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MOTS CLÉS 

Modélisation, corrosion du verre nucléaire, réseau de fractures, analyse d'images, 

changement d'échelle, milieu poreux équivalent 

RÉSUMÉ 

Comprendre l'altération du verre nucléaire dans un réseau de fracture au sein d'un 

bloc de verre vitrifié est important pour la sûreté du conditionnement des déchets 

nucléaires (quantification des risques associés au relâchement des radionucléides). 

L’évaluation de la performance du stockage géologique des déchets nucléaires passe 

obligatoirement par la modélisation de l’altération aqueuse d’un bloc de verre nucléaire 

fracturé, l’échelle de temps envisagée (plusieurs milliers d’années) dépassant toute 

possibilité d’expérience directe. Cette thèse vise donc à combler le fossé entre les 

simulations d'écoulement et de transport à l'échelle du réservoir et la modélisation à 

l'échelle micrométrique des processus interfaciaux verre-eau, en apportant l'évaluation 

quantitative de la dégradation aqueuse du verre à l'échelle d’un bloc.  

Pour aborder ce problème, les objectifs principaux de cette thèse ont été fixés comme 

suit : (i) la reproduction des résultats expérimentaux obtenus précédemment (pour 

quelques fractures modélisées de manière discrète en mode diffusif), (ii) l’analyse de 

l'impact des géométries de fractures sur la quantité de verre altéré pour quelques fissures 

modélisées de manière discrète, (iii) l’étude de la possibilité d'adaptation du modèle 

géochimique à la modélisation dans le cadre de l’approche milieu équivalent, (iv) la mise 

au point d'une méthodologie de caractérisation, (v) la modélisation géostatistique et 

géométrique de réseau de fractures à l’échelle d’un conteneur de verre, (vi) le calcul des 

paramètres équivalents diffusifs, hydrauliques et les paramètres qui contrôlent la 

cinétique de dissolution de verre, et  au final, (vii) la modélisation de transport réactif à 

l’échelle d’un conteneur. 

À titre illustratif, la méthodologie de la caractérisation de réseau fracturé proposée, 

basée sur le traitement des images, a été appliquée aux images bidimensionnelles (2D) 

de haute résolution de deux blocs de verre. Cette application a permis de mettre en 

œuvre à la fois les données directes obtenues par mesures des paramètres d’un réseau 

fracturé de verre vitrifié et les données indirectes explicatives issues des simulations 

thermomécaniques. L’application a abouti à la création de multiples réalisations de 

tessellation de réseaux fracturés équivalents qui ont ensuite été utilisées comme 

représentations physiques pour les calculs de la perméabilité équivalente, de la diffusion 

équivalente et des paramètres contrôlant la cinétique de dissolution de verre borosilicaté. 

L'évolution de la quantité de verre altéré obtenue en effectuant la modélisation de 

transport réactif appliquée à plusieurs réalisations de la tessellation de réseau fracturé 

équivalent a été comparée aux données expérimentales d’un essai d'altération aqueuse 

d'un conteneur non radioactif de verre nucléaire. Les résultats montrent que la 

méthodologie conçue offre une opportunité pour mieux comprendre l'impact de la 

fracturation sur l'altération aqueuse du verre vitrifié et constitue un outil fiable permettant 

de prendre en compte différents scénarios d'évolution du stockage. 



 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

Understanding the alteration of nuclear glass in a fracture network of a vitrified glass 

block is important for the safe conditioning of nuclear waste (quantification of the risks 

associated with radionuclide release). Performance assessment of geological nuclear 

waste repositories entails modelling of the long-term evolution of the fractured nuclear 

glass block aqueous alteration, because the considered time scale, of several thousands 

of years, is beyond the range of any direct experimental perspectives. This dissertation 

aims then to bridge the gap between the reservoir-scale flow and transport simulations 

and the micron-scale modeling of the glass-water interfacial processes, by bringing the 

quantitative evaluation of the glass aqueous degradation at the block scale.  

To tackle this issue, the main objectives of this thesis were fixed as follows: (i) 

reproduction of the experimental results previously obtained (for some fractures modeled 

in a discrete way in the diffusive mode),(ii)  analysis of the impact of fractures geometries 

on the quantity of altered glass at the scale of some fractures modeled in a discrete way, 

(iii) investigation of the possibilities of the geochemical model adaptation for the 

equivalent homogenous modeling, (iv) establishment of a methodology for glass block 

fracture network characterization, (v) geostatistical and geometric modeling, (vi) 

calculation of the equivalent diffusive, hydraulic and glass dissolution kinetics controlling 

properties and (vii) upcoming reactive transport modeling at the scale of one canister.  

As an illustrative example, the proposed image processing-based fracture network 

characterization methodology was applied to two-dimensional (2D) high-resolution 

images of two blocks of vitrified glass. This application brought into service both hard 

data obtained by direct measurement of the fracture network and soft physics-based 

explanatory data and resulted in the creation of multiple realizations of fracture network 

equivalent tessellation that were further used as physical representation for the 

calculation of the equivalent hydraulic, diffusive, and alteration kinetics - controlling 

properties. The evolution of the quantity of altered glass obtained by conducting reactive 

transport modeling applied to several realizations of the equivalent fracture network 

tessellation was compared with the experimental data of the aqueous alteration test of a 

non-radioactive full-scale nuclear glass canister. The results show that implementation of 

the devised procedure presents an opportunity for better understanding the impact of 

fracturing on aqueous alteration of borosilicate glass and provides a reliable tool enabling 

different scenarios of repository evolution to be accounted for.  

 

KEYWORDS 

Modeling, nuclear glass corrosion, fracture network, image analysis, upscaling, 

equivalent porous medium 
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Résumé du chapitre  

Dans ce chapitre, les aspects liés au contexte du stockage de déchets nucléaires de haute 

activité à vie longue sont présentés. Ensuite, le procédé de la fabrication des conteneurs de 

verre vitrifié est exposé de manière succincte et la question de la fracturation du verre 

engendrée par son refroidissement dans le conteneur inox est abordée. Les questions 

scientifiques et les objectifs principaux de cette thèse sont détaillés. Ce chapitre se termine 

par la description de la structure de ce manuscrit. 

1. Introduction 

1.1. Background and Motivations 

In the history of humanity the demand for energy has never been stronger than today. Even 

if in 2016 growth in energy consumption amounted to only half the average rate seen over 

the previous 10 years (Figure 1-1), it is still positive.  

 

Figure 1-1 Energy consumption growth contributions to annual growth, %. Obtained from BP 

Statistical Review of World Energy 2017 

It weighs more and more heavily on the natural resources (predominantly finite, like 

hydrocarbons). Over the last century, France has developed a large fleet of nuclear power 

generators in order to meet the growing demand while limiting its dependency to oil and gas 

importations. According to the BP 2017 statistical review of world energy (www.bp.com 

2017), in 2016 total energy consumption in France amounted to 235 million tons of oil 

equivalent, with nuclear energy running to 91.2 million tons of oil equivalent. In 2016, France 

was responsible for 15.4 % of the world nuclear energy production.  

In view of concerns on climate change, nuclear energy could play a significant role in the 

current energy transition. Fossil fuel energy is characterized by heavy carbon emissions that 

aggravate climate change. Coal power plants also emit large amounts of particles with real 
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and immediate impacts on human health. In that concern, from this environmental point of 

view, nuclear energy is much cleaner than fuel fossil energy. 

Nevertheless, nuclear energy has several important drawbacks. Its development is heavily 

capitalistic and subject to onerous security restrictions. On top of that, and what is more 

crucial, nuclear energy sector leaves different kind of nuclear waste coming from the 

maintenance or operation of nuclear facilities. Thus, the wastes are regarded as a huge issue, 

especially since their management represents a technological challenge joined together with 

serious moral and ethical questionings. 

From a scientific point of view, in France the management of nuclear wastes is based on the 

multi-barrier disposal concept implying that a series of engineered and natural barriers 

(container, buffer material around the container, metal envelops, sealing systems), will work 

together to contain and isolate used nuclear fuel from the environment 

This research falls within the context of nuclear waste management, particularly for high 

level wastes, and strives for a better understanding of the behavior of the nuclear waste 

containing matrix of borosilicate glass over several thousands of years. In particular, it deals 

with the analysis of the glass fractured medium evolution. The study is based on the 

construction of a model of the fractured medium in view of a reactive transport modeling of 

its evolution. The methodology allows for the quantitative assessment of the degradation of 

the glass and the release of radionuclides under different scenarios of evolution, bridging the 

gap between laboratory scale (micrometer, years) and geological repository scale (meter for 

the block, tens of thousands of year). 

1.2. General context: nuclear waste storage 

1.2.1. Management of nuclear wastes 

It is of common practice to classify nuclear wastes firstly, according to their level of 

radioactivity (from weak to highly radioactive) and secondly, according to the radioactive 

half-life of the main emitters that waste contains. Level of radioactivity and radioactive half-

life define the dangerousness level and the duration of the nuisance that the waste can cause. 

These two parameters cover a large range of activities and half-lives; therefore each type of 

nuclear waste requires special management.  

In this connection it is worth remembering that in 1991 France passed a law, the Bataille Act, 

to organize the management of radioactive waste. Subsequently, it was extended by a new 

law passed on 28 June 2006. Within this legislative framework a major research program has 

been launched, with the main objective being to find the most appropriate way of managing 

the most highly radioactive wastes. 

Nowadays in France, five waste categories are distinguished; their main characteristics are 

provided in Table 1-1 
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Table 1-1 Classification of radioactive waste and their storage/disposal solutions; information adapted 

from (andra.fr) 

Category Origin Volume, % Level of 

radioactivity, 

% 

Preparation 

stage 

Forseen 

disposal 

solution 

Very-low-level 

waste (VLLW) 

Operation and 

decommissioning 

of nuclear 

facilities; clean-

up and 

remediation of 

historic sites 

polluted by 

radioactivity 

27 <0.01 Some VLLW 

is subject to 

special 

processing 

like 

compaction, 

solidification, 

stabilization. 

Waste 

packages are 

labelled and 

stacked in 

vaults  

Vaults are 

dug out of 

clay layer, a 

few meters 

below the 

surface 

Low and 

intermediate 

level, short-

lived radio-

active waste 

(LILW-SL) 

Maintenance and 

operation of 

nuclear facilities 

(clothing, tools, 

filters, etc.); by 

research or 

healthcare 

activities 

63 0.02 Waste 

packages are 

compacted 

or solidified 

and then 

mixed with 

concrete 

before being 

placed in a 

concrete or 

metal 

container 

 

In reinforced 

concrete 

near surface 

structures, 

that are later 

closed by a 

concrete 

slab, made 

watertight 

by a layer of 

impermeable 

resin 

Low-level  

long-lived 

waste (LLW-

LL) 

Radium-bearing 

waste  

comes from the 

processing of 

various used 

minerals  

(e.g. metallurgy) 

Graphite waste 

originates from 

dismantling of 

the first 

generation of 

nuclear reactors   

7 0.01 Graphite 

waste - in 

metal baskets 

that are later 

put then into 

concrete 

containers. 

Radium-

bearing 

waste - in 

metal drums 

Temporary 

stored on 

industrial 

producers 

sites  

Intermediate-

level waste, 

long-lived 

(ILW-LL) 

Metal cladding 

structures 

surrounding 

nuclear fuel 

elements (hulls 

and end caps) or 

3 4 Compacted 

into pucks 

and placed in 

containers 

(more or less 

similar to 

Deep 

geological 

disposal at 

500 metres 
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residues from the 

operation of 

nuclear facilities 

those used in 

vitrification 

facilities) 

High-level 

waste, long-

lived (HLW 

LL) 

Highly 

radioactive 

residue from the 

reprocessing of 

spent fuel used 

for power 

production, and 

waste from the 

defence sector 

0.2 96 Stored 

temporarily 

in tanks 

before being 

calcined in 

the form of a 

powder and 

then 

incorporated 

into a molten 

glass. The 

mixture is 

poured into a 

stainless steel 

container 

Deep 

geological 

disposal at 

500 metres 

 

Among the categories shown in Table 1-1, high level activity (HLA) and intermediate level 

(IL) activity long lived wastes are of specific concern, since the safety of their disposal 

solution has to be ensured for several thousands of years. 

1.2.2. Geological storage 

In consideration with the results of fifteen years of research spent studying and assessing 

various solutions for waste geological disposal carried out by ANDRA, the French 

Parliament opted for deep geological disposal and asked ANDRA to design Cigeo (Centre 

industriel de stockage géologique) - a deep geological disposal facility for radioactive waste.  

According to the disposal scenario envisaged by ANDRA, the packages of vitrified glass 

containing high level long-lived radioactive wastes (HLLLW) will be stored in disposal cells 

of a repository to be built in Callovo-Oxfordian clay, located 500 m beneath the ground 

surface in Meuse / Haute-Marne, France.  

Under the current concept (still in evolution), these cells would be blind micro-tunnels, 0.7 m 

of diameter and 100 to 150 m of total length (Figure 1-2). A steel lining is intended to 

facilitate the placement of packages during the operational phase (and their removal for 

possible recovery). Finally, a filler material should be injected between the liner and the host 

rock to enhance mechanical strength and reduce corrosion. The packages would be 

positioned separated from one another, so that heat production in the cell is compatible with 

thermo-hydro-mechanical targets (ANDRA 2016). 

Depending on the administrative procedure and authorization process, Cigeo is expected to 

receive first batches of the stainless steel packages with inert vitrified glass (for 



CHAPTER 1: INTRODUCTION 

 

8 
 

demonstration) between 2025 and 2030 in the framework of the industrial pilot phase, before 

an industrial phase by 2035. 

 

Figure 1-2 a) Schematic diagram of the HA cell; b) Illustration of an HA storage container for vitrified 

waste primary package type R7T7High-level long-lived waste disposal gallery in operating 

configuration. Obtained from (ANDRA 2016) 

1.3. Conditioning of long-lived high- level (LLHL) radioactive waste 

1.3.1. Manufacturing procedure of blocks of vitrified glass 

The process of treatment of nuclear waste using vitrification at the industrial scale was 

initiated in 1978 at the Marcoule vitrification facility (Vernaz et al. 2014). The confinement 

process, detailed by (Bonniaud et al. 1980; Advocat et al. 2008), consists of two separate 

stages. The first stage involves calcination of the liquid fission product (FP) solutions at 

around 400°C. This is followed by a melting stage at around 1100°C in an induction-heated 

metallic reactor: the vitrification additive (glass frit) and the calcinated FP solution (calcinate) 

are mixed before being poured into a metallic container. In France, two types of melters are 

used to vitrify HLLL radioactive wastes: hot or cold crucible. In the melting pot (sometimes 

named hot crucible), glass is heated by thermal conductivity from the walls of the pot to the 

core the glass bath. Alternatively, with the cold crucible induction melter technology (CCIM), 

the principle is to induce electric currents directly within the glass to raise its temperature 

without heating the crucible. The direct-induction heating method allows the temperature to 

be increased (up to 1300°C) making it possible to obtain new waste containment matrices (i.e. 

for the vitrification of highly-corrosive UMo fission products, UOx fission products, etc.). 

Also, the CCIM technology allows the industrial vitrification throughput to be significantly 

increased: the higher the temperature, the faster the calcine digestion by the glass 

(neimagazine.com 2011).  

Hot and cold crucibles give similar volume of glass SON68: in both cases about 400 kg is 

poured in two batches of 200 kg and the cooling takes place in natural environment without 

forced convection during about two days. That said, there are still some differences in 
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thermal parameters that differentiate these two procedures. Their graphical interpretation is 

given in Figure 1-3. 

1. Duration of the inter-flows: about 10 h for the hot crucible, against about 6 h for the 

cold crucible. 

2. Outside temperature: higher for the hot crucible, due to temperature maintenance in 

an oven (duration varies from case to case, in Figure 1-3 it makes up 50 000 s). In contrast, 

there is no preheating of the stainless steel casing for the cold crucible, and no external 

heating within the first hours. As a result, when the glass is solid, more important rate of 

fracturing is revealed for the hot crucible in comparison with the cold crucible. 

3. Temperature of the glass melting: 1373 K for the hot crucible against 1 473 K for the 

cold crucible. 

 

Figure 1-3 External temperature readings (close to steel) of the hot (process 2), and the cold (process 1) 

crucibles. For both of them the casting is effectuated in two steps, with total mass of a block being 400 

kg). Adopted from (Barth 2013). 

The resulting glass incorporating FP is then poured and solidifies inside stainless steel 

containers (type "CSD-V" - standard package of vitrified waste).  

Downstream of the industrial process of vitrification, the packages are sealed and stored in 

ventilated wells during a sufficient storage period for initial cooling of the packages (up to 

300 years). Later on, these packages are supposed to go to the underground storage facility. 

1.3.2. Some studies on glass fracturing 

Fracturing is a potential issue as it could increase the reactive surface accessible to 

underground water during the geological disposal phase of the vitrified wastes, after the 

stainless steel container has lost its integrity. A higher accessible surface in turn means an 
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increased radionuclide release rate. By conducting leaching experiments of a nuclear glass 

(Perez et al. 1989; Chomat 2008; Verney-Carron 2009) demonstrated that these surfaces, if 

they are part of a network of open cracks (in percolation), may also interact with water 

during the alteration of the packages in an aqueous medium. 

That is why it seemed important to study the thermomechanical behavior of the nuclear 

glass. The research of (Barth 2013) resided in the implementation of a continuum damage 

mechanics model aimed at predicting the development of fracturing surfaces, originating as 

a result of the thermal and mechanical stresses related to the manufacturing procedure and 

evolving in course of a package life. It comprises such types of simulations as: thermal 

simulations, simulation of structural relaxation, and simulation of thermal damage. 

(Bouyer et al. 2014) have illustrated the variation of the glass transition temperature 

according to the thermal history during cooling and solidification of the glass in the package. 

It was shown that the solidification front evolves in a characteristic way according to the 

process of glass melting (due to the distribution of thermal histories in the package). The 

model relaying on the assumption that the elastic energy associated with the stresses that are 

higher than the threshold stress is dissipated in the creation of new surfaces (Dube et al. 

2010) was used to estimate the fracture surfaces of a glass block.  

The results of the simulations of a glass block fabricated in a cold crucible without the 

thermal source due to radioactivity is planned to be used in our research in order to make a 

link between the observed fracture network morphology and the physical parameters that 

condition the development of the glass fracture network at scale 1.  

1.4. Scientific questions and objectives 

Modeling of flow and transport phenomena in fractured media has become a topical issue in 

Earth Sciences. The nuclear energy industry shows interest in this subject because fractures 

could eventually be responsible for the release of the radionuclides with the ground waters 

in deep geological wastes repositories. In fact, multiple researches strive to model the 

migration of radionuclides in fractures of host rocks surrounding deep geological 

repositories for high level wastes (ANDRA 2005a; Zhang 2018; Cvetkovic et al. 2004; 

ANDRA 2010, 2005b). With reference to these researches it is possible to state that at the 

reservoir scale the solute transport and the flow of the ground water bearing radionuclides 

are rather well understood.  

At the same time, over the last thirty years, plenty of studies have focused on the 

performance of the glass under leaching (Pierce et al. 2014; Steefel 2015; Gin et al. 2013). 

Results of these experiments enabled better understanding of the mechanisms of glass 

alteration at the micro level and gave the foundation to elaborate glass reactivity with 

allowance for the alteration layer model (GRAAL), (Frugier et al. 2008). Despite the 

advancements made in studying solute transport and flow of the ground water in fractures 

and discoveries in the domain of borosilicate glass aqueous alteration, a crucial investigation 
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of the effect of block fracturing on the glass aqueous alteration has stayed rather limited so 

far.  

The overarching aim of this research has therefore been to bring new light on the impact of 

fracturing on the quantity of altered glass at the scale of the glass package (scale 1). The 

dissertation is framed by the following scientific questions. 

Question 1: 

At the scale of some fractures, how to couple the geochemistry of glass alteration and the 

modeling of transport phenomena? What are the main mechanisms that drive the 

development of the altered glass layers and glass aqueous alteration?  

Proposed solution: Taking control of GRAAL model, comparison of the results of reactive 

transport modeling to the results of the experiments conducted by Chomat (Chomat 2008), 

explanation of the results of modeling in light of the principles of GRAAL model and 

theoretical knowledge of nuclear glass corrosion. 

Question 2: 

What is the influence of fracture length, opening, number on the quantity of altered glass 

released?  

Proposed solution: Conducting a sensitivity study in the framework of discrete fracture 

network modeling that enables to refine the knowledge of the impact of ideal fractures 

geometry on the evolution of the glass aqueous alteration.  

Question 3: 

Is it possible to adapt GRAAL model in order to conduct reactive transport modeling applied 

to a system of fractures described by an equivalent porous medium representation?  

Proposed solution: “Upscaling” of the GRAAL model, carrying-out the modeling in the 

framework of “Fracture” and “Porous Medium” approaches in a diffusive mode. This step 

sets the stage for the geochemical modeling at the scale of a glass package. The main purpose 

is to prove that from the geochemical perspective it is feasible to replace CPU time 

consuming discrete fracture network representation by an equivalent fracture network 

representation provided that kinetics governing parameters such as, glass specific surface, 

glass mass per solution volume, half-saturation coefficient and equivalent fracture porosity 

are supplied for all meshes of the modeled equivalent medium. 

Question 4: 

What techniques should be applied to characterize a block fracture network? What are the 

approaches that will allow us to achieve the final objective of the quantity of altered glass 
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quantification in a relatively short period of time and without being extremely too 

cumbersome?  

Proposed solution: Conception of the image-based fracture network characterization routine 

relying on the analysis of high quality images of vitrified glass block cross sections. It 

involves stages of fracture network extraction and its meticulous examination and it 

proposes the replacement of the fracture network representation by a “crystal” 

representation. The idea behind the adoption of the crystal representation is to be able to 

replicate block facture network by reproducing its segmented image (kind of object 

modeling via the techniques of anisotropic mesh growth). The devised workflow comprises 

steps of (i) characterization of fracture network as the scale of vitrified glass block, (ii) 

upscaling of permeability, diffusion and kinetics governing parameters and subsequent (iii) 

reactive transport modeling with consideration for variability of fracture network. 

Question 5: 

What data can be brought into play in order to supplement scarce hard data acquired at the 

stage of image analysis?  

Proposed solution: Examination of the results of thermo-mechanical simulation as a model of 

a glass block elaborated in a cold-crucible without radioactive source term. Selection of an 

exhaustively known physical parameter whose transforms could supplement the raw data at 

the stage of the equivalent fracture network simulation. Analysis of the evolution of the 

chosen parameter and its derivatives with upcoming construction of the maps that reflect the 

anisotropy of fracture networks in consideration of the evolution of the internal state of the 

glass.  

Question 6: 

Is there any not lengthy and moderately time consuming way to extend the proposed 2D 

model towards a 3D model? What are the limitations of this approach? 

Perspective for future: creation of a 3D model by applying a cylindrical symmetry. 

Regarding the knowledge of the fracture pattern of a transverse plane of fracture package, it 

could be obtained by applying the workflow devised in the course of this research. However, 

certain caution must be applied since the fracture network is likely to vary along the z-axis 

due to the presence of the different thermo-mechanical environments, i.e. zone of 

reliquefaction, free glass surface, bottom area of the package. 

1.5. Dissertation structure 

This section provides an overview of each chapter and explains their contributions to the 

achievement of the research goals.  
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Chapter 2 

In this chapter, in a first step in § 2.1, the state of the art of the aqueous alteration of 

borosilicate nuclear glass is presented. The knowledge gained from the multiple experiments 

conducted at CEA and abroad is examined and the GRAAL glass corrosion model is 

presented. In § 2.2 we discuss the experimental results and the efforts made to characterize 

nuclear glass fracture networks at the scale of one container by static and dynamic 

measurements and then at the scale of a few fractures by optical microscopy and scanning 

electron microscopy. This chapter ends with the analysis of the theoretical bases of reactive 

transport and more precisely, in § 2.3 we pay attention to the principles of the coupled 

HYTEC reactive transport code used in this thesis, then we present some ideas on the origin 

of convection that might exist in storage conditions and we cite some limitations of reactive 

transport codes. 

Chapter 3 

This chapter aims to explain the issue of the glass fracture network analysis at the scale of a 

container. In § 3.1 we present the basics of mathematical morphology - the main tool for the 

characterization of glass fractured network, discussed in this thesis. In § 3.2 we look at the 

steps taken to obtain images of nuclear glass sections and we explain the reasons justifying 

the choice of ordinary imaging in relation to different types of microscopy and tomography. 

At the end of this chapter we reflect on the possibility of extending the proposed 

methodology to 3D applications and we indicate some technical obstacles that will be 

necessary to tackle. 

Chapter 4 

The fourth chapter begins with the recapitulation of the results of the glass aqueous 

corrosion experiments applied to simple systems of ideal fractures of nuclear glass. The 

second part of the chapter deals with the implementation of the Glass Reactivity with 

Allowance for the Alteration Layer Model (GRAAL) and its application as part of the 

discrete approach for some ideal cracks. In the last part of the chapter we examine the results 

of a sensitivity study aimed at studying the influence of number of cracks, their openings 

and their lengths as well as the volume of water and the degree of its agitation on the 

intensity of development of the dense passivating gel and of the porous non-passivating gel 

and, consequently, on the intensity of glass corrosion. 

Chapter 5 

This chapter represents the heart of the thesis and aims to explain in detail the image 

processing-based fracture network characterization workflow developed for carrying out 

reactive transport on a container scale by taking into account fracture network variability 

and different scenarios of storage evolution. This chapter is written in the form of two 

articles. In the first article in § 1.3 we see the application of the mathematical morphology in 
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order to (i) extract fracture network separately from pull-out zones and cavities of 

contraction, (ii) determine apertures for each branch of fracture network, (iii) perform image 

segmentation which intends to distinguish parts of the matrix separated by fractures and 

whose centroids are easy to find, and (iv) finally study the anisotropy of this segmented 

image by the theory of moments, from where the ratio of the axis lengths, the angle of 

rotation of each crystal and their barycenter are obtained. Then, in § 1.4 and 1.5 of the same 

article, we examine the steps of the quantitative analysis of the arrival map of the 

solidification front. This map and its derivatives are used to supplement the pointwise data 

of image analysis by the global spatial distribution of key parameters in order to perform 

geostatistical simulations and to predict network anisotropy. After, we proceed with the 

geostatistical simulations of crystal centers and crack openings, the results of which are used 

at the stage of the construction of equiprobable realizations of fracture network equivalent 

tessellations. The article ends with the demonstration of four simulated glass networks and 

two segmented images of UOx and UMo vitrified blocks. 

In the second article in § 2 we examine the techniques proposed for calculating the 

equivalent parameters, such as coefficients of permeability and diffusion. We also look at 

how the parameters governing the kinetics of glass dissolution are calculated in the context 

of the equivalent porous model. The verification of these techniques is shown in § 3: it is 

carried out by means of the simulations of the reactive transport applied to a simplified 

network represented, on the one hand, by the DFN approach and on the other hand, by its 

equivalent porous model. 

The application of the equivalent model at the scale of a container is addressed in § 4 of the 

second article, here the results of the reactive transport modeling conducted in diffusive and 

convective modes are shown and compared with the experimental results of the long-term 

aqueous alteration test of a block of nuclear glass. This experiment was realized at the CEA 

in the electrical static leaching unit. 

This chapter concludes with the demonstration of the results of reactive transport modeling 

in conditions closer to those of the geological storage, i.e. applied to a lying on its side block 

in which the thermoconvection created by the release of waste heat is modeled. These 

simulations are conducted for three deadlines: 1000 years, 5000 years and 10 000 years after 

the canister is deposited in the storage cells. 

Chapter 6 

In this chapter, the question of the application of the model in the context of the storage of 

fractured glass blocks containing high-level nuclear waste is raised. We highlight the 

technical problems encountered during the application of the methodology and we reflect on 

the possibility of evolution of this methodology to be able, firstly, to extend towards 3D and, 

secondly, to take an account of storage conditions more realistic than those modeled in this 

thesis.  
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Résumé du chapitre 

Dans ce chapitre, dans un premier temps au § 2.1, l’état de l’art de l’altération aqueuse de 

verre nucléaire borosilicaté est présenté. Les connaissances obtenues par les expériences 

multiples menées au CEA et à l’étranger sont examinées et le modèle GRAAL de la corrosion 

du verre est présenté. Au § 2.2 sont abordés les résultats expérimentaux et les efforts 

accomplis jusque-là pour la caractérisation des réseaux de fractures de verre nucléaire à 

l’échelle d’un conteneur par les mesures de lixiviations statiques et dynamiques et ensuite, à 

l’échelle de quelques fissures, par la microscopie optique et la microscopie électronique à 

balayage. Ce chapitre se termine par l’analyse des bases théoriques du transport réactif et 

plus précisément, au § 2.3, nous mettons l’accent sur les principes du code couplé transport-

chimie HYTEC utilisé dans cette thèse; puis nous présentons les phénomènes pouvant être à 

l’origine de la convection dans les conditions de stockage et nous exposons enfin quelques 

limites des codes de transport réactif. 

2. State of the art 

2.1. Borosilicate glass aqueous alteration 

2.1.1. Knowledge derived from laboratory experiments 

In the late 1970s France made the decision to use an alumino-borosilicate glass as a 

containment matrix because it has a great flexibility compared to crystalline structures, and it 

allows integration of many radionuclides by substitution of atoms of its structure. 

Borosilicate glass usually contains sodium with additions of other oxides like aluminum, 

calcium, lithium or zirconium. The study of the effects of glass composition on a wide range 

of properties like homogeneity, mixing temperature, viscosity, phase separation, 

crystallization, leaching behavior, resistance to irradiation, etc., led to the definition of two 

glass types: the industrial R7T7 glass (Table 2-1), considered in France as a reference for its 

confinement qualities, and its inactive analogue, referred to as SON68 glass (Table 2-2). 

Table 2-1 Reference chemical composition of UOx glasses (% mass.). 

Oxide SiO2 B2O3 Na2O Al2O3 Li2O ZnO CaO Cr2O3 Fe2O3 P2O5 NiO 

Oxides (FP + 
Zr + 

actinides) + 
Metallic 
particles 

RuO2+ 
Rh+ 
Pd 

% 45.1 13.9 9.8 4.9 2.0 2.5 4.0 0.5 2.9 0.3 0.4 13.7 1.54 
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Table 2-2 Reference chemical composition of SON68 glasses (% mass.). 

Oxide SiO
2
 B

2
O

3
 Na

2
O Al

2
O

3
 Li

2
O ZnO CaO ZrO

2
 Fe

2
O

3
 Cs

2
O NiO Nd

2
O

3
 MoO

3
 Other 

% 45.48 14.02 9.86 4.91 1.98 2.5 4.04 2.65 2.91 1.42 0.74 1.59 1.7 6.2 

 

The interaction of nuclear glasses with water in a geological waste disposal is believed to 

happen after a few thousands of years, i.e. after the multiple barriers of the repository 

including the steel canister would have failed and groundwater from the surrounding 

geological medium would fill the repository. Glass gets corroded mainly due to reaction 

with water, which changes the physical structure of the glass surface, and releases its 

constitutive elements, including the radionuclides, into water. Laboratory experiments 

applied to modern glasses and study of the archeological glasses found in seawater beds or 

buried in cathedral construction sites have demonstrated that glass is capable of 

withstanding the corrosion for thousands of years (Verney-Carron et al. 2008; Sterpenich 

1998).  

In contact with water, glass is subjected to various phenomena like ion exchange (or 

interdiffusion), hydrolysis of the vitreous network, condensation of a part of the silica and 

poorly soluble elements and precipitation of secondary phases. The species solubilized 

during the alteration of the glass undergo local processes of condensation-precipitation. 

These processes are at the origin of the formation of silicate polymorphs, progressively 

reorganized into a porous and hydrated network called “gel”. The solution is also the place 

where precipitation reactions happen, leading to the formation of secondary phases, 

essentially clay and silicate. 

Gel is the name given to the amorphous material formed by the establishment of a balance 

with a solution whose nature remains discussed. The gel can originate from several 

processes: in-situ condensation (Frugier 2008; Dran et al. 1988; Jegou et al. 2000) or 

precipitation (Jercinovic et al. 1990; Geisler et al. 2010; Hellmann et al. 2015) from elements 

released in solution by the hydrolysis of a glass network. Moreover, according to the current 

vision, these two mechanisms are not necessarily antagonistic and may coexist. 

The gel limits the transport of the species to the alteration fronts (Rebiscoul et al. 2007); the 

closure of porosities is one of the reasons of gel’s passivation effect (Cailleteau 2008). The 

structure of the gel is likely to evolve over time towards the increase of its order at short 

distance and the decrease of its pore volume. In general, the denser the gel, the better its 

diffusive barrier properties (Grambow et al. 2001).  

Recombination of the elements dissolved during the glass alteration gives rise to the 

precipitation of secondary phases. Alteration gel and secondary phases are aluminosilicates 
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containing cations present in the surrounding solution. According to the affinity of an 

element for one of the phases, either formation of secondary phases or gel (to the possible 

detriment of certain secondary phases) can take place, the affinity depending on 

environmental conditions and their evolution. 

As for the terminology used in this thesis, gel refers to the amorphous weathering layer of 

glass at the glass / solution interphase. This gel may comprise two parts: passivating and 

non-passivating. The former with passivating properties called PRI for passivating reactive 

interphase. The non-passivating gel means a gel which has lost part of its initial constituents 

or whose passivation properties are negligible. 

In the context on this research, we deal only with the aqueous alteration of glass under 

assumption of its full saturation with water in pH conditions not allowing the alteration to 

resume. However, we propose in the two following sections an overview of the mechanisms 

and the kinetic regimes for both environments: alteration in aqueous medium and in 

unsaturated vapor phase. 

2.1.1.1. Full saturation with water 

During the leaching process of a glass in an aqueous medium, the reaction mechanisms 

generate different alteration regimes as shown in Figure 2-1.  

 

Figure 2-1 Alteration rate of glass in water over time and the different stages of alteration, obtained 

from (Gin 2013) 

Their duration depends on the composition of the glass and the chemical conditions of its 

degradation. For each regime, the prevailing mechanisms are detailed as follows. 

Initial rate regime 
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In the early stage of alteration, the mechanisms of interdiffusion and hydrolysis occur 

simultaneously. However, the interdiffusion regime is transient since it follows a diffusive 

process. So it's the velocity of hydrolysis that contributes mainly to the velocity of the initial 

alteration. 

By definition, the initial glass alteration rate is the maximum dissolution rate of the glass 

obtained in the conditions far from the saturation, i.e. in a highly diluted medium where no 

diffusional barrier intervenes to slow down the alteration. The initial rate depends on pH 

and temperature in agreement with equation 2-1: 

 
𝑉0(T, pH) = 𝑉0𝑇0 × 𝑒

−
𝐸𝑎
𝑅𝑇

(
1

𝑇
−

1

𝑇0
)
× 10𝑁0∗max(𝑝𝐻−7;0),  2-1 

where Ea is the activation energy, V0 is the initial glass hydration rate, No is the coefficient of 

the diffusion dependence on the pH, T is the current temperature, T0  is the absolute zero 

temperature, R is the gas constant.  

This equation is composed of three terms. The first is a constant rate measured at the initial 

temperature and pH equal to 7. The second and the third indicate the dependence on 

temperature and pH. The equation is valid for temperatures between 25 and 100°C and pH 

between 6 and 10. For illustrative purposes, two values of the initial rate for different pH and 

temperatures for SON68 glass are cited: 0.9 g.m-2.d-1 (T = 90°C, pH = 7), 5.5 g.m-2.d-1 (T = 90°C, 

pH = 9). 

Rate drop regime 

The rate drop is a complex regime that corresponds to the transition between the initial and 

the residual rates. The increase of concentrations in solution leads to the recondensation of 

part of the dissolved silicon in an amorphous, porous, and hydrated phase: the gel. The 

formation of this phase leads to a decrease of tracer elements departure rate, making the 

dissolution largely incongruent1. The fall of the rate is due to the decrease in the dissolution 

affinity of the glass and the formation of the passivating gel which limits the transport of 

dissolved silica from the glass / gel interphase to the solution. The passivating character of 

the gel increases with increasing concentrations in the solution that favors the 

recondensation of the elements within the gel. At this stage, the rate of the aqueous alteration 

of the glass can decrease by several orders of magnitude. 

Residual rate regime 

The regime of rate drop gives way to the so-called residual rate regime. This velocity evolves 

more or less in a long run. Two mechanisms are responsible for the residual rate regime: 

                                                           
1 The dissolution of a mineral is congruent when its constituents are released simultaneously in solution. Their 
stoichiometric ratios in solution are then identical to those of the dissolving mineral 
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1. diffusion of elements coming from the alteration of the glass within the gel that 

results in the supersaturation at the hydrated glass / gel interphase;  

2. formation of the secondary phases, which maintain residual hydrolysis by consuming 

certain elements, like silicon, aluminum, sodium and calcium. 

In the case of French nuclear glass R7T7, when quasi-stationary silicon conditions are 

reached in the solution, a very low rate of alteration is found. To be precise, it is expected to 

be 4 orders of magnitude lower than the initial velocity at 90°C and pH 9, with values 

around 10-4 g.m-2.d-1. 

Alteration resumption 

The alteration resumption corresponds to an increase in the raterate of alteration, following 

the regime of the rate drop. The main mechanism related to the alteration resumption is 

secondary phase formation (as zeolites and Calcium Silicate Hydrates, C-S-H), which 

triggers or maintains the residual hydrolysis by consuming the forming elements of the 

alteration layer (aluminum, silicon, etc.). The development of these phases causes a pumping 

of the constitutive elements out of the gel. By doing this, it destabilizes and inhibits its 

passivating properties. According to the experimental and theoretical studies carried out so 

far, the phenomenon of alteration resumption depends essentially on the surface by volume 

ratio (S/V), pH, composition of the glass and the surrounding solution. The alteration 

resumption is favored in strongly basic pH conditions (pH > 10,5), high temperature and 

high S/V ratio (Fournier et al. 2014). 

2.1.1.2. Vapor phase 

After the break-up of the stainless steel container, vitrified waste alteration is likely to be 

initiated in unsaturated conditions resulting, in particular, from hydrogen production 

coming from the corrosion of the metal materials of the liner and the container (ANDRA-

Collectif 2016). The reaction of glass with water vapor has been studied in Argonne National 

laboratory (ANL), Pacific Northwest National Laboratory (PNNL), Savannah River 

Laboratory (SRL) etc. It is acknowledged that currently the scientific database on the vapor 

hydration of nuclear glasses stays relatively limited.  

From the experimental results conducted so far, it can be understood that the reactions 

occurring between glass and water are the same for alteration in aqueous medium and 

unsaturated water vapor. However, the rate controlling reaction mechanism and the driving 

force for alteration are different in both cases (Abrajano et al. 1989). The difference largely 

arises from the changes in the water chemistry, as a result of the extremely small volume of 

water available for reaction in the unsaturated case. The various results from the vapor 

hydration experiments suggest that the alteration in vapor phase is not simply an extreme 

case of the glass alteration in aqueous medium at a very high S/V (Abrajano et al. 1986). The 

precipitation of secondary phases seems to be the strongest driving force for alteration in 

vapor phase at high temperature. At high temperatures and low solution volume that gets 
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saturated rapidly, the conditions are thermodynamically favorable for the precipitation of 

secondary phases.  

Given the lack of understanding of the geochemical behavior of the borosilicate glass under 

leaching in vapor unsaturated phase, it is crucial that more vapor hydration studies be 

conducted. 

With the knowledge of these regimes, the geochemical modeling of glass dissolution is 

complex. It depends on saturation conditions (full saturation with water vs. vapor phase) 

and hydrodynamic regimes (solution renewal vs. static conditions). 

2.1.2. General statements of GRAAL model  

2.1.2.1. Theoretical basis of the geochemical modeling  

The Glass Reactivity with allowance for the Alteration Layer Model was proposed to 

describe borosilicate nuclear glass alteration (Frugier 2008). The model was developed with a 

dual objective: (i) consideration of the coupling between the affinity effects in the kinetic law 

and the diffusion processes in the alteration layer and (ii) the establishment of precise 

material balance to calculate the distribution of the elements of the glass between the 

solution, the secondary phases and the gel. For this purpose, the GRAAL equations were 

implemented in a coupled chemistry-transport code HYTEC (Van der Lee et al. 2003). 

The first hypothesis of the GRAAL model is the rapidity of the hydration reaction of the 

glass at the initial time. This phenomenon forces the elements of the glass (alkaline, boron) to 

pass into solution. The hydrolysis of silicon is slower, and it is the hydrolysis that conditions 

the glass initial dissolution rate. The difference between these two kinetics leads to the 

creation of the dealkalized hydrated glass layer at the glass-solution interphase. This layer or 

gel is gradually reorganized by hydrolysis / condensation phenomena and is called 

passivating reactive interphase (PRI). Each silicon atom present in the solution comes from 

the dissolution of the PRI. Along with the creation, this gel dissolves, as long as the solution 

is not saturated in the elements that constitute it: Si, Al, Ca, Zr. 

GRAAL proposes the description of the gel formed on the surface of glass by condensation 

and precipitation of Si, Al, Zr and Ca. With a relatively simple formalism, the model 

accounts for the chemistry and solubility of the gel. It assumes that glass alteration is 

controlled by the PRI consisting of glass without any mobile elements in its composition 

(alkalis, boron, etc.). Apart from PRI, another amorphous layer is expected to be created 

during aqueous alteration (Figure 2-2). Frugier et al. are of the opinion that due to water 

diffusion in the glass, inter-diffusion between protons and alkali ions, some other 

amorphous interphases could be created. 
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Figure 2-2 Diagram of the different amorphous phases and mechanisms of their generation (obtained 

from Frugier et al., 2008) 

In this research, we consider two main alteration layers (porous gel and passivating dense 

gel) and we strive to model the generation of these two layers by executing a reactive 

transport modeling inside different fracture media. The verification of the GRAAL model 

undertaken at the first stage of the research was done by results comparison with the 

thickness of altered glass measured by means of SEM (Chomat 2008). 

According to (de Combarieu 2007; Godon et al. 2012), passivating reactive interphase 

comprises all gel forming elements (Si, Ca, Al, Zr). This zone is characterized by a 

concentration gradient both of the mobile elements (alkalis, B) and of the elements that limit 

the formation of crystallized phases (Zn, Ni, etc.). NMR and X-ray absorption spectrometry 

show that it is the layer in which the silica network is more polymerized that in the initial 

glass. This in situ reorganization of the glass constituent elements causes the reactivity to 

control the concentrations and to passivate the underlying pristine glass. 

On the other hand, when the glass is sufficiently altered by the renewal of a pure water 

solution or when the glass, that has to be dissolved to saturate the solution, has the thickness 

comparable to the characteristic diffusion thickness, another type of gel – depleted in Si, Al 

and Ca is formed. This part of the gel is porous and no longer passivating. 

In the GRAAL model, the transport properties of the PRI are modeled by a constant diffusion 

coefficient for the elements of the glass. Accordingly, the flow of mobile elements 

transported through PRI is proportional to the diffusion coefficient and inversely 

proportional to the thickness of the PRI. Therefore, the GRAAL model makes the assumption 
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of a balance between the non-passivating gel and the solution and between the external 

interphase of the PRI and the solution. 

The GRAAL model uses two kinetic equations for the PRI grouped in equation 2-2. 

 
dx

dt
= r1 − r2 =

DPRI

xPRI
− v0 (1 −

QPRI

KPRI
),  2-2 

This equation states that the PRI is (i) formed from the glass with a rate r1 which is a function 

of its thickness - xPRI and PRI diffusion coefficient - DPRI, and (ii) dissolves with a rate r2 

according to a classical affinity law in which v0 – is the initial rate, QPRI - is the activity 

product of the PRI and KPRI – is the PRI activity product at saturation. 

As it was stated in (Frugier et al. 2018), in order to limit the creation kinetics of the protective 

layer, that is, to avoid the appearance of the infinite rate when xPRI = 0, a constant hydration 

rate is introduced in the definition of r1 in Equation 2-3: 

 r1 =
DPRI

xPRI
=

rh

1+xPRI
rh

D
π
2

,  2-3 

where rh is the hydration rate, it is higher than the initial dissolution rate. This is totally 

compatible with the experimental observations: the dissolution rate of mobile ions is higher 

than the dissolution rate of silicon ions. However, due to the very low diffusion coefficient 

value of nuclear glasses, the hydratation rate governs the alteration rate for only a few 

seconds of alteration. The parameter is not measurable experimentally and has almost no 

effect on the modeling results. 

The GRAAL model allows us to compute the gel thickness provided that we know the 

concentration of a certain pole or a group of poles. The formalism of this model postulates 

the notion of the equivalent thickness, i.e. the glass thickness that should be dissolved to 

achieve the measured concentration of a given element in solution. It is calculated based on 

the mass balance equation between the quantity accumulated in the solution and the 

quantity released by the glass dissolution, as given by (2-4): 

 
dei

dt
=

d

dt
(

Ci

ρ𝑃𝑆xiSpCv
),   2-4 

where ei is the equivalent alteration thickness for element i; Ci is the concentration of this 

element in solution; ρ𝑃𝑆 is the glass density; xi  is the mass fraction of the element i in the 

glass; Sp is the glass specific surface, Cv is the mass of the glass in a unit volume  

Amorphous layer’s end-members stoichiometry, both the one of PRI and those used to 

describe the amorphous non protective gel, have been chosen with two constraints: The first 

constraint is that the model must account for the analyzed concentrations of the elements in 

the fluid, that is the composition and the solubility of the amorphous layer. The second 

constraint arises from software limitations: a single end-member can passivate the glass 

according equation 2-3. In the GRAAL the Si rich end-members are chosen because silicon is 
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the main element and its condensation is mandatory for passivation to occur (Frugier et al. 

2018). 

For the computation of the equivalent thickness of the dense gel (PRI), the governing 

concentration is the SiAl concentration, because the major part of this layer is occupied by Si 

and Al (according to the formalism of the GRAAL, the PRI is represented as 

SiO2Al0.033(OH)0.1). 

SEM measurements provide the total thickness of the amorphous layer. Regarding reactive 

transport modeling, this total thickness can be calculated from the total concentration of 

SiZrCa and SiZrNa found in the solution. These two poles comprising Zr are chosen because 

Zr solubility is low. This allows us to suppose that all Zr liberated from the glass is preserved 

(condensed) inside the amorphous layer, that it does not pass into solution. With respect to 

the composition of the chosen glass, Zr can form only two species SiZrCa and SiZrNa, sum of 

the concentrations of which is necessary to estimate the equivalent thickness of the total 

altered layer. 

Other parameters frequently used to characterize the glass alteration are the quantity of 

altered glass per day (2-5) and its ratio to the maximum quantity of altered glass per day (2-

6): 

 QAG =
Ci(t)

Xi∗
S

V
∗t

,   2-5 

 
QAG(Vcurrent)

QAGmax(V
0
)

 ,   2-6 

The current quantity of altered glass per day QAG [g/(m2×day)] is calculated knowing the 

concentrations Ci either of total dissolved boron concentration (B(OH)3)aq or total dissolved 

silica concentration (SiO2)aq in the resulting solution at time t. In (2-5), xi is the mass fraction 

of the tracer element in the glass, S is the glass surface and V is the volume of the analyzed 

solution. In this thesis, the terms “Quantity of altered glass per day” and “Alteration rate” 

are used interchangeably. 

The maximum quantity of altered glass per day QAGmax is computed in accordance with (2-

7): 

 QAG max = k+ ∗ exp
−Ea

R
(

1

T0
−

1

Texp
)
∗ 10−(pH)∗n ,  2-7 

where R is the ideal gas constant, Ea is the activation energy defined experimentally, n is the 

constant determining the dependence to pH, T0 is the absolute zero temperature, Texp is the 

experiment temperature, k+ is the dissolution rate of PRI in pure water. It should be noted 

that (2-7) is valid for temperature values between 25°C and 100°C and pH between 6 and 10.  

2.1.2.2. GRAAL implementation in a reactive transport code 

The HYTEC computational code developed by MINES ParisTech was chosen for 
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implementing the GRAAL model. This implementation did not demand any software 

adaptation since the GRAAL formalism is totally consistent with the reactive transport code 

HYTEC. HYTEC is based on the geochemical code CHESS and the flow, heat and transport 

library R2lib.  

The principal requirements for HYTEC to handle GRAAL equations, were the availability of 

the Monod type equation, the ability to use the concentration of a solid (glass) as a variable 

of the equation and an adaptive time step (Frugier et al. 2018). That is, the time step needs to 

be small at the beginning of the calculation when the protective layer is thin to prevent its 

immediate dissolution. 

The passage from GRAAL model to HYTEC is realized by treating Equation 2-3 as a Monod 

type equation and by using general kinetic formulation to describe the dissolution equation 

(Table 2-3). 

Table 2-3 Correspondence between the parameters of the GRAAL model and of HYTEC code 

 GRAAL model HYTEC code 

Parameter PRI thickness  PRI concentration 

Primary solid 

alteration rate 

controlled by 

protective layer’s 

thickness 

𝐷𝑃𝑅𝐼

𝑥𝑃𝑅𝐼

=
𝑟ℎ

1 + 𝑥𝑃𝑅𝐼
𝑟ℎ

𝐷𝑃𝑅𝐼
𝜋
2

 

𝐷𝑃𝑅𝐼(𝑇, 𝑝𝐻) = 𝐷0 × [𝑂𝐻−]𝑛′ × 𝑒−
𝐸′

𝑎
𝑅𝑇  

𝑟ℎ
ℎ𝑎𝑙𝑓 − 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛

ℎ𝑎𝑙𝑓 − 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑃𝑅𝐼
 

W term specifying the 

dependence on pH 

Protective layer’s 

dissolution rate 
𝑘+ × [𝐻+]𝑛 × 𝑒−

𝐸𝑎
𝑅𝑇 × (1 −

𝑄𝑃𝑅𝐼

𝐾𝑃𝑅𝐼
) Rate, solid saturation Y- term 

specifying the dependence on 

the saturation state , activity 

W-term specifying the 

dependence on the pH 

Note to the Table 2-3: definition of all variables is specified in the following paragraphs. 

The concentration of the protective layer (CPRI) calculated by HYTEC in each cell of modeled 

glass geochemical unit is proportional to the thickness of the protective layer xPRI - principal 

GRAAL parameter (Equation 2-8): 

 XPRI =
CPRI

ρPRISspCv
,   2-8 

where ρPRI is the protective layer’s molar densty, Ssp is the specific surface area of the glass 

(named primary solid),Cv is the concentration of the primary solid in the calculation cell. 

The mass balance is written for each element belonging to the glass and the PRI as defined in 

Equation 2-9: 
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 𝐹𝑖 =
i𝑃𝑅𝐼ρ𝑃𝑅𝐼x𝑃𝑅𝐼

i𝑃𝑆ρ𝑃𝑆x𝑃𝑆
  2-9 

where 𝐹𝑖 is the fraction of the element from the primary solid found in the PRI,i𝑃𝑅𝐼 and i𝑃𝑆 

are the molar fractions of element i in the PRI and in the primary solid, x𝑃𝑅𝐼 and x𝑃𝑆 are the 

thicknesses of the protective layer and of the primary solid that was altered.  

Equations 2-8 and 2-9 enable user to calculate half-saturation term that makes part of the 

Monod-type equation presented in Table 2-3:  

 ℎ𝑎𝑙𝑓 − 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 
𝐷

𝜋

2

𝑟ℎ
𝐹𝑖

i𝑃𝑆

i𝑃𝑅𝐼
ρ𝑃𝑆𝑆𝑠𝑝𝐶𝑣 =

𝐷
𝜋

2

𝑟ℎ
ρ𝑃𝑆

i𝑃𝑆

i𝑃𝑅𝐼
𝑆𝑠𝑝𝐶𝑣 , 2-10 

In Equation 2-10, D is the interdiffusion coefficient that varies with temperature and pH as 

defined in Equation 2-11. 

 D(T, pH) = 𝐷0 × [𝑂𝐻−]𝑛′ × 𝑒−
𝐸′

𝑎
𝑅𝑇  2-11 

where 𝐷0 is the interdiffusion constant, 𝐸′
𝑎 is the activation energy associated to the 

interdiffusion coefficient, 𝑛′ is the pH-dependence factor. 

One example of HYTEC file (htc.) is shown below. It includes the specification of the 

database, the flow type, the type of discretization and choice of solver, the definition of all 

geochemical units associated to all zones specified in the mesh file. 

database = chess_graal.tdb 

flow-regime = saturated, stationary 

solver-regime = vertex 

grid-regime = vertex fissure_vertex_carre_verre.msh 

 

# Geometry definition 

# ------------------- 

zone 1 { 

    permeability = value or NA when the value is read from the externally provided table 

    diffusion = value or NA when the value is read from the externally provided table 

    porosity = value or NA when the value is read from the externally provided table 

    geochem = water 

} 

zone 2 { 

    permeability = value or NA when the value is read from the externally provided table 

    diffusion = value or NA when the value is read from the externally provided table 

    porosity = value or NA when the value is read from the externally provided table 

    geochem = glass 

} 

In addition, the definition of the composition of assigned geochemical units and overall 
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definition of the chemistry block (directly related to the formalism of GRAAL) is to be done 

inside the htc input file. 

To fill this part, user needs to specify the parameters governing the primary solid alteration 

rate (Figure 2-3 lines 3-35) and the protective layer’s dissolution rate (Figure 2-3 lines 38-48). 

Within HYTEC, the following syntax is adopted: the law of glass dissolution is written in 

three term: (i) inter-diffusion applied to glass (product of rate and half-saturation, Figure 2-3 

lines 3-19), (ii) velocity of retro-diffusion applied to PRI (the same parameters as for inter-

diffusion, Figure 2-3 lines 20-35) and (iii) velocity of hydrolysis of PRI (which concerns the 

initial velocity of dissolution, PRI ionic product and solubility, Figure 2-3 lines 38-48). 

 

Figure 2-3 Fragment of HYTEC script specifying kinetics of glass dissolution in one geochemical zone.  

The first group of parameters specifies the Monod-type equation and the dependence on the 

pH. The second group of parameters is used to designate pH and temperature dependence 

of the initial PRI dissolution rate and the exponential rate drop when the concentrations 

approach saturation of the PRI.  
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2.1.2.3. Modeling options proposed by GRAAL model 

In the scope of the GRAAL model, two approaches may be followed: 

1. Fracture approach 

2. Porous medium approach 

 

Fracture approach 

1. This approach is used when modeled fractures are described explicitly, it falls in the 

framework of the discrete modeling (Figure 2-4). 

2. It assumes that there are 2 zones inside a modeled system: a glass zone and a fracture 

zone. 

3. From the physical point of view, the fracture zone brings properties of liquid medium 

(as it is filled with water); the glass zone shows properties of liquid medium also. The 

glass zone is modeled by a film of a unit mesh thickness, in which all the glass is 

concentrated. This glass zone is seen as a source of material immediately available at 

the glass / water interface. 

4. There are two geochemical units: water and glass. 

5. The transport of material could be monitored in two perpendicular axes (dX, dY). 

 

Figure 2-4 Representation of fracture modeling approach: two geochemical zones are defined. 

Porous medium approach 

1. This approach is used when modeled fractures are described implicitly; it falls in the 

framework of the homogenized modeling and is used for the equivalent porous 

medium modeling (Figure 2-5 right). 

2. It assumes that there are N zones inside a modeled system: homogenized zones of 

Fracture Water Glass layers 
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water and glass. 

3. These zones have properties of equivalent porous medium. Their calculation is 

shown in Section 5.3.3 

4. There are N geochemical units, where N is the number of the meshes of the porosity 

grid. The necessity to create several geochemical units is explained by the varying 

porosity that makes glass concentration and half-saturation term vary accordingly. 

5. In this approach, transport along dY axis could be neglected, because the gradient of 

the dissolution rate is insignificant. However it is possible to monitor the transport of 

material along dX. 

 

Figure 2-5 Differences between “Fracture” and “Porous Medium” modeling approaches 

The passage from “Fracture” to “Porous medium” approach includes:  

i. calculation of the equivalent parameters of the specific glass surface, the glass mass 

per unit volume, the half-saturation factor; 

ii. computation of the porosity grid, showing the ratio of the volume of fractures over 

the volume of fractures and matrix together in each mesh of the equivalent porous 

medium system.  

The parameters governing the kinetics of the glass dissolution are specified in the section 

“geochemical units” of the htc file, while the grids of the porosity, the hydraulic conductivity 

and the pore diffusion are provided in the form of the table including the coordinates of the 

mesh nodes and the corresponding parameter values. This file is read externally.  

Here below, the examples of the application of “Fracture” and ‘’Porous medium” approaches 

for one, three and five fractures, are presented. Figures 2-6, 2-7 and Table 2-4 provide some 

details about the way in which the simulations were conducted, and the approaches were 

changed.  

It should be noted that the same physical representations will be met in Section 4.2, when we 

will deal with the reproduction of the experimental results obtained by Chomat. Here our 

idea is to show that “Fracture” and “Porous medium” approaches are compatible, i.e. to 
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demonstrate that the GRAAL model is applicable for modeling glass fracture network 

represented by its equivalent porous medium. 

 

Figure 2-6 Examples of systems used to study the aqueous alteration of the glass by applying discrete 

and homogenized equivalent approaches. The three first models describe fractures, glass and water-

filled recipients explicitly, water and glass geochemical units are separate. The three last models 

represent their equivalent counterparts with fractures being described in an indirect way by 

introducing porosity value in a system. The volume of water in two recipients remains identical for 

each pair of models (DFN- homogeneous). 

Table 2-4 Comparative table of the geometry-related parameters governing the kinetic of glass 

alteration. 

Model 

Geometries 

of modeled 

system 

 

Mass of 

glass 

 

Experience 

volume 

Vexp 

 

Glass 

specific 

surface Sp 

 

Glass 

mass 

per 

unit 

volume 

Cv 

 

Half-

saturation 

 

Porosity 

 

Fracture 

a,b,c 

 

Mglass 

 

a×1m×(o/2)2 

 

a×1m/ 

Mglass 

 

Mglass 

/Vexp 

K×Sp×Cv 1 

Porous 

Medium 

a,b,c 

 

Mglass×Ng 

 

a×1m×o× 

Ng 

 

a×1m×Ng 

/Mglass× Ng 

 

Mglass× 

Ng 

/Vexp 

K×Sp×Cv 

Vfr / 

Vfr + 

Vg 

                                                           
2 Half of the aperture is used because one wall of fracture “sees” only one half of the fracture opening. 
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Notes for Table 2-4: a is the fracture length (in porous medium approach a was equal to the 

length of the porous medium system); b is the length of the recipient filled with water; c is 

the height of the compound filled with water, o- is the fracture opening; ɛ is the thickness of 

the glass layer in contact with the fracture; ρ is the glass density; mglass is the user-defined (or 

experimental) mass of glass; Ng is the number of modeled glass plates, Nf is the number of 

modeled fractures; A is the fracture aperture, K=DPRI×ρ𝑃𝑆
i𝑃𝑆

i𝑃𝑅𝐼
 where i𝑃𝑅𝐼 is the molar fractions 

of elements in the PRI and i𝑃𝑆 - in the glass, ρ𝑃𝑆 is the glass molar density and DPRI is the e 

diffusion coefficient of PRI; Vfr = a×1m×A×Nf; Vg is the user-defined (or experimental) volume 

of glass. 

 

Figure 2-7 Image accompanying Table 2-4. Case “1 modeled fracture” in the scope of “Porous 

Medium” (left image) and “Fracture” (right image) approaches 

It should be noted that: 

1. By default in HYTEC, in 2D simulations, the third dimension (depth) is equal to 1 m. 

2. Ɛ is a purely modeling parameter representing the thickness of the film of glass 

covering fracture (Figure 2-7) for the DFN approach. For all cases presented here, Ɛ is 

taken constant and equal to 10 µm. It was shown that this value needs to be small 

enough with respect to the fracture aperture (Repina 2016). For fractures whose 

opening is higher than 100 µm, it was advised to take Ɛ equal to 10 µm as a tradeoff 

between the time of calculation and the accuracy of calculations. 

3. Since in the case of “Porous medium approach” the material transport is not limited 

in dY direction in contrast to the “Fracture” approach, it was proposed to run a 

supplementary case (1 fracture, discrete model) where the water homogenization is 

amplified by increasing its coefficient of diffusion. This allows the reservoirs of water 

to be modeled as an agitated reactor with homogeneous concentrations. 

 

Figure 2-8 provides the results obtained by conducting RTM in the framework of “fracture” 

and “porous medium” approaches in diffusive mode. It is apparent from the curves, 

showing the ratio of the quantity of altered glass (QAG, equation 2-6) over the maximum 

quantity of altered glass (QAGmax, equation 2-7) and the curves of average pH in water, that 

two tested approaches give quit similar results for the cases of three and five fractures. There 
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is, however, some difference between the profiles of QAG/QAGmax and pH for the case of 1 

fracture modeled by fracture and porous medium approaches. It is expected to be related to 

the diffusion process. In fact, for both models, a unique coefficient of diffusion was taken: 

Dx=Dy=Dw, where Dw – is the water self-diffusion coefficient. Certainly, the question of the 

calculation of the equivalent diffusion coefficient must be considered in the future. It will be 

dealt with in Section 5. 

The supposition that the difference between two models comes from an unadapted 

coefficient of diffusion of the porous medium model is confirmed by the results of modeling. 

Indeed, once the homogenization of water is favored, the similar QAG is obtained by both 

approaches. To sum up, the results of the modeling indicate that GRAAL model can be 

applied to model glass aqueous in fractured media in both discrete and equivalent porous 

medium. However, certain attention should be payed to the calculation of the equivalent 

hydraulic and diffusive properties of the equivalent model.  

Input parameters used to conduct the modeling are provided in Table 2-5. 

 

Figure 2-8 Results of RT modeling in the context of “Fracture” and “Porous medium” approaches of 

GRAAL model  

Table 2-5 Summary of the input parameters of the modeled cases 

 

Name 

Modeling 

approach 

Number 

of 

Fracture 

aperture, 

Fracture 

length, 

Water 

diffusion 

Volume 

of 

S/V, 

1/m 
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fractures µm cm coefficient, 

m2/s 

water, 

ml  

1f 

« Fracture » 

Fracture 

(discrete)  

1 120 0.0625 10-9 97.5625  2e+04 

3f 

« Fracture » 

Fracture 

(discrete) 

3 120 0.0625 10-9 91.9875 2e+04 

5f 

« Fracture » 

Fracture 

(discrete) 

5 120 0.0625 10-9 115.063 2e+04 

1f 

«Fracture»_ 

Diffusion 

Fracture 

(discrete) 

1 120 0.0625 10-8 97.5625 2e+04 

1f « Porous 

 Medium» 

Porous 

medium 

(homogeneous 

equivalent) 

1 120 0.0625 10-9 97.5 2e+04 

3f « Porous  

Medium» 

Porous 

medium 

(homogeneous 

equivalent) 

3 120 0.0625 10-9 91.8 2e+04 

5f « Porous 

 Medium» 

Porous 

medium 

(homogeneous 

equivalent) 

5 120 0.0625 10-9 114.75 2e+04 

 

2.2. Experimental studies and modeling efforts aiming at the fracture network 

characterization 

2.2.1. Fracturing ratio by static and dynamic measurements  

Fracture network characterization is a subject of prime importance since fractures could be 

responsible for the increase of the reactive surface and, very probably, would provide 

preferential paths for the migration of elements in solution. This characterisation can be 

based on static (cartography or imagery), or dynamic (analysis of the flow circulating under 

different conditions through the studied fracture network) measurements that optimally 

should be conducted together. 

Since, for a long time, glass canister fracture network morphology characterization has not 

been on the agenda, the intensity of the glass block fracturing has been only characterized by 

a relatively simple and practical for chemical purposes parameter, named fracturing ratio 

(FR) and defined by equation 2-12: 

 FR = 
totalmeasuredsurface

externalsuraceofpackage
= 1 +

internalsurface

externalsurfaceofpackage
,  2-12 

where the outer surface of the package is the geometric surface of the cylinder of the glass 

package, and the inner surface is the surface developed by the entire network of cracks 
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inside the glass block. The total measured surface is the sum of the internal surface and the 

external surface of the package. 

The techniques for evaluating the internal surface of the crack network are either based on 

dynamic leaching experiments using the measurement of the quantity of glass altered, or 

based on physical measurements allowing the fractured surface to be access directly. Each 

technique has its assumptions and its own limitations. For example, in case of measurements 

by leaching, only the part of the network accessible to water in the time limit of the 

experiment (useful surface) can be accounted for. On top of that, when determining the 

useful ratio of fracturing by leaching experiments, a homogeneous and constant rate of glass 

alteration is presumed.  

Regarding the FR estimation by granulometric sorting, it comes along with the physical 

damaging of the block that often results in the opening of cracks, or even generation of new 

cracks. Concerning the tomographic technique, its main limitation relates to a spatial 

resolution that is dependent on the size of the camera recording the different images at 

different scans. Thus, by conducting tomography at the scale of glass canister, only part of 

cracks (most opened) can be captured. However, it is of common practice to sample 

separately the most interesting areas in order to come up with the characterization of their 

structure with high precision. 

The alteration of the fractured glass block makes it possible to estimate the quantity of 

altered glass by equation 2-13: 

 Quantityofalteredglass = QAG = ∬ V(r, θ, z)dS(r, θ, z)dt
Surface,time

,  2-13 

where V(r, θ, z) is the rate of alteration at a given instant and at a given point of the glass 

block, S(r, θ, z) is the surface in contact with water (surfaces of cracks). As the velocity 

regime is not known at all times, and the surfaces are not always known, the estimated 

fracturing ratio determined by leaching experiments is named the useful fracturing ratio, 

assuming that the rate regime of the experiment �̅� is known, constant and uniform. Then, 

𝑄𝐴𝐺 =𝑉̅𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. For the initial rate regime, the useful fracturing rate then becomes: 𝜏0 =


𝑄𝐴𝐺

𝑉0
⁄

𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
. For the residual velocity regime, the useful fracturing rate then becomes: 𝜏𝑟 =


𝑄𝐴𝐺

𝑉𝑟
⁄

𝑆𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙
. It should be noted, that the QAG is generally determined experimentally by 

chemical analyzes. 

Two full scale SON68 blocks were tested in Soxlhet studies to acquire the initial rate of 

alteration (alteration in dynamic mode of water renewal), (Minet et al. 1999, 2003). Results 

showed that the useful fracturing ratio specific to this rate regime is close to 5. Other Soxhlet 

tests on highly damaged blocks yielded useful fracturing ratio in residual rate regime 

between 24 and 65 (Minet et al. 2003). 
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Physical measurement by tomography was applied to 4 blocks at scale 1. The obtained 

fracturing ratio was between 4 and 15 (Goebbels et al. 1998; Sené et al. 1999).  

Finally, granulometry tests performed on 2 blocks gave a fracturing rate equal to 15 

(Moncouyoux et al. 1991). 

While the fracturing ratio values determined by these two groups of methods are of the same 

order of magnitude, they do not provide any insight about the morphology of the fracture 

network. For the purposes of reactive transport modeling, it is certainly penalizing, owing to 

the fact that processes of transport and flow happening inside fracture are strongly 

controlled by the fracture network inherent parameters, like fracture aperture distribution, 

fracture connectedness, density (de Dreuzy 2008; Chomat 2008; Davy et al. 2006). 

2.2.2. Optical microscopy, scanning electron microscopy (SEM) 

Optical microscopy and scanning electron microscopy are two frequently used methods 

when studying the products of the glass alteration. In the framework of the study carried out 

in CEA/LCLT that focused on a long-term (7.5 years) full-scale glass block alteration 

conducted in static conditions on the SON683 glass block (Minet et al. 2013), these two 

microscopy techniques enabled the characterization of the crack network, including the 

measurement of the cracks apertures and the measurement of the altered layer thickness 

inside these cracks. 

The post-mortem observations of several transversal cross-sections of the ALISE block (see 

Section 5) aimed at fracture mapping, fracture parameters reporting and measurement of the 

thickness of altered glass found on the fracture lips.  

The overview of the fissure network of disk #6 is shown in Figure 2-9. It was obtained by 

drawing cracks visible to the naked eye, with the help of an illuminated magnifying glass. In 

accordance with the map, an internal zonation from the center to the periphery of the glass 

canister was reported.  

By naked eye observations, a radial zonation was proposed, it includes: 

- a peripheral zone near the edges of the block, with a higher density of cracks; 

- an intermediate zone with less cracks; 

- a central zone near the centre of the inner crack network, where bubbles of “gas 

porosity” are present. 

                                                           
3 Inactive glass, simulating French nuclear glass R7T7, historically the most studied 
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Figure 2-9 a) Schematic view of the cutting of the block; b) Map of the network of fissures of the disc 

#6; c) Radial zonation subjectively chosen to characterize fractures, Rcentral=Rinterm=Rperiph=7cm 

Later, in order to carry out detailed observations of the internal parts of the block by 

microscopy techniques, disc # 6 was cut by means of a diamond saw. It should be noted that 

a resin coating was made to minimize any additional fracturing that could have been caused 

by cutting (Section 5).  

Next, to make the samples observable at the SEM, each of them was first manually polished 

with diamond discs down to 1 μm grain size, then metallized with a uniform platinum layer. 

Three selected pieces of glass belonging to different regions of the disc were examined in 

detail (Figure 2-10). In that respect, the fracture lengths were manually measured using a 

double decimetre ruler on the enlarged images, whereas crack openings as well as the 

thicknesses of the altered films were measured using the microscope imaging software. 

 

 

Figure 2-10 a) view of the disc #6 split in several parts, b) fragment of the map of the network of 

fissures with localized central, intermediate and peripheral zones. 

The observations showed that the alteration film was present in each examined fracture, 

even the smallest one, suggesting that water could penetrate the entire network. The 

statistics for three samples are given in Table 2-6. It should be noted that only 4 fractures 
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were recorded by analysing the sample of the central zone, which certainly puts at risk the 

soundness of its results. The relative uncertainty of the measurements was reported close to 

10% for length, aperture and alteration film thickness measurements4.  

From the data presented in Figure 2-11, it can be noted that firstly, for samples of peripheral 

and intermediate zones, aperture increases with length; secondly, mean altered glass 

thickness of the sample from the intermediate zone is higher than the mean altered glass 

thickness of the sample from the peripheral zone for all families of openings; thirdly, most of 

the fractures located in the peripheral zone had apertures lower than 10 µm and mean 

altered glass thickness close to 4-5 µm; fourthly, most of the fractures located in the 

intermediate zone had apertures close to 50 µm and mean altered glass thickness close to 7-

10 µm. Concerning the central zone where only 4 fractures were found, no conclusion 

whatsoever could be drawn. 

Table 2-6 Observation results on peripheral, intermediate and central zone samples, adapted from 

(internal CEA communication Yves MINET et al. 2013) 

Sample Surface 

(cm²) 

S
sample

/ 

S
zone

 

Nb. of 

fractures 

Areal 

density 

(cm
-2

) 

Mean 

length 

(cm) 

Mean 

aperture 

(µm) 

Mean thickness 

of glass altered 

layer (µm) 

Peripheral 11,3 0.015 102 9.0 0.35 77 3.9 

Intermediate 29,1 0.063 51 1.8 0.70 90 12.8 

Central 9,55 0.062 4 0.42 1.39 33 3.7 

N.B. Mean thickness of glass altered layer and mean aperture are weighted by cumulated fracture length 

 

Figure 2-11 Histograms of : a) the number of fractures belonging to each family length; b) the mean 

aperture and the mean thickness of altered layer in fractures belonging to each family length 

The overall conclusions derived from the microscopy observations are: 1. fracture network of 

a scale of glass block is highly inhomogeneous and interconnected; 2. fracture openings have 

a very large variability, at least 3 orders of magnitude (opening from a fraction of μm to a 

few hundreds of μm). 

                                                           
4 Except for smaller apertures and thicknesses, for which an absolute uncertainty is about 1 μm  
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Although it was important to obtain results of such precision, this local sampling is still 

insufficient for the purposes of reactive transport modelling at the glass canister scale. In 

addition, it is possible to question the representativity of the chosen glass pieces together 

with the reasoning of the disk radial zonation. 

2.2.3. FRAGMA 

Techniques employed so far for fracture network characterization turned out to be 

inappropriate for the characterization of a network at the scale of a glass package. Thus, 

Crevoisier et al. (Crevoisier et al. 2011) argued that, although tomography has been as a 

powerful tool for fracture numerical description at scale 1, its digital representation is not 

adapted as an input mesh for large scale reactive transport simulations. Moreover, a 3D 

model of the network reconstructed from a series of 2D tomography images is considered to 

be non-complying with the technical imperatives of any efficient numerical simulation (non-

continuous fissures, not closed topology of a constructed geometrical domain, presence of 

geometrical elements of highly variable sizes). 

Subject to the above constraint, FRAGMA was put in place (Crevoisier et al. 2011). FRAGMA 

is the software able to generate a realistic 2D geometry of the fissure network inside the glass 

based on mechanistic analogies.  

The principles of the fracture network generator are primary based on geometrical analogies 

revealed by observations at different resolutions (from the naked-eye to tomography 

analyses). FRAGMA also takes into account possible local relaxation and stress variation 

during fissure propagation via stochastic law determining whether fracture stops or 

continues growing. As regards the input data for the fracture network construction 

presented in Figure 2-12a, it was obtained by the analysis of the characteristics of one glass 

semi-cylinder 2D cross-section given by tomography. A weighting of the obtained 

distribution laws by stochastic parameters was further used to represent the heterogeneities 

of the material and the variations inherent to the industrial techniques of glass block 

elaboration. 

The algorithm coded in FRAGMA follows several steps: 1. definition of geometric analogues; 

2. generation of the median lines of the cracks, comprising the insertion of the initiation 

points and the segments representing the median lines of the fractures propagated from the 

points of initiation; 3. explicit fracture generation by attributing opening values to the middle 

segments; 4. insertion of the segments representing fracture walls. 

Two realizations of the fracture network at the scale of the semi-disc and the glass block are 

shown in Figure 2-12b-c.  
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Figure 2-12 Glass fracture network stochastic geometries construction by FRAGMA code: a) 

distributions of apertures and directions (with respect to the radial direction) obtained by the 

characterization of a glass semi-cylinder 2D cross-section given by tomography; b) fissure network of 

a semi-disc; c) simplified fissure network of a glass block at scale 1 

Certainly, the modeling effort of (Crevoisier et al. 2011) was important; it probably could be 

used to create a model for further reactive transport modeling. However, it is likely to be too 

computationally demanding since it provides a discrete fracture network. Moreover, it relies 

on input data provided by a meticulous characterization of a glass block at scale 1. In fact, at 

this step the elaboration of the methodology comprising (i) characterization of fracture 

network as the scale of vitrified glass block, (ii) calculation of equivalent diffusion, hydraulic 

and glass aqueous alteration kinetics governing parameters and subsequent (iii) reactive 

transport modeling with consideration for variability of fracture network is seen as a 

primordial exercise that can no longer be postponed. 

2.3. Reactive transport modeling 

2.3.1. General overview 

Reactive transport (RT) as a research focus has appeared relatively recently with the 

publication of Reviews in Mineralogy and Geochemistry 34: Reactive Transport in Porous 

Media (Lichtner 1996), but rapidly gained the recognition of the Earth and environmental 

science community. Its multi-disciplinary topics stay at the crossroad of geochemistry, 

hydrology, and engineering applications. Firstly dealt with the contaminant hydrology, 

reactive transport principles have expanded to become broadly utilized throughout the Earth 

and environmental sciences. RT is now employed to address a wide variety of natural and 

engineered systems across diverse spatial and temporal scales, in cooperation with advances 

in computational capability, quantitative imaging and reactive interphase characterization 

techniques (Steefel, Beckingham, et al. 2015; Xiao 2018). Reactive transport modeling (RTM) 

has shown to be an essential tool for the analysis of coupled physical, chemical, and 

biological processes in Earth systems, and has the additional potential to integrate the results 

from fundamental research (Steefel et al. 2005; MacQuarrie et al. 2005). Using a modern 

reactive transport approach, it is possible to provide predictive capabilities for Earth and 

environmental systems that go beyond the empirical models that are still in wide use today.  
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Commonly used reactive transport codes include following modules: transport, flow, 

geochemistry and microbiology (Steefel, Appelo, et al. 2015). Table 2-7 summarizes the flow 

and the transport capabilities of the most frequently used, widely available RT codes. Table 

2-8 summarizes their geochemical and microbial capabilities. Table 2-9 provides a list of 

numerical characteristics of the codes.  

With reference of the data set out in these tables, it is evident that the choice of the 

calculation code depends on the characteristics of the medium under study (saturated flow, 

multiphase flow, multiple continua, reaction induced porosity-permeability change, etc.) and 

its ability to reproduce a modeled phenomenon. 

The coupling between modules is considered in the governing equations describing reactive 

transport in porous media. The equations are based on the conservation of energy, solvent 

mass, solute mass, and momentum (the Navier–Stokes equation applicable to flow at the 

pore scale, Darcy’s law applicable to flow in porous media at the continuum scale, and 

Cauchy’s equation describing the deformation of the solid phase), and a variety of 

constitutive laws for key parameters. As reported by (Steefel et al. 2005), the principal 

feedbacks between the equations/processes include: 

1. Coupling between energy and fluid flow: it is primarily performed through the 

advection of heat and the effect of temperature on the fluid density; 

2. Coupling between the flow (conservation of momentum) and the conservation of 

fluid or solid mass: it is typically treated by solving the two together to obtain the 

flow field or the deformation of the solid phase. 

3. The effect of dissolution or precipitation of minerals on concentrations of solutes and 

the mass of minerals; 

4. Coupling between fluid flow and solute concentrations: this is primarily effectuated 

through the advection of solutes and/ or colloids and the effect of concentration on 

fluid density and through modifications in the porosity and permeability as a result 

of mineral dissolution or precipitation. 

5. Coupling between temperature (conservation of energy) and solute concentrations 

through the effects of temperature on the thermodynamics and on reaction rates and 

the effect of chemical reactions on the thermal regime where heats of reaction are 

significant.  

There are three different types of models depending on the scale of interest to describe 

reactive transport in porous media 1) continuum models, 2) pore scale models, and 3) hybrid 

models involving a combination of scales. 

The continuum equations are often obtained by averaging over a representative elementary 

volume (REV) resulting in effective macroscale parameters. According to continuum models, 

the flow is described in terms of Darcy’s law with velocity proportional to the pressure 

gradient; and the uniform reaction rates within the control volume are supposed. Pore scale 
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models include pore network (Meakin et al. 2009; Steefel et al. 2013) and lattice Boltzmann 

models (Kang et al. 2003; Kang et al. 2007). They are applied when the pore scale gradients 

and processes (i.e. wormholing) must be captured and accounted for. Multiple continuum 

(hybrid) models (Battiato et al. 2011; Weinan E. et al. 2003) which combine pore scale and 

continuum scale behavior begin to be payed attention to because systems, involving multiple 

characteristic length scales, require the separate description of these continua.  

Regarding the representation of fractured porous media, a number of different conceptual 

frameworks can be mentioned. They include: discrete fracture model (DFM), equivalent 

continuum model, variations of dual and multiple continuum models (double porosity (2Φ) 

– single permeability (1K), double porosity (2Φ) – double permeability (2K) etc.). 

Incorporating chemical reaction in these models of fractured media very often requires an 

extension of the techniques to represent flow and transport; and, as a matter of fact, it 

necessitates greater computational effort to be solved: this is particularly the case for the 

DFM.  

The term discrete fracture model refers to a model in which the positions of fractures and 

their characteristics are explicitly defined. The flow and transport equations are usually 

solved separately for fractures and matrix. The coupling between both media is ensured via a 

coupling term. A successful application of 2D RTM in DFM was demonstrated in (Ghogomu 

et al. 2000). The model comprised two parallel fractures connected by a third perpendicular 

fracture, all located within a porous matrix. Although the model did not take into account 

the feedback between reactions and fracture and matrix properties, it showed the influence 

of fractures and porous matrix when coupled with multicomponent transport on complex 

flow fields and irregular spatial distribution of chemical species in the fractured system. 

Discrete fracture models allow precise quantification of many flow and transport 

phenomena that are not fully captured by applying continuum models. A great advantage of 

the discrete fracture approach is that it can account explicitly for the effects of individual 

fractures on flow and transport. As a consequence, discrete fracture models are popular for 

studies and applications on limited number of fractures, whereas their application for large-

scale flow and transport problems is restricted due to their high computational capacities 

demand. 

Dual (multiple) continuum models are referred to when a fracture network model is 

represented as a composition of two (multiple) coexisting continua, i.e. fracture and matrix. 

In these models, the communication representing the mass exchange between media is 

established via a coupling term. This term considers the surface area between continua and 

the flux between them; as a consequence, it necessitates the knowledge of the matrix block 

equivalent geometries that might be difficult to define precisely (Lichtner 2000). Inside this 

group of models, it is of common practice to distinguish dual permeability models (2Φ – 2K), 

which are mentioned when in both media, fractures and matrix, flow takes place, in contrast 

to double porosity (2Φ – 1K), where matrix is supposed to be diffusive only so that only 
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mobile-immobile-type solute transport modeling is considered. Although dual continuum 

models have seen vast application in the petroleum engineering literature (Bourbiaux B. 

2002; J. Bourbiaux et al. 1997), for purposes of the reactive transport modeling, their 

applications stay limited so far. One of the remarkable example that is worth citing is the 

research by Glassley (Glassley et al. 2003), in which a 2Φ – 2K formulation was used with the 

aim to describe more accurately fracture-matrix interactions when investigating geochemical 

evolution of the Yucca mountain waste repository. This dual continuum formulation was 

chosen because of the practical infeasibility of collecting data for parametrizing DF model. 

Meanwhile, it should be noted that, even this “simplified” continuum formulation was only 

feasible with implementation of the code on massive parallel computers. Having said that, it 

is possible to conclude that dual continuum models are likely to be most applicable to 

densely fractured systems where the explicit fracture representation is too computationally 

onerous. 

Single continuum (equivalent porous medium) models suppose equal fracture and matrix 

solute concentrations, but possible different mineral concentrations (Lichtner 2000). 

Berkowitz (Berkowitz 2002) stated that they are applicable when either the fracture network 

is dense and highly interconnected, or when the interaction between the fracture network 

and the porous/permeable matrix allows sufficient interaction to establish a local 

equilibrium. Application of this model demands the computation of the equivalent hydraulic 

and diffusive properties obtained, at the stage of parameters upscaling, by considering both 

fracture and matrix media. As noted in (MacQuarrie et al. 2005), single continuum 

formulation cannot be applied to any type of fractured media and should be considered with 

caution. Regarding the applications, the work of (Steefel et al. 1994) touched upon the use of 

the equivalent continuum model to conduct the RTM in single-phase hydrothermal systems 

in fractured rock. Some key assumptions, comprising: (i) porosity and permeability update 

only for fractures and (ii) matrix non-participation in fluid flow and reactive transport, made 

possible a relatively easy definition of equivalent properties based on the geometry of 

fracture set. 

In this research, we dealt with the reactive transport modeling of borosilicate glass alteration 

performed in HYTEC reactive transport code at the scale of some fractures up to a glass 

canister. Regarding the modeling approaches, both discrete and equivalent single continuum 

(1Φ-1K) models were used. RTM for relatively simple fracture systems was effectuated in the 

framework of the DFN modeling approach, whereas the application of the RTM at the block 

scale was conducted in accordance with the equivalent modeling approach. In fact, although 

the strong coupling (iterative, sequential) scheme, as outlined below in the following section, 

makes HYTEC particularly useful for the modeling of long-term leaching of solidified wastes 

(Trotignon et al. 2007a; De Windt et al. 2007), the difficulty in coupling transport, flow and 

geochemistry modules, when conducting RTM applied to fractured media modeled 

explicitly, stays pertinent. Even though the choice of the equivalent 1Φ – 1K model could be 
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argued taking into account a strongly anisotropic fracture network of a glass block and, as a 

consequence, the complications associated with the determination of the unique 

representative elementary volume (REV), we found that in the current conditions 

(availability of computational power, time left for realization, development of the code) the 

adoption of the single continuum equivalent model was reasonable. Moreover, when 

considering this equivalent formulation, we took into account the impermeability of the glass 

matrix and the possibility to adapt the GRAAL geochemical model to the equivalent porous 

medium representation. Further discussions regarding limitations of currently available RT 

codes and justification of the chosen modeling approaches could be found in Section 2.3.4. 
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Table 2-7 A comparison of key flow and transport features of reactive transport modeling codes. Obtained from (Steefel, Appelo, et al. 2015) 

 
 



CHAPTER 2: STATE OF THE ART 

49 
 

Table 2-8 A comparison of key geochemical and microbial features of reactive transport modeling codes. Obtained from (Steefel, Appelo, et al. 2015)  
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Table 2-9 A comparison of key geochemical and microbial features of reactive transport modeling codes. Obtained from (Steefel, Appelo, et al. 2015) 
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Notes to Table 2-7: aNot available in CrunchFlow, but available in CrunchFlowEDL ; bNot available in MIN3P-THCm, but dual porosity model is available in MIN3P-Dual  

Notes to Table 2-8: aNot available in OGS, but OGS has built-in interphases to different geochemical and biogeochemical solvers (GEM, PHREEQC, ChemApp, BRNS) that can 

implement Pitzer activity model ; bDDL denotes Diffuse Double Layer, non-edl denotes Non-Electrostatic model, and CC denotes Constant Capacitance ; cNot available in 

MIN3P-THCm, but available in a customized version of MIN3P  

Notes to Table 2-9: C-E denotes compaction-erosion, and EGM denotes Equilibrium Geo-Mechanics Model; Simplified 1-D approach following Neuzil; FCT refers to linearized 

algebraic flux corrected transport; MC denotes mixing cell, FEM denotes Finite Element Method, FVM denotes Finite Volume Method and MMC denotes Modified Method of 

Characteristic or backward particle tracking; BE denotes Backwards Euler, TW denotes time weighted difference including forward difference, backward difference, and 

Crank-Nicolson (CN) Central Difference, Mid denotes Mid difference, and RK denotes Runge-Kutta ; An MPI-based parallel version of PHT3D has been developed and is in 

the testing phase ; PEST denotes Parameter Estimation Software Toolkit  

 

 

 



CHAPTER 2: STATE OF THE ART 

52 
 

2.3.2. Origin of thermo convection  

On time scales inaccessible at the laboratory, the modeling appears to be the most attractive 

method to study convection – one of the phenomena that could potentially govern the long-

term aqueous glass alteration. 

In glass packages, the convection would result from the heat source due to radioactive decay. 

The heat would diffuse, giving rise to a temperature gradient within a package. A great 

number of researches reported that when the temperature of a fluid is higher at the bottom 

than at the top, convection currents are created instantly (Manneville 2006; Guy et al. 2008). 

Since there is a density gradient between the top and the bottom, gravity acts trying to pull 

the cooler, denser liquid from the top to the bottom. This gravitational force is opposed by 

the viscous damping force in the fluid. This leads to the formation of rolls, the so-called 

Rayleigh-Bénard cells. 

Bouyer (internal CEA communication, 2017) investigated the conditions that could favor the 

convection in the underground waste storage environment. By carrying out computational 

fluid dynamics calculations in TrioCFD code (http://www-trio-u.cea.fr/) with two sources of 

data, such as the temperature at the boundaries of the overpack (Figure 2-13) and the 

thermal power density of packages as a function of time (Table 2-10), he obtained 

temperature maps of a nominal glass canister at 1.000 y and 10.000 y after its disposal (Figure 

2-14). 

http://www-trio-u.cea.fr/
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Figure 2-13 Temperature at the overpack boundaries as a function of time (adapted by F. Bouyer from 

(ANDRA-Collectif 2016)). 

Table 2-10 Power density released by a glass package (Godon 2004) 

Time (y) 0 50 100 1000 10 000 100 000 

Power density (W/m3) 16573 4267 1740 173 0,266 0,266 

 

Figure 2-14 Temperature map calculated for a glass canister – a;b): the temperature field and the 

profile at 1.000 year after the canister disposal; c,d): the temperature field and the profile at 10.000 year 

after the canister disposal 
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Afterwards, by considering the effect of temperature on the fluid density via the Boussinesq 

approximation (see Section 2.3.3 equation 2-23), Bouyer estimated water velocity inside a 

vertical fracture crossing the transversal glass canister cross section of 42 cm (Figure 2-15), 

with fracture aperture varying from 40 μm to 1000 μm.  

 

Figure 2-15 Mesh of a modeled glass block section with a crack of 40 μm. Temperature field at 

10.000 y. 

The Péclet number (adimensional number describing whether the transport of species is 

essentially governed by diffusion or convection) was calculated: Bouyer reported that for the 

case of a package with temperature and heat output conditions at 1.000 years, convection 

always seemed to be predominant, at least up down 40 μm aperture. Regarding the case of a 

package with temperature boundary conditions at 10.000 years, convection was found 

negligible for cracks of less than 100 μm opening. 

Moreover, it was noticed that the presence of the apical voids or the cavities of contraction, 

formed at the end of the cooling the glass block, could favor the convection, that would 

activate the dissolution of the glass, until the saturation would be reached, if the velocity of 

the fluid in the clay remained very small and negligible. 

Given the reported findings, it is probable that during the periods of full saturation, the 

alteration of glass blocks in repository conditions will be governed by three mechanisms: 

molecular diffusion, kinematic dispersion, thermo-convection (density flow). The 

prerequisites for the existence of these three mechanisms are proven to take place inside a 

glass cracks medium. That is why final runs of RTM should be conducted in both diffusive 

and convective modes. 

2.3.3. HYTEC reactive transport code  

HYTEC is a reactive transport code developed by the reactive hydrodynamics group at 

MINES ParisTech (van der Lee, 2003). It was constructed around another geochemical code 

CHESS in order to connect a grid module with modules of resolution of flow, thermic and 

transport problems.  
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This code relies on the method of the separation of operators (operator-splitting based code) 

(Lagneau 2013b). It implies the resolution of the flow equation at the beginning of the time-

step, subsequent iterative solution of chemistry, transport and porosity problems with the 

ultimate update of the field of permeability according to porosity change for a next time-step 

flow-problem resolution5.  

The chosen approach to solving chemical systems is based on the principal component 

formalism that implies that the unknowns are restricted to the total concentrations of a 

certain number of basis species. The resolution of the advection /dispersion equation in 

porous media is required to be done for all components according to (2-14), (2-15). 

 
∂Φc

∂t
= 𝒯(c) −

∂Φc̅

∂t
 ,   2-14 

 𝓣(c) = div(De ∙ grad̅̅ ̅̅ ̅̅ c − cU̅),  2-15 

Where 𝛷 is the porosity; De is the effective dispersion/diffusion coefficient equal to D×𝛷; 𝓣 is 

the transport operator, c is the concentration of a total mobile fraction for the considered 

element, c̅ is the concentration of total immobile fraction for the same element (for example, 

minerals). 

The sequential resolution consists in numerical solving of transport, then chemistry through 

the resolution of the transport for one time-step and following resolution of the speciation, 

using the local values of the total concentrations according to (2-16). 

 
ΦϚcj

t+δt,2i+1
−Φtcj

t

δt
= 𝓣(cj) −

ΦϚcj
−t+δt,2i

−Φ−tcj
−t

δt
,  2-16 

Where 𝑐𝑗
−𝑡, 𝑐𝑗

𝑡 is the solution known at the current time and 𝑐𝑗
𝑡+𝛿𝑡,2𝑖, 𝑐𝑗

−𝑡+𝛿𝑡,2𝑖 is the estimation 

of the chemical module for the new time step at the previous iteration 2i. In comparison with 

the fully coupled method of the equation resolution, the solving physical and reactive 

transport separately greatly reduces the memory requirements and, in case of very large 

problems, it is seen as the only feasible solution.  

The speciation is calculated in each node of the system. It is used to estimate the fixed and 

mobile fractions and calculate the mineral volumes. The calculation is performed by the 

geochemical code CHESS (van der Lee 1998), based on several equations, such as the mass-

action law equation (2-17) providing an algebraic link between the primary and the 

secondary species, the mass-balance equation (2-18) and kinetic law (2-19) 

                                                           
5 It should be noted that in our research, the effect of fracture clogging with newly precipitated 

secondary phases it not taken into account.  
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 [Sj] = Kj ∏ [Si]
αjiNp

i=1 ,   2-17 

where 𝑆𝑗is the activity of species j, 𝐾𝑗 is the thermodynamic reaction constant, 𝑁𝑝 is the 

number of species involved,𝑆𝑖 is the activity of the basis species i needed to form the species 

j, 𝛼𝑗𝑖 is the associated stoichiometric coefficient. 

 Si−TOT =∑ αjiSj
Ns
j=1 ,   2-18 

where 𝑁𝑠 is the number of all species in the system. 

 
d[M]

dt
= kAv ∏ (Ai)

ai((
Q

Ks
)
p

− 1)i , 2-19 

According to equation 2-19, the variation in mineral concentration is proportional to (i) the 

intrinsic kinetic constant of the reaction k, negative in case of dissolution and positive in case 

of precipitation, and to (ii) the volumetric surface of the mineral 𝐴𝑣. At first approximation, 

the reaction rate can be assumed proportional to the area of the solid. The term (Q
Ks

)
p
−1 

(where p - an empirical parameter) is related to the notion of saturation: in that respect, 

precipitation happens if Q > Ks, otherwise dissolution takes place. The term ∏ (𝐴𝑖)
𝑎𝑖

𝑖  

integrates the activity of the dissolved species 𝐴𝑖 and 𝑎𝑖 shows the dependence of the rate 

reaction on the chemistry of dissolution. 

Solution of geochemical equilibrium is calculated with reference to a thermodynamic 

database; in this research, the adapted CTDP6 database is used. 

Flow module is available in HYTEC in saturated (stationary, transitory regimes) as well as 

unsaturated and two-phase forms. 

Mathematical basis for single phase flow in saturated stationary regime is represented by the 

continuity equation (2-20) and the generalized Darcy equation (2-21) 

 div(ρU⃑⃑ ) + 
∂Φρ

∂t
+ ρq = 0 ,  2-20 

where �⃑⃑� is the Darcy velocity, K is the hydraulic conductivity, ρ is the fluid density, Φ is the 

porosity, q is the volumetric source term. 

 U⃑⃑ = −K ∙ grad⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  (h) ,   2-21 

where ℎ is the hydraulic head. 

A module of variable density flow was also developed in HYTEC (Lagneau 2013a): it relies 

on the equation of mass conservation and Darcy's equation (2-22) where the contributions of 

pressure and gravity are separated:  

                                                           
6 The public CTDP thermodynamic database adapted at LCLT, Marcoule by adding the definition of nuclear 
glasses (SON68, ISG etc.). 
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 {
Ss

∂p

∂t
+ ρgq = div [

ρgk

μ
(grad(⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑p) + ρg grad⃑⃑⃑⃑⃑⃑ ⃑⃑  ⃑(z))]

U⃑⃑ = −
k

μ
(grad(⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑p) + ρg grad⃑⃑⃑⃑ ⃑⃑ ⃑⃑  ⃑(z))

 ,  2-22 

where 𝑆𝑠 is the storage coefficient, 𝑝 is the pressure, 𝜌 is the fluid density, 𝑘 is the intrinsic 

permeability. 

In order to consider the variation of water densities as a function of temperatures (motor to 

thermo-convection), the Boussinesq approximation (2-23) is used: 

 

 0

0

1 TT  


 ,   2-23 

where  is the thermal expansion coefficient, 𝑇 is the temperature. 

In HYTEC, discretization scheme of the hydrodynamic module can be chosen between 

centered (by default for the dispersion) and upstream (by default for the advection). Time 

discretization is one-step and can be set from fully explicit to implicit (semi-implicit Crank 

Nicholson scheme by default). 

For the explicit scheme in pure transport, the time step is subjected to the Courant-Levy 

criterion, which postulates that the higher the dispersivity and/or the space discretization, 

the smaller the admissible time step. HYTEC resolution scheme also includes a heuristic 

control of time step based on the number of coupling iterations required to reach 

convergence between transport and chemistry. If convergence is reached rapidly (typically 

less than 20 coupling iterations), HYTEC increases the timestep (5%) and reduces it 

otherwise. If convergence is not reached after 60 coupling iterations, HYTEC goes back to the 

previous time step, and starts over with a reduced time step (-30%). If the time step becomes 

very small (microseconds or less), HYTEC gives up, announcing an error of non-

convergence.  

Moreover, since 2014, a precise control of time step is available in HYTEC versions (Lagneau 

2014). It helps the user to adapt the time step manually to avoid an error. So it is possible to 

control maximum and minimum time step according to the easiness of convergence, i.e. 

locally modify start time step value as well as maximum time step value to pass through 

local difficult periods when convergence is not assured. 

HYTEC is based on a finite volume discretization of the governing coupled partial 

differential equations that link flow, solute transport, and multicomponent equilibrium and 

kinetic reactions in porous and/or fluid media. The choice of the finite volume method is 

justified in (Lagneau 2013b) in view of the coupling with chemistry. In fact, in algorithms 

with operator-splitting principle, each cell is considered as an independent chemical reactor 

where concentrations of different chemical elements are uniform. As for finite volume 

method, concentrations are not interpolated between cells but assigned at the centers. 

Furthermore, conservation of flux is guaranteed, which is of high importance for reactions 

based on mass balance. 
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However, in the current HYTEC version the use of the externally generated vertex centered 

mesh is also possible. The external vertex - centered mesh is created by a three-dimensional 

mesh generator with built-in pre- and post-processing facilities, named GMSH (Geuzaine et 

al. 2009). The move from the cell-vertex mesh (generated by GMSH) to the cell-centered 

approach adopted in HYTEC is performed on a dual of the mesh, which properties are 

calculated internally. It is constructed in a way that the degrees of freedom are placed at the 

center of dual elements. Then the equations are integrated over these new control volumes. 

The adoption of an externally generated grid is explained by the fact that GMSH is found to 

be efficient, it enables users to cope with abstract geometries, it possesses different types of 

solvers that could be easily applied, it enables the construction of a grid with varying mesh 

size etc. 

To sum up, for the purposes of this research, HYTEC reactive transport code was used. The 

simulations of the aqueous alteration of the borosilicate glass of simplified composition (ISG 

glass) were conducted in saturated stationary and saturated transitory regimes. Theses 

simulations were conducted in both diffusive and convective mode. Convection was 

originated from either term source reflecting the radioactive decay that will occur inside a 

glass canister in repository conditions, or by imposing temperature gradient between 

opposite walls of the modeled systems. The change of the porosity and its feedback on 

permeability and diffusion, as a consequence of clogging or dissolution, were not considered 

in this study. The glass dissolution was considered isovolumetric, that is, all dissolved glass 

was assumed to be spent on the generation of the alteration gel. 

2.3.4. Limits of reactive transport codes 

With reference to multiple researches mentioned earlier, it is clear that subsurface RTM has 

developed drastically in the last 15 years. It is now possible to study a wide range of complex 

coupled phenomena with a number of different codes. Development of operator splitting 

numerical schemes and evolution of computer science make it possible to run more complex 

cases with increasing number of meshes constituting a grid of a model. As regards the RTM 

of complex fracture porous media, the development of codes is still in progress. 

Nevertheless, there are already several codes (Table 2-7) capable of treating multiple 

continua.  

However, the examples of RTM applications to complex fracture networks are still rare. The 

introduction of multiple continua requires the complexification of the grid, the increase of 

the number of meshes to be treated, and usually the decrease of the mesh size (when 

meshing fractures). In the domain of computational fluid dynamics (CFD), it is no longer an 

issue. Indeed, there is multitude of examples showing the results of CFD calculations 

conducted on multi-million cell grids. In contrast to CFD applications, RTM deals with the 

coupling of the flow / transport and geochemical phenomena that represent an extra 

challenge. In fact, in presence of multiple component species, number of equations to be 

solved increases considerably (de Dieuleveult et al. 2009), and because all these equations 
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should be solved in each mesh, this exercise become challenging or even impossible to be 

accomplished without resorting to powerful massively parallel computers. Moreover, some 

supplementary difficulties could come from the geochemical model itself. For instance, 

according to the formalism of GRAAL geochemical model (Section 2.1.2) used in this study, 

glass aqueous alteration is controlled by a dense gel showing its passivating power when the 

retention rate of the Si and Al elements is enough. This passivating gel forms from the glass 

with a speed that is a function of its thickness and its diffusion coefficient, and dissolves 

according to a classical affinity law involving the initial velocity, and the ionic and solubility 

products of the gel. It means that in order to start up the calculation, it is necessary to achieve 

quickly a certain level of SiAl concentration in each mesh that becomes problematic in the 

case of fine meshes. As a consequence, due to the highly non-linear nature of the equations 

involved, the iterative sequential solution scheme of the code sometimes fails to converge or, 

in order to avoid the non-convergence, it is forced to reduce the time-step (Section 2.3.3). 

Although it allows to bypass the failure, it extends significantly the time of calculation, that, 

in a case like our, where the simulation time is of order of several tens of years minimum, 

becomes penalizing. It is especially relevant to the simulations run in presence of convection, 

when another restrictive criterion, named Courant Number, should also be respected.  

To sum up, although the evolution of RTM codes is impressive, RTM applied to a fractured 

media of a glass block remains challenging. On the one hand, for the time being, it is 

impossible to run RTM applied to a discrete model of fractures at scale of a glass canister, 

while on the other hand, the determination of a unique REV within this highly anisotropic 

fracture network is delicate and its replacement by an equivalent porous media requires the 

provision of the equivalent hydraulic and diffusive properties; as well as the adaptation of 

the geochemical model. The techniques used to come up with the equivalent porous media 

model will be addressed in Section 5. 
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Résumé du chapitre 

Ce chapitre s’attache à expliquer la problématique de l’analyse des réseaux de verre fracturé 

à l’échelle d’un conteneur. Au § 3.1, sont présentées les bases de la morphologie 

mathématique, i.e. l’outil principal pour la caractérisation des réseaux de verre fracturé 

examinés dans cette thèse. Au § 3.2 sont exposées les démarches effectuées pour l’obtention 

des images de coupes de verre nucléaire et nous justifions le choix de l’imagerie ordinaire 

par rapport aux autres techniques : la microscopie et la tomographie. À la fin de ce chapitre, 

nous examinons la possibilité d’étendre la méthodologie proposée à des applications en 3D 

et indiquons quelques verrous techniques auxquels il faudra faire face pour y parvenir. 

3. From objectives to their realizations 

3.1. Basics of mathematical morphology and presentation of the image 

processing-based fracture network characterization method 

In this research, mathematical morphology was used to characterize fracture networks of 

two blocks of vitrified glass.  

Developed in the 1960s (Matheron, 1967; Serra, 1969), mathematical morphology is currently 

applied in many domains, such as biomedical imaging, document processing, pattern 

recognition, remote sensing, microscopy, robot vision, internal structure description of 

reservoir rock , etc., both in two and three dimensional applications. Its high demand in the 

geosciences is easy to explain since it offers a nondestructive approach of heterogeneous 

medium characterization when coupled with non-intrusive analysis: e.g. micro-tomography 

(Tokan-Lawal et al., 2015), scanning electron microscopy (Al-Kharusi and Blunt, 2008; Jouini 

et al., 2011), ordinary digital imaging (Chatterjee et al., 2010). 

As mathematical morphology is based on the assumption that any image consists of 

structures which can be handled by the set theory, these sets are used to analyze important 

network attributes, such as porosity, connectivity and size of objects that make up the object 

under study, e.g. a fracture network in a nuclear glass canister. 

Here below, a few fundamental notions from mathematical morphology are described. They 

were used to realize the first part of the elaborated fracture network characterization method 

described later. 

i. There are several types of discrete images, depending on the type of numerical 

information associated with each image pixel. The value of a pixel of a binary image 

is either 1 or 0 depending on whether the pixel belongs to the foreground or to the 

background. The range of the values of the pixels of a grayscale image is extended 

from 0 to 2n - 1 for pixel values coded on n bits. Both type of images, grayscale and 

binary images, were used in this work.  
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ii. Morphological operators aim at extracting relevant structures of the image 

considered as a set. This is realized by probing the image with another set of known 

shape called structuring element (SE). The shape of the SE is usually chosen 

according to some preliminary knowledge about the geometry of the relevant and 

irrelevant image structures. In our applications, hexagon and line segment 

structuring elements were used. 

iii. Dilation, erosion, closing, opening are major transformations used to probe the image 

under study.  

The erosion of an image f by a structuring element B is denoted by εB(f) and is 

defined as the minimum of the translations of f by the vectors -b of B (Figure 3-1a). Or 

to put it simply, the eroded set is the locus of points where the answer to the question 

"Does the structuring element fit the set?" is affirmative. 

The dilation of an image f by a structuring element B is denoted by δB(f) and is 

defined as the maximum of the translation of f by the vectors -b of B (Figure 3-1b). 

Like for the erosion, the dilated set is the locus of points where the answer to the 

question is affirmative, however the question slightly changes and becomes: “Does the 

structuring element hit the set?” 

Given these definitions, it becomes clear that any erosion of an image is equivalent to 

a complementation of the dilation of the complemented image with the same 

structuring element (and vice versa). Both erosion and dilation can be decomposed, 

that is, eroding/dilating with a structuring element of size n is equivalent to 

eroding/dilating n times with the corresponding SE of size 1.  

The opening γ of an image f by a structuring element B is denoted by γB(f) and is 

defined as the erosion of f by B followed by the dilation with the reflected SE �̌� 

(Figure 3-1c). The idea behind the morphological opening is to dilate the eroded 

image to recover as much as possible the original image. 

The closing of an image f by a structuring element B is denoted by ϕB(f) and is defined 

as the dilation of f with a structuring element B followed by the erosion with the 

reflected SE �̌� (Figure 3-1d). The idea behind the morphological closing is to build an 

operator able to recover the initial shape of the image structures that have been 

dilated. This is achieved by eroding the dilated image. 

As it can be noticed from the definitions, opening an image is equivalent to closing 

the complement of this image and then complementing the resulting image, which 

means that the two are dual transformations with respect to set complementation. 

Opening and closing are idempotent transformations. This means that in contrast to 

dilation and erosion, their successive applications do not further modify the image. 

Opening and closing are increasing transformations; they preserve ordering relations 

between images. Opening is an anti-extensive transformation; its application results 

in removal of some pixels, whereas closing is extensive and adds some pixels. In 
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order to define openings with specific selection properties, one can use various 

morphological openings and take their supremum7 as a final result.  

In the course of this study, such transformations as morphological opening, 

morphological closing, supremum of linear openings, opening by reconstruction 

were used. 

 

Figure 3-1 Result of morphological a) erosion εB(f), b) dilation δB(f), c) opening γB(f), d) closing ϕB(f) 

of the image f. Structuring element B used for the pairs dilation and closing, erosion and opening is 

the same. Obtained from (Soille, 2003) 

 

iv. Top hat transformations unite white top-hat and black top-hat transformations and 

belong to a class of operators named residues. The first transformation, defined as the 

difference between the image f and its opening γλ(f) with a structuring element of the 

size = λ, allows to extract white and narrow features from the image, whilst the 

second transformation, defined as the difference between the image closing ϕλ(f) and 

the image itself f, extracts black and narrow features. The shape and size of the 

structuring element used for top-hat transforms depend on the morphology of the 

structures to be extracted. Top hat transformations perform correction of uneven 

illumination by mitigating illumination gradients and enhancing the contrast. In this 

study, black top hat transformation was applied to grayscale images at the stage of 

image pre-processing to remove slow trends and to perform contrast enhancement. 

This operator brought out fractures whose thickness is half the chosen size of the SE 

and, as a consequence, it facilitated the separation of the glass matrix and the fracture 

network. Regarding the selection of the size of the SE, it can be found in Section 5.1. 

v. Geodesic reconstruction allows the reconstruction of all connected components of an 

image g from a marker image f. It is effectuated by iterating geodesic dilatations of f 

                                                           
7 In this document, “supremum” and “union” as well as “infimum” and “intersection” are used as 

interchangeable synonyms; supremum (or point-wise maximum) and infimum (or point-wise minimum) replace 

the union and the intersection set operators for grayscale images. 
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with respect to g until stability (Figure 3-2 a,b). One of the questions appearing before 

executing geodesic reconstruction is related to the selection of an appropriate pair of 

mask/marker images. As a matter of fact, it is always recommended to obtain a 

marker image by performing some appropriate transformations of the mask image 

itself by considering the expected result. Geodesic reconstructions are found in many 

applications, such as the removal of objects connected to an image border, the 

removal of holes of a binary image etc. Moreover, one more transformation, based on 

geodesic reconstruction, opening by reconstruction, is important to mention: in 

contrast to simple opening, this transformation preserves the contours of the objects 

that have not been removed by the erosion (binary image) and removes unconnected 

light features (grayscale image). In this research, operations of geodesic 

reconstruction and opening by reconstruction were applied.  

vi. Skeleton is a compact representation obtained by thinning of the object to a set of 

lines condensing the information of the original object while keeping its homotopy 

(topology preservation). The skeletal points and their distance to the boundary of the 

set enable the reconstruction of the set. There are several techniques to perform 

skeletonisation. In this research, we used a skeleton by maximal balls and a skeleton 

by homotopic thinning. Regarding the skeleton by maximal balls, it is defined by the 

centers of maximal balls, where a maximal ball B is considered maximal in X object if 

there exists no other ball included in X and containing B (Figure 3-2 d). The quench 

function, calculated together with the skeleton by maximal balls, associates the radius 

of the ball to the ball center. A second type of the skeleton, used in our applications, is 

the L-skeleton by homotopic thinning. It is obtained by performing the sequential 

thinning with six rotations of L structuring element (Golay’s alphabet, (Serra, 1982)) 

until stability. This skeleton is always connected, of unit thickness and is less prone to 

generating spurious branches due to irregularities of object frontiers.  

vii. Multiple points are used for detecting connections between one-pixel width curves 

such as those obtained after the homotopic skeletonisation. They were useful in 

separating fracture ramifications. 

viii. Bounding box represents the smallest enclosing box for an object. Its dimensions, 

named Feret diameters, are the distances between the parallel planes restricting the 

object. For the purposes of aperture calculation, all bounding boxes were turned with 

respect to the rotation angle of the object (presented by a fracture ramification) whose 

size was measured. After, minimal Feret diameter corresponding to a fracture 

ramification aperture was measured. 

ix. Distance function is defined as the length of the shortest path drawn on the Euclidian 

grid between two points. In the digital version, each section at level i of the distance 

function of a set X corresponds to the erosion of size i-1 of X. It this research, distance 

function was used to provide continuous measurements of fracture apertures. Values 

of distance function lying on the traces of L-skeleton by homotopic thinning were 
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used to calculate aperture averages for each fracture ramification and for each set of 

fractures belonging to a crystal (Section 5.1).  

x. Image segmentation is defined as its partition into different regions, each one having 

certain properties. There are essentially two approaches depending on whether the 

core of the segments (i.e. region growing techniques) or their boundaries (i.e. edge 

detection techniques) are looked for. In this study we worked with the combination 

of both techniques, presented by the watershed transformation. To be precise, to 

avoid an over-segmentation of the image, we used a marker-controlled segmentation 

by watershed transformation that consists in finding boundaries of the catchment 

basins (influence zones of imposed minima) of the image under study (Figure 3-2c). 

 

Figure 3-2 a) marker image b)result of geodesic reconstruction c) minima, catchment basins, and 

watersheds on the topographic representation of a grey scale image d) maximal balls and skeleton by 

maximal balls (in red). Figures a, b have been obtained from (Soille, 2003). 

 

3.2. Materials 

3.2.1. Objects 

In order to be capable of performing RT simulations at the scale of an entire glass canister, 

we elaborated an image processing-based fracture network characterization workflow that 

enables us to (i) characterize a glass block fracture network, (ii) establish a link between a 

physical parameter representing an internal state of glass structural relaxation and an 

internal structure of the block fracture network, (iii) generate multiple realizations of 

equivalent fracture networks by considering the variability of the fracture network 

parameters such as fracture distribution and apertures, (iv) calculate coefficients of 

equivalent diffusion, permeability and kinetics governing parameters, (v) run RT simulations 
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for N realizations of equivalent fracture networks. The first part of the proposed workflow is 

devoted to the characterization of the morphology of the fracture networks via extensive 

analyses of high-resolution photographies. It is performed by using mathematical 

morphology tools. 

To demonstrate the feasibility of the proposed workflow, its application to two images of the 

longitudinal cross-sections of specimens of non-radioactive packages of vitrified glass was 

carried out. Two packages were produced at the Vitrification Production Facilities in 

Marcoule in a cold crucible induction furnace: uranium-molybdenum (UMo) and uranium 

oxides (UOx) (Vernaz, 2009). Molten glass was injected in a steel canister 1.1 m high with an 

internal diameter of 0.42 m. The injection from the crucible occurred in two stages, with each 

casting being half of 400 kg in total. The duration between the two castings was between 6 

and 10 h. Once the packages were made, they were removed and were placed into a room in 

which the cooling progressed further with no implication of forced airflow. Soon after their 

fabrication, the canisters were cut in two parts along their long axis. Some precautions were 

taken to preserve the integrity of the intrinsic fracture network. Hence, a viscous resin was 

poured on top of the UMo glass block (Figure 3-3) prior to the sawing operations. However, 

the resin could not fill the entire network. In a similar manner, the integrity of the UOx block 

(Figure 3-4) was expected to be guaranteed by pouring on top of the package a batch of 

concrete. But unfortunately, the concrete could not fully penetrate the network either. 

Amongst the blocks cut and available, we chose those which seem to preserve their integrity 

at best. Despite these precautions, we realize that these blocks are not perfect. It is clear that 

it would have been necessary to prepare these blocks differently and to attempt better resin 

impregnation before the blocks’ cutting. This could have required more time of preparation 

and was beyond the scope of this study. Nevertheless, in this work we assumed that the 

fracture networks separated from the pullout zones were representative and fully 

appropriate to serve as objects for further modeling. Having said that, it is suggested that in 

the future the proposed workflow is applied to glass blocks, with better preservation of the 

fracture network. 

A series of photos of the two block halves, at 200 kg with dimensions of 430 mm × 1335 mm, 

were shot in the CEA facilities in Marcoule. The methodology developed in this study is 

presented by using the UMo image (Figure 3-5). The UOx fracture network (extracted from 

the image shown in Figure 3-6) is presented subsequently when comparing the results of the 

equivalent network construction to the real fracture networks. The image parameters for 

both blocks are indicated in Table 3-1. 

Table 3-1 Characteristics of the examined images 

Name of image Size (px) of input 

image 

Resolution (mm) Assembly of N 

images 

UMo 6144 × 2430 0.17 1 
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UOx  6592 × 2856 0.1443 1 

 

 

Figure 3-3 Raw image of the UMo block of vitrified fractured glass.  

 

Figure 3-4 Raw image of the UOx block of vitrified fractured glass.  

 

Figure 3-5 Grayscale image of the UMo block of vitrified fractured glass. Dimensions: 1044 mm × 413 

mm. 
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Figure 3-6 Grayscale image of the UOx block of vitrified fractured glass. Dimensions: 952 mm × 412 

mm. 

3.2.2. Justification of the choice 

There is a number of techniques based on object imaging, that are commonly used to 

characterize internal structure of porous media, including fractured porous media: Scanning 

Electron Microscopy (SEM), Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM), X-

ray Computed Tomography (X-ray microCT, X-ray macroCT), Small Angle Neutron 

Scattering (SANS), Magnetic Resonance Imaging (MRI) etc. 2D and/or 3D images obtained 

by these techniques can be analyzed to extract reactive transport model parameters, such as 

porosity, fracture aperture, mineral volume fractions, surface areas, that afterwards enable 

the predication of diffusivity and permeability (Beckingham, Peters, Um, Jones, & Lindquist, 

2013; Caubit, Hamon, Sheppard, & Øren, 2009; Steefel, Beckingham, & Landrot, 2015). 

Spatial resolution limits stated by the manufacturers of the imaging equipment varies from 

some mm down to some nm (FIB-SEM, SANS) and are principally determined by the size 

and number of detector elements, the source-object-detector distances, and the method of 

imaging applied (Christian, 2013). In general, however, these techniques are limited by the 

size of the samples that are accepted for the analyses.  

As mentioned in Section 2.2, in the past, the tomographic imaging of a half of the glass 

canister transversal cross - section (Figure 3-7) was carried out. It was performed by the 

TOMO ADOUR X-ray CT system (http://www.tomoadour.com ) with a 450 kV X-ray tube. 

The post-processed reconstructed 3D fracture network was used to calculate the fracturing 

ratio and to capture the connectivity of the network in 3D. Regarding the choice of the object 

size, (Chomat, 2008) argued that, given the spatial resolution of the final tomographic images 

that was related to the size of the imaged object and the size of the detector, the conduction 

of the tomographic survey applied to an entire glass canister was impractical, that is why 

only a small part of the glass canister was inspected (half of the glass canister transversal 

cross of 20 cm height). 

http://www.tomoadour.com/
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Figure 3-7 a) Top view of the transversal cross-section 20 cm high with the diameter of 42 cm, used for 

tomographic analysis; b) reconstituted 3D fracture network; c) imaged sample with external surfaces 

Moreover, even for this small specimen, whose volume made up only one tenth of the glass 

block, value of special resolution was lower than desired. In fact, the analysis carried out by 

TOMO ADOUR X-ray CT system with size of the detector 2048 × 2048 pixels (internal CEA 

DEN technical report, 2012/01) had a limit of minimum spatial resolution equal to 0.21 mm. 

This means that below this limit of spatial resolution, the two walls of the fractures were not 

detected. 

A number of authors explained the issue of the spatial resolution of CT imaging. Figure 3-8 

shows typical ranges of spatial resolution and size of imaged objects for the tomographic 

systems.  



CHAPTER 3: FROM OBJECTIVES TO THEIR REALIZATIONS 

76 
 

 

Figure 3-8 Typical spatial resolutions and object sizes (diameter) for macro-CT, micro-CT, nano-CT, 

synchrotron CT (sCT) and synchrotron CT with Kirkpatrick–Baez (KB) mirrors (sCT + KB). Obtained 

from (De Chiffre, Carmignato, Kruth, Schmitt, & Weckenmann, 2014). 

In general, the spatial resolution of CT reconstructions is the highest for the techniques with 

the lowest focal spot size, such as micro-CT, nano-CT, synchrotron-CT and synchrotron-CT + 

KB. However, these techniques can be applied uniquely to small-size objects, up to some 

millimeters in diameter. For objects of larger size, macro-CT method is appropriate. But it 

possesses some restrictions too. In CT scanning of large objects, the main limiting factor is 

related to the material attenuation coefficient, which limits the maximum accumulated 

material thickness that can be penetrated (De Chiffre et al., 2014). In order to increase the 

maximum penetrable thickness, X-ray tubes with high voltage are employed. At the present 

time, commercial standard tubes are typically limited to 450 kV (used to image the half of the 

glass canister transversal cross – section), but special tubes up to 800 kV become available. 

For higher energies, linear accelerator X-ray sources are also requested.  

However, by increasing the size of the imaged object, one increases the complexity of its data 

processing (3D reconstruction, surface generation, scale correction), that becomes hardly 

manageable for complex media like fracture porous media. In this context, (Crevoisier, 

Bouyer, & Gin, 2011) stated that although tomography can be a powerful tool for fracture 

numerical description at the scale of an entire glass block, its digital representation is not 

adapted as an input mesh for large scale RT simulations. Furthermore, a 3D model of the 

network reconstructed from a series of 2D tomography images is considered to be non-

complying with the technical imperatives of an efficient numerical simulation. For example, 

non-continuous fissures, non-closed topology of a constructed geometrical domain, and 

presence of geometrical elements of highly variable sizes common for 3D reconstructed 

images of fracture network make the use of these resulting images difficult, if not impossible. 

In view of the limitations related to the size of the object acceptable for CT imaging, the 

spatial resolution limitations for objects of decimetre/metre size, the difficulty in using the 
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reconstructed 3D images for subsequent numerical simulations, we decided to opt for a high-

quality ordinary digital imaging.  

First, although, high-quality ordinary imaging is also concerned with the spatial resolution 

issue, it is easier to tackle this issue, provided that the appropriate equipment is used. Figure 

3-9 illustrates the way the photography of two inactive packages of vitrified fractured glass 

was conducted. Some precautions were taken to obtain photos that could be used to conduct 

their detailed examination. Indeed, the quality of the imaging is key for a correct processing: 

flaws and defect require additional treatment (more work), and lead to poorer description 

(decreased quality description). The following conditions drew our attention. 

(i) Flatness of the surface, the device had to be parallel to the cutting plane: it was 

ensured by using a level and a rail for the camera.  

(ii) Imposed adapted diffused lighting originating from several sources: it was 

implemented to avoid the possibility to mix up real fractures with shadows 

generated by cracks and unevenness of the surface 

Second, imaging of the glass canisters whose size and weight is considerable, was possible 

by the ordinary imaging technique. Thirdly, for glass canisters of 400kg, that are extremely 

difficult to transport due to their weight and security issues, this technique was seen as a 

good compromise. Fourthly, despite the fact that the ordinary imaging did not produce a 3D 

reconstruction of the interior structure of the glass canisters, there is still a possibility to unite 

images of different transversal and longitudinal cross sections to come up with their 3D 

models that could be used at the stage of RTM. This question will be touched upon in the 

following section.  
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Figure 3-9 Working process undertaken to realize a series of high-quality ordinary images of fracture 

network of two inactive vitrified nuclear glass canisters.  

3.2.3. Extension toward a simplified three-dimensional model and price to 

pay 

Although this research focuses on the construction and the application of a 2D model of 

nuclear glass fracture network at scale 1, its extension toward a simplified 3D model is 

feasible. Given that glass canisters have a natural symmetry axis, being perfect cylinders, and 

that the cylindrical symmetry has been used for the thermo-mechanical simulations at scale 1 

(Section 2.2), one of the less lengthy solutions is the use of cylindrical coordinates, when 

constructing a 3D simplified model of a fracture network. Its realization is possible even 

when only one representative longitudinal model is available. This model requires the grids 

of all necessary parameters, such as porosity, permeability tensor, diffusion tensor, alteration 

kinetics governing parameters. Its sketch is represented in Figure 3-10a. 

However, as it was mentioned in the preceding section, by unifying information obtained by 

analyzing images of longitudinal and transversal cross-sections of glass canisters, it is 

realistic to construct a more complex 3D model. This is especially appealing, since almost all 

tools necessary to accomplish this exercise are already prepared. First, the knowledge of the 

fracture pattern of a transverse plane of a fracture package can be obtained by applying the 

workflow elaborated in the course of this research (Section 5). Second, the data required for 

geostatistical modelling are identified. Moreover, the maps of the solidification front arrival 

times necessary to support the image analysis results can be procured easily and the way in 
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which they should be analyzed is already known. Besides, the algorithm used to generate the 

anisotropic Voronoї tessellation (realized in RGeostats package) should potentially be able to 

do it in 3D after some proper adaptations are made. These additional implementations 

concern the creation of the connected 3D fracture planes. From our point of view, based on 

the knowledge of position of cell centers and scaling factors in 3 directions and under the 

hypothesis that fracture planes grow radially toward the canister axis, it would possible to 

obtain 3D tessellation of equivalent fracture network (Figure 3-10b). Nevertheless, it should 

be noticed that although the fracture network in the transversal direction is likely to vary 

along the z-axis owing to the presence of the different thermo-mechanical environments such 

as a zone of re-liquefaction (in the middle) or a stress-free surface (at the top), it would be 

rather difficult to take this heterogeneity into account by the existing tools. Furthermore, it 

would certainly make the model sufficiently more complex and, as a consequence, 

computationally demanding, without considerably changing the result of the RT modeling. 

However, it could be interesting to create realizations of 3D equivalent tessellation based on 

the data obtained by analyzing two transversal cross sections and one longitudinal cross 

section. The transversal cross sections should belong to two different castings, in order to 

capture the difference of the fracture network morphology related to the two-stage 

manufacturing procedure.  

 

Figure 3-10 Conceptual representations of a) a simplified 3D model with cylindrical coordinates b) the 

idea how to construct a 3D fracture network surfaces under the assumption of their radial growth 

Unfortunately, the creation of this true 3D model is not foreseen in the framework of this 

research, because, firstly there is no transversal section of glass block available for the 
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analysis, and secondly their preparation is beyond the scope of this study due to time 

limitations. Regarding the disc of the block ALISE whose map of the network was drawn by 

naked eye and later on analyzed by SEM (Section 2.2.2), it was polished with diamond disc 

of fine size. This resulted in the creation of many artificial scratches that are difficult to 

separate from the real fractures (Figure 3-11). 

 

Figure 3-11 Non-professional images of the parts of one transversal disc of the ALISE block (full 

diameter =42cm).  

Presence of artificial fractures created by the disc polishing makes its application very hard, 

even impossible. In the future it is necessary to prepare a new set of transversal cross-

sections whose fracture network should be analyzed by the proposed image processing-

based fracture network characterization workflow (Section 5). 

In consideration of the above-mentioned limitations of the scanning tomography techniques 

and the imperatives for conducting the reactive transport modeling at the scale of the entire 

glass block, a new methodology was elaborated. It relies on the input of the pre-prepared 

grayscale high-quality images of glass block cross-sections and results of the thermo-

mechanical modeling of the viscoelastic behavior and the damage behavior, evolving in 

response to the structural relaxation of the glass. The workflow combines (i) image analysis, 

(ii) analysis of a physical parameter indicative of glass internal structural relaxation, (iii) 

geostatistical modeling, (iv) reproduction of equivalent fracture network tessellations, (v) 

calculation of equivalent permeability, diffusivity and kinetics governing parameters. It is 

viewed as a powerful tool that enables the combination of hard and soft data in pursuit of 

nuclear glass block fracturing characterization and modeling. As such, it provides the basis 

for future investigation of the impact of fracturing on the aqueous alteration of borosilicate 

nuclear glass with consideration for the variability of the fracture network and under 

different scenarios of repository evolution. 
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Résumé du chapitre 

La première partie de ce chapitre récapitule les résultats des expériences d’altération aqueuse 

de fractures idéales de verre SON68. La deuxième partie concerne la prise en main du 

modèle géochimique de corrosion de verre GRAAL et son application dans le cadre de 

l’approche discrète pour quelques fissures idéales. Dans la dernière partie du chapitre, nous 

examinons les résultats d’une étude de sensibilité visant à étudier l’influence du nombre de 

fissures, de leurs ouvertures et de leurs longueurs ainsi que le volume d’eau et de son 

agitation sur le développement du gel dense passivant et du gel poreux non passivant et, par 

conséquent, sur l’altération du verre. 

4. Reactive transport modeling in the framework of discrete approach 

applied to some fractures  

4.1. Experimental data of the reactive transport in some ideal fractures  

The goal of this chapter is to recapitulate the results of the laboratory experiments on the 

aqueous alteration of the simple fracture networks. These results are important to consider as 

they represent the experimental test-bed of our research and they were referred to when 

discussing the validity of the reactive transport models presented in this research.  

Although studies of the behavior of the fractured glasses in contact with water were initiated 

in Marcoule at the LCLT laboratory nearly ten years ago, currently there are only some 

results of experimental works conducted in the scope of the thesis of (Chomat 2008), that 

could be used as a tool for calibration and verification of the accuracy of our first reactive 

transport models. 

Results of the experimental studies of the glass aqueous alteration inside one/two fracture(s) 

of different apertures (inside the range 40-520 µm) and positions (horizontal/vertical) are 

available at LCLT. They are represented by the Scanning Electron Microscopy (SEM) 

measurements of the thickness of the altered glass layer.  

The first set of the experiments for one fracture was realized by using a static reactor (Figure 

4-1) of certain volume (from 58 to 100 ml) filled by the chosen solution (NaOH 0.25 mol/l or 

pure water). In this set of experiments two plates of glass of 24×24×3 mm3 separated by 40, 

60, 82, 170 and 550 µm (aperture of the modeled fracture) were submerged into the solution 

for the period of up to 290 days. The glass plates were placed either horizontally or vertically 

and the alteration was studied in the predominantly static conditions (there were only some 

trials performed in a dynamic mode with the goal to accelerate the development of the gel in 

the initially pure water and to observe the impact of the generated velocity on the glass 

alteration). 
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Figure 4-1 a): Device used for the experiments in the diffusive mode for one fracture altered in a basic 

or a neutral solution; b): Profiles of the thickness of the altered glass along horizontal fractures of 

varying apertures. Experimental specifications: volume of solution - 100 ml, solution temperature – 

90 C, solution composition - 0,25 mol/l of NaOH; c) Profile of the thickness of the altered glass along a 

fracture of 100 µm altered during 203 d in initially pure water. Obtained from (Chomat 2008) 

The second set of the experiments was conducted in the ambition to observe the effect of the 

thermo-convection provoked by the temperature difference between two compartments 

filled with water. The device (Figure 4-2) represented two stainless steel compartments of 

500 ml each, separated by the bloc of SON68 glass. To create two fissures of given aperture 

(in the range 40-200 µm), two glass samples were fixed together, with the separation between 

them indicating the studied fracture aperture. The thermo-isolation of the device was 

designed to ensure a fixed temperature gradient. The value of the temperature difference 

was maintained at 4±1 °C. By analyzing the concentration of the tracer KCl (3 mol/l), added 

into a hot compartment, the average velocity of the solution movement for different fracture 

apertures (from 60 to 200 µm) was calculated, in a range of 5.7 × 10-6 to 3.5 × 10-4 m/s order of 

magnitude.  

At the postmortem stage, it was noted that the thickness of the film of the altered glass was 

affected by the flux stimulated by the thermo-convection. According to (Chomat 2008), the 

thickness of the film developed on the interface with the upper fracture varied from 6.5 to 2 

µm (diminishing along the direction of the flow). As for the lower fracture, the effect of the 

flow was less pronounced. The film thickness was reported equal to 2.5 to 1.8 µm.  
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Text below Figure 4-2a: Stainless steel, water, glass SON68, thermo-plastic, silicone, temperature 

device, heat transfer medium, block of Teflon (translation from left to right, top to bottom) 

Figure 4-2 a) Scheme of the device used for the experiments with two fractures in the thermo-

convection mode (dimensions are not respected); b) Profiles of the thickness of the altered glass along 

the horizontal fractures of 200 µm aperture, at the 28th day of the experiment. Obtained from (Chomat 

2008) 

To study the influence of the disposition and the amount of the fractures on the coupling 

between transport and chemistry, Chomat’s thesis dealt with some more complex systems: 

one of them is presented below.  

In this experiment, the network of the interconnected fractures (Figure 4-3) was represented 

by two horizontal and one vertical fissures of equal aperture (40 µm). Two copies of this set 

were separately dropped into 230 ml of NaOH 0.25 mol/l solution for 78 days and into 

250 ml of initially pure water for 212 days. 
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Figure 4-3 a) Network of three interconnected fractures; b) Profile of the thickness of the altered glass 

for three fractures (horizontal upper, horizontal lower and vertical). Specifications of the experiment: 

volume of solution - 230 ml, solution composition - 0.25 mol/l NaOH, duration of experiment - 78 

days. 

Main conclusions of the experimental test-bed of the thesis: 

1. Development of the gel is stimulated in pH basic environments; thus, at the 

end of two-month experiment inside single fractures having apertures in the range 

170 - 550 µm, the altered layers were 15 - 40 µm. While for one fracture of 100 µm 

aperture altered in pH neutral solution the thickness was from 0.7 to 4 µm for 203 

and 290-days experiments. 

2. In horizontal fractures altered in basic solutions, the profiles of the altered 

layer were symmetric, with the intensity of the alteration being 4-5 times higher 

towards the edges. 

3. In a vertical fracture, the effect of asymmetry of the altered layer profile was 

explained by the influence of the convection originated by the gravity segregation; 

4. The higher the aperture of the fracture, the more homogeneous the alteration 

of the glass. Based on the SEM measurements of the altered glass thickness, it was 

argued that the profiles of the gel traced along the fracture started to be flat for 

fractures with apertures > 250 µm. 

5. The thickness of the film of the altered glass was affected by the thermo-

convection flow. The glass alteration layer was more developed in the upper fracture.  

6. The experiment with three interconnected fractures altered in a basic solution, 

showed the influence of the position and the orientation of the fractures on the 

intensity and the pattern of the gel development. Thus, it was discovered that the 

precipitation of the secondary phase was more important for the lower horizontal 

fracture, more intense alteration close to the tips of the fractures was noticed for the 

horizontally oriented fractures. 



CHAPTER 4: REACTIVE TRANSPORT MODELING IN THE FRAMEWORK 

OF DISCRETE APPROACH APPLIED TO SOME FRACTURES 

89 
 

7. Experiments conducted in neutral solution were not numerous and often 

unsuccessful, the developed alteration layers were too small to be observed in SEM. 

 

4.2. Reproduction of the experimental results 

First tests of the reactive transport modeling applied to glass fractured media were 

conducted in the scope of the deterministic discrete approach. The idea was to verify the 

representativity of the Glass Reactivity with Allowance for the Alteration Layer Model 

(GRAAL) by simulating aqueous alteration in initially pure water inside one fracture in the 

framework of “Fracture approach” (Section 2.1.2). To do this, the experimental observations 

(Section 4.1) were compared with the modeling results.  

We decided to start by the simulation of the alteration in initially pure water even if the 

majority of experiments conducted by Chomat were executed in a strongly basic solution 

(with pH close to 12-13). This is explained by the fact that the basis GRAAL model (Frugier 

2008; Minet et al. 2010) is designed to treat the alteration of glass only in the environments 

where pH is below 10; for solutions of strongly basic pH (higher than 10.5), one should take 

the model developed in the framework of other researches (Fournier 2015; Fournier et al. 

2014; Gin et al. 2001). Indeed, the alteration in basic solution differs significantly, that means 

that the data-base, used for modeling, composition of gel poles, secondary phases, 

parameters of kinetics, etc. must be changed to model the aqueous alteration of the 

borosilicate glasses in the highly alkaline media.  

In the case of Cigeo, it is highly improbable to have strongly basic environment (pH> 10.5) 

for a long period of time: the environment in the vicinity of the glass should be limited to the 

canister, steel liner, bentonitic cement and the Callovo-Oxfordian clay. These elements 

impose pH<10; even the bentonitic “cement” was devised to limit the pH pressure on glass. 

That allowed us to consider neutral environment while running reactive transport 

simulations.  

The geometries of the modeled systems have been taken by analogy with Chomat 

experiences. Firstly, we modeled two glass plates of 2.5 cm × 2.5 cm × 0.3 cm altered in 

100 ml of a pure water solution. It should be noted that, to respect the total glass volume, we 

had to recalculate the length of the modeled fractures. It was necessary since by default in 

HYTEC, in 2D simulations, the third dimension (depth) is equal to 1 m. That is, the length 

the fracture was calculated as (2.5 cm × 2.5 cm × 0.3 cm) / (2.5 cm ×100 cm) and equaled to 

0.0625 cm. By doing that, we obtained the surface equal to that of the glass plates used in the 

experiment. However, we admit that by decreasing the length of the fracture we will 

probably lose, to a certain extent, the transport effect. The influence of local chemical 

conditions, such as saturation in silica, inside a long fracture, is expected to be more 

important compared to a fracture whose length is shorter.  
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The first reactive transport modeling tests in diffusion mode were successfully conducted as 

part of the discrete modeling for a one, three and five model fractures. The parameters of the 

modeled systems are shown in Table 4-1. 

Table 4-1 Recapitulative table of the modeled systems  

Case name N fractures Length, cm Aperture, µm 
Total volume of  

water, m3 

1f _short 1 0.0625 120 10E-05 

3f _short 3 0.0625 120 10E-05 

5f _short 5 0.0625 120 10E-05 

 

In accordance with the description of the Fracture approach, discussed in Section 2.1.2.3, 

fractures were described explicitly, i.e. all parts of the system (reservoirs with water, fracture, 

glass films at the interface with fracture) were meshed (Figure 4-4). It should be noted that 

glass films had thickness of one mesh layer and served as a source of material available 

immediately. In Hytec input file, two geochemical units were specified: glass unit was 

assigned to the glass meshes and water geochemical unit was set to fracture and reservoir 

meshes. The parameters necessary to specify dissolution law (Section 2.1.2.2) of the glass of 

simplified composition (ISG) were calculated as defined in Table 2-4.  

During the analysis of the results of modeling the attention was brought to the evolution of 

the following parameters: total dissolved boron concentration in water, total dissolved silica 

concentration in water, SiAl concentration in glass, SiZrCa concentration in glass, pH, 

saturation index of silica in water. The total dissolved boron concentration and the total 

dissolved silica concentration were observed to characterize the intensity of glass dissolution. 

It should be noted that total dissolved boron concentration is indicative of glass alteration 

rate during the whole alteration, whereas total dissolved silica concentration is used when 

the dissolution is congruent, that is at the beginning of the alteration. 

The SiAl concentration averaged inside a glass plate was used to calculate the PRI equivalent 

thickness (or thickness of dense gel), as defined in Equation 4-1. According to the GRAAL 

formalism, the major part of this layer is occupied by Si and Al. The SiZrCa concentration 

averaged inside a glass plate was utilized to estimate the alteration layer total thickness (or 

thickness of altered glass) and after compared with the thickness of altered glass obtained by 

MEB. The alteration layer total thickness includes the thickness of dense gel and the 

thickness of porous gel. SiZrCa pole was chosen due to low Zr solubility; this allows us to 

consider that Zr stays always inside the alteration layer and does not pass into solution. The 

equivalent thickness was calculated using Equation 4-1. 

 
dei

dt
=

d

dt
(

Ci

ρ𝑃𝑆xiSpCv
),   4-1 

where ei is the equivalent alteration thickness for element i; Ci is the concentration of this 
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element in solution; ρ𝑃𝑆 is the glass density; xi  is the mass fraction of the element i in the 

glass; Sp is the glass specific surface, Cv is the mass of the glass in a unit volume  

As an illustrative example, distributions of the total boron concentration and the 

concentration of SiZrCa after 50 days of glass alteration are demonstrated in Figure 4-4b-c. 

 

Figure 4-4 a) Example of physical representations of modeled systems: cases 1,3,5 short fractures b) 

distribution of total boron concentration after 50 days of alteration; modeled case – “1f_ short“; c) 

distribution of SiZrCa concentration in a glass film; modeled case – “1f_ short“.  

The results of the modeling presented in Figure 4-5 proved to be close to the expected values. 

Simulations of the alteration in pure water of the model fractures have shown that the 

thickness of the gel is in agreement with the experimental results discussed in the previous 

section. Indeed, according to SEM measurements, the thickness of altered glass on the wall of 

one fracture of 100 µm aperture altered in initially pure water during 203 d. was of the order 

of several µm (Figure 4-1c).  

The first results of the modeling presented in Sections 2.1.2.3 and 4.2 proves the soundness of 

the GRAAL application for the reproduction of simple cases of RT in fractured systems. 

Parameters describing the kinetics of glass alteration are proven to be well adjusted.  



CHAPTER 4: REACTIVE TRANSPORT MODELING IN THE FRAMEWORK 

OF DISCRETE APPROACH APPLIED TO SOME FRACTURES 

92 
 

 

Figure 4-5 Modeled geometries: one, three, five fractures of 0.0625 cm length, total volume of water-

filled reactors connected to fracture(s) from two sides was 100 ml. 

a) Evolution of the altered glass layer thickness over time for different modeled systems 

b) Profiles of the thickness of the altered glass along one fracture (profile A-A’ in Figure 4-4c) in 

systems composed of one, three and five identical fractures, 180th day of aqueous alteration  

c) Evolution of the dense layer thickness over time for different modeled systems 

d) Profiles of the thickness of dense layer along one fracture (profile A-A’ in Figure 4-4c) in systems 

composed of one, three and five identical fractures, 180th day of aqueous alteration  

 

4.3. Sensitivity study of fracture geometry related parameters on the aqueous 

alteration of glass 

Next, the sensitivity study revealing the effect of major parameters influencing the 

dissolution kinetics of glass (GRAAL model) was conducted. Three types of effects were 

studied: mass (or concentration) effect, transport effect and homogenization effect. It was 

realized by performing HYTEC simulations with changing parameters of: 

1. Number of fractures (mass effect); 

2. Fracture length (transport effect) ; 

3. Opening of fractures (transport effect); 

4. Coefficient of diffusion (homogenization effect) ; 

5. Volume of water confined in two reservoirs (concentration effect). 

The next part of this Section offers the findings emerged from the sensitivity analysis of the 
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aqueous alteration of ISG glass in initially pure water. Table 4-2 indicates the parameters of 

the modeled cases presented in this Section. 

Table 4-2 Recapitulative table of the systems modeled in the scope of the sensitivity study  

Case name 
N 

fractures 

Length, 

cm 

Aperture,  

µm 

Total volume of 

water, m3 

Diffusion coefficient 

in water, m2/s 

1fis_30_short 1 0.0625 30 10.00E-05 10-9 

1fis_30_long 1 0.3125 30 10.00E-05 10-9 

1fis_120_short 1 0.0625 120 10.00E-05 10-9 

1fis_120_long 1 0.3125 120 10.00E-05 10-9 

3fis_120_short 3 0.0625 120 10.00E-05 10-9 

5fis_120_short 5 0.0625 120 10.00E-05 10-9 

3fis_120_long 3 0.3125 120 10.00E-05 10-9 

5fis_120_long 5 0.3125 120 10.00E-05 10-9 

5fis_120_short_250ml 5 0.0625 120 25.00E-05 10-9 

Diff_1fis_short 1 0.0625 120 10.00E-05 10-8 

Diff_3fis_short 3 0.0625 120 10.00E-05 10-8 

Diff_5fis_short 5 0.0625 120 10.00E-05 10-8 

 

1. Increasing the number of fractures that terminate in two tanks filled with water 

decreases the reaction affinity. It results in the increase of the SiO2(aq) concentration at the 

front of the hydrolysis and the stimulated development of the protective gel. In turn, the 

protective gel decreases the intensity of the degradation. 

2. Increasing the number of fractures gives the same effect as increasing the S/V ratio, 

where S is the glass surface available for alteration, V is the water volume. The duration of 

the velocity drop regime is related to the S/V ratio: the higher the S/V ratio, the quicker the 

arrival at the silica saturation of the water. This means that less porous gel forms due to the 

increase of the number of fractures, as its development is impeded by the dense gel. In 

contrast, dense gel continues to develop even if its increase is small (order of nm) (Figure 4-

6). 
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Figure 4-6 Modeled geometries: 1 fracture and 5 fractures of 120 μm opening and 0.3125 cm length. 

Left: Average concentrations (mmol) of SiAl and SiZrCa after 5 years inside a glass plate, average pH 

after 5 years inside a glass plate. Right: Thicknesses of altered glass, dense gel and porous gel for two 

cases after 5 years  

 

3. Increasing the fracture length decreases the formation of porous gel in the center. 

This results from the decrease of the reaction affinity, that is, the achievement of the 

saturation in silica in the center of a long fracture due to local fluid confinement. From Figure 

4-7, it is clear that the precipitation of the dense gel was more significant in the center of the 

long fracture in comparison to the short fracture. This development of passivating gel 

restrains glass dissolution that is indicated by the increase of the SiAl saturation index.  
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Figure 4-7 Demonstration of the transport effect and the effect of the rection affinity. Modeled 

geometries: 1 fracture with length of 0.0625 cm (green line) and 0.3125 cm (purple line). 

a, b) concentrations of SiAl and SiZrCa along a fracture after 1825j of alteration. In the middle of the 

fracture the porous gel is formed less easily due to the passivation by the dense layer; 

c) profile of pH after 1825 d of glass alteration at the interface glass – water; 

d) saturation indices (SI) of SiAl along two reservoirs and a fracture at the end of 5 years; negative SI 

of SiAl indicates that SiAl ion activity product is less than SiAl equilibrium constant, that is the 

environment is undersaturated in SiAl, whereas neutral SI of SiAl shows that the solution is in 

equilibrium; 

e) profile of total dissolved boron concentrations. They are traced along two reservoirs and a fracture 

at the end of 5 y alteration  

 

4. The rate of glass dissolution is governed by the medium. pH has a strong influence 

on the dissolution rate; a low pH (0.1 pH unit) deviation causes a fairly significant change in 

initial dissolution rate and thus, it affects the glass alteration regime. It should be 

emphasized that pH in the solution becomes more basic when the S/V of the test is higher. 

The link between the concentration of SiO2(aq) in water and pH is directly proportional 

(Figure 4-8). The porous gel is preferably formed when the initial dissolution regime is 

longer (case of 3 short fractures), while the dense gel is built up gradually for both modeled 
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systems during the aqueous alteration (Table 4-3). 

 

Figure 4-8 Modeled geometries: 3 fractures with length of 0.0625 cm (orange) and 0.3125 cm (blue). pH 

and aqueous concentration of SiO2 along a fracture after 1250 days. These images demonstrate the 

existence of a link between the concentration of SiO2 (aq) in water and pH. 

Table 4-3 Average values of the concentrations of the major poles constituting the depleted (porous) 

and passivating (dense) layers in a glass plate. Modeled geometries: 3 fractures with lengths of 0.0625 

cm (short) and 0.3125 cm (long). 

Case  Total glass 

surface, m2 

Total water 

volume, m3 

Average  

SiAl, mmolal 

Average 

SiZrCa, mmolal 

3 short 

fractures 

6.25E-09 10.00E-05 427 108 

3 long fractures  3.13E-08 10.00E-05 400 28 

 

5. Increased dissolved boron is observed in solution when glass dissolution is 

favored (Figure 4-9). In fact, boron is used as a tracer of the alteration because it is not 

retained in the glass and does not take part of any gel. 

 

mmolal 

Offset from fracture inlet, m Offset from fracture inlet, m Case 3 long fissures  
Case 3 short fissures 
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Figure 4-9 Modeled geometries: 1 fracture with lengths of 0.0625 cm (blue) and 0.3125 cm (green). 

a) evolution of the average concentration of all aqueous species containing boron in solution; 

 b) evolution of the average SiAl concentration. Dense gel was more developed in the case 1 short 

fracture, it explains the fact that less boron was found in solution.  

6. The aqueous alteration of the glass can be different for the internal (in the center of 

a fracture) and external (near reservoirs) parts of the fracture, as indicated in Figure 4-10. At 

first, the intense interdiffusion is slowed down when the thickness of the hydrated layer 

becomes more visible. The interdiffusion is more prominent in the middle of the fracture and 

governs the development of the PRI, whereas porous gel growth is more stimulated by the 

process of hydrolysis, so the thickness of the porous gel is important at the ends of the 

fracture where the solution is less confined, see Figure 4-11. 
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Figure 4-10 Modeled geometries: 1 short facture (0.0625 cm) of 120 µm and 30 µm apertures. 

Concentration profiles of SiAl, SiZrCa, SiO2, B(OH)3 in solution on the “glass- water” interface along a 

fracture after 5 days of aqueous alteration  

 

 

Case 1 fissure 0.0625 cm length 120 µm aperture 
Case 1 fissure 0.0625 cm length 30 µm aperture 

Offset from fracture inlet , m 

Offset from fracture inlet , m 

Offset from fracture inlet , m 

Offset from fracture inlet , m 
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Figure 4-11 Modeled geometries: 1 short facture (0.0625 cm) of 120 µm and 30 µm aperture.  

a) evolution of SiAl concentration of vs. time. It reveals that after 80 days the value of SiAl 

concentration remains stable for the case 1 fracture of 30 μm opening (blue curve).  

b) profiles of SiO2(aq) along glass-water interface. It appears clear that in both cases the development 

of hydrated gel is regulated by the concentration of silica at the glass-water interface (images of the 

states for the following time steps: 20 d, 60 d, 120 d). 

8. Increasing the diffusion coefficient in water has the effect of restricting the 

aqueous alteration (passivating and non-passivating), as seen in Figure 4-12 and Figure 4-

13. Indeed, the homogenization of the solution, provoked by the increase of the diffusion 

coefficient in the water, plays an essential role by acting on the chemical conditions. Given 

that there is no renewal of water; the agitation, favored by the increase of the diffusion 

coefficient, causes the increase of the reactional affinity and, as a consequence, the 

anticipated development of the dense gel (in the first hours). It serves as a curb to slow the 

growth of the porous gel that globally determines the outcome of the aqueous alteration. 
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Figure 4-12 Modeled geometries: 5 short fractures (0.0625 cm long), for the first model (5fis_120_short) 

the diffusion coefficient is equal to 1E-09 m2/s in each water tank; for the second model 

(Dif_5fis_short) the diffusion coefficient is increased up to 1E-08 m2/s in order to homogenize water 

a) bar chart of the average thickness of dense, porous films and overall altered glass(m) after 1825 

days of glass alteration;  

b) bar chart of the average concentrations of the major poles SiAl, SiZrCa (mmolal) in glass and pH in 

solution after 1825 days of glass alteration; 
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Figure 4-13 Modeled geometries: 5 short fractures, for the first model the diffusion coefficient is equal 

to 1E-09 m2/s in each water tank; for the second model the diffusion coefficient is increased up to 1E-08 

m2/s in order to homogenize water 

a) evolution of SiAl in the first days of the alteration; after 200 days, the development of the protective 

gel slows down, but these first days determine the trends of the aqueous alteration;  

b) evolution of pH over time; pH increase is observed in the water when the diffusion is more 

stimulated. 

9. Increased tank volume lead to increased glass alteration. As the volume of water in 

the tanks increases, silica diffuses more easily diffused out of the fractures, so that its 

concentration decreases in fractures. Therefore, there is a delay in the development of the 

protective gel, while the porous gel develops progressively since there is no restriction due to 

the reactive affinity. 

Together, the results of this sensitivity provide important insight into the influence of the 

fracture geometry related parameters on the glass aqueous alteration and they suggest the 

following. 

a. Increase of fractures number without changing the water volume of the system 

causes a slowdown of the development of the porous gel; however, this correlation is not 

constant. The slowdown of the growth of the porous gel is not identical if we compare the 

results of the simulations for a pair 1 fracture - 3 fractures, then, a pair 3 fractures - 5 

fractures. The increase of the fracture number results in the stimulation of the protective gel 

development because of the decrease in the reaction affinity (influence of the concentration 

of silica in the solution).  

b. Fracture elongation reveals both the effect of transport and the effect of reaction 

affinity. Since the chemical conditions are not identical inside a fracture and at its ends, the 

dense gel develops more in the middle of the fracture where the inter-diffusion process 

dominates. The hydrolysis effect is seen at the fracture tips where the stimulated 

development of the depleted (porous) gel is noticed. 

c. The higher the S/V ratio, the higher the pH. Consequently, it increases the initial 

dissolution rate of the glass. As soon as the solution becomes saturated with silica, the 

system tends towards a state of equilibrium. This modeling conclusion is in accordance with 

the equation 4-2 describing the dissolution of the glass: 
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𝑑𝐸

𝑑𝑡
= 𝑟𝑑𝑖𝑠 (1 −

𝐶𝑠𝑖(𝑡)

𝐶𝑠𝑎𝑡
),   4-2 

where 𝐸 –is the PRI thickness at time t, 𝑟𝑑𝑖𝑠 – is the rate of PRI dissolution in pure water , 

𝐶𝑠𝑖(𝑡) – is the solution concentration in silica at time t, 𝐶𝑠𝑎𝑡 – is the saturation concentration, 

when the solution is at equilibrium with the PRI. 

d. The larger the volume of the tanks filled with water, the more the passivation effect 

by the protective gel is delayed. That is, the increase of the volume of water favors the 

development of the porous gel. 

Figure 4-14 provides the summary of the sensitivity study results. 

 

Figure 4-14 Bars charts resuming the results of the reactive transport modeling for the studied cases 

represented in Table 4-2. 
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Résumé du chapitre 

Ce chapitre expose le séquencement de toutes les actions (workflow) : il explique en détail la 

méthodologie allant de la caractérisation et la modélisation du réseau de verre fracturé pour 

en arrivant in fine au transport réactif à l’échelle d’un bloc industriel, en prenant en compte la 

variabilité du réseau et différentes conditions d’altération (stockage, expérience échelle 1 

ALISE). Ce chapitre est écrit dans le format de deux articles. Dans le premier au § 1.3, nous 

étudions l’application de la morphologie mathématique dans l’objectif (i) d’extraire le réseau 

de fissures séparément des zones d’arrachement et des retassures, (ii) de déterminer les 

ouvertures des fissures pour chaque ramification des fissures, (iii) d’effectuer la 

segmentation de l’image qui a pour but de distinguer les parties de la matrice séparées par 

les fractures et dont les barycentres sont aisés à déterminer, et (iv) finalement d’étudier 

l’anisotropie de cette image segmentée par la théorie des moments, et en déduire l’angle de 

rotation pour chaque cristal et leur barycentre. Ensuite, au § 1.4 et 1.5 du même article, nous 

étudions les étapes de l’analyse quantitative de la carte du front de solidification, provenant 

de simulations thermomécaniques de la solidification du bloc de verre. Cette carte et les 

analyses qui en ont résulté, sont utilisées afin de compléter les données ponctuelles de 

l’analyse d’image par la distribution spatiale globale des paramètres clés en vue d’effectuer 

des simulations géostatistiques et de prédire l’anisotropie du réseau. Nous procédons par la 

suite aux simulations géostatistiques des centres de cristaux et des ouvertures de fissures, 

dont les résultats sont utilisés pour les réalisations de la tessellation du réseau équivalent de 

fissures. L’article se termine avec la simulation de quatre réseaux de verre fracturés et de 

deux images segmentées, pour les deux blocs vitrifiés UOx et UMo. 

Dans le deuxième article, au § 2, sont examinées les techniques pour calculer les paramètres 

équivalents, tels que la perméabilité et le coefficient de diffusion. Nous regardons aussi 

comment les paramètres, qui gouvernent la cinétique de dissolution de verre, sont calculés 

dans le cadre du modèle poreux équivalent. La vérification de ces techniques est apportée au 

§ 3 ; elle est effectuée au moyen de simulations de transport réactif appliquées à un réseau 

simplifié représenté, d’un côté, par l’approche DFN et de l’autre côté, par son modèle poreux 

équivalent. 

L’application du modèle équivalent au cas d’un bloc échelle 1 est présentée au § 4 du 

deuxième article : les résultats des simulations du transport réactif en mode diffusif et en 

mode convectif sont montrés et sont comparés aux résultats expérimentaux d’un essai 

d’altération aqueuse d’un bloc de verre. Ce test a été réalisé au CEA dans l’appareillage de 

lixiviation statique (ALISE). 

Ce chapitre se termine par les résultats de simulations du transport réactif d’un bloc échelle 1 

dans les conditions proches à celles du stockage géologique, c’est-à-dire, pour un bloc en 

position horizontale, au sein duquel la thermoconvection créée par le dégagement de chaleur 

due à la radioactivité est prise en compte. Ces simulations traitent les échéances  1 000, 5 000 

et 10 000 ans après mise en stockage des conteneurs dans les galeries souterraines. 
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5.1. Fracture network characterization by mathematical morphology 

5.2. Geostatistical and geometric modeling 

Sections 5.1 and 5.2 are presented in the form of an article entitled “Coupling image analysis 

and thermo-mechanical simulation results to produce a model of the fracture network in a 

nuclear glass canister”. It was accepted for publication in April 2019 in the Journal of Nuclear 

Materials. Some additional information is given below. 

Description of a thermo-mechanical simulation used in the study 

The overview of the thermo-mechanical model (Barth 2013) used to simulate multiple 

realizations of the equivalent fracture network tessellation is given in the Section 1.2 of the 

above-mentioned article. Below some supplementary information on the modeling stages 

undertaken in the course of the thermo-mechanical simulations is provided.  

The protocol used to carry out the thermo-mechanical simulations was composed of two 

stages: first, the thermal analysis of materials and second, the mechanical analysis based on 

thermal maps calculated at the first stage. This approach supposed that there was no 

feedback between the mechanical deformations and the thermal exchanges within the 

package. 

One complete thermo-mechanical modeling run included:  

i. complete thermal analysis of the package, coupled with an inverse analysis. This 

analysis provided the complete temperature map evolving in time with consideration 

of different materials comprising the package; 

ii. viscoelastic analysis that took into account structural viscoelastic relaxations of the 

glass; 

iii. calculation of the glass phase change; 

iv. mechanical analysis of the entire system, considering the temperature map and phase 

changes as a function of time. 

The boundary conditions imposed for the simulations are those derived from the 

temperature readings of the experiment applied to a glass canister carried out in Marcoule, 

CEA. In this experiment, recordings of three thermocouples placed at ¼, ½ and ¾ the height 

of the glass block were monitored and analyzed. 

The idea behind the inverse analysis was to determine values of the thermal flows based on 

the values of the temperatures imposed as boundary conditions, by adjusting coefficients of 

heat exchange happening in the glass (Barth et al. 2014). 

Once the data intrinsic to the materials were obtained, it enabled the realization of the 

simulations with other operating conditions, including the simulations with the term source 

due to the nuclear radioactivity. 
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Use of the thermo-mechanical simulation as a proxy for image analysis 

In this research, the results of the viscoelastic analysis were used to complement the 

photography information and by doing so, establish a link between the observed 

morphology of the glass fracture network and the evolution of physical parameters resulted 

in the creation of the crack network. In particular, the calculated map of the arrival times of 

the solidification front was valuable.  

The position of the solidification front was obtained by analyzing the delay between the 

fictive temperature and the glass temperature at each time step. In fact, it is very difficult to 

determine the glass transition temperature (Tg) directly because its value depends on two 

fundamental phenomena that cannot be summed up in a single variable expressed by the 

temperature. On the one hand, Tg is influenced by the thermal history T(t) of the glass 

network and on the other hand, the vitreous transition depends on the property of the glass 

under consideration (e.g. specific volume, thermal conductivity, specific heat capacity, 

viscoelasticity, refractive index, etc.). For this reason, it is often helpful to use the fictive 

temperature (Tf) generalized by Narayanaswamy and Moynihan in the model “TNM” (Tool-

Narayanaswamy-Moynihan) (Moynihan et al. 1976; Narayanaswamy 1971). The state of 

structural relaxation, obtained through Tf, quantifies the progress of structural relaxation 

over the thermal history T(t). The fictitious temperature Tf is calculated in every point of the 

volume of glass. The internal glass properties change in a different way according to the state 

of the glass, which can be liquid, solid or semiliquid / semisolid. First, when T = Tf and T >> 

Tg the glass is considered to be in the liquid phase. Second, when Tf >> T the glass is in the 

solid state and shows properties of a solid medium. It should be noticed that Tf can continue 

to evolve leading to the stabilization or solid state relaxation of the glass. Third, when Tf 

begins to show the delay with respect to the cooling taking place according to T, the glass is 

considered in the liquid-solid transition state.  

In consideration of the Tf and T evolution, it was possible to determine at each time step of 

the simulation the evolution of the position of the solidification front. On the basis of these 

data, the map of the arrival times of the solidification front was built. This parameter was 

chosen because it is the cooling rate, related to the liquid/solid phase transition that was 

demonstrated to be a major parameter governing the glass package fracturing. Indeed, the 

higher the cooling rate, the quicker the transition of the phases and the stronger the 

structural perturbation of the glass resulting in the more intensive matrix fracturing. 
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Abstract 

Understanding nuclear glass alteration in a fracture network of a block of nuclear glass is critical in 

predicting the release of the radionuclides in the subsurface and is relevant for the security of 

nuclear waste disposal. Here, we present an image processing-based fracture network 

characterization workflow that enables us to characterize a glass block fracture network, establish a 

link between a physical parameter representing an internal state of glass structural relaxation and an 

internal structure of the block fracture network, and generate multiple realizations of equivalent 

fracture networks by considering the variability of the fracture network parameters such as fracture 

distribution and apertures. The proposed workflow includes the following stages: (i) fracture network 

extraction, (ii) measurement of apertures of all distinct ramifications of the fracture network, (iii) 

image segmentation, (iv) anisotropy characterization, (v) passage to segment representation with the 

intention of modeling block equivalent fracture networks by using an algorithm of mesh growth, (vi) 

geostatistical modeling of average apertures and variables responsible for fracture spatial 

distribution, and (vii) simulation of equiprobable realizations of fracture network equivalent 

tessellations. Given this processing, the workflow is able to provide data for further steps including 

upscaling of diffusivity and permeability, and it facilitates reactive transport modeling at the glass 

block scale. As an illustrative example, we apply the proposed sequence of actions to a two-

dimensional (2D) high-resolution image of two blocks of nuclear glass. This application brings into 

service both hard data obtained by direct measurement of the fracture network and soft physics-

based explanatory data and considers the variability in the fracture network. The results show that 

implementation of the devised procedure presents an opportunity for better understanding of the 

impact of fracturing on aqueous alteration of glass.  

Keywords 
Nuclear waste, fracture network, image analysis, thermo-mechanical simulation, equivalent model, 

nuclear glasses. 

Introduction 

Vitrification of radioactive waste has been acknowledged as a feasible and reliable application to 

condition high-level long-lived nuclear fission products in geological disposal facilities on time scales 

                                                           
8 Corresponding author CEA, DEN, DE2D, SEVT, LCLT, Marcoule, F 30207 BAGNOLS SUR CEZE Cedex, France 
E-mail address: frederic.bouyer@cea.fr (BOUYER Frederic) 
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of up to millions of years. This process involves calcination of liquid fission product solutions followed 

by a melting stage at around 1100 °C in a metallic vessel in which the molten glass and the calcinated 

fission product solution are directly heated by electromagnetic induction before being poured into a 

metallic container. As the glass cooling and solidification occur, the stress increase stemming from 

the mechanical equilibrium between the internal liquid glass and external solidified glass causes the 

development of a fracture network. The thermal gradient is very important at the beginning of the 

cooling along the walls of the stainless steel container that results in the creation of a dense fracture 

network. After, when the gradient fades, a less dense radially growing fracture network creates in 

the center of the block.  

The chemical performance and alteration of glass under leaching has been extensively studied during 

the last thirty years (Pierce et al. 2014; Carl I. Steefel 2015; Gin et al. 2013). The results of these 

experiments have provided a better understanding of the mechanisms of glass alteration at the 

micro level and facilitated elaboration of the glass reactivity with allowance for the alteration layer 

(GRAAL) model (Frugier et al. 2008). The modeling of flow and transport phenomena in fractured 

media is a topical issue in Earth sciences. The nuclear energy industry has shown interest in this 

subject because fractures could eventually enable the release of radionuclides in the ground waters 

of deep geological waste repositories. In fact, multiple studies have modeled the migration of 

radionuclides in fractures of host rocks surrounding deep geological repositories for high-level waste 

(ANDRA 2005; Zhang 2018; Nykyri et al. 2008; Cvetkovic et al. 2004).  

By merging the lessons learned from both fields, it is possible to imagine quantitative simulations of 

the coupled chemical evolution of the glass and the migration of fluids and solutes within its fracture 

network at the block scale. To that end, good characterization of the fracture network is a key step 

before quantifying the long-term immobilization properties of the matrix. However, a discrete 

fracture model is considered to be too computationally demanding for conducting the reactive 

transport modeling (RTM) applied to a block of nuclear glass; instead, construction of an equivalent 

fracture network model and determination of its equivalent hydraulic and diffusive parameters are 

necessary.  

In this article, a new methodology is introduced to characterize a fracture network of a glass package 

at scale 1 and to simulate multiple realizations of its equivalent representation to enable estimation 

of the uncertainties of the quantity of altered glass (QAG) resulting from the uncertainties of the 

fracture network-related parameters such as diffusion, permeability, and porosity. Beginning with 

high-resolution photography of the cross-section of an inactive glass container, the methodology 

used here relies on the combination of mathematical morphology techniques and geostatistical 

analysis to build a model of the fracture network. The results from thermo-mechanical simulations of 

the cooling phase of the glass (Barth 2013) are also used, particularly the calculated arrival times of 

the solidification front. 

The paper is organized in the following manner. Section 1, Material and methods, presents an 

overview of the steps involved in the characterization methodology of the image processing-based 

fracture network and includes (i) characterization of a glass block fracture network by using 

mathematical morphology approaches, (ii) numerical analysis of a physical parameter proved to be 

indicative of a glass block fracturing pattern, (iii) geostatistical exploratory analysis and modeling of 

fracture geometry-related parameters, and (iv) creation of multiple realizations of a glass block 
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equivalent fracture network. Section 2, Results, details the implementation of the methodology on 

the high-resolution photography of a section of an inactive glass container. The fracture networks of 

the training block images are compared with the realizations of equivalent fracture networks. Section 

3, Discussion, covers the potential applications of this methodology. Finally, the conclusions and the 

perspectives of this study are given in Section 4. 

1 Material and methods 
The complete workflow consisted of several steps, as shown in Figure 1: 1) fracture network image 

analysis, 2) creation of a proxy model via analysis of the map of arrival times of the solidification 

front, 3) geostatistical modeling, and 4) construction of multiple realizations of fracture network 

equivalent tessellations. Application of the model, including upscaling of diffusion, permeability, and 

parameters governing the kinetics of glass dissolution, and subsequent RTM are beyond the scope of 

this paper but will be covered in a forthcoming article. Although major verification of the feasibility of 

the model is addressed in the second part of the research, where the results of the RTM are 

compared with the experimental data, in the Results section it is shown that the distribution and the 

anisotropy of fracture network static parameters are honored and reproduced. The variation of the 

fracture density is respected, and the distribution of the fracture apertures is preserved.  

The workflow asks for input of the pre-prepared grayscale image and progresses through seven 

stages: (i) fracture network extraction, (ii) measurement of fracture apertures, (iii) image 

segmentation, (iv) anisotropy characterization of the segmented image, (v) calculation of average 

aperture for each zone (segment) of the segmented image, (vi) construction of a proxy model based 

on the analysis of the map of the arrival times of the solidification front (Barth 2013), (vii) 

geostatistical modeling of the position of mesh seeds and averaged aperture values, and (viii) 

simulation of equiprobable realizations of fracture network equivalent tessellations.  
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Figure 1 Image processing-based fracture network characterization method. The parts contoured with dashed 

lines are not presented in this paper. 

Free libraries MAMBA9 and Smil10 written in C and Python were adopted to conduct morphological 

image analysis. Analysis of the map of the arrival times of the solidification front was conducted in 

Python, R, and Paraview. For geostatistical exploratory analyses, simulations of equivalent 

tessellations were performed in R, specifically the RGeostats package11. 

1.1. Glass block section 
In our research, morphological mathematics methods were engaged to characterize the morphology 

of the fracture networks via extensive analysis of high-resolution photography. The images of the 

longitudinal cross-sections of specimens of non-radioactive packages of nuclear glass were used as a 

testbed for this study. Two packages were produced at the Vitrification Production Facilities in 

Marcoule in a cold crucible induction furnace: uranium-molybdenum12 (UMo) and uranium oxides13 

(UOx) (Vernaz 2009). Molten glass was poured in a steel canister 1.1 m high with an internal 

diameter of 0.42 m. The injection from the crucible occurred in two phases, with each casting being 

half of the nominal volume of 400 kg in total. The duration between the two castings was close to 6 

h. After a waiting time of about 2 h below the furnace, the package was removed and was placed 

into a room in which the cooling progressed further with no implication of forced airflow.  

                                                           
9 http://www.mamba-image.org.html 
10 http://smil.cmm.mines-paristech.fr/doc/index.html 
11 http://rgeostats.free.fr/ 
12 This is a vitrocrystalline matrix with 13 wt% molybdenum oxide developed to confine solutions used for UMo 
fuel treatment 
13 This is ordinary industrial glass for confining fission products arising from UOx fuel treatment  
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Soon after their fabrication, the canisters were cut in two parts along their long axis. Some 

precautions were taken to preserve the integrity of the intrinsic fracture network. Hence, viscous 

resin was poured on top of the UMo glass prior to the sawing operations. However, resin could not 

fill the entire network. In a similar manner, the integrity of block UOx was not fully assured during 

the cutting operations; the batch of grout poured on the top of the glass package could not 

penetrate the network. 

Nevertheless, we assumed in this work that the resultant fracture networks separated from the 

pullout zones were representative and fully appropriate to serve as objects for further modeling.  

A series of photographs of the two block halves, at 200 kg with dimensions of 430 mm × 1335 mm, 

were shot at different resolutions. The methodology developed in this study is presented by using 

the UMo image (Figure 2) and includes a complete process from extraction of the fracture network 

to simulation of its multiple equivalent realizations. The UOx image is presented subsequently when 

comparing the results of the equivalent network construction to the real fracture networks. The 

image parameters for both blocks are indicated in Table 1. 

Table 1 Characteristics of the examined images 

Name of image Size (px) of input image Resolution (mm) Assembly of N images 

UMo 6144 × 2430 0.17 1 
UOx  6592 × 2856 0.1443 1 
 

 

Figure 2 Grayscale image of the UMo bloc of vitrified fractured glass. Dimensions: 1044 mm × 413 mm. 

1.2. Thermo-mechanical simulation 

The thermo-mechanical model used to complement the photography information is based on the 

results of the thermo-mechanical fracturing program (Barth et al. 2014; Barth et al. 2012) of the 

VESTALE project initiated and financed by the French Atomic Energy Commission  (CEA), National 

Agency for Radioactive Waste Management (ANDRA), and Orano (previously Areva). The objective of 

the program was to develop a tool for simulating the fracturing of nuclear borosilicate glass used for 

radionuclides confinement. For this purpose, the finite element method was used to model the 

viscoelastic behavior and the damage behavior, evolving in response to the structural relaxation of 

the glass. This program was established to build models from the thermo-mechanical parameters 

determined experimentally on SON68 glass, as given by CEA, and to provide simulations on the scale 
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1 package with the most representative scenarios of the industrial process. The 3D representation of 

the thermo-mechanical model is shown in Figure 3a. 

Although the simulation results showed the evolution of the glass fracture network surface due to 

radiogenic heating, it is not expected to be significantly different from the fracture networks 

analyzed in this research (Barth 2013) The radioactivity has the effect of slightly reducing the 

fracturing of the blocks. The inactive glass used in this study can therefore be considered 

conservative in the sense that radioactive glass would develop a similar or reduced fracture network. 

The position of the solidification front was obtained by analyzing the delay between the fictive 

temperature (Tf) and the glass temperature at each time step T(t). In fact, it is very difficult to 

determine the glass transition temperature (Tg) directly because its value depends on two 

fundamental phenomena that cannot be summed up in a single variable expressed by the 

temperature. On the one hand, Tg is influenced by the thermal history T(t) of the glass network and 

on the other hand, the vitreous transition depends on the property of the glass under consideration 

(e.g. specific volume, thermal conductivity, specific heat capacity, viscoelasticity, refractive index, 

etc.). For this reason, Barth used Tf generalized by Narayanaswamy and Moynihan in the model 

“TNM” (Tool-Narayanaswamy-Moynihan) (Moynihan et al. 1976; Narayanaswamy 1971). The state of 

structural relaxation, obtained through Tf, quantifies the progress of structural relaxation over the 

thermal history. Tf is calculated in every point of the volume of glass. The internal glass properties 

change in a different way according to the state of the glass, which can be liquid, solid or semiliquid / 

semisolid. In consideration of the Tf and T evolution, it was possible to determine at each time step of 

the simulation the position of the solidification front (Figure 3b). The assembled map of the arrival 

times of the solidification front (Section 1.4) will be used to supplement pointwise data from the 

image analysis with global spatial distribution of the key parameters.  

 

 

Figure 3 Results of thermo-mechanical study: a) three-dimensional (3D) mesh of the package for thermo-
mechanical simulations showing longitudinal and transverse sections, obtained from (Barth 2013); b) Variable 
expressing the delay between the fictive temperature and the temperature inside the glass (ΔT= Tf – T), 
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indicating the glass internal state (blue: liquid; red: solid). Evolution of the solidification front approximated by 
the isoline of the delay ΔT= 10. 

1.3. Fracture network characterization by mathematical morphology 

Mathematical morphology methods were used to characterize the fracture network of a block of 

nuclear glass. First developed by Matheron (Matheron 1967) and Serra (Serra 1969) in 1960s, it is 

currently applied to many domains in which image processing in both two and three dimensions is 

requested. Its high demand in the geosciences is easy to explain because it offers a nondestructive 

approach of heterogeneous medium characterization by combining non-intrusive analysis such as 

micro-tomography (Tokan-Lawal et al. 2015), scanning electron microscopy (Al-Kharusi et al. 2008; 

Jouini et al. 2011), and ordinary digital imaging (Chatterjee et al. 2010). Because mathematical 

morphology is based on the assumption that any image consists of structures that can be handled by 

the set theory; these sets are studied to determine important network attributes such as the 

porosity, connectivity, and size of objects that comprise the fracture network. 

1.3.1. Fracture network extraction 

Image processing includes several steps and aims to extract the fracture network to be studied 

afterward. In the first step, the chosen images are cropped so that the stainless steel container edges 

are removed and only the glass matrix remains. The images are then transformed into grayscale 

images of 8 bit/pixel. The gray images are filtered via opening by reconstruction, defined as that by 

erosion of the image using a hexagon as structuring element followed by a morphological 

reconstruction (Vincent 1993). This operator enables elimination of light reflections that cannot 

contain the structuring element, leaving other image features unaltered.  

The fracture network is then extracted by the following operations:  

1) Black top hat transformation, defined as the difference between the closing of the image and 

the image itself, is performed by a hexagon structuring element of size 20 to remove slow 

trends and to perform contrast enhancement. This operator brings out fractures whose 

thickness is half the chosen size; as a consequence, it facilitates the separation of the glass 

matrix and the fracture network. 

2) Thresholding based on the histogram of the image is conducted to separate the clear gray 

background of a glass matrix from the foreground dark gray fracture network together with 

the pullout zones. 

3)  Supremum14 of linear openings by reconstruction is performed to preserve objects 

(fractures) greater in size than the chosen opening size in at least one direction. This 

operator ensures conservation of the elongated fractures, with the noise coming from the 

thresholding removed. All retained fractures are reconstructed to their real forms by 

geodesic reconstruction.  

As mentioned previously, both fractures and pullout zones created during the sawing operation15 are 

present in the foreground. The next step is devoted to their separation from the fracture network so 

that the artificially created pullout zones are removed. For this purpose, the operators used are 

                                                           
14 In this article, “supremum” and “union” as well as “infimum” and “intersection” are used as interchangeable 

synonyms; supremum (or point-wise maximum) and infimum (or point-wise minimum) replace the union and 
the intersection set operators for grayscale images. 
15 The bloc has been split in two longitudinal cross-sections to expose the existing fracture network. 
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closing, which closes fractures that are thinner than the pullout zones, and hole filling, which closes 

the pullout zones. Because certain fractures cross the extracted pullout zones, their prolongation is 

assured by tracing the skeleton of influence zones. This operation does not add redundant 

connections but enables preservation of the connectivity of some fine fractures in the artificially 

damaged zones. Final slight filtering is performed by extraction of the fracture skeleton, followed by 

removal of the skeleton ramifications and the geodesic reconstruction of the resulting skeleton.  

1.3.2. Measurement of fracture apertures  

Fracture aperture is a principal network characteristic governing the intensity of the glass aqueous 

alteration. Three methods based on morphological mathematics are proposed for measuring the 

fracture apertures. 

1.3.2.1. Discrete way of aperture measurement via bounding boxes 

The first method is based on measuring the Feret diameters of each rotated bounding box containing 

a single, non-connected labeled component, or each simple branch, of the fracture network. The 

separation of the network into non-connected branches is performed by subtraction of the dilated 

multiple points16 from the extracted fracture network (Figure 4, Figure 5a). 

 

Figure 4 Preparation of fracture network for aperture measurement via the bounding boxes approach 

a) Fragment of UMo image with dimensions of 318.9 mm × 122.2 mm; b) multiple points at the locations of 
fracture branching shown in yellow. For visibility in this image, the multiple points and the skeleton by 
homotopic thinning are dilated with a hexagon structuring element of size equals to three. 

It should be noted that each bounding box, i.e. the rectangle that circumscribes its corresponding 

fracture, is aligned with the inertia tensor computed from the second-order moments of this fracture 

(Equation 4). This makes the values of minimum Feret diameter indicative of the average fracture 

aperture. 

                                                           
16 The procedure of multiple point extraction is described in section 1.3.2.2  
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Figure 5 a) Fragment of UMo image with dimensions of 68 mm × 19.9 mm. Patchwork palette was used to mark 
the fracture ramifications separated by dilated multiple points; b) Each ramification was circumscribed by a 
bounding box in which the minimum Feret diameter (min DF) was used to measure the fracture aperture 
average. The shown ramification has min DF = 12 px (2.04 mm). 

1.3.2.2. Continuous way of measurement via quench and distance functions  

The second and third methods rely on the techniques of homotopic thinning. In the framework of 

these methods, the aforementioned problem of the fracture network separation is resolved by 

implementing several operations: 

1) homotopic thinning with the L structuring element (Serra 1982); 

2) removal of the skeleton’s endpoints (pruning); 

3) extraction of multiple points at the intersections of fracture branches; and 

4) subtraction of multiple points from the resulting L-skeleton. 

After implementing this sequence of operations, we obtained simple arcs that represent 

disconnected ramifications of the fracture network. For each ramification, its barycenter and 

aperture average will be found subsequently. 

We used two techniques of aperture measurement: the quench function17 (Figure 6a), associated 

with the skeleton of maximal balls, and the distance function (Figure 7), recorded on the traces of 

simple arcs18. Both of these functions give the (n + 1) value, where  

• for the first technique, n is the size of the maximal disc put at point i on the skeleton by 

maximal balls; and  

• for the second technique, n is equivalent to the level of the distance function. 

These techniques of measurement thus provide information on the thickness of the fracture 

branches in a continuous manner. However, the averaged apertures of the fractures are not 

expected to be identical for several reasons. First, on the periphery of fractures, the traces of 

skeleton branches are expected in which the quench function values are equal to 1. This occurs 

because fracture walls are not ideal flat lines, and the skeletonization by maximal balls is highly 

sensitive to even small variations in its boundaries. These irrelevant branches of the skeleton (Figure 

6b) should not be considered in the course of aperture average computation. This step can be 

                                                           
17 This function represents the locus of the skeletal points together with their minimal distance to the fracture 
walls. 
18 The skeleton by homotopic thinning with removed multiple points of the skeleton gives a multitude of 
disconnected ramifications named simple arcs. 
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performed by finding the intersection of the traces of simple arcs and the skeleton of maximal 

discs19. 

 

Figure 6 Fragment UMo image with dimensions of 27 mm × 30.3 mm: a) sketch showing superposition of 
fractures and the skeleton by homotopic thinning with overlapped maximal balls in which the radii are 
recorded to evaluate the fracture aperture average; b) patchwork palette application to visualize the quench 
function that represents the locus of the skeletal points with associated values of the radii of maximal balls. 

It should be noted that the aperture average value measured by this technique is not always 

available for all simple arcs. For some simple arcs, intersection of the trace of skeleton by simple arcs 

and the trace of the skeleton by maximal balls does not exist. This issue can be resolved by reading 

the values of distance function directly on the traces of the simple arcs without calling upon their 

intersections with the skeleton by maximal balls. The distance function of the fracture network image 

is calculated by using the MAMBA image library. 

 

Figure 7 a) Fragment of UMo image with dimensions of 127.2 mm × 43.5 mm. The visualized distance function 
used the values read on the traces of the simple arcs to calculate the fracture aperture average; b) sketch 
showing a hexagon structuring element and an influence zone taken into account when calculating quench and 
distance functions. 

                                                           
19 Even if the L homotopic skeleton and the maximal balls skeleton do not always occupy the same position, 
they still have overlapping points. 
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The values of average aperture of each fracture network ramification were calculated by formula (1): 

 ∑(2(F-1)+1)/nb=∑(2F-1)/nb,   (1) 

where F is the value of the distance function or quench function read on the trace of the 
corresponding simple arc, and nb is the number of points making up the trace. In formula (1) on the 
left-hand side, one comes from the fact that there is an influence zone (Figure 7b) that is considered 
when measuring fracture width. 

1.3.3. Image segmentation  

In mathematical terms, segmentation is the partition into disjoint nonempty sets known as segments 

(Soille 2003). Usually, an image that has been segmented is represented as a label image that enables 

separate processing of all compound elements including disjoint sets named segments, as discussed 

below.  

The main objective of the segmentation is to define segments that represent parts of the glass matrix 

separated by the extracted early fracture network.  

This is realized by a sequence of operations based on watershed transformation (Beucher 1982).  

 
Figure 8 Fragment of UMo image with dimensions of 314.8 mm × 98.6 mm): a) part of the fracture network and 
b) its corresponding watershed lines. 

To avoid oversegmentation, we imposed markers represented by the labeled maxima of the 

reconstructed half distance function. The development of individual tiny segments positioned inside 

large segments is prevented by applying the supremum of the small size opening at the marker 

construction stage. The edges of the catchment basins delineate the glass segments (Figure 8). 

1.3.4. Characterization of the segmented image 

This section details the use of the segments obtained as a result of image segmentation. Introduction 

of the representation by segments facilitates geostatistical simulation of the block fracture network, 

which makes uncertainty estimation possible.  

The concept behind the adoption of the representation by segments is that it enables replication of 

the block facture network by reproducing its segmented image. That is, our objective is to portray a 

previously extracted fracture network by reproducing parts of the matrix separated by this network 

via any type of tessellation that could reconstruct, or model, (i) the internal texture of the segmented 

image to identify the relationships between segments and (ii) the spatial structure and distribution of 

average fracture aperture. The internal structure of the segmented image is determined by the 

position of segment centers, the rotation angles of the segments, and the segment shape factor.  

Here, we focus on the characterization of the segmented image by first- and second-order moments. 

This approach is widely used in image analysis(Flusser et al. 2009; Jan Flusser 2016) and was adopted 

from the mechanics of rigid and deformable bodies (Lubarda et al. 2011). 
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The characterization includes computation of the following parameters: lengths of the main axes (A, 

B) of each segment, segment rotation angles (theta), and positions of segment centers. The rotation 

angle is defined as the angle associated with the largest axis of a segment and a horizontal plane and 

is positive when the major axis is turned in a counterclockwise direction.  

Image moments are defined as weighted averages of the pixels’ intensities (i, j). In our case, we are 

concerned with the segmented binary image in which the (p,q)20 moment Mp,q gives equation (2): 

 

 𝑴𝒑,𝒒 =∑ 𝒊𝒑𝒋𝒒𝒊,𝒋∈𝑶𝒃𝒋 ,   (2) 

The first-order normalized moments give the coordinates of the barycenter in the horizontal and 

vertical directions, and the second-order central moments determine the equivalent ellipse, 

furnishing the orientation and the dimensions of the major and minor axes. 

The three central moments of second-order central moments (𝜇1,1, 𝜇0,2, 𝜇2,0) form the inertial tensor 

of the rotation of the object about its gravity center, expressed by equation (3):  

 𝒄𝒐𝒗(𝒐𝒃𝒋𝒆𝒄𝒕) = [
𝝁𝟐,𝟎 𝝁𝟏,𝟏

𝝁𝟏,𝟏 𝝁𝟎,𝟐
],  (3) 

The main inertial axes corresponding to the semi-major and semi-minor axes of the ellipse are 

derived from the eigenvalues of this tensor. 

The orientation of the object is defined as the tilt between the x-axes and the axis, around which the 

object is rotated with the minimal inertia and is calculated by expression (4): 

 𝜽 = 𝟎. 𝟓𝒂𝒓𝒄𝒕𝒂𝒏
𝟐𝝁𝟏,𝟏

𝝁𝟐,𝟎−𝝁𝟎,𝟐
,   (4) 

For all segments, the position of segment barycenter (Xi, Yi), axis length (Ai, Bi), and rotation angle 

(thetai) are computed and further exploited at the stages of the geostatistical modeling (Section 

1.5.2) and the creation of fracture network equivalent tessellation (Section 1.5.1)21.  

1.3.5. Calculation of aperture average inside crystals of the segmented image 

Despite the high accuracy of the continuous approach of aperture measuring and its judicious results, 

processing of the fracture network via simple arc representation is problematic. In fact, the aperture 

values of each fracture ramification kept at their centers are not usable, at least directly, in the 

framework of the segment representation approach. In fact, at the stage of fracture network 

modeling by the technique of mesh growth, we expect to determine the positions of the mesh 

boundaries in which the thickness values need to be provided at the centers of the meshes.  

The aperture average of the fractures associated with each segment should therefore be calculated. 

As discussed in Section 1.3.2, we first separated the fracture network into its simple constituents, 

and we then calculated the aperture average for all ramifications via one of the proposed approaches 

such as bounding boxes, quench function, or distance function. To calculate the aperture average 

inside the segments of the segmented image, we used the results of the aperture measurements via 

distance function because this continuous method of fracture aperture measurement is considered 

to be more accurate, and the distance function approach is believed to be less biased in comparison 

to the quench function approach. Afterward, the fractures were grouped according to their position 

in the segments. All fractures with simple arc centers positioned inside a segment are used to 

                                                           
20 p,q denote the order of a moment 
21 Voronoï anisotropic tessellation built in RGeostats package, Mines ParisTech  
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calculate the aperture average assigned to that segment barycenter position (Figure 9). The 

operation is repeated for all segments. 

 

Figure 9 Fragment of UMo image, where fractures belonging to the chosen segment are identified. 

a) Superposition of a chosen segment (in beige) and arcs (in red, dilated for better visibility with a hexagon 
structuring element of size equals to two) retained for measurement of the aperture average assigned to the 
segment barycenter. The fragment’s dimensions are 138.6 mm × 97.4 mm;  
b) Fractures in red are retained for measurement of the aperture average assigned to the segment barycenter. 
The fragment’s dimensions are 134.0 mm × 96.6 mm. 

1.4. Analysis of the solidification front map  
In geostatistical modeling, it is recommended to make use of all available soft data that can 

supplement the raw data, particularly if the raw data are scarce and are difficult to interpret. As 

previously mentioned, the raw data include the values of parameters obtained by image analysis of 

one block of nuclear glass such as the values of apertures and positions of segment centers. This 

database cannot be considered as exhaustive. Moreover, it should be noted that the analyzed block 

could be very likely damaged at the cutting stage. Thus, photography analysis is supplemented with 

the results of the thermo-mechanical simulations (Section 1.2) to provide a physically meaningful 

parameter that helps to constrain the spatial structure and distribution of the parameters of the 

fracture network. 

For this purpose, an exhaustively known parameter has been identified whose transforms can 

supplement the raw data at the stage of the equivalent fracture network simulation. Of particular 

interest are the knowledge of the direction of the fractures and the aspect ratio of the cells. These 

data can be determined through analysis of the segmented image by first- and second-order 

moments (Section 1.3.4). However, these pointwise data known only at the segment centers are not 

sufficient for construction of an equivalent tessellation. Indeed, values of the rotation angles and the 

ratio of the scaling factors of the meshes should be provided in the form of a continuous map. 

Numerous studies (Crevoisier et al. 2011; Barth et al. 2012) have reported the fabrication process of 

a full-scale package specimen containing nuclear glass, which is a close analogue of the block 

analyzed in our study. According to the previous research, the map of the solidification front arrival 

times indicates that fissuring occurs first along the perimeter of the package and then propagates 

radially to the block center (Crevoisier et al. 2011). The network density is highest on the periphery 

owing to the highest intensity of the temperature drop that initiates fracturing immediately after the 

bloc fabrication ends. In contrast, the fracture density is significantly lower close to the package core, 
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where the temperature remains homogeneous. In addition, the upper part of the package is less 

fractured because it represents a stress-free surface, where dissipation of the external energy is not 

limited.  

After analyzing several variables that describe the thermo-mechanical evolution of the internal state 

of glass after being poured in a rigid canister, we decide to select a variable referred to throughout 

this paper as the solidification front. This variable indicates the temperature delay between the 

fictive temperature22 and the temperature inside the glass and serves to indicate the transition from 

liquid to solid state inside the glass.  

First, we assembled a map of the arrival times of the solidification front by selecting front positions 

for all ranges of time values existing in the thermo-mechanical model. Later, we interpolated the 

arrival time values by applying kriging estimation with a linear model. The result is shown in Figure 

10a. 

Second, we calculated the angles between the axis parallel to the block axis and all pairs of 

neighboring points of the solidification front sequentially for each arrival time. We used the same 

angle convention as mentioned earlier. Then, we interpolated the values of the rotation angle by 

applying kriging estimation with a linear model. The map of the fronts line rotation angles is 

presented in Figure 10b. 

Third, we proceeded with analysis of the lines of the glass solidification fronts by calculating their 

curvature using the formula of the Menger curvature (5) (Pajot 2002) for each set of three points of 

the solidification front:  

 𝒄(𝒙, 𝒚, 𝒛) =
𝟏

𝑹
=

𝟒∗𝑺

|𝒙−𝒚||𝒚−𝒛||𝒛−𝒙|
,  (5) 

where S is the surface of the triangle spanned by the x, y, and z points. 

At this stage, we followed the concept such that in the first approximation, the shapes of the 

solidification fronts determine the shapes of the glass matrix segments. That is, fractures divide the 

glass into segments such that along the long sides of the block, it is probable that elongated 

segments meet with A/B >> 1. However, in the zone of the re-liquefaction at the boundary between 

the first and the second castings and in the zone of the first casting in the middle of the block, the 

fractures have identical lengths in two dimensions (A/B ≈ 1). In fact, when estimating the A/B ratio of 

scaling factors, it is useful to employ observations that can be explained by the physics of glass 

structural relaxation. To be precise, we used the map of front line curvature, presented in Figure 10c, 

as an external drift in order to generate the map of the A/B23 ratio of the mesh scaling factors. The 

external drift kriging technique (Hudson 1993) implies that the overall shape of the target variable is 

given by an external drift map, whereas residuals are responsible for the fluctuations around this 

drift.  

                                                           
22According to Barth [9], the state of structural relaxation obtained through fictive temperature quantifies the 
progress of structural relaxation as a function of thermal history. 
23 A and B are lengths of the main axes of each mesh of equivalent fracture network tessellation.  
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Figure 10 Maps used to introduce anisotropy when constructing fracture network equivalent tessellations.  

a) Map of arrival times of solidification front. The solidification fronts were analyzed for all arrival times, 
from 9 e03 to 54 e03 s after the start of glass being poured into a container, in order to produce maps 
of the rotation angles and curvature of the front lines.  

b) Map of the fronts line rotation angles. 
c) Map of the normalized curvature, calculated by using the formula of the Menger curvature for each 

triple of set of three points of solidification front. 

1.5. Geometric and geostatistical modeling 
As mentioned in Section 1.3.3, the objective of the segment representation is to enable replication of 

the block facture network by reproducing its segmented image, with the seeds of the cells and the 

thickness of borders provided by the geostatistical modeling. In the following section, geostatistical 

modeling of seed positions and average thickness of the cell borders will be discussed.  

To better understand the meaning of these parameters, which will be discussed in Section 1.5.2, we 

here explain the technique intended to be used for constructing multiple realizations of fracture 

network equivalent tessellation.  

The generation of multiple equivalent realizations of the block fracture network is based upon the 

geostatistical spatial analysis of the data coming from the image analysis and the information 

collected from the map of front of solidification.  

1.5.1. Creation of fracture network equivalent tessellation 

To model an equivalent block fracture network, we used the anisotropic version of Voronoï algorithm 

(Anton et al. 2009), which represents a version of mesh growth models and delineates mesh 

boundaries considering the cell scaling factors and the cell rotation matrix. 
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It should be noted that in the remainder of this paper, the term “cell” is applied as an analogue of the 

term “segment” by referring to a separate unit of an equivalent representation of the segmented 

image. Moreover, the term “seed” or “centroid” will be used to replace the term “center” in 

reference to the origin of the corresponding cell growth.  

According to the Voronoï algorithm, a cell C (Pi) generated by the growth of Pi centroid (seed) is 

defined by Xi, Yi; aM
i, bM

i, 𝜽
𝐢
𝑴

. It contains all points M which are closer to the seed Pi than to any 

other seed, according to the parameters aM
i, bM

i, 𝜽
𝐢
𝑴

. Here, Xi, Yi are coordinates of a cell center, 

aM
i, bM

i are scaling factors, and 𝜽
𝐢
𝑴

is the rotation angle defined in all points M. 

Mathematically, the cell is defined by formula (5): 

 𝐂(𝐏𝐢) = 𝐌 ∈ 𝐑𝟐∀𝐣 ∶ 
𝐝(𝐌,𝐏𝐢)

𝐯
≤ 

𝐝(𝐌,𝐏𝐣)

𝐯
,  (5) 

where υ is the constant radial rate of growth equal to 1.  

First, the distance d(𝐌, 𝐏𝐢) between the datum and the target site is computed by considering the 

rotation matrix(
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃), where 𝜽 is the rotation angle specified in all points M belonging 

to the cell.  

Next, the scaling (defined by aM
i, bM

i) is operated in the rotated system. The component is unchanged 

if the scaling factor is equal to 1, reduced if it is higher than 1, and increased if it is lower than 1.  

Finally, the boundaries of a newly created equivalent tessellation are thickened by considering the 

results of the geostatistical modeling of the average aperture calculated inside each segment 

(Section 1.5.2). 

The average values of the apertures are attached to the cell seed positions, whereas the rotation 

angle and scaling factors in all directions24 are defined on a fine grid.  

As presented in Sections 1.3.4 and 1.4, the maps of the rotation angle and the ratio of scaling factor 

had been obtained by analyzing the map of the arrival times of front of glass solidification, while 

modeling of seed positions and average aperture of cell boundaries will be covered in the next 

section. 

1.5.2. Geostatistical analysis  

It is apparent that the fracture network morphologies and inherent characteristics vary among 

blocks. The reasons for these variations are numerous and are related mainly to the procedure of 

block fabrication and some random fluctuations. It is evident that when dealing with only one 

specimen, it is impossible to evaluate the uncertainty of the altered glass quantity resulting from the 

variation in parameters related to the fracture network. Therefore, in the next step, we conduct 

exploratory spatial data analysis followed by geostatistical simulations of two variables. The first is 

the position of cell seeds. The second is the average aperture assigned to cell seeds that will 

determine the thickness of the boundaries between the adjacent cells, which in the context of our 

research represents the fracture average aperture. The results of the simulations will be used to 

                                                           
24 Two scaling factors (or their ratio as in the example above) if 2D tessellation is build. 
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construct multiple realizations of an equivalent fracture network based on the Voronoï algorithm 

explained in the preceding section. 

1.5.2.1. Position of cell seeds 

Calculation of the point density of the training image is based on the results of the image analysis 

where the segments centers have been located within the upper part of UMo segmented image 

(Figure 17a, Y > 1215); the lower part is obtained by a mirror symmetry (the reason why the lower 

part (Figure 17a, Y < 1215) is discarded is explained in Section 2).  

Calculation of the point density of the training image is based on the results of the image analysis, 

specifically the positions of segment centers of the upper part of the UMo segmented image 

reflected by mirror symmetry to obtain the lower part. This step includes (i) calculation of the 

number of centers divided by the surface25 of counting window with windows of varying dimensions 

and (ii) regression of these density values against the surface values. This regression analysis is used 

to evaluate the impact of the moving window size on the density regionalization. Later, the values of 

point density, determined on the grid support,26 are migrated to the position of the segment centers. 

Further, the geostatistical analysis and modeling is based on the values of density collected at 352 

segment centers. In the same manner, the values of the solidification front arrival time are migrated 

to the positions of the segment centers. Next, the values of density are regressed against the values 

of the solidification front arrival time, and the procedure is iterated for all window sizes. The spatial 

variability of densities and their residuals are studied by using the experimental variograms and their 

best-fit theoretical models. Then, the parameters derived from the fitted models for density and 

residuals, and the values of correlation coefficients are examined to determine the impact of the 

moving window dimensions on the density values and to eventually determine the density values to 

be used as the input data for further modeling. 

After the residuals are normal-score transformed to correct for the slight skewness of the histogram, 

the non-conditional simulations (using the turning band method (Matheron 1973)) are conducted to 

produce N realizations of the spatial distribution of residuals. After the back-transformation to the 

raw scale and the use of the coefficients of the linear correlation, N maps of the varying Poisson 

intensity are obtained. 

They are subsequently used to generate the spatial Poisson point process with varying intensity 

(Lantuejoul 2002). Moreover, a rejection step is used to ensure that the simulated seeds are 

separated by a minimum distance that is equivalent to the minimum distance between the centers of 

the training image. It should be mentioned that the N realizations of the intensity maps constructed 

in the previous step are calibrated to the number of the centers in the training image. 

1.5.2.2. Averaged apertures assigned to cell seeds 

After determining the position for cell seeds, the averaged apertures assigned to cell seeds were 

modeled. As input data, measurements of the averaged apertures inside segments of the segmented 

UMo image (Section 1.3.5) were used27.  

                                                           
25 Surface of a moving window lying inside an output regular grid. 
26 Procedure is repeated for all maps of density calculated for several sizes of moving window. 
27 Similar to that used to determine the positions of centers, we retained the measurements of the averaged 
apertures assigned to the centers of segments located in the upper half of the image, and we assigned the 
same averaged apertures values to the centers of the lower half of the block obtained by mirror reflection.  
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Next, we verified the correlation between 1) the values of average apertures and the arrival times of 

the solidification front and 2) the values of average apertures and the values of Poisson density 

calculated in Section 1.5.2.1. 

Because the correlation for both pairs of variables was inadequate, we defined a geostatistical model 

of averaged which does not involve any explanatory function. 

The geostatistical modeling of average aperture on the cell seeds was performed in four steps: 1) 

normal score transform of the data, 2) calculation of the experimental variogram and determination 

of its theoretical best-fit model, 3) non-conditional simulation of the aperture average values in the 

normal space by using the turning band method, and 4) back-transform of simulated values in the 

original scale. 

2. Results 
In this section, we first show the results of the fracture network characterization of the UMo training 

image, and we present the maps obtained by the analysis of the map of the solidification front arrival 

times. Next, we demonstrate some realizations of the geostatistical modeling of seed positions and 

average aperture, and we shows the resultant realizations of the equivalent fracture network 

constructed by considering all previously demonstrated results.  

Figure 11 illustrates the fracture network extracted separately from the pullout zones. To select the 

size of the structuring element necessary to perform the morphological operations, we calculated 

and analyzed the distribution curves with several types of opening, including a hexagonal opening 

and that by erosion-reconstruction (Figure 12). When selecting the size of the structuring element, 

we adhered to the following rules: 

1) The chosen size of the opening by erosion-reconstruction is higher than the maximal size of 

the reflections. According to the distribution curves computed with morphological erosion 

and with the opening by erosion-reconstruction, light reflections are expected up to 5 pixels 

2) The size of the black top hat transformation is chosen with respect to the range of the 

fracture thicknesses. According to the distribution curves, fractures are expected to be up to 

20 pixels in width. 

3) The threshold operator is applied to separate the matrix background and the identified 

fractures. Because the black top hat transformation puts the matrix values close to zero, we 

fix the threshold to 30, which is slightly higher than the maximal expected fracture width. By 

doing so, we assumed that the crack depths are greater that their widths. 

4) The size of the morphological closing implemented to set apart fractures and pullout zones is 

equal to the size of the average fracture width, at 10 pixels.  
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Figure 11 Result of the fracture network extraction (image UMo: dimensions are 1044 mm × 413 mm).  

 

Figure 12 Size distribution curves calculated with a) morphological opening and b) opening by erosion-
reconstruction for the 8 bit input UMo image. 

The histograms of apertures measured by applying the three proposed approaches are shown in 

Figure 13 and in Table 2. All approaches gave similar values of fracture aperture; however, the values 

obtained by the bounding boxes method were discrete more often. With respect to the results, there 

is no evidence that the bounding boxes approach overestimates the values of fracture thickness, 

which means that correction for shape curvature made at the stage of results post-processing is 

justified. Regarding the continuous way of aperture measurement, the use of the distance function 

read along the traces of simple arcs is considered to be more judicious and gives more accurate 

results because it does not imply the use of the skeleton by maximal balls, which has technical 

limitations.  
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Figure 13 Histograms of apertures computed via distance and quench functions and Feret diameter calculation. 

Table 2 Statistical characteristics of aperture distribution obtained by discrete and continuous approaches. 

Measurement function / 
object of application 

Max Min Mean Standard deviation 

# px mm # px mm # px mm # px mm 

Feret diameter/ 
bounding boxes 19 3.23 1 0.17 5.72 0.97 3.01 0.51 

Quench function/ 
simple arcs 19 3.23 1 0.17 5.92 1.01 3.60 0.61 

Distance function/ 
simple arcs 19 3.23 1 0.17 5.82 0.99 3.60 0.61 

 

The segmentation results are illustrated in Figure 14. The segmentation procedure is realized by 

marker controlled watershed (see Section 1.3.3) in order to avoid oversegmentation that could have 

occurred owing to the presence of the spurious minima. 

  

Figure 14 Results of the UMo image segmentation, where the dimensions are 1044 mm × 413 mm. For better 
visibility, the watershed lines are eroded with size = 3. 

Undoubtedly, the choice of the marker image is important because it determines the output. 

Because our objective was to replace fracture representation with segment representation, it was 

critical that we obtain a segmented image that has no excessive segments inside the segments to 
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ensure that the segments were separated exclusively by fractures or their prolongations in the 

absence of fractures. At this stage, we considered that a satisfactory result was achieved. Therefore, 

characterization of the segmented image by first- and second-order moment was next conducted. 

As was stated in Section 1.3.4, the objective of the segmented image characterization is to determine 

attributes of the image that must be reproduced in order to mimic the anisotropic nature of fracture 

network of the glass blocks. The result of the calculation of segment rotation angles and the ratio of 

their axis lengths is demonstrated in Figure 15 in the form of the maps, where, the calculated 

parameters are used to fill the segmented image for enhanced visualization.  

 

Figure 15 Segmented UMo image in which the segments are filled with the values of a) the rotation angles and 
b) the ratio of axis lengths (image dimensions are 1044 mm × 413 mm). 

Unfortunately, these data were not sufficient for use as input maps needed to effectuate coordinate 

transformation, including scaling and rotation of the fracture network equivalent tessellations in 

order to consider fracture network anisotropy. Therefore, we used the soft data presented by the 

continuous map of solidification front arrival times obtained from the thermo-mechanical simulation.  

Figure 10 provides the results of the analysis of the thermo-mechanical parameter representing the 

transition from liquid to solid state inside the glass. As shown in Figure 10a, the transition from one 

arrival time to the following arrival time is rather smooth; however, zones were noted in which the 

transition was sharp such as the abscissa axis, from 3800 to 4000 and the ordinate axis, from 0 to 500 

and from 2000 to 2430. These zones are associated with the complex phenomena of recasting at the 

boundary between the first and the second glass casting. The zones are even more noticeable in the 

map of the normalized curvature (Figure 10c). 

Following calculation of the curvature, estimation of the ratio of scaling factors A/B was performed 

using the external drift kriging technique. It should be noted that the estimation was conducted 

inside a specified polygon for one half of the block. Indeed, because the external drift map is 

symmetric, as the whole model of the thermo-mechanical behavior of a glass block, and some doubt 

existed on the quality of the fracture network of the lower part of the UMo block28, we conducted 

the estimation based only on the A/B measurements for the upper half of the block (Y > 1215, Figure 

17a). The lower part (Y < 1215) of the map was obtained by applying the mirror symmetry. 

Moreover, it should be noted that the polygon did not cover the entire half of the block. The analysis 

of the segmented image in which the segments are filled with the values of A/B (Figure 17a) and 

                                                           
28 The lower half of the UMo block was found to be unacceptably damaged. Indeed, several indications of 
artificial splitting in the fracture network parallel to the block’s long wall have been noticed.  
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some observations of transversal and axial cross-sections of glass blocks (Crevoisier et al. 2011) led us 

to presume that in the center of the block and close to the upper part of the block, large rather 

homogeneous segments likely form in which the A/B values could be assigned by default to 1. 

Figure 16 represents the scatter plot showing the regression between the values of the external drift 

(curvature of the solidification front lines) and the available data of the searched variable A/B 

obtained through image analysis.  

 

Figure 16 Scatter plot between the values of front line curvature and those of crystal length ratio. 

The scatter plot above shows a weak linear correlation (ρ = -0.15) between the values of the 

curvature and the values of the segment length ratio of the block UMo. In fact, along the long sides 

of the container in the zones in which the elongated segments are located, some isotropic segments 

are also present.  

Despite the weak correlation, we used the map of normalized curvature as an explanatory 

deterministic map for construction of the map of the A/B ratio of the scaling factors. It fact, we did 

not look for an accurate assessment of this ratio because this map served only as a background map 

while constructing fracture network equivalent tessellations. Nevertheless, for future research, we 

strongly recommend analysis of the regression of the scaling factor ratio against the values of the 

normalized curvature for a new block (having ensured integrity).  

Figure 17b illustrates the result of the A/B estimation. This map together with the map of the 

rotation angle, were used to consider the anisotropy. 
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Figure 17 Analysis of A/B ratio of mesh scaling factors. 

a) Segmented image in which the segments are filled with the values of ratio axes lengths (UMo image). 
b) Upper half of the map of A/B ratio of mesh scaling factors obtained by kriging with external drift. The 

lower half ( Y< 1215) represents the mirror reflection of the upper part (Y> 1215). 
 

Although it is possible to precisely measure the apertures of fracture ramifications, these data are 

not generally used at the stage of modeling of multiple realizations of equivalent fracture network. 

Thus, in an attempt to preserve the accuracy of the aperture measurements and to diminish the 

amount of data to be processed in the course of the geostatistical analysis, fracture aperture 

averages were computed inside the segments of the upper half of the segmented image and were 

assigned to their centroids. The same values of the average facture apertures were assigned to the 

centers of the lower half. The results of the averaged aperture measurements are shown in Figure 

18. 

 

Figure 18 a) Histogram, b) omni-directional variogram, and c) normal score transform of aperture averages 
computed inside the crystals of the segmented image.  

The results of the geostatistical modeling of seed positions and aperture averages that provide 

information on the thickness of boundaries of equivalent tessellations are given subsequently. 

As explained in Section 1.5.2.1, Poisson density modeling is based on the calculation of the segment 

center density with different moving windows. The results are summarized in Figure 19. From these 

data, it is clear that by increasing the size of the moving window, the regularization of the density is 

increased, reflected by a decrease in the sills of the variograms. In consideration of the pros and cons 

of regularization, specifically variogram sill decrease and better correlation with the explanatory 
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variables versus loss of the variability, we selected the density values calculated with a moving 

window size of 13 × 13 blocks, given that the total size of the grid is 123 × 49 blocks.  

A theoretical nested model with nugget, exponential and spherical structures fitted to the 

experimental variogram of residuals, shown by an asterisk in Figure 19c, was used to perform non-

conditional simulations of residuals. The parameters of the regression between the density and the 

explanatory variable, shown by an asterisk in Figure 19b, were involved when computing maps of the 

Poisson intensity. For each realization of the Poisson intensity map, the seeds were generated so that 

the minimum distance between seeds is larger than 25 pixels and their total number is close to 350. 

Both parameters were fixed with reference to the results of the analysis of the training image.  

Afterward, for each realization of seeds, aperture average modeling was conducted. The non-

conditional simulations were based on the theoretical nested-type model with nugget, exponential 

and spherical structures fitted on the experimental variogram (Figure 18b) and the model of the 

normal-score transform (Figure 18c).  
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Figure 19 Results of the computation of point density for different sizes  of moving windows: a) regression of 
density against normalized surface (in number of blocks, each block covers 2500 px2); b) regression of density 
against arrival time of solidification front ; c) omni-directional experimental variograms of point density (black) 
and residuals (blue) and their theoretical models; d) histograms of residuals; e) map of point density in which 
values read at the positions of the segment centers were used afterward as input data for the seed generation. 

Three realizations of seed positions generated according to a spatial Poisson point process with 

varying intensity and the histograms of average apertures simulated at the seed locations are given 

in Figure 20. 
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Figure 20 Construction of equivalent fracture network tessellations: a) positions of seeds obtained by Poisson 
point process (blue) vs. positions of barycenters of UMo image (brown); b) histograms of aperture average. 

Figure 21 gives the results of the equivalent tessellations generated using the anisotropic Voronoï 

algorithm for three realizations of seeds and simulated apertures. In order to evaluate the 

representativeness of the obtained equivalent tessellations, they were compared with the fracture 

network of UMo and UOx training images presented in Figure 23. Moreover, to discern the ability of 

equivalent tessellations in reproducing a 2D nuclear glass fracture network, the results in Figure 22 

were analyzed. 
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Figure 21 Equivalent fracture network by Voronoï anisotropic tessellation. Left columns including a), c), e), and 
g): equivalent fracture network tessellation (dimensions are 6145 px ×2430 px with 1 px corresponding to 0.17 
mm. Right columns including b), d), f), and h): porosity (defined as the ratio of the surface occupied by fractures 
to the sum of the surfaces of the glass matrix and the fracture network) calculated for meshes of the 41 × 17 
simulation grid. 
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Figure 22 Reproduction of segment representation by equivalent tessellation: a) reproduction of the 
segmented UMo image by anisotropic Voronoï tessellation; b) UMo segmented image in which watershed lines 
are thickened in accordance with the values of the aperture averages computed inside each segment 
(dimensions are 6144 px × 2430 px with 1 px corresponding to 0.17 mm); c), d) their corresponding porosities. 

 

Figure 23 Effect of replacement of fracture network by segment representation and its reproduction by 
equivalent tessellations. Top left a): UMo; top right b): UOx; middle c), d): segmented images; bottom e), f): 
equivalent fracture network. Equivalent fracture network tessellations are expected to mimic the structures of 
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segmented images, whereas fracture apertures are considered by thickening boundaries of equivalent 
tessellations.  

3. Discussion 
i. Fracture network extraction 

We believe that by having implemented operations for contrast enhancement (black top hat) and 

noise removal (opening by erosion-reconstruction) with a carefully chosen size of the structuring 

element, we obtained satisfactory results. Nevertheless, we admit that the resulting fracture 

network is not a unique representation that could be obtained from the raw image. In fact, changing 

the size of the structuring element of any operation involved in fracture extraction would certainly 

give a different result. However, the proposed procedure of fracture network extraction is believed 

to be useful for future analysis of cross-sections of glass blocks, especially because it offers the 

possibility of generating multiple realizations of the fracture network model. 

ii. Measurement of fracture apertures 

Although the results of aperture measurement provided by the three approaches (Figure 13) are 

compatible, each has weak and strong points that are worth consideration: 

Advantages of the discrete method of aperture measurement via the bounding boxes approach:  

1. Implementation ease  

2. Rapid calculation 

Disadvantages of the discrete method of aperture measurement via the bounding boxes approach:  

1. The facture network must be disintegrated into non-connected branches at the first step of 

the measurements. 

2. The aperture values are derived from the measurements of the shortest axes of the 

bounding boxes surrounding the fractures and represent the maximal apertures of these 

fractures. By applying this method, it is impossible to consider the variability of the fracture 

aperture. The calculated aperture values are integers. For fractures in which the shapes are 

significantly curved, the length of the shortest bounding box axis does not reflect the real 

aperture magnitude. Therefore, to indicate the average aperture, these values of Feret 

diameter need to be corrected by using the ratio of the area of the object over the length of 

the longest bounding box axis. 

General advantages of the continuous method of aperture measurement:  

1.  The problem of fracture separation29 can be bypassed. 

2. This method is appropriate for characterizing fractures of non-constant thickness.  

Disadvantages of the continuous method of aperture measurement via quench function:  

                                                           
29 To be precise, fractures are still separated into simple ramifications, but the measurement is applied to the 
network in which the integrity is preserved, i.e., when we performed aperture measurement by the continuous 
approach, we apply it to the initial network. 



COUPLING IMAGE ANALYSIS AND THERMO-MECHANICAL SIMULATION RESULTS TO 

PRODUCE A MODEL OF THE FRACTURE NETWORK IN A NUCLEAR GLASS CANISTER 

147 
 

1. The apertures are average values of the quench function found at the intersection of the 

skeleton of maximal balls and the traces of simple arcs. This could jeopardize the accuracy of 

the calculations because not all relevant points of the skeleton of maximal balls lie on the 

same trace as the simple arcs (Figure 6b). 

2. The quench function is not secured from parity bias; in certain cases, it is prone to 

underestimate the real fracture aperture. Moreover, the maximal balls skeleton is not 

connected and can have thickness of more than 1 pixel, which might increase the error of 

average aperture estimation (Beucher 1994). 

Disadvantages of the continuous method of aperture measurement via distance function:  

1. The distance function is not secured from the parity bias, which means that values of average 

fracture aperture can be also slightly underestimated. 

Considering the above-enumerated advantages and disadvantages of the aperture measurement 

techniques, for further research, the continuous method of aperture measurement via the distance 

function is recommended to be retained because has been proved to be the most accurate and least 

biased.  

iii. Analysis of the map of front of solidification 

A comparison of the values of the rotation angles measured for segments of the training UMo image 

(Figure 15a) and the map of the front line rotation angles (Figure 10b) revealed their good 

agreement.  

However, the value of the linear correlation coefficient between the values of the curvature and 

those of the segment length ratio calculated for the training image was rather unsatisfactory. There 

are several possible explanations for this cohabitation of segments of different levels of lengthening 

generated in similar thermo-mechanical conditions, according to the map of internal structural 

relaxation. One is that the block chosen for the image analysis was not fully representative and could 

have carried imprints of the artificial damage, particularly in fragile peripheral zones, which would 

have masked the real fracture pattern.  

iv. Geostatistical and geometrical modeling 

Figure 20a proves that spatial distribution of seeds generated by the Poisson process and the centers 

of the segmented image are comparable; however, for each realization, the number of seeds 

generated in the central part of the blocks was higher than in the UMo training image. These small 

discrepancies are not believed to bias the result, particularly when considering that for the UOx 

block, more segments were observed in the central part (Figure 23b).  

As shown in Figures 23, the resulting realizations of equivalent fracture network tessellation 

exhibited strong similarities with the fracture networks of nuclear glass block. Moreover, they have 

the potential for modeling the fracture network at scale 1 and for conducting the reactive transport 

modeling. However, the demonstrated fracture network equivalent tessellations possess some 

features that make them different from the real fracture networks. First, on the 2D equivalent 

network representations, all cells of the tessellations were connected, whereas the analysis of the 2D 

cross-section of the UMo fracture network showed some dying-out fractures (Figure 11). Second, 
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although the total number of seeds of equivalent was close to the total number of centers of the 

training image, the simulated segments were smaller in the central part of the equivalent 

tessellations than in the average in the training UMo image. On average, the porosity of the 

presented equivalent tessellations was higher than that of the UMo training image. However analysis 

of the fracture networks of both UMo and UOx blocks and comparison with the presented equivalent 

tessellations indicate that simulated tessellations represent effective reproduction of fracture 

networks at scale 1. Moreover, they enable consideration of network structure variability. 

4. Conclusions and perspectives 
A crucial issue in reducing the uncertainty associated with a fracture network model is to consider all 

data that can be of very distinct natures. In our case, a combination of hard and soft data was used. 

Hard data were presented by the results of the image analysis on one block of nuclear glass, whereas 

the soft data correspond to the map of the arrival times of the solidification front and some 

derivatives of this map.  

The first part of the workflow, extraction and determination of the fracture characteristics, appeared 

to be reliable and offered important insight into the meticulous examination of fracture networks at 

scale of a glass block. However, it should be noted that the block used as a test bed of the workflow 

application is not fully indicative because its fracture network was damaged in the course of sawing. 

Thus, the resulting values of the apertures demonstrated here should not be considered as 

incontestable and characteristic of a real intrinsic fracture network of a block of nuclear glass. In 

pursuit of more relevant values of fracture apertures, further analysis using the same methodology 

on carefully prepared sections is advised.  

The second part of the work dealing with the geostatistical modeling and construction of fracture 

network equivalent tessellations is believed to be a practical and rapid method of fracture network 

simulation allowing the variability of fracture distribution and aperture to be considered.  

The presented research is methodological and strives to elaborate the workflow needed to conduct 

the reactive transport modeling at the scale of the fractured glass package. Nevertheless, in order to 

demonstrate the feasibility of the proposed procedure, we presented some results of the training 

image characterization and used them for further modeling. The findings, while preliminary, suggest 

that at relatively low expense, it is realistic to simulate a fracture network of blocks of nuclear glass 

by using the proposed anisotropic Voronoï tessellation. Equivalent tessellation is a good 

approximation and represents object modeling that considers both hard and soft input data. 

However, the final test of the quality of the model will come from applications: a comparison should 

be made of the results of reactive-transport simulation on the direct support (training images) and 

on the realizations of the equivalent tessellation. 

Although the characterization and modeling efforts are important, it is critical to improve the quality 

of glass block preparation by ensuring the integrity of the fracture network or by using noninvasive 

techniques. At the same time, it could be useful to deepen the understanding of the relationships 

between thermal damage parameters and fracture distribution and geometries. In fact, the choice of 

the actual proxy map was based on the fact that the speed of the solidification front makes it 

possible to dissipate internal stress more or less easily, thus controlling the morphology of the 
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fracture network. Other types of maps might be useful if they are justified by mechanical 

considerations. 

Although this research focuses on a 2D model, by unifying information obtained by analyzing images 

of longitudinal and transversal cross-sections of glass canisters, it is realistic to construct a realistic 

3D model. This is especially appealing, since almost all tools necessary to accomplish this exercise are 

already prepared. First, the knowledge of the fracture pattern of a transverse plane of a fracture 

package can be obtained by applying the proposed workflow. Second, the data required for 

geostatistical modelling are identified. Moreover, the maps of the solidification front arrival times 

necessary to support the image analysis results can be procured easily and the way in which they 

should be analyzed is already known. Besides, the algorithm used to generate the anisotropic 

Voronoї tessellation (realized in RGeostats package) should potentially be able to do it in 3D after 

some proper adaptations are made. These additional implementations concern the creation of the 

connected 3D fracture planes. However, certain caution must be applied because the fracture 

network is likely to vary along the z-axis owing to the presence of the different thermo-mechanical 

environments such as a zone of re-liquefaction or a stress-free surface. Nevertheless, it could be 

interesting to create realizations of 3D equivalent tessellation based on the data obtained by 

analyzing two transversal cross sections and one longitudinal cross section. The transversal cross 

sections should belong to two different castings, in order to capture the difference of the fracture 

network morphology related to the two-stage manufacturing procedure.  

As a general conclusion, we emphasize that the workflow presented here, combining (i) image 

analysis, (ii) analysis of a physical parameter indicative of glass internal structural relaxation, (iii) 

geostatistical modeling, and (iv) reproduction of equivalent fracture network tessellations is a 

powerful tool that enables the combination of hard and soft data concerning nuclear glass fracturing 

at scale 1. As such, it provides the basis for future investigation of the impact of fracturing on the 

aqueous alteration of borosilicate nuclear glass. 

The demonstrated workflow is part of a more complex workflow and data integration process aimed 

at characterization of fracture network on the scale of a nuclear glass block, upscaling of 

permeability, diffusion and kinetics governing parameters, and subsequent reactive transport 

modeling with consideration for variability in the fracture network. Future work includes the use of 

the model fracture network for reactive transport simulations at the block scale. These simulations 

will bring quantitative assessment of the degradation of glass and the release of radioanuclides 

under different scenarios of evolution, bridging the gap between laboratory scale (micrometers, 

years) and geological repository scale (meters for the block, tens of thousands of years).  
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The raw/processed data required to reproduce these findings cannot be shared at this time as the 

data also forms part of an ongoing study. The data that support the findings of this study will be later 

available from the corresponding author, Frederic Bouyer, upon request. 
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Glossary  
Binary image The value of a pixel of this image is either 1 or 0 depending on whether the pixel 

belongs to the foreground or to the background. 

Black top-hat 
transformation 

Is defined as the difference between the image closing ϕλ(f) and the image itself 
f, it extracts black and narrow features. In this study, black top hat 
transformation was applied to grayscale images at the stage of image pre-
processing to remove slow trends and to perform contrast enhancement. This 
operator brought out fractures whose thickness is half the chosen size of the SE 
and, as a consequence, it facilitated the separation of the glass matrix and the 
fracture network. 

Bounding box Smallest enclosing box for an object. 

Cell Applied as an analogue of the term “segment” by referring to a separate unit of 
an equivalent representation of the segmented image. Synonyme: mesh. 

Center Geodesic center of the segment (shard, crystal). It is obtained by the homotopic 
full thinning with the double structuring element D (Golay’s alphabet). Synonym: 
barycenter. 

Centroid Origin of the corresponding cell growth. Synonym: seed. 

Closing The closing of an image f by a structuring element B is denoted by ϕB(f) and is 
defined as the dilation of f with a structuring element B followed by the erosion 
with the reflected SE. The idea behind the morphological closing is to build an 
operator able to recover the initial shape of the image structures that have been 
dilated. This is achieved by eroding the dilated image. 

Dilation The dilation of an image f by a structuring element B is denoted by δB(f) and is 
defined as the maximum of the translation of f by the vectors -b of B. Like for the 
erosion, the dilated set is the locus of points where the answer to the question is 
affirmative, however the question slightly changes and becomes: “Does the 
structuring element hit the set?” 

Distance function Defined as the length of the shortest path drawn on the Euclidian grid between 
two points. In the digital version, each section at level i of the distance function 
of a set X corresponds to the erosion of size i-1 of X. 

Equivalent 
tessellation 

One realization of the equivalent fracture network constructed by the 
anisotropic Voronoï algorithm.  

Erosion The erosion of an image f by a structuring element B is denoted by εB(f) and is 
defined as the minimum of the translations of f by the vectors -b of B. Or to put 
it simply, the eroded set is the locus of points where the answer to the question 
"Does the structuring element fit the set?" is affirmative. 

Feret diameters Distances between the parallel planes restricting the object. 

Fracture aperture Defined as the width of the fracture between its two opposite walls on the 2D 
image. For peripheral part of the longitudinal cross-section, it represents a true 
fracture width, since here fracture network is perpendicular to the cross-section 
plane. For central part of the longitudinal cross-section, it differs from the true 
fracture width by cosα, where α is the angle between the plane parallel to the 
longitudinal cross-section and the plane orthonormal to the fracture whose 
aperture is measured. Synonymes: aperture, fracture opening. 

Geodesic 
reconstruction 

Allows the reconstruction of all connected components of an image g from a 
marker image f. It is effectuated by iterating geodesic dilatations of f with 
respect to g until stability. The opening by reconstruction, in contrast to simple 
opening, preserves the contours of the objects that have not been removed by 
the erosion (binary image) and removes unconnected light features (grayscale 
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image). 

Grayscale image The range of the values of the pixels of this image is extended from 0 to 2n - 1 for 
pixel values coded on n bits. 

Image 
segmentation 

Its partition into different regions, each one having certain properties. 

L-skeleton by 
homotopic 
thinning 

Obtained by performing the sequential thinning with six rotations of L 
structuring element (Golay’s alphabet) until stability. This skeleton is always 
connected, of unit thickness and is less prone to generating spurious branches 
due to irregularities of object frontiers. 

Moving window Rectangle defined by 4 points (x1,y1; x2,y1; x2,y2; x1,y2) which includes certain 
number of samples i so that their coordinates (xi, yi) respect the conditions: x1 ≤ xi 

≤ x2 and y1 ≤ yi ≤ y2. 

Multiple points Used for detecting connections between one-pixel width curves such as those 
obtained after the homotopic skeletonisation. They were useful in separating 
fracture ramifications. 

Opening The opening γ of an image f by a structuring element B is denoted by γB(f) and is 
defined as the erosion of f by B followed by the dilation with the reflected SE. 
The idea behind the morphological opening is to dilate the eroded image to 
recover as much as possible the original image. 

Pullout zone Zone of damage, created during sawing operations. 

Quench function Calculated together with the skeleton by maximal balls, associates the radius of 
the ball to the ball center. 

Rotation matrix Matrix used by the anisotropic version of Voronoï algorithm to perform a 
rotation in Euclidean space for defining the anisotropy on distances. 

Scaling factor Number by which the distance along the chosen axis (after possible rotation) is 
divided. 

Seed Origin of the corresponding cell growth. Synonym: centroid. 

Segment In mathematical terms, it represent a disjoint nonempty set and it is obtained by 
image segmentation. It the specific case of this research it represents a part of 
the glass matrix separated by the extracted early fracture network. Synonyms: 
shard, crystal. 

Skeleton Compact representation obtained by thinning of the object to a set of lines 
condensing the information of the original object while keeping its homotopy 
(topology preservation). The skeletal points and their distance to the boundary 
of the set enable the reconstruction of the set. There are several techniques to 
perform skeletonisation. In this research, we used a skeleton by maximal balls 
and a skeleton by homotopic thinning. 

Skeleton by 
maximal balls 

Defined by the centers of maximal balls, where a maximal ball B is considered 
maximal in X object if there exists no other ball included in X and containing B. 

Solidification front Corresponds to the isoline of the delay ΔT= Tf - T(t)=10 between the fictive 
temperature (Tf) and the glass temperature at each time step T(t). 

Structuring 
element (SE) 

Set of known shape used to probe the analyzed image. There are several types of 
structuring elements: hexagon, triangle, linear segment etc. The shape of the SE 
is usually chosen according to some preliminary knowledge about the geometry 
of the relevant and irrelevant image structures. 
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Variogram Function describing the degree of spatial dependence of a spatial random field or 
stochastic process. It is calculated as a half the average squared difference 
between all points separated at distance h. 
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5. From block image analysis to reactive transport modeling 

(continued)  

5.3. Parameters upscaling 

5.3.1. Effective permeability 

5.3.2. Effective diffusion  

5.3.3. Geochemical behavior (input parameters for the GRAAL model) 

5.3.4. Reactive transport modeling for a synthetic case  

5.4. Reactive transport at the scale of the vitrified glass canister  

5.4.1. Aqueous alteration experiment of a nonradioactive full-scale SON68 glass 

block  

5.4.2. Reactive transport modeling at the scale of the vitrified glass canister in 

diffusive and convective modes  

Chapters 5.3 and 5.4 are presented in the form of the article entitled “Reactive transport 

modeling of the glass alteration in a fractured vitrified nuclear glass canister: from upscaling 

to experimental validation”. It was submitted in March 2019. Below some supplementary 

information on the long-term experiment of a nonradioactive full-scale SON68 glass block 

aqueous alteration presented in Section 1.1 of the article is provided. 

Preparation of the SON68 glass canister 

To conduct aqueous alteration tests, a block of SON68 glass was fabricated in 2001. This 400 

kg block was made in a perforated stainless steel basket with 10 mm diameter holes 

occupying 50% of the surface. The thermal scenario that has been imposed was as follows: 

i. Canister was installed in the preheating furnace; 

ii. Canister was preheated during three hours before the first melted glass discharge 

took place, with the temperature of the low and the high zones being 450° C and 

550°C respectively; 

iii. Two glass castings were effectuated at 1200° C during approximately 30 minutes; 

iv. Heating was maintained during 10 h after the first casting took place in order to keep 

up the temperature before pouring the second casting; 

v. Heating was stopped at the end of the second casting; 

vi. Glass canister was moved out from the oven 2h30 after the second casting and cooled 

down in the open air condition. 

Presentation of the ALISE installation 
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The ALISE (Appareillage de Lixiviation Statique Electrique) installation has been built in 

Marcoule, CEA to carry out long-term aqueous alteration tests of industrial scale vitrified 

glass canisters under static or quasi-static conditions with moderate amount of water 

available to come in contact with the glass (about 35 L for one block of 400 kg).  

The installation was equipped with electric heaters to keep water temperature constant. The 

temperature was monitored by thermocouples readings, with three thermocouples placed in 

different places. A sampling valve was used to collect some solution (a few millilitres for 

each sample) for chemical analysis. The upper part of the reactor, removable to allow 

exceptional interventions during the test, included an injection plug to add water and a 

window for real-time observation of the water level and the upper part of the block placed 

inside the installation. 

Soon after its fabrication, the block was placed into the ALISE installation. It stayed there 

during 2718 days (7.5 years). The initial temperature of the test was set to 106±1° C (the 

originally planned temperature was 90 ° C but due to a thermocouple calibration error 

detected in early 2002, the temperature was kept higher, at 106 °C). The initial volume of 

water in the reactor was 34.7 liters. 

In total, over the course of the test 106 samples were collected and analyzed by the 

inductively coupled plasma atomic emission spectroscopy (ICP / AES) technique on the 

following elements: Si, B, Na, Li, Mo, Al, and by the inductively coupled plasma mass 

spectrometry (ICP / MS) on Cs. Before each sample collection, the solution was homogenized 

using a closed-loop pumping.  

It should be noted that there were some interventions: e.g. in February 2007, i.e. 5.5 years 

after the beginning of the test, when 8 liters of a synthetic solution was added to compensate 

for the cumulated evaporated water. Before mixing, the solution composition was adjusted 

to minimize the chemical disturbance. Composition of the solution in the unit was probed at 

the end of 2006. It was the following: Si (300 ppm), B (530 ppm), Na (820 ppm), Li (110 ppm), 

and Mo (80 ppm) (internal communication, Minet et al., 2013). 

Some key results of the ALISE test 

The evolution of tracer concentrations is shown in Figure 5-1. For the purposes of this 

research, our attention was brought to the evolution of the tracer elements represented by 

boron, sodium, and lithium. They are considered good tracers of the glass alteration: they are 

released by the glass dissolution but are not retained (boron) or slightly retained (sodium, 

lithium) in the alteration layers. The knowledge of the concentration of these elements made 

the evolution estimation of the mass of altered glass possible, under the hypothesis that 

tracer element concentrations were identical in the external solution and in the fractures. 
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Some other elements, such as silicon, molybdenum, cesium, aluminum and calcium were 

also analyzed and monitored as they provide information about the alteration layer itself.  

 

Figure 5-1 Evolution of the tracer-elements concentration and the pH. Modified from Minet et al., 

2013. 

Figure 5-2 shows the evolution of the mean quantity of altered glass per unit time. Based on 

the detailed analysis of the concentrations of the analysed elements and the quantity of 

altered glass, (Minet et al, 2013) reported five phases of alteration.  

i. 1-30 days: an initial phase characterized by a rapid transition from the initial rate 

regime (Section 2.1) to the rate drop regime reflected by the sharp increase of the 

released QAG per unit time and the quick increase of the pH. 

ii. 30-500 days: a phase of gradual decline of the alteration rate characterized by 

progressive decrease of the QVA and the slow increase of the pH. 

iii. 500-1400 days: a phase of the interchange between the regime of the alteration rate 

recovery and the regime of the alteration rate decline.  

iv. 1400-1700 days: a phase of the alteration rate resumption characterized by the 

increase of the QAG per unit time of almost an order of magnitude, followed by a 

subsequent decrease. Regarding the pH, it increased too.  

v. 1700 to 2700 days: a final phase characterized by the fluctuating alteration rates. This 

phase of the test was perturbed by external interventions, such as first, the opening of 

the cover plate to measure the water level, second, the addition of the synthetic 

solution. Due to the fact that the chemical environment was strongly disturbed, the 

interpretation of the aqueous alteration behaviour is not unequivocal.  
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Figure 5-2 Quantity of altered glass per unit time calculated from the concentration of the boron in the 

solution and pH of the external solution: a) zoom for the first 50 days; b) whole duration of the 

experiment. Calculated from total dissolved boron concentration obtained from (Minet et al. 2013). 

Post-mortem characterization 

As mentioned in Section 2.2, after the test had been stopped, the block was coated with an 

epoxy fluid resin to enhance its mechanical durability before moving ahead with its cutting. 

As illustrated in Figure 2-9, first, the block was cut in 2 parts along its transversal axis; 

secondly, the upper half was split into 10 discs of 4 cm thickness each. The discs were 

numbered from 2 to 10 in a downward direction. At the following stage, the fracture 

network of the disc number 6, located between 43 and 47 cm from the top of the block was 

studied in detail. Results of this analysis can be found in Section 2.2.  

Comparison with the reactive transport modeling results 

For this research, the results of the aqueous alteration of a nonradioactive full-scale SON68 

glass block carried out in the ALISE installation were valuable, because it was important to 

compare them with the results of the RT simulations applied to a series of equivalent fracture 

network realizations obtained by following the workflow presented in Section 5. Although 

there were some differences between the conditions in which the ALISE experiment was 
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realized and the modeled conditions, the QAG calculated from the concentration of the 

tracer element was similar.  
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Abstract 

Performance assessment of geological nuclear waste repositories entails modelling of the long-term 

evolution of the aqueous alterations of the fractured nuclear glass block, because the time scales 

under consideration are of several thousands of years and hence beyond the range of any direct 

experimental perspectives. In this study, our objective is to bridge the gap between the reservoir-

scale flow and transport simulations and the micron-scale modeling of the glass-water interfacial 

processes by providing quantitative evaluation of the aqueous alteration of glass at the block scale. 

In particular, calculations of the equivalent diffusive, hydraulic, and alteration kinetics properties and 

reactive transport simulations are discussed. Prior to performing reactive transport modeling at the 

scale of the glass canister, the preferred upscaling techniques were first applied to a synthetic 

fracture network system with ends to compare the results of the borosilicate glass alteration with 

the discrete fracture modeling and the equivalent porous medium approach. The evolution of the 

altered glass obtained from reactive transport modeling applied to several realizations of the 

equivalent fracture network tessellation was compared to the experimental data of the aqueous 

alteration test of a nonradioactive full-scale SON68 glass canister. The proposed model agrees with 

the experimental data and offers, for the first time, an opportunity to better understand the impact 

of fracturing on the corrosion of nuclear glass as well as the convection due to the radioactivity 

acting as a heating source. 

Keywords 
Nuclear glass corrosion, fracture network, glass alteration rate, reactive transport modeling, 

upscaling, equivalent continuum, kinetic regimes.  

Introduction 
The vitrification of radioactive waste has been considered as a reliable method to condition high-

level long-lived nuclear fission products in geological disposal facilities on time scales of up to 

millions of years. This process involves calcination of the liquid fission product solutions followed by 

melting at around 1100 °C in an induction-heated metallic vessel, where the glass frit and the 

calcinated fission product solution are mixed before being poured into a metallic container. During 

cooling and solidification of the glass, the increase of tensile stresses resulting from the mechanical 

equilibrium between the internal liquid and the external (reduced volume) solidified glass causes the 

development of a network of fractures. 
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ANDRA, the French national operator for the management of nuclear waste, and numerous academic 

or national operators worldwide have been carrying out research concerning the feasibility of 

geological waste disposal. In consideration of the results of several decades of research, the French 

Parliament opted for deep geological disposal and asked ANDRA to design Cigéo (Centre industriel de 

stockage géologique) – a deep geological disposal facility for radioactive waste. According to the 

disposal scenario proposed by ANDRA, the packages of vitrified fractured glass containing high-level 

long-lived radioactive waste (HLLLW) would be stored in disposal cells in a repository built with 

Callovo-Oxfordian (COx) clay, located 500 m beneath the Earth surface in Meuse/Haute-Marne, 

France. With the current concept (which is still in development), these cells would be blind micro-

tunnels, 0.7 m in diameter and of 100–150 m total length (Figure 1a). A steel lining is intended to 

facilitate the placement of packages during the operational phase (and their removal for possible 

recovery). Finally, a filler material would be injected between the liner and the host rock to enhance 

mechanical strength and reduce corrosion. The glass canisters made of vitrified glass contained in 

53–65 mm thick steel overpacks (Figure 1b) would be positioned separately from one another, such 

that heat production in the cell is compatible with thermo-hydro-mechanical targets (ANDRA 2016). 

 

Figure 1 a) Schematic diagram of the high activity HA cell; b) Illustration of an HA storage container for vitrified 
nuclear waste, primary package type R7T7. High-level long-lived waste disposal gallery in operating 
configuration. Obtained from (ANDRA 2016).  

As mentioned above, the cooling down stage creates numerous fractures in the vitrified glass 

packages. The fracture network increases the reactive surface areas and creates water pathways 

within the glass. After re-saturation of the vicinity of the cell, and the eventual corrosion of the 

canister, water will come into contact with the glass. The water-glass interaction must therefore be 

studied, both in terms of glass alteration and release-rate of radionuclides. 

Despite the advancements made in studies of solute transport and flow of ground water in fractures 

at the mega-scale (ANDRA 2005; Zhang 2018; Cvetkovic et al. 2004; Nykyri et al. 2008) and 

discoveries achieved in the domain of borosilicate glass aqueous alteration (Pierce et al. 2014; Gin 

2013) at the micro-scale, the reactive transport modeling applied to a scale of one block of fractured 

borosilicate glass has not been performed to date, to the best of our knowledge.  

Although the evolution of reactive transport modeling (RTM) codes is impressive, RTM applied to 

fractured media of a glass block remains challenging. Particularly, the coupling of the geochemistry of 

borosilicate glass dissolution with physical flow and transport phenomena within a discrete fracture 

network is too CPU-intensive. Hence, in order to study nuclear glass degradation at the scale of the 
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industrial vitrified glass canister, an equivalent fracture network model was constructed, and its 

hydraulic, diffusive and kinetics controlling parameters were determined. 

This study is a further development of our previous research (Repina et al. 2018, accepted in the 

Journal of Nuclear Materials), where the authors presented an image processing-based fracture 

network characterization workflow elaborated for the purpose of RTM application to a block of 

vitrified nuclear glass. The workflow was devised in the following steps: (i) characterization of a glass 

block fracture network, (ii) establishment of a link between a physical parameter representing an 

internal state of glass structural relaxation and an internal structure of the block fracture network, 

and (iii) generation of multiple realizations of fracture networks by considering the variability of 

fracture network parameters such as fracture distribution and aperture. Based on mapped fracture 

distribution and aperture, the present paper presents an upscaling workflow and subsequent RTM 

application as follows: computation of the equivalent hydraulic, diffusive, and glass degradation 

kinetics- governing parameters, verification of the proposed techniques, their application to several 

realizations of fracture networks, and reactive transport modeling. The construction of the 

equivalent continuum model was initiated to overcome the problem of the complexity of the 

fracture network discrete representations and, as a consequence, to be able to perform RTM at the 

scale of the industrial glass canister. 

RTM was conducted by the HYTEC code (Van der Lee et al. 2003; Lagneau et al. 2010). The kinetics of 

the international simple glass (ISG) aqueous alteration (Gin 2013), including the passivation effect of 

porous or dense gel formation, is represented using the Glass Reactivity with allowance for the 

Alteration Layer (GRAAL) model. ISG glass aqueous alteration was studied under the assumption of 

full saturation with water in pH conditions preventing alteration resumption. The methodology was 

tested over synthetic discrete fracture networks, and finally an application is performed at the block 

scale to simulate a long-term aqueous alteration experiment of a non-radioactive proxy canister.  

1. Material  

1.1. Aqueous alteration experiment of a nonradioactive full-scale SON68 glass 

block  

French Alternative Energies and Atomic Energy Commission CEA performed an aqueous alteration 

experiment on a non-radioactive full-scale inert nuclear glass canister (Minet et al. 2013). The 

experiment was conducted in the ALISE (Appareillage de Lixiviation Statique Électrique) unit built in 

Marcoule. The objective of this experiment was to produce a set of data on the long-term (seven 

years) aqueous alteration of an industrial-scale vitrified glass canister under static conditions with a 

moderate amount of water in contact with the glass (about 35 L for one block of 400 kg). The general 

schematic of the installation is depicted in Figure 2.  
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Figure 2 General view of the ALISE unit. Dimensions indicated on the sketch are in mm. Modified from (Minet 
et al. 2013). 

An industrial-scale block of inert nuclear glass was fabricated in a cold crucible in two stages. This 

400 kg block was made in a perforated stainless steel basket with 10 mm diameter holes to facilitate 

water access during the experiment.  

Soon after the fabrication of the block, it was placed into the ALISE unit. It remained there for 2718 

days (7.5 years). The initial temperature was set to 106 ± 1 °C. The initial volume of water in the 

reactor was 34.7 liters. In total, over the course of the test, 106 samples were collected and analyzed 

by ICP/AES for Si, B, Na, Li, Mo, Al, and by ICP/MS for Cs. Prior to each sample collection, the solution 

was homogenized using closed-loop pumping.  

To characterize the glass alteration, the evolution of two parameters was monitored. First, the 

evolution of the boron31 tracer element was observed. Secondly, with respect to boron concentration 

evolution, the alteration rate was estimated using the following equation (1): 

 𝑎𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒 =
𝐶𝑖(𝑡)∗𝑉

𝑋𝑖∗𝑡
,   1 

where Ci is the  concentration of dissolved boron in the solution at time t, xi is the mass fraction of 

boron in the glass, and V is the solution volume. 

1.2. Glass block section and its fracture network equivalent tessellations  
The segmented image of a non-radioactive vitrified glass fracture network (Figure 3a) and three 

realizations of fracture network equivalent tessellations (Figure 3b–d) presented in (Repina et al. 

2018, accepted in the Journal of Nuclear Materials) were used as the input data for this study. The 

glass fracture network was extracted and characterized using mathematical morphology tools. The 

                                                           
31 Boron is considered as a tracer of glass dissolution, because it is released completely from the glass 

during the glass alteration process without being retained in the alteration layer. 
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input data necessary for the generation of multiple realizations of fracture network equivalent 

tessellations were obtained by conducting geostatistical modelling based on the results of image 

analysis and the analysis of a physical parameter indicative of glass internal structural relaxation. The 

parameters of the four fracture networks are indicated in Table 1.  

Table 1 Fracture network parameters impacting glass alteration  

Name/ 
Parameter 

Segmented Image Equivalent 
Tessellation #1 

Equivalent 
Tessellation #2 

Equivalent 
Tessellation #3 

Average porosity  0.08 0.11 0.12 0.11 

Length of fracture 
median axes, m 

20.5 51 52.1 49.5 

2D fracturing ratio 17.4 42.7 41.8 40.6 

Internal fracture 
surface32, m2 

26.6 67.7 66.2 66.7 

 

 

Figure 3 Input images used to calculate equivalent reactive transport parameters: segmented image of the full 
glass section of the canister (top left), and three equivalent tessellations used in this study. Image dimensions 
are 6144 px × 2430 px, with 1 px corresponding to 0.17 mm. 

1.3.  GRAAL geochemical model  
The borosilicate nuclear glass alteration was simulated by the glass reactivity with allowance for the 

alteration layer (GRAAL) model (Frugier et al. 2009; Frugier 2008; Minet et al. 2010). The model 

pursues a dual objective: (i) coupling between the affinity effects in the kinetic law and the diffusion 

processes in the alteration layer and (ii) establishment of a precise material balance to calculate the 

distribution of the elements of the glass between the solution, secondary phases and a developing 

gel. The first hypothesis of the GRAAL model is the speed of the hydration reaction of the glass at the 

                                                           
32 Calculated under the hypothesis that fracturing ratio in 2D and in 3D are equal 
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initial time: this phenomenon causes the elements of the glass (the alkali earth metals, boron) to 

pass into solution. The hydrolysis of silicon is slower and conditions the initial dissolution rate of the 

glass. The difference between these two kinetics leads to the formation of a dealkalized hydrated 

glass layer at the glass-solution interface. This layer or gel is gradually reorganized by hydrolysis / 

condensation phenomena and is referred to as the passivating reactive interface (PRI). Each silicon 

atom present in the solution stems from the dissolution of the PRI. Concurrent to its formation, this 

gel dissolves, given that the solution is not saturated with the elements that constitute it, namely Si, 

Al, Ca, and Zr. GRAAL proposes a description of the gel formed on the surface of glass by 

condensation and precipitation of Si, Al, Zr, and Ca. With a relatively simple formalism, the model 

accounts for the chemistry and solubility of the gel. It assumes that glass alteration is controlled by 

the PRI, consisting of glass without any mobile elements in its composition. 

The transport properties of the PRI are modeled by a spatially and temporally constant diffusion 

coefficient for the elements of the glass. Thus, the flow of mobile elements transported through the 

PRI is proportional to the diffusion coefficient and inversely proportional to the thickness of the PRI. 

GRAAL therefore makes the assumption of a balance between the non-passivating gel and the 

solution, and between the external interface of the PRI and the solution. GRAAL uses two kinetic 

equations for the PRI grouped in (2). 

 
𝑑𝑥

𝑑𝑡
= r1 − r2 =

𝐷𝑃𝑅𝐼

xPRI
− 𝑣0 (1 −

𝑄𝑃𝑅𝐼

𝐾𝑃𝑅𝐼
) =

𝐷0×[𝑂𝐻−]𝑛
′
×𝑒

−
𝐸′

𝑎
𝑅𝑇

𝑥
− k+ × [𝐻+]

n
× 𝑒

−
𝐸𝑎
𝑅𝑇

× (1 −
QPRI

KPRI
),  2 

This equation states that the passivating reaction interface PRI (i) is formed from the glass with a rate 

r1, which is a function of its thickness xPRI and the PRI diffusion coefficient DPRI, and (ii) also dissolves 

with a rate r2 according to a classical affinity law in which v0 is the initial velocity, QPRI is the ionic 

product and KPRI is the PRI solubility product. The right hand-side of the equation is the expanded 

version, indicating the dependence of DPRI and 𝑣0 on pH and T, where 𝐷0 is the interdiffusion 

constant, 𝐸′
𝑎 is the activation energy associated to the interdiffusion coefficient, 𝑛′ is the pH-

dependence factor, 𝐸𝑎 is the apparent activation energy at the initial rate, 𝑛 is the pH-dependence 

factor of the initial rate, k+ is the dissolution rate of the PRI in pure water, and T is the experiment 

temperature. 

As in the study of (Frugier et al. 2018), in order to limit the formation kinetics of the protective layer, 

i.e. to avoid the appearance of the infinite rate when xPRI = 0, a constant hydration rate is 

introduced in the definition of r1 in (3): 

 r1 =
DPRI

xPRI
=

rh

1+xPRI
rh

DPRI
π
2

 ,   3 

where rh is the hydration rate, which is higher than the initial dissolution rate. This is fully compatible 

with the experimental observations: the dissolution rate of mobile ions is higher than the dissolution 

rate of silicon ions. However, due to the very low diffusion coefficient of nuclear glasses, the 

hydration rate governs the alteration rate only for a few seconds. The parameter is not measurable 

experimentally and has almost no effect on the modeling results. 

In order to perform a RTM of borosilicate glass alteration, regardless of the modeling approach used 

(discrete fracture network or the equivalent porous model), some parameters in the law of glass 

dissolution have to be specified: glass mass per solution volume Cv, glass specific surface Ssp, half-
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saturation coefficient present in the inhibition function33 used to account for the interdiffusion rate, 

molar fractions of elements in the PRI, i𝑃𝑅𝐼, and in the glass, i𝑃𝑆, glass molar density ρ𝑃𝑆, and some 

other constants, like Ea, k+, n,Ea
′ , D0, n′ from Equation 2.  

Some of the mentioned parameters, such as ρ𝑃𝑆, k+, i𝑃𝑅𝐼, i𝑃𝑆, T, and the pH-dependence constants, 

Ea and Ea
′ , are specific to the chemical properties of the glass. The others, such as Cv, Ssp, and the 

half-saturation coefficient, are controlled by the internal structure of the modeled fracture network. 

Depending on whether the discrete model or the equivalent porous model is applied, the calculation 

of these parameters changes. The exact formulas and the hypothesis constructed to compute these 

parameters for equivalent continuum and discrete models are discussed in Section 2.1.3 and Section 

3. 

In this study, the porosity update due to the precipitation of the secondary minerals in the fracture 

network was not considered. Indeed, in accordance with the GRAAL model, the alteration is 

considered isovolumetric: dissolved glass is replaced isovolumetrically by the alteration layer, such 

that glass alteration has no impact on fracture aperture and hydraulic conductivity. 

1.4.  Reactive transport modeling in HYTEC coupled code 
Reactive transport simulations are performed by the HYTEC code (Van der Lee et al. 2003). HYTEC is a 

coupled chemistry-transport code that relies on the method of the separation of operators, with a 

sequential iterative algorithm (Lagneau 2013; Lagneau et al. 2010). The flow module is available in 

saturated (stationary, transitory regimes), unsaturated, and two-phase forms. It also allows for 

variable density flow. The variation of water densities as a function of temperatures (motor to 

thermo-convection) uses the Boussinesq approximation (4): 

 
𝜌

𝜌0
= 1 − 𝛼(𝑇 − 𝑇0) ,  4 

where  is the thermal expansion coefficient, 𝑇0 is the reference temperature at which the density 

is 𝜌0, and T is the local temperature at which the density is 𝜌. 

In this study, the simulations of the aqueous alteration of the borosilicate ISG glass were conducted 

in saturated stationary and saturated transient regimes. These simulations were conducted in both 

diffusive and convective modes. Convection originated from an imposed temperature gradient 

between the lower and upper parts of the modeled glass canisters. Change in porosity and its effect 

on the permeability and diffusion, as a consequence of clogging or dissolution, was not considered in 

the simulations, in agreement with the isovolumetric phase replacement. 

The grids of both discrete and equivalent models presented here were created by a three-

dimensional mesh generator GMSH (Geuzaine et al. 2009). HYTEC uses this grid for its node-centered 

finite volume scheme.  

The governing equations of the GRAAL model are implemented in HYTEC. The principal requirements 

for HYTEC to accept GRAAL equations are the availability of the Monod-type equation, the ability to 

use the concentration of a solid (glass) as a variable of the equation, and an adaptive time step 

                                                           
33 The inhibition function, representing a special case of the Monod equation, imposes that the interdiffusion 
rate is only proportional to the diffusion coefficient if half-saturation << instantaneous PRI concentration. 
When the PRI does not exist, the alteration rate of the glass is maximal.  
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(Frugier et al. 2018). Thus, the time step needs to be small at the beginning of the calculation when 

the protective layer is thin to prevent its immediate dissolution. The switch from the GRAAL model to 

HYTEC is performed by treating (3) as a Monod-type equation and using the general kinetic 

formulation (van der Lee 1998) to describe the dissolution equation (Table 2): 

Table 2 Analogy between the parameters in the GRAAL model and HYTEC code 

 GRAAL model HYTEC code 

Parameter PRI thickness  
XPRI 

PRI concentration 

XPRI =
CPRI

ρPRISspCv
 

Primary solid 
alteration rate 
controlled by 
protective layer’s 
thickness 

DPRI

xPRI
=

rh

1 + xPRI
rh

DPRI
π
2

 

DPRI(T, pH) = 𝐷0 × [𝑂𝐻
−
]
𝑛′

× 𝑒−
𝐸′

𝑎
𝑅𝑇 

rh
half−saturation

half−saturation+CPRI
 Monod type 

equation (inhibition) 
half − saturation

= 
DPRI

π
2

rh
ρPS

iPS

iPRI

SspCv 

W term specifying the dependence 
of DPRIon pH 

Protective layer’s 
dissolution rate 

k+ × [𝐻+]n × 𝑒−
𝐸𝑎
𝑅𝑇

× (1 −
QPRI

KPRI
) 

Rate, area , Y- term specifying the 
dependence on the saturation state , 
W-term specifying the dependence 
on the pH 

CPRI is the concentration of the protective layer, Ssp is the specific surface area of the glass, and Cv is 

the concentration of the glass in the calculation cell volume. 

The thermodynamic data used in this study were taken from the public Common thermodynamic 

database for speciation models CTDP adapted at the Laboratoire d'étude du Comportement à Long 

Terme des matériaux de conditionnement (LCLT), CEA Marcoule, by the addition of the definition of 

glass composites of interest (ISG, SON68, etc.). 

2. Methods 

2.1.  Determination of the equivalent properties 

The reactive transport parameters considered in this study are the porosity, tortuosity, diffusion 

coefficient, hydraulic conductivity, and glass alteration kinetic parameters controlled by the ratio of 

the contact surface to the solution volume. 

It has been long established that flow and transport parameters are scale dependent (de Marsily 

1986; Renard 1997a). This results from the existence of multiscale structures of porous medium that 

induce a hierarchy, which generates the heterogeneity. Consequently, the measurement or 

calculation of the parameters carried out at one scale cannot be directly applied to another-scale 

modeling. In fact, to pass to a higher scale, i.e. to make model coarser, upscaling techniques need to 

be employed. Upscaling leads to the replacement of a heterogeneous domain by a homogeneous 

one that should reproduce an equivalent response with the same imposed boundary conditions. 

Hence, upscaling transfers parameter values from the small to the larger scale by regularizing the 

heterogeneities at the smaller scale (Deng 2009). Upscaling has received a lot of attention from 

various fields, e.g. reservoir engineering (Durlofsky 1991; Begg et al. 1989; Christie 1996), hydrology, 
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(Neuman 1990; Zhou 2008; Cushman et al. 2002), and reactive transport modeling (Fernàndez-Garcia 

et al. 2005; Deng 2009; Nos et al. 2011).  

There are numerous upscaling techniques, that are often sorted in several groups: most notably 

volume averaging (Whitaker 1967), homogenization (Hornung 1997), renormalization (King 1989; 

Noetinger 1994), ensemble averaging (Wood et al. 2003), and continuous-time random walk 

(Nœtinger et al. 2000). Despite the fact that these techniques have a lot of differences, their goal is 

basically the same: to relate the microscopic-scale structures and properties to the associated 

effective, or sometimes termed equivalent parameters (Renard P. 1997) considered in the 

macroscopic transport and flow equations.  

In this study, we deal with the construction of an equivalent continuum model, meaning that the 

issue of the upscaling of permeability and diffusion is tackled. Although the construction of the 

equivalent continuum model is delicate because of the problematic choice of the representative 

elementary volume (REV) due to the disparate character of fracture density inside a glass canister, 

this model is able to provide the first estimate of the impact of fractures on nuclear glass aqueous 

corrosion in the geologic repository environment. Moreover, upscaling is also necessary for the 

geochemical description of glass alteration: the geochemical model of the borosilicate glass corrosion 

(Frugier 2008) is entirely adopted in the equivalent continuum modeling.  

In the next sections we address the calculation of the maps of porosity, permeability, and effective 

diffusion and furthermore, we focus on the calculation of the equivalent glass corrosion kinetic 

parameters. 

2.1.1. Equivalent permeability 

The objective here is to calculate the maps of equivalent permeability, which would result in the 

same total flow of single-phase fluid through the coarse, homogeneous mesh as that obtained from 

the geometric description of the fracture network. It should be noted, that although there is some 

evidence that under geo-repository conditions a two-phase flow would take place due to the 

liberation of hydrogen as a result of the steel corrosion and radiolysis, in this research we considered 

that both flow and geochemical alteration happen under a water saturated condition.  

The equivalent permeability was calculated by the simplified renormalization technique proposed in 

(Renard 1997b; Renard et al. 2000). As in all renormalization techniques, the studied parameter is 

considered at several scales, starting from the scale of the initial stage (fine mesh) to the final stage 

passing through all intermediate steps. At each stage, the map of the considered effective parameter 

is computed by renormalizing the map of the parameter at the preceding step. The idea of the 

simplified normalization method is to first assemble cells in groups of N × N cells at each step of the 

calculation, second, for each assembled group to calculate either the harmonic mean followed by the 

arithmetic mean or the arithmetic mean followed by the harmonic mean depending on the direction 

of the calculation with respect to the flow direction, third, at the end of stage before passing to the 

next level, to compute the geometric mean of the two previous results. The procedure is considered 

completed when the size of the coarse mesh is reached.  

The fracture permeability on the initial map of fracture apertures was obtained using the parallel-

plate model. Values of fracture permeability were computed using the relationship derived from the 
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Hagen-Poiseuille solution of the Navier-Stokes equation, which relates the intrinsic fracture 

permeability to its aperture as defined in (5): 

 𝐾𝑓 = 𝑎2

12⁄  ,   5 

where 𝑎 is the fracture aperture. 

Matrix permeability was taken as equal to 10-18 m2 with reference to the study on thermo-mechanical 

cracking effects on elastic wave velocities, mechanical strength, and permeability under pressure 

(Ougier-Simonin 2010). 

2.1.2. Equivalent diffusion 

The efficiency of the random walk method applied to solve the diffusion problem is largely 

recognized (Noetinger 2016). In the random walk techniques, the determination of diffusivity of the 

media relies on the Einstein relation (Einstein. A. 1956), relating the mean square displacement to 

the effective diffusion coefficient (6): 

 

 𝑅2(𝑡) =  〈(𝑟(𝑡) − 𝑟(𝑡 = 0))2〉 = 2𝑑 × 𝐷(𝑡) × 𝑡,  6 

where d is the system dimensionality, D(t) is the diffusion coefficient, r(t) particle position at t, and 

r(t=0) is the particle position at t=0. It should be noted, that the square displacement is averaged for 

all particles.  

The self-diffusion coefficient of molecules in a limitless bulk media is independent of time. It is only 

controlled by the type of molecules and by the fluid in which molecules diffuse. However, this 

diffusion coefficient becomes time-dependent when calculated in heterogeneous porous media.  

Multiple studies have shown (Promentilla et al. 2009; Nakashima et al. 2004; Sen 2004; Gouze et al. 

2011) that in the case of heterogeneous media, the convergence of the diffusion coefficient D(t) to 

its asymptotic value of effective diffusion (Deff) is reached once the squared displacement R2(t) 

exceeds the permeability correlation length. In other words, to obtain the information about the true 

molecule trajectories encoded in the diffusion coefficient, it is necessary to allow the molecules to 

discover the whole domain. The short-time behavior of the mean squared displacement vs. time 

determines the surface-volume ratio of the porous media, because at short time scales, the 

molecules do not sense heterogeneities of the media (Sen 2004; Mitra et al. 1993). 

In this study, we attempt to evaluate the tortuosity and the effective diffusion coefficient from the 

images of fracture networks shown in Figures 3 and 4a. This is carried out by modeling a 2D random 

walk in the percolating fracture space as follows: 

1. Npart independent particles are placed randomly in each cell of the output grid. 

2. At each iteration Δt, they can move to 4 neighboring positions (–X, +X, –Y, +Y) inside the 

fracture network, over a distance equal to 1. In the case where they encounter the glass, the 

displacement is not incremented. If particles leave the cell, they continue their paths in the 

fracture medium created by a mirror (toroidal) reflection. 

3. Euclidean distance and directional displacements between the initial and the final locations 

for each particle are calculated and then averaged for all particles. 

4. The regression of the average of the squared distances as a function of the iteration is 

verified for linearity, and the slope of the linear regression is recorded. 
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In general, in the case of the particle diffusion in free limitless space, the slope of the mean square 

displacement (msd) vs. time is equal to 1, whereas for the diffusion in fractured systems when 

motion is restricted by the glass matrix, the slope is less than 1. It reflects the impact of geometrical 

features on the particle diffusion, such as tortuosity of the porous media. To be precise, the 

tortuosity that determines the ratio of the effective average path of fluid particles to the 

corresponding straight and shortest distance along the direction of the flux is equal to the inverse of 

the slope according to the equations (7–8) given for the directional diffusion tortuosity. 

 𝜏𝐷𝑥
=

1

2
[ lim
𝑡→∞

𝑑〈(𝑥(𝑡)−𝑥(𝑡=0))2〉

𝑑𝑡
]

−1

,  7 

 𝜏𝐷𝑦
=

1

2
[ lim
𝑡→∞

𝑑〈(𝑦(𝑡)−𝑦(𝑡=0))2〉

𝑑𝑡
]

−1

,  8 

Subsequently, in accordance with the equations (9–10), the directional coefficients of effective 

diffusion and the average diffusion coefficient are calculated.  

 𝐷𝑥
𝑒 = ϕ𝐷𝑤

1

𝜏𝐷𝑥

,   9 

 𝐷𝑦
𝑒 = ϕ𝐷𝑤

1

𝜏𝐷𝑦

 ,   10 

where 𝜙 is the porosity of the fracture medium, and 𝐷𝑤 is the water self-diffusion coefficient. 

Meanwhile, it should be mentioned that it is not recommended to apply the described procedure to 

a low-density fracture network. In fact, in low density fractured media where fractures are not 

branched, it is difficult to record the average diffusion coefficient because particles move for a long 

time only in one direction before discovering the next fracture ramification. For this reason, at the 

scale of glass canister, the coefficient of effective diffusion for the inner part of the fracture network 

is calculated with the assumption that 𝜏𝐷𝑥
= 𝜏𝐷𝑦

= 1. The example of one block partitioning into inner 

and outer parts is shown in Figure 3d. The separation contour corresponds to the maximum gradient 

of the map of the arrival times of the solidification front. 

Prior to application to a fracture network at the scale of the glass canister, the method is verified by 

comparing random walk on a discrete fracture network and on the calculated equivalent porous 

medium. Synthetic fracture networks were created, and the fracture density was chosen in 

accordance with the target fracture network in the glass canister and the desired upscaling. The 

evolution of particle concentration (Npart in a cell/Npart ) in each cell of the output grid is recorded and 

analyzed, in order to investigate the resemblance of particle movement in the synthetic fracture 

medium and its equivalent porous system. The procedure is the following. 

1. For the image in Figure 4a, the limiting slopes of the mean square displacement in X and Y 

directions (slopex
cell(i), slopey

cell(i) ) are calculated in accordance with the procedure explained 

above. 

2. The resulting values are assigned to the elementary displacements Δxcell(i) = slopex
cell(i), Δycell(i) 

= slopey
cell(i) that particles can effectuate in X and Y directions in each cell during their walk in 

the equivalent porous system. 

3. The equivalent porous system is created by taking into account the porosity of the discrete 

fracture medium, i.e. the dimensions of each cell of the equivalent porous grid are:  
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 dx𝑐𝑒𝑙𝑙 = a
𝑁𝑥

⁄ × √𝛷𝑐𝑒𝑙𝑙 and dy𝑐𝑒𝑙𝑙 = b
𝑁𝑦

⁄ × √𝛷𝑐𝑒𝑙𝑙 

where a and b are the dimensions of the fracture network image, Nx and Ny depict the 

number of cells in x and y directions, and Φcell is the porosity of the cell where particles are 

counted. 

4. In the case of the discrete fracture network, N particles are placed at the point with the 

smallest abscissa and ordinate values of the fracture network. They could travel to four 

neighboring positions inside the fractures during T iterations, with the maximum Δx and Δy 

elementary displacement being equal to 1.  

5. As for the equivalent porous media, the same number N of particles were placed at the (0,0) 

point. They could travel to four neighboring positions inside the fractures during T iterations. 

Their elementary displacements were as specified at stage 2. The particles were not allowed 

to leave the media: they were reflected by the boundaries, and their displacements were 

incremented in a normal way.  

6. At each iteration, the particles present in each cell were calculated and divided by the total 

number of the particles.  

2.1.3. Equivalent glass corrosion kinetic governing parameters  

Since the glass aqueous alteration is controlled by the product of the glass mass per solution volume 

by the glass specific surface (Cv×Ssp), which is determined by the internal structure of the fracture 

network, the goal of this step is to build the grids of the Cv, Ssp, half-saturation coefficient according 

to the equations (11–13): 

 C𝑣 =
𝑀𝑔

𝑉𝑠
=

(1−Φ)ρ

Φ
 ,   11 

 S𝑠𝑝 =
2Lc

𝑀𝑔
=

2L

ab(1−Φ)ρ
 ,   12 

 halfsaturation = λ
DPRI

rh
ρ

PS

iPS

iPRI
×

1

Φ
×

2L

ab
= 𝐷𝑜[OH−]𝑛 exp( −

𝐸𝑎

𝑅𝑇
) ×

λ

rh
ρ

PS

iPS

iPRI
× 

1

Φ
×

2L

ab
, 13 

where Φ is the porosity, L is the total length of the fracture median axes in the XY plane, a, b are the 

dimensions of one cell of the grid, c is the third dimension of the grid that in case of 2D modeling is 

set to 1 m in 2D, and λ is the coefficient of linear approximation. Note that the formulation of the 

dependence of D on the pH is valid for pH values between 6 and 10.5 and temperatures between 

30  °C and 90 °C. 

The fact that the kinetics of glass dissolution is controlled by the product Cv × Ssp implies that the 

law of the glass dissolution has to be set separately for each cell in the equivalent porous media 

system. 

3. Verification 

3.1. Fracture network of a synthetic model: preparation of input data for 

reactive transport modeling 

Although the principal goal of this study was to perform the reactive transport modeling at the scale 

of the glass canister and verify the applicability of the techniques proposed with the aim to construct 
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an equivalent fracture model, one synthetic discrete fracture network (Figure 4) was generated by 

the FRAGMA semi-stochastic generator (Crevoisier et al. 2011).  

When modeling the glass aqueous alteration applied to this discrete model, glass and water media 

were represented in two separate zones: the glass zone (depicted in purple in Figure 4b) and the 

fracture zone (depicted in green in Figure 4b). 

 

Figure 4 a) Image of the synthetic fracture network. Fractures have a constant aperture equal to 1 mm. The 
orange box shows the position of the mesh represented in b. Black pixels denote glass matrix, white pixels 
indicate fractures; b) fragment of the mesh used to run RTM. Cells in green belong to the water geochemical 
unit, while cells in blue belong to the glass geochemical unit. Total number of cells of the discrete fracture 
network is 24300. The thickness of the glass film is 0.1 mm. The total length of all walls of the fracture network 
is 5.93 m. 

In accordance with the GRAAL formalism, both water in the fracture zone and glass in the glass zone 

were represented by liquid media. The glass zone was modeled by a one-mesh thickness layer at the 

interface with the fracture zone. The glass zone acted as a source of material and had a 

concentration given by (14): 

 C𝑣 =
∑𝑀𝑔

∑𝑆∗𝑎 2⁄
 ,   14 

Using the geometrical properties of the fractures, equations (15) and (16) can be modified to yield 

the two parameters controlling the kinetics of glass dissolution. Depending on the modeled fracture 

network, these were determined as defined: 

 S𝑠𝑝 =
∑𝑆

∑𝑀𝑔
 ,   15 

 halfsaturation =
λ𝐷𝑃𝑅𝐼𝑑𝑚𝑃𝑅𝐼

𝑣ℎ𝑦𝑟𝑑
×

2

𝑎
= 

λ𝑑𝑚𝑃𝑅𝐼

𝑣ℎ𝑦𝑟𝑑
× 

2

𝑎
× 𝐷𝑜[𝑂𝐻−]𝑛 exp( −

𝐸𝑎

𝑅𝑇
) ,  16 

where 𝑎/2 is the half-aperture of the fracture: only half of the aperture was used to account to the 

fact that each fracture wall «sees» only half of the solution present in the fracture. 
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The use of the discrete fracture modeling approach ruled out the necessity of the calculation of the 

equivalent hydraulic and diffusive parameters. However, it presented a big challenge due to its 

demand for the fine meshing, and as a consequence, high calculation time.  

3.2. Results of the RTM applied to the synthetic case 

As a first step, we conducted the RTM applied to the discrete fracture network model and its 

equivalent porous medium model of the synthetic fracture network to demonstrate the relevance of 

the techniques used to construct the equivalent continuum model. 

The discrete fracture network system consisted primarily of the finely meshed glass fracture and 

secondly of two reservoirs of dimensions (0.064 m × 0.2 m), connected to both sides of the fracture 

network (Figure 5a). These two reservoirs were filled with water and interconnected via the glass 

fracture network.  

 

Figure 5 Physical representation of the system comprising two reservoirs and the synthetic facture network in 

the framework of a) the discrete model and b) the equivalent porous media model. X and Y axes are in m. 

Table 3 summarizes the reactive transport input parameters of the discrete fracture network model. 

Hydraulic conductivity in water was estimated by fluid mechanics modeling from the iterative 

calculation, taking into account the velocity generated by the temperature differences between two 

opposite boundaries of the reservoirs separated by three ideal fractures of 1 mm aperture. The glass 

geochemical unit is represented by a liquid in which all glass is concentrated, and the porosity of this 

unit is equal to 1. This concentrated glass acts as a source of material readily available at the glass / 

water interface. 

Table 3 Reactive transport parameters used to model the glass aqueous alteration in the synthetic fracture 
network described explicitly (discrete fracture network approach).  

Geochemical 
unit 

Porosity Pore 
diffusion 
coefficient, 
m2/s 

Hydraulic 
conductivity 
coefficient 
at 25°C, m/s 

T,°C Cv, g/l Ssp, m2/g Half-
saturation, 
molal 

Glass 1 1 ×10-09 - 90 3.49×10-04 5.73×10-09 3.07×10-11 
 

Water 1 1 ×10-09 1 90 - - - 
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The equivalent porous medium model was composed of the grids of porosity, equivalent hydraulic 

conductivity (Figure 6 a–b), equivalent directional diffusion coefficient, and parameters requested to 

specify the glass dissolution kinetic law, such as equivalent glass concentration, equivalent glass 

specific surface, and the half-saturation coefficient. 

The values of the directional tortuosity were obtained by analyzing the regressions of the directional 

mean square displacements vs. time for each cell of the porous media. The examples of these 

regressions are illustrated in Figure 7. Subsequently, the tortuosity values were used to calculate the 

grids of diffusion coefficients shown in Figure 6 c–d.  

Figure 8 depicts the results of particle concentration evaluation in the discrete fracture network and 

in its equivalent porous medium. From the curves of the concentration evolution, it is clear that the 

particles diffused in a similar manner in both media, and no significant differences were found. A 

discrepancy in concentration was regularly noticed only in cell (2,2). The results of particle tracking 

indicated that this cell was visited less frequently when the synthetic fracture network was replaced 

by its equivalent media. This slight divergence in the obtained concentrations was considered 

acceptable. Overall, the similarity of the concentration profiles was encouraging and indicated that 

the proposed approach based on the random walk could be applied for calculating the equivalent 

diffusion in the fractured zones of the glass block where the fracture density is significant, such as the 

peripheral parts of glass block fracture networks. 
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Figure 6 Results of the calculations of the equivalent parameters for the synthetic fracture network. Grids of: a, 
b) the equivalent directional hydraulic conductivity (m/s) in X and in Y; c, d) the equivalent directional diffusion 
coefficient (m2/s) in X and in Y. Both axes are in m. 
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Figure 7 a–e) The mean square displacements (〈r2〉 - in blue,〈x2〉 – in green, 〈y2〉 –in black) vs. time of 2000 
walkers for the synthetic fracture network. Plots are shown for the cells (1,1), (1,3), (2,1), (3,3) of the output 
grid presented in Figure 8d. 
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Figure 8 a–c) Evolution of particle concentration in the cells, obtained by tracking 500 independent particles 
undergoing Brownian motion in the discrete and the equivalent porous media. d) Scheme showing the 
synthetic discrete fracture network and the positions of the cells used in the legend of the graphics on the left. 

Similarly to the discrete fracture network model, two water-bearing zones were added to the left and 

to the right of the equivalent porous media, such that the same water volume was available for both 

models in the glass alteration (Figure 5b). These supplementary meshes formed the water 

geochemical unit and were initialized with the same parameters, namely the diffusion coefficient and 

the hydraulic conductivity coefficient, as the water geochemical unit of the discrete model (Table 3). 

The results of the RTM of ISG aqueous degradation obtained by the discrete and the equivalent 

continuum approaches are presented in Figure 9. The values of the alteration rate are correctly 

computed and their evolution can be easily explained in view of the kinetic regimes of the alteration 

of borosilicate glass reported in (Gin et al. 2012). Specifically, after the initial dissolution rate regime 

ended around 8 h, a rate drop regime occurred until a residual rate was reached, which is four orders 

of magnitude lower. The differences of the absolute values of the alteration rate can be explained 

from the angle of the local chemical effects, i.e. saturation in silica was attained faster locally in the 

case of the discrete model, which leads to the creation of the passivating interface in the middle of 

cracks and slows down the alteration. In the case of the porous medium model, the alteration 

progressed more homogeneously. This justification is supported by the results of the modeling when 
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the kinetics was paralyzed, i.e. when the dependence of dissolution rate on pH and saturation was 

not taken into account. In fact, values of the glass alteration rate found by modeling the alteration at 

the constant dissolution rate by discrete and equivalent porous models were very close (Figure 14 in 

Appendix).  

 

Figure 9 Results of the reactive transport modeling by the discrete fracture approach and by the equivalent 
continuum approach in the diffusive mode: a) the glass alteration rate obtained from boron concentration 
averaged over the water zones, b) evolution of the solution pH. 

This application was performed to demonstrate the validity of the techniques proposed to compute 

the equivalent diffusive, hydraulic and alteration kinetics controlling parameters, obtained by 

comparing the results of the glass aqueous degradation found by the discrete fracture network 

model and the equivalent porous medium model. Given both the profiles of the alteration rate 

evolution and the pH evolution, it is evident that the equivalent porous medium model yielded 

results comparable with those of the discrete fracture network model. This is especially appealing in 

view of the fact that the rate of the calculation by the equivalent porous medium is much faster. This 

undoubtedly represents a significant advantage and implies that the model applicable at the 

industrial glass canister scale, or even under different scenarios of repository evolution. Table 4 

presents the values of the time requested to execute simulations of the aqueous alteration applied 

to the synthetic discrete fracture network and to its equivalent porous media system. The RTM could 

not be run in convective mode applied to the discrete model of the synthetic case. However, this was 

realized for the equivalent porous model. The fluid movement in this simulation was generated by 

the temperature gradient imposed to the left (80 °C) and to the right (90 °C) walls of the water 

reservoirs. The results of the glass aqueous alteration in convective mode can be found in Figure 15 

in the Appendix.  
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Table 4 Comparison of the time requested to conduct the RTM by the discrete fracture model and the 
equivalent continuum model. Number of processors was equal to 16 for all modeled cases. 

Simulated time, 
year Transport 

Execution time, d 

Discrete Fracture  
Model 

Equivalent 
Continuum Model 

1 Diffusion  87 0.22 

1  Diffusion+Convection - 15.1 

 

4. Application 

4.1. Application at the scale of the vitrified glass canister in diffusive and 

convective modes  

Although this study focuses on the construction and the application of a 2D model of a nuclear glass 

fracture network at scale 1, its extension toward a simplified 3D model is feasible. Glass canisters, 

being perfect cylinders, have a natural axis of symmetry which has been used for the thermo-

mechanical simulations at the glass canister scale (Barth 2013). Thus, the use of cylindrical 

coordinates was opted for in this study (Figure 10a).  

The equivalent porous medium models of the training image fracture network and of three 

realizations of the fracture network equivalent tessellation were used. All models are composed of 

two geochemical units, the equivalent porous media unit and the water (reservoir) unit. The 

equivalent porous media unit is described by the map of porosity, equivalent hydraulic conductivity, 

equivalent directional diffusion coefficient, local direction of anisotropy34 and parameters defining 

the glass dissolution kinetic law. Each grid was made up of 4 × 21 meshes, each mesh had dimensions 

of 5.168 × 10-2 × 4.964 × 10-2 m. The water unit represented a hollow cylinder with a height equal to 

1.13244 m and internal and external radii equal to 0.2067 m and 0.2217 m, respectively. The total 

volume of the water zone was 35 L and reflected the amount of water initially present in contact 

with the glass canister in the ALISE experiment (Section 1.2). Figure 10 b–c shows the representation 

of the equivalent porous medium model at the glass canister scale, used to conduct RTM in diffusive 

and convective modes. 

                                                           
34 The rotation angle is defined as the angle associated with the largest axis of a fracture and the horizontal 
plane. The grid of the rotation angle is identical for all modeled cases and was employed to introduce the 
directional anisotropy of the hydraulic conductivity and the diffusion. 
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Figure 10 a) Conceptual representation of a simplified 3D model with cylindrical coordinates, b) representation 
of the equivalent porous medium model used to study the glass aqueous alteration in diffusive mode. The zero 
flux condition was imposed to the axis of revolution. c) Representation of the equivalent porous medium model 
used to study the glass aqueous alteration in convective mode. RTM was conducted with consideration of the 
following limiting conditions: upper heated collar – constant temperature at 80 °C, lower heated collar – 
constant temperature at 90 °C, axis of revolution – zero flux. X and Y axes are in m. 

Results of RTM of the ISG glass aqueous alteration are given in Figure 11 for the diffusive mode and 

in Figure 12 for coupled diffusive and convective modes. Before proceeding to examine the results of 

these simulations, it is necessary to look at the interpretation of the experimental data. 

4.2. Experimental results from ALISE unit 

The results from the ALISE experiment are documented in (Godon et al. 2012; Minet et al. 2013). In 

total, 106 samples were collected and analyzed by the inductively coupled plasma atomic emission 

spectroscopy (ICP / AES) technique on the following elements: Si, B, Na, Li, Mo, Al, and by the 

inductively coupled plasma mass spectrometry (ICP / MS) on Cs. Before each sample collection, the 

solution was homogenized using closed-loop pumping.  

It should be noted that there were some interventions. First, after 1840 d from the beginning of the 

test, the reactor was opened to estimate the amount of the evaporated solution. Second, after 2030 

d, eight liters of a synthetic solution was added to compensate for the cumulated evaporated water. 

Before mixing, the solution composition was adjusted to minimize the chemical disturbance.  

Based on the detailed analysis of the concentration of the boron tracer element, the pH and the glass 

alteration rate, the study in (Minet et al. 2013) reported five phases of alteration. Phase 1, from 1 to 

30 days: the initial phase characterized by a rapid transition from the initial rate regime to the rate 

drop regime reflected by the sharp increase of the released altered glass per unit time and the quick 

increase of the pH. Phase 2, from 30 to 500 days: gradual decline of the alteration intensity 

characterized by progressive decrease of the alteration rate (from ≈0.3 g/d to ≈0.2 g/d) and the slow 

increase of the pH (from ≈8.9 to ≈9). Phase 3, from 500 to 1400 days: interchange between the 
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regime of the alteration rate recovery (Fournier et al. 2014) and the regime of the alteration rate 

drop. Phase 4, from 1400 to 1700 days: recovery of the alteration rate, with an increase of the 

alteration rate (from ≈0.15 to ≈0.21) and the significant increase of the pH (from ≈9.15 to ≈9.25). The 

final phase (1700 to 2700 days) involved external interventions, which disturbed the experiment and 

thus did not allow for a proper interpretation.  

4.3. Diffusive mode simulation 

The modeling results of the average total dissolved boron concentration in water, the average pH in 

water, and the glass alteration rate are shown in Figure 11.  

 

Figure 15 Results of the RTM of the aqueous alteration in the diffusive mode at the scale of the nuclear glass 
canister: a) average concentration of all aqueous species containing boron present in the solution, b) evolution 
of the solution pH, and c) overall glass alteration rate obtained by total boron release. Experimental results of 
the ALISE test are documented in (Minet et al. 2013). It should be noted that the experimental results and the 
modelling results could be compared only for the first 500 days (part 1 on the figure), because later the ALISE 
experiment displays phases of (i) the alteration resumption that is not considered in the applied version of the 
geochemical model and (ii) the impact of the chemical perturbations due to external interventions. 

A comparison of these results with experimental data reveals that the first part of the alteration (0–

500 d) was correctly reproduced. The simulations in diffusive mode exhibit the same pattern of the 

alteration regimes transition as the ALISE experiment: a sharp decrease from the initial alteration 

rate in the first tens of days followed by a period of the gradual alteration rate decline and the 

stabilization of pH. Moreover, for this first period, the average total dissolved boron concentration 

for three equivalent fracture networks is close to the experimentally measured boron concentration. 

However, the results of the RTM applied to the segmented image are less compatible: this less 

intensive glass alteration is believed to be related to an underestimation of glass fracture surface 

available for the alteration. Indeed, according to Table 1, internal fracture surface of the segmented 

image is 2.5 times lower than that of the equivalent tessellations. Unfortunately, the fracture 

network surface of the ALISE bloc was not determined, such that no comparison with the model is 

possible. 

The second part of the alteration (500–2700 d) was not reproduced by modelling. Indeed, the ALISE 

experiment displays phases of the alteration resumption from the 500th day, during which the glass is 
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again significantly altered. This phenomenon was not considered in the GRAAL version that was used, 

as it is not expected in repository environments. The perturbations of the chemical environment due 

to maintenance of the apparatus in phase 5 of the experiment are not relevant either.  

In summary, the proximity of the results of the RTM applied to the equivalent tessellations with the 

experimental results enables us to argue that (i) the chosen fracture network equivalent tessellations 

are representative of the ALISE glass block fracture network, and (ii) the technique proposed to 

construct glass block equivalent porous model are relevant and could be relied upon. 

4.4. Thermo-convective mode simulation 

Although there was no fluid movement in the ALISE unit (in absence of a temperature gradient), 

simulations with thermo-convection were conducted to evaluate the impact of the water convection 

on the alteration in the fractured nuclear glass blocks. They gave similar overall results (Figure 12), 

with a fast initial alteration rate and the following rate drop regime to the residual rate. During this 

time the alteration rate dropped from ~70 g/d (after 12 h) to ~0.065 g/d, and the pH increased from 

~8.45 to ~8.94. Figure 13 shows that the initial rate was much higher in the presence of thermo-

convection. In fact, once the convection was installed, it stimulated the renewal of water inside the 

glass fracture equivalent media with fresh water from the outer reservoir. This resulted in the 

immediate increase of the dissolution rate. Then, when the saturation in silica became high, the 

reaction affinity diminished, and the rate started to drop. The transition from the initial rate regime 

to the residual rate regime was shorter for the diffusive case in comparison to the convective case. 

Although the average total concentration of silica in water was lower in case of pure diffusive 

transport, the effect of local arrivals on silica saturation was more important. 
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Figure 12 Results of the RTM of the aqueous alteration at the scale of the nuclear glass canister: a) average 
concentration of all aqueous species containing boron present in the solution, b) evolution of the solution pH, 
and c) overall glass alteration rate obtained from total boron release. Both diffusion and thermo-convection 
caused by the imposed temperature difference were considered. 

Figure 13 Evolution of the average total concentration of silica present in water and the alteration rate: a) in 
the short-term and b) in the long-term.  

5. Discussion 
Regarding the project feasibility study, it is important to consider several scenarios in the geological 

repository evolution. That is why it is essential to compare the results of the borosilicate glass 

alteration obtained in diffusive and convective modes. In this study, we do not aim at reproducing a 

scenario of repository conditions, where the fluid movement would potentially result from the heat 

release due to radioactivity. Nevertheless, the results of the modeling presented in this paper 

provide a preliminary idea about the impact of water flow on the intensity of the glass alteration at 

the scale of one canister.  
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According to the results presented in Figures 11–13, glass degradation was favored by water 

convection. Twelve hours from the start of the alteration, the glass alteration rate was four times 

higher compared to the no-flow case. The effect was, however, less significant once the solution 

became saturated in alteration products. Indeed, for the fracture tessellation #1, as an example, the 

glass altered rate in the convective flow conditions at the 20th day of alteration made up only 4.8% of 

the initial rate and was 1.54 times higher than the alteration rate in the pure diffusive movement 

conditions. However, it is important to mention that the gradient imposed in the presented case was 

significant (5 °C) and does not reflect the situation in repository conditions.  

In future studies, it would be interesting to conduct reactive transport modeling in conditions that 

are more representative of the repository. Heat sources could be specified according to specific 

scenarios: time of water intrusion, spacing between canisters, and heat exchange with the host rock. 

The methodology developed in this paper could then be extended to 3D simulations. Application to 

industrial purposes would require further research to understand and quantify the phenomena that 

would govern (i) the alteration of the borosilicate glass in presence of all the components of the 

nearby field (e.g. iron of the overpack, clay of the COx), (ii) the transport of the alteration products 

with the COx water in the conditions of the argillite pores clogging, and (iii) the mechanisms of glass 

alteration and solutes migration in presence of hydrogen originated from radiolysis and corrosion of 

the overpacks. 

According to multiple studies (Carrière 2017; Neill et al. 2017; de Combarieu 2007; Rébiscoul 2013; 

Arena 2016), in presence of iron, glass alteration is fostered by the precipitation of iron silicate 

species. The formation of these secondary phases modifies the chemical equilibrium in the aqueous 

solution, acting as a “silicon pump” and, as a consequence, increases glass alteration. Regarding the 

interactions with the COx water, studies (Jollivet et al. 2012; Aréna et al. 2017; Debure et al. 2012) 

show that the pH of the water of the repository site and the availability of magnesium in solution can 

affect the transient regime, where dissolution rate drops rapidly and the residual rate. In fact, 

magnesium secondary phases could maintain glass alteration by consuming silicon. Nevertheless, in 

absence of a renewal of magnesium or in the case of decrease of the pH, the expected residual rate 

was reported close to that measured in pure water (ANDRA-Collectif 2016; Jollivet et al. 2012).  

In accordance with the current vision of the high-level vitrified waste alteration model presented by 

ANDRA (ANDRA-Collectif 2016), the first phase of glass alteration would take place in unsaturated 

conditions resulting from partial re-saturation of the vicinity of the cell and the counter-effect of 

hydrogen release due to radiolysis and anoxic corrosion of metallic components, which could last 

from several thousand to tens of thousands of years. In consideration of the possibility of a high 

relative humidity in the storage conditions, studies aiming at the understanding of the mechanisms 

of glass alteration in the vapor phase have been initiated. From the experimental results conducted 

so far, it can be understood that the reactions occurring between glass and water are the same for 

alteration in aqueous medium and unsaturated water vapor. However, the rate controlling reaction 

mechanism and the driving force for alteration are different in both cases (Abrajano et al. 1989). The 

difference arises largely from the changes in water chemistry, as a result of the extremely small 

volume of water available for reaction in the unsaturated case. The various results from vapor 

hydration experiments suggest that the alteration in vapor phase is not simply an extreme case of 

glass alteration in aqueous medium at a very high S/V (Abrajano et al. 1986). The precipitation of 
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secondary phases seems to be the strongest driving force for alteration in vapor phase at high 

temperature and low solution volume.  

Moreover, presently there is no clear vision on the possibility of the gas to coexist with the water. In 

fact, it is necessary to understand in further detail how the repository re-saturation will happen. 

Although, according to ANDRA (ANDRA 2013), hydrogen presence will not imply significant 

overpressure in water, it is still uncertain how the re-saturation will occur precisely in different 

compartments of the repository, what will be the relative permeability of the hosting rock and the 

infilling materials of the repository, and how the transport of the solutes in the biphasic condition 

will differ from that in the saturated condition.  

In general, our model can be evolved to take into account the above-cited phenomena. Certainly, in 

case of the presence of both gas and water phases inside the fracture network of vitrified canisters, it 

will be mandatory to change the techniques of the permeability and effective diffusion calculation 

(Savoye et al. 2010; Savoye et al. 2014), and take into the account saturation of both wetting (water) 

and non-wetting (gas) phases, as well as the capillary pressure (Mualem 1976). Moreover, in the 

future, the geochemical part of the model should be enhanced, such that the interactions of the 

elements of the nearby field could be accounted for. This will require an upgrade of the geochemical 

model and could also require accounting for the change of fracture aperture, since the hypothesis of 

isovolumetricity would not be valid anymore. Moreover, the temporal porosity change related to the 

swelling of argillites minerals (Bock 2010; Trotignon et al. 2007) would be probably worth considering 

when estimating the temporal evolution of the hydraulic/diffusive properties of glass canister 

fracture network.  

Another possible evolution of the upscaling is towards a hybrid model. Indeed, the glass canister 

fracture network exhibits strong non-stationarity: large sparse fractures in the center, opposed to 

fine, dense fractures close to the periphery. A hybrid model could be devised, with explicit fractures 

at the core of the canister and equivalent medium on the finely fractured peripheral area. This 

change of the modeling approach should be considered with regard to the calculation capabilities of 

the applied reactive transport code. This is because, at the present time, it is hardly possible to run 

this type of model at the scale of the glass canister, especially when the convection, originated by 

temperature gradient, is taken into account. 

6. Conclusions 
Coupled chemistry-transport models must be used to quantitatively assess the corrosion of the 

vitrified fractured glass containing long-lived high-level nuclear waste. Having been restricted to 

laboratory examinations for a long time, the present study gives an example of how such models can 

be used for geometries (2D and simplified 3D) and time scales (100 000 y) relevant for performance 

assessment. Given the difficulty of performing reactive transport modeling applied directly to the 

discrete representation of the glass fracture network at the scale of glass canister, we focused here 

on the construction of its equivalent porous model. Special attention was paid to the calculation of 

the reactive transport parameters such as porosity, tortuosity, diffusion coefficient, hydraulic 

conductivity, and glass alteration kinetic parameters. First, the validation of the applicability of the 

proposed techniques was accomplished by conducting reactive transport modeling applied to a 

synthetic two-dimensional fracture network in the scope of the discrete model and the equivalent 
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porous model. Second, the equivalent porous model was applied to four representations of the glass 

fracture network. The reactive transport modeling was performed in cylindrical coordinates in 

diffusive and convective modes. The results of the quantity of altered glass were then compared with 

experimental results obtained of the long-term aqueous alteration test of a non-radioactive full-scale 

nuclear glass block. Reasons were provided to explain the minor differences. Although the 

reproduction of one particular scenario in the conditions of the repository was not the objective of 

this study, the presented results gave a preliminary indication of the impact of thermo-convection on 

the glass alteration at the scale of one canister and demonstrated the feasibility of the glass 

corrosion reactive transport modeling under different scenarios of repository evolution.  

The presented model focused on glass-water interaction in conditions that do not correspond to the 

repository conditions. Nevertheless, the model could be extended or re-adapted such that different 

scenarios of canister evolution might be considered. The strength of this work, started in (Repina et 

al. 2018), is within the proposal of a complex workflow and data integration process that allows the 

estimation of the impact of fracturing on the glass corrosion, by taking account fracture network 

variability and different limiting conditions.  
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Appendix 

 

Figure 14 Results of the reactive transport modeling in the case where the impact of the pH and of the affinity 
term on the glass dissolution rate were not considered: quantity of altered glass obtained from boron 
concentration averaged over the water zones and evolution of the solution pH. 

 

Figure 15 Results of the reactive transport modeling by the equivalent continuum approach in diffusive and 
convective modes: a) quantity of altered glass obtained from boron concentration averaged over the water 
zones, b) evolution of the solution pH.
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5. From block image analysis to reactive transport modeling 

(continued)  

5.5. Reactive transport modeling at the scale of the vitrified glass canister in 

conditions close to repository conditions 

The goal of this section is to present the results of the RTM of the glass aqueous alteration of 

one glass canister in conditions closer to what could occur in underground geological 

repository.  

As mentioned earlier, in glass packages in repository conditions, convection would result 

from the heat source due to radioactive decay. The heat would diffuse, giving rise to a 

temperature gradient within a package. Differences in water density and resulting gravity 

instabilities would lead to the formation of rolls, named Rayleigh-Bénard cells.  

We did not expect to capture fully the impact of the thermo-convective movement on the 

glass alteration by applying our vertical 2D-radial model: indeed, current concepts favor 

horizontal deposition of the canisters along the storage cells. Nevertheless, the results of the 

presented below cases provide interesting insights on the impact of the heat release on the 

glass corrosion at 1,000; 5,000 and 10,000 y. That means that we make the hypothesis that the 

corrosion of the canister happens 1,000; 5,000 or 10,000 y after its disposal in the HA cell.   

As before, the system was composed of two parts: free water around the canister and the 

equivalent porous medium model of one realization of fracture network equivalent 

tessellation for the glass canister itself. The equivalent porous medium unit was comprised of 

the grids of porosity, equivalent hydraulic conductivity, equivalent directional diffusion 

coefficient, rotation angle and parameters specified in the glass dissolution kinetic law. Each 

grid was made up of 21 × 8 meshes, the total size being 1.04244 × 0.41344 m. In comparison 

with the previous cases, the block position was horizontal, as expected in Cigéo. The water 

unit surrounded the equivalent porous medium and had dimensions 2.9624 × 0.45344 m. 

These dimentions were chosen with respect first, to a HL canister size (0.6 m in diameter, 

1.6 m in height (ANDRA 2016)), and second, to the considered configuration of a waste cell: 

wastes packages would be separated by free space to account for the heat diffusion 

constraint in the host rock. By chosing the water unit length equal to 2.9624 m, we supposed 

that free space still exist in the cell at the time of corrosion of the canister (1,000 or 5,000 or 

10,000 y). 

Figure 5-3 shows the equivalent porous medium model representation, used to conduct RTM 

in conditions resembling the repository conditions.  
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Figure 5-3 Representation of the equivalent porous medium model used to study the glass aqueous 

alteration in thermo-convective mode with term source.  

Initial and limiting conditions, such as initial temperature in water and equivalent porous 

medium units, temperature at the boundaries of the water unit and the thermal power 

density of package used in the calculations are displayed in Table 5-1. They were obtained 

from (Bouyer 2017, internal CEA communication), (ANDRA-Collectif 2016; Godon 2004), 

presented in Section 2.3.2. The assumption of equality of temperature at the boundaries of 

the overpack and at the water unit boundaries was made. 

Table 5-1 Initial and limiting conditions used for RTM  

Name of the case «Convective  

1,000» 

«Diffusive  

1,000» 

«Convective  

5,000» 

«Diffusive  

5,000» 

«Convective  

10,000» 

«Diffusive  

10,000» 

Initial temperature 

in water / 

equivalent porous 

medium units, °C 

51 51 33 33 29 29 

Temperature fixed 

at the boundaries 

of the water unit, 

°C 

51 - 33 - 29 - 

Thermal power 

density set in cells 

of equivalent 

porous medium 

model, W×m-3 

173 - 96 - 0.266 - 

Flow condition at 

the boundaries of 

the water unit 

No flow No flow No flow No flow No flow No flow 

Transport 

condition at the 

boundaries of the 

water unit 

Zero 

gradient 

Zero 

gradient 

Zero 

gradient 

Zero 

gradient 

Zero 

gradient 

Zero 

gradient 

 

The results of the RTM of the ISG aqueous alteration in thermo-convective and diffusive 

modes applied to one realization of fracture network equivalent tessellation are 

demonstrated in Figure 5-4. 



CHAPTER 5: FROM BLOCK IMAGE ANALYSIS TO REACTIVE 

TRANSPORT MODLEING (CONTINUED 2) 

193 
 

 

Figure 5-4 Results of the RTM for the cases “Convective 1,000” and “Diffusive 1,000” (time 0 in the 

simulation corresponds to canister failure after 1,000 y); “Convective 5,000” and “Diffusive 5,000” 

(time 0 in the simulation corresponds to canister failure after 5,000 y) ; “Convective 10,000” and 

“Diffusive 10 000” (time 0 in the simulation corresponds to canister failure after 10,000 y): a-c) rate of 

glass alteration obtained from boron concentration averaged over the water unit: for the first 2700 d, 

for the first 100 d, from 2560 to 2700 d, d) evolution of the solution pH, e) profiles of temperature for 

the case “Convective 1,000” after 150 d. 

Evolution of three main parameters such as, the temperature distribution inside the canister, 

the rate of alteration obtained from the concentration of boron containing elements and the 

pH were looked at while analyzing the results. It was found that maximum difference 

between the walls of the canister and the center of the canister was equal to 3.2° C (54.7° C 

against 51.5° C) for the case “Convective 1,000” and 0.0105° C (29.0105° C against 29° C) for 

the case “Convective 10,000”.  

For the three treated cases (Convective 1,000; Convective 5,000; Convective 10,000), the 

calculated fluid flow was significant (Figure 5-5b) and led to the amplified solution 

homogenization and postponed the achievement of the solution saturation with respect to 

silica. In the end, it resulted in the prolongation of the initial dissolution rate regime. 

According to Figure 5-4, even for the case “Convective 10,000” with the smallest temperature 

gradient, during the first 500 days of alteration, the rate of alteration was three times higher 

for the case in convective mode compared to the diffusive mode. The transition from the 

initial dissolution rate regime to the residual dissolution rate regime lasted near 2000 d for 
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the case “Convective 10,000” in comparison to only 400 d for the case when only diffusive 

transport was modeled. As regards the value of the residual rate, it was close to 0.06 g/d for 

the case “Convective 10,000”. Or, given that the fracturing ratio of the modeled glass canister 

is equal to 40.6 (Table 5-2), the residual rate amounted to  9E-04 g/m2/d. Regarding the case 

with the highest temperature gradient (assuming that ground water arrival time is 1000 y), 

the alteration rate was close to 2.7E-03 g/m2/d after 7 years of alteration.  

Table 5-2 Calculation of 2D fracturing ratio 

Parameter Value 

Length of fracture median axes, m 49.5 

Perimeter, m 2.50 

2D fracturing ratio 40.6 

Block external surface, m2 1.62 

Block internal surface, m2 64.3 

Note to the Table 5-2: The fracturing ration was calculated as the ratio of the doubled total 

length of fracture median axes over the canister perimeter. 
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Figure 5-5 a) Modeled case “Convective 10.000”, temperature distribution at 20th day from the 

beginning of the alteration when the system arrived at equilibrium, Rayleigh-Bénard cells originated 

due to the existence of the density gradient between the top and the bottom, gravity force acted 

against viscous force trying to pull the cooler, denser liquid from the top to the bottom; b) flowrate 

evolution for two points of the equivalent porous medium vs. time c) case “Convective 10.000”, zoom 

on the flowrate evolution for two points of the equivalent porous medium vs. time  

Dimensionless numbers Péclet and Damkhöler (Eq. from 5-1 to 5-3) are interesting means to 

identify the regime in the system, and compare the relative contributions of reaction kinetics, 

molecular diffusion and convection: 
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 𝑃𝑒 = 𝑈𝐿
𝐷⁄   5-1, 

 𝐷𝑎 = 𝑘 𝑈⁄   5-2, 

 𝑃𝑒 ×𝐷𝑎 = 𝑘𝐿
𝐷⁄   5-3, 

where 𝑈 is the velocity magnitude, 𝐿 is the characteristic length taken equal to the radius of 

the modeled glass canister, D is the diffusion coefficient, 𝑘 is the kinetic constant equal to the 

initial glass dissolution rate. Input parameters used of the computations are demonstrated in 

Table 5-3. 

 
Table 5-3 Parameter values used to analyze the transport pattern via Damköhler and Péclet numbers. 

Ground water arrival 

Mode 

1 000 y 5 000 y 10 000 y 

Convective Convective Convective 

Velocity magnitude (U, m/s) 1.80E-06 1.00E-06 1.00E-08 

Characteristic length (L, m)  2.07E-01 2.07E-01 2.07E-01 

Diffusion (D, m2/s)  5.00E-11 5.00E-11 5.00E-11 

Kinetic constant (k, m/s) 1.12E-12 2.14E-13 1.44E-13 

Damkӧhler (Da)  6.24E-07 < 1 2.14E-07 < 1 1.44E-05 < 1 

Péclet (Pe)  7.44E+03 > 1 4.13E+03 > 1 4.13E+01 > 1 

Product (Da × Pe)  4.65E-03 < 1 8.84E-04 < 1 5.95E-04 < 1 

Influence order D i s s o l u s i o n  <  D i f f u s i o n <  C o n v e c t i o n  

 

The comparison of these dimensionless numbers at 1 000 y, 5 000 y and 10 000 y revealed 

that the convective effect on the solute transport was dominant in comparison to the 

molecular diffusion effect (𝑃𝑒 > 1). The effect of convection also dominated the dissolution 

effect (Da<1). Damköhler and Péclet product was lower than 1, which indicated that the 

reaction effect was subordinate in comparison to the diffusion effect. Overall, these findings 

were expected, taking in consideration the evolution of the QAG. There was an influence of 

the convective flow on the initial phase of glass alteration, this influence, however, becomes 

weaker with time once the solution becomes saturated with silica.  

Nevertheless, it should be remembered that these findings should be taken with prudence. 

They are very likely to be only partially indicative of the glass corrosion in repository 

condition (even for the scenario of glass alteration in the saturated regime). Like discussed 

for the ALISE experiment, cautions should be exerted on these simulation results: complete 

repository conditions should incorporate exchange with COx water and more accurate 

description of the geometry and interfaces around the canister. 
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Résumé du chapitre 

Dans ce chapitre, la question de l’applicabilité du modèle dans le contexte du stockage des 

blocs de verre fracturé contenant les déchets nucléaires de haute activité est posée. Nous 

mettons en évidence les problèmes techniques rencontrés lors de l’application de la 

méthodologie et nous réfléchissons sur la possibilité d’évolution de cette méthodologie pour 

qu’elle puisse, premièrement, être élargie vers le 3D et, deuxièmement, prendre en compte 

des conditions de stockage plus réalistes que celles modélisées dans cette thèse.  

6. Discussions, perspectives  

6.1. Back to the industrial objectives 

In view of the results presented in the preceding sections, it is possible to argue that the 

proposed image processing-based fracture network characterization workflow elaborated for 

the purpose of RTM applied to a block of vitrified nuclear glass allows us (i) to unite hard 

data obtained by direct measurement of the fracture network and soft physics-based 

explanatory data, (ii) to considers the variability in the fracture network, (iii) to create a 

defendable model that represents glass fracture network as a homogenized porous medium, 

(iv) to decrease the computational effort needed to solve complex transport-flow-chemistry 

interactions, (v) to account for thermo-convection at the scale of the glass canister, (vi) to 

obtain results compatible with experimental data. Undoubtedly, glass fracture network 

characterization and modeling efforts are significant; the proposed methodology offers the 

industry an excellent opportunity to better understand and quantify the impact of fracturing 

on the corrosion of nuclear glass. 

However, this methodology and/or the presented applications have some weak points that 

could be important to consider in the future.  

In Section 5.1-5.2 it was mentioned that the quality of the blocks used as test-beds for the 

application of the first part of the methodology had some issues. Indeed, in the future it is 

recommended to improve preparation of new canisters and ensure preservation of the 

fracture network during their cutting. In addition, with a view to expand towards 3D 

modelling, analysis of the fracturing on transversal cuttings will be mandatory: after 

preparation of the cuttings, the analysis can be performed using the same techniques (Section 

5.1 - 5.2). Some adaptations will need to be performed: as indicated in Section 3.2.3, as per the 

date of the thesis writing, the anisotropic Voronoї tessellation used to create realizations of 

fracture network equivalent tessellation is only available in 2D. 3D tessellation of equivalent 

fracture network can be performed based on the knowledge of position of cell centers and 

scaling factors in 3 directions and, maybe, some supplementary hypothesis, e.g. that fracture 

planes grow radially toward the canister axis. Overall, it should be feasible, given that the 

techniques of the 3D Voronoї tessellation construction are well-established (Ledoux 2007; 

Okabe et al. 1992).  



CHAPTER 6: DISCUSSIONS, PERSPECTIVES 

207 
 

On top of that, when the preservation of the fracture networks will be ensured, it will be 

essential to take photos of higher resolution, i.e. to work on the reconstruction of multiple 

photos with the ambition to be able to capture finer fractures. The fact that some trustworthy 

data on additional fractures is included would (i) help mitigate the issue of the REV size 

selection, (ii) avoid the necessity of making the assumption of the tortuosity isotropy of the 

inner canister part, (iii) could potentially improve the regression between the values of the 

proxy model variables (thermo-mechanical data of the arrival times of the solidification 

front, curvature of the solidification front lines etc.) and the data obtained through image 

analysis, that could open some new potentials to the geostatistical modeling. 

Regarding the use of the 3D model in the HYTEC reactive transport code, it is neither 

possible at the time of the thesis writing, because the vertex centered scheme has not yet 

been coded in 3D in HYTEC. However, it should not bring any serious problem, because the 

whole structure of HYTEC code is fully adapted for being functional in 3D. Nevertheless, it 

will be necessary to ensure that HYTEC version is stable and capable of performing RTM in 

3D with the considered initial and limiting conditions.  

As it was seen in the previous chapter, the intensity of the glass alteration was characterized 

by the quantity of altered glass that could potentially release from the canister over time. 

However, to date, no link between the quantity of altered glass and the quantity of 

radionuclides35 that could possibly be liberated from the glass matrix has been discussed. 

Indeed, this point is still unclear. According to the current (high level) vitrified waste 

alteration model, presented by ANDRA (CG.NT.ASCM.16.0009), radionuclide release is 

considered congruent, that is, radionuclides are expected to go into solution at the same rate 

than tracer elements at both initial and residual rate regimes. This statement is however 

disputable because the experimental data show that certain elements, including the actinides 

are well retained in the alteration film (Godon et al. 2012; Jollivet 1998) – in a way, the 

congruent dissolution hypothesis is at least conservative in terms of radionuclide release. 

The retention rates of rare earths and actinides are highly dependent on pH, Eh, solution 

composition and composition of the alteration layer. Nevertheless, at the time of writing, 

there is no single clear vision on the related processes and potential complexing agents that 

could be present in solution in repository conditions. That is why no position was taken 

during this study to estimate radionuclide release based on mass of altered glass.  

The objective of the proposed methodology is to give a quantitative assessment of the 

degradation of glass fractured canister and of the release of radionuclides under different 

scenarios of evolution, bridging the gap between laboratory scale and geological repository. 

That is, it is only focused on the study of the interactions of water with one isolating barrier – 

glass matrix. However, as per the adopted multi-barrier disposal concept, in the long run, a 

                                                           
35 In the nominal composition of R7T7 French nuclear glass, fission products and actinide oxides make up 13,7 
% by weight, while in the SON68 nominal composition simulated fission products and actinide oxides amounts 
to 10.7 7 % by weight.  
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whole series of engineered and natural barriers (clay, container, buffer material around the 

container, metal envelops, sealing systems), should be considered, as they will work together 

to contain and isolate fission products and actinide from the environment. That means that 

the proposed model represents a first constituting element of the bigger model that should 

integrate major barriers together and account for the interactions between them. Reactive 

transport codes (and modelers) are well prepared to perform this task: several interfaces are 

already well studied so far, so that integrating several zones with different properties around 

the model of fracture glass would be facilitated. Some specific problems concern (i) the 

alteration of the borosilicate glass in presence of elements of the nearby field, i.e. iron of the 

overpack, silica and aluminum or calcium and magnesium from clay of the COx, (ii) the 

transport of the alteration products with the COx water, and (iii) mechanisms of glass 

alteration and solutes migration in presence of hydrogen originated from radiolysis or 

corrosion of the overpacks. 

Finally, in-depth reflection on the interaction scenario should be carried out: particularly 

time of the package corrosion (and correlated heat power of the waste), water saturation in 

the various components of the storage at that time. 

The above-enumerated phenomena are considered separately and are discussed in the 

following Section. 

 

6.2. From laboratory scale (micrometer, months/years) to block scale (meter, 

n×10,000’s years) 

In Section 5, some applications of the methodology were demonstrated. It was seen that 

several environmental conditions (T from 25 to 90°C, source term, static vs dynamic 

hydrological regimes of glass alteration) were possible to take into account. In general, it was 

noted that the progress of alteration of the glasses of the chosen composition depends on 

environmental conditions (pH, temperature, water renewal). Nevertheless, as mentioned in 

the discussion part of the second article, the shown applications represent only one part of 

the integrated modeling that will be necessary to consider in the future. In addition to the 

considered glass-water interactions in saturated flow regime under different T, pH 

conditions, the effect of the species in solution (e.g. Ca, Mg, Fe of COx water), the effect of 

the non-saturated conditions (due to the anoxic corrosion of the cell metal liner and the 

overpacks of the canisters), possible effect of glass fracture clogging by precipitation of clay 

mineral etc. could be integrated in the model in the future.  

In fact, in the last several years, studies aiming at the understanding of phenomena covering 

conditions representative of the geological storage, particularly clay medium, have been 

initiated. They showed that initial dissolution rate measured in COx water in renewal 

condition was up to five times higher than that measured in pure water, mainly because of 

the presence of calcium (Dove et al. 1997; Jollivet, Gin, et al. 2012); internal CEA 
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communication, Jollivet, 2011. The explanation of this increase was related to the formation 

of sites making the Si-O bonds of glass broken more easily. At the same time, the evidence 

was provided that at basic pH, calcium tends to integrate into the alteration gel and to 

reduce the transport (Mercado-Depierre et al. 2013; Chave et al. 2011). The dissolution rate 

decrease occurs more quickly and more efficient in the presence of calcium (Jegou 1998; Gin 

et al. 2001; Godon et al. 2012). Also, it was demonstrated that the pH of the COx water and 

the availability of magnesium in solution affect the rate drop regime and the value of the 

residual rate. Thus, according to (Jollivet, Frugier, et al. 2012; Aréna et al. 2017; Debure et al. 

2012), the precipitation of secondary magnesium phases sustains the dissolution of the 

passivating layer of the glass, lowers the pH, and as a consequence, increases the diffusivity 

of this protective interphase. Authors also showed that the precipitation of magnesium 

phases is not limited by their precipitation kinetics, but is rather controlled by their solubility 

and the release rate of silicon from glass dissolution. Regarding iron effect, it was argued (de 

Combarieu et al. 2011; Rébiscoul 2013) that its incorporation in the alteration layer is 

penalizing, i.e. it tends to deplete the alteration gel and to remove its passivating property. 

Moreover, iron presence fosters glass alteration by means of precipitation of iron silicate 

species (Aréna et al. 2017; Dillmann et al. 2016). In fact, it was demonstrated that the 

formation of these newly formed phases modifies the chemical equilibrium in the aqueous 

solution, consumes silicon and, as a consequence, increases the glass alteration. 

Given these results, it is clear that the reactivity and the transport of elements of the 

surrounding components to the glass canister field could have a significant impact on the 

long-term behavior of the glass and thereby, should be considered in the integrated model. 

In the proposed model, glass alteration was supposed isovolumetric, i.e. dissolved glass is 

considered replaced by the alteration layer of same volume and no feedback of minerals 

precipitation or dissolution in fractures was taken into account. That, however, could be 

debatable, given some demonstrations (Bock 2010; ANDRA-Collectif 2016) that in presence 

of free water argillaceous material tends to increase its volume and, by consequence, clogs 

partially or entirely pores and fractures of the host-rock (clay). Likewise, glass fracture 

clogging could also result from the precipitation of secondary phases rich in elements of the 

COx water, like evidenced on natural glass corrosion (Verney-Carron 2009).  

Aside from these geochemical interactions of glass corrosion products with the elements of 

the nearby field, the question of the hydrological regime that would occur in repository 

conditions is worth addressing. Although at this stage all scenarios (normal evolution, 

altered evolution and "What-if" scenario) proposed by ANDRA consider the solute transport 

by water in saturated condition, the elaboration of the scenario that will include the transient 

regime (hydraulic-gas) is envisaged for the DAC (demande d’autorisation de creation). It is 

important because the geological repository is likely to stay for a long time in non-saturated 

conditions: primarily due to the long time of resaturation of the vicinity of the storage, and 

the counter-effect of H2 gas production by radiolysis and anoxic corrosion of metal 
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components. Thus, according to ANDRA, the formation of hydrogen will slow the 

resaturation of the storage. With respect to their first estimations, the resaturation could last 

around 100,000 years for the HL zone and a few hundred thousand years for the medium 

level waste (ML) area. In this connection, the following questions have to be tackled before 

being able to conduct RTM of borosilicate glass alteration in transient regime: 

1. How and at what speed will the resaturation of the HL compartment and, in 

particular, HL canisters take place? 

2. How interfaces can modify locally capillary forces and influence liquid water transfer 

and distribution between tiny (10 nm) pore host-rock, bentonitic cement filling, 

corroded liner and overpack, and small (µm) to medium size (mm) fractures? 

3. How will water come in contact with glass canister (what will its state be: fine 

recondensed layer covering fractures walls vs. vapor)? What are the mechanisms and 

the principal driving forces of glass alteration of such alteration? 

4. What will the temperature be when water comes into contact of the glass?  

As for the first two questions, the preparation of its answer is ongoing (ANDRA-Collectif 

2016), it will be based on the knowledge gained on hydrogen production (that is a function of 

corrosion rate that, in its turn, depends on the presence of liquid water or vapor and 

temperature) as well as gas transfer characteristics in different storage areas and their 

possible interfaces. First estimations (ANDRA 2013) indicate that in HL zone the saturations 

will evolve from the initial saturation, close to 70% to 80% to reach a complete saturation 

towards 40.000 years to 50.000 years after the storage closure. 

Regarding the last two questions, the reaction of glass with water vapor has been studied in 

Argonne National laboratory (ANL), PacificNorthwest National Laboratory (PNNL), 

Savannah River Laboratory (SRL) and are currently under study in French Alternative 

Energies and Atomic Energy Commission (CEA), Orano, Subatech, French National 

Research Agency (ANR), etc. So far, it is acknowledged that the scientific database on the 

vapor hydration of nuclear glasses has still the potential to be enlarged. According to the 

current vision, the precipitation of secondary phases seems to be the strongest driving force 

for alteration in vapor phase at high temperature (Abrajano et al. 1986; Abrajano et al. 1989); 

internal CEA communications Narayanasamy, 2017, 2018. Indeed, at high temperatures and 

low solution volume that gets saturated rapidly, the conditions are thermodynamically 

favorable for the precipitation of secondary phases. As for the question whether, from the 

chemical perspective, the glass corrosion process can be emulated by an aqueous solution 

with a high S/V ratio, at the time of writing there is no single opinion. The answer will decide 

whether the current version of the GRAAL model could be applied to model glass corrosion 

in vapor phase or not (whether it will be equal to modeling with high S/V or it will be 

necessary to adapt the geochemical model). In any case, once the scenario treating the 

transient regime is established, data about relative permeability, capillary pressure, 

saturation of both wetting (water) and non-wetting (gas) phases will be requested firstly, for 
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the COx clay, then for all barriers, glass fracture network included. Afterwards, it will be 

necessary to think about the techniques that could be applied to perform permeability and 

effective diffusion upscaling (Savoye et al. 2014; Savoye et al. 2010; Mualem 1976; Crotti et al. 

2003; Fouda 2016) at the scale of one block and for the ensemble of glass canister 

surrounding materials. 

To sum up, the proposed image processing-based fracture network characterization 

workflow was elaborated for the purpose of RTM applied to a block of vitrified nuclear 

glass. It allowed us to unite data obtained by image analysis and by thermo-mechanical 

simulations with the aim of creating multiple realizations of glass fracture network. It 

focused on the upscaling of the reactive transport parameters, such as permeability, diffusion 

and parameters governing the kinetics of glass dissolution in the context of the equivalent 

porous media approach. It enabled the modeling of glass aqueous alteration by taking into 

account fracture network variability and different limiting conditions. The results obtained 

by applying the workflow are totally in agreement with the experimental results of alteration 

of a vitrified glass block. Although, it concerned only the interactions of water with the 

borosilicate glass, it could be potentially expanded in order to be able to consider diverse 

interactions of the glass with the other barriers of the repository. 
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ABSTRACT 

Understanding the alteration of nuclear glass in a fracture network of a vitrified glass block is important for the 

safe conditioning of nuclear waste (quantification of the risks associated with radionuclide release). Performance 

assessment of geological nuclear waste repositories entails modelling of the long-term evolution of the fractured 

nuclear glass block aqueous alteration, because the considered time scale, of several thousands of years, is 

beyond the range of any direct experimental perspectives. This dissertation aims then to bridge the gap between 

the reservoir-scale flow and transport simulations and the micron-scale modeling of the glass-water interfacial 

processes, by bringing the quantitative evaluation of the glass aqueous degradation at the block scale.  

To tackle this issue, the main objectives of this thesis were fixed as follows: (i) reproduction of the experimental 

results previously obtained (for some fractures modeled in a discrete way in the diffusive mode), (ii) analysis of the 

impact of fractures geometries on the quantity of altered glass at the scale of some fractures modeled in a discrete 

way, (iii) investigation of the possibilities of the geochemical model adaptation for the equivalent homogenous 

modeling, (iv) establishment of a methodology for glass block fracture network characterization, (v) geostatistical 

and geometric modeling, (vi) calculation of the equivalent diffusive, hydraulic and glass dissolution kinetics 

controlling properties and (vii) upcoming reactive transport modeling at the scale of one canister.  

As an illustrative example, the proposed image processing-based fracture network characterization methodology 

was applied to two-dimensional (2D) high-resolution images of two blocks of vitrified glass. This application brought 

into service both hard data obtained by direct measurement of the fracture network and soft physics-based 

explanatory data and resulted in the creation of multiple realizations of fracture network equivalent tessellation that 

were further used as physical representation for the calculation of the equivalent hydraulic, diffusive, and alteration 

kinetics - controlling properties. The evolution of the quantity of altered glass obtained by conducting reactive 

transport modeling applied to several realizations of the equivalent fracture network tessellation was compared with 

the experimental data of the aqueous alteration test of a non-radioactive full-scale nuclear glass canister. The 

results show that implementation of the devised procedure presents an opportunity for better understanding the 

impact of fracturing on aqueous alteration of borosilicate glass and provides a reliable tool enabling different 

scenarios of repository evolution to be accounted for.  

 

MOTS CLÉS 

Modélisation, corrosion du verre nucléaire, réseau de fractures, analyse d'images, changement d'échelle, milieu 

poreux équivalent 

 

RÉSUMÉ 

Comprendre l'altération du verre nucléaire dans un réseau de fracture au sein d'un bloc de verre vitrifié est 

important pour la sûreté du conditionnement des déchets nucléaires (quantification des risques associés au 

relâchement des radionucléides). L’évaluation de la performance du stockage géologique des déchets nucléaires 

passe obligatoirement par la modélisation de l’altération aqueuse d’un bloc de verre nucléaire fracturé, l’échelle de 

temps envisagée (plusieurs milliers d’années) dépassant toute possibilité d’expérience directe. Cette thèse vise 

donc à combler le fossé entre les simulations d'écoulement et de transport à l'échelle du réservoir et la modélisation 

à l'échelle micrométrique des processus interfaciaux verre-eau, en apportant l'évaluation quantitative de la 

dégradation aqueuse du verre à l'échelle d’un bloc.  

Pour aborder ce problème, les objectifs principaux de cette thèse ont été fixés comme suit : (i) la reproduction 

des résultats expérimentaux obtenus précédemment (pour quelques fractures modélisées de manière discrète en 

mode diffusif), (ii) l’analyse de l'impact des géométries de fractures sur la quantité de verre altéré pour quelques 

fissures modélisées de manière discrète, (iii) l’étude de la possibilité d'adaptation du modèle géochimique à la 

modélisation dans le cadre de l’approche milieu équivalent, (iv) la mise au point d'une méthodologie de 

caractérisation, (v) la modélisation géostatistique et géométrique de réseau de fractures à l’échelle d’un conteneur 

de verre, (vi) le calcul des paramètres équivalents diffusifs, hydrauliques et les paramètres qui contrôlent la 

cinétique de dissolution de verre, et au final, (vii) la modélisation de transport réactif à l’échelle d’un conteneur. 

À titre illustratif, la méthodologie de la caractérisation de réseau fracturé proposée, basée sur le traitement des 

images, a été appliquée aux images bidimensionnelles (2D) de haute résolution de deux blocs de verre. Cette 

application a permis de mettre en œuvre à la fois les données directes obtenues par mesures des paramètres d’un 

réseau fracturé de verre vitrifié et les données indirectes explicatives issues des simulations thermomécaniques. 

L’application a abouti à la création de multiples réalisations de tessellation de réseaux fracturés équivalents qui ont 

ensuite été utilisées comme représentations physiques pour les calculs de la perméabilité équivalente, de la 

diffusion équivalente et des paramètres contrôlant la cinétique de dissolution de verre borosilicaté. L'évolution de la 

quantité de verre altéré obtenue en effectuant la modélisation de transport réactif appliquée à plusieurs réalisations 

de la tessellation de réseau fracturé équivalent a été comparée aux données expérimentales d’un essai d'altération 

aqueuse d'un conteneur non radioactif de verre nucléaire. Les résultats montrent que la méthodologie conçue offre 

une opportunité pour mieux comprendre l'impact de la fracturation sur l'altération aqueuse du verre vitrifié et 

constitue un outil fiable permettant de prendre en compte différents scénarios d'évolution du stockage. 
 

[Résumé en français] 
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