32°. The pressure drop due to bending
section in optimal structure of w = 0.7, which has a § ~ 54°,is f;(A — B) = 3.81 x 1078 W. The
geometrical parameters of all structures of w between 1 and 0.65 in Figure 4.21; are
summarized in Table 4.6.

w t (mm) L (mm) 6
1 32 - 0
0.95 18 - 29°
0.94 14 - 32°
0.92 4 38 32°
0.88 4 64 43°
0.82 3 76 49°
0.7 4 86 54°

Table 4.6: Geometrical parameters t, [ and 8 of for structures of w = 1 - 0.65

For0.6 <w <0.05:

For w < 0.6, reducing solid thickness between hot and cold streams for longest distance
possible inside the optimization domain, doesn’t satisfy anymore the required heat transfer rate.
Hence, hot and cold pipes become having wavy shapes in order to increase heat transfer rate,
and residence time of both fluids inside the domain by increasing the distance each fluid particle
has to cross to leave the domain. It could be clearly seen from Figure 4.21, that when w
decreases, the length of cold and hot pipes increases and their diameter decreases, both lead to
higher heat transfer rate and higher pressure drop. However, Table 4.1 shows that the
increasing rate of f, for structures of 0.6 < w < 0.05 is approximately similar for structures of
1 < w < 0.6, whereas the increasing rate of f; is much higher for structures of 0.6 < w < 0.05
than for those of 1 < w < 0.6. This means when w decreases, a high increasing in pressure drop
is required in order to increase heat transfer rate by a small quantity. This could be also seen
from Pareto frontier sketched in Figure 4.24. For example the optimal structure of w = 0.7
sketched in Figure 4.21.G, has f; and f, higher by 2.57 and 1.41 times respectively in relation to
fq and f, of the straight pipe structure sketched in Figure 4.21.A. For the optimal structure of
w = 0.15 sketched in Figure 4.21.K, f; has increased by 27.04 times in relation to straight pipe
structure and 10.07 times in relation to the structure of w = 0.7, whereas the corresponding
increment in f, in relation to both cases, was respectively by 1.865 and 1.313 times only.

Finally for extremely lower values of w (w = 0.05), the optimal structure is characterized by
a chaotic behavior in optimizing the topology of cold and hot pipes, as seen in Figure 4.21.L.
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However for this structure, the increasing in heat transfer is very small in relation to the much
higher increment in pressure drop.

14

13

12 4

11 4

10 4

fo xa0*w)

5 T T T T T T T T
0 5 10 15 20 25 30 35 40 45

fq (xx07w)

Figure 4.24: Double pipe with parallel flow arrangement: Pareto frontier

4.6.2. Counter flow

Yo, E_ _________ — Ujp
Ton — o — T,
34 70
Uj ¢ E_ _____ — Uo ¢
Tie — | 110 — Toc

Figure 4.25: Initial configuration of double pipe with counter flow arrangement

The initial configuration of double pipe with parallel flow arrangement is depicted in Figure
4.25. Figure 4.26 shows combined subdomains of solid, fluid 1 and fluid 2 for the optimal
structures that correspond to different values of weighting factor w. Power dissipation and heat
transfer objective functions, hot and cold fluids outlet temperatures and temperature difference
AT =T, — T, for the structures depicted in Figure 4.21 are summarized in Table 4.7.
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w fa (X1077W)  fo(x 107*W) Ty, (°C) Ton (°C) AT (°C)

1 1.42 6.85 38.31 161.69 123.38
0.94 1.58 7.77 42.26 157.73 115.47
0.88 1.81 8.45 45.76 154.24 108.48
0.8 2.12 8.94 50.56 149.38 98.82
0.7 4.4 10.34 52.36 147.54 95.18
0.55 8.64 11.67 58.69 141.38 82.69
0.4 12.24 12.55 62.92 137.02 74.1
0.3 15.67 13.04 65.65 134.19 68.54
0.21 32.68 14.27 69.9 130.69 60.79
0.15 33.88 14.35 72.41 127.04 54.63

Table 4.7: Thermal and hydraulic performance of topology optimization results for various values of
weighting factor w

Aw=1 (B) w = 0.94

(C) w=0.88 (D) w = 0.8
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(E) w = 0.7 (F) w = 0.55

(G w=04 (HHw=20.3

(M) w=021 ‘ ) w=0.15

Figure 4.26: Double pipe configuration with counter flow arrangement: structure variation with respect
to the weighting factor w

Figure 4.27 shows the Pareto frontier of counter flow topology optimization problem. The
exponential shape of the curve shows clearly the huge increase in pressure drop required to
enhance heat transfer when w decreases and approaches 0.

Similarly to parallel flow, the structures generated for the maximization of heat transfer for
different values of w are classified under two main categories:

e For 1 <w < 0.7, the maximization of heat transfer is attained by bringing hot and
cold pipes close to each other. The geometrical feature that characterizes these
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structures is bending angle at inlet sections, between the fluid pipe and a horizontal
line normal to inlet boundary. This angle is equal to 26° for the optimal structure of
w = 0.94, 35° for the optimal structure of w = 0.88 and 47° for the optimal structure
ofw = 0.8.

For 0.7 < w < 0.15, heat transfer is further maximized by increasing heat transfer
surface and generating structures that have similar effect as fins in heat exchangers.
When w decreases, cold and hot pipes became longer and thinner which minimize
the outlet temperatures difference but also causes a huge increasing in pressure
drop. It could be seen from Figure 4.26, that wavy shapes are first generated near
inlet boundaries of hot and cold fluids, where the fluids have their maximum and
minimum temperatures respectively, than those wavy shapes are intensified
throughout the whole domain when w decreases.
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Figure 4.27: Double pipe with parallel flow arrangement: Pareto frontier

4.6.3. Comparison between parallel and counter flows

Figure 4.28 summarizes fluid power dissipation and heat transfer functions of pareto
frontiers for parallel and counter flow. In the chart’s legend fd and fe stand respectively for fluid
power dissipation and energy recovery, and pf and cf correspond respectively for parallel flow
and counter flow. The graph shows that fluid power dissipation curves for both fluid
arrangements have approximately similar values. However heat transfer is higher for counter
flow especially for low values of w. This shows clearly that counter flow arrangement is able to
provide higher heat transfer rate than parallel flow arrangement, with similar and sometime
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lower pressure drop. Hence counter flow is preferred over parallel flow in fluid-fluid heat
exchanger.
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Figure 4.28: Fluid power dissipation and heat transfer objective function variation in function of
weighting factor w for parallel and counter flows arrangements
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Figure 4.29: Outlet temperatures of cold and hot streams variation in function of weighting factor w for
parallel and counter flows arrangements

The variation of average temperature at outlet boundaries of the cold fluid (fluid 1) and the
hot fluid (fluid 2) in function of weighting factor w, for parallel and counter flows, is sketched in
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Figure 4.29. The graph shows that for the entire range of w between 0 and 1, the outlet
temperatures of cold stream are higher in counter flow and the outlet temperatures of hot
streams are higher in parallel flow, which means a higher heat transfer rate in counter flow. The
difference between outlet temperatures in parallel and counter flows (4T,. = T, (cf) —
Toc(pf)and AT, p, = T, (pf) — T, n(cf) ) increases when w decreases.
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Figure 4.30: Outlet temperature of cold and hot streams throughout optimization process in parallel and
counter flows forw = 0.15

Figure 4.30 shows the variation of average temperature at outlet boundaries of hot and cold
fluids throughout the optimization process of w = 0.15 in parallel and counter flows. The fluid
power dissipation in optimal structures of both cases are respectively 35.64 X 107 W and
33.88 x 1077 W. The graph shows that throughout the majority of iterations, counter flow
provides a lower temperature difference between average outlet temperatures of cold and hot
streams. The temperature difference between the streams are 73.98°C and 54.63°C respectively
at the final iteration of parallel and counter flow cases.

(A) Structure A (B) Structure B

Figure 4.31: Optimal structures for high values of w in parallel flow and counter flow topology
optimization
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Figure 4.21 and Figure 4.26 show a remarkable difference in optimal structures of parallel
and counter flows for high values of w (w > 0.7). In parallel flow, fluid pipe has two bending
sections, near outlet and near inlet regions, to bring both pipes closer together in the center of
the domain. Both pipes in the center of the domain are horizontal. In counter flow, fluid pipes
have bending sections only in near inlet region, and after the bending section the fluid leaves the
domain by a straight but tilted pipe.

To test the performance of both structures in parallel and counter flows, we considered the
optimal structure of w = 0.93 in parallel flow sketched in Figure 4.31.A and denoted as structure
A, and the optimal structure of w = 0.88 in counter flow sketched in Figure 4.31.B and denoted
as structure B. These structures were considered for comparison because they have similar
values of f;, 1.8176 X 107 W for structure A and 1.809 X 107 W for structure B. In parallel
flow, for T; . = 0° and T;;, = 200°, f, = 7.796 X 10~* W in structure A and f, = 7.801 x 107* W
for structure B. Thus f, was only higher by 0.06%, which could be rather caused by numerical
error, hence both structures could be considered with same affectivity in parallel flow. In
counter flow, for same inlet temperatures cited above, f, = 8.41 X 10~* W in structure A, and
f. = 8.45 x 10~* W in structure B. However despite the difference is only by 0.6% between both
structures, but is still more considerable than in case of parallel flow, and was detectible by the
optimization algorithm, which explains the convergence to structure B in counter flow.

4.7. Conclusion

In this chapter, maximization of heat transfer at the detriment of fluid power dissipation in
bi-fluid topology optimization was considered. This has allowed design and optimization of
fluid-fluid heat exchangers using advanced mathematical optimization technique of topology
optimization. First, distribution of fluid 1 and fluid 2 within the same pipe was studied, in
minimization and maximization of heat recuperation by the entire fluid channel crossing the
domain, whose is subjected to a constant temperature at its south and north edges. The results
showed the validation of the proposed bi-fluid method in simultaneous optimization of heat and
mass transfer without fluids separation. It should be noted that these results are valid from a
theoretical point of view, and their application in real life engineering devices may not be
possible even with immiscible fluids. Then, heat transfer maximization between separated fluid
subdomains was studied. Fluid 1 and fluid 2 subdomains formed respectively the cold and hot
streams. Continuity objective function ensured that each fluid is transported in its own pipe that
connects its predefined inlet and outlet boundaries. An example of possible failure structure in
absence of fluid phases separation was presented. Results have shown that separation of fluids
subdomains is essential in bi-fluid topology optimization, not only for the determination of the
type of fluid in each pipe, but also to ensure a convergence to a realistic engineering solution.
Finally, optimization of double pipe heat exchangers in parallel and counter flows was studied.
The minimization of the multi-objective function allowed drawing the optimal Pareto curve,
which represents the trade-off between minimization of pressure drop and maximization of heat
transfer in design and optimization of heat exchangers.
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Chapitre 5: Conclusion et perspectives

Dans cette these, 'optimisation topologique dans les problémes de transfert de masse et de
chaleur a été étendue pour des domaines bi-fluides, optimisant ainsi la distribution de 2 fluides
et un solide dans le domaine. Deux fonctions d’interpolation pour forcer la matiére fictive
intermédiaire dans chaque maille a converger vers I'une des 3 phases (fluidel, fluide 2 ou
solide) ont été formulées et testées. La premiére fonction mono-eta utilise une seule variable de
conception 1 dans chaque maille et est basée sur la superposition de trois fonctions de
distribution normales. La seconde, bi-eta, utilise deux variables de conception dans chaque
maille, 7, pour interpoler entre le fluide 1 et le fluide 2 afin de calculer la propriété physique du
fluide équivalent, et n; pour interpoler entre le fluide équivalent et le solide. Ainsi n; définit la
forme des canaux d’écoulement et 7, définit la nature du fluide dans chaque maille de
conception a l'intérieur des tuyaux. La deuxieme formulation a été trouvée plus efficace et a été
adoptée dans le reste de la these en raison de la dépendance de la premiére vis-a-vis de
I'estimation initiale. Les résultats ont montré la capacité de la formulation bi-eta a répondre au
bon positionnement des fluides pour la minimisation de la fonction de dissipation de puissance
dans le fluide.

Ensuite 'optimiseur avait besoin d’assurer le transport de chaque fluide dans le domaine par
son propre canal indépendamment de l'autre fluide. Ce dernier devrait connecter les entrées et
les sorties du fluide correspondant. La séparation des fluides devrait également assurer qu'une
couche solide d’épaisseur minimale d’'une maille de conception sépare les canaux d’écoulement
des différents fluides. Trois méthodes étaient implémentées dans 'algorithme d’optimisation
afin de pénaliser la présence des fluides différents dans la méme maille ou dans des mailles
voisines. Dans la premiére méthode, la séparation était assurée par l'intermédiaire d'une
fonction de continuité prise comme fonction objectif. Dans la deuxiéme le coefficient inverse de
perméabilité est modifié afin de séparer les fluides en considérant un effet mur entre les
différents fluides. Et enfin dans la troisiéme méthode la fonction de continuité était prise comme
fonction contrainte. Les deux premieres méthodes ont montré une efficacité similaire en
séparant les deux fluides et en les empéchant de se mélanger dans la méme cellule ou le méme
canal. Cependant la troisieme méthode a été jugée moins efficace puisqu'elle ne permettait pas
de séparer completement les fluides et nécessitait beaucoup de temps en raison du nombre
élevé d'itérations nécessaires.

Enfin, une nouvelle fonction objectif qui calcule le taux de chaleur transféré entre les fluides
était ajoutée au probleme d’optimisation multi-objectif pour optimiser le transfert de chaleur et
la perte de charge simultanément. Premiérement, le probléme était résolu sans séparation des
fluides pour étudier le positionnement des deux fluides ayant des conductivités thermiques
différentes pour la minimisation et la maximisation de la récupération d’énergie respectivement.
Enfin pour les domaines comprenant des entrées et sorties différentes des deux fluides, la
séparation des fluides était respectée dans le probléme d’optimisation multi-objectif grace a
I'utilisation de la fonction de continuité. Les structures générées par I'optimiseur dépendent du
parameétre de pondération qui détermine la préférence entre la maximisation de transfert de
chaleur et la minimisation de la perte de charge.
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Cependant, malgré le succes de la méthode proposée pour traiter le probleme posé au début
de la these, et pour établir la base d'une méthode de conception des échangeurs de chaleur
spécifiquement, et divers dispositifs d'ingénierie qui inclut généralement le transfert de masse et
chaleur, la méthode présente certaines limitations considérables exprimées comme suit :

e Le nombre extrémement élevé des variables d’optimisation, qui est le double du nombre
de variables de conception pour la méme configuration dans les problemes mono-fluide,
ce qui limite I'application de la méthode sur des domaines relativement petits, ou forcent
a utiliser des grands maillages. Ainsi la précision de la structure optimale finale diminue
ainsi que la précision de la solution de la méthode des volumes finis.

e La convergence de la méthode d’optimisation est fortement dépendante de plusieurs
parameétres mathématiques dont on cite les plus importants: le parametre de
pénalisation de la fonction d’interpolation, les rayons des filtres de sensibilités et de
conception, le poids de la fonction de continuité et les paramétres de la méthode des
asymptotes mobiles.

Enfin les prochains travaux doivent étendre la méthode au domaine tridimensionnel et aux
écoulements turbulents afin que la méthode soit utilisée par les concepteurs des échangeurs de
chaleur dans des applications d’'ingénierie réelles. Les contraintes de fabrications additives, et
des méthodes numériques telles que I'adjoint continu et la GCMMA peuvent étre également
intégrées dans I'optimiseur.
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Chapter

Conclusion and
Perspectives

5.1. Conclusion and limitations

The present thesis aims to extend the application of topology optimization on fluid flow
problems to include two fluid subdomains in addition to a solid subdomain, whereas literature
review showed that this kind of problems solved so far included only a single fluid in addition to
the solid phase. To deal with the presence of two fluid phases and a solid phase in the
optimization domain two interpolation functions were developed: mono-eta interpolation
function that uses one design variable in each design cell based on normal distribution function,
and bi-eta interpolation function that uses two design variables in each design cell, one for
separating solid phase from both fluids phases and a second one for separating fluid 1 from fluid
2 phase in the fluid portion determined by the first design variable. Results showed that mono-
eta formulation depends strongly on initial guess whereas bi-eta formulation is capable of
rearranging solid and both fluids freely without any limitations.

Various methods were then implemented to ensure the separation of fluids subdomains:
penalty equation as an objective function, the same equation as a constraint function and using a
physically unrealistic term added to the inverse permeability coefficient in the flow equation,
which increases pressure drop when two fluids mix in the same channel. The penalty equation
as an objective function and the modified inverse permeability coefficient methods showed
similar efficiency in separating fluid subdomains and preventing them from mixing in the same
cell or same channel, also they prevented the fusion or crossing of fluid channels where a
minimal solid thickness is preserved between them. However the method of using penalty
function as a constraint function was found to be not so efficient where it failed to completely
separate fluids subdomains and was very time consuming due to the high number of iterations
needed.
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Minimization of power dissipation is then coupled with the maximization of heat transfer
rate using multi-objective optimization technique, and continuity objective function which
allowed designing a fluid to fluid heat exchanger device using the topology optimization
technique.

However despite the success of the method proposed to deal with the problem posed at the
beginning of the thesis, and to establish the basis of a design methodology of heat exchangers
specifically, and various engineering devices that includes heat and mass transfer generally, the
method still present some considerable limitations expressed as follows:

e The extremely high number of variables, which is double of the number of design
variables for the same configuration in mono-fluid domain, limits the application of the
method on relatively small domains, or force to use coarse meshes for large domains
which decreases the accuracy of the final optimal structure, and decreases also the
accuracy of the solution of CFD simulations at each iterations which dramatically affect
the convergence process and the optimal result.

e The convergence of the method to a reasonable solution is highly dependent on the
numerical parameters of the various methods used in the optimization algorithm. The
most important are the penalization parameters used in the interpolation function, the
filter radius of sensibility and design fields, the step size in the method of moving
asymptotes, the weight of continuity function in case of fluid separation using the
method of objective function, and the value of yf, in case of fluid separation using the
modified inverse permeability coefficient. Usually those parameters vary dynamically
throughout the optimization to ensure a smooth convergence and to avoid local
optimum. However the choice of those parameters and their variation is so delicate
which make the method extremely dependent on using the right set of parameters values
throughout the optimization process.

5.2. Perspectives

5.2.1. Tridimensional domain

The first essential upgrade that should be performed on the method presented in this thesis
is to consider the organization of materials in tridimensional domain, which will allow the
method therefore to be considered as a new conceptual design methodology that leads to heat
exchangers used in real life engineering applications. In fact the results of the bi-fluid topology
optimization method applied on bi-dimensional domain could be considered as particular plan
cut from the real 3D solution, while the optimization in 3D domain will lead to more complicated
and realistic fluid paths that could not be predicted in 2D simulations. However 3D
configurations increases the number of design variables, which will make the optimization
problem more difficult due to the extremely high number of variables, which is already
considered high in 2D simulations. This may require the use of more advanced numerical
optimization algorithms to deal with the increment in number of variables, otherwise the 3D
topology optimization method will be limited to extremely small domains or coarse mesh grid
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which will decrease the accuracy of CFD calculations and optimal structures results. In addition,
calculation of Navier-Stokes and energy equations in 3D porous flows requires additional
computational time in comparison with 2D CFD time calculation. In summary, moving from 2D
to 3D domains in bi-fluid topology optimization introduces a large field of investigations and
challenges in the development of the method due to the increasing of complexity and time
calculation of direct CFD solver, discrete adjoint method and numerical optimization method.

5.2.2. Turbulent flow

All flow considered in this thesis are limited to laminar flows only. Above certain Reynolds
number, flows become unstable where a chaotic and random state of motion is developed, called
turbulent flow, observed in most of engineering practices. Contrary to laminar flow which is
smooth and well organized and ordered, turbulent flow is unsteady and rotational flow
structures are observed, where velocity and other flow properties vary randomly. As a result of
those rotational structures, heat, mass and momentum are very effectively transfered in
comparison with laminar flow. Thus despite the increasing in energy losses in turbulent flows,
sometimes they are preferred over laminar flow in heat exchangers for their higher convective
heat transfer coefficient. However application of topology optimization on turbulent flow
requires the implementation and derivation of special equations and turbulence models, which
are more complicated than CFD calculation of laminar flow due to the chaotic behavior of
turbulent flows. Considering turbulent flows in topology optimization of 2D and 3D bi-fluid
domains increases the complexity of the problem much more than moving from 2D to 3D in
laminar flow (paragraph 5.2.1), and opens up a large field of investigation and studies, which
could lead to much more promising and interesting works.

5.2.3. Numerical methods

Density method used in this thesis as topology optimization technique for heat and mass
transfer in bi-fluid domain, is based on three main parts: a direct solver to solve Navier-Stokes
and energy equations, a suitable method to compute the gradient of objective function with
respect to design variables, and finally numerical optimization method that computes the
optimal value of design variables by minimizing an objective function on the basis of gradient
information. Finite Volume method (FVM), discrete adjoint method, and method of moving
asymptotes (MMA) are respectively used in the three main parts of the algorithm. However the
following methods should also be considered in the future:

o There are two methods to compute the gradient of the objective function using the
adjoint technique: discrete adjoint method and continuous adjoint method. As already
explained in paragraph 2.7, the main difference between the two methods is that in
discrete method the physical equations are discretized and then derived whereas in
continuous method they are derived then the derivative equations are discretized to
solve the adjoint problem. The methods give close results especially with fine structured
meshes, hence there is no preference of one of the methods in literature despite discrete
adjoint method have better agreement with finite difference method. In topology
optimization both methods are used in most of the works done in this field of study. In
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this thesis only discrete adjoint method is considered, thus continuous adjoint method
should also be implemented. Then a comparison should be made between results,
convergence process and calculation time for both methods.

e Similarly to most of works done in the field of topology optimization, the Method of
Moving Asymptotes (MMA) is used for numerical optimization. Globally Convergent
Method of Moving Asymptotes (GCMMA), which is an upgraded version of MMA that
ensures the convergence to global minimum, looks also appealing and has been used in
topology optimization despite higher number of iterations and calculation time it needs.
Hence the implementation of GCMMA in current design methodology developed in this
thesis could be considered in the future.

5.2.4. Boundary conditions

The works conducted in this thesis were limited to fluid flow entering and leaving the
optimization domain through a normal vector to the surface. However in real life engineering
application, nothing can guarantee that fluid leaves the domain orthogonally which affect the
shape of the optimal structure, hence the convergence procedure and the final optimal structure.

5.2.5. Manufacturing constraints

In first chapter it was stated that the advancement in additive manufacturing technology,
pushed researchers and engineers to investigate and develop design methodologies using
topology optimization techniques. In fact topology optimization may leads to complex structures
unable to be manufactured using conventional techniques of material extraction and welding,
whereas 3D printers solved nearly most of all problems related to manufacturing considerations
and the limitations imposed on the field of topology optimization. However additive
manufacturing still presents some constraints that have to be implemented in the optimization
algorithm to be taken into consideration in the design process, otherwise the development of
any efficient engineering device is useless if its manufacturability conditions are not respected.
The manufacturing constraints in 3D printers are based on law of gravity applied on printing
process, in which a piece cannot be printed in midair. In fact every layer of material printed
serves as a support for the next layer during printing cycle. The following features that should be
considered when designing and optimizing are the following:

e The minimum supported wall thickness: a constraint must be considered on the minimal
walls, fins and other pieces inside the exchanger. This constraint depends on the minimal
layer thickness the printer is able to print at each cycle (normally this thickness is
around 1 mm).

e Maximum overhang length for parts that includes an 90° unsupported overhang, there is
a maximum length for the overhang that could be printed without using a support, which
range usually between 1 mm and 2 mm.

e Maximum unsupported overhang angle without using a support, which is a variant
constraint that depends on the material used. However parts with angles up to 45° could
be successfully printed.
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Annex A1l: Logarithmic mean temperature difference method

Heat exchangers sizing and rating are solved using Logarithmic mean temperature difference
method based on the two following equation for heat flux transferred between the hot and cold
fluids:

q=C.(Tee—T.i)=Cy (Tos — o) (AL.1)

and:
q=USAT,, (A1.2)
where q the heat flux, T the temperature, C the heat capacity which is the mass flow rate
multiplied by the specific heat capacity, U the overall heat transfer coefficient and S the effective

heat transfer surface AT}, is the logarithmic mean temperature difference that depends on flow
arrangement and is expressed as follows:

T - AT, — AT,
W T In(AT,/AT,) (A13)
with:
ATl :Th,i _Tc,o
For counter flow arrangement:
ATZ =Th,o _Tc,i
(Al.4)
AT, =Th,i _Tc,i
For parallel flow arrangement:
AT2 =Th,0 _Tc,o
For all types of flow arrangements AT}, could be compute as follows:
ATy =FAT v, (A1.5)

where AT}y o being the logarithmic mean temperature computed for counter flow arrangement
and F a correction factor corresponding to a specific flow type. F is found in abacus of heat
exchanger design books, or computed using explicit functions that depends in two parameters R
and P defined as follows:

R=-_¢ s
ts _te
_ (A1.4)
P= ts te
T, —t

where T the temperature of the fluid flowing outside the tubes and t for the fluids inside the
tubes.

152



Annex A2: Effectiveness-Number of transfer unit method

One way of evaluating the performance of a heat exchanger is to compare it with an ideal,
unrealistic heat exchanger where the temperature of the cold fluid at its outlet section reaches
the inlet temperature of hot fluid. This could be only realized with a counter flow heat exchanger
of infinite length. Hence the corresponding maximal heat transferred between the fluids is:

For G = C. we will have T, , = Ty, ; and @ qy:

qmax = Cc (Tc,o _Tc,i ) = Cmin (Th,i _Tc,i ) (AZ.l)

For Cpyin = Cp we will have Ty , = T, ; and g qy:

Omax = G4, (Th,i _Th,o) =Cin (Th,i =T ) (A2.2)

So it’s clearly shown that for both cases the maximum heat transfer is expressed similarly. Hence
heat exchanger effectiveness € can be expressed as follows:

o= q _ Cc (Tc,o _Tc,i) _ Ch (Th,i _Th,o) (A2.3)
Ormex Cmin (Th,i _Tc,i) Cmin (Th,i _Tc,i)

NTU is a dimensionless parameter that describes the performance of the heat exchanger and is
expressed as following:

us
NTU = —
c (A2.4)

min

Depending on the flow arrangement, a mathematical expression relating NTU to € and C, the
ratio of lowest to highest heat capacity, can be developed (for detailed mathematical
development of the functions see [6]). This expression is used for sizing and rating problems in
heat exchanger design and does not need an iterative procedure. Examples for some common
flow types:

Parallel flow heat exchanger:

In[1-£(1+C,)]

NTU =- 1+ C, (A2.5)
Counter flow heat exchanger:
NTU =—— | £=1 (A2.6)
C,-1 |&C -1

Cross flow heat exchanger:

£=1- eprCi)( NTU )™ {exp[ ~C, (NTU)™" | —1}} (A27)

r
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Expressions for a wide range of heat exchangers technologies are summarized in [6].

Annex A3: Temperature effectiveness - number of transfer unit
method

The heat transfer rate from cold to hot fluid is expressed as follows:
q = Pc:CcATmax = I:)hChATmax (A3.1)

where P is the temperature effectiveness and AT,,,, is the difference between inlet
temperatures of hot and cold fluids. Temperature effectiveness is a dimensionless parameter
computed for each fluid in function of its corresponding NTU number, heat capacity rate ratio
and the flow arrangement:

P, = f (NTU_,R,, flow arrangement)

(A3.2)
R, = f (NTU,,R,,flow arrangement)
with:
Tc o _Tc i
PC — s
Th,i Tc,i
Ph _ Th,i _Th,o
Th,i Tc,i
(A3.3)
NTU, = % NTU, = %
C
c h
R-C RS
C C.
It can then be shown that:
R=RR, R=RR (A3.4)
Similarly:
NTU, =NTU,R,  NTU, =NTU_R. (A3.5)
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Finally sizing and rating problem in design of heat exchangers are solved by computing
unknown variables by using the P — NTU relation for the corresponding flow arrangement and
definitions of dimensionless parameters in A3.3. P — NTU was first developed for design of shell
and tube heat exchangers before the introduction of € — NTU, and was then adapted to different
types of heat exchangers technologies.
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Annex B1: Entropy generation method

Thermodynamic irreversibility is identified by computing the entropy generation due to heat
transfer in the heat exchanger. The entropy generation is influenced by the temperature and the
temperature difference distributions in the exchanger. The local temperature difference is the
driving force for heat transfer in a heat exchanger and hence it influences the exchanger
effectiveness. The entropy generation for an adiabatic open system is the sum of entropy
generation of both fluids:

S gen =My ASl +m, ASZ (Bll)

where m is the mass flow rate and As is the entropy rate change between the inlet and outlet.
Subscript 1 and 2 stand respectively for each of the hot stream and cold stream. By integrating
mAs between the inlet and outlet entropy generation due to heat transfer in heat exchanger
becomes [6]:

é _ ! I Th,i : I TC,O
gen, AT = me n_l_—+ me n T (B1.2)
h h,o c c,i
where the subscripts i and o stand respectively for inlet and outlet.

For an incompressible fluid the entropy generation caused by fluid friction is [6]:

+(fﬁA_Pj il (B1.3)
P ). T o—T

c,0 C,i

p h Th Th,i

0

Finally the total entropy generation in the heat exchanger is:

Sgen = Sgen,AT"‘ Sgen,AP (B1.4

Actually the objective function used to optimize heat exchangers is the entropy generation
number introduced by Bejan [123] defined as follows:

égen
Ny =7 (B1.5
(mcpj

where (MCy)max = max(mlell; mch,z).

The problem often encountered with the shape optimization based on the minimization of
entropy generation number is the “entropy generation paradox” where for some flow conditions
and boundary conditions the decreasing in entropy generation number yield to a reduction in
heat exchanger effectiveness in contrary to expected result. Entropy generation paradox was
clearly demonstrated by Shah et Skiepsko [29] by analyzing the relationship between heat
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exchanger efficiency and entropy generation in 18 heat exchangers with different structures, the
results showed that when the entropy generation reaches the extremum, the efficiency of the
heat exchangers can be at its maximum, minimum or anything between.

To avoid entropy generation paradox Guo et al. [124] have introduced the modified entropy
generation number by using the ratio of heat flow and inlet temperature of cold fluid to
nondimensionalization of entropy generation. The entropy generation number becomes [124]:

N = S gen 'Tcold inlet (B1.6)

) Q
The results showed that for the optimization problems where the heat load is given both the
initial entropy generation number (B1.5) and the newly introduced one (B1.6) lead to the same

results. However if the duty heat is not fixed entropy generation number defined by Bejan (B1.5)
suffered from the entropy generation paradox, which is avoided by the new formulation (B1.6).

Annex B2: Entransy dissipation method

Based on analogy between heat flux and electrical current, Guo et al.[26] have developed in
2007 a new physical quantity called entransy to describe heat transport potential capacity of an
object. The name entransy came from “en-transy” where “en” stands for energy and “transy”
stands for transport. The definition of entransy G is:

G= %UT (B2.1)

By analogy to electricity, G the entransy of an object is the heat transfer ability which
corresponds to the electrical energy in a capacitor that describes its charge transfer ability. U the
internal energy in equation (1.8) corresponds to electrical quantity in a capacitor and the
temperature T corresponds to the voltage. The entransy is transported during heat transfer
similarly to the transport of electric energy during electric conduction. By this definition it is
obvious to show that the heat transfer ability of an object depends on its potential to transfer
heat which is the temperature and its capacity to be able to transfer it which is U.

Guo et al. have developed the expression of entransy dissipation for heat conduction rate
defined as [26]:

¢ =—q.VT (B2.2)

Where g is the heat flow density and T the temperature. In a heat transfer process the thermal
energy is conserved but the entransy is not conserved like the entropy is generated, thus the
entransy dissipation rate is a physical quantity for the measuring the irreversibility in heat
transfer, thus used as objective function in shape optimization of heat exchangers.
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For the heat conduction the entransy dissipation is computed by applying Fourier law to
equation (B2.2) and integrating between inlet and outlet. The final form of entransy dissipation
caused by heat conduction can be expressed as follows [125]:

Gy = % (m Cp)h (Th%i _Thz,o ) + % (m Cp)c (Tc?i —Tfo ) (B2:3)

where the subscripts h,¢i and o stands respectively for hot, cold, inlet and outlet.

The entransy dissipation related to fluid friction for an incompressible fluid is developed by
applying the thermodynamic entransy dissipation expression for heat convection where a
second term related to fluid viscosity appears in equation (B2.2), thus the entransy dissipation
related to fluid friction in heat exchanger can be expressed as follows [27]:

G _(mA_Pj ![mA_PJ To-T.,
* ) |n(1:f:) o). |n(1c:) (B2.4)

Finally the total entransy dissipation number is the sum of equations (B2.3) and (B2.4) divided
by the maximum entransy dissipation in a heat exchanger for non-dimensionless expression:

_ GG (B25)
Q(Th,i _Tc,i) .
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Annex C1: QUICK scheme

Leonard [126] developed in 1979 a Quadratic Upstream Interpolation for Convective Kinetics
(QUICK) scheme that computes cell face values using three neighbors nodes. The interpolation
function is a quadratic function involving two neighbor nodes from each side of the face and a
third node on the upstream side. For example suppose in Figure A, the velocity vector U,, > 0, to
compute a transport property @,, at the west face, the QUICK scheme uses nodes P, W and the
upstream node WW whereas if U, <0 values of @ at W,P and E are used to find the
interpolated value of transport property @,,. Similarly nodes W, P and E are used for evaluation
of @, if U, > 0 and nodes P, E and EE if U, < 0. The generic equation to computes the value of @
at the cell face is the following:

3

6 1
=@ +—¢ — = D1.1
¢face 8¢a 8% 8¢c ( )

where a and b are the bracketing nodes at each side of the face and c is the upstream node that
depends on the flow direction. Hence the QUICK scheme can be summarized as follows:

o=+ 5[ -2~ ] Toru, >0
h=4+ 13 -2,-4,]  foru,>0
§=b+ 3 -2 4]  foru >0

¢n:¢P+%[3¢N_2¢p_¢s] fOI’un>O
(D1.2)
¢W=¢p+%[3¢m—2¢p—¢g] foru, <0

ho=fe+ 32 ~die]  foru, <0
4=+ 130 -2%-4,]  foru, <0

= +3 (3 ~20, ~d] foru, <0

After replacing the cell faces properties values corresponding to QUICK scheme of equation
D1.2 into the discretized equation of finite volume method, it appears that the main coefficient
are not guaranteed to be positive, which is a condition to the interpolation scheme to be stable
and ensures the convergence of the iterative solver. It's found that under certain conditions,
stability problems may occur with QUICK scheme and unbounded solutions may appear. The
maximum value of Peclet number that ensures stability is 8/3, thus QUICK scheme as presented
by Leonard [126] is conditionally stable. However many authors have reformulated Leonard’s
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scheme to alleviate stability problems by placing the terms that give rise to negative coefficients
in the source term to retain all coefficients of transport properties of all nodes in the discretized
equation positive. One of the best known QUICK reformulation is the one developed by Hayase et
al [99].The new formulation is achieved on the basis of satisfying five rules that guarantee
physically realistic solution of the equations of conservation of mass and momentum
approximated by the finite volume method. The discretized form of physical equations in Hayase
et al QUICK scheme is the following:

Ao = Aydhy + A + Ads + Aydy +S (D1.3)

where the coefficients of equation D1.3 are expressed in function of convective coefficients C,
diffusive coefficients D, and the source terms S;; and Sp defined respectively the coefficients are
defined as follows:

A=A+ A+ A+ A +(C.-C)+(Cy -Cy)
Ay =Dy +awcw

As =D +aCq
A =D; +(l—aE)CE

A, =Dy +(1—aN )CN
(D1.4)

S= (3¢P —2¢y _%)awcw +%(3¢§N —2¢; _¢E)(1_aW)CW

#2(y + 200 30 )2cCe + 2 (20, + doe ~ 30 ) (Lt )
+é(3¢P —2¢s — s )ascs +%(3¢s —2¢, — ¢y )(1_0‘5 )Cs

+é(¢5S +2¢, -3¢y ), Cy +%(2¢N +dw — 3¢ ) (1—y ) Cy
+S

with:
a, =1forC, >0 and ¢, =0forC, <0
o =1forC. >0 and o =0forC. <0
(D1.5)
a;=1forC; >0 and o =0for C, <0

ay =1forC, >0 and ¢, =0forC, <0
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Using this approach, coefficients of equation D1.3 are always positive which satisfy the
requirements of differencing schemes properties. At nth iteration, the source term S is evaluated
using the values of physical properties of (n — 1)th iteration, hence it’s differed by one iteration.
However, after a large number of iterations both versions of QUICK schemes will converge to the
same solution.

9= NN
Ay
---------------------------------------------------- = N
Ay
> V,
o "Tn
N l
2 ww w Uw___) i __U; E EE
<4 4 +—
Ay
2

............. A

ﬂ s
2

- S
Ay

Figure A: Representation of the control volume and its neighbor nodes
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Résumé

Les échangeurs de chaleur sont des
dispositifs largement utilisés dans divers
systémes énergétiques. Les présents travaux
de recherche s’intéressent a la conception
des échangeurs bi-fluides monophasiques
par des méthodes d’optimisation topologique.
A la différence des méthodes
conventionnelles d’optimisation de taille et de
forme, ces méthodes permettent une liberté
de conception plus grande et ne nécessitent
aucune définition a priori de la géométrie de
I'échangeur. L’optimisation topologique bi-
fluide consiste donc a réorganiser librement
deux fluides et un solide dans un domaine
d’optimisation. Les deux fluides doivent
connecter les zones d’entrée aux zones de
sortie en évitant tout mélange entre fluides.
Dans le cadre de cette these, la méthode
SIMP « Solid Isotropic Material with
Penalization » a été utilisée. Divers
algorithmes constituant cette méthode ont été
formulés et testés : la méthode des volumes
finis a été choisie pour la résolution du
probléeme direct, la méthode des adjoints
discrets pour le calcul du gradient de la
fonction objectif et enfin la méthode des
asymptotes mobiles pour guider I'optimisation
numérique. Les résultats des simulations ont
permis de définir différentes formes
d’échangeurs de chaleur en 2D. On a fait
varier le nombre d’entrées et de sorties ainsi
que les débits de chaque fluide. Les travaux
montrent la capacité de cette méthode a
concevoir des formes innovantes d’échangeur
de chaleur. La these établit ainsi les bases
d’une nouvelle méthode de conception des
échangeurs de chaleur.

Mots Clés

Optimisation topologique, méthode de
densité, bi-fluide, écoulement laminaire,
échangeurs de chaleur

Abstract

Heat exchangers are devices widely used in
various energy systems. The present
research work focuses on the design of
single-phase bi-fluid heat exchangers by
using topology optimization methods. Unlike
conventional size and shape optimization
methods, topology optimization methods
allow greater design freedom and do not
require prior definition of the exchanger
geometry. Hence, bi-fluid topology
optimization consists of freely reorganizing
two fluids and one solid in the optimization
domain. Both fluids should connect inlet
sections to outlet sections while avoiding any
fluid mixture inside the domain.

SIMP method “Solid Isotropic Material with
Penalization” is used within the framework of
this thesis. This method includes various
algorithms that were formulated and tested:
finite volume method was selected for solving
the direct physical problem, discrete adjoint
method was used for the calculation of the
gradient of the objective function, and the
method of moving asymptotes was adopted to
guide the numerical optimization. Simulation
results have allowed the definition of various
heat exchanger shapes in 2D. The number of
inlet and outlet as well as the flow rates of
each fluid have been varied. The works have
shown the ability of this method to design
innovative shapes of heat exchangers.
Hence, the thesis establishes the basis of a
new design methodology of heat exchangers.

Keywords

Topology optimization, density method, bi-
fluid, laminar flow, heat exchangers.




