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Résumé 

La géothermie est une source d'énergie renouvelable pouvant servir de base pour la production 

d'électricité ou le chauffage, sans ou avec une émission limitée de gaz à effet de serre. 

Cependant, le développement et l'exploitation des réservoirs géothermiques profonds 

s'accompagnent généralement d'une sismicité induite - un effet secondaire qui peut susciter de 

vives inquiétudes auprès du public et empêcher une utilisation à grande échelle de l'énergie 

géothermique. La pièce maîtresse d’une installation géothermique est un échangeur de 

chaleur, c’est-à-dire un réservoir, situé dans des roches chaudes en profondeur. Ce réservoir de 

roche est créé en utilisant la technique de la stimulation hydraulique, qui consiste 

essentiellement à injecter un fluide à des pressions élevées pour créer de nouvelles fractures 

hydrauliques qui  se connecteront au réseau de fractures ou de failles préexistantes. Ce faisant 

de nouvelles voies pour la circulation du fluide seront créées et la surface d’échange de 

chaleur sera considérablement augmentée. 

Plusieurs processus physiques couplés interviennent lors de la stimulation et de l’exploitation 

de réservoirs géologiques profonds. Il s’agit essentiellement de la déformation et de la rupture 

de la roche, de l’écoulement du fluide, et des variations de température. Ces processus couplés 

et dépendants du temps sont à l’origine de la propagation des fractures et de la réactivation de 

failles, responsable de la sismicité induite. 

Cette thèse de doctorat est axée sur l'utilisation de simulations numériques dans le but de 

mieux comprendre le comportement thermo-hydro-mécanique des réservoirs géothermiques 

fracturés et de déterminer le potentiel de sismicité induite. La propagation des fractures 

hydrauliques et la réactivation de failles préexistantes sont modélisées à l'aide du concept de 

matériau cohésif en combinaison avec des éléments finis cohésifs et en tenant compte des 

processus physiques sous-jacents (par exemple, écoulement de fluide, déformation de la 

roche). Différents facteurs pouvant avoir un impact majeur sur la propagation de la fracture et 

la réactivation de la faille sont étudiés, tels que le frottement des failles préexistantes, le débit 

d’injection de fluide et l’orientation des failles. Les variations de température résultant de 
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l'injection et de la circulation d'un fluide pouvant avoir un effet à long terme sont également 

étudiées séparément. 

La sismicité induite est ensuite étudiée sous l'angle de l'utilisation de la loi de la conservation 

de l'énergie afin d'expliquer le mécanisme de génération d'ondes élastiques consécutif à la 

rupture. Le processus de conversion de l'énergie de déformation accumulée dans un système 

avant la rupture en énergie cinétique pendant la rupture, quelle que soit la vitesse avec laquelle 

la charge externe est appliquée au système, est clairement démontré. Cette approche permet de 

bien comprendre les facteurs qui ont un impact majeur sur l'intensité des ondes sismiques 

induites. Ensuite, une procédure de modélisation est proposée pour calculer les accélérations 

maximales induites à la surface du sol par le glissement de la faille. Ces accélérations sont 

utilisées pour évaluer l'intensité du séisme en relation avec la perception humaine des ondes 

sismiques et l'endommagement causé aux infrastructures, participant ainsi au processus 

d’acceptation par le public de tout nouveau projet d’exploitation géothermique. 
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Abstract 

Geothermal energy is a renewable resource that can provide base-load energy for electricity 

production or heating purposes without, or with limited, emission of green house gases. 

However, the development and the exploitation of deep geothermal power plants is usually 

accompanied by induced seismicity – a side effect that can raise serious concerns to the public 

and may prevent large-scale application of geothermal energy. The centerpiece of a deep 

geothermal power plant is a heat exchanger, i.e., a reservoir, located in hot rocks at depth. This 

rock reservoir is created using a hydraulic stimulation technique, which essentially consists of 

injecting fluid at high pressures to create new hydraulic fractures that will connect with pre-

existing fractures/faults, thus multiplying possible pathways for fluid circulation. Multiple 

physical processes are involved during the stimulation and exploitation of the rock reservoir, 

including fluid flow, rock deformation of the rock, and temperature changes. These processes 

are the origin of the rock failure (e.g., fracture propagation, fault reactivation) that is 

responsible for the induced seismicity. In return, the induced seismicity can be regarded as a 

real-time indicator of the spatial progress of the reservoir during hydraulic stimulation. 

This doctoral research focuses on the use of numerical simulations to better understand the 

behavior of fractured geothermal reservoirs and the potential of induced seismicity. The 

propagation of hydraulic fractures and the reactivation of pre-existing faults are modeled using 

the cohesive material concept in combination with finite cohesive elements and taking into 

account the underlying physical processes (e.g., fluid flow, rock deformation). Various factors 

that may have a major impact on fracture propagation and fault reactivation are investigated, 

such as the friction condition of the pre-existing faults, the fluid injection rate, and the fault 

orientation. Temperature changes resulting from fluid injection and circulation that may have 

a long term effect are also separately investigated. 

The induced seismicity is first studied from the standpoint of using the law of energy 

conservation in order to explain the mechanism of elastic waves generation due to failure. The 

process of converting the strain energy accumulated in a system prior to the failure into kinetic 
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energy during failure, regardless of how slowly the external load is applied to the system, is 

clearly demonstrated. This approach provides a good understanding of the factors that have a 

major impact on the intensity of the induced seismic waves. A modeling procedure is then 

proposed to calculate the peak ground accelerations that are induced by the fault slip. The 

computed accelerations on the ground surface are used to assess the earthquake intensity, the 

human perception of the seismic waves, and the damage potential to infrastructures. 
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Chapter 1 

 

Introduction 

1.1 INTRODUCTION TO GEOTHERMAL ENERGY 

1.1.1 Geothermal resources potential 

Geothermal energy is the thermal energy contained in the Earth’s crust. The sources of 

geothermal heat are associated with the upward conduction and convection of energy from the 

Earth’s core and mantle, and with the decay of the naturally radioactive isotopes of uranium, 

thorium and potassium (Barbier, 1997; Boyle, 2004; Brown et al., 2012). These natural 

processes, which occur over geological time scales, maintain the renewal of the thermal 

energy content and make geothermal energy practically inexhaustible. 

Geothermal energy exists in two major forms: natural hydrothermal systems and heat stored in 

hot rock formations. In natural hydrothermal systems, an interconnected network of open 

pores and fractures is present in the rock mass, which allows the flow of fluids. Natural 

groundwater is abundant in these systems; it is heated by the surrounding hot rock and is 

carried upward by natural convective circulation. These natural systems can be found in 

porous and/or naturally fractured rocks and are typically located at depths of 1 – 4 km in a 

number of locations e.g., New Zealand, Indonesia, Northern Italy, Japan, Mexico, Iceland 

(DiPippo, 1988; Mock et al., 1997; Tester, 1989). However, natural hydrothermal systems are 

the exception rather than the rule as heat, natural groundwater and permeability/porosity must 

be present. 
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The heat stored in hot rock formations, on the other hand, is in principle available anywhere 

around the world if one drills deep enough and can appropriately stimulate the rock (i.e., 

create sufficient permeability) at these depths. The reason is that the temperature of the Earth 

increases with depth. On average, the geothermal gradient is about 30 °C/km (Banks, 2012; 

Barbier, 1997; Brown et al., 2012).  However, there are many areas where thermal gradients 

are considerably greater. A thermal gradient of 50 °C/km is commonly available in the 

Western U.S (Beckers et al., 2014) where the minimum temperature at a depth of 5 km is 

estimated to be 250 ºC. The same thermal gradient was also found in Southern Australia 

(Geodynamics, 2015) where temperatures of 273 ºC and 283 ºC have been found at depths of 

around 5 km. A local geothermal gradient on the order of 65 °C/km was found at the Fenton 

Hill site in the Jemez Mountains of New Mexico, United States. For regions that have an 

average geothermal gradient of 30°C/km, a temperature of 150 °C is expected at depths of 

around 5 km, depths that are accessible with current drilling technology; this temperature is 

considered to be suitable for efficient heat exploitation (Potter et al., 1974). The rock 

formations at depths where suitable temperatures can be found have two typical 

characteristics: low permeability to almost impermeable and essentially dry – the so-called hot 

dry rocks (HDR). HDRs hold an enormous amount of thermal energy that can be extracted for 

electricity production.  A comparison of geothermal energy output with other energy sources 

is shown in Figure 1.1. 

 
Figure 1.1  Estimates of the worldwide resource base for geothermal and other energy sources (Brown 

et al., 2012). Note: 1 quad = 293 x 10
9
 kWh; world energy consumption in 2010 is 524 quads 
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It is obvious from Figure 1.1 that the geothermal energy stored in HDRs is second only to 

fusion energy, a source that is yet to be developed. It has been estimated that the total amount 

of thermal energy contained in HDR at accessible depths is about 300 times greater than the 

energy that oil, natural gas and coal combined could provide (Duchane and Brown, 2002; 

Tester, 1989). This amount of energy is enough to supply all the energy needs of the world for 

centuries to come (Edwards et al., 1982). 

1.1.2 Hot Dry Rock concept 

The importance of HDR resources originates not just from its huge quantity but also from its 

abundant availability throughout the world. However, the low permeability and the absence of 

natural water in HDRs require that permeability-enhancing operations have to be carried out 

and a heat transport medium, e.g., water or brine, must be supplied artificially. The first 

attempts to exploit the heat contained in HDRs were made in the United States by a group of 

researchers from the Los Alamos National Laboratory (Brown and Duchane, 1999; Smith, 

1975), who conceived the HDR concept and began to develop the world's first HDR reservoir 

at Fenton Hill in New Mexico (USA) between 1974 and 1978 (Murphy et al., 1983). The 

original HDR concept, as shown in Figure 1.2, was simple (Abé, 1992; Brown et al., 2012; 

Potter et al., 1974): A well is drilled into the HDR formation. Through this well, water is 

injected at pressures high enough to create a single plane vertical fracture, perpendicular to the 

direction of the minimum compressive stress, which is often horizontal at depths greater than 

500 – 1000 m. The vertical fracture would grow as a disc to a diameter of several hundred 

meters, creating a large reservoir of rock with sufficient area for heat exchange between the 

water and the hot rock. A second well is subsequently drilled to connect with the reservoir at 

some distance from the first well. Once the stimulation phase and the well completion are 

finished, water circulation and heat extraction can begin. Cold water is pumped into the 

reservoir through the first well. The water is heated by contact with the hot rock as it flows 

across the reservoir. The resulting superheated water is then pumped up to the surface via the 

second well and begins the power generation phase. After extracting the useful heat, the same 

water is re-injected back into the reservoir to begin a new circulation circle. Thus, an HDR 

system operates and recovers the heat from HDRs in a closed-loop circulation, making the 
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production operations sustainable to some extent, although some water loss from the system 

may still occur. 

 
Figure 1.2  Original concept of an HDR geothermal system consisting of two wells and a vertical 

fracture created by hydraulic stimulation. Left: Front view showing typical dimensions for the wells, 

depth of the reservoir, and temperature. Right: 3D view showing the orientation of the fracture relative 

to the minimum stress. (Adapted from  (Brown et al., 2012).) 

For large HDR systems, larger areas are required for heat exchange. This could be achieved by 

creating a set of multiple parallel fractures using hydraulic stimulation in open uncased 

sections of the borehole (Nicol and Robinson, 1990). A schematic of such a system is 

illustrated in Figure 1.3. 

The successful development of an HDR reservoir depends on the choice of a site that provides 

suitable rock at a depth that is reachable with limited drilling costs. The reservoir created 

should provide a sufficient area for rapid heat transfer between the rock and water and requires 

a reasonable amount of energy to pump water through it, i.e., resistance to flow must be 

relatively small. The reservoir must also operate with minimum water loss from the system 

and its temperature should not be drawn down too quickly. 

ShSh
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Figure 1.3  HDR concept for large geothermal systems that contains multiple parallel vertical 

fractures. Two deviated wells connect these fractures to create a closed-loop system (Adapted from  

(Jung, 2013)) 

1.1.3 Enhanced Geothermal Systems 

This original HDR concept was based on a consideration of the crystalline formation at great 

depths as an intact and almost impermeable rock mass. However, this consideration was 

refuted based on further understanding gained from the work at the Fenton Hill HDR project 

and the Camborne School of Mines (CSM) geothermal project at Rosemanowes, Cornwall, 

England (Murphy et al., 1983). The existence of natural joints and existing fractures has been 

confirmed and their influence on the development of the geothermal reservoir is considered to 

be significant. In fact, high fracture densities can be expected in most deep rock formations, 

although only a fraction of them are likely to be conductive (Evans et al., 1999). Microseismic 

evidence at the Fenton Hill project showed that instead of generating a disc-shaped fracture, 

hydraulic stimulation leads to the opening and/or shearing of the natural joints and existing 

fractures, and permanently improves the permeability of the formation (Duchane and Brown, 

2002; Evans et al., 1999; Murphy et al., 1983; Richards et al., 1994). The shearing and/or 

opening of existing fractures was also the main permeability enhancement mechanism 

observed in the CSM project (Baria et al., 1989; Green and Baria, 1989). In fact, the seismic 

investigations at the CSM project concluded that all detected microseismic activity indicated 

Injection wellProduction well

Parallel fractures
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shear sources that are consistent with known rock joint orientations and in-situ stress 

magnitudes and orientations. These observations and further experimental studies prompted 

the concept of Enhanced Geothermal Systems (EGS) in which natural joints and existing 

fractures play important role in the development of the rock reservoir (Batchelor, 1989a; 

Cornet, 1989). Instead of being considered as a continuum medium, the rock is treated as a 

discrete medium that contains natural joints and fractures. The permeability of this medium 

could be enhanced by massive water injection in long uncased borehole sections to shear and 

open the natural fractures. The EGS concept is illustrated in Figure 1.4. 

  
Figure 1.4  Schematic of the EGS concept that contains one injection well and three production wells. 

The permeability of the rock mass is enhanced by the shearing and opening of existing joints/fractures. 

Source: DOE (2015).  

Generally, an EGS reservoir must have a number of properties in order to be technically 

feasible and economically viable. These include the total volume, the total heat exchange 

surface, the flow impedance, and the thermal and stress-field properties. The reference limits 

for these properties are summarized in Table 1.1. 
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Table 1.1  Required properties for an EGS reservoir. Source: Rybach (2010) 

Property Value 

Fluid production rate 

Wellhead temperature 

Total effective heat exchange surface 

Rock volume 

Flow impedance 

Water loss 

50 – 100 L/s 

150 – 200 °C 

> 2 x 10
6
 m

2
 

> 2 x 108 m
3
 

< 0.1 MPa/(L/s) 

< 10% 

1.2 PIONEERING EGS PROJECTS 

Since the creation of the world’s first HDR reservoirs at Fenton Hill, many EGS projects have 

been developed in the United States, Europe and elsewhere. These projects have used a more 

or less similar approach to that used at Fenton Hill HDR reservoir, using the technique of 

hydraulic fracturing to create the large heat transfer areas necessary in a HDR reservoir. Major 

pioneering projects are summarized in the following paragraphs. 

1.2.1 Fenton Hill HDR project 

The first HDR geothermal project at Fenton Hill, New Mexico, United States, was initiated in 

1971 by the Los Alamos National Laboratory (LANL). The primary objective of the project 

was to develop and demonstrate of an economical and commercially viable technology for 

extracting thermal energy stored in HDR. The site, located just outside of the ring fault 

structure of the Valles Caldera, was chosen primarily on the basis of favorable heat flow and 

the simplicity of the geologic structure in the anticipated reservoir rock (Brown and Duchane, 

1999). The estimated thermal gradient is on the order of 65 °C/km. The basement rock is at a 

depth of about 730 m, and contains Precambrian igneous and metamorphic rocks. The rock 

mass is extremely tight with hydraulic conductivity in the range of nano-darcies (Brown et al., 

2012). A geologic cross section of the rock mass with the geothermal gradient is shown in 

Figure 1.5. 
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Figure 1.5  Elevation view of the Phase I (GT-2B and EE-1) and Phase II (EE-2 and EE-3) wellbore at 

the Fenton Hill HDR project (Grigsby et al., 1989) 

Two separate, confined HDR reservoirs were created at the Fenton Hill site in hot crystalline 

rock at different depths and then assessed and flow-tested for almost a year. Work on the 

shallower reservoir (Phase I reservoir) began in 1974 (Brown et al., 2012). The first borehole, 

GT-2 (Figure 1.5), was drilled into the granitic rock at a depth of 2900 m at a mean 

temperature of 195 °C. After a series of water injections to generate a hydraulic fracture from 

the bottom of the GT-2 borehole, the second borehole, EE-1, was directionally drilled beneath 

the bottom of the borehole GT-2 to intersect with the created hydraulic fracture. A good 

connection between the second borehole and the created reservoir was not immediately 

achieved, and sidetracking was necessary to establish contact with the initial well via a 

combination of induced and natural fracture pathways. In total, over 2000 m
3
 of water was 
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injected at average pressures of 10 MPa. Later, the reservoir was enlarged due to extensive 

testing. Using microseismic data, the final volume of the reservoir was estimated at 10 x 10
6
 

m
3
 (Brown, 2009). Circulation tests showed a thermal production power of 3 MW at a flow 

rate of about 6 L/s. 

Development of the second, much larger, deeper, and hotter HDR reservoir began in 1980 

(Phase II). The initial intent of this reservoir was to create a series of vertical, disc-shaped 

fractures connecting two inclined, vertically separated wellbores (Brown and Duchane, 1999). 

This concept is presented in Figure 1.3. The two boreholes were drilled sequentially, one 

above the other. The first borehole EE-2 (Figure 1.5) was drilled to a vertical depth of about 

4400 m, with the lower 1000 m directionally drilled at an angle of 35° to the vertical. The 

second borehole EE-3 (Figure 1.5) was then drilled in a similar manner to the first, but with 

the directionally drilled segment positioned 380 m above the directionally drilled portion of 

the first borehole. A number of hydraulic stimulations were carried out in an effort to connect 

these two boreholes by multiple vertical fractures. In total, over 21000 m
3
 of water was 

injected at average pressures of 48 MPa. However, all these stimulations failed to connect the 

two boreholes. A satisfactory connection between the boreholes was then achieved after 

sidetracking the upper borehole into the stimulated region, which had been identified using 

induced microseismic data. The Phase II reservoir operated at a much higher temperature, 

above 300 °C, than the Phase I reservoir. A circulation test revealed a thermal power 

production of 10 MW at a circulation flow rate of 12 – 14 L/s. Water loss during circulation 

was estimated to be extremely low due to the inherent tightness of the surrounding sealed rock 

mass, combined with the stress cage effect (Brown et al., 2012). However, the resistance to 

flow was 2.1 MPa/(L/s), which is unacceptably high compared to the reference limit value 

given in Table 1.1. It was believed that much of the impedance was concentrated in the zones 

immediately surrounding the boreholes. The Fenton Hill project was terminated in 1995 due to 

lack of financial support. 

1.2.2 Camborne School of Mines Project 

The Camborne School of Mines project at Rosemanowes Quarry in Cornwall, England started 

in 1977 and proceeded in 3 phases (Batchelor, 1989a; Parker, 1989). The Phase 1 of the 
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project involved preliminary experiments at shallow depths. The objective of this phase was to 

understand the role of the natural fracture system and find the best way to establish and control 

flow paths within the fracture system. Four boreholes were drilled to a depth of 300 m; 

explosives and hydraulic fracturing were used in combination to connect the four boreholes. 

The circulation test later showed that the impedance was greatly reduced. The lowest 

impedance achieved was close to 0.1 MPa per L/s. Temperature gradients at the site were 

estimated at 30 – 40 °C/km, the highest in England (Parker, 1989). 

The next phase of the project, Phase 2A, began in 1980 and lasted until 1983. The goal of this 

phase was to learn how to create and manage a full-size reservoir that has all the parameters 

necessary for commercial operation, except the depth of the reservoir. During this phase, two 

boreholes (RH11 and RH12) deviated from the vertical by 30° and spaced by 300 m were 

drilled to a depth of 2000 m. The reservoir was created by explosive fracturing near the 

wellbore, followed by hydraulic stimulation of the lower borehole using water injected at flow 

rates up to 100 L/s to try to open up the existing joints to connect to the upper borehole 

(Parker, 1989). However, the circulation test, in which water was injected through the lower 

borehole revealed, that a massive amount of water was lost from the system and the pumping 

pressure required was too high (Baria et al., 1989). Seismic monitoring showed that during the 

stimulation and subsequent circulation, the reservoir grew vertically downwards, as shown in 

Figure 1.6, probably extending to a depth of two kilometers below the two boreholes. 

During Phase 2B, a third borehole RH15 was drilled to a depth of 2600 m to access the 

stimulated zone below the existing two boreholes (Batchelor, 1989b). Its position was selected 

to penetrate through the microseismic cloud. Stimulation was then performed on RH15 using 

viscous gel. A substantial thermal drawdown was observed during the first year of a 

circulation test. Circulation tests later suggested that the optimum hydraulic performance at 

Rosemanowes would have an injection flow rate of 24 L/s, a flow impedance of 0.6 MPa/(L/s) 

and water loss of 21%. This is still far from the requirements, as given in Table 1.1, for this 

EGS reservoir to be considered to be economically viable. 
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Figure 1.6  Front view of the seismic cloud of the EGS-system at Rosemanowes (Jung, 2013) 

1.2.3 Soultz-sous-Forêts project 

The Enhanced Geothermal System (EGS) of Soultz-sous-Forêts (France) is a European 

research program for the extraction of energy from deep hot fractured rocks. The site of Soultz 

is located in the central part of the Upper Rhine Valley 6 km east of the Western main fault. 

The Soultz granitic basement lies below 1.4 km of sediments, goes down to 5 km, and is 

strongly fractured (Genter and Traineau, 1996; Ledésert et al., 1993; Sausse, 2002). The joint 

systems are clustered, with a high density of joints in the fracture zones and a much lower 

density in the competent rock. The fracture zones and joints are mainly subvertical at a strike 

of 160°. The geostatic stress state includes a minimum horizontal stress S
h
, which is about 

54% of the vertical stress S
v
 (S

h
 = 0.54 S

v
), and a maximum horizontal stress S

H
, which is 
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almost equal to the vertical stress (S
H
 = S

v
) (Cornet et al., 2007; Ledésert et al., 2010; Sausse 

and Genter, 2005). Temperature anomalies have been documented at the site and in the region 

around Soultz (Dèzes et al., 2004; Ziegler, 1992), which indicate that some of the faults are 

permeable, transporting water from great depth up to the cap rock. The temperature at 5 km in 

the granitic basement is about 200 °C (Freymark et al., 2017; Held et al., 2014; Hettkamp et 

al., 2004) and the lower part of the temperature profile indicates a conductive heat transfer 

regime. 

In total, five deep boreholes have been drilled at the Soultz site (Hébert et al., 2010). The two 

initial boreholes (GPK1, 3600 m deep and EPS1, 2200 m deep) were mainly for the purpose of 

investigating the nature and the structure of the rock mass. The other three boreholes (GPK2, 

GPK3 and GPK4) are located at depths 4400 to 5000 m. These boreholes form a triplet system 

in which GPK3 is used for injection of fluids, while GPK2 and GPK4 are dedicated to 

production. An elevation showing the relative locations of the four boreholes GPK1 to GPK4 

is presented in Figure 1.7. All boreholes drilled had open sections of 500 – 750 m in the lowest 

part that would be stimulated. Each borehole of the triplet system was stimulated by injecting 

large volumes of water at various flow rates. A volume of 22000 m
3
 was injected at 50 L/s 

into borehole GPK2, which resulted in a wellhead pressure of 14.5 MPa at shut-in. Stimulation 

of the borehole GPK3 involved pumping of 34000 m
3
 of water at a flow rate from 50 to 90 

L/s. The maximum wellhead pressure produced was 17.9 MPa. The borehole GPK4 was 

stimulated by injecting 21500 m
3
 of water at a flow rate from 30 to 45 L/s and the peak 

wellhead pressure was 17.5 MPa (Evans et al., 2012). The permeability of the rock mass was 

significantly improved after stimulation. Transmissibility of single fractures after the 

stimulation could exceed 1 d.m and was only slightly pressure dependent (Schill et al., 2017). 

Several circulation tests were later performed. The production flow rate for the two production 

boreholes GPK2 and GPK4 reached 30 L/s, which is still far from the requirement of 50 – 100 

L/s (Table 1.1). Long term circulation of the triplet system with power production commenced 

in 2010 (Genter et al., 2010). 
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(a) 

 

(b) 

Figure 1.7  (a) Schematic map of the Rhine graben and location of the Soultz-sous-Forêts EGS site 

(Calò et al., 2014), (b) Simplified deep geology, well trajectories and location of open sections and 

leakages in the Soultz-sous-Forêts reservoir (Held et al., 2014) 

1.3 INDUCED SEISMICITY IN EGS DEVELOPMENT 

The centerpiece of an EGS project is the heat exchanger created in the hot rock at depth. 

Hydraulic stimulation has become a common technique to achieve this result. Fluid, such as 

water, is injected at sufficiently high pressure into the rock mass to create new fractures or 

activate the pre-existing ones. Given the high pressures and the massive amount of water 

needed in the stimulation, the seismic risk has increasingly become a major concern (Evans et 

al., 2012; Zang et al., 2014). In fact, one of the main challenges for the development of an 

EGS is associated with assessing the induced seismicity that may be triggered by hydraulic 

pressurization during the stimulation and circulation phases (Ellsworth, 2013; Pellet, 2017; 

Wohlenberg and Keppler, 1987). Thousands of seismic events are generated during the 

stimulation and exploitation of EGS reservoirs. In some sites, events of high magnitude were 

induced and could be felt on the ground surface. 
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At Soultz-sous-Forêts, massive water injections into the boreholes GPK2, GPK3 and GPK4 

(located at depths from 4400 to 5000 m) resulted in approximately 90,000 micro-earthquakes. 

The stimulation of the borehole GPK2 alone triggered over 700 events of magnitude between 

ML 1.0 and 2.5 during injection. A large event of magnitude ML 2.6 occurred after the shut-in 

(Dorbath et al., 2009; Evans et al., 2012). More than 200 event of magnitude between ML 1.0 

and 2.5 occurred during the stimulation of borehole GPK3; the largest event that had a 

magnitude ML 2.9 also occurred after the shut-in. Stimulation of the borehole GPK4 also 

resulted in multiple seismic events, some reaching a magnitude ML 2.7; in total, more than 30 

events of magnitude above ML 2.0 were triggered (Rybach, 2010). The circulation tests 

performed in 2005 and 2008 also induced seismicity with the largest event having a magnitude 

of ML 2.3 (Cuenot et al., 2008; Dorbath et al., 2009). 

At the Basel EGS site in Switzerland, the stimulation of a 5000 m deep borehole in 2006 

triggered multiple seismic events that were clearly perceived by the public. The first event of 

magnitude ML 2.6 occurred during fluid injection, followed by two larger events of magnitude 

ML 2.7 and 3.4 that occurred during shut-in. After the bleed-off, three aftershocks of ML > 3 

were recorded (Deichmann and Giardini, 2009; Häring et al., 2008). These induced seismic 

events raised concerns among the public, which led to the cancelation of the project by the 

Basel government at the end of 2009 and the borehole was closed in 2011.  

Induced seismicity has also occurred during the development phase of many other EGS 

projects. For instance, multiple induced seismic events of magnitude approaching ML 3.7 were 

recorded at the Cooper Basin EGS project in Australia after the injection of 20,000 m
3
 of 

water (Asanuma et al., 2005; Baisch et al., 2006). As recently as 2017, an earthquake of 

magnitude MW 5.5 that struck South Korea in November 2017 was believed to be linked to the 

stimulation activities at the nearby Pohang EGS project (Grigoli et al., 2018). 

Many induced microseismic events have also been reported during the production phases of 

various EGS projects. At the Hellisheidi geothermal power plant, which is located within the 

Hengill volcanic system in Iceland, microseismic activity increased immediately after 

reinjection of geothermal waste water began (Flóvenz et al., 2015; Juncu et al., 2018), with 

two largest induced seismic events of magnitude 4. Later investigations showed that the fluid 

reinjection caused an increase in pore pressure which led to increased seismicity and fault slip 
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(Juncu et al., 2018). Both the pore pressure increase and the fault slip resulted in the observed 

surface deformation. An induced event of magnitude ML = 2.7 was also recorded in August 

2009 during the circulation phase at the geothermal project in Landau, Germany (Gaucher et 

al., 2015). 

The risk of induced seismicity has to be thoroughly assessed and quantified before an EGS 

project can begin, especially for projects located near urban areas. Otherwise, this issue can 

impede the development or even lead to the cancelation of the project as was seen in Basel, 

Switzerland. Seismicity induced during the injection and withdrawal of fluids is believed to be 

associated with the slip of pre-existing faults and the propagation of new tensile fractures 

(Pearson, 1981). Both the fault slip and the fracture propagation are related to the in-situ stress 

variation, which is induced by thermo-poromechanical processes involved during the injection 

and withdrawal of fluids (Ghassemi and Tao, 2016; Ghassemi and Tarasovs, 2015; Ghassemi 

and Zhang, 2004; Segall and Fitzgerald, 1998). The thermo-mechanical coupling (i.e., changes 

in in-situ stress due to temperature variations) is important on long time scales from months to 

years (Ghassemi, 2012; Ghassemi and Tarasovs, 2015). While the poro-mechanical effect due 

to changes in pore pressure affects the deformation of the rock mass more quickly. 

Consequently, seismic events induced during the fluid injection are usually considered to be 

caused by the shear slip on natural faults in response to a reduction of the shear strength the 

faults due to an increase in pore pressure. However, thermoelastic perturbations can cause an 

increase of the deviatoric stress in the cooled portion of the reservoir, potentially provoking an 

unstable condition (De Simone et al., 2013). Thus, a comprehensive approach to assess the 

risk of induced seismicity should take into consideration the effects of both thermo- and 

poromechanical processes. A schematic of the fault slip due to fluid injection, the propagation 

of the induced seismic waves and the potential impact on surface structures is illustrated in 

Figure 1.8. The intensity of induced seismicity can be estimated based on the peak 

accelerations or peak velocities recorded on the ground surface and using the modified 

Mercalli intensity scale (Wald et al., 1999; Wood and Neumann, 1931). Figure 1.2 provides a 

relationship between the peak ground accelerations or peak ground velocities and the seismic 

intensity, human perception and potential structural damage. The consequences of the induced 
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seismicity can range from a nuisance to the population to structural damages to the 

infrastructure.  

Table 1.2  Modified Mercalli intensity scale and corresponding peak ground acceleration and peak 

ground velocity. Source: Wald et al. (1999), Wood and Neumann (1931) 

Intensity 

 

Peak acceleration 

(%g) 

Peak velocity 

(cm/s) 

Perceived 

shaking 
Potential damage 

I < 0.17 < 0.1 Not felt None 

II–III 0.17 – 1.4 0.1 – 1.1 Weak None 

IV 1.4 –3.9 1.1 – 3.4 Light None 

V 3.9 – 9.2 3.4 – 8.1 Moderate Very light 

VI 9.2 –18 8.1 – 16 Strong Light 

VII 18 –34 16 – 31 Very strong Moderate 

VIII 34 –65 31 – 60 Severe Moderate to heavy 

IX 65 – 124 60 – 116 Violent Heavy 

X+ > 124 > 116 Extreme Very heavy 
 

 
Figure 1.8  Slip of fault due to fluid injection, propagation of induced seismic waves, and potential 

impact on surface structures and human perception. Adapted from Rutqvist et al. (2014) 
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1.4 OBJECTIVE OF THIS RESEARCH  

This research is a part of the major project GEOTREF – a multidisciplinary platform for 

innovation and demonstration activities for the exploration and development of high 

geothermal energy in fractured reservoirs. The project is funded by the Investissement d'avenir 

program of the French government through the Agence de l'Environnement et de la Maitrise 

de l'Energie (ADEME) and the Guadeloupe region. The aim of the project is to improve the 

understanding of fractured geothermal reservoirs in order to reduce geothermal “geological 

risk” and to ensure sustainable exploitation of the reservoir during the production phase. 

As part of the Research and Development group of the project GEOTREF, this work is mainly 

concerned with modeling the propagation of new tensile fractures and the slip of pre-existing 

faults during the stimulation of deep geothermal reservoirs and proposing a numerical 

procedure to modeling the seismicity induced by fault slip. The following objectives are set 

for this work: 

 Simulate the propagation of hydraulic fractures and their interaction with pre-existing 

faults during the hydraulic stimulation of deep geothermal reservoirs; study the thermal 

effects on long term propagation of hydraulic fractures. 

 Study the reactivation and the slip of the pre-existing faults to determine parameters that 

control the fault slip and propose a procedure to estimate the peak ground acceleration 

that is induced by the fault slip 

 Explain and model the dynamic effects induced by the fracture propagation in a rigorous 

manner using conservation laws 
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Chapter 2 

 

Theoretical framework 

and numerical simulation approach 

RÉSUMÉ 

Ce chapitre décrit d’abord le problème central de cette thèse de doctorat, à savoir la 

propagation des fractures hydrauliques et leurs interactions avec des failles préexistantes lors 

de la mise en valeur de réservoirs géothermiques. Ce chapitre fournira ensuite un résumé de la 

base théorique des processus physiques impliqués. Les équations de la théorie des milieux 

thermo–poroélastiques saturés en fluide sont présentées en premier. Celles-ci incluent les 

équations de déformation des milieux poreux, les équations d’écoulement du fluide dans les 

pores, dans les fractures et les failles, ainsi que celles du transfert de chaleur. Ensuite, les 

critères de propagation de la rupture basés sur la mécanique de la rupture et sur le concept de 

matériau cohésif sont présentés. L'aspect dynamique de la propagation de la fracture est 

également inclus. Puis, le phénomène de réactivation des failles et le critère de réactivation des 

failles sont passés en revue, l'accent étant mis sur l'utilisation du critère de Coulomb pour 

évaluer la réactivation de la défaillance. Les équations des modèles de fractures hydrauliques 

simples sont également présentées. Ces modèles servent de solutions de référence pour la 

validation des modèles numériques. Enfin, les méthodes numériques de modélisation de la 

propagation des fractures sont exposées, notamment la méthode des éléments finis étendus et 

la technique des éléments cohésifs. 
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SUMMARY 

This chapter first describes the central problem of this doctoral research which is the 

propagation of hydraulic fractures and their interactions with pre-existing faults during the 

development of geothermal reservoirs. The chapter then provides a summary of the theoretical 

basis for the physical processes that are involved. The equations of the theory of fluid–

saturated thermo–poroelastic media are presented first. These include equations for 

deformation of porous media, the fluid flow in the pores and in the fractures and faults, and 

the heat transfer. Next, the criteria for fracture propagation, based on fracture mechanics and 

the concept of cohesive material, are presented. The dynamic aspect of fracture propagation is 

also included. The phenomenon of fault reactivation and the criterion for fault reactivation are 

then reviewed with an emphasis on using the Coulomb friction criterion for assessing fault 

reactivation. The equations for single hydraulic fracture models are also presented. Those 

models serve as reference solutions for the validation of the numerical models. Finally, the 

numerical methods for modeling fracture propagation are presented, which include the 

extended finite element method and the cohesive element technique. 
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2.1 INTRODUCTION 

This doctoral research is centered on the numerical modeling of the propagation of hydraulic 

fractures and the potential reactivation of pre-existing faults during hydraulic stimulation of 

deep geothermal reservoirs. The process of hydraulic stimulation is schematically presented in 

Figure 2.1. A borehole is drilled into a hot dry rock formation and fluid is injected at pressures 

high enough to create new hydraulic fractures (Figure 2.1a). As the hydraulic fractures 

propagate they may intersect pre-existing faults (Figure 2.1b). The fluid then flows into these 

faults, leading to an increase in the fluid pressure in the faults, which in turn causes the faults 

to slip. The fault slip is both beneficial and hazardous. On the one hand, the fault slip will 

improve the fault permeability due to dilatancy effects and fault roughness, thus enhancing the 

overall permeability of the reservoir which is beneficial. On the other hand, the fault slip may 

also be unstable, which means that the fault slip may induce seismic waves; if the induced 

seismic waves are strong enough, they can cause harm to people and damage structures on the 

ground, which is hazardous. 

 

 

(a) Propagation of hydraulic fractures 

 

 

 

(b) Intersection of hydraulic fractures with 

pre-existing faults 

Figure 2.1  Schematic representation of the hydraulic stimulation of geothermal reservoirs 
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The propagation of hydraulic fractures or the reactivation of pre-existing faults in a permeable 

porous rock mass that is fully saturated due to the injection of fluid is a coupled problem that 

involves multiple physical processes: 

(i) deformation of the porous rock mass; 

(ii) flow of the fluid within the pores; 

(iii) flow of the fluid within the hydraulic fractures and the pre-existing faults; 

(iv) propagation of the hydraulic fractures or the reactivation of the pre-existing faults; 

(v) heat transfer. 

In-situ conditions such as the presence of natural fractures, incomplete data regarding the 

initial conditions (e.g., stresses and pore pressure) or physical properties of the rock mass, may 

add additional complexities to the problem. Furthermore, the propagation of brittle fractures is 

inherently a dynamic process that releases energy in the form of elastic waves. The effects of 

these waves may be significant over a short time period (on the order of seconds) following 

the sudden propagation of the fracture. Meanwhile, the diffusion of fluid within the pores and 

the fluid injection operation itself occur over much longer time period (on the order of hours 

or even days). Thus, coupling the inertial effects with the fluid diffusion is an unrealistic task. 

A modeling procedure to quantify the induced dynamic effects is presented in Chapter 5. 

Thermal effects also need to be accounted for since hydraulic stimulation of EGS involves 

temperature changes of significant orders as cold water is pumped into hot rock formations. 

The above phenomena and the equations for describing these phenomena are presented in the 

next sections.  

2.2 GENERAL GOVERNING EQUATIONS 

2.2.1 Deformation of porous rock mass 

The rock mass is macroscopically considered as a homogeneous, isotropic, and poroelastic 

medium whose constitutive relation is expressed as (Coussy, 2004): 

    ,0 0 0

2
2 3

3
ij ij kk ij ij ij ijK G G K T T b p p       

 
        

 
  (2.1) 
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where ij  is the current total stress (compression is negative), ,0ij  is the initial stress; ij  is 

the current strain of the skeleton, kk  is the volumetric strain (summation over the repeated 

indices 11 22 33kk      ); p  and 0p  are the current and initial pore pressures, respectively; 

T  and 0T  are the current and initial temperatures, respectively; K and G are the bulk modulus 

and the shear modulus of the skeleton, respectively; α is the linear thermal expansion 

coefficient of the skeleton; and b is the Biot's coefficient, which is related to the bulk modulus 

K of the skeleton and the bulk modulus K
S
 of the solid phase as: 

 1
S

K
b

K
    (2.2) 

The bulk modulus K and the shear modulus G are related to the Young's modulus E and the 

Poisson's ratio ν of the skeleton as: 

 
   

                   
3 1 2 2 1

E E
K G

 
 

 
  (2.3) 

Equation (2.1) can be interpreted as follows: on the left hand side is the total stress, while on 

the right hand side is the stress supported by the skeleton, i.e., the first two terms, and the 

stress supported by the fluid, which is the last term. Thus, the effective stress, which is the 

stress supported by the skeleton, is expressed as: 

  " "

,0 0

2
2 3

3
ij ij kk ij ij ijK G G K T T      

 
      

 
  (2.4) 

Comparing equation (2.4) with equation (2.1), the effective stress can be expressed as function 

of the total stress and the pore pressure as: 

 
"  ij ij ijbp      (2.5) 

Equation (2.5) is the expression for Biot's effective stress, which applies when the solid phase 

is either compressible or incompressible. For an incompressible solid phase (i.e., K
S
 →∞), 

according to equation (2.2) the Biot's coefficient is b = 1, and thus equation (2.5) becomes the 

familiar expression for Terzaghi's effective stress: 
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"  ij ij ijp      (2.6) 

All the field quantities (stresses, strains, pressure, and temperature) in equation (2.1) are 

functions of coordinates 1 2 3( , , )x x xx  and time t. Under conditions of small perturbations, the 

strain ij  can be related to the displacement components iu  as: 

  , ,

1

2
ij i j j iu u     (2.7) 

where the comma denotes the partial derivative with respect to the spatial variable. 

The skeleton of the rock mass must always be in a state of equilibrium. The equilibrium 

equations under quasi-static conditions and when body forces are absent are: 

 , 0ij j    (2.8) 

Substitution of equation (2.4) into equation (2.8) while taking into account equation (2.7) leads 

to the equation that governs the kinematics of the skeleton: 

 , , , ,3  0
3

k ki i kk i i

G
K u Gu K T bp
 

     
 

  (2.9) 

The unknown variables in equation (2.9) include the displacements iu , the pore pressure p and 

the temperature T.  

2.2.2 Pore fluid flow 

The continuity equation for the pore fluid under small perturbations conditions is given by, 

(Coussy, 2004; Selvadurai and Suvorov, 2016): 

  
1

3 . 0kk
m

p T
b v

t M t t


 

  
   

  
  (2.10) 

where M is the Biot modulus; α
m
 is a coefficient; v  is the fluid velocity vector; and .()  is 

the divergence operator. 

The Biot modulus M is related to the bulk modulus of the fluid fK , the bulk modulus of the 

solid phase SK , the initial porosity 0 , and the Biot’s coefficient b as: 
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 
    (2.11) 

The coefficient α
m
 is a function of the linear thermal expansion coefficients α

s
 and α

f
 of the 

fluid and the solid phases (Selvadurai and Suvorov, 2016): 

  m f Sb        (2.12) 

The fluid flow within the pores is assumed to follow Darcy’s law. The velocity vector v  is 

expressed as: 

 
k

v p


     (2.13) 

where k is the hydraulic conductivity, in m
2
; η is the dynamic viscosity of the fluid, in Pa.s 

Substituting equation (2.13) into equation (2.10) leads to the field equation that governs the 

fluid flow in the pores: 
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  (2.14) 

It should be noted from equation (2.14) that the partial derivative with respect to time of the 

volumetric strain kk  shows the coupling between the mechanicals response of the skeleton 

and the fluid diffusion.  

2.2.3 Fluid flow in hydraulic fractures and existing fractures 

In permeable reservoirs, fluid loss from fractures is considered to be a pressure-independent 

process. The Carter’s leakoff model gives an expression for the infiltration rate of fluid from 

the fracture as (Carter, 1957): 

 
0

2
( , ) LC

g t
t t




x   (2.15) 

where ( , )g tx is the infiltration rate from both faces of the hydraulic fracture; LC  is the 

Carter's leakoff coefficient; 0t  is the time at which the hydraulic fracture arrives at the point x. 
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The Carter's model is obtained from the pressure diffusion equation, assuming that the leakoff 

is one-dimensional. The model is used to describe the physical phenomenon that occurs as the 

fracturing fluid deposits a thin layer of material on the fracture faces. This phenomenon of 

material deposition is usually observed in hydraulic stimulation of oil and gas reservoirs where 

proppants and chemical additives (e.g., polymers) are used. In hydraulic stimulation of deep 

geothermal reservoirs, fresh water or brine is usually used. Thus, we assume that there is no 

material deposition on the surfaces of the hydraulic fracture. Therefore, the leakoff flow rate 

will depend only on the permeability of the rock mass and the difference in pressure between 

the inside of the fracture and inside of the reservoir, and can be expressed as: 

 0( )f rg C p p    (2.16) 

where C
0
 is the constant leakoff coefficient; p

f
 and p

r
 are the pressure inside the fracture and 

inside the reservoir (Figure 2.2), respectively. 

With leakoff included, the continuity equation for the incompressible fluid flow in the fracture 

is given by: 

 0
w q

g
t s

 
  

 
  (2.17) 

where w is the fracture aperture; q is the longitudinal fluid flow rate, as shown in Figure 2.2. 

When two surfaces of the fracture are considered as parallel and smooth plates and the fluid is 

Newtonian and incompressible, the longitudinal flow rate q in steady state is related to the 

pressure gradient as (i.e., the Poiseuille equation): 
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q
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 


  (2.18) 

where η is the dynamic viscosity of the fluid. From equation (2.18), the transmissivity of the 

fracture is defined as: 
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   (2.19) 

 



39 

 

Substituting the Poiseuille equation (2.18) into the continuity equation leads to the field 

equation that governs fluid flow in the fracture, as: 

 
3

12

fpw w
g

t s s

  
   

   
  (2.20) 

 
Figure 2.2  Fracture geometry and fluid flow in the fracture. w is the fracture aperture, q is the 

longitudinal flow, g is the leakoff flow rate 

2.2.4 Heat transfer 

As stated previously, hydraulic stimulation of EGS reservoirs involves temperature changes of 

significant magnitudes. Rock formations, e.g., crystalline rock masses, where EGS reservoirs 

are developed, usually have a very low permeability. In these formations, the predominant 

mode of heat transfer in the rock mass is conduction. The convective heat transfer associated 

with the slow diffusion fluid flows is negligible (Selvadurai and Suvorov, 2016). Therefore, 

Fourier's law of heat conduction can be used to describe the heat transfer in the rock matrix as: 

 q T     (2.21) 

where q   is the heat flux vector; λ is the thermal conductivity of the rock mass. 

The thermal energy conservation equation for the rock mass is given as: 

 . 0P

T
C q

t


 


  (2.22) 

where C
P
 is the overall heat capacity of the rock mass. 

The heat equation is obtained by substituting Fourier's heat conduction equation (2.21) into the 

equation of thermal energy conservation (2.22): 
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 2 0P

T
C T

t



  


  (2.23) 

where 
2 ()  is the Laplace operator. 

At the interface between a flowing fluid and a solid, such as fluid – rock interface, heat 

transfer takes place by convection. The basic relationship for heat transfer by convection is: 

 ( )aq n h T T     (2.24) 

where q  is the heat flux vector, n  is the unit normal vector, T
a
 is the temperature of the fluid, 

T is the temperature on the surface of the solid, and h is the convective heat transfer coefficient 

2.3 FRACTURE PROPAGATION 

For brittle rocks such as granite under in-situ conditions of stress, fracture is the main 

mechanism of failure. Other processes that may lead to failure include corrosion and wear. 

However, these processes happen slowly over long time periods and are less of a concern, 

especially for rock masses where EGS rock reservoirs are to be created. In general, the fracture 

process is divided into three distinct phases (Broberg, 1999): (1) loading without crack 

growth, (2) stable crack growth, and (3) unstable crack growth. Stable crack growth can be 

controlled by controlling the applied load and a prescribed slow crack growth may be 

obtained. This is not possible for unstable crack growth, which occurs spontaneously and is 

usually accompanied induced dynamic effects such as elastic waves. 

In the vicinity of the tip of a crack, two distinctly different zones exist, as shown in Figure 2.3. 

These include a small zone immediately next to the crack tip known as the process zone and a 

plastic zone outside the process zone. The fracture process always starts from the process 

zone, where stress and strain concentrations occur. When subjected to high stress, the 

nucleation and growth of micro-separations takes place in the process zone, i.e., material 

separation, such as the breakage of atomic bonds. Micro-separations are nucleated at 

inhomogeneities in the material, e.g., flaws or boundaries between grains. As these micro-

separations extend and propagate, voids are created, which in turn propagate and coalesce with 

other voids and with the main crack, allowing the main crack to grow. 
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Figure 2.3  Two distinct zones in the vicinity of a crack tip. The nucleation and growth of micro-

separations take place in the process zone, leading to the creation of voids. The propagation and 

coalescence of voids allow the crack to grow. After (Broberg, 1999) 

For polycrystalline materials such as rocks, the micro-separations are in the form of micro-

cracks. The nucleation and growth of these micro-cracks in the process zone is the kernel for 

the propagation of macro-crack in these materials. (Atkinson, 1989) used the loading of a 

blunt notch, as shown in Figure 2.4, to illustrate the formation and propagation of a macro-

crack. Several micro-cracks exist in the initial configuration (Figure 2.4-a). As the applied 

load is increased, more micro-cracks are nucleated in the process zone (Figure 2.4-b) and 

propagate (Figure 2.4-c). The coalescence of these micro-cracks allows the macro-crack to 

propagate (Figure 2.4-d,e). A new process zone develops a head of the tip of the macro-crack 

in parallel with the propagation of the macro-crack. The size of the process zone depends on 

the nature of the material and its internal structure. For brittle rocks, the size of the process 

zone is relatively small in comparison with the dimensions of the cracked body and hence a 

large part of the body remains elastic. 

There are three basic modes of crack tip displacement, as illustrated in Figure 2.5. Mode I is 

the opening mode where the principal load is applied normal to the crack plane and the crack 

tends to open. Mode II corresponds to the case where the crack faces tend to slide over each 

other due to in-plane shear. Mode III occurs when out-of-plane shear is the predominant 

applied load. A cracked body can be loaded in any one of these modes, or a combination of 

two or three modes.  

Process zone

Plastic zone

Elastic zone
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Fracture propagation can be studied and modeled using either the theory of fracture mechanics 

or the cohesive zone model. The fundamental elements of these concepts and related issues are 

presented in the following sections. 

 
Figure 2.4  Development of a process zones and extension of the macro-crack from the tip of a blunt 

notch due to applied load σy. The applied load increases from drawings (a) to (e). (a) Existing micro-

cracks. (b) Nucleation of micro-cracks. (c) Propagation of micro-cracks. (d) Coalescence of micro-

cracks. (e) Extension of the macro-crack. Source: adapted from Atkinson (1989) 

 
Figure 2.5  Three fundamental modes of fracture: Mode I, tensile or opening mode; Mode II, in-plane 

shear or sliding mode; Mode III, out-of-plane shear or tearing mode 

Applied  load

(a)

(b)

(c)

(d)

(e)
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(Opening)
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2.3.1 Fracture mechanics 

The theory of fracture mechanics revolves around two major approaches, namely the Griffith 

energy balance approach, which was developed by Griffith (1920), and the Irwin stress 

analysis approach, which was introduced by Irwin (1957). These approaches and related issues 

are presented in detail in the following paragraphs. 

2.3.1.1 Griffith energy balance approach 

Griffith used thermodynamic arguments to find the criterion for a crack to grow due to an 

external load. By using the results of stress analyses of a plate containing a crack-like elliptical 

hole (Inglis, 1913), Griffith showed a quantitative connection between the fracture stress – the 

applied stress at which the crack starts to propagate, and the crack size (Griffith, 1920). 

According to the first law of thermodynamics, the total energy of a system remains constant as 

the system moves from one equilibrium state to another. Griffith argued that the quasi-static 

propagation of a crack can be seen as occurring under equilibrium conditions. Thus, during the 

propagation of the crack the decrease in strain energy must be sufficient to overcome the 

energy necessary to create new crack surfaces. 

Consider a Mode I fracture as shown in Figure 2.6, the total energy of the system is composed 

of the potential energy   and the total surface energy sW . Thus: 

 sE W   (2.25) 

The potential energy  , which is supplied by the internal strain energy and the work of the 

external loads, is given by: 
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2
ij ij ij j
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d n dS  


      (2.26) 

The energy release rate G
I
, which is a measure of the energy available for an increment of 

crack extension in Mode I, is defined as: 

 I

d
G

dA


    (2.27) 

where A is the crack area 
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The Mode I fracture energy G
IC

, which is the energy necessary to create new crack surfaces 

for the same increment of crack extension, is defined as: 

 s
IC

dW
G

dA
    (2.28) 

The Griffith energy balance for an incremental increase in the crack area dA can be written as: 

 0sdWdE d

dA dA dA


     (2.29) 

Substituting equations (2.27) and (2.28) into equation (2.29) gives the criterion for fracture 

propagation as: 

 I ICG G   (2.30) 

Griffith used the results from the stress analysis of Inglis and showed that for a plate 

containing a crack subjected to Mode I loading as shown Figure 2.6, the potential energy is 

given by: 

 
2 2

0

a B

E


     (2.31) 

where 0  is the potential energy of the uncracked body, which is independent of the crack 

length; B is the plate thickness. Combining equation (2.27) and equation (2.31) leads to the 

expression of the energy release rate G
I
 as: 

 
2

I

a
G

E


   (2.32) 

Since the formation of one crack of length 2a creates two surfaces of the same area A = 2aB, 

the total surface energy sW  is given by: 

 4s sW aB   (2.33) 

where γ
s
 is the unit surface energy, in J/m

2
. 

Combining equation (2.28) and equation (2.33) leads to the expression of the fracture energy 

G
IC

 for the Mode I fracture as: 
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 2IC sG    (2.34) 

The fracture stress, which is the stress at which the crack starts to propagate, can be obtained 

by combining equations (2.30), (2.32), and (2.34), as: 

 
2 s

f

E
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



   (2.35) 

The fracture criterion, as in equation (2.35), is obtained through the introduction of the 

concept of the energy release rate (equation (2.27)), which is the net change in potential 

energy of the whole system that accompanies an increment of crack extension. Thus, the 

energy release rate characterizes the global behavior without regard for the local stress 

concentrations, which is in contrast to the stress analysis approach presented below. 

 
Figure 2.6  Plate with a crack of length 2a subjected to a remote stress σ  

2.3.1.2 Irwin stress analysis approach 

This stress analysis-based approach for studying fracture was introduced by Irwin (1957), who 

recognized that for certain cracked configurations subjected to external loads, it is possible to 

obtain closed-form expressions for the stresses in the region near the crack tip, assuming that 

the material is isotropic and linear elastic. The stresses at a point M near the crack tip and 

located by the polar coordinates (r, θ), as shown Figure 2.7, are given by: 

2a

σ

σ
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2

ij ij

K
f

r
 


   (2.36) 

where K is the stress intensity factor that depends on the loading mode; f
ij
(θ) is a well defined 

dimensionless function of θ and depends on the loading mode. Functions f
ij
(θ) for Modes I and 

II are given in Table 2.1. 

 
Figure 2.7  Definition of the coordinate axis ahead of a crack tip 

Table 2.1  Functions f
ij
(θ) for Mode I and II fracture (Anderson, 2005) 

f
ij
(θ) Mode I Mode II 
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There are three stress intensity factors K
I
, K

II
, and K

III
 that correspond to the three loading 

modes I, II, and III.  In a mixed-mode problem (i.e., when more than one loading mode is 

present), the principle of linear superposition applies and the stresses are given as: 
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where 
( )I

ij , 
( )II

ij , and 
( )III

ij  are the stress contributions of Mode I, II, and III, respectively. 

For a given loading condition, the stress intensity factor is the only parameter that 

characterizes the stress field, and thus the strain field, of the region near a crack tip. The 

propagation of the crack depends entirely on the stress intensity factor. For instance, under 

pure Mode I loading, the crack propagation criterion is expressed as: 

 I ICK K   (2.38) 

where K
IC

 is the critical stress intensity factor, which is unique to each material and can be 

obtained through experiments. Expressions similar to equation (2.38) also apply to pure 

fracture Modes II and III. 

2.3.1.3 Relationship between the energy release rate and stress intensity factor 

The fracture criterion can be expressed as the energy release rate as in equation (2.30) or as a 

stress intensity factor as in equation (2.38). Based on the observation that the energy released 

for an increment of crack extension must be equal to the work required to close the crack, 

Irwin performed a crack closure analysis and obtained the relationship between the stress 

intensity factor and the energy release rate for a Mode I fracture as: 

 
2

'

I
I

K
G

E
   (2.39) 

where 'E E  for plane stress and 
2' / (1 )E E    for plane strain, E is the Young's modulus. 

Defining the fracture energy as 
2 / 'IC ICG K E , the  Irwin fracture criterion (equation (2.38)) 

becomes identical to the Griffith fracture criterion (equation (2.30)) and is repeated here for 

convenience: 

 I ICG G   (2.40) 

The fracture criterion expressed by equation (2.40) can be generalized to apply to mixed-mode 

loading conditions. The fracture criterion expressed by equation (2.38) is applicable only for 

an individual loading mode. Pure Mode I fracture propagates when equation (2.38) is satisfied. 

Pure Mode II fracture propagates when K
II
 = K

IIC
. When multiple loading modes are present, 
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the use of stress intensity factors to express the fracture criterion becomes complicated and 

unclear because the stress intensity factors of different modes are not additive. In such cases, 

the more convenient way is to use the fracture criterion defined in terms of the energy release 

rate in a generalized form because there exists a relationship between the stress intensity factor 

and the energy release rate for mixed-mode loading conditions, which is given by, (Anderson, 

2005): 

 
2 2 2

' '

I II IIIK K K
G

E E 
     (2.41) 

where μ is the shear modulus. Equation (2.41) can be interpreted as: under mixed-mode 

conditions, the total energy release rate G is equal to the sum of work G
I
, G

II
, and G

III
 

necessary to close the crack along the normal, in-plane, and out-of-plane directions, 

respectively, i.e.,: 

 I II IIIG G G G     (2.42) 

where  

 

2 2 2

 ;    ;  
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I II III
I II III

K K K
G G G

E E 
     (2.43) 

The fracture criterion under mixed-mode loading conditions now becomes: 

 CG G   (2.44) 

where G
C
 is the equivalent fracture energy. 

2.3.1.4 Equivalent fracture energy 

Equation (2.44) is similar to equation (2.40), except that the equivalent fracture energy G
C
 is 

no longer a constant, depending not only on the material as is the case of G
IC

 (or G
IIC

, G
IIIC

), 

but also on the proportions between G
I
, G

II
, and G

III
. Several formulae have been proposed to 

compute G
C
, including the following: 

 The BK law (Benzeggagh and Kenane, 1996) 
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where m is a material parameter 

 The Power law (Wu and Reuter Jr, 1965) 
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where a, b, c are material parameters  

 The Reeder law (Reeder et al., 2002) 
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  (2.47) 

where m is a material parameter  

2.3.1.5 Crack orientation 

Under mixed-mode loading conditions, the direction of crack propagation also needs to be 

determined; several proposals exist in the literature (Erdogan and Sih, 1963; Qian and Fatemi, 

1996; Sih and Barthelemy, 1980). The propagation direction determined based on the 

maximum tangential stress or minimum strain energy is presented below. 

 Maximum tangential stress criterion:  

This criterion states that the crack will propagate along the radial direction determined by 

c   on which the tangential stress σ
θ
 becomes maximum. Mathematically, θ

c
 is determined 

from: 
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  (2.48) 

 Minimum strain energy criterion 
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This criterion is based on the local density of the strain energy in the region around the crack 

tip. The crack is assumed to grow in a direction along which the strain energy density factor S 

reaches a minimum value. Thus the direction of crack growth is determined by: 
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S S
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  (2.49) 

2.3.1.6 Comments on the Griffith energy and Irwin stress approach 

Both the Griffith energy balance and the Irwin stress analysis approaches form the foundation 

of linear elastic fracture mechanics. Both are based on the assumption that the material is 

linear elastic and thus singular stresses are allowed to exist at the crack tip. This assumption 

cannot be true for real materials, which all have a certain stress limit. Therefore, for real 

materials plastic deformation will always occur in the region around the crack tip where there 

are high stress concentrations. However, as long as the plastic zone is small in relation to the 

crack size, its effect is negligible and the above approaches are considered acceptable. This is 

true for rocks, especially brittle rocks that show very little plastic deformation before fracture 

occurs, as demonstrated in many experiments (Keshavarz, 2009; Keshavarz et al., 2010). 

When plastic deformation is no longer negligible, the fracture criteria proposed by Griffith and 

Irwin are no longer valid. The energy consumed by plastic deformation has to be taken into 

consideration. In these cases, the fracture criterion can be formulated based on the concept of 

the J-integral, a more general concept introduced by Rice (1968) that can be applied to both 

linear and non-linear materials in monotonic loading conditions. With a crack shown in Figure 

2.9, the J-integral is defined as (Rice, 1968): 

 i
i

u
J wdy T ds

x


 
  
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   (2.50) 

where w is the strain energy density; T
i
 are components of the traction vector; u

i
 are 

components of the displacement vector; ds is the length increment along the contour Γ. 

(Rice, 1968) showed that the value of the J-integral is independent of the path of integration 

around the crack and is equal to the energy release rate G defined in the previous section. 
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Figure 2.8  Arbitrary contour around the tip of a crack 

In fracture problems where poroelastic effects are involved (e.g., fracture propagation due to 

hydraulic stimulation), the poroelasticity needs to be considered. It was shown by Atkinson 

and Craster (1991) that when taken into account the poroelastic effects retard the propagation 

of a fracture as pore pressures reduce the stress intensity factor. Using computational 

modeling, Selvadurai and Mahyari (1997) and Mahyari and Selvadurai (1998) also showed 

that the time-dependent variation of stress intensity factors at a propagating fracture can be 

computed using the transient analysis of the associated hydromechanical problem. For 

instance, for the problem of fracture propagation due to hydraulic stimulation the transient 

coupled stress-diffusion analysis is performed first and the effective stresses are then used to 

compute the stress intensity factors. 

2.3.2 Cohesive zone model 

An alternative for modeling the fracture is the cohesive zone model (CZM). This model was 

introduced by Dugdale (1960) and Barenblatt (1962), who tried to find a way to describe the 

damage zone at the crack tip. The model is based on the observation that there is always a 

partially damaged zone at the tip of a crack (i.e., the cohesive zone) through which stress can 

continue to be transferred until the separation between the two faces of this cohesive zone 

reaches a certain value. The cohesive zone (Figure 2.9) at the crack tip is the transition zone 

between the traction-free crack and the intact material and can be seen as the process zone. For 

the crack presented in Figure 2.9, the separation reaches a critical displacement δ
f
 at the tip of 

the traction-free crack. The tractions are zero at this point, but are equal to the tensile strength 

TR at the tip of the cohesive zone. 

x

y

Contour Γ
ds

crack
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Figure 2.9  Schematic of cohesive zone 

The cohesive zone model is defined by a traction – separation law. The damage initiation 

occurs when the traction reaches the tensile strength of the material. As the external load is 

increased the separation increases while the traction across this cohesive surface decreases and 

eventually vanishes. The traction-free crack is thus created and allows the crack to grow. A 

damage variable is used to track the damage of the cohesive zone during the separation 

process. The damage variable is zero until damage initiation, monotonically increases during 

the damage evolution, and reaches one as separation reaches the critical separation. 

An example of the cohesive model for Mode I fracture is shown in Figure 2.10. This linear 

cohesive model can be described by three parameters: the tensile strength R
T
, the critical 

separation δ
f
 and the initial stiffness K. The energy dissipated during the separation process for 

a unit increment of crack extension is by definition the fracture energy. It is obvious from 

Figure 2.10 that: 

 
1

2
IC T fG R    (2.51) 

The normal traction that can still be transferred across the cohesive zone during the separation 

process is calculated as: 

 (1 ) pD     (2.52) 

where D is the damage variable and σ
p
 is a traction predictor. These two parameters are 

defined as (with 0 /TR K  ) 
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Figure 2.10  Schematic of a linear cohesive law for Mode I fracture. The three parameters of the model 

are the tensile strength RT, the critical separation δf, and the initial stiffness K. σ and δ are the current 

normal traction and current normal separation, respectively 

2.4 DYNAMIC FRACTURE PROPAGATION AND WAVE PROPAGATION 

The propagation of brittle fractures is inherently a dynamic process that involves the release of 

strain energy in the form of elastic waves (Hardy Jr, 2003; Pollock, 1973; Scholz, 1968).  The 

criterion for Mode I fracture propagation under dynamic conditions is written as follows 

(Anderson, 2005): 

 ( )I IDK t K   (2.54) 

where K
I
(t) is the instantaneous stress intensity factor, K

ID
 is the dynamic fracture toughness of 

the material. In the dynamic context, K
I
(t) depends not only on the current external loads but 

also the reflecting stress waves that interact with the local stress field at the crack tip while K
ID

 

is a function of the fracture propagation speed V
F
. The dependence of K

ID
 on the fracture 

propagation speed can be expressed by an empirical formula as follows (Anderson, 2005): 
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where V
F
 is the fracture propagation speed, V

L
 is the limiting fracture propagation speed in the 

material which is usually taken to be equal to the speed of Rayleigh waves (Freund, 1998), m 

is a constant, and K
IA

 is the arrest toughness of the material corresponding to V
F
 = 0. 

The equation of wave propagation is the equilibrium equation taking into account the inertia 

forces and is written as: 

 
2

2
.

t
 


  


u
F   (2.56) 

where u is the displacement vector; F is the body forces; and   is the Cauchy stress tensor. 

Under the condition of small perturbations and a linear elastic material, one has the following 

relations: 

 Kinematic relation between strains and displacements: 

  
1

2

T    u u   (2.57) 

 Linear relation between stresses and strains: 

 ( ) 2tr I       (2.58) 

where ()  is the gradient operator; λ and μ are the Lamé coefficients. 

Combining equations (2.56), (2.57), and (2.58) leads to (without body force, F = 0): 
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Using the Helmholtz decomposition the displacement vector can be decomposed as follows: 

      with       
P

P S
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u
u u u

u rotψ
  (2.60) 

where φ is a scalar potential; and ψ is vector potential; rot () is the rotation operator. It's worth 

noting that the displacement vector u
P
 is irrotational (i.e., rot u

P
 = 0) and the divergence of u

S
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is zero. Using these properties of u
P
 and u

S
 and equation (2.59), the uncoupled wave equations 

can be written in terms of u
P
 and u

S
 as follows: 
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where C
P
 and C

S
 are the speed of dilatational waves (or longitudinal waves) and shear waves 

(transverse waves), respectively, and are determined by: 
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     and      P SC C
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The wave equations can also be written in terms of the two potentials φ and ψ as follows: 
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2.5 FAULT REACTIVATION 

Faults are shear fractures of rock at geological scales. Depending on the role of the vertical 

stress relative to the fault shear displacement, faults are classified into three major categories 

and are illustrated in Figure 2.11. These include (Cornet, 2015; Jaeger et al., 2009; Scholz, 

2002): 

 Normal fault: the fault shear displacement takes place along the dip of the fault, the 

upper surface of the fault moves downward relative to the lower surface, and the 

vertical stress is the major principal stress (Figure 2.11a) 

 Thrust fault (or reverse fault): the fault shear displacement also takes place along the 

dip of the fault, the upper surface of the fault moves upward relative to the lower 

surface, and the vertical stress is the minor principal stress (Figure 2.11b) 

 Strike-slip fault: the fault shear displacement takes place along the strike of the fault, 

the vertical stress is the intermediate principal stress (Figure 2.11c) 
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(a) Normal faulting 

 

(b) Thrust faulting 

 

(c) Strike-slip faulting 

Figure 2.11  Different types of faulting. The vertical stress is the major principal stress in normal 

faulting, the minor principal stress in thrust faulting, and the intermediate principal stress in strike-slip 

faulting. Adapted from Jaeger et al. (2009) 

Since faults are shear fractures, the fault slip or the fault reactivation is merely dependent on 

the ratio between the fault shear strength and the shear stress acting on the fault. The 

mechanics of fault reactivation is based on the fundamental law of the mechanics which is 

Newton's second law of motion. Consider a solid block on a surface as shown in Figure 2.12. 

The block is subjected to two external forces: a normal force N normal to the surface and a 

shear force T parallel to the surface. Two reaction forces (Figure 2.12) appear to 

counterbalance the applied forces: the normal reaction force Q and shear resistance R. As long 

as the shear force T does not exceed the shear resistance R the solid stay still, or in other word 

no relative slip between the solid and the surface occurs. Relative slip is initiated when the 

balance between the shear force T and the shear resistance R is broken. Experiments showed 

that the shear resistance R is proportional to the normal force N via a coefficient called friction 

coefficient μ (Engelder and Scholz, 1976; Scholz, 1968): 

 R N   (2.64) 

The slip criterion is expressed as: 

 T N   (2.65) 

By dividing both sides of equation (2.65) by the effective area of contact, the slip criterion 

expressed in shear and normal stress τ and σ is obtained as follows: 

     (2.66) 
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The right hand side of equation (2.66) can be regarded as the local shear strength. The shear 

strength determined by equation (2.66) is usually referred to as the Coulomb friction criterion. 

It's worth noting that when pore pressure is present, the normal stress σ is taken as the 

effective stress, which wasdefined in equations (2.5) and (2.6), and is repeated here for an 

incompressible solid phase as: 

 ' p     (2.67) 

Thus the Coulomb friction criterion becomes: 

 ( )p      (2.68) 

 
Figure 2.12  Solid block on a horizontal surface, subjected to a force N normal to the surface and a 

force T parallel to the surface. R is the shear resistance 

Equation (2.66) is usually used as a standard criterion for assessing fault reactivation. 

Equation (2.66) is obtained by considering the global equilibrium of the whole block. 

However, equation (2.66) itself is expressed in terms of quantities that are defined locally – 

the shear stress τ and the normal stress σ
n
. It is obvious that even though equation (2.66) is 

satisfied at several locations of the interface, it does not mean that the whole interface will 

slip. All frictional interfaces, including faults, establish contact through asperities e.g., on 

several asperities of the interface. Slow slip first initiates locally where resistance to rupture 

(i.e., shear strength) is the smallest along the interface or where shear stress is locally high. 

The extension of the local slow slip to a certain state will ignite the global and potentially 

dynamic slip of the interface (Selvadurai and Glaser, 2015). This phenomenon of slow slip 

occurring prior to dynamic slip was experimentally observed and investigated in a series of 

meticulously programmed experiments by Glaser and Selvadurai (2016). It should be noted 

T

N

R
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that the influence of scale effects on the shear strength of frictional interfaces also needs to be 

considered when assessing the stability of the interface (Vallier et al., 2010). 

In geothermal reservoirs, the slip of pre-existing faults may be induced by the injection of 

fluid. The fault slip can be seismic, i.e., generating seismic waves or aseismic, i.e., slip without 

generating seismic waves. Thermo-poro-mechanical couplings play an important role in the 

stability of faults and the seismic slip (Rattez et al.; Sulem and Stefanou, 2015). Many 

experiments on rock friction (Byerlee, 1978; Byerlee and Brace, 1968; Hoskins et al., 1968) 

have shown that for certain types of rock and surface roughness, the relative displacement of a 

shear fracture can occur in a stick-slip manner, as illustrated in Figure 2.13. Under a constant-

held normal load N, as the shear force T applied along a shear fracture increases the shear 

elastic relative displacement increases, until, at some point, unstable displacement occurs 

abruptly with a concurrent drop in the shear force. The fracture surfaces subsequently lock 

together and the shear force can increase and the stick-slip cycle occurs again. The friction of 

rock is therefore characterized by two different friction coefficients: a coefficient for the stick 

phase, called coefficient of static friction μ, and a coefficient for the slip phase, known as the 

coefficient of dynamic friction μ
d
. (Brace and Byerlee, 1966) suggested that the stick-slip 

phenomenon may provide a mechanism for generation of seismic waves from fault slip. 

 
Figure 2.13  Force-displacement for a granite crack surface. T is the shear force, N is the normal force, 

μ and μ
d
 are the static and dynamic friction coefficients (Jaeger et al., 2009) 

Rock friction is also dependent on time and slip rate, which was experimentally demonstrated 

by Dieterich (1972) and Jafari et al. (2003). The time- and rate-dependency of the rock friction 

is expressed through the rate-and-state model as follows: 

d
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where V is the slip rate; μ
0
 is the steady state friction coefficient at a slip rate V = V

0
; a and b 

are friction parameters; D
C
 is the characteristic slip distance; and Θ is a state variable. The 

relation between a and b dictates whether the fault is velocity-weakening or velocity 

strengthening and thus whether the slip is stable or unstable. 

The time-dependency of the friction coefficient in the rate-and-state model expressed through 

the state variable is attributed to the creep effect that causes an increase in the actual area of 

asperity contact between the two faces of the fault (Engelder and Scholz, 1976). The slip rate-

dependency is believed to be caused by the loss and recovery of contact between asperities of 

the fault as its two faces slip relative to each other. 

The rate-and-state friction model has been used to model the slip behavior of a single fault due 

to direct fluid injection by Cueto‐Felgueroso et al. (2017), Dublanchet et al. (2013) and 

McClure and Horne (2011). The model is able to explain various observational features of 

earthquake phenomena (Segall, 2010). However, recent laboratory experiments on fault slip 

due to fluid injection (Scuderi et al., 2017) concluded that slip instabilities can be induced 

whenever the critical stress state for reactivation is met by an increase in fluid pressure, even if 

the fault is characterized by velocity strengthening frictional behavior. Moreover, these 

authors stated that the decrease of shear strength due to the reduction in the effective normal 

stress largely prevails over the impact of the rate-and-state effects on fault frictional strength. 

In the current research, the local shear strength of natural fractures or faults is modeled using 

the Coulomb friction law. This law is implemented in the finite element code ABAQUS using 

the subroutine USDFLD and the field variable (ABAQUS, 2016).  



60 

 

2.6 HYDRAULIC FRACTURE MODELS AND INTERACTION OF FRACTURES 

2.6.1 Hydraulic fracture models 

As stated in the previous chapter, the development of a rock reservoir is crucial to the success 

of a EGS project. Excessive permeability will lead to an unacceptable loss of water from the 

system, while high impedance (i.e., resistance to flow) will require a large amount of energy to 

pump water through the reservoir. Thus, in order to estimate the permeability of the reservoir 

it is necessary to predict the development of fracture geometry based on the stimulation 

conditions. Three single hydraulic fracture models have been derived to approximately define 

the development of the fracture geometry. These include two plane strain models – the 

Khristianovic-Geertsma-de Klerk (KGD) model (Geertsma and de Klerk, 1969) and the 

Perkins-Kern-Nordgren (PKN) model (Nordgren, 1972), and a three-dimensional 

axisymmetric model – the radial penny-shaped model (Sneddon, 1946). Figure 2.14 illustrates 

the geometry of these three fracture models. 
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(a) 

 

(b) 

 

(c) 

 
Figure 2.14  Geometry of three single fracture models: (a) KGD model, (b) PKN model, (c) Penny-

shaped model (adapted from Savitski and Detournay (2002)). Sh is the minimum compressive stress 

Early solutions for the fracture geometry (e.g, fracture length, aperture) and wellbore pressure 

have been derived for those models by assuming that (i) the material is homogeneous, 

isotropic, linear elastic, and fully impermeable, (ii) the fluid is Newtonian and its flow within 
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the fracture is laminar everywhere, (iii) the fluid injection is considered as a line source for the 

KGD and KPN models and as a point source for the penny-shaped model, and (iv) linear 

elastic fracture mechanics applies (Geertsma and de Klerk, 1969; Geertsma and Haafkens, 

1979). These early solutions have been used by many researchers as a benchmark for 

comparison with their numerical models. However, it should be noted that several 

inconsistencies were ignored in order to obtain those solutions. For instance, to obtain 

solutions of fracture geometry for the KGD and penny-shaped models, a smooth and finite-

curvature fracture tip is assumed. This is obviously inconsistent with the linear elastic fracture 

mechanics, which considers the fracture tip as sharp and having infinite curvature. 

More recently, these fracture models (KGD and penny-shaped models) were studied with the 

incorporation of more consistent considerations for the fracture tip and boundary conditions 

incorporated (Bunger et al., 2005; Detournay, 2004; Savitski and Detournay, 2002). For 

instance, the fracture tip is treated as having a zero-aperture with no fluid flow. In these 

studies, the following assumptions were made: (i) the medium is infinite, (ii) the material is 

fully impermeable and linear elastic, (iii) linear elastic fracture mechanics applies, and (iv) 

Carter’s leakoff model is used to describe the fluid loss across the walls of the hydraulic 

fracture. With these assumptions, the governing equations of the problem then reduce to (i) the 

equilibrium equation for the linear elastic material, which can be given by an integral that 

relates the hydraulic aperture and the net fluid pressure (Spence and Sharp, 1985), (ii) the local 

and global mass balance equations for the injected fluid, and (iii) the fracture propagation 

criterion, which is based on linear elastic fracture mechanics that relates the fluid pressure and 

the fracture energy. A scaling technique was then used to obtain approximate analytical 

solutions in the form of regular asymptotic expansions (Bunger et al., 2005; Detournay, 2004; 

Garagash, 2006; Savitski and Detournay, 2002). It was shown that different regimes of 

fracture propagation exist, depending on the energy dissipation mechanisms and the fluid 

balances. Energy can be dissipated either due to the flow of the viscous fluid (viscosity-

dominated regime) or the propagation of the fracture (toughness-dominated regime). 

Meanwhile, the fluid can either be stored in the fracture (storage-dominated regime) or leak 

into the surrounding medium (leakoff-dominated regime). These four regimes of fracture 

propagation can be represented in a two dimensional space where each limiting regime has 
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two coordinates that correspond to an energy dissipation mechanism and a component of 

global fluid balance, as Figure 2.15 illustrates. 

 
Figure 2.15  Diagram illustrating the four limiting propagation regimes of hydraulic fractures (after 

(Bunger et al., 2005)) 

In the following paragraphs, the main results for fracture geometry and injection pressure for 

the KGD and penny-shaped fracture models near the M and K vertices (viscosity/storage-

dominated regime and toughness/storage-dominated regime) are briefly summarized. These 

regimes were chosen because they correspond to real conditions that could be encountered in 

deep geothermal reservoirs where the granitic basement has a very low permeability, which 

corresponds to the storage-dominated regime. Under these conditions, the approximate 

solutions for the fracture geometry and wellbore pressure for both the KGD and the penny-

shaped fracture models are given in a generic form as (Detournay, 2004; Savitski and 

Detournay, 2002): 

 Fracture length: 

 ( ) ( )L t L t   (2.70) 

 Fracture aperture: 

 ( , ) ( ) ( )w x t t L t    (2.71) 

 Wellbore pressure: 
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 ( ) 'p t E    (2.72) 

In the above equations, L(t) is the length scale of the same order as the fracture length; 

expressions for ( )t , L(t), and the dimensionless numbers γ, Ω, and   are defined below, 

dependent on the fracture model and the propagation regime; E' is defined as: 
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where E and ν are the Young's modulus and Poisson's ratio of the medium, respectively. 

The following definitions are also introduced for convenience: 
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where μ is the viscosity of the fluid and K
IC

 is the critical Mode I stress intensity factor 

2.6.1.1 KGD model 

Viscosity-dominated regime (M vertex): 

Expressions for ( )t  and L(t) in the viscosity-dominated regime are given by Detournay 

(2004): 
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where Q
0
 is the injection rate per unit height of the fracture (m

2
/s). 

By combining equation (2.75) with equations (2.70), (2.71), and (2.72), the expression for the 

fracture geometry and the wellbore pressure can be obtained as: 
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  (2.76) 
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where the dimensionless numbers γ
m0

, Ω
m0

, and 0m  can be expressed in the form of series 

expansion and can be found in Adachi and Detournay (2002). 

Toughness-dominated regime (K vertex): 

Expressions for ( )t and L(t) in the toughness-dominated regime are given by Detournay 

(2004): 
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By combining equation (2.77) with equations (2.70), (2.71), and (2.72), the expressions for the 

fracture geometry (aperture and length) and the wellbore pressure are: 
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  (2.78) 

where the dimensionless numbers γ, Ω, and   are given by: 
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with ρ = x/L, x and L shown in Figure 2.14. 

Transition between propagation regimes: 

A dimensionless number to distinguish the propagation regimes is defined as (Adachi and 

Detournay, 2002; Detournay, 2004): 
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Strictly speaking, the viscosity- and toughness-dominated regimes of propagation correspond 

to K ≪ 1 and K ≫ 1, respectively. However, according to (Detournay, 2004), the fracture can 
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be considered as propagating in the viscosity-dominated regime when K < 1 and in the 

toughness-dominated regime when K > 4. 

2.6.1.2 Penny-shaped fracture model 

Two regimes of propagation are also considered for the penny-shaped fracture model: the 

viscosity- and toughness-dominated regimes. 

Viscosity-dominated regime (M vertex): 

Expressions for ( )t are L(t) in the viscosity-dominated regime are given by Savitski and 

Detournay (2002): 
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where Q
0
 is the injection rate in m

3
/s 

By combining equation (2.81) with equations (2.70), (2.71), and (2.72), the expressions for the 

fracture geometry and the wellbore pressure can be obtained as: 
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where the dimensionless numbers γ
m0

, Ω
m0

, and 0m  can be expressed in the form of a series 

expansion and can be found in O’Keeffe et al. (2018) and Savitski and Detournay (2002). 

Toughness-dominated regime (K vertex): 

Expressions for ( )t  and L(t) in the toughness-dominated regime are given by Savitski and 

Detournay (2002): 
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By combining equation (2.83) with equations (2.70), (2.71), and (2.72), the expression for the 

fracture geometry (aperture and length) and the wellbore pressure are: 
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where the dimensionless numbers γ
k0

, Ω
k0

, and 0k  are given by: 
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with ρ = r/R, r and R shown in Figure 2.14 

Transition between propagation regimes: 

A dimensionless number K used to distinguish different propagation regimes is also defined as 

(Savitski and Detournay, 2002): 
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The viscosity- and toughness-dominated regimes correspond to K < 1 and K > 3.5, 

respectively. Unlike the KGD model, the dimensionless number K in this case depends not 

only on the injection rate and material properties but also on the injection time. From equation 

(2.86), it is obvious that the fracture propagates in the viscosity-dominated regime at an earlier 

time (when t is small) and gradually transitions to the toughness-dominated regime at an later 

time. 

2.6.2 Interaction of hydraulic fractures and natural fractures 

It has been recognized that natural fractures may have an important impact on the 

development of EGS reservoirs, especially after the development of the Camborne School of 
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Mines project, where instead of generating a vertical fracture propagating upwards as 

predicted the reservoir migrated downwards into the region where there were multiple natural 

fractures. The interaction between natural fractures and the advancing hydraulic fractures is a 

key factor that produces complex fracture patterns. Even in rock formations where the natural 

fractures are sealed or cemented, the natural fractures may still serve as weak pathways to 

potentially divert advancing hydraulic fractures (Dahi Taleghani and Olson, 2013). 

When a hydraulic fracture approaches a natural fracture, two potential scenarios can occur, as 

Figure 2.16 illustrates: (i) the hydraulic fracture is diverted into the natural fracture, or (ii) the 

hydraulic fracture crosses the natural fracture. The hydraulic fracture may also be “arrested” 

by the natural fracture under specific conditions (e.g., frictional strength of the natural 

fracture). However, as long as the fluid continues to be injected, the hydraulic fracture will 

eventually continue to propagate, either crossing the natural fracture or being diverted into it. 

The interaction between hydraulic fracture and natural fracture has been studied using both 

experimental, theoretical, and numerical simulation approaches. The main objective is to 

predict under which conditions the hydraulic fracture will cross or divert into the natural 

fracture. 

 
Figure 2.16  Potential scenarios of interaction between a hydraulic fracture and existing fracture 

Theoretical studies, primarily based on the theory of linear elastic fracture mechanics, have 

focused on quantifying the alteration of stress intensity factor at the tip of the hydraulic 

fracture caused by the stress perturbations due to the presence of the natural fracture in the 

medium (Gu and Weng, 2010; Taleghani et al., 2016; Thomas et al., 2017; Weng et al., 2016). 

One such study by Renshaw and Pollard (1995) led to a simple criterion for predicting 
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whether a hydraulic fracture will propagate across a frictional interface orthogonal to the 

hydraulic fracture. The Renshaw and Pollard crossing criterion depends on the in-situ stresses, 

the tensile strength R
T
 of the medium, and the friction coefficient μ of the interface, and is 

given as: 
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  (2.87) 

Equation (2.87) suggests that the crossing would always occur when the friction coefficient μ 

is larger than 0.5, which is a typical value for friction coefficient of rocks (Cornet, 2015). 

However, the interaction of fractures is known to be very sensitive to the intersection angle. 

(Gu and Weng, 2010) used a similar approach to obtain a crossing criterion for non-orthogonal 

intersection conditions. They found that as the intersection interaction decreases from 90° (the 

orthogonal intersection case) the hydraulic fracture is more likely to be diverted into the 

natural fracture. A plot of their crossing criterion is shown in Figure 2.17. It is obvious from 

Figure 2.17 that when the fracture intersection angle is smaller than 30°, the diversion of the 

hydraulic fracture into the natural fracture always occurs in most practical situations. 

Experiments on the interaction between hydraulic fractures and natural fractures under 

different conditions of stress and friction were carried out by Blanton (1982), Renshaw and 

Pollard (1995), Warpinski and Teufel (1987), and Zhou and Xue (2011). They found that the 

contrast in in-situ stresses and the angle of intersection are the most important factors that 

control the intersection behavior. Under normal conditions of stresses found in-situ, the 

hydraulic fracture tends to divert into the natural fracture; the crossing only occurs in cases of 

high differential stresses and high intersection angles. 
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Figure 2.17  Plot of crossing criterion for different intersection angles between 15° and 90°. The 

region to the right of each curve represents the crossing condition for that intersection angle. Source: 

Gu et al. (2012) 

2.7 NUMERICAL METHODS FOR MODELING FRACTURE PROPAGATION 

2.7.1 Extended finite element method 

The extended finite element method (XFEM) was introduced by Belytschko and Black (1999) 

and Moës et al. (1999). The method allows discontinuities such as cracks to be represented 

independently from the finite element (FE) mesh. Thus, the crack growth is also independent 

of the FE mesh and remeshing is no longer needed. The central idea in the formulation of this 

method is that discontinuities are incorporated in a finite element by enriching the traditional 

finite element approximation with special enriched functions in conjunction with additional 

degrees of freedom. The enrichment functions typically consist of the near-tip asymptotic 

functions that capture the singularities around the crack tip and a discontinuous function that 

represents the jump in displacement across the crack surfaces. The approximation for a 

displacement vector at any location x is given by: 
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where ( )IN x  are the traditional nodal shape functions associated the finite element mesh, u
I
 is 

the nodal displacement vector, H(x) is the Heaviside function, a
I
  is the vector of nodal 

enriched degrees of freedom associated with discontinuous displacement across the crack 

surface, I


b  is the vector of nodal enriched degrees of freedom associated with crack tip 

singularity, and ( )F x  are asymptotic crack tip functions that are defined in equation (2.89): 
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where (r, θ) is a polar coordinate system with its origin at the crack tip and θ = 0 is tangent to 

the crack at the tip, as Figure 2.18 illustrates. 

The Heaviside function H(x) defined with reference to Figure 2.18 is: 
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where x is the location where displacement is currently approximated, and x* is the closest 

projection of x on the crack surface, n is the unit normal vector at x*. 

H(  

Figure 2.18  Illustration of normal and tangential coordinates for a smooth crack (ABAQUS, 2016) 

XFEM was implemented in ABAQUS using the phantom node technique (ABAQUS, 2016). 

The phantom nodes are added and are superposed on the original real nodes of the enriched 

elements, as illustrated in Figure 2.19, in which real nodes are represented by full circles and 

phantom nodes by hollow circles. Before damage initiation, each phantom node is completely 

constrained to its corresponding real node. Once damage occurs, a crack surface is inserted in 

the element. The element is split into two parts. Each part of the element is formed by a 

Crack
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combination of some real and phantom nodes. The phantom nodes are now no longer tied to 

the real nodes but can move apart. If the cohesive zone model is used, the separation between 

the two faces of the newly created crack is governed by the cohesive law until the cohesive 

strength of the cracked element becomes zero, after which the phantom and the real nodes 

move independently. If the linear elastic fracture mechanics approach is used, the real node 

and the corresponding phantom node will separate when the equivalent energy release rate 

exceeds the fracture energy release rate and the phantom and the real nodes are also allowed to 

move independently after the traction has ramped down linearly to zero. 

XFEM is very flexible in the sense that it allows cracks to be modeled along arbitrary paths 

without the need for remeshing. However, it is very difficult to obtain a converged solution, 

especially when pore fluid pressure is involved and there is intersection of cracks. 

Unfortunately, these two phenomena (fluid injection and the interaction of fractures) are the 

main focus of this work. Thus, XFEM is only used for the coupled thermos-mechanical 

simulations. 

 
Figure 2.19  A 4-node enriched element in three different configurations: undeformed before damage, 

undeformed after damage, and deformed after damage. Nodes numbered from 1 to 4 are real nodes and 

denoted by full circles. Nodes numbered from 1
p
 to 4

p
 are phantom nodes that are superposed on the 

real nodes and become active only after fracture begins. (After (Zielonka et al., 2014)) 
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2.7.2 Cohesive element method 

Cohesive elements are an alternative for modeling fracture propagation and the intersection of 

fractures. For the cohesive element method, the trajectory of the fracture to be modeled is 

typically defined a priori and cohesive elements are placed only along the fracture trajectory 

and between finite continuum elements. Cohesive elements can also be inserted between all 

finite elements of the mesh to model fractures propagating along unknown paths. Another 

method for unknown fracture paths is to combine cohesive element with remeshing. For each 

calculation step, the propagation direction is determined based on the stress and strain fields 

from the previous step. The mesh is then re-generated such that one edge of two continuum 

elements lies along the propagation path and a cohesive element is inserted between these two 

continuum elements. 

A cohesive law, such as that presented in Section 2.3.2, is necessary to describe the 

mechanical response of the cohesive element. The cohesive law consists of a damage initiation 

criterion and a damage evolution criterion. The damage initiation can be based on either stress 

or strain. For instance, a criterion based on the maximum stress can be expressed as: 

 1 2

1 2

max , , 1
n s s

T S SR R R

   
 

 
  (2.91) 

where σ
n
, σ

s1
, σ

s2
 are the normal traction and shear tractions in two shear directions; R

T
, R

s1
, 

R
s2

 are the tensile and shear strengths; the Macaulay brackets are used to signify that a purely 

compressive stress state does not initiate damage 

For the damage evolution, to account for all fracture modes including mixed-mode fracture, an 

effective separation δ
m
 is defined as: 
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where δ
n
, δ

s
, δ

t
 are the separations along the normal, first shear and second shear direction, 

respectively. Then the damage variable for a linear cohesive law is expressed as: 
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where 
f

m  is the mixed-mode fracture separation, defined as: 
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R
    (2.94) 

in which G
C
 is the equivalent fracture energy and can be estimated using, for example, the BK 

law as presented in Section 2.3.1; R
eqv

 is the equivalent strength, defined as: 
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The actual stress components in the cohesive elements are then calculated via the damage 

variable D as: 

 (1 ) pt D t    (2.96) 

where t can be the normal stress σ
n
 or the shear stresses σ

s1
 or σ

s2
; t

p
 is the corresponding 

predictor which is estimated with the strain as if the material was undamaged (similar to 

equation Erreur ! Source du renvoi introuvable.). 

To model the fluid flow, additional fluid pressure degrees of freedom are added to the mid-

edge of the cohesive element, as illustrates Figure 2.20. Both tangential and leakoff flows, as 

presented in Section 2.2.3, can be modeled. The fracture aperture is defined as the change in 

thickness of the cohesive element as: 

 w h H    (2.97) 

where h and H are the initial and current thickness (Figure 2.20) 

 
Figure 2.20  Coupled pressure/displacement cohesive element. Corner nodes are denoted by black 

circles and have both displacement and fluid pressure degrees of freedom (DOF). Mid-edge nodes 

denoted by red triangles have only fluid pressure DOF (after (Zielonka et al., 2014)) 
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Leakoff can occur through the top and bottom faces of the fracture. Using the assumption of 

no material deposition as stated in Section 2.2.3, the leakoff flow rates are related to the 

pressure difference and a constant coefficient that depends only on the permeability of the 

rock mass: 
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where V
T
 and V

B
 are the leakoff flow rates of fluid that leaks into the surrounding rock mass 

through the top and the bottom faces of the fracture, respectively; C
T
 and C

B
 are constant 

leakoff coefficients. A schematic of fluid flow in the fracture is presented in Figure 2.21. 

The relation between the leakoff coefficients and the permeability of the rock mass can be 

obtained by writing Darcy's equation for fluid flow rate across the fracture surfaces as: 
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where H is the thickness of the cohesive elements. Comparing equation (2.98) and equation 

(2.99), one obtains an expression for the leakoff coefficients as: 
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Figure 2.21  Fracture geometry and fluid flows in the fracture. q is the longitudinal fluid flow rate, V

T
 

and V
B
 are the leakoff velocities. p

T
, p

f
, p

B
 are the fluid pressure at the top, inside, and the bottom 

surfaces of the fracture, respectively 

Intersection of multiple fractures can also be modeled by cohesive elements. Each fracture is 

modeled by a layer of cohesive elements. At the intersection of these layers, a mid-edge node 
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is shared by all elements to support fluid flow continuity. An example of the intersection of a 

horizontal fracture with a vertical fracture modeled by cohesive elements is shown in Figure 

2.22. At the intersection point, the cohesive elements 10, 20, 30 and 40 share the same mid-

edge node 100. 

 
Figure 2.22  Intersection of two fractures (horizontal and vertical) modeled by two cohesive layers. 

The mid-edge node 100 is shared by all four cohesive elements 10, 20, 30 and 40.(modified from 

(ABAQUS, 2016)) 

  

Vertical layer
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Chapter 3 

 

Thermal fracture 

RÉSUMÉ 

Dans ce chapitre, les effets thermiques sur la fracturation des roches sont étudiés. Des 

simulations numériques sont utilisées pour modéliser l'initiation et la propagation d'une 

fracture due à des cycles de changements de température imposés. Tout d'abord, la fracturation 

du sel gemme observée dans une expérience de refroidissement à l'échelle métrique grâce à un 

dispositif expérimental déployé in-situ est modélisée à l'aide de la méthode des éléments finis 

étendus (Ngo and Pellet, 2018). Cette méthode permet une représentation de la géométrie de la 

fracture indépendante du maillage d'éléments finis, tout en permettant de prédire l'orientation 

de la propagation de la fracture en fonction de l'état de contrainte autour de l'extrémité de la 

fracture. Les résultats numériques montrent un bon accord avec les observations et les résultats 

expérimentaux. 

Vient ensuite l'étude de propagation des fractures due à l'injection de fluide à partir d'un puits 

de forage. Le problème est simplifié et seul l'effet thermique est pris en compte. Les 

simulations montrent que les changements de température peuvent provoquer la fracturation 

de la roche, même dans des conditions de confinement élevé. Il a été démontré que la 

contrainte initiale avait un impact significatif sur la croissance des fractures d'origine 

thermiques. 
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SUMMARY 

Thermal effect on the fracture of rock is studied in this chapter. Numerical simulations are 

used to model the initiation and propagation of a fracture due to cycles of temperature 

changes. First, the fracturing of rock salt in an in-situ cooling experiment is modeled using the 

extended finite element method (Ngo and Pellet, 2018). This method allows a representation 

of the fracture geometry independent of the finite element mesh while still being able to 

predict the orientation of fracture propagation based on the stress state around the fracture tip. 

The numerical results show good agreement with the experimental data. 

Second, the fracture propagation from a wellbore due to fluid injection is studied. The problem 

is simplified and only thermal effects are considered. The simulations show that temperature 

changes are able to cause the rock to fracture, even under high compressive confinement. The 

initial stress has been shown to have a significant effect on the growth of the thermal fractures. 
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3.1 INTRODUCTION 

Thermal fracturing can play an important role in the development of geothermal reservoirs. 

The injection of cold water into the geothermal reservoir during the stimulation and circulation 

phase will lead to significant temperature decreases in the rock. In response to these 

temperature decreases, the rock will contract but is refrained by the surrounding rock. Thus, 

tensile stresses are induced in the rock close to the wellbore. The thermally-induced tensile 

stresses in the rock, whose amplitude is proportional to the temperature gradient, may exceed 

the in-situ stresses of the reservoir and result in the formation of fractures. Thermal fractures 

can be initiated in the vicinity of a wellbore where the rock is in direct contact with the 

injected cold water and high temperature gradients exist. Secondary thermal fractures can also 

be initiated from the walls of a major fracture through which cold water is circulated during 

the heat extraction phase (Bruel, 1995). The thermal fractures initiated near the wellbore can 

contribute to a reduction of the the peak hydraulic pressure required to initiate fracture in the 

rock during the hydraulic stimulation (Cha et al., 2017; Zhao et al., 2017; Zhou et al., 2018). 

While the secondary fractures initiated from the walls of the major hydraulic fractures may 

enhance the permeability of the reservoir, which in turn can contribute to facilitating the fluid 

circulation or increasing water loss from the reservoir (Bruel, 2002; Ghassemi, 2012; Huang 

and Ghassemi, 2016). Thermal effects as a result thermal fracturing have been suggested as a 

means for the so-called "soft stimulation" of geothermal reservoirs. 

The effect of temperature has been shown to "soften" the fracturing of rock (Zhang et al., 

2018a; Zhang et al., 2018b; Zhou et al., 2018). (Zhou et al., 2018) conducted laboratory 

experiments in which rock specimens were heated before performing hydraulic fracturing, 

showed that the initiation pressure of hydraulic fracturing decreases gradually with an increase 

in the temperature of the specimens. (Cha et al., 2017) utilized liquid nitrogen at temperature 

of nearly -200 °C to create a thermal shock to stimulate rock specimens. The thermally-

stimulated specimens were then used in hydraulic stimulation tests. The results showed a 

significantly lower initiation pressure for the specimens that had been thermally stimulated 

compared to normal specimens. A series of experiments by Keshavarz et al. (2010) in which 

rock specimens were heated to high temperatures also showed a drastic decrease in rock 

strength. In all of these experiments, microcracking that originated from temperature changes 
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was the main cause of the reduced initiation pressure of hydraulic fracturing. Crystalline rocks 

are composed of multiple minerals that have different thermal expansion characteristics. When 

subjected to temperature changes, either increasing or decreasing, these minerals deform 

differently, leading to microcracking at the mineral interface. This microcracking significantly 

weakens the rock and shifts the fracturing mode of the rock from brittle fracturing to 

continuous fracturing during fluid injection. 

The effect of the temperature on the fracturing of rock is numerically investigated in this 

chapter and is presented in the next sections. Different numerical techniques are used, 

including the extended finite element method in combination with fracture mechanics and the 

cohesive element technique based on the cohesive material concept. 

3.2 SIMULATION OF ROCK FRACTURE IN A THERMAL COOLING EXPERIMENT 

In this section, the extended finite element method is used to model an experiment of cooling 

effect on the fracturing of rock salt performed in an underground gallery. The results of this 

analysis were published in a journal article (Ngo and Pellet, 2018). 

The main outcomes of the experiment are summarized, followed by the numerical modeling. 

The modeling of thermal fracturing of the rock salt consists of two sequential simulations. A 

heat transfer simulation is first carried out and then, the temperature field obtained from the 

heat transfer simulation is exported and used as the loading for the fracture propagation 

simulation. 

3.2.1 Summary of the cooling experiment 

The primary objective of this cooling experiment was to verify whether a temperature drop is 

capable of generating fractures in the walls of salt caverns. If so, the secondary objective was 

to quantify the characteristics of the fractures (e.g. depth, aperture) in order to assess the actual 

consequences for a gas storage facility during exploitation with a fast cycle of storage and 

withdrawal, pressure drawdown and associated temperature drops (Hévin et al., 2016). 

Test setup: 
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The experiment was conducted in a 120-meter deep salt mine located in a thick layer of rock 

salt from the Keuper lithostratigraphic unit. In the main gallery (Figure 3.1) a niche was 

purposely excavated to house the experiment. The dimensions of the niche are 17.5 m in 

length, 12 m in width, and 4.5 m in height. The salt block used for the cooling experiment was 

left unexcavated and has a thickness of 1.5 m (Figure 3.1b). A section of the niche floor 

(dimensions 3.6 m x 3.6 m) was isolated by a chamber (Figure 3.1a, b and Figure 3.2a), in 

which the temperature can be regulated by a refrigeration system and fans. 

In order to relax the initial horizontal stresses in the salt block, two parallel slots were dug 

close to the niche wall (Figure 3.1a). Before starting the cooling test, these two slots (1.5 m in 

depth) were backfilled with salt powder that has a porosity of about 30%. 

Testing procedure: 

During the experiment, three cooling-warming cycles were performed using the refrigeration 

system and the four fans installed in the cooling chamber. Each cycle consisted of a 28 day 

cooling stage, during which air temperature inside the cooling chamber was decreased from 

14.5 °C (initial temperature in the gallery) to around -9 °C, followed by a 28 day warming 

phase. A fourth cooling phase, which also lasted 28 days, followed the first 3 cycles, and the 

air temperature was decreased to -25 °C. The time evolution of the air temperature inside the 

cooling chamber during the first cooling phase is shown in Figure 3.2b. The temperature 

decreased to -9 °C within one hour of starting the experiment. The peaks in temperature 

observed on days 6, 7, and 15 were due to unexpected opening of the cooling chamber’s doors 

and power supply failures. 

To minimize heat losses by convection, the floor around the cooling chamber was covered 

with an insulating material. A view of the cooling chamber including the layout of the 

insulation is shown in Figure 3.2a. 
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 (a) Top view 

 

(b) Cross-section 

A-A 

Figure 3.1  Geometry of the gallery and position of the cooling chamber (adapted from Hévin et al. 

(2016)). Dimensions are given in meters 
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(a) 

 

(b) 

Figure 3.2  (a) View of the cooling chamber (Hévin et al., 2016); (b) Time evolution of air temperature 

inside the cooling chamber during the first cooling stage 

Temperature monitoring: 

Extensive monitoring was carried out during the test. Thermocouples were installed to monitor 

the temperature on the floor both inside and outside the chamber, and at different depths inside 

the chamber. Additionally, optical and infrared images were shot at different times to follow 

the initiation of cracks and their propagation. Figure 3.3 shows the layout of the 

thermocouples and a view from inside the cooling chamber. The main thermocouples of 

interest include the ones on the floor, designated by K and S, located along the lines x = 2.3 m 

(referred to as the main profile) and y = 1.4 m (the transverse profile); and the ones at depths 

of 0.2 m, 0.4 m, and 0.8 m from the floor’s surface, respectively designated T3, T4, T5. 
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(a) 

 

(b) 

Figure 3.3  (a) Layout of thermocouples: thermocouples K and S measured temperatures on the floor; 

thermocouples T3, T4, T5 measured temperatures at depths 0.2 m, 0.4 m, and 0.8 from floor’s surface, 

respectively. (b) View from inside the chamber with sensors on the floor and fans on the left (Hévin et 

al., 2016) 

3.2.2 Heat transfer simulation 

The modeling was performed for the first cooling stage since the fracturing process due to 

temperature changes (both fracture initiation and propagation) occurred mainly during this 

stage of the experiment. The temperatures measured at different locations were used to 

calibrate the heat transfer model. The temperature field obtained from the heat transfer model 

was then introduced in the mechanical model for simulating the fracture initiation and 

propagation. Both heat transfer and mechanical simulations use the same geometric domain 

and were performed using the finite element code ABAQUS. Instead of modeling the whole 

formation from the ground surface to the depth of the gallery, a sub-domain was chosen, as 

displayed in Figure 3.4. The sub-domain consists of the tested 1.5 m thick salt block and a 5 m 

thick layer of marl. These dimensions were chosen to satisfy the boundary conditions used for 

the heat transfer simulation and will be justified later. 
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(a) 3D view 

 

(b) Top view 

Figure 3.4  Sub-domain used for heat transfer and fracture propagation simulations. Dimensions are 

given in meters (Ngo and Pellet, 2018) 

Two types of heat transfer took place in the experiment, namely conduction inside the rock 

mass and convection at the air – rock mass interface. The different convection zones, which 

are represented in Figure 3.5, are characterized by different values of the heat transfer 

coefficient h measured in W.m
-2

.C
-1

 (see equation (2.24) for coefficient h) as follows (Hévin et 

al., 2016): h = 2 for the 2 slots, h = 20 for the floor under the fan box, h = 3.2x
2
 – 1.6x + 19 for 

the floor inside the cooling chamber with x in meter, h = 0.2 for the insulated zone, and h = 10 

for the uncovered zone. These values of h were determined by calibrating the temperature at 

the monitoring points on the floor and at different depths of the testing block. Other physical 

and thermal properties required for the simulation are given in Table 3.1. 

For the simulation, the initial temperature in the whole domain was considered to be 14.5°C. 

The temperature was held constant at 14.5°C at all boundary planes: x = -5.7 m, x = 6.3 m, y = 

6 m, y = -11.5 m, and z = -6.5 m (see Figure 3.4 for the coordinate system). 
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Figure 3.5  Convection zones for heat transfer simulation with different values of the heat transfer 

coefficient (measured in W.m
-2

.C
-1

) as follows: h = 2 for the 2 slots, h = 20 for the floor under the fan 

box, h = 3.2x
2
 – 1.6x + 19 for the floor inside the cooling chamber, h = 0.2 for the insulated zone, and h 

= 10 for the uncovered zone 

Table 3.1  Physical and thermal properties of the rock salt and marl 

Parameter Unit Salt Marl 

Density ρ  

Heat capacity Cp 

Heat conductivity λ  

kg/m
3
 

J(kg.C) 

W/(m.C) 

2200 

850 

6.5 

2300 

900 

2.9 

 

Results of heat transfer simulation: 

Temperatures along the main profile (along x-axis) and along the transverse profile (along y-

axis) are shown in Figure 3.6. As it can be seen, the simulation results agree reasonably well 

with the test measurements. The temperatures inside the cooling chamber decreased quickly 

during the first few hours. Along the main profile, the average temperature decrease was about 

4 °C after 10 minutes and approximately 9 °C after 1 hour. Temperatures tended to stabilize 
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after 5 days. Some discrepancies were observed in the first few minutes after the start of the 

cooling. This can be explained by the phase changes of fluid in the pore space that are not 

accounted for in the current numerical model. However, after 1 hour the temperature 

difference between the simulation and test measurements was less than 1°C, except for the 

thermocouple below the fan box. In fact, the convection condition under the fan box is 

difficult to control and a constant value of the heat transfer coefficient may not be sufficient to 

describe the real convective conditions. 

Time evolution of the computed temperature was also compared, for different depths, with the 

experimental values measured by thermocouples T3, T4 and T5, as displayed in Figure 3.7; 

similar agreements between numerical results and test measurements were obtained.  

A 3D view of the spatial distribution of the temperature at the end of the first cooling stage 

(day 28) is shown in Figure 3.8. Note that the cold fronts (surfaces with low temperatures) did 

not reach the boundaries of the model. This justifies the dimensions chosen for the model and 

the constant temperature boundary condition used. Therefore, the computed temperature field 

is considered to be close to the real temperature observed in the rock mass and will be 

introduced into the mechanical model 
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(a) Main profile 

 

(b) Transverse profile 

Figure 3.6  Comparison between simulation and measurement for temperatures along (a) the main 

profile and (b) the transverse profile. Legends followed by an “S” represent computed results while 

those without “S” represent the measurements. The cooling chamber is located in 0 ≤ x ≤ 3.6 m and 0 ≤ 

y ≤ 3.6 m. 
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Figure 3.7  Time evolution of the temperature at depths 0.2 m, 0.4 m, and 0.8 m measured by 

thermocouple T3, T4, and T5, respectively. Legends followed by an “S” represent computed results 

while those without “S” represent the measurements. 

 (a) 

 (b) 

Figure 3.8  Temperature distribution at the end of the first cooling stage. (a) 3D view; (b) Cross 

sections along the main profile (left) and the transverse profile (right) 
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3.2.3 Fracture propagation simulation 

The fracture propagation simulation consists of two steps. The first step is to initialize the 

initial stress conditions in the rock mass surrounding the salt block where the cooling 

experiment was performed. The second step is to model the fracture propagation; the extended 

finite element method (XFEM) is used for this purpose. XFEM does not require pre-defining 

the fracture trajectory. Instead, the fracture trajectory is determined based on the stress 

condition at the fracture tip. Here the fracture propagation direction is supposed to be 

perpendicular to the maximum tangential stress at the fracture tip, while the fracture 

propagation criterion is based on a comparison between the strain energy release rate G and 

the fracture energy G
C
 as presented in equation (2.44), which is repeated here for convenience: 

 CG G   (3.1) 

The strain energy release rate G can be estimated using the Virtual Crack Closure Technique 

(VCCT) (ABAQUS, 2016), which is based on the assumption that the strain energy released 

when a crack is extended by a certain amount is the same as the energy required to close the 

crack by the same amount. Figure 3.9 illustrates the principle of VCCT. In Figure 3.9a, the 

fracture extends from node m to node n, accompanied by the release of a certain amount of 

strain energy. This amount of energy is supposed to be equal to the work necessary to close 

the fracture from node n to node m in Figure 3.9b. 

For a pure Mode I fracture with the fracture tip located at node 2 (or node 5) as shown in 

Figure 3.10, the energy release rate when the fracture propagates from node 2 is calculated as 

follows: 

 
,25 161

2

v

I

F v
G

bd


   (3.2) 

where F
v,25

 is the nodal force at nodes 2 and 5; v
16

 is the displacement between nodes 1 and 6; 

d is the length of the element at the crack front; and b is the thickness of the element (not 

presented in Figure 3.10). The fracture will begin to propagate when G
I
 = G

IC
 where G

IC
 is the 

Mode I fracture energy. 



91 

 

The mixed-mode fracture energy G
C
 in equation (3.1) can be estimated using different laws 

presented in subsection 2.3.1.4. In this simulation the BK law is used and is repeated in the 

equation below: 

  
m

II III
C IC IIC IC

I II III

G G
G G G G

G G G

 
    

  
  (3.3) 

The three parameters needed to define this law include the Mode I and Mode II fracture 

energy G
IC

 and G
IIC

 and the material parameter m. 

 

(a) Crack extension from node m to node n 

 

 

(b) Crack closure a node m 

Figure 3.9  Extension and closure of Mode I fracture. The energy released when a crack extends by a 

distance δa is the same as the energy required to close the crack by a distance δa. Black dots represent 

the nodes of finite elements. Source: adapted from ABAQUS (2016) 
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Figure 3.10  Pure Mode I fracture. The fracture tip is at node 2 (or node 5). Fv,25 is the nodal force at 

nodes 2 and 5. v
v,16

 is the vertical displacement between nodes 1 and 6 

Initial stress initialization: 

As explained above, the mechanical simulation of the fracture propagation was performed 

using the same sub-domain as in the heat transfer simulation. However, the initial stress state 

was first reproduced using a full model with dimensions of 180 m x 180 m x 180 m (Figure 

3.11) and consisting of three layers, which are, from the top: a 40 m thick sandstone layer, an 

80 m thick rock salt layer, and a 60 m thick marl layer. All lateral faces and the bottom face of 

the domain are constrained. The simulation has 3 steps: In the first step, the geostatic stress is 

applied. The geostatic stress is the lithostatic stress and is supposed to be isotropic. The second 

step simulates the excavation of the main gallery and the niche. In the third step, the two slots 

are excavated. The density of the salt and marl were presented in Table 3.1. The density of the 

upper layer of sandstone is 2500 kg.m
-3

. The thermo-mechanical properties of all 3 rocks are 

listed in Table 3.2. The stresses computed in the domain of interest will be extracted and used 

as initial stresses in the sub-model for fracture propagation using the submodeling technique in 

ABAQUS (ABAQUS, 2016). 
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Figure 3.11  Geometric domain used for reproduction of the initial stress state 

Table 3.2  Thermo-mechanical properties of the rock salt, marl, and sandstone 

Property Sandstone Salt Marl 

Young's modulus (GPa) 

Poisson ratio (-) 

Linear thermal expansion coefficient (C
-1

) 

15 

0.25 

1.5x10
-5

 

20 

0.25 

2.5x10
-5

 

15 

0.2 

10
-5

 

 

The distributions of stresses σ
x
 and σ

y
 on the floor of the cooling chamber at different times are 

shown in Figure 3.12. Note that the excavation of the niche has the same effect on both σ
x
 and 

σ
y
 as they both decrease from -2.85 MPa to about -2.0 MPa (compression is negative).  

Conversely, the excavation of the 2 slots modifies σ
x
 and σ

y
 differently. As it can be seen in 

Figure 3.12c, the stress σ
x
 was more relaxed than σ

y
, decreasing from -2.0 MPa before 

excavation of the slots to about -1.4 MPa afterwards. This is due to the direction of the slots, 

which are normal to the x-axis. 
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(a) Initial lithostatic state 

 

(b) After the excavation of the niche 

 

(c) After the excavation of the slots 

Figure 3.12  Stresses (σx on the left and σy on the right) on the floor of the cooling chamber at different 

steps of excavation. Stresses are given in Pa 
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Fracture propagation simulation: 

For fracture propagation modeling, a sub-model is used (Figure 3.4). All the lateral faces and 

the bottom face are displacement-constrained. This boundary condition is justified because its 

effects on the salt block, which is the region of interest, are limited due to the presence of the 

two slots. Indeed, the two parallel slots isolated the salt block from lateral contact with the 

walls of the niche. The initial stress state used in the current simulation was taken from the 

initial stress state initialization model above, for the corresponding geometric domain. The 

mechanical properties of the salt required for the fracture propagation modeling are typical of 

those found in the literature. A tensile strength for salt of 2.75 MPa, and fracture toughness 

GIC = GIIC = 22 J/m
2
 were used (Wang et al., 2016). 

Figure 3.13 shows the stresses in the directions x and y (σ
x
 on the left, σ

y
 in the middle) and the 

temperature (on the right) on the floor of the cooling chamber at different times during the first 

cooling stage. Note that stress σ
x
 inside the chamber, which is compressive prior the cooling, 

changes to tension 1h after the start of cooling. It is also greater than σ
y
 and increases upon 

further cooling. At about 4h30, when σ
x
 exceeds the tensile strength of the rock salt, two 

cracks are initiated in two locations at a distance of about 1.1 m from the fan box (i.e. x = 1.1 

+ 0.5 = 1.6 m, with the width of the fan box is 0.5 m), as shown in Figure 3.13b. The locations 

of the two cracks are immediately in front of the fans where temperature is the most reduced. 

The cracks then propagated rapidly and coalesced into one crack across the chamber after 5h, 

as shown in Figure 3.13c. The location and the time at which the first cracks appeared are 

consistent with the observations made on site. Indeed, (Hévin et al., 2016) reported that a 

macro-crack was visible after about 6h of cooling at x = 1.5 m. 

Stress relaxation was also noticed around the cracks at 5h (σ
x
 on the left of Figure 3.13). After 

5h, the macro-crack on the floor did not propagate further. The region of maximum tensile 

stress was shifted farther from the fan box, as can be seen in the contour plot of σ
x
 in Figure 

3.13c,d. At the end of the first cooling stage, the temperature distribution became more 

homogeneous and steady. This caused a decrease in the amplitude of both σ
x
 and σ

y
 at the end 
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of the first cooling stage. For instance, the maximum σ
x
, which was about 2.4 MPa after 5h, 

reduced to close to 1.0 MPa at 28 days. 

Although the crack stopped propagating on the floor of the cooling chamber after 5h, the 

temperature decreases caused the crack to propagate deeper into the salt block. Figure 3.14 

shows the crack area on the plane y-z at different times. The crack’s depth at 5h was 

approximately 0.3 m. As the cooling continued, the crack gradually penetrated deeper into the 

rock mass; after 1 day it was about 0.8 m deep. The downward crack penetration slowed and 

stabilized after 5 days. This evolutionary trend was also observed in the experiment (Hévin et 

al., 2016). The maximum crack depth at 28 days was approximately 1.15 m, which is 

consistent with the depth observed on site, about 1.25 m. 

The evolution over time of the crack depth and the crack aperture on the floor of the cooling 

chamber at y = 1.8 m are illustrated in Figure 3.15. Note that both the depth and aperture of the 

crack increased rapidly during the first few hours, after which the increase rate slowed down 

and stabilized after 5 days. The crack aperture reached a maximum of 0.65 mm after 2 days. 

The computed crack aperture is of the same order as that observed experimentally, which was 

about 1 mm (Hévin et al., 2016). The crack aperture then slightly decreased after 5 days; this 

crack evolution is consistent with that observed experimentally. The reason for this decrease is 

that the temperature distribution became more homogeneous after 5 days, causing the stresses 

(including σ
x
) to relax and decrease the aperture. 
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(a) t = 1 h 

 

(b) t = 4.5 h 

 

(c) t = 5 h 

 

(d) t = 28 d 

Figure 3.13  Numerical results (σx on the left, σy in the middle, temperature on the right) on the floor of 

the cooling chamber at different times during the cooling stage 
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(a) t = 4.5 h 

 

(b) t = 5 h 

 

(c) t = 1 d 

 

(d) t = 28 d 

Figure 3.14  Crack area projected on the y-z plane at different times during the cooling stage. The 

crack area is shaded in blue 

 
Figure 3.15  Time evolution of crack depth and crack aperture on the floor of the cooling chamber at y 

= 1.8 m 

3.3 THERMAL FRACTURE FROM A WELLBORE 

As mentioned in the introduction to this chapter, the injection of cold water through a wellbore 

into a hot rock formation will cause a sudden temperature decreases in the vicinity of the 

wellbore, which in turn will lead to the contraction of the rock. Tensile stresses will be 

induced as the rock around the wellbore is refrained from contracting by the surrounding rock. 
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As a result, fractures can be initiated if the induced tensile stresses exceed the in-situ stress 

and the tensile strength of the rock. This phenomenon will be studied in this section using 2D 

simulations. 

3.3.1 Model setup 

The fracture propagation from a wellbore due to temperature changes was studied using a 2D 

model presented in Figure 3.16. The 2D rock formation has dimensions of width 10 m and 

length 10 m. A wellbore of radius 0.15 m is located at the center of the 2D formation. Cold 

water is injected into the rock formation through the wellbore and potential thermal fractures 

may initiate from the wellbore. The dimensions of the 2D formation were chosen such that 

they are still reasonably larger than the length of the expected fractures. The modeling consists 

of two simulations: a heat transfer simulation and a fracture propagation simulation. 

 
Figure 3.16  Geometry for studying fracture propagation around a wellbore 

Heat transfer simulation: 

For the heat transfer simulation, the impact of fractures on the temperature field is not 

considered. The rock mass has an initial temperature of 220 °C and the temperature of the 

injected water is 20 °C. It is assumed that the temperature of water inside the wellbore remains 

at its initial temperature (i.e., 20 °C) and the temperature of water inside the fractures is equal 

10 m

10 m
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to the temperature of the rock mass. These assumptions mean that only heat transport by fluid 

diffusion is modeled, while heat transport by fluid flow in the fractures and heat convection 

between fluid flow and the fracture walls are not taken into account. The heat transfer 

simulation carried out here is only a rough approximation to the complex conditions occurring 

in a geothermal wellbore. 

For the boundary conditions, the temperature of all outer edges of the 2D domain and of the 

wellbore is maintained at an initial temperature of 20 °C. 

The physical and thermal properties necessary for the heat transfer simulation are summarized 

in Table 3.3. 

Table 3.3  Physical and thermal properties necessary for the heat transfer simulation (Ghassemi and 

Tarasovs, 2015) 

Property Unit Value 

Density ρ 

Heat capacity Cp 

Heat conductivity λ  

kg/m
3
 

J/kg °C 

W/m °C 

2650  

790 

10.7 

 

Fracture propagation simulation: 

The temperature field obtained from the heat transfer simulation is used as the loading 

condition for the fracture propagation simulation. The fracture propagation is modeled using 

the cohesive material concepts in combination with cohesive elements. The plane deformation 

condition is assumed and the rock mass is supposed to be homogeneous and linear elastic. The 

temperature field obtained from the heat transfer is symmetric about the center of the wellbore 

because of the symmetry of the boundary conditions. Therefore, in this fracture propagation 

simulation only Mode I fractures that propagate radially from the wellbore are expected. For 

this reason, 24 layers of cohesive material are evenly placed around the wellbore as illustrated 

in Figure 3.17. The mechanical properties of the rock formation and the initial stresses are 

given in Table 3.4. 
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For the boundary conditions, the displacements of all rock surfaces are confined in the 

direction perpendicular to them. The initial temperature of the rock is 220 °C, which is similar 

to the initial temperature used in the heat transfer simulation. The temperature of the rock at 

time t > 0 is imported from the heat transfer simulation. The fracture propagation simulation is 

also run for 10 days, similar to the time duration of the heat transfer simulation. 

 
Figure 3.17  Layout of cohesive layers around the wellbore and the boundary condition. 

Table 3.4  Parameters used for the fracture propagation simulation 

Property Value Source / Comment 

Young's modulus 

Poisson's ratio 

Linear thermal 

expansion coefficient 

Tensile strength 

Fracture energy 

 

E = 30 GPa 

ν = 0.22 

α  = 1.2x10
-5

 (1/°C) 

 

RT = 1.25 MPa 

GIC = 62 N/m 

(KIC = 1.4 MPa.m
0.5

) 

(Keshavarz, 2009) 

(Keshavarz, 2009) 

Typical value (Wong and Brace, 

1979) 

Common value 

Common value (Atkinson, 1989) 

 

Initial stresses Sh = -12, SH = -36 MPa (Meyer et al., 2017) 

 

x

y

uy = 0
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3.3.2  Simulation results 

3.3.2.1 Results of heat transfer simulation 

The contour plots of temperature at different times are presented in Figure 3.18. It can be seen 

that the temperature field is symmetric about the center of the wellbore as predicted. The cold 

front spreads away from the wellbore as time increases. 

Figure 3.19 shows the temperature along a radius at different times. It should be noted that for 

one specific curve in Figure 3.19 the temperature gradients, which are a measure of the slope 

of the curve, are largest near the wellbore and gradually decrease farther away from the 

wellbore. This indicates that the potential induced tensile stresses are also largest near the 

wellbore. It is also observed that the temperature gradients in the region near the wellbore 

decrease over time and the temperature field becomes more homogeneous. 

Figure 3.20 represents the time evolution of the temperature at four points A, B, C, and D 

which are located at 0.25 m, 0.7 m, 1.5 m, and 3.7 m from the center of the wellbore, 

respectively. The temperature decreases sharply in the hours immediately after the beginning 

of the simulation, and continues to decrease subsequently but at a much slower rate. The 

temperature at points closer to the wellbore also decreases more than at points farther away 

from the wellbore. 
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(a) t = 1 h 

 

(b) t = 1 d 

Unit: °C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) t = 5 d 

 

(d) t = 10 d 

 

Figure 3.18  Contour plots of temperature at different times 

 
Figure 3.19  Temperature along a radius at different times 
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Figure 3.20  Time evolution of temperature at four points A, B, C, and D that are located at 0.25 m, 

0.7 m, 1.5 m, and 3.7 m from the center of the wellbore, respectively 

3.3.2.2 Results of fracture propagation simulation 

The fracture propagation due to temperature changes is presented in Figure 3.21, which shows 

the contour plots of the damage variable D. Since cohesive elements are used to model 

fractures, the created fractures correspond to D = 1. It can be seen that multiple fractures are 

initiated around the wellbore immediately after the simulation begins. However, only two 

major fractures dominate and propagate far from the wellbore. These two fractures are 

perpendicular to the minimum principal stress Sh. 
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Figure 3.21  Contour plots of damage variable D at different times (when Sh = 12 MPa). Fractured 

zones correspond to D = 1. 

To investigate the influence of the minimum principal stress on the fractures, four different 

values of the minimum stress S
h
 were tested: 12 MPa, 18 MPa, 29 MPa, and 36 MPa. Note 

that the maximum principal stress S
H
 = 36 MPa. 

The fracture pattern at the end of 10 days for all cases is shown in Figure 3.22. In all cases 

except the case of S
h
 = 36 MPa, multiple fractures are initiated at first, but only two fractures 

that are perpendicular to the minimum principal stress S
h
 continue to propagate further from 

the wellbore. For the case of S
h
 = 36 MPa, all the initiated fractures continue to propagate in a 

symmetrical manner without any preferred direction; this can be observed more clearly in 

Figure 3.23, which shows the damage variable at the end of 10 days. All the fractures 

propagate radially and the fracture length is more or less identical in all directions. 

The time evolution of the length of the major fracture is shown in Figure 3.24 for all values of 

S
h
. In all cases the fracture length increases rapidly at first and then the rate of increase slows 

1 h

1 d

5 d

10 d

1 m
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down. This is because the temperature gradients are largest in the early hours and decrease as 

time goes on. Another remark is that as the minimum stress S
h
 increases from 12 MPa to 36 

MPa, the length of the major fracture decreases from 2.5 m to 0.3 m. 

The fractures induced near the wellbore due to temperature changes resulted from injection of 

cold fluid may reduce the hydraulic impedance and wellhead pressure (Bruel, 2002; Murphy, 

1978; Swenson and Hardeman, 1997) but may also lead to more water loss due creation of 

new unwanted flow paths. Thermal fractures near the wellbore may also contribute to the 

instability of wellbore, rendering the wellbore inaccessible as observed at Soultz EGS 

reservoir (Schill et al., 2017). 

 (a) Sh = 12 MPa 

 (b) Sh = 18 MPa 

 (c) Sh = 29 MPa 

 (d) Sh = 36 MPa 

Figure 3.22  Deformed shape (amplified 20 times) with fracture pattern at day 10 for different values 

of the minimum stress Sh. The maximum stress is SH = 36 MPa  
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Figure 3.23  Contour plot of damage variable D at time t = 10 d for the isotropic stress case Sh = SH = 

36 MPa. Fractured zones correspond to D = 1 

 

 
Figure 3.24  Time evolution of the length of the main crack for different cases with different values of 

the minimum stress Sh. The maximum stress is SH = 36 MPa 

3.3.3 Effect of the temperature of the injected fluid 

The effect of the temperature of the injected fluid is numerically investigated here. As 

demonstrated above the injection of cold fluid can induce fractures near the wellbore and the 

induced fractures can grow to lengths on the order of meters. It is also known that the peak 

hydraulic pressure of fracture initiation can be reduced as the length of the initial fracture 
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increases. Thus, in order to reduce the peak hydraulic pressure, it may be necessary to increase 

the length of fractures near the wellbore. One way to achieve this is by decreasing the 

temperature of the injected fluid, which will result in higher temperature gradients and thus 

induce higher tensile stresses. Many researchers are experimentally investigating an even more 

"radical" approach by using liquefied nitrogen at temperatures of nearly -200 °C to create 

thermal fractures (Cha et al., 2017; Zhang et al., 2018a; Zhang et al., 2018b). It is expected 

that as the temperature of the injected fluid is lowered, the thermal fracture will propagate 

further. The question is: How effective is the lowering of the temperature of the injected fluid 

in increasing the length of the thermal fracture? To answer this question, the following 

simulation scenario was studied. Water at three different temperatures T0 = 5 °C, 20 °C, and 

35 °C is injected into a rock formation that has an initial temperature of 220 °C. The 

simulation procedure is similar to that described in subsections 3.3.1. The main points are 

summarized below: 

 The modeling of thermal fracturing consists of two simulations: a heat transfer 

simulation and a fracture propagation simulation 

 For the heat transfer simulation, the temperature of the wellbore is assumed to be 

constant and equal to the temperature of the injected water T0. The material properties 

needed for the heat transfer simulation are taken from Table 3.3. 

 The fracture propagation simulation uses the temperature field obtained from the heat 

transfer simulation as the thermal load. The mechanical properties and initial stresses 

needed for the fracture propagation simulation are taken from Table 3.4. 

Simulation results: 

The results of the heat transfer simulation for the case T0 = 20 °C are presented in subsection 

3.3.2, while those for the cases T0 = 5 °C and 35 °C are presented in Figure 3.25. It can be 

seen from Figure 3.25a and b that the temperature field is symmetric about the center of the 

wellbore; the temperature in the region near the wellbore (within the radius of 2 m) is lower 

for T0 = 5 °C than for T0 = 35 °C. The temperature in the region farther from the wellbore (out 

of the radius of 3 m) is nearly identical for all three cases (Figure 3.25c). 
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Using the obtained temperature fields, the fracture propagation simulations were run and the 

results for the length of the major fracture are presented in Figure 3.26 and Figure 3.27. The 

thermal fracture grows rapidly in the early hours, but then the growth rate decreases (Figure 

3.26). The effect of the water temperature can be seen clearly in Figure 3.27, which shows that 

the water temperature has little effect on the final fracture length. Specifically, as the water 

temperature increases from 5 °C to 35 °C, the final fracture length decreases by 0.4 m from 

2.76 m to 2.36 m, about 14 %. This is due to the low heat conductivity of the rock which 

reduces the penetration of the cold temperature into the rock mass. 

 

(a) T0 = 5 °C 

 

(b) T0 = 35 °C 

 

Unit: °C 

 

 

(c) Temperature along a radius at day 10 

Figure 3.25  Results of heat transfer simulation for different temperatures of the injected water. (a) and 

(b) are contour plots of temperature at day 10. (c) is the temperature along a radius at day 10 
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Figure 3.26  Time variation of the length of the major fracture for three cases with different water 

temperature T0 

 
Figure 3.27  Length of the major fracture at day 10 as function of the water temperature T0 

3.4 CHAPTER CONCLUSIONS 

Numerical simulations were used to study the effect of temperature changes on the fracturing 

of rocks in two different contexts. The extended finite element method (XFEM) was used to 

model the propagation of thermal fractures in the cooling experiment of rock salt. Under the 

low confining conditions of the cooling experiment, a temperature decrease of approximately 

25 °C induced a fracture of more than 4 m long and more than 1 m deep. XFEM was able to 

capture the fracture propagation and fracture aperture without the need for mesh refinement or 

adapting the fracture geometry to the finite element mesh. This technique will become even 

more attractive in conditions where the fracture propagation direction is difficult to predict in 
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advance. This is the advantage of using XFEM compared to the classic modeling approach 

using finite element method, which is not able to model the fracture opening and is therefore 

limited to identifying the locations of first fractures. 

The injection of cold water into a rock mass through a wellbore was shown to lead to the 

propagation of fractures, even under high compressive stresses. Under anisotropic stress 

conditions, the cooling of the wellbore leads to the initiation of multiple fractures but only 

fractures that are perpendicular to the minimum principal stress continue to propagate and 

become the dominant fractures. Under an isotropic stress state, all the initially induced 

fractures continue to grow radially in a symmetric manner. The study of the influence of the 

temperature of the injected fluid on the thermal fractures showed that the injected fluid 

temperature has a less pronounced effect due to the low thermal conductivity of the 

surrounding rock mass. 
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Chapter 4 

 

Simulation of fracture propagation and fault 

slip due to hydraulic stimulation 

RÉSUMÉ 

Ce chapitre est consacré à l’étude de la propagation des fractures hydrauliques et du 

glissement des failles préexistantes dans les roches ignées de faible perméabilité dues à 

l’injection de fluide. Une partie de cette étude à fait l’objet de la publication (Ngo et al., 2019). 

Le problème concerne les changements de température, l’écoulement des fluides dans l’espace 

poreux et dans les fractures hydrauliques ou failles, ainsi que la déformation du massif 

rocheuse. Les changements de température peuvent cependant avoir certains effets mais ne 

sont pas couplés à l'analyse et ne sont pas pris en compte ici en raison de la complexité qui en 

résulterait. Pour prendre en compte l'effet thermique, une procédure de simulation séquentielle 

telle que présentée au chapitre 3 peut être utilisée en première approximation. Dans ce 

chapitre, nous nous concentrons exclusivement sur les effets hydromécaniques. Toutes les 

simulations numériques présentées dans ce chapitre sont effectuées à l'aide du package 

d'éléments finis ABAQUS. Le modèle de zone cohésive en combinaison avec les éléments 

cohésifs est exclusivement utilisé pour modéliser les fractures hydrauliques et les failles 

préexistantes. Bien que le XFEM soit capable de faire le même travail, il requiert beaucoup 

plus d'efforts pour obtenir une solution précise et des problèmes de convergence se posent 

souvent. 

Tout d'abord, je vais étudier des modèles de fracture hydraulique classique. Le modèle de 

déformation plane KGD et le modèle axisymétrique en forme de penny sont étudiés. Les 
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résultats des simulations sont ensuite comparés aux solutions analytiques présentées dans la 

sous-section 2.5.2 du chapitre 2. L’objectif principal de cette section est de démontrer la 

capacité de la technique de l’élément cohésif et de mieux comprendre tous les aspects 

numériques (par exemple, la technique de régularisation visqueuse, le maillage et paramètres 

numériques pour l’élément cohésif) à prendre en compte pour obtenir une solution précise au 

problème hydromécanique couplé. 

Ensuite, j'étudierai la propagation d'une fracture hydraulique dans un milieu rocheux contenant 

une faille préexistante. Le comportement de glissement de la faille, après que la fracture 

hydraulique l'ait rencontrée, est soigneusement étudié. Ce scénario est une version simplifiée 

des conditions géologiques pouvant être rencontrées dans les substratums de roches ignées 

ciblés pour le développement des réservoirs géothermiques profonds. Certains des aspects les 

plus importants qui peuvent influencer le glissement de la faille sont examinés. Ceux-ci 

incluent le coefficient de frottement de la faille, le débit auquel le fluide est injecté ainsi que 

l'orientation de la faille par rapport aux contraintes in-situ initiales. Plusieurs conclusions 

générales sur le rôle de ces paramètres sont tirées. 

Enfin, une configuration plus complexe dans laquelle sont présentées de multiples fractures 

hydrauliques et de plusieurs failles préexistantes est étudiée, afin d'étendre les conclusions 

obtenues pour le cas d’une fracture hydraulique et d’une faille unique à un cas plus général. 
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SUMMARY 

This chapter is dedicated to the study of the propagation of hydraulic fractures and the slip of 

pre-existing faults in low-permeability igneous rocks due to fluid injection. The problem 

involves temperature changes, fluid flow both in the porous space and the hydraulic 

fractures/faults, and deformation of the rock mass. Temperature changes may exert some 

effects but are not coupled to the analysis and are not considered here because of the 

complexity that would be added. To account for the thermal effect, a sequential simulation 

procedure as presented in Chapter 3, which is used as a first approximation. In this chapter, the 

focus is exclusively on the hydro-mechanical effects. All the numerical simulations in this 

chapter were done using the ABAQUS finite element package. The cohesive zone model in 

combination with cohesive elements is exclusively used to model the hydraulic fractures and 

the pre-existing faults. Although the XFEM is able to do the same job, it requires much more 

effort to obtain an accurate solution and convergence issues often arise. 

Firstly, the propagation of a single hydraulic fracture in a low-permeability poroelastic 

medium is simulated. Both the KGD plane strain model and the axisymmetric penny-shaped 

model are studied. The simulation results are then compared with the theoretical solutions 

presented in subsection 2.5.2 of Chapter 2. The main objective of this section is to demonstrate 

the capability of the cohesive element technique and to gain insight into all numerical aspects 

(e.g, viscous regularization technique, finite element mesh creation, and numerical parameters 

for the cohesive element) that require attention in order to obtain an accurate solution to the 

coupled hydro-mechanical problem. 

Secondly, the propagation of a hydraulic fracture in rock medium that contains a pre-existing 

fault is studied. The slip behavior of the fault once it is intersected by the hydraulic fracture is 

carefully investigated. This scenario is a simplified version of the geological conditions that 

might be encountered in igneous basements targeted for the development of deep geothermal 

reservoirs. Some of the most important aspects that could influence the fault slip are 

examined. These include the fault friction coefficient, the rate at which fluid is injected, and 

the orientation of the fault with respect to the initial stresses. Several general conclusions on 

the role of these aspects are drawn. 
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Finally, a more complex configuration in which multiple hydraulic fractures and multiple pre-

existing faults are present is studied to investigate whether the conclusions obtained for the 

case with a single hydraulic fracture and a single fault are an exception or a more general 

universal trend. 
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4.1 SIMULATION OF THE PROPAGATION OF A SINGLE HYDRAULIC FRACTURE 

In this section, two single hydraulic fracture models, the KGD plane strain and the 

axisymmetric penny-shaped models, are studied. The numerical results are then compared 

with the analytical solutions presented in subsection 2.5.2 of Chapter 2. The cohesive zone 

model in combination with cohesive elements is used to model the fracture propagation. In 

order to make the numerical results comparable to the analytical solutions, the model 

dimensions and several material properties are chosen such that all the assumptions made to 

obtain the analytical solutions are satisfied. For instance, the dimensions of the model are 

much larger than the fracture dimensions (e.g., length and aperture) to limit the effect of model 

boundaries. The cohesive properties are selected such that the cohesive zone is small relative 

to the fracture length. This ensures that the fracture propagation modeled using the cohesive 

zone model is equivalent to that modeled in the analytical solutions using the theory of linear 

elastic fracture mechanics. The permeability is also defined to minimize the poroelastic effects 

since these effects are not considered in the analytical solutions. This section only analyzes 

and presents results for the toughness/storage-dominated regime of propagation (near vertex K 

in Figure 2.15). Models for the viscosity/storage-dominated regime (near vertex M) can be 

readily obtained based on the models for vertex K by adjusting the viscosity of the fluid. 

4.1.1 Plane strain KGD model 

4.1.1.1 Geometry and finite element mesh 

The model studied consists of a vertical fracture that propagates in a poroelastic medium as 

illustrated in Figure 4.1a. As the fracture is under plane strain conditions, a 2D plane strain 

model, as shown Figure 4.1b, can be used for the simulation without compromising the 

accuracy. 

The 2D domain has dimensions of width W and height B. These dimensions are chosen such 

that the maximum fracture length is expected to be less than one half of the width W. The 

numerical model also requires the presence of an initial crack in order to incorporate the 

physics for the fluid flow in the fracture. The model dimensions and the length of the initial 

crack are summarized in Table 4.1. 
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(a)  

(b)  
Figure 4.1  KGD model: (a) 3D domain with a vertical fracture, (b) 2D plane strain model used for 

simulation. a is the initial fracture length and s is the curvilinear coordinate along the fracture. 

Table 4.1  Dimensions of the 2D plane strain KGD model  

Dimension Value 

Width 

Height 

Initial crack length 

W = 45 m 

B = 60 m 

a = 5 cm 

 

The poroelastic medium is discretized by linear plane strain coupled pore fluid 

pressure/deformation continuum elements CPE4RP in ABAQUS (i.e., 4-node elements that 

H

W

B

2

Q

B

W

2

Q s
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have both displacements and pore pressure as degree of freedom (DOF)), while the fracture is 

modeled by a thin layer of cohesive material that is discretized by coupled fluid 

pressure/deformation cohesive elements COH2D4P (i.e., elements with nodes at four corners 

that have both displacements and pore pressure as DOF and two mid-edge nodes that have 

only fluid pressure as DOF). The continuum elements and the cohesive elements are 

connected through shared nodes. Figure 4.2 illustrates the finite element mesh used. 

The mesh is refined near the fracture plane where high gradients of stress and pore pressure 

are expected. In order to obtain accurate results when using cohesive elements, the traction in 

the cohesive zone ahead of the fracture tip must be properly represented. This requires the size 

of the cohesive elements to be small relative to the size of the cohesive zone. In other words, 

the cohesive zone must to be discretized into multiple cohesive elements. The length of the 

cohesive zone and the size of the cohesive element are defined as L
cz

 and L
e
, respectively; the 

number of cohesive elements in the cohesive zone is: 

 cz
e

e

L
N

L
   (4.1) 

The length of the cohesive zone L
cz

 can be calculated from the properties of the cohesive 

material as (Turon et al., 2007): 

 
2

IC
cz

T

EG
L M

R
   (4.2) 

where E is the Young's modulus of the rock mass; G
IC

 and R
T
 are the Mode I fracture energy 

and the tensile strength of the cohesive material, respectively; M is a constant. Several authors 

have proposed different values for M; in general, M can vary from 0.21 to 1 (Barenblatt, 1962; 

Hillerborg et al., 1976; Turon et al., 2007). 

According to (Turon et al., 2007), three cohesive elements in the cohesive zone are sufficient 

to obtain accurate results. In all the simulations presented here, this suggestion is followed and 

a conservative value of M = 0.21 is used. In most cases, the cohesive zone is discretized with 

up to ten cohesive elements. 
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Following the guidance above and with the selected material properties presented in the next 

section, the finite element mesh was generated. Elements of size 5 cm are used close to the 

fracture, while elements of up to 5 m are used near the boundaries. In total, the mesh has 7076 

nodes and 6603 elements. 

(a) 

  

(b) 

  
Figure 4.2  Finite element mesh for the KGD model: (a) Meshing scheme, (b) Actual finite element 

mesh with 7076 nodes and 6603 elements, and boundary conditions. Note: u
1
 and u

2
 are displacements 

in direction 1 and 2, respectively; p is the pore pressure 

Coupled pressure/

deformation elements
(CPE4PR)

Coupled pressure/deformation

cohesive elements COH2D4P

2

1

2

Q

Injection

u2 = 0, p = 0 

u2 = 0, p = 0 

u1 = 0

p = 0 

u1 = 0

fluid flux = 0

2

1
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4.1.1.2 Material properties and injection rate 

The material properties typical for granitic rock masses were chosen and are summarized in 

Table 4.2. The fluid is injected at a constant rate Q = 0.001 m
3
/s over 20 seconds. The leakoff 

coefficient is set to zero, which ensures a storage-dominated regime of propagation. 

Table 4.2  Material properties used for the KGD model 

Property Value Source / Comment 

Poroelastic medium 

Young's modulus 

Poisson's ratio 

Biot's coefficient 

Biot's modulus 

Porosity 

Permeability 

 

E = 30 GPa 

ν = 0.22 

b = 0.9 

M = 90 MPa 

ϕ = 0.01 

k = 1.1x10
-16

 m
2
 

 

Keshavarz (2009) 

Keshavarz (2009) 

Typical value 

Typical value 

Keshavarz (2009) 

Use very small value 

Cohesive material 

Tensile strength 

Critical stress intensity factor 

 

RT = 1.25 MPa 

KIC = 2.17 MPa.m
0.5

  

(GIC = 150 N/m) 

 

Typical value 

Typical value 

Fracturing fluid and fluid in 

the porous space 

Fluid viscosity 

Fluid specific weight 

 

 

η = 2x10
-5

 Pa.s 

γ = 9800 N/m
3
 

 

 

Very small value 

 

Using the selected parameters, the dimensionless number K is calculated according to equation 

(2.80) as: 
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K = 4.19 > 4 ensures that the fracture will propagate in the toughness-dominated regime (see 

subsection 2.6.1.1). 

4.1.1.3 Initial and boundary conditions 

The poroelastic medium is assumed to be initially fully saturated with zero initial stress in all 

directions. The initial pore pressure can have an arbitrary value, but is set to zero in this 

simulation. 

The boundary conditions are illustrated in Figure 4.2b. Constant pore pressure is maintained at 

the boundaries, except for the left boundary where a no fluid flow condition is enforced, which 

implies that the left edge of the model is a symmetric boundary. A zero-displacement 

condition is imposed for the normal direction of all boundaries. 

4.1.1.4 Convergence issues and viscous regularization 

Modeling fracture propagation using cohesive elements involves the progressive stiffness 

degradation and a softening response of the cohesive material, which are both known to lead 

to convergence difficulties. A common technique to avoid these problems and aid 

convergence is the use of viscous regularization of the constitutive equations, which allows the 

tangent stiffness matrix of the softening material to be positive for sufficiently small time 

increments. 

The regularization process involves the use of a viscous stiffness degradation variable, D
v
, 

which is defined as: 

  
1

v vD D D


    (4.3) 

where μ is the numerical viscosity (s
-1

) that represents the relaxation time of the viscous 

system and D is the actual damage variable evaluated in the backbone model (see equations 

(2.93)). The damaged cohesive response is then given by: 

 (1 )v pt D t    (4.4) 
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where t can be the normal or shear stresses of the damaged cohesive elements; t
p
 is the 

corresponding predictor that is estimated with the strain as if the cohesive material is 

undamaged. 

Using this viscous regularization technique, the stresses on the damaged cohesive elements are 

allowed to be outside the limits set by the cohesive traction-separation law. However, these 

stresses will converge to those in the case without viscous regularization when /t   , 

where t represents time. 

Some of the energy of the system is dissipated due to the use of the viscous regularization. To 

ensure the accuracy of the solution results, the dissipated energy associated with the viscous 

regularization must be small compared to the damage energy of the cohesive elements. The 

final solution results may be altered if this criterion is not met. A numerical viscosity μ = 10
-4

 

s
-1

 is used in this simulation. 

4.1.1.5 Results and discussions 

The time evolution of the hydraulic aperture at the injection point, the injection pressure, and 

the fracture length is presented in Figure 4.3, while the variation of the hydraulic aperture 

along the fracture at different times (5 s, 10 s, and 20 s) is presented in Figure 4.4. In these 

figures, the simulation results are compared with analytical solutions. Good agreement 

between the simulation results and the analytical solutions was found for all quantities. The 

final fracture length is approximately 20 m, which is less than one half of the width of the 

model as expected (the width of the model is W = 45 m). 
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(a) 

 

(b) 

 

(c) 

Figure 4.3  Time evolution of (a) hydraulic aperture at injection point, (b) injection pressure, and (c) 

fracture length 
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Figure 4.4  Variation of the hydraulic aperture along the fracture at 5 s, 10 s, and 20 s. The injection 

point is located at s = 0 

Figure 4.5 displays the variation of the fluid pressure in the fracture and the stress normal to 

the fracture plane along the fracture. It can be seen in Figure 4.5a that the fluid pressure is 

nearly uniform along the fracture because the energy dissipated by the viscous flow of the 

fluid in the fracture is negligible. The effective normal stress (Figure 4.5b) is zero where the 

fracture has been created, gradually increases in the cohesive zone and peaks at the tip of the 

fracture with a peak value equal to the tensile strength of the cohesive material (i.e., 1.25 

MPa). The effective normal stress then decreases rapidly with the distance from the fracture 

tip and eventually equals the in-situ stress, which is set to zero in this simulation. The length 

of the cohesive zone can be obtained from Figure 4.5b and is approximately 2 m. This value is 

larger than the value obtained by using equation (4.2), which is 0.6 m. This means that using 

equation (4.2) with the coefficient M = 0.21 to estimate the size of the cohesive zone is rather 

conservative. When a cohesive zone of 2 m long is discretized into 5-cm cohesive elements, 

there are 40 cohesive elements in the cohesive zone, which surpasses the requirement of three 

cohesive elements 

The spatial distribution of pore pressure and effective stress in direction 2 is presented in 

Figure 4.6 and Figure 4.7, respectively. The uniform distribution of fluid pressure along the 

fracture and the stress concentration in the region near the tip of the fracture can be clearly 

observed. 
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(a) 

 

(b) 

Figure 4.5  Simulated variation of (a) the fluid pressure inside the fracture and (b) the stress normal to 

the fracture plane at different times (The injection point is located at s = 0) 
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(a) t = 2 s 

 

(b) t = 10 s 

 

(c) t = 20 s 

Unit: Pa 

 

Figure 4.6  Simulated spatial distribution of pore pressure at different times 

 

(a) t = 2 s 

 

(b) t = 10 s 

 

(c) t = 20 s 

Unit: Pa 

 
Figure 4.7  Simulated spatial distribution of effective normal stress in direction 2 at different times 

(Deformation in direction 2 was scaled up 5000 times) 
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The damage energy and the dissipated energy associated with the viscous regularization are 

presented in Figure 4.8. It can be seen that the viscous regularization dissipation is very small 

compared to the damage energy. The ratio between these two energies is approximately 1/150 

at t = 20 s. 

 
Figure 4.8  Damage energy and viscous regularization dissipation (for numerical viscosity μ = 10

-4
 s

-1
) 

To assess the effect of the viscous regularization on the simulation results, the above 

simulation was re-run with a numerical viscosity μ = 10
-2

 s
-1

. The results of the re-run 

simulation for damage energy – the dissipated energy associated with viscous regularization, 

and the hydraulic aperture at the injection point are presented in Figure 4.9. It can be seen that 

the dissipated energy associated with viscous regularization is approximately 17% of the 

damage energy (Figure 4.9a). The simulated hydraulic aperture is much higher than the 

analytical value. This shows that an over-large value for the numerical viscosity can alter the 

simulation results. Thus, care must be taken when viscous regularization is used. Simulations 

should start with a small numerical viscosity, e.g., 10
-4

 s
-1

, and the ratio between the dissipated 

energy associated with viscous regularization and the damage energy should be relatively 

small. 

0

1000

2000

3000

0 5 10 15 20

E
n
er

g
y
 (

J)

Time (s)

Damage energy

Viscous regularization dissipation



129 

 

 

(a) 

 

(b) 

Figure 4.9  Simulation results with a numerical viscosity μ = 10
-2

 s
-1

: (a) Damage energy and 

dissipated energy associated with viscous regularization, (b) Hydraulic aperture at injection point 

4.1.2 Penny-shaped model 

4.1.2.1 Model setup 

The penny-shaped fracture model is a three-dimensional model in which the fracture grows 

radially due to the injection of fluid at the center of the fracture. Since the model is symmetric 

about an axis that passes through the injection point and is normal to the fracture plane, a two-

dimensional axisymmetric model can be used for sake of simplicity. The 2D domain used has 
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dimensions of radius R and height H and is shown in Figure 4.10. A small initial crack is 

necessary to allow the resolution of the equation of fluid flow in the fracture. The dimensions 

of the model and the length of the initial crack are chosen so that the model boundaries have 

negligible effects on the fracture propagation. The selected dimensions are summarized in 

Table 4.3 and are identical to those used in the KDG model. 

 
Figure 4.10  2D axisymmetric model used for simulation of penny-shaped fracture model 

Table 4.3  Dimensions of the 2D axisymmetric model 

Dimension Value 

Width 

Height 

Initial crack length 

R = 45 m 

H = 60 m 

a = 5 cm 

 

A finite element mesh identical to that of the KGD model is used (Figure 4.2b). However, in 

this case the poroelastic medium is discretized by linear axisymmetric coupled pore fluid 

pressure/deformation continuum elements CAX4RP and the fracture is modeled by 

axisymmetric coupled fluid pressure/deformation cohesive elements COHAX4P. 
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Axis of symmetry

H

R

r

a



131 

 

The material properties, initial conditions, and boundary conditions are identical to those 

previously used for the KGD model. The fluid is injected at constant rate of 0.001 m
3
/s over 

40 s. With the selected parameters, the dimensionless number K, calculated according to 

equation (2.86), is equal to 3.5 at t = 0.01 s. This ensures that the fracture will propagate in the 

toughness-dominated regime for most of the injection duration as intended. In fact, the 

viscosity-dominated and transition regimes only last 0.01 s from the beginning of the 

injection, which is negligible compared to the total injection time of 40 s. To aid convergence, 

a numerical viscosity μ = 10
-4

 s
-1

 is also used. 

4.1.2.2 Results and discussions 

Simulation results and analytical predictions for the hydraulic aperture at the injection point, 

the injection pressure, and the fracture radius are presented in Figure 4.11, with good 

agreement for all three quantities. The final fracture radius is approximately 6.8 m, which is 

much smaller than the radius of the model (R = 45 m), which ensures that the model 

boundaries have a negligible effect on the simulation results. 

Figure 4.12 displays the variation of the fluid pressure in the fracture and the effective stress 

normal to the fracture plane along the fracture radius. As in the case of the KGD model, the 

fluid pressure is nearly uniform along the fracture radius due to the negligible viscous 

dissipation. The effective stress normal to the fracture plane is zero where the fracture has 

been created, increases in the cohesive zone and peaks at the tip of the fracture with a peak 

value approximately equal to the tensile strength of 1.25 MPa (Figure 4.12b). 

The contour plots of pore pressure and the effective stress in direction 2 are presented in 

Figure 4.13 and Figure 4.14, respectively. These figures again confirm the uniform 

distribution of the fluid pressure in the fracture and the stress concentration in the region near 

the tip of the fracture. 

The damage energy and the dissipated energy associated with viscous regularization are 

presented in Figure 4.15. It can be seen that the energy associated with viscous regularization 

is a tiny fraction of the damage energy. 
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(a) 

 

(b) 

 

(c) 

Figure 4.11  Time evolution of (a) hydraulic aperture at the injection point, (b) injection pressure, and 

(c) fracture radius 

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40

H
y
d

ra
u
li

c 
ap

er
tu

re
 a

t 
in

je
ct

io
n
 p

o
in

t 
(m

m
)

Time (s)

Analytic Simulation

0

1

2

3

4

0 10 20 30 40

In
je

ct
io

n
 p

re
ss

u
re

 (
M

P
a)

Time (s)

Analytic Simulation

0

2

4

6

8

0 10 20 30 40

F
ra

ct
u
re

 r
ad

iu
s 

(m
)

Time (s)

Analytic Simulation



133 

 

 

(a) 

 

(b) 

Figure 4.12  Simulated variation of (a) the fluid pressure in the fracture and (b) the stress normal to the 

fracture plane at 10 s, 20 s, and 40 s (The injection point is located at r = 0) 
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(a) t = 10 s 

 

(b) t = 20 s 

 

(c) t = 40 s 

Unit: Pa 

 
Figure 4.13 Simulated spatial distribution of pore pressure at different times 

 

(a) t = 10 s 

 

(b) t = 20 s 

 

(c) t = 40 s 

Unit: Pa 

 
Figure 4.14  Simulated spatial distribution of effective stress in direction 2 at different times. 

Deformation in direction 2 was scaled up 4000 times. 
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Figure 4.15 Time evolution of damage energy and viscous regularization dissipation 

4.1.3 Concluding remarks 

In section 4.1 simulations of the two most used hydraulic fracture models are presented - the 

KGD and the penny-shaped models - using the cohesive element technique. Good agreement 

between the numerical simulations and analytical predictions was obtained for both models.  

Several numerical aspects associated with using cohesive elements for modeling fracture 

propagation were examined. These include viscous regularization and finite element size. 

When the viscous regularization technique is used to aid convergence, the dissipated energy 

associated with viscous regularization should be significantly smaller than the damage energy, 

while the size of the cohesive element should be small enough to properly characterize the 

stress in the cohesive zone. 

4.2 PROPAGATION OF A HYDRAULIC FRACTURE AND SLIP OF A PRE-EXISTING 

FAULT 

The propagation of a hydraulic fracture in a low-permeability granitic rock mass and the slip 

of a pre-existing fault are studied in this section. The slip behavior of a fault that has been 

intersected by a hydraulic fracture is carefully investigated. This scenario was chosen to mimic 

the geological conditions that may be encountered in igneous faulted basements targeted for 

the development of deep geothermal reservoirs; faulted areas are known to be a favorable 

control for geothermal upwelling (Faulds et al., 2010; Meixner et al., 2016). Some of the most 
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important aspects that may influence fault slip are examined. These include the fault friction 

coefficient, the rate at which fluid is injected, and the orientation of the fault with respect to 

the initial stresses (Aochi et al., 2013; Meller and Kohl, 2014; Meller and Ledésert, 2017). 

4.2.1 Model setup 

A 2D plane strain model is used, consisting of two potential hydraulic fractures HF1 and HF2 

and one pre-existing fault F1 (Figure 4.16). This configuration is a simplification of a common 

pattern known as splay fracture, which results from a fluid driven nucleation and propagation 

process from a permeable fault (Zhang and Jeffrey, 2016). The model is 120 m wide and 200 

m high. The length of fracture HF1 and fault F1 are 10 m and 30 m, respectively. The initial 

stress state consists of major and minor effective far-field stresses Sh and SH, which act in 

directions 1 and 2, respectively. It is worth noting that two fractures HF1 and HF2 are 

perpendicular to the minor initial stress Sh and the fault F1 is oriented at an angle θ from the 

major initial stress SH (hereafter called the orientation angle). The orientation angle is 

subjected to parametric study later (i.e., θ is changed from 10° to 45°). 

 
Figure 4.16  Single fault model. The model contains two hydraulic fractures HF1 and HF2 and one 

pre-existing fault F1. The sketch is not to scale. 
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The two Mode I fractures HF1 and HF2 are modeled by two layers of intact cohesive material 

that have similar fracture mechanics properties (i.e., tensile strength and fracture energy). The 

fault F1 is modeled as a cohesive layer that only has shear strength modeled using the 

Coulomb friction law. The rock mass has low permeability and is considered to be linear 

poroelastic. 

The stimulation of the system of the fractures and fault is performed by injecting fluid on the 

left end of the model fracture HF1 (Figure 4.16). The fluid pressurization causes the fracture 

HF1 to be initiated and propagate. It is assumed that once the newly generated fracture HF1 

intersects the fault F1, it is diverted into F1. The injected fluid is thus driven into the 

permeable fault F1 when intersection occurs, leading to an increase in the fluid pressure in the 

fault and eventually causing the fault to slip. As the fluid injection continues, a Mode I 

fracture, i.e., fracture HF2, is initiated from the opposite end of the fault F1. This new fracture 

might deviate slightly from the direction of the major initial stress SH in the region near the 

end of the fault F1 due to stress disturbances caused by the fault but it will eventually align 

with SH as it propagates away from the fault, much like tensile or wing cracks do in a strike-

slip stress environment. This is the rationale for positioning fracture HF2 in alignement with 

the stress SH. 

The material properties used in the modeling (i.e., rock mass, cohesive materials, and 

fracturing fluid), initial stresses, and initial pore pressure are summarized in Table 4.4. 

The boundary conditions for the single fault model are illustrated in Figure 4.17. The 

displacements normal to all the outer boundaries are constrained. The pore pressure is kept 

constant at its initial value of 23.7 MPa for all outer boundaries, except for the left boundary 

where no fluid flow condition is imposed. The poroelastic rock mass is assumed to be initially 

fully saturated (saturation degree equals 1) and remains saturated during the injection time. 

To generate the finite element mesh, the rock mass is discretized by linear plane strain coupled 

pore fluid pressure/deformation continuum elements CPE4RP, while the cohesive layers are 

discretized by coupled fluid pressure/deformation cohesive elements COH2D4P. At the 

intersection of two cohesive layers (e.g., HF1 with F1 or F1 with HF2), a mid-edge node with 

pore pressure as a degree of freedom is shared between those cohesive elements to support 
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fluid flow continuity (see Section 2.7.2). The mesh is refined around the fractures and the fault 

(smallest size is 0.05 m) and gradually becomes coarser towards the boundaries (largest size is 

10 m). A typical mesh, obtained with an orientation angle θ = 22°, is shown in Figure 4.17. 

The mesh has 16469 nodes and 15380 elements. 

Table 4.4  Parameters used for the single fault model 

Property Value Source / Comment 

Rock mass 

Young's modulus 

Poisson's ratio 

Biot's coefficient 

Porosity 

Hydraulic conductivity 

 

E = 30 GPa 

ν = 0.22 

b = 1.0 

ϕ = 0.01 

k = 1.1x10
-16

 m
2
 

 

Keshavarz (2009) 

Keshavarz (2009) 

Incompressible solid and 

fluid 

Keshavarz (2009) 

Stober and Bucher (2007) 

Cohesive material for 

fractures HF1 and HF2 

Tensile strength 

Mode I fracture energy 

 

 

RT = 2.0 MPa 

GIC = 62 N/m 

(KIC = 1.4 MPa.m
0.5

) 

 

 

Common value 

Common value Atkinson 

(1989) 

Cohesive material for fault F1 

Hydraulic aperture 

Friction coefficient 

 

0.4 mm 

μf  = 0.35 

 

After Meyer et al. (2017) 

Subjected to sensitivity study 

Fracturing and pore fluid  

Dynamic viscosity 

Density 

 

η = 0.001 Pa 

ρ = 1000 kg/m
3
 

 

Common value for water 

Common value for water 

Initial conditions 

Initial stresses 

Initial pore pressure 

 

Sh = -29, SH = -36 MPa 

p0 = 23.7 MPa 

 

Meyer et al. (2017) 

Meyer et al. (2017) 

Injection rate 

 

Q = 0.5 L/s per unit 

thickness 

Subjected to sensitivity study 
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Figure 4.17  Finite element mesh and boundary conditions with an orientation angle θ = 22 . u

1
 and u

2
 

are displacements in directions 1 and 2, p is pore pressure. The mesh has 16469 nodes and 15380 

elements 

The simulation strategy is as follows: In subsection 4.2.2, simulation with a fault friction 

coefficient μ
f
 = 0.35, an injection rate Q = 0.5 L/s, and an orientation angle θ = 22° is 

performed. The friction coefficient μ
f
 = 0.35 is lower than typical values for granitic rocks, 

which are from 0.6 to 0.65 (Jaeger et al., 2009). However, in faults that are filled with clay 

minerals or quartz, which are the main product of the hydrothermal alteration of rock, the 

friction coefficient can be reduced to as low as 0.3 (Morrow et al., 1992; Zoback et al., 2012). 

Thus, μ
f
 = 0.35 represents the lower range for the friction coefficient of faults. The results of 

the simulation are then presented and discussed in detail. 

Parametric studies for the friction coefficient, the injection rate, and the orientation angle are 

presented in subsections 4.2.3, 4.2.4, and 4.2.5, respectively. The role of these parameters on 

the behavior of fault slip will then be discussed. 

u2 = 0, p = 23.7 MPa 

u2 = 0, p = 23.7 MPa 

u1 = 0

p = 23.7 MPa 

u1 = 0

fluid flux = 0

2

1
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4.2.2 Simulation results for case S1 with μ
f
 = 0.35, Q = 0.5 L/s, and θ = 22° 

The time evolution of the injection pressure, the fluid pressure at the center of the fault F1, and 

the hydraulic aperture at the injection point and at the center of fault F1 is presented in Figure 

4.18. It can be seen that the injection pressure increases sharply from 23.7 MPa to 66.3 MPa 

after injection begins. Due to this fluid pressure increase, the fracture HF1 is initiated, 

accompanied by a sudden decrease in the injection pressure. As HF1 propagates the injection 

pressure continues to decrease and stabilizes at around 55 MPa (Figure 4.18a), which is 

approximately equal to the initial minor total stress plus the tensile strength of rock mass. The 

initial minor effective stress Sh and the initial pore pressure p0 are Sh = 29 MPa and p
0
 = 23.7 

MPa (see Table 4.4). The initial minor total stress ShT is ShT = Sh + p
0
 = 29 + 23.7= 52.7 MPa. 

The tensile strength of rock mass is RT = 2 MPa. Thus, the summation of ShT and RT is 52.7 + 2 

= 54.7 MPa, which is very close the stable fluid pressure 55 MPa. 

When the fracture HF1 intersects the fault F1 at time 35.1 s, the injected fluid is suddenly 

driven into the fault, which leads to multiple events happening simultaneously: 

(i) the injection pressure decreases suddenly by approximately 1.5 MPa (Figure 4.18a), 

which leads to a decrease of the hydraulic aperture at the injection point by 0.5 mm 

(Figure 4.18b) 

(ii) the fluid pressure in the fault increases suddenly from the initial pressure to 53.3 MPa 

(Figure 4.18a), which leads to the opening of the fault F1.  The hydraulic aperture at 

the center of fault F1 increases suddenly by roughly 0.3 mm from 0.4 mm to 0.7 mm 

(Figure 4.18b). 

After the intersection between HF1 and F1, the fluid pressures at the injection point and in the 

fault are identical. This is because the fluid has a very small dynamic viscosity (i.e., dynamic 

viscosity of the fluid is 0.001 Pa.s) and the hydraulic aperture of fracture HF1 and fault F1 are 

relatively large. In fact, the fluid pressure is virtually uniform along both the fracture HF1 and 

the fault F1, as Figure 4.19 illustrates. 

It should be noted that the pressure at the center of the fault F1 decreases slightly immediately 

before it intersects with the hydraulic fracture HF1 (Figure 4.18a). This pressure decrease is 

because the zone ahead of the tip of HF1 is in volumetric expansion due to the stress 
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concentrations, as shown in Figure 4.20a. As a consequence, the fluid in the nearby regions is 

sucked into this expansion zone (Figure 4.20b), which in turn causes a decrease in the fluid 

pressure in the nearby regions, including within the fault F1. If the volumetric fluid flow rate 

into this expansion zone is smaller than the volumetric expansion rate, the fluid in this zone 

may even undergo cavitation; in such cases the capillary effect needs to be considered. 

The accumulative slip and the slip rate averaged over the length of the fault F1 are presented 

in Figure 4.21. The slip rate remains relatively close to zero during most of the injection time 

except in two instances. The first instance is at the onset of the hydraulic fracture HF1. The 

onset of HF1 is accompanied by a rapid decrease in the injection pressure. This induces stress 

disturbances in the whole model. If these stress disturbances exceed the shear strength of the 

fault F1, which is the case in this simulation, the fault will slip at a relatively high rate. The 

second instance is when HF1 intersects F1, during which the fault shear strength is lost by the 

rapid increase in fluid pressure within the fault. The slip rate is approximately 5.1 mm/s at the 

onset of HF1 and 6.2 mm/s when HF1 intersects F1. It should be noted that the fault slip can 

be stable (i.e., aseismic) or unstable (i.e., seismogenic). Usually a threshold of dynamic slip 

rate is used to distinguish these two slip regimes. This threshold can range from 5 mm/s to 0.1 

m/s (Dublanchet et al., 2013; Gischig, 2015; McClure and Horne, 2014). When compared to 

these proposed thresholds of dynamic slip rates, the slip of fault F1 in this simulation is likely 

to be aseismic. 

The contour plots of pore pressure at different times are presented in Figure 4.22. It can be 

seen that the fluid pressure inside the fracture HF1 and the fault F1 is nearly uniform and 

much higher than the pore pressure in the rock mass. 
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(a) 

 

(b) 

Figure 4.18  Time evolution of (a) injection pressure and fluid pressure at the center of the fault F1 and 

(b) hydraulic aperture at the injection point and at the center of the fault F1 
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Figure 4.19  Distribution of fluid pressure along the path that consists of fracture HF1, fault F1, and 

fracture HF2 at different times. The injection point is located at x = 0. HF1, F1, and HF2 are 

determined by 0 ≤ x ≤ 10, 10 ≤ x ≤ 40, and x > 40, respectively. 

  

(a) 

 

Unit : m/s 

 

(b) 

Figure 4.20  (a) Strain in direction 2 and (b) Fluid velocity vector at 4.4 s after injection 
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Figure 4.21  Time evolution of the accumulative slip and the slip rate of the fault F1 

 

(a) t = 35 s 

 

(b) t = 35.1 s 

 

(c) t = 100 s 

Pore pressure (Pa) 

 
Figure 4.22  Contour plots of the pore pressure at different times 
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chosen only for the purpose of parametric study. The injection rate is Q = 0.5 L/s, fault 

orientation angle is θ = 22°. All the other material properties were given in Table 4.4. 

Table 4.5  The friction coefficient values, cases S1, S2, and S3 

Case Friction coefficient 

S1 

S2 

S3 

0.35 (studied in section 4.2.2) 

0.65 

1.0 

 

Simulation results and discussion: 

The time evolution of fluid pressure (at the injection point and at the center of fault F1), 

accumulative slip and slip rate averaged over the length of the fault F1 is presented in Figure 

4.23 and Figure 4.24 for cases S2 and S3, respectively. Similar patterns of evolution were 

observed in both cases: 

1) The injection pressure increases immediately after injection commences and then 

decreases as the fracture HF1 starts to propagate 

2) The fluid pressure in the fault F1 remains constant initially, decreases as the fracture 

HF1 approaches it, and then increases suddenly as HF1 intersects F1 

3) The slip rate is very small for the majority of the injection time, including at the onset of 

HF1, while a high slip rate occurs only when the fracture HF1 intersects the fault F1. 

Figure 4.25 shows the slip rate as function of the friction coefficient when the fracture HF1 is 

initiated and when it intersects the fault F1. It can be seen that the slip rate at the onset of the 

hydraulic fracture HF1 decreases as the friction coefficient increases, from 5.1 mm/s for case 

S1 (μ
f
 = 0.35) to almost zero for case S3 (μ

f
 = 1.0). This can be explained as follows. The fault 

F1 will slip at relatively high rates whenever the shear stress on the fault exceeds the shear 

strength of the fault. Otherwise, the fault will have elastic deformations, which results in lower 

slip rates. When the fault has a small friction coefficient (e.g., case S1 where μ
f
 = 0.35), the 

shear strength of the fault is also small. Thus, the shear stress caused by the onset of HF1 can 

exceed the small shear strength of the fault, causing the fault to slip. As the friction coefficient 
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increases, the shear strength also increases and becomes larger than the shear stress induced by 

the onset of HF1. This prevents the fault from slipping. In these cases the fault F1 only slips 

when it is intersected by HF1, which is when the fluid pressure in the fault increases suddenly, 

causing the shear strength to decrease significantly. 

It is also noted from Figure 4.25 that the slip rate upon intersection of HF1 with F1 increases 

with the increase of friction coefficient, from 6.2 mm/s for case S1 to 19.2 mm/s for case S2 

and to 23 mm/s for case S3. This can be interpreted as follows. 

For a fault that has a small friction coefficient, the shear stress required to cause the fault to 

slip is also small. This means that the strain energy accumulated during the stress buildup 

process prior to the slip event, which is also the energy released during the slip event, is small. 

Consequently, the slip rate is small when slip occurs. Also, when the friction coefficient is 

small, the fault may slip multiple times during injection, but at a relatively small slip rate. In 

other words, the accumulated strain energy is released more evenly. This phenomenon is 

observed for case S1 where the fault F1 slips twice during fluid injection and both times the 

slip rate is relatively small (5.1 mm/s and 6.2 mm/s). 

For a fault that has a higher friction coefficient, more strain energy is accumulated prior to the 

slip event because the fault shear strength is higher. This accumulated strain energy is all 

released at one time when the fault is intersected by the hydraulic fracture. Consequently, the 

slip is more violent with higher slip rates. For instance, the slip rate of fault F1 when it is 

intersected by the hydraulic fracture HF1 is 19.2 mm/s for case S2 (μ
f
 = 0.65 ) and 23 mm/s 

for case S3 (μ
f
 = 1). These slip rates are significantly higher than the lower threshold of the 

dynamic slip rate, which is from 5 mm/s to 10 mm/s (Dublanchet et al., 2013; McClure and 

Horne, 2011). Thus, these slip events are likely to be seismic. 

Correlations between the friction coefficient of fractures/faults and their slip behavior were 

observed in lab experiments and in in-situ hydraulic stimulation tests. Through a series of lab 

tests on shale reservoir rocks, (Kohli and Zoback, 2013) found that: (1) the friction coefficient 

of a fault increases linearly with a decrease in the clay content; (2) faults with low clay 

contents, i.e., high friction coefficients, exhibit a velocity-weakening frictional behavior and 

the fault slip is unstable, whereas faults with high clay contents, i.e., low friction coefficients, 
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show a velocity-strengthening frictional behavior and the fault slip is stable. An experimental 

study by Ikari et al. (2011) also showed that weak faults (faults with a friction coefficient μ
f
 < 

0.5) only exhibit increased friction with slip rate, which suppresses instable slip, while faults 

with higher friction coefficients can exhibit unstable slip behavior. Similar observations were 

obtained in 2000 during the hydraulic stimulation of two wellbores GKP1 and GKP3 at 

Soultz-sous-Forêts. Based on an analysis of the induced seismic events, (Meller and Kohl, 

2014) showed that large-magnitude seismic events occurred on fractures that have no 

significant clay filling, i.e., fractures with high friction coefficients. Meanwhile, clay-rich 

fractures, i.e., fractures with lower friction coefficients, tend to produce smaller seismic 

events. They also concluded that clay inside the fractures reduces the friction on fractures, thus 

preventing large stress buildup and promoting aseismic slip.  

The time evolution of the hydraulic aperture at the center of the fault F1 is presented in Figure 

4.26 for all three cases S1, S2, and S3. It can be seen that in all cases the hydraulic aperture 

increases by approximately the same amount when intersection between HF1 and F1 occurs, 

even though the fault F1 slips at a much higher rate in cases 2 and 3 than in case 1. 
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(a) 

 

(b) 

Figure 4.23  Results for case S2 (friction coefficient μ
f
 = 0.65): (a) time evolution of injection pressure 

and fluid pressure at the center of fault F1, (b) time evolution of accumulative slip and slip rate of fault 
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(a) 

 

(b) 

Figure 4.24  Results for case S3 (friction coefficient μ
f
 = 1): (a) time evolution of injection pressure 

and fluid pressure at the center of fault F1, (b) time evolution of accumulative slip and slip rate of fault 
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Figure 4.25  Slip rate of fault F1 at onset of fracture HF1 and at intersection of HF1 with fault F1 as 

function of the friction coefficient 

 
Figure 4.26  Time evolution of fault aperture for the 3 cases studied. The coefficient of friction for 

cases S1, S2, and S3 is 0.35, 0.65, and 1, respectively. 
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coefficient is typical of granitic rocks (Jaeger et al., 2009). The orientation angle of the fault 

F1 is θ = 22°. Other material properties were given in Table 4.4. 

Table 4.6  The injection rates for cases Q1 - Q4 

Case Injection rate Q (L/s per unit thickness) 

Q1 

Q2 

Q3 

Q4 

0.25 

0.5 (Case S2 in section 4.2.3) 

1.0 

3.0 

 

Simulation results and discussion: 

The time evolution of the injection pressure and the fluid pressure at the center of the fault F1 

is presented in Figure 4.27 for all four cases Q1 to Q4. It can be seen that as the injection rate 

increases, the fracture propagates faster. For instance, the intersection between fracture HF1 

and the fault F1 occurs after 77.5 s of injection when the injection rate is Q = 0.25 L/s. In case 

Q2 (Q = 0.5 L/s) the intersection occurs after 35.1 s, and is 18.5 s for case Q3 (Q = 1 L/s), and 

8.1 s for case Q4 (Q = 3 L/s). The injection rate increases 12 times (3/0.25) between Q1 and 

Q4, while the propagation velocity of the fracture HF1 is increased by 77.5/8.1 = 9.6 times. 

This shows that the injection rate plays an important role on the propagation velocity of the 

hydraulic fracture HF1, but is not the only factor. Poroelastic effects and permeability of the 

rock mass also affect the fracture propagation velocity. The breakdown pressure, i.e., the 

maximum injection pressure, also increases with the injection rate, from 65.8 MPa for case Q1 

to 74.5 MPa for case Q4 (Figure 4.29). Again, this is reflective of the influence of poroelastic 

effects. If poroelastic effects were not considered, the breakdown pressure would be the same 

for any injection rate. 

The simulated accumulative slip and slip rate of the fault F1 are presented in Figure 4.28. It 

can be seen that the slip rate is close to zero during most of the injection time. A high slip rate 

only occurs upon the intersection of HF1 with F1. The slip rate of the fault F1 when it is 

intersected by the fracture HF1 and the breakdown pressure as function of the injection rate 

are presented in Figure 4.29. It can be seen that upon intersection the slip rate increases with 
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the injection rate. However, this effect of the injection rate on the slip rate is not significant as 

the slip rate only increases from 15.8 mm/s to 21.9 mm/s (less than 40% increase) when the 

injection rate is increased 12 times from 0.25 L/s to 3 L/s. The relatively small effect of the 

injection rate on the slip rate can be explained by the fluid pressure in the fault F1 as shown in 

Figure 4.27b. After intersection of HF1 with F1, the fluid pressure in the fault F1 is more or 

less similar for cases Q1, Q2, Q3, and Q4. The fluid pressure is the main factor that affects the 

shear strength, and thus the slip of the fault; small differences in the fluid pressure in the fault 

result in small differences in slip rate. Nonetheless, the slip rate in all four cases studied is 

higher than the 10 mm/s threshold of the dynamic slip rate, indicating that the slip is likely to 

be unstable (i.e., seismic). (Aochi et al., 2013) used a different model to study the fault slip; 

the fault is modeled as permeable zone of finite thickness but the authors came to similar 

conclusion that the induced seismicity, which is reflected by the fault slip, is self-induced and 

less sensitive to the injection rate. Rather, the injection rate delays the fault slip as the pressure 

buildup process at the injection point takes more time when the injection rate is small. 

The hydraulic aperture at the center of the fault F1 after injecting 25 L of fluid as function of 

the injection rate is shown in Figure 4.30. It should be noted that unlike the breakdown 

pressure and the maximum slip rate that both increase with the injection rate, the hydraulic 

aperture of the fault F1 after injection of 25 L of fluid is relatively similar for all cases. This 

indicates that more unstable fault slip may not necessarily mean more permeability 

enhancement. 

The contour plots of pore pressure at different times for all four cases are presented in Figure 

4.31. The effect of the injection rate on the velocity of fracture propagation is clearly 

illustrated. For instance, after 40 s injection, the fracture in case Q1 is only approximately 5 m 

long, while for case Q4 the fracture HF1 (10 m long) is completely generated and the fracture 

HF2 has begun to propagate. 
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(a) 

 

(b) 

Figure 4.27  Time evolution of (a) breakdown pressure and (b) fluid pressure at the center of fault F1 

for 4 cases Q1 to Q4; the injection rate for cases Q1, Q2, Q3, and Q4 is 0.25, 0.5, 1, and 3 L/s, 

respectively. 
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(a) 

 

(b) 

Figure 4.28  Time evolution of (a) accumulative slip and (b) slip rate of fault F1 for 4 cases Q1 to Q4; 

the injection rate for cases Q1, Q2, Q3, and Q4 is 0.25, 0.5, 1, and 3 L/s, respectively. 
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Figure 4.29  Slip rate of fault F1 when intersected by hydraulic fracture HF1 and breakdown pressure 

as a function of the injection rate 

 
Figure 4.30  Hydraulic aperture at the center of fault F1 after injection of 25 L of fluid as a function of 

injection rate 
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t = 15 s t = 30 s t = 40 s 

   

(a) Case Q1: Q = 0.25 L/s 

   

(b) Case Q2: Q = 0.5 L/s 

   

 (c) Case Q3: Q = 1 L/s  

   

 (d) Case Q4: Q = 3 L/s  

 Unit: Pa 

Figure 4.31  Contour plots of pore pressure for 4 cases Q1 to Q4 at 15 s, 30 s, and 40 s.  

4.2.5 Effect of fault orientation on fault slip 

The effect of the fault orientation with respect to initial stresses is studied in this subsection. 

Four cases with a different orientation angle θ ranging from 10° to 45° are examined. These 
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four cases, denoted by Z1 to Z4, are listed in Table 4.7. For all of these cases, the fluid is 

injected at 0.5 L/s in 100 s, while the friction coefficient of the fault F1 is μ
f
 = 0.65. Other 

material properties are unchanged and were given in Table 4.4. 

Table 4.7  Fault orientation angle for the four cases studied 

Case Orientation angle θ 

Z1 

Z2 

Z3 

Z4 

10° 

22° (Case S2 in Section 4.2.3) 

35° 

45° 

 

Simulation results and discussion: 

The time evolution of the accumulative slip and the slip rate of the fault F1 is presented in 

Figure 4.32. The slip rate of the fault F1 when it is intersected by the hydraulic fracture HF1, 

as a function of the fault orientation angle, is shown in Figure 4.33. It can be seen from Figure 

4.32b and Figure 4.33 that the maximum slip rate when the hydraulic fracture HF1 intersects 

with the fault F1 increases as the orientation angle increases. For instance, the slip rate 

increases from 4.1 mm/s for θ = 10  to 46.6 mm/s for θ = 45. It can also be seen from Figure 

4.32b that the fracture propagation is faster as the orientation angle increases. For instance, the 

fracture HF1 intersects the fault F1 at a time of 50.9 s, 38.1 s, 35.4 s, and 27.1 s for θ = 10°, 

22°, 35°, and 45°, respectively. This is counterintuitive because the orientation angle was 

expected to only affect the slip of the fault F1. The propagation velocity of the fracture HF1 is 

similar in all cases Z1 to Z4 as long as the fracture tip is far from the fault F1. This is 

illustrated on Figure 4.34, which shows the effective stress normal to the plane of the fracture 

HF1 (called stress S22) along the fracture HF1 for cases Z1 to Z4 after 10 s of fluid injection. 

The fracture tip is at the same location, approximately 3.7 m from the injection point. This 

shows that the fracture HF1 propagates at a similar velocity. However, it can also be seen in 

Figure 4.34 that the stress S22 near the intersection point between HF1 and F1 is disturbed 

differently for different orientation angles of the fault F1. S22 is reduced more (i.e., becoming 
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less compressive) when the fault orientation angle increases; a less compressive stress S22 

favors fracture propagation, thus leading to faster propagation of HF1. 

The contour plots of pore pressure at different times for cases Z1 to Z4 are presented in Figure 

4.35. It can be seen that the fluid pressure is virtually uniform inside both the hydraulic 

fractures and the fault. 

 

(a) 

 

(b) 

Figure 4.32  Time evolution of (a) the accumulative slip and (b) the slip rate of the fault F1 for cases 

Z1 to Z4 with different fault orientation angles ranging from 10° to 45° 
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Figure 4.33  Slip rate of fault when intersected by the hydraulic fracture HF1 as a function of the 

orientation angle of the fault F1 

 
Figure 4.34  Effective stress normal to the plane of the fracture HF1 along the fracture HF1 at 10 s 

after injection for cases Z1 to Z4. The arrow indicates the location of the fracture tip. The initial stress 

in direction 2 is -29 MPa. 
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t = 32 s t = 40 s t = 100 s 

   

 Case Z1: θ = 10   

   

 Case Z2: θ = 22   

   

 Case Z3: θ = 35   

   

 Case Z4: θ = 45   

 Pore pressure (Pa) 

Figure 4.35  Contour plots of pore pressure at different times for 4 cases Z1 to Z4 with different fault 

orientation angles ranging from 10° to 45° 
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4.2.6 Concluding remarks 

The propagation of a hydraulic fracture and the slip of a pre-existing fault were studied. The 

effect of several controlling parameters on the fault slip was investigated. These include the 

friction coefficient of the fault, the injection rate, and the orientation of the fault with respect 

to the initial stresses. The friction coefficient and the fault orientation were found to have a 

strong influence on the fault slip: the fault slip rate increases significantly with an increase in 

the fault friction coefficient or the fault orientation angle. While the injection rate also affects 

the fault slip, its effect is of a lesser extent. 

4.3 PROPAGATION OF MULTIPLE HYDRAULIC FRACTURES AND INTERACTION 

WITH EXISTING FAULTS 

The propagation of multiple hydraulic fractures and their intersection with pre-existing faults 

are studied. Specifically, the effect of the fault friction coefficient and the injection rate on the 

fault slip is examined in more detail. The model setup is presented in the next subsection. 

Then the results of the sensitivity studies for the fault friction coefficient and the injection rate 

are subsequently presented. 

4.3.1 Model setup 

The model studied is a 2D plane strain one that consists of four potential hydraulic fractures, 

denoted by HF1, HF2, HF3, and HF4, and three pre-existing faults, denoted by F1, F2, and F3 

(Figure 4.36). The model is 120 m wide and 200 m high. The length of the fracture HF1 is 10 

m, while HF2, HF3, and HF4 are 3 m long. All of the three faults are inclined at 22° with 

respect to the major principal stress SH and are 10 m long. The initial stress state consists of 

major and minor effective far-field stresses Sh and SH that act in directions 1 and 2, 

respectively. All hydraulic fractures HF1 to HF4 are perpendicular to the minor initial stress 

Sh.  
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Figure 4.36  Multiple fault model. The model contains four hydraulic fractures HF1 to HF4 and three 

pre-existing faults F1, F2, and F3. Sh and SH are the minor and major initial stresses. The unit of 

measurement is meters. The sketch is not to scale. 

Four potential hydraulic fractures HF1 to HF4 are modeled by four layers of an intact cohesive 

material which have similar fracture mechanics properties (i.e., tensile strength and fracture 

energy). The three faults F1, F2, and F3 are modeled by three cohesive layers that are initially 

damaged. The shear strength of the faults is modeled using the Coulomb friction law with the 

same friction coefficient. The rock medium has low permeability and is considered to be linear 

poroelastic. 

The stimulation of the system of fractures and faults is performed by injecting fluid at 0.5 L/s 

over 200 s through the left of the fracture HF1. When a hydraulic fracture intersects a pre-

existing fault, it is assumed that the hydraulic fracture diverts into the fault. Thus, after the 

stimulation is completed a step like fracture system is obtained. 

The properties of the materials (i.e., rock mass, cohesive materials, and fracturing fluid), initial 

stresses, and initial pore pressure are similar to those used in the previous section 4.2 and 

presented again in Table 4.8 for convenience. 
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Table 4.8  Parameters used for the multiple fault model 

Property Value Source / Comment 

Rock mass 

Young’s modulus 

Poisson's ratio 

Biot coefficient 

Porosity 

Hydraulic conductivity 

 

E = 30 GPa 

ν = 0.22 

b = 1.0 

ϕ = 0.01 

k = 1.1x10
-16

 m
2
 

 

Keshavarz (2009) 

Keshavarz (2009) 

Incompressible solid and fluid 

Keshavarz (2009) 

Stober and Bucher (2007) 

Cohesive material for 

fractures HF1 to HF4 

Tensile strength 

Mode I fracture energy 

 

RT = 2.0 MPa 

GIC = 62 N/m 

(KIC = 1.4 MPa.m
0.5

) 

 

Common value 

Common value, Atkinson 

(1989) 

Faults F1 to F4 

Hydraulic aperture 

Friction coefficient 

 

0.4 mm 

μ
f
  = 0.35 or 0.65 or 1.0 

 

After Meyer et al. (2017) 

Subjected to sensitivity study 

Fracturing and pore fluid  

Dynamic viscosity 

Density 

 

η = 0.001 Pa 

ρ = 1000 kg/m
3
 

 

Common value 

Common value 

Initial conditions 

Initial stresses 

Initial pore pressure 

 

Sh = -29, SH = -36 MPa 

23.7 MPa 

 

Meyer et al. (2017) 

Meyer et al. (2017) 

Injection rate 

 

Q = 0.5 or 1 or 2 L/s 

per unit thickness 

Subjected to sensitivity study 

 

 

For the boundary conditions, the displacements normal to the outer boundaries are constrained 

for all of the outer boundaries. The pore pressure is kept constant at its initial value of 23.7 

MPa for all outer boundaries, except for the left boundary where a no fluid flow condition is 

imposed. The poroelastic rock mass is assumed to be initially fully saturated (saturation degree 

equals 1) and remains fully saturated during the injection time. 
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For the finite element mesh, the rock mass is discretized by linear plane strain coupled pore 

fluid pressure/deformation continuum elements CPE4RP, while the cohesive layers are 

discretized by coupled fluid pressure/deformation cohesive elements COH2D4P. At the 

intersection of two cohesive layers, a mid-edge node that has the pore pressure as a degree of 

freedom is shared between those cohesive elements to support fluid flow continuity. The mesh 

is refined around the fractures and faults (smallest size is 0.05 m) and gradually becomes 

coarser towards the boundaries (largest size is 10 m). In total, the mesh has 21450 nodes and 

20240 elements. 

4.3.2 Sensitivity study of friction coefficient 

The effect of the friction coefficient of the faults is studied in this subsection. All three faults 

F1, F2 and F3 have the same friction coefficient. However, the friction coefficient of these 

fault are changed to examine how it affects the slip of the faults. Three cases with different 

values of friction coefficient are studied and summarized in Table 4.9. The injection rate is 

fixed at 0.5 L/s for all of these cases. 

Table 4.9  Friction coefficient for cases MS1, MS2, and MS3 

Case Friction coefficient 

MS1 

MS2 

MS3 

0.35 

0.65 

1.0 

 

Simulation results and discussion: 

The simulation results of case MS2 are presented in Figure 4.37, Figure 4.38, and Figure 4.39, 

while the results of the cases MS1 and MS3 are given in Appendix 2. It can be seen from 

Figure 4.37a that the injection pressure increases immediately after the start of fluid injection 

and then decreases as the fracture HF1 propagates. The fluid pressure in each of the three 

faults remains at the initial pore pressure before their intersection with the hydraulic fractures 

occurs and increases sharply upon the intersection (Figure 4.37a). For instance, the hydraulic 
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fracture HF1 intersects the fault F1 at 45.4 s. At the same time, the fluid pressure of fault F1 

increases suddenly to approximately 54.2 MPa (Figure 4.37a).  

The time evolution of hydraulic aperture was also investigated; the hydraulic aperture at the 

injection point of fracture HF1 increases during the propagation of fractures HF1, HF2 and 

HF3, and decreases suddenly each time a hydraulic fracture intersects a fault (Figure 4.37b). 

The decrease becomes smaller the farther the fault is from the injection point. For instance, the 

decrease in the hydraulic aperture at the injection point is approximately 0.33 mm when HF1 

intersects F1, is 0.17 mm when HF2 intersects F2, and is 0.08 mm when HF3 intersects F3. 

Meanwhile, the hydraulic aperture of each fault increases suddenly when it is intersected by a 

hydraulic fracture and decreases upon subsequent intersections between the other faults and 

other hydraulic fractures (Figure 4.37b). For instance, the aperture of the fault F1 increases by 

nearly 0.44 mm when it is intersected by hydraulic fracture HF1, but decreases by 0.12 mm 

when the hydraulic fracture HF2 intersects fault F2, and decreases again by 0.06 mm when the 

hydraulic fracture HF3 intersects fault F3. The sudden increase in the hydraulic aperture of a 

fault when it is intersected by a hydraulic fracture is caused by the sudden increase in fluid 

pressure in the fault at the moment of intersection. Upon subsequent intersections between 

other hydraulic fractures and other faults, the injected fluid is driven into the additional faults, 

causing the aperture of the previously activated fault to decrease. 

The contour plots of pore pressure at different times and the advancement of hydraulic 

fractures and pre-existing faults are presented in Figure 4.38. Again, it can be seen that the 

fluid pressure is almost constant along the hydraulic fractures and the pre-existing fractures, so 

that the whole structure extends at a pressure just below the minimum stress if the tensile 

strength is disregarded. 

The slip rate of each fault, presented in Figure 4.39, remains small during most of the injection 

duration. High slip rates occur only when a hydraulic fracture intersects a fault. The slip rate 

of faults F1, F2, and F3 upon intersection with fractures HF1, HF2, and HF3 is 20.4 mm/s, 

34.9 mm/s, and 6.1 mm/s, respectively. When compared to the threshold of the dynamic slip 

rate of 5 mm/s, all these intersection events are deemed to be seismic. 
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(a) 

 

(b) 

Figure 4.37  Simulation results of case MS2 (friction coefficient μ
f
 = 0.65): time evolution of (a) 

injection pressure and fluid pressure at the center of faults F1, F2, F3 and (b) hydraulic aperture at the 

injection point and at the center of faults F1, F2, F3 
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(a) t = 42.3 s 

 

(b) t = 119.1 s 

 

(c) t = 185.9 s 

 

(d) t = 200 s 

           Unit: Pa 

Figure 4.38  Contour plots of pore pressure at different times 
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(a) Fault F1 

 

(b) Fault F2 

 

(c) Fault F3 

Figure 4.39  Simulation results of case MS2 (friction coefficient μ
f
 = 0.65): time evolution of 

accumulative slip and slip rate of faults F1, F2, and F3 
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Evolution of slip rate as function of friction coefficient: 

Detailed simulation results for cases MS1 and case MS3 are presented in Appendix 2. A 

summary of the results is presented in Figure 4.40, which shows the maximum slip rate of 

faults upon their intersection with hydraulic fractures as function of the fault friction 

coefficient. In general, the slip rate increases with the friction coefficient. Compared to the 

single fault model studied in subsection 4.2.3, the slip rate of faults in this multiple fault model 

is more sensitive to variations in the friction coefficient, especially for faults F2 and F3 whose 

slip rate increases from around 2 mm/s when the friction coefficient is 0.35 to around 100 

mm/s when the friction coefficient is 1. 

 
Figure 4.40  Maximum slip rate upon intersection as a function of the friction coefficient 

4.3.3 Sensitivity study of injection rate 

The effect of the injection rate is studied in this subsection. The injection rate is varied from 

0.5 L/s to 2 L/s and the slip rate of the faults is examined. Three cases with different injection 
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Table 4.10  Injection rates for cases MQ1, MQ2, and MQ3 

Case Injection rate Q (L/s per unit thickness) 

MQ1 

MQ2 

MQ3 

0.5 (Case MS2 in subsection 4.3.2) 

1.0 

2.0 

 

Simulation results and discussion: 

The time evolution of the injection pressure and the fluid pressure inside the faults F1, F2, and 

F3 for all three cases is presented in Figure 4.41. In this figure, the moment when the fluid 

pressure in a fault suddenly increases corresponds the moment when the fault intersects a 

hydraulic fracture. As can be seen in Figure 4.41, when the injection rate increases the fracture 

propagation is faster and intersection events between hydraulic fractures and faults happen 

earlier. For instance, HF1 intersects F1 at 45.4 s when the injection rate is 0.5 L/s, at 20.5 s 

when the injection rate is 1 L/s, and at 11.4 s when the injection rate is 2 L/s. 

Detailed results of the time evolution of accumulative slip and slip rate of faults for two cases 

MQ2, and MQ3 are presented in Appendix 3, while results for case MQ1 are the same as the 

results for case MS2, which were presented in subsection 4.3.2. The slip rate of faults when 

they are intersected by the hydraulic fractures as function of the injection rate is summarized 

in Figure 4.42. In general, the maximum slip rate increases with the injection rate. However, it 

is worth noting that the maximum slip rate is more sensitive to the injection rate in the 

multiple fault model than in the single fault model studied in subsection 4.2.4. For the single 

fault model, the maximum slip rate increases less than 40% when the injection is increased 12 

times from 0.25 L/s to 3 L/s. In the multiple fault model, for all three faults, the slip rate 

increases from 45 mm/s to 220 mm/s (an almost 5-fold increase) as the injection rate is raised 

from 0.5 L/s to 2 L/s (a 4-fold increase). This suggests that the slip of short faults is more 

sensitive to variations in the injection rate than for longer faults. 
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(a) Case MQ1: Q = 0.5 L/s 

 

(b) Case MQ2: Q = 1 L/s 

 

(c) Case MQ3: Q = 2 L/s 

Figure 4.41  Time evolution of injection pressure and fluid pressure at the center of faults F1, F2, F3 

for cases MQ1, MQ2, and MQ3. The moment when the pressure in a fault suddenly increases 

corresponds the moment of intersection of the fault with a hydraulic fracture. 
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Figure 4.42  Slip rate of faults upon their intersection with hydraulic fractures 

4.4 CHAPTER CONCLUSIONS 

The propagation of hydraulic fractures and the slip of pre-existing faults in low-permeability 

poroelastic rock masses were studied. The hydraulic fractures are modeled using the cohesive 

zone model concept in combination with cohesive elements, while the shear strength of the 

pre-existing faults is modeled using the Coulomb friction law. It was found that the pre-

existing faults slip at higher rates once they are intersected by the hydraulic fractures. This is 

because during the intersection, the fluid pressure inside the fault increases suddenly, causing 

the shear strength of the fault to decrease significantly and thus allowing the fault to slip. In 

most cases studied, the fault slip rate upon intersection is higher than the threshold of the 

dynamic slip rate, which indicates that the slip event is likely to be seismic. 

The effect of the most important parameters on the slip of the pre-existing faults was 
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initial stresses slip at higher rates when they intersect with hydraulic fractures. Meanwhile, 

increasing the injection rate also increases the fault slip rate. However, short faults were found 

to be more sensitive to an increase in the injection rate. The friction coefficient was also found 

to have a strong influence on the fault slip. As the fault friction coefficient decreased, the fault 

slip rate upon intersection with hydraulic fracture also decreased. If the friction coefficient is 

low enough, the fault slip rate can be reduced to levels below the threshold of the dynamic slip 
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rate. This suggests that it is possible achieve the goal of stimulating a rock reservoir (i.e., 

activating pre-existing faults and connecting them together) while minimizing the risk of 

inducing seismic fault slip by reducing the friction coefficient of the pre-existing faults before 

hydraulic stimulation begins. This could be achieved by appropriate geochemical treatments 

according to a pre-identification of key minerals within the faulted zones. 

At present, only the fault slip rate is used to characterize the dynamic nature of a slip event. 

However, it is worth noting that the fault slip rate does not provide direct information about 

the history of the induced seismic waves or the dominant frequency content, both of which are 

crucial in assessing human perception of the seismic waves and the damage potential to 

structures. In the next chapter, a modeling procedure to tackling these questions is proposed 

and a more in-depth analysis of fracture propagation/ fault slip-induced seismic waves is 

presented. This will provide a source model for induced micro earthquakes from small finite 

structures that experience shear and extend by developing wing cracks that grow in directions 

parallel to the most compressive stress (Johnson, 2014). However, contrary to Johnson (2014), 

who built a dynamic source tensor using the appropriate Green’s function, the same dynamic 

mechanical concepts will be used to simulate seismograms at any location outside the source 

region. 
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Chapter 5 

 

Simulation of induced dynamic effects 

RÉSUMÉ 

Ce chapitre est consacré à l’analyse et à la simulation de l’effet dynamique induit par la 

propagation de la fracture ou le glissement de la faille (c’est-à-dire les ondes élastiques 

induites). La toute première question que l'on se posera lorsqu'il s'agira de modéliser les ondes 

élastiques dynamiques induites par la propagation de fractures ou le glissement de failles est la 

suivante: comment les ondes élastiques dynamiques sont-elles induites par la propagation de 

fractures ou le glissement de failles, même lorsque les charges externes sont quasi-statiques? 

Cette question est plus difficile qu'il n'y paraît, même si la génération d'ondes élastiques 

dynamiques est un fait incontesté qui a été observé dans de nombreuses expériences quasi-

statiques telles que l'essai de compression uniaxiale et l'essai brésilien. Pour apporter une 

réponse quantitative à ce phénomène, un modèle discret composé de ressorts et de masses 

élastiques est proposé, puis étendu à un modèle continu en utilisant le concept de matériau 

cohésif. La réponse à la question posée est progressivement dévoilée, de même que les 

principaux facteurs qui influent sur l'intensité des ondes élastiques induites. 

Ensuite, je vais essayer de réaliser des simulations dynamiques de la propagation des ondes 

sismiques induites par le glissement de faille. Même s’il est démontré que le concept de 

matériau cohésif est capable de modéliser le processus de conversion d’énergie (énergie de 

déformation - énergie cinétique) et donc la génération d’ondes élastiques à partir de 

dommages matériels, une simulation hydromécanique entièrement couplée prenant en compte 

les forces d’inertie reste encore trop compliquée. Ainsi, une procédure de modélisation 
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séquentielle est adoptée pour modéliser les ondes élastiques induites par le glissement de faille 

en combinant deux simulations distinctes. La première simulation est une simulation de 

diffusion contrainte-transitoire quasi-statique dans laquelle la propagation de la fracture et le 

glissement de faille sont modélisés. Cependant, les forces d'inertie sont considérées comme 

négligeables dans la première simulation. Cette première simulation a été réalisée au chapitre 

4, sections 4.2. La deuxième simulation est une simulation dynamique tenant compte des 

forces d’inertie et visant à modéliser la propagation des ondes élastiques induites par le 

glissement de la faille. À cette fin, les historiques temporels des déplacements des deux faces 

de la faille, obtenus à partir de la première simulation, sont considérés comme des charges 

externes pour la deuxième simulation. Les accélérations calculées à la surface du sol sont 

ensuite utilisées pour évaluer l’intensité du séisme en relation avec la a perception humaine 

des ondes sismiques et le potentiel d’endommagement des infrastructures. 
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SUMMARY 

This chapter is focused on the explanation and the simulation of the dynamic effects induced 

by the fracture propagation or the fault slip (i.e., induced elastic waves). The initial question 

when it comes to modeling dynamic elastic waves that are induced by fracture propagation or 

fault slip is: how are dynamic elastic waves induced by the propagation of fractures or the slip 

of faults, even when the external loads are quasi-static? This question is more difficult than it 

appears even though the generation of dynamic elastic waves is an undisputed fact that has 

been observed in numerous quasi-static experiments such as the uniaxial compression test and 

the Brazilian test. Intuitively and experimentally, the answer is that material damage, such as 

fracture propagation or fault slip, is the source of the emission of elastic waves. This is true, 

but a more concrete and quantitative answer is required to model the induced dynamic elastic 

waves. By studying a discrete model made of elastic springs and masses and then a continuum 

model using the cohesive material concept,  the answer to the fundamental question is 

gradually unveiled as well as the main factors that affect the intensity of the induced elastic 

waves 

Next, dynamic simulations of the propagation of seismic waves induced by fault slip were 

performed. Even though the cohesive material concept is capable of modeling the energy 

conversion process (from strain energy to kinetic energy) and thus the generation of elastic 

waves resulting from material damage, a fully coupled hydro-mechanical simulation taking 

into account the inertia forces is still too complex. Thus, a modeling procedure is adopted 

where the elastic waves induced by fault slip are modeled by combining two sequential 

simulations. The first simulation, outlined in Chapter 4, sections 4.2, is a quasi-static stress-

transient diffusion simulation in which both fracture propagation and fault slip are modeled. 

However, the inertia forces are considered to be negligible in the first simulation. The second 

simulation is a dynamic simulation in which the inertia forces are taken into account and it is 

aimed at modeling the propagation of the elastic waves induced by the fault slip. For this 

purpose, the time histories of the displacements of the two faces of the fault, obtained from the 

first simulation, are considered as the external loads for the second simulation. The radiation 

patterns can be obtained and the computed accelerations on the ground surface are then used 

to assess the human perception of the seismic waves and the damage potential to structures. 
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5.1 INTRODUCTION TO INDUCED MICROSEISMICITY  

Induced microseismicity refers to the generation of seismic waves due to the slip of pre-

existing faults or the propagation of brittle fractures (Hardy Jr, 2003; Swindlehurst, 1973). 

When a brittle material is loaded to some extent, atomic bonds between the atoms are broken, 

allowing the fracture to form and propagate. The strain energy of the system is altered and 

some of the strain energy is converted into kinetic energy in the form of elastic waves, which 

can be transmitted through the medium and recorded by seismic sensors. A schematic 

representation of the generation of seismic waves from fracture propagation is shown in 

Figure 5.1. The generation of seismic waves due to fault slip is somewhat similar: when the 

stress on fault exceeds the fault strength, either due to the reduction of the fault shear strength 

or an increase of the shear stress, the fault slips and a part of the strain energy is released in the 

form of seismic waves (Ellsworth, 2013). 

The fault slip that occurs during hydraulic stimulation of geothermal reservoirs is typically 

tied to the reduction of shear strength of the fault due to an increase in the fluid pressure 

within the fault. It should be noted, however, that the slip of faults can be seismic (i.e., 

generating detectable seismic waves) or aseismic (i.e., not generating detectable seismic 

waves). In in-situ experiments, direct measurement of the ground motions (e.g., particle 

velocity or acceleration) during the fault slip can distinguish whether the fault slip is seismic 

or aseismic. In numerical simulation studies, the slip rate of the fault is generally accepted as a 

parameter to assess the dynamic character of the slip event (Cappa et al., 2018; Dublanchet et 

al., 2013; McClure and Horne, 2011, 2014). 

Microseismic monitoring has been the only tool for assessing the development of enhanced 

geothermal reservoirs (Baria et al., 1989; Baria et al., 2004; Schill et al., 2017). The 

underlying idea behind the use of microseismic monitoring as a mapping tool is that the 

locations of the seismic events are considered to be a proxy for the presence of hydraulic 

fractures or the activation of pre-existing faults. Thus, the development of the seismic "cloud", 

also known as a swarm of events, provides information about the development and dimensions 

of the reservoir accessible to fluid. Microseismic source characteristics can also be inferred 

from the recorded waveforms (Gibowicz et al., 1991; Pearson, 1982; Wang and Tao, 2003). 



179 

 

Furthermore, real time monitoring of microseismicity can provide useful information for 

guiding the injection operation. 

          

(a) 

 

(b) 

Figure 5.1  (a) Illustration of generation of elastic waves from fracture propagation, (b) Example of 

seismic signal (e.g., acceleration) recorded by sensors 

In order to measure the "size" of a seismic event, various magnitude scales have been derived. 

Classical magnitude scales, which are calculated from the displacement amplitude of ground 

motion, include the local scale M
L
 for local seismic events and m

B
 or M

S
 for teleseismic events 

(Gutenberg and Richter, 1956; Richter, 1935). In 1977, the moment magnitude M
W

 was 

introduced by Kanamori (1977) and has since then been considered as the only well defined, 
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non-saturating magnitude scale and estimator of seismic events (Bormann and Di Giacomo, 

2011). The moment magnitude is defined as: 

  10 0

2
log 9.1

3
WM M    (5.1) 

where M
0
 is the seismic moment, which is related to the fundamental parameters of the 

faulting process including the average rigidity of the faulted rock μ, the rupture area S, and the 

average displacement on the fault D as: 

 0M SD   (5.2) 

It should be noted that the seismic moment is the change in strain energy of the rock mass 

before and after the fault slips (i.e., strain energy release). Equation (5.2) was proposed by 

Kanamori (1977) based on analysis of the stress around a shear fracture embedded in an 

elastic medium by Knopoff (1958).  

It is worth noting that not all of the strain energy release during fracture propagation or fault 

slip is converted into seismic waves. A large portion of the strain energy release goes into 

creating new surfaces and melting the rock. Thus, the use of the seismic moment (i.e., strain 

energy release) to estimate the seismic magnitude assumes that a proportion of the strain 

energy release is actually being released in the form of seismic waves. In fact, only a tiny 

fraction of the strain energy release, roughly about 5x10
-5

, is converted into seismic waves 

(Bormann and Di Giacomo, 2011; Kanamori, 1977). 

Although the moment magnitude M
W

 has some advantage over the classical magnitude scales, 

it is still a static measure of the seismic event, i.e., based on the difference in strain energy 

before and after the fault slips. Thus, M
W

 does not provide direct information about the time 

history of the seismic waves, which is crucial in assessing the human perception of the seismic 

waves and the damage potential to structures. 

The effect of the induced elastic waves on human perception and on structures on the ground 

surface can be quantified using the peak ground acceleration (PGA) or the peak ground 

velocity (PGV). By comparing horizontal peak ground motions to observed intensities for 

significant earthquakes in California, (Wald et al., 1999) proposed a regression relationship 
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between PGA or PGV and the Modified Mercalli intensity. The Modified Mercalli intensity 

scale was introduced by Wood and Neumann (1931) to quantify the shaking pattern and the 

potential damage of earthquakes. An abbreviated description of the levels of Modified 

Mercalli intensity and the corresponding PGA and PGV is given in Table 5.1. 

Table 5.1  Modified Mercalli intensity scale and corresponding peak ground acceleration and peak 

ground velocity. Source: Wald et al. (1999), Wood and Neumann (1931) 

Intensity 

 

Peak acceleration 

(%g) 

Peak velocity 

(cm/s) 

Perceived 

shaking 

Potential 

damage 

I < 0.17 < 0.1 Not felt None 

II–III 0.17 – 1.4 0.1 – 1.1 Weak None 

IV 1.4 –3.9 1.1 – 3.4 Light None 

V 3.9 – 9.2 3.4 – 8.1 Moderate Very light 

VI 9.2 –18 8.1 – 16 Strong Light 

VII 18 –34 16 – 31 Very strong Moderate 

VIII 34 –65 31 – 60 Severe 
Moderate to 

heavy 

IX 65 – 124 60 – 116 Violent Heavy 

X+ > 124 > 116 Extreme Very heavy 

 

5.2 MODELING OF INDUCED DYNAMIC EFFECTS 

5.2.1 Introduction 

Currently, three main numerical methods are used to model induced microseismicity: the finite 

element method in combination with damage mechanics, the discrete element method, and the 

combined finite-discrete element method. 

In the finite element method, the fracturing process is modeled using damage mechanics 

(Kaiser and Tang, 1998; Tang, 1997; Tang and Kaiser, 1998). The material adopts a 

damageable constitutive law and microseismicity is simulated based on the assumption that 
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the number of induced seismic events is proportional to the number of elements that are 

damaged. The strain energy released in the damaged elements is considered analogous to 

seismic energy. 

In discrete element models, the material is represented as an assemblage of particles that have 

the shape of a circular disc for 2D models or a sphere for 3D models (Cundall and Hart, 1992; 

Potyondy and Cundall, 2004). These particles are bonded together and interact with each other 

at contact points where constitutive contact laws are required to describe their normal and 

shear interactions. When the shear or tensile stress exceeds the shear or tensile strength of a 

contact bond, the contact bond is broken, allowing a crack to initiate and propagate. The 

magnitude of an induced seismic event is calculated based on the change in kinetic energy of 

particles before and after one or several bonds are broken. The method was used by Hazzard 

and Young (2000, 2004) to simulate triaxial compression tests and a mine-by tunnel 

experiment. The authors showed that the model was capable of reproducing the Gutenberg-

Richter relationship between the magnitude and the number of induced seismic events with the 

numerical b-value situated within the range found in experiments. Note that the Gutenberg-

Richter relationship is expressed as: 

 log N a bM    (5.3) 

where M is a magnitude scale, N is the number of events having a magnitude larger or equal to 

M, a and b are two positive constants. The constant b (i.e., the b-value), typically close to 1, is 

a parameter describing the relative abundance of large to smaller events (Okal and 

Romanowicz, 1994). 

In the combined finite-discrete element method, the intact material is typically assumed to be 

linear elastic and is modeled by finite elements. Cohesive elements are inserted between the 

finite elements to model the fracture initiation and propagation (Munjiza, 2004). Once the 

fracture has occurred, the blocks of material are created and treated as discrete blocks. The 

kinetic energy that is induced by the fracture propagation is considered to be the seismic 

energy. This method has been used by Lisjak et al. (2013) to simulate induced seismic effects 

in an unconfined compression test on granite. The authors reported that the magnitudes of the 



183 

 

simulated events tended to display a power-law distribution, with b values in agreement with 

those reported in the literature for granitic rocks. 

The three numerical methods briefly presented above have been successful to some extent in 

reproducing several features of the dynamic effects that are induced by fracture propagation 

(e.g., b-value in the range found in experiments). However, the following fundamental 

questions (FQ) have not been fully resolved in these simulations: 

 FQ1: How are dynamic effects generated through fracture propagation even when the 

loading is quasi-static? 

 FQ2: How much of the strain energy is converted into kinetic energy? 

 FQ3: What are the most important parameters that influence the induced dynamic 

effects? 

Some explanations can be found as answers to these questions. For question FQ1, the brittle 

nature of the fracture propagation can induce dynamic effects even when the loading rate is 

quasi-static. Many experiments have shown that microseismicity is induced by fracture 

propagation (Keshavarz et al., 2008; Moradian et al., 2016). For question FQ2, (Kanamori, 

1977) proposed that a fraction, 2x10
-5

, of the strain energy change is converted into the kinetic 

energy of induced elastic waves. For the question FQ3, several authors have reported some 

relationship between the velocity of fracture propagation or fault slip rate and the intensity of 

the induced dynamic effects (Boudet et al., 1995; Fineberg et al., 1992). These explanations 

are plausible but they still have not answered the above questions in a concrete and 

quantitative way. In this section, I will attempt to quantitatively resolve these questions. 

5.2.2 Explanations using discrete models 

From an energy balance point of view, the generation of elastic waves from the fracture of a 

material is a process of conversion of strain energy into kinetic energy. A physics-based 

approach that models the induced elastic waves must be able to model this energy conversion 

process. The only model (that I know of so far) that illustratively explains the strain energy-

kinetic energy conversion was proposed by Pollock (1973) and is presented in Figure 5.2. The 

model consists of a mass m suspended by two springs of stiffness K. The stiffness of the lower 

spring is assumed to instantaneously change by an amount δK. As the stiffness of the system 
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suddenly changes, the mass will move toward and vibrate around a new equilibrium position. 

The change in strain energy before and after the change in stiffness ΔE
s
 and the peak kinetic 

energy of the mass E
kin

 are, according to (Pollock, 1973): 

 
2

2 21 1 ( )
     ;       

8 8
s kin

K
E K x E x

K


      (5.4) 

where x is initial extension of the spring system due to the self weight of the mass m. From 

equation (5.4) the ratio between the kinetic energy and the change in strain energy can be 

obtained as / /s kinE E K K  . 

 
Figure 5.2  A spring-mass model. Source: Pollock (1973) 

The model by Pollock shows that the amount of induced kinetic energy is proportional to the 

change in the stiffness of the system. For a continuum material, the stiffness change can 

originate from the propagation of fractures. 

To more clearly illustrate the generation of dynamic effects from the damage regardless of the 

loading rate, I also use a mass-spring model as shown in Figure 5.3. The model consists of two 

masses M1 and M2, and two springs 1 and 2. Each spring is characterized by its stiffness and 

its tensile strength: K
1
 and R

1
 for spring 1, K

2
 and R

2
 for spring 2, with R

2
 smaller than R

1
 (R

2
 

< R
1
). The system is loaded by controlling the displacement of the mass M2, as illustrated in 

Figure 5.3. As the mass M2 is slowly pulled downwards, internal forces of the same 

magnitude are generated in both the springs. At some point the internal force in the spring 2 

reaches its tensile strength R
2
, and spring 2 breaks. Assume that the damage of spring 2 is 
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instantaneous. At this time, the mass M1, displaced from its initial position a distance a, is free 

to move. The movement of the mass M1 after spring 2 is broken is a harmonic vibration with 

the following characteristics: 

 Displacement of M1: 

 cos( )x a t   (5.5) 

 Velocity of M1: 

 sin( )v a t     (5.6) 

 Kinetic of M1: 

  2 2

1 1

1 1
1 cos(2 )

2 4
kE m v K a t     (5.7) 

 Strain energy of spring 1: 

  2 2

2 2

1 1
1 cos(2 )

2 4
pE K x K a t     (5.8) 

where ω is the angular frequency; and a is the displacement of the mass M1 when spring 2 is 

broken and is equal to R
2
/K

1
.  Thus the maximum kinetic energy E

kmax
 of the mass M1 is: 

 
2

2 2
max 1

1

1 1

2 2
k

R
E K a

K
    (5.9) 

The time evolution of the kinetic and the strain energy is presented in Figure 5.4. From 

equations (5.5) to (5.9) and Figure 5.4, the following remarks can be made: 

(i) The kinetic energy of the mass M1 is proportional to the tensile strength of the spring 2 

and is inversely proportional to the stiffness of the spring 1 (equation (5.9)) 

(ii) There is a conversion between kinetic and strain energy: when the kinetic energy is 

zero the strain energy is a maximum, and vice versa (Figure 5.4) 

(iii) The frequency of the kinetic energy and strain energy is double that of the frequency of 

the displacement or the velocity (equation (5.5) to (5.8) and Figure 5.4) 
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Figure 5.3  New spring-mass model. K1 and R1 are the stiffness and strength of spring 1, K2 and R2 

are the stiffness and strength of spring 2. 

 
Figure 5.4  Time evolution of kinetic energy and strain energy. T is the period of the vibration of the 

mass M1 

In the above calculation the strain energy of spring 2 and the energy loss due to the breakdown 

of the spring 2 are not included. For a discrete system of springs and masses, these 

simplifications are acceptable. The calculation shows clearly that the intensity of the induced 

dynamic effects, which is reflected by the maximum kinetic energy, depends on two factors: 

the strength and the stiffness of the system. Also, the kinetic energy of the mass M1 is shown 

to be independent of the rate of the applied displacement, which means that no matter how 

slowly the displacement is applied, the mass M1 will vibrate harmonically once spring 2 is 
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broken and the kinetic energy of the mass M1 will remain the same. By using this simple 

spring-mass model, the questions FQ1 and FQ3 are clearly and quantitatively resolved. 

5.2.3 Explanations using continuum model: analytical calculation 

Here the cohesive zone model is used to model the fracture in a uniaxial tension test of a plate 

and show that elastic waves can be induced even when the loading rate is quasi-static. The 

plate studied is shown in Figure 5.5. The height of the plate is L. The plate consists of two 

parts; the first part is a zero-thickness layer of cohesive material whose cohesive constitutive 

law is characterized by tensile strength R
T
 and fracture toughness G

IC
 (Figure 5.6). The second 

part is made of a linear elastic material, which is characterized by Young's modulus E and 

Poisson's ratio ν. The loading is given by controlling the displacement rate of the top edge of 

the plate (Figure 5.5). As the applied displacement increases, the cohesive layer will be 

damaged and the separation rate of the cohesive layer is calculated. In this subsection, only the 

phase after damage initiation in the cohesive layer is considered, i.e., after the stress in the 

cohesive layer has reached the tensile strength and the two faces of the cohesive layer start to 

separate. 

 
Figure 5.5  Plate model made of two materials. The cohesive layer has zero thickness. The sketch is 

not to scale 

L

Cohesive material

u

Elastic material
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Figure 5.6  Cohesive traction-separation law 

For each increment of stress in the cohesive layer Δσ (Δσ < 0), the corresponding displacement 

increment at the top edge of the plate Δu consists of two components as follows: 

 c su u u      (5.10) 

where Δuc is the separation increment of the cohesive layer and Δus is the change in length of 

the elastic part. Δuc and Δus are determined by: 

 
( )

c

c

s

u
K u

u L
E






 


 

  (5.11) 

where K(u
c
) is the slope of the cohesive traction – separation curve (Figure 5.6), which is 

/T fR   once the damage initiation occurs. Combining equations (5.10) and (5.11): 

 
1

1
c

T

f

u u
R L

E 
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

  (5.12) 

Both sides of equation (5.12) are divided by Δt, the time increment during which the stress 

increment Δσ takes place, which gives: 

 
1
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c

T
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u u
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E 
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  (5.13) 
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Since 0.5IC T fG R  , equation (5.13) can be rewritten as: 

 
2

1

1
2

c

T

IC

u u
R L

G E





  (5.14) 

In equation(5.14), cu  and u  are the separation rate of the cohesive layer and the applied 

displacement rate, respectively. Denote α as: 

 
2

2

T

IC

R L

G E
    (5.15) 

And equation (5.14) then becomes: 

 
1

1
cu u





  (5.16) 

From equation (5.16), we can see that as α  1 the separation rate of the cohesive layer cu  

will become very large regardless of the applied displacement rate. A high separation rate for 

the cohesive layer means that elastic waves are generated. 

It can also be seen that if the length of the plate is large enough, α can be larger than 1. In such 

cases cu  becomes negative. However, as the applied displacement continues to increase after 

damage initiation of the cohesive layer has occurred, the separation of the cohesive layer will 

increase with time and thus cu must be positive. This leads to the realization that in cases 

where α > 1 the calculation above is no longer valid. In fact, in the above calculation it is 

assumed that when the stress in the cohesive layer is changed by an increment Δσ, the whole 

plate experiences the same stress increment Δσ. This is indeed the case as long as α < 1. When 

α > 1, if the stress in the cohesive layer is changed by Δσ, it will not affect the whole plate 

instantaneously. Instead, the stress change will "propagate" as elastic "stress" waves from 

regions near the cohesive layer to outlying regions without dependence on the applied 

displacement rate. The length L of the plate can be seen as a characteristic length of the 

material. A closer look at α shows that α is in fact the ratio between the change in strain 

energy before damage initiation,
2 / (2 )TR L E , and the energy loss due fracture G

IC 
. 
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In conclusion, if the strain energy that is released during the fracture propagation is larger than 

the energy needed to create new fracture surfaces (i.e., the fracture energy), elastic waves will 

be generated regardless of the loading rate. The intensity of the induced elastic waves is 

proportional to the ratio between the strain energy release and the fracture energy. 

5.2.4 Explanations using a continuum model: numerical simulation 

The model presented in subsection 5.2.3 is numerically investigated. Again, the objective is to 

model the elastic waves induced by the fracture and investigate the factors that influence the 

intensity of the induced elastic waves. The following points will be demonstrated using the 

numerical simulations: 

(i) Elastic waves are induced if α, i.e., the ratio between the change in strain energy E
S
 

before and after fracture occurs and the energy loss due to the fracture E
F
, is larger 

than 1 (subsection 5.2.4.1) 

(ii) The loading rate does not affect the induced elastic waves (subsection 5.2.4.2) 

(iii) The intensity of the induced elastic waves also increases if α increases (subsection 

5.2.4.3) 

5.2.4.1 Reference simulation when α > 1 

The plate studied has a width W = 0.2 m and length L = 1 m. The top edge of the plate is 

pulled upwards at a constant and relatively small rate such that the loading does not introduce 

any dynamic effects. In this simulation, a displacement rate of 9 mm/s, which corresponds to a 

strain rate 0.009 s
-1

, is chosen. This loading rate may seem too high, but as shown later this 

displacement rate actually does not cause any significant dynamic effect on the system. 

The three other edges of the plate are fixed. An illustration of the model with boundary 

conditions and loading is given in Figure 5.7. With these boundary conditions and loading, the 

problem is equivalent to a 1D problem and only the displacement, velocity, and acceleration in 

direction 2 are non-zero. Thus, in the following the words displacement, velocity, and 

acceleration are used to describe the displacement, velocity, and acceleration in direction 2. 

Parameters for the cohesive material and the linear elastic material are presented in Table 5.2. 
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Figure 5.7  Dimensions of the plate, boundary conditions and loading 

Table 5.2  Material properties 

Property Value 

Cohesive material 

Tensile strength 

Fracture toughness 

 

RT = 2.6 MPa 

GIC = 25 J/m
2
 

Linear elastic material 

Young's modulus 

Poisson's ratio 

Density 

P-wave speed 

 

E = 30 GPa 

ν = 0.22 

ρ = 2500 kg/m
3
 

Cp = 3464 m/s 

 

With these selected parameters, the following can be calculated: 

 The maximum strain energy available for release is: 
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 The energy loss due to fracture is: 

 25 0.2 5 JF ICE G W       (5.18) 

From equations (5.17) and (5.18), α is calculated as: 

 
22.5

4.5
5

S

F

E

E
      (5.19) 

Since α is larger than 1, elastic waves are expected to be induced after damage to the cohesive 

layer has occurred. 

Simulation results: 

A contour plot of the normal stress S22 in direction 2 during one period from the beginning of 

damage to the cohesive layer is presented in Figure 5.8. Here, one period is defined as the time 

it takes the induced elastic waves to propagate from the top edge of the plate to the bottom 

edge, reflect off this edge and propagate back to the top edge. The damage of the cohesive 

layer begins at approximately 8 ms when the tensile stress is equal to the tensile strength 

(Figure 5.8a). Then, the stress in the region near the cohesive layer begins to decrease (Figure 

5.8b). The stress decrease propagates toward the bottom of the plate as stress waves. Once the 

stress waves reach the bottom edge (Figure 5.8c), they are reflected back (Figure 5.8d) and 

move toward the top edge (Figure 5.8e, f). It can also be seen that the sign of the stress 

changes from positive to negative as the stress waves are reflected of the bottom edge (Figure 

5.8d, e). The distribution of stress in direction 2, S22, along the length of the plate at times 

corresponding to those in Figure 5.8 is presented in Figure 5.9. The propagation of the stress 

decrease and the reflection of the stress waves are clearly observed. 
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(a) 

t = 8 ms 

 

(b) 

t = 8.1 ms 

 

(c) 

t = 8.2 ms 

 

(d) 

t = 8.25 ms 

 

(e) 

t = 8.37 ms 

 

(f) 

t = 8.52 ms 

 

Unit: Pa 

 

 

 

Figure 5.8  Normal stress S22 in direction 2 during one period after the damage to the cohesive layer. 

The damage begins at time t = 8 ms 

 
Figure 5.9  Stress S22 along the length of the plate at different times corresponding to those of Figure 

5.8. The damage begins at time t = 8 ms. The top and bottom edges of the plate are located at y = 0 and 

y = 1, respectively. 
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The computed time evolution of displacement and velocity of the point A (Figure 5.7) is 

presented in Figure 5.10. It can be seen that the displacement increases linearly at first, and 

then starts to decrease as the cohesive layer is damaged. But instead of decreasing to zero, it 

oscillates around the zero-position. A similar evolution pattern is observed for the velocity: the 

velocity is relatively small before the damage of the cohesive layer, but starts to increase once 

the cohesive damage occurs and oscillates afterward. The maximum velocity of the point A is 

0.32 m/s, which is 35.5 times the applied displacement rate. Both the displacement and the 

velocity oscillate with the same period of approximately 1.6 ms. 

The time evolution of the different types of energy in the whole model (strain energy, kinetic 

energy, and fracture energy) is presented in Figure 5.11. The strain energy increases at first 

and then starts to decrease when cohesive damage occurs, while the kinetic energy remains 

close to zero before the cohesive damage and starts to increase when the cohesive damage 

occurs. The fact that the kinetic energy is close to zero before cohesive damage insures that the 

relatively high applied displacement rate used in the simulation has a negligible effect on the 

solution. After cohesive damage, both the strain energy and the kinetic energy oscillate 

harmonically with the same period of approximately 0.8 ms. These two types of energy are 

also converted back and forth into each other: when the kinetic energy is zero the strain energy 

is largest and vice versa. The maximum value of the kinetic energy after damage to the 

cohesive material is approximately 17.5 J. The energy dissipated due to the damage of the 

cohesive layer, i.e., the fracture energy, increases suddenly from 0 to 5 J upon the damage of 

the cohesive layer. This value of fracture energy is equal to the predicted value in equation 

(5.18). 

It is worth noting that the oscillation period of the displacement and the velocity (T = 1.6 ms) 

is double that of the kinetic and strain energies (T = 0.8 ms). This observation, also obtained in 

discrete spring-mass model, is clearly illustrated in Figure 5.12. 
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Figure 5.10  Time evolution of displacement and velocity of point A 

 
Figure 5.11  Time evolution of different types of energy in the model 
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Figure 5.12  Time evolution of the kinetic energy and displacement showing that the oscillation period 

of the displacement is double that of the kinetic energy 

5.2.4.2 Influence of the applied displacement rate 

In the previous numerical simulation (subsection 5.2.4.1), the applied displacement rate is 

increased so that the loading duration can be reduced, which in turn reduces the computation 

time. To demonstrate that the increase of the applied displacement rate has a negligible effect 

on the final results, the simulation is re-run with a displacement rate of 0.9 mm/s, which is ten 

times smaller than in the previous case. 

The simulation results are presented in Figure 5.13 for the time evolution of displacement and 

velocity of the point A and in Figure 5.14 for the time evolution of different types of energy. 

The damage of the cohesive material occurs at around 77 ms. After that, trends for the time 

evolution are seen to be identical to the previous case. For instance, after damage to the 

cohesive material, the displacement and the velocity of the point A and kinetic and strain 

energies oscillate. The oscillation period of the kinetic and strain energies is approximately 0.8 

s (Figure 5.14b), while the displacement and velocity of the point A oscillate with a period of 

approximately 1.6 s (Figure 5.13b). These periods are identical to those that were obtained in 

the previous case. The maximum velocity of the point A is 0.32 m/s and the maximum kinetic 
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deformation phase and delays the damage of the cohesive layer. After the cohesive layer is 

damaged, the behavior of the model is identical to the previous case. 

 

(a) 

 

(b) 

Figure 5.13  Time evolution of the displacement and the velocity of point A: (a) from the outset, (b) a 

zoom-in during and after damage to the cohesive layer 
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(a) 

 

(b) 

Figure 5.14  Time evolution of different types of energy in the whole model: (a) from the outset, (b) a 

zoom-in during and after damage to the cohesive layer 

5.2.4.3 Influence of tensile strength on the intensity of induced elastic waves 

In this section, the influence of the ratio α on the intensity of the induced elastic waves, which 

is reflected by the maximum velocity of the point A, is investigated. The expression for α, as 
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2

2

T

IC

R L

G E
    

As can be seen in the above expression α can be varied by changing either the tensile strength 

R
T
, the length of the specimen L, the fracture toughness G

IC
, or the Young's modulus E. Here, 

the tensile strength is change. The change in tensile strength for a Mode I fracture is 

equivalent to the change in shear strength for a Mode II fracture. Thus, conclusions obtained 

in this simulation are also valid for Mode II fractures. 

Five cases with different tensile strengths are considered. These are listed in Table 5.3. Since 

the applied displacement rate has been proven to have negligible effect on the response of the 

system after the damage of the cohesive material, a displacement rate of 9 mm/s is used. For 

all of these five cases the loading rate is applied within 20 ms. 

Table 5.3  Tensile strength and the corresponding α for simulation cases 1 – 5 

Case Tensile strength RT (MPa) α 

1 

2 

3 

4 

5 

0.6 

1.9 

2.6 

3.5 

4.6 

0.24 

2.4 

4.5 (studied in subsection 5.2.4.1) 

8.2 

14.1 

 

Simulation results: 

The time evolution of the displacement and the velocity of the point A are presented in Figure 

5.15 and Figure 5.16, respectively. As can be seen in Figure 5.15, for case 1 (α = 0.24) the 

velocity of the point A is virtually zero the whole time, both before and after damage to the 

cohesive material. As predicted by equation (5.16), the velocity of the point A after the 

damage of the cohesive material is: 

 
1 1

9 11.8 mm/s
1 1 0.24

Au u


   
 

 

This velocity is of the same magnitude as the applied displacement rate. 
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As α is increased from 2.4 in case 2 to 14.1 in case 5 (Figure 5.15), which corresponds to an 

increase in the tensile strength from 1.9 MPa to 4.6 MPa, the damage to the cohesive material, 

which corresponds to the moment when the velocity of the point A changes significantly, is 

delayed, as expected. The dynamic behavior of the system after cohesive damage, which is 

reflected by the time evolution of the point A in Figure 5.15, is similar for all cases: the 

velocity of the point A oscillates with similar period of approximately 1.6 ms. However, as α 

is increased from 2.4 to 14.1, the maximum velocity of the point A increases from 0.19 m/s 

(21 times the applied displacement rate) to 0.99 m/s (111 times the applied displacement rate). 

The maximum velocity of the point A is plotted in Figure 5.17a as a function of the coefficient 

α. An increasing linear relationship between these two quantities, which is represented as a 

straight line passing through the origin, is observed. Figure 5.17b shows the maximum 

velocity as a function of the tensile strength. Again, it is noted that the maximum velocity 

tends to zero for a small tensile strength and increases rapidly as the tensile strength increases. 

The above observations are consistent with the conclusions regarding the role of the ratio 

between the strain energy release and the fracture energy, which is represented through the 

coefficient α, that as the ratio between the strain energy release and the fracture energy 

increases the intensity of the induced elastic waves will also increase. 

The above results can be interpolated to a Mode II fracture (shear-mode): as the shear strength 

of the Mode II fracture increases the intensity of the elastic waves that are induced when the 

fracture slips will also increase. And for a Mode II fracture and a given stress state, the shear 

strength of the fracture is solely proportional to the friction coefficient of the fracture. In other 

words, if the friction coefficient of the fracture can be reduced, which will lead to a reduction 

in the shear strength of the fracture, the intensity of the induced elastic waves will be reduced. 
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Case 1: α = 0.24  

Case 2: α = 2.4  

Case 3: α = 4.5  

Case 4: α = 8.2  

Case 5: α = 14.1  
Figure 5.15  Time evolution of the velocity of the point A in direction 2 for the 5 cases studied 
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Case 1: α = 0.24  

Case 2: α = 2.4  

Case 3: α = 4.5  

Case 4: α = 8.2  

Case 5: α = 14.1  
Figure 5.16  Time evolution of the displacement of the point A in direction 2 for the 5 cases studied 
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(a) 

 

(b) 

Figure 5.17  Maximum velocity of the point A as a function of (a) the coefficient α and (b) the tensile 

strength 

5.3 ESTIMATION OF ACCELERATION INDUCED BY FAULT SLIP 

As mentioned previously, the fault slip rate is generally used as the main parameter to assess 

the dynamic character of the fault slip. If the slip rate is higher than a certain threshold, the slip 
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induced seismic waves on human perception and structural systems at a specific location? In 

this section, dynamic simulations of the propagation of seismic waves induced by the fault slip 

0

0.2

0.4

0.6

0.8

1

0 5 10 15

M
ax

im
u

m
 v

el
o

ci
ty

 (
m

/s
)

Coefficient α

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

M
ax

im
u

m
 v

el
o

ci
ty

 (
m

/s
)

Tensile strength (MPa)



204 

 

are preformed to estimate the potential effects on humans and structural systems by using 

simplified 2D models. 

5.3.1 Model setup 

The model studied is similar to the model used in section 4.2, except that the dimensions of 

the model are now real dimensions, as shown in Figure 5.18. Specifically, the model is a 2D 

plane strain one that contains only one existing 30 m long fault F1, i.e., similar to the case 

given in section 4.2 of Chapter 4. The fault is located at 2.5 km from the ground level and is 

oriented at angle θ from direction 1. 

 
Figure 5.18  Model for dynamic simulation 

The objective is to calculate the time evolution of the accelerations on the ground surface that 

are induced by the slip of the fault. Here, the accelerations at three locations B, C, and D are 

tracked. For this purpose, the time history of the displacements of all the nodes on two faces of 

the fault, which were obtained by quasi-static simulations in Chapter 4, are prescribed and 

inertia effects are also taken into consideration. Only the time during which the hydraulic 
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fracture intersects the fault is considered because during this time the slip rate of the fault is 

largest and thus the induced dynamic effects are expected to be most pronounced. 

The material is assumed to be linear elastic and the whole domain is composed of only one 

material. This assumption is not altogether realistic as real formations can be made of multiple 

layers of different materials. However, the objective is only to demonstrate the methodology 

and the simulation procedure. Additionally, undrained conditions are also assumed since high 

slip rates occur only during a short time period. The so-called undrained Poisson's ratio is 

assumed to be ν
u
 = 0.3 (Jin, 2018). The undrained Young's modulus can be found by using the 

condition that the shear modulus is similar in both the drained and undrained conditions: 

 
1

1

u
uE E









  (5.20) 

where E and ν are Young's modulus and Poisson's ratio of the rock mass in the drained 

condition. When E = 30 GPa and ν = 0.22, E
u
 is 31.96 GPa. The saturated density of the rock 

mass is assumed to be 2700 kg/m
3
. The speed of dilatational waves and shear waves are 

calculated using equation (2.62). All the material parameters are listed in Table 5.4. 

Table 5.4  Material parameters for the dynamic simulation 

Property Value 

Undrained Young's modulus 

Undrained Poisson's ratio 

Dilatational wave speed 

Shear wave speed 

Saturated density 

Eu = 31.96 GPa 

νu = 0.3  

Cp = 3992 m/s  

Cs = 2133 m/s 

ρ = 2600 kg/m
3
 

 

For boundary conditions, the fault is assumed to be located in an infinite medium. The ground 

surface (edge EH in Figure 5.18) is the only free surface. The model used in this simulation 

has finite dimensions. Thus, to eliminate the reflection of waves from the outer boundaries of 

the finite model, "quiet" boundary conditions must be used. In ABAQUS, the quiet boundary 

is assigned using infinite elements CINPE4. 
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For the finite element mesh, the 2D domain is uniformly discretized with elements that have a 

characteristic size of 0.25 m. 

We have the relationship between the wavelength λ, wave speed Cp, and the wave frequency f 

as: 

 
pC

f


   (5.21) 

In order to accurately model the propagation of elastic waves, one wavelength should be 

discretized into a number of finite elements, i.e.: 

 eN L     (5.22) 

where L
e
 is the size of the finite element and N is the number of finite elements used to 

discretize one wavelength. 

Combining equations (5.21) and (5.22) gives the following relationship: 

 
p

e

C
f

N L



  (5.23) 

with C
p
 = 3992 m/s, L

e
 = 0.25 m, and N = 5, f is 3193 Hz. This means that the finite element 

mesh is capable of accurately modeling the propagation of waves that have frequencies up to 

approximately 3193 Hz. It should be noted that seismic events in the field typically have 

frequencies from 1 to 5 kHz (Hardy Jr, 2003). Thus, the finite element mesh used is 

considered appropriate. 

Dynamic simulations were run for all cases that have been studied in subsections 4.2.3 (Effect 

of friction coefficient on fault slip) and 4.2.4 (Effect of injection rate on fault slip), and are 

repeated again in Table 5.5 and Table 5.6 for convenience. The time histories of the 

displacements of all nodes on two surfaces of the pre-existing fault are prescribed using the 

results from the quasi-static simulations done in subsections 4.2.3 and 4.2.4. The simulation 

results for these cases are presented in the next sections. 
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Table 5.5  Friction coefficient for cases S1, S2, and S3 

Case Friction coefficient 

S1 

S2 

S3 

0.35 (studied in section 4.2.2) 

0.65 

1.0 

 

Table 5.6  Injection rate for cases Q1 to Q4 

Case Injection rate Q (L/s per unit thickness) 

Q1 

Q2 

Q3 

Q4 

0.25 

0.5 (Case S2 in section 4.2.3) 

1.0 

3.0 

 

5.3.2 Results of dynamic simulation to assess the effect of friction coefficient 

(cases S1, S2, and S3) 

Results of case S1: 

Detailed results for case S1 are presented in this subsection, while those for cases S2 and S3 

are presented in Appendix 4. 

Figure 5.19 and Figure 5.20 show the contour plots of accelerations in directions 1 and 2 

during the arrival of the dilatational waves to the top surface of the model. Note that only the 

upper part of the model containing the top surface is presented. The dilatational waves arrive 

at the top surface of the model at time t = 1.15 s (Figure 5.19a and Figure 5.20a). After that, 

surface waves are induced and propagate along the top surface (Figure 5.19b,c and Figure 

5.20b,c); a part the incident dilatational waves are reflected off the top surface back into the 

model and interfere with the incident waves (Figure 5.19d and Figure 5.20d). 

Figure 5.21 and Figure 5.22 give the contour plots of accelerations in directions 1 and 2 during 

the arrival of the shear waves to the top surface of the model. The shear waves arrive at the top 
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surface of the model at time t = 1.65 s (Figure 5.21a and Figure 5.22a). Surface waves are then 

induced and propagate along the top surface (Figure 5.21b and Figure 5.22b). The propagation 

of the reflected waves and their interference with the incident waves are also seen in Figure 

5.21c and Figure 5.22c. 

The accelerations in directions 1 and 2 at points B, C, and D are presented in Figure 5.23 and 

Figure 5.24, respectively. The arrival of the dilatational and shear waves is clearly observed in 

these accelerograms. The dilatational waves arrive first, followed by the shear waves. For 

instance, at the point B the dilatational and shear waves arrive at approximately t = 1.15 s and t 

= 1.65 s, respectively (Figure 5.23a or Figure 5.24a). The time lag between the first arrival and 

the second arrival is Δt ≈ 1.65 – 1.15 = 0.5 s. This is consistent with the theoretical prediction, 

which is given by: 

 
1 1 1 1

2500 0.49
2174 3767S P

t d s
C C

   
        

  
 

where d is the distance from the source to the observation point, which is roughly 2500 m. 

It can also be seen that point C is farther from the wave-emitting source (i.e., the pre-existing 

fault) than the point B and the point D is the most distant (see Figure 5.18). Therefore, the 

incident waves (both dilatational and shear waves) arrive at point B earlier than point C, and 

arrive last at point D. 

The maximum acceleration in directions 1 and 2 at points B, C, and D are plotted against the 

distance from the points to the projection of the pre-existing fault on the top surface in Figure 

5.25. Among these three points, the accelerations at B are highest in both directions with A1max 

= 0.015 m/s
2
 (maximum acceleration in direction 1) and A2max = 0.007 m/s

2
 (maximum 

acceleration in direction 1). The total acceleration at this point B is: 

 
2 2 2 2

1max 2max 0.015 0.007 0.016A A A      m/s
2
 = 0.17% g 

where g is the gravitational acceleration which is approximately equal to 9.8 m/s
2
. 

Compared to intensity levels presented in Table 5.1, this peak acceleration (A = 0.17% g) 

would not be felt by human beings and is not capable of causing any structural damage. 
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Unit: m/s
2
 

 

 

(a) t = 1.15 s (b) t = 1.175 s 

  

(c) t = 1.20 s (d) t = 1.225  

Figure 5.19  Contour plots of acceleration in direction 1 at different times (Only the upper part of the 

model is presented) 

  

Unit: m/s
2
 

 

 

 

(a) t = 1.15 s (b) t = 1.175 s 

  

(c) t = 1.20 s (d) t = 1.225  

Figure 5.20  Arrival of dilatational waves in direction 2 at the top surface and generation of surface 

waves (Only the upper part of the model is presented) 
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Unit: m/s
2
 

 

 
(a) t = 1.65 s (b) t = 1.70 s (c) t = 1.75 s 

Figure 5.21  Arrival of transverse waves in direction 1 at the top surface and generation of surface 

waves (The whole model is presented) 

   

 

Unit: m/s
2
 

 

(a) t = 1.65 s (b) t = 1.70 s (c) t = 1.75 s 

Figure 5.22  Arrival of shear waves in direction 2 at the top surface and generation of surface waves 

(The whole model is presented) 

 

 

Shear waves Surface waves Reflected waves

1

2

Shear waves Surface waves Reflected waves



211 

 

 

(a) Point B 

 

(b) Point C 

 

(c) Point D 

Figure 5.23  Time evolution of acceleration in direction 1 at three points B, C, and D. The arrows 

indicate the arrivals of elastic waves: left arrow shows the arrival of dilatational waves and dilatational-

wave-induced surface waves; right arrow shows the arrival of shear waves and shear-wave-induced 

surface waves 
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(a) Point B 

 

(b) Point C 

 

(c) Point D 

Figure 5.24  Time evolution of acceleration in direction 2 at three points B, C, and D. The arrows 

indicate the arrivals of elastic waves: left arrow for the arrival of dilatational waves and dilatational-

wave-induced surface waves; right arrow for the arrival of shear waves and shear-wave-induced 

surface waves 
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Figure 5.25  Maximum accelerations in directions 1 and 2 along the top surface. Points B, C, and D 

correspond to x = 500, 1000, and 1500 m, respectively 

PGA as a function of friction coefficient: 

The peak ground acceleration (PGA) in directions 1 and 2 and the total PGA at points B, C, 

and D for all three cases are presented in Table 5.7, Table 5.8, and Table 5.9, respectively. 

These results are plotted against the friction coefficient of the pre-existing fault and are 

presented in Figure 5.26. In general, for all three points B, C, and D, the PGA increases with 

an increase in the friction coefficient. 

For case S1 with a friction coefficient μ
f
 = 0.35, the total PGA, measured in %g, is maximum 

at point C with a value of 0.167, which corresponds to the intensity level I (Table 5.1), i.e., the 

induced elastic waves may not be perceived by human beings and there is no potential for 
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f
 = 0.65, 
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"weak" in case S2 to "light" in case S3, Table 5.1). However, there is still no potential for 

structural damage.  

 

Table 5.7  PGA at point B for cases S1, S2, and S3 

Case 
Friction 

coefficient 

PGA in direction 

1 (m/s
2
) 

PGA in direction 

2 (m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

S1 0.35 0.013 0.004 0.013 0.14 

S2 0.65 0.042 0.011 0.043 0.44 

S3 1 0.159 0.042 0.164 1.68 

 

Table 5.8  PGA at point C for cases S1, S2, and S3 

Case 
Friction 

coefficient 

PGA in direction 1 

(m/s
2
) 

PGA in direction 2 

(m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

S1 0.35 0.015 0.007 0.016 0.17 

S2 0.65 0.046 0.025 0.052 0.53 

S3 1 0.084 0.045 0.095 0.97 

 

Table 5.9  PGA at point D for cases S1, S2, and S3 

Case 
Friction 

coefficient 

PGA in direction 1 

(m/s
2
) 

PGA in direction 2 

(m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

S1 0.35 0.006 0.006 0.009 0.09 

S2 0.65 0.019 0.018 0.026 0.27 

S3 1 0.037 0.030 0.048 0.49 
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(a) Point B 

 

(b) Point C 

 

(c) Point D 

Figure 5.26  PGA in directions 1 and 2 and total PGA at points B, C, and D as a function of the 

friction coefficient 
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5.3.3 Results of dynamic simulation to assess the effect of the injection rate 

(cases Q1, Q2, Q3, and Q4) 

Detailed results of the dynamic simulations for cases Q1 to Q4 are presented in Appendix 5. A 

summary of the results are presented in Table 5.10, Table 5.11, and Table 5.12, which show 

the PGA in all cases for points B, C, and D, respectively. These results are plotted against the 

injection rate in Figure 5.27. Note that for all four cases, the friction coefficient of the fault is 

0.65. 

As can be seen from Figure 5.27 the PGA increases with the increase of the injection rate. 

However, the increase rate of the PGA is faster when the injection rate increases from 0.25 L/s 

to 1 L/s than when the injection increases from 1 L/s to 3 L/s. 

The total PGA at all three points B, C, and D for all four cases is in the range from 0.17% g to 

1.4% g, which means the induced elastic waves may be felt the human beings but only weakly 

and there is no damage potential for structural systems. 

Table 5.10  PGA at point B for cases Q1, Q2, Q3, and Q4 

Case 
Injection rate 

(L/s) 

PGA in direction 

1 (m/s
2
) 

PGA in direction 

2 (m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

Q1 0.25 0.030 0.008 0.031 0.32 

Q2 0.55 0.042 0.011 0.043 0.44 

Q3 1 0.100 0.030 0.105 1.07 

Q4 3 0.156 0.044 0.162 1.65 
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Table 5.11  PGA at point C for cases Q1, Q2, Q3, and Q4 

Case 
Injection rate 

(L/s) 

PGA in direction 

1 (m/s
2
) 

PGA in direction 

2 (m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

Q1 0.25 0.037 0.022 0.043 0.44 

Q2 0.55 0.046 0.025 0.052 0.53 

Q3 1 0.067 0.035 0.076 0.77 

Q4 3 0.074 0.056 0.093 0.95 

 

Table 5.12  PGA at point D for cases Q1, Q2, Q3, and Q4 

Case 
Injection rate 

(L/s) 

PGA in direction 

1 (m/s
2
) 

PGA in direction 

2 (m/s
2
) 

Total PGA 

(m/s
2
) 

Total PGA 

(%g) 

Q1 0.25 0.019 0.016 0.024 0.25 

Q2 0.55 0.019 0.018 0.026 0.27 

Q3 1 0.032 0.024 0.040 0.41 

Q4 3 0.054 0.026 0.060 0.61 

 



218 

 

 

(a) Point B 

 

(b) Point C 

 

(c) Point D 

Figure 5.27  PGA in directions 1 and 2 and total PGA at points B, C, and D as function of the 

injection rate  
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5.4 CHAPTER CONCLUSIONS 

In this chapter 5, the generation of elastic waves from the material damage is studied using a 

discrete model (mass-spring model) and a cohesive material model. It is shown that when a 

material is damaged the main reason leading to the generation of elastic waves is the excess 

strain energy that is released during material damage, which is greater than the energy that can 

be dissipated through the material damage (e.g., energy consumed to create new surfaces). The 

intensity of the induced elastic waves is dependent on the amount of the excess strain energy, 

or, put another way, is dependent on the ratio between the strain energy release and the energy 

dissipated through damage. It is also shown that as long as the loading does not introduce 

significant dynamic effects to the system (i.e., the loading is still considered as quasi-static), 

the dynamic response of the system that is induced by the material damage is independent of 

the loading rate. 

The propagation of elastic waves induced by the fault slip is simulated by a modeling 

procedure. The effect of the induced elastic waves on human perception and structural systems 

is quantified using the peak ground acceleration. The simulation results show that lower fault 

friction coefficients or lower injection rates result in smaller peak ground accelerations. For 

the studied configuration, it has been shown that the induced elastic waves may be "weakly" 

or "lightly" felt by human beings but are not capable of posing any concern to the structural 

systems on the ground. 
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Chapter 6 

 

Conclusions and perspectives 

6.1 CONCLUSIONS 

This research is a part of the major project GEOTREF whose aim is to improve the 

understanding of fractured geothermal reservoirs in order to reduce geothermal geological risk 

and to ensure sustainable exploitation of the reservoir during the production phase. The 

principal objective of this research is to build numerical models to simulate the fracture 

propagation and the slip of pre-existing faults during hydraulic stimulation of deep geothermal 

reservoirs and to propose a procedure to model the induced seismicity. The main results can be 

summarized in the following: 

1. The effect of thermal cooling on fracture propagation: 

Thermal cooling effects are shown to be able to cause fracture propagation. These thermal 

fractures can contribute to an increase in the reservoir permeability. Numerical models based 

on the extended finite element method or cohesive element concepts were performed and were 

shown to be able to capture the main characteristics of thermal fracture propagation. The low 

thermal conductivity of the rock reduced heat transfer process; thus, the thermal cooling effect 

is more pronounced over the long term. 

2. Modeling of the propagation of hydraulic fractures and the slip of pre-existing faults 

during the stimulation phase 

The hydraulic fractures are modeled using the cohesive zone model concept, while the shear 

strength of the pre-existing faults is modeled using the Coulomb friction law. It was observed 
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that the slip rate of the pre-existing faults increases suddenly when they are intersected by the 

newly created hydraulic fractures. The main reason for this is that during intersection the fluid 

pressure inside the faults increases suddenly due to fluid flow from the hydraulic fractures into 

the faults, causing a significant decrease in the shear strength of the faults, allowing the faults 

to slip at higher rate. In most cases studied, the fault slip rate upon intersection with the newly 

created hydraulic fractures is higher than the threshold of the dynamic slip rate, which 

indicates that the slip event is likely seismic. 

3. The effect of the fault orientation, fault friction coefficient, and the injection rate on 

the fault slip 

Through parametric studies, it was found that: 

 Faults that are more critically oriented with respect to the initial stresses show higher 

slip rates when they are intersected with hydraulic fractures 

 Increasing the fluid injection rate also increases the fault slip rate. However, short 

faults are more sensitive to an increase in the injection rate than longer faults. 

 The friction coefficient was also found to have a strong influence on the fault slip. As 

the fault friction coefficient decreases, the fault slip rate upon intersection with 

hydraulic fractures also decreases. If the friction coefficient is low enough, the fault 

slip rate can be reduced to levels below the threshold of the dynamic slip rate. This 

suggests that one can still achieve the goal of stimulating a rock reservoir (i.e., 

activation of the pre-existing faults and connecting them together) while minimizing 

the risk of inducing seismic fault slip by reducing the friction coefficient of the pre-

existing faults before the hydraulic stimulation begins. 

4. The generation of elastic waves from fracture propagation and fault slip 

 It was theoretically shown (see chapter 5) that the main mechanism leading to the 

generation of elastic waves when the material is damaged (e.g., fracture propagation or 

fault slip) is that, during the material damage process the amount of strain energy 

released is larger than the amount of energy that can be dissipated through the material 

damage (e.g., energy consumed to create new fracture surfaces). Thus, the excess strain 

energy is converted into kinetic energy in the form of elastic waves. 
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 The intensity of the induced elastic waves is dependent on the amount of the excess 

strain energy, or in other words, is dependent on the ratio between the strain energy 

release and the energy dissipated through damage. 

 It is also shown that as long as the external loads do not introduce significant dynamic 

effects into the system (i.e., the external loads are still considered to be quasi-static), 

the dynamic response of the system that results from the induced material damage is 

independent of the loading rate. 

5. The methodology for computing peak ground accelerations (PGAs) induced by fault 

slip 

 A numerical modeling approach is proposed to compute the ground accelerations 

induced by fault slip. The sequential approach combines quasi-static coupled 

hydromechanical simulations with dynamic simulations. 

 For the configurations studied in this research, the estimated PGAs may be felt by the 

public but will not cause damage to structural systems or the built environment. For 

instance, the maximum PGA for all studied cases is approximately 2 %g, which is 

smaller than the 4 %g limit specified by the Building code Eurocode 1998 above which 

seismic designs must be implemented (Clause 3.2.1 (5)P of the Eurocode 1998 - part 

1). 

6.2 RECOMMENDATION FOR FUTURE RESEARCH 

 The main results of the numerical models (chapter 4), with respect to the relationship 

between the friction conditions of the faults, the injection rate, and fault orientation 

with its slip behavior, are qualitatively supported by in-situ observations. New 

laboratory experiments under controlled conditions analogous to shear-faulting 

reservoirs need to be done in order to quantitatively validate and calibrate the 

numerical models. Using the methodological developments in chapter 5 it is possible 

to analyze the responses recorded by micro-seismic sensors used in laboratory 

experiments, which are usually in the form of electrical signals (piezoelectric sensors), 

and calibrate the waveforms with geometrical and mechanical parameters of the 

shearing and/or opening zone. A similar analysis can be carried out for in-situ 
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situations to find out possible relationships between the responses at seismometers and 

the source mechanism and mechanical properties of the source. 

 The behavior of fractured geothermal reservoirs during the stimulation phase is the 

main focus of this research. The reservoir behavior during the production phase still 

requires further research as the production phase is expected to last as long as 30 to 50 

years. The models that have been built for the stimulation phase can be modified to 

study the behavior of the reservoirs during the production phase, e.g., adding physical 

couplings such as thermal processes. 

 The thermal effects have been evaluated separately from fluid processes in chapter 3. 

The cooling experiment using rock salt showed that a temperature decrease of 25 °C 

was able to create a 10 m long, 1 m deep, and 1 mm wide fracture. In deep geothermal 

reservoirs, temperature changes may be of the order of hundreds of °C. Therefore, it is 

expected that the thermal cooling effects in geothermal reservoirs will be more 

significant. The first well-known effect is the increase over time in the injectivity at the 

reinjection borehole, which is linked to the contraction of the rock mass. The second 

possible effect is the risk of thermal breakthrough, i.e., the injected fluid concentrates 

in a more direct flow path linking directly the two boreholes. The thermal 

breakthrough, if occurs, will be detrimental to the sustainability of any geothermal 

project. Several studies have also suggested that thermal contraction of the geothermal 

reservoirs is responsible for the settlements observed on the ground surface above the 

reservoir. Thus, the thermal cooling effects may require further research at a larger 

scale and over long time scales with respect to its impact on the reservoir permeability 

enhancement and possible delayed seismic fault slip. Our conclusions on the potential 

effect of a change in the friction behavior lead us to recommend additional research on 

the possibility of friction reduction with time due to delayed effects of hydro-thermo-

chemical processes in geothermal reservoirs. This effect would be of the utmost 

importance for CO2 underground storage reservoirs/caverns having undetected sub-

seismic faults as the injected fluids would have become more acid than native fluids. 
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2) Dac Thuong Ngo, Frederic L. Pellet, Dominique Bruel (2019). Modeling of fault slip 

during hydraulic stimulation in a naturally fractured medium. Geomechanics and 

Geophysics for Geo-Energy and Geo-Resources (doi.org/10.1007/s40948-019-00108-1) 

 

Publications in international conferences: 

1) Dac Thuong Ngo, Frédéric L. Pellet, Dominique Bruel. Modeling of dynamic crack 

propagation under quasi-static loading. 15
th

 International Conference of the International 

Association for Computer Methods and Advances in Geomechanics, Wuhan, China, 

October 2017 

2) Dac Thuong Ngo, Frédéric L. Pellet, Dominique Bruel. Numerical modeling of rock 

fracturing in geothermal systems. 6
th

 International Conference on Coupled THMC 

Processes in Geosystems, Paris, France, July 2017 
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Appendix 2: Simulation results for cases MS1 and 

MS3 of Section 4.3.2 

Simulation results for case MS1 (friction coefficient μ
f
 = 0.35): 

 

 
Figure AN-1  Time evolution of injection pressure and fluid pressure at the center of faults F1, F2, and 

F3 (case MS1) 

0

20

40

60

80

0 50 100 150 200

F
lu

id
 p

re
ss

u
re

 (
M

P
a)

Time (s)

Injection pressure Fault F1

Fault F2 Fault F3



228 

 

(a) Fault F1 

  

(b) Fault F2 

  

(c) Fault F3 

  
Figure AN-2  Time evolution of accumulative slip and slip rate for faults F1, F2, and F3 (case MS1) 
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Simulation results for case MS3 (friction coefficient μ
f
 = 1.0): 

 

 
Figure AN-3  Time evolution of injection pressure and fluid pressure at the center of faults F1, F2, and 

F3 (case MS3) 
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(a) Fault F1 

  

(b) Fault F2 

  

(c) Fault F3 

  
Figure AN-4  Time evolution of accumulative slip and slip rate for faults F1, F2, and F3 (case MS3) 
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Appendix 3: Simulation results for cases MQ2, and 

MQ3 of Section 4.3.3 

Simulation results for case MQ2 (injection rate Q = 1 L/s): 

(a) Fault F1 

  

(b) Fault F2 

  

(c) Fault F3 

  
Figure AN-5  Time evolution of accumulative slip and slip rate for faults F1, F2, and F3 (case MQ2) 
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Simulation results for case MQ3 (injection rate Q = 2 L/s): 

(a) Fault F1 

  

(b) Fault F2 

  

(c) Fault F3 

  
Figure AN-6  Time evolution of accumulative slip and slip rate for faults F1, F2, and F3 (case MQ3) 
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Appendix 4: Results of dynamic simulation for 

cases S2 and S3 of Section 5.3.2 

Results of dynamic simulation for case S2: 

(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-7  Time evolution of acceleration in direction 1 at points B, C, and D (case S2) 
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(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-8  Time evolution of acceleration in direction 2 at points B, C, and D (case S2) 
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Results of dynamic simulation for case S3: 

(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-9  Time evolution of acceleration in direction 1 at points B, C, and D (case S3) 
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(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-10  Time evolution of acceleration in direction 2 at points B, C, and D (case S3) 
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Appendix 5: Results of dynamic simulation for 

cases Q1 to Q4 of Section 5.3.3 

Results of dynamic simulation for case Q1 (injection rate = 0.25 L/s): 

(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-11  Time evolution of acceleration in direction 1 at points B, C, and D (case Q1) 
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(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-12  Time evolution of acceleration in direction 2 at points B, C, and D (case Q1) 
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Results of dynamic simulation for case Q2 (injection rate = 0.5 L/s): 

(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-13  Time evolution of acceleration in direction 1 at points B, C, and D (case Q2) 
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(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-14  Time evolution of acceleration in direction 2 at points B, C, and D (case Q2) 
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Results of dynamic simulation for case Q3 (injection rate = 1 L/s): 

(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-15  Time evolution of acceleration in direction 1 at points B, C, and D (case Q3) 
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(a) Point B 

  

(b) Point C 

  

(c) Point D 

  
Figure AN-16  Time evolution of acceleration in direction 2 at points B, C, and D (case Q3) 
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Results of dynamic simulation for case Q4 (injection rate = 3 L/s): 

(a) Point B 

  

(b) Point C 

  

 

(c) Point D 

  
Figure AN-17  Time evolution of acceleration in direction 1 at points B, C, and D (case Q4) 
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(a) Point B  

(b) Point C  

(c) Point D  
Figure AN-18  Time evolution of acceleration in direction 2 at points B, C, and D (case Q4) 
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Appendix 6: Effect of the finite element mesh 

The influence of the finite element mesh on the results of the hydromechanical simulation of 

fracture propagation is investigated and presented here. For this purpose, the KGD fracture 

model, which was studied in section 4.1.1, is chosen. Three different meshes are tested. These 

meshes are presented in Figure AN-19. The minimum size of these meshes is 0.05 m, 0.3 m, 

and 1 m. 

The material properties, the boundary and loading conditions are similar to what were used in 

section 4.1.1. 

The simulation results for hydraulic aperture and injection pressure for these meshes are 

compared to the analytical solution and presented in Figure AN-20. It can be seen that as the 

mesh size decreases, the simulation results approach closer to the analytical solution. The 

mesh A, which has the minimum size of 0.05 m, gives the best results. Meanwhile, for the 

mesh C, which has the minimum size of 1 m, oscillations are observed in the time evolution of 

both the hydraulic aperture at the injection point and the injection pressure. 

 

(a) Mesh A 

 

(b) Mesh B 

 

(c) Mesh C 

Figure AN-19  Different finite element meshes. The minimum size for mesh A, B, and C  is 0.05 m, 

0.3 m, and 1 m, respectively. 

5 m
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(a) 

 

(b) 

Figure AN-20  Time evolution of (a) Hydraulic aperture at the injection point and (b) Injection 

pressure 
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ABSTRACT 

 

The development and the exploitation of deep geothermal reservoirs are usually 

accompanied with induced seismicity – an unwanted side effect. This research is focused 

on using numerical simulations to investigate the propagation of hydraulic fractures and 

the reactivation of pre-existing faults during the hydraulic stimulation of the reservoirs in 

an effort to better understand the fractured reservoir behavior and to reduce the potential 

risk of induced seismicity. 

The induced seismicity is studied first from the standpoint of using the law of energy 

conservation in order to explain the mechanism of generating elastic waves from rock 

failure. Then an approximate approach is proposed to calculate the peak ground 

accelerations (PGAs) that are induced by the fault slip. The computed PGAs on ground 

surface are used to assess the human perception of the seismic waves and the damage 

potential to structures. 

MOTS CLÉS 

 

Géothermie, stimulation hydraulique, modélisation numérique, sismicité induite, 

mécanique de la rupture, FEM 

RÉSUMÉ 

 

Le développement et l'exploitation de réservoirs géothermiques profonds 

s'accompagnent généralement d'une sismicité induite - un effet secondaire indésirable. 

Cette recherche est axée sur l'utilisation de simulations numériques pour étudier la 

propagation des fractures hydrauliques et la réactivation de failles préexistantes lors de la 

stimulation hydraulique des réservoirs afin de mieux comprendre le comportement du 

réservoir fracturé et de réduire le risque potentiel de sismicité induite. 

La sismicité induite est d'abord étudiée du point de vue de l'utilisation de la loi de 

conservation de l'énergie afin d'expliquer le mécanisme de génération d'ondes élastiques 

à partir d'une rupture de roche. Ensuite, une approche approximative est proposée pour 

calculer les accélérations de pointe de pointe (PGA) induites par le glissement de faille. 

Les PGA calculés à la surface du sol servent à évaluer la perception humaine des ondes 

sismiques et le potentiel de dégradation des structures. 
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Geothermal energy, hydraulic stimulation, numerical modeling, induced seismicity, 

fracture mechanics, FEM 


