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Abstract 

The ongoing energy transition, partly characterized by the massive deployment of 

renewables, has reignited a long-lasting debate on the best market design options 

to provide adequate investment incentives and ensure capacity adequacy in 

liberalised electricity markets. To choose the appropriate market design, 

policymakers need to assess and compare the economic performances of available 

solutions in terms of effectiveness and cost-efficiency.  

This dissertation complements the existing literature on market design for long-

term capacity adequacy by focusing on three research topics: (i) understanding 

how electricity markets perform under different assumptions regarding investors’ 

risk preferences, (ii) analysing the compatibility of private agents’ incentives to 

mothball capacity resources with security of supply objectives and (iii) assessing 

the economic performance of different market designs in a context of a high 

penetration of renewables. To this end, the System Dynamics modelling framework 

is applied to represent long-term dynamics resulting from private agents’ decisions 

in liberalised electricity markets. The dissertation is organised in three chapters 

corresponding to each of the topics mentioned above. The main results are outlined 

below.  

Firstly, capacity remuneration mechanisms are necessary to deal with the 

detrimental effects of investors’ risk aversion. Energy-only markets are 

significantly affected by this phenomenon as they experience reduced investment 

incentives and higher levels of shortages. Capacity markets are more resilient to 

private investors’ risk aversion. However, this resilience depends on the level of 

the price cap in the capacity auctions. For such a market design to provide 

satisfactory outcomes in terms of capacity adequacy, this price cap should account 

for the investment risk faced by market participants.  

Secondly, when market participants have the possibility to mothball their capacity 

resources, these mothballing decisions can potentially modify investment and 

shutdown dynamics in the long run. Furthermore, in a world with capacity 

lumpiness (i.e. indivisibilities), mothballing increases the level of coordination 

needed to ensure capacity adequacy. This is especially true in energy-only 

markets, where mothballing increases the level of shortages to an extent that 

seems to outweigh the cost savings it generates at system level. Capacity markets 

can provide the required coordination to ensure capacity adequacy in a world with 

mothballing.  
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Thirdly, among proposed market designs in the literature, capacity markets appear 

as the preferable solution to ensure capacity adequacy from a social welfare point 

of view. Nevertheless, from a private investor’s perspective and under certain 

conditions related to high penetration of renewables, capacity markets with annual 

contracts do not entirely remove the so-called “missing money” problem. The 

results indicate that granting multiannual capacity contracts alleviates the 

problem.  

Key words: capacity adequacy, electricity market design, investment incentives, 

renewables, System Dynamics modelling.  
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Résumé 

La transition énergétique, en partie caractérisée par le déploiement massif des 

énergies renouvelables, a relancé un débat de longue date sur les architectures de 

marché fournissant les meilleures incitations aux investissements dans les 

marchés libéralisés de l’électricité. Ces incitations sont essentielles pour garantir 

la sécurité d’approvisionnement à long terme. Pour choisir l’architecture de marché 

adéquate, les décideurs publics doivent évaluer et comparer les performances 

économiques des solutions disponibles.  

La présente thèse complète la littérature sur les incitations aux investissements et 

la sécurité d’approvisionnement en étudiant trois aspects importants : (i) le 

comportement des marchés de l'électricité en présence d’acteurs averses au 

risque, (ii) la compatibilité entre les incitations des acteurs à mettre leurs actifs 

sous cocon et les objectifs de sécurité d’approvisionnement et (iii) les 

performances économiques de différentes architectures de marché dans un 

contexte de forte pénétration des énergies renouvelables. Pour ce faire, une 

modélisation de type System Dynamics est utilisée pour représenter les 

dynamiques de long terme résultant des décisions des acteurs dans un marché 

libéralisé. La thèse est organisée en trois chapitres correspondant à chacun des 

points mentionnés ci-dessus. Les principaux résultats sont les suivants : 

Premièrement, les mécanismes de capacité sont nécessaires pour faire face aux 

effets néfastes de l’aversion au risque des investisseurs. Ce phénomène affecte de 

manière significative les marchés de l’énergie de type energy-only, qui subissent 

alors une baisse des investissements et des pénuries plus importantes. Les 

marchés de capacité résistent mieux à l’aversion au risque des investisseurs. 

Cependant, cette résilience dépend du plafond des prix dans les enchères de 

capacité. Pour qu'une telle architecture de marché donne des résultats 

satisfaisants en termes de sécurité d’approvisionnement, ce plafond de prix doit 

tenir compte du risque d'investissement supporté par les acteurs. 

Deuxièmement, si les acteurs du marché en ont la possibilité, leurs décisions de 

mettre leurs actifs sous cocon peuvent modifier les dynamiques d'investissement 

et de fermeture à long terme. En outre, dans un monde caractérisé par des actifs 

indivisibles, cette possibilité augmente le niveau de coordination nécessaire pour 

assurer la sécurité d’approvisionnement. Cela est particulièrement vrai pour les 

marchés de type energy-only, dans lesquels la mise sous cocon augmente le 

niveau des pénuries, au point de contrebalancer les économies de coûts qu’elle 

génère. En revanche, les marchés de capacité peuvent fournir la coordination 
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nécessaire pour assurer la sécurité d’approvisionnement même lorsque les acteurs 

ont la possibilité de mettre leurs actifs sous cocon.  

Troisièmement, parmi les architectures de marché proposées dans la littérature, 

les marchés de capacité apparaissent comme la meilleure solution du point de vue 

du surplus social. Néanmoins, du point de vue des investisseurs, et dans certaines 

conditions liées à une forte pénétration des énergies renouvelables, les marchés 

de capacité avec des contrats annuels ne suppriment pas entièrement le problème 

dit de missing money. Les résultats indiquent que l'attribution de contrats de 

capacité pluriannuels atténue le problème. 

Mots clés : sécurité d’approvisionnement, architecture des marchés de 

l'électricité, incitations aux investissements, énergies renouvelables, modélisation 

System Dynamics.  
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General introduction 

The liberalisation of electricity markets around the world has revealed problems of 

incentives regarding long-term investments in capacity resources (generation and 

demand response). The ability of energy-only markets with price caps to provide 

adequate investment signals has been particularly questioned in this regard. To 

deal with this issue, the literature has proposed various alternative market designs 

ranging from small adjustments – consisting for instance of removing price caps – 

to the introduction of capacity remuneration mechanisms or CRMs, in different 

forms (strategic reserves, capacity markets, etc.). The choice of the appropriate 

market design requires for policymakers to assess and compare the economic 

performances of available solutions. The ongoing transition in electricity systems, 

partly driven by the penetration of renewables, complexifies even more 

policymakers’ mission by raising additional concerns about investment incentives 

in thermal technologies and demand response.  

In the following sections, a general overview of the recent developments in the 

European electricity sector is provided to contextualise the main issues that are 

currently debated with respect to capacity adequacy. This also sets the ground for 

the motivation of this dissertation as explained subsequently.  

1. Liberalisation of electricity sector and recent 

developments 

Electricity markets around the world, especially in Europe and the USA, underwent 

an important transformation a few decades ago as they were progressively 

liberalised to introduce competition notably in the generation segment. This 

transformation resulted in a complete shift of paradigm regarding the way 

investments in capacity resources are made. In the previous monopolistic systems, 

investments were essentially decided on a centralised level by utilities which could 

forecast the demand and make the required level of investments to ensure long-

term security of supply (i.e., capacity adequacy). After liberalisation, investments 

in capacity became the result of individual competing firms’ decisions. These firms 
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relied on their own anticipations of demand as well as decisions from their 

competitors since these may affect the profitability of their own investments. 

Capacity adequacy which used to be achieved through a centralised planification 

of investments therefore became a market-based outcome dependent on private 

agents’ decisions. 

In the new paradigm (i.e., liberalised markets), investment decisions are 

ultimately decided based on the private agents’ anticipations about profitability. In 

this setup, electricity prices which are the main signal for investments are 

fundamental in market participants appraisal of investment opportunities. 

Moreover, a variety of other factors which were less relevant in the former 

monopolistic setup, are now crucial when it comes to investment decisions. Among 

these factors, are the uncertainties and risks involved in any decision. Uncertainty 

is important in at least two regards: first it inherently complicates investors’ 

forecasts and second, the allocation of the associated risks between market 

participants matters for the way investors react to it.  

There are several sources of uncertainty that can affect the profitability of a 

capacity resource in liberalised electricity markets. Assessing the expected cash 

flows to be generated by a potential investment entails a wide range of forecasts 

related to costs (fuel costs, technology costs, CO2 price, etc.), market conditions 

(gross demand, electricity prices, other sources of revenues) and production levels 

(impact of renewable infeed, outages, etc.). These forecasts are made over the 

lifetime of the asset which can range from twenty to sometimes more than sixty 

years.  

In a liberalised setup, most of the aforementioned parameters are uncertain, 

especially those which are dependent on political or regulatory decisions such as 

climate policy or environmental constraints (CO2 price, emission restrictions, out-

of-market subsidies for renewables, etc.). Investors therefore make their decisions 

based on imperfect information which is both incomplete because of their limited 

foresight and uncertain as explained above. At the same time, they bear most of 

the risks associated with their forecast mistakes. For instance, if they overestimate 

demand and invest too much, they create a situation of overcapacity which 

mechanically jeopardizes the profitability of their assets.  
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The fact that investment in capacity resources now depends on private agents 

operating in an uncertain environment, with limited foresight, raises an issue of 

coordination in liberalised markets. To ensure security of supply, electricity 

markets should provide the right investment signals and coordinate individual 

decisions towards a social optimum. This long-term coordination function is at the 

centre of all debates on capacity adequacy in liberalised markets, whether it is in 

Europe or in other similar systems such as those in the USA (Batlle and Rodilla, 

2010; Cramton and Stoft, 2006; Creti and Fabra, 2007; Finon, 2011; Finon and 

Pignon, 2008; Green, 2006; Hogan, 2005, 1998; Joskow, 2008, 2006; Lévêque, 

2006; Stoft, 2002).  

With the ongoing energy transition, new challenges emerge as electricity systems 

are being transformed to accommodate high shares of low-carbon technologies 

such as renewables. The push towards low-carbon systems impacts investment 

signals in power markets. Because of the variability of their generation, renewable 

energy sources (RES) increase the volatility of electricity prices. Moreover, they 

create the well-known “merit order” effect which reduces the operation hours of 

thermal plants, thereby limiting the possibility for them to recoup their fixed costs 

(Sensfuß et al., 2008). The penetration of RES therefore affects the profitability of 

thermal technologies. It is paradoxical because the integration of high shares of 

RES requires more flexibility in the system to cope with their variability. As long 

as large-scale demand response and storage remain limited, this flexibility will 

mainly come from thermal generation (gas-fired plants for instance).  

There is therefore a legitimate concern that the push for RES may reduce 

incentives to invest in yet needed thermal technologies, which could in turn 

undermine security of supply (De Sisternes and Parsons, 2016; Gerres et al., 

2019; Newbery et al., 2018; Sisternes and others, 2014). Advocates of the energy-

only market – where producers derive most of their revenues from selling 

electricity generated – argue that it can ensure capacity adequacy and therefore 

should remain the preferred market design (Hirst and Hadley, 1999; Hogan, 2005; 

Shuttleworth, 1997). On the other hand, a rich literature has been developed on 

the limits of the energy-only market design highlighting the existence of several 

market failures or regulatory issues which can interfere with its ability to achieve 

capacity adequacy. This literature proposed alternative market designs consisting 

in the introduction of the so-called capacity remuneration mechanisms (CRMs) to 
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complement energy-only markets (Cramton and Stoft, 2006; De Vries and 

Heijnen, 2008; Finon, 2011; Finon and Pignon, 2008; Joskow, 2006; Keppler, 

2017).  
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2. Market failures and regulatory issues 

interfering with the long-term coordination 

function 

1.1. Long-term coordination of investment in theory 

The energy-only market is the reference market design for liberalised systems. 

Coordination of capacity resource investments in this market design is done 

through price signals in short-term markets (Caramanis, 1982; Stoft, 2002). The 

theory of spot pricing introduced by Caramanis (1982) shows how short-term 

electricity prices coordinate long-term investment decisions in liberalised systems. 

In fact, under spot pricing, perfect competition between private agents in a 

liberalised system should in theory yield the same long-run equilibrium as would 

a benevolent planner seeking to maximize social welfare (Caramanis, 1982; Rodilla 

and Batlle, 2012).  

Spot pricing in liberalised markets suggests that electricity prices are set each hour 

by the short-term marginal cost of the last capacity resource mobilised to satisfy 

the demand (i.e., the marginal capacity). When existing capacity resources are 

insufficient to satisfy demand, prices are set the Value of Lost Load1 or VoLL (this 

is referred to as scarcity pricing or VoLL pricing). To satisfy demand at the lowest 

cost, capacity resources are selected on an economic merit-order basis, meaning 

that capacities are selected by increasing order of marginal cost.  

The hours during which electricity prices reach the VoLL due to demand exceeding 

supply are called scarcity hours. Similarly, the revenues earned during these hours 

are called scarcity revenues (or scarcity rents) and are crucial for the profitability 

of capacity resources. Scarcity revenues are particularly important for peaking 

units for which they constitute the only way to recover fixed costs. During the 

other hours (i.e., when supply is sufficient to satisfy demand), all selected 

capacities at the exception of the one setting the price earn inframarginal rents 

                                       

1 The VoLL is the price that an average consumer would be willing to pay to avoid an involuntary interruption of 

electricity supply.  
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which also contribute to recovering fixed costs. In the pricing system described 

above, microeconomic theory indicates that all agents cover their fixed cost in the 

long-run equilibrium. Agents will progressively adjust capacity in each technology 

so that each capacity earns just enough profits to cover its fixed costs, including 

an appropriate rate of return on investment (Caramanis, 1982; Stoft, 2002).  

The functioning of electricity markets described above rely on a set of important 

assumptions such as perfect competition, perfect foresight of the future by agents, 

market completeness in terms of risk allocation instruments, the possibility for 

electricity prices to rise to the VoLL during scarcity hours, the absence of 

economies of scale and the absence of lumpiness in investments (Rodilla and 

Batlle, 2012). However, some of these assumptions do not hold in real-world 

electricity markets as explained below. Four factors in particular impede the 

theoretical functioning of energy-only markets and at the same time their ability 

to perform their long-term coordination function: 

• The missing money problem induced by low price caps in short-term 

markets; 

• The public good features of capacity adequacy; 

• Asymmetrical investment incentives created by peak demand inelasticity 

and discrete size of investments; 

• Incompleteness of markets, imperfect information and agents’ risk aversion. 

2.1. Missing money induced by price caps in energy markets 

The most debated issue regarding the theoretical setup of the energy-only market 

is the assumption that electricity prices can reach the VoLL during scarcity hours. 

Implementing a VoLL pricing in real power systems is challenging for at least two 

reasons2: first, it is very difficult to estimate the VoLL because it depends on many 

circumstantial parameters3 and second, there is a risk that some agents exercise 

                                       

2 In addition, VoLL pricing increases price volatility and investment risk. It can also result in higher prices for 

consumers.  

3 For instance, the type of usage of electricity at the time of an outage, the duration of the outage, etc.  
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market power during scarcity hours to make super profits. Here the focus is made 

on the second point4. 

To limit the risks of market power exercise, regulators often impose limitations on 

the maximum value of electricity prices in short-term markets. For instance, in 

France, prices on the day-ahead market5 are capped at 3 k€/MWh while the 

Transmission System Operator (TSO) estimates the VoLL at around 26 k€/MWh 

(RTE, 2011). These price restrictions limit scarcity rents which are yet critical for 

peaking units to recover their fixed costs (Joskow, 2006).  

Furthermore, even if prices can reach the VoLL (assuming it is properly defined), 

system operators (SOs) often perform actions6 to limit the occurrence of scarcity 

hours because they ultimately translate into shortages (rolling blackouts). This is 

a fundamental issue in the applicability of scarcity pricing in practice. Public 

authorities and SOs are averse to shortages because of their impact on the society, 

and this is regardless of economic efficiency. The aforementioned actions 

performed by SOs are not valued through any market while at the same time 

affecting scarcity rents.  

All this leads to a “missing money” issue (Cramton and Stoft, 2006; Lévêque, 

2006). The missing money problem refers to the situation where capacity 

resources fail to recover their fixed costs when there is an adequate level of 

installed capacity. Spot pricing theory indicates that energy-only markets can 

provide an adequate level of security of supply (i.e., socially optimal level of 

installed capacity) and ensure full cost recovery for all capacities. However, this is 

only true when there is no interference in the price formation mechanism in short-

term markets7. If prices are capped below the VoLL, then the socially optimal level 

                                       

4 The first point about the estimation of the VoLL is not a market or regulatory failure. It rather complexifies the 

implementation of the VoLL pricing. In reality, the SO can define a desirable level of security of supply and then 

calculate a level of VoLL that is consistent with the defined reliability criterion. Then the problem becomes the 

definition of the optimal level of security of supply from a social point of view. The advantage of the rigorous VoLL 

pricing is that it reveals this optimal level through market fundamentals, rather than it being exogenously defined 

by SOs or other relevant entities.  

5 It should be noted that price caps in intraday markets are usually higher but still below the VoLL. For instance, 

in France the price cap in intraday and balancing markets is equal to 10 k€/MWh. 

6 They can reduce the voltage of the system to decrease consumption for instance.  

7 Prices are allowed to reach the VoLL every time there is a scarcity of supply. 
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and mix of capacity will create a missing money for some plants, particularly 

peaking units. This is due to the fact that they do not earn sufficient scarcity rents 

(since the prices are below the VoLL).  

The missing money problem currently discussed in the literature is a temporary 

missing money in the sense that it should disappear at equilibrium in the long run. 

Indeed, in a perfectly competitive market with free entry and exit, agents will 

adjust their capacity in order to guarantee cost recovery, thereby eliminating the 

missing money issue. However, this would be at the expense of security of supply 

since they will essentially adjust their capacity until there are enough scarcity 

hours to allow them to recover their fixed costs. The lower the price cap in the 

energy market, the higher the required number of scarcity hours to ensure fixed 

cost recovery at equilibrium. It is therefore a serious impediment to the ability of 

energy-only markets to provide an adequate level of security of supply. 

2.2. Public good features of capacity adequacy 

Capacity adequacy presents some features of classic public goods in economic 

theory. More specifically, it meets the non-excludability criterion as discussed by 

several authors (De Vries, 2004; Finon and Pignon, 2008; Keppler, 2017; Stoft, 

2002). Capacity adequacy benefits to all consumers regardless of who is providing 

it. If an investor decides to build a power plant for instance, this plant will 

contribute to improving capacity adequacy. However, given the current state of 

the technology, it is impossible for the investor to select which consumers will 

benefit from the improvement of capacity adequacy. All consumers who are 

connected to network can benefit from capacity adequacy improvement, even if 

they are not direct clients of the investor.  

This creates a problem of under-provision of capacity adequacy, in the sense that 

private agents’ decisions would result in a provision of capacity that is lower than 

the social optimum (Keppler, 2017; Oren, 2003). Indeed, any capacity addition 

leads to a positive externality for all consumers as explained above. The 

fundamental issue at hand is that private agents’ benefits from improving capacity 

adequacy are lower than the corresponding social benefit as highlighted by Keppler 

(2017). If private agents could extract the corresponding social value of their 

investment through existing markets, then there would be no externality, and no 
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under provision. Current markets and state of technology do not allow them to do 

so.  

It is important to keep in mind that this market failure can be mitigated in the 

future if technological change enables private agents to restrict consumption to 

those clients who have a stated willingness to pay that is higher than the private 

cost of capacity provision. Private agents’ incentives will therefore be aligned with 

the social value of capacity provision. The deployment of smart meters could 

contribute to creating such systems with the possibility of individual curtailment of 

consumers.  

Another factor exacerbates the under-provision problem and that is the inelasticity 

of peak demand which, combined with the lumpiness of investments, produces 

another market failure on the supply side as explained hereafter.  

2.3. Asymmetrical investment incentives due to inelasticity of 

peak demand and lumpiness of investments 

There is a structural asymmetry of incentives between overinvestment and 

underinvestment in capacity. This asymmetry stems from two factors: (i) the 

inelasticity of peak demand and (ii) the lumpiness of investments. 

Peak demand inelasticity and lumpiness of investment have been widely discussed 

in the literature as a source of market failure (De Vries and Heijnen, 2008; Keppler, 

2017; Rodilla and Batlle, 2012; Stoft, 2002). Since investments are only available 

in discrete size (50, 150 or 450 MW for instance), private agents cannot adjust 

capacity to exactly match peak demand. They are confronted with an arbitrage 

between investing in a discrete (marginal) capacity with the risk of creating a 

situation of overcapacity or not investing in that marginal capacity, which could 

create costly shortages for society. If peak demand is inelastic as it is the case in 

most systems, then the outcome between the two decisions are quite different, 

resulting in asymmetric incentives.  

If private agents invest too much, they eliminate scarcity rents but if they 

underinvest, scarcity rents are potentially significant. Any rational investor, even 

in a context of perfect competition and perfect information will prefer to 

underinvest because it is the option that maximizes its profits. If demand was 
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elastic, underinvesting would lead to a reduction of demand until it intersects with 

supply and the scarcity rents will therefore be limited. In other words, and as 

stated by Keppler (2017): “With elastic demand, there would be no policy relevant 

market failure even in the presence of discretely-sized increments in investment, 

as underinvestment would be just as costly, in terms of profits foregone, as 

overinvestment”. The lumpiness of investments alone is thus not a source of 

market failure. What makes it one is its combination with an inelastic peak 

demand. This adds to the issue of under provision of capacity adequacy in 

liberalised energy-only markets.  

2.4. Incompleteness of markets, imperfect information and risk 

aversion  

Completing the set of market failures interfering with the long-term coordination 

function of energy-only market is the combination of private agents’ risk aversion, 

imperfect information and incompleteness of markets. Investments in capacity 

resources are highly capital-intensive and subject to various uncertainties (see 

discussion above). In this context, private agents tend to be risk averse (De 

Sisternes and Parsons, 2016; Meunier, 2013; Tietjen et al., 2016). Risk aversion 

is not an issue per se as long as agents are able to trade their risk by contracting 

appropriate hedging instruments (Léautier, 2016). However, current electricity 

and financial markets do not provide enough hedging instruments to cover all 

types of risks faced by investors. This is where the notion of incomplete markets 

emerges in the debate on capacity adequacy (Abada et al., 2017; Finon, 2011; 

Neuhoff and De Vries, 2004; Willems and Morbee, 2010). 

Because of risk aversion and the incompleteness of existing markets, private 

agents will adjust the valuation of their investment opportunities to internalise 

their perceived risk. This is done through a cut-off on the purely probabilistic 

expected value of their investments to represent the risk that is not tradable (De 

Maere d’Aertrycke et al., 2017). The concrete impact in terms of capacity adequacy 

is that risk averse agents tend to postpone their investments or even reduce them 

compared to risk neutral agents, especially regarding peaking units (Abani et al., 

2018; Petitet et al., 2017; Rodilla and Batlle, 2012). Risk aversion and market 

incompleteness are therefore aggravating factors in the issue of under provision 

of capacity in liberalised energy-only markets.  
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3. Alternative market designs to ensure capacity 

adequacy  

3.1. Capacity remuneration mechanisms and their rationale 

The previous sections highlighted several market failures which can prevent 

energy-only markets, even in their form with scarcity pricing (i.e., VoLL pricing) 

from delivering adequate levels of capacity. To overcome the problem, alternative 

market designs commonly called capacity remuneration mechanisms (CRMs) or 

capacity mechanisms have been proposed in the literature. The fundamental 

difference between CRMs and the traditional energy-only market is that CRMs 

explicitly recognize capacity as a tradable good. They provide a revenue based on 

available capacity in addition to the revenues earned on the energy markets (which 

are based on energy sales).  

A wide literature has been developed around CRMs (Abani et al., 2018; Assili et 

al., 2008; Bhagwat et al., 2016a; Cepeda and Finon, 2011; Cramton et al., 2013; 

Cramton and Stoft, 2005; De Vries, 2004; De Vries and Heijnen, 2008; Fernando 

Olsina et al., 2014; Hary et al., 2016; Hasani and Hosseini, 2011; Hobbs et al., 

2007; Joskow, 2006; Petitet et al., 2017). Among all market and regulatory 

failures mentioned in the previous section, missing money has been the most cited 

justification for the introduction of CRMs. In addition to providing justifications for 

CRMs, the existing literature has also focused on the design of these mechanisms 

to ensure their effectiveness in providing capacity adequacy and their cost-

efficiency. CRMs can be characterized following at least two dimensions: (i) 

quantity-based vs. price-based and (ii) targeted vs. market-wide. 

The first dimension relates to the signal used to express the demand for capacity. 

A quantity-based approach consists of the definition of a capacity target to be 

contracted while a price-based approach sets a capacity price (which is to be 

properly determined) and rely on the market to provide the right quantity of 

capacity. The two approaches are equivalent in theory if there is perfect 

information and no uncertainty (Weitzman, 1974). However, if these conditions 
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are not satisfied then there may be a preference for one approach over the other8. 

For capacity adequacy questions, Finon and Pignon (2008) argue that quantity-

based mechanisms are preferable, but in practice both approaches have been 

implemented.  

The second dimension pertains to the scope of the CRM in terms of beneficiaries. 

A CRM can be market-wide, meaning that all capacity resources can benefit from 

it9. Conversely, a targeted CRM only benefit a restricted set of capacity resources 

(for instance only new plants or only old plants that are about to be 

decommissioned). In general, the choice of the scope is inherent to the choice of 

CRM, which in turn depends on various factors as discussed subsequently (see 

section 3.3).  

Other dimensions can be considered to further characterize CRMs. For instance, 

the mode of definition of the capacity needs or the mode of procurement can 

constitute additional layers of characterization. Regarding the definition of the 

capacity needs, it could be done by a central authority such as the SO, or by 

individual suppliers with an ex post verification of a central authority. Similarly, 

the procurement of the capacity resources could be either centralised and 

performed by a single authority such as the SO or decentralised (each supplier 

oversees the procurement of its own capacity needs). Figure 1 below highlights 

the main CRMs currently discussed in the literature.  

                                       

8 The determining factor is the sensitivity in terms of outcome (social welfare for instance) of a small error in the 

definition of the right quantity or price. For instance, if an error in the definition of the price is more detrimental 

than an error in the definition of the quantity, then a quantity-based approach should be preferred. 

9 Capacity resources may still be subject to some eligibility criteria (for instance for environmental restrictions), 

but they are applied to all capacities.  
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Figure 1.  Taxonomy of main CRMs10 

 

Price-based CRMs consist of capacity payment schemes where a fixed price, 

determined administratively, is paid to capacity resources. Some capacity payment 

schemes only target specific resources while others are market-wide. 

Quantity-based CRMs are more varied as illustrated on Figure 1. Within this 

category of CRMs, those which are “targeted” are either focused towards existing 

capacities or new capacities. Strategic reserve mechanism (SRM) is generally 

reserved for old existing plants in order to keep them longer in the system in case 

of emergency. On the other hand, there could be special tenders only for new 

investments.  

The rest of quantity-based CRMs are market-wide. They include centralised 

capacity auctions, decentralised capacity obligations (or capacity 

certificates/credits) and reliability options. The first two are variants of what is 

commonly called a “capacity market”. The main difference between capacity 

auctions and capacity obligations is the mode of procurement and of determination 

of capacity needs as described above (centralised vs decentralised).  

                                       

10 Adapted from Meeus and Nouicer (2018). 
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Reliability options correspond to a centralised market-wide CRM in which the 

products are not physical capacity contracts – as it is the case for all other CMRs 

– but rather financial call options. A central authority determines the strike price 

of the call options which effectively acts as a price cap on energy markets. Every 

time the price on the energy market rises above the strike price, holders of the 

call options pay the difference between the strike price and the market price. 

Reliability options incentivize capacities to be available during scarcity hours and 

protect consumers from high electricity prices (Bidwell, 2005).  

3.2. The Clean Energy Package: European Commission’s “last-

resort” philosophy about CRMs 

The debate on CRMs has attracted significant attention from policymakers as well. 

In Europe, the country-level discussions around CRMs take place within broader 

framework defined at the European level by the European Commission (EC). It 

lays out the conditions for the implementation of CRMs and oversees the validation 

process. The most recent piece of legislation regarding energy policy at the 

European level is the Clean Energy Package (CEP) presented in its initial version 

in November 2016 (European Commission, 2016a).  

Despite the rich literature supporting the need for CRMs in liberalised markets such 

as those in Europe, the EC has displayed a strong preference for the energy-only 

market design, arguing that CRMs may pose competition issues between 

technologies and distort cross-border trade (European Commission, 2016b; Meeus 

and Nouicer, 2018; Newbery, 2015). It promotes market reforms aiming at 

removing the failures of the energy-only market (for instance allowing prices to 

reach the VoLL during scarcity hours). CRMs are considered by the EC as a last 

resort means to ensure capacity adequacy. Figure 2 below provides an overview 

of EC’s framework for CRMs (Meeus and Nouicer, 2018). 
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Figure 2. European Commission’s framework for capacity 

remuneration mechanisms11 

 

The framework established by the EC applies to all member states (MS). First the 

relevant entities in the MS should perform an adequacy assessment to establish 

the existence or not of adequacy concerns12. If the assessment reveals adequacy 

concerns, then the MS should identify the market failures or regulatory distortions 

at the origin of the adequacy concerns and undertake reforms to remove them. In 

doing so, they should propose a clear plan of reforms to be reviewed and approved 

by the EC13. Potential reforms to be considered include implementation of actual 

scarcity pricing (with energy prices rising to the VoLL during scarcity hours), 

increased use of interconnectors, promotion of demand side flexibility. If a MS can 

demonstrate that adequacy concerns will persist despite such reforms, they it can 

be authorized to implement a CRM, under certain conditions. In this respect, the 

                                       

11 Adapted from Meeus and Nouicer (2018). 

12 The assessment could be limited to the national level but there is a preference for a EU-wide assessment.  

13 This phase includes part of the state Aid process. 
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CEP highlights three aspects that a MS should carefully consider when 

implementing a CRM: (i) non-discrimination between existing and new solutions, 

(ii) impacts on climate change goals and (iii) cross-border effects.  

Non-discrimination between existing and new solutions for capacity adequacy 

relates particularly to demand-side response (DSR)14, which still faces barriers for 

participation to CRMs in some European countries (European Commission, 2016b). 

A recent example with respect to that is the suspension of UK’s capacity market 

by the General Court of the European Union (European Union - The General Court, 

2018). The decision of the General Court followed a complaint related to the 

discriminatory aspect of the mechanism regarding DSR providers.  

The second important aspect is the impact of CRMs on environmental targets. In 

the CEP, specific CO2 emissions limits are proposed for existing and new generation 

capacities in order for them to be eligible to a CRM. For instance, the 

recommendations in the CEP propose that new capacities emitting more than 550 

gCO2/kWh should not be eligible to CRMs. For existing capacities emitting above 

this threshold, it is suggested that their commitment in a capacity mechanism 

must be limited to a maximum of five years (after the entry in force of the new 

regulation). EC expects these measures to align CRMs with climate policies. 

Finally, any MS contemplating the implementation of a CRM should assess and 

limit its potential impact on neighbouring markets. Cross-border impacts of CRMs 

represent a major concern for European policymakers as they may undercut the 

efforts of creation of a single internal market. Hence, EC recommends the 

participation of cross border capacities to national capacity mechanisms to ensure 

efficient signals and avoid capacity leakage15. It also promotes a high level of 

coordination between neighbouring countries for an adequate design of the 

mechanisms so that they do not limit cross-border trade or introduce unnecessary 

market distortions. 

                                       

14 It also concerns storage and energy efficiency solutions. 

15 Interested readers can find more detailed discussions on cross-border issues in a dedicated literature (Bhagwat 

et al., 2017c; Cepeda and Finon, 2011; Gore et al., 2016; Lambin and Léautier, 2018). 
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3.3. Important aspects to consider in the assessment of market 

designs for capacity adequacy 

Whether the debate on market design for capacity adequacy is tackled from a pure 

academic perspective or in the context of the European Commission’s policy 

framework, it is crucial to assess the merits and limitations of available market 

design options. This assessment heavily on models that aim to capture the 

characteristics of liberalised electricity markets (Abani et al., 2018; Bhagwat et al., 

2016b, 2017c, 2017b; Bublitz et al., 2019; Cepeda and Finon, 2011; De Vries and 

Heijnen, 2008; FTI CL - Energy, 2016; Hary et al., 2016; Hasani and Hosseini, 

2011; Mastropietro et al., 2016; Petitet et al., 2017; RTE, 2018; THEMA Consulting 

Group et al., 2013; UFE et al., 2015; UK Department of Energy & Climate Change, 

2014a). Three characteristics are particularly important to consider when 

addressing capacity adequacy issues in the current context of energy transition, 

using such models:  

(i) Cyclical tendency of electricity markets; 

(ii) Private agents’ behaviour (attitude towards risk, tendency to mothball 

assets in periods of high uncertainty, herd behaviour, etc.); 

(iii) Impact of renewables on investment incentives for thermal technologies 

or demand response.  

As illustrated by Arango and Larsen (2011) Ford (1999), electricity markets exhibit 

a propensity to capacity cycles, leading to a succession of over and under-capacity 

phases. These cycles present a threat to security of supply as they increase 

uncertainty and distort investment signals (Green, 2006). Because of this cyclical 

tendency, electricity markets usually operate out of equilibrium. An analysis of 

electricity markets from a dynamic perspective is therefore needed to account for 

these out-of-equilibrium phases.  

Moreover, analysing capacity adequacy by the means of electricity market models 

requires that all agents’ decisions that may affect the level of installed capacity are 

properly represented. Agents’ decisions should be endogenous with respect to their 

expectations. These decisions include not only investments and shutdowns but 

also mothballings (Abani et al., 2017; Arango et al., 2013). As discussed in 

section 2.4 of this general introduction, imperfect information, risk aversion and 

markets incompleteness can affect private agents’ decisions (Meunier, 2013; 
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Neuhoff and De Vries, 2004; Ousman Abani et al., 2018). They can also display 

symptoms of herd behaviour as illustrated in some studies (Hary et al., 2016; 

Olsina et al., 2006). All these factors play a crucial role in agents’ decision making 

and ultimately on capacity adequacy.  

At last, another aspect is becoming more and more crucial and that is the impact 

of RES deployment on investment incentives (De Sisternes and Parsons, 2016; 

Gerres et al., 2019; Newbery et al., 2018; Pinho et al., 2018; Tietjen et al., 2016). 

Indeed, the integration of high shares of RES affects the profitability of thermal 

generation technologies which are still needed to ensure security of supply in the 

absence of large-scale storage or highly flexible demand response. 

In addition to the above-mentioned dimensions, policymakers are also particularly 

concerned with the impact of CRMs on consumers’ welfare or issues such as 

revenue volatility and investment risk. These are important for the sustainability 

of the mechanism.  
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4. Research questions and methodology 

4.1. Research questions 

This dissertation complements the existing literature on market design for long-

term capacity adequacy by focusing on three important issues: (i) understanding 

how electricity markets perform under different assumptions regarding investors’ 

risk preferences, (ii) analysing the compatibility of private agents’ incentives to 

mothball capacity resources with security of supply objectives and (iii) assessing 

the economic performance of different market designs in a context of a high 

penetration of renewables. The corresponding research questions are presented 

hereafter. 

How does investors’ risk aversion affect the effectiveness and cost-

efficiency of capacity remuneration mechanisms? 

Several authors have highlighted the importance of risk aversion for investments 

in competitive electricity markets (Abani et al., 2018; Fan et al., 2012; Meunier, 

2013; Neuhoff and De Vries, 2004; Petitet et al., 2017). The issue is gaining more 

and more interest due to the many changes currently occurring in the electricity 

sector (climate policies, deployment of renewables, electric vehicles, etc.), which 

introduce a lot of uncertainty for investors. 

Risk aversion modifies the way investors react to market signals and can lead to 

sub-optimal decisions in situations of market incompleteness (Abada et al., 2017; 

Willems and Morbee, 2010). The current state of electricity markets does not 

provide investors with enough options to trade the risks that they face, which is 

precisely a case of incomplete markets (Newbery, 2015). The concerns about risk 

aversion and its impact on investors’ behaviour are therefore justified. The first 

research question aims at providing a discussion on the impact of risk aversion on 

the performances of different market designs, from a capacity adequacy 

perspective. Two of the most discussed capacity remuneration mechanisms are 

analysed (the market-wide capacity market and the strategic reserve mechanism), 

in addition to the benchmark energy-only market.  
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Are private agents’ incentives for mothballing compatible with security of 

supply objectives?  

Recent evolutions in European power markets has led to waves of mothballing of 

generation assets (Caldecott et al., 2014; Eurelectric, 2016; EY, 2014). 

Mothballing consists of a temporary closure of power plants in situations of difficult 

economic conditions. Its main objective is to protect power plants owners from 

expected losses while giving them the option to reactivate their plants if market 

conditions improve. Therefore, it provides an interesting flexibility compared to a 

permanent shut down.  

Mothballing appears as a legitimate recourse for private agents who are seeking 

to protect their investments. Since 2010, and especially during the period covering 

2012 to 2014, power utilities in Europe have mothballed several gigawatts of 

thermal plants, mainly gas-fired ones (Caldecott et al., 2014). Their decisions were 

triggered by a combination of unfavourable factors including: a situation of 

overcapacity due to a slowdown of electricity demand growth, an underestimation 

of the deployment of renewables which further reduced the residual demand for 

thermal generation, and a switch of competitiveness between gas coal which made 

gas-fired generation less profitable.  

In case of systemic overcapacity, this would just be an expected response from a 

competitive market. Nevertheless, some argue that, regardless of overcapacity, 

the high penetration of renewables would make mothballing a recurrent practice 

(ENTSOE, 2017). In any case, it remains unclear whether this practice is 

compatible with capacity adequacy objectives and if it has other long-run impacts. 

On the one hand it avoids losses for private agents and leads to cost savings in 

operation and maintenance. On the other hand, it essentially removes capacity 

from the market, which means that it reduces available capacity. The second 

research question of the dissertation covers this subject from an economic 

perspective. It analyses mothballing rationales and their impact on power systems 

under two paradigms: an energy-only vision and a capacity remuneration 

mechanism vision.  
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What are the best market design option(s) to ensure capacity adequacy 

in a context of high RES penetration and non-increasing electricity 

demand? 

Finally, the last research question builds on the previous ones to address a broader 

issue, which is the choice of the best market design option(s) to ensure long-term 

capacity adequacy in a context of energy transition. The ongoing transformation 

of power systems, partly led by the penetration of renewables, has reignited the 

debate about market design for capacity adequacy. Renewables tend to push part 

of the flexible thermal fleet out of the merit order and reduce its profitability 

(Gerres et al., 2019; Newbery et al., 2018; Sensfuß et al., 2008).  

Yet, thermal capacity is needed to cope with the variability of renewables precisely. 

Many questions are thus being raised about the functioning of a power system with 

high shares of renewables, and the type of market design needed to ensure 

capacity adequacy in this context. The last research question consists in a 

comparison of market design options for long-term capacity adequacy in this type 

of power system. The comparison is done from a social welfare perspective, with 

discussions on other specific dimensions that are relevant to policymaking: 

security of supply (i.e., capacity adequacy itself), costs for consumers, investment 

risk and profitability of capacity resources. 

4.2. Methodological considerations 

To address the research questions outlined above, a simulation model is developed 

based on the System Dynamics (SD) framework. Throughout the dissertation, the 

model is progressively complemented with additional features to account for the 

specificities of each research question. The paragraphs hereafter provide more 

details on the motivations behind the choice of the SD framework. 

The literature on liberalised electricity markets provides several approaches for the 

modelling of these markets. The main approaches include optimization, equilibrium 

and simulation models (see Ventosa et al. 2005 for an extensive description). The 

choice of the modelling approach generally depends on the issue at hand.  

For the study of capacity adequacy issues in liberalised electricity markets, the 

modelling approach should allow for the consideration of the key elements 
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mentioned above (cyclical tendency, agents’ behaviour and RES development, 

etc.). Among existing modelling techniques, only simulation models fit these 

requirements, especially the one regarding the integration of cyclical tendencies. 

In this regard, the System Dynamics framework is the main simulation model 

approach that has been used in the literature to represent cyclical tendencies in 

liberalized electricity markets. It was first introduced by Forrester (1961), to study 

business cycles and was later widely used in the energy sector as highlighted by 

Teufel et al. (2013). It has particularly been applied to the study of long term 

dynamics related to investment decisions in electricity markets (Abani et al., 2016; 

Assili et al., 2008; Bhagwat et al., 2016b, 2017b, 2017c; Cepeda and Finon, 2011; 

De Vries and Heijnen, 2008; Hary et al., 2016; Hasani and Hosseini, 2011; Hobbs 

et al., 2007; Olsina et al., 2006; Petitet et al., 2016a, 2017).  

An interesting feature of the SD framework is that it can account for causalities 

between variables of complex non-linear systems through feedback loops, with 

representation of time delays and dynamic responses. This makes it suitable for 

the analysis of systems such as decentralised electricity markets. SD allows for 

the representation of the cyclical tendencies mentioned above, which is not 

possible with other modelling techniques (optimisation, equilibrium, etc.). 

Moreover, the SD framework gives a considerable degree of flexibility in the 

characterisation of market participants’ behaviour. For instance, it can easily 

accommodate imperfect behaviours related to risk aversion, limited foresight or 

herd behaviour. These are more difficult to include using other modelling 

frameworks.  

Given the research questions addressed in this dissertation, the choice of the SD 

framework was primarily motivated by the need to represent cyclical tendencies 

to properly analyse the dynamics of liberalised electricity markets and assess the 

economic performance of market designs for capacity adequacy. An additional 

motivation comes from the possibility offered by the SD framework regarding the 

modelling of private investors’ behaviour and its impact on capacity adequacy. 

Overall, this approach provides a more realistic representation of liberalised 

electricity markets, compared to other modelling techniques.  
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4.3. Structure of the dissertation 

This dissertation is structured around three chapters corresponding to each of the 

research questions stated above.  

Chapter I focuses on risk aversion and its impact of the performance of capacity 

remuneration mechanisms. The chapter is organised in six sections. Section 1 

provides more background on the research question. Sections 2 and 3 introduce 

the modelling framework and the methodology for the analysis. Section 4 

discusses the results and their implications. In section 5, the sensitivity of the 

results to the main assumptions is analysed. Finally, the main conclusions are 

outlined in section 6. 

Chapter II addresses the issue of power plant mothballing in liberalised markets. 

It is also composed of six sections, following a similar structure to the preceding 

chapter. Section 1 sets up the context and the motivation behind the research 

question. Section 2 presents the modelling adjustments introduced to study 

mothballing decisions. Section 3 describes the approach for simulations. Section 4 

discusses the results for energy-only markets while section 5 covers capacity 

markets. These sections also include some sensitivity analyses. Conclusions are 

summarised in section 6. 

In Chapter III, a comparative analysis of market design options for capacity 

adequacy in a context of high renewable penetration is provided. Once again, the 

chapter includes six sections. Section 1 introduces the research question and its 

context. Section 2 covers the methodology, in particular the modelling of a 

capacity market with multiannual contracts. Section 3 describes the case study 

used for simulations. Section 4 provides a discussion on the simulations results. A 

sensitivity analysis is presented in section 5. The main takeaways of the chapter 

are highlighted in section 6. 

The dissertation ends with a general conclusion including potential directions for 

further research.  
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Abstract 

The importance of risk aversion for investments in competitive power markets 

have long been mentioned in the literature. The issue is gaining increasing interest 

due to the many changes currently occurring in the electricity sector (climate 

policies, deployment of renewables, electric vehicles, etc.), which introduce a lot 

of uncertainty for investors. This chapter analyses the impact of risk aversion on 

different market designs when investors are facing an uncertain peak load. Three 

market designs are studied for this purpose: a competitive energy-only market, a 

capacity market and a strategic reserve mechanism. A simulation model based on 

the System Dynamics framework is developed to represent investment decisions 

and analyse the behaviour of each market design. Risk aversion is modelled 

through the computation of Conditional Value at Risk.  

The chapter is organised in six sections. Section 1 provides more background on 

the research question. Sections 2 and 3 introduce the modelling framework and 

the methodology for the analysis. Section 4 discusses the results and their 

implications. In section 5, the sensitivity of the results to the main assumptions is 

analysed. Finally, the main conclusions are outlined in section 6. This chapter is 

based on a published paper16 and a conference paper17.  

  

                                       

16 Abani, A., Hary, N., Rious, V., Saguan, M., 2018. The impact of investors’ risk aversion on the performances 

of capacity remuneration mechanisms. Energy Policy 112, 84–97.  

17 Abani, A.O., Hary, N., Saguan, M., Rious, V., 2016. Risk aversion and generation adequacy in liberalized 

electricity markets: Benefits of capacity markets, in: 2016 13th International Conference on the European Energy 

Market (EEM).  
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Résumé en français 

L’importance de l’aversion au risque dans les décisions d’investissements dans les 

marchés libéralisés a été mentionnée de longue date dans la littérature. La 

question suscite de plus en plus d'intérêt en raison des nombreux changements en 

cours dans le secteur de l'électricité (politiques climatiques, déploiement des 

énergies renouvelables, véhicules électriques, etc.), qui introduisent beaucoup 

d'incertitude pour les investisseurs. Ce chapitre analyse l’impact de l’aversion au 

risque sur différentes architectures de marché lorsque les investisseurs sont 

confrontés à une demande incertaine. Trois architectures de marché sont étudiées 

à ce titre : un marché basé uniquement sur la rémunération de l’énergie (energy-

only), un marché de capacité et un mécanisme de réserve stratégique. Un modèle 

de simulation est développé afin de représenter les décisions d'investissement et 

d'analyser le comportement de chaque architecture de marché. L'aversion au 

risque est modélisée par le calcul de la valeur conditionnelle à risque (CVaR). 

Le chapitre est organisé en six sections. La section 1 introduit de façon plus 

détaillée la question de recherche. Les sections 2 et 3 présentent le cadre de 

modélisation et la méthodologie d'analyse. La section 4 présente les résultats et 

de leurs implications. La section 5 analyse la sensibilité des résultats aux 

principales hypothèses. Enfin, les principales conclusions sont exposées dans la 

section 6.  
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1. Introduction 

1.1. Context and motivation 

Well-designed energy-only markets should in theory send adequate price signals 

to stimulate needed investments in generation capacity (Stoft, 2002). In the 

theoretical energy-only market, generators recover a significant part of their fixed 

costs during scarcity periods (i.e., when the capacity in the system is not enough 

to satisfy the demand). The revenues earned during these periods are particularly 

vital for peaking units. At equilibrium, a well-functioning energy-only market with 

scarcity pricing (i.e., a market in which prices are allowed to reach the Value of 

Lost Load or VoLL18 during scarcity periods) enables generators in each type of 

technology to earn just enough revenues to recover their total costs, therefore 

inducing a socially optimal mix of capacity in the long run (Caramanis, 1982; Stoft, 

2002). 

However, for political or social considerations, prices in most electricity markets 

are capped19 at a lower level than the VoLL, reducing at the same time scarcity 

rents20 for generators. In addition, the increasing penetration of renewables has a 

significant impact on thermal plants’ profitability as it reduces both the frequency 

and the magnitude of price spikes (Sensfuß et al., 2008). Finally, some aspects 

related to investors’ behaviour and their response to price signals may prevent 

energy-only markets from achieving their capacity adequacy objective. Among 

these are: herd behaviour and risk aversion (associated with market 

incompleteness), which may lead to cyclical tendencies in investments and cause 

                                       

18 The Value of Lost Load (VoLL) is defined as the willingness to pay of the consumers in order to avoid being 

curtailed. Since there are several types of consumers, there should be different VoLLs corresponding to each 

consumer. However, the problem of the determination of the VoLL is out of the scope of this dissertation and it 

is assumed that the VoLL has been properly defined. 

19 Price caps are generally introduced in order to mitigate the effects of some market imperfections which 

prevents energy only markets from functioning properly as explained by Stoft (2002) (e.g., lack of sufficient short 

term price elasticity on the demand side, the inability of a system operator to perform selective curtailment, 

exercise of market power, etc.). 

20 Profits earned during scarcity periods. 
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deviations from the optimal equilibrium (Arango and Larsen, 2011). All the factors 

mentioned above constitute barriers to the well-functioning of energy-only 

markets and can lead to sub-optimal level of investments, resulting in more 

shortages than what is desired (see section 2 of the general introduction). 

In order to restore appropriate investment signals, complementary policy 

instruments (or market designs), called capacity remuneration mechanisms 

(CRMs) are being discussed and implemented21. These instruments remunerate 

power plants (or demand response resources) for their capacity, in addition to the 

revenues received on energy markets. Two CRMs in particular have drawn a lot of 

attention in theory and in practice: the capacity market (in its various forms) and 

the strategic reserve mechanism. The first one has been implemented for instance 

in France, Great-Britain and PJM22 whereas the second one has been preferred by 

Germany, Sweden or Finland. Both mechanisms are quantity-based23 but they 

differ in their design regarding the determination of the required amount of 

capacity, the targeted capacities and their interaction with the energy market. The 

differences between these two mechanisms are discussed more extensively in 

section 2.5. 

To decide which CRM to implement, policymakers should assess their economic 

performances first, in particular regarding their reliability and their cost (De Vries, 

2004). The former refers to the ability of the mechanism to provide adequate 

investments to ensure security of supply and reduce shortages, while the latter 

refers to the total costs associated with it (investment costs, variable generation 

costs and fixed O&M costs).  

As power markets are prone to investments cycles, the aforementioned 

performances should be assessed in a dynamic perspective, relying on simulation 

models, as demonstrated by the extensive literature on the dynamics of generation 

investments in liberalised power markets (Arango and Larsen, 2011; Assili et al., 

                                       

21 See Batlle and Rodilla (2010) or Cramton et al. (2013) for a discussion on design options and typology of CRMs. 

22 France has decided to implement a decentralised capacity market, also known as capacity obligations, whereas 

the UK and PJM run centralised capacity auctions. 

23 Meaning that the quantity (i.e., target capacity to be contracted) is explicitly determined by some central 

body.  
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2008; Bunn and Larsen, 1994; De Vries and Heijnen, 2008; Gary and Larsen, 

2000; Hary et al., 2016; Hasani and Hosseini, 2011; Olsina et al., 2006; Petitet et 

al., 2016a, 2017).  

1.2. Existing literature on risk aversion and capacity adequacy 

Most modelling studies on CMRs oversimplify investors’ behaviour. For instance, a 

risk-neutral hypothesis is generally considered for investors. This is the case in 

Bhagwat et al. (2017c), Cepeda and Finon (2011), De Vries and Heijnen (2008), 

Hary et al. (2016), Hasani and Hosseini (2011), where the authors tackle the issue 

of security of supply by analysing the impact of some CRMs on investment 

incentives. Yet, many sources of uncertainties (e.g., about demand, prices, policy, 

etc.) can directly alter the behaviour of market players in their investment 

decision-making (Dyner and Larsen, 2001; Gorenstin et al., 1993; Soroudi and 

Amraee, 2013). 

Moreover, these investments are capital-intensive and irreversible. In this context, 

the risk neutrality assumption about investors’ behaviour is arguable. They are 

more likely to be risk averse (Abada et al., 2017; Hobbs et al., 2007; Meunier, 

2013; Petitet et al., 2017). Moreover, given the incompleteness of electricity 

markets as highlighted in Willems and Morbee (2010), investors cannot transfer 

all their risk or trade it on existing markets. This impacts their investment decisions 

and consequently their reaction to a specific policy instrument. Therefore, 

investors’ risk preferences should be properly accounted for when assessing the 

performances of policy instruments.  

Several studies have investigated the relationship between agents’ risk aversion, 

market design and investment decisions in generation capacity. For example, 

Meunier (2013) shows, using a stylised equilibrium model, that risk averse agents 

can invest in more capacity than risk neutral ones in the long run. Such 

configurations occur when risk averse agents overinvest in peaking units as a 

means to hedge the risks faced by the baseload technologies. Willems and Morbee 

(2010) demonstrate that improving market completeness by introducing more 

derivatives increases investments because it provides better hedging 

opportunities. 
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Blyth et al. (2007) develop a real option approach to assess the impact of climate 

change policy uncertainty on investment incentives in different generation 

technologies. They illustrate that uncertainty on climate change policies can lead 

investors to wait for stronger price signals before investing (compared to a case of 

perfect certainty). Fan et al. (2012) find similar results by using a model based on 

game theory. They find that various sources of uncertainties (for instance about 

carbon permits allocation schemes or investment costs) and risk aversion have 

impacts on investment incentives as they reduce or delay investments. Aghaie 

(2017) also comes to the same conclusions by analysing the impact of risk aversion 

on investments in an energy-only market using a stochastic optimization model. 

He shows in addition that risk aversion leads to more shortages and an increased 

use of demand response resources in such a market. Although these studies are 

based on static equilibrium models, they are relevant to this discussion because 

they highlight the importance of considering investors’ risk aversion while 

assessing policy instruments. 

As explained above the cyclical nature of investments in power markets and 

investors’ risk aversion are two fundamental aspects that should be considered by 

policymakers when comparing policy instruments such as CRMs. Only a limited 

number of studies take both these aspects into account (i.e., use a dynamic 

simulation model which considers investors’ risk aversion). For instance, Hobbs et 

al. (2007) develop a representative agent model that accounts for agents’ risk 

preferences in order to simulate investment decisions and to assess the 

performance of the PJM capacity market for different demand curves. They 

illustrate that using a sloped capacity demand curve instead of a vertical one can 

reduce the costs of providing a desired level of reliability. They explicitly represent 

risk aversion through a quadratic utility function but do not provide any analysis 

of the impact of agents’ risk attitude on the performances of the studied market 

designs.  

Another relevant work is the one by Eager et al. (2012). The authors build a 

dynamic model to simulate investments in thermal generation in a context of high 

wind penetration. The concept of Value at Risk (VaR) is used to represent risk 

aversion. By applying their model to the British power system, they illustrate how 

a lack of sufficient revenues for peaking units can affect the security of supply. 

Nevertheless, their analysis focuses on an energy-only market and does not extend 
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to CRMs. At last, Petitet et al. (2017) use a dynamic simulation model to study the 

influence of risk aversion on the performance of an energy only market (with and 

without scarcity pricing) and a capacity market. Their results show that taking risk 

aversion into account significantly modifies the comparison between the studied 

market designs. However, their study does not consider the strategic reserve 

mechanism which is yet one of the most discussed CRM. 

1.3. Research question 

The aim of this chapter is to analyse, in a dynamic perspective, the impact of risk 

aversion on the performance of CRMs, with investors facing an uncertain peak 

load. Three market designs are studied for this purpose: a competitive energy-

only market (EOM hereafter), a capacity market (CM hereafter) and a strategic 

reserve mechanism (SRM hereafter). A simulation model based on system 

dynamics is developed in order to represent investment decisions and analyse the 

functioning of each market design. Risk aversion is modelled through the 

computation of Conditional Value at Risk (CVaR). The results are discussed in 

terms of changes in the reliability (i.e. ability to limit shortages) and the cost (i.e. 

total generation cost) of the studied market designs.  

This chapter contributes to the literature on generation adequacy by bringing some 

insights about the potential effects of investors’ risk aversion on the performance 

of a CM and a SRM. More precisely, it shows that risk aversion leads to reliability 

losses and increased costs in all three market designs. However, the CM appears 

to be the least affected one. Moreover, the benefits resulting from the 

implementation of a CRM are higher in presence of risk averse investors.  

The chapter is organised as follows: section 2 explains the model and the 

functioning of the three market designs. Section 3 provides a presentation of the 

simulations. The results are discussed in sections 4 and 5. Finally, conclusions and 

policy implications are presented in section 6.  
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2. A single-technology model for market design 

comparison 

2.1. General structure of the model 

As explained in the general introduction, the modelling methodology used in this 

chapter (and the throughout the dissertation) is based on the System Dynamics 

(SD) approach. The model presented in this chapter is inspired from Hary et al. 

(2016) and Hobbs et al. (2007). It simulates, on a yearly basis, aggregate 

investment and shutdown decisions from private agents, who are assumed to 

behave in the same competitive way24. Each year, four main steps are run: 

• Step 1: agents make anticipations about future market conditions (peak 

load, installed capacity and capacity price when necessary) and forecast the 

profitability of their plants with respect to these anticipations; 

• Step 2: based on the forecast profitability, agents decide how much 

capacity to shut down and how much to invest in; 

• Step 3: the installed capacity can thus be updated according to these 

decisions; 

• Step 4: agents discover the actual load and system margin. Their actual 

profits on the energy market are then computed. The process starts back 

from first step, with agents taking into account the observed market 

outcome for their future forecasts. 

One can notice a feedback loop in the steps presented above. Figure 3 presents 

the causal loop diagram of the model and illustrates how the main variables 

interact with one another. The (+) and (—) symbols associated with the arrows 

describe the nature of the interaction between variables. A (+) symbol means that 

the variables change in the same direction. For instance, an increase in variable 

(A) results in an increase in variable (B). Conversely, the symbol (—) indicates 

that the variables change in opposite directions. The (—) symbol in the middle of 

                                       

24 This is equivalent to a representative agent approach.  
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the diagram indicates a balancing behaviour which suggests that the system may 

reach an equilibrium state. 

Figure 3. Simplified causal loop diagram of the model 

 
 

The main assumptions of the model are the following: perfect competition (there 

is no strategic behaviour), single generation technology (only peak technologies 

are modelled), lead time of four years25 (between an investment decision and 

availability of the power plant) and exogenous function for revenue computation 

(instead of modelling a short-term energy market). This function is determined 

empirically based on the work of Hobbs et al. (2007). Even if it does not represent 

the precise functioning of short-term markets, it does provide a good estimation 

of expected revenues for peaking units on the energy market, which is sufficient 

for the analysis carried out in this chapter26. Moreover, similar to Hary et al. 

                                       

25 It includes the construction time which is around 2-3 years based on several sources Bhagwat et al. (2017c), 

Hary et al. (2016), Petitet et al. (2016b, 2017), Rious et al. (2011), U.S. Energy Information Administration 

(2017). It also accounts for the time for obtaining all the administrative authorisations and regulatory approvals, 

which is assumed to be of one year. In reality, the necessary time to complete all administrative and regulatory 

procedures may depend on specific environmental constraints or land restrictions associated with the location of 

the plant. A sensitivity analysis regarding the lead time is presented in section 5 of the chapter. 

26 In the next chapters of the dissertation, the revenue function is replaced by a proper short-term market.  
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(2016), increasing O&M costs for ageing power plants and endogenous shutdowns 

are considered (as explained subsequently). 

The model however presents two main differences compared to those introduced 

by Hobbs et al. (2007) and Hary et al. (2016), from which it is inspired. These 

differences relate to the agents’ forecasts procedure and the modelling of risk 

aversion, both of which are described in detail in the following sections.  

2.2. Uncertainties and agents’ forecasts 

The main uncertain parameter in the model is the evolution of the peak load. The 

agents face an exogenous peak load which is subject to random deviations due to 

economic growth rate deviations and weather conditions. These uncertainties are 

factored into a normally distributed random variable as it is usually done in the 

literature (De Vries and Heijnen, 2008; Hary et al., 2016; Hasani and Hosseini, 

2011; Hobbs et al., 2007).  

Since the peak load is modelled as an uncertain parameter, it has to be forecast27 

by the agents in order to be taken into account in their decisions (investment or 

shutdown). This forecast represents an important feature of the model. The 

average, the minimum and the maximum growth rate of peak load over past years 

are used in a backward-looking strategy in order to forecast it for the future. These 

values are referred to as the evolution vector. 

In order to account for the uncertainty of the load, agents build a scenario tree 

based on the evolution vector. To be coherent with the considered lead time (four 

years), they need to make their forecasts of the market conditions four years 

ahead. The scenario tree is constructed by exploring the possible combinations of 

growth rates for the years to come, up to the fifth year of operation. This 

represents a forecast horizon of eight years: four years of lead time which goes 

from year 𝑦 (year of the decision) to year 𝑦 + 4 (first year of operation), plus four 

more years going from 𝑦 + 5 to 𝑦 + 8. The scenario tree is computed by iteration 

                                       

27 It is assumed that the agents do not have knowledge about the future realisations of the uncertain parameters. 
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from one year to the next by extending each of the forecast values of the year of 

interest in three new values, thanks to the evolution vector. 

For instance, if 𝑋 is one of the forecast values of the peak load in year 𝑦 + 1, this 

will result in three new forecast values in year 𝑦 + 2, corresponding to a maximum, 

average and minimum evolution scenario. Figure 4 gives an illustration of the 

computation of the scenarios tree. Only a portion of the scenario tree is 

represented on the figure for reasons of simplicity and readability. This illustration 

shows the observed values of the peak load during years 𝑦 −  4 to 𝑦. These are 

actual values of peak load which are used to compute the evolution vector (i.e., 

the average, the maximum and the minimum growth rate over these years). For 

years 𝑦 + 1 to 𝑦 + 4, which correspond to the lead time, only the case corresponding 

to a series of maximum growth rate is represented on the figure28. Finally, for the 

last years of the forecast horizon (𝑦 + 4 to 𝑦 + 8) which correspond to the first five 

years of operation of the power plant, the figure shows the different peak load 

scenarios29.  

                                       

28 In the model, all the combinations are computed. 

29 The total number of scenarios is equal to 38 = 6 561. Indeed, each year of the forecast horizon leads to 

multiplying by 3 the number of previous scenarios. This means that for a forecast horizon of 8 years, the total 

number of final scenarios is 38. However, to reduce the computation time and account for imperfect practical 

forecasting, the 6 561 scenarios are sampled so that only 6 561/R scenarios are actually used by the agents to 

assess the expected profitability of their investments. This means that the probability of each selected scenario 

is 1/(6 561/R) (as all the paths are considered to have the same probability). Here R is equal to 81 (34). By 

reducing the number of scenarios, the CVaR is slightly overestimated. However, it has no impact on the 

conclusions derived from the modelling, as the main effects are preserved.  
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Figure 4. Agents’ forecast of peak load 

 

2.3. Profitability assessment 

Before making their investment or shutdown decisions, agents need to assess the 

profitability of their plants. Profitability depends on the expected revenues that the 

plant will generate, and the expected costs associated with its construction and/or 

operation. In this chapter, revenues that can be earned from the energy market 

are computed thanks to an exogenous curve (see Figure 5) similar to the one used 

by Hobbs et al. (2007). 
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Figure 5. Revenue curve from energy market 

 

This revenue curve30 gives the relationship between producers’ gross margin and 

the capacity margin of the system. The gross margin is defined as the difference 

between revenues from energy market (including ancillary services) and variable 

costs, whereas the capacity margin corresponds to the ratio between the total 

installed capacity and the peak load. A low capacity margin will lead to increased 

revenues, signalling a need for investments in new capacity. Symmetrically, when 

this margin becomes high due to an excess of capacity, revenues will decrease.  

Revenues are hence determined by two parameters, namely the level of installed 

capacity and the level of the peak load. The previous section explained how the 

peak load is forecast by the agents. Regarding the level of installed capacity, a 

simpler procedure is used. Since investment decisions are made four years ahead 

(because of the lead time), in year 𝑦, the installed capacity from 𝑦 + 1 to 𝑦 + 3 can 

                                       

30 The revenue curve illustrated on Figure 5 gives the annual gross margin of a newly built combustion turbine 

from the PJM energy market as a function of the system margin. The energy price is computed as the marginal 

cost of generation and reaches the price cap ($ 1 000/MWh) in periods of scarcity (which are defined according 

to a reliability criterion). The curve used by Hobbs et al. (2007) was computed with a simple model of the PJM 

market based on a predetermined generation mix and load curve. The generation mix is composed of baseload 

coal plants, CCGTs and combustion turbines. The load curve represents a combination of the load shapes of PJM-

Eastern and PJM-Western.  
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be perfectly anticipated by the agents31. However, they cannot correctly anticipate 

the installed capacity from 𝑦 + 4 to 𝑦 + 8, because the corresponding investment 

and shutdown decisions have not been made yet. For the computation of expected 

revenues, it is assumed that the installed capacity during these years stays the 

same compared to its level in year 𝑦 + 332.  

Combining the forecast peak load scenarios and the forecast installed capacity for 

years 𝑦 + 4 to 𝑦 + 8 (first five years of operation), the agents can compute a set of 

6 561 forecast system margin scenarios (since the forecast installed capacity is 

unique, there are as many system margin scenarios as peak load scenarios). Each 

one of the system margin scenarios corresponds to a sequence of forecast 

revenues during the first five years of operation of the power plant (which can be 

computed thanks to the revenue curve). After the fifth year, the revenues are 

assumed to be constant33 for the remaining years of the expected lifetime of the 

plant. This approach is consistent with the limited foresight hypothesis which is 

relevant in the context of electricity markets (see Hobbs et al. (2007) or Petitet et 

al. (2017)).  

Besides, as previously mentioned, increasing O&M costs are considered. Figure 6 

illustrates how O&M costs evolve depending on the age of the power plant. These 

costs are assumed to stay constant during the first ten years of operation before 

increasing exponentially to account for the fact that the plant is aging. 

                                       

31 All previous investment decisions are assumed to be known by agents.  

32 This assumption could be interpreted as if the agents consider that no investment or closure will take place 

between 𝑦 + 3 and 𝑦 + 8. However, given the structure of the model used in this chapter, peak load scenarios 

provide enough information about the uncertainty of the future system investments and margin. Considering 

multiple scenarios of installed capacity would complexify the model with no real added value for the conclusions. 

Since only the ratio between installed capacity and peak load is required for the computation of revenues, even 

when a single scenario of installed capacity is considered, by combining it with all the peak load scenarios, it is 

possible to cover a broad range of system margin scenarios. This range is not significantly modified by considering 

several scenarios of installed capacity.  

33 The average of the forecast revenues over the first five years of operation is used. 
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Figure 6. Aging curve – O&M costs 

 

The concept of Net Present Value (NPV) is used to assess potential investments’ 

profitability. Based on the forecast system margin scenarios (and their 

corresponding revenues and costs sequences) agents compute a NPV distribution 

in which each system margin scenario is associated to a NPV. Then, they compute 

an estimated NPV which can be either the expected value of the NPV or a risk-

adjusted NPV, depending on their risk preferences. The computation of these two 

values is described in the following section. 

2.4. Modelling of risk preferences 

Agents are considered to be either risk averse or risk neutral. Even if both types 

of agents make their investment decisions based on the NPV distribution, they 

assess the profitability of contemplated investments differently, depending on their 

risk preferences. 

Several approaches34 have been introduced to measure risk in the financial and 

economic literature. The most prevalent ones in energy systems modelling are 

variance-based measures, Value at Risk (VaR) and Conditional Value at Risk 

(CVaR). The first one characterizes risk through the variance of a profit or loss 

                                       

34 This section focuses on risk measures only. Interested readers can find a more extensive discussion on the 

theoretical properties of these risk measures in Emmer et al. (2015). Furthermore, a discussion on risk 

management approaches used by companies can be found in Deng and Oren (2006). 
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distribution. The last two measures (see Figure 7 for a graphical description) are 

more complex in terms of computation but more intuitive for interpretation than 

variance-based measures.  

Figure 7. Illustration of the modelling of risk aversion 

 

Risk measures based on variance gained a lot of interest following the major 

contribution of Markowitz on modern portfolio theory (Markowitz, 1952). However, 

one of the main drawbacks of these measures is that they fail to distinguish 

between negative and positive deviations from the mean of the distribution. They 
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the cases where the profit is lower than the VaR. The CVaR overcomes this by 

giving an expected value of the profit in these cases (Rockafellar and Uryasev, 

2000).  

Furthermore, CVaR constitutes what is referred to as a coherent measure of risk 

in the economic and financial literature (Artzner et al., 1999). Artzner et al. (1999) 

laid out a set of desirable properties for a risk measure based on four axioms35 

(monotonicity, translation equivariance, subadditivity and positive homogeneity). 

Of all considered risk measures here, CVaR is the only coherent risk measure and 

this is regardless of the shape of underlying distribution.  

While the aforementioned concepts provide a way to quantify risk, they do not 

directly model or represent risk aversion. To do so, one needs a way to convert a 

distribution of profits or losses into a certainty equivalent value, which represents 

the value of profit or loss that an agent would accept now (with certainty), rather 

than being subject to future uncertain realisations (these realisations may be 

higher or lower than the certainty equivalent). This is precisely where agents’ risk 

aversion materialises. Indeed, the more risk averse they are, the more likely they 

are to accept a low certainty equivalent payoff.  

In the classical expected utility framework of economic theory, risk aversion is 

modelled through increasing and concave utility functions (Arrow, 1971; Pratt, 

1964; Von Neumann and Morgenstern, 1944). Considering increasing and concave 

functions means that the utility increases with the level of wealth but at a 

decreasing rate36. These functions can be based on usual mathematical functional 

forms such as exponential or logarithm (Arrow, 1971; Gollier, 2001). A utility 

function matches a certain amount of wealth (for instance the NPV of an 

investment) with a utility. Thanks to this, a distribution of profits or losses can be 

transposed into a distribution of utility. The certainty equivalent in this case is 

computed as the level of profit or loss corresponding to the expected value of the 

utility. Here, risk is implicitly measured through the difference between the 

                                       

35 Appendix B provides a formal definition of these axioms. 

36 In technical terms, this is equivalent to saying that the second derivative of the function is negative. 
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expected value of the initial distribution (in profits or losses) and the certainty 

equivalent.  

While utility-based risk measures generally satisfy the axioms of monotonicity, 

translation invariance and sub-additivity, they may fail to satisfy the positive 

homogeneity axiom (Ben‐Tal and Teboulle, 2007; Maes, 2016). Therefore, using 

utility functions to represent risk aversion may rely on a risk measure that is not 

coherent in the sense of Artzner. An alternative way of computing a certainty 

equivalent, using an explicit risk measure, is to adjust the expected value of 

distribution of profits or losses based on the measured risk level. Modelling risk 

aversion by the means of this alternative approach, with a coherent risk measure 

such as CVaR, is therefore more appropriate.  

In this chapter (and the dissertation more generally), risk aversion is represented 

through a function which is based on the CVaR as illustrated on Figure 7. A similar 

modelling of risk aversion can be found in the works of Abada et al. (2019, 2017), 

Munoz et al. (2017) or Murphy and Smeers (2005). According to their risk 

preferences and based on the NPV distribution, agents use the following equations 

to determine the estimated NPV of a potential investment: 

 𝑁𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑟𝑖𝑠𝑘−𝑛𝑒𝑢𝑡𝑟𝑎𝑙 = 𝐸[𝑁𝑃𝑉]   

 𝑁𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒 = 𝐸[𝑁𝑃𝑉] − 𝑅𝑖𝑠𝑘𝑝𝑟𝑒𝑚   

 with 𝑅𝑖𝑠𝑘𝑝𝑟𝑒𝑚 = 𝛽 ∗ (𝐸[𝑁𝑃𝑉] − 𝐶𝑉𝑎𝑅𝛼)  

𝛽 is a dimensionless parameter which captures the relative degree of agents’ 

aversion (0 ≤  𝛽 ≤ 137). The difference between the expected value of the NPV and 

the CVaR38 , multiplied by 𝛽, is defined as the risk premium. Equation (2) can also 

be rewritten as follows: 

                                       

37 There is no mathematical restriction that bounds the coefficient 𝛽 in the specified interval. This interval was 

chosen in order to reflect a behaviour of the agents which can be consistent with reality. Choosing a negative β 

suggests that the agents voluntarily overestimate the profitability of their investments, which is contradictory to 

the risk averse hypothesis. Similarly choosing a 𝛽 that is higher than 1 would reflect an extremely risk averse 

behaviour. Alternatively, the degree of risk aversion could also be adjusted through the coefficient 𝛼.  

38 The procedure to compute the VaR and CVaR is detailed in Appendix C. 
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 𝑁𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑟𝑖𝑠𝑘−𝑎𝑣𝑒𝑟𝑠𝑒 = 𝐸[𝑁𝑃𝑉] ∗ (1 − 𝛽) + 𝛽 ∗ 𝐶𝑉𝑎𝑅𝛼   

This last equation shows that the estimated NPV in the case of risk averse agents 

is simply a weighted average between the expected NPV and the CVaR. 

2.5. Description of the studied market designs 

 Energy-only market (EOM) 

In the energy-only market, producers are remunerated only through the wholesale 

market and ancillary services. In this market design, revenues are computed 

exactly as described in section 2.3. Each year, agents forecast future system 

margins and assess the profitability of their plants. Depending on the expected 

profitability, they make their investment and shutdown decisions. 

Investment decisions are based on an estimated NPV, depending on the risk 

preference of agents. The overall level of investments to be made is a function of 

the estimated NPV according to a linear relationship which is illustrated by Figure 

839. Its parameters are taken from Hobbs et al. (2007). The capacity addition curve 

represents how investment attractiveness influences capacity additions. The 

higher the estimated NPV, the more agents find investment in new capacity 

attractive and hence the higher the capacity addition will be. However, due to 

financing and land availability constraints (Olsina et al., 2006) and because agents 

are aware that massive investments can ultimately diminish their revenues, a limit 

to capacity additions from one year to another is considered. 

                                       

39 This approach has also been used for instance in Hary et al. (2016), Hobbs et al. (2007) and Olsina et al. 

(2006). While such an approach is an elegant solution for simulating a simplified short-term electricity market in 

a SD model, one of its limitations is that the revenue curve has a fixed shape. Therefore, it does not account for 

changes in the shape of the load curve (for example due to an increasing penetration of renewables or the 

development of demand response). 
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Figure 8. Capacity addition curve40 

 

In addition to new investments, agents also have to decide four years in advance 

which of the existing plants should be shut down and which ones should stay online 

(for the next year). These decisions depend on expected operating cash flows (i.e. 

expected revenues minus avoidable costs, which are only O&M costs here). 

Expected revenues are computed as described above, while O&M costs are 

determined by the aging curve (see Figure 6). If the expected operating cash flows 

for the year of interest are negative, then the plant is shut down. Otherwise, it is 

kept active for one more year. As for capacity additions, the aggregate level of 

shutdowns in a single year is limited in the model. At the end of each year, the 

available capacity of the system is updated according to agents’ investment and 

shutdown decisions. 

 Capacity market (CM) 

The capacity market is different from the EOM in the sense that it provides a 

complementary source of revenue to agents. Indeed, in the CM, in addition to the 

revenues from the energy and ancillary services markets, agents receive a 

payment related to the capacity of their plants. As such, each installed megawatt 

                                       

40 When the NPV is slightly negative, some investments may still be attractive for agents with lower financing or 

investment costs. 
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of capacity is remunerated through a capacity price resulting from a centralised 

auction41.  

The modelling of the capacity auction is similar to the one in (Hary et al., 2016) 

and (Bhagwat et al., 2017c). The auction takes place four years in advance (which 

is the lead time for the peak technologies considered here). The TSO assesses42 

capacity needs in four years and sets a target that corresponds to the peak load 

plus a security margin. This target represents the demand curve of the capacity 

auction (see Figure 9). As for the supply curve, it corresponds to the aggregation 

of agents’ bids sorted in increasing order. The capacity market bids are made using 

a strategy that consists in balancing agents’ expected revenues and their avoidable 

costs in year 𝑦 + 4 (considering that the auction takes place in year 𝑦).  

When evaluating their expected revenues in the case of the CM, agents have to 

take into account the expected capacity price in year 𝑦 + 4. This price is assumed 

to be the same as the one in year 𝑦 + 343 and stay constant during the lifetime of 

the plant. The revenues coming from the energy market are computed exactly like 

they are in the case of the EOM. 

Regarding avoidable costs, they vary between existing capacity and new 

investment: for existing capacity, they correspond to O&M costs whereas for new 

capacity, they also include investment costs that are still pending. The bids are 

constructed as follows44: 

• For existing capacity:  

o If expected revenues from the energy market and ancillary services 

in year 𝑦 +  4 cover O&M costs in that year, then the capacity market 

                                       

41 This is similar to the capacity markets in PJM and the UK.  

42 The TSO is assumed to know the average growth rate of the peak load, conversely to the agents who estimate 

it. The TSO’s forecast is however not perfect since this growth rate is subject to uncertainties that the TSO cannot 

estimate. The TSO is assumed to be risk-neutral in the model. This assumption does not impact the main 

conclusions of this chapter (and the this more generally). Considering a risk averse TSO would result in higher 

capacity demands since the TSO would be more conservative in its forecasts.  

43 Which is known because the auction already took place. 

44 Strategic behaviour from agents is not considered as they make their bids only with respect to their avoidable 

costs.  
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bid is zero (no additional revenue is needed from the capacity auction 

to cover avoidable costs); 

o If these revenues are smaller than O&M costs, then the capacity 

market bid corresponds to the difference (so that avoidable costs 

could be recovered if the bid is accepted). 

• For new capacity:  

o If the expected profitability over the lifetime of the plant (estimated 

NPV) computed from expected revenues from the energy market and 

those from the capacity auction (i.e., forecast capacity price) is 

positive, then the capacity market bid is zero (no additional revenue 

is needed from the capacity auction in order to cover avoidable 

costs); 

o If the expected profitability is negative (all avoidable costs are not 

covered), then the capacity market bid is equal to the profitability 

shortfall (i.e., the missing money).  

Agents are assumed to bid the maximum available capacity whether it is existing 

or new capacity45. 

                                       

45 In the case of new capacity, the maximum capacity is determined according to Figure 8. 
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Figure 9. Capacity auction 

 

In the CM, the outcome of the capacity auction determines investment and 

shutdown decisions. Once the bids are confronted to the capacity demand curve 

given by the TSO (see Figure 9), a clearing price for capacity is obtained and the 

accepted bids are identified. These accepted bids will translate into new 

investments or plants being kept active for the next year. Refused bids will lead 

either to plants being shut down or no investment.  

 Strategic reserve mechanism (SRM) 

The strategic reserve mechanism is an alternative form of CRM. The aim of this 

mechanism is to ensure capacity adequacy by contracting in advance a predefined 

level of capacity with some existing plants that would otherwise be shut down. The 

reserved capacity is meant to be used only in extreme circumstances in order to 

deal with peak demand. The functioning of this CRM involves a central body - 

usually the TSO - which, based on demand forecasts, decides for a target level of 

strategic reserve to be purchased46. This is generally done through an auction. A 

                                       

46 It is important to mention that there must be a limit to the total reserved capacity in order to avoid distorting 

the energy market. A maximum amount of reserved capacity is usually set (it can be for example defined as a 

percentage of the previous year installed capacity, as it is the case in the model presented here).  
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reserved capacity can only be activated (i.e. asked to produce electricity) upon 

solicitation from the TSO when the price on the short-term markets becomes 

higher than the maximum price it is willing to pay for energy47. This maximum 

price is most of the time equal to the price cap on the energy market. Accordingly, 

capacities on the energy market do not see any change in their revenues when the 

reserved capacities are activated because they are already selling at the price cap. 

This means that the revenues of the plants on the energy market can be computed 

using the curve illustrated on Figure 5, by simply adjusting the level of installed 

capacity (to subtract the reserved capacities). 

An important feature of the SRM lies in the explicit distinction between the 

capacities in the reserve and the capacities in the energy market. Indeed, 

capacities are forbidden to participate in the energy market and be part of the 

reserve at the same time. Moreover, they are not allowed to switch from one to 

the other48 (once a capacity enters the reserve, it cannot go back to the energy 

market). Given these restrictions, investment is likely to occur only in the energy 

market with unchanged incentives compared to the EOM. Therefore, the 

investment decision process is the same as the one presented for the EOM (only 

based on revenues from the energy market). Agents invest in new power plants 

which stay on the energy market as long as their expected revenues are high 

enough to cover their expected O&M costs. The distinction between the EOM and 

the SRM is with respect to the shutdown decisions as explained hereafter. 

In the EOM, plants shut down as soon as their expected revenues do not 

compensate their O&M costs. In the SRM, the shutdown decision rationale is 

different as capacities would try to enter the reserve first, before shutting down 

permanently. They can do this by participating to the auction for the strategic 

reserve which is assumed to take place four years ahead (as for the CM). For all 

existing capacities on the energy market, if expected revenues are lower than 

                                       

47 This is similar to the operating reserve pricing described by Stoft (2002). However, the spot market and the 

way the contracted reserved capacity is dispatched are not explicitly modelled here. 

48 This restriction improves the credibility of the SRM and contributes to limiting the distortions in the energy 

market (Neuhoff et al., 2016). 
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projected costs, then they will bid their O&M costs49 in the auction. As for the 

capacities that were already into the reserve, since they cannot go back on the 

energy market, their only option is to participate to the auction by bidding their 

O&M costs. 

The supply curve of the reserve auction is thus obtained by aggregating the bids 

sorted from the lowest to the highest. The demand curve is modelled as a vertical 

curve with a reserve price cap and is determined based on the difference between 

the forecast peak load and the level of installed capacity in the energy market. As 

in the CM, an explicit target margin is set. When installed capacity on the energy 

market (i.e., total installed capacity minus reserved capacities) is not enough to 

reach the target, the TSO contracts the remaining capacities through the reserve 

auction. However, if installed capacity on the energy market is already larger than 

the target, then the TSO cannot force the excess capacity to retire. As a result, 

the SRM can prevent under capacity phases but can do little about overcapacity 

phases, as opposed to the CM which can act in both directions.  

Once the auction is run, capacities with accepted bids either enter the reserve (if 

they are coming from the energy market) or stay in the reserve (if they were 

already part of it). All capacities that saw their bids rejected are permanently shut 

down.   

                                       

49 Since capacities that are accepted in the reserve cannot participate into the energy market anymore, they 

need to make sure that the reserve price will cover all their O&M costs. 
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3. Simulations setup and indicators 

3.1. Preliminary remarks on calibration and simulations 

It should be noted that no back testing is carried out here, essentially because it 

is impossible to precisely represent historical values with this version of the model. 

However, the revenue curve is calibrated on historical revenues from the PJM 

market, although it does not provide electricity prices or other variables that can 

be used for back testing. Moreover, the model relies on a few exogenous curves 

which are partially calibrated on historical data. Furthermore, the aggregate 

evolution of the system margin in the model was within a realistic range, which 

indicates that the model performed correctly.  

Another challenge in the simulations is the presentation of the results in absolute 

values. The model allows for the comparison of market designs without necessarily 

providing precise values that are consistent with a real-world system. Therefore, 

most of the results discussed hereafter are presented in relative levels (compared 

to a certain reference). 

Finally, in this chapter and throughout the dissertation, although cycles are 

observed in the simulations, the discussion does not focus on them. This is because 

the issue of cycles in electricity market has already been extensively covered in 

the literature, so here the focus is made on other aspects that bring more added 

value to existing literature. 

3.2. Parameters of the simulations 

Simulations are run 100 times over a 40-year horizon with a randomly generated 

peak load path in each run. Since electricity demand is considered inelastic50, the 

social welfare can be assessed through the level of shortages (proxy for reliability 

                                       

50 This hypothesis may not hold in the near future with the development of smart metering and demand response. 

But demand response can be assimilated to a peak load capacity since adequate investments are needed for its 

development, despite the deployment of smart metering.  
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and measured as the mean curtailed demand51 per year in % of peak load) and 

the total costs of generation52 (measured in $/MW of peak load) (De Vries, 2004).  

Figure 10. Interpretation of results 

 

The results are presented on 4-quadrant graphs as illustrated on Figure 10. These 

graphs provide a comparison between two settings, each setting being defined as 

a combination of a specified market design (i.e., EOM, CM or SRM) and a type of 

agent (risk neutral or risk averse). An example of setting is: EOM with risk neutral 

agents.  

Each cross on the graph represents the comparison of both indicators between the 

two settings, one of which will be chosen as a reference, for one generated load 

path. The X-axis shows the difference in reliability by displaying the additional53 

shortages experienced in the non-reference setting compared to the reference 

setting. The Y-axis displays the difference in terms of cost as the additional54 costs 

                                       

51 Shortages are considered to happen if the system margin is less than a certain threshold. This threshold is 

fixed to 10% in the model. Indeed, to deal with maintenance operations and outages, installed capacity has to 

be greater than the peak demand. 

52 Both investments and maintenance costs are considered. 

53 The values can be negative, indicating that the non-reference setting experiences less shortages than the 

reference setting. 

54 The values can be negative, indicating that the non-reference setting incurs less costs than the reference 

setting. 

Additional generation 
costs compared to the 

reference setting 

Additional shortages 
compared to the reference 

setting 

Result for one load 
path 

4 

3 2 

1 
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incurred by the non-reference setting compared to the reference setting. To 

illustrate this, consider the two following settings: (A), which will be the reference, 

and (B). A cross in quadrant number 1 as depicted on Figure 10, means that 

setting (B) is less reliable and costlier than the reference setting since it leads to 

more shortages and generates higher costs. The main parameters and data used 

for the simulations are presented in Table 1.  

Table 1. Variables and parameters for simulations (Chapter I)55 

Main parameters of the model Value 

Target system margin 15% of peak load 

Shortage threshold (margin below which shortages happen) 10% of peak load 

Peak load growth average 1.7% 

Peak load growth standard deviation 1% 

Weighted Average Cost of Capital (WACC) 10% 

Investments costs $ 600 000/MW 

O&M costs See Figure 6 

Risk aversion coefficient (𝛽) 0.75 

Confidence level for computation of CVaR 95 % 

Forecast horizon for the peak load 4 years 

Maximum capacity addition (see Figure 8) 
10% 

(of previous year installed capacity) 

NPV to reach maximum capacity addition (see Figure 8) $ 400 000/MW 

Capacity addition when NPV=0 (see Figure 8) 1.7% 

Maximum capacity shutdowns 
10% 

(of previous year installed capacity) 

Price cap on capacity market 
~ $ 100 000/MW 

(1.5X annualised cost of investment) 

Price cap for reserve 
~ $ 200 000/MW  

(3X annualised cost of investment) 

Maximum amount of reserved capacity 
15% 

(of previous year installed capacity) 

  

                                       

55 Some of them are based on Hary et al. (2016) and Hobbs et al. (2007). 
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4. Discussion on the performance of the studied 

market designs under different risk attitudes 

4.1. Impact of risk aversion on the performances of the studied 

market designs 

For each market design, the setting with risk aversion is compared to the one 

without risk aversion. The results are illustrated on Figure 11 and discussed 

hereafter.  

Figure 11. Impact of risk aversion on the performances of the 

studied market designs56 

EOM CM SRM 

   

In the case of the EOM, risk aversion tends to increase both the level of shortages57 

and generation costs, capturing two effects working in opposite directions. On the 

one hand, the variation in generation costs is explained by a contraction of 

investments related to agents’ aversion. Indeed, even if the margin is tight and 

expected revenues on the energy market are high, the uncertainty pending on the 

evolution of peak load will limit or delay risk averse agents’ investments, since it 

                                       

56 The red-dotted lines represent the average level of additional shortages while the blue-dotted lines correspond 

to the average additional generation costs. 

57 On average, the system margin is lower when agents are risk averse (compared to the case where they are 

risk neutral). 
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reduces their estimated profitability. They will either invest less58 (compared to 

risk neutral agents) or wait for a clearer signal (i.e., lower margin). On the other 

hand, since they do not invest in new plants, risk averse agents prefer keeping old 

and expensive power plants running. Indeed, investing in a new power plant is a 

more uncertain decision than keeping an existing power plant running for one more 

year. But O&M costs of old power plants are higher. Given the parameters used 

for these simulations, keeping old plants running appears to globally overweigh 

the reduction of investment level, resulting in a slight increase of generation costs 

on average. 

In the CM, generation costs appear to increase slightly on average, due the 

explanation given above for the EOM. In a risk averse situation, bids for new 

investments can be higher than bids for old power plants because of a risk 

premium included in the bids for new investments. In that case, even if an old 

power plant is in effect more expensive than a new investment, it could be selected 

first because of its lower bid (even if it will lead to higher generation costs).  

Regarding the level of shortages, the difference between the risk averse and the 

risk neutral cases is very small. This difference is less than 0.10% of peak load 

over all 100 load paths. In the CM, the target margin is almost always reached, 

provided that the capacity price cap is high enough59. This price cap could however 

act as a limiting factor for capacity additions if its level is too low in regard of the 

uncertainty faced by risk averse agents. The occurrence of such situations is the 

main explanation behind the difference in shortages observed between the risk 

averse and the risk neutral cases (as the capacity price cap is reached more often 

in presence of risk averse agents). It is therefore important to take this aspect into 

account while setting the price cap of a capacity market. According to simulations, 

                                       

58 Underinvestment (compared to a risk neutral case) leads to higher prices and higher profits for electricity 

generators. Hence, they affect consumers in two ways: firstly, through the lack of generation adequacy and its 

associated social costs (costs of shortages), secondly through an increase in income transfers to the generators. 

59 Risk averse agents will tend to make higher bids (compared to risk neutral agents) in the capacity auctions 

because of the risk premium that is taken into account when estimating the expected profitability of their 

investments and thus their expected shortfall. Despite these higher bids, the explicit target which is set in the 

auction ensures that there will be enough installed capacity, unless the bids reach the capacity price cap. 
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the CM appears to be less impacted by the introduction of risk aversion, compared 

to EOM. 

Regarding the SRM, there is a noticeable increase in shortages resulting from risk 

aversion. This increase is rather small compared the one observed in the EOM, but 

higher than the one observed in the CM. The SRM seems to fall in-between the 

EOM and the CM in terms of resilience to risk aversion with respect to reliability, 

the CM being the most resilient market design. The SRM is similar to the CM in the 

sense that it also defines an explicit target to be reached (only for the reserved 

capacity). However, in a risk averse configuration, this mechanism will rely more 

and more on the reserve in order to restore the target margin (due to the reduced 

investments in the energy market).  

Since there is an explicit maximum quantity of contracted reserve, this limit will 

impact the ability of the mechanism to reduce shortages when investments 

become particularly low on the energy market. Moreover, the reliability of the SRM 

can also be affected by its price cap on the reserve auction. As for the CM, if the 

price cap for contracting reserve is too low compared to the risk that is perceived 

by the agents (and translated in their bids), the SRM may not be effective enough 

(i.e., reach the target margin and thus limit shortages). According to these 

observations, there are two parameters that can limit the reliability of the SRM: 

the maximum size of the reserve and the price cap in the reserve auction. For the 

CM, only the price cap in the capacity auction is a limiting factor to the reliability 

of the mechanism. This mainly explains why the SRM appears to be less resilient 

than the CM with respect to reliability.  

Introducing risk aversion under the SRM also leads to a significant increase in 

generation costs (compared to the EOM and the CM). As explained for the EOM 

and the CM, the overall impact of risk aversion on generation costs depends on 

how the decrease in investment costs (due to fewer investments) compensates 

the increase in O&M costs (due to older plants in the system). In the case of the 

SRM, the former is largely overweighed by the latter. The reason for this lies in 

the very functioning of the mechanism and the structure of the O&M costs. Indeed, 

the main aim of the SRM is to keep old power plants online, in case of extreme 

circumstances.  
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As a result, the average age of power plants under this market design is around 

23 years when risk aversion is not considered and around 25 years when risk 

aversion is introduced60 (the expected lifetime of power plant in the model is 20 

years). In the EOM and the CM, the average age of the plants in the system varies 

between 20 and 22 years (depending on the risk preference assumption). Given 

the exponential nature of the O&M curve (see Figure 6), extending the lifetime of 

a power plant from 23 years to 25 induces more costs than extending it from 20 

years to 22. Introducing risk aversion moves the plants of the SRM to a steeper 

part of the ageing curve, which explains why the additional costs of the system 

are higher under the SRM, compared to the EOM and the CM. It indicates that the 

SRM is more affected, in terms of cost, by the introduction of risk aversion61 

compared to the EOM and the CM.  

4.2. Comparative analysis of the market designs in presence of 

risk aversion 

A comparative analysis is conducted in order to confirm and complement the 

intuitions given by the previous observations. First, a comparison of the market 

designs is presented without considering risk aversion (Figure 12), then the same 

comparison is made but with risk averse agents this time (Figure 13).  

 

 

 

 

                                       

60 The amount of reserved capacity is also higher in the risk averse situation. 

61 The magnitude of this result obviously depends on the shape of the ageing curve representing the evolution 

of O&M costs depending on the age of the power plants. 
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Figure 12. Comparative analysis of the market designs without 

risk aversion62 

CM vs EOM 

(Agents are risk neutral in both market 

designs) 

SRM vs EOM 

(Agents are risk neutral in both market 

designs) 

SRM vs CM 

(Agents are risk neutral in both market 

designs) 

   

The two first graphs on the left of Figure 12 and Figure 13 show a comparison 

between a CM and an EOM then a SRM and an EOM. Whether risk aversion is 

considered or not, generation costs are higher, and shortages are significantly 

reduced when a CRM is implemented (be it a CM or a SRM). The second result 

(reduction of shortages) is the one expected as the aim of a CRM is to reduce the 

level of shortages. Nevertheless, the result regarding the cost of the CRMs 

compared to the EOM might be misleading. It is important to mention that the 

indicators used in this chapter do not allow for a combination of the two criteria 

(cost and reliability) in a unique social welfare indicator, since they are not 

expressed in the same units. This could be possible by assuming a level of VoLL in 

order to translate shortages into costs for society as it is done in the following 

chapters of the dissertation.   

 

 

                                       

62 The red-dotted lines represent the average level of additional shortages while the blue-dotted lines correspond 

to the average additional generation costs. 
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Figure 13. Comparative analysis of the market designs in 

presence of risk aversion63 

CM vs EOM 

(Agents are risk averse in both market 

designs) 

SRM vs EOM 

(Agents are risk averse in both market 

designs) 

SRM vs CM 

(Agents are risk averse in both market 

designs) 

   

Interestingly, the first two graphs on the left of Figure 12 and Figure 13 suggest 

that implementing a CRM could be even more beneficial in presence of risk averse 

investors, compared to a situation with risk neutral investors. Indeed, according 

to the simulations and the set of parameters, the gain in reliability resulting from 

implementing either a CM or a SRM is slightly above 5% of peak load (on average) 

when there is no risk aversion. If risk aversion is considered, this gain goes up to 

roughly 7% of the peak load (on average). As such, this can be an additional 

justification to the implementation of a CRM, since in a real-world environment, 

investors are likely to be risk averse. 

The third graphs on Figure 12 and Figure 13 display a comparison between a SRM 

and a CM. In Figure 12 the comparison is made in a risk neutral situation. It shows 

that the SRM incurs slightly higher generation costs than the CM. The differences 

in terms of both cost and reliability between the CM and the SRM are more 

pronounced in the risk averse case (see Figure 13). In other words, if a CM seems 

preferable to a SRM in a risk neutral environment, it is even more true in a risk 

averse environment. These results find their explanation in the characteristics of 

the two CRMs.  

                                       

63 The red-dotted lines represent the average level of additional shortages while the blue-dotted lines correspond 

to the average additional generation costs. 
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As explained in the previous section, the performances of the SRM are determined 

by both the level of the maximum amount of reserved capacity and the price cap 

in the auctions for contracting reserve. As for the CM, its performances depend 

only on the price cap in the capacity auctions. There are therefore more chances 

that a SRM will fail to limit shortages compared to a CM, if their design parameters 

are not well defined. Moreover, in order to restore the target capacity margin, a 

SRM may require a lot of expensive reserved capacities which increases generation 

costs. In the CM, old power plants are used in a lower proportion. Therefore, the 

CM can reach the target margin at a lower cost, compared to the SRM which only 

uses old expensive plants to do so. This explains the difference of cost between 

the two CRMs. 

5. Sensitivity analysis 

In order to validate the robustness of the results presented in this chapter, a 

sensitivity analysis was carried out. It focuses on the parameters of the model that 

can have a direct impact on the results. The identified parameters are the 

following:  

• The degree of risk aversion (𝛽),  

• The price cap on the CM,  

• The price cap in the SRM, 

• The maximum amount of reserved capacity, 

• The lead time considered for investment and shutdown decisions, 

• The maximum capacity additions and maximum shutdowns. 
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Table 2. Sensitivity analysis scenarios 

 
Degree of 

risk aversion 
(β) 

Price cap on 
the capacity 

market 
($/MW) 

Price cap on 
the strategic 

reserve 
mechanism 

($/MW) 

Maximum 
amount of 
reserved 
capacity 

(% of 
previous year 

installed 
capacity) 

Maximum 
capacity 

addition and 
maximum 
shutdowns 

(% of 
previous year 

installed 
capacity) 

Lead time for 
investments 

and 
shutdowns 

(years) 

Reference 
values 

0.75 100 000 200 000 15% 10% 4 

Alternative 
case 1 – Lower 
degree of risk 

aversion 

0.25 100 000 200 000 15% 10% 4 

Alternative 
case 2 – Higher 

CM price cap 
0.75 200 000 200 000 15% 10% 4 

Alternative 
case 3 – Higher 
amount of SR 

0.75 100 000 200 000 20% 10% 4 

Alternative 
case 4 – Higher 
SRM price cap 

0.75 100 000 300 000 15% 10% 4 

Alternative 
case 5 – Higher 
amount of SR 

and higher SRM 
price cap 

0.75 100 000 300 000 20% 10% 4 

Alternative 
case 6 – 

Shorter lead 
time 

0.75 100 000 200 000 15% 10% 2 

Alternative 
case 7 – Higher 
max capacity 
additions and 

shutdowns 

0.75 100 000 200 000 15% 15% 4 

 

Seven alternative sets of hypotheses regarding the aforementioned parameters 

are defined as illustrated in Table 2. The simulations are run for each market design 

taken individually by comparing a case with risk aversion to a case without risk 

aversion (as it was done in section 4.1). This is sufficient for the sensitivity analysis 

as the results for the individual analyses of the market designs determine the 

results of the comparative analyses. 
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Table 3. Results of the sensitivity analysis 

 
Market 
design 

Mean of 
additional 

shortages due 
to risk aversion 

(% of peak 
load) 

Standard 
deviation of 
additional 

shortages due 
to risk aversion 

(% of peak 
load) 

Mean of 
additional 
generation 

costs due to 
risk aversion 

($/MW of peak 
load) 

Standard 
deviation of 
additional 
generation 

costs due to 
risk aversion 

($/MW of peak 
load) 

Reference values 

EOM 1.583 0.448 387 1031 

CM 0.005 0.019 641 1424 

SRM 0.136 0.133 4790 1744 

Alternative case 1 – 
Lower degree of 

risk aversion 

EOM 0.482 0.369 157 859 

CM 0.002 0.017 324 1184 

SRM 0.050 0.084 1407 1362 

Alternative case 2 – 
Higher CM price cap 

CM 0 0.013 0 1632 

Alternative case 3 – 
Higher amount of 

SR 
SRM 0.043 0.094 5968 1884 

Alternative case 4 – 
Higher SRM price 

cap 
SRM 0.137 0.134 4989 2076 

Alternative case 5 – 
Higher amount of 

SR and higher SRM 
price cap 

SRM 0.021 0.043 6254 1991 

Alternative case 6 – 
Shorter lead time 

EOM 1.478 0.448 144 1096 

CM 0.002 0.010 341 1391 

SRM 0.814 0.556 250 1214 

Alternative case 7 – 
Higher max 

capacity additions 
and shutdowns 

EOM 1.007 0.516 - 1161 1972 

CM 0.013 0.039 - 260 2282 

SRM 0.138 0.225 1149 2616 

 

The first row in Table 2 gives the reference values that were used in the simulations 

discussed in the previous sections. Alternative case 1 allows an assessment of the 

sensitivity to the degree of risk aversion. Alternative case 2 captures the sensitivity 

to the parameter of the CM, which is the price cap. Alternatives cases 3, 4 and 5 

help understanding the sensitivity of the results to the two parameters of the SRM. 

Alternative case 6 assesses the sensitivity of the results with respect to the lead 
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time for investment and shutdown decisions. Finally, alternative case 7 shows the 

influence of the maximum capacity additions (and shutdowns) on the results.  

Table 3 summarises the results of the sensitivity analysis for all the alternatives 

cases. The sensitivity analysis globally confirms the main intuitions about the 

functioning of the studied market designs. It also confirms the robustness of the 

results discussed in section 4. 

5.1. CRMs’ effectiveness is constrained in face of highly risk 

averse agents 

The first alternative case confirms the straightforward intuition that reducing the 

degree of risk aversion is equivalent to going towards a risk neutral situation. 

Indeed, for all three market designs, the additional shortages and costs related to 

risk aversion are significantly reduced. In the second alternative case, the impact 

of the price cap on the performances of the CM is very clear. By doubling this price 

cap (compared to its reference value in the simulations), the reliability of the 

market design is less impacted by the introduction of risk aversion, which is 

consistent with the functioning of the CM.  

One can also notice that the increase in cost of the CM due to the introduction of 

risk aversion is less pronounced when the price cap of the capacity auction is 

higher. Setting the price cap of the capacity auctions at a higher level makes it 

possible for high bids to be accepted. Since, in a risk averse situation, these high 

bids generally correspond to new investments64, this is equivalent to enabling more 

investments. However, building and operating a new power plant is less expensive 

than operating a very old one. Allowing more investments therefore contributes to 

reducing the total costs of generation. Thus, the impact of risk aversion on the 

cost of the capacity market can be reduced as well. 

The three following alternative cases highlight an interesting point about the SRM. 

Alternative case 3 shows the clear impact of increasing the maximum amount of 

reserved capacity. The reliability of the mechanism is improved as it experiences 

                                       

64 In the risk averse case, new investments bids might be very high because of some kind of risk premium that 

is included by the agents in these bids (depending on the perceived uncertainty). 
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less shortages. However, this comes at a higher cost of generation because more 

old and expensive capacities are reserved. By increasing the price cap from 

$ 200 000 /MW to $ 300 000 /MW (alternative case 4), the economic 

performances are barely changed. Finally, increasing both parameters of the SRM 

(alternative case 5) improves its reliability while increasing its cost for the same 

reason described above.  

5.2. Lead time effects 

Regarding the lead time, reducing it to two years instead of four does not change 

the main results of the chapter (see alternative case 6). The introduction of risk 

aversion still creates a negative impact on the reliability of all the studied market 

designs and increases the associated generation costs. Moreover, the CM is still 

the least impacted market design. However, the impact of risk aversion is less 

pronounced when the lead time is reduced. Indeed, the average levels of additional 

shortages and additional costs related to risk aversion are lower in the alternative 

case 6, compared to the reference case (in which the lead time is 4 years). With a 

reduced lead time, the forecast tree is narrower and thus the dispersion in the NPV 

distributions used in the investment procedure is reduced. The effects of risk 

aversion are thus mitigated since they depend on the dispersion of the NPV 

distributions.  

5.3. Sensitivity to maximum capacity additions and maximum 

shutdowns 

Increasing the value of the parameter related to maximum capacity additions and 

shutdowns from 10% to 15% (alternative case 7) means that, all things being 

equal, there will be more new capacities and less old capacities (as the model 

allows for more shutdowns). Consequently, the results regarding the impact of risk 

aversion on the cost of the market designs are modified according to the 

explanations given hereafter. Indeed, the overall impact of risk aversion on the 

cost of the market design depends on the difference between the reduced 

investment costs and the additional operation costs of older plants.  

By increasing the level of maximum capacity additions, the effect of risk aversion 

on the level of investments is more pronounced (i.e., there will be even more 
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investments in the risk neutral case compared to the risk averse case). Therefore, 

the investment costs in the risk neutral case will be even higher compared to the 

ones of the risk averse case. In addition to that, since the difference of age of the 

power plants between the risk neutral cases and the risk averse cases is smaller, 

the effect related to the additional operational costs is less pronounced. The 

combination of these two facts explains the evolution of the results regarding the 

costs of the market designs: the additional total generation costs due to risk 

aversion are less important (in the case of the EOM and CM, they even become 

negative, meaning that risk aversion actually leads to lower total generation costs 

on average). 
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6. Chapter conclusions 

This chapter proposes an analysis of the impact of risk aversion on the 

performances of different capacity remuneration mechanisms (CRMs), with 

investors facing an uncertain peak load. Three market designs were studied for 

this purpose: an energy-only market (EOM), a capacity market (CM) and a 

strategic reserve mechanism (SRM). When comparing the three market designs, 

the CM seems to be the least affected by the introduction of risk aversion, both in 

terms of cost and reliability.  

All market designs display an overall increase in generation costs when risk 

aversion is introduced. This increase is relatively small in the EOM and the CM, but 

more pronounced for the SRM. On the one hand, the introduction of risk aversion 

tends to limit investments and consequently reduces the associated costs. On the 

other hand, investors become confronted with an arbitrage between investing in a 

new power plant which involves a lot of uncertainties and extending the lifetime of 

an existing power plant which involves less uncertainty but implies higher O&M 

costs. They generally chose the latter. As a result, the increase in total generation 

costs that is observed for all three market designs can be mainly explained by the 

difference between the reduced investment costs and the increased O&M costs.  

Regarding reliability, the results suggest that the CM and the SRM are more 

resilient than the EOM, with respect to risk aversion. Moreover, the CM appears to 

behave slightly better than the SRM, according to the simulations and the set of 

parameters that were used. Intuitively, this result can be explained by noticing 

that two parameters can limit the reliability of the SRM: the price cap and the 

maximum amount of reserved capacity. Even if the price cap is high enough to 

account for the uncertainty faced by the investors, the mechanism will fail to 

achieve the target margin whenever the investments in the energy-market are not 

sufficient enough. Indeed, the SRM does not control investments in energy market 

but tries to solve the capacity adequacy problem by relying only on reserved 

capacities. On the other hand, in the CM, the price cap is the sole parameter that 

may affect the reliability of the market design in situations of severe uncertainty 

(which lead to high bids in the capacity auction).  
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Looking at these results from a policy perspective, while both CRMs are able to 

reduce shortages, it appears, that implementing a capacity market is preferable in 

order to deal with the adverse effects of risk aversion. The simulations also 

highlight the importance of taking into account investors’ behaviour in the design 

of the CRMs (i.e., price caps and maximum amount of reserved capacity).  

Furthermore, a comparative analysis of the market designs with and without risk 

aversion, suggests interestingly that the benefits resulting from the 

implementation of a CRM are higher in presence of risk averse investors. This 

feature might be an additional justification to the implementation of CRMs if 

investors are actually risk averse. The results presented in this chapter were 

validated through a sensitivity analysis focusing on the most influential parameters 

of the model (see section 5 of this chapter).  

While the model presented in this chapter is well suited to study the specific 

question of risk aversion and its impact on CRMs, it could be improved through the 

introduction of multiple technologies65 (and not only peaking units) and a proper 

short-term market. The following chapter introduces these refinements. The 

upgraded version of the model is more suitable to tackle the research questions 

addressed in the next chapters. It allows a better representation of the profitability 

of capacity resources on energy markets through an endogenous modelling of 

electricity prices based on load curves and installed capacities. It therefore 

provides a more appropriate representation of agents’ decisions and long-run 

dynamics.  

  

                                       

65 Considering several technologies with different lead times will increase the uncertainty faced by the agents, 

especially regarding the installed capacity, and thus their expected revenues. Since agents cannot anticipate 

investment decisions that have not been made yet, the technologies with the longest lead times will be more 

subject to forecast errors all things being equal. If this uncertainty is taken into account in the decision process 

of the agents, the effects of risk aversion that are highlighted in this chapter will probably be even more 

pronounced. 
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Abstract 

In this chapter, the potential effects of power plants mothballing on liberalised 

electricity systems is explored from a dynamic perspective. Mothballing consists of 

a temporary closure of power plants in situations of difficult economic conditions. 

Its main objective is to protect power plants owners against expected losses while 

giving them the option to reactivate their plants if market conditions improve. 

Therefore, it provides an interesting flexibility compared to a permanent shut 

down. A methodology for the integration of mothballing decisions in long-term 

simulation models using the System Dynamics approach is developed. Based on 

this methodology, two market designs are analysed: an energy-only market and 

a capacity market.  

The chapter is composed of six sections, following a similar structure to the 

preceding chapter. Section 1 sets up the context and the motivation behind the 

research question. Section 2 presents the modelling adjustments introduced to 

study mothballing decisions. Section 3 describes the approach for simulations. 

Section 4 discusses the results for energy-only markets while section 5 covers 

capacity markets. Conclusions are summarised in section 6. Earlier versions of this 

chapter were published in two conference papers66.  

  

                                       

66 Abani, A.O., Hary, N., Rious, V., Saguan, M., 2017. Considering power plants mothballing in long-term 

simulation models for liberalized power markets, in: 2017 14th International Conference on the European Energy 

Market (EEM).  

 

Abani, A., Hary, N., Saguan, M., Rious, Vincent, 2017. Effects of power plant mothballing decisions on system 

reliability and generation adequacy, in: 2017 15th IAEE European Conference, Heading Towards Sustainable 

Energy Systems: Evolution or Revolution? International Association for Energy Economics. 
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Résumé en français 

Dans ce chapitre, les effets potentiels de la mise sous cocon de moyens de 

production dans les marchés libéralisés sont examinés d’un point de vue 

dynamique. La mise sous cocon consiste en l’arrêt temporaire de moyens de 

production dans un contexte de conditions économiques difficiles. Son principal 

objectif est de protéger les investisseurs contre d’éventuelles pertes tout en leur 

donnant la possibilité de réactiver leurs moyens de production si les conditions du 

marché s’améliorent. Par conséquent, elle offre une flexibilité intéressante par 

rapport à un arrêt définitif. Une méthodologie d'intégration de ces décisions dans 

des modèles de simulation de long terme est proposée. Sur la base de cette 

méthodologie, deux architectures de marché sont analysées : un marché basé 

uniquement sur la rémunération de l’énergie (energy-only) et un marché de 

capacité. 

Le chapitre est composé de six sections, suivant une structure similaire à celle du 

chapitre précédent. La section 1 introduit le contexte de la question de recherche. 

La section 2 présente les ajustements de modélisation nécessaires à l’étude des 

décisions de mise sous cocon. La section 3 décrit l'approche utilisée pour les 

simulations. La section 4 analyse les résultats pour le marché basé uniquement 

sur la rémunération de l’énergie tandis que la section 5 analyse les marchés de 

capacité. Les conclusions sont résumées dans la section 6.  
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1. Introduction 

1.1. Context and motivation 

A multitude of early retirements and mothballings (i.e., temporary shutdown with 

possibility to re-enter the market) of thermal generation units has been observed 

recently in Europe (Caldecott et al., 2014). Arguing that revenues from the energy 

markets are not sufficient to ensure the economic viability of some of their 

generation assets, utilities decided to temporarily remove these assets from the 

market. Between 2012 and 2014, mothballing concerned more than 10 GW of 

installed capacity in Europe according to several reports and studies (EY, 2014; 

Caldecott et al., 2014; Eurelectric, 2016; Tennet, 2014; RTE, 2014; Credit Suisse, 

2012). In a report dating from December 2016, EURELECTRIC (2016) estimated 

that the total mothballed capacity in 2015 still represented more than 7 GW, 

including 1 GW of oil-fired plants, 4.5 GW of gas-fired plants and 1.8 GW of coal 

plants.  

This situation results from a combination of several factors, in particular a 

stagnation (and sometimes even a decrease) in the overall energy demand, a 

situation of overcapacity and the impact of the increasing penetration of renewable 

energy sources (RES). RES generation reduces even more the residual electricity 

demand and also decreases electricity prices due to the merit order effect (Sensfuß 

et al., 2008). This led to persistently low wholesale electricity prices and reduced 

capacity factors for thermal plants, which consequently resulted in a degraded 

profitability67 of these plants.  

Given such a context, it is understandable from a private perspective to shut down 

or mothball uneconomic assets and delay investments. In this regard, mothballing 

is particularly interesting for power plants owners as it enables them to limit their 

exposure to anticipated losses by avoiding high O&M costs which might otherwise 

not be covered by their revenues. Moreover, unlike a shutdown decision, 

                                       

67 In some countries, part of the mothballing decisions was due to environmental restrictions. In Germany and 

the UK for instance, numerous highly polluting coal and lignite power plants were mothballed with plans of 

permanent shutdown in the future, regardless of market conditions. 
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mothballing allows generation assets to come back to the market if the conditions 

improve. The decision to mothball however entails mothballing and restart costs 

(in case the plant is brought back online). Therefore, this decision is a result of an 

arbitrage between the costs associated with mothballing and avoided losses 

resulting from it. There are various types of mothballing in practice, depending on 

the duration of the mothballing and the required measures to preserve the plant. 

Without getting into the technical aspects, these types can be regrouped in two 

categories68: short-term or light mothballing (3-12 months) and long-term or deep 

mothballing (more than 12 months).  

Mothballing decisions have a direct impact in terms of security of supply. Firstly, 

these decisions might threaten capacity adequacy objectives because they reduce 

the level of available capacity. Secondly, they also affect system reliability because 

the plants that are being prematurely shut down or mothballed are generally some 

of the most flexible ones, which are much needed to cope with the variability of 

RES. Policymakers are concerned that the recent wave of mothballing may not be 

just episodical. In the future configuration of power systems with high shares of 

renewables, mothballing may become a recurrent phenomenon. A recent adequacy 

report from ENSTOE highlights this point as illustrated on Figure 14. The figure 

indicates the amount of capacity at risk of being mothballed in 2020 and 2025 

based on forecasts from transmission system operators (TSOs). It shows that in 

countries like France, Germany and Poland, several gigawatts of capacities are at 

risk of being mothballed in the future. In Poland, almost 30% of installed capacity 

is at risk of being mothballed in 2025 according to the report.  

                                       

68 Interested readers can find more details in Frontier Economics (2015a). 
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Figure 14. Generation capacity at risk of being mothballed in 2020 

and 2025 according to data collected by ENTSOE69 

  

 

Considering all types of strategies from market participants is therefore of crucial 

importance in adequacy assessments of future power systems. The models used 

for these assessments should account for potential mothballing decisions, in 

addition to investments and shutdowns which are traditionally examined. When 

mothballing decisions are not represented, models can wrongly consider that 

plants are either active or shut down while they might be mothballed in reality. In 

the first case, the model overestimates the actual system margin and in the second 

case, it gives a distorted investment signal. Neglecting mothballing decisions may 

therefore lead incorrect conclusions and/or inappropriate policy choices.  

1.2. Power plant mothballing in the literature 

As mentioned above, mothballing has been largely overlooked in the literature as 

most studies simply elude this type of decision and focus exclusively on investment 

and shutdown decisions. The studies addressing the topic use a variety of methods 

                                       

69 Absolute MW and relative % of the 2020 (respectively 2025) total thermal generation capacity. See ENTSOE 

(2017) for more details.  
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to analyse impacts of mothballings in liberalised power markets. Here, a few 

studies that are particularly relevant to the research question addressed in this 

chapter are highlighted. 

Takashima et al. (2008) analysed entry strategies into an electricity market for 

nuclear and thermal power plants with a real-option approach. Their results 

highlight the importance of mothballing in the strategies adopted for each 

technology. They show that the operational flexibility associated with mothballing 

gives gas-fired plants a competitive advantage over nuclear plants in periods of 

high price volatility and moderate demand growth rate.  

In a similar work, Lambin (2016) develops a real-option game theoretic model to 

quantify the effects of mothballing from a strategic perspective. His results suggest 

that mothballing can be used as a predatory strategy to force competitors’ early 

exit from the market. In his model, Lambin assumes that mothballing is not 

available to all firms so that those firms with the option to mothball see their value 

increase. In a context of continuous attrition of demand, firms which have the 

possibility to mothball will do so and wait until other firms which cannot mothball 

exit the market. The underlying rationale is that the mothballed assets represent 

a threat to the latter firms’ potential profits because they can re-enter the market 

at any given point if there is an opportunity to make some profits. Since firms that 

cannot mothball cannot sustain losses indefinitely, they eventually exit the market.  

Frontier Economics (2015b) uses an optimisation model to assess the potential 

developments of the Dutch electricity system from 2015 to 2035 in the context of 

energy transition. Their model integrates the possibility of mothballing power 

plants and computes the outcome of the Dutch electricity market (installed 

capacities, prices, etc.) when the total costs of electricity provision are minimised 

on a European level. Their results indicate some mothballings of conventional 

plants in the Netherlands in the short term (2015 to 2019).  

Although the studies described above provide interesting insights on the effects of 

mothballing decisions, they do it from an equilibrium perspective. They do not 

capture the dynamic effects of mothballing which are yet important from a policy 

point of view. The literature on mothballing decisions in dynamic simulation models 
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is almost non-existent. The only related studies70 are those of Arango et al. (2013) 

and Harthan (2014). 

Arango et al. (2013) assess the impact of mothballing decisions on a power system 

by using experimental economics. They consider a symmetrical Cournot model 

with five players and no collusive behaviour. The experiment is then run with a 

control group which do not have the possibility to mothball and a treatment group 

to whom mothballing is made available. These groups are then invited to 

participate in an electricity market where they make investment, shutdown and 

mothballing decisions (when applicable). One of their main results is that 

mothballing leads to higher electricity prices on average even though they dampen 

investment cycles.  

Harthan (2014) develops a simulation model including mothballing decisions but 

these decisions are not associated with any costs. In his model, mothballing occurs 

only when fixed costs are not covered, and the technical lifetime is not reached 

yet. Power plants cannot decide to stay active if situations of dreary revenues 

appear, whereas in practice, utilities face an actual arbitrage between staying 

active (despite incurring losses) and mothballing their plants (which limits the 

operational expenditures but do not provide any revenues). Therefore, Harthan 

(2014) does not represent the full extent of the arbitrage utilities have to make.  

1.3. Research question 

This chapter of the dissertation aims at reducing the existing gap in the literature 

on power plant mothballing. It proposes a detailed analysis of the behaviour of an 

energy-only market and a capacity market in presence of mothballing decisions 

and highlight a number of insights that can inform policy making. The focus is 

made on these two market designs to represent the two main paradigms for 

electricity markets (i.e, an energy-only vision and a CRM vision). Strategic 

                                       

70 The only other work on simulation models that mentions mothballing is the one by Petitet (2016). This study 

does not explicitly model mothballing decisions but provides a methodology for their consideration in the 

computation of the bids in a capacity market.  
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reserves are not covered in this chapter because they are assumed to behave like 

energy-only markets with respect to mothballing incentives. Indeed, since 

strategic reserves – in the way they are represented in this dissertation – are here 

only to avoid permanent shutdowns, they do not change the decision to mothball 

an asset, compared to an energy-only market71.  

The underlying analysis is based on a Monte Carlo approach applied to a simulation 

model, which endogenously represents all investment, mothballing and shutdown 

decisions in a liberalised electricity market. The model presented in this chapter 

corresponds to an extension of the one introduced in the previous chapter (using 

the System Dynamics framework). To properly capture the effect of mothballing, 

two power system settings are compared: a system in which agents cannot 

mothball their plants and one in which mothballing is an available strategy. These 

systems present identical initial conditions and differ only by the presence or 

absence of mothballing. All differences observed between the systems are 

therefore consequences of mothballing. The discussion focuses on the impact of 

mothballing in terms of investment/shutdown dynamics, security of supply 

(measured through shortages) and electricity prices72.  

This chapter contributes to the existing literature in three regards. Firstly, this 

study is one of the few (if not the first) to propose a simulation model based on 

System Dynamics, which fully endogenizes all types of decisions, including 

mothballing. Secondly, the discussion points out some limitations of energy-only 

market that are new in the literature on market designs for capacity adequacy. 

One particularly important caveat of energy-only markets relates to their 

behaviour when scarcity pricing (i.e., increasing the price cap to the VoLL) is 

applied in presence of mothballing. While this market architecture is argued to be 

a valid alternative to CRMs for the provision of long-term security of supply, it is 

showed that its performances can be significantly affected in a world of high 

uncertainty and the possibility to mothball. Thirdly, the analysis indicates that 

                                       

71However, a strategic reserve mechanism will still provide a better security of supply than an energy-only 

market, all things being equal.  

72 Capacity prices are also analysed in the case of the capacity market.  
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capacity markets can realign private investors’ incentives to mothball and capacity 

adequacy objectives.  

The chapter is organised as follows: section 2 presents the modelling framework. 

section 3 introduces the set up for the simulations. Sections 4 and 5 discuss the 

results and section 6 provides a summary of the main conclusions. 
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2. A multi-technology model to better capture 

long-term dynamics 

The modelling work carried out in this dissertation was done through an iterative 

approach as explained in the general introduction. The single technology model 

presented in the previous chapter is suitable enough to study the impact of risk 

aversion on the performance of CRMs. However, to properly capture agents’ 

arbitrage about shutting down, mothballing or maintaining their assets online, 

some improvements are required. This section introduces an upgraded version of 

the single-technology model, considering these improvements.  

The new version presents three important additional features. Firstly, the model 

can now accommodate multiple technologies and electricity prices are explicitly 

computed through a short-term market. This is a more realistic representation of 

the short-term market, which makes it possible to assess the profitability of each 

technology in order to better understand investment dynamics.  

Secondly, capacity additions in the energy market are no longer dependent on a 

parametrised curve. They are rather determined by a stylised algorithm which 

endogenously determines aggregate investments based on agents’ forecasts. The 

algorithm accounts for the lumpiness of investments, which is another refinement 

compared to the previous version of the model. To do so, a standard, indivisible 

unit size is associated to each technology based on current technology 

characteristics. The new version of the model can therefore capture the effects 

related to capacity lumpiness, which is an important aspect of the power sector 

industry as discussed in the general introduction.  

Thirdly, mothballing decisions are now represented in addition to the traditional 

investment and shutdown decisions. This is the most significant change to the 

previous version of the model. In this chapter, a detailed rationale for mothballing 

decisions is developed, highlighting the arbitrage that a power plant owner may 

face in periods of gloomy market conditions.  

For simplicity and readability, the whole modelling framework is presented, even 

for the modules of the model which remain unchanged. For instance, the sections 



Mothballing in power markets: conflicting private incentives and capacity adequacy objectives 

113 

related to the modelling of uncertainties, agents’ forecasts and their risk 

preferences are similar to those outlined in the previous chapter. The reader may 

skim through these sections if she has already read the corresponding parts in 

Chapter I.  

2.1. General description 

 Structure 

Figure 15 hereafter illustrates the general functioning of new version of the model 

by the means of a causal loop diagram. It shows the interactions between the main 

variables while highlighting the cyclical structure of the model illustrated though a 

negative feedback loop73. The relationship between two variables is represented 

by an arrow going from a variable (A) to another variable (B). The (+) and (—) 

symbols associated with the arrows describe the nature of the relationship between 

the variables. A (+) symbol means that the variables change in the same direction. 

For instance, an increase in the variable (A) results in an increase in the variable 

(B). Conversely, the symbol (—) means that the variables change in opposite 

directions. The model runs repeatedly on a yearly basis through the following 

steps:  

• Agents first assess the profitability of their existing plants and potential 

investments based on forecasts about installed capacity and residual load;  

• Depending on the anticipated profitability of the plants (existing and new), 

they make their mothballing, shutdown and investment decisions; 

• These decisions are then used to update the available installed capacity; 

• Finally, the available capacity and the residual load will determine the 

system margin and agents’ actual profits.  

                                       

73 A negative feedback loop indicates a balancing behaviour, suggesting that the system may reach an 

equilibrium. 
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Figure 15. Causal loop diagram of the model 

 

Agents’ decisions (investment, mothballing and shutdown) concern thermal 

generation technologies74 such as Nuclear, Coal, CCGT and gas-fired CT. Each 

technology has a specific lead time for construction which is taken into account. 

The installed capacity of RES is determined exogenously based on existing public 

policies and plugged into the model. Finally, increasing O&M costs are modelled to 

represent the aging of power plants.  

                                       

74 The model can accommodate as many technologies as desired. For instance, even if demand response 

resources are not presented here, they can easily be included in the model as a technology with low investment 

costs and high variable costs.  
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 Short-term energy market 

Electricity prices are computed thanks to a dispatch algorithm, which represents 

the short-term market. For simplicity, no technical constraints are considered, 

except for plants’ maximum generation capacity. Prices are thus determined, for 

every time step75 in a year, by the variable cost of the last generation unit used in 

the merit order. During scarcity periods (i.e., when the demand for electricity 

exceeds the total generation capacity), prices hit the price cap of the energy 

market. Revenues from ancillary services are not considered because they are 

assumed to have little influence on plants’ profitability given the technologies that 

are considered76. Moreover, electricity demand is assumed to be inelastic on the 

short-term market77. For a specific plant 𝑝, the revenue and profit from the energy 

market in year 𝑦 can be computed using the following equations: 

 𝑅𝑝,𝑦
𝐸𝑀 = ∑(𝑝𝑦,ℎ

𝐸𝑀 − 𝑉𝐶𝑝,𝑦) ∗ 𝑔𝑝,𝑦,ℎ

ℎ

   

 
𝝅𝒑,𝒚

𝑬𝑴 =  𝑅𝑝,𝑦
𝐸𝑀

− 𝑂𝑀𝐶𝑝,𝑦 
  

Where: 

• 𝑅𝑝,𝑦
𝐸𝑀 is the gross profit from the energy market corresponding to the 

difference between revenues from energy sales and variable generation 

costs for plant 𝑝 in year 𝑦; 

• 𝜋𝑝,𝑦
𝐸𝑀 is the profit from the energy market after deduction of fixed O&M costs, 

for plant 𝑝 in year 𝑦; 

• 𝑝𝑦,ℎ
𝐸𝑀 is the electricity price in hour ℎ of year 𝑦; 

• 𝑉𝐶𝑝,𝑦 is the variable cost of plant 𝑝 in year 𝑦; 

• 𝑔𝑝,𝑦,ℎ is the generated electricity by plant 𝑝 in hour h of the year 𝑦. 

                                       

75 Each year could be decomposed in several time steps, up to an hourly resolution. 

76 This may not be true for other types of technologies such as demand response or storage, which are not 

considered here. 

77 In rigorous terms, the demand is considered perfectly inelastic (i.e. vertical) when the electricity price is lower 

than the VoLL and perfectly elastic (i.e., horizontal) when the electricity price reaches the VoLL.  
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 Uncertainties and agents’ forecasts 

There are two sources of uncertainties in the model, namely the residual load and 

the installed capacity (for thermal technologies). Compared to the version 

presented in Chapter I, the level of installed capacity is now more uncertain 

because of the different lead times between technologies. Agents need to forecast 

both the residual load and the level of thermal capacity (by technology) in order 

to make their decisions. All forecasts are made over a finite horizon ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 to 

represent a myopic foresight from agents78. Such an assumption is fairly consistent 

with real investment processes in liberalised electricity markets (De Vries and 

Heijnen, 2008; Hary et al., 2016; Olsina et al., 2006; Petitet et al., 2017).  

In all subsequent simulations, the forecast horizon of the model is set to eight 

years to limit the computation time within a reasonable range while ensuring that 

agents do not lack to much information. The myopic foresight assumption also 

applies to the anticipated trajectory of RES capacity used by agents to estimate 

the residual load. While assessing the profitability of their assets to inform any 

investment, mothballing or shutdown decision, agents are only aware of the RES 

capacity that will be added to the system over the forecast horizon  ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡.  

The residual load is represented by a load duration curve resulting from gross 

electricity demand and generation from RES (wind and solar PV in this case). The 

peak gross demand grows at a random rate following a normal distribution 

representing uncertainties about economic and weather conditions (Bhagwat et 

al., 2017a, 2016b; De Vries and Heijnen, 2008; Hasani and Hosseini, 2011; Hobbs 

et al., 2007). Generation from RES is determined directly from the level of RES 

installed capacity and historical capacity factors of RES. Figure 16 below illustrates 

how the residual load is computed for a specific year.  

                                       

78 Limiting the forecast horizon also improves the computational tractability of the model. 
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Figure 16. Impact of RES generation on residual load79 

 

Agents forecast the residual load with a similar method to the one described in the 

previous chapter. They use a backward-looking strategy, based on the past 

evolution of the peak gross load over a predefined period80 to draw a scenario tree 

of possible future peak load values (see Figure 17 hereafter). Every year, agents 

compute an evolution vector containing the average, the minimum and the 

maximum growth rates of the peak gross demand over the selected period. The 

scenario tree is constructed by exploring the possible combinations of growth rates 

for the years to come, up to the limit of the forecast horizon. It is computed by 

iteration from one year to the next one by extending each of the forecast values 

of the year of interest in three new values, thanks to the evolution vector. To better 

illustrate the forecast logic, let us consider that 𝑋 is one of the forecast values of 

the peak load in year 𝑦 + 1. This will result in three new forecast values in year 𝑦 +

2, corresponding to a maximum, average, and minimum evolution scenario.  

                                       

79 Based on load data for France in 2015. Installed capacities of wind and solar in 2015 represented about 10 GW 

and 6 GW respectively. Hydropower generation is deducted from all LDCs and considered constant in the model. 

Furthermore, cross-border exchanges are not represented.  

80 For consistency, this period is the same as the forecast horizon (8 years).  
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Considering a technology which has a lead time of four years and assuming a 

forecast horizon of eight years, the scenario tree will cover the following years: 

four years of lead time which goes from year 𝑦 (year of the decision) to year 𝑦 + 4 

(first year of operation), and four additional years going from 𝑦 + 5 to 𝑦 + 8. Figure 

17 depicts the forecast process for a portion of the scenario tree81. For years 𝑦 + 1 

to 𝑦 + 4, corresponding to the considered lead time in the illustration, only the case 

related to a series of maximum growth rate is represented on the figure82. For the 

last years of the forecast horizon (𝑦 + 4 to 𝑦 + 8) which correspond to the first five 

years of operation of the power plant, the figure shows the different peak load 

scenarios.  

The complete load profile is obtained by scaling up the previous year’s gross LDC 

according to the forecast scenarios of peak load and by adjusting for RES 

generation (given the anticipated deployment of RES capacity). To limit the 

computation time, the residual load forecasts are made by considering a simplified 

LDC composed of 10 segments83. In total, given the forecast horizon of 8 years, 

there are 6 561 possible LDC scenarios84. 

                                       

81 Only a portion of the scenario tree is represented on the figure for reasons of simplicity and readability. 

82 In the model, all the combinations are computed. 

83 This approach has been used in other studies such as Bhagwat et al. (2017c) or Hasani and Hosseini (2011) 

for example. In this model, the highest LDC segment is represented with an hourly granularity to properly capture 

peak load hours which are crucial for plants’ profitability. An illustration of this is provided in Appendix E. 

84 The number of total scenarios is 38 = 6561. All the scenarios are assumed to have the same probability. In 

the simulations presented in sections 4 and 5, only the envelope (i.e., extreme scenarios and some in the middle) 

of the scenarios is considered to reduce computation time. This simplification may lead to a slight overestimation 

of risk but does not change the modelling conclusions.  
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Figure 17. Forecast of peak load scenarios 

 

Regarding the forecast of thermal installed capacity, agents use the latest 

information available. The uncertainty related to this parameter is inherent to the 

differences in lead times among the technologies. Agents are assumed to be aware 

of all previous investment, mothballing and shutdown decisions that have already 

been made but they cannot anticipate decisions to come. They are also assumed 

to be conservative regarding mothballed capacities as they consider in their 

forecast that these capacities will come back on the market in year 𝑦 + 1. Figure 

18 illustrates the forecast procedure for installed capacity. Unlike the residual LDC, 

only one scenario of installed capacity is considered. However, the combination of 

this single scenario with those of the residual LDC provide sufficient information to 

apprehend the uncertainty faced by the agents.  

Based on their forecasts, agents assess the profitability of their existing assets and 

potential investments. In order to make any investment, mothballing or shutdown 

decision, they have to compute the expected revenues and costs of their existing 

assets and potential investments. The precise computation of these revenues and 

costs is detailed later for each market design. 
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The concepts of Present Value85 (PV) and Profitability Index (PI) are used for the 

profitability assessment, whether it is for potential investments or existing assets. 

The profitability Index is only used for investment decisions. It is defined here as 

the annualised NPV of an investment over the expected lifetime of the asset. Based 

on their forecasts, agents compute a PV distribution in which each PV corresponds 

to a specific residual LDC scenario (combined with the single installed capacity 

scenario). They will then compute an estimated PV which can be either the 

expected value of the PV or a risk-adjusted PV, depending on their risk 

preferences. The computation of these two values is described in the following 

section. For investment decisions, the PV is transformed in a Net Present Value 

(NPV) by subtracting the initial overnight investment cost.  

Figure 18. Forecast of installed capacity 

 

Finally, it should be noted that investment decisions require forecast values of cash 

flows (expected revenues minus costs) over the lifetime of assets, which is most 

of the time longer than the forecast horizon ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. To deal with this, agents 

                                       

85 The present value of an asset is the sum of the discounted future cash flows generated by the asset. 

Alternatively, the Net Present Value (NPV) is the PV minus the initial investment cost, in cases where the asset 

is a new plant which requires an initial investment.  
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assume that the system reaches a steady state beyond ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. In concrete terms, 

it means that for each combination of residual LDC scenario and installed capacity 

scenario projected over ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, a constant normative cash flow is considered 

beyond ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. This normative cash flow is equal to the average of the cash flows 

computed over the forecast horizon ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡. Here, assuming myopic foresight has 

crucial implications for agents’ anticipations regarding the deployment of RES 

capacities (which is used for the determination of residual LDC scenarios). 

Depending on the actual trajectory of RES capacity additions, agents may end up 

underestimating or overestimating the amount of RES in the system, which have 

consequences in terms of ex post profitability of their investments. Such 

behaviours have been observed over the past decade86 and are fully captured in 

the model. 

 Modelling of risk preferences  

As explained in the previous section, even if both risk averse and risk neutral 

agents make their decisions based on a PV distribution (or NPV distribution for 

investments87), they assess the profitability of the contemplated investments 

differently, depending on their risk preferences.  

The modelling of risk preferences presented in the previous chapter is applied (see 

section 2.4 of chapter I). Risk aversion is modelled through the computation of the 

Conditional Value at Risk as illustrated on Figure 19. According to their risk 

preferences and based on the PV distribution, agents use the following equations 

to determine the estimated PV of a potential investment: 

 𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑅𝑁 = 𝐸[𝑃𝑉]   

 𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑅𝐴 = 𝐸[𝑃𝑉] − 𝑅𝑖𝑠𝑘𝑝𝑟𝑒𝑚   

                                       

86 Several studies show that investors and international institutions have significantly underestimated the 

magnitude of RES deployment in power systems around the world (Al Irsyad et al., 2019; Metayer et al., 2015). 

87 The investment cost being fixed, it does not affect the shape of the distribution. In the rest of this section, the 

discussion is centred on the PV distribution but is equivalent for an NPV distribution. 
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 with 𝑅𝑖𝑠𝑘𝑝𝑟𝑒𝑚 = 𝛽 ∗ (𝐸[𝑃𝑉] − 𝐶𝑉𝑎𝑅𝛼)   

𝛽 is a dimensionless parameter which captures the relative degree of agents’ 

aversion (0 ≤  𝛽 ≤ 188). The difference between the expected value of the PV and 

the CVaR89, multiplied by 𝛽, is defined as the risk premium. Equation (8) can also 

be rewritten as follows: 

 𝑃𝑉𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑅𝐴 = 𝐸[𝑃𝑉] ∗ (1 − 𝛽) + 𝛽 ∗ 𝐶𝑉𝑎𝑅𝛼   

This last equation shows that the estimated PV in the case of risk averse agents is 

simply a weighted average between the expected PV and the CVaR. 

Figure 19. Illustration of the modelling of risk aversion 

 

 Modelling plant aging  

As for the modelling framework described in the first chapter, O&M costs are 

modelled as a two-part function which is constant during the technical lifetime of 

                                       

88 There is no mathematical restriction that bounds the coefficient β in the specified interval. This interval was 

chosen in order to reflect a behaviour of the agents which can be consistent with reality. Choosing a negative 𝛽 

suggests that the agents voluntarily overestimate the profitability of their investments, which is contradictory to 

the risk averse hypothesis. Similarly choosing a 𝛽 that is higher than 1 would reflect an extremely risk averse 

behaviour, which is not realistic. Alternatively, the degree of risk aversion could also be adjusted through the 

coefficient 𝛼. 

89 The procedure to compute the VaR and CVaR is detailed in Appendix C. 
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the plant, then start increasing up to the annualised90 cost of investment when the 

age exceeds the technical lifetime by half91. The calibration is done to incentivize 

agents to make an arbitrage between keeping and old and expensive plant online 

or investing in a new capacity. After plants reach their technical lifetime, they 

might still stay in the market if agents perceive that it is less expensive for them 

to keep them active compared to making a potentially risky investment in a new 

plant. The evolution of O&M costs for each technology is represented on Figure 20.  

Figure 20. Evolution of O&M costs by technology92 

 

2.2. Energy-only market (EOM-PCap and EOM-SP) 

 Overview of the modelling 

In the energy-only market (EOM), plants’ profitability is solely driven by the 

revenues they make on the energy market. These revenues are computed using 

the dispatch model for each forecast scenario of LDC and installed capacity. In the 

                                       

90 The annualised investment cost is computed using a discount rate of 8%.  

91 This assumption is slightly different from the one made in the previous chapter but is more consistent with 

the calibration of the market designs studied in the current chapter and the following one (regarding the definition 

of the capacity price cap in particular).  

92 The values of initial O&M costs and their sources are detailed in section 3. 
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EOM-PCap, electricity prices are capped at 3 k€/MWh, whereas in the EOM-SP, 

they are allowed to reach the VoLL which is assumed to be 22 k€/MWh93. 

For investment decisions, agents need to identify the most profitable investment 

option in terms of generation technology, but also to determine how many plants 

they want to invest in. This is done thanks to an iterative procedure inspired from 

De Vries and Heijnen (2008) and Petitet et al. (2017), and described on Figure 21. 

First, the attractiveness of an investment in a specific technology is assessed 

through its profitability index 𝑃𝐼94, based on forecast profits from the energy 

market (steps 1 to 3). Agents then select the technology with the highest PI and, 

if the investment if profitable (i.e. 𝑃𝐼 ≥   0), add a unit of the selected technology 

into the current generation portfolio (steps 4 to 7). They repeat the previous steps, 

starting at step 2, until the new investment is no longer profitable (i.e., 𝑃𝐼 <  0). 

The lead times for the construction of the different technologies are accounted for 

in the process. 

                                       

93 This VoLL is consistent with a reliability criterion of 3h/year of LOLE and the total annualised cost of a peaking 

unit.  

94 The 𝑃𝐼 is directly derived from the estimated NPV depending on the risk preference of the agents. 
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Figure 21. Investment procedure for new plants in the energy-

only market 

 

Shutdown and mothballing decisions regarding existing plants are also based on 

their expected profitability. Agents assess the expected profitability of operating 

the plant over a maximum horizon of eight years (i.e., the forecast horizon). Every 

year, an iterative algorithm is used to evaluate each one of the existing plants. 

The corresponding procedure is explained on Figure 22. The arbitrage between 

staying active, mothballing or shutting down depends on the expected outcomes 

of each strategy. 
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Figure 22. Shutdown/mothballing procedure for existing plants in 

EOM-PCap/EOM-SP 

 

Agents start by sorting their plants depending on their age. They assess the plants 

from the oldest to the newest and decide whether to keep them online, mothball 

them or shut them down permanently. This decision is taken into account to update 

the forecasts about installed capacity, which in turn modifies the forecasts about 

the profitability of the remaining existing plants. Agents then assess the following 

plant and the process is repeated until all the plants are evaluated. It is important 

to update agents’ forecasts after each decision to avoid any overestimation of the 

level of shutdowns/mothballings. For instance, every time agents decide to shut 

down a power plant, the probability of the remaining plants being profitable 

becomes higher, all things being equal. If the shutdown decision was not accounted 

for, agents might shutdown some of the remaining plants although they might be 

profitable. 
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For each year, investment on the one hand and mothballing/shutdown decisions 

on the other hand are made separately without any interaction. Therefore, 

investments that are decided in year 𝑦 do not affect mothballings or shutdowns 

decided that same year, and vice versa. This avoids creating a systematic causal 

relationship between investment decisions and mothballing/shutdown decisions 

that are made in the same year. Abstracting from such interactions facilitates the 

interpretation of the model results. 

 Shutdown and mothballing decisions in energy-only markets  

Simple shutdown decisions without mothballing 

When mothballing is not an available strategy, agents can only decide whether 

their power plants should stay online or be shut down. For each plant, they start 

by assessing its profitability the following year (i.e., year 𝑦 + 1 if the current year 

is 𝑦): if operating the plant for one more year is profitable then it is kept online. 

Otherwise, the assessment horizon is extended to two years. Even if the plant is 

not expected to be profitable the next year, it might be rational to still keep it 

online if the expected operating cash flows95 (𝑂𝐶𝐹) over the following years cover 

the anticipated losses. As long as the maximum forecast horizon ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is not 

reached, the process is repeated until the algorithm finds a year in which the 

expected 𝑂𝐶𝐹 is high enough to cover all the losses of the previous years (see 

Appendix D for a formal description of the shutdown algorithm). 

Figure 23 below gives an illustration of the shutdown decisions in two stylised 

cases (with a forecast horizon of five years instead of eight, for readability). In the 

first case, the plant is kept online because the positive 𝑂𝐶𝐹 for year 𝑦 + 2 cover the 

anticipated loss in 𝑦 + 1. In the second case, the forecast profits for 𝑦 + 4 are not 

worth incurring losses from 𝑦 + 1 to 𝑦 + 3. Consequently, the plant is shut down at 

the end of year 𝑦. 

                                       

95 All the cash flows that are mentioned in the paper are discounted to the decision year, namely year 𝑦. 

Operating cash flows are defined as revenues minus operation costs.  
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Figure 23. Illustration of shutdown procedure (without 

mothballing) 

  

The fundamental rationale of the algorithm is that making a shutdown decision 

based on a single year forecast might not be judicious as a shutdown decision is 

irreversible (conversely to the decision of staying online which implies a 

commitment of one year only). Shutting down a plant implies giving up on potential 

future revenues to amortise the initial investment cost. Therefore, before deciding 

to shut down a power plant, it might be interesting to consider a longer time 

horizon for the assessment of its expected profitability. It is assumed that this 

horizon can be extended up to ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡.  

Shutdown decisions including mothballing 

When mothballing is considered, the decision process becomes more complex. In 

addition to the two options presented before (i.e., “shut down” or “stay online”), 

agents now also need to consider “mothball” and “restart” options in their 

rationale. The decision process now depends on the current status of the plant 

which can be either active or mothballed. In order to choose between these 

options, agents compare their corresponding opportunity costs, by computing all 

associated avoided costs, sunk costs and foregone revenues (i.e., potential 

revenues from the energy market).  

It should be noted that the model developed here only considers yearly 

mothballing. This is consistent with the timestep of the decisions made by the 

agents, which are on a yearly basis. However, this means that the model does not 

capture potential effects of mothballing that can occur due to short-term 
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mothballing (over a few months only). Here, the focus is made on long-period 

mothballing decisions because they generally have a more pronounced impact on 

the system.  

If the plant is active, the available options are staying active (for one more year), 

mothballing (for one year) or shutting down (permanently). Shutdown is only 

considered if none of the other options is profitable96. As such, agents first identify 

the least-cost option between mothballing and staying online. For that, they 

compare the OCF of their plants in each option, based on the expected revenues 

and costs as indicated in Table 4 below. 

Table 4. Cash flows considered (active plant) 

Options Mothballing Staying online 

Cash flows Revenues Costs Revenues Costs 

𝒚 + 𝟏  Mothballing costs Energy market O&M costs 

𝒚 + 𝟐 Energy market 
Restart costs 
O&M costs 

Energy market O&M costs 

𝒚 + 𝟑 to  
𝒚 + 𝒉𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 

Energy market O&M costs Energy market O&M costs 

 

Between staying active and mothballing, cash flows only differ in 𝑦 + 1 and 𝑦 + 2. 

Beyond 𝑦 + 2, cash flows are the same since the plant is supposed to be active 

either ways (as mothballing is considered for one year only). Hence, the choice 

between the options is only based on the specific costs in 𝑦 + 1 and 𝑦 + 2; and the 

𝑂𝐶𝐹 in 𝑦 + 1 if it is negative (i.e., a loss). Once agents have selected the least-cost 

strategy between staying online and mothballing the plant, their next step will be 

to assess if the selected strategy is profitable by incrementing the assessment 

horizon. If the selected strategy is not profitable after the exploration of the 

maximum assessment horizon (ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡), then the plant is shut down. Otherwise, 

the selected least-cost strategy is applied. The corresponding algorithm is 

presented in Appendix D.  

                                       

96 Shutting down a plant yields a small negative cash flow (or at best null, if the shutdown costs are covered by 

the resale of some parts of the plant). Therefore, it is logical to consider shutdown as the last option since the 

two others (mothball or stay online) may yield a positive outcome (positive net cash flow). 
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Three stylised cases are presented on Figure 24 to better illustrate this decision 

process (with a forecast horizon of five years instead of eight, for readability). In 

the first case, the plant is kept online because the costs of mothballing it in 𝑦 + 1 

and restarting it in 𝑦 + 2 are higher than the anticipated loss in 𝑦 + 1. Moreover, 

this anticipated loss is compensated by the positive 𝑂𝐶𝐹 expected in 𝑦 + 2. In the 

second case, mothballing is a profitable strategy and is the least-cost one 

compared to staying online in 𝑦 + 1. Finally, in the third case, neither mothballing 

nor staying online are profitable over the assessment horizon. Therefore, the plant 

is shut down. 

Figure 24. Illustration of shutdown procedure (with mothballing) 

   

 

For mothballed power plants, the decision process follows the same rationale, with 

the sole amendment of replacing the “stay active” option by the “restart” option. 

Furthermore, the restart costs are also to be considered in 𝑦 + 1 for the “restart” 

option (see Table 5). Three options are available to the agents: mothball (for one 

more year), restart (the next year), and shut down. As explained before, shut 

down is only considered as a last resort. Accordingly, agents first chose between 

the mothball (i.e., continuation) and restart options. The algorithm of the decision 

process, which is very similar to the one for an active plant, is also described in 

Appendix D. 
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Table 5. Cash flows considered (mothballed plant) 

Options Mothball Restart 

Cash flows Revenues Costs Revenues Costs 

𝒚 + 𝟏  Mothballing costs Energy market 
Restart costs 

 
O&M costs 

𝒚 + 𝟐 Energy market 
Restart costs 

 
O&M costs 

Energy market O&M costs 

𝒚 + 𝟑  
𝒕𝒐  

𝒚 + 𝒉𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 
Energy market O&M costs Energy market O&M costs 

 

As for the case of an active plant, three illustrative cases are provided below (see 

Figure 25). In the first case, both the “restart” and the “mothball” options are 

profitable. However, the latter is less costly and thus the plant is restarted. In the 

second case, the scenario is reversed. In the final case, restarting or mothballing 

the plant is uneconomic over the considered horizon. Consequently, the plant is 

permanently shut down.  

Figure 25. Illustration of shutdown procedure (with mothballing) 

   

2.3. Capacity market with annual contracts (CM-AC) 

The capacity market modelled in this chapter is a centralised forward capacity 

market with annual auctions (similar to the one presented in Chapter I). 

Nevertheless, the consideration of mothballing decisions requires complementary 

explanations to fully describe the functioning of the capacity market in this new 

version of the model.  
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Each year, a capacity auction (the CM-AC auction) is held to contract capacity to 

be delivered after a certain number of years (𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶). There is no restriction 

on the plants that can participate to the auction. All existing plants and potential 

new investments are allowed to bid in the CM-AC auction. This feature of the CM-

AC enables it to coordinate investment and shutdown or mothballing decisions, 

which is not the case in the EOM-PCap/EOM-SP.  

The supply curve of the CM-AC auction is obtained by aggregating the bids97 from 

both existing and new capacities in ascending order. New capacities’ bids 

correspond to prospective investments while existing capacities’ bids can be 

associated to potential shutdown or mothballing decisions (in case the bids are not 

accepted). For each of the previous categories the modelled bidding strategy is 

described below.  

 Capacity bids from new plants in CM-AC auction 

In the case of new plants, the capacity bids are determined through an algorithm 

that is similar to the one presented in section 2.2 for the EOM-PCap/EOM-SP as 

presented on Figure 26 hereafter98. Each year, agents assess the profitability of 

an investment in the available technologies based on the forecast profits from the 

energy market and an expected capacity price (steps 1 and 2). The forecast profits 

from energy market are computed just as for the previous market designs.  

Potential capacity revenues are also accounted for in the profitability assessment. 

To this end, agents use three scenarios corresponding to the average, minimum 

and maximum capacity price over previous years99. In each scenario, the capacity 

price is assumed to be flat (i.e., constant) over the lifetime of the assets. Since 

every capacity price scenario (considered over the lifetime time of an asset) 

corresponds to a specific present value, these present values can be used to 

determine a single risk adjusted present value of all capacity prices with the same 

                                       

97 Strategic bidding is not considered. Perfect competition is assumed with capacity bids corresponding to agents’ 

opportunity costs. 

98 The new steps that are added compared to the case of the EOM-PCap/EOM-SP are highlighted in red boxes. 

99 The number of years is set to be consistent with the forecast horizon (ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡).  
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methodology described in section 2.1.4. Agents can then compute a single 

expected capacity price 𝑬(𝑝𝑦
𝐶𝑀) by annualising100 the estimated risk adjusted 

present value of all capacity price scenarios. This approach101 enables agents to 

include an expected capacity price in their bids as explained below.  

Using forecast energy market profits and the expected capacity price, agents select 

the most attractive investments (steps 3 and 4) and determine their capacity bids 

as follows (steps 5a, 5b, 6a and 6b):  

• 𝑬(𝑝𝑦
𝐶𝑀), if the associated investment is expected to be profitable based on of 

the anticipated revenues from the energy market and the expected capacity 

price; 

• 𝑬(𝑝𝑦
𝐶𝑀) plus, the annualised missing money102 (i.e. the shortfall), if the 

investment is not profitable based on the forecast revenues from the energy 

market and the expected capacity price.  

The investments corresponding to the capacity bids are used to update the 

installed capacity as if the capacity bids are all accepted (steps 7 and 8). Finally, 

agents adapt their forecasts based on the updated installed capacity (step 2) and 

the steps are run again. The procedure stops when the capacity revenue required 

for the marginal investment is higher than the capacity market price cap. Indeed, 

this indicates that all additional investments will have to bid higher than the 

capacity market price cap (which means that they will be rejected). 

                                       

100 This is done using a discount rate of 8%. 

101 It also facilitates the identification of the risk premium specifically related to the uncertainty associated with 

the capacity price. 

102 The total shortfall is divided by the size of the plant to obtain a bid in €/MW. 
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Figure 26. Investment procedure for new plants in CM-AC 

 

 

 Capacity bids from existing plants in CM-AC auction 

Existing plants bid on the CM-AC auction in order to stay online. Agents assess the 

expected profitability of existing plants over the forecast horizon based on forecast 

revenues from the energy market. For each plant, they have to determine the 

capacity bid required to stay active but also which action to take if this capacity 

bid is not accepted. Consequently, the actual shutdown and mothballing decisions 

are dependent on the outcome of the CM-AC auction. 
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Figure 27. Shutdown/mothballing procedure for existing plants in 

CM-AC 

 

All available options (stay active, mothball or shutdown) are considered by agents 

when determining their capacity bid. The bidding strategy of existing plants consist 

in computing their net expected payoff corresponding to every option first. Then, 

they identify the best option (i.e., the one with the highest expected payoff) and 

determine their opportunity cost associated with the decision to stay active instead 

of choosing their best option. Note that if the best option for the plant is to stay 

active, then there is no opportunity cost and the corresponding bid is zero. Figure 

27 illustrates the general procedure for shutdowns/mothballings in the CM-AC. 

Details on bidding strategies are provided hereafter. 



Mothballing in power markets: conflicting private incentives and capacity adequacy objectives 

136 

2.3.2.1. Bidding strategy without mothballing 

When mothballing is not considered, the capacity bids of existing plants correspond 

to their short run missing money, which is the amount of money needed to break 

even if the plants remain active. The bidding strategy can be summarised as 

follows: 

• If the expected payoff (without any additional capacity revenue) resulting 

from remaining active is positive, then the capacity bid is zero. The plant 

stays active whether the capacity bid is accepted or not103. 

• Otherwise, the capacity bid corresponds to the annualised shortfall. If the 

capacity bid is not accepted, then the plant is shut down since it is not 

expected to be profitable. 

2.3.2.2. Bidding strategy with mothballing 

When agents have the possibility to mothball their plant, their bidding strategy on 

the capacity market is less trivial. All the available options and configurations 

should be carefully assessed. The following explanation focuses on the case of 

active plants but can easily be transposed to mothballed plants. 

For an active plant, based on the net expected payoffs (without an additional 

capacity price) corresponding to the actions of maintaining the plant active or 

mothballing it, five configurations are possible as presented on Figure 28. The 

figure gives a graphical representation of the states of the world to be considered 

by existing plants when computing their capacity bids. The colours correspond to 

states of the world in which the capacity bid and the fall-back plan (in case the bid 

is not accepted) are the same. The associated computation algorithm is detailed 

in Appendix D. 

                                       

103 The TSO cannot force plants to shut down if they are expected to be profitable. In this situation, even if the 

capacity bid is rejected, because of an excess offer for instance, the plant will still remain active.  
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Figure 28. Bidding strategy in the capacity market for an active 

plant (when mothballing is considered)104 

 
 

• Configuration A is broken down in two sub-configurations A1 and A2 

depending on the relative attractiveness the two available options (mothball 

or stay active). In both sub-configurations, staying active and mothballing 

yield positive payoffs.  

o In sub-configuration A1, staying active yields a higher payoff than 

mothballing. As a result, the plant can bid zero in the capacity auction 

because it doesn’t need an additional capacity revenue in order to be 

profitable. Saying active is actually its best strategy no matter what 

(based on the agents’ expectations). 

o In sub-configuration A2 however, the most attractive option is to 

mothball the plant. Indeed, even if staying active still yields a positive 

expected payoff, mothballing the plant yields an even higher 

expected payoff. In this configuration, there is an incentive to 

                                       

104 The bids are annualised over the forecast horizon.  
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mothball the plant, which corresponds to the difference between the 

expected payoffs 𝑷𝒂𝒚𝒐𝒇𝒇𝒎𝒐𝒕𝒉𝒃𝒂𝒍𝒍𝒊𝒏𝒈 − 𝑷𝒂𝒚𝒐𝒇𝒇𝒔𝒕𝒂𝒚𝒊𝒏𝒈 𝒂𝒄𝒕𝒊𝒗𝒆. This 

difference is the opportunity cost of the plant if it stays active instead 

of being mothballed. Therefore, for the plant to stay active, the 

capacity price has to be at least equal to this opportunity cost 

(converted in a unitary cost per megawatt). If the bid is not accepted, 

the best strategy is to mothball the plant. 

• In configuration B, keeping the plant active yields a positive expected 

payoff, while mothballing it leads to a loss (without an additional capacity 

price). Given this, the rational capacity bid is zero (similar to configuration 

A1).  

• In configuration C, the plant is expected to lose money by staying active 

whereas mothballing it results in a positive payoff. If the plant were to stay 

active, the capacity price would have to compensate the expected loss 

(negative payoff) from staying active but also the foregone positive 

expected payoff that would have been received by the plant if it were 

mothballed instead. The corresponding bid is computed as the difference in 

payoffs (𝑷𝒂𝒚𝒐𝒇𝒇𝒎𝒐𝒕𝒉𝒃𝒂𝒍𝒍𝒊𝒏𝒈 − 𝑷𝒂𝒚𝒐𝒇𝒇𝒔𝒕𝒂𝒚𝒊𝒏𝒈 𝒂𝒄𝒕𝒊𝒗𝒆) divided by the size of the 

plant to obtain a price per MW. In case the capacity bid is not accepted, the 

best strategy is to mothball the plant since it yields a positive expected 

payoff. This configuration is similar to configuration A2. 

• In configuration D, neither keeping the plant active nor mothballing it 

leads to a positive expected payoff. With no additional capacity price, the 

plant will thus be shut down105. In order to stay active, the capacity price 

should at least compensate for its expected loss (negative expected payoff 

of staying active). The capacity bid is therefore determined so that the plant 

breaks even if it is kept active. 

The bidding strategy for mothballed plants is similar to the one of active plants. 

The only adjustment is that, instead of choosing between staying active and 

                                       

105 It is assumed that plants do now tolerate negative payoffs computed over a medium-term horizon. They can 

only tolerate short-term losses if they expect to be profitable over the medium-term.  



Mothballing in power markets: conflicting private incentives and capacity adequacy objectives 

139 

mothballing, the plants have to choose between restarting and mothballing again. 

Hence, the same rationale can be used by replacing “staying active” by “restarting” 

(see Figure 29). Using the strategies described above, agents submit, for each 

existing plant, a capacity bid (i.e., the capacity price it needs to be active the 

delivery year) and the decision regarding the plant if the capacity bid is not 

accepted.  

Figure 29. Bidding strategy in the capacity market for a 

mothballed plant (when mothballing is considered) 106 

 

 Capacity demand in CM-AC auction and clearing 

The demand curve of the capacity auction is determined by a central planner – 

generally the TSO – based on its forecasts about future electricity demand and 

installed capacity. The forecasts available to the TSO107 are the same used by the 

agents to make their investment and shutdown decisions. The TSO determines the 

                                       

106 The bids are annualised over the forecast horizon.  

107 The TSO’s forecast are thus imperfect because of uncertainties regarding the evolution of the peak load and 

the level of installed capacity. 
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capacity need for the delivery year in order to reach a certain capacity margin that 

is set exogenously (𝑡𝑚). The TSO also accounts for the capacities under 

construction that will be available in the delivery year. Indeed, these capacities 

need not be contracted by the TSO as they are expected to be on the market for 

the delivery year anyway (since they have already been awarded a capacity 

contract in a previous auction). Therefore, the capacity demand is computed using 

the following formula108: 

𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶 
𝐶𝑀−𝐴𝐶

= 𝑚𝑎 𝑥 (0 ;  𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶

𝐹𝑝𝑒𝑎𝑘
∗ (1 + 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶

)  

− ∑ 𝐾𝑎
𝑁𝑒𝑤

𝑎=𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶

𝑎=𝑦+1

) 

  

Where: 

• 𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶

𝐶𝑀−𝐴𝐶  is the capacity demand from the TSO in the CM-AC auction 

held in year 𝑦 (for delivery in year 𝑦 +  𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶); 

• 𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶

𝐹𝑝𝑒𝑎𝑘
 is the forecast peak load in the delivery year; 

• 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶
 is the target margin set by the TSO for the delivery year; 

• 𝐾𝑦
𝑁𝑒𝑤 is the total amount of new capacities that are expected to enter the 

market in year 𝑦. 

The computation of the capacity demand is made under the assumption that the 

TSO knows exactly all the capacities under construction109. New capacities are also 

assumed to stay online at least a number of years that is consistent with 

𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶. Keeping new capacities online at least a few years before considering 

shutdown is consistent with industry practices. It ensures that the capacities that 

are under construction when the TSO is determining the capacity demand for the 

                                       

108 The equation states that the capacity demand from the TSO may be zero if the anticipated investments 

(𝐾𝑎
𝑁𝑒𝑤) are enough to ensure the reliability target. This is however unlikely to happen since the total anticipated 

investments for a single year would have to be close to the peak demand of the system (which is unrealistic).  

109 For the sake of simplicity, capacities under construction do not participate to the capacity auctions. Although 

this may not be the case in real systems, it does not affect the validity of the analysis carried out here. It only 

leads to other capacities being accepted in the corresponding auctions.  
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delivery year (after 𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐴𝐶) will in fact be available that year. Otherwise, a 

capacity (that is considered under construction) may come online and shutdown 

before the delivery year, thus creating an error in the TSO’s forecast. Finally, the 

TSO imposes a maximum price (i.e., a capacity price cap) for the procurement of 

capacity. Offers that are above the price cap are automatically rejected.  

The capacity auction matches the capacity demand curve with the capacity supply 

curve and determines a clearing price. This clearing price corresponds to the last 

accepted capacity bid needed to reach the target capacity (see Figure 30). 

Figure 30. Capacity market auction 

 

Once the capacity market is cleared, all accepted bids lead to new investments 

and plants staying active. Bids for new plants (prospective investments) that are 

rejected lead to no investment. For existing plants, rejected bids lead to plants 

being shut down or mothballed depending on the best fall-back strategy identified 

by agents in case the bids are not accepted110. Rare situations where plants that 

have bid zero are rejected can occur. This may happen if the capacity demand is 

lower than the capacity offered at a zero price. In these cases, the TSO cannot 

                                       

110 Plants with accepted bids have an obligation to be active until the delivery year. Consequently, plants cannot 

be mothballed or shut down if they still have a pending capacity obligation. For instance, if a plant has an 

obligation to be active in year 𝑦 + 4, then even if this plant’s bid is rejected in the auction held in year 𝑦 + 1, the 

plant cannot be closed or mothballed until 𝑦 + 5 since it has to be active in year 𝑦 + 4 (because of the capacity 

obligation).  

Price 

Capacity 

Target capacity  

Capacity price 

TSO demand 

Offers from existing 
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force the rejected plants to exit the market if their forecasts indicate that entering 

the market (or staying in it) is profitable.  
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3. Simulations setup and indicators 

3.1. Preliminary remarks on calibration and simulations 

The reader should keep in mind that the level of demand uncertainty considered 

in the simulation (and described hereafter) is relatively high on purpose; to 

properly illustrate all potential effects related to mothballing. Indeed, some effects 

regarding long-run dynamics are only visible with high levels of demand 

uncertainty. However, choosing an extreme scenario of demand uncertainty to 

illustrate long-run effects leads to an overestimation of some short-term effects 

on prices and shortages. This is well explained in the discussion of the results. The 

reader should therefore put the results presented regarding electricity prices and 

shortages in perspective of the rather extreme scenario of demand uncertainty 

considered here.  

To provide more realistic figures in terms of impact on electricity prices and 

shortages, many sensitivity analyses were run in this chapter, precisely to show 

the reader what the results would look like in a less extreme configuration. For 

instance, simulation results with a less uncertain demand are presented in 

section 4.5.2. They show that the magnitudes are more in line with what would be 

expected in real life.  

Finally, for similar reasons to those described above, most results are presented 

in relative terms (compared to a reference), rather than in absolute terms. This is 

because absolute values would not reflect the outcome of an actual power system 

under normal market conditions. The indicators that are used for the analysis (see 

following section) are defined to show the differences between two power systems 

which are exposed to the similar market conditions. The important aspect of the 

analysis is the difference between the power systems’ outcomes.  

3.2. General setup and indicators 

A Monte Carlo approach is used with 100 runs of the model over a horizon of 

40 years to capture potential long-term effects. For each run, two settings are 

compared: a first one in which mothballing is not allowed (setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ), and 

a second one in which agents have the possibility to mothball their plants (setting 
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𝑆𝑀𝑜𝑡ℎ). These settings are compared in terms of level of investments, shutdowns, 

shortages, electricity prices and capacity prices. The comparison is done separately 

for an energy-only market and a capacity market with annual contracts. Since the 

only difference between the settings is the presence or absence of mothballing 

decisions, all the differences resulting from the comparison are solely due to these 

decisions. These potential differences are captured through a set of indicators 

described below: 

𝛥𝑡𝑒𝑐ℎ,𝑦
𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 =

(𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡𝑒𝑐ℎ,𝑦
𝑆𝑀𝑜𝑡ℎ −  𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡𝑒𝑐ℎ,𝑦

𝑆𝑁𝑜𝑀𝑜𝑡ℎ)

𝐼𝐶𝑎𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
   

𝛥𝑡𝑒𝑐ℎ,𝑦
𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 =

(𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑡𝑒𝑐ℎ,𝑦
𝑆𝑀𝑜𝑡ℎ −  𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑡𝑒𝑐ℎ,𝑦

𝑆𝑁𝑜𝑀𝑜𝑡ℎ)

𝐼𝐶𝑎𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
   

𝛥𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠 =
(𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠𝑆𝑀𝑜𝑡ℎ − 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠𝑆𝑁𝑜𝑀𝑜𝑡ℎ)

𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠𝑆𝑁𝑜𝑀𝑜𝑡ℎ
   

Δ𝑝𝑟𝑖𝑐𝑒𝑠 =
(𝑃𝑟𝑖𝑐𝑒𝑠𝑒𝑛𝑒𝑟𝑔𝑦/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑆𝑀𝑜𝑡ℎ − 𝑃𝑟𝑖𝑐𝑒𝑠𝑒𝑛𝑒𝑟𝑔𝑦/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑆𝑁𝑜𝑀𝑜𝑡ℎ )

𝑃𝑟𝑖𝑐𝑒𝑠𝑒𝑛𝑒𝑟𝑔𝑦/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑆𝑁𝑜𝑀𝑜𝑡ℎ    

Where: 

• 𝐼𝐶𝑎𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is the total initial installed capacity (excluding RES); 

• 𝛥𝑡𝑒𝑐ℎ,𝑦
𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 measures the cumulative difference in investments between the 

two studied settings for technology 𝑡𝑒𝑐ℎ, at year 𝑦. The difference is 

normalised by the total initial capacity; 

• 𝛥𝑡𝑒𝑐ℎ,𝑦
𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 measures the cumulative difference in shutdowns between the two 

studied settings for technology 𝑡𝑒𝑐ℎ, at year 𝑦. The difference is normalised 

by the total initial capacity; 

• Δ𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠 measures the difference in yearly average shortages (unserved 

energy) between the two studied settings over the whole simulation 

horizon; 

• Δ𝑝𝑟𝑖𝑐𝑒𝑠 measures the difference in yearly average energy/capacity prices 

between the two studied settings over the whole simulation horizon; 
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• 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑡𝑒𝑐ℎ,𝑦
𝑋  is the cumulative level of investments in technology 𝑡𝑒𝑐ℎ, at 

year 𝑦, in setting 𝑋 (𝑋 ∈  {𝑆𝑀𝑜𝑡ℎ; 𝑆𝑁𝑜𝑀𝑜𝑡ℎ}); 

• 𝑆ℎ𝑢𝑡𝑑𝑜𝑤𝑛𝑡𝑒𝑐ℎ,𝑦
𝑆𝑀𝑜𝑡ℎ is the cumulative level of shutdowns in technology 𝑡𝑒𝑐ℎ, at 

year 𝑦, in setting 𝑋 (𝑋 ∈  {𝑆𝑀𝑜𝑡ℎ; 𝑆𝑁𝑜𝑀𝑜𝑡ℎ}); 

• 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠𝑋 is the average level of yearly shortages observed over the 

simulation horizon during a single run of the model in setting 𝑋 (𝑋 ∈

 {𝑆𝑀𝑜𝑡ℎ; 𝑆𝑁𝑜𝑀𝑜𝑡ℎ}); 

• 𝑃𝑟𝑖𝑐𝑒𝑠𝑒𝑛𝑒𝑟𝑔𝑦/𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑋  is the average level of yearly energy prices111 or capacity 

prices observed over the simulation horizon in setting 𝑋 (𝑋 ∈

 {𝑆𝑀𝑜𝑡ℎ; 𝑆𝑁𝑜𝑀𝑜𝑡ℎ}). 

To complement the analysis, a social welfare indicator is also computed, based on 

the different system costs (i.e., generation costs, O&M costs, investment costs and 

the cost of shortages). As explained in Chapter I, given the assumption of an 

inelastic demand, a comparative analysis of social welfare can be done by 

assessing the level of shortages, which are included the total system costs using 

an assumption of VoLL (De Vries, 2004). A formal demonstration of this is provided 

in section 3.2 of Chapter III.  

 

 

 

                                       

111 The yearly prices correspond to the average of the hourly prices. 
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Table 6. Technical and economic characteristics of thermal 

technologies112 

 Nuclear113 Coal CCGT CT (gas-fired) 

Investment (k€/MW) 5 200 1 700 850 500 

Initial O&M costs 

(k€/MW/year) 
110 45 30 15 

Variable costs 

(€/MWh) 
10 50 60 90 

Unit capacity (MW) 1 450 750 550 150 

Construction time114 

(years) 
6 4 2 2 

Expected lifetime 

(years) 
60 40 30 30 

 

All four generation technologies are considered for the simulations: Nuclear, Coal, 

CCGT (gas-fired) and CT (gas-fired) power plants. Their technical and economic 

parameters are presented in Table 6 above. Based on Frontier Economics (2015b), 

mothballing and restart costs are both set to 25% of annual O&M costs in the 

simulations115. Associating mothballing and restart costs to O&M enables to 

account for two properties: the fact that they are technology-specific and the fact 

that they increase with the age of the power plant (see modelling of O&M cost in 

section 2.1.5). Finally, to simplify the interpretation of results and properly isolate 

the impact of mothballing, agents are assumed to be risk neutral in the 

simulations. The main parameters of the simulations are summarised in Table 7. 

                                       

112 These values are based on data compiled from various sources (EC Joint Research Center, 2014; International 

Energy Agency, 2018; International Energy Agency and OECD Nuclear Energy Agency, 2010; RTE, 2017). Values 

for variable costs are based on the “New Policies” scenario of the 2018 World Energy Outlook of the International 

Energy Agency. The underlying assumptions are the following: gas price of 8.5 $/MBtu, coal price of 82.5 $/t, 

CO2 price of 34 $/tCO2, efficiencies of 60%-41%-43% for CCGT-CT-Coal respectively. 

113 For the simulations presented in this chapter, no nuclear investments are considered. Such investments 

generally include a significant political component. It is unlikely that private agents engage in nuclear investments 

solely based on economic considerations. Other studies such as RTE (2018) confirm this assumption.  

114 The time for obtaining all the administrative authorizations and regulatory approvals is not considered.  

115 To assess the sensitivity of simulation results to mothballing costs assumptions, different mothballing cost 

structures are tested in section 4.5.3. 
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Table 7. Variables and parameters for simulations (Chapter II) 

 EOM-PCap CM-AC 

𝜶 

Confidence level for computation of VaR and CVaR 
95% 

𝜷 

Risk aversion coefficient 
0 

𝑷𝑪𝒂𝒑𝑬𝑶𝑴−𝑷𝑪𝒂𝒑 

Price cap on energy market 
3 k€/MWh 

𝑷𝑪𝒂𝒑𝑪𝑴−𝑨𝑪 

Price cap of capacity market auctions 
NA 

80 k€/MW 

(~1.5x Net CONE116) 

𝒕𝒎𝒚 

Target margin set by the TSO for the delivery year 
Set to reach LoLE of 3h/year117 

𝑽𝒐𝑳𝑳 

Value of Lost Load 
22 k€/MWh 

 

3.3. Electricity demand 

Each run of the model is associated to a random scenario of gross electricity 

demand. The effective residual electricity demand observed by agents over the 

simulation horizon is determined on a yearly basis as a difference between gross 

demand and generation from renewables. The yearly evolution of peak gross 

demand is assumed to be flat with random deviations, representing the recent 

trend observed in European markets. More specifically, the growth rate of the gross 

demand is drawn from a zero-mean normal distribution with a standard deviation 

of 5%118. This figure aims to represent a high level of electricity demand volatility. 

                                       

116 Cost of New Entry defined based on the annualised fixed cost (O&M and investment costs) of a combustion 

turbine, using a reference discount rate of 8% and the cost parameters presented in Table 6. 

117 The Loss of Load Expectation (LoLE) of 3h/year is the reliability criterion used in France. Other European 

countries generally use reliability criteria ranging from 3h/year to 8h/year. In the model, the capacity needed to 

achieve a desired LoLE is computed using a probabilistic approach which relies on the forecast load duration curve 

scenarios. The load duration curve scenarios are the same as those used for agents’ profitability assessments. 

For each load duration curve scenario, the TSO computes a corresponding level of installed capacity consistent 

with the reliability criterion. The target level of installed capacity (and therefore the target margin) is then 

determined as the expected value of all installed capacity scenarios.  

118 A sensitivity analysis with an alternative value is presented in section 4.5.2. 
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It can be related to the variability of RES infeed in a system with high shares of 

renewables. The shape of this gross demand is calibrated on the 2015 load 

duration curve of the French system119.  

The evolution of RES capacities (wind and solar) is based on the most optimistic 

scenario identified in the French energy policy plan and described in (RTE, 2017). 

According to this scenario, wind and solar capacity are expected to grow at an 

average rate of 9%/year. Simulations are assumed to start in year 2016 (year 1) 

of simulation. Initially wind and solar PV capacities represent about 10 and 6 GW 

respectively. They then increase during the first 20 years of simulation from 2016 

to 2035 to reach 52 GW for wind and 48 GW for solar. Afterwards, RES capacities 

are assumed to remain constant. The penetration trajectories of RES are presented 

on Figure 31 below. Generation from RES is directly derived from their installed 

capacity and associated generation profile120.  

Figure 31. RES penetration scenario in case study 

 

                                       

119 All hydropower generation is subtracted and assumed constant in the simulations. Cross-border exchanges 

are not considered. 

120 The generation profile of RES is assumed to remain constant during the simulations. It is based on the actual 

generation profile of wind and solar in France in 2015.  
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3.4. Initial generation mix 

Simulations start with an initial generation mix that corresponds to the optimal 

generation mix associated with the initial residual load curve. This mix is 

determined using the screening curves methodology presented by Stoft (2002). It 

represents the least-cost generation mix that can be used to satisfy a given load 

profile based on the economic characteristics of the available generation 

technologies (investment and operation costs) and the VoLL. A VoLL of 22 k€/MWh 

is assumed. Theoretically, this level of VoLL leads to 3h/year of shortages at 

equilibrium given the cost parameters considered in Table 6. Moreover, a discount 

factor of 8% is assumed, again in accordance with the existing literature (Cepeda 

and Finon, 2011; Hary et al., 2016; Petitet et al., 2016a). The determination of 

the optimal generation mix is done with the cost structure of new plants. However, 

plants are given different ages in the initial generation fleet to have a realistic 

system. The initial generation mix is presented on Figure 32. 

Figure 32. Initial generation mix for simulations of chapter II 
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4. Analysing mothballing in energy-only markets 

4.1. Understanding the long-term dynamics in presence of 

mothballing decisions 

 Fundamental dynamics related to mothballing 

The two settings defined for the simulations are identical in terms of installed 

capacity until the first occurrences of mothballings in the setting with mothballing 

(i.e., 𝑆𝑀𝑜𝑡ℎ). Once agents decide to mothball some of their plants, four elementary 

outcomes can be expected depending on what happens in the alternative setting 

where mothballings are not allowed (i.e., 𝑆𝑁𝑜𝑀𝑜𝑡ℎ). These outcomes have different 

implications regarding subsequent investment and shutdown decisions as 

explained hereafter. The explanations are provided with graphs presenting the 

energy market equilibrium between inelastic demand and the merit order of 

variable costs of generation, as well as the resulting marginal price. The focus is 

made on two generation assets, one which might be mothballed (in hashed yellow) 

and another one (in light blue delimited by a red hashed line). Gross revenues of 

the latter are analysed depending on the decision to mothball the former (yellow 

one). If the gross revenues are higher than a profitability threshold, the blue 

generator is kept active, it is otherwise shutdown.  

• Expected outcome 1 (𝑬𝑶𝟏) – mothballing leads to less shutdowns 

and less investments in marginal technologies: the mothballed 

capacities in setting 𝑆𝑀𝑜𝑡ℎ are all closed instead in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. In this 

case, there will be more shutdowns in the setting without mothballing, all 

things being equal. As a direct consequence, the potential investments (if 

there are) following that particular year will be lower in the setting with 

mothballing. Indeed, since the agents assume that the mothballed 

capacities will come back on the market121, they will forecast a higher level 

of installed capacity and thus a lower profitability. This is the most intuitive 

impact as it corresponds to the stated rationale behind mothballing which is 

                                       

121 This assumption reflects a cautious behaviour from investors, which can be justified in face of uncertainty. 

Indeed, considering that all the mothballed capacities come back online is a conservative approach as it leads to 

the lowest forecast revenues.  
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essentially a way of avoiding permanent shutdown when market conditions 

are temporarily bleak.  

• Expected outcome 2 (𝑬𝑶𝟐) – mothballing leads to less shutdowns 

and less investments in inframarginal technologies: the mothballed 

capacities in setting 𝑆𝑀𝑜𝑡ℎ are kept active in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ, but some 

other plants that are shut down in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ are kept active instead 

in setting 𝑆𝑀𝑜𝑡ℎ. This may happen when mothballing part of the plants in 

setting 𝑆𝑀𝑜𝑡ℎ creates an opportunity for other plants to stay in the market 

because of higher perceived revenues (while these plants exit the market in 

setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ). The consequences of this outcome are similar to those of 

the first one (𝐸𝑂1): there will be less shutdowns in setting 𝑆𝑀𝑜𝑡ℎ and less 

investments compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. However, this affects the 

generation mix differently (see Figure 33).  

Figure 33. Illustration of expected outcome 𝑬𝑶𝟐 of mothballing  

Setting without mothballing (𝑺𝑵𝒐𝑴𝒐𝒕𝒉) 
 

Setting with mothballing (𝑺𝑴𝒐𝒕𝒉) 

 

 

 

 

 

 

 

• Expected outcome 3 (𝑬𝑶𝟑) – mothballing does not affect shutdown 

and investment dynamics: the mothballed capacities in setting 𝑆𝑀𝑜𝑡ℎ are 

all maintained active instead in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Moreover, the decision to 

mothball some plants in setting 𝑆𝑀𝑜𝑡ℎ does not affect the shutdown 

decisions for other plants. Here, there will be no difference in the level of 

shutdowns between the two settings for that particular year. Similarly, all 

things considered equal, investment decisions following that year will be the 
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same in both settings as agents forecast about installed capacity will be 

identical (see Figure 34).  

Figure 34. Illustration of expected outcome 𝑬𝑶𝟑 of mothballing 

Setting without mothballing (𝑺𝑵𝒐𝑴𝒐𝒕𝒉) 
 

Setting with mothballing (𝑺𝑴𝒐𝒕𝒉) 

 

 

 

 

 

 

 

• Expected outcome 4 (𝑬𝑶𝟒) – mothballing leads to more shutdowns 

and more investments: mothballed plants could also force other plants to 

exit prematurely as they have the possibility to come back in the market 

and limit other plants potential revenues. To better understand this effect, 

let us consider the simplistic illustration given on Figure 35. First, let us 

assume that both settings 𝑆𝑁𝑜𝑀𝑜𝑡ℎ and 𝑆𝑀𝑜𝑡ℎ are identical in year 𝑦. In each 

setting, agents assess their plants iteratively to determine whether they 

should be kept active, mothballed, or shut down permanently (as presented 

in section 2.2.2). Assuming the first plant which is assessed in 𝑆𝑁𝑜𝑀𝑜𝑡ℎ is 

shut down (iteration 1 – top left picture), the next plant to be assessed is 

kept online thanks to the revenues accrued from scarcity hours (iteration 2 

– bottom left picture).  

Considering 𝑆𝑀𝑜𝑡ℎ this time, if the first plant to be assessed is mothballed 

instead of being shut down (iteration 1 – top right picture). When the second 

plant will be assessed, it is assumed (for the assessment) that the previously 

mothballed plant comes back on line, which automatically suppresses 

scarcity revenues. Therefore, the second plant could be shut down (iteration 

2 – bottom right picture) rather than kept active as it was the case in 

𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Depending on the size of the first plant in this illustration, it is 
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possible to end up with more shutdowns in 𝑆𝑀𝑜𝑡ℎ compared to 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. 

Consequently, 𝑆𝑀𝑜𝑡ℎ could also be expected to have more subsequent 

investments, at least temporarily. 

Figure 35. Illustration of expected outcome 𝑬𝑶𝟒 of mothballing 

   Setting without mothballing (𝑺𝑵𝒐𝑴𝒐𝒕𝒉) 

 

 

Setting with mothballing (𝑺𝑴𝒐𝒕𝒉) 
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Based on the anticipated outcomes highlighted above, there is no direct conclusion 

that could be drawn on the potential impact of mothballing on long-run investment 

and shutdown decisions. The only way of assessing such effects is by the means 

of multiple simulations comparing the studied setting over a long-time horizon. 

Such an approach could help verify whether some of the anticipated effects, 

dominate over the others and, more importantly, whether they are persistent or 

not in the long run. 
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 In energy-only markets, neglecting mothballing could lead to 

a misrepresentation of shutdowns and investments levels in a 

context of high demand uncertainty 

To analyse long-run dynamics, the indicators 𝛥𝑡𝑒𝑐ℎ,𝑦
𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 and 𝛥𝑡𝑒𝑐ℎ,𝑦

𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛 are computed 

for each technology through each simulation year. Figure 36 below illustrates for 

each technology the evolution of the average122 differences in shutdowns and 

investments between the studied settings. The graphs on Figure 36 show a 

persistent impact of mothballing on CTs and Coal plants. CCGTs do not exhibit any 

significant trend as the observed deviations are random and negligible in 

magnitude. 95% confidence bands of the average differences in investments and 

shutdowns are computed for CTs and Coal. As illustrated on Figure 36, the 95% 

confidence bands show the effects of mothballing the investment and shutdown 

dynamics of these two technologies are significant123 from a statistical point of 

view.  

Figure 36. Impact of mothballings on shutdown and investment 

dynamics in energy-energy-only markets124 

  

 

                                       

122 Average over all the 100 runs of the model. 

123 Meaning that the confidence bands do not include zero, therefore rejecting the null hypothesis (the estimated 

effects are not random).  

124 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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At the beginning of the simulations, CTs are generally the first plants to be 

mothballed given the volatility of their revenues and their dependence on price 

spikes. Around year 8, the level of CTs shutdowns in the settings start to diverge. 

The observed difference mainly corresponds to the anticipated outcome 𝐸𝑂1 in 

which capacities (or part of them) that are shut down in the setting without 

mothballing are instead mothballed in the other setting (and thus remain in the 

system nonetheless). Even if after the first series of mothballing, the systems in 

the two studied settings are no longer rigorously comparable, the results of the 

simulations indicate a persistent trend of divergence regarding shutdowns.  

It should be noted that at some point in the simulations, other types of outcomes 

(i.e., 𝐸𝑂2 and 𝐸𝑂3) may occur. 𝐸𝑂2 for instance, explains why an infra-marginal 

technology such as Coal is impacted as well. By nature, 𝐸𝑂3 is not observable 

through the indicators defined in section 3.2 as it does not create any difference 

in shutdowns or investments. At the end of the simulation horizon, the difference 

in cumulative shutdowns of CTs between the settings represents around 4% of the 

total initial capacity of 75 GW. 
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The graphs presented on Figure 36 also show the strong dependence between the 

dynamics of shutdown decisions and those of investment decisions. Indeed, 

investments’ profitability mainly depend on two factors125: the electricity demand 

and the available capacity. Every shutdown decision modifies the latter, which in 

turn impacts the expected profitability of future investments. With that in mind, 

the impact of mothballings on the level of investments can be explained from the 

dynamics of shutdowns decisions.  

As soon as shutdown decisions start to diverge between the two settings the 

following investment decisions are no longer the same since they are based on 

different forecasts. Investment incentives in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ become mechanically 

stronger than those in setting 𝑆𝑀𝑜𝑡ℎ, all things equal (because of the lower level 

of installed capacity perceived in 𝑆𝑁𝑜𝑀𝑜𝑡ℎ). As a result, agents start investing more 

in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ compared to setting 𝑆𝑀𝑜𝑡ℎ. The final cumulative difference in 

CTs investments between the studied settings corresponds to 4% of the initial 

installed capacity of 75 GW.  

To summarize, simulations results indicate that mothballing leads to chronic 

phases of reduced investment incentives by enabling power plants to stay longer 

in the market instead of exiting (as it would be the case in a market where 

mothballing is not allowed). Indeed, the recurrent mothballing of marginal plants 

(CTs in the model) delays permanent shutdown decisions for these plants and 

some infra-marginal plants. During this delay, agents have lower incentives to 

invest compared to a market where there would be no mothballing. This leads in 

turn to lower investment levels in the market with mothballing particularly in CTs.  

Analysing investment and shutdown dynamics is also helpful in understanding how 

mothballing may affect security of supply. For instance, the reduced investment 

levels in the market with mothballing combined with the unavailability of 

mothballed plants suggest that, at some point, the market without mothballing 

may have a better security of supply than the one with mothballing. The following 

section discusses the potential impact of mothballing on security of supply, proxied 

by the level of shortages. Associated effect on electricity prices are also covered. 

                                       

125 The economic parameters of the plant have a direct impact on its profitability too. 
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4.2. Mothballing tends to increase shortages and electricity 

prices 

Depending on when they occur, mothballing decisions have different impacts on 

the level of shortages. By definition, mothballing a plant removes it temporarily 

from the market, thereby creating an equivalent deficit of capacity. As a result, it 

can be anticipated that setting 𝑆𝑀𝑜𝑡ℎ will experience more scarcity hours compared 

to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ because of the unavailability of the mothballed plants. However, 

in some situations, setting 𝑆𝑀𝑜𝑡ℎ can actually experience less shortages than 

setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ, at least temporarily. All things being equal, the fact that some 

plants can remain in the market instead of being shut down (as it is the case in 

setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ) may improve the security of supply compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ 

(see explanations on 𝐸𝑂2). It should be noted that such situations only last about 

two years, before new capacities enter the market in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ to restore a 

higher system margin. These successive phases are directly linked to investment 

and shutdown dynamics described above and occur on a recurrent basis.  

The aggregate impact of mothballing on the level of shortages depends on the 

relative magnitude of the aforementioned effects. Figure 37 below displays the 

distribution of the differences in terms of unserved energy (indicator Δ𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑠) 

between the setting with mothballing and the setting without mothballing. Values 

higher than 1 indicate that there are more shortages in setting 𝑆𝑀𝑜𝑡ℎ compared to 

setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Conversely, values lower than 1, indicate the opposite. Figure 37 

shows that mothballing has a negative impact on security of supply as it increases 

the level of shortages by a factor of around 20 on average (based on simulation 

parameters). This result is due to the fact that the deficit of capacity in setting 

𝑆𝑀𝑜𝑡ℎ (compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ) induced by mothballed plants is generally 

higher than the excess of capacity that can be observed in setting 𝑆𝑀𝑜𝑡ℎ (compared 

to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ) once plants start being shut down in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ but not 

in setting 𝑆𝑀𝑜𝑡ℎ126. Moreover, new capacities quickly compensate the shutdowns 

in setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ.  

                                       

126 Recall that some of the plants in setting 𝑆𝑀𝑜𝑡ℎ are actually mothballed.  
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Figure 37. Impact of mothballings on shortages in energy-only 

market127 

  

Given their direct impact on the level of available capacity, mothballing decisions 

are expected to have an impact on energy prices as well since they increase 

scarcity hours. On average, the impact of mothballing on energy prices is 

significant as illustrated on Figure 37, which shows the distribution of the 

differences in average energy prices between the two settings (indicator Δ𝑝𝑟𝑖𝑐𝑒𝑠). 

Mothballing increases energy prices by more than twice on average. It should be 

noted that the indicator about energy prices do not capture the severity of scarcity 

periods as the indicator on shortages does. For instance, if there is an equivalent 

number of scarcity hours in the two settings, the average energy prices will also 

be equivalent even if the amount of unserved energy is actually higher in setting 

𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ.  

                                       

127 Values higher than 1 indicate that there are more shortages in setting 𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. 

Conversely, values lower than 1 indicate the opposite. The segment inside the rectangle shows the median and 

"whiskers" above and below the box indicate the minimum and maximum points. 

95% confidence interval: [16.8 ; 27.4] 
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Figure 38. Impact of mothballings on energy prices in energy-only 

market128 

 

The results suggest that, even in a market with no strategic behaviour, agents’ 

incentives to mothball can be detrimental to capacity adequacy objectives. In this 

regard, mothballing decisions raise an important policy issue as to how to align 

agents’ private incentives with capacity adequacy objectives. This explains why 

the recent wave of mothballing in Europe has been at the centre of the debates on 

security of supply. In some countries, it has even been one of the justifications for 

the implementation of capacity mechanisms (for instance in the UK). Section 5 of 

this chapter discusses this point precisely by analysing what outcomes to expect 

from a capacity market when agents’ have the possibility to mothball their assets.  

The results should be put in perspective of the rather extreme scenario considered 

for base case study. To properly illustrate all the potential effects of mothballing, 

a highly volatile demand was chosen on purpose (as explained in section 3.1 of 

the chapter). Sensitivity analyses are carried out in section 4.5.2 to show that a 

lower demand volatility leads to more realistic results in terms of magnitude.  

                                       

128 Values higher than 1 indicate that prices are higher in setting 𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Conversely, 

values lower than 1 indicate the opposite. The segment inside the rectangle shows the median and "whiskers" 

above and below the box indicate the minimum and maximum points. 

95% confidence interval: [1.8 ; 2.6] 
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In addition, there are a couple of modelling assumptions (to make the model more 

trackable) that amplify the effects of lumpiness and ultimately those of 

mothballing. For each specified technology, all investments that are decided in the 

same year are modelled as a single plant. Also, mothballing cannot be partial (i.e., 

all the available capacity of the plant is mothballed). Relaxing this assumption 

would make the model difficult to manage in terms of size, and it would not change 

the direction of the results.  

4.3. From a social welfare perspective, mothballing increases the 

need for coordination of private agents’ decisions to ensure 

capacity adequacy 

Intuitively, mothballing could be seen as an additional option in capacity provision. 

It gives some flexibility to private agents in their decisions as explained in 

section 2.2.2. However, because of the asymmetrical incentives between under 

procurement and over procurement of capacity for private agents, mothballing 

maybe detrimental to social welfare in a liberalised market.  

The issue of asymmetrical incentives was discussed in the general introduction, 

through the lenses of investment. The same rationale holds when talking about 

mothballing decisions, since they can be assimilated to punctual disinvestments. 

When agents have the possibility to mothball their assets it is equivalent to giving 

them the option to disinvest temporarily at any time. Consequently, the issue of 

asymmetrical investment incentives appears not only at the time of the first 

investment decision, but also all the following years where mothballing is possible. 

The only difference is that the fixed costs considered in mothballing decisions are 

only operation and maintenance costs (conversely to an investment decision for 

which investment costs are also considered). This has important implications in 

term of social welfare. 

Because private agents providing capacity do not consider the cost of shortages in 

their rationale for mothballing, the private value of mothballing is higher than the 

social cost of mothballing. From a private agent’s perspective, the value of 

mothballing is determined by the difference between cost savings resulting from 

the mothballing decision and potential foregone revenues. From a social planner’s 

perspective, the value of mothballing equals the difference between cost savings 
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associated with the mothballing decision and potential costs of additional shortages 

related to the decision. In most cases, the cost of additional shortages outweighs 

the cost savings enabled by the mothballing decision, especially if mothballing is a 

year-long commitment129.  

For instance, let us consider the following situation, which is adapted from Keppler 

(2017). Let us assume a system in which 100 MW of mothballed peak capacity 

creates 10 additional hours of shortages in a year, while this capacity being kept 

active would result in no shortages at all. Let us also assume that there is a scarcity 

pricing with prices reaching the VoLL in periods of shortages. Mothballing the 

capacity would imply a cost of 22 M€, assuming a VoLL of 22 k€/MWh. On the 

other hand, given O&M costs of 15 k€/MW/year for a peaking unit, mothballing 

that same 100 MW would lead to cost savings of 1.5 M€ at best (assuming no 

mothballing and restart costs).  

In the hypothetical situation described above, a social planner would rather keep 

the capacity active instead of mothballing it. Conversely, the private agent holding 

that 100 MW of capacity is better off mothballing it. By keeping the plant active, 

the private agent loses money since there will be no shortages and the plant will 

not cover its O&M costs. If the plant is mothballed instead, the agent can save part 

of the O&M costs and increase the profits of other plants. There is no strategic 

behaviour involved in this example. It is merely the outcome of a perfectly 

competitive market where agents seek to maximize their profits. Because of this, 

most optimization models which minimise total system costs (as a social planner 

would) without constraining the model to allow cost recovery for capacity providers 

would fail to capture this effect. 

The results of the analysis derived from the model presented in this chapter show 

that mothballing tends to deteriorate social welfare by creating more shortages 

(see the previous section). Table 8 hereafter illustrates the negative impact of 

mothballing on social welfare based on the simulations carried out in this chapter. 

                                       

129 As presented in the introduction of this chapter, mothballing can be decided for shorter periods such as a 

few months. This can reduce the magnitude of the results discussed here, without however changing the logic.  
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It should be noted once again that the magnitude of the results is exacerbated by 

some modelling assumptions regarding the indivisibility of plants130. While these 

assumptions amplify the magnitude of the results they do not change the rationale 

behind.  

Table 8. Impact of mothballing on system costs in an energy-only 

market (based on the considered simulation parameters) 

Cost components 

Average increase in cost component (related to 

mothballing) in % of total system costs observed 

in the setting without mothballing 

Cost of shortages131 166% 

Generation costs 0% 

O&M costs -1% 

Annualised investment costs  

(of installed capacity) 
0% 

Total additional costs  165% 

 

As expected mothballing leads to operation and maintenance cost savings. In the 

simulations, these cost savings amount to about 1% of yearly total system costs. 

However, they are negligible compared to the increase in cost of shortages 

resulting from agents’ mothballing decisions. Given the simulation parameters that 

are used, this increase amounts to almost 170% of yearly total system costs on 

average.  

The results are presented in relative levels on purpose, because of the nature of 

the case study (extreme scenario of demand uncertainty). It does not represent 

an actual power system but a test case, calibrated on the French power system. 

Absolute values would be hard to interpret by their own. The important aspect in 

the discussion is the direction of the results rather than their absolute levels. More 

                                       

130 To limit computation time, all investments made in the same year are assumed to represent a single plant. 

This may lead to plant of several gigawatts of capacity, which are indivisible in the model. This exacerbates the 

effect of indivisibilities. In reality, agents may be able to mothball just part of their capacity instead of the whole 

capacity of the plant.  

131 Assuming a VoLL of 22 k€/MWh. 
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precisely, it is the difference between the setting without mothballing and the one 

with mothballing that matters for the discussion.  

4.4. Remarks on the magnitude of the results and methodological 

limitations 

It is important to underline that the magnitude of the effects presented in this 

section (both in terms of shortages and electricity prices) are exacerbated by a 

few modelling assumptions. Indeed, the volumes of shortages depend on the size 

of the plants that are being mothballed. In the model, agents cannot recourse to 

partial mothballing (i.e., mothballing only a portion of the plant’s capacity). This 

means that capacity lumpiness is of particular importance. The larger the size of 

the plants, the stronger the effects are (in terms of shortages and potentially 

electricity prices). Since all investment decisions realised the same year (for each 

technology) are modelled as a single plant for tractability issues, plants can have 

a size of several gigawatts when peak demand is highly volatile132.  

The sensitivity analysis carried out in section 4.5.2, shows that the effects of 

mothballing are less pronounced with a lower demand volatility.  

4.5. Sensitivity analysis 

 Higher energy price caps exacerbate the effects of 

mothballing on energy prices and security of supply 

To complement the analysis, the same simulations are run on an energy-only 

market with scarcity pricing (i.e., in which the price cap is equal to the VoLL). 

Interestingly, the results indicate an increased occurrence of mothballing when the 

price cap increases. The table below summarises the effect of this increase in price 

cap on the intensity of mothballing through two indicators. The first one shows the 

frequency of mothballing as the average number of years with mothballed plants 

over the simulation horizon. It shows that the market with scarcity pricing 

experiences on average two more years of mothballing compared to the market 

with a price cap of 3 k€/MWh. The second indicator measures the average ratio of 

                                       

132 Indeed, if agents anticipate a high increase in peak demand, they may invest a lot to capture the expected 

profits.  
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yearly mothballed capacity for CCGTs and CTs. While no significant change is 

observed for CTs, the average ratio of mothballed CCGTs increases from 30% to 

43% as a result of a higher price cap. These observations indicate that increasing 

the price cap in an energy-only market tends to exacerbate the severity of 

mothballing.  

Table 9. Intensity of mothballing with a higher energy price cap 

  
Energy-only market with a 

price cap of 3 k€/MWh 

Energy-only market with a 

price cap of 22 k€/MWh 

Frequency of mothballing 

(average number of years with at least 

one mothballed plant over the 

simulation horizon) 

28 30 

Severity of mothballing 

(average ratio of yearly 

mothballed capacity by 

technology) 

CCGT 30%133 43% 

CT 36%134 36% 

 

The correlation between the energy price cap and the severity of mothballing can 

be intuitively explained by the fact that a higher price cap implies a higher 

profitability during scarcity hours and thus more opportunities to recover fixed 

costs. Recalling that mothballing is particularly interesting when plants’ revenues 

cover only part of their fixed costs, when potential revenues are higher, there is a 

better chance of plants being mothballed or kept active, all things remaining equal. 

The explanation is that prices become far more volatile (as explained hereafter), 

which makes mothballing more attractive.  

Focusing now on the different indicators designed to analyse the impact of 

mothballing decisions, it appears that increasing the price cap reduces the impact 

of mothballing on shutdown and investment dynamics. Indeed, Figure 39 shows 

how these dynamics are modified in presence of scarcity pricing. Unlike the results 

presented previously, it is difficult to conclude on the statistical significance of the 

                                       

133 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  

134 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  
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estimated effects in the case of a scarcity pricing since the 95% confidence bands 

consistently include zero. As mentioned above, when the price cap increases, there 

is a better chance of plants being kept active or mothballed instead of being shut 

down. This leads to more occurrences of the outcome 𝐸𝑂3 which in turn mitigates 

the effects of mothballing. 

Figure 39. Impact of mothballing on shutdown and investment 

dynamics with a higher energy price cap (focus on CTs)135 

  
While shutdown and investment dynamics are less affected by mothballing 

decisions when the energy price cap is increased, effects on security of supply and 

shortages seem to be amplified. Table 10 highlights the impact of mothballing on 

shortages and average energy prices in presence of scarcity pricing. The numbers 

indicate a magnified effect of mothballing on both indicators compared to the case 

with a lower price cap. For instance, the average increase in shortages resulting 

from mothballing corresponds to a factor of 88 with scarcity pricing, compared to 

22 with a price cap of 3 k€/MWh. Similarly, the average increase in electricity 

prices corresponds to a factor of 8 with scarcity pricing, while it is only a factor of 

2 with a price cap of 3 k€/MWh. 

                                       

135 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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Table 10. Impact of mothballing on shortages and energy prices with a 

higher energy price cap 

  
Energy-only market with a 

price cap of 3 k€/MWh 

Energy-only market with a 

price cap of 22 k€/MWh 

Increase in 

shortages 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 22.1 87.8 

Standard deviation 27.1 113.2 

95%-confidence interval [16.8 ; 27.4] [65.6 ; 110.0] 

Increase in energy 

prices 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 2.2 7.8 

Standard deviation 2.0 6.3 

95%-confidence interval [1.8 ; 2.6] [6.5 ; 9.0] 

 

These last results are directly related to the observations on the severity of 

mothballing. Indeed, more frequent and intense mothballing translate into more 

capacity being withheld from the market, therefore leading to more shortages and 

more price spikes. The behaviour of the energy-only market in a world where 

agents have the possibility to mothball their assets poses crucial policymaking 

issues, especially regarding capacity adequacy-related market design. As 

discussed throughout this section, the opportunity to mothball plants negatively 

affects security of supply in these types of markets and at the same time modifies 

investment and shutdown signals. Instead of reducing these effects, scarcity 

pricing leads in fact to even more detrimental outcomes in terms of security of 

supply by making mothballing more attractive.  

 Lower residual demand volatility limits the effects of 

mothballing 

Mothballing decisions and uncertainty are intrinsically related. The more uncertain 

the environment, the more attractive mothballing can be for agents seeking to 

avoid temporary losses. In order to verify this intuition, a sensitivity analysis is 

run on the main source of uncertainty in the simulations, which is the electricity 

demand. In all previous sections, a highly uncertain demand with a standard 

deviation of 5% for the evolution of the peak load was considered. For the 

sensitivity analysis, a standard deviation of 2.5 % is considered and all other 

simulation parameters remain unchanged (compared to the base case simulation).  
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Looking at aggregate indicators on the intensity of mothballing, the first 

observation is that both the frequency and severity of mothballing decrease when 

there is less uncertainty (see Table 11). The average number of years with 

mothballing decreases from 28 to 25 years (over the 40 years of simulation). 

Nonetheless, the average proportion of mothballed capacities drops significantly, 

for both CCGTs and CTs. This suggests less pronounced impacts in terms of long 

run dynamics, shortages levels, and energy prices.  

Table 11. Intensity of mothballing with lower demand uncertainty 

  

Base case 

(5% standard deviation for 

electricity growth rate) 

Alternative case 

(2.5% standard deviation 

for electricity growth rate) 

Frequency of mothballing 

(average number of years with at least 

one mothballed plant over the 

simulation horizon) 

28 25 

Severity of mothballing 

(average ratio of yearly 

mothballed capacity by 

technology) 

CCGT 30%136 10% 

CT 36%137 19% 

As expected, a reduced intensity of mothballing leads to less interference with 

investment and shutdown dynamics. Figure 40 below shows that no clear trend 

emerges on the long run, as mothballing merely creates small deviations.  

                                       

136 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  

137 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  

 



Mothballing in power markets: conflicting private incentives and capacity adequacy objectives 

168 

Figure 40. Impact of mothballing on long run dynamics with lower 

demand uncertainty 138 

  
Regarding shortages and energy prices, mitigated effects are observed, although 

still noteworthy (see Table 12). On average, mothballing still lead to shortages 

levels that are 4 times higher compared the setting without mothballing. Energy 

prices are also still 10% higher in the setting with mothballing on average, but this 

effect does not seem to be statistically significant given the corresponding 

confidence interval. It should be noted that these results are more in line with 

what would happen in an actual power system with realistic market conditions 

(compared to the scenario in the base case where demand is highly volatile).  

 

 

 

 

 

                                       

138 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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Table 12. Impact of mothballing on shortages and energy prices with 

lower demand uncertainty 

  

Base case 

(5% standard deviation 

for electricity growth 

rate) 

Alternative case 

(2.5% standard deviation 

for electricity growth 

rate) 

Increase in 

shortages 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 22.1 3.8 

Standard deviation 27.1 3.7 

95%-confidence interval [16.8 ; 27.4] [3.1 ; 4.6] 

Increase in energy 

prices 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 2.2 1.1 

Standard deviation 2.0 1.1 

95%-confidence interval [1.8 ; 2.6] [0.9 ; 1.3] 

 

 Variation of mothballing and restart costs 

All the results presented above relied on an assumption that mothballing and 

restarting costs are each equivalent to 25% of annual O&M costs. This number is 

the only value in the existing literature (Frontier Economics, 2015b). Mothballing 

costs are usually strategic information that utilities do not disclose. In order to test 

the robustness of the simulation results (regarding mothballing intensity) 

presented here, a sensitivity analysis is carried out with respect to 

mothballing/restarting costs.  

Table 13 indicates that mothballing severity (% of yearly mothballed capacity 

relative to the technology’s installed capacity in the same year) varies depending 

on mothballing/restarting costs assumptions for CCGTs and CTs. The cheaper it is 

to mothball and restart assets (alternative case 1), the more mothballing is an 

attractive option for agents. This is illustrated by the increased intensity of 

mothballing in alternative case 1. Conversely, if mothballing becomes very 

expensive, then agents have a limited interest of adopting it, as highlighted by the 

results for alternative case 2.  
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Table 13. Intensity of mothballing with alternative mothballing/restart 

costs assumptions 

  

Alternative case 1 

(5% of annual 

O&M costs) 

Base case 

(25% of annual O&M 

costs) 

Alternative case 2 

(75% of annual O&M 

costs) 

Frequency of mothballing 

(average number of years with 

at least one mothballed plant 

over the simulation horizon) 

29 28 0 

Severity of 

mothballing 

(average ratio of 

mothballed 

capacity by 

technology) 

CCGT 39% 30%139 0% 

CT 35% 36%140 0% 

 

The results in terms of mothballing intensity are reflected in other dimensions of 

mothballing, notably regarding its impact on long-run dynamics, shortages and 

electricity prices. Figure 41 shows the results for long-run dynamics. Results for 

shortages and electricity prices are illustrated in Table 14. Overall the sensitivity 

analysis regarding mothballing/restarting costs confirms the expected reaction of 

the model in terms of changes in the mothballing/restarting cost structure and is 

in line with the rationale of mothballing decisions. 

                                       

139 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  

140 This ratio is computed with respect to the technology’s installed capacity. Based on the simulations, this would 

represent about 15% of total installed capacity.  
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Figure 41. Impact of mothballing on long run dynamics with 

alternative mothballing/restart costs assumptions141 
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141 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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Table 14. Impact of mothballing on shortages and energy prices with 

alternative mothballing/restart costs assumptions 

  

Alternative case 1 

(5% of annual O&M 

costs) 

Base case 

(25% of annual 

O&M costs) 

Alternative case 2 

(75% of annual 

O&M costs) 

Increase in 

shortages 

(X times the 

level observed 

in the setting 

without 

mothballing) 

Average 35.0 22.1 1 

Standard deviation 42.9 27.1 NA 

95%-confidence 

interval 
[26.6 ; 43.5] [16.8 ; 106.7] NA 

Increase in 

energy prices 

(X times the 

level observed 

in the setting 

without 

mothballing) 

Average 2.4 2.2 1 

Standard deviation 2.1 2.0 NA 

95%-confidence 

interval 
[2.0 ; 2.8] [1.7 ; 1.8] NA 
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5. Analysing mothballing in capacity markets 

5.1. In capacity markets, mothballing can modify the arbitrage 

between existing and new capacities in capacity auctions 

Unlike the energy-only market, shutdown and investment decisions in a capacity 

market are only known after the clearing of the capacity auction. Given this 

difference, the analysis regarding the expected effects of mothballing on 

investments and shutdowns presented for the energy-only market cannot be 

transposed here. Nonetheless, some interesting insights can be derived for 

capacity markets.  

As presented in section 2.3, existing capacities and new capacities submit their 

bids for the capacity auction based on their respective anticipations. When 

mothballing is available, existing plants include an opportunity cost of staying 

active (compared to being mothballed) in their capacity bids. This increases their 

bids142 to an extent that makes some existing plants (even recent ones) less 

attractive than a new investment. It changes the dynamics of the capacity auctions 

by making existing plants more expensive than what would be the case if 

mothballing was not available to agents.  

From a long-run point of view, this translates in a preference for new capacities 

(and thus investments) when agents’ have the possibility to mothball their assets. 

The graphs on Figure 42 illustrate this long-run effect through a comparison of 

shutdown and investment levels between the setting with mothballing (𝑆𝑀𝑜𝑡ℎ) and 

the one without mothballing (𝑆𝑁𝑜𝑀𝑜𝑡ℎ). A focus is made on CTs and coal plants 

which exhibit results that are partially significant (statistically).  

                                       

142 The impact of mothballing capacity prices is covered more extensively in the next section. 
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Figure 42. Impact of mothballings on shutdown and investment 

dynamics in capacity markets143 

  

  

  
 

                                       

143 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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For CTs and coal, an effect on shutdown and investment dynamics is visible, 

although moderate in most cases. In the capacity market, mothballing tends to 

lead to more shutdowns as well as more investments. The curves corresponding 

to the upper and lower bound delimits a 95% confidence band. They show that the 

results are not always statistically significant for CT shutdowns since the 

confidence band includes the horizontal axis. For CT investments, results are 

statistically significant. For coal plants, the tendency is reversed. Impact on 

shutdowns appear to be statistically significant in some years, while impact on 

investments are not. These findings suggest that mothballing leads to a 

substitution of (existing) coal plants by (new) CTs, through the capacity auction. 

This is coherent with the explanations above regarding the preference for new 

investments compared to existing plants.  

5.2. In capacity markets, mothballing has limited impact on 

shortages, energy prices and capacity prices 

Figure 43 shows the distribution of the difference in shortages between the setting 

with mothballing (𝑆𝑀𝑜𝑡ℎ) and the one without mothballing (𝑆𝑁𝑜𝑀𝑜𝑡ℎ). As for all the 

distributions presented in this chapter, the differences are computed with respect 

to 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Values higher than 1 correspond to cases where the shortages in 𝑆𝑀𝑜𝑡ℎ 

are higher than those in 𝑆𝑁𝑜𝑀𝑜𝑡ℎ and values lower than one correspond to the 

opposite cases. The distribution on Figure 43 indicates that in the capacity market, 

mothballing has no impact on shortages on average, according to simulations. The 

95% confidence interval suggests that the differences in terms of shortages 

between the studied settings are not statistically significant. Indeed the 95% 

confidence interval includes the value 1 (which is equivalent to a difference in 

shortages of 0% between the settings).  
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Figure 43. Impact of mothballings on shortages in capacity 

market144 

 

On Figure 44, differences in capacity prices between the studied settings are 

displayed. 𝑆𝑀𝑜𝑡ℎ seems to experience capacity prices that are similar to those 

observed in 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. The statistical significance test indicates that the differences 

between the settings are not significant145.  

                                       

144 Values higher than 1 indicate that there are more shortages in setting 𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. 

Conversely, values lower than 1 indicate the opposite. The segment inside the rectangle shows the median and 

"whiskers" above and below the box indicate the minimum and maximum points. 

145 Indeed the 95% confidence interval includes the value 1, which is equivalent to a difference in prices of 0% 

between the settings. 

 

95% confidence interval: [0.73 ; 1.17] 
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Figure 44. Impact of mothballings on capacity prices in capacity 

market146 

 

Regarding energy prices, the simulation results do not highlight any clear impact 

either. Figure 45 indicates that energy prices are overall similar in both settings. 

The difference in energy prices does not seem to be statistically significant as 

suggested by the 95% confidence interval which includes the value 1 (i.e., a 

difference of 0% between the studied settings). Therefore, there is no systematic 

impact of mothballing on energy prices in the capacity market.  

                                       

146 Values higher than 1 indicate that prices are higher in setting 𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Conversely, 

values lower than 1 indicate the opposite. The segment inside the rectangle shows the median and "whiskers" 

above and below the box indicate the minimum and maximum points. 

95% confidence interval: [0.71 ; 1.19] 
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Figure 45. Impact of mothballings on energy prices in capacity 

market147 

 

5.3. From a social welfare perspective, capacity markets realign 

private agents’ incentives with capacity adequacy objectives 

The results discussed above are based on the assumption that agents behave in a 

perfectly rational way and always make their bids with respect to their opportunity 

cost. In other words, the higher bids from existing plants (induced by the 

possibility to mothball), are not a result of any strategic behaviour. They are due 

to a mismatch between private agents’ interests and capacity adequacy objectives 

(the asymmetrical incentives between under-procurement and over-procurement 

of capacity). While the mismatch is related to the inelasticity of peak demand and 

capacity indivisibility, mothballing creates an opportunity for it to manifest (see 

discussion for energy-only markets in section 4.3). 

Capacity markets try to realign private incentives with adequacy objectives 

through the capacity price but can only succeed in doing so when the capacity 

price cap is not a limiting factor. From a social welfare perspective, this mitigates 

                                       

147 Values higher than 1 indicate that prices are higher in setting 𝑆𝑀𝑜𝑡ℎ compared to setting 𝑆𝑁𝑜𝑀𝑜𝑡ℎ. Conversely, 

values lower than 1 indicate the opposite. The segment inside the rectangle shows the median and "whiskers" 

above and below the box indicate the minimum and maximum points. 

95% confidence interval: [0.77 ; 1.19] 
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the negative effect of mothballing associated to the higher levels of shortages it 

may create. Table 14 below illustrates the net effect of mothballing on social 

welfare in the capacity market considered for the simulations.  

Table 15. Impact of mothballing on system costs in a capacity market 

(based on the considered simulation parameters) 

Cost components 

Average increase in cost component (related to 

mothballing) % of total system costs observed in 

the setting without mothballing 

Cost of shortages148 -0.2% 

Generation costs 0.1% 

O&M costs -0.1% 

Annualised investment costs  

(of installed capacity) 
-0.2% 

Total additional costs -0.4% 

 

Capacity markets reduce the occurrence of mothballing and thereby the magnitude 

of their impact on social welfare. Overall, mothballing has a negligible impact on 

social welfare, according to simulations. It should be noted that the impact on 

shortages is not statistically significant as explained in section 5.2. The appearing 

reduction of costs related to shortages does not mean that mothballing reduces 

shortages in a capacity market. The reduction in O&M costs related to mothballing 

is less pronounced, as expected. A reduction in annualised investment costs is also 

observed due to mothballing. This comes from the substitution between coal and 

CTs described above. Indeed, since CTs have lower investment costs than coal, 

replacing coal by CTs contributes to lowering total annualised investment costs.  

5.4. Sensitivity analysis 

The sensitivity analysis carried out in the previous section confirmed some 

intuitions about the impact of demand uncertainty and mothballing/restart cost 

structure on mothballing. When uncertainty is lower, agents are less prone to 

mothball their assets. Also, mothballing becomes less attractive as it becomes 

                                       

148 Assuming a VoLL of 22 k€/MWh. 
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more expensive. These intuitions are also true for capacity markets. In this section, 

the sensitivity analysis focuses on the capacity price cap which is the new 

parameter (compared to the section on energy-only markets). An alternative 

capacity price cap of 40 k€/MW (instead of 80 k€/MW) is considered for the 

sensitivity analysis.  

Table 16. Intensity of mothballing with lower capacity price cap 

  

Base case 

(capacity price cap at 

80 k€/MW) 

Alternative case 

(capacity price cap at 

40 k€/MW) 

Frequency of mothballing 

(average number of years with at 

least one mothballed plant over the 

simulation horizon) 

3 2 

Severity of 

mothballing 

(average ratio of 

yearly mothballed 

capacity by 

technology) 

CCGT 3% 2% 

CT 1% 1% 

 

As highlighted in Table 16, lowering the capacity price cap has little effect on 

mothballing intensity. The frequency and severity of mothballing remain negligible, 

confirming the ability of the capacity market to avoid mothballing. In terms of 

long-term dynamics, the main trends discussed in section 5.1 are still observed, 

meaning that the possibility to mothball leads to a preference for new plants 

instead of existing ones in capacity auctions (see Figure 46). Finally, the results 

regarding shortages, capacity prices and energy prices are still negligible (see 

Table 17), which is consistent with the results on the intensity of mothballing. 

Overall, the sensitivity analysis suggests that changing the capacity price cap does 

not affect the main results presented in this section.  
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Figure 46. Impact of mothballing on long run dynamics with lower 

capacity price cap149 

C
a
p

a
c
it

y
 p

r
ic

e
 c

a
p

 o
f 

4
0

 k
€

/
M

W
 

  

C
a
p

a
c
it

y
 p

r
ic

e
 c

a
p

 o
f 

4
0

 k
€

/
M

W
 

  

 

 

 

 

 

                                       

149 Positive values on the graphs indicate that mothballing leads to more shutdowns (respectively more 

investments). Conversely, negative values indicate that mothballing leads to less shutdowns (respectively 

investments). The lower and upper bounds correspond to a 95% confidence interval. 
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Table 17. Impact of mothballing on shortages, capacity prices and 

energy prices with lower capacity price cap 

  

Base case 

(capacity price cap at 

80 k€/MW) 

Alternative case  

(capacity price cap at 

40 k€/MW) 

Increase in 

shortages 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 0.95 0.95 

Standard deviation 1.14 1.15 

95%-confidence interval [0.73 ; 1.17] [0.72 ; 1.17] 

Increase in 

capacity prices 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 0.95 0.96 

Standard deviation 1.23 1.20 

95%-confidence interval [0.71 ; 1.19] [0.72 ; 1.20] 

Increase in energy 

prices 

(X times the level 

observed in the 

setting without 

mothballing) 

Average 0.98 0.99 

Standard deviation 1.08 1.06 

95%-confidence interval [0.77 ; 1.19] [0.78 ; 1.20] 
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6. Chapter conclusions 

Long-time overlooked in modelling studies because of its rare occurrence, 

mothballing has become a more frequent practice in European markets. Most 

utilities have used it to preserve part of their generation assets from temporary 

unfavourable market conditions. While this strategy is justified from a private 

company’s perspective, it has a direct impact on capacity adequacy since it reduces 

the level of available capacity. Moreover, this strategy may have unexpected long-

run effects that are still not understood in the current literature. This chapter feeds 

onto the ongoing debates about capacity adequacy in the transforming European 

electricity markets. It proposes a detailed analysis of the behaviour of an energy-

only market and a capacity market in presence of mothballing decisions and 

highlight a number of insights that can inform policy making.  

The analysis is based on a Monte Carlo approach applied to a simulation model, 

which endogenously represents all investment, mothballing and shutdown 

decisions in a liberalised electricity market. This model is based on the System 

Dynamics methodology. To properly capture the effect of mothballing, two power 

systems are compared: a system in which agents cannot mothball their plants and 

one in which mothballing is an available strategy. These systems present identical 

initial conditions and differ only by the presence or absence of mothballing. All 

differences observed between the systems are therefore consequences of 

mothballing. The discussion focuses on the impact of mothballing in terms of 

investment/shutdown dynamics, security of supply (measured through shortages), 

electricity prices and capacity prices.  

Simulations show that if the possibility to mothball exists, it modifies shutdown 

and investment signals, in a potentially persistent way depending on the system. 

More specifically, the results indicate that CTs and coal plants are the most affected 

by these changes. By mothballing part of their plants, agents defer shutdown 

decisions and, consequently, potential investment decisions in energy-only 

markets. This results in lower levels of shutdowns and investments compared to a 

situation where mothballing is not possible. Regarding security of supply, the 

results suggest a negative impact of mothballing. It also leads to prices that are 

higher on average (compared to a world where mothballing is not possible).  
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To complement the analysis, the same simulations were run on an energy-only 

market with scarcity pricing (i.e., the price cap is set at the VoLL). The associated 

results provide some additional insights regarding the impact of mothballing in an 

energy-only market. First, it appears that increasing the price cap in an energy-

only market increases the intensity of mothballing. Indeed, a higher price cap 

translates into potentially higher but more volatile revenues, which makes 

mothballing a plant more attractive than shutting it down or keeping it active, all 

things equal. Interestingly, this reduces the changes in investment and shutdown 

dynamics induced by mothballing. However, the impacts on security of supply and 

electricity prices are exacerbated instead, because of the increased severity of 

mothballing. 

In the case of capacity markets, when agents have an incentive to mothball their 

plants instead of keeping them active, committing to stay active through a capacity 

contract creates an opportunity cost for them. They may thus try to internalise this 

opportunity cost in their capacity bid, which, in addition to ensuring cost recovery, 

will also need to cover the perceived opportunity cost. Due to this, the merit-order 

between existing and new capacities may be modified in capacity auctions, to an 

extent that sometimes results in a preference for new capacities instead of existing 

ones. Mothballing can therefore modify investment and shutdown dynamics even 

in capacity markets. Notwithstanding that, capacity markets do not appear to be 

affected by mothballing in terms of shortages, electricity prices and capacity 

prices. Through the capacity price, capacity markets try to realign private 

incentives with adequacy objectives by remunerating private agents to keep their 

assets active.  

The results of this analysis bring three main contributions to the current literature. 

Firstly, from a modelling perspective, they highlight the importance of considering 

mothballing in long-term simulation models of power markets. They show how 

models that neglect mothballing decisions might lead to misleading conclusions for 

energy-only and capacity markets. Secondly, these results point out some 

limitations of energy-only market that are new in the literature on market design 

for capacity adequacy. In this regard, one particularly important caveat of energy-

only markets relates to their behaviour when scarcity pricing is applied in presence 

of mothballing. While this market architecture is argued to be a valid alternative 

to capacity remuneration mechanisms for the provision of long-term security of 
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supply, it is showed that its performance can be significantly affected in a world of 

high uncertainty and the possibility to mothball. Thirdly, it is showed that capacity 

markets can realign private investors’ incentives and capacity adequacy objectives 

through the capacity price.  

To conclude, the analysis presented in this chapter could be refined by considering 

more granular mothballing periods for instance. Here, mothballing is only decided 

on a yearly basis and for a full year. In reality, agents can mothball their plants 

just for a few months (during the summer for instance) which allows them to 

exploit even more the option value of mothballing. Moreover, all the numbers 

resulting from the simulations remain illustrative and are not relatable to any real 

power system because of an absence of reliable data on actual mothballing costs. 

A possible extension of this work, which may help overcome this caveat would be 

the development of an empirical approach to estimate mothballing costs based on 

available market data.  

Another relevant extension would be to use the model for a comprehensive 

comparison of the performances of market design options. The next chapter 

provides such an analysis by assessing the ability of several market designs to 

deliver long-term capacity adequacy in a context massive deployment of RES. It 

contributes to the current debate on security of supply in face of the ongoing 

energy transition. 
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Abstract 

This chapter provides a comprehensive comparison of several market design 

options for ensuring long-term capacity adequacy in the context of energy 

transition. It considers a system subject to a high penetration of renewables, which 

is consistent with the current transformation of power systems across the world, 

and in Europe in particular. The comparison is done from a social welfare 

perspective, with discussions on other specific dimensions that are relevant to 

policymaking: security of supply (i.e., capacity adequacy itself), costs for 

consumers, investment risk and profitability of capacity resources. 

Five market designs are studied and compared: an energy-only market with an 

administrative price cap, an energy-only market with scarcity pricing where the 

price cap equates the VoLL, a strategic reserve mechanism, a capacity market with 

annual capacity contracts and a capacity market with multiannual capacity 

contracts for new investments. To this end, a dynamic simulation model inspired 

from the System Dynamics methodology, is developed to represent endogenously 

investment, mothballing and shutdown decisions from market participants.  

The chapter includes six sections. Section 1 introduces the research question and 

its context. Section 2 covers the methodology, in particular the modelling of a 

capacity market with multiannual contracts. Section 3 describes the case study 

used for simulations. Section 4 provides a discussion on the simulations results. A 

sensitivity analysis is presented in section 5. The main takeaways of the chapter 

are highlighted in section 6.  
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Résumé en français 

Ce chapitre propose une comparaison détaillée de plusieurs architectures de 

marché destinées à améliorer la sécurité d’approvisionnement dans le contexte de 

la transition énergétique. Il considère un système soumis à une forte pénétration 

d’énergies renouvelables, conformément à la transformation actuelle des systèmes 

électriques dans le monde et en Europe en particulier. La comparaison est faite du 

point de vue du surplus social, avec une discussion sur d’autres dimensions 

pertinentes pour l’élaboration des politiques publiques : la sécurité 

d’approvisionnement, le coût pour les consommateurs, le risque d’investissement 

et la rentabilité des actifs. 

Cinq architectures de marché sont étudiées : un marché uniquement basé sur la 

rémunération de l’énergie avec un plafond de prix relativement bas, un marché 

basé sur la rémunération de l’énergie mais avec une tarification au coût de 

l’énergie non distribuée, un mécanisme de réserve stratégique, un marché de 

capacité avec des contrats de capacité annuels ainsi qu’un marché de capacité 

avec des contrats de capacité pluriannuels pour les nouveaux investissements. 

Pour ce faire, un modèle de simulation dynamique inspiré de la méthodologie 

System Dynamics est développé afin de représenter de manière endogène les 

décisions d'investissement, de mise sous cocon et de fermeture prises par les 

acteurs du marché. 

Le chapitre comprend six sections. La section 1 présente la question de recherche 

et son contexte. La section 2 aborde la méthodologie, en particulier la modélisation 

d'un marché de capacité avec des contrats pluriannuels. La section 3 décrit l’étude 

de cas utilisée pour les simulations. La section 4 fournit une discussion sur les 

résultats des simulations. Une analyse de sensibilité est présentée dans la section 

5. Enfin, les principales conclusions du chapitre sont présentées dans la section 6. 
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1. Introduction 

1.1. Context and motivation 

One of the crucial aspects of the ongoing energy transition in Europe is the ability 

of current electricity markets to accommodate the integration of high shares of 

renewable energy sources (RES). More precisely, questions are being raised 

regarding the impact of renewables on investment incentives in thermal 

technologies, possibly needed to cope with the variability of electricity generation 

from RES (Steggals et al., 2011). The recent wave of power plant mothballing150 

and investment delaying or cancelling reflect the industry’s concerns regarding the 

profitability of those assets (Caldecott et al., 2014).  

The above-mentioned issues add another layer to the long-lasting debate on the 

appropriate market designs to ensure capacity adequacy in electricity markets, 

particularly in the context of an increasing penetration of renewables. The 

literature on the subject has highlighted the limits of existing energy-only markets 

in providing optimal investment incentives. In an energy-only market, electricity 

generators’ revenues are solely based on the energy sold and ancillary services. 

In theory, a well-functioning energy-only market with scarcity pricing (i.e., a 

market in which prices are allowed to reach the Value of Lost Load or VoLL during 

scarcity periods) enables generators in each type of technology to earn just enough 

revenues to recover their total costs, therefore inducing a socially optimal mix of 

capacity in the long run. However, in practice, several market failures prevent such 

markets from achieving this goal as explained in the general introduction of this 

dissertation. 

First, for political, regulatory, and social considerations, prices in most electricity 

markets are capped at a lower level than the VoLL, thus reducing the scarcity rents 

of generators. This effect is even more pronounced with the penetration of 

                                       

150 Mainly Combustion Turbines (CT) and Combined Cycle Gas Turbines (CCGT). Mothballing consists in 

temporarily shutting down a generation asset, while taking appropriate preservation measures to ensure that the 

asset can be operational again when needed.  
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renewables (De Sisternes and Parsons, 2016; Sensfuß et al., 2008). Second, risk 

aversion151 and potential herd behaviour from investors may lead to cyclical 

tendencies in investments and cause deviations from the optimal equilibrium 

(Arango and Larsen, 2011). Both these factors constitute barriers to the proper 

functioning of energy-only markets and can lead to sub-optimal levels of 

investment, resulting in more shortages than socially desirable. 

Alternative market designs are being proposed and implemented in several 

European countries in the hopes of restoring adequate investment incentives (see 

Table 18 hereafter). Among these designs are capacity remuneration mechanisms 

(CRMs). CRMs are add-ons to the energy-only market that remunerate power 

plants for their installed capacity in addition to the immediate revenues they 

receive from energy markets. CRMs can take various forms152 but the most 

widespread are the capacity market and the strategic reserve mechanism.  

In a capacity market, capacity is contracted either through a centralised auction 

or on a decentralised basis. Both existing and new capacities are eligible to take 

part in capacity contracts. In a strategic reserve mechanism however, only existing 

capacities on the verge of being shut down can benefit from a capacity payment 

to stay available. These capacities are withdrawn from the energy market and 

called upon only during scarcity periods. France, UK and Poland have adopted the 

capacity market mechanism, while Finland, Germany and Sweden have 

implemented strategic reserve mechanisms. Another alternative to a price-capped 

energy-only market is an energy-only market with scarcity pricing, in which 

electricity prices are allowed to reach the VoLL during scarcity periods. To date, 

there are few European countries using a scarcity pricing system153, although it 

                                       

151 Risk aversion alone does not raise any issue as long as there is a complete set of markets that enables 

investors to fully hedge their risk (De Maere d’Aertrycke et al., 2017). In the electricity sector, there is a problem 

of market incompleteness which, associated with risk aversion, can lead to suboptimal decisions from investors 

(De Maere d’Aertrycke et al., 2017; Finon, 2011; Willems and Morbee, 2010).  

152 For a discussion on design options and typology of CRMs see Batlle and Pérez-Arriaga (2008) or Cramton et 

al. (2013). 

153 An exception is the UK, which has a balancing mechanism that implements a form of scarcity pricing. When 

the system operator does not have enough capacity resources (generation or demand response) to balance supply 

and demand, it uses contingency options. During these events, the imbalance price is set at the VoLL (which was 

set at 3 000 £/MWh in 2018). For more details, interested readers can refer to ELEXON (2018). 
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seems to be the preferred option for the European Commission in its Clean Energy 

Package (European Commission, 2017, 2016a; Meeus and Nouicer, 2018).  

Table 18. Description of market designs for generation adequacy 

Market design Description of energy market Description of CRM 

 Description 
Important  

parameter(s) 
Description 

Important  

parameter(s) 

Energy-only 

market with 

administrative 

price cap 

Generators received 

revenues from selling 

electricity on the 

energy market.  

Electricity prices on 

the energy market 

are capped at an 

administrative price 

below the VoLL No CRM No CRM 

Energy-only 

market with 

scarcity pricing 

Electricity prices on 

the energy market 

are capped at the 

VoLL 

Energy-only 

market + 

Capacity market 

Electricity prices on 

the energy market 

are capped at an 

administrative price 

In addition to their 

revenues on the 

energy market, 

generators also 

receive capacity-

based revenues 

depending on their 

available capacity  

Prices in the capacity 

auction are capped at 

a value reflecting the 

annualised cost of a 

new plants154 

Energy-only 

market + 

Strategic reserve 

mechanism 

Some capacity 

resources 

(generation 

capacities usually) 

are removed from 

the energy market 

and placed in a so-

called strategic 

reserve. 

 

These resources 

receive a capacity-

based revenue for 

their availability and 

an energy-based 

revenue upon 

activation (when they 

are asked to produce 

electricity) 

Prices in the strategic 

reserve auction are 

capped at a 

predetermined value 

 

The size of the 

strategic reserve is 

limited 

                                       

154 The price cap of capacity auctions is generally a multiple of the Net Cost of New Entry (CONE), which 

represents the capacity revenue that a new peaking unit would need to cover its total annual fixed costs (including 

capital costs). The Net CONE is computed by subtracting expected revenues from the energy market from annual 

fixed costs. The multiplying factor allows the system operator to account for uncertainties about the estimated 

CONE but also potential risk aversion from investors. In the UK and PJM, the multiplying factor is 1.5 for instance 

(UK Department of Energy & Climate Change, 2014b).  



Capacity adequacy in a context of non-increasing demand and high renewable penetration: a 
discussion on market design options 

195 

 

From an economic point of view, the choice of a market design should be based 

on an assessment of its economic performance relative to the others. This 

assessment relies heavily on simulation models that aim to capture the 

characteristics and dynamics of electricity markets. Three characteristics are 

particularly important to consider when addressing capacity adequacy issues: (i) 

the cyclical tendency of electricity markets, (ii) the endogenous nature of agents’ 

decisions and, (iii) their imperfect behaviour (such as risk aversion, herd 

behaviour, etc.). 

As illustrated by (Arango and Larsen, 2011; Ford, 1999), electricity markets exhibit 

a propensity to capacity cycles leading to a succession of over and under-capacity 

phases. These cycles present a threat to security of supply as they increase 

uncertainty and distort investment signals (Green, 2006). Because of this cyclical 

tendency, electricity markets usually operate out of equilibrium. An analysis of 

electricity markets from a dynamic perspective is therefore needed to account for 

out-of-equilibrium phases.  

Moreover, analysing capacity adequacy by the means of electricity market models 

requires that all agents’ decisions that may affect the level of installed capacity are 

properly represented. Agents’ decisions must therefore be endogenous with 

respect to their expectations. These decisions include not just investments and 

shutdowns, but also mothballings (Abani et al., 2017; Arango et al., 2013). In this 

regard, the results of Chapter II highlighted the importance of considering 

mothballing in the assessment of the performance of market designs. Finally, the 

imperfect behaviour of agents resulting from risk aversion (Meunier, 2013; 

Neuhoff and De Vries, 2004; Ousman Abani et al., 2018) or herd behaviour (Hary 

et al., 2016; Olsina et al., 2006) plays a crucial role in their decision making and 

ultimately on capacity adequacy. This was one of the main results of the first 

chapter of this dissertation. Hence, these aspects should be accounted for in the 

assessment of market designs.  

In this chapter, emphasis is made on an additional dimension that has become 

crucial. It is the impact of RES deployment on investment incentives (Bhagwat et 

al., 2016b; Gerres et al., 2019; Llobet and Padilla, 2018; Newbery et al., 2018; 
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Sisternes and others, 2014; Weiss et al., 2017). Indeed, as explained above, the 

integration of high shares of RES affects the profitability of thermal generation 

technologies which are still needed to ensure security of supply in the absence of 

large-scale storage or highly flexible demand response. Although the literature on 

capacity adequacy highlights the importance of the characteristics presented 

above (cyclical behaviour, all types endogenous decisions, risk aversion, etc.), 

existing simulation models rarely take them all into account at once. The next 

section provides a literature review of simulation modelling studies centred on the 

issue of capacity adequacy in liberalised electricity markets155.  

1.2. Existing literature on market designs comparison based on 

modelling 

The literature on simulation models can be summarised in two main categories: 

equilibrium-based models and non-equilibrium models156. The first category of 

models considers electricity markets in an equilibrium state, and hence make the 

implicit assumption that an equilibrium will be reached. This category mostly 

concerns optimization models trying to minimize total costs or maximize social 

welfare. On the contrary, non-equilibrium models do not presume that the studied 

markets will reach an equilibrium, and instead try to recreate as closely as possible 

the dynamics and characteristics of the markets. An equilibrium may emerge from 

market participants’ interactions, but there is no guarantee that this will always be 

the case. This second category covers agent-based (AB) models, which explicitly 

represent the interactions of several market participants and system dynamics 

(SD) models, which analyse electricity markets from an aggregated perspective. 

The literature review is summarised in Table 19.  

                                       

155 There is also a rich literature that addresses capacity adequacy issues through the lenses of game theory 

and other analytical models inspired from industrial organisation (Creti and Fabra, 2007; Fabra, 2018; Fan et al., 

2012; Hary et al., 2016; Lambin and Léautier, 2018; Léautier, 2016; Llobet and Padilla, 2018; Murphy and 

Smeers, 2005). Although this literature provides interesting insights, it falls out of the scope of this chapter as it 

does not rely on simulation models.  

156 For a more general taxonomy of electricity market models, see Ventosa et al. (2005). It should be noted 

however that the taxonomy used in this chapter is different from the one used by Ventosa et al. (2005). Here, 

“equilibrium-based model” should be understood as a model which assumes equilibrium, rather than an actual 

equilibrium model as it is presented in Ventosa et al. (2005).  
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 Equilibrium-based model (optimization) 

Several studies have used equilibrium-based models to study investment 

incentives and capacity adequacy in electricity markets. For instance, Botterud et 

al. (2005) use a stochastic dynamic optimization model to analyse optimal 

investment strategies under uncertainty. A centralised social welfare maximization 

approach and a decentralised profit maximizing approach are compared. Results 

highlight the fact that a price cap below the VoLL can have severe effects on 

system reliability as it contributes to investment deferrals. Furthermore, the 

authors show that a capacity payment helps trigger investment earlier all the while 

creating a risk of overinvestment in peaking units.  

Mastropietro et al. (2016) build on the work of Vazquez et al. (2002) to develop a 

two-stage optimization model to assess the benefit of adding a penalty scheme to 

a CRM. Their results indicate that such schemes provide better incentives for 

capacity contract holders to make themselves available when needed, which in 

turn improves the effectiveness of CRMs. 

Aghaie (2015) analyses the ability of an energy-only market to provide efficient 

investment signals in the presence of several uncertainties (regarding load, 

weather, forced outages, etc.). His analysis indicates that energy-only markets 

yield an efficient outcome in terms of reliability only under the provision that there 

is enough demand response capacity. This findings are complemented in Aghaie 

(2017). The author shows that risk aversion reduces investment incentives, at the 

same time leading to more shortages and an increased utilisation of demand 

response resources in an energy-only market. 

An important part of the relevant literature here is comprised of studies 

commissioned by public authorities or other interested stakeholders. Among them 

are the studies by THEMA Consulting Group et al. (2013) and E3MLab (2017). Both 

studies use large scale optimization models to address electricity market design 

issues at the European level with a strong focus on the question of capacity 

adequacy. They point out, among other things, the importance of CRMs for long-

term capacity adequacy but also highlight the risk of a free-riding effect associated 

with asymmetric implementation of CRMs in neighbouring and coupled countries 

(as the country without a CRM will  benefit for free from the positive effects of the 

CRM implemented in the other). Gore et al. (2016) find similar results by analysing 
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the interaction between a pure energy-only market and an energy-only market 

complemented with a CRM. 

On a smaller scale, FTI CL - Energy (2016), RTE (2018), UFE et al. (2015), Frontier 

Economics and Consentec (2014), and Frontier Economics (2015) apply 

optimization models to assess capacity adequacy in different countries (France, 

Germany and the Netherlands). The first two studies carry out a quantitative 

analysis of market design options to ensure long-term capacity adequacy in 

France. Their results stress how beneficial CRMs are for restoring investment 

incentives, especially in an uncertain environment where investors’ risk 

preferences affect their decisions. Frontier Economics and Consentec (2014) show 

more nuanced results regarding the benefits of CRMs as they argue that, based on 

their model and for the case of Germany, an improved energy-only market is a 

more appropriate option. In the same logic, Frontier Economics (2015) indicates 

that the Dutch energy-only market is capable of ensuring security of supply, even 

in the face of increasing shares of renewables.  

Despite their interesting insights, all the studies presented in this section fail to 

account for one crucial characteristic of the considered electricity, which is their 

cyclical tendency. Some of them do account for several types of decisions by 

market participants, potential risk-averse behaviour from investor or the impact 

of the integration of RES. However, their omission of the cyclical nature of 

electricity markets leads them to ignore over and under-capacity phases, which 

are yet critical in the assessment of long-term security of supply.  

 Non-equilibrium models (agent-based modelling and system 

dynamics) 

Non-equilibrium models have also been used to study capacity adequacy issues. 

Ford (1999), Bunn and Larsen (1992) and Bunn and Larsen (1994) conducted 

some of the earliest works that applied the System Dynamics (SD) methodology 

to study capacity adequacy in liberalised electricity markets. These studies 

highlight the propensity to investment cycles in such markets and illustrate how 

regulatory interventions in the form of a capacity remuneration or a control of 

plants’ retirements can help stabilise markets and reduce uncertainty.  
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Following that, other authors have applied SD to study the dynamics of energy-

only markets (Eager et al., 2012; Olsina et al., 2006). Eager et al. (2012) study 

investments in thermal generation in the context of high Wind penetration in the 

British power system. They illustrate how a lack of sufficient revenues for peaking 

units can affect the security of supply. Olsina et al. (2006) show that an energy-

only market leads to unstable reserve margins because investments are not always 

made in a timely manner to compensate for plants’ retirements and demand 

growth. They attribute this behaviour to imperfect foresight from investors as well 

as investment and construction delays.  

A large stream of literature extends the previous one by comparing different 

market design options (including CRMs) to ensure capacity adequacy (Bhagwat et 

al., 2017a, 2017b; Cepeda and Finon, 2011; De Vries and Heijnen, 2008; Hach et 

al., 2016; Hary et al., 2016; Hasani and Hosseini, 2011; Petitet et al., 2017). They 

all provide quantitative evidence of the benefits of CRMs for securing electricity 

supply. Cepeda and Finon (2011) and Bhagwat et al. (2017c) on the other hand 

focus on the cross-border effects of CRMs. Interestingly, they both highlight similar 

results to those of THEMA Consulting Group et al. (2013), Gore et al. (2016), and 

E3MLab (2017) regarding the free-riding effect associated to an asymmetric 

implementation of a CRM. In addition, they show that, when a capacity market is 

implemented next to an energy-only market, it creates a leakage of capacity from 

the energy-only market to the capacity market.  

Other authors have focused on the analysis of specific features of CRMs and their 

impact of the effectiveness of those CRMs. Hobbs et al. (2007) assess the 

performance of the PJM capacity market for different demand curves. They 

illustrate that using a sloped capacity demand curve instead of a vertical one can 

reduce the cost of providing a desired level of reliability. Assili et al. (2008) 

introduce a refined capacity mechanism with variable capacity payments which are 

contingent to the actual investment needs (instead of a fixed capacity payment). 

Their simulations results indicate that the proposed variable capacity payments 

are preferable to fixed capacity payments to stabilise investment cycles and 

achieve long-term capacity adequacy. 

While the above-mentioned studies, unlike optimization models, succeed in 

integrating the cyclical tendency of electricity markets, they do not always allow 
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agents’ decisions to be made endogenously. For instance, some of them do not 

consider endogenous retirements (Assili et al., 2008; Bunn and Larsen, 1994, 

1992; De Vries and Heijnen, 2008; Ford, 1999; Hasani and Hosseini, 2011; Hobbs 

et al., 2007; Lara-Arango et al., 2017; Olsina et al., 2006). Furthermore, none of 

them include mothballing decisions which have yet an impact on capacity 

adequacy, as demonstrated in Chapter II. These decisions might have been 

overlooked in the past because there was limited empirical evidence of their 

occurrence. However, the recent developments in the electricity sector indicate 

that they can no longer be ignored based on this argument. 

1.3. Research question 

The aim of this chapter is to provide a comprehensive comparison of several 

market design options for ensuring long-term security of supply in a context of 

growing shares RES. More precisely, five market designs are studied: an energy-

only market with an administrative price cap (EOM-PCap hereafter), an energy-

only market with scarcity pricing where the price cap equates the VoLL (EOM-SP 

hereafter), a strategic reserve mechanism (SRM hereafter), a capacity market with 

annual capacity contracts (CM-AC hereafter) and, at last, a capacity market with 

multiannual capacity contracts for new investments (CM-MAC hereafter). 

To this end, the simulation model used in the previous chapter is extended to 

include a strategic reserve mechanism and capacity market with multiannual 

contracts. As explained in previous chapters, the modelling methodology is based 

on the System Dynamics approach. All types of private agents’ decisions 

(investment, mothballing and shutdown) are endogenously represented. 

Moreover, the potential effect of risk averse behaviour from investors is taken into 

account. The selected market designs are compared with respect to their ability to 

improve social welfare. To complement the analysis, two additional dimensions are 

investigated, notably the effectiveness of the market designs in reducing shortages 

and their associated costs which concern both the total systems costs and the 

costs for consumers. Furthermore, impacts regarding investment risk and cost 

recovery are discussed. 

This chapter brings two main contributions to the current literature. Firstly, the 

following study is one of the few to assess the performance of a capacity market 
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with multiannual contracts, with an analysis of its impact in terms of investment 

risk and generation assets’ profitability. Secondly, and most importantly, the 

results discussed in the chapter reveal the persistence of the so-called missing 

money problem even in capacity markets, under certain conditions related to high 

penetration of renewables.  

The chapter is organised as follows: section 2 describes the modelling framework 

which builds on the model presented in Chapter II. Section 3 introduces the set up 

for the simulations and their underlying assumptions. Sections 4 and 5 provide a 

detailed discussion of the results. Finally, the main conclusions are presented in 

section 6.  
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Table 19. Summary of literature review 

Study Studied market designs Endogenous decisions Agents’ risk profiles 
RES 

integration 

Modelling 

approach 

 Energy-only 
Strategic 

reserve 

Capacity 

market 

(annual 

contracts) 

Capacity 

market (with 

multiannual 

contracts) 

Investments Shutdowns Mothballings 
Risk neutral 

agents 

Risk averse 

agents 
  

(Bunn and Larsen, 1992)            

(Bunn and Larsen, 1994)            

(Ford, 1999)            

(Olsina et al., 2006)      
Mentioned but 

not explicit 
    

N
o

n
-e

q
u

ilib
r
iu

m
 m

o
d

e
ls

 

(Hobbs et al., 2007)           

(Assili et al., 2008)      
Mentioned but 

not explicit 
    

(De Vries and Heijnen, 

2008) 
          

(Cepeda and Finon, 

2011) 
          

(Hasani and Hosseini, 

2011) 
     

Mentioned but 

not explicit 
    

(Eager et al., 2012)           

(Hach et al., 2016)            

(Hary et al., 2016)           

 (Bhagwat et al., 2016b)           

(Bhagwat et al., 2017a)           
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Study Studied market designs Endogenous decisions Agents’ risk profiles 
RES 

integration 

Modelling 

approach 

 Energy-only 
Strategic 

reserve 

Capacity 

market 

(annual 

contracts) 

Capacity 

market (with 

multiannual 

contracts) 

Investments Shutdowns Mothballings 
Risk neutral 

agents 

Risk averse 

agents 
  

(Bhagwat et al., 2017b)           

(Bhagwat et al., 2017c)           

(Petitet et al., 2017)           

(Lara-Arango et al., 

2017) 
          

(Ousman Abani et al., 

2018) 
          

(Botterud et al., 2005)            

(THEMA Consulting Group 

et al., 2013) 
          

E
q

u
ilib

r
iu

m
-b

a
s
e
d

 m
o

d
e
ls

 

(Frontier Economics and 

Consentec, 2014) 
      

Mentioned but 

not explicit 
 

Mentioned but 

not explicit 
 

(Aghaie, 2015) 

(Aghaie, 2017) 
          

(Frontier Economics, 

2015b) 
 

Mentioned but 

not explicit 
Mentioned but 

not explicit 
Mentioned but not 

explicit 
      

(UFE et al., 2015)           

(FTI CL - Energy, 2016)           

(Gore et al., 2016)          
Mentioned but 

not explicit 

(E3MLab, 2017)           

(RTE, 2018)       
Mentioned but 

not explicit 
   
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Study Studied market designs Endogenous decisions Agents’ risk profiles 
RES 

integration 

Modelling 

approach 

 Energy-only 
Strategic 

reserve 

Capacity 

market 

(annual 

contracts) 

Capacity 

market (with 

multiannual 

contracts) 

Investments Shutdowns Mothballings 
Risk neutral 

agents 

Risk averse 

agents 
  

The model presented 

in this dissertation 
          
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2. Model extensions for the representation of 

strategic reserves and capacity markets with 

multiannual contracts 

In this chapter, the model presented in Chapter II is extended to incorporate two 

additional market designs: a strategic reserve mechanism and a capacity market 

with multiannual contracts. The modelling framework described in Chapter II is 

fully preserved. The two additional market designs described hereafter can be seen 

as complementary modules. In its most complete form, the upgraded model 

therefore includes five types of market designs:  

i. An energy-only market with price cap (EOM-PCap); 

ii. An energy-only market with scarcity pricing (EOM-SP);  

iii. A strategic reserve mechanism (SRM); 

iv. A capacity market with annual contracts (CM-AC); 

v. A capacity market with multiannual contracts (CM-MAC). 

2.1. Strategic reserve mechanism (SRM) 

A SRM consists of an energy market complemented with a CRM that remunerates 

some plants based on their available capacity. The aim of this mechanism is to 

ensure capacity adequacy by contracting in advance a predefined level of capacity 

with some existing plants that would otherwise be shut down. The reserved 

capacity is meant to be used only in extreme circumstances to deal with peak 

demand. The functioning of this CRM involves a central body -usually the TSO- 

which, based on demand forecasts, decides for a target level of reserve to be 

purchased157. This is generally done through an auction. A reserved capacity can 

only be activated (i.e. asked to produce electricity) upon solicitation from the TSO 

when the price on the energy market becomes higher than the maximum price it 

is willing to pay for energy. This maximum price is most of the time equal to the 

                                       

157 It is important to mention that there must be a limit to the total reserved capacity to avoid distorting the 

energy market. A maximum amount of reserved capacity is usually set (it can be for example defined as a 

percentage of the previous year installed capacity, as it is the case in the model presented here).  
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price cap on the energy market. Accordingly, capacities on the energy market do 

not see any change in their revenues when the reserved capacities are activated 

because they are already selling at the price cap.  

 Bids from existing plants in SRM auction 

An important feature of the SRM lies in the explicit distinction between the 

capacities in the reserve and the capacities in the energy market. Capacities are 

forbidden to participate in the energy market and be part of the reserve at the 

same time. Moreover, they are not allowed to switch from one to the other (once 

a generation capacity enters the reserve, it cannot go back to the energy market). 

Given these restrictions and the fact that activation of the reserves does not impact 

energy prices, investments are only driven by the energy market with unchanged 

incentives compared to the EOM-PCap or EOM-SP. Consequently, the investment 

decision process is the same as the one presented for these market designs (only 

based on revenues from the energy market). Agents invest in new power plants 

which stay on the energy market as long as their expected revenues are high 

enough to cover their expected O&M costs.  

Unlike investment decisions, shutdown and mothballing decisions are different 

between the SRM and the EOM-PCap or the EOM-SP (see illustration on Figure 47). 

In the latter, when mothballing is not an interesting option, unprofitable plants 

(i.e., their expected revenues do not compensate their O&M costs) are immediately 

shut down. In the SRM, the shutdown decision rationale is different as unprofitable 

capacities would try to enter the reserve first, before shutting down permanently. 

They can do this by participating to the SRM auction which is assumed to take 

place one year ahead of the delivery year. Therefore, all existing capacities on the 

energy market that are planned to be shut down158 will bid their O&M costs in the 

auction in order to be part of the reserve instead. As for the capacities that were 

already in the reserve, since they cannot go back on the energy market, their only 

option is to participate to the auction by bidding their O&M costs as well159. The 

                                       

158 Note that plants that are planned to be mothballed do not participate to the SRM auction. Since, the value of 

the mothballing option is the possibility to come back to the market when profitability prospects improve, entering 

the reserve would mean losing that option. As a result, the SRM cannot prevent plants from being mothballed.  

159 The shutdown and mothballing procedure in the case of the SRM is illustrated on Figure 47 below (the steps 

in red illustrate the differences compared to the EOM-PCap/EOM-SP). 
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supply curve of the SRM auction is then obtained by aggregating the submitted 

bids sorted in increasing order. 

Figure 47. Shutdown/mothballing procedure for existing plants in 

SRM 

 

 Capacity demand in SRM auction and clearing 

On the demand side of the SRM auction, the TSO expresses its capacity need in 

the form of an inelastic capacity demand160. This demand is thus modelled as a 

                                       

160 In reality, TSOs may use elastic demand curves. The choice of an inelastic demand curve simplifies the 

modelling without altering the validity of the results since all CRM auctions are modelled with inelastic demand 

curves here. 

 



Capacity adequacy in a context of non-increasing demand and high renewable penetration: a 

discussion on market design options   

   208 

vertical curve with a price cap and is determined based on the forecast peak load, 

an explicit target margin and the level of installed capacity in the energy market. 

Formally, the capacity demand for the reserve auction held in year 𝑦, can be 

computed using the following equation161: 

𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀 
𝑆𝑅𝑀

= 𝑚𝑖 𝑛 (𝑄𝑚𝑎𝑥𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝑆𝑅𝑀  ;  𝑚𝑎 𝑥 (0 ; 𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝐹𝑝𝑒𝑎𝑘

∗ (1 + 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀
) − (𝐾𝑦

𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔
+  𝐾𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝑁𝑒𝑤 ) )) 

  

Where: 

• 𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝑆𝑅𝑀  is the capacity demand from the TSO in the SRM auction held 

in year y (for delivery in year 𝑦 +  𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀); 

• 𝑄𝑚𝑎𝑥𝑦
𝑆𝑅𝑀 is the maximum size of the reserve in the delivery year (𝑄𝑚𝑎𝑥𝑦

𝑆𝑅𝑀 =

𝜏𝑆𝑅𝑀 ∗ 𝐾𝑦
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

); 

• 𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝐹𝑝𝑒𝑎𝑘
 is the forecast peak load in the delivery year; 

• 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀
 is the target margin set by the TSO for the delivery year; 

• 𝐾𝑦
𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔

 is the total active capacity on the energy market in the delivery year 

(excludes capacities that are mothballed and those which are already in the 

reserve); 

• 𝐾𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝑁𝑒𝑤  is the total amount of new capacities that are expected to enter 

the market in the delivery year (𝑦 + 𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀). 

When the active existing capacities (those which are profitable and thus kept active 

for the delivery year) and the new ones resulting from previous investments are 

not enough to reach the capacity need, the TSO contracts the remaining capacities 

through the SRM auction. However, if the energy market yields a sufficient level 

of capacity, then the TSO does not need any capacity for the reserve. It is 

important to note that in case of excess capacity on the energy market (compared 

to the target margin), the SRM cannot force the extra capacity to exit. In addition, 

                                       

161 The equation states that there is a limit to the amount of capacity that can be accepted in the reserve (this 

limit is 𝑄𝑚𝑎𝑥𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝑆𝑅𝑀

𝑆𝑅𝑀 ).  
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the TSO can contract capacity only to the extent of the maximum size of the 

reserve.  

Figure 48. Strategic reserve auction 

 

The clearing of the SRM auction is done on a pay-as-bid basis with the constraint 

that each plant bids to recover its fixed O&M costs162. This design is consistent with 

the rationale of the SRM which is not meant to provide plants with profit 

opportunities, but rather to compensate them for the losses they may incur by 

staying active instead of being shut down. Therefore, there is no single clearing 

price in the SRM auction. A simplified illustration of the auction is presented on 

Figure 48. Once the auction is cleared, the capacities whose bids are accepted 

either enter the reserve (if they are coming from the energy market) or stay in the 

reserve (if they were already part of it). All the capacities that saw their bids 

rejected are permanently shut down. 

2.2. Modelling capacity markets with multiannual contracts (CM-

MAC) 

The CM-MAC is similar to the CM-AC in many respects. Hence the focus is made 

on the difference between the two market designs. The main difference between 

                                       

162 It could be assumed that the regulator or the system operator requires agents to bid their actual costs.  

Price 

Capacity 

Target capacity  

TSO demand 

Offers from existing plants 

that are about to be shut 

down 

Price cap 
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them is that the CM-MAC distinguishes between new capacities (prospective 

investments) and existing capacities. Indeed, in the CM-MAC, new capacities that 

are accepted in the capacity auction are granted contracts with a guaranteed 

capacity price over several years. In return, those capacities with multiannual 

contracts are not allowed to participate to the capacity auction for the duration of 

their contract. Existing capacities that are not already under a multiannual contract 

can participate to the capacity auction. If their bids are accepted, they are awarded 

annual capacity contracts, just as in the CM-AC. This difference has two 

implications: first, it changes agents’ rationale regarding the computation of the 

capacity bids for new investments and second, it modifies the TSO’s demand in the 

capacity auctions.  

Regarding the capacity bids for new investments, the possibility of multiannual 

contracts provides more certainty to investors as they know that the capacity price 

they will receive will be guaranteed for the duration of the contract (several years). 

As such, they take this increased certainty into account while computing their 

capacity bids. To this end, they consider in their forecast, a constant expected 

capacity price for the duration of the capacity contracts163. There is therefore less 

volatility in the forecast profits compare to the CM-AC, all things being equal. In 

face of risk averse agents, this will tend to lead to lower capacity bids, all things 

being equal.  

As for the TSO’s capacity demand, it is now determined by excluding all the 

capacities that are already under multiannual contracts. Indeed, the TSO knows 

that these capacities will be available no matter what. Rewriting Equation (10) and 

adapting it the case of the CM-MAC, the capacity demand from the TSO can be 

expressed as follows: 

                                       

163 After the duration of the multiannual contract, they consider three scenarios of capacity price similarly to the 

CM-AC (average, minimum and maximum capacity price observed in a number of previous years consistent with 

ℎ𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡). An illustration is provided in Appendix E. 
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𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝐿𝑇𝐶 
𝐶𝑀−𝑀𝐴𝐶

= 𝑚𝑎 𝑥 (0 ; 𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝐹𝑝𝑒𝑎𝑘
∗ (1 + 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

)    

− ( ∑ 𝐾𝑎
𝑁𝑒𝑤 + 𝐾𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝑀𝐴𝐶  

𝑎=𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝑎=𝑦+1

)) 

  

Where: 

• 𝑄𝑦→𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝐶𝑀−𝐴𝐶  is the capacity demand from the TSO in the CM-MAC 

auction held in year 𝑦 (for delivery in year 𝑦 + 𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶); 

• 𝐿𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝐹𝑝𝑒𝑎𝑘
 is the forecast peak load in the delivery year; 

• 𝑡𝑚𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶
 is the target margin set by the TSO for the delivery year; 

• 𝐾𝑦
𝑁𝑒𝑤 is the total amount of new capacities164 that are expected to enter the 

market in year 𝑦; 

• 𝐾𝑦+𝑑𝑑𝑒𝑙𝑎𝑦𝐶𝑀−𝑀𝐴𝐶

𝑀𝐴𝐶  is the total amount of capacities that are already expected to 

be under multiannual contracts165, and will remain so until the delivery year. 

  

                                       

164 As for the CM-AC, it is assumed that capacities under construction do not participate to the capacity auctions 

in the CM-MAC neither.  

165 This does not include the capacities that will be granted long-term contracts in the auction. 
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3. Case study and simulations 

3.1. Preliminary remarks on the calibration and simulations 

The model was validated by checking the coherence of electricity prices and 

generation levels for each technology. However, it is difficult to perform a precise 

back-testing on historical data because of some simplifications that are made in 

the model (for instance the absence of interconnections).  

Compared to the two previous chapters, the discussion in this chapter provides 

more results in absolute terms, thanks to a higher level of refinement of the model. 

Nonetheless, for some of the results, relative values (compared to a certain 

reference) are still used for readability and ease of interpretation. For instance, as 

described in the next sections, results regarding social welfare are presented in 

monetary values, but as a difference with respect to some reference. Alternative 

ways of presenting the results regarding the differences in social welfare were 

considered – for instance as a percentage of the absolute of social welfare in the 

energy-only market or as a percentage of total industry’s turnaround. However, 

this leads to very small values (less than 1%) which are less intuitive to interpret 

for the reader. 

3.2. General setup and indicators 

To address the research question set out in the beginning of this chapter, long-

term dynamics of a liberalised power system in a context of high RES penetration 

are studied. A Monte Carlo approach is used, based on 100 simulation runs of the 

model. The setup of the simulations as well as the corresponding assumptions are 

detailed hereafter. 
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Table 20. Technical and economic characteristics of thermal 

technologies166 

 Nuclear167 Coal CCGT CT (gas-fired) 

Investment (k€/MW) 5 200 1 700 850 500 

Initial O&M costs 

(k€/MW/year) 
110 45 30 15 

Variable costs (€/MWh) 10 50 60 90 

Unit capacity (MW) 1 450 750 550 150 

Construction time168  

(years) 
6 4 2 2 

 

Simulations are based on a case study of an electricity market calibrated on the 

French power system169. The model is run 100 times against a non-increasing gross 

electricity demand with random variations. Each run of the Monte Carlo approach 

corresponds to a different demand trend. In the simulations presented here, 

agents are considered to be risk averse and mothballing are allowed. Simulations 

are run over a 20-year horizon (from 2016 to 2035). Assumptions regarding the 

technical and economic parameters of thermal technologies are presented in Table 

20 above. 

The performances of the studied market designs are analysed in terms of social 

welfare by averaging the results of the 100 runs. Given the assumption of an 

inelastic demand, a comparative analysis of social welfare can be done by 

assessing the level of shortages and the total system costs (De Vries, 2004). 

                                       

166 These values are based on data compiled from various sources (EC Joint Research Center, 2014; International 

Energy Agency, 2018; International Energy Agency and OECD Nuclear Energy Agency, 2010; RTE, 2017). In 

particular, values for variable costs are based on the “New Policies” scenario of the 2018 World Energy Outlook 

of the International Energy Agency. The underlying assumptions are the following: gas price of 8.5 $/MBtu, coal 

price of 82.5 $/t, CO2 price of 34 $/tCO2, efficiencies of 60%-41%-43% for CCGT-CT-Coal respectively. 

167 For the same reasons explained in Chapter II (section 3.2), no nuclear investments are considered in the 

simulations. Such investments generally include a significant political component. It is unlikely that private agents 

engage in nuclear investments solely based on economic considerations. Other studies such as RTE (2018) confirm 

this assumption.  

168 The time for obtaining all the administrative authorisations and regulatory approvals is not considered.  

169 This case study does not attempt to represent the French electricity system. The load profile in France is 

used only for an illustrative purpose in order to calibrate the model on a real power system.  
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Indeed, if the demand is inelastic and assuming that the utility for the consumers 

of one megawatt hour of electricity is equal to the VoLL, the social welfare can be 

computed as follows170: 

 

𝑆𝑊𝑦 = ∑ 𝑉𝑜𝐿𝐿 ∗ 𝐺𝑦,ℎ

ℎ

− ∑  (∑ 𝑉𝐶𝑝,𝑦 ∗ 𝑔𝑝,𝑦,ℎ

ℎ

+ 𝑂𝑀𝐶𝑝,𝑦 + 𝐴𝐶𝐶𝑝

𝑝

)   

Where: 

• 𝑆𝑊𝑦 is the social welfare in year 𝑦; 

• 𝑉𝑜𝐿𝐿 is the value of lost load;  

• 𝐺𝑦,ℎ is the total generation level of all plants in hour ℎ of year 𝑦 (𝐺𝑦,ℎ =

∑ 𝑔𝑝,𝑦,ℎ𝑝 ); 

• 𝑉𝐶𝑝,𝑦 is the variable generation cost of plant 𝑝 in year 𝑦; 

• 𝑔𝑝,𝑦,ℎ is generation level of plant 𝑝 in hour ℎ of year 𝑦; 

• 𝑂𝑀𝐶𝑝,𝑦 are the annual O&M costs of plant 𝑝 in year 𝑦; 

• 𝐴𝐶𝐶𝑝 is the annualised capital cost of plant 𝑝. It includes the reference 

overnight investment cost (mentioned in Table 20) and a risk premium 

reflecting the additional financing costs related to the riskiness of the 

investment. A discount rate of 8% is used for the computation of annualised 

costs.  

Equation (17) indicates that the social welfare is equal to the utility from 

consuming the energy that is produced minus all system costs which are 

generation costs, fixed O&M costs and capital costs. Rearranging Equation (17), 

the difference in social welfare between two market designs takes the form: 

 Δ𝑆𝑊𝑦 = 𝑉𝑜𝐿𝐿 ∗ ∑ Δ𝐺𝑦,ℎ

ℎ

− Δ (∑  ∑( 𝑉𝐶𝑝,𝑦 ∗ 𝑔𝑝,𝑦,ℎ

ℎ

+ 𝑂𝑀𝐶𝑝,𝑦 + 𝐴𝐶𝐶𝑝 )

𝑝

)   

Where: 

• Δ𝑆𝑊𝑦 is the difference in social welfare in year 𝑦 between market design 𝑀𝐷2 

and market design 𝑀𝐷1 (Δ𝑆𝑊𝑦 = 𝑆𝑊𝑦
𝑀𝐷2 − 𝑆𝑊𝑦

𝑀𝐷1); 

• Δ𝐺𝑦,ℎ is the difference in generation level between market design 𝑀𝐷2 and 

market design 𝑀𝐷1; 

                                       

170 The capacity provision price in CRMs is not included in the equation of the social welfare since it is just a 

transfer between consumers and producers. It does not impact the overall social welfare. 
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• Δ(∑ (∑ 𝑉𝐶𝑝,𝑦 ∗ 𝑔𝑝,𝑦,ℎℎ + 𝑂𝑀𝐶𝑝,𝑦 + 𝐴𝐶𝐶𝑝𝑝 )) is the difference in total system costs 

between market design 𝑀𝐷2 and market design 𝑀𝐷1. 

Noting that the difference in generation level between market design 𝑀𝐷2 and 

market design 𝑀𝐷1 (Δ𝐺𝑦,ℎ) is equal to −Δ𝐸𝑁𝑆𝑦,ℎ (the difference in energy not served 

or shortages), the difference in social welfare between two market designs can be 

rewritten according to Equation (19) below, which shows that this difference is 

equal to the gains from reducing shortages (energy not served) minus the cost 

variations between the market designs.  

Δ𝑆𝑊𝑦 = −𝑉𝑜𝐿𝐿 ∗ ∑ Δ𝐸𝑁𝑆𝑦,ℎ

ℎ

− Δ (∑ ∑(𝑉𝐶𝑝,𝑦 ∗ 𝑔𝑝,𝑦,ℎ

ℎ

+ 𝑂𝑀𝐶𝑝,𝑦 + 𝐴𝐶𝐶𝑝)

𝑝

)   

Table 21. Variables and parameters for simulations (Chapter III) 

 EOM-PCap EOM-SP SRM CM-AC CM-MAC 

𝜶 

Confidence level for 
computation of VaR and CVaR 

95% 

𝜷 

Risk aversion coefficient 
0.5 

𝝉𝑺𝑹𝑴 

Maximum strategic reserve 
size (% of current installed 

capacity) 

15% 

𝑷𝑪𝒂𝒑𝑬𝑶𝑴−𝑷𝑪𝒂𝒑/𝑬𝑶𝑴−𝑺𝑷 

Price cap on energy market 
3 k€/MWh 22 k€/MWh 3 k€/MWh 

𝑷𝑪𝒂𝒑𝑪𝑴−𝑨𝑪/𝑪𝑴−𝑴𝑨𝑪 

Price cap of capacity market 
auctions 

NA 
80 k€/MW 

(~1.5x Net CONE171) 

𝑷𝑪𝒂𝒑𝑺𝑹𝑴 

Price cap of strategic reserve 
auctions 

 
 

 
 
 
 
 

NA 80 k€/MW 
(~1.5x Net 

CONE) 

NA 

                                       

171 Cost of New Entry based on the annualised fixed cost (O&M and investment costs) of a combustion turbine, 

using a reference discount rate of 8% and the cost parameters presented in Table 20. 
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 EOM-PCap EOM-SP SRM CM-AC CM-MAC 

𝒕𝒎𝒚 

Target margin set by the TSO 
for the delivery year 

Set to reach LoLE of 3h/year172 

𝑽𝒐𝑳𝑳 

Value of Lost Load 
22 k€/MWh 

Multiannual contract duration NA 10 

 

In addition to analysing the social welfare variations induced by the different 

market designs, a set of indicators are computed to assess the performances173 of 

the market designs regarding reliability targets, system costs and profitability of 

generation assets. The assumptions regarding the values of the parameters used 

for the simulations are presented in Table 21. 

3.3. Electricity demand 

Each run of the model is associated to a random scenario of electricity demand. 

The effective residual electricity demand observed by agents over the simulation 

horizon is determined on a yearly basis from a gross demand and generation from 

renewables. The peak gross demand is assumed to have a flat trajectory with 

random deviations, representing the recent trend observed in European markets. 

More specifically, the growth rate of the peak gross demand is sampled from a 

zero-mean normal distribution with a standard deviation of 1%174. The shape of 

this gross demand is calibrated on the 2015 load duration curve of the French 

system175. 

                                       

172 The Loss of Load Expectation (LoLE) of 3h/year is the reliability criterion used in France. Other European 

countries generally use reliability criteria ranging from 3h/year to 8h/year. In the model, the capacity needed to 

achieve a desired LoLE is computed using a probabilistic approach which relies on the forecast load duration curve 

scenarios. The load duration curve scenarios are the same as those used for agents’ profitability assessments. 

For each load duration curve scenario, the TSO computes a corresponding level of installed capacity consistent 

with the reliability criterion. The target level of installed capacity (and therefore the target margin) is then 

determined as the expected value of all installed capacity scenarios.  

173 All indicators are computed over the last 15 years of the simulation horizon (the first years are excluded 

because the effects of the capacity markets are only visible after year 4 due to the delivery delay). 

174 This figure is in line with the standard deviation of the peak load observed over the few past year in France.  

175 All hydropower generation is subtracted and assumed constant in the simulations.  
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A high penetration of variable of RES based on French energy policy targets is 

considered. The deployment of RES capacities (wind and solar) is based on the 

most optimistic scenario identified by the French authorities and described in (RTE, 

2017). According to this scenario, wind and solar capacity are expected to grow at 

an average rate of 9%/year. Initially, that is in 2015, wind and solar capacities 

represent about 10 GW and 6 GW respectively. They then increase from 2016 to 

2035 to reach 52 GW for wind and 48 GW for solar by 2035. The penetration 

trajectories of RES are presented on Figure 49 below. Generation from RES is 

directly derived by from their installed capacity and associated generation 

profile176. Due to the increasing penetration of RES capacity, the shape of the LDC 

becomes more and more sloping during the simulations, as illustrated on Figure 

50. 

Figure 49. RES penetration trajectory in case study 

 

                                       

176 The generation profile of RES is assumed to remain constant during the simulations. It is based on the actual 

generation profile of wind and solar in France in 2015.  
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Figure 50. Illustrative evolution of residual LDC during 

simulations 

 

3.4. Initial generation mix 

As for Chapter II, simulations start with an initial generation mix that corresponds 

to the optimal generation mix associated with the initial residual demand curve. 

This mix is determined using the screening curves methodology presented by Stoft 

(2002). It represents the least cost generation mix that can be used to satisfy a 

load profile based on the economic characteristics of available generation 

technologies (investment and operation costs) and the VoLL. A VoLL of 22 k€/MWh 

is assumed for this purpose. Theoretically, this level of VoLL leads to 3h/year of 

shortages at equilibrium given the cost parameters considered in Table 20. 

Moreover, a discount factor of 8% is assumed, in accordance with the existing 

literature (Cepeda and Finon, 2011; Hary et al., 2016; Petitet et al., 2017).  

The determination of the optimal generation mix is done with the cost structure of 

new plants. However, plants are given different ages in the initial generation fleet 

to have a realistic system. The initial generation mix, which is exactly the same as 

the one in Chapter II, is presented on Figure 51. 
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Figure 51. Initial generation mix for simulations of chapter III 
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4. Performance of the studied market designs 

4.1. Capacity mechanisms are superior to scarcity pricing in 

terms of social welfare 

 Average results over simulation horizon 

Abstracting from any potential distributional effects, social welfare is usually the 

preferred indicator of policymakers when assessing the relevance of their choices 

and interventions. Here the different market designs proposed for enhancing 

capacity adequacy are compared with respect to their ability to increase social 

welfare. Using Equation (19) defined above and considering the EOM-PCap as a 

reference, the average variation of social welfare associated with the 

implementation of one of the other market designs is computed. The corresponding 

results are presented on Figure 52 below.  

Figure 52. Comparison of market designs in terms of social 

welfare (average variation of social welfare compared to EOM-

PCap) 

 

At the exception of the EOM-SP, all market designs improve overall social welfare 

compared to the EOM-PCap. The estimated increases lie roughly between 

210 M€/year and 320 M€/year, supporting the economic rationale behind policy 

intervention to modify the classic low-price-caped energy-only markets. However, 
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the degree of social welfare increase is uneven between the different market 

designs. Figure 52 highlights the superiority of the market designs with a capacity 

market, especially the CM-MAC. While the SRM would generate additional welfare 

of 211 M€/year, a capacity market with 10-year multiannual contracts creates a 

social welfare increase of about 322 M€/year. The results also indicate that 

providing multiannual contracts to new plants in a capacity market is beneficial 

from a social welfare perspective, as it leads to an increase of about 10 M€/year 

in social welfare based on simulations (difference between the CM-MAC and the 

CM-AC).  

One interesting result concerns the market design with scarcity pricing (EOM-SP). 

On average, the EOM-SP reduces social welfare by 250 M€/year compared to the 

EOM-PCap, based on the simulation parameters. Of course, this does not mean 

that scarcity pricing always impacts social welfare negatively. Figure 53 shows the 

distribution of the variations of social welfare for all the 100 runs. A first 

observation is that scarcity pricing exhibits the highest volatility in terms of social 

welfare variations compared to other market designs. Focusing on the EOM-SP, 

the distribution of social welfare variations clearly shows that scarcity pricing 

improves social welfare in many runs. However, the distribution is so skewed 

towards negative values that it results in a negative average. To put this in 

perspective, the median of the variations of social welfare introduced by scarcity 

pricing is - 61M€/year (compared to an average of - 250 M€/year). The results 

presented above are driven by various effects that are underlined in the next sub-

section.  
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Figure 53. Distribution of social welfare variations compared to 

EOM-PCap177 

 

 

 Breakdown of the social welfare variations 

To better understand the variations of social welfare presented above, a detailed 

analysis of the variables involved in the computation of these variations is 

presented in Table 22. Recalling Equation (19), social welfare variations are caused 

by four terms:  

a. Gains (respectively losses) related to the reduction (respectively increase) 

of energy shortages. Gains are accounted for as a positive variation while 

losses are considered as a negative variation of social welfare;  

b. Increases (respectively decreases) in variable generation costs. Increases 

(respectively decreases) in generation costs are accounted for as a negative 

(respectively positive) variation of social welfare.  

c. Increases (respectively decreases) in total O&M costs178. Increases 

(respectively decreases) in O&M costs are accounted for as a negative 

(respectively positive) variation of social welfare.  

                                       

177 The rectangle of the box plot delimits the first quartile and the third quartile. The segment inside the rectangle 

shows the median, while "whiskers" above and below the box indicate the minimum and maximum points.  

178 Including potential mothballing and restart costs. 
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d. Increases (respectively decreases) in total risk-adjusted capital costs. 

Increases (respectively decreases) in capital costs are accounted for as a 

negative (respectively positive) variation of social welfare.  

Table 22. Comparison of average social welfare variations between 

market designs (with respect to EOM-PCap) 

M€/year EOM-SP SRM CM-AC CM-MAC 

Gains from reduction of shortages [𝑨] 357 319 366 366 

Difference in generation costs [𝑩] - 97 2 - 109 - 109 

Difference in fixed O&M costs [𝑪] 56 30 62 62 

Difference in capital costs [𝑫 = 𝑫′ + 𝑫′′] 646 77 101 91 

Volume/mix effect179 [D’] 373 77 250 251 

Financing risk effect180 [D’’] 273  - 149 - 160 

Variation of social welfare [𝑬 =  𝑨 – (𝑩 +  𝑪 +  𝑫)] - 249 211 312 322 

 

For all alternative market designs (i.e., other than the EOM-PCap), increases in 

social welfare are mainly due to the gains resulting from the reduction of 

shortages. Each avoided megawatt hour of shortage mechanically generates a 

social welfare increase, valued at the VoLL. The highest gains from shortage 

reduction are observed for the EOM-SP and the capacity markets (in similar 

magnitudes). The SRM also yields social welfare increase by reducing shortages, 

but to a lesser extent. 

Reducing shortages requires additional available capacity which in turn leads to 

additional costs. These costs reduce social welfare since they are directly borne by 

electricity producers (without any transfer to consumers). Therefore, the overall 

variation of social welfare depends on the relative magnitude between these two 

                                       

179 This is the variation of total investment costs observed in a market design, compared to EOM-PCap, by 

adjusting for EOM-PCap risk premiums (i.e., by considering identical risk premiums to those in EOM-PCap). 

Therefore, the variations directly translate the difference in investment volumes or technology mix between the 

market designs since the financing costs are considered constant across market designs.  

180 This is the part of the variation in total investment costs related to differences in risk premiums between a 

market design and EOM-PCap. It is inferred from the equivalent investment costs (computed by adjusting for risk 

premiums in EOM-PCap) and the actual investments costs.  
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effects (i.e., value creation due to lower levels of shortages and cost increase 

related to additional capacity).  

Cost variations are heterogeneous between the market designs. Table 22 shows 

that most market designs reduce variable generation costs, compared to the EOM-

PCap (except for the SRM which barely modifies them). Conversely, O&M costs are 

consistently higher (compared to the EOM-PCap once again). Differences are 

mainly due to generation mix effects as explained in a dedicated sub-section 

hereafter. 

Regarding capital costs (i.e., investments), the EOM-SP stands out as the most 

expensive market design with a particularly high increase (more than 

600 M€/year). Capacity mechanisms (SRM, CM-AC and CM-MAC) increase capital 

costs in similar proportions, ranging between 77 and 101 M€/year, depending on 

the market design. It should be noted that two effects are at play when it comes 

to these costs. Firstly, variations in capital costs may occur because of differences 

in the volume/mix of installed capacity as explained above. Secondly, even when 

the volume/mix is considered constant across market designs, differences in 

financing costs could lead to different capital costs. Interestingly, splitting these 

two effects highlights the impact of the studied market design on investment risk.  

4.1.2.1. Volume/mix effect on capital costs 

Figure 54 describes the average181 differences in terms of investments between 

the reference energy-only market EOM-PCap and the alternative market designs. 

Cumulative investments over the simulation horizon are considered. For each 

technology, a positive value indicates that there are more investments in the 

selected market design, compared to the EOM-PCap. Conversely, negative values 

indicate the opposite. As illustrated on the figure, scarcity pricing is the only market 

design to increase investments in coal-fired capacity compared to the EOM-PCap. 

It also attracts more gas-fired capacity, especially CT (almost 2.5 GW more than 

the EOM-PCap on average).  

                                       

181 Over the 100 runs of simulations. 
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Figure 54. Average investments by technology over simulation 

horizon (compared to EOM-PCap) 

 

Capacity markets increase CCGT and CT capacity, but not coal. They tend to attract 

more CCGTs than CTs with average additional investments of about 2 GW and 

1 GW respectively, compared to the EOM-PCap. As expected, the SRM does not 

modify investments, which is consistent with the design of the mechanism. 

However, it presents higher capital costs than the EOM-PCap mainly because of 

capacity that is kept in the reserve instead of exiting the market (as it would be 

the case in the EOM-PCap).  

The high increase in capital costs resulting from the implementation of scarcity 

pricing can be partly explained by the structure of its generation mix. By bringing 

more coal capacity in the system, rather than just CCGTs and CTs, it relies on an 

even more expensive generation mix (in terms of capital costs). For capacity 

markets there is a natural increase of capital costs compared to the EOM-PCap, 

because of additional capacity. However, because they avoid coal investments, the 

increase of capital costs is less pronounced. Regarding O&M costs, the dynamics 
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are similar. Scarcity pricing and capacity markets increase O&M costs compared to 

the EOM-PCap, because they bring more capacity182 into the system.  

Investments dynamics also explain differences in generation costs between the 

reference market design EOM-PCap and the others. By generating additional 

investments (compared to the EOM-PCap), the EOM-SP and the two capacity 

markets benefit from a younger generation fleet, which implies lower variable 

costs. Although these market designs lead to more generation in terms of energy, 

simulations results indicate that the lower variable costs of their generation fleet 

offset the impact of their higher generation level.  

4.1.2.2. Investment risk effect on capital costs 

Introducing a scarcity pricing in an energy-only market increases investment risk 

because of the higher volatility of revenues. Allowing energy prices to reach the 

VoLL in periods of scarcity translates into significant variations of revenues from 

one hour to another. For instance, the price differential between a regular hour 

where the price is set by a CT (90 €/MWh) and a scarcity hour (22 k€/MWh) 

corresponds to a ratio of 244, while this same ratio is only 33 in an energy-only 

market capped at 3 k€/MWh. As a result, investments are riskier in a scarcity 

pricing setup which is reflected in higher risk premiums (thus higher financing 

costs).  

In comparison, capacity markets decrease financing costs by providing a fixed 

revenue for at least one year in the case of the CM-AC and even for 10 years in 

the case of the CM-MAC. While there is an intrinsic uncertainty associated with the 

level of the capacity price, simulations suggest that this uncertainty does not add 

up with the one resulting from the energy market. All things considered, capacity 

markets even compensate part of the uncertainty observed in EOM-PCap, which 

explains the lower financing costs. Finally, a strategic reserve mechanism does not 

have any impact on financing costs since, by design, it is not supposed to impact 

investment decisions.  

                                       

182 The differences in O&M costs increase between the system with scarcity pricing and capacity markets are 

less pronounced than those observed for capital costs. This result is mainly related to the economic characteristics 

of the technologies considered in the simulation.  
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To put these results into perspective, a comparison with the results of similar 

studies in the literature are provided hereafter. In order to maintain a reasonable 

level of comparability, only studies including a social welfare analysis and closely 

related to the French Power system are considered. It is important to keep in mind 

that despite this restriction, the selected studies still present fundamental 

differences in terms of methodology, parameters, and scenarios. The interest of 

the comparison lies in the illustration of the coherence of the results presented 

above, with respect to the existing literature. It does not seek to establish a 

rigorous comparison of the results with those of the literature.  

Most of these studies have focused on comparing a scarcity pricing system with a 

capacity market with annual contracts. For instance, RTE (2018)183 finds that the 

welfare gains associated with the implementation of a capacity market with annual 

contracts for the French power system would amount to about 390 M€/year, while 

a scarcity pricing would only deliver welfare gains of about 250 M€/year. In FTI CL 

- Energy (2016)184, the difference in social welfare gains between a capacity 

market with annual contracts and a scarcity pricing is estimated at around 

300 M€/year, at the advantage of the capacity market. Finally, Petitet et al. 

(2017)185 conclude, using data from the French power system, that a capacity 

market with annual contracts generates welfare increases that are about 

100 M€/year higher than those resulting from a scarcity pricing. The simulations 

results presented in this chapter are close the upper bound of these values in order 

of magnitude, regarding capacity mechanisms. The main differences concern 

welfare gains resulting from scarcity pricing, which are due to modelling 

methodology and simulation assumptions.  

In summary, three main conclusions can be drawn for the social welfare analysis 

carried out in this section. Firstly, capacity markets appear to perform better 

                                       

183 This is the closest study to the present one in terms of assumptions, parameters, and included factors. 

However, the general methodology used in RTE (2018) is an optimization approach, while the methodology in 

this chapter relies on a system dynamics approach. Moreover, coal investments are constrained in RTE’s study, 

which reduces the volume/mix effect discussed in this chapter.  

184 This study uses an optimization framework, but do not consider the uncertainty related to capacity price 

caps. Hence it underestimates the financing costs associated with investments in capacity markets. 

185 Although this study considers risk aversion, it does not consider the impact of this risk aversion on financing 

costs and ultimately in social welfare.  
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overall, with a comparative advantage to the CM-MAC, which provides a better 

hedging to financing risks and shells the system against generation mix distortions. 

Secondly, although effective in improving SoS (through reduced levels of 

shortages), the EOM-SP induces higher capital costs (compared to all other market 

designs). As a result, the overall impact of the EOM-SP in terms of social welfare 

increase is limited compared to other market designs. Thirdly, the SRM is the least 

effective in terms of SoS. This is due to the constraints on maximum reserve size 

and price cap in the SRM auction, not mentioning the absence of additional 

incentives for investments (compared to the benchmark EOM-PCap).  

While social welfare is one of the most comprehensive indicators used by 

policymakers to support their interventions (at least from an economic point of 

view), other factors which are only partly or not at all included in the social welfare 

computation may be considered also. For instance, aspects such as distributional 

effects, affordability for consumers or financial sustainability could also inform their 

decision making. In the following sections, the discussion focuses on a set of 

dimensions that could be of particular interest in a context of capacity adequacy in 

liberalised electricity markets. It covers the issues of: (i) security of supply, (ii) 

affordability for consumers and (iii) profitability of generation assets.  

4.2. Security of supply 

Security of supply is the main argument supporting the modification of existing 

energy-only markets or the implementation of capacity remuneration mechanisms. 

As mentioned before, an energy-only market with a low186 price cap can hardly 

provide an adequate level of security of supply due a certain number of market 

failures. The market designs studied here aim at ensuring the provision of a 

desirable level of SoS, which is explicitly set by a target of three hours of shortages 

per year. It is worth noting that this target does not consider the volume of 

shortages, even though market designs that lead to the same duration of shortages 

but with different volumes of unserved energy are not equivalent. Therefore, the 

analysis accounts for both dimensions of SoS. 

                                       

186 Compared to the VoLL. 
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Figure 55 and Table 23 below indicate the yearly averages of scarcity hours and 

volumes of unserved energy for each market design. On Figure 55, shortages are 

represented by the green histograms and reported on the left axis, while scarcity 

hours are represented by the red line and reported on the right axis.  

Figure 55. Comparison of market designs in terms of security of 

supply 

 

Table 23. Securtity of supply indicators in studied market designs 

  EOM-PCap EOM-SP SRM CM-AC CM-MAC 

Scarcity hours 

(#) 

Average 10.75 2.64 4.17 1.94 1.94 

Standard 

deviation 
1.62 0.77 1.25 1.10 1.09 

Unserved 

energy (MWh) 

Average 18 606 2 371 4 096 1 976 1 971 

Standard 

deviation 
5 103 971 1 814 1 594 1 589 

 

The results regarding SoS are in line with the analysis of social welfare variations. 

As explained before, these variations are partly driven by the gains resulting from 

an improved SoS between the alternative market designs and the benchmark 

market design EOM-PCap. Regarding the number of scarcity hours, all alternative 

market designs lead to fewer scarcity hours compared to the EOM-PCap. The EOM-

SP and the two capacity markets (i.e., the CM-AC and the CM-MAC) display a very 
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satisfactory performance as they limit shortage below the target threshold of 

3 h/year. The SRM reduces scarcity hours to 4.17 h/year which is above the 

reliability target but still better than the the EOM-PCap.  

Figure 56. Average level of scarcity hours throughout simulations 

 

From a dynamic point of view, average levels of scarcity hours are relatively stable 

for all market designs as illustrated on Figure 56 above. The EOM-SP and the 

capacity markets stick to the imposed reliability target with some small variations 

around it. In accordance with the discussion above, the SRM persistently fails to 

reach the reliability target although it performs better than the benchmark EOM-

PCap. A larger reserve size combined with a higher price cap in the SRM auctions 

could mitigate this limitation, but in absence of a sustained increase of electricity 

demand, there will still be missing incentives for additional investments. In an 

energy market with high shares of renewables and a continually decreasing 

residual demand, a strategic reserve mechanism will be less effective in providing 

adequate level of SoS compared to capacity markets or an energy-only market 

with scarcity pricing.  
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4.3. Costs for consumers 

Measuring economic efficiency187 through social welfare is convenient for 

economists because it captures an aggregate utility of the society as a whole. 

However, policymakers are also interested in the impact of market design on 

consumers’ specifically (and the costs they induce for them).   

Table 24 breaks down consumers’ costs into three components: (i) an energy 

component, (ii) a capacity component for CRMs, and (iii) a component 

corresponding to the cost of unserved energy188.All components are normalised to 

the total energy production to obtain costs in euros per megawatt hour generated. 

In terms of total cost, the EOM-SP appears as the least affordable market design 

for consumers with an average of 80 €/MWh. It is followed by the EOM-PCap and 

the SRM in which consumers bear a cost of 76 € and 75 € respectively for each 

generated megawatt hour. Finally, capacity markets lead to the lowest costs for 

consumers at around 73 €/MWh.  

Table 24. Breakdown of consumers’ total costs189 

€/MWh EOM-PCap EOM-SP SRM CM-AC CM-MAC 

Energy component 74.62 79.46 74.75 67.74 67.73 

Capacity component   0.09 5.06 4.89 

Cost of unserved energy 1.27 0.16 0.28 0.13 0.13 

Total cost 75.88 79.62 75.12 72.93 72.76 

 

Decomposing total consumers’ costs provides a better understanding of the 

distributional effects in each market design. Figure 57 shows the variation of the 

three cost components caused by alternative market designs compared to the 

EOM-PCap. A first observation is that the EOM-SP is the only market design to 

increase total costs for consumers (by about 4 €/MWh), compared to EOM-PCap. 

This result is explained by the higher energy cost borne by consumers (since 

                                       

187 Here, economic efficiency is understood as both allocative and productive efficiency.  

188 This cost is computed by applying the VoLL to the volume of unserved energy.  

189 Generation from renewables is not taken into account. Including it would lower the energy component borne 

by consumers.  
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electricity prices are allowed to reach the VoLL). All CRMs (SRM, CM-AC and CM-

MAC) reduce total costs for consumers by about 3 €/MWh compared to the EOM-

PCap. These observations are in line with the results regarding social welfare.  

Figure 57. Difference in consumers’ total costs (compared to EOM-

PCap) 

 

4.4. Investment risk and profitability of assets 

In this section, the focus of the analysis shifts towards producers and more 

precisely towards the intrinsic risk profile of potential investments in new 

generation assets. The profitability of these assets is also analysed in order to 

assess whether or not the studied market designs enable investors to recover their 

costs.  

 Investment risk 

Investment risk mitigation is an important desirable feature of a market design 

aiming at ensuring long-term capacity adequacy. The results in terms of social 

welfare variations presented in section 4.1 already give some indications on the 

ability of each market design to reduce investment risk. For instance, they show 

that, given the chosen simulation parameters, capacity markets tend to reduce 

investment risk overall, compared to the benchmark EOM-PCap market design. 

Conversely, a scarcity pricing system would increase investment risk compared to 

the EOM-PCap as energy revenues will be more volatile. At last, there is no 
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difference in investment risk between the SRM and the EOM-PCap since the former 

does not impact investment decisions in the energy market. 

From a modelling and simulation perspective, investment risk is assessed through 

the risk premiums paid by investors on top of the reference investment costs. 

These risk premiums could also be translated into risk-adjusted WACC, by 

assuming that they represent the additional cost of financing resulting from an 

investment’s riskiness. Figure 58 represents the average risk-adjusted WACC190 by 

technology in each studied market design. The reference value of the WACC is also 

plotted as a benchmark (this is the base value used in simulations, without 

adjustment for risk premiums). As expected, the risk-adjusted WACC confirm the 

observations drawn from the social welfare analysis and explained above. They are 

also coherent with the intuition that base-load technologies are less risky than 

peak-load ones.  

Figure 58. Risk-adjusted weighted average cost of capital 

 

Analysing risk-adjusted costs of capital is useful for identifying market designs with 

risk mitigation features. However, it tells little about the fundamentals of these 

                                       

190 The risk adjusted WACC is computed by considering that a risk premium in terms of investment costs could 

be translated into a risk premium in terms of WACC. To this end, the risk premium resulting from the CVaR 

computation is understood as an additional overnight investment cost, which gives a risk-adjusted overnight 

investment cost. By equivalence, a risk-adjusted overnight investment cost with a reference WACC of 8%, is 

equivalent to the reference overnight investment cost, but with a higher WACC (i.e., a risk-adjusted WACC).  
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features. In the case of scarcity pricing, the increase of investment risk (compared 

to the EOM-PCap) is intuitive, as it comes from the higher volatility if energy 

market revenues. For capacity markets, the beneficial effect on investment risk 

(again compared to the EOM-PCap) is less trivial. In fact, one may even argue that 

capacity markets could increase investment risk since they create an additional 

source of uncertainty through the capacity price. Furthermore, once a capacity 

contract is secured at a fixed price, it does not necessarily impact the volatility of 

revenues, but rather their level. The effect of capacity markets on investment risk 

mitigation stems from the fundamental functioning of electricity markets. Figure 

59 below illustrates this effect in a simplified setting. 

Figure 59. Illustration of perceived energy revenue volatility in 

investment appraisal in capacity markets (CM-AC/CM-MAC) and 

energy-only markets (EOM) 

 

While assessing the profitability of a new generation unit, investors usually resort 

to expected demand curves and compute estimated revenues. Conceptually, this 

process can be represented by using load duration curves (LDCs), which 

correspond to hourly load levels sorted in decreasing order. By construction, the 
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slope at the highest demand hours is higher than the one in the middle of the LDC. 

On Figure 59, a simplified example with two LDC scenarios is plotted to represent 

prospective load scenarios considered by an investor. The main reason why 

capacity markets are able to reduce investment risk is because they stabilise 

installed capacity at a point of lower revenue volatility on the LDCs, compared to 

an energy-only market.  

Thanks to the explicit capacity target defined in capacity markets, the level of 

installed capacity will usually oscillate around a level that corresponds to the 

reliability target. This reliability target is always located at the high end of LDCs 

where the effect of additional units of capacity on the number of scarcity hours in 

the year is moderate. This impact is inversely proportional to the slope of the LDCs 

at the considered point. Conversely, energy-only markets with a low price cap will 

tend to stabilise installed capacity on a lower segment of the LDCs, where 

additional units of capacity will have a higher impact on the number of scarcity 

hours (translating into more revenue volatility). This difference between a capacity 

market and an energy-only market is well illustrated on Figure 59. Considering the 

two LDC scenarios and a potential investment in a peaker, the variability of scarcity 

hours from one LDC scenario to the other, is higher in an energy-only market, 

compared to a capacity market. Given the proportionality of a peaking unit’s 

remuneration to the number of scarcity hours, investing in a peaking unit in an 

energy-only market will therefore involve more uncertainty than it would be the 

case in a capacity market.  

It should be noted that the magnitude of the effect illustrated on Figure 59 depends 

on the shape of the LDCs. In fact, for a hypothetical LDC that would have the same 

slope during the highest one hundred hours of demand for instance, there would 

be no difference in investment risk between a capacity market and an energy-only 

market, from a pure energy revenue perspective. In this particular case, it is even 

likely that a capacity market would increase investment risk compared to an 

energy-only market, due to the uncertainty regarding the capacity price. Of course, 

a capacity market will provide a better remuneration basis and a higher profitability 

but that does not mean that it reduces the riskiness of investment. Furthermore, 

it should be noted that the analysis provided above only covers demand 

uncertainty. Other sources of risks such as fuel prices, climate policy or 
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technological breakthrough are not considered. Including these could lead to 

different conclusions.  

To summarise, there are two effects in play when a capacity market is introduced. 

On the one hand, a capacity market will tend to stabilise installed capacity at a 

point of lower energy revenue volatility (compared to an energy-only market). On 

the other hand, the volatility associated with the capacity price will generate an 

additional source of uncertainty for investors (again compared to an energy-only 

market). These effects work in opposite directions and the final impact on 

investment risk will depend on their relative magnitudes. Given the simulation 

parameters that are used in this chapter, the first effect seems to overweigh the 

second one.  

 Profitability of assets 

In addition to investment risk, market participants are also (and even more) 

interested in the profitability of their assets. The following paragraphs provide a 

detailed analysis of the profitability of generation assets and the ability for 

investors to recoup their capital costs. To avoid any distortions introduced by the 

plants from the initial generation fleet, only new plants resulting from investment 

decisions made over the simulation horizon are analysed. For each market design, 

different types of yearly profits for thermal technologies are computed. The results 

are highlighted on Figure 60 hereafter. Four types of profits are presented and 

normalised by megawatt:  

a. Gross total profits corresponding to producers’ gross profits from the energy 

market (once variable costs are deduced) plus the potential capacity 

payment they receive.  

b. Profits after fixed O&M costs are accounted for. These are the gross total 

profits minus annual operation and maintenance costs. 

c. Profits after deduction of investment costs, which deduce reference 

investment costs (without considering risk premiums) from the previous 

profits. Reference investment costs are the annualised reference overnight 

costs (without risk premium).  

d. Net profits after adjusting for risk premiums (i.e., financing costs), which 

correspond to the previous profits minus the effective risk premiums paid 

by investors. These are the net profits earned by producers. In all the 
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discussion hereafter, capital costs should be understood as the sum of 

reference investment costs and risk premiums (which represent extra 

financing costs).  

Figure 60. Decomposition of generation assets’ profitability (only 

for new investments made over the simulation horizon) 

Gross toal profits  
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Across all market designs profits remain positive after O&M costs are deducted 

(bottom-left chart). However, once annualised investment cost191 are subtracted 

(bottom-right chart), a missing money phenomenon appears in most market 

designs, although extra financing costs (i.e., risk premiums) still have to be 

deducted.  

The explanation for this lies in the myopic characteristic of investors. Indeed, as 

described in the modelling (see section 2.1 of Chapter II), agents do not have 

perfect forecasts about future capacity additions in thermal technologies (that have 

not been decided yet). Moreover, they only know the trajectory of the penetration 

of renewables on a horizon of eight years (i.e., the forecast horizon). 

Consequently, when they assess the profitability of a contemplated investment 

over its entire lifetime, agents tend to underestimate the effect on renewables in 

the long run. This is consistent with situation observed recently for gas-fired 

generation in Europe. Furthermore, for technologies that have long lead times such 

as coal, ex post profitability is almost systematically reduced by capacity additions 

in technologies that have shorter lead times (CCGT and CT). Therefore, the missing 

money phenomenon is even more pronounced for coal-fired plants.  

Capacity markets have varied performances when it comes to recovering reference 

investment costs and extra financing costs. The corresponding graph (bottom-right 

graph) shows that, despite providing capacity revenue, the CM-AC does not lead 

to reference investment cost recovery (even when abstracting from risk 

premiums). The CM-MAC on the other hand seems to enable CCGTs and CTs to 

recoup their reference investment costs. In both cases, coal-fired plants do not 

recover their reference investment costs, due to the myopia of investors.  

When revenues are adjusted for extra financing costs to factor in investment risk 

premiums (top right chart), the capacity market with multiannual contracts seems 

to be the only market design to approach full cost recovery, at least for peaking 

units (CTs).  

                                       

191 These investment costs are computed by considering a nominal WACC of 8% for all technologies.  
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The existing literature argues that capacity markets, if properly designed192, would 

create adequate incentives for investments in capacity resources and provide a 

desirable level of SoS (Batlle and Rodilla, 2010; Cramton et al., 2013; Cramton 

and Stoft, 2005). While this is true from a long-run equilibrium perspective, it 

should be noted that the underlying assumption is that the capacity payments are 

determined in a way that enables investors to recover their costs. As such capacity 

markets only fulfil the aforementioned functions if investors have confidence that 

they will recoup their capital (including an appropriate remuneration for risk) over 

the lifetime of their assets. Any factor that can jeopardize this belief would impede 

on the effectiveness of capacity markets. The results presented above indicate that 

in the classical framework prescribed by the existing literature, there is in fact a 

missing money problem, even in presence of capacity markets. The next sub-

section investigates why such situations of missing money may occur in capacity 

markets, when the dynamics of the system are considered.  

 Potential failure of capacity markets to ensure cost recovery 

It is useful to recall that there are two categories of offers in capacity auctions: 

offers form new capacities and those from existing capacities. The difference of 

rationale between new and existing capacities is crucial to understand the 

dynamics of capacity auctions and the profitability of generation assets.  

Assuming economic rationality and perfect competition, existing plants bid their 

annualised missing money, which is a short-term missing money only comprising 

fixed O&M costs, but no investment costs193. Holding the same assumptions, new 

plants (i.e., prospective investments) bid their annualised expected missing money 

which is an annualised long-term missing money that accounts for total capital 

costs (reference investment cost and risk premium). If the bid is accepted, the 

plant is assured to recover all costs (including annual capital costs) in the year it 

receives the corresponding capacity payment. The underlying logic is that the rest 

of the capital costs would be recovered on an annual basis through the years 

                                       

192 That is, if the capacity demand and the price cap of the auction are well defined, and there is no strategic 

behaviour from bidders.  

193 Although existing plants may be tempted to include investments costs in their bids, this entails a higher risk 

of being rejected in the auction and therefore not benefiting from a capacity price at all. 
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thanks to infra-marginal rents in capacity auctions. A fundamental assumption in 

this reasoning is that the capacity auctions would frequently clear at sufficiently 

high prices to generate the required infra-marginal rents. However, as explained 

hereafter, this assumption may easily be violated depending on the needs for new 

capacity in the system. 

In the CM-AC where only annual capacity contracts are available, every time that 

the capacity auction is cleared by an existing plant, all generation assets fail to 

recover their annualised investment costs. In order for generation assets to 

recover their investment costs, the marginal bid in the capacity auction has to be 

one from a new plant (which includes the annualised investment cost). The 

profitability of generation assets in the CM-AC is therefore directly dependent on 

investment needs in the system. If there is a sustained need of investment, 

materialised by the capacity clearing price being frequently set by new plants, then 

all generation assets may be able to recover their capital costs on average. 

Conversely, in situations where investments are sparse, generation assets will only 

recoup their short-term missing money and part of their capital costs through the 

capacity price. Figure 61 below provides a simple illustration of this mechanism. 

Figure 61. Illustration of cost recovery issue in capacity markets 
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To confirm these theoretical intuitions, a comparison of the average capacity price 

and the fixed costs of a new combustion turbine (CT) is displayed on Figure 62. 

The figure shows: the average capacity price throughout the simulation years, the 

total fixed costs of a CT (O&M costs and reference investment costs) and the net 

CONE of a CT (once expected revenues from the energy market have been 

accounted for). Average capacity prices are persistently lower than the net CONE, 

which suggests a missing money. This is consistent with the explanations above.  

Figure 62. Average capacity price in CM-AC vs fixed cost of a CT 

 

It is worth noting that the potential failure of the CM-AC to provide enough 

revenues for full cost recovery does not affect its effectiveness in terms of security 

of supply, at least not in the short run. Indeed, from an investor’s perspective, the 

capacity price can provide a sufficient incentive to trigger needed investments and 

to remain active once the investment decision has already been made (and when 

capital costs become sunk costs). That remains true whether or not this capacity 

price enables the investor to fully recover engaged capital costs. However, it may 

be detrimental in the long run because investors may start to factor in this effect 

in their capacity bids for new plants.  

One plausible scenario is that they may start to rely more heavily on their first 

capacity payment, which is essentially the economic signal that effectively triggers 
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an investment decision. For instance, instead of spreading their capital costs over 

the expected lifetime of their asset and only including an annualised capital cost in 

their initial bid, they may decide to include a higher share of these capital costs. 

Two outcomes would occur in this situation: either the capacity price cap is high 

enough to trigger investments at significantly expensive levels, or the bids for new 

plants are too high to be accepted in the capacity auction. In any case, it may 

jeopardize the effectiveness of capacity markets in ensuring security of supply.  

In capacity markets with multiannual contracts such as the CM-MAC, new plants 

secure a fixed capacity price for the duration of their capacity contract and are not 

allowed to participate to capacity auctions for delivery years covered by that 

period. For all subsequent delivery years, they can bid in the capacity auction 

similarly to all other existing plants. Holding the assumption that new plants bid 

their long-run missing money in their first capacity auction, a multiannual capacity 

contract will allow new plants to recover their capital costs for a number of years 

corresponding to the duration of the contract. Afterwards, the plants’ ability to 

recover annualised capital costs will then depend on the nature of the plant setting 

the clearing price in the capacity auctions (as it is the case in the CM-AC). If the 

plant setting the price in a particular year is a new investment, then existing 

generation assets can recover their capital costs, whereas if it is an existing plant, 

they may fail to do so that year. This explains why the CM-MAC is better than the 

CM-AC at recovering capital costs as illustrated on Figure 60. But there is no 

indication that generation assets recover their entire capital costs over their 

expected lifetime, even in the CM-MAC.  

Figure 60 only represents an average net profit over the simulation horizon for 

twenty years, which is shorter than the expected lifetime of all technologies. Most 

new plants remain under their multiannual capacity contract during the 

simulations. Only early investments decided in the first years come out of their 

initial multiannual contract by the end of the simulations. These early investments 

are the ones that should be tracked to properly assess the ability of the CM-MAC 

to enable investors to recoup their capital costs. To do so, the simulation horizon 

is split in four timeframes of five years each, and the net profits of the investments 

made in every timeframe are analysed. These investments are categorised as 

vintage classes and presented on Figure 63. The discussion focuses on capacity 

markets. 
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Figure 63. Evolution of net profits for new CTs by vintage class 

(CM-AC vs CM-MAC) 

Vintage class 1 

(capacities built between 1st and 5th year of 

simulation) 

Vintage class 2 

(capacities built between 6th and 10th year of 

simulation) 

  

Vintage class 3 

(capacities built between 11th and 15th year of 

simulation) 

Vintage class 4 

(capacities built between 16th and 20th year of 

simulation) 

  

 

The graphs on the figure show that the CM-AC allows full capital cost recovery only 

punctually the first year of operation. Afterwards, the net profits are consistently 

negative on average. Focusing on vintage class 1 (investments made during the 
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first five years of simulations), it appears that even the CM-MAC fails to properly 

remunerate invested capital (albeit during the duration of the multiannual 

contract). However, this is not due to the market design itself, but rather to wrong 

anticipations by agents because of their myopic foresight. Indeed, for investments 

that are decided early in the simulations, agents’ forecast of installed RES capacity 

could be very far from reality (over the lifetime of the assets). This leads them to 

underestimate the capacity price required to ensure cost recovery.  

Focusing on vintage 2 this time (top right graph of Figure 63), the CM-MAC 

provides enough revenues to remunerate invested capital, at least during the 

period over which their initial capacity contracts apply. A drop in net profits is 

observed at the end of the initial multiannual contract around year 2032. As soon 

as these plants no longer benefit from their initial contract, they become dependent 

on the bid clearing the capacity auctions in order to recoup their capital costs. 

Therefore, similarly to the CM-AC, the CM-MAC could also fail to ensure capital cost 

recovery over the entire lifetime of generation assets if investment needs are only 

punctual. 

In theory, to ensure complete cost recovery, capacity contracts duration for new 

plants should match their expected lifetime, which is unrealistic in an actual 

electricity market because of the lock-in and windfall effects that such contracts 

could create. Plants that secure a long-term capacity contract would stay in the 

system for decades even if they are no longer cost-effective or suited to policy 

goals. Policymakers thus face a difficult arbitrage in the determination of capacity 

contracts duration. If the duration of the contracts is too long, it would create lock-

in and windfall effects that may create inefficiencies. Conversely, if the duration is 

too short, investors could fail to recoup their capital costs, which may affect the 

effectiveness of the capacity market in the longer term, as explained before for the 

CM-AC. 

In practice, the main justification behind the introduction of multiannual capacity 

contracts have been the reduction of financing costs by providing more certainty 

on the capacity price. They are expected to mitigate barriers to entry for new plants 

especially when they are built by small independent firms who are exposed to high 

financing costs. An additional argument is that providing long-term contract will 

limit investors’ desire to load their entire capital costs in a single year contract. 
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This is the risk highlighted above in the discussion on the CM-AC’s potential failure 

to ensure capital cost recovery and the subsequent impact of that failure on 

investors’ bidding strategy. 

The reduction in financing costs associated with multiannual capacity contracts is 

also beneficial for consumers since it leads to lower capacity bids by new entrants 

and thus lower costs, all things equal. These are the arguments put forward by the 

UK and France. UK has already implemented its multiannual contract scheme with 

a duration of 15 years for new eligible capacities. In France, 7-year long capacity 

contracts are expected to be introduced in 2019 for new investments. However, in 

both cases, the definition of the multiannual contract duration has been arbitrary 

and there is still no clear methodology proposed in the literature or by practitioners 

for the calibration of this parameters. Yet, a wrong calibration of the duration of 

multiannual capacity contracts could have detrimental effects as mentioned above.  

It should be noted that the social welfare analysis carried out in section 4.1 does 

not account for the long-run implications of having a market design which does 

not ensure full cost recovery for investors. Investors’ confidence is likely to be 

impacted in the long run as they fail to recoup their invested capital. This could in 

turn lead them to make higher bids in capacity auctions as a way to internalise the 

risk of ex post missing money. The possibility of such a behaviour from investors 

calls for special attention when designing price caps of capacity auctions, as it (the 

behaviour) can eventually jeopardize the performance of classic architectures of 

capacity markets.  
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5. Sensitivity analysis 

To provide some insights on the variability of the results presented in the previous 

section, a sensitivity analysis is carried out. It covers two of the most central 

factors of the simulations, which are the level of demand uncertainty and risk 

aversion. The focus is made on social welfare as it encompasses most of the other 

dimensions (except from cost recovery).  

5.1. Lower demand uncertainty 

An alternative value for the volatility of peak gross demand is considered in this 

sub-section. More precisely, the standard deviation of the normal distribution from 

which the evolution of the peak gross demand is sampled is changed from 1% to 

0.25%. This corresponds to a relatively certain demand. The distribution of the 

variations of social welfare are presented on Figure 64.  

Without surprise, reducing uncertainty also reduces the volatility of social welfare 

variations, compared to the base scenario discussed in the previous section. 

Another interesting observation is that the scarcity pricing performs way better 

this time. It Increases social welfare compared to a low-price-capped energy-only 

market in all 100 runs. On average, the increase of social welfare resulting from 

the implementation of scarcity pricing corresponds to more than 130 M€/year. The 

introduction of a CRM (regardless of the type), also increases social welfare 

between 130 and 155 M€/year on average. Capacity markets remain the best 

performing market designs.  
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Figure 64. Distribution of the variations of social welfare 

compared to EOM-PCap in case of lower demand uncertainty 

 

These results indicate that demand uncertainty does not modify the merit order of 

the market designs in terms of social welfare. However, it increases the gap in 

performance between market designs, which is an important finding for 

policymaking. 

Table 25 below provides a breakdown of the social welfare variations. With a less 

uncertain demand, all market designs reduce shortages in similar proportions. 

Differences in social welfare variations are therefore essentially explained by 

system costs (generation, fixed O&M and capital costs).  
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Table 25. Comparison of average social welfare variations between 

market designs (with respect to EOM-PCap) in case of lower demand 

uncertainty 

M€/year EOM-SP SRM CM-AC CM-MAC 

Gains from reduction of shortages [𝑨] 239 233 240 240 

Difference in generation costs [𝑩] - 12 1 - 39 - 39 

Difference in fixed O&M costs [𝑪] 31 27 35 35 

Difference in capital costs [𝑫 = 𝑫′ + 𝑫′′] 85 68 92 91 

Volume/mix effect194 [D’] 73 68 103 103 

Financing risk effect195 [D’’] 12 - - 11 - 12 

Variation of social welfare [𝑬 =  𝑨 – (𝑩 +  𝑪 +  𝑫)] 135 136 153 153 

 

5.2. Risk neutrality 

In this sub-section, the assumption of risk averse agents is relaxed to consider risk 

neutrality. Social welfare variations with this new assumption are displayed on 

Figure 65 hereafter. Interestingly, scarcity pricing still yields a slight negative 

impact on social welfare on average (compared of EOM-PCap). Referring to the 

explanations provided in section 4.1.2 of this chapter, the only determining factor 

here is volume/mix (since effects on investment risks are neutralised). Once again, 

the merit order of the market designs is preserved, with capacity markets 

delivering the highest social welfare increases, compared to the EOM-PCap.  

However, the benefits of implementing CRMs appear lower in case of risk neutral 

agents. With risk averse agents, implementing either a strategic reserve 

mechanism or one form of capacity market increases social welfare by 200 to 

320 M€/year, while the increase is only of 80 to 120 M€/year if agents are risk 

                                       

194 This is the variation of total investment costs observed in a market design, compared to EOM-PCap, by 

adjusting for EOM-PCap risk premiums (i.e., by considering identical risk premiums to those in EOM-PCap). 

Therefore, the variations directly translate the difference in investment volumes or technology mix between the 

market designs since the financing costs are considered constant across market designs.  

195 This is the part of the variation in total investment costs related to differences in risk premiums between a 

market design and EOM-PCap. It is inferred from the equivalent investment costs (computed by adjusting for risk 

premiums in EOM-PCap) and the actual investments costs.  
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neutral. Recall that this result was already observed in Chapter I, using a simplified 

modelling framework. This brings additional confirmation to the robustness of the 

results obtained in Chapter I.  

Figure 65. Variations of social welfare compared to EOM-PCap in 

case of risk neutral agents 

 

The breakdown of average social welfare variations is highlighted in Table 26. The 

values do not reveal any peculiar effect. The only difference with the analysis 

carried out for the base case presented in the previous section is the absence of a 

“risk effect” in capital costs, which is consistent with the risk neutral assumption.  
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Table 26. Comparison of average social welfare variations between 

market designs (with respect to EOM-PCap) in case risk neutrality 

M€/year EOM-SP SRM CM-AC CM-MAC 

Gains from reduction of shortages [𝑨] 202 168 191 191 

Difference in generation costs [𝑩] - 102 1 - 65 - 65 

Difference in fixed O&M costs [𝑪] 53 22 54 54 

Difference in capital costs [𝑫 = 𝑫′ + 𝑫′′] 272 58 79 79 

Volume/mix effect196 [D’] 272 58 79 79 

Financing risk effect197 [D’’]     

Variation of social welfare [𝑬 =  𝑨 – (𝑩 +  𝑪 +  𝑫)] - 21 87 122 122 

 

  

                                       

196 This is the variation of total investment costs observed in a market design, compared to EOM-PCap, by 

adjusting for EOM-PCap risk premiums (i.e., by considering identical risk premiums to those in EOM-PCap). 

Therefore, the variations directly translate the difference in investment volumes or technology mix between the 

market designs since the financing costs are considered constant across market designs.  

197 This is the part of the variation in total investment costs related to differences in risk premiums between a 

market design and EOM-PCap. It is inferred from the equivalent investment costs (computed by adjusting for risk 

premiums in EOM-PCap) and the actual investments costs.  
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6. Chapter conclusions 

This chapter discusses market design options to ensure long-term capacity 

adequacy in a context a high penetration of renewables. Five market designs are 

studied: an energy-only market with an administrative price cap (EOM-PCap), an 

energy-only market with scarcity pricing where the price cap is equal to the VoLL 

(EOM-SP), a strategic reserve mechanism (SRM), a capacity market with annual 

capacity contracts (CM-AC) and a capacity market with multiannual contracts for 

new investments (CM-MAC). 

Based on the System Dynamics methodology, a simulation model which 

endogenously represents all investment, mothballing and shutdown decisions is 

developed. The potential effect of a risk-averse behaviour from investors is taken 

into account. The selected market designs are compared with respect to their 

ability to improve social welfare. To complement the analysis, additional 

dimensions are investigated, notably the effectiveness of the market designs in 

providing a desirable level of security of supply, their affordability for consumers 

and their ability to allow cost recovery for generation assets. A Monte Carlo 

approach consisting of 100 runs of the model with randomly generated demand 

trajectories is used to assess the performance of the studied market designs. Data 

from the French power system is used to build a concrete case study based on a 

real system.  

Simulations results indicate that CRMs improve social welfare compared to the 

benchmark energy-only market with an energy price cap at 3 k€/MWh. Based on 

a case study calibrated on the French power system, welfare gains resulting from 

the introduction a CRM range from about 200 to 320 M€ per year depending on 

the considered market design. Capacity markets provide the highest welfare 

increase especially the one with multiannual contracts (CM-MAC). These welfare 

gains are mainly due to the reduction of shortages compared to the EOM-PCap. 

Despite its good performance regarding the reduction of shortages, the scarcity 

pricing significantly increases investment risk and financing costs, which impedes 

on its ability to effectively increase social welfare in a sizeable magnitude.  
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Regarding security of supply, only some of the studied market designs lead to 

desirable levels of scarcity hours as specified by the reliability target of three 

shortages hours per year. The scarcity pricing system and both capacity markets 

reach this reliability target on a consistent basis. Conversely, although it reduces 

scarcity hours compared to the EOM-PCap, the strategic reserve mechanism 

cannot meet the reliability criterion because of its intrinsic design, which does not 

allow it to provide additional investment incentives when necessary (compared to 

the EOM-PCap). A strategic reserve mechanism is primarily destined to handle 

punctual security of supply concerns by making old and expensive plants stay 

longer in the system.  

In terms of costs borne by consumers (including cost of shortages), the EOM-SP is 

the most expensive market design mainly because of the increase of energy prices 

during scarcity periods. Capacity markets on the other hand yield the lowest costs 

for consumers. They reduce the energy component of consumers’ total costs by 

containing scarcity periods within the range of the reliability target, which in turn 

also reduces the cost of unserved energy. However, this comes at the cost of a 

capacity charge which constitutes a direct transfer from consumers to producers. 

The strategic reserve mechanism lies between capacity markets and the EOM-SP. 

Overall, the comparison of total costs for consumers is in line with the social 

welfare results.  

From an investor’s perspective, none of the studied market designs appears to be 

entirely satisfying in terms of cost recovery. Even capacity markets which are 

meant to alleviate the missing money issue occasionally fail to provide enough 

remuneration to cover capital costs. In fact, the ability for investors to fully recover 

their capital costs is dependent of the type of capacity clearing the capacity auction 

on an annual basis. In case of sustained investment needs, materialised by a 

capacity price set by a new plant every year, then plants are indeed able to recoup 

their capital costs over their expected lifetime. However, if investment needs are 

punctual as it may be the case when electricity demand is flat or declining, then 

generation assets fail to recover their capital costs (each time the capacity auction 

is cleared by an existing plant bidding its opportunity cost).  

This result is particularly important for policymakers because of its implications 

regarding the long run effectiveness of current capacity markets. Given the 
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potential failure of capacity markets to appropriately remunerate invested capital, 

investors may start including higher risk premiums in their capacity bids as a 

hedging tool. Even if the introduction of multiannual contracts mitigates the 

missing money issue in capacity markets, it does not entirely solve it unless the 

contracts are calibrated to last the whole lifetime of the generation asset. This of 

course is not a realistic solution because of the windfall gains it could generate for 

investors who manage to secure capacity contracts for decades regardless of the 

evolution of market fundamentals. It could also create an unnecessary burden for 

consumers in terms of capacity charge.  

Overall, capacity markets appear to be the superior solution to ensure capacity 

adequacy. However, their current design raises concerns about their ability to fix 

the missing money problem in situations of flat or decreasing electricity demand 

associated with a sustained deployment of renewables. The work carried out in this 

chapter suggests that policymakers should revisit the design of capacity markets 

if they want to preserve their effectiveness in the long run.  

Potential extensions of the work presented in this chapter could include the 

consideration of an improved short-term market which takes into accounts plants’ 

flexibility and technical constraints. This will enable to properly represent flexibility 

solutions such as demand response or storage and analyse how these solutions 

can help facilitate the integration of renewables. Short-term flexibility and long-

term adequacy are intricately related and will become so even more as electricity 

systems welcome more renewables. The remuneration of flexibility will therefore 

be a crucial component of investment signals and could ultimately affect capacity 

adequacy.  
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General conclusion 

The liberalisation of electricity markets around the world has revealed problems of 

incentives regarding long-term investments in capacity resources. The ability of 

energy-only markets with low price caps to provide adequate investment signals 

has been particularly questioned in this regard. To deal with this issue, the 

economic literature has proposed various alternative market designs ranging from 

small adjustments – consisting for instance of removing price caps – to the 

introduction of capacity remuneration mechanisms or CRMs, in different forms 

(strategic reserves, capacity markets, etc.). The choice of the market design 

requires for policymakers to assess and compare the economic performances of 

available solutions. The ongoing transition in electricity systems, partly driven by 

the penetration of renewables, complexifies even more this choice by raising 

additional concerns about investment incentives in thermal technologies and 

demand response.  

This dissertation complements the existing literature on market design for long-

term capacity adequacy by focusing on three important issues: (i) understanding 

how electricity markets perform under different assumptions regarding investors’ 

risk preferences, (ii) analysing the compatibility of private agents’ incentives to 

mothball capacity resources with security of supply objectives and (iii) assessing 

the economic performance of different market designs in a context of a high 

penetration of renewables. To this end, the System Dynamics (SD) modelling 

framework is mobilised to represent long-term dynamics resulting from private 

agents’ decisions in liberalised electricity markets. The dissertation is structured 

around three chapters which cover key issues of market design for long-term 

capacity adequacy in future power systems.  

The first chapter focuses on investors’ risk aversion and its impact on capacity 

adequacy in liberalised markets. A dynamic simulation model focusing on peaking 

units is developed to address the question. Risk aversion is represented through 

the Conditional Value at Risk, which is a coherent risk measure. Thanks to a 

stylised modelling of aggregated decisions in terms of investment and shutdown 

decisions long-term dynamics, an energy-only market, a strategic reserve 
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mechanism and a capacity market are analysed under different assumptions about 

investors’ risk preferences. The analysis has focused on total generation costs and 

the level of shortages.  

Regarding total generation costs, risk aversion is proven to increase them no 

matter which market design is considered. Nevertheless, the magnitude of the 

increase varies significantly from one market design to another. The energy-only 

market and the capacity market seem to be less affected than the strategic 

reserves mechanism. Two opposing effects drive this result. On the one hand, the 

introduction of risk aversion tends to limit investments and consequently reduces 

the associated costs. On the other hand, investors are confronted with an arbitrage 

between investing in new capacity which involves a lot of uncertainties and 

extending the lifetime of existing capacities, which involves less uncertainty but 

implies higher O&M costs. According to the simulations carried out in Chapter I, 

the increased O&M costs generally overweigh the reduction of investment costs. 

Focusing on reliability (i.e., ability to reduce shortages), the results suggest that 

the capacity market and the strategic reserve mechanism are more resilient than 

the energy-only market, with respect to risk aversion. Their effectiveness in 

delivering capacity adequacy is only marginally affected when investors are risk 

averse, although the capacity market exhibits a better resilience than the strategic 

reserve mechanism. Furthermore, a comparative analysis of the studied market 

designs with and without risk aversion, suggests interestingly that the benefits 

resulting from the implementation of a capacity market or a strategic reserve 

mechanism are higher in presence of risk averse investors. 

As economic intuition would suggest, the resilience of CRMs in terms of their ability 

to ensure capacity adequacy with risk averse investors is dependent on the 

calibration of their main parameters. For the strategic reserve mechanism, the 

auction price cap and the maximum size of the reserve act as limiting factors. 

However, a proper calibration of these parameters does not necessarily mean that 

the strategic reserve mechanism is immune to risk aversion. In fact, in its most 

common form, which targets mainly old capacities about to retire, this CRM cannot 

control investments in the energy market. This means that if investment incentives 

in the energy market are not sufficient and agents are risk averse, the strategic 
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reserve mechanism could fail to deliver capacity adequacy, even with an 

appropriate design.  

For the capacity market, the main limiting factor is the capacity price cap. 

Conversely to the strategic reserve mechanism, the capacity market controls and 

coordinates both shutdown and investment decisions. When the level of 

uncertainty faced by risk averse investors is correctly reflected in the capacity price 

cap, the effectiveness of the capacity market is preserved. In practical terms, 

investors use the capacity price as a de-risking instrument which allows them to 

transfer part of the perceived investment risk onto consumers. The capacity price 

cap therefore limits the amount of risk that is transferable. If this price cap is high 

enough, investors can transfer all their risk. This of course implies higher capacity 

prices compared to a situation of risk neutrality.  

In the second chapter of the dissertation, the recent but increasingly prevalent 

practice of mothballing in the power sector is investigated. To study mothballing 

decisions and their impact in liberalised electricity markets, the model presented 

in Chapter I is improved to allow the representation of these decisions. A 

methodology is proposed to capture the underlying rationales behind these 

decisions and include them in a System Dynamics framework. Furthermore, the 

model is extended to accommodate multiple technologies. The analysis focuses on 

two market designs: an energy-only market and a capacity market with annual 

contracts, as they represent the two main paradigms for long-term capacity 

adequacy market design (i.e., an energy-only vision and a CRM vision).  

Simulations show that the possibility to mothball assets modifies shutdown and 

investment dynamics in a potentially persistent way depending on the system. This 

result applies to both energy-only and capacity markets. In an energy-only market, 

mothballing leads private agents to delay shutdown and investment decisions. In 

capacity markets, committing to stay active through a capacity contract creates 

an opportunity cost for private agents who are better off by mothballing their asset 

instead. Therefore, they internalise this opportunity cost in their capacity bid. Due 

to this, the merit order between existing and new capacities may be modified in 

capacity auctions, to an extent that sometimes results in a preference for new 

capacities instead of existing ones. Mothballing can therefore modify investment 

and shutdown dynamics in capacity markets. 
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In terms of capacity adequacy, when private agents have the option to mothball, 

it gives them a legitimate protection against testing market conditions. However, 

even in a perfect competition setting with no strategic behaviour, private agents’ 

incentives to mothball may conflict with capacity adequacy objectives. In this 

context, mothballing is equivalent to a decision to “disinvest”, which, in case of 

inelastic peak demand and capacity indivisibility, leads private agents to under 

procure capacity. This phenomenon could be seen as another manifestation of 

asymmetrical incentives between over-procurement and under-procurement of 

capacity by private agents as discussed in section 2.3 of the general introduction. 

Consequently, in energy only-markets, mothballing tends to deteriorate security 

of supply, compared to a state of the world with no mothballing option. This 

tendency is exacerbated when scarcity pricing is implemented. The development 

of smart meters and demand response could mitigate these effects by making peak 

demand more elastic in the future. In capacity markets, the capacity price allows 

for a realignment of private agents’ interests with security of supply objectives.  

The third and last chapter builds on the previous ones to propose a 

comprehensive comparison of market design options for long-term capacity 

adequacy in future power systems. It considers a system subject to a high 

penetration of renewables, which is consistent with the current transformation of 

power systems across the world, and in Europe in particular. The comparison is 

done from a social welfare perspective, with discussions on other specific 

dimensions that are relevant to policymaking: security of supply (i.e., capacity 

adequacy itself), cost for consumers, investment risk and profitability of capacity 

resources.  

Five market designs are studied: an energy-only market with an administrative 

price cap of 3 k€/MWh (EOM-PCap), an energy-only market with scarcity pricing 

where the price cap is equal to the VoLL at 22 k€/MWh (EOM-SP), a strategic 

reserve mechanism (SRM), a capacity market with annual capacity contracts (CM-

AC) and a capacity market with multiannual contracts for new investments (CM-

MAC). Based on the same modelling framework used in previous chapters, 

simulations are carried out to determine the performance of each market design 

in a context of high penetration of renewables. The performances are discussed 

with respect to the energy-only market with the administrative price cap of 

3 k€/MWh. 
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Firstly, the results indicate that capacity remuneration mechanisms improve social 

welfare compared to the benchmark energy-only market with an energy price cap 

of 3 k €/MWh. Based on a case study calibrated on the French power system, 

welfare gains resulting from the introduction a capacity remuneration mechanism 

range from about 200 to 320 M€ per year depending on the considered market 

design. Capacity markets provide the highest welfare increase especially when 

they award multiannual contracts new investments (around 320 M€/year). These 

welfare increases are mainly due to reduced shortages compared to the reference 

energy-only market with a low price cap. Scarcity pricing performs well in reducing 

shortages, but has a limited ability to increase social welfare. This is because 

scarcity pricing significantly increases investment risk and financing costs for 

private agents, to an extent that counterbalances social welfare gains.  

Secondly, regarding security of supply, the market designs that yield satisfactory 

outcomes are the energy-only market with scarcity pricing and the two capacity 

markets. The strategic reserve mechanism improves security of supply compared 

to the reference energy-only market but fails to meet the reliability criterion of 

three hours of shortages per year. As explained above, the strategic reserve 

mechanism is primarily destined to retain old and expensive capacities in the 

market for security of supply concerns. It does not provide additional investment 

incentives, which limits its ability to meet the reliability criterion consistently. This 

result was already highlighted by the simulations of the first chapter of the 

dissertation.  

Thirdly, when it comes to cost for consumers (including the cost of shortages), 

capacity remuneration mechanisms are superior to both types of energy-only 

markets. Scarcity pricing mechanically increases the cost of energy for consumers. 

Overall, and despite the reduction of the cost of shortages, scarcity pricing is more 

expensive than the reference energy-only market. Based on the simulations 

results, all three CRMs reduce total costs for consumers by about 3 €/MWh 

(compared to the benchmark energy-only market), with the highest reduction 

observed for capacity markets. These results are in line with the social welfare 

analysis.  

Finally, from a private investor’s perspective, none of the studied market designs 

appears to be entirely satisfying in terms of cost recovery and investment risk. As 
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discussed above, scarcity pricing increases investment risk and financing costs. 

Despite high electricity prices, investors fail to recoup their fixed costs (including 

risk premiums). This is mainly related to the myopic behaviour of agents’ who 

cannot correctly anticipate the states of the world (over the lifetime of their asset) 

in their investment appraisal. The same results apply to the strategic reserve 

mechanism.  

An important result of the analysis of cost recovery is related to capacity markets 

which are supposed to alleviate the missing money issue observed in energy-only 

markets. Simulations show that in a context of high penetration of renewables, 

capacity markets with annual contracts occasionally fail to provide enough 

remuneration to cover power plants’ fixed costs. Interestingly, the ability for 

investors to fully recover these costs is dependent of the type of resource which is 

clearing the capacity auction on an annual basis. When there is a sustained 

investment need, materialised by a capacity price set by a new plant every year, 

investors can recoup their costs over their expected lifetime. However, if 

investment needs are punctual as it may be the case when electricity demand is 

flat or declining, then generation assets fail to recover their capital costs (each 

time the capacity auction is cleared by an existing plant bidding its opportunity 

cost). This type of situation can be exacerbated by the penetration of renewables, 

which reduces residual electricity demand even more. This problem can be 

alleviated, although not entirely removed, by awarding multiannual capacity 

contracts. Investors are then less subject to the clearing of the capacity auction to 

recover their fixed costs (at least for the duration of the capacity contract).  

Given the potential failure of capacity markets to appropriately remunerate 

invested capital, investors may start to inflate their capacity bids as a 

precautionary measure. Even if the introduction of multiannual contracts mitigates 

the missing money issue in capacity markets, it does not entirely solve it unless 

the contracts are calibrated to last the entire lifetime of assets. This of course is 

not a realistic solution. It could generate considerable windfall gains for investors 

who manage to secure capacity contracts for decades, regardless of the evolution 

of market fundamentals. It could also create an unnecessary burden for consumers 

in terms of capacity charge. These results suggest that policymakers should revisit 

the design of capacity markets if they want to preserve their effectiveness in the 

long run. 
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* 

*     * 

The results discussed in this dissertation provide important insights for policy 

decisions aiming at ensuring long-term capacity adequacy, especially in the current 

context of energy transition. They highlight the practical difficulty that 

policymakers face when choosing a specific market design as they have to consider 

effects on consumers and investors, in addition to social welfare maximisation. By 

investigating central issues related to long-term capacity adequacy, this 

dissertation informs policymakers on the strengths and limitations of available 

market design options. Its findings are particularly relevant for the current 

discussions in Europe following the publication of the Clean Energy Package (CEP), 

which requires countries to justify any implementation of a capacity remuneration 

mechanism by a comprehensive assessment of the associated benefits and costs.  

The findings of the dissertation call for a reconsideration of the benefits associated 

with capacity remuneration mechanisms, especially capacity markets. These 

findings raise questions about the stated preference for scarcity pricing in the CEP.  

Although this market design can deliver the required level of security of supply, it 

is showed that it is not the most cost-efficient solution to do so. Moreover, in case 

the need for a capacity remuneration mechanism is indeed demonstrated, the CEP 

urges for the consideration of a strategic reserve mechanism as a first option 

(instead of capacity markets), arguing that it introduces less distortions and is 

easier to remove if no longer necessary (European Commission, 2016b). Yet, the 

simulations carried out in this dissertation indicate that capacity markets are the 

superior solution to adequacy problems from a social welfare perspective.   

Furthermore, simulations results suggest that a strategic reserve mechanism can 

only address adequacy problems when there is no need for new investments. In a 

system facing an increased need for new capacity, this market design may fail to 

perform in a satisfying way. In this regard, the ongoing discussions in Belgium for 

the replacement of its strategic reserve mechanism by a capacity market are very 

revealing. Indeed, with the decision to phase out its nuclear fleet, Belgium needs 

new capacity in its system. This has led policymakers to consider the introduction 
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of a capacity market, which is expected to provide more appropriate investment 

incentives than the existing strategic reserve mechanism (Walstad, 2019).  

Finally, the future implementation of multiannual capacity contracts in France is in 

line with the results discussed in the third chapter of this dissertation. They show 

that such contracts reduce investment risk for new capacities, lower costs for 

consumers and improve cost recovery for investors (compared to annual 

contracts).  

*** 

Future research 

The work carried out in this dissertation could be extended to cover a variety of 

additional aspects related to capacity adequacy.  

First, an immediate relevant area of future research is the consideration of other 

forms of mechanisms to pilot the energy transition. For instance, in light of the 

findings of the dissertation, options of capacity markets redesign could be 

investigated to ensure cost recovery for investors (see Appendix F for preliminary 

suggestions). Moreover, this dissertation does not address the policy-mandated 

phase out of some technologies such as nuclear or coal. These decisions, which 

are related to environmental policies, have important implications in terms of 

security of supply. They also have consequences for investors because they create 

stranded assets. Economic mechanisms to coordinate these phase outs and their 

impact on capacity adequacy could be studied (Llobet and Padilla, 2018).  

Second, another important direction for future research is the consideration of 

short-term flexibility both on the demand and supply sides of power markets. With 

the increasing share of renewables in power systems, the need for flexibility is 

growing in order to ensure a reliable supply at all times (Holttinen et al., 2011; 

Huber et al., 2014; Newbery et al., 2018). Flexibility is therefore expected to play 

a crucial role in the future. Investment signals could be modified by the way 

flexibility will be remunerated on short-term markets, creating an even stronger 

link between these markets and long-term capacity adequacy. By adapting the 

model to refine the day-ahead market (through the consideration of technical 

constraints), it would be possible to explore the role that flexibility remuneration 
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will play in steering long-term investments. Other short-term markets such as 

intraday market or a balancing market could also be considered to strengthen the 

analysis.  

Third, the model could be extended to include other sources of uncertainty (beside 

demand). Uncertainty about CO2 prices, renewables infeed or fuel costs are 

important parameters of the ongoing energy transition. They could all affect 

investment and shutdown/mothballing decisions in ways that are not discussed in 

this dissertation.  

Fourth, the model could be improved by the consideration of cross-border 

exchanges and a broader geographical scope. This would be more suited to study 

the internal energy market that Europe is aiming for. It could allow to determine 

what are the best options in terms of market design from a European perspective, 

taking into account potential cross-border effects of CRMs (Bhagwat et al., 2017c; 

Gore et al., 2016; Lambin and Léautier, 2018).  

Finally, the analysis in this dissertation relies on the assumption of perfectly 

competitive markets with no strategic behaviour from market participants. 

Relaxing this assumption could lead to interesting research questions. Market 

participants may be strategic in capacity auctions for instance, which impacts the 

effectiveness of the mechanisms (Joung et al., 2009).  
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Appendix A. Nomenclature 

The variables and parameters of the model (in its most complete form used in 

chapter III) are summarized in Table 27 hereafter. Some of the variables presented 

in the table may not be relevant for all the chapters.  

Table 27. Variables and parameters of the model 

 Description 

Variables  

𝝅𝒑,𝒚
𝑬𝑴 

Profit from the energy market of plant 𝑝 in year 𝑦 after deduction of fixed O&M costs 

(k€) 

𝑨𝑪𝑪𝒑 Annualised capital cost of plant 𝑝 (k€/MW.year) 

𝒃𝒊𝒅𝑪𝑹𝑴
𝒑,𝒚 Capacity bid of plant 𝑝 in year 𝑦 (k€/MW) 

𝑪𝑽𝒂𝑹𝜶  Conditional Value at Risk with confidence level 𝛼 (k€) 

𝑪𝒚
𝑪𝑹𝑴 Total cost of capacity payment made in year 𝑦 (k€) 

𝑫𝒚,𝒉 Residual electricity demand in hour ℎ of year 𝑦 (MW) 

𝑬𝑵𝑺𝒚,𝒉 Energy not served in hour ℎ of year 𝑦 (MWh) 

𝒈𝒑,𝒚,𝒉 Generation level of plant 𝑝 in hour ℎ of year 𝑦 (MWh) 

𝑮𝒚,𝒉 Total generation from all plants in hour ℎ of year 𝑦 (𝐺𝑦,ℎ = ∑ 𝑔𝑝,𝑦,ℎ𝑝 ) (MWh) 

𝒉𝒂𝒔𝒔𝒆𝒔𝒔 Current assessment horizon in shutdown and mothballing procedures (years) 

𝒌𝒑 Generation capacity of plant 𝑝 (MW) 

𝑲𝒚
𝑬𝒙𝒊𝒔𝒕𝒊𝒏𝒈

 Total existing capacity on energy market in year 𝑦 (MW) 

𝑲𝒚
𝑵𝒆𝒘 Total new capacity on the energy market in year 𝑦 (MW) 

𝑲𝒚
𝑳𝑻𝑪 Total capacity under long-term contract in year 𝑦 (MW) 

𝑳𝒚
𝑭𝒑𝒆𝒂𝒌

 Forecast peak load for year 𝑦 (MW) 

𝑴𝑪𝒑,𝒚 Mothballing cost of plant 𝑝 in year 𝑦 (k€/MW.year) 

𝑶𝑴𝑪𝒑,𝒚 Annual operation and maintenance costs of plant 𝑝 in year 𝑦 (k€.year) 

𝑶𝑪𝒑,𝒚→𝒚+𝒙 Opportunity cost of plant 𝑝 assessed over years 𝑦 to 𝑦 + 𝑥 (k€) 

𝑶𝑪𝑭𝒑,𝒚 Net operational cash flow of plant 𝑝 in year 𝑦 (k€) 

𝒑𝒚,𝒉
𝑬𝑴 Electricity price on energy market in hour ℎ of year 𝑦 (€/MWh) 

𝒑𝒚
𝑪𝑴 Capacity price198 in year 𝑦 (k€/MW)) 

𝑷𝒂𝒚𝒐𝒇𝒇𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚 
Net payoff of choosing a specific strategy (𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ∈

 {𝑚𝑜𝑡ℎ𝑏𝑎𝑙𝑙𝑖𝑛𝑔, 𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔, 𝑠𝑡𝑎𝑦𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑒}) (k€) 

𝑷𝑰𝒕𝒆𝒄𝒉 Profitability Index of technology 𝑡𝑒𝑐ℎ (𝑡𝑒𝑐ℎ ∈ {𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝐶𝑜𝑎𝑙, 𝐶𝐶𝐺𝑇, 𝐶𝑇}) (k€/MW) 

                                       

198 Only for the capacity markets CM-AC and CM-MAC. 
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 Description 

𝑷𝑽𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅
𝑹𝑨/𝑹𝑵

  Estimated present value of investment for risk-averse/risk-neutral agents (k€) 

𝑸𝒚
𝑪𝑹𝑴 TSO’s capacity demand in CRM for the auction held in year 𝑦 (MW) 

𝑸𝒎𝒂𝒙𝒚
𝑺𝑹𝑴 Maximum size of the strategic reserve in year 𝑦 (MW) 

𝑹𝒑,𝒚,𝒉
𝑬𝑴  

Difference between revenues from the energy market and generation costs for plant 𝑝 

in year 𝑦 (k€) 

𝑹𝑪𝒑,𝒚 Restarting cost of plant 𝑝 in year 𝑦 (k€/MW.year) 

𝑹𝒊𝒔𝒌𝒑𝒓𝒆𝒎 Risk premium (k€) 

𝑺𝑾𝒚 Social welfare in year 𝑦 (k€) 

𝑺𝑷𝒚
𝑪𝒐𝒏𝒔 Consumers’ surplus in year 𝑦 (k€) 

𝑺𝑷𝒚
𝑷𝒓𝒐𝒅 Producers’ surplus in year 𝑦 (k€) 

𝑺𝒉𝒐𝒓𝒕𝒇𝒂𝒍𝒍𝒕𝒆𝒄𝒉
𝒊𝒏𝒗  

Annualised shortfall or missing money (per MW) when considering an investment in 

technology 𝑡𝑒𝑐ℎ (𝑡𝑒𝑐ℎ ∈ {𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝐶𝑜𝑎𝑙, 𝐶𝐶𝐺𝑇, 𝐶𝑇}) (k€/MW) 

𝑽𝒂𝑹𝜶 Value at Risk with confidence level 𝛼 (k€) 

𝑽𝑪𝒑,𝒚 Variable production cost of plant 𝑝 in year 𝑦 (€/MWh) 

Parameters   

𝜶 Confidence level for computation of VaR and CVaR (dimensionless) 

𝜷 Risk aversion coefficient (dimensionless) 

𝒅𝒅𝒆𝒍𝒂𝒚𝑪𝑹𝑴 Delivery delay for contracted capacity in CRM (𝐶𝑅𝑀 ∈ {𝑆𝑅𝑀, 𝐶𝑀 − 𝐴𝐶, 𝐶𝑀 − 𝑀𝐴𝐶}) (years) 

𝒉𝒇𝒐𝒓𝒆𝒄𝒂𝒔𝒕 Maximum assessment horizon for profitability forecasts199 (years) 

𝝉𝑺𝑹𝑴 Maximum reserve size in % of existing installed capacity (MW) 

𝒕𝒎𝒚 Target capacity margin in year  𝑦 (MW) 

𝑷𝑪𝒂𝒑𝑬𝑶𝑴−𝑷𝑪𝒂𝒑/𝑬𝑶𝑴−𝑺𝑷 Price cap on energy market in EOM-PCap/EOM-SP (€/MW) 

𝑷𝑪𝒂𝒑𝑪𝑹𝑴 Capacity price cap in CRM auction (𝐶𝑅𝑀 ∈ {𝑆𝑅𝑀, 𝐶𝑀 − 𝐴𝐶, 𝐶𝑀 − 𝑀𝐴𝐶}) (k€/MW) 

𝒖𝒏𝒊𝒕𝒕𝒆𝒄𝒉
𝑵𝒆𝒘 Unit size of a plant for technology 𝑡𝑒𝑐ℎ (𝑡𝑒𝑐ℎ ∈ {𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝐶𝑜𝑎𝑙, 𝐶𝐶𝐺𝑇, 𝐶𝑇}) (MW) 

𝑽𝒐𝑳𝑳 Value of Lost Load (€/MWh) 

 

  

                                       

199 This is the horizon (i.e. number of years) over which agents explicitly compute the expected profitability of 

their plants to assess investment, shutdown and mothballing decisions. For investments, these computed values 

are used to extrapolate the profitability of the asset over its entire expected lifetime. 
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Appendix B. Formal definition of a coherent risk 

measure 

Artzner et al. (1999) defined a set of desirable properties for a risk measure to be 

considered as coherent. These properties as based on four axioms outlined in their 

work and described hereafter: monotonicity, translation equivariance, sub-

additivity, and positive homogeneity. For the definitions of the axioms below, 𝑋 

and 𝑌 are assumed to be random variables representing losses, 𝑐 ∈ ℝ is a scalar 

representing a loss, and 𝜇 is a risk measure.  

i. Monotonicity: Higher losses mean higher risk. A risk measure 

𝜇 is monotone, if for all 𝑋, 𝑌: 𝑋 ≤  𝑌 ⇒  𝜇(𝑋)  ≤ 𝜇(𝑌 ).  

ii. Translation equivariance: Increasing (respectively 

decreasing) the loss by a fixed and certain amount, increases 

(respectively decreases) the risk by the same amount. A risk 

measure 𝜇 is translation equivariant, if for all 𝑋, 𝑐:  𝜇(𝑋 +  𝑐)  =

 𝜇(𝑋)  +  𝑐.  

iii. Subadditivity: Diversification decreases risk. A risk measure 

𝜇 is sub-additive, if for all 𝑋, 𝑌 ∶  𝜇(𝑋 +  𝑌 ) ≤  𝜇(𝑋)  + 𝜇(𝑌 ).  

iv. Positive Homogeneity: Doubling a portfolio’s size doubles 

the risk. A risk measure 𝜇 is positively homogeneous, if for all 

𝑋, 𝜆 ≥  0:   𝜇(𝜆𝑋) =  𝜆. 𝜇(𝑋).  
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Appendix C. Computation of VaR and CVaR 

Value at Risk (VaR) is a risk measure that characterises the maximum loss 

exposure with a certain confidence level α (usually 95%). It can be particularly 

useful when facing a profit/loss distribution that depends on a range of scenarios. 

In this paper, PV distributions are considered in order to assess the profitability of 

new investments. Hence the VaR computed here is interpreted as the minimum PV 

that an investor can expect with the confidence level α.  

The VaR gives a first idea of the riskiness of an investment but fails to account for 

the shape of the distribution it is applied to. Indeed, the VaR considers the 

minimum PV with confidence level α. It provides no information about the cases 

where the PV is lower than the VaR. To illustrate this, consider two distributions: 

one with a fat left tail and the other one with a relatively small left tail. These two 

distributions might very well have the same VaR even if the first one represents a 

riskier investment because of its fat tail. To overcome this shortfall, Rockafellar 

and Uryasev (2000) introduced the notion of Conditional Value at Risk or CVaR. 

The CVaR is a risk measure of risk which accounts for the shape of the distribution. 

For a given level of confidence α, the CVaR gives the expected value of the NPV if 

ever it is lower than the VaR.  

In summary, CVaR is a more complete risk assessment tool than VaR. In a more 

formalised way, VaR and CVaR corresponds to the following formulas, assuming 

that there is a probability distribution function 𝑓(𝑃𝑉) for the NPV (𝐹(𝑃𝑉) is the 

cumulative density function). 

 𝑉𝑎𝑅𝛼 = max {𝑥 ∕  𝐹(𝑥) ≤ 1 − 𝛼} (C.1) 

 𝐶𝑉𝑎𝑅𝛼 =  𝔼 {𝑃𝑉 | 𝑃𝑉 ≤ 𝑉𝑎𝑅𝛼} (C.2) 

Here, each PV value in the distribution has the same probability. With this setting, 

both VaR and CVaR can be obtained by solving the following optimization problem 

as explained in the appendix of Conejo et al. (2008) (see also Rockafellar and 

Uryasev (2000) for a general implementation procedure):  
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 max 
𝛾,𝜓𝜔

     𝛾 −
1

1 − 𝛼
 ∑ 𝜆𝜔𝜓𝜔

𝜔 ∈ Ω

  (C.3) 

𝑠. 𝑡: −𝑃𝑉𝜔 +  𝛾 − 𝜓𝜔  ≤ 0 ;    ∀ 𝜔 (C.4) 

                                 𝜓𝜔  ≥ 0;   ∀ 𝜔 (C.5) 

Where: 

• 𝜔 represents a scenario in the set of possible scenarios Ω, 

• 𝛼 represents the confidence level for computation of VaR and CVaR (here 

95%), 

• 𝛾 is the VaR, 

• 𝑃𝑉𝜔 is the NPV scenario 𝜔, 

• 𝜆𝜔 is the probability of scenario 𝜔, 

• 𝜓𝜔 is a variable which is equal to 0 if 𝑃𝑉𝜔 is greater than the VaR. Otherwise 

it equals the difference between VaR and 𝑃𝑉𝜔. 𝜓𝜔 = 𝑚𝑖𝑛 (0, 𝛾 − 𝑃𝑉𝜔).  

The optimal value of the objective function of the optimization problem is the CVaR, 

and the corresponding value of 𝛾 is the VaR. 
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Appendix D. Details on shutdown and mothballing rationales  
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Figure 66. Shutdown algorithm in energy-only markets (when mothballing is not possible) 
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Figure 67. Shutdown algorithm in energy-only markets for an active plant (when mothballing is possible) 
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Figure 68. Shutdown algorithm for mothballed plants in energy-only markets (when mothballing is 

possible) 
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Figure 69. Computation of capacity bids for existing plants in capacity markets (when mothballing is not 

possible) 
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Figure 70. Computation of capacity bids for active plants in capacity markets (when mothballing is 

possible) 
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Figure 71. Computation of capacity bids for mothballed plants in capacity markets (when mothballing is 

possible) 
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Appendix E. Additional details on the model 
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Figure 72. Illustration of profitability scenarios computation in capacity markets with annual contracts 

(CM-AC) 
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Figure 73. Illustration of profitability scenarios computation in capacity markets with multiannual 

contracts (CM-MAC) 
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Figure 74. Discretization of LDC in forecasts in Chapters II and III 
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Appendix F. Suggestions for an improved design 

of capacity markets 

F.1 Recalling the theoretical background for capacity market 

design 

The economic rationale for the calibration of capacity markets has relied on an 

implicit but crucial assumption that market participants expect to recover their 

capital costs over the lifetime of their assets. This assumption has been widely 

used in the literature to establish a theoretical benchmark model that defines the 

relationship between the loss of load expectation (LOLE) and the price cap of 

electricity prices in energy-only markets. Assuming perfect competition in its 

broader definition200, and abstracting from revenues derived from ancillary 

services, the long-term equilibrium in an energy-only market is given by a simple 

equation which states that the revenues earned by peaking units should be equal 

to their total costs201(Stoft, 2002). This equation can be written on an annual basis 

using the annualised cost structure of peaking units. In a setup of homogenous 

peaking units, this translates into the following equation: 

𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) = 𝑂𝑀𝐶 + 𝐴𝐶𝐶 (F.1) 

With:  

𝐿𝑂𝐿𝐸: loss of load expectation (i.e., expected number of scarcity hours); 

𝑃𝑐𝑎𝑝
𝐸 : price cap on energy market; 

𝑉𝐶𝑝𝑒𝑎𝑘: variable cost of peaking units; 

𝑂𝑀𝐶: annual fixed operation and maintenance costs; 

𝐴𝐶𝐶: annualised capital costs. 

                                       

200 Atomicity of consumers and suppliers, perfect information, homogeneous products, no barriers to entry and 

exit, perfect factor mobility, no market power or strategic behaviour, normal profits, no externalities, well defined 

property rights and no transaction costs. 

201 Including an appropriate remuneration of invested capital. 
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The left-hand side of the equation corresponds to the expected revenue earned by 

a unit of peak capacity in a single year. Since peaking units are the marginal plants 

of the system, their net revenue is positive only during scarcity hours where the 

electricity price rises to the price cap. In other periods, these peaking units do not 

produce, or they set the electricity price, meaning that they their net revenue is 

zero. The right-hand side of the equation corresponds to the annual fixed costs 

borne by a peaker. These are both fixed operation costs and annualised capital 

costs (including overnight investment and financing costs). The annualised capital 

costs are computed based on the expected lifetime of the generation assets. This 

is a crucial assumption which implies that those capital costs are spread over the 

lifetime of the assets, or rather that investors reason as if they expect to recover 

their capital costs over the entire lifetime of the assets. Rewriting Equation (F.1) 

in more explicit terms reveals how the lifetime of the generation assets impacts 

the equilibrium condition.  

𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) = 𝑂𝑀𝐶 +

𝑂𝐶𝐶 ∗ 𝛿

1 − (1 + 𝛿)−𝐿
  (F.2) 

With: 

𝑂𝐶𝐶 : overnight capital costs; 

𝛿: discount factor (usually the weighted average cost of capital or WACC); 

𝐿: expected lifetime of the asset. 

Equation (F.2) establishes a direct relationship between the price cap on the 

energy market and the LOLE. For any level of LOLE, there is a corresponding 

theoretical value for the energy price cap, and vice versa. When the price cap is 

set at the VoLL, representing consumers’ utility from the provision of electricity, 

then corresponding LOLE is optimal. This means that increasing the level of 

shortages would reduce social welfare because part of the electricity demand could 

still be satisfied at a cost that is below consumers’ willingness to pay. 

Symmetrically, reducing shortages would cost more than the benefits that 

consumers extract from using electricity. The scarcity pricing theory in energy-

only market is based on this theoretical model. Indeed, by allowing electricity 



Suggestions for an improved design of capacity markets   

   281 

prices to reach the VoLL during scarcity periods, the expected number of scarcity 

hours in a year would then be optimal from a social welfare point of view.  

When a CRM is introduced, generation assets receive an additional revenue in the 

form of a capacity price 𝑃𝐾. Including the capacity revenue in the equilibrium 

condition yields Equation (F.3) hereafter. Doing so mechanically provides a 

formula for the computation of the required capacity price to ensure cost-recovery. 

Isolating the capacity price 𝑃𝐾 and rearranging the terms gives Equation (F.4), 

expressing the required capacity price as a function of the economic characteristics 

of peaking units, the LOLE and the energy price cap.  

𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) + 𝑃𝐾 = 𝑂𝑀𝐶 +

𝑂𝐶𝐶 ∗ 𝛿

1 − (1 + 𝛿)−𝐿
  (F.3) 

𝑃𝐾 =
𝑂𝐶𝐶 ∗ 𝛿

1 − (1 + 𝛿)−𝐿
+ 𝑂𝑀𝐶 − 𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝

𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) (F.4) 

Most capacity markets in place have been designed based on this fundamental 

equation. The right-hand side of Equation (F.4) represents the net Cost of New 

Entry (CONE). It corresponds to the total annual cost of a new peaking unit minus 

its expected revenues on the energy market. The net CONE is the capacity 

remuneration needed by a new generation unit to enter the market and recover 

its annual total costs. The price caps in existing capacity markets are determined 

as a certain multiple of the net CONE, with the multiplying factor serving as an 

adjustment for real world conditions that do not fit the ideal perfect competition 

setting. For instance, policymakers need to consider investors’ risk aversion, or the 

uncertainty related to the estimated value of the CONE. In UK and the PJM market 

for instance, the capacity price cap is set at 1.5 times the net CONE. In France it 

is expected to be progressively increased to reach to reach the net CONE in 2020. 

It should be noted that there is an endogeneity problem associated with the 

calibration of the price caps in capacity markets. The higher the price cap, the best 

it can mitigate the negative effects of investors’ risk aversion. At the same time, a 

higher price cap also means a more volatile capacity price and thus higher risk 

premiums that investors include in their capacity bids. If there is no strategic 

behaviour from investors and if they only bid their missing money, then there is 
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an equilibrium price cap representing the lowest price cap that fully internalises 

the effect of risk aversion.  

F.2 Enhancing capacity market design 

The important distinction between new capacities and existing capacities 

– the double price cap framework 

As explained above, this methodology and its underlying theoretical background 

assumes that investors behave as if they try to recover their capital costs over the 

entire lifetime of their generation assets. However, the discussion in Chapter III 

highlighted the existence of circumstances in which such an assumption would no 

longer be true in capacity markets. This is particularly critical if investors do not 

believe that the existing market design enables them to break even on annual 

capital costs each year. In such situations, it is more likely that investors try to 

recover their entire capital costs as soon as they can, during a period that is shorter 

than the expected lifetime of the associated asset.  

In a capacity market with multiannual contracts, investors can leverage their 

contract to mobilise financing more easily. It is reasonable to assume that they 

will seek a financing structure which matches their capacity contract duration. In 

other terms, the existence of multiannual capacity contract with a fixed capacity 

price will incentivise investors: 

i. First, to mobilise capital in the form of debt and/or equity which are to be 

serviced within the duration of the capacity contracts and; 

ii. Second, to try recovering this capital over the duration of the capacity 

contracts.  

Assuming that capacity markets are properly designed to provide such incentives, 

the equilibrium condition introduced in Equation (F.3) is still applicable, but this 

time with the consideration that there are two phases in the asset lifetime in terms 

of cost structure. A first phase, which last the duration of the initial multiannual 

capacity contract and a second phase constituted by the reminder of the asset 

lifetime. The difference between these phases is the presence or absence of capital 

costs in the equilibrium condition. Since investors are now assumed to spread the 

entire capital costs on the duration of their initial multiannual capacity contract, 
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the capital costs will only intervene in the first phase of the assets’ lifetime. 

Therefore, the following equations define the equilibrium condition for each of the 

aforementioned phases (Equation (F.5) for the first phase and Equation (F.6) for 

the second phase). 

𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) + 𝑃1

𝐾 = 𝑂𝑀𝐶 +
𝑂𝐶𝐶 ∗ 𝛿

1 − (1 + 𝛿)−𝐷𝐶𝑀
  (F.5) 

𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) + 𝑃2

𝐾 = 𝑂𝑀𝐶  (F.6) 

With: 

𝐿𝑂𝐿𝐸: loss of load expectation (i.e., expected number of scarcity hours); 

𝑃𝑐𝑎𝑝
𝐸 : price cap on energy market; 

𝑃1
𝐾: capacity price requirement during first phase of asset lifetime;  

𝑃2
𝐾: capacity price requirement during second phase of asset lifetime;  

𝑉𝐶𝑝𝑒𝑎𝑘: variable cost of peaking units; 

𝑂𝑀𝐶: annual fixed operation and maintenance costs; 

𝑂𝐶𝐶 : overnight capital costs; 

𝛿: discount factor (usually the weighted average cost of capital or WACC); 

𝐷𝐶𝑀: duration of multiannual capacity contract. 

The new equilibrium conditions indicate that the required capacity price is different 

for new plants which are under their initial multiannual contract and for plants 

which are no longer under a multiannual contract. The immediate implication is 

that there should be different price caps in capacity auctions to reflect the required 

capacity price for each phase of a generation asset’s lifetime. The price caps are 

inferred from the previous equations as detailed hereafter. Keeping the same logic 

that is currently used for the calibration of capacity auctions price cap, one can 

distinguish a price cap (𝑃1
𝐾 𝑜𝑟 𝑃𝑐𝑎𝑝

𝐾,𝑢𝑝𝑝𝑒𝑟
) for new plants seeking a multiannual 

contract, and a price cap (𝑃2
𝐾 𝑜𝑟 𝑃𝑐𝑎𝑝

𝐾,𝑙𝑜𝑤𝑒𝑟) for all existing capacities that are no longer 

under their initial multiannual contract, but rather under annual capacity contracts. 
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𝑃𝑐𝑎𝑝
𝐾,𝑢𝑝𝑝𝑒𝑟

= 𝑃1
𝐾 = 𝑂𝑀𝐶 +

𝑂𝐶𝐶 ∗ 𝛿

1 − (1 + 𝛿)𝐷𝐶𝑀
− 𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝

𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘)  (F.7) 

𝑃𝑐𝑎𝑝
𝐾,𝑙𝑜𝑤𝑒𝑟 = 𝑃2

𝐾 = 𝑂𝑀𝐶 − 𝐿𝑂𝐿𝐸 ∗ (𝑃𝑐𝑎𝑝
𝐸 − 𝑉𝐶𝑝𝑒𝑎𝑘) (F.8) 

Such a double price cap system is already implemented in the UK where bidding 

capacities are split between price takers and price makers. Essentially, price takers 

are existing capacities which are no longer benefiting from a multiannual contract. 

These capacities cannot bid above a certain threshold, representing about half of 

the net CONE, which effectively acts as a price cap for them. Conversely, price 

makers are usually prospective investments or existing plants that are undertaking 

refurbishment and they can bid up to the actual price cap of the auction, which is 

set at 1.5 times the net CONE. The UK authorities have motivated the introduction 

biding limit for price taker by a willingness to mitigate potential strategic bidding, 

rather than a reflection of a result from economic theory.  

In reality, there is an economic background to the introduction of a double price 

cap system in a capacity auction, as demonstrated above. The economic 

justification lies in the very nature of the capacities submitting their bids. Some of 

these capacities are only looking to make up for their short-run missing money 

while others are trying to recover their long-run missing money. In a world where 

there would always be a capacity of the second category that clears the auction 

each year, there would be no cost recovery problem as the one illustrated in 

Chapter III. Consequently, the difference between the two categories of capacities 

would not matter for the design of the capacity market. However, when electricity 

demand is stagnating or declining, and investment needs are punctual, this 

difference becomes important.  

Creating appropriate conditions for a well-functioning capacity market 

with a double price cap framework 

The system of equations expressed above (Equation (F.7) and Equation (F.8)) was 

constructed based on a normative assumption that all conditions exist to 

incentivise investors to structure their financing in accordance to the duration of 

multiannual capacity contracts. These conditions are still to be created by 

policymakers. A set of guidelines that could be used to this end is provided 

hereafter. The proposed guidelines described above are summarised in Table 28. 
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Firstly, in order to properly incentivise investors to act as desired, the design of 

the capacity market should enforce the idea that they can only recoup their capital 

costs through their initial multiannual capacity contract. The introduction of a 

double price cap system, with the lower price cap being set at an estimated level 

of short-run missing money for a peaker, is enough to provide such a signal. 

Indeed, as all plants which are no longer under a multiannual contract will not be 

able to bid above this short-run missing money threshold, investors will try to load 

their capital costs in their initial bid for a multiannual capacity contract. This bid is 

allowed to go as high as the upper price cap of the auction, which accounts for the 

entire capital costs of a peaker (spread or annualised over the duration of the 

multiannual contract).  

Secondly, the design of the capacity auction should mitigate the potential exercise 

of market power or strategic bidding. To do so, well defined price caps for the 

capacity auction are usually an effective tool. The regulator and the system 

operator should revise the price caps frequently to account for changes in the 

market or technological progress. Moreover, the capacity auction rules should 

consider exceptional situations where existing plants may be allowed to bid higher 

than the lower price cap of the auction. Such situations may occur in presence of 

exceptional market outcomes that can affect the profitability of existing plants. It 

may be economically justified to allow such bids if they are competitive enough 

compared to some other bids. However, the regulator should monitor closely these 

specific bids to limit potential exercise of market power.  
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Table 28. Proposed design for capacity market with multiannual 

contracts 

Type of plant Bidding rules Applicable price cap Auction clearing rules 

New capacity 

seeking 

multiannual 

capacity contract 

Allowed to bid in 

capacity auction 

by submitting an 

offer that is 

under the price 

cap set for new 

plants. 

  

Price cap is set using 

Equation (F.7). The 

actual price cap would 

be a multiple of 

𝑃𝑐𝑎𝑝
𝐾,𝑢𝑝𝑝𝑒𝑟

.  

The multiplying factor 

will allow the regulator 

or market operator to 

account for the 

uncertainty related to 

the parameters of the 

formula. 

Bids that are below the price cap are 

accepted until demand is met. All accepted 

offers are awarded a multiannual capacity 

contract with a capacity price corresponding 

to the last accepted bid.  

Existing capacity 

that is no longer 

under 

multiannual 

capacity contract 

Allowed to bid in 

capacity auction 

by submitting an 

offer that is 

under the price 

cap set for 

existing plants 

that are no 

longer under a 

multiannual 

contract. 

Price cap is set using 

Equation (F.8). The 

actual price cap would 

be a multiple of 

𝑃𝑐𝑎𝑝
𝐾,𝑙𝑜𝑤𝑒𝑟.  

The multiplying factor 

will allow the regulator 

or market operator to 

account for the 

uncertainty related to 

the parameters of the 

formula. 

Bids that are below the price cap are 

accepted until all bids from this category are 

accepted. All accepted offers are awarded an 

annual capacity contract with a capacity price 

corresponding to the last accepted offer in 

this category. 

Existing capacity 

that is still under 

its initial 

multiannual 

capacity contract 

Forbidden from 

participating in 

the capacity 

auctions 

NA NA 

 

To conclude, it should be underlined that the suggestions above only apply to a 

simplified setting that does not include investment for refurbishments, or other 

types of investments. In order to account for these specific cases, the framework 

could be adapted by creating new categories of plants with appropriate price caps 
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(based on their cost structure). However, this may be complex to implement, 

especially if there are a lot of categories. Also, the regulator would need to define 

a transition mechanism to cover the case of assets which have only partially 

recovered their fixed costs.  
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ABSTRACT 

 
The ongoing energy transition, partly characterized by the massive deployment of renewables, has reignited a long-lasting debate on the best market design options 
to provide adequate investment incentives and ensure capacity adequacy in liberalised electricity markets. To choose the appropriate market design, policymakers 
need to assess and compare the economic performances of available solutions in terms of effectiveness and cost-efficiency.  
This dissertation complements the existing literature on market design for long-term capacity adequacy by focusing on three research topics: (i) understanding how 
electricity markets perform under different assumptions regarding investors’ risk preferences, (ii) analysing the compatibility of private agents’ incentives to mothball 
capacity resources with security of supply objectives and (iii) assessing the economic performance of different market designs in a context of a high penetration of 
renewables. To this end, the System Dynamics modelling framework is applied to represent long-term dynamics resulting from private agents’ decisions in liberalised 
electricity markets. The dissertation is organised in three chapters corresponding to each of the topics mentioned above. The main results are outlined below.  
Firstly, capacity remuneration mechanisms are necessary to deal with the detrimental effects of investors’ risk aversion. Energy-only markets are significantly affected 
by this phenomenon as they experience reduced investment incentives and higher levels of shortages. Capacity markets are more resilient to private investors’ risk 
aversion. However, this resilience depends on the level of the price cap in the capacity auctions. For such a market design to provide satisfactory outcomes in terms of 
capacity adequacy, this price cap should account for the investment risk faced by market participants.  
Secondly, when market participants have the possibility to mothball their capacity resources, these mothballing decisions can potentially modify investment and 
shutdown dynamics in the long run. Furthermore, in a world with capacity lumpiness (i.e. indivisibilities), mothballing increases the level of coordination needed to 
ensure capacity adequacy. This is especially true in energy-only markets, where mothballing increases the level of shortages to an extent that seems to outweigh the 
cost savings it generates at system level. Capacity markets can provide the required coordination to ensure capacity adequacy in a world with mothballing.  
Thirdly, among proposed market designs in the literature, capacity markets appear as the preferable solution to ensure capacity adequacy from a social welfare point 
of view. Nevertheless, from a private investor’s perspective and under certain conditions related to high penetration of renewables, capacity markets with annual 
contracts do not entirely remove the so-called “missing money” problem. The results indicate that granting multiannual capacity contracts alleviates the problem.  
 

MOTS CLÉS 
 

Sécurité d’approvisionnement – Architecture des marchés de l'électricité – Incitations aux investissements – Energies renouvelables – Modélisation System Dynamics 

RÉSUMÉ 

 
La transition énergétique, en partie caractérisée par le déploiement massif des énergies renouvelables, a relancé un débat de longue date sur les architectures de 
marché fournissant les meilleures incitations aux investissements dans les marchés libéralisés de l’électricité. Ces incitations sont essentielles pour garantir la sécurité 
d’approvisionnement à long terme. Pour choisir l’architecture de marché adéquate, les décideurs publics doivent évaluer et comparer les performances économiques 
des solutions disponibles.  
La présente thèse complète la littérature sur les incitations aux investissements et la sécurité d’approvisionnement en étudiant trois aspects importants : (i) le 
comportement des marchés de l'électricité en présence d’acteurs averses au risque, (ii) la compatibilité entre les incitations des acteurs à mettre leurs actifs sous cocon 
et les objectifs de sécurité d’approvisionnement et (iii) les performances économiques de différentes architectures de marché dans un contexte de forte pénétration 
des énergies renouvelables. Pour ce faire, une modélisation de type System Dynamics est utilisée pour représenter les dynamiques de long terme résultant des 
décisions des acteurs dans un marché libéralisé. La thèse est organisée en trois chapitres correspondant à chacun des points mentionnés ci-dessus. Les principaux 
résultats sont les suivants : 
Premièrement, les mécanismes de capacité sont nécessaires pour faire face aux effets néfastes de l’aversion au risque des investisseurs. Ce phénomène affecte de 
manière significative les marchés de l’énergie de type energy-only, qui subissent alors une baisse des investissements et des pénuries plus importantes. Les marchés 
de capacité résistent mieux à l’aversion au risque des investisseurs. Cependant, cette résilience dépend du plafond des prix dans les enchères de capacité. Pour 
qu'une telle architecture de marché donne des résultats satisfaisants en termes de sécurité d’approvisionnement, ce plafond de prix doit tenir compte du risque 
d'investissement supporté par les acteurs. 
Deuxièmement, si les acteurs du marché en ont la possibilité, leurs décisions de mettre leurs actifs sous cocon peuvent modifier les dynamiques d'investissement et 
de fermeture à long terme. En outre, dans un monde caractérisé par des actifs indivisibles, cette possibilité augmente le niveau de coordination nécessaire pour assurer 
la sécurité d’approvisionnement. Cela est particulièrement vrai pour les marchés de type energy-only, dans lesquels la mise sous cocon augmente le niveau des 
pénuries, au point de contrebalancer les économies de coûts qu’elle génère. En revanche, les marchés de capacité peuvent fournir la coordination nécessaire pour 
assurer la sécurité d’approvisionnement même lorsque les acteurs ont la possibilité de mettre leurs actifs sous cocon.  
Troisièmement, parmi les architectures de marché proposées dans la littérature, les marchés de capacité apparaissent comme la meilleure solution du point de vue du 
surplus social. Néanmoins, du point de vue des investisseurs, et dans certaines conditions liées à une forte pénétration des énergies renouvelables, les marchés de 
capacité avec des contrats annuels ne suppriment pas entièrement le problème dit de « missing money ». Les résultats indiquent que l'attribution de contrats de 
capacité pluriannuels atténue le problème. 
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