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2 Chapter I. Introduction

The understanding of the propagation of light inside different types of media is of crucial importance.
Indeed it allows both to image object inside such media and/or to deliver energy or information
through them. The way light propagates through homogeneous media is perfectly understood [1].
Thus it is possible to shape precisely the source of light so that the emitted signal interferes con-
structively in one given direction, position, and/or at a given time. Consequently, one can deliver
efficiently energy or information though homogeneous media towards a specific detector or object.

When the medium of propagation gets more complex (with an optical index or equivalently a per-
mittivity varying in space) we loose the a priori knowledge on the way waves propagate through
it. Complex media (or equivalently scattering media) are medium with a large number of strong
inhomogeneities of the optical index of refraction. Many complex media for light exist in nature,
the most famous examples are clouds, fog, milk, paint or paper. All of them appear opaque when
illuminated with light as we can see in Fig. I.1 in which we show a bridge in the fog.

Figure I.1 – Photograph of a bridge in the fog.

To discuss this complex scattering phenomenon let us introduce the scalar Helmholtz equation for
the electric field E in a complex medium without sources:

∆ + ω2

c2 ϵ(r, ω)

E(r, ω) = 0, (I.1)

with ω the pulsation (ω = 2π/λ with λ the wavelength in vacuum), c the speed of light in vacuum,
ϵ the permittivity of the medium. Note that the only difference between Eq. (I.1) and the wave
equation in vacuum is the presence of ϵ(r, ω). This small change in the equation contrasts with its
impressive effect on the propagation of light as we can see Fig. I.1.

To give an intuitive feeling about the role of the inhomogeneities of permittivity in the scattering
phenomenon, we can introduce the Lippman-Schwinger equation for the field. This exact equation
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is completely equivalent to the Helmholtz equation. It reads

E(r, ω) = E0(r, ω) +

G0(r − r′)k2

0[ϵ(r′, ω) − 1]E(r′, ω)dr′ (I.2)

with E(r, ω) the total field, E0(r, ω) the incident field, ϵ(r, ω) the permittivity of the medium and
G0 the free space Green function of the Helmholtz equation. The Green function G0(r − r′) is the
field response at r due to the presence of a source at r′. The complex character of the scattering
phenomenon is revealed by the presence of the total field on both the left hand side and inside
the integral in Eq. (I.2). To give an intuitive picture of the scattering phenomenon, we can iterate
Eq. (I.2) in order to express the total field as the sum of the incident field, the single scattered field,
and all the possible orders of interaction with the complex medium. This is done in Eq. (I.3) and
represented schematically in Fig. I.2:

E(r, ω) = E0(r, ω) +

G0(r − r′)k2

0[ϵ(r′, ω) − 1]E0(r′, ω)dr′ (I.3)

+

G0(r − r′′)k2

0[ϵ(r′′, ω) − 1]G0(r′′ − r′)k2
0[ϵ(r′, ω) − 1]E0(r′, ω)dr′dr′′ + ...

Figure I.2 – Scheme of the scattering of a wave by a complex medium. The total field can be viewed as the sum
of the incident field (black arrow), the single scattered field (blue arrow), the field scattered twice
by the medium (red arrow) etc.

The presence of inhomogeneities of permittivity in the propagation medium acts as secondary sources
producing fields which will interfere with the incident field, and excite the other homogeneities, and
so on an so forth. If we do not know the position and the strength of the inhomogeneities, we cannot
a priori know the value of the field at one given position. If one measures the intensity scattered by
a complex medium either in reflection or in transmission, one obtains a highly contrasted intensity
pattern called speckle. In Fig. I.3 we show a typical speckle pattern obtained from light scattering
from a complex medium. In this pattern, the intensity changes from zero to one on a typical distance
on the order of the wavelength [due to the complex interference phenomenon represented in Eq. (I.2)].
This prevents the efficient delivery of energy or information.

There already exist techniques allowing to focus light, for example, in transmission though a scat-
tering medium. In the following we discuss two of these techniques: time reversal and wavefront
shaping. Both are based on properties of the Helmholtz equation Eq. (I.1).

• Time reversal techniques [3, 4] are based on the fact that (for a lossless medium) if the field E
is a solution of Eq. (I.1), then its complex conjugate E∗ is solution of the same equation. Let
us describe now a typical time reversal experiment. First a source at a given position excites
the sample and the scattered field is measured on a surface surrounding the medium. Second,
the source is removed and the conjugated field is sent back 1 from the measurement surface and

1Conjugating the field in the frequency domain is equivalent to time reversing it in the time domain.
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Figure I.3 – Speckle pattern produced by the multiple scattering of light from a disordered dielectric medium.
The wavelength of the Laser is λ = 633 nm. The imaged plane is at a distance of 60 µm from the
exit surface of the sample. This image has been obtained by E. Perros in a work published in ref. [2].

eventually focuses at the position of the source. Those time reversal techniques have proven to
focus monochromatic and polychromatic light efficiently even in scattering media [5] and for
every type of waves [6, 7, 8]. Nonetheless they are two step techniques and need a source at
the position where we want to focus the light.

• Taking advantage of the linearity of the Helmholtz equation given in Eq. (I.1), the so called
wavefront shaping techniques have been proposed [9, 10, 11]. These techniques require a CCD
camera placed in transmission of the scattering medium measuring the scattered field and a
spatial light modulator (SLM) to shape spatially the phase of the incident field (on each pixel of
the SLM). Using the transmission measurement, one can find the correctly shaped incident field
to achieve focusing in transmission. These techniques have produced impressive results allowing
to focus monochromatic (or polychromatic [12, 13, 14]) light at a given position, to transfer
all (or none of) the energy in transmission of a thick scattering medium [15, 16, 17, 18, 19].
Nonetheless, they need a measure in transmission of the sample, which is often out of reach of
the operator.

The two techniques discussed require an operation on the transmission side of the sample (whether
a measurement with a CCD or a source) to overcome the effect of scattering on wave propagation.
This part of the sample is out of reach in many applications. Working with reflected intensity as a
feedback seems a promising option. Variants of optical coherence tomography techniques allow to
detect objects inside a scattering sample retrieving the specular intensity in the reflected light using
clever post processing [20, 21, 22]. Note that these methods cannot be applied when the sample is
to thick (or only on its surface) since they rely on the measurement of single scattered light. Our
objective is to study the feasibility of some techniques based on the measurement of the scattered
light in reflection of thick samples.

To study the multiply scattered light formally, the usual approach is to study its statistical properties.
Indeed, somewhat surprisingly, one observes similarities between the intensity patterns emerging from
different scattering medium: average value of the intensity, etc. This means that some properties
of the light can be described with a small number of parameters (e.g. temperature for a perfect
gas). A key parameter for complex media is the scattering mean free path ℓ. This very important
quantity can be seen as the average distance between two scattering events of the light inside the
medium, and its knowledge provides information on the light propagation regime inside the medium.
We can compare the size of the medium L with the scattering mean free path ℓ in order to define
the following regimes of transport:
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• λ ≪ L ≪ ℓ is the quasi-ballistic regime. In this regime the medium is transparent (there is
almost no scattering event).

• λ ≪ L ∼ ℓ is the single scattering regime. In this regime there is approximatively as much
scattered and non scattered light. One can still see through the sample.

• λ ≪ ℓ ≪ L is the diffusive regime2. In this regime all the light transmitted through the sample
has been scattered many times. The sample is opaque.

Our purpose in this thesis is to study the existence of statistical links between the reflected and the
transmitted scattered light in the diffusive regime as a function of λ, ℓ, L and the transverse spacing
between the points ∆R (as represented in Fig. I.4). Such a statistical link between reflection and

Figure I.4 – Scheme of the typical geometry studied in this thesis. A plane wave at normal incidence illuminates
a scattering medium of size L. The intensity is measured in transmission and in reflection and we
interest ourselves to the statistical links between the intensity in rR and the intensity in rT .

transmission could be used to image objects hidden behind a diffusive medium, or to control the
light using only reflected informations.

The purpose of the first part of this thesis is to study analytically, numerically and experimentally
(in collaboration with an experimental group from the University of Exeter) the existence and the
properties of the intensity-intensity correlation between the reflected and the transmitted light in all
the propagation regimes (in other words we study ⟨I(rR)I(rT )⟩ with ⟨...⟩ meaning average over the
disorder). Once this building block is studied, we propose a new imaging modality (named Blind
Ghost Imaging) using this correlation to image an object hidden behind a thick scattering medium,
requiring only one mono-pixel detector in transmission of the scattering medium.

In the second part of the thesis we study deeper statistical links between reflection and transmission
building the joint probability density function between reflected and transmitted light P [I(rR), I(rT )].
Based on this function we study a quantity called mutual information between a large number of
reflected and transmitted intensities versus the parameters of the physical system. The mutual in-
formation is a key quantity in information theory, that quantifies the statistical dependency between
two sets of random variables. Eventually, we use our knowledge about the joint statistics between
reflection and transmission to study the conditional average value of the transmitted intensity at one
given position. This quantity could be a good observable to describe wavefront shaping experiments
with reflected feedback only.

2In this work we do not differentiate the scattering mean free path ℓ and the transport mean free path ℓ∗ because
we consider point-like scatterers.
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10 Chapter II. The gaussian model for the field

In order to introduce the purpose of this work we intend in this chapter to present the basics about
the statistics of the field scattered by a disordered medium. First we present the canonical geometry
studied in this thesis: the slab geometry. Second we study the one point statistics of the scattered
intensity and discuss the implication of the gaussian approximation on its probability density. Third
we show that in the gaussian approximation, only short-range correlation exists between intensities
at different points. Eventually we show that beyond the gaussian approximation, a long-range
correlation survives between two intensities at different points in transmission, and we discuss its
existence between intensities observed in transmission and in reflection.

II.1 Geometry of interest

In this section we comment about the geometry studied in this work. In Fig. II.1 we show a 2D
disordered sample composed of point like scatterers [23] shined from the left with a plane wave
at normal incidence. The points where we measure intensities are rR and rT , respectively, at the
entrance and exit plane of the scattering medium. The depth, denoted by z, is equal to 0 at the
entrance plane and L at the exit plane. The transverse width of the slab W is kept many times larger
than L in all numerical calculations. The slab geometry (W ≫ L) provides translationnal invariance
properties useful for analytical calculations. The transverse distance between rR and rT is denoted
∆R.

Figure II.1 – Scheme of the geometry studied in this work. A 2D disordered sample of depth L and transverse
size W ≫ L is shined from the left at normal incidence by a plane wave.

It is important to emphasize that the results we obtain in this work are specific to this geometry.
For instance if we do not shine with a plane wave but with a point source or if we do not measure
intensities on the sample surface but in the far field different results can be obtained.

Another important point is that most (but not all) of the results we present are obtained for 2D
random samples. The scatterers, randomly distributed over the sample, are cylinders with one direc-
tion of invariance. Dealing with TE-polarized waves, i.e. electric field oriented along the invariance
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axis of the system, the problem reduces to the 2D scalar case. The total electric field at one point is
given by the sum of the incident field E0 and the scattered field Es

E(r) = E0(r) + Es(r). (II.1)

We call reflected field the scattered field measured in reflection

ER = Es(rR) (II.2)

and transmitted field the total field measured in transmission

ET = E(rT ). (II.3)

II.2 One point statistics in the gaussian approximation

In this section we give simple arguments that lead to the full statistics of the intensity measured at
one position whether in reflection or in transmission of a scattering medium. We deal with dilute
samples (k0ℓ ≫ 1).

II.2.1 A gaussian field

In the introduction we explained that the unknown character of the disorder upon which the wave
scatters when it propagates through a complex medium makes the analysis impossible without as-
sumptions on the nature of the disorder. The usual approach is to study statistics of the field when
scattered by a disordered medium with known statistical properties.

Decomposition of the field over all possible scattering paths

The easiest and most direct way to access many properties of the field is to express it as a sum over
all possible scattering paths in the medium

E(r) =

S
ES(r) =


S
eiϕS(r)AS(r) (II.4)

where ϕS is the phase acquired during propagation along the path S and AS is the amplitude of the
field after propagation along S. To define all possible paths existing into the complex medium we
can label each scatterer inside the medium. If we define for instance S1 as the path that encounters
a given ordered list of scatterers, then S1 will change with the positions of the scatterers in different
configurations of disorder and thus the field traveling along S1 becomes a random variable. Under the
assumption of dilute systems (k0ℓ ≫ 1), the fields traveling along two different scattering sequences
vary independently when the positions of the scatterers are changed. Thus applying the central limit
theorem to the sum of all those fields, the total scattered field must be a gaussian complex random
variable, see for instance ref. [24].

In order to test this we use the couple dipole method [25] to solve Maxwell equation in a 2D slab
geometry composed of point like scatterers (more details about the numerical method are given in
App. .3). In Fig. II.3 we plot the numerically calculated imaginary part of the transmitted field
versus its real part for a large number of realizations of disorder in a thick (b = L/ℓ = 10) and dilute
(k0ℓ = 10) system. At first sight the transmitted field indeed looks like a gaussian random variable.
The same behavior is observed for the reflected field in Fig. II.4.



12 Chapter II. The gaussian model for the field

Figure II.2 – Scheme of the decomposition of the transmitted field over three different scattering paths. The
total field is the sum over all possible scattering sequences.
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Figure II.3 – Calculations of the transmitted field for numerous realizations (N = 6400) of a disorder charac-
terized by k0ℓ = 10 and b = L/ℓ = 10. The average value of the field is close to zero, and its
statistics seems gaussian at first sight.

The average value of the field

Under the assumption of dilute systems (k0ℓ ≫ 1) the phase acquired during the propagation along
one scattering path changes dramatically when the positions of the scatterers change (it varies be-
tween 0 and 2π). Thus the average value of the complex random variable associated with the field
following this exact scattering sequence should be vanishingly small. As a result the average value
of the total scattered field is also expected to be small.

Comparing numerical calculations of the reflected and transmitted fields for two different optical
thickness in Fig. II.4 we can conclude that:

• The average value of the transmitted field is large for small samples and decreases with the
optical thickness b = L/ℓ (we will see in Sec. III that it decreases exponentially with b/2) while
the average value of the reflected field seems small and constant 1.

• From panel (c) of Fig. II.4 in which we plot the absolute value of the average field in transmission
and in reflection versus the optical thickness (L varies and ℓ is kept constant) we see that when
b ≫ 1 both the reflected and the transmitted fields have approximatively a zero average value.

1Let us remind that the reflected field is defined as the scattered field measured in reflection, see Eq. (II.1).
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Figure II.4 – Calculations of the transmitted field (red crosses) and the reflected field (blue circles) for numerous
realizations (N = 6400 ) of a disorder characterized by k0ℓ = 10 and b = 0.5 [panel (a)] and
k0ℓ = 10 and b = 15 [panel (b)]. In panel (c) we represent the average value of the numerically
calculated transmitted field (red solid line) and of the reflected field (blue dotted line) versus the
optical thickness of the sample (L varies and k0ℓ is kept constant equal to 10).

Let us define the fluctuating field δE as the difference between the field and its mean value:

E(r) = ⟨E(r)⟩ + δE(r) (II.5)

with ⟨δE(r)⟩ = 0 by definition2. From Fig. II.4 we see that the fluctuating part of the field is
not negligible. In other words the field fluctuates a lot from one realization of the disorder to the
other. The knowledge of the average value of the field is thus not sufficient, we have to study higher
moments of the field.

II.2.2 Intensity scattered by a complex medium

In the previous section we observed that the average value of the transmitted field decreases exponen-
tially with the optical thickness of the scattering medium. Does this mean that the average intensity
(average value of the squared modulus of the field) measured in transmission will be exponentially
small as well?

Decomposition of the intensity over pairs of scattering paths

Taking the modulus squared of Eq. (II.4) we can express the intensity as a sum over pairs of scattering
paths:

I(r) =

S,S′

ES(r)E∗
S′(r) =


S,S′

ei[ϕS(r)−ϕS′ (r)]AS(r)AS′(r) (II.6)

where ϕS is the phase acquired along the scattering sequence S and AS is the amplitude of the field
scattered along S. Equation. (II.6) gives a clear understanding of the visual aspect speckle pattern
(see Fig. II.10). Each point of the intensity pattern corresponds to a complicated interference term
that can be either contructive or destructive, resulting in a pattern made of bright and dark spots.

Let us try to give a handy picture of what happens to the different pairs of fields on average over
all disorder realizations. Using the same argument as that used for the average field we know that
a pair of paths S ≠ S ′ gives on average an exponentially small contribution to the intensity. Indeed
the phase difference between the field and its complex conjugate oscillates between 0 and 2π when
the positions of the scatterers are changed. Nonetheless we see that when S = S ′ the phases exactly

2Let us stress that δE = δEs since the incident field does not depend on disorder.
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Figure II.5 – Scheme of the decomposition of the transmitted intensity over three different pairs of scattering
paths. Scatterers are represented by small spheres and each line connecting them corresponds to
the propagation of the field (or its complex conjugate when dotted) into the vacuum

compensate, thus those contributions resist to the averaging process. Taking the average of the
square modulus of Eq. (II.5) we can highlight the separation between those two different terms

⟨I(r)⟩ = |⟨E(r)⟩|2  
Ib(r)

+ ⟨|δE(r)|2  
Id(r)

⟩. (II.7)

The first part is called “ballistic” intensity (Ib) and comes from the scattering of the field and its
complex conjugate by pairs of different scattering sequences while the second part is called the
“diffuse” intensity (Id) and comes from the scattering of the field and its complex conjugate along
the same scattering sequences [26]. Equation (II.7) shows that the intensity can be split into the
sum of two fundamental quantities: the squared modulus of the average field and the variance of the
field.

Ballistic and diffuse intensities, two different terms with two different scalings

In our numerical calculation we have access to the field, we can thus easily separate the two terms
in Eq. (II.7).
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Figure II.6 – Numerical calculation of the average intensity (blue solid line) and of the ballistic intensity (red
dotted line) inside a scattering medium of parameters k0ℓ = 10 and b = 10.

In Fig. II.6 we plot the average intensity and the ballistic intensity inside the medium versus the
normalized depth z/L. We see that the dominant process in the transport of intensity over long
distances inside the scattering medium corresponds to ⟨|δE(r)|2⟩. The ballistic intensity has non
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zero value only close to the boundary of the medium (z ≃ ℓ). In Sec. III we calculate explicitly those
two terms. Here we focus on the fact that the diffuse intensity (variance of the field) survives at
large depth while the ballistic intensity does not.

Figure II.7 – Diagrammatic representation of Eq. (II.7). The straight line represents the propagation of the
mean field. Panel (a) thus corresponds to the ballistic intensity. The twisting lines corresponds to
fluctuating fields. Panel (b) thus corresponds to the diffuse intensity.

Let us here mention a few words about the diagrammatic approach used in this thesis. In this
section we had the first glimpse of a quantity (the mean intensity) which can be split into two terms
(ballistic intensity and diffuse intensity) with different scaling with the parameters of the system (ℓ
and L). In the following we will go from mathematical expressions to diagrammatic representations
(see ref. [27]). The main purpose of a diagram is that it helps us to handle decompositions of the
type of Eq. (II.7) easily, and to predict the scaling of the quantity under study with the parameters
of the system. For instance in Fig. II.7 we give the diagrammatic equivalent of Eq. (II.7). Panel (a)
composed of two straight lines, one solid and one dashed represents the propagation of the modulus
squared of the average field (ballistic intensity). Each time we find a diagram with mean fields it will
decay very quickly through propagation. Panel (b) composed of two twisting lines, one solid and one
dashed, represents the propagation of the variance of the field (diffuse intensity). We should keep
in mind that when fields are paired during their propagation, they can travel over long distances
through the sample.

Intensity of the fluctuating field: I
So far we have seen in Fig. II.4 that the statistics of both the transmitted and the reflected field
seem a priori gaussian. In this section we discuss the expression of the probability density 3 of the
intensity scattered by a random medium. It is known that the squared modulus of a zero mean
complex random variable follows a Rayleigh law (see ref. [28] or ref. [29] for the impact of a non
zero average field on the statistics of I). In panel (c) of Fig. II.4 we have seen that the reflected
field always has a small average value, while the average value of the transmitted field seems to
decrease exponentially with the optical thickness. Thus for a thick medium both the reflected and
the transmitted intensity should follow Rayleigh laws. We will discuss in this thesis how the presence
of a non zero first moment of the field may affect statistics. But in most cases we will discuss statistics
of the centered variable δE(r). This quantity is a priori gaussian and has by definition a zero mean
value. It should follow a Rayleigh law regardless of the optical thickness of the medium. For the

3Let us remind that for gaussian random variables, the full statistics can be built from the first and second moments.
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sake of clarity we have chosen to use the notation I for the squared modulus of the fluctuating part
of the field4 (whose mean value is the diffuse intensity):

I(r) = |δE(r)|2 (II.8)

being aware that in general this quantity does not equal the “real” intensity I. Let us stress here
that deviations from Rayleigh law due to the non vanishing of the mean field will be of little interest
in the present work. From a statistical point of view we center the fields in order to enhance the
sensitivity to deviations from the Rayleigh law due to the imperfect gaussian character of the field.

Figure II.8 – Two different contributions to the third moment of the transmitted intensity of the fluctuating
field. The various pairing give the N ! factor in the expression of the moments of the Rayleigh law.

Derivation of the Rayleigh law: counting the fields

Let us briefly comment on the way we obtain the distribution of intensity. Let us remind first that
if all moments of a distribution are known, we can obtain the complete distribution using

P (x) = 1
2π

 
N

(ik)N

N ! ⟨xN⟩ exp(−ikx)dk. (II.9)

In Eq. (II.9), P (x) represents the probability density of the random variable x. To obtain P (I)
we need to obtain an expression of ⟨IN⟩ for all positive N . Studying I simplifies this procedure
because the only way to transport higher order moments of the centered variable through the complex
medium is to pair fluctuating fields during propagation. For instance in order to express the second
moment of the intensity of the fluctuating field: ⟨I2⟩ = ⟨δE1δE

∗
1δE2δE

∗
2⟩ we use the following pairing

⟨δE1δE
∗
1⟩⟨δE2δE

∗
2⟩ and ⟨δE1δE

∗
2⟩⟨δE2δE

∗
1⟩. Observing that each possibility gives the square of the

intensity we thus obtain ⟨I2⟩ = 2⟨I⟩2. Now if we repeat the procedure for a higher moment of order
N we have to count all the possible ways to create different pairs of field and complex conjugate given
the two ensembles {δE1, ...., δEN} and {δE∗

1 , ...., δE
∗
N} (see refs. [28, 30, 31, 32] for more details). To

create the first pair we have N possibilities, the second pair N − 1, etc. Eventually we can show
that there exist N ! possible ways to create pairs of fields given these two ensembles leading to the
important results ⟨IN⟩ = N !⟨I⟩N (valid for gaussian fields). These different possibilities of pairing

4The presence of a ... in Eq. (II.8) is here to stress the absence of the mean field in the quantity studied. In Eq. (II.7)
⟨I(r)⟩ corresponds the second order moment of the non-centered field while ⟨I(r)⟩ is the second order moment of the
centered field.
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fields are represented in Fig. II.8 where two contributions of the third moment of the intensity out
of six are shown.

We can now insert the expression of ⟨IN⟩ into Eq. (II.9) in order to obtain the Rayleigh law :

P (I) = 1
2π

 
N

(ik⟨ I⟩)N exp(−ik I)dk = 1
⟨I⟩

exp


−
I

⟨I⟩


. (II.10)

To obtain the right hand side in Eq. (II.10), we first calculate the sum over N, and compute the inte-
gral using the residue theorem. The expression of P (I) in Eq. (II.10) depends on a single parameter
⟨I⟩. In order to compare statistics of the intensity of the centered field for many different samples,
the best way is to normalize I by its mean value. Indeed if the statistics of I follows a Rayleigh
law, then it implies the normalized quantity I = I/⟨I⟩ follows a simple negative exponential law
P (I) = exp(−I) that has a universal character. In Fig. II.9 we plot the numerically calculated
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Figure II.9 – Numerical calculation of the statistics of the normalized intensity I = I/⟨I⟩ of the fluctuating
fields (blue dashed line) and analytical expression of the negative exponential law (red solid line) in
transmission [panel (a)] and in reflection [panel (b)] . The parameters in the simulation are b = 8,
k0ℓ = 10.

distribution of the normalized intensity of the fluctuating fields in transmission (a) and in reflection
(b) for a thick (b = 8) and dilute (k0ℓ = 10) sample, that we compare to the negative exponential
law. Appart for some small deviations we see that the approximation of a gaussian field is relevant.

Let us conclude this subsection summarizing the assumptions that ensure a Rayleigh statistics for
the intensity:

1. The field is a gaussian random variable thus all higher order moments can be built from the
first and second moments.

2. The average value of the field is zero. Only its variance (average intensity) plays a role in the
construction of all the moments.

Each time one of these two assumptions breaks, the Rayleigh law is no more valid for the statistics
of the intensity.

Is I a physical quantity?

As the reader can notice we emphasize the role of the random variable I. Indeed, as long as the field
is gaussian the statistics of I follows a Rayleigh law (while I follows a Rayleigh law only if ⟨E⟩ = 0).
The analysis seems simpler with centered variables, but do they have a physical meaning? In Fig. II.4
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we have seen that the mean value of the reflected field is non zero but small. Actually for diluted
samples, it scales as 1/(4k0ℓ) which is small compared to one. The reflected field is thus almost by
itself a centered random variable, and IR ≃ IR. The behavior is different in transmission. Indeed in
this case the average field is large for thin samples b ≃ 15 and is exponentially small when b ≫ 1.
Thus IT tends to IT when the optical thickness of the sample increases.

Let us conclude by stressing that even experimentally one can measure I, for example using off-axis
illumination/detection geometry (an example will be described in Chap. IV).

II.3 Joint-statistics in the gaussian approximation

In the previous section we discussed the probability density of I under the gaussian assumption for
the field. We now intend to study the spatial variation of I. When we analyze a speckle pattern
(as for instance in Fig. II.10) obtained in transmission of a thick (b ≫ 1) random medium we can
see two features. First its granularity, or in other words the fact that I changes drastically from one
point to the other. Second we see that there is a distance (typically on the order of wavelength) over
which I seems to remain constant.

Figure II.10 – Speckle pattern produced by the multiple scattering of light from a disordered dielectric medium.
The wavelength of the Laser is λ = 633 nm. The imaged plane is at a distance of 60 µm from
the exit surface of the sample. This image has been obtained by E. Perros in a work published in
ref. [2]

II.3.1 Short-range correlation between two speckle spots

To understand the granularity of a speckle pattern we have to study the joint-statistics between two
adjacent speckle spots. Keeping in mind that the fundamental quantity in this study (the field) is
a gaussian random variable, we can restrict the analysis to the spatial correlation function of the
scattered fields at two different points in order to capture the I-I correlation function.

5 As we make clear in the last section of this chapter, the physical process we are interested in this thesis is
the breaking down of the gaussian character of the field (importance of high order moments of the fields) and its
implication for the joint-statistics between reflected and transmitted speckle patterns. We want to study this break
down for various optical thicknesses (even b ≃ 1). Considering I allows us to do so getting rid of the appearance of
the mean field when b ≃ 1.
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Figure II.11 – Typical realization of the numerical experiments performed to obtain panels (a) and (c) in
Fig. II.12. We shine a 2D random sample with a plane wave and measure the transmitted
fields at two different positions rT 1 and rT 2 separated by a transverse distance ∆R.

Field-field correlation

In Fig. II.12(a), we represent the numerically calculated phase of the transmitted field at a given
position versus the phase of the transmitted field at a fixed distance from the reference point as
depicted in Fig. II.11 (parameters of the simulation are b = 8 and k0ℓ = 10). If the fields were not
correlated we would see a random distribution of points in [−π,+π]2. This is actually observed for
points separated by a distance ∆r = 12λ. For smaller distances the points tend to agregate on the
diagonal of this figure, which testifies of the strong correlation between the two random variables.
A different representation of the same phenomenon is given in panel (c) where we show the real
part of the field at a given position versus the real part of the field at a fixed distance from this
position. In panels (b) and (d) we test the field-field correlation function between points in reflection
and transmission using the same two observables (a more complete study of this quantity will be
presented in Chap. III).

Let us summarize the main conclusions obtained from these figures:

• For distances smaller than λ, two transmitted fields are strongly correlated, while for distances
larger than λ the correlation is lost. In this case the fields can be considered as resulting from
two different realizations of the same random process.

• There is a priori no field-field correlation between reflection and transmission (at least in the
diffusive regime with b ≫ 1 and k0ℓ ≫ 1).

Let us give the diagrammatic picture describing the field-field correlations. The idea is really close to
that previously used to discuss the diffuse intensity. Indeed a field-field correlation is also a second
order moment of the field. To find a way to propagate two fields eventually measured at two different
points rT 1 and rT 2, we have to pair them during propagation. Nonetheless to be measured at two
different points, they must separate before the exit surface as shown in Fig. II.13. This process
creates short-range correlation only.

I-I correlation in the gaussian approximation: the C1 correlation function

Let us now describe the I-I correlation function defined as

C(r1, r2) = ⟨δ I1δ I2⟩
⟨I1⟩⟨I2⟩

= ⟨δE1δE
∗
1δE2δE

∗
2⟩

⟨I1⟩⟨I2⟩
− 1 (II.11)

with δ I = I − ⟨I⟩. Keeping in mind that the fields are in first approximation gaussian random
variables, we can try to express the correlation between intensities in terms of the first and second
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Figure II.12 – Numerical simulation of two different observables witnessing the existence of the field-field corre-
lations. Panel (a) represents the argument of the field measured at a distance ∆r of a reference
point, versus the argument of the field measured at this reference point in transmission and for
three different distances between the points. Panel (b) represents the argument of a reflected
field versus the argument of a transmitted field. Panel (c) represents the real part of the field at
a given distance of the reference point versus the real part of the field at the reference position
in transmission of the sample and for three different distances. Panel (d) represents the same
observable for the reflected and the transmitted field. The parameters of the simulations are b = 8
and k0ℓ = 10.

moments of the fields. The minus one in the expression removes the non-connected part which
corresponds to the propagation of ⟨|δE1|2⟩ and ⟨|δE2|2⟩ separately. The only remaining component
is the squared modulus of the field-field correlation

C(r1, r2) = |⟨δE1δE
∗
2⟩|2

⟨I1⟩⟨I2⟩
= C1(r1, r2). (II.12)

Let us stress here that Eq. (II.12) is strictly valid for two gaussian fields, which is an approximation
as we will show in the next subsection. Nonetheless at this order of approximation we showed that
the I-I correlation is directly linked to the field-field correlation. This contribution usually dominates
the intensity-intensity correlation in transmission of a thick medium, and is usually referred to as
the C1 correlation (see refs. [28, 33, 34]).

Equation. (II.12) together with panels (a) and (c) in Fig. II.12 shows that for distances smaller than
λ, two transmitted intensities of the fluctuating fields are strongly correlated6 while for distances
larger than λ the correlation disappears. Now let us remind that in the gaussian approximation
⟨δ I2⟩ = ⟨I⟩2. Thus from one speckle spot to the other, on average the intensity fluctuates on a range

6 We usually say that two points are in the same speckle spot (identical random variables) when their relative
distances is smaller than λ.
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Figure II.13 – Diagrammatic representation of the field-field correlation. The two fields propagate together and
separate to end up at two different measurement points.

of the order of the average intensity. This strong fluctuation on a typical distance of λ is responsible
for the granularity of a speckle pattern (see ref. [28]) .

The diagrammatic equivalent of Eq. (II.12) is represented on Fig. II.14. We show in panel (a) the
non connected part of the I-I correlation and in panel (b) its component coming from the modulus
squared of the field-field correlation (C1).

Figure II.14 – Diagrammatic representations of the two components of the second moment of the intensity at
different positions ⟨IT 1 IT 2⟩ in the gaussian approximation. In panel (a) we show the non connected
part of this correlation: two diffuse intensities propagate separately towards two different points
rT 1 and rT 2. In panel (b) we show the connected contribution to the I-I correlation: the two
diffuse intensities exchange their partners at their very last scattering event. We recognize in
this diagram the squared modulus of the field-field correlation responsible for the C1 correlation
function.

II.3.2 Joint statistics between intensities of centered and correlated
fields

In this section we study the impact of the existence of the field-field correlation on the joint statistics
of the intensities of the fluctuating fields. The joint statistics of the normalized intensities of the
fluctuating fields of two correlated gaussian random fields is given in ref. [24] and reads

P (I1, I2) = 1
1 − ρ2 exp

 I1 + I2

1 − ρ2


J0

2ρ
I1

I2

1 − ρ2

 (II.13)
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where
ρ = |⟨δE1δE

∗
2⟩|

⟨δ|E1|2⟩⟨δ|E2|2⟩
. (II.14)

In this expression J0 is the Bessel function of first kind and zeroth order and I1 and I2 are normalized
intensities of the fluctuating fields.

A basic analysis of Eq. (II.13) reveals that when ρ tends to 1, the joint distribution tends to agregate
on the diagonal of the 2D space (I1, I2). This tells us that when considering two points strongly
correlated by the field-field correlation, the two random variables I1 and I2 become indentical. In the
opposite regime, when ρ tends to zero, we see that the two random variables become independent.
Indeed P (I1, I2) reduces to P (I1)P (I2).

As shown in Fig. II.12, the field-field correlation function is a priori extremely weak between reflection
and transmission (at least in the diffusive regime). Thus the I-I correlation coming from the field-field
correlation should be extremely small and the two random variables should be independent.

Nonetheless if we take a look at Fig. II.15 in which we plot the I-I correlation in transmission (red
dashed line) and the modulus squared of the field-field correlation (blue solid line) for two different
regimes (panel (a) b = 3, k0ℓ = 10 and panel (b) b = 8, k0ℓ = 10) we see that the I-I correlation is
not exactly equal to its gaussian part C1. This intriguing result will be discussed in the next section.
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Figure II.15 – Numerical calculation of the C1 correlation (blue solid line) and I-I correlation (red dotted line)
in transmission for two different medium. The parameters are (a) panel b = 3, k0ℓ = 10 and (b)
panel b = 8, k0ℓ = 10.

II.3.3 Crossing of trajectories: beyond the gaussian approximation

We have seen that the field-field correlation function induces strong statistical dependency [strong
difference between P (I1, I2) and P (I1)P (I2))] between the intensities of the fluctuating fields ob-
served at two different points. We have also seen that a priori, no such field-field correlation exist
between points in reflection and in transmission. Does that mean that there is no I-I correlation
nor statistical dependency in reflection/transmission geometry? The answer is yes in the range of
validity of Eq. (II.13) which is the gaussian model.

Nevertheless we have seen in this chapter that the gaussian model has some flaws. First the proba-
bility densities of the transmitted and the reflected intensities of the fluctuating fields do not exactly
follow Rayleigh laws as can be seen in Fig. II.9. Moreover in Fig. II.15 it seems that there is an extra
contribution to the I-I correlation on top of the gaussian contribution. This contribution seems to
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survive through longer distances between the observation points. This observation of “long-range
non-gaussian” correlation is a central issue in this thesis.

Deviations from the gaussian model have been widely studied (see refs. [35, 36, 37, 38, 39]). It is
now understood that they emerge as a consequence of crossing of different trajectories inside the
scattering medium (see ref. [34]). Let us remind that at the heart of the derivation of the gaussian
behavior of the field is the independence of two fields following two different scattering sequences.
But as can be seen in Fig. II.16, there are ways to connect two trajectories, or four fields, during
their propagation. In this figure we represent two different trajectories that at some point get “close”
to each other. Due to the small distances that separate the two trajectories, there is a non negligible
probability that the fields exchange at this point, connecting the intensities measured at points rT 1
and rT 2.

Figure II.16 – Diagrammatic representation of one contribution of the non gaussian I-I correlation between two
points in transmission rT 1 and rT 2.

These contributions appear in the development of the I-I correlation
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⟨I1⟩⟨I2⟩
+ ⟨δE1δE

∗
1δE2δE

∗
2⟩c

⟨I1⟩⟨I2⟩
(II.15)

where the additional term is the non gaussian-contribution of the intensity-intensity correlation, or
connected (subscript ⟨...⟩c) part of the four-field correlation7. The difficulty in the study of these
terms is that there is a priori a huge number of them because there are many ways to connect
two trajectories or four fields. How to select them, and how to calculate them will be discussed in
Chaps. III, IV, V and in App. .3.3

One can wonder why these terms are of interest, since they are corrections to a model that works
very well in many practical situations. The answer is that when these terms are the only contribution
to an observable, they deserve a complete study (see ref. [40]). In particular we demonstrate in this
thesis that they are the dominant term of the I-I correlation between reflection and transmission8.

7This contribution is the first correction to the intensity-intensity correlation due to the non-gaussian character of
the field for centered variables. Indeed the connected three fields correlation has to be paired with ⟨δE⟩ and thus gives
a zero contribution.

8Equation. II.15 is a milestone because it expresses the I-I correlation as the sum of the C1 correlation and the
connected four fields correlation. Its simplicity whatever the physical parameters of the system is the justification of
our choice to study statistics of centered variables.
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The purpose of this chapter is to discuss the different building blocks we need to analytically derive
the expression of the intensity-intensity correlation function between reflection and transmission for
a thick (b ≫ 1) and dilute (k0ℓ ≫ 1) medium. In this regime the average fields are negligible, thus
the intensity-intensity correlation function follows directly from Eq. (II.15). We start this section by
discussing the reflected and transmitted fields and their average value in a system composed of point
dipoles. Then we study the average intensity and find that the diffuse intensity follows a diffusion
equation whose source term is the ballistic intensity. Then we calculate the C1 correlation function
between reflection and transmission and find that it is exponentially decreasing with the optical
thickness. Eventually we discuss the main contribution to the non-gaussian correlation between
reflection and transmission, derive its analytical expression for large optical thickness, and show
that it is the main contribution of the intensity-intensity correlation function between reflection and
transmission.

III.1 A discussion on mesoscopic correlations

The purpose of this introductory section is to give a brief review of different works about non-gaussian
correlations for classical waves. We also want to discuss the limitations of analytical techniques used
to derive these correlations.

It started with electrons

At the beginning of the 80’s, researchers in condensed matter physics discovered that micrometer
size metallic wires cooled to low temperature exhibited some unexpected coherent effects like weak
localization corrections to conductivity [41] or universal conductance fluctuations [42, 43, 44]. The
conductance is the natural observable for electronic experiments for which it is not possible to excite or
detect one channel specifically. Few years later, it was realized that classical waves (optics, acoustics,
microwaves) offer many more observables to study the richness of wave transport in disordered
systems. Indeed with those waves, one can excite a specific channel and observe the response in each
outgoing channel.

Classical waves: new observables

Studies of mesoscopic phenomena in optics,started in the mid 80’s motivated by the unparallelled
access to channel-resolved quantities. In the optical regime it became possible to measure the strong
spatial variations of the intensity scattered by a medium [28], or the fact that those complicated
intensity patterns shift with the angle of incidence of the laser light, provided that the change is small.
This is the so called memory effect [45, 46, 47]. It is important to stress that these phenomena were
impossible to observe with electrons for which only conductance can be measured [38]. Let us notice
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that many of these mesoscopic effects are independent of the type of waves. Thus weak localization
effects [48, 49, 50] or universal conductance fluctuations [51] have been recovered with classical waves.

Intensity-intensity correlations

With classical waves, we can excite a disordered medium with a controlled incident wave and observe
the scattering of this wave in a given direction or position in space [52]. In optics we measure intensity
more easily than fields. One observable we can study is thus the correlation between intensities at
two different positions or in two given directions1. It is also possible to mimic electronic experiments
integrating either the transmitted intensity, the incoming channels, or both. Those three different
types of experiments are represented schematically in Fig. III.1.

Figure III.1 – Schematics of three different experiments used to study intensity-intensity correlation. Panel (a)
corresponds to the correlation of the intensity scattered in directions qb and qb′ when the medium
is shined with qa and qa′ . Panel (b) corresponds to the correlation of the intensity scattered
in directions qb and qb′ for an integrated source. Panel (c) corresponds to fluctuation of the
integrated intensity (equivalent of the universal conductance fluctuations for classical waves).

The dominant term of these three experiments has been given a name C1, C2 and C3 [53]. The
C1 correlation is the leading term of the correlation between non integrated intensities measured at
two nearby points or nearby directions [panel (a) in Fig. III.1]. The C2 correlation is the leading
term of the correlation between two intensities scattered in two different directions for an integrated
illumination [panel (b) in Fig. III.1]. Microscopically, this term comes from the crossing of trajectories
inside the medium, thus to the non gaussian behavior of light. This C2 correlation is also called long-
range intensity correlations. Its existence has been predicted in the end of the 80’s in transmission of
a thick disordered medium [54, 55, 53, 56]. First measurements of long range correlations appeared
few years later in optics [57, 58] and for microwaves [59]. The C3 correlation is the leading term
of the fluctuation of the integrated intensity when the medium is excited with all possible channels
[panel (c) in Fig III.1]. It corresponds to measurements in electronic experiments where all modes are
excited when electrons enter a conductor. The C3 term is thus the one responsible for the universal
conductance fluctuation. Microscopically, this term comes from the crossing of trajectories twice
inside the medium, thus it also contributes to the non gaussian behavior of light as represented
in Fig III.2. For a review about speckle correlations see ref. [37]. Another contribution to the
intensity-intensity correlation function has been introduced in 1999 as the dominant term of the
intensity-intensity in two distant speckle spots produced by a point source. This contribution has
been called the C0 correlation [60, 61, 62, 63]. Diagrammatically it corresponds to the exchange of

1We can also observe the intensity in one direction or in one given position and vary the exciting fields.
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four ballistic fields using one extra scatterer at the entrance of the scattering media before leaving
diffusively (this contribution will be discussed in details in Chap. IV) .

Figure III.2 – Panel (a): leading term of the experiments represented in [panel (a) in Fig. III.1] in the diffusive
regime (C1). Panel (b): one of the two leading term of the experiments represented in [panel (b)
in Fig. III.1] in the diffusive regime (C2). Panel (c): one of the leading term of the experiments
represented in [panel (c) in Fig. III.1] in the diffusive regime (C3).

Comparing this splitting with that given in Chap. II
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we understand that the diagrams giving rise to C0, C2 or C3 are all contained in ⟨δE1δE
∗
1δE2δE

∗
2⟩c.

In a nutshell, ⟨δE1δE
∗
1δE2δE

∗
2⟩c is a complex quantity which takes into account all possible ways to

connect four fields inside the disorder medium. When a particular experiment makes one of those
terms dominate the other, we can study them independently. Doing so we understand the different
part of this complicated quantity ⟨δE1δE

∗
1δE2δE

∗
2⟩c one by one. Let us illustrate this using the

example of microwave experiments [64, 65, 66]. In these measurements one has direct access to the
field amplitude and phase (which is not the case in optics and in electronics). One can thus play with
Eq. (II.15), measuring the C1 correlation independently and have a direct access to ⟨δE1δE

∗
1δE2δE

∗
2⟩c

(substracting C1) without any integration. Doing so one managed to study carefully the exit vertex
of the long-range diagrams without integration. This provided important informations about this
part of the scattering sequence.

Analytical descriptions of mesoscopic effects

Let us discuss the limitations of the analytical methods used in studies of non-gaussian correlations.
First let us point out that there are two analytical approaches to calculate mesoscopic correlations:
the microscopic approach (or diagrammatic) and the random matrix theory (RMT) (see refs. [67, 68]).

• Diagrams have an appealing property in providing a clear physical picture in term of scattering
sequences. The shortcoming of the diagrammatic approach is that there are easy to compute
only in the diffusive regime (k0ℓ ≫ 1 and b ≫ 1). Let us also stress that because diagrammatics
is a perturbative approach, extra care must be taken when one wants to add a diagram to the
model.

• The other approach, the RMT, is based on simple arguments of unitarity and time reversal
symmetry, and works in all regimes. Nonetheless it is harder to give a physical interpretation
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to the results and the exact form of the correlation functions cannot be obtained with this
method [69, 70].

In this thesis we work with diagrammatic technique. We will thus not discuss the RMT approach in
detail.

Limitations of diagrammatic techniques

The diagrammatic method is based on the decomposition of the scattering sequences into building
blocks. The knowledge of the building blocks allows us to calculate every scattering sequence. It
is important to note that the diagrammatic representation in Fig. III.2 is adequate only for a thick
(b ≫ 1) and dilute (k0ℓ ≫ 1) medium in transmission. Beyond this regime, we face two difficulties:
the building blocks are harder to compute analytically, and additional diagrams need to be derived.
Let us discuss the example of the reflection geometry. In that case it has been claimed that the usual
model does not work [71]. In transmission through a thick and dilute sample, intensity-intensity
correlation requires the use of a complicated object called Hikami vertex [72]. This vertex represents
the exchange of partners as depicted in panel (b) in Fig. III.2. The study of the reflection geometry
led to two questions:

• Is the Hikami vertex complete? As detailed in App. .3.3 this vertex considers that fields can
only be scattered by impurities by pairs, and neglects for instance the possibility that four
fields scatter at the same impurity.

• Is the usual decomposition of the correlation function represented in Fig. III.2 still true in the
reflection configuration?

The first attempt to go to a higher order in the expression of the vertex has been presented in ref. [73].
This discussion has been followed in refs. [39, 74] in which it is shown that the higher order terms in
the Hikami vertex add additional terms to the intensity-intensity correlation function. Those terms
are called by the authors of ref. [39] incoherent contribution to the non-gaussian correlation. To our
knowledge they have not been observed so far. These authors also tried to consider all the possible
diagrams in order to represent the intensity-intensity correlation in reflection of a scattering medium
[71, 75, 76, 77]. To proceed they use the radiative transfer equation to represent the propagation
close to the boundaries (which is important in a reflection configuration) and consider more diagrams
than in the usual approach. Indeed in the usual picture of long-range correlation given in Fig. II.16,
two diffuse intensities meet inside the medium, pairs of fields exchange, and two diffuse intensities
leave towards the measurements points. This contribution does not take into account, for instance,
the scattering sequences where one ballistic intensity meets a diffuse intensity, exchange fields and
then leave diffusively. Adding those terms is important in reflection according to ref [71].

From this discussion we see that diagrammatic techniques are not necessarily complete. New ob-
servable need to be studied to strengthen these techniques. The reflection configuration is a good
example of this limitation, for which it can be safer to use RMT [78, 70, 79]. In this thesis we focus
on a new configuration, namely the reflection/transmission (R/T) geometry2. We expect this config-
uration will provide new observables that will help us to improve our understanding of diagrammatic
techniques.

2Let us stress that to our knowledge, R/T correlations have been discussed only twice before our work [80, 71].
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III.2 Average field

The first building block we need to derive the expression of the intensity-intensity correlation function
in R/T is the average field.

III.2.1 Cluster expansions for point dipoles

The total field for a given configuration of disorder can be written in operator3 representation:

E = E0 +
N

j=1
G0TjE0 +

N
j=1

N
k=1
k ̸=j

G0TkG0TjE0 + ... (III.2)

with N the number of scatterers in the complex medium, G0 the Green function of the wave equation
in vacuum, E0 the incident field and Tj the T-matrix of particle j. The T-matrix takes into account
all the scattering from a given particle. In the case of point dipoles it takes the form

Tj(r′, r′′) = α(ω)k2
0δ(r′ − rj)δ(r′′ − rj) (III.3)

with α the polarizability of the particles. For resonant scatterers in 2D it takes the form

α(ω) = − 2Γ
k2

0(ω − ω0 + iΓ/2) (III.4)

where ω0 is the resonance frequency and Γ the line width. This specific form of the polarizability
fulfills the optical theorem (energy conservation).

Equation (III.2) is called the cluster expansion and has been derived in ref [27]. It decomposes
the field over scattering paths of different number of scattering events. Indeed the first term of
Eq. (III.2) corresponds to the incident field, while the second term corresponds to the single scattering
contribution (involving all paths containing only one scattering event), etc.

III.2.2 Dyson Equation

Equation (III.2) allows us to perform the averaging process. In the case of N identical particles
contained in a volume V , this averaging process consists in changing randomly the position of the
scatterers. Taking the average of Eq. (III.2) we can write

⟨E⟩ = E0 +
N

j=1
G0⟨Tj⟩E0 +

N
j=1

N
k=1
k ̸=j

G0⟨TkG0Tj⟩E0 + ... (III.5)

We can associate to the first term the operator ΣISA given by

ΣISA =
N

j=1
⟨Tj⟩. (III.6)

3For instance the second term of Eq. (III.2) means
 N

j=1 G0(r − r′′)Tj(r′′, r′)E0(r′)dr′′dr′.



32 Chapter III. R/T correlation in the diffusive regime

The subscript ISA (for independent scattering approximation) mathematically means that the T
matrix of two different scatterers are not correlated. In the ISA the third term in Eq. (III.5) sim-
ply reads ΣISAG0ΣISA. Nonetheless if some correlations exist between two different scatterers an
additional contribution can exist. We can define Σcorr as the unfactorizable part of this term as

ΣISAG0ΣISA + Σcorr =
N

j=1

N
k=1
k ̸=j

⟨TkG0Tj⟩. (III.7)

The same reasoning can be applied to each term of the sum in Eq. (III.5). Taking all the unfactor-
izable terms into account, and including them into a single quantity called self energy Σ

Σ = ΣISA + Σcorr + ... (III.8)

one can show that the average Green function4 obeys the equation

⟨G⟩ = G0 +G0Σ⟨G⟩ (III.9)

known as the Dyson equation. Equation (III.9) is exact, the complexity of the problem being hidden
in the self energy Σ. Knowing the self energy, we can obtain the expression of the average Green
function transforming Eq. (III.9) into

⟨G(k)⟩ =


1
G0(k) − Σ(k)

−1

. (III.10)

The free space Green function can be easily calculated using Helmholtz equation in the (k, ω) domain
and reads G0(k) = 1/ (k2 − k2

0). Thus we can write the expression of the average Green function the
following way

⟨G(k)⟩ = 1
k2 − k2

eff

(III.11)

with k2
eff = k2

0 + Σ(k). Let us stress that Eq. (III.11) has the exact same form as the equation G0
with the simple change k0 → keff . The presence of the disordered medium can thus be represented
for the average field by an effective medium with an index of refraction neff = n + in′′ [when Σ(k)
is approximated by Σ(k0)]. The attenuation from scattering is the cause of the presence of the
imaginary part of the index. We can link n′′ to the scattering mean free path n′′ = 1/(2k0ℓ). For
dilute systems composed of point scatterers the self energy has a simple expression Σ ≃ ΣISA = ρk2

0α
in terms of the polarizability and of the density of the scatterers. From Eq. (III.11) we can show
that the average Green function of a disordered medium reads in real space

⟨G(r)⟩ =


(i/4) H0(keffr) for 2D scalar waves
exp (ikeffr)

4πr for 3D scalar waves.
(III.12)

In the 2D expression H0 is the Hankel function of first kind and order zero.

III.2.3 Average field inside a slab illuminated with a plane wave

The determination of the average Green function allows us to calculate the average field for a slab
illuminated by a monochromatic plane wave. To do so we can use the propagator of the average

4It is the Green function of the equation followed by the average field.
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field5 which acts on the incident wave of transverse vector qa:

⟨E(r)⟩qa = −2ika


S
⟨G(r − r1)⟩E0 exp (−iqa.r1,⊥) dr1,⊥ (III.13)
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with ka =

k2

eff − q2
a defined with a positive imaginary part (the scattered medium is defined for

0 < z < L) and r1,⊥ the transverse component of the vector r1. Note that when qa = 0 (normal
incidence)

⟨E(r)⟩ = E0 exp

i

k2

effz


≃ E0 exp (ik0z) exp[−z/(2ℓ)] (III.14)
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Figure III.3 – Imaginary part of the mean field versus its real part for various optical thicknesses (L varies and
k0ℓ = 10). The blue curve corresponds to Eq. (III.14) calculated for z ≃ L while the red crosses
correspond to numerical calculation of the average transmitted field.

In Fig. III.3, we test the validity of Eq. (III.14). To do so we represent the imaginary part of the
analytically calculated average transmitted field (blue solid line) versus its real part, varying the
optical thickness of the medium (we set k0ℓ = 10 and we vary L from 0.5ℓ to 7ℓ). Additionally we
represent the numerically calculated average transmitted fields at specific optical thicknesses (red
crosses) and observe a very good agreement between analytical and numerical calculations. For a
fixed mean free path, varying the optical thickness has two effects on the average transmitted field:
a dephasing effect simply due to the fact that the field travels through a longer distance L = bℓ when
b increases, and a decrease of its absolute value due to scattering. This result is in good agreement
with Fig. II.4 in which we plot the numerically calculated absolute value of the transmitted average
field versus the optical thickness, and observe an exponential behavior.

5As for free-space propagation, we will state that the propagator for the field between two parallel plane is linked
to the derivative along the normal direction of the average Green function [81].



34 Chapter III. R/T correlation in the diffusive regime

Average field in reflection

In reflection the discussion becomes different. We defined the reflected field as the scattered field
measured in reflection, a quantity which does not follow the same equation as the total field. An easy
way to discuss the scaling of the average reflected field is to consider that it is created by reflections
on the boundaries of the effective medium6. For dilute samples we can show that ϵeff = 1 + ρα
thus neff = √

ϵeff ≃ 1 + i/(2k0ℓ). From the value of neff we can calculate the transmission and
reflection factors at the different interfaces (for instance the reflection factor at the first interface is
r = (1 − neff )/(neff + 1) ≃ (−i)/[4k0ℓ]). Taking into account all the multiple reflection we obtain

⟨ER⟩ = rE0


1 − t1t2 exp[2ikeffL]

1 + r2 exp[2ikeffL]


≃ −iE0

4k0ℓ
. (III.15)

The last equality is more and more accurate as the optical thickness increases (since it shows that
the Fabry-Perot effect becomes negligible). In Fig. III.4 we plot the absolute value of the numerically
calculated average reflected field (for optical thicknesses varying from 2 to 5) versus k0ℓ, and the
analytically calculated absolute value of the average reflected field in the limit b → ∞ (thus using
the right-hand side of Eq. III.15). We find a good agreement between numerics and analytics.
Let us stress that the oscillating terms coming from the Fabry-Perot effect at the boundaries of
the effective medium can be well described by the analytical formula and becomes negligible when b
increases due to extinction of the average field. The important point is that for all optical thicknesses
|⟨ER⟩| ∝ E0/ (k0ℓ) and is thus a small quantity.
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Figure III.4 – Modulus of the average reflected field versus the parameter k0ℓ. The blue solid line corresponds
to the analytical calculation taking only into account the reflection at the first boundary z = 0
[right hand side of Eq. (III.15)], thus corresponding to the limiting case b → ∞. The dashed lines
corresponds to numerical calculation of the absolute value of the average reflected field for optical
thicknesses from 2 to 5.

III.3 Average intensity

In the previous section, we were interested in the average field in reflection and transmission. We
have seen that the average transmitted field is exponentially decreasing with the optical thickness of
the medium, and that the average field in reflection scales with the small parameter 1/ (k0ℓ). Let us
now study the second moment of the fields in reflection and in transmission.

6For the average transmitted field we did not take those terms into account because they are sub-leading. In the
remaining part of this work we neglect the boundaries of the effective medium.
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III.3.1 Bethe-Salpeter equation

Let us multiply Eq. (III.2) by its complex conjugate (taken at two different positions) and take the
average value of the resulting equation. Doing so, we can cast the averaged equation in the following
closed form, known as the Bethe-Salpeter equation

⟨E(r)E∗(r′)⟩ = ⟨E(r)⟩⟨E∗(r′)⟩

+


⟨G(r, r3)⟩⟨G∗(r′, r4)⟩ U(r4, r3, r2, r1)⟨E(r2)E∗(r1)⟩dr1dr2dr3dr4. (III.16)

The first term comes from the non correlated propagation of the field and its complex conjugate, and
the second term takes into account all the possible way to correlate two fields. Equation. (III.16)
is the exact equivalent of Dyson equation for the moment of order two of the field. It is an exact
equation, all the complexity of the problem is contained in the vertex operator U(r4, r3, r2, r1) (which
can be written in terms of the T-matrix). The idea is the same as for the self energy. We can express
U as the sum of different terms:

U = Uladder + Ucorr +... (III.17)
For diluted systems, the dominant term to first order in (k0ℓ)−1 is given by Uladder:

Uladder =
N

j=1
⟨TjT

∗
j ⟩ = γδ(r1 − r2)δ(r3 − r2)δ(r4 − r3) (III.18)

γ = ρk4
0|α|2 being the average weight of an interaction with the disorder, and is equal to

γ =


4k0

ℓ
for 2D scalar waves

4π
ℓ

for 3D scalar waves.
(III.19)

Inserting Eq. (III.18) into Eq. (III.16) we obtain the expression of the field-field correlation function
in the ladder approximation:

⟨E(r)E∗(r′)⟩ = ⟨E(r)⟩⟨E∗(r′)⟩ + γ


⟨G(r, r1)⟩⟨G∗(r′, r1)⟩⟨E(r1)E∗(r1)⟩dr1. (III.20)

Equation (III.20) is hard to use in this form since it is a recursive equation (the second order moment
is expressed as an integral of itself). Let us define the ladder operator by

L(r1, r2) = γδ(r1 − r2) + γ


|⟨G(r2, r3)⟩|2 L(r3, r1)dr3. (III.21)

This allows us to rewrite the second moment of the field in terms of the first moment in the form

⟨E(r)E∗(r′)⟩ = ⟨E(r)⟩⟨E∗(r′)⟩ +


⟨G(r, r2)⟩⟨G∗(r′, r2)⟩ L(r1, r2)⟨E(r1)⟩⟨E∗(r1)⟩dr1dr2. (III.22)

Let us discuss Eq. (III.22) and Eq. (III.21). Together they give a nice picture of the propagation of
the second order moment of the field. Indeed, looking at Eq. (III.22), we see that the second moment
is composed of two terms. The first term consists in the product of the first moment (average fields
that propagate separately). We know that this part is decreasing exponentially with the optical
thickness in transmission. The second term describes the propagation of two mean fields up to a
point where they start to travel together (scattered by the same impurities), which we represent
mathematically with the operator ladder L(r1, r2). One can see by iterating Eq. (III.21) that the
ladder operating from r1 to r2 takes into account all scattering processes where the field and its
complex conjugate are scattered once, twice, or any number of times as long as they do it together
from r1 to r2. The final part of the propagation is done from r2 to the observation points r and r′

through the average Green functions.
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III.3.2 A diffusion equation for the “diffuse” intensity

We have seen in the introduction that for a thick medium, the diffuse intensity (which coincides with
the second term in Eq. (III.22) taken at r = r′) decreases slowly compared to the ballistic intensity.
This implies that the ladder operator should decrease more slowly than the absolute value of the
mean Green function. Taking this into account in Eq. (III.21), we can show that the ladder operator
follows a diffusion equation

∆r1 L(r1, r2) = −dγ

ℓ2 δ(r1 − r2) (III.23)

with d the dimension of the problem. Taking the Laplacian of the expression of the diffuse intensity
given by the second term in the right hand side of Eq. (III.22), we can show that:

− ℓ2

d
∆⟨|δE(r)|2⟩ = |⟨E(r)⟩|2 (III.24)

in which we remind that ⟨|δE(r)|2⟩ = Id(r). Taking into account that, for a plane-wave incident on
the slab at normal incidence we have |⟨E(r)⟩|2 = I0 exp (−z/ℓ) we can show that

⟨I(z)⟩ = dI0(1 + z0/ℓ)
L+ 2z0

(L+ z0 − z) − (d− 1)I0 exp


−z

ℓ


(III.25)

with ⟨I(z)⟩ = |⟨E(r)⟩|2  
Ib(r)

+ ⟨|δE(r)|2⟩  
Id(r)

and z0 the so called extrapolation length [82, 83] given by
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Figure III.5 – Numerical and analytical calculations of the average intensity ⟨I⟩ versus the depth inside the
medium normalized by L for various optical thicknesses (L varies and k0ℓ = 10).

z0 =


πℓ

4 for 2D scalar waves
2ℓ
3 for 3D scalar waves.

(III.26)

In Fig. III.5 we plot the numerical and analytical calculations of the average intensity ⟨I⟩ versus the
depth inside the medium normalized by L for various optical thicknesses. There are two regimes of
depths for all curves. For z ≤ ℓ, the ballistic light couples into the scattering medium while for z ≫ ℓ
there is no more ballistic intensity into the medium. This part of the curves (z ≫ ℓ) has a linear
decay characteristic of the diffusive regime. Let us define

⟨IT ⟩ = ⟨I(rT )⟩ (III.27)

and
⟨IR⟩ = |⟨ER⟩|2 + Id(rR). (III.28)
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We stress that ⟨IR⟩ ≠ ⟨I(rR)⟩ = |⟨E(rR)⟩|2 + Id(rR) because of the difference of average fields in
the two expressions. From the two previous subsections we have ⟨IT ⟩ ≃ Id(rT ) when b ≫ 1 and
⟨IR⟩ ≃ Id(rR) when k0ℓ ≫ 1. In the diffusive regime (b ≫ 1 and k0ℓ ≫ 1) the average intensities in
reflection and in transmission are thus equal to their diffuse components.

III.3.3 The ladder operator for a slab

We have seen in the previous subsection that the ladder operator is at the heart of the derivation
of the diffusion equation for the diffuse intensity. This operator propagates pairs of fields diffusively,
and can thus be directly used to calculate the diffuse intensity at a given position. It is one of the
building blocks we need to calculate more advanced observables in the diagrammatic approach. Let
us remind that the slab is invariant along its transverse direction. The ladder operator has thus the
property

L(r1, r2) = L(z1, z2, r1,⊥ − r2,⊥) =


L(z1, z2,q) exp[iq. (r1,⊥ − r2,⊥)] dq
(2π)d−1 . (III.29)

as represented in Fig. III.6. We obtain

Figure III.6 – Schema of the ladder operator propagating a pair of fields from point r1 to point r2. In the slab
geometry the ladder operator only depends on (z1, z2, r2,⊥ − r1,⊥)

L(z1, z2,q) = dγ

ℓ2q

sh[q (z< + z0)] sh[q (L+ z0 − z>)]
sh[q (L+ 2z0)]

(III.30)

where z< = min(z1, z2) and z> = max(z1, z2).

An example of use of the ladder operator: the diffuse intensity

Knowing the ladder expression we can access the diffuse intensity by writing:

⟨|δET |2⟩ =


|⟨E(r1)⟩|2 L(r1, r2)|⟨G(rT − r2)⟩|2dr1dr2 (III.31)

≃


|⟨E(z1)⟩|2 L(z1, L, rT,⊥ − r1,⊥)|⟨G(rT − r2)⟩|2dr1dr2.

To go from the first to the second line, we use the fact that the ladder operator follows a diffusion
equation whose characteristic size is L, while the absolute value of the average Green function
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decreases on a typical scale of order ℓ. We thus make the approximation r2 ≃ rT in the expression
of the ladder which allows us to disconnect the integrations over r1 and r2. Using the fact that

|⟨G(rT − r2)⟩|2dr2 = 1/γ we can write

⟨|δET |2⟩ ≃ 1
γ

 L

0
|⟨E(z1)⟩|2 L(z1, L,q = 0)dz1 (III.32)

Moreover we have


exp(−z/ℓ)f(z)dz ≃ ℓf(ℓ) since f does not vary on the scale of ℓ so that we can
write ⟨|δET |2⟩ in the following way:

⟨|δET |2⟩ ≃ ℓ

γ
L(ℓ, L,q = 0) (III.33)

≃
dI0(1 + z0

ℓ
)z0

L+ 2z0
.

We recover Eq. (III.25) in the limit b ≫ 1 in which we can neglect the exponential contribution to
the diffuse intensity.

Let us now detail the diagrammatic representation we gave for the diffuse intensity in Fig. II.7,
comparing it with Eq. (III.31). In panel (b) in Fig. II.7, we represent the diffuse intensity, and see
that at the beginning of the propagation we use straight lines. This corresponds to the coupling to
the ladder operator using |⟨E(r1)⟩|2 in Eq. (III.31). The twisting lines corresponds to L(r1, r2) and
the straight lines at the final part corresponds to |⟨G(rT − r2)⟩|2.

The derivation of the ladder operator and the average fields allows us to calculate all diagrams
representing scattering sequences in the Gaussian approximation (since both tools represent properly
the diffusive behavior of the light in the complex medium).

III.4 C1 correlation

The ladder operator introduced in the previous section is a powerful tool to study wave propagation
in a complex medium. Indeed, as discussed in Chap. II, most of the statistics of the fields is governed
by its diffusive behavior, which is described by the ladder operator. With this operator we can
calculate connected quantities of order two (non factorizable moments of two fields). For instance
in the previous section we have derived the expressions of ⟨|δET |2⟩ and ⟨|δER|2⟩. In this section, we
derive ⟨δER1δE

∗
R2⟩, ⟨δET 1δE

∗
T 2⟩ and ⟨δERδE

∗
T ⟩. These field-field correlation functions give access to

the C1 correlation in transmission, reflection or reflection/transmission.

III.4.1 C1 correlation in reflection/transmission

The purpose of this section is to derive the expression of the C1 function correlation between reflection
and transmission (R/T). We also derive in App. (.3) the expressions of the C1 correlation functions
in reflection/reflection (R/R) and transmission/transmission (T/T) in order to compare the three
configurations. Let us remind first the definition of the C1 correlation function between two points
r1 and r2

C1(r1, r2) = |⟨δE(r1)δE∗(r2)⟩|2

⟨I(r1)⟩⟨I(r2)⟩
. (III.34)
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Figure III.7 – Diagrammatic representation of the C1 correlation in T/T [panel (a)], R/R [panel (b)] and R/T
configurations [panel (c)]. We see that the pairs of fields start their propagation as average fields
to enter the ladders (red with blue and vice versa). At the exit of the ladders they travel alone as
average Green’s functions to reach the two measurements points.

In Fig. III.7 we give the diagrammatic representation of C1 in T/T [panel (a)], R/R [panel (b)]
and R/T configurations [panel (c)]. To calculate C1 in R/T we thus have to express the field-field
correlation function between reflection and transmission. It reads

⟨δET δE
∗
R⟩ =


|⟨E(r1)⟩|2 L(r1, r2)⟨G(rT − r2)⟩⟨G(rR − r2)⟩∗dr1dr2 (III.35)

= I0


exp


−z1

ℓ


L(z1, z2,q)eiq.(r1,⊥−r2,⊥)⟨G(k1)⟩⟨G(k2)⟩∗

× eik1.(rT −r2)e−ik2.(rR−r2)dr1dr2
dk1

(2π)d

dk2

(2π)d

dq
(2π)d−1

= I0


exp


−z1

ℓ


L(z1, z2,q = 0) eik1z(L−z2)

k2
1z + k2

T − k2
eff

eik2zz2

k2
2z + k2

T − k∗2
eff

× eikT .∆Rdz1dz2
dk1z

(2π)
dk2z

(2π)
dkT

(2π)d−1 .

To proceed further we disconnect the entry point of the ladder from the ballistic intensity considering
that they vary on two different length scales, and we integrate over k1z and k2z. This leads to

⟨δET δE
∗
R⟩ ≃ ℓI0


L(0, z2,q = 0)ie

ik1(L−z2)

2k1

ieik2z2

2k2
eikT .∆Rdz2

dkT

(2π)d−1 . (III.36)

In Eq. (III.39) k1 and k2 are

k1 =

k2

0 − k2
T + i

k0

ℓ
= K + iK ′ (III.37)

k2 =

k2

0 − k2
T − i

k0

ℓ
= −K + iK ′ (III.38)
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with K ′ ≥ 0. We can perform the integration over z2, which gives

⟨δET δE
∗
R⟩ ≃ ℓI0


L(0, z2,q = 0)e

i(K+iK′)(L−z2)ei(−K+iK′)z2

4(K2 +K ′2) eikT .∆Rdz2
dkT

(2π)d−1 (III.39)

≃ dγI0z0

ℓ(L+ 2z0)


(L+ z0 − z2)

ei(K+iK′)(L−z2)ei(−K+iK′)z2

4(K2 +K ′2) eikT .∆Rdz2
dkT

(2π)d−1

≃ dγI0z0

ℓ(L+ 2z0)


FRT (K,K ′)eikT .∆R dkT

(2π)d−1 .

The expression involves the Fourier transform of the quantity FRT that reads

FRT (K,K ′) =
e−(iK+K′)L


−1 + 2iKz0 + e2iKL[1 − 2iK(L+ z0)]


4(K2 +K ′2)4K2 . (III.40)

In App. (.3) we present the same calculation for C1 in transmission and in reflection. In these cases
we end up with the same form of the field-field correlation as in Eq. (III.39), but with two different
functions FT T and FRR: 

FT T (K,K ′) ≃ 1 + 2K ′z0

4K ′2 (4[K2 +K ′2])
FRR(K,K ′) ≃ 2K ′L

4K ′2 (4[K2 +K ′2]) .
(III.41)

We can notice that: 
⟨|δET |2⟩ ≃ dγI0z0

ℓ(L+ 2z0)


FT T (K,K ′) dkT

(2π)d−1

⟨|δER|2⟩ ≃ dγI0z0

ℓ(L+ 2z0)


FRR(K,K ′) dkT

(2π)d−1 .
(III.42)

We can now express the C1 correlation in R/T normalizing Eq. (III.39) with Eq. (III.42):

C1(rR, rT ) =




FRT (K,K ′)eikT .∆R dkT

(2π)d−1


2


FRR(K,K ′) dkT

(2π)d−1


FT T (K,K ′) dkT

(2π)d−1

(III.43)

while in R/R and T/T it reads

C1(rR1, rR2) =




FRR(K,K ′)eikT .∆R dkT

(2π)d−1


2


FRR(K,K ′) dkT

(2π)d−1

2

C1(rT 1, rT 2) =




FT T (K,K ′)eikT .∆R dkT

(2π)d−1


2


FT T (K,K ′) dkT

(2π)d−1

2 .

(III.44)

In Fig. III.8 we represent in panel (a) the numerically calculated C1 correlation in R/T, versus the
transverse distance between the points normalized by λ, and in panel (b) the analytical calculation
Eq. (III.43) both for a dilute (k0ℓ = 10) and not too thick (b = 2) medium. It is hard to measure the
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C1 correlation in R/T for large b because it decreases strongly with b as can be understood in panel
(c) in Fig. III.7. Indeed in this diagrammatic representation of C1(rR, rT ), we see that the average
Green functions connecting the ladder and the measurement points have to cross the entire medium.
This part is really sensitive to the optical thickness of the sample and makes the C1 correlation
between reflection and transmission very weak when b is large. Let us stress that the difference of
amplitude between analytics and numerics in Fig. III.8 could be due to the diffusive ladder operator
which should not be used for optical thicknesses close to unity, or to the use of bulk Green’s functions
instead of Green’s functions of the slab. Nevertheless we see that we obtain a quite good estimate
of C1 even for an optical thickness b = 2.
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Figure III.8 – Analytical and numerical calculation of C1(rR, rT ) versus the transverse distance between the
points normalized by λ for a complex medium of optical thickness b = 2 and k0ℓ = 10.
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Figure III.9 – Comparison between C1 in R/R and in T/T (analytically and numerically) of a thick (b = 10) and
dilute (k0ℓ = 10) complex medium.

In Fig. III.9 we plot the numerically and analytically calculated C1 correlation in R/R and T/T for
a thick (b = 10) and dilute (k0ℓ = 10) complex medium versus the transverse distance normalized by
λ. We observe a good agreement between numerics and analytics for both R/R and T/T geometry.
The C1 correlation is in both cases an oscillating function whose value is unity at zero distance
between the points, with a typical oscillating distance on the order of λ/27. Appart from the small

7Let us notice that the need for a value of 1 at ∆R = 0 for C1 in R/R and T/T is what led us to choose the
normalizations in Eq. (III.42)
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deviations between numerics and analytics we see that there is a small difference between reflection
and transmission due to the difference in exit point of the ladder operator (difference between FRR

and FT T ). It is interesting to see that the analytical model captures this difference. Let us stress
that if we make the crude approximation to completely disconnect the ladder from the exit vertex
we obtain the same analytical function for C1 in R/R and in T/T.

In summary, we have derived an expression for the gaussian correlation between intensities in R/R,
T/T and R/T. We have seen that C1 in R/R and T/T is one at ∆R = 0 while it is not the case in
the R/T geometry. This is in good agreement with the discussion we had in the introductory section
in Fig. II.12. In the next subsection we discuss the scaling of the value of C1(rR, rT ) at ∆R = 0 in
the diffusive regime.

Scaling at large optical thickness

In this section we derive a scaling expression for the value of C1 at ∆R = 0 in R/T in 2D and in 3D
in the diffusive regime. To do so we start with the following expression of C1:

C1(∆R = 0) = 1
⟨IT ⟩⟨IR⟩

 dγI0z0

ℓ(L+ 2z0)


FRT (K,K ′) dkT

(2π)d−1


2

. (III.45)

Keeping in mind that ⟨IT ⟩ ∝ ℓ/L and ⟨IR⟩ ∝ 1 we can write

C1(∆R = 0) ∝ L

ℓ

 dγI0z0

ℓ(L+ 2z0)


FRT (K,K ′) dkT

(2π)d−1


2

. (III.46)

To find an equivalent of C1(∆R = 0) at large optical thickness we have to work on the expression of
FRT , K and K ′ for large b. The derivation is done in App. .3 and we obtain

C1(∆R = 0) ∝ 1
k0L

1
k2

0ℓ
2
L

ℓ
exp


−L

ℓ


(III.47)

in the 2D case and
C1(∆R = 0) ∝ 1

k2
0L

2
1
k2

0ℓ
2
L

ℓ
exp


−L

ℓ


(III.48)

in the 3D case. For large optical thickness, the important term in Eq. (III.47) and Eq. (III.48) is
the negative exponential. This term prevents the field in reflection to be correlated with the field in
transmission, and thus suppresses the C1 correlation between reflection and transmission for large
b. We can conclude this subsection by going back to Fig. II.12 and notice that we now have all the
analytical expressions to discuss this figure. As we guessed in Chap. II, the field-field correlation
function is strong in reflection and in transmission for points separated by distances smaller than λ,
while it is small in R/T for thick samples.

III.5 Non-gaussian correlation between reflected and trans-
mitted intensities

The derivation of Eq. (III.47) and Eq. (III.48) in the previous section tells us that when the optical
thickness becomes large, the C1 contribution to the I-I correlation between reflection and transmis-
sion decreases exponentially. Nonetheless in Fig. II.15 we have seen that the gaussian contribution is
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not the only contribution to the I-I correlation in transmission. In this section we derive the leading
term of the non-gaussian correlation between reflected and transmitted intensities for a thick and
dilute sample, and show that it dominates the I-I correlation8 between reflection and transmission.

III.5.1 A diagrammatic guess

If there is such a non-gaussian correlation between reflected and transmitted intensities in the diffusive
regime, what could be the leading term that describes it? In the introduction we discussed some of
the important works on the subject of non-gaussian correlations in complex media. We have seen
that depending on the observable we are interested in, different terms can dominate. Let us first
remind that we illuminate the sample with a plane wave and measure intensities in a speckle spot on
the sample surface. In transmission the result of this experiment is dominated by C1. Nonetheless
we have seen that in R/T configuration, C1 is exponentially decreasing with the optical thickness of
the sample, thus should be negligible in this case. We know that the first correction to the gaussian
character of the field in T/T in the diffusive regime comes from one crossing of two trajectories inside
the medium9.

Figure III.10 – Two typical diagrams contributing to the connected four-field correlations. In R/T the diagram
depicted in panel (a) is negligible and we only have to consider the one represented in panel (b).

In Fig. III.10 we represent these two possibilities in the R/T geometry. Panel (a) corresponds to the
case where the two pairs of fields propagates first together (red with red and blue with blue), then
exchange inside the medium and at the end have to exchange again to eventually be measured in
two different points. The last exchange looks like the exit vertex of the C1 correlation in R/T. Panel
(b) corresponds to the case where the fields exchange at the entrance (red with blue and blue with
red), propagate and exchange inside the medium. After this exchange they can travel diffusively
through long distances to eventually be measured at the observation points. Analyzing these two
diagrams we already know how to calculate the diffusive propagations of the fields, but we have not
yet described how to account for their crossing inside the medium. This crossing is described formally
by an operator called a Hikami Box. At this point we would like to state it represents the exchange
of the four fields in a volume small enough so that the phase acquired during their exchange does not
suppress these terms on average. Let us now remind the conclusion from the last subsection where

8In the last subsection we show that in the diffusive regime the I-I correlation between reflection and transmission
is equal to the I-I correlation between reflection and transmission which justifies the a priori reduction of the problem
to the I-I correlation.

9It is important to stress that when b approaches unity this reasoning is not true anymore.
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we calculated the C1 correlation in R/T. We have seen that in this geometry the C1 correlation is
strongly suppressed because of the final part of this diagram (where the fields propagate through
the whole medium as average Green’s functions). Looking at panel (a) in Fig. III.10 we can see
that the same exit vertex appears in this diagram. We believe that this will prevent this diagram
from making a substantial contribution [compared to that in panel (b)]. Our first guess is that when
b ≫ 1, the scattering sequence dominating the I-I correlation between reflection and transmission is
the one depicted in panel (b) in Fig. III.10.

III.5.2 Analytical calculation of C2 between reflected and transmitted
intensities in the diffusive regime

In this subsection we calculate the diagram represented in panel (b) in Fig. III.10 in the diffusive
regime. Let us call C2 the non gaussian contribution to the I-I correlation coming from this diagram.
Mathematically, this C2 contribution comes from a connected four fields correlation which reads

⟨δERδE
∗
RδE

∗
T δET ⟩C2 =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)|⟨G(rR − r3)⟩|2|⟨G(rT − r4)⟩|2dr1...dr4dρ1...dρ4. (III.49)

In this expression we recognize ⟨G(r)⟩ the average Green function of the wave equation and the
ladder operator L(r, r′). The new operator H(ρ1,ρ2,ρ3,ρ4) is the Hikami box that stands for the
diffusion partner exchange.

The Hikami vertex

The Hikami vertex (or Hikami box) represents the exchange of four fields in a small volume. It is a
function of four positions. ρ1 and ρ2 are the points where the two ladders enter the exchange, ρ3
and ρ4 are the points where they leave the exchange. In the first Born approximation for this vertex,
energy conservation imposes that there are three ways to exchange partners and we will call Ha, Hb

and Hc the contribution to the vertex coming from each part.

The first contribution Ha simply corresponds to the exchange with average Green’s function:

Ha(ρ1,ρ2,ρ3,ρ4) = ⟨G(ρ3 − ρ1)⟩⟨G∗(ρ4 − ρ1)⟩⟨G∗(ρ3 − ρ2)⟩⟨G(ρ4 − ρ2)⟩. (III.50)

Hb and Hc each contain one additional scattering event during the exchange:

Hb(ρ1,ρ2,ρ3,ρ4) = γ


⟨G∗(ρ4 − ρ1)⟩⟨G∗(ρ3 − ρ2)⟩

× ⟨G(ρ − ρ1)⟩⟨G(ρ − ρ2)⟩⟨G(ρ3 − ρ)⟩⟨G(ρ4 − ρ)⟩dρ, (III.51)

Hc(ρ1,ρ2,ρ3,ρ4) = γ


⟨G(ρ3 − ρ1)⟩⟨G(ρ4 − ρ2)⟩

× ⟨G∗(ρ − ρ1)⟩⟨G∗(ρ − ρ2)⟩⟨G∗(ρ3 − ρ)⟩⟨G∗(ρ4 − ρ)⟩dρ. (III.52)

After a cumbersome derivation, the sum of those three terms H = Ha + Hb + Hc reads

H(ρ1,ρ2,ρ3,ρ4) = h

4 (
1  

∆ρ1 + ∆ρ2 + ∆ρ3 + ∆ρ4 +
2  

2∇ρ1.∇ρ2 +
3  

2∇ρ3.∇ρ4)δ(ρ1,ρ2,ρ3,ρ4), (III.53)
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where δ(ρ1,ρ2,ρ3,ρ4) =

δ(ρ1 − ρ)δ(ρ2 − ρ)δ(ρ3 − ρ)δ(ρ4 − ρ)dρ and h is the weight of the vertex

defined in ref. [37] and given by

h =


ℓ5

16k3
0

for 2D scalar waves,
ℓ5

24πk2
0

for 3D scalar waves.
(III.54)

The physical interpretation of the Dirac term in Eq. (III.53) is that the phases difference due to
the exchange forces the exchange to happen in a small volume that can be considered point like.
We have labelled three terms in Eq. (III.53). In the literature dedicated to mesoscopic physics it is
often argued that term 1 is negligible (since it forces the crossing to occur at the sample surface, see
ref. [26]), while the two others give rise to equal contributions, see ref. [84]. This was the approach
we first adopted in ref. [85], where the Hikami vertex was replaced by twice the value of term 3.
We call Cout

2 the analytical form of the correlation calculated this way. Similarly, we call Cin
2 the

form obtained by keeping twice term 2. In fact, in the R/T configuration, there is no good reason to
neglect term 1, nor to assume that terms 2 and 3 are of equal amplitude. We write the full correlator
as

C2(rR, rT ) = C∆
2 (rR, rT ) + Cin

2 (rR, rT ) + Cout
2 (rR, rT )

2 , (III.55)

where the three contributions come from the three terms labelled in the vertex in Eq. (III.53).

Derivation of Cout
2

In this subsection we derive the component coming from twice the value of term 3 in Eq. (III.53).
The derivation of Cin

2 is almost identical and we will not detail it. Let us first deal with the entrance
and exit part of Eq. (III.49), using the fact that


|E(r1)|2 L(r1,ρ)dr1 = γ⟨I(ρ)⟩ (III.56)

and that 
|⟨G(r − r1)⟩|2dr1 = 1

γ
. (III.57)

Using those two equalities (and the fact that the exit ladders vary slowly at the scale of ℓ), we can
rewrite Eq. (III.49) as

⟨δERδE
∗
RδE

∗
T δET ⟩Cout

2
= h


⟨I(ρ)⟩2∇ L(ρ, rR).∇ L(ρ, rT )dρ. (III.58)

The complicated part of the calculation is the dot product between the gradient of the ladders. To
deal with it we can use Eq. (III.30). To do so let us rewrite Eq. (III.58) in the form

⟨δERδE
∗
RδE

∗
T δET ⟩Cout

2
= h


⟨I(z)⟩2∇[L(z, 0,q1) exp (iq1.[rR,⊥ − ρ⊥])].∇[L(z, L,q2) exp (iq2.[rT,⊥ − ρ⊥])]

× dρ⊥dz dq1

(2π)d−1
dq2

(2π)d−1

= h


dρ⊥dz dq1

(2π)d−1
dq2

(2π)d−1 ⟨I(z)⟩2 exp (iq1.[rR,⊥ − ρ⊥]) exp (iq2.[rT,⊥ − ρ⊥])

× [∂z L(z, L,q2)ez − iq2 L(z, L,q2)].[∂z L(z, 0,q1)ez − iq1 L(z, 0,q1)].



46 Chapter III. R/T correlation in the diffusive regime

We can integrate over the transverse component of ρ
exp (i[q1 + q2].ρ⊥) dρ⊥ = (2π)d−1δ(q1 + q2) (III.59)

and obtain

⟨δERδE
∗
RδET δE

∗
T ⟩Cout

2
= h


dz dq

(2π)d−1 ⟨I(z)⟩2 exp (iq.∆R) (III.60)

× [∂z L(z, L,q)∂z L(z, 0,q) + q2 L(z, L,q) L(z, 0,q)]

= h

dz

dq

(2π)d−1 ⟨I(z)⟩2 exp (iq.∆R)

dγ

ℓ2

2

×


sh (qz0)
sh (q[L+ 2z0])

2

ch (q[L− 2z]) .

To go from the first to the second line in Eq. (III.60) we use Eq. (III.30) and hyperbolic trigonometric
equalities. Now the integration over z is straightforward using the approximate form of the diffuse
intensity at large scale [compared to ℓ ,i.e. ⟨I(z)⟩ ≃ d(1 + z0/ℓ)(L+ z0 − z)/ (L+ 2z0)]: L

0
(L+ z0 − z)2 ch (q[L− 2z]) dz = −qL ch(qL) + (1 + q2L2(1 + 2z0/L+ 2z2

0/L
2)) sh(qL)

2q3 . (III.61)

This allows us to rewrite Eq. (III.60) as

⟨δERδE
∗
RδE

∗
T δET ⟩Cout

2
= h


dγ

ℓ2

2 
d(1 + z0/ℓ)
L+ 2z0

2  dq

(2π)d−1 exp (iq.∆R)


sh (qz0)
sh (q[L+ 2z0])

2

× −qL ch(qL) + (1 + q2L2(1 + 2z0/L+ 2z2
0/L

2)) sh(qL)
2q3 .

At this point we must take care of the dimension of the problem. Indeed in 3D we can use π

−π
exp (iq∆R cos[θ]) dθ = 2π J0(∆R) (III.62)

while in 2D we have to use ∞

−∞
exp (iq∆R) f(q)dq =

 ∞

0
2 cos (q∆R) f(q)dq (III.63)

valid if f(q) is an even function of the variable q. Changing the variables q′ = qL and normalizing
by

⟨|δER|2⟩⟨|δET |2⟩ ≃ d2(1 + z0/ℓ)z2
0/ℓ

L+ 2z0
(III.64)

we obtain the final expression of Cout
2 in 2D:

Cout
2 (rR, rT ) = −32L

πk0ℓ2
(1 + π

4 )
π2

 cos( q∆r
L

) sh(q z0
L

)2

q3 sh[q

1 + 2 z0

L


]2

×


−q ch(q) +

1 + q2


1 + 2z0

L
+ 2z2

0
L2


sh(q)


dq. (III.65)
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In 3D the expression is

Cout
2 (rR, rT ) = −45

8k2ℓ2

 J0( q∆r
L

) sh(q z0
L

)2

q2 sh[q

1 + 2 z0

L


]2

×


−q ch(q) +

1 + q2


1 + 2z0

L
+ 2z2

0
L2


sh(q)


dq. (III.66)

Other terms in the expression of C2

In App. we give the final expressions of all the terms entering Eq. (III.53). Let us here give the
starting point of their derivation. For Cin

2 the calculation is really close to that done in the previous
subsection. We simply have to change Eq. (III.58) into

⟨δERδE
∗
RδE

∗
T δET ⟩Cin

2
= h


|∇⟨I(ρ)⟩|2 L(ρ, rR) L(ρ, rT )dρ (III.67)

transform to the momentum space for the ladder and integrate over z. In ref. [84] it is stated that
we can either calculate Cin

2 or Cout
2 to have the full expression of C2 in the special case of T/T

correlation. In the case of the R/T geometry we cannot do the same, because Cin
2 gives a positive

contribution and Cout
2 gives a negative one.

To calculate the Laplacian terms we can use the diffusion equation for the ladder. For instance if we
consider the Laplacian term acting on the exit ladder going back in reflection, we obtain

⟨δERδE
∗
RδE

∗
T δET ⟩

C
∆3
2

= h

4


⟨I(ρ)⟩2∆ L(ρ, rR) L(ρ, rT )dρ

= −dhγ
4ℓ2 ⟨I(rR)⟩2 L(rR, rT ). (III.68)

III.5.3 Numerical validation

Taking all these terms into account one can calculate the C2 correlation function as the sum of all
terms. To validate the analytical model we numerically calculate the I-I correlation function in R/T
for three samples of same size (k0L = 120) and of varying mean free path. The results are shown
in Fig. III.11 versus the transverse distance normalized by L. The blue dashed line corresponds to
k0ℓ = 20 and b = 6, the red dashed line corresponds to k0ℓ = 15 and b = 8 and the green dashed
line corresponds to k0ℓ = 10 and b = 12. We also represent the analytical calculation of C2 for
parameters k0ℓ = 15 and b = 8.

Let us draw several conclusions from this figure:

• We see that C(rR, rT ) is a negative function of ∆R/L and has non zero values for ∆R/L ≤ 1.

• The maximum of the absolute value of this function is obtained for ∆R/L = 0 (when points
are in front of the other).

• When the optical thickness is large enough the amplitude of C(rR, rT ) appears not to depend
anymore on the mean free path of the system and depends on a single parameter k0L.

• The agreement with the analytical calculation is really good, we can thus conclude that in
the deep diffusive regime, C(rR, rT ) is dominated by the C2 correlation function [panel (b) in
Fig. III.10].
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Figure III.11 – Numerical calculation of the I-I correlation between reflection and transmission for three different
samples of same size (k0L = 120). The blue dashed line corresponds to k0ℓ = 20 and b = 6,
the red dashed line corresponds to k0ℓ = 15 and b = 8 and the green dashed line corresponds to
k0ℓ = 10 and b = 12. We also represent the analytical calculation of C2 for parameters k0ℓ = 15
and b = 8.

Large optical thickness scaling

In this section we discuss the expression of C2 in the limit of large optical depth b ≫ 1, and find that
C2(rR, rT ) = −f(∆r/L)/(k0L)d−1, where f(x) is a positive decaying function of range unity given in
2D by

f(x) =
 ∞

0

q cos(qx)
sh(q)


(1 + π/2)2 + π(1 + π/2)

4π(1 + π/4) + 1 + π/4
π

[−2q ch(q) + sh(q)(2 + q2)]
q2 sh(q)


dq (III.69)

and in 3D by

f(x) =
 ∞

0

q2 J0(qx)
sh(q)


21
20 + 5

4
[−2q ch(q) + sh(q)(2 + q2)]

q2 sh(q)


dq. (III.70)

In Fig. III.12, we represent the numerically calculated I-I correlation between reflection and trans-
mission normalized by 1/(k0L) and the analytical calculation of C2 normalized by 1/(k0L) for various
parameters. The x axis is the transverse distance between the points normalized by the size of the
sample. We observe a convergence of these curves towards −f(∆R). We also observe that the an-
alytical expressions becomes applicable only for very large optical thicknesses (b ≥ 60). This could
be due to the fact that the C2 diagram is composed of many operators that all needs to be in the
diffusive regime so that C2 is exactly equal to its large optical thickness limit.

This also suggests that the R/T correlation function becomes independent on the disorder strength
k0ℓ in the deep diffusive regime, and depends only on one parameter k0L.

Comparison between I-I and I-I correlation functions in the diffusive regime

Let us conclude this section by showing that in the diffusive regime, the I-I correlation function
between reflected and transmitted speckle patterns is equal to the I-I correlation function. The
main reason is the exponential decrease of the ballistic field in transmission, and the fact that the
reflected field is small in reflection. Let us call CI the correlation between intensities.
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Figure III.12 – Numerical calculation of the I-I correlation normalized by 1/(k0L), and analytical calculation
of (k0L)C2 for optical thicknesses from 6 to 600 and analytical expression of the limit of those
analytical expressions at large optical thickness. .

-2 -1 0 1 2

×10
-3

-20

-15

-10

-5

0

5

Figure III.13 – Numerical calculation of the I-I correlation (blue dashed line) and the I-I correlation between
(red solid line) reflection and transmission in the diffusive regime (b = 7 and k0ℓ = 10).

In Fig. III.13 we represent the numerically calculated I-I correlation (blue dashed line) and the I-I
correlation between (red solid line) reflection and transmission in the diffusive regime (b = 7 and
k0ℓ = 10). We observe no difference between the two curves. In the diffusive regime we thus conclude
that

C(rR, rT ) = CI(rR, rT ) (III.71)

and that all our conclusions drawn for C are also valid for CI .
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The heart of this chapter is the measurement of the intensity-intensity correlation function be-
tween reflection and transmission performed at the University of Exeter (UK) by I. Starshinov, A.M
Paniagua-Diaz and J. Bertolotti in the framework of a collaboration with our group [86]. We first
detail in a few words the experimental setup and the results obtained1. We then discuss the ex-
perimental observable, and show that it corresponds to the measurement of C(rR, rT ) for all optical
thicknesses. Using Eq. (II.15) we estimate the relative weight of C1 and of the non-gaussian correla-
tion in the measurements. We conclude that even for optical thicknesses close to one, C1 is always
negligible compared to the non-gaussian contribution in the R/T geometry. Eventually we propose
a scattering sequence that could explain some of the interesting features of the correlation function
for optical thicknesses close to unity.

IV.1 Description of the experiment

IV.1.1 The experimental set up

The group in Exeter has performed the first measurement of the intensity-intensity correlation be-
tween transmitted and reflected speckle patterns, for scattering materials with thickness L and
scattering mean free path ℓ covering the entire range from quasi-ballistic to diffusive transport.

Figure IV.1 – (a) Experimental setup: a scattering slab, formed by TiO2 particles in glycerol between two
microscope glass slides, is illuminated by a laser beam incident at an angle θa = 45◦, with an
incident wavelength λ = 632.8 nm. (b) Examples of samples with thickness L = 20 µm but
different TiO2 concentrations: from left to right 5 g/l, 10 g/l and 40 g/l. The corresponding
scattering mean free path ℓ is indicated in the figure [86].

The experimental setup is shown in panel (a) in Fig. IV.1. A monochromatic wave is incident with an
angle of incidence θa on a suspension of TiO2 particles in glycerol, squeezed between two microscope

1The interested reader should read the thesis of I. Starshinov and A.M Paniagua-Diaz for more experimental details.
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slides, forming a scattering slab with controlled thickness and mean free path. In ref [86] authors
vary L using stainless steel feeler gauges as spacers, and ℓ by modifying the TiO2 concentration,
allowing the sample to change from almost transparent to completely opaque (typical samples with
different values of ℓ are shown in panel (b) in Fig. IV.1. For each thickness and concentration, the
intensity pattern is measured on the surface of the sample, in both transmission and reflection with
two identical imaging systems consisting of a microscope objective, a lens, and a CCD camera. The
positions of the scatterers are continuously changing due to Brownian motion in glycerol, leading
to a time-varying speckle pattern. The exposure time of the CCD cameras, and the time interval
between two successive measurements are chosen such that the sample is effectively static during each
measurement, but successive measurements refer to completely different realizations of disorder.

IV.1.2 The experimental results

The correlation function ⟨CRT (∆r)⟩ (analyzed in detail in the next section) for different values of
the mean free path ℓ and the sample thickness L is shown in Fig. IV.2. Both the shape and the sign
of ⟨CRT (∆r)⟩ substantially depend on L and ℓ. We observe that the evolution of the lineshape is
subtle.

Figure IV.2 – Average cross-correlation ⟨CRT (∆r)⟩ between the transmitted and the reflected speckle patterns
for different values of L and ℓ, and thus different values for the optical density b = L/ℓ. In each
panel the upper graph shows the 2D plot of ⟨CRT (∆r)⟩ and the lower graph shows a cut through
the dotted line.

• Let us first discuss the regime of large optical thickness L ≫ ℓ [panels (e-i) in Fig. IV.2]. As
predicted in the previous chapter we observe in this regime that ⟨CRT (∆r)⟩ is negative and
long-range.

• In the regime of moderate optical depth ℓ ∼ L ≫ λ, the samples still show a cross-correlation
with a range extending far beyond a speckle spot, but with a positive peak appearing in the
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vicinity of the negative contribution discussed above [see panels (b-d) in Fig. IV.2]. The long-
range character of this new contribution to the correlation function suggests that it originated
from correlated scattering paths that become diffusive for L ≳ ℓ.

• Panel (a) in Fig. IV.2 could be the limit between the regime of moderate optical thickness and
the single quasi-ballistic regime (ℓ ≫ L ≫ λ) we study in the next chapter. In this panel we
see only a positive contribution with a range larger than a speckle spot.

IV.2 Numerical study of ⟨CRT ⟩

Figure IV.3 – Scheme of the geometry used for the simulations. We illuminate a 3D disordered sample with a
laser beam with an angle of incidence θa. The x direction is parallel to the transverse component
of wave vector the laser beam and the y direction is orthogonal to it.

The purpose of this section is to understand in detail the quantity measured in Fig. IV.2. The exper-
iment done by our colleges from Exeter has several intriguing features. First, whatever the optical
thickness of the sample, all features of the correlation function seem to be long-range (compared to
the wavelength). Second, in the single scattering regime (ℓ ∼ L), the structure is asymmetric, with a
positive and a negative contributions. To understand these unexpected features we first discuss the
experimental observable.

IV.2.1 Comparison between ⟨CRT ⟩ and C for an off-axis experiment

The purpose of this section is to show that the expression of the correlation function measured
experimentally, ⟨CRT (∆r)⟩, can be simplified into C(rR, rT ). The first point to understand is that the
experiment is off-axis2. Thus the ballistic (specular) component of the reflected and the transmitted
fields is not measured and the CCD is directly sensitive to IT and IR. The experimental observable
reads (before averaging over disorder configurations)

CRT (∆r) = δ IR(r)δ IT (r + ∆r)
δ IR(r) − δ IR(r)

21/2 
δ IT (r + ∆r) − δ IT (r + ∆r)

21/2 , (IV.1)

where r and r + ∆r are transverse coordinates in the transmission plane and the reflection plane,
respectively, and the overline represents the spatial average over the coordinate r. Calculated from
two speckle images obtained in a given configuration of disorder, the correlation function CRT appears
random, with fluctuations on the scale of a speckle spot. By performing an ensemble average over a
large number of configurations, the shape of the correlation function ⟨CRT ⟩ becomes apparent. Let

2When the scattering sample is removed, no intensity is measured neither in transmission nor in reflection.
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us stress that the choice of this form of the correlation is driven by experimental constraints. It helps
to be less sensitive to fluctuations of the laser during the averaging process. Assuming that averaging
over the coordinates of the speckle image is equivalent to averaging over disorder, we first transform
the ensemble average in Eq. (IV.1) into

⟨CRT (∆r)⟩ ≃ ⟨δ IR(r)δ IT (r + ∆r)⟩
δ IR(r) − ⟨δ IR(r)⟩

21/2 
δ IT (r + ∆r) − ⟨δ IT (r + ∆r)⟩

21/2

= ⟨δ IR(r)δ IT (r + ∆r)⟩
⟨δ IR(r)2⟩1/2⟨δ IT (r + ∆r)2⟩1/2

. (IV.2)

Second, we simplify the denominator in Eq. (IV.2) using the decomposition ⟨X(r)2⟩ − ⟨X(r)⟩2 =
⟨X(r)⟩2 + ⟨X(r)2⟩c where X stands for IR or IT . The contribution ⟨X(r)2⟩c would be zero if the
reflected and transmitted fluctuating fields (δER and δET ) were Gaussian random variables. The
correlation (IV.2) now takes the form

⟨CRT (∆r)⟩ = ⟨δ IR(r)δ IT (r + ∆r)⟩
⟨IR(r)⟩2 + ⟨IR(r)2⟩c


⟨IT (r + ∆r)⟩2 + ⟨IT (r + ∆r)2⟩c

. (IV.3)

Finally, we use the fact that our experiment is carried out in the weak scattering regime k0ℓ ≫ 1, so
that the non-Gaussian corrections, dubbed C2 correlations, are negligible (i.e. CXX

2 = ⟨X(r)2⟩c/⟨X(r)⟩2 ≪
1). Finally the correlation function takes the simple form

⟨CRT (∆r)⟩ ≃ ⟨δ IR(r)δ IT (r + ∆r)⟩
⟨IR(r)⟩⟨IT (r + ∆r)⟩

= C(rR, rT ). (IV.4)

We illustrate the good agreement between Eq. (IV.3) and Eq. (IV.4) in Fig. IV.4, where both cor-
relation functions have been calculated numerically (using the coupled dipole method presented
in App. .3) for a 3D scattering medium with optical thickness L/ℓ = 1.5 and scattering strength
k0ℓ = 10. This result confirms that the experimentally measured correlation function is well de-
scribed by Eq. (IV.4), which is the quantity studied in the previous chapter in the diffusive regime.
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Figure IV.4 – Comparison between two different definitions of the correlation function between reflection and
transmission. The transverse distance ∆r = ∆x is varied along the direction of the illumination
plane. Parameters of the 3D numerical simulation: L/ℓ = 1.5, k0ℓ = 10, θa ≃ 45◦.

To briefly summarize our reasoning, the design of the experiment geometry is such that the average
field is not measured in this off axis experiment. Then using ergodicity and the mathematical ex-
pression for the moments of IT and IR, we have shown that the experimental observable is equivalent
to C(rR, rT ).
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IV.2.2 Numerical calculations of C(rR, rT ) in 3D

In Fig. IV.5 we present 3D numerical calculations of C(rR, rT ) obtained with the coupled dipole
method. We have performed the calculation for a plane wave with shifted incidence θa = 45◦

illuminating three different 3D (see Fig. IV.3 for the definition of x and y) samples of size k0L = 20
and various scattering mean free paths. Figure IV.5 should be compared with the first column in
Fig. IV.2. Panel (a) corresponds to b = 0.75 and k0ℓ = 20, panel (b) corresponds to b = 1 and
k0ℓ = 15, and panel (c) corresponds to b = 1.5 and k0ℓ = 10.

Figure IV.5 – Numerical calculation of C (rR, rT ) for 3D scalar waves and three different samples of same length.
Panel (a) corresponds to b = 0.75 and k0ℓ = 20, panel (b) corresponds to b = 1 and k0ℓ = 15
and panel (c) corresponds to b = 1.5 and k0ℓ = 10. The typical number of disorder realizations
is Nconf = 107 and the number of dipoles for each configuration is Ndip ≃ 1000.

We see a clear change in the shape of the numerically calculated correlation function when b varies.

• At small optical thickness (b = 0.75) we observe a positive contribution whose typical size is
larger than the wavelength.

• At moderate optical thickness (b = 1), we observe an asymmetric correlation function with
one positive and one negative contributions. If we draw a line between the center of both
contributions, it is parallel to the transverse wave vector of the incident wave.

• Eventually for b = 1.5, only a negative contribution remains, the typical size of which is larger
than the wavelength.

Let us now compare these three simulations with the experimental results in the first column in
Fig. IV.2. The main difference between the numerical samples and the experimental ones is the value
of k0L. For numerical samples k0L = 20 while in the first column in Fig. IV.2 k0L ≃ 200. For this
reason we cannot expect a quantitative agreement between numerics and experiment. Nonetheless
we see a qualitative agreement in the behavior of the correlation versus the optical thickness. Indeed
in panel (a) in Fig. IV.2, we see a positive contribution the width of which is larger than a speckle
spot, in panel (d) we see the asymmetric shape with both the positive and negative contributions
and in panel (g) we observe only the negative contribution.

The diffusive regime

In the previous section we have seen that the experimental measurements give a direct access to
C(rR, rT ) which follows Eq. (II.15). From the previous chapter, we know that this quantity should
be dominated by its non-gaussian contribution C2 in the diffusive regime, that is negative, and
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has a typical width on the order of L. These two characteristics are recovered in the experimental
results. Analytically, the amplitude is supposed to decrease as 1/(k0L)2 in the diffusive regime.
This behavior cannot be checked experimentally due to the difficulty to reach the diffusive regime
in practice combined with the fact that the correlation is weak. Numerically, 3D simulations are
really heavy, and we cannot reach optical thicknesses larger than b = 1.5. We cannot thus check the
1/(k0L)2 law. Nonetheless we believe this law is applicable because it has been checked numerically
in 2D for which a 1/(k0L) law has been confirmed.

IV.3 Study of the positive contribution in the regime of
moderate optical thickness.

When the optical thickness decreases we are faced with two problems3:

• The experimental observable gives a direct access to C(rR, rT ) whatever the optical thickness.
From Eq. (II.15), C(rR, rT ) is the sum of C1 and of the non-gaussian contribution. The non-
gaussian correlation is a priori not dominated by C2 in this regime. Indeed when b approaches
unity, other scattering sequences connecting four fields can appear. In the previous chapter
we showed analytically that C1 is small in the diffusive regime compared to the non-gaussian
correlation. We do not know a priori if this still holds when b approaches unity.

• Quantities calculated analytically using the diffusion equation (for instance the ladder operator)
are only approximate in this regime. We should rather use the radiative transfer equation to
describe properly scattering by thin samples. Nonetheless it would complicate substantially
the expressions.

In this section we discuss the regime b ≃ 1 (the regime b ≪ 1 is studied in detail in the next chapter).

IV.3.1 C1 is negligible for optical thicknesses close to unity

In this section we discuss the relative weight of the C1 correlation function and of the non-gaussian
contribution for optical thicknesses close to unity. Indeed we have seen both numerically and experi-
mentally that a positive contribution appears when b approaches unity. In this section we show that
this contribution is not equal to C1. To proceed we use numerics that provide direct access to the
field. It is thus easy to calculate the C1 correlation function and the full I-I correlation function and
compare them.

In Fig. IV.6 we represent in panel (a) the full I-I correlation, in panel (b) its connected part:
⟨δERδET δE

∗
RδE

∗
T ⟩c/ (⟨δERδE

∗
R⟩⟨δET δE

∗
T ⟩), and in panel (c) the C1 correlation function. The Pa-

rameters are k0ℓ = 15, L/ℓ = 1, θa ≃ 45◦. We observe that even for thin samples, the C1 correlation
function is weak compared to the non gaussian correlation contribution. In addition, its shape is
totally different from what is seen both numerically and experimentally.

This conclusion is really important. We claim here that the I-I correlation function between reflection
and transmission gives a direct access to the non-gaussian contribution to the intensity-intensity

3The mean transmitted field cannot be neglected anymore in this regime thus C(rR, rT ) differs from CI(rR, rT ).
The reduction of the problem of the study of C(rR, rT ) is thus questionable. In App. .3 we discuss the aspect of
CI(rR, rT ) and the difference between CI(rR, rT ) and C(rR, rT ) when the optical thickness is close to unity. We show
that regarding CI(rR, rT ) this regime seems more complicated to describe than the diffusive regime. Nonetheless since
the experiment directly measure C(rR, rT ) for all optical thicknesses, this point is not a problem.
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Figure IV.6 – Correlation function C obtained from numerical simulation of the wave equation in a 3D slab.
(a) Full correlation; (b) Connected part of the correlation; (c) C1 contribution tp the correlation.
Parameters: k0ℓ = 15, L/ℓ = 1, θa ≃ 45◦

correlation function whatever the optical thickness of the system4. We want to stress that the non
gaussian correlation function is obtained experimentally without any field measurements (simply an
off axis experiment). This is of fundamental interest for research in mesoscopic physics. For instance
this quantity gives insight about some properties of the scattering medium (see refs. [87, 88, 89, 90]).

IV.3.2 Variation with the angle of incidence

In the previous section we have made clear that the experiment is a direct measurement of the
non-gaussian correlation for all optical thicknesses. Thus both the negative contribution (deep) and
the positive contribution (peak) are non-gaussian correlations. To propose a connected four-field
scattering sequence responsible for the positive contribution of C we have investigated its behavior
with the angle of incidence. In Fig. IV.7, we present the result of 3D numerical simulations of wave
scattering in a disordered slab with optical thickness b = 1, disorder strength k0ℓ = 15, illuminated
at a shifted incidence θa ≃ 75◦. We see that the correlation is positive for |∆r| ≲ L and presents
negative side lobes that are more pronounced along the illumination direction. We have analyzed
the angular dependence of this shape along the direction ∆y = 0. The results are presented in
Fig. IV.8. For θa = 57◦, the correlation C(∆x) is asymmetric. When the angle of incidence θa

increases, both the positive central peak and the negative side lobes grow. In addition, the correlation
function becomes more and more symmetric (with respect to the mirror symmetry along the direction
∆x = 0). We interpret the shape of this correlation function as the result of the superposition of
two contributions, C2 and C0

5. The contribution C2 is a negative deep with a minimum located at
∆x > 0. As discussed in the previous sections, this contribution is almost independent on θa (apart
from the shift that cannot be explained with diffusion theory). On the other hand, the contribution
C0 contains both a positive peak located at ∆x ≃ 0 and symmetric negative side lobes. It is also
strongly dependent on the illumination angle (see next section for details). Hence, the latter is
responsible for the anisotropic shape observed in Fig. IV.7 and the evolution presented in Fig. IV.8.
In particular, the correlation C(∆x) shown in Fig. IV.8 becomes more and more symmetric when
θa increases because the amplitude of the negative side lobes of C0 gets larger than the C2 deep. A
microscopic interpretation of this phenomenon is proposed in the next section.

4At least for k0ℓ ≫ 1 and in the range of b going from 1 to ∞ for now. In the next chapter we discuss the regime
1 ≫ b.

5We discuss in detail the denomination C0 in the next subsection.
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Figure IV.7 – C(∆r) calculated from 3D numerical simulations of the wave propagation in a disordered slab
of moderate optical depth. The direction ∆y = 0 is defined as the intersection of the incidence
plane with the sample surface. Parameters: b = 1, k0ℓ = 15, θa ≃ 75◦.
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Figure IV.8 – Dependence of C(∆r) on the illumination angle θa, along the illumination direction ∆y = 0
(horizontal axis in Fig. IV.7). Parameters of the 3D simulation: b = 1, k0ℓ = 15.

IV.3.3 A scattering sequence dependent on the angle of incidence

The angular dependence of the correlation function for optical thicknesses close to unity is an in-
triguing result that helped us in determining a diagram responsible for it.

C2 does not depend on the angle of incidence

The first point to have in mind is that the C2 diagram is not sensitive to a change in the angle of
incidence. Let us write what happens to a shifted incident beam after propagation with the ladder
operator:


|⟨E(r)⟩|2qa

L(r, r2)dr = I0


exp (−z/ℓa) exp (iqa.rt) exp (−iqa.rt) L(z, z2, r2,t − rt)dzdrt (IV.5)

= I0


exp (−z/ℓa) L(z, z2,q) exp (iq.[r2,t − rt]) dzdrtdq/(2π)d−1

= I0


exp (−z/ℓa) L(z, z2,q = 0)dz

≃ I0ℓa L(0, z2,q = 0)

where we have used the expression of the mean field derived in Eq. (III.13).
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The only memory of the angle of incidence appears in the coupling with the ladder operator. It can be
represented by a corrected attenuation length that accounts for the angle of incidence and that reads
as ℓa = ℓµa with µa =


1 − q2

a/k
2
0 = cos(θa). This factor appears each time one connects a ladder

with a shifted beam, squared in the numerator of the C2 diagram and squared in the denominator
(diffuse intensities). It is thus simplified by the normalization. This coupling effect cannot be the
cause of the change of shape of the correlation function when the angle of incidence changes.6

A diagrammatic guess

We thus look for a scattering sequence that contains the memory of the angle of incidence. This
scattering sequence must also become negligible compared to C2 when the optical thickness of the
sample increases. To discuss the various scattering sequences appearing in the small optical thickness
regime we follow refs. [39, 71]. In these theoretical works additional contributions are added to the
intensity-intensity correlation in order to represent the R/R correlation correctly. The main idea is
the following: for a thick medium in R/T, we showed that the dominant process to connect four
fields is described by C2. Two pairs of fields propagate diffusively, meet inside the scattering medium,
exchange their partners, and leave diffusively towards the measurement points. Each time we used
the word diffusively, mathematically we use the ladder operator to propagate the pairs of fields. This
operator contains at least one scattering event. We can say that C2 contains at least 5 scattering
events (one in each ladder and one in the Hikami box). Going towards optical thicknesses of unity
we should look at scattering sequences which contain fewer scattering events. In Fig. IV.9 we present
two of such scattering sequences. We need to transform the C2 diagram in order to avoid a diffusive
propagation before the exchange of partners. One possibility is to use an extra scattering event
(black dot in Fig. IV.9) that can connect the fields at the entrance of the scattering medium [panel
(a)]. This contribution is long range because fields leave the exchange diffusively, and can a priori be
sensitive to the angle of incidence thanks to the extra scattering event. We choose to call this diagram
C0 and we need to be clear about this notation. We are not looking at the same observable as the
one leading to the infinite range correlation C0 because we illuminate the system with a plane-wave
and not with a point source. Nonetheless the diagrams represented in Fig. IV.9 have the exact same
structure as the one used to calculate C0 (but with a plane-wave and not a point source excitation).
This is the reason why we choose to keep the denomination C0 for this scattering sequence .

Let us notice that exactly as in the case of C2, there is an analogous diagram for which the exchange
appears after the diffusive propagation [panel (b) in Fig. IV.9]. Our guess is that this diagram should
be sub-leading due to the propagation through the sample as average Green’s functions (see App. .3.3
for a more detailed discussion of the diagrammatic construction of the C0 scattering sequence).

In the next section we derive the analytical expression of the diagram represented in panel (a) in
Fig. IV.9.

Analytical calculation

The C0 correlation has first been introduced in refs. [60, 91] in the case of a point source excitation.
Here we consider the same class of scattering processes, but generated by a plane wave. As we
show in this section, both the formal calculation and the qualitative consequences are different from

6This strong claim should be weakened by stressing that we are not in the diffusive regime when we observe the
strong influence of the angle of incidence. Thus the expression in Eq. (IV.5) may be not exact in the regime of optical
thickness reached experimentally.
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Figure IV.9 – Panel (a): diagrammatic representation of the C0 contribution in R/T: two ballistic intensities get
mixed into two diffuse intensities using an extra scattering event. Panel (b): symmetric diagram
where two diffuse intensities mix into four average Green’s functions with the help of an extra
scattering event.

the case of a point source excitation. The complete microscopic representation of the C0 diagrams
are represented in Fig. IV.10. Each diagram involves scattering paths that visit a common scatterer

Figure IV.10 – Leading diagrams contributing to C0. Shaded tubes represent diffusive paths (ladders), single
solid lines stand for averaged fields and single dashed lines for their complex conjugates. The
extra scatterer located near the surface boundary can connect the ladders in four different ways.

located near the front side of the sample. The symmetric diagrams [panel (b) in Fig. IV.9] that involve
a common scatterer at the outputs can be neglected for the same reason as the C1 correlation. Using
the same notations as in section V, the four-field correlator C0(∆r) = ⟨δERδE

∗
RδET δE

∗
T ⟩C0

7 takes, in
3D, the form

C0(∆r) = 4π
ℓ


V (r2, r3) L(r2, r4) L(r3, r5)|⟨G(rT − r4)⟩|2|⟨G(rR − r5)⟩|2dr2dr3dr4dr5, (IV.6)

where V (r2, r3) is the sum of the four possibilities for connecting the input plane wave to the lad-
der diagrams starting in r2 and r3, as represented in Fig. IV.10. For example the contribution in

7C0 is the non normalized version of C0.
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Fig. IV.10 (a) to the vertex V is

V (a)(r2, r3) =


⟨E(r2)⟩∗⟨E(r3)⟩∗|⟨E(r1)⟩|2⟨G(r2 − r1)⟩⟨G(r3 − r1)⟩dr1, (IV.7)

where the average field ⟨E(r)⟩ depends on the incidence angle. By integrating over the transverse
coordinates, we obtain

C0(∆r) = ℓ

16π3

 
[Ṽ (a)

qa,q(z2, z3) + Ṽ (c)
qa,q(z2, z3)]ei(qa−q).∆r + [Ṽ (b)

qa,q(z2, z3) + Ṽ (d)
qa,q(z2, z3)]ei(q−qa).∆r


× Lq−qa(z2, 0) Lq−qa(z3, L)dqdz2dz3, (IV.8)

where z labels are longitudinal coordinates, qa is the transverse component of the incident wave
vector ka, and Lq(z, z′) is the Fourier transform of L(r, r′) with respect to the transverse part of the
coordinate r − r′. In addition, the components Ṽ are given by

Ṽ (a)
qa,q(z2, z3) = (2ika)4 I2

0


Ḡqa(0, z1)2Ḡ2qa−q(z1, z3)Ḡq(z1, z2)Ḡqa(0, z2)∗Ḡqa(0, z3)∗dz1, (IV.9)

Ṽ (c)
qa,q(z2, z3) = (2ika)4 I2

0


|Ḡqa(0, z1)|2Ḡq(z1, z3)∗Ḡq(z1, z2)Ḡqa(0, z2)∗Ḡqa(0, z3), dz1, (IV.10)

with Ṽ (b) = Ṽ (a)∗, and Ṽ (c) = Ṽ (d)∗. In these expressions, Ḡq(z, z′) = i/ (2kz) eikz(z′−z)e−|z′−z|/2µℓ,
with kz =

√
k2 − q2 ≡ kµ, is the transverse Fourier transform of the average Green function of

the Helmholtz equation. We now make the approximations L(z2, 0, q − qa) ≃ L(0, 0, q − qa) and
L(z3, L, q − qa) ≃ L(0, L, q − qa), and integrate Eq. (IV.8) over the longitudinal coordinates z1, z2
and z3. The correlator becomes

C0(∆r) = ℓ4k4
aI

2
0

8π3k6


cos [(qa − q).∆r] Lq−qa(0, 0) Lq−qa(0, L) F(µ, µa, k0ℓ)dq, (IV.11)

with

F(µ, µa, k0ℓ) = [µa(2µa − µ)(µ+ µa)]−12(µa − µ) [9µ3 + 18µ2µa + 11µµ2
a + 2µ3

a + 4µ3µ2
a(µ− µa)2k2ℓ2]

[9µ2 + µ2
a + 6µµa + 4µ2µ2

a(µ− µa)2k2ℓ2] [(µ+ µa)2 + 4µ2µ2
a(µ− µa)2k2ℓ2] ,

(IV.12)

where µa =


1 − q2
a/k

2 and µ =


1 − q2/k2. Normalizing the correlator by the intensity prod-
uct ⟨|δER|2⟩⟨|δET |2⟩ = ℓ (2ka)4 I2

0/ (6k4µ2
aL) and the integration momentum variable by the sample

thickness L, we finally obtain

C0(∆r) = 27µ2
ak0L

4π(k0ℓ)3


cos [(q′

a − q′).∆r/L]P (q′
a,q′) F(µ, µa, k0ℓ)dq′, (IV.13)

where q′
a = qaL = k0Lsinθa. The ladder contribution P (q′

a,q′) is defined as

P (q′
a,q′) = sh [|q′

a − q′|z0/L]3 sh [|q′
a − q′|(1 + z0/L)]

|q′
a − q′|2 sh [|q′

a − q′|(1 + 2z0/L)]2
. (IV.14)

In order to obtain Eq. (IV.13) we used various approximations that are justified in the diffusive
regime L > ℓ only. Therefore, we must be cautious not to use this result in the quasi-ballistic regime
L ≲ ℓ. We note also that in the deep diffusive regime L ≫ ℓ and for small angle of incidence (µa ≃ 1),
the C0 correlation function with plane wave illumination takes the compact form

C0(∆r) ≃ 5
16πk4L4


cos [(q′

a − q′).∆r/L] q
′2|q′

a − q′|
sh[|q′

a − q′|]dq′, (IV.15)
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which scales as C0 ∝ 1/(k0L)4. In this regime, it is therefore much smaller than C2 ∝ 1/(k0L)2. This
explains why it is not observed in the diffusive regime.

Before analyzing Eq. (IV.13) in more details, let us comment on the differences between this C0
correlation function and that calculated with plane wave outputs, or point-source inputs. For plane-
wave outputs, we find

C0(kb,kb′) =
 d∆r

A
C0(∆r) = 0, (IV.16)

for all observation directions kb,kb′ . This striking result comes from the fact that F(µa, µa, k0ℓ) = 0.
This means that, for plane wave outputs, the diagram in panel (a) in Fig. IV.10 [resp. panel (b)
in Fig. IV.10] is compensated by that in panel (c) in Fig. IV.10 [resp. in panel (d) in Fig. IV.10].
This result turns out to be completely different from that obtained in the configuration involving
point-like sources and detectors, where the diagrams in Figs. IV.10 (a,b) do not contribute to the
correlation function.

Let us now discuss the strong dependence of Eq. (IV.13) on the illumination angle θa. At the origin
of this dependence is the total momentum conservation during the interaction with the common
scatterer in Fig. IV.10. The information carried by the illumination plane wave is transmitted to the
ladder diagrams that conserve momentum over long distances, so that the input information finally
reaches the sample boundaries. The same property holds in the well-known memory effect introduced
in ref. [92]. We illustrate the dependence of the correlation given by Eq. (IV.13) on θa in Fig. IV.11.
For θa = 0, the rotational symmetry is preserved so that C0(∆r) depends on ∆r only. It presents a
positive peak centered in ∆r = 0, that extends over a distance ∆r ∼ L. Beyond this distance the
correlation presents small negative side lobes, that are such that the sum rule given in Eq. (IV.16)
is satisfied. When the rotational symmetry is broken (θa ̸= 0), the correlation becomes anisotropic.
It now presents two mirror symmetries with respect to the intersection of the incidence plane with
the sample surface. The direction of this intersection defines the horizontal axis in Fig. IV.11. We
observe that the negative side lobes become more pronounced along this direction. In addition, the
amplitude of both the central peak and the side lobes get larger for increasing θa, in agreement with
the sum rule given in Eq. (IV.16) as well as the experimental observations discussed in the previous
section.

IV.3.4 What could be improved?

The previous analysis shows that C0 reproduces the features observed experimentally in the R/T
correlation in the regime L ∼ ℓ. As observed numerically, C0 is long-range, keeps a memory on the
incidence angle, becomes anisotropic for θa ̸= 0, presents a central peak and negative side lobes, and
both the peak and the side lobes becoming more pronounced when θa increases. That being said, it
should be stressed that Eq. (IV.13) does not reproduce quantitatively the amplitude of the positive
correlation function observed in the regime L ∼ ℓ. This is not much a surprise since, as we explained
above, Eq. (IV.13) was obtained in the diffusive regime L ≫ ℓ. In addition, it is worth mentioning
that the scattering processes described by C0 and C2 are not the only ones that could contribute in
the quasi-ballistic regime L ≲ ℓ. Let us discuss three ways of improving this study

• For the range of approximation we consider (the Born approximation [39] for the four-field
vertex8 discussed in App. .3.3), we do not miss many diagrams to have the complete set. Adding
the C0 contribution, we considered contributions resulting from the mixing of two ballistic
intensities (using an extra scatterer) into two diffuse intensities. We miss for instance the

8The fact that only two fields can scatter at the same impurity.
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Figure IV.11 – Analytical prediction for the C0 correlation (normalized to unity) for two different illumination
angles: (a) θa = 0 and (b) θa = 45◦ and their cut (in caption) along the direction ∆y = 0
which is defined as the intersection of the incidence plane with the sample surface. The caption
corresponds to the cut along ∆y = 0 . Parameters: λ = 632 nm, L = 50 µm, ℓ = 15 µm. The
diffusive approximation was used for the ladder diagrams.

family of diagrams depicted in Fig. IV.12. These diagrams correspond to one ballistic intensity
and one diffuse intensity mixing to produce two diffuse intensities or all possibilities with one
ballistic and three diffuse intensities. It would be useful to derive them and to investigate their
behavior with the angle of incidence or the polarisation of the incident light[93, 94].

• To propose a scattering sequence which represents the I-I correlation for optical thickness close
to unity we thought in terms of number of scattering events. Let us remind that the quantity
under study is ⟨δERδET δE

∗
RδE

∗
T ⟩c. The fact that we correlate fluctuating fields means that all

sequences contain at least one interaction with the disorder. Thus we must look at all connected
four-fields scattering sequences with at least one scattering event for each field. Decreasing the
number of scattering events for all fields we eventually find the scattering sequence where
the four fields interact with only one common scatterer. This scattering sequence should a
priori play an important role in the quasi-ballistic regime (L < ℓ). It is important to note
that at the level of the Born approximation for the four-field vertex, only pairs of fields can
interact with a common scatterer. Thus this scattering sequence does not exist at this order
of approximation. It would be useful to study this class of diagram (usually forgotten in
diagrammatic calculations). In order to look for those scattering sequences (beyond the usual
model for the four-field vertex) we study in the next chapter the I-I correlation in the regime
k0ℓ ≫ k0L ≫ 1 (quasi-ballistic regime) where they give the dominant contribution to the
non-gaussian correlation function.

• It would be useful to follow ref. [39] and use the radiative transfer equation to perform the
calculation. We could thus have a quantitative agreement between analytics, numerics and
experimental results for small optical thickness which is out of reach with diffusion theory.



Figure IV.12 – Representation of two diagrams belonging to a family we do not take into account. Panel
(a): one ballistic intensity and one diffuse intensity mix into two diffuse intensities with the use
of an extra scattering event. Panel (b) corresponds to the symmetric diagram for which two
diffuse intensities mix into one diffuse intensity and two average Green’s functions using an extra
scattering event.
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In the previous chapter we discussed the measurements of the intensity-intensity correlation in R/T
done at the University of Exeter (UK) by I. Starshinov, A. M. Paniagua-Diaz and J. Bertolotti
in the framework of a collaboration with our group. The measurements embrace a large range of
optical thicknesses. When the optical thickness approaches unity, we observe the appearance of a
positive contribution. In the single scattering regime (b ≃ 1), this positive contribution is sensitive
to the angle of incidence and we proposed a scattering sequence that could be responsible for this
contribution. In this chapter we refine the previous discussion studying the regime k0ℓ ≫ k0L ≫ 1
(quasi-ballistic regime). Let us stress that this regime should a priori be easier to study than the
regime b ≃ 1. Indeed in the quasi-ballistic regime the three length scales of the problem are well
separated which is not the case in the intermediate regime.

In this chapter we propose a diagrammatic representation of the quasi-ballistic regime k0ℓ ≫ k0L ≫
1. We compare our model to numerical calculations of the usual observables: average fields, average
intensity etc. Our objective is to support the following claims:

• The non gaussian correlation in R/T dominates the gaussian correlation as soon as k0L ≫ 1.

• The non gaussian correlation is dominated by the common scattering of four fields on a single
scatterer in the regime k0ℓ ≫ k0L ≫ 1 (quasi-ballistic regime).

The quasi-ballistic regime can a priori be considered as not relevant for a diagrammatic expansion
since ballistic terms are dominant in this regime (the system is almost transparent). Nonetheless,
studying the fluctuating fields only, we can observe interesting phenomena that give insight about
the multiple scattering process.

V.1 Statistics of the fluctuating fields

Let us start by studying the scattered fields in the regime k0ℓ ≫ k0L ≫ 1. We can even wonder
whether there is a measurable non-zero scattered field to measure when the optical thickness is small.

V.1.1 Average fields

The reasoning for the average fields we had in Chap. III remains valid in the regime k0ℓ ≫ k0L ≫ 1.
The average transmitted field should be close to E0 because the attenuation is weak, and the average
reflected field is on the order of E0/(4k0ℓ). The only difference is that the Fabry-Perot effects need
to be taken into account for the average reflected field since there is almost no attenuation between
two reflections by the boundaries.

In Fig. V.1 we represent the numerically and analytically calculated modulus of the average fields
in transmission and reflection for a very thin (b = 0.01) and very dilute (k0ℓ = 2000) sample. We
observe that the analytical expressions derived in Chap. III are in very good agreement with the
numerical results. The modulus of the average field in transmission is close to E0, and its decay is
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Figure V.1 – Modulus of the average fields in transmission and reflection (numerically and analytically calculated)
versus the optical thickness of a dilute k0ℓ = 2000 sample in log scale.

almost linear in this regime (first order expansion of the exponential decay). The modulus of the
average field in reflection is on the order of E0/(4k0ℓ) and oscillates due to the Fabry-Perot effect.
We conclude from Fig. V.1 that the vision we have of the average fields remains relevant even for very
small optical thicknesses. Indeed the assumption we used in Chap. III to study the average fields is
essentially the dilution of the system (k0ℓ ≫ 1) which still holds in the regime k0ℓ ≫ k0L ≫ 1.

V.1.2 Fluctuating fields

Let us now briefly comment on the statistics of the fluctuating part of the transmitted and reflected
fields. In panel (a) in Fig. V.2 we represent the fluctuating fields in transmission and reflection for a
very thin (b = 0.01) and very dilute (k0ℓ = 2000) sample. In panel (b) in Fig. V.2 we represent the
numerically calculated probability density function of the real part of the fluctuating transmitted
field of a thin (b = 0.01) and very dilute (k0ℓ = 2000) sample and compare it with a gaussian fit.
Strikingly, the fluctuating field seems to be gaussian even for a sample composed of a small number
Ncyl = 10 of resonant scatterers1.
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Figure V.2 – Statistics of the fluctuating reflected an transmitted fields for a very thin (b = 0.01) and very
dilute (k0ℓ = 2000) sample [Panel (a)]. In panel (b) we compare a cut along Im (δE) = 0 of the
statistics of the fluctuating field in transmission with a gaussian fit of zero mean and σ ≃ 0.08.

1In this regime the use of the central limit theorem is questionable.
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V.2 Intensity of the fluctuating field

The fact that the fluctuating fields look like gaussian random variables leads us to the conclusion
that the intensity of the fluctuating fields should follow a Rayleigh law. In Chap 1 we showed that
for a gaussian field, the only parameter entering the statistics of I is ⟨I⟩. Let us thus study the
average intensity of the fluctuating fields. This quantity is described in the diffusive regime by a
ladder diagram as represented in panel (b) in Fig. II.7. In the quasi-ballistic regime, the ladder
diagram is still the good operator to study ⟨I⟩ [95], but its calculation cannot be performed using
diffusion theory.

V.2.1 Diagrammatic representation of ⟨ IT ⟩ and ⟨ IR⟩ in the quasi-ballistic
regime

We propose the scattering sequences depicted in Fig. V.3 to represent ⟨IT ⟩ and ⟨IR⟩. The idea is to
consider only the first term of the ladder diagram and to calculate it explicitly.

Figure V.3 – Diagrammatic representation of ⟨IT ⟩ and ⟨IR⟩ in the quasi-ballistic regime. The fields travel
by pair and are scattered once by the same scatterer before propagating together towards their
measurements points.

The diagrams read: 
⟨|δET |2⟩ = γ


|⟨E(r)⟩|2|⟨G(rT − r)⟩|2dr,

⟨|δER|2⟩ = γ


|⟨E(r)⟩|2|⟨G(rR − r)⟩|2dr.
(V.1)

The average field in the regime k0ℓ ≫ k0L ≫ 1 has a constant modulus inside the slab, and we can
replace its expression by E0 in the integrals2. We obtain

⟨|δET |2⟩ = γI0


|⟨G(rT − r)⟩|2dr (V.2)

= γI0


⟨G(k)⟩eik.(rT −r)⟨G∗(k′)⟩e−ik′.(rT −r)dr

dk
(2π)d

dk′

(2π)d
.

2Once this assumption done, we can show mathematically that surprisingly ⟨IT ⟩ = ⟨IR⟩.
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We can integrate over the transverse components of r, leading to

⟨|δET |2⟩ = γI0

 eik1(L−z)

2k1

e−ik2(L−z)

2k2
dz dkT

(2π)d−1 (V.3)

= γI0

 i

1 − ei[k1−k2]L


(k1 − k2)4|k1|2

dkT

(2π)d−1

with k1 =

k2

0 − k2
T + i

k0

ℓ
= K + iK ′ = k2

∗
. (V.4)

We finally obtain

⟨IT ⟩ = ⟨IR⟩ = γI0

 
1 − e−2K′L


8K ′(K2 +K ′2)

dkT

(2π)d−1 = γI0


F(K,K ′) dkT

(2π)d−1 (V.5)

with

F(K,K ′) =


1 − e−2K′L


8K ′(K2 +K ′2) . (V.6)
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Figure V.4 – Panel (a): numerical calculation of the average intensity of the fluctuating fields in transmission (red
dashed line), reflection (blue solid line) and Eq. (V.5) (black dotted line) for a dilute (k0ℓ = 2000)
sample of as a function of the optical thickness. Panel (b): statistics of I = I/⟨I⟩ in reflection (blue
solid line) and transmission (red dashed line) numerically calculated and the negative exponential
law (black dotted line).

In panel (a) in Fig. V.4 we represent the numerically calculated average intensity of the fluctuating
fields in reflection (blue solid line), transmission (red dashed line), and the result given by Eq. (V.5)
(black dotted line) for a very dilute system (k0ℓ = 2000) as a function of the optical thickness. The
condition k0ℓ ≫ k0L ≫ 1 is always satisfied. We observe a perfect agreement between numerics and
analytics.

V.2.2 Reflection and transmission statistics are identical

The previous analysis revealed that the average intensity of the fluctuating fields in reflection and
in transmission are identical. Here we want to stress that this remains valid for all moments of δER

and δET . As we can see in Figs. V.2 (a) and V.4 (b), the whole statistics of the fluctuating fields and
of their intensity are similar in reflection and transmission. In Fig. V.5 we give the diagrammatic
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Figure V.5 – Diagrammatic representation of the approximation of ⟨IT ⟩ and ⟨IR⟩ in the quasi-ballistic regime
considering that the modulus of the average field inside the slab is constant and equal to E0.
Changing the variables in the mathematical expressions of those two diagrams, we can show that
they are equal.

explanation of this striking behavior. As discussed in the derivation of Eq. (V.5), in the regime
k0ℓ ≫ k0L ≫ 1 the average field in the slab has a constant modulus E0. We can thus transform
Fig. V.3 into Fig. V.5 by removing the incident average field. This can be done for all moments of
δER and δET . After disconnection of these scattering sequences from the “outside world”, there is
no difference between reflection and transmission.

V.2.3 An analogy between the diffusive and the quasi-ballistic regime

In panel (b) in Fig. V.4 we represent the statistics of I = I/⟨I⟩ in reflection (blue solid line) and
transmission (red dashed line) for a thin (b = 0.01) and dilute (k0ℓ = 2000) sample, and compare
it with the negative exponential law. The agreement is good even in this very peculiar regime3. In
Chap. II we discuss the Rayleigh law for the intensity in the diffusive regime. We observed that it
was the consequence of two concomitant assumptions: the vanishing of the average field (always true
when fluctuating fields are considered) and the gaussian character of the field. Diagrammatically,
the gaussian character of the field can be reformulated by stating that the a moment of order N of I
can be built using the building block ⟨I⟩ only. In the diffusive regime ⟨I⟩ was governed by the ladder
diagram, while in the present situation it is governed by the diagram represented in Fig. V.3. To push

Figure V.6 – Two different contributions of the moment of order 3 of the transmitted intensity of the fluctuating
field in the quasi-ballistic regime. The various pairing give the N ! factor in the expression of the
moments of the Rayleigh law.

3There are only Ncyl = 10 scatterers in each sample.
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the comparison between the diffusive regime and the quasi-ballistic regime we represent in Fig. V.6
two over six contributions to the moment of order 3 of IT . This figure needs to be compared with
Fig. II.8 in order to observe the strong analogy between the diffuse regime and the quasi-ballistic
regime from a diagrammatic point of view4.

V.3 C1 correlation

Let us discuss now the C1 correlation in the quasi-ballistic regime. Let us remind that

C = ⟨δ I1δ I2⟩
⟨I1⟩⟨I2⟩

= |⟨δE1δE
∗
2⟩|2

⟨I1⟩⟨I2⟩  
C1

+⟨δE1δE
∗
1δE2δE

∗
2⟩c

⟨I1⟩⟨I2⟩
(V.7)

with I1 and I2 being either reflected or transmitted intensities of the fluctuating fields. In this section
we deal with the first term of the right hand side in Eq. (V.7) in the regime k0ℓ ≫ k0L ≫ 1.

V.3.1 Diagrammatic representation of the field-field correlation in the
quasi-ballistic regime

In the quasi-ballistic regime, the field-field correlation function in R/T should be dominated by the
scattering sequence represented in panel (a) in Fig. V.7. Since there is almost no attenuation due to
scattering in the quasi-ballistic regime, panel (a) can be approximated by panel (b).

Figure V.7 – Diagrammatic representation of C1(rR, rT ) in the quasi-ballistic regime [panel (a)] and its approxi-
mation considering that the average field has a constant modulus equal to E0 inside the slab [panel
(b)]. The fields travel by pair and are scattered once by a common scatterer before traveling alone
towards their different measurements points.

We have

⟨δE∗
T δER⟩ = γ


|⟨E(r)⟩|2⟨G∗(rT − r)⟩⟨G(rR − r)⟩dr (V.8)

= γI0


⟨G∗(rT − r)⟩⟨G(rR − r)⟩dr

= γI0


⟨G∗(k′)⟩⟨G(k)⟩eik.(rR−r)e−ik′.(rR−r)dr

dk
(2π)d

dk′

(2π)d
,

4This analogy is simply due to the fact that both regimes are diluted (k0ℓ ≫ 1).
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and finally obtain:
⟨δE∗

T δER⟩ = γI0


eikT .∆RFRT (K,K ′) dkT

(2π)d−1 (V.9)

with
FRT (K,K ′) = e−i(K−iK′)L e2iKL − 1

8K(K2 +K ′2) . (V.10)

We can now express the C1 correlation in R/T normalizing Eq. (V.9) with Eq. (V.5), which gives

C1(rR, rT ) =




FRT (K,K ′)eikT .∆R dkT

(2π)d−1


2


F(K,K ′) dkT

(2π)d−1

2 . (V.11)

For the sake of comparison, in R/R and T/T it reads

C1(rR1, rR2) = C1(rT 1, rT 2) =




F(K,K ′)eikT .∆R dkT

(2π)d−1


2


F(K,K ′) dkT

(2π)d−1

2 . (V.12)
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Figure V.8 – Envelope of the C1 correlation function in R/T for a thin (b = 0.01) and dilute (k0ℓ = 2000)
sample calculated numerically and analytically [panel (a)]. In panel (b) we use a higher density of
points in the vicinity of ∆R = 0 in order to observe numerically and analytically the oscillating
behavior of the C1 correlation in R/T.

In panel (a) in Fig. V.8 and Fig. V.9 we represent the envelope of the gaussian correlation functions
in R/T and T/T calculated numerically and analytically versus the transverse distance normalized
by λ. In the quasi-ballistic regime the gaussian correlation has a long range envelope. In panel (b) in
Fig. V.8 and Fig. V.9, we represent numerically and analytically the gaussian correlation functions
in R/T and T/T calculated numerically and analytically versus the transverse distance with a higher
density of points in the vicinity of ∆R = 0 in order to see the oscillating behavior at λ/2. The
agreement between analytics and numerics is strikingly good.

V.4 Non gaussian correlation in the quasi-ballistic regime

In this section we deal with the second term of the right hand side in Eq. (V.7) in the regime
k0ℓ ≫ k0L ≫ 1.
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Figure V.9 – Envelope of the C1 correlation function in T/T for a thin (b = 0.01) and dilute (k0ℓ = 2000)
sample calculated numerically and analytically [panel (a)]. In panel (b) we use a higher density of
points in the vicinity of ∆R = 0 in order to observe numerically and analytically the oscillating
behavior of the C1 correlation in T/T.

V.4.1 Numerical evidence of the difference between C and C1

Let us compare C and C1 both in R/T and in T/T (or R/R since reflection and transmission are
equivalent in this regime). In Fig. V.10 we represent the numerically calculated I-I correlation in
R/T [panel (a)] and T/T [panel (b)] for a thin (b = 0.01) and dilute (k0ℓ = 2000) sample. These two
curves need to be compared with the curves represented in panel (a) in Fig. V.8 and Fig. V.9 where
only the gaussian contribution to the I-I correlation is calculated for the exact same parameters.
We observe on these two curves a strong non gaussian additional contribution. Note the substantial
non gaussian contribution to the I-I correlation in T/T5. Let us enter into the calculation of the non
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Figure V.10 – Numerical calculation of the I-I correlation versus the transverse distance normalized by λ in
R/T [panel (a)] and T/T [panel (b)] for a thin (b = 0.01) and dilute (k0ℓ = 2000) sample.

gaussian contribution in T/T, R/R and R/T in the quasi-ballistic regime.

5Let us stress that we use resonant scatterers. Thus the quasi-ballistic regime is equivalent for us to a regime
of low number of scatterers. It would be useful to detune the excitation frequency from the resonance frequency of
the scatterers (keeping b constant) in order to increase the number of scatterers and observe the change in the I-I
correlation.



76 Chapter V. R/T correlation in the quasi-ballistic regime

V.4.2 Diagrammatic representation of the non gaussian correlation in
the quasi-ballistic regime

Let us remind our guess that in the quasi-ballistic regime, scattering sequences beyond the usual
approximation for the four-field vertex should be dominant. The idea is the following. In the C2
diagram (dominant term of the non gaussian R/T correlation in the diffusive regime) the exchange of
partners appears between two diffusive processes. In the quasi-ballistic regime, scattering events are
scarce. We thus expect that the dominant term in this regime will be that for which the number of
scattering event is the fewest. We represent this scattering sequence in panel (a) in Fig. V.11 in the
R/T configuration. This diagram can be approximated by the one in panel (b) due to the absence
of extinction in this regime.

Figure V.11 – Diagrammatic representation of the dominant term of the non gaussian correlation in the quasi-
ballistic regime [panel (a)] and its approximation considering the fact that the average field has
a constant modulus equal to E0 in the quasi-ballistic regime [panel (b)]. The four fields are
scattered once by a common scatterer.

The average weight for a common collision of two fields is γ. The average weight for the common
collision between four fields is Γ = ρk8

0|α|4 which in 2D is

Γ = γ2/ρ = 16γ = 64k0/ℓ. (V.13)

Let us denote the contribution to the non gaussian correlation of the common scattering of four fields
by ⟨δE∗

T δERδET δE
∗
R⟩ng. It reads

⟨δE∗
T δERδET δE

∗
R⟩ng = Γ


|⟨E(r)⟩|4|⟨G(rT − r)⟩|2|⟨G(rR − r)⟩|2dr (V.14)

= ΓI2
0


|⟨G∗(rT − r)⟩|2|⟨G(rR − r)⟩|2dr.

Normalizing Eq. (V.14) by Eq. (V.3) we obtain

Cng(r1, r2) =
Γ


|⟨G∗(r1 − r)⟩|2|⟨G(r2 − r)⟩|2dr
γ


F(K,K ′) dkT

(2π)d−1

2 (V.15)

where r1 and r2 are the measurements points (either in transmission or in reflection).
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Figure V.12 – Numerical calculation [Panel (a)] and analytical calculation using Eq. (V.15) [panel (b)] of the
non gaussian correlation in T/T (blue solid line) and R/T (red dashed line) for a thin (b = 0.01)
and dilute (k0ℓ = 2000) sample.

V.4.3 Numerical calculation of the non gaussian correlation function

In Fig. V.12 we represent in panel (a) the numerically calculated non gaussian correlation function
in R/T (red dashed line) and in T/T (blue solid line) for a thin (b = 0.01) and dilute (k0ℓ = 2000)
sample. In panel (b) we represent the analytical calculation based on Eq. (V.15) in T/T (blue solid
line) and in R/T (red dashed line) for the same parameters. We observe a very good qualitative
agreement between numerics and analytics. If we compare in detail the analytical and numerical
calculations of Cng, we observe a difference in the tail of the functions. This difference also appears
when we calculate the C1 correlation. There are at least two explanations for this discrepancy. One
possibility could be that the average Green functions that are used are not valid. Indeed we use
bulk Green’s functions while we should use the average Green functions of a thin slab. The other
possibility could be that in this regime the correlation functions are really sensitive to the transverse
size of the medium.
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Figure V.13 – Numerical calculation of the non gaussian correlation in R/T versus the transverse distance nor-
malized by λ of a thin (b = 0.1) and dilute (k0ℓ = 500) sample of varying transverse dimension
W .

In Fig. V.13 we represent the non gaussian correlation function in R/T for different transverse size
of a slab with parameters b = 0.1 and k0ℓ = 500. We observe that the tail of the correlation function
is very sensitive to the transverse size of the scattering medium. We can also note that the value at
zero transverse distance is less sensitive to it.
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V.4.4 Dependence on the angle of incidence

In the quasi-ballistic regime we used several times the fact that the modulus of the average field is
constant and equal to E0. This result remains valid whatever the angle of incidence θa. Analytically,
we thus predict that none of the quantities studied in this chapter depends on the angle of incidence.
In Fig. V.14 we numerically prove this prediction comparing the non gaussian correlation at zero
incidence (blue solid line) and at a large angle of incidence (red dashed line) in R/T [panel (a)] and
in T/T [panel (b)] for a thin (b = 0.01) and dilute (k0ℓ = 2000) sample. We observe no difference
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Figure V.14 – Numerical calculation of the non gaussian correlation in R/T [panel (a)] and in T/T [panel (b)]
at normal incidence (blue solid line) and at shifted incidence (red dashed line) of a thin (b = 0.01)
and dilute (k0ℓ = 2000) sample.

between non gaussian correlations for a normal incidence and for a shifted incidence. From this
subsection we conclude that there is no angular dependence in the quasi-ballistic regime.

V.4.5 Amplitude of the non gaussian correlation function
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Figure V.15 – Numerical and analytical calculations of the amplitude of the non gaussian correlation versus the
optical thickness in R/T [panel (a)] and in T/T [panel (b)] for a dilute sample (k0ℓ = 2000). In
panels (c) (R/T configuration) and (d) (T/T configuration), we vary the normalized scattering
mean free path ℓ/λ numerically and analytically keeping the optical thickness constant to a value
b = 0.1.
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In subsection V.4.3 we derived analytical expressions of Cng in T/T and R/T in good agreement with
numerical results. In this section we propose a slightly more quantitative approach by analyzing the
value at ∆R = 0 of the non gaussian correlation versus the parameters of the system both analytically
and numerically. We call CRT

ng this quantity in R/T and CT T
ng in T/T. In panels (a) and (c) in Fig. V.15

we represent the numerically calculated (red crosses) and analytically calculated (blue dashed line)
value of CRT

ng versus the optical thickness and versus the mean free path of the medium. In panels (b)
and (d) of the same figure we present the same results for CT T

ng . The very good agreement between
numerics and analytics in Fig. V.15 is a proof of the validity of the diagrammatic model of the
quasi-ballistic regime that we presented in this chapter.

V.5 Relative weight of Cng and C1 in R/T in the quasi-
ballistic regime

In this section we support our guess that for all optical thicknesses, as long as k0L ≫ 1, C1 is
negligible compared to the non gaussian correlation Cng in R/T. In Fig. V.10 C1 was small but not
completely negligible. Nonetheless in this sample k0L = 20 which is not so large. In Fig. V.16 we
present numerical calculation of C1 in R/T for a constant optical thickness of b = 0.05 but various
sample sizes L and mean free paths ℓ. In Fig. V.17 we show the non gaussian correlation for the
same parameters. We observe on these figures that C1 decreases faster than Cng in R/T when ℓ
and L increase (keeping b constant). This brute-force approach supports our guess that even in the
quasi-ballistic regime, as long as k0L ≫ 1, C1 is negligible compared to the non gaussian correlation
in R/T. This makes the R/T configuration a perfect configuration to study non gaussian correlations.
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Figure V.16 – Numerical calculations of C1 in R/T versus the transverse distance normalized by λ for three
different samples of constant optical thickness b = 0.05. Parameters are k0ℓ = 1000 for panel
(a), k0ℓ = 2000 for panel (b) and k0ℓ = 4000 for panel (c).
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Figure V.17 – Numerical calculations of Cng in R/T versus the transverse distance normalized by λ for three
different samples of constant optical thickness b = 0.05. Parameters are k0ℓ = 1000 for panel
(a), k0ℓ = 2000 for panel (b) and k0ℓ = 4000 for panel (c).

V.6 Conclusion

Let us summarize conclusions reached in this chapter.

• We believe that this study is convincing enough to claim that the diagrammatic model we pro-
pose is relevant in the quasi-ballistic regime. The most interesting observation is the dominant
term of the non gaussian correlation. As discussed in the previous chapter, it was claimed
in ref. [39] that additional contributions to the long range correlation exist beyond the usual
vertex. The contribution we consider in Fig. V.11 belongs to this class but was never observed.
This study is to our knowledge the first numerical observation of such un-usual contributions
to non gaussian correlations.

• Our result suggest that the contribution described in this chapter has a non negligible weight
in the experimental result shown in panel (a) in Fig. IV.2. It would be useful to follow ref. [39]
in order to obtain a general expression of the correlation function valid for any parameters of
the system to study the regime ℓ ≃ L ≫ λ that is complicated from a diagrammatic point of
view.

• We believe that the R/T geometry is perfectly suited to study mesoscopic effects since non
gaussian correlation are dominant in the I-I correlation whatever the optical thickness6 of the
system (as soon as L ≫ λ). This allows one to track and study the evolution of the connected
four-field correlation in all scattering regimes.

6This is a guess supported by Fig. V.16 and Fig. V.17.
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In this chapter we propose a new imaging modality based on the existence of an intensity correlation
between reflection and transmission, that we call Blind Ghost Imaging (BGI). This chapter is a
numerical proof of concept of the feasibility of Blind Ghost Imaging performed in the framework of a
collaboration with our colleagues from the University of Exeter (UK): I. Starshinov, A.M Paniagua
Diaz and J. Bertolotti.

VI.1 Introduction

In this section we introduce the imaging modality know as Ghost Imaging. The BGI idea that we
propose is an extension of this technique.

VI.1.1 Standard Ghost Imaging

Ghost imaging (GI) is a modality based on the intensity cross correlation between two beams. In
its original form (represented in Fig. VI.1) a classical (or quantum) fluctuating source generates two
identical paraxial optical fields [96, 97]. These two fields propagate through the system to eventually
be measured in two different detection planes. At one detection plane the field illuminates a thin
object (modeled as a thin transmission mask denoted by O) and the intensity transmitted through the
object is directly integrated by a mono pixel detector (usually called a bucket detector) that does not
provide a direct image of the thin mask. At the second detection plane, the intensity which did not
interact with the object is measured by a CCD camera placed at the same distance from the source
than the object. The two measurements are correlated and the process is repeated a large number of
times in order to perform an average (over the fluctuations of the source). The correlation reveals the
squared modulus of the transmission mask convolved with the intensity-intensity correlation function
of the beam. More formally, the signal reads:

S(r2,⊥) =
⟨


detector
|O(r1,⊥)|2I(r1,⊥)I(r2,⊥)dr1,⊥⟩ − ⟨


detector

|O(r1,⊥)|2I(r1,⊥)dr1,⊥⟩⟨I(r2,⊥⟩

⟨


detector
|O(r1,⊥)|2I(r1,⊥)dr1,⊥⟩⟨I(r2,⊥)⟩

(VI.1)

=


detector

|O(r1,⊥)|2⟨δI(r1,⊥)δI(r2,⊥)⟩dr1,⊥
detector

|O(r1,⊥)|2⟨I(r1,⊥)⟩dr1,⊥⟨I(r2,⊥)⟩
.

In Eq. (VI.1), r1,⊥ is the transverse position on the mono pixel detector, r2,⊥ is the transverse
position on the CCD camera and O is the field transmittance of the thin mask. In Eq. (VI.1),
⟨δI(r1,⊥)δI(r2,⊥)⟩ ∝ C (r2,⊥ − r1,⊥), with C (r2,⊥ − r1,⊥) the intensity correlation function of the
incoming beam which allows us to recognize into Eq. (VI.1) a convolution product between the
squared modulus of the transmittance of the object and the intensity-intensity correlation function
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Figure VI.1 – Scheme of the conventional GI set-up. A fluctuating source generates a field separated in two
beams by a beam splitter. In one arm a CCD camera measures the intensity with a high resolution.
In the other arm, the intensity illuminates a thin object. A mono pixel detector integrates all the
light coming through the object providing no spatial resolution. The distance from the beam
splitter to the camera equals the distance from the beam splitter to the object. The signal from
the mono pixel detector is correlated with the signal measured in each pixel of the CCD camera
and the process is repeated many times.

between the intensity at the CCD plane. The narrower the intensity correlation function is, the
better resolved will be the GI image.

VI.1.2 Variants of Ghost Imaging

Computationnal Ghost Imaging

Soon it has been realized that for free space propagation the second arm of the set-up could be
removed provided the incident field is known. This scheme is called computational Ghost Imaging
[98, 99]. Practically, a plane wave is used and encounters a spatial light modulator (SLM) shaping
the field. Since the distance from the SLM to the object is known, one can numerically propagate
the field from the SLM position to the position where the CCD should be. Additionally the intensity
correlation can be controlled using the SLM. This is represented in Fig. VI.2.

Figure VI.2 – Scheme of the computational GI set-up. A fluctuating source producing a known field illuminates
an object whose distance from the source is known. A mono pixel detector integrates all the light
coming through the object. This signal is correlated with the intensity numerically propagated at
the position of the object. The process is repeated many times.
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Reflection Ghost Imaging

It is also possible to use reflected photons for GI in free space [100] as represented in Fig. VI.3. This
allows in principle to place the CCD camera far away from the object. Note also that introducing
scattering in the reflected GI set-up has been done considering atmospheric turbulence between the
object and the CCD [101], or considering an object immersed inside a scattering medium (at a depth
small compared to the mean free path of the sample) [102].

Figure VI.3 – Scheme of the computational GI in reflection. A fluctuating source producing a known field
illuminates an object whose distance from the source is known. A mono pixel detector integrates
all the light reflected from the object. This signal is correlated with the intensity numerically
propagated at the position of the object. The process is repeated many times.

Ghost Imaging in transmission though a scattering medium

It is also possible to use a scattering medium to produce a sharp intensity correlation in transmission
[103]. This scheme of GI is represented in Fig. VI.4. In comparison with the usual GI set-up,
the fluctuating source is replaced by the combination of a non fluctuating source and a scattering
medium. We call GI(r) the signal given by Eq. (VI.1) obtained with this set-up. The GI signal is thus

Figure VI.4 – Scheme of the GI in transmission though a scattering medium. A plane wave illuminates a
scattering medium. The transmitted intensity is split in two by a beam splitter. In one arm a
CCD camera measures the intensity, while in the other arm the transmitted intensity illuminates a
thin object. A mono pixel detector integrates all the light coming through the object providing no
spatial resolution. The signal from the mono pixel detector is correlated with the signal in each
pixel of the CCD camera. The process is repeated for many realizations of disorder.

proportional to the convolution product of the T/T intensity correlation with the squared modulus
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of the transmittance of the object. The interesting property of GI in transmission though a thick
scattering medium is that the intensity correlation has a typical size λ (as represented in panel (a) in
Fig. VI.6) permitting a good resolution of the object. Also, the amplitude of the correlation is close
to one, and thus provides a good SNR to this imaging modality. Eventually the correlation function
does not change too much with the parameters of the system in the diffusive regime (b ≫ 1 and
k0ℓ ≫ 1). In this regime, the image does not depend on the parameters of the scattering medium.

VI.1.3 Blind Ghost Imaging

In this chapter we propose a new approach to GI that we call Blind Ghost Imaging (BGI) (see
Fig. VI.5) after a suggestion by J. Bertolotti from the University of Exeter (UK). In the BGI set-up,
a non fluctuating monochromatic source illuminates a scattering medium1. The reflected intensity is
measured using a CCD camera. On the transmission side of the sample an object with transmittance
O is illuminated by the transmitted intensity. Behind the object, a mono pixel detector integrates
all the light coming though the object with no spatial resolution. The two signals are correlated and
the process is repeated many times. We call BGI(r) the signal given by Eq. (VI.1) obtained in the

Figure VI.5 – Scheme of the BGI set-up. A plane wave illuminates a scattering medium. The reflected intensity
is measured by a CCD camera while the transmitted intensity illuminates a thin object. A mono
pixel detector integrates all the light coming through the object providing no spatial resolution.
The signal from the mono pixel detector is correlated with the one in each pixel of the CCD
camera. The process is repeated for many disorder realizations.

BGI configuration. The BGI signal is proportional to the convolution product of the R/T intensity
correlation with the squared modulus of the transmittance of the object. In panel (b) in Fig. VI.6 we
represent the intensity-intensity correlation in R/T convolving2 the transmittance of the object to
build the BGI signal. We observe that the amplitude of the R/T correlation is much lower than the
T/T intensity correlation [and decreases with 1/(k0L)]. The typical width of the correlation function
is L in R/T. Thus the SNR and the resolution of the BGI image decrease when L increases.

1The optical thickness can be a priori arbitrary large provided the number of statistical configurations is large
enough.

2Note that in Eq. (VI.1) we obtain the convolution of the squared modulus of the transmittance of the object with
the intensity-intensity correlation times a factor depending on the area of the object and on the surface of the mono
pixel detector. We leave the exact study of the amplitude of the signal obtained for future work. Here we focus on
the proof of concept of BGI and its scaling with the thickness of the medium L.
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Figure VI.6 – Numerical calculation of intensity-intensity correlation functions in T/T [panel (a)] and in R/T
[panel (b)] for two different optical thicknesses (b = 4 and b = 6). We have set k0ℓ = 10 in the
simulations.

VI.2 Numerical results

In order to demonstrate the feasibility of the BGI we present some numerical simulations of BGI
and compare them with numerical simulations of GI in transmission of a scattering medium. We
consider a scattering sample with varying optical thickness. The transmitted and reflected intensities
are measured on the surface of the sample. To keep the numerical experiment as simple as possible,
we mimic the object using a perfect numerical mask of transmittance O (instead of a real object
with a given permittivity). The transmittance reads

O(r′
T,⊥) =


0 if |r′

T,⊥| ≤ Lobj/2,
1 if |r′

T,⊥| > Lobj/2. (VI.2)

In Eq. (VI.2) Lobj is the size of the numerical object. This allows us to define the field after the object
as the field before the object multiplied by O(r′

T,⊥). In Fig. VI.7 we show numerical simulations
of GI and BGI for two different optical thicknesses (b = 4 and b = 6), and for four different sizes
Lobj of the object hidden behind the thick scattering medium. The number of disorder realizations
used for the averaging process is N = 106. As predicted GI produces a well resolved image of the
object with a rather good SNR, while BGI gives a less resolved image of the object with a lower
SNR. The variation of the GI and the BGI images with the parameter L is in perfect agreement with
the evolution of the intensity-intensity correlation functions in T/T and R/T. Indeed the GI image
seems independent of L while both the SNR and the resolution of the BGI image diminish when L
increases.

The BGI scheme could represent a real advance both conceptually and practically. Indeed, the
intensity exciting the object is unknown, in contrast to usual GI modalities. Here we correlate a
completely different intensity with the signal measured by the mono pixel detector, and we do not
assume knowledge about the intensity illuminating the object (we only use a statistical information
about it). BGI relies solely on the intensity-intensity correlation between two totally different beams.
Practically, with this modality we may image an object in transmission though a thick scattering
medium having only one information in the transmission side of the sample: the total integrated
intensity. The price to pay is the decrease of the SNR and of the resolution with the thickness L of
the medium.
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Figure VI.7 – GI images of four different objects of increasing size hidden behind two diluted (k0ℓ = 10) scat-
tering media of optical thicknesses b = 4 [panel (a)] and b = 6 [panel (b)]. BGI images of four
different objects of increasing size hidden behind two two diluted (k0ℓ = 10) scattering media of
optical thicknesses b = 4 [panel (c)] and b = 6 [panel (d)]. The number of disorder realizations
used is N = 106.

VI.3 What could be improved?

Finally let us discuss a few points which could motivate further studies.

• The use of a numerical object allowed us to simplify the proof of concept of BGI, but it hides
numerous complex questions on conceptual and numerical aspects. A full study of BGI versus
the parameters of a real object (its distance from the slab, its thickness, its permittivity) is
needed.

• It would probably be interesting to adapt the clever algorithm given in [104] to the special
case of BGI in order to increase the SNR. We should keep in mind that in 3D, the intensity
correlation in R/T is lower than in 2D, thus the SNR will be lower.

• 3D numerical simulations are required in order to have an order of magnitude of the number of
disorder realizations needed to experimentally observe an object with sufficient contrast using
the BGI modality.

• Note that in this section we did not remove the average fields in the intensity for practical
purpose. Removing them would allow us to reduce the optical thicknesses without producing
some oscillating terms in the correlation function in R/T.

With this short chapter, we end the first part of this thesis devoted to the study of the intensity
correlation function in R/T. The use of this novel correlation in this very practical application of
imaging an object behind a scattering medium is encouraging and justifies by itself the need for a
better understanding of this phenomenon.
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Joint-statistics and mutual information
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In the first part of this thesis we have studied in detail the existence and the shape of the correlation
function between reflection and transmission when the parameters of the physical system change.
In the diffusive regime, we have shown that a negative and long range correlation survives. Its
amplitude scales as 1/(k0L) in 2D and 1/(k0L)2 in 3D. Based on the existence of this correlation
imaging methods could be developed, such as ghost imaging with the CCD camera collecting a signal
in reflection from the scattering medium.

VII.1 Need for a more detailed analysis of the joint-statistics
in R/T

The amplitude of the correlation function is weak in the diffusive regime, and we may conclude from
this statement that this correlation cannot be used in practice. Nonetheless it may be possible, due
to complexity of scattering medium, to increase “information” between R/T simply by considering
more than one speckle spot on each side of the sample. Indeed we know that the information
between two sets of random variables is linked to statistical dependence between them. Let X and
Y be two random variables. The definition of statistical dependence between X and Y is that
P (X, Y ) ̸= P (X)P (Y ). In Fig. VII.1 we represent two joint distributions P1(X, Y ) and P2(X, Y ).
In the case of P1, X and Y are independent random variables and P1(X, Y ) = P1(X)P1(Y ). This
can easily be observed in panel (c) in Fig. VII.1 where we compare the distribution of X knowing
that Y equals 0.1, 1 and 2 and observe no difference between the three curves. This is in contrast
with P2 for which X and Y are two dependent random variables. This is easily observed in panel
(d) in Fig. VII.1 in which we compare the distribution of X knowing that Y equals 0.1, 1 and 2 and
observe a substantial difference between the three curves.

This statistical dependence can result from the correlation between the two random variables (second
order moment), but it can also result from higher joint moments of X and Y . In our case, the
existence of a non zero correlation between reflection and transmission proves the existence of a
statistical dependence between reflection and transmission, but it is not a direct measure of this
dependence. The quantity we need to calculate in order to be able to fully describe the statistical
dependency is the joint distribution between the random variables. In our case it would be useful to
derive P (R, T ) with R = (IR1 , ...,

IRm) and T = (IT1 ...,
ITn). This is the purpose of chap. VIII in

which we obtain the joint distribution P (R, T ) using diagrammatic techniques.

VII.2 Mutual information

In order to quantitatively study the statistical dependence between R = (IR1 , ...,
IRm) and T =

(IT1 ...,
ITn) we introduce a quantity referred as mutual information (MI) [105]. The MI is built from

another function of the probability density function called entropy. The entropy of a continuous
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Figure VII.1 – Representation of the joint probability P1 (respectively P2) between two independent (respectively
dependent) random variables X and Y in panel (a) [respectively in panel (b)]. In panels (c,d)
we plot the conditional statistics of X knowing that Y equals 0.1, 1 and 2.

random variable X, denoted H(X), is defined by

H(X) = −1
log(2)


P (X) log [P (X)] dX. (VII.1)

It is always positive and is commonly accepted as a measure of the diversity of the possible results
of a random variable. For instance, if a random variable is defined on a finite range [a, b], then the
probability density function maximizing the entropy is P (X) = 1/(b − a). Indeed, in this case the
probability is uniformly distributed and the diversity of the results is maximum. As soon as we
confine the probability of X in certain region of [a, b] we decrease the entropy because we increase
the a priori knowledge of the result of X.

The MI between R and T is defined the following way:

MI (R, T ) = 1
log(2)


P (R, T ) log


P (R, T )

P (R)P (T )


dRdT . (VII.2)

Let us here give two complementary interpretations of the MI:

• MI (R, T ) = H (R) + H (T ) − H (R, T ) = H (T ) − H (T |R) measures the reduction in the
uncertainty of T (respectively R) due to the knowledge of R (respectively T ) [105].

• MI (R, T ) is the Kullback Leibler distance between P (R, T ) and P (R)P (T ). It can be under-
stood as a distance between the joint distribution and the product of the marginal probability
density functions, thus as a distance from independence [105].

We can also discuss some mathematical properties of MI that will be useful in the following:
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• MI (R, T ) ≥ 0 and is zero if and only if R and T are independent. This is a consequence of
the intuitive inequality H (T ) ≥ H (T |R) stating that the knowledge of a random variable can
only reduce the uncertainty about another random variable.

• MI (R, T ) = MI (f [R] , g [T )] with f and g two homeomorphisms. We will use this property
to transform the numerical data in order to simplify the numerical estimation of MI.

In Chap. IX we study numerically and analytically MI (R, T ) versus the number of points considered
in reflection and transmission, their transverse distances, and the parameters of the system.

VII.3 Conditional statistics

Another property, related to the statistical dependence between X and Y , is the difference between
the conditional statistics P (X|Y ∈ V) (V is a sub-ensemble of the ensemble of definition of Y ) and
the marginal statistics P (X) [106]. This is illustrated in panel (d) in Fig. VII.1 where we can observe
changes in the conditional statistics when the knowledge of the second random variable changes. In
Chap. X, we pay special interest to the first moment of the conditional statistics of the transmitted
intensity (conditional average value of IT ) that could be a good observable to describe wavefront
shaping experiments as that in ref. [107]. In this work, the authors focused the light in a well defined
area in transmission of the sample, and observed a simultaneous decrease of the light in front of this
area in reflection. In chap. X we study in detail the conditional average value of the transmitted
intensity and show that whatever the parameters of the system, one can modify quantitatively the
transmitted intensity at one given position only using reflected information.
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In previous chapter we have discussed information theory and its building block: probability density
functions. We observed that to use all the tools defined in information theory, we need to obtain first
the analytical expressions of the probability density functions. We thus intent to derive the joint
statistics between an arbitrary number of intensities measured in reflection and transmission. From
the previous chapter we know that a correlation in R/T appears due to crossing of trajectories between
reflected and transmitted diffuse light. Here we study the effects of the non gaussian correlation on
the joint-statistics of an arbitrary number of speckle spots for diluted samples (k0ℓ ≫ 1). We build
the joint statistics taking into account one possibility of crossing between intensities. This crossing
can occur between transmitted intensities, reflected intensities, or between one reflected intensity
and one transmitted intensity creating correlations between pairs of intensities.

The main steps are the following:

• First we derive analytical expression of the probability density function of one intensity taking
into account connected four-field correlations.

• Then we derive the joint-statistics between one reflected intensity and one transmitted intensity
in the diffusive regime taking into account connected four-field correlations.

• Eventually we derive the joint-statistics between an arbitrary number of intensities in reflection
and in transmission taking into account connected four-field correlations. The derivation is
performed assuming that the C1 correlation is negligible between all pairs of intensities1. This
corresponds to dT T

i,i+1 ≫ λ and dRR
i,i+1 ≫ λ in Fig. VIII.1.

Even if the results presented here may be more general, we focus on the diffusive regime with b ≫ 1
and k0ℓ ≫ 1. Assuming the optical thickness to be larger than one allows us to restrict the non
gaussian correlation to its C2 component.

To derive the various statistics we follow the ideas developed in previous studies published in the
90’s. It was shown at the time that the statistics of the intensity scattered by the medium is
strongly dependent on the gaussian character of the field [28] and carries information about long
range correlations in the sample [108, 109]. These works were inspired by ref. [110] in which the
approach relied on path integral techniques. In this chapter we follow the reasoning in ref. [111] in
which a clear diagrammatic expansion of the statistics in terms of various connected moments of
the intensity is given. Since it is a perturbative approach, the higher the order of the connected
moment, the more complex the analytical expression of the statistics. Using RMT we can obtain a
more complete expression of the statistics [112, 113], nonetheless it looses its physical interpretation
in terms of number of crossings of trajectories inside the medium. The interested reader can find
details about the first measurements of the statistics of the intensity, and its dependance on the non
gaussian character of the field in refs. [35, 114, 115]. Note that all these works deal with statistics
of the intensity at one given position, or with the statistics of the integrated transmitted intensity,
while we are interested in joint statistics between intensities.

1In other words we study the joint statistics between different speckle spots.
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Figure VIII.1 – Scheme of the system studied. A plane wave at normal incidence illuminates a 2D disordered
sample of depth L. The field is measured in transmission and reflection at various positions
rTi and rRj . The planes of measurement are at a distance d from the sample surfaces. The
transverse distance between rTi and rTj is denoted by dT T

i,j , between rRi and rRj it is denoted
by dRR

i,j , and between rTi and rRj it is denoted by dRT
i,j .

VIII.1 Statistics of the intensity

The aim of this section is to derive the statistics of the transmitted or reflected intensity of the
fluctuating fields (δE = E − ⟨E⟩). To do so we need to derive the expression of all the moments ofI. Indeed, we can access the full statistics of I using

P (I) = 1
2π

 ∞
N=0

(ik)N

N ! ⟨IN⟩ exp(−ik I)dk. (VIII.1)

We can thus observe the impact of non gaussian correlations in the model on the statistics of the
intensity at one given position.

VIII.1.1 Rayleigh law

Let us start by deriving the Rayleigh law (statistics of the intensity of the fluctuating field in the
gaussian approximation). The reasoning leading to the expression of the moments of the Rayleigh
law is the following:

• The average value of the field is zero, thus the only non zero moments of the fields are moments
of the intensity.

• The moment of order N of the intensity is equal to ⟨IN⟩ = N !⟨I⟩N . The full statistics is thus
built with ⟨I⟩ as a single parameter.

TheN ! term is a combinatory factor coming from the fact that each field in the ensemble {δE1, ...., δEN}
can be paired with a complex conjugate in the ensemble {δE∗

1 , ...., δE
∗
N} (see ref. [28]). The first field
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has N possibilities for his pairing, the second N − 1, etc. Two different pairing possibilities are
represented in Fig. II.8.

Inserting ⟨IN⟩ = N !⟨I⟩N into Eq. (VIII.1) we obtain the Rayleigh law

PRay(I) = 1
2π

 
N

(ik⟨ I⟩)N exp(−ik I)dk = 1
2π

 exp(−ik I)
1 − ik⟨I⟩

dk (VIII.2)

= 1
⟨I⟩

exp(−I/⟨I⟩).

Normalizing the intensity by its average value we obtain the normalized version of the Rayleigh law:

PRay(I) = exp(−I). (VIII.3)

VIII.1.2 Statistics of the intensity beyond the Rayleigh law

In this subsection we intend to derive the statistics of the intensity (either in reflection or in reflection)
taking into account the connected fourth-order moment of the field.

Second-order moment of I
We know that the first correction to the gaussian character of the field arise in the I-I correlation
(fourth-order moment of the field):

⟨I2⟩ = 2⟨I⟩2 + ⟨δEδE∗δEδE∗⟩c. (VIII.4)

We represent the decomposition in Eq. (VIII.4) in Fig. VIII.2. Panels (a) and (b) together give the
2⟨I⟩2 contribution to the second order moment of I. Note that panel (b) is in reality the square of the
field-field correlation evaluated at one given position. It is thus non distinguishable from the square
of the average intensity. In the diffusive regime in T/T we know that the non gaussian correlation
has two dominant contributions represented in panels (c) and (d) in Fig. VIII.2. Evaluated at one
given position, these two contributions are non distinguishable. We thus merge them into one single
quantity called ⟨I2⟩C2 = ⟨δEδE∗δEδE∗⟩C2 . We define this new notation because we need a more
compact form in this chapter to discuss the non gaussian intensity correlation.

Figure VIII.2 – Diagrammatic representation of Eq. (VIII.4). Panels (a) and (b) give a contribution of 2⟨I⟩2 to
the second order moment of the intensity while panels (c) and (d) give the contribution ⟨I2⟩C2 .

Equation (VIII.4) can be rewritten in the diffusive regime the following way:

⟨I2⟩ = 2⟨I⟩2 + ⟨I2⟩C2 (VIII.5)
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keeping in mind that ⟨I2⟩C2 contains two different diagrams.

Arbitrary moment of I. The example of the transmission geometry

We intend here to build the moment of order N of I taking into account the first correction due to
the non gaussian character of the field, exactly as we did for the second order moment of I. The idea
is to correct the moment of order N with one (and only one) crossing of two trajectories. We derive
here the various moments of IT keeping in mind that the discussion is also valid for IR .

We already know the dominant term in the moment of order N . It results from the disconnected
propagation of N ladder diagrams with a combinatory factor of N !. This term reads

⟨IT

N
⟩Ray = N !⟨IT ⟩N . (VIII.6)

The first correction is the disconnected propagation of N − 2 ladder diagrams together with the
connected propagation of two intensities. The disconnected part of the correction is multiplied by a

(N − 2)! factor and its connected part is weighted by a

N

2

2

. This results from the choice of two

fields in the ensemble {δET1 , ...., δETN
} to be paired with two complex conjugate in the ensemble

δE∗
T1 , ...., δE

∗
TN


. This term reads

⟨IT

N
⟩T T = (N − 2)!


N

2

2

⟨IT

2
⟩C2⟨IT ⟩N−2 = N !N(N − 1)

4 ⟨IT

2
⟩C2⟨IT ⟩N−2. (VIII.7)

The subscript (...)T T specifies that the moment contains one crossing between two transmitted in-
tensities.

Figure VIII.3 – Two typical diagrams for the two components of the 4th order moment of the transmitted
intensity. Panel (a) corresponds to the disconnected propagation of 4 ladder diagrams. Panel
(b) corresponds to the disconnected propagation of two ladder diagrams and the connected
propagation of two intensities.

Diagrammatically, we represent these two terms in Fig. VIII.3. Panel (a) corresponds to one of
the N ! disconnected scattering sequences while panel (b) corresponds to one of the N !N(N − 1)/4
connected scattering sequences. The expression of the Nth order moment of the intensity can be
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written as the sum of the two contributions:

⟨IT

N
⟩ = ⟨IT

N
⟩Ray + ⟨IT

N
⟩T T (VIII.8)

= N !⟨IT ⟩N


1 + N(N − 1)

4 CT T
2



with CT T
2 = ⟨IT

2
⟩C2/⟨IT ⟩2.

Derivation of P (I). The case of transmission geometry

Knowing the different moments of I, we can access the statistics of P (I) inserting Eq. (VIII.8) into
Eq. (VIII.1). Let us derive the expression of P (IT ):

P (IT ) = 1
2π

 
N

(ik⟨ IT ⟩)N


1 + N(N − 1)

4 CT T
2


exp(−ik IT )dk = PRay(IT ) + PT T (IT ) (VIII.9)

Let us calculate PT T (IT ). To proceed, let us first deal with the expression of the sum over N


N

(ik⟨ IT ⟩)N


N(N − 1)

4 CT T
2


= (ik⟨ IT ⟩)2C

T T
2
4


N

(ik⟨ IT ⟩)N(N + 2)(N + 1) (VIII.10)

= (ik⟨IT ⟩)2C
T T
2
4

∂2

∂2[ik⟨IT ⟩]
1

1 − ik⟨IT ⟩

= CT T
2
4

−2(ik⟨IT ⟩)2
1 − ik⟨IT ⟩

3

and use the residue theorem:

PT T (IT ) = CT T
2

4(2π)

 −2(ik⟨IT ⟩)2
1 − ik⟨IT ⟩

3 exp(−ik IT )dk (VIII.11)

= CT T
2

4(2π)i⟨IT ⟩

 2k2
k + i/⟨IT ⟩

3 exp(−ik IT )dk

= CT T
2

8⟨IT ⟩
lim

k→i/⟨IT ⟩

∂2

∂2k


2k2 exp(−ik IT )



= CT T
2

4⟨IT ⟩
exp


−

IT

⟨IT ⟩

 I2
T

⟨IT ⟩2
− 4

IT

⟨IT ⟩
+ 2


.

The complete probability density function thus reads

P (IT ) = PRay(IT )


1 + CT T
2
4

 I2
T

⟨IT ⟩2
− 4

IT

⟨IT ⟩
+ 2


(VIII.12)

which gives after normalization

P (IT ) = exp

−IT


1 + CT T

2
4

IT

2
− 4IT + 2


. (VIII.13)
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We recognize in Eq. (VIII.12) the expression given in ref. [109]. Taking into account the first cor-
rection to the gaussian character of the field modifies the Rayleigh law by a polynomial function
weighted by the non gaussian correlation function. It is important to stress that Eq. (VIII.13) is also
valid in reflection in the diffusive regime. It reads:

P (IR) = exp

−IR


1 + CRR

2
4

IR

2
− 4IR + 2


. (VIII.14)

Analysis of P (I)

In this subsection we give the basic properties of Eq. (VIII.13). As every probability density function,
P (I) is normalized: 

P (I)dI = 1. (VIII.15)

Let us also note that
P (I = 0) = 1 + C2

2 , (VIII.16)

a property observed numerically.
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Figure VIII.4 – Numerical calculation of the statistics of IT in linear [panel (a)] and log scale [panel (b)] and
of IR in linear [panel (c)] and log scale [panel (d)] for a thick (b = 8) and dilute (k0ℓ = 10)
sample. Each curve is compared to Eq. (VIII.3) (red solid line) and Eq. (VIII.13) (black dotted
line). The points where intensities are calculated are at a distance d = 2λ of the scattering
sample (see Fig. VIII.1).

In Fig. VIII.4 we plot the numerically calculated statistics of IT and the statistics of IR in for a thick
(b = 8) and dilute (k0ℓ = 10) sample. Each curve is compared to Eq. (VIII.3) and Eq. (VIII.13).
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We observe an almost perfect agreement between numerics and Eq. (VIII.13) in both reflection and
transmission.

To conclude this subsection, non gaussian correlations can be taken into account into the statistics of
the intensity. It modifies the Rayleigh law with a polynomial function weighted by the non gaussian
correlation. Eq. (VIII.13) has been used in transmission to study the strength of the disorder (k0ℓ) in
various samples [115]. Indeed, in transmission of a 2D scattering sample the strength of the correction
scales as C2 ∝ 1/(k0ℓ) which is small in the diffusive regime, and increases when k0ℓ decreases.

VIII.2 Joint-statistics of one-point transmitted and reflected
intensities

In this section we study the joint-statistics between IR and IT . We follow the reasoning in the
previous section for the statistics of one intensity. We derive the moments of the joint distribution
between IR and IT with well defined assumptions, and insert them into

P (IR, IT ) = 1
(2π)2

 ∞
N,M=0

(ikT )N

N !
(ikR)M

M ! ⟨IN
T
IM
R ⟩ exp(−ikT

IT ) exp(−ikR
IR)dkT dkR. (VIII.17)

We start by considering only disconnected ladder diagrams to build the moments of the joint distri-
bution between IR and IT . We observe that this model leads to statistical independence between
one reflected intensity and on transmitted intensity. Eventually we build the joint-statistics using the
first correction to the gaussian character to its moments. We observe that under this assumption the
reflected and the transmitted intensity are statistically dependent, due to non gaussian correlations
in R/T.

VIII.2.1 The joint Rayleigh law in R/T

In this section we quickly derive the joint statistics P (IR, IT ) in the gaussian approximation in the
diffusive regime. The gaussian correlation between reflection and transmission is exponentially small
in this regime as observed in Chap. III, and we will neglect it. Thus the joint moment arises from
the disconnected propagation of N transmitted ladder diagrams with a combinatory factor N ! and
M reflected ladder diagrams with a combinatory factor of M !. It reads

⟨IN
T
IM
R ⟩Ray = N !M !⟨IR⟩M⟨IT ⟩N . (VIII.18)

Inserting this expression into Eq. (VIII.17), we obtain the joint distribution between IR and IT in
the gaussian approximation:

PRay(IR, IT ) = 1
⟨IR⟩

exp


−
IR

⟨IR⟩


1

⟨IT ⟩
exp


−

IT

⟨IT ⟩


= PRay(IR)PRay(IT ). (VIII.19)

In the gaussian approximation, IT and IR are independent random variables. Measuring one of them
gives no information about the other.
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VIII.2.2 Joint statistics between IT and IR taking into account non gaus-
sian correlations

In this subsection we intend to derive the joint statistics between IT and IR taking into account the
first correction due to non gaussian correlations. We already know the dominant term in the moment
of order (N,M). It is given in Eq. (VIII.18) and comes from the disconnected propagation of the
intensities. One of these diagrams for the moment (2, 2) is represented in panel (a) in Fig. VIII.5.

The first correction in terms of number of crossing of trajectories comes from three different contri-
butions:

• One crossing between two transmitted intensities together with (N − 2) transmitted ladder
diagrams and M reflected ladder diagrams. This term gives a contribution ⟨IN

T
IM
R ⟩T T =

N !M !N(N − 1)/4⟨IR⟩M⟨IT ⟩N−2⟨I2
T ⟩C2 to the (N,M) moment. One of these diagrams for the

moment (2, 2) is represented in panel (b) in Fig. VIII.5.

• One crossing between two reflected intensities together with N transmitted ladder diagrams and
(M − 2) reflected ladder diagrams. This term gives a contribution ⟨IN

T
IM
R ⟩RR = M !N !M(M −

1)/4⟨IR⟩M−2⟨IT ⟩N⟨I2
R⟩C2 to the (N,M) moment. One of these diagrams for the moment (2, 2)is

represented in panel (c) in Fig. VIII.5.

• One crossing between one reflected and one transmitted intensities together with (N−1) trans-
mitted ladder diagrams and (M − 1) reflected ladder diagrams. This term gives a contribution
⟨IN

T
IM
R ⟩RT = N !M !NM⟨IR⟩M−1⟨IT ⟩N−1⟨IT

IR⟩C2 to the (N,M) moment. One of these diagrams
for the moment (2, 2) is represented in panel (d) in Fig. VIII.5.

Figure VIII.5 – Four typical diagrams for the four components of the (2, 2) joint moment of the transmitted
and the reflected intensity. Panel (a) corresponds to the disconnected propagation of 2 ladder
diagrams in reflection and 2 ladder diagrams in transmission. Panel (b) corresponds to the
disconnected propagation of two ladder diagrams in reflection and the connected propagation of
two intensities in transmission. Panel (c) corresponds to the disconnected propagation of two
ladder diagrams in transmission and the connected propagation of two intensities in reflection.
Panel (d) corresponds to the disconnected propagation of one ladder diagram in reflection,
one ladder diagram in transmission and the connected propagation of one reflected and one
transmitted intensities. The crossings of trajectories are highlighted with black boxes in panels
(b,c,d).

Taking into account these four contributions we obtain the following expression for the (N,M)
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moment:

⟨IN
T
IM
R ⟩ =

⟨IN
T
IM

R ⟩S  
⟨IN

T
IM
R ⟩Ray + ⟨IN

T
IM
R ⟩T T + ⟨IN

T
IM
R ⟩RR +⟨IN

T
IM
R ⟩RT (VIII.20)

= N !M !⟨IR⟩M⟨IT ⟩N


1 + N(N − 1)CT T

2
4 + M(M − 1)CRR

2
4 +NMCRT

2



with 

CT T
2 = ⟨I2

T ⟩C2

⟨IT ⟩2
,

CRR
2 = ⟨I2

R⟩C2

⟨IR⟩2
,

CRT
2 = ⟨IR

IT ⟩C2

⟨IR⟩⟨IT ⟩
.

(VIII.21)

Note that we introduce the notation ⟨IN
T
IM
R ⟩S for the joint moment built with non gaussian correlation

in T/T and R/R (the subscript (...)S means that we consider non gaussian correlation between points
on the same surface). Each term in Eq. (VIII.20) gives a contribution to P (IR, IT ), that can be written
in the form

P (IR, IT ) = PRay(IR, IT ) + PT T (IR, IT ) + PRR(IR, IT ) + PRT (IR, IT ). (VIII.22)

The only contribution not derived so far is PRT (IR, IT ). To perform the calculation we use
∞

N=0
(ik⟨ I⟩)N (N) = (ik⟨I⟩)

∞
N=0

(ik⟨ I⟩)N(N + 1) (VIII.23)

= (ik⟨I⟩) ∂

∂ik⟨I⟩
1

1 − ik⟨I⟩

= ik⟨I⟩
1 − ik⟨I⟩

2

combined with the residue theorem

1
(2π)

 ik⟨I⟩
1 − ik⟨I⟩

2 exp(−ik I)dk = 1
(2π)i⟨I⟩

 k
k + i/⟨I⟩

2 exp(−ik I)dk (VIII.24)

= 1
⟨I⟩

lim
k→i/⟨I⟩

∂

∂k


k exp(−ik I)



= 1
⟨I⟩

exp


−
I

⟨I⟩

I − ⟨I⟩

.

This leads to the following joint probability density function of the reflected and transmitted inten-
sities of the fluctuating fields:

P (IR, IT ) = PRay(IR)PRay(IT )

×


1 + CT T
2
4

 I2
T

⟨IT ⟩2
− 4

IT

⟨IT ⟩
+ 2


+ CRR

2
4

 I2
R

⟨IR⟩2
− 4

IR

⟨IR⟩
+ 2


+ CRT

2

 IT

⟨IT ⟩
− 1

 IR

⟨IR⟩
− 1


.

(VIII.25)
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The normalized version of Eq. (VIII.25) is

P (IR, IT ) = exp

−IR


exp


−IT


×


1 + CT T
2
4

I2
T − 4IT + 2


+ CRR

2
4

I2
R − 4IR + 2


+ CRT

2


(IT − 1)(IR − 1)


. (VIII.26)

Analysis of P (IR, IT )

The key feature of Eq. (VIII.25) is that P (IR, IT ) ̸= P (IR)P (IT ) showing that IT and IR are two
statistically dependent random variables. The statistical dependence directly results from the non
gaussian correlation in R/T. In Chap. IX we study in detail the implication of Eq. (VIII.25) in
terms of Mutual Information between one reflected and one transmitted intensities, while in Chap. X
we discuss its implication in terms of conditional statistics of the transmitted intensity forcing the
reflected intensity to be dark or bright. In this section we support Eq. (VIII.25) using 2D numerical
simulations. An easy way to compare the numerical distribution with the analytical result is to
compare their moments. In Fig. VIII.6 we plot the logarithm of the ratio between the (N,M)
moment calculated numerically and the one resulting from three different analytical calculations
versus the order of the (N,M) moment.

Figure VIII.6 – Logarithm of the ratio between ⟨IN
T
IM
R ⟩num and ⟨IN

T
IM
R ⟩Ray [panel (a)], between ⟨IN

T
IM
R ⟩num

and ⟨IN
T
IM
R ⟩S [panel (b)], and between ⟨IN

T
IM
R ⟩num and ⟨IN

T
IM
R ⟩. The calculation is done for a

thick (b = 6) and dilute (k0ℓ = 10) sample.The points are in front one of another (dRT = 0λ)
and are at a distance d = 2λ of the scattering sample (see Fig. VIII.1).

We observe in panel (a) in Fig. VIII.6 that ⟨IN
T
IM
R ⟩num is higher for large N and lower for larger M

than ⟨IN
T
IM
R ⟩Ray. This is due to the non gaussian correlation in T/T and R/R which are positive in

transmission and negative in reflection in this regime. In panel (b) we correct the analytical model
with non gaussian correlations in T/T and R/R. We see that the precision of the calculation of the
moments for large N or large M is improved. Nonetheless, for both large N and large M the moment
calculated numerically is lower than the moment resulting from the analytical result. In panel (c) we
correct this taking into account non gaussian correlation in R/T. We believe Fig. VIII.6 is a proof
of the validity of the analytical model leading to Eq. (VIII.25).



106 Chapter VIII. Joint-statistics in R/T

VIII.3 Joint-statistics between n transmitted speckle spots
and m reflected speckle spots

In this section we derive the joint statistics between n speckle spots in transmission and m speckle
spots in reflection taking into account the first order correction to the gaussian approximation.

VIII.3.1 Joint-statistics between two different transmitted (respectively
reflected) speckle spots

In the previous section we derived the joint statistics between one reflected intensity and one transmit-
ted intensity. To derive the joint statistics between an arbitrary number of reflected and transmitted
different speckle spots, we also need to derive the joint statistics between two different speckle spots
in transmission or in reflection.

First, it is important to note that considering the C1 correlation in the joint statistics between many
intensities is cumbersome in the diagrammatic approach. We have performed the calculation for
two transmitted intensities, and obtained the same result as the known result given in Eq. (II.13).
Nonetheless, we did not manage to extend this result to a useful analytical expression for the joint
statistics of N transmitted intensity correlated with C1. In a nutshell, the issue is that we use a
perturbative expansion of the moments to build the distribution taking into account non gaussian
contribution. The C1 correlation in T/T or R/R can be close to unity, as shown in Fig. III.9,
and cannot be treated perturbatively. We handle this problem by considering points separated by
distances larger than λ (different speckle spots). Doing so, the C1 correlations are small and the
intensities are mainly correlated due to non gaussian correlations. In this regime, the (N,M) joint
moment of P (IT1 ,

IT2) has the exact same expression as that in the R/T configuration. It reads

⟨IN
T1
IM
T2 ⟩ = N !M !⟨IT1⟩M⟨IT2⟩N


1 + N(N − 1)CT1T1

2
4 + M(M − 1)CT2T2

2
4 +NMCT1T2

2


(VIII.27)

with CTi,Tj

2 being the non gaussian correlations between ITi
and ITj

. This leads to the following joint
probability density function for two transmitted intensities:

P (IT1 ,
IT2) = PRay(IT1)PRay(IT2)


1 + CT1T1

2
4

 I2
T1

⟨IT1⟩2
− 4

IT1

⟨IT1⟩
+ 2


(VIII.28)

+C
T2T2
2
4

 I2
T2

⟨IT2⟩2
− 4

IT2

⟨IT2⟩
+ 2


+ CT1T2

2

 IT1

⟨IT1⟩
− 1

 IT2

⟨IT2⟩
− 1


.

Its normalized version is

P (IT1 ,
IT2) = exp


−IT1


exp


−IT2


(VIII.29)

×


1 + CT1T1
2
4

I2
T1 − 4IT1 + 2


+ CT2T2

2
4

I2
T2 − 4IT2 + 2


+ CT1T2

2


(IT1 − 1)(IT2 − 1)


.

Note that the same discussion remains valid in the reflection geometry. We can note that Eq. (VIII.29)
has the exact same shape as Eq. (VIII.26).
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Analysis of P (IT1 ,
IT2)

Let us check the validity of Eq. (VIII.29) using numerics. In panels (a,d) in Fig. VIII.7 we plot the
logarithm of the ratio between ⟨IN

T1
IM
T2 ⟩num and ⟨IN

T1
IM
T2 ⟩Ray. In panel (b,e), we plot the logarithm of

the ratio between ⟨IN
T1
IM
T2 ⟩num and ⟨IN

T1
IM
T2 ⟩S. In panel (c,f), we plot the logarithm of the ratio between

⟨IN
T1
IM
T2 ⟩num and ⟨IN

T1
IM
T2 ⟩. In panels (a,b,c) in Fig. VIII.7 the two transmitted points are separated by

a transverse distance of dT T
1,2 = 18.6λ. Over this distance C1 is very small, and the model should be

valid. We observe indeed that the moments are closer to the numerical result when corrected with all
the non gaussian correlations. In panels (d,e,f) in Fig. VIII.7 the two transmitted points are separated
by a transverse distance of dT T

1,2 = 0.31λ. Over this distance C1 is not negligible. This explains why
the discrepancy between the numerical simulations and the analytical model considering only non
gaussian correlations is so large. Note that correcting the moments with non gaussian correlations
has little effect when dT T

1,2 = 0.31λ because the dominant contribution is the gaussian correlation.

Figure VIII.7 – Logarithm of the ratio between ⟨IN
T1
IM
T2

⟩num and ⟨IN
T1
IM
T2

⟩Ray [panels (a,d)], between
⟨IN

T1
IM
T2

⟩num and ⟨IN
T1
IM
T2

⟩S[panels (b,e)], and between ⟨IN
T1
IM
T2

⟩num and ⟨IN
T1
IM
T2

⟩ [panels (c,f)].
This is done for a thick (b = 8) and dilute (k0ℓ = 10) sample and for two transmitted points
separated by a transverse distance of dT T

1,2 = 18.6λ [panels (a,b,c)] and of dT T
1,2 = 0.31λ [panels

(d,e,f)]. The distance from the slab is d = 2λ.

We can also note that the difference between numerics and analytics is larger for P (IT1 ,
IT2) in

Fig. VIII.7 than for P (IT , IR) in Fig. VIII.6. The main reason is that CT T
2 is larger than CRR

2 . It
is clear that the parameter that drives the validity of the model is the strength of the non gaussian
correlations (because we use a perturbative approach). The lower it is, the better the validity of the
model will be.
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VIII.3.2 Extension to an arbitrary number of speckle spots

We intend now to build P (IR1 , ...,
IRm ,

IT1 , ...,
ITn), taking into account one crossing of trajectories

in T/T, R/R or R/T. We remain in the regime where C1 is negligible between all pairs of points.
In the diffusive regime this is always true in R/T, but in T/T and R/R it implies that points need
to be separated by many λ (points belong to different speckle spots). The joint moment is built
considering the dominant term (disconnected propagation of ladder diagrams) and its first correction
in which two intensities are connected. The connection of two intensities can occur between all pairs
of intensities considered in the problem. This leads to

⟨IN1
T1 ...

INn
Tn

IM1
R1 ...

IMm
Rm

⟩ = N1!...Nn!M1!...Mm!⟨IT1⟩N1 ...⟨ITn⟩Nn⟨IR1⟩M1 ...⟨IRm⟩Mm (VIII.30)

×

1 +
n

i=1

Ni(Ni − 1)CTiTi
2

4 +
m

j=1

Mj(Mj − 1)CRjRj

2
4

+
n,m
i,j

NiMjC
TiRj

2 +
n,n
i<j

NiNjC
TiTj

2 +
m,m
i<j

MiMjC
RiRj

2



which gives for the normalized joint distribution function:

P (IR1 , ...,
IRm ,

IT1 ...,
ITn) = PRay

IR1


...PRay

IRm


PRay

IT1


...PRay

ITn


(VIII.31)

×

1 +
n
i

CTiTi
2
4

I2
Ti

− 4ITi
+ 2


+

m
j

C
RjRj

2
4

I2
Rj

− 4IRj
+ 2



+
n,m
i,j

C
RiTj

2


(ITi

− 1)(IRj
− 1)


+

n,n
i<j

C
TiTj

2


(ITi

− 1)(ITj
− 1)


+

m,m
i<j

C
RiRj

2


(IRi

− 1)(IRj
− 1)

 .

Equation (VIII.31) expresses the joint distribution between m reflected and n transmitted speckle
spots as the joint Rayleigh law corrected with all possible non gaussian correlations. It is valid in
the diffusive regime as long as the I-I correlation between all pairs of points is dominated by its non
gaussian contribution.

VIII.3.3 An alternative derivation of the joint statistics

In this section we give a slightly different derivation of the joint statistics. The result obtained is of
course equivalent to that obtained in the previous sections in the diffusive regime. Nonetheless, it
needs fewer assumptions about the statistics of the transmitted and the reflected intensities. It is thus
more general. The idea is to perform a perturbative expansion only on the correlation between the
reflected intensities and the transmitted intensities. In other words, we do not specify the statistics
in reflection or in transmission, we simply argue that the two sides of the sample are correlated with
small non gaussian R/T correlations.

These assumptions have two implications:

• The dominant term of the joint moment is the disconnected moment between reflection and
transmission. This term gives a contribution ⟨IN1

T1 ...
INn
Tn

IM1
R1 ...

IMm
Rm

⟩ = ⟨IM1
R1 ...

IMm
Rm

⟩⟨IN1
T1 ...

INn
Tn

⟩ to
the joint moment.
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• The first correction results from one and only one correlation in R/T. This term gives a contri-
bution ⟨IN1

T1 ...
INn
Tn

IM1
R1 ...

IMm
Rm

⟩ = m,n
i,j ⟨IM1

R1 ...
IMi−1
Ri

...IMm
Rm

⟩⟨IN1
T1 ...

INj−1
Tj

...INn
Tn

⟩NM⟨IRi
ITj

⟩C2 to the
joint moment.

This leads to the following expression of the joint moment:

⟨IN1
T1 ...

INn
Tn

IM1
R1 ...

IMm
Rm

⟩ = ⟨IM1
R1 ...

IMm
Rm

⟩⟨IN1
T1 ...

INn
Tn

⟩ (VIII.32)

+
m,n
i,j

⟨IM1
R1 ...

IMi−1
Ri

...IMm
Rm

⟩⟨IN1
T1 ...

INj−1
Tj

...INn
Tn

⟩NM⟨IRi
ITj

⟩C2 .

Inserting Eq. (VIII.32) into Eq. (VIII.17), we directly obtain for the normalized quantities:

P (IR1 , ...,
IRm ,

IT1 ...,
ITn) = P (IR1 , ...,

IRm)P (IT1 , ...,
ITn) (VIII.33)

×

1 +
m,n
i,j

C
RiTj

2 vi(IR1 , ...,
IRm)vj(IT1 , ...,

ITn)


with

vi(X1, ...XN) =
∂

∂Xi


Xi

∂
∂Xi

P (X1, ...XN)


P (X1, ...XN) (VIII.34)

and X being IR or IT .

Equation (VIII.33) is a milestone because it directly expresses the joint distribution between reflected
and transmitted intensities (IR1 , ...,

IRm ,
IT1 ...,

ITn) as the independent product of the reflected and
the transmitted joint distributions multiplied by a correction. When this correction differs from
unity, we know that the reflected and the transmitted intensities are statistically dependent. Note
that the correction is simply defined by the derivatives of the distribution in transmission and in
reflection, and by all the non gaussian correlations in R/T. Let us stress that if we insert the joint
distribution in transmission or in reflection built taking into account the non gaussian correlation
into Eq. (VIII.33), we recover to first order in terms of non gaussian correlations the result given in
Eq. (VIII.31).

Since we have derived the joint-distribution between an arbitrary number of speckle spots in reflection
and an arbitrary number of speckle spots in transmission we can enter information theory. This is
the topic of the next chapter.
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In this chapter we study the mutual information (MI) between an arbitrary number of reflected
and transmitted distant speckle spots both numerically and analytically. The geometry of interest is
represented in Fig. IX.1. Between the writing of the thesis and the defense of the thesis, we submitted
an article summarizing the work discussed in this chapter [116]

Figure IX.1 – Scheme of the system: a plane wave at normal incidence illuminates a 2D disordered sample of
depth L. The field is measured in transmission and reflection at various positions rTi and rRj .
The planes of measurement are at a distance d from the sample surfaces. The transverse distance
between rTi and rTj is denoted by dT T

i,j , between rRi and rRj it is denoted by dRR
i,j and between

rTi and rRj it is denoted by dRT
i,j .

We first derive a perturbative expression of the MI in terms of non gaussian correlation functions in
R/R, T/T and R/T. Then we discuss the shape of the non gaussian correlation functions in T/T
and R/R to get insight about their contribution to MI. Based on this, we analytically discuss the
main features of the MI and its dependence on the parameters of the physical problem. Eventually
we study numerically the MI between a large number of reflected and transmitted intensities. We
observe a rich and subtle behavior of this quantity versus the parameters of the system.

IX.1 Mutual information in terms of CTT
2 , CRR

2 and CRT
2

Let us recall the expression of the MI between two ensembles of random variables R = (IR1 , ...,
IRm)

and T = (IT1 ...,
ITn) [105]:

MI (R, T ) = 1
log(2)


P (R, T ) log


P (R, T )

P (R)P (T )


dRdT . (IX.1)
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The MI between two random variables is often considered as a “distance” between the joint distribu-
tion and the product of the marginal distributions1. Indeed, it vanishes if and only if the two random
variables are independent and is positive otherwise. In Chap. VIII we derived the expression of the
joint distribution P (R, T ) in terms of the product of the marginal probability densities:

P (IR1 , ...,
IRm ,

IT1 ...,
ITn) = P (IR1 , ...,

IRm)P (IT1 , ...,
ITn)

×

1 +
m,n
i,j

C
RiTj

2 vi(IR1 , ...,
IRm)vj(IT1 , ...,

ITn)
  

u(R,T )

 .
(IX.2)

The importance of the form of Eq. (IX.2) is revealed when inserted into the expression of the MI
between R and T :

MI (R, T ) = 1
log(2)


P (R)P (T ) [1 + u (R, T )] log [1 + u (R, T )] dRdT (IX.3)

≃ 1
log(2)


P (R)P (T )


u (R, T ) + u2 (R, T )

2


dRdT

where we assumed that u (R, T ) ≪ 1. This assumption is ensured by the scaling of CRT
2 as 1/(k0L) ≪

1 in 2D. We can show that the average value of u (R, T ) has a zero contribution using
P (IR1 , ...,

IRm)vi(IR1 , ...,
IRm)dIR1 ...dIRm =


∂IRi

IRi
∂IR1

P (IR1 , ...,
IRm)


dIR1 ...dIRm

=
 IRi

∂IR1
P (IR1 , ...,

IRm)
∞

0
dIR1 ...d

IRi−1d
IRi+1 ...dIRm

= 0. (IX.4)

This leads to a simple form of the MI between R and T :

MI (R, T ) = 1
log(2)


P (R)P (T ) u

2 (R, T )
2 dRdT . (IX.5)

To calculate the MI explicitly, let us recall the expression of u

u(R, T ) =
m,n
i,j

C
RiTj

2 vi(R)vj(T ) (IX.6)

and of u2

u2(R, T ) =
m,n,m,n
i,j,i′,j′

C
RiTj

2 vi(R)vj(T )CRi′ Tj′
2 vi′(R)vj′(T ). (IX.7)

We can show that the MI reads

MI (R, T ) = 1
2log(2)

m,n,m,n
i,j,i′,j′

C
RiTj

2 C
Ri′ Tj′
2 ⟨vi (R) vi′ (R)⟩⟨vj (T ) vj′ (T )⟩ (IX.8)

with 
⟨vi (R) vi′ (R)⟩ =


P (R)vi (R) vi′ (R) dR,

⟨vi (T ) vi′ (T )⟩ =

P (T )vi (T ) vi′ (T ) dT .

(IX.9)

1Thus it is commonly accepted as a distance to independence.
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To proceed further, we need to specify the joint distribution on each surface [P (IR1 , ...,
IRm) and

P (IT1 , ...,
ITn)]. We consider points separated by transverse distances larger than λ so that the C1

correlation is negligible. We have shown in Eq. (VIII.29) that the joint distribution in transmission
reads

P (T ) = P (IT1 , ...,
ITn) = exp


−IT1


... exp


−ITn


(IX.10)

×

1 +
n
i

CTiTi
2
4

I2
Ti

− 4ITi
+ 2


+

n,n
i<j

C
TiTj

2


(ITi

− 1)(ITj
− 1)

 .

Inserting Eq. (IX.10) (and its analog in reflection) into Eq. (IX.8), we obtain

MI (R, T ) = 1
2log(2) Tr


CRRCRT CT T CT R


(IX.11)

where 
CRR(i, j) = δ(i, j) − CRR(i, j),
CT T (i, j) = δ(i, j) − CT T (i, j),
CRT (i, j) = CRT

2 (i, j).
(IX.12)

In Eq. (IX.12) we have not specified the matrices CRR and CT T on purpose. In the following (in
order to give insight and to improve the agreement between analytics and numerics) we vary the
accuracy of the derivation of these matrices in terms of non gaussian correlations in T/T and R/R.
In Eq. (IX.13) we give the expression to three different orders of the non diagonal terms of the CXX

matrices used in this chapter (XX refers to TT or RR). In Eq. (IX.14), we give the same result for
the diagonal terms: 

CXX0(i, j) = 0,
CXX1(i, j) = 0 + CXX

2 (i, j),
CXX2(i, j) = 0 + CXX

2 (i, j)

1 − CXX

2 (i, i) − CXX
2 (j, j)


,

(IX.13)

and 
CXX0(i, i) = 0,
CXX1(i, i) = 0 + CXX

2 (i, i),
CXX2(i, i) = 0 + CXX

2 (i, i) − 5

CXX

2 (i, i)
2
.

(IX.14)

In Eq. (IX.13) and Eq. (IX.14) we have labeled three different terms which correspond to different
order in the development of CXX in terms of non gaussian correlation (we use the superscript (...)XX2

for instance to refer to CXX to second order in terms of non gaussian correlations). The first term
(CXX0) corresponds to the the Rayleigh law in both reflection and transmission. The second term
(CXX1) corresponds to a statistics in both reflection and transmission following Eq. (IX.10). It is a
development to first order in term of non gaussian correlations in T/T and R/R. To obtain the third
term (CXX2) we add to the model the possibility of having two pairs of transmitted (or reflected)
intensities crossing at the same time2. Whatever the order in the development of the matrices CRR

and CT T , we can develop Eq. (IX.11) using Eq. (IX.12) in order to obtain the MI as a sum of three
terms :

MI (R, T ) = 1
2log(2)


Tr

CRT

2


− Tr

CRR + CT T

 
CRT

2


+ Tr

CRRCRTCT TCT R


.

(IX.15)
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Figure IX.2 – Scheme of the decomposition of the MI between R and T performed in Eq. (IX.15). Panel (a)
represent the term resulting from Tr


(CRT )2


. Panel (b) represents the term resulting from

Tr


CRR + CT T


(CRT )2


and panel (c) the term resulting from Tr

CRRCRT CT T CT R


.

In Fig. IX.2 we represent schematically the meaning of Eq. (IX.15). Its interpretation is the following:
the MI between R and T is carried by loops of correlation. The first possibility is to correlate back
and forth reflection and transmission via a 2 points loop [panel (a)]. When non gaussian correlations
in T/T or R/R are added to the model we can also consider a three points loop with a correlation
between reflection and transmission, a correlation on the surface (with CRR or CT T ) and a R/T
correlation going back to the first point [panel (b)]. The last possibility is a four points loop with
two R/T correlations, one T/T correlation and one R/R correlation [panel (c)].

Let us define three analytical expressions deduced from Eq. (IX.15) that will be of interest in this
study:

MI1 (R, T ) = 1
2log(2) Tr


CRT

2

, (IX.16)

MI2 (R, T ) = 1
2log(2)


Tr

CRT

2


− Tr

CRR1 + CT T1

 
CRT

2

, (IX.17)

and

MI3 (R, T ) = 1
2log(2)


Tr


I −CRR2 − CT T2
 
CRT

2


+ Tr

CRR1CRTCT T1CT R


. (IX.18)

In Eq. (IX.17), I is the identity matrix of dimension n. To build MI1 we inserted CXX0 into
Eq. (IX.15). This analytical expression is represented schematically in panel (a) in Fig. IX.2. To
build MI2 we inserted CXX1 into Eq. (IX.15) and dropped the third term in Eq. (IX.15) . MI2 only
takes into account the first correction of order 1/(k0ℓ) in Eq. (IX.15) (due to non gaussian corre-
lations in T/T and R/R). In MI3 we incorporated higher order contributions due to non gaussian
correlations in T/T and R/R. Note that MI2 does not contain four points loops as represented in
panel (c) in Fig. IX.2.

Let us stress that when the dimension of the vectors R and T are larger than 1, the three terms are
not a simple development in 1/(k0ℓ). Indeed in this case the transverse distance dT T

i,j and dRR
i,j enter

2Mathematically we add the possibility to take into account


⟨ITi

2
⟩C2

2
,⟨ITi

ITj
⟩C2⟨ITi

2
⟩C2 ,


⟨IRi

2
⟩C2

2
and

⟨IRi
IRj

⟩C2⟨IRi

2
⟩C2 in the (N,M) joint moment.
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into account and play an important role. Nonetheless when the dimension of both R and T is equal
to 1, then MI1 is the first order expansion of MI in terms of the small parameter 1/(k0ℓ).

IX.2 Study of reflection and transmission non gaussian cor-
relation functions

In the previous section we derived an expression of MI (R, T ) and observed that it depends not only
on the R/T non gaussian correlation but also on the T/T and the R/R non gaussian correlations. As
a consequence, in this section we study the non gaussian correlations in reflection and in transmission.
The complexity of the diagrammatic approach in the R/R configuration leads us to look for simple
fitting functions for the T/T and the R/R non gaussian correlations. These fitting functions are
expected to give us insight about the dependence of the non gaussian correlations on the parameters
of the system.

IX.2.1 Diagrammatic approach

In this section, we give a very short presentation of the diagrammatic calculations of CT T
2 and CRR

2 .
The purpose is mainly to warn the reader about difficulties encountered with diffusion theory in the
R/R geometry.

Non gaussian correlation function in transmission

In App. we give the analytical expression of the non gaussian correlation in R/R and T/T in 2D
and 3D. To derive these expressions we took into account the two diagrams represented in the R/T
geometry in Fig. III.103. The T/T non gaussian correlation function calculated this way is a positive
and peaked function of the transverse distance between the points. It takes non zero values in a
range of transverse distances larger than λ. In Fig. IX.3 we compare the analytical calculation given
in App. with numerical simulations for a thick (b = 10) and dilute (k0ℓ = 10) medium. We observe
a good agreement between the two curves.
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Figure IX.3 – Numerical calculations (blue dashed curve) of the non gaussian correlation function and analytical
calculation of the CT T

2 (red solid curve) in transmission for a thick (b = 10) and dilute (k0ℓ)
sample versus the transverse distance normalized by λ.

3Since we do not use the analytical formulas of CT T
2 and CRR

2 to study MI we only give them in App. .
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Non gaussian correlation function in reflection

In Fig. IX.4 we represent the R/R non gaussian correlation for two media with same size (k0L = 200)
and various optical thicknesses (b = 10 for the red curve and b = 20 for the blue curve) both
numerically [panel (a)] and analytically [panel (b)]. The R/R non gaussian correlation function is a
very peculiar function of the transverse distance. It is negative for transverse distances larger than
a few wavelengths and is positive otherwise. We can also note that it is a long range function. The
comparison between numerics and analytics is not perfect in R/R. This discrepancy is due to the
use of ladder diagrams calculated with diffusion theory which cannot represent well the short paths
that exist in reflection. Nonetheless, we can observe that the amplitude, the peculiar form of the
function and their variations with the parameters of the system are qualitatively reproduced with the
analytical calculation. To improve the accuracy in the R/R configuration, we should use radiative
transfer theory to have a better representation of short paths in the calculation of the diagrams.
This is not our purpose, and we propose instead to find simple functions that represents well the
numerical data.
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Figure IX.4 – Numerical calculations of the non gaussian correlation in reflection [panel (a)] and analytical
calculation of the CRR

2 correlation [panel (b)] for two different samples of same length (k0L = 200)
and varying mean free path versus the transverse distance normalized by λ.

IX.2.2 Fitting non gaussian correlations in T/T, R/R and R/T

In this subsection we intend to find fitting functions for the non gaussian correlations in T/T, R/R
and R/T in terms of the parameters of the system. We first vary these parameters to understand
the scaling laws followed by the T/T and the R/R non gaussian correlations.

Dependence of the T/T non gaussian correlation one the parameters of the system

In Fig. IX.5 we study the numerically calculated non gaussian correlation in transmission considered
as a function of the transverse distance ∆R. In panel (a) we vary the mean free path for a given
length of the system (k0L = 120). In panel (b) we fix the mean free path (k0ℓ = 10) and vary the
optical thickness. In panels (c,d) we plot the non gaussian correlation normalized by its maximum
value in order to observe the change in the shape of the function with the parameters. From Fig. IX.5
we can conclude that CT T

2 varies in amplitude with the mean free path and in shape with the depth
L of the medium.
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Figure IX.5 – Panel (a): numerical calculation of CT T
2 versus ∆R/λ for three different samples of same size

k0L = 120 and various mean free paths. Panel (b): numerical calculation of CT T
2 versus ∆R/λ

for three different samples of same mean free path k0ℓ = 10 and various optical thicknesses. In
panels (c) and (d) we plot the same two curves normalized by their maximum.

Dependence of the R/R non gaussian correlation on the parameters of the system

In Fig. IX.6 we study the numerically calculated non gaussian correlation in reflection. In panel (a)
we vary the mean free path for a given length of the system (k0L = 120.) In panel (b) we fix the
mean free path (k0ℓ = 10) and vary the optical thickness of the system. From Fig. IX.6 we can
conclude that CRR

2 vary both in amplitude and in shape with the mean free path. Note that CRR
2

seems to become independent on L in the deep diffusive regime.

Fitting functions for CRR
2 , CT T

2 and CRT
2

We can propose fitting functions for CRR
2 , CT T

2 and also CRT
2 based on the previous numerical study.

We observed that CRR
2 and CT T

2 vary in amplitude with the mean free path, while CRT
2 vary with

the size of the medium. We also observed that the typical length scale of CRR
2 is ℓ, while both CT T

2
and CRT

2 vary on a typical distance of L. We can thus propose the following form for the correlation
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Figure IX.6 – Panel (a): numerical calculation of CR
2 R versus ∆R/λ for three different samples of same size

(k0L = 120) and various mean free paths. Panel (b): numerical calculation of CR
2 R versus ∆R/λ

for three different samples of same mean free path (k0ℓ = 10) and various optical thicknesses.

functions4: 

CT T
2 (∆R) = 1

k0ℓ
fT T


∆R
L


,

CRR
2 (∆R) = 1

k0ℓ
fRR


∆R
ℓ


,

CRT
2 (∆R) = 1

k0L
fRT


∆R
L


.

(IX.19)

with 

fT T


∆R
L


= αT T exp


−βT T

∆R
L


,

fRR


∆R
ℓ


= αRR exp


−βRR

∆R
ℓ


,

fRT


∆R
L


= αRT exp

−βRT


∆R
L

2
 .

(IX.20)

where α and β are dependent on the optical thickness of the sample. We know from Chap. III
that αRT and βRT have a well defined asymptotic value in the deep diffusive regime, but we do
not know if this is also true in the T/T and the R/R configurations. Indeed mathematically in the
diffusive approach we cannot put the T/T and R/R correlation in a simple form like the one given
in Eq. (IX.20). In the literature, this aspect is handled by specifying the form of the correlation
function in different domains (for instance for 0 ≤ ∆R ≤ ℓ). Here we accept to loose accuracy in the
region |∆R| ≤ ℓ and gain simplicity in the expression of the correlation function. In the following
study the values of the fitting parameters will be of little interest. Nonetheless, we give in the table
below the parameters of the fitting functions for a moderate optical thickness (b = 3 and k0ℓ = 10)
and for a large optical thickness (b = 8 and k0ℓ = 10) in order to give insight about the correlation
functions:

T/T R/R R/T
b = 3 αT T = 1.3 , βT T = 5.2 αRR = −0.25 , βRR = 0.5 αRT = −0.8 , βRT = 1.2
b = 8 αT T = 2.2 , βT T = 3.8 αRR = −0.3 , βRR = 0.45 αRT = −1.1 , βRT = 1.4
b ≫ 1 αT T =? , βT T =? αRR =? , βRR =? αRT = −2.2 , βRT = 2.0

4We look for a gaussian fitting function for CRT
2 and for exponential fitting functions for CT T

2 and CRR
2 due to

their sharp appearance.
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The last line in the table means that we have no clear analytical expressions for the fitting functions
in T/T and in R/R in the diffusive regime.

Dependence of non gaussian correlations on the distance from the scattering sample

Here we discuss a numerical simulation demonstrating that the non gaussian correlation functions
are strongly dependent on the distance between the observation points and the scattering sample,
denoted by d in Fig. IX.1. In Fig. IX.7 we represent CT T

2 ,CRR
2 and CRT

2 for two different distances
from the slab d = 0 and d = 2λ and observe a substantial change between the two curves.
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Figure IX.7 – Numerical calculation of non gaussian correlation in R/T [panel (a)], T/T [panel (b)] and R/R
[panel (c)] for points at two different distances from the slab. The parameters of the simulation
are b = 8 and k0ℓ = 10.

The reader should keep in mind that the results presented in this chapter are strongly dependent on
the parameter d.

IX.3 Analytical expression of the mutual information be-
tween reflection and transmission

In this section we use our knowledge about non gaussian correlations to discuss Eq. (IX.15). We
consider first the geometry represented in Fig. IX.8, i.e. the MI between IR and IT versus the
transverse distance between the points and versus the parameters of the system in the diffusive
regime. The second geometry we consider corresponds to n reflected intensities “aligned” (dRT

i,i = 0)
with n transmitted intensities, as represented in Fig. IX.10. The distance between each neighbor
points in transmission or reflection is dT T

i,i+1 = dRR
i,i+1 = a. In this case, we study the MI between

the ensemble of reflected intensities and the ensemble of transmitted intensities versus k0a, and the
parameters of the system in the diffusive regime.

IX.3.1 Analytical expression of the mutual information between one
reflected intensity and one transmitted intensity

Let us start with the easiest configuration: the MI between IR and IT versus the transverse distance
between the observation points, as represented in Fig. IX.8.
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Figure IX.8 – Scheme of the system studied in this section. A 2D disordered sample with depth L and transverse
size W ≫ L is illuminated from the left by a plane wave at normal incidence.

In this specific configuration the dominant term in Eq. (IX.15) in the diffusive regime reduces to MI1
when k0ℓ ≫ 1. It reads

MI1
IR, IT


= 1

2log(2)

CRT

2

IR, IT

2
. (IX.21)

In Eq. (III.69) we give the exact analytical expression of CRT
2 in the diffusive regime. We can insert

this expression into Eq. (IX.21) to obtain the exact expression of the MI between IR and IT in the
diffusive regime. Nonetheless, in this chapter we do not put forward the microscopic derivation of the
non gaussian correlations. We rather use the fitting functions obtained in the previous subsection.
Equation (IX.21) becomes

MI1
IR, IT


= 1

2log(2)(k0L)2fRT (∆R/L)2 . (IX.22)

From Eq. (IX.22) we can discuss the basic properties of the MI between IR and IT in 2D. As
represented in Fig. IX.9, it scales as 1/(k0L)2, is maximum when points are in front of each other
and has a non zero value for transverse distances ∆R ≤ L. Note that to first order in 1/(k0ℓ), MI
between IR and IT is independent on the mean free path of the medium. In 3D the MI scales as
1/(k0L)4 and has non zero value on an area of typical surface L2.
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Figure IX.9 – Large optical thickness expression of Eq. (IX.22) normalized by 1/ (k0L)2 versus the transverse
distance normalized by L.
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The scaling of the MI between IR and IT as 1/(k0L)2 in 2D and 1/(k0L)4 in 3D could lead us
to the conclusion that the MI between reflection and transmission is too small to be useful. This
statement is wrong. Indeed since W ≫ L (and all other length scales) it is possible to consider an
arbitrary number n of pairs of reflected and transmitted intensities far from each other (dT T

i,i+1 ≫ L
and dRT

i,i = 0). In that case the information should be proportional to n. It is even possible to consider
n pairs of reflected intensities whose transverse distance is comparable to L, ℓ or λ. There may be a
regime of transverse distance between the points where the information is even larger than n times
the MI for one reflected intensity aligned with one transmitted intensity. In the next subsection we
study analytically this possibility.

IX.3.2 Analytical expression of the mutual information between n re-
flected intensities facing n transmitted intensities

Following the conclusion of the last subsection we now address the analytical study of the mutual
information between n reflected intensities facing n transmitted intensities versus the transverse
distance between the points, as represented in Fig. IX.10.

Figure IX.10 – Scheme of the geometry considered to study MI between an arbitrary number of speckle spots
in reflection and in transmission (n = m). Each reflected speckle spot has the same transverse
coordinates as a transmitted speckle spot. The transverse distance between intensities in a given
speckle pattern is denoted by a.

Large number of speckle spots (n ≫ 1) with intermediate spacing between them (ℓ ≫
a ≫ λ)

When the dimension of R and T is larger than 1, a new parameter enters the problem: the spacing
between the observation points in a given speckle, denoted by a in Fig. IX.10. To understand the
role of this parameter, we first extract the main ingredients of the MI using Eq. (IX.15). To do so we
transform the trace formula in a spatial integration. For this continuous limit to be valid, we need
to consider n ≫ 1 and ℓ ≫ a ≫ λ. The distance between intensities a needs to be kept larger than λ
to avoid the presence of the C1 correlation. This continuous limit allows us to compare the relative
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weight of two, three and four points loop processes5 in the MI as represented in Fig. IX.2.

The dominant term in the two points loop process in Eq. (IX.15) reads

Tr

CRT

2


≃ n

CRT

2 (∆R)2 d∆R
a

(IX.23)

= n

(k0L)2


fRT (∆R/L)2 d∆R

a

= n

(k0Lk0a)


fRT (∆R′)2d∆R′

∼ n

(k0Lk0a) .

The dominant term in the three points loop process in Eq. (IX.15) reads

Tr

CRR1 + CT T1

 
CRT

2


≃ n

CRT

2 (∆R)CT T
2 (∆R′)CRT

2 (|∆R + ∆R′|)d∆R
a

d∆R′

a
(IX.24)

= n

(k0L)2k0ℓ


fRT (∆R/L)fT T (∆R′/L)fRT (|∆R + ∆R′|/L)d∆R

a

d∆R′

a

= n

(k0a)2k0ℓ


fRT (X)fT T (Y )fRT (X + Y )dXdY

∼ n

(k0a)2k0ℓ
.

The dominant term in the four points loop process in Eq. (IX.15) reads

Tr

CRR1CRTCT T1CT R


≃ n


CRT

2 (∆R)CT T
2 (∆R′)CRT

2 (∆R′′)CRR
2 (|∆R + ∆R′ + ∆R′′|)d∆R...d∆R′′

a3

= n

(k0a)3k0ℓ


fRT (X)fRR(Y )fRT (Z)fT T (X + Y

b
+ Z)dXdY dZ

∼ n

(k0a)3k0ℓ
, (IX.25)

when b ≫ 1. Let us notice that the three points loop process dominates the two points process when
1/ (k2

0a
2k0ℓ) ≫ 1/(k0Lk0a) or equivalently

k0a ≪ b. (IX.26)

Note that this regime is captured by the model since for b ≫ 1, we can have 1 ≪ k0a ≪ b ≪ k0ℓ. Let
us also find the condition for the four points loop process to dominate over the three points process.
This occurs when 1/ [(k0a)3k0ℓ] ≫ 1/ [(k0a)2k0ℓ], or

k0a ≪ 1 (IX.27)

which is not possible in the regime a ≫ λ.

The conclusion from this section is that when we consider many speckle spots, we have to take into
account the first correction in the MI due to CT T

2 and CRR
2 . Indeed they are responsible for three

points loop processes that cannot be neglected in the regime 1 ≪ k0a ≪ b. The competing effects
between two points loop processes in Eq. (IX.23) and three points loop processes in Eq. (IX.24) should
lead to an interesting behavior of the MI versus k0a and the physical parameters of the system.

5Note that we do not need to take into corrections of second order in terms of CXX
2 (i, i) because they are only

corrections in terms of k0ℓ ≫ 1 of these processes.
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Arbitrary spacing a ≫ λ between the points in the limit n ≫ 1

Let us derive the expression of MI (R, T ) for an arbitrary spacing between the points (still larger
than λ). To start the derivation, we restrict Eq. (IX.15) to MI2 and use the Szegö theorem for the
trace of a product of Toeplitz matrixes detailed in ref. [117]:

MI2 (R, T ) = n

2 log(2)

 2π

0


1 −


CRR

2 (µ) + CT T
2 (µ)

 
CRT

2 (µ)
2 dµ

2π (IX.28)

with
CXX

2 (µ) =
∞

k=−∞
CXX

2 (|k|a) exp (ikµ) . (IX.29)

Equation (IX.28) is valid for Toeplitz matrixes of large dimension. Integrating over µ we obtain

MI2 (R, T ) = n

2 log(2)

∞
p,l=−∞

CRT
2 (|p|a)CRT

2 (|p+ l|a)

δ(l) −


CRR

2 (|p|a) + CT T
2 (|p|a)


. (IX.30)

Inserting the expression of the fitting functions for the non gaussian correlations, we obtain

MI2 (R, T ) = nα2
RT

2 log(2)(k0L)2


Θ3


0, e−2βRT a2/L2

−
∞

p=−∞
C(βRT , p, a, L)


αRR

k0ℓ
e−|p|aβRR/ℓ + αT T

k0ℓ
e−|p|aβT T /L

 , (IX.31)

with

C(βRT , p, a, L) = e−βRT pa2/(2L)2


π/2L

|a|
√
βRT

Θ3

pπ/2, e−L2π2/(2βRT a2)


. (IX.32)

Θ3 is the elliptic function of order 3. In Fig. IX.11 we computed MI2 (R, T ) /n using Eq. (IX.31) for
three different cases. In panel (a) we use the parameters of the fit derived in this chapter for the non
gaussian correlations for b = 3 and b = 8. In panel (b) we use Eq. (IX.31) to observe the behavior
of the MI in the deep diffusive regime when b changes and k0ℓ = 10. The parameters of the fit have
been extracted from numerical simulations at large b, and are supposed not to change in the deep
diffusive regime. In panel (c) we vary k0ℓ with k0L = 200.

From Fig. IX.11 we can discuss the general shape of MI (R, T ) in the diffusive regime in the con-
figuration depicted in Fig. IX.10 (k0a is always larger than 1). MI2 (R, T ) /n is a function of b and
k0L.

• It is a function of k0L via the non gaussian correlation in R/T which drives the amplitude of
the MI for k0a ≫ k0L as observed in panel (c) in Fig. IX.11. This part of the curves scales as
1/(k0L)2 in 2D and 1/(k0L)4 in 3D.

• The MI is a function of b via the competing effects between the cross talks between pairs of
points due to CRT

2 and the correlation between the points on the same surface CT T
2 and CRR

2 .
For a fixed value of k0L, increasing b is equivalent to decreasing k0ℓ, thus to increasing the
strength of CT T

2 and CRR
2 . The position of the maximum thus shifts towards the large k0a and

the value of the maximum is reduced.

Note that the MI scales linearly with n in the two regimes k0a ≫ k0L and and k0L ∼ k0a ≫ 1.
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Figure IX.11 – Panel (a): analytical calculation of MI2 (R, T ) /n using Eq. (IX.31) and the fitting parameters
of the non gaussian correlations for b = 3 and b = 8. Panel (b): analytical calculation of
MI2 (R, T ) /n using Eq. (IX.31) in the diffusive regime with k0ℓ = 10 and varying b. Panel (c):
analytical calculation of MI2 (R, T ) /n using Eq. (IX.31) in the diffusive regime with k0L = 200
and varying b. The fitting parameters used in panels (b) and (c) have been extracted from
numerical simulations at large b and are supposed not to change in the diffusive regime.

IX.4 Numerical estimation of the mutual information

In order to support the analytical study in the previous sections, we enter a complex topic: the
numerical estimation of MI(X, Y ). This domain is far to vast for us to resume it. Nonetheless, we
can simply say that the MI is difficult to estimate, and that it is a work in progress for scientists to
find a “good” estimator for it. There exists a large number of estimators with different capabilities.
We can note that for all of them the estimation gets more difficult when the dimension of X and
Y increases. This technical part is not fundamental to understand the results (nonetheless it is to
reproduce them). The reader can go directly to Sec. IX.5 where numerical results are discussed.
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Bias and standard deviation of an estimator

Here we shaded light on the two difficulties we have to face in the estimation of the MI: the standard
deviation and the bias of its estimators. To be schematic, let us assume that we try to estimate a
quantity X with a biased and deviated estimator. Let us assume that we estimate the quantity X
using a data set with Ntot data, and that we can split these data into Npaq ensembles each containing
Np data, and perform Npaq times the estimation of X on Np data (of course Ntot = NpaqNp). Thanks
to the splitting of the data in Npaq ensembles, we can estimate the standard deviation of the estimator.
The bias by definition means that the average value of the estimation of X with Np differs from the
real value, and changes with Np. For asymptotically unbiased estimator, the bias tends to zero when
Np tends to infinity. Technically we can never be sure to have converged towards the real value.
One way to convince ourselves that the bias is “defeated” is to increase the number of data Np on
which the estimation is made and observe that the average value of the estimator does not change
quantitatively. Nonetheless, since we have less ensembles Npaq to estimate the results, the process is
more sensitive to the standard deviation of the estimator. This discussion reveals how difficult it is
to fight both bias and standard deviation simultaneously.

IX.4.1 The histogram based estimator of the mutual information

The easiest method we could think of to estimate the MI is the histogram based estimator. Let us
assume that we study two random variables X and Y with a joint distribution f(X, Y ). Following
ref. [118] we can define a grid of (kX × kY ) equally spaced cells of size (∆X × ∆Y ) in a part of the
X-Y space. The grid has a finite size kX∆X = nXσX and kY ∆Y = nY σY , with (nX , nY ) > 0, σX

and σY being the standard deviation of the probability density functions of X and Y .

The naive estimator

Let us call Ntot the number of pairs (X, Y ) falling into the grid, and ki,j the number of points falling
into the cell (i, j). We have: i,j ki,j = Ntot, and 

i ki,j = kj. If the probability density function
is almost constant on one cell, and if the summation over the grid can be approximated by the
summation over the whole space then we can use the following estimator for the MI:

MIhis(X, Y ) =

i,j

ki,j

Ntot

log

ki,jNtot

kikj


. (IX.33)

If we try to use this estimator without taking care of the size of the bins of the histograms, we
obtain a strongly biased estimation of MI. Nonetheless, because of its simple form, it is possible (as
in ref. [118] for gaussian variables) to give an analytical expression of the bias of the estimator in
terms of the parameters of the histogram and of the joint density function:

MIhis(X, Y ) = MI(X, Y ) + (kX − 1)(kY − 1)
2Ntot

− ρ2

24(1 − ρ2)


nX

kX

2
+

nY

kY

2

. (IX.34)

Here ρ denotes the correlation between X and Y . Note that for fixed (nX , nY ) and (kX , kY ), this
estimator is asymptotically negatively biased.
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Adaptable bin size

Equation (IX.34) is interesting because it expresses the bias as the sum of two terms with opposite
sign, one depending only on Ntot and on the binning, the other one depending only on the correlation
ρ between the variables (X, Y ) and on the parameters of the histogram (nX , nY ) and (kX , kY ). It
is thus possible to find the right binning of the histogram which cancels these two terms. We can
assume that kX = kY = kb, and observe that the equality of the two terms force kb to follow the
equation:

k2
b − kb = nx|ρ|


Ntot

6(1 − ρ2) . (IX.35)

Searching the closest integer of the positive solution of Eq. (IX.35) we find:

kb = round


1
2 + 1

2


1 + 4nx|ρ|


Ntot/(6(1 − ρ2))


. (IX.36)

The variance of the estimator is given in ref. [118] and reads:

Var [MIhis(X, Y )] = ρ2

Ntot

. (IX.37)

Thus the typical error due to the standard deviation of this estimator is on the order of

δhis ∼ ρ√
Ntot

. (IX.38)

Note that the time needed to estimate the MI with a large set of data using this estimator is reasonable
(a few minutes for 108 realizations of (X,Y ) using Matlab).

IX.4.2 The nearest neighbor method

The analytical expression of the bias in terms of the parameters of the histogram allowed us to find
an adaptive binning in order to cancel the bias. Unfortunately such expressions do not exist when X
and Y are of higher dimensions and we are left with a highly biased (even probably asymptotically
biased) estimator. We thus turn to other types of estimator of the MI that are claimed to have
a minimal bias, and to be asymptotically unbiased even for large dimensions of X and Y . The
estimator we decided to use is based on entropy estimates from k-nearest neighbor distances [119].
The important point about this estimator is that it is claimed to work well even when both x and y
are random variables of dimensions larger than 1.

An asymptotically unbiased estimator of the mutual information

The principle is the following: we choose two norms (∥X∥ and ∥Y ∥) on the subspaces of X and Y
(X and Y lie in space of dimensions n and m). These two norms allow us to define for the complete
space Z = (X, Y ) the maximal norm:

∥z∥ = max (∥X∥, ∥Y ∥) . (IX.39)

Let us assume that we have measured Ntot realizations of the pair (X, Y ). To estimate the MI we first
have to choose an integer k which is now a parameter of the estimator, and find for each realization
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Zi = (Xi, Yi) the distance (in term of the maximal norm) ϵi from Zi to its kth neighbor. Note that
ϵi = max (ϵX,i, ϵY,i) with ϵX,i the distance (in term of the norm over X) from Xi to its kth neighbor
and ϵY,i the distance (in term of the norm over Y ) from Yi to its kth neighbor. We can call nX

(respectively nY ) the number of points in the X subspace (respectively in the Y subspace) whose
distance from Xi (respectively Yi) is less than ϵi. Alternatively, we can call nX,2 (respectively nY,2)
the number of points in the X subspace (respectively in the Y subspace) whose distance from Xi

(respectively Yi) is less than ϵX,i (respectively ϵY,i).

In ref. [119] the authors define two different estimators:

MIk,1(X, Y ) = ψ(k) − ψ(nX + 1) + ψ(nY + 1) + ψ(Ntot) (IX.40)

and
MIk,2(X, Y ) = ψ(k) − 1/k − ψ(nX,2) + ψ(nY,2) + ψ(Ntot) (IX.41)

ψ being the digamma function and (...) = 1/Ntot


i(...). MIk,1 and MIk,2 have approximatively the
same properties that depend both on k and Ntot. In ref. [119] it is argued that these estimators are
minimally biased and are asymptotically unbiased.

Transformation of our data

The estimator is expected to work better when the distributions are “flatten” due to a transformation
[119]. Keeping in mind that the MI is invariant under the application of homeomorphisms on X and
Y , we can transform the data in order to have flatter density probability functions. We work with
intensities that almost follow a Rayleigh law, thus the transformation we use is the following:

J = exp

−I . (IX.42)

This transformation applied to a Rayleigh law should give a flat density probability function. Since
there are non gaussian correlations in T/T and in R/R, the density probability functions of the
transformed data are note exactly flat as represented in Fig. IX.12.
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Figure IX.12 – Statistics of the intensities in reflection and in transmission after the transformation given by
Eq. (IX.42). The parameters of the scattering sample are: b = 8 and k0ℓ = 10.
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Definition of an estimator of the mutual information

The nearest neighbor method is costly in terms of computer time. Using first a ranking process on
X and Y allows us to go from a complexity of the algorithm scaling as N2 to a complexity scaling
as N

√
kN [119]. This quantity remains costly and we cannot perform the estimation of the MI with

typically 108 data. Moreover since we have no idea a priori of the standard deviation of the estimator,
we decides to separate the Ntot data into NpaqNp data, and perform Npaq times the estimation of the
MI using Np data. Doing so, we can numerically estimate the standard deviation of the estimator.
Indeed, over Npaq estimations, we can observe how the estimators fluctuates around its average value.
Nonetheless, since we perform the estimation on a lower number of data Np, each estimation will be
more biased.

We propose the following estimator

MInum(X, Y ) = 1/(Npaq)

Npaq

MIk,1(X, Y ) (IX.43)

for which each MIk,1 is estimated over Np data. We can write that

MInum(X, Y ) = MI(X, Y ) + δMI + B (IX.44)

with MI(X, Y ) the true value of the mutual information, δMI the fluctuations due to the standard
deviation of the estimator, and B its bias. Because Eq. (IX.43) is actually the unbiased estimation
of the average value of the estimator MIk,1, we can express the order of magnitude of δMI in terms of
the standard deviation of MIk,1:

δMI ∼
σMIk,1
Npaq

. (IX.45)

Note that the bias B is exactly equal to the bias of the estimator MIk,1.

IX.4.3 Accuracy of the estimator

In this section we study numerically the bias and the standard deviation of the estimator given by
Eq. (IX.43) in order to find the best strategy to estimate MI (R, T ).

Study of the fluctuations δMI

The first interesting property is the standard deviation of the estimator. A priori the standard
deviation depends on Np, k, n (dimension of R and T ) and a. In panel (a) in Fig. IX.13 we represent
the numerical estimation of the standard deviation of the estimator MIk,1 given by Eq. (IX.40) versus
n = m for points separated by a ≃ 4L, for a scattering medium with optical thickness b = 3 and
k0ℓ = 10. We observe no dependence of the standard deviation on the dimension of R = (IR1 , ...,

IRm)
and T = (IT1 ...,

ITn).

In panel (b) in Fig. IX.13 we represent the estimation of the standard deviation of the estimator
MIk,1 for n = m = 1 (geometry represented in Fig. IX.8) versus ∆R/L for a scattering medium
with optical thickness b = 3 and k0ℓ = 10. We observe no dependence of the standard deviation
on ∆R/L, therefore on the value of the MI (which is changing substantially in the case n = m = 1
versus this parameter as seen in Fig. IX.15). In panel (c) in Fig. IX.13 we represent the estimation of
the standard deviation of the estimator MIk,1 versus the parameter k together with a 1/

√
k law for a
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Figure IX.13 – Panel (a): numerical estimation of the standard deviation of MIk,1 versus the dimensions of
the vectors R and T for k = 100 and Np = 105. Panel (b): Numerical estimation of the
standard deviation of MIk,1 versus the transverse distance between the transmitted intensity and
the reflected intensity for n = m = 1, k = 100 and Np = 105. Panel (c): numerical estimation
of the standard deviation of MIk,1 versus Np for k = 100 and panel (d): numerical estimation of
the standard deviation of MIk,1 versus k for Np = 105. The parameters of the scattering sample
are b = 3 and k0ℓ = 10, A and B are numerical constants.

scattering medium of optical thickness b = 3 and k0ℓ = 10. We can see that the standard deviation
of the estimator MIk,1 scales as 1/

√
k. In panel (d) in Fig. IX.13 we represent the estimation of the

standard deviation of the estimator MIk,1 versus the parameter Np together with a 1/

Np law for a

scattering medium of optical thickness b = 3 and k0ℓ = 10. We can see that the standard deviation
of the estimator MIk,1 scales as 1/


Np.

In conclusion δMI has the following properties:

• δMI decreases as 1/
√
k,

• δMI is independent of n = m and of the value of the MI,

• δMI depends on Ntot as 1/
√
Ntot and does not depend on the splitting of the data into Npaq

ensembles of Np data.

Study of the bias B

The second important quantity is the bias B of the estimator. To illustrate the difficulty to handle
a bias, we represent in panel (a) in Fig. IX.14 the estimation of the MI between one transmitted
intensity and one reflected intensity versus the transverse distance normalized by L using various
parameters for the estimator. We consider a finite set of data with Ntot ∼ 108, we vary Np and Npaq

and compare the estimation of the MI using the estimator given by Eq. (IX.43) with the estimation
using the non biased histogram based estimator. We observe that the bias decreases when Np

increases. We also observe that the bias depends on the value of the MI: it vanishes when the MI = 0
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Figure IX.14 – Panel (a): numerical estimation of MInum for n = m = 1 for various Np compared with
MIhis versus the transverse distance between the points normalized by L. Panel (b): numerical
estimation of B for n = m = 1 for various Np versus k/Np. Panel (c): numerical estimation of
f (k/Np) for n = m = 1 for various ∆R between the points versus k/Np. Panel (d): numerical
estimation of f (k/Np) for various n = m with a ≃ 4L between the points versus k/Np.

and seems to increase with the value of the MI. In panel (b) in Fig. IX.14 we follow ref. [119] and
plot the bias B versus k/Np using various Np and observe that all the curves fall into a function of
k/Np.

In ref. [119] it is stated that if one considers a family of joint probabilities µ(x, y, r) depending
smoothly on a single parameter r, then the bias is linear with the true value of the MI for each r.
More precisely it reads

B/MI = f (k/Np) . (IX.46)

In panel (c) in Fig. IX.14 we estimate numerically B/MI versus k/Np for various transverse distance
between the transmitted and the reflected intensities (thus for various MI) and observe that all the
curves fall into the same function of k/Np. In panel (d) we plot B/MI versus k/Np for various n = m
and observe that the curves do not fall into the same function of k/Np meaning that in this case the
guess of ref. [119] is not valid. We can see in panel (d) that the bias normalized by MI seems more
important when n = m increases. From this subsection we can conclude that:

• for fixed n = m the bias is linear with the MI,

• the bias normalized by the true MI is a function of f(k/Np) with f(0) = 0, thus to decrease
the bias we can whether increase Np or decrease k,

• this function f(k/Np) changes when n = m changes.
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IX.5 Numerical results

In this section we use the estimator given by Eq. (IX.43), that has been characterized, to study the
MI between reflection and transmission.

IX.5.1 Mutual information between IT and IR

In this subsection we start with the simplest configuration depicted in Fig. IX.8. We study the MI
between one reflected intensity and one transmitted intensity versus the transverse distance between
them. This low dimension case (n = m = 1) allows us to compare the results using the estimator
given in Eq. (IX.43) with the non biased estimator using adaptable bin sized histogram.

MI
IT , IR


to zeroth order in terms of CT T

2 and CRR
2

From the analytical study we know that the dominant term of the MI should be on the order of
CRT

2

2
/(2 log[2]) [term denoted by MI1 in Eq. (IX.16)]. Because this value is small, we need a large

value of the parameter k of the estimator given in Eq. (IX.43) not to be blurred by the standard
deviation of the estimator. Since this is a one dimensional problem (n = m = 1) we can use a strong
value of k without getting a strong bias.
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Figure IX.15 – Numerical estimation of MI
IT , IR


using using the estimator given in Eq. (IX.43) with the

parameters k = 100, Np = 105 and Npaq = 1200 (red dashed line) together with the numer-
ical estimation using the adaptable histogram based estimator applied on the N = 1.2 × 108

data (black dotted line). We compare those two curves with the semi-analytical calculation of
Eq. (IX.47) (blue solid line). The parameters of the scattering sample are b = 3 and k0ℓ = 10.

In Fig. IX.15 we plot the numerically estimated MI using Eq. (IX.43) together with the MI estimated
using the histogram based estimator. We compare these estimations with the trace formula MI1:

MI(IR,IT ) ≃ MI1(IR,IT ) = 1
2 log(2)


CRT

2 (∆R)
2
. (IX.47)

We call MI1,num(IR,IT ) the semi-analytical function given by Eq. (IX.47) with CRT
2 estimated numer-

ically. The parameters of the scattering medium are b = 3 and k0ℓ = 10 (we prefer to estimate CRT
2
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numerically since the expression in the diffusive regime is not valid for moderate optical thickness).
We observe that the MI between IT and IR is very well represented by the trace formula to first order
in 1/(k0ℓ).

This result confirms the conclusion drawn from the analytical study of MI1(IR,IT ) in Eq. (IX.22).
In 2D MI(IR,IT ) scales as 1/(k0L)2 while in 3D it scales as 1/(k0L)4. It takes non zero value on a
typical transverse distance L.

MI
IT , IR


with first order corrections in terms of CT T

2 and CRR
2

The trace formula given by Eq. (IX.47) is the first term of a development in 1/(k0ℓ) (both CRR
2 and

CT T
2 scale with this quantity). Nonetheless, for b = 3 and k0ℓ = 10, the non gaussian correlation

CT T
2 (∆R = 0) ≃ 0.15 which is not negligible. The trace formula taking into account the first order

correction in terms of 1/(k0ℓ) [term denoted by MI2 in Eq. (IX.17)] reads in the n = m = 1 case

MI2(IR, IT ) = 1
2 log(2)C

RT
2 (∆R)2


1 − CT T

2 (0) − CRR
2 (0)


. (IX.48)

We call MI2,num(IR, IT ) its semi-analytical calculation using numerical calculation for the non gaus-
sian correlations. In Fig. IX.16 we represent MI2,num(IR, IT ) and compare it with the numerically
estimated MI using Eq. (IX.43) together with the MI estimated using the histogram based estimator.
We observe that, because of the strong amplitude of CT T

2 , MI2,num(IR, IT ) does not represent better
the numerical MI than MI1,num(IR, IT ). This reveals that we work at the limit of the regime CT T

2 ≪ 1
and CRR

2 ≪ 1.

MI
IT , IR


taking into second order corrections in terms of CT T

2 and CRR
2

We thus go to higher orders in terms of CT T
2 and CRR

2 [term denoted by MI3 in Eq. (IX.18)]. It reads

MI3(IR, IT ) = 1
2 log(2)C

RT
2 (∆R)2

×

1 − CRR

2 (0) + 5CRR
2 (0)2 − CT T

2 (0) + 5CT T
2 (0)2 + CT T

2 (0)CRR
2 (0)


. (IX.49)

We call MI3,num(IR, IT ) the trace formula where the non gaussian correlations are evaluated nu-
merically. In Fig. IX.16 we observe that MI3,num(IR, IT ) is in good agreement with the numerical
results. Note that both MI3(IR, IT ) and MI2(IR, IT ) tend towards MI1(IR, IT ) when k0ℓ ≫ 1 (because
n = m = 1).

IX.5.2 Mutual information between R = ( IR1, ...,
IRm

) and T = ( IT1...,
ITn

)

The conclusion from the previous subsection is that MI
IT , IR


scales with 1/(k0L)2 in 2D while in

3D it scales with 1/(k0L)4. These are small quantities, and we could argue now that the information
contained in reflection on the transmission is small. This is not always accurate, indeed there are
many speckle spots available in reflection possessing information on the transmission.

Let us enter the numerical estimation of the MI between n reflected intensities “aligned” (dRT
i,i = 0)

with n transmitted intensities as represented in Fig. IX.10. The distance between each neighbor in
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Figure IX.16 – Numerical estimation of MI
IT , IR


using the estimator given in Eq. (IX.43) with the parameters

k = 100, Np = 105 and Npaq = 1200 (red dashed line) together with the numerical estimation
using the adaptable histogram estimator applied on the N = 1.2 × 108 data (black dotted line).
We compare those two curves with the semi-analytical calculation of Eq. (IX.47), Eq. (IX.48)
and Eq. (IX.49) (solid lines). The parameters of the scattering sample are: b = 3 and k0ℓ = 10

transmission or reflection is dT T
i,i+1 = dRR

i,i+1 = a. The analytical study of this configuration summarized
in Fig. IX.11 showed that for all the regimes captured by the analytical model, increasing the number
of points increases the MI between R and T . We also observed analytically that the competing effects
between non gaussian correlations in R/T, and in T/T and R/R ,is the cause of the existence of a
maximum of the curves MI(k0a). Here we intend to confirm numerically these results, and discuss
the regime k0a ≤ 1 that is out of reach analytically.

Numerical results without compensation for the bias

In this section we study numerically the MI between R = (IR1 , ...,
IRm) and T = (IT1 ...,

ITn) versus
k0a, and versus the number of points n = m (we consider the same number of points in reflection and
in transmission). We consider two optical thicknesses b = 3 and b = 8 and expect to see the shift of
the maximum of the MI versus k0a when the optical thickness increases. The numerical estimation
of the MI [done with the estimator given in Eq. (IX.43)] for b = 3 is easier than for b = 8 since the
value to estimate is larger. The result is that we are less sensitive to the standard deviation of the
estimator and can choose a value of k = 10, Npaq = 600 and Np = 105. For b = 8 it is harder because
(CRT

2 )2 (which gives the overall amplitude of the MI) is much smaller. We thus choose a value of
k = 100 in order not to be sensitive to the standard deviation of the estimator, but the result in this
case is really sensitive to the bias thus we increase the value of Np = 106 decreasing Npaq = 60. In
Fig. IX.17 we represent the results obtained for n = m going from 2 to 5, both in linear scale, and in
log scale for the x axis in order to separate better the different regimes. In these curves we observe
three different regimes:

• In the regime k0a ≫ k0L, the problem reduces to n times the n = m = 1 problem. Indeed the
various pairs of points are so separated that there are no cross talk between them. We thus
have an information that should scale linearly with n. More precisely, it is equal to n times
the value at ∆R = 0 of the n = m = 1 information.

• The regime k0L ∼ k0a ≫ 1 is the most difficult to analyze. In this regime, there exists cross
talks between the different pairs of points that increase the information compared to the regime
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k0a ≫ k0L. In this regime the information seems also to scale with n = m.

• The regime k0a ≤ 1 is quite easy to understand based on numerical calculations. In this regime
all the n = m pairs of points are in the same speckle spot. Thus increasing n = m has no effect
on the information which is equal to the n = m = 1 information. Because this regime is out of
our reach analytically (the C1 correlation in T/T and R/R is important in this regime), this
conclusion could not be obtained from the analytical study.
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Figure IX.17 – Panel (a) [respectively panel (c)]: numerical estimation of MI using the estimator given in
Eq. (IX.43) versus k0a for n = m going to 2 to 5 for b = 3 (respectively b = 8) and k0ℓ = 10.
Panel [respectively panel (d)]: numerical estimation of MI using the estimator given in Eq. (IX.43)
versus k0a in log scale for the x coordinates for n = m going to 2 to 5 for b = 3 (respectively
b = 8) and k0ℓ = 10. The parameters chosen for the estimator given in Eq. (IX.43) are k = 10,
Np = 105 and Npaq = 600 for b = 3 and k = 100, Np = 106 and Npaq = 60 for b = 8.

Comparison with the trace formulas

In Fig. IX.18 we compare the various trace formulas with the estimation of the MI for n = m = 5
with b = 3 and b = 8. To compare the numerical data with semi analytical calculations, we first have
to discuss the bias.

Our method is the following: we use the fact (observed numerically) that the bias normalized by the
real value of MI seems to be a function of n = m only, combined with the knowledge that the MI
for k0a ≫ k0L is n = m times the MI for n = m = 1 at ∆R = 0. For b = 3 we know precisely this
value thanks to the precise study summarized in Fig. IX.15. For b = 8 we did not perform the same
study, we rather used the analytical expression of MI3,num (R, T ) for k0a ≫ k0L as a reference value.

Once we have this value, we multiply all the curves by this reference value divided by the value of
the estimation with bias. This operation should remove the bias for all points. We call MI the value
of the MI corrected for bias using this procedure.
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In panels (a) and (c) in Fig. IX.18 we represent MI versus the various trace formulas. For b = 3 the
amplitude of the functions changes less than for b = 8 due to the difference of amplitude of CT T

2 in
the two cases (CT T

2 (0) ≃ 0.45 for b = 8 and CT T
2 (0) ≃ 0.15 for b = 3). To appreciate the difference

of shape of the trace formula functions, we represent in panels (b) and (d) all the curves normalized
to the value of MI3,num (R, T ) for k0a ≫ k0L ( the superscript (...) over the trace formulas6 means
normalized to the value of MI3,num (R, T ) for k0a ≫ k0L). We observe that MI1,num (R, T ) represent
the data quite well for large k0a, but does not reproduce the decrease of the function for small k0a.
MI2,num (R, T ) and MI3,num (R, T ) both capture the decrease of the function for small k0a but have
different shape especially for b = 8. Basically, going to second order in terms of CT T

2 and CRR
2 with

MI3 (R, T ) weakens the corrective terms responsible for the decrease of the function for small k0a,
and thus shifts the position of the maximum towards small k0a [in comparison with MI2 (R, T )].
This explains why the shape of the functions are different.
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Figure IX.18 – Panel (a) (respectively panel (c)) comparison of the numerically estimated MI with three different
trace formulas versus k0a for b = 3 (respectively b = 8) and k0ℓ = 10 for n = m = 5. In panels
(b) and (d) we normalize all the trace formulas by the value for k0a ≫ k0L in order to compare
only the form of the functions. The parameters chosen for the estimator given in Eq. (IX.43) are
k = 10 Np = 105 and Npaq = 600 for b = 3 and k = 100 Np = 106 and Npaq = 60 for b = 8.

This study allows us to give the main conclusion of this subsection. The shape and the amplitude
of the MI changes with the optical thickness. When the optical thickness increases (keeping k0ℓ
constant) the amplitude of the MI decreases due to the decrease of the R/T non gaussian correlation
with k0L. An important and subtle result is that the position of the maximum of the function
MI(k0a) increases with the optical thickness, as observed in panels (c,d) in Fig. IX.17.

6For instance MI2,num = MI2,num [MI3,num(k0a ≫ k0L)/ MI2,num(k0a ≫ k0L)].
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IX.6 Conclusion and future work

IX.6.1 Conclusion

Let us here summarize the results of this chapter, and discuss some possible future work. We have
studied analytically and numerically the MI between an arbitrary number of speckle spots in reflection
and in transmission.

The MI between one transmitted and one reflected speckle spot is proportional to the square of the
non gaussian intensity correlation function between the two intensities. It thus takes a non zero value
for points separated by transverse distances less or equal than L, and scales as 1/(k0L)2 in 2D and
1/(k0L)4 in 3D.

When the number of points in transmission and in reflection increases, many degrees of freedom add
to the problem. In this study we consider the same number of reflected and transmitted speckle
spots. Moreover, we chose to align them (dRT

i,i = 0). Doing so we reduced the parameters of the
problem to k0a, n = m, k0L and k0ℓ. We have studied numerically the MI versus k0a for n = m
ranging from to 2 to 5, and for two different optical thicknesses (b = 3 and b = 8) for dilute (k0ℓ = 10)
scattering sample. We observed a rich behavior of the curves with three different regimes of k0a:

• When k0a ≫ k0L the problem reduces to n = m times the n = m = 1 problem (due to the
absence of cross talks between pairs of reflected and transmitted intensities). The MI thus
scales as n/(k0L)2 in 2D and n/(k0L)4 in 3D.

• When k0a ∼ k0L, the MI increases strongly due to the increasing weight of CRT
2 between

different pairs of points. When k0a decreases, these curves have a maximum. We explained
the presence of this maximum with the increasing weight of long range correlations in T/T and
R/R when k0a decreases. The position of the maximum is predicted to scale with k0a = b.
The MI at the position of the maximum scales with n/(k0L)2 in 2D and n/(k0L)4 in 3D (and
should depend on b as observed analytically in panel (c) of Fig. IX.11).

• When k0a ≤ 1, the MI tends toward the MI for n = m = 1 because all intensities lie in the
same speckle spot. Thus the MI in this regime scales 1/(k0L)2 in 2D and 1/(k0L)4 in 3D.

IX.6.2 Future work

Let us discuss a few possible extensions. The part of the curves for which we lack knowledge here
is the value of the MI at the maximum of the curves. A precise study of this would be useful7. We
believe the easiest way to study this part of the curve precisely is to follow the panel (c) in Fig. IX.11
fixing k0L ≫ 1 and varying the optical thickness (but keeping it large compared to one). It would
also be nice to capture the C1 correlation in the model so that we could describe analytically the
entire function MI(k0a). Eventually, it is necessary to learn how to use the MI between reflection
and transmission in real applications. For instance, in the context of imaging though a scattering
medium. The MI could also help focusing light in transmission measuring only reflected intensities.
In the next chapter we make one step in this direction studying how we can use the information
contained on a large number of reflected speckles to change the average value of one transmitted
intensity.

7Note that this study has been done in [116]
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The purpose of this chapter is to study a property equivalent to the statistical dependence between
R = (IR1 , ...,

IRm) and T = (IT1 ...,
ITn): the difference between the conditional statistics of T with

some knowledge of R, and the statistics of T without knowledge of R. The negative correlation
means that on average a bright reflected intensity coincides with a dark transmitted intensity and
vice versa. Nonetheless we cannot predict how the variation of the average value of T depends on
the measurement done on R only with the knowledge of the correlation. In ref. [85] we numerically
observed the change in the average transmitted intensity when the reflected intensity was known to
be bright or dark, but since we did not (at this time) know the analytical expression Eq. (VIII.33)
of the joint probability in R/T we could not describe this phenomena in detail. The study of CRT

2
combined with the analysis of MI(R, T ) lead us to interest ourselves to the impact of a constraint
(for instance the restriction to disorder realizations where all the reflected intensities are bright)
applied on many reflected speckle spots on the statistics of the transmitted intensity at one point as
represented in Fig. X.1. We believe that this study is relevant due to its relationship to wavefront
shaping experiment.

Figure X.1 – Schema of the geometry studied in this chapter. A wave illuminates a scattering medium with
depth L and scattering mean free path ℓ ≪ L. Due to multiple scattering process, one transmitted
intensity is correlated with many independent reflected speckle spots (dark circles separated by a
transverse distance on the order of λ) on a transverse size that remains smaller than L.

In this chapter we use our knowledge about the joint statistics between R and T detailed in
Chap. VIII to study the conditional statistics of one transmitted speckle spot given some information
on the reflected intensity. We first derive analytically the conditional statistics of the transmitted
intensity for two different types of constraints1 in reflection (bright or dark). Then we study the
average value of the conditional statistics of the transmitted intensity versus the strength of the con-
straint, the parameters of the physical problem and the number of reflected intensities considered.

1We call constraint the information that the reflected intensities belongs to a sub-ensemble of R+.
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Then we numerically estimate these quantities and compare them to the analytical model, before
concluding by discussing the possible applications of this study to wavefront shaping techniques.

X.1 Analytical study

X.1.1 Conditional statistics

In Chap. VIII we have shown that the analytical expression of the joint distribution between one
transmitted intensity (normalized by its average value) and NR reflected normalized intensities sep-
arated by transverse distances larger than λ can be cast in the form

P (IR1 , ...,
IRNR

, IT ) = P (IR1 , ...,
IRNR

)P (IT )
1 +

NR
i

CRiT
2 vi(IR1 , ...,

IRNR
)v(IT )

 (X.1)

with

vi(X1, ...XN) = 1
P (X1, ...XN)

∂

∂Xi


Xi

∂

∂Xi

P (X1, ...XN)


(X.2)

X being either IR or IT . In this chapter we are interested in the conditional statistics of the
transmitted intensity knowing that (IR1 , ...,

IRNR
) ∈ V , with V an ensemble of RNR

+ . We consider
two different ensembles V+ and V− defined the following way:


V− = [0, v]NR ,
V+ = [v,∞]NR .

(X.3)

The parameter v defines the strength of the constraint. In V−, we consider only reflected intensities
smaller than v times their average values, while in V+ we consider only transmitted intensities larger
than v times their average value. Although we assume a uniform constraint applied on all the NR

reflected points, it is clear that this study can be generalized to arbitrary V .

Let us define PV(IT ) as

PV(IT ) =


V P (IR1 , ...,
IRNR

, IT )dIR1 ...dIRNR
V P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

. (X.4)

PV(IT ) is the conditional probability density function of IT knowing that (IR1 , ...,
IRNR

) ∈ V . In-
serting Eq. (X.1) into Eq. (X.4) and performing the integral we obtain

PV(IT ) = P (IT ) +
NR

i

CRiT
2

∂IT

IT∂IT
P
IT

 IRi
∂IRi

P
IR1 , ...,

IRNR

Vi,sup

Vi,inf
V P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

. (X.5)

Equation (X.5) is valid for every V , Vi,sup is the upper limit of the constrained IRi
and Vi,inf its lower

limit (for instance V+,i,sup = ∞ and V+,i,inf = v). Using the analytical expression of the probability
density function of the normalized transmitted intensity, given in Eq. (VIII.13), in Eq. (X.5) we
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obtain

PV(IT ) = exp

−IT

 1 + CT T
2

I2
T − 4IT + 2



+ (IT − 1)
NR

i

CRiT
2

IRi
∂IRi


P (IR1 , ...,

IRNR
)
Vi,sup

Vi,inf
V P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

. (X.6)

In Eq. (X.6), the transmitted intensity has been retained up to first order in 1/(k0ℓ).

X.1.2 Conditional average value of the transmitted intensity

The conditional average value of the transmitted intensity is an interesting quantity for two main
reasons: the simplicity of its study and the possibility that it may be the good observable to describe
a wavefront shaping experiment in transmission using a reflected feedback. Let us define

⟨IT ⟩+ =
 ITPV+(IT )dIT ,

⟨IT ⟩− =
 ITPV−(IT )dIT .

(X.7)

⟨IT ⟩+ is the conditional average value of the transmitted intensity knowing that (IR1 , ...,
IRNR

) ∈ V+

(i.e., reflected intensities are bright). ⟨IT ⟩− is the conditional average value of the transmitted
intensity knowing that (IR1 , ...,

IRNR
) ∈ V− (dark reflected intensities). Inserting Eq. (X.6) into

Eq. (X.7) we can show that

⟨IT ⟩+ = 1 +
NR

i

CRiT
2

IRi
∂IRi


P (IR1 , ...,

IRNR
)
∞

v
V+
P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

(X.8)

and

⟨IT ⟩− = 1 +
NR

i

CRiT
2

IRi
∂IRi


P (IR1 , ...,

IRNR
)
v

0
V−
P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

. (X.9)

To zeroth order in terms of non gaussian correlations in R/R, we have


V+
P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

= [exp (−NRv)],IRi
∂IRi


P (IR1 , ...,

IRNR
)
∞

v
= −v [exp (−NRv)],

(X.10)

and 


V−
P (IR1 , ...,

IRNR
)dIR1 ...dIRNR

= [1 − exp (−v)]NR ,IRi
∂IRi


P (IR1 , ...,

IRNR
)
v

0
= −v exp (−v) [1 − exp (−v)]NR−1.

(X.11)

Using the previous results we obtain the main results of this section:

⟨IT ⟩+ = 1 + v
NR

i

CRiT
2 (X.12)
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and

⟨IT ⟩− = 1 − v
exp (−v)

1 − exp (−v)

NR
i

CRiT
2 . (X.13)

The results given in Eq. (X.12) and Eq. (X.13) have interesting properties:

• First the correction to the average value of the intensity scales with CRT
2 thus as 1/(k0L) in

two dimension and as 1/(k0L)2 in three dimension.

• Second, to this order in the calculation the effect seems to scale linearly with the number of
reflected intensities, thus increasing NR increases the correction to the average value of the
transmitted intensity.

• Third, the sign of the correction depends on the applied constraint. A bright (respectively
dark) constraint leads to a negative (respectively positive) correction to the average value of
the transmitted intensity.

• Fourth, the very simple form of Eq. (X.12) and Eq. (X.13) makes them potentially useful in
practice.

Those properties are really encouraging. Indeed we know that the R/T correlation survives for trans-
verse distances between the reflected and the transmitted intensities smaller than L as represented
in Fig. X.1 in a 2D geometry. This area contains many speckle spots that are correlated with the
transmitted intensity we consider. We also know from the study of MI(R, T ) that it is useless to
consider many points in one speckle spot since this does not add information on the transmission. If
we neglect non gaussian correlation in R/R, we find that the number of independent speckle spots
correlated with the transmitted intensity in rT is on the order of k0L in 2D and of (k0L)2 in 3D. Thus
the naive product of the maximum number of correlated speckle spots times the amplitude of the
correlation gives unity whatever the parameters of the system (in the diffusive regime) meaning that
the change in the conditional average intensity in transmission given in Eq. (X.12) and Eq. (X.13)
could be substantial.

X.1.3 How to observe this phenomenon with the fewest realizations of
disorder?

The results given by Eq. (X.12) and Eq. (X.13) are interesting in their linear scaling with the number
of reflected points. Let us discuss here a practical issue. In Fig. X.2 we schematically represent
the topic of the following discussion. We denote by Ω the ensemble of all possible realizations of
disorder. We know that the average value of IT in this ensemble is the average value ⟨IT ⟩ without
constraint. Now let us consider a constraint on a given reflected intensity. The realizations of
disorder corresponding to this case corresponds to an ensemble denoted by A. This ensemble is
included in Ω and gets smaller in volume when the strength of the constraint increases. When the
constraint is applied independently on two others reflected points we obtain different realizations of
the disorder building the ensembles B and C, as represented in Fig. X.2. Now if we consider the
ensemble corresponding to the constraint applied on the three points at the same time we obtain
the ensemble A ∩ B ∩ C which is smaller than A or B or C. Analytically, there is no issue since
these ensembles can always be discussed. Conversely, numerically or experimentally we have to
observe enough configurations of disorder to estimate the statistics on these small ensembles. In this
subsection we discuss this issue and try to give insight about the best constraint to apply to observe
the change of the average value of the transmitted intensity using the fewest number of realizations
of disorder.
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Figure X.2 – Scheme of the total space of probability Ω encompassing three different sub-ensembles A, B and
C. The three ensembles correspond to the subspace in which one given reflected intensity follows
a restrictive rule. The sub-ensemble for which the three reflected intensities follow this restrictive
rule is given by A ∩ B ∩ C.

Required number of realizations of the disorder

Let us assume that we study Ntot realizations of a given disorder, and that we consider a constraint
applied on NR points. Here we are interested in the number of realizations needed to observe the
difference between the conditional average value of the transmitted intensity and the average value
without constraint. Let us denote NV+ and NV− the number of realizations falling into the constrained
ensembles. They are given by


NV+ = Ntot[exp(−v)]NR ,
NV− = Ntot[1 − exp(−v)]NR .

(X.14)

In Eq. (X.14), [exp(−v)]NR and [1 − exp(−v)]NR are the probability for one realization to fall into
the constrained ensembles. The typical error on the estimation of the conditional average values due
to the finite number of realizations are


δV+ = σ

NV+

,

δV− = σ
NV−

.
(X.15)

In these expressions σ is the standard deviation of the conditional normalized Rayleigh law in trans-
mission equal to one to first order. Let us consider the limiting case where the desired signal
(⟨IT ⟩− − ⟨IT ⟩ or ⟨IT ⟩+ − ⟨IT ⟩) is equal to S times the typical error (we can observe the signal
if S > 1). This leads to the equations for Ntot,+ and Ntot,− (the limiting number of realizations to
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observe the effect of the two different constraints):
Ntot,+ = S2σ2 exp(v)NR

(NRCRT
2 )2

v2
,

Ntot,− = S2σ2 [1 − exp(−v)]2−NR exp(v)2

(NRCRT
2 )2

v2
.

(X.16)

These limiting numbers of realizations are a function of k0L (via the CRT
2 correlation), of v and of

NR. In Fig. X.3 we represent these limiting numbers versus v for a value of k0L = 80 and NR going
from 1 to 4, σ = 1 and S = 5. Figure X.3 is interesting in many ways:
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Figure X.3 – Panel (a) (respectively [panel (b)]) analytical calculation of Ntot,+ (respectiveley Ntot,−) given in
Eq. (X.16) for a value of k0L = 80 and NR going from 1 to 4, σ = 1 and S = 5.

• First we see that changing NR changes the form of the curves.

• Second all the curves possess a minimum. Thus there exists a constraint for which the number
of realizations of the disorder needed to observe the change in the conditional average value
of the transmitted intensity is minimal. This minimum results from the competition between
two processes. For a weak constraint the change of average value of the transmitted intensity
is very small thus is hard to observe (low signal with low noise), while for a strong constraint
the number of realizations falling into the constrained ensembles is very small thus the effect
is hard to see (strong signal with strong noise).

• Eventually the number of realizations of the disorder needed to observe the effect (at the
minimum of the curves) seems to be independent of NR.

The most discernible constraint

Let us track now the position of the minimum of these curves (that we call v+ and v−). Unfortunately,
the position of the minimum is hard to find analytically in the case Ntot,−, but it is easy to follow
for Ntot,+ (thus this subsection is only valid for the study of panel (a) in Fig. X.3). For a positive
constraint, the most discernible constraint is

v+ = 2
NR

, (X.17)

and the minimum number of realizations needed to observe the effect of the optimal constraint is

Nopt,+ = S2σ2

(2CRT
2 )2 . (X.18)
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In Eq. (X.18) we remind that S is the numerical factor that defines a SNR (it is on the order of
unity) and σ is the standard deviation of the normalized transmitted intensity (it is on the order
of unity). This result is important since it is independent on NR, and because it shows that the
minimum number of realizations to observe properly the effect discussed in this chapter is (k0L)2 in
2D and (k0L)4 in 3D. Note that the derivation assumes that CRT

2 is constant for all the reflected
points considered. Thus it is strictly valid when the transverse distance between the NR reflected
points is small compared to L .

X.2 Numerical results

In this section we present numerical simulations of the conditional average value of the transmitted
intensity for a scattering slab with two different optical thicknesses. We first consider the easiest
situation of a constraint applied on a single point in reflection. Eventually we increase the number
NR of constrained reflected points in order to observe the scaling of the change in the conditional
average value of the transmitted intensity with NR.

X.2.1 Constraint applied on a single reflected speckle spot

In order to check the validity of Eq. (X.12) and Eq. (X.13) numerically we use the couple dipole
method. We calculate a large number of disorder realizations and record all pairs of intensity (IR, IT ).
In this global ensemble, we can define sub-ensembles by the constraint we apply on IR, for instanceIR < v or IR > v. In these sub-ensembles we can estimate the average value of IT .

In Fig. X.4 we represent ⟨IT ⟩+ and ⟨IT ⟩− calculated both numerically and semi-analytically (using
Eq. (X.12) and Eq. (X.13) with CRT

2 calculated numerically) for two optical thicknesses (b = 3 and
b = 6) versus the strength of the constraint v. The agreement between the numerical simulations
and the semi-analytical approach is almost perfect.
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Figure X.4 – Panel (a): numerical and analytical calculations of ⟨IT ⟩− versus the strength of the constraint
applied on a given speckle spot for two dilute (k0ℓ = 10) samples of different optical thicknesses
b = 3 and b = 6. Panel (b): numerical and analytical calculations of ⟨IT ⟩+ versus the strength
of the constraint applied on a given speckle spot for two dilute (k0ℓ = 10) samples of different
optical thicknesses b = 3 and b = 6.

We can observe in Fig. X.4 that the two constraints have a different impact on the average value in
transmission, as predicted by the analytical formulas Eq. (X.12) and Eq. (X.13). When one considers
a bright reflected spot, the average value of the average transmitted intensity varies linearly with the
constraint and the slope of the curve is exactly CRT

2 . When one considers a dark spot in reflection,
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the value of the average transmitted intensity is a slightly more complicated function of the strength
of the constraint given in Eq. (X.12). Increasing the optical thickness decreases the strength of CRT

2
which scales as 1/(k0L). This explains why we observe that the curves for b = 6 are closer to the
average value without a constraint than the curves for b = 3. We can note that the limit of ⟨IT ⟩−
for v = 0 is 1 − CRT

2 . When the transverse distance between the transmitted and the reflected
points increases, the strength of the correlation decreases, and the changes in the average value of
the transmitted intensity tends to zero.

X.2.2 Constraint applied on a large number of reflected speckle spots

Let us now enter the study of a constraint applied simultaneously on many reflected speckle spots.
This situation is more complex both from the numerical and the analytical point of view. Numerically
it is more complicated because the ensemble of configurations in which we estimate the average value
of the transmitted intensity reduces in size when the number of points on which the constraint is
applied increases. As a consequence it becomes harder and harder to estimate the conditional average
value of the transmitted intensity when NR increases. Analytically it is harder because our model
neglects both C1 and C2 between pairs of reflected intensities. From our study of MI (R, T ) in
Chap. IX we know that it is useless to consider more than one reflected intensity within one speckle
spot. This leads us to choose NR reflected intensities in the zero of the C1 function of the central
reflected speckle. This ensures the use of independent speckle spots (in the sense of C1) all correlated
with the transmitted intensity.

An encouraging numerical observation

In Fig. X.5 we represent ⟨IT ⟩+ and ⟨IT ⟩− calculated numerically for NR varying from 1 to 10 versus
the strength of the constraint v for a scattering medium with optical thickness b = 3 and k0ℓ = 10.
The first observation in this figure is that as the number of points increases the impact of the
constraint increases as predicted by Eq. (X.12) and Eq. (X.13). We also see the numerical difficulties
encountered when we approach strong constraints with a large number of reflected points. In this
case the number of points in the constrained ensemble is too small to properly estimate the average
value of the transmitted intensity (this is reflected in the noisy character of the numerical estimation
of ⟨IT ⟩+ and ⟨IT ⟩−).
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Figure X.5 – Panel (a) [respectively panel (b)] numerical calculation of ⟨IT ⟩− [respectively ⟨IT ⟩+] versus the
strength of the constraint applied on a varying number of reflected speckle spots 1 ≤ NR ≤ 10
(NR = 1 corresponds to the blue curve and NR = 10 corresponds to the yellow curve). The
parameters of the scattering sample are b = 3 and k0ℓ = 10.
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Discrepancy from the model

In Fig. X.6 we represent ⟨IT ⟩+ and ⟨IT ⟩− calculated both numerically and analytically for NR varying
from 1 to 4, versus the strength of the constraint v for a scattering medium with optical thickness
b = 3 and k0ℓ = 10. We observe that the numerical and the semi-analytical calculations of Eq. (X.12)
and Eq. (X.13) are in good agreement when the constraint is small but tends to separate when the
constraint increases. In addition, when NR increases, the deviation increases and is surprisingly
of opposite sign regarding the constraint applied on the reflected spots. For ⟨IT ⟩− it seems that
the discrepancy increases the effect of the constraint while for ⟨IT ⟩+ it decreases the effect of the
constraint.
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Figure X.6 – Panel (a) [respectively panel (b)] numerical and analytical calculation of ⟨IT ⟩− [respectively ⟨IT ⟩+]
versus the strength of the constraint applied on various number of reflected speckle spots (NR is
varied from 1 to 4). The parameters of the scattering sample are b = 3 and k0ℓ = 10.

We propose the following explanation for this deviation from the model. Let us define CRT
2,+ and

CRT
2,− as the non gaussian correlation of one pair of reflected and transmitted intensities under the

constraint applied on an other reflected intensity. In Fig. X.7 we numerically calculate CRT
2,+/|CRT

2 |
and CRT

2,−/|CRT
2 | versus the strength of the constraint applied on a nearby reflected intensity (a

reflected intensity considered the first zero of the C1 function of the central reflected intensity).
Even if this figure is really noisy due to the small value of the calculated quantity, we can clearly
see a trend (the black dotted line corresponds to the independent case). The important point for
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Figure X.7 – Numerical calculation of the CRT
2,+/|CRT

2 | and CRT
2,−/|CRT

2 | versus the strength of the constraint.
The parameters of the scattering sample are: b = 3 and k0ℓ = 10.

this discussion is that CRT
2,+ is reduced in absolute value ,and CRT

2,− is increased, when the constraint
increases. Both the sign and the amplitude of the change in the normalized correlation are consistent
with the numerical observation in Fig. X.6. There may be a microscopic scattering sequence (or many
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of them) responsible for the change of the conditional non gaussian correlation in R/T, nonetheless
we do not want to enter this question in deeper details at this stage. We believe this observation is
sufficient to motivate a further work on this topic.

X.3 Conclusion

A universal effect?

This chapter aimed at shading light on the use of the long range character of the CRT
2 correlation.

Indeed, as discussed in the introduction of this chapter, we consider a phenomenon (variation of
the average value of the transmitted intensity) proportional to CRT

2 and scaling linearly with the
number of independent speckle considered [Eq. (X.12) and Eq. (X.13)]. When the maximum number
of reflected speckle spots correlated with the transmitted one is used, the change of the normalized
average intensity should be independent on the parameters of the system in the diffusive regime.
Moreover the change in the average transmitted value should be on the order 100% for both 2D and
3D geometries. This study is encouraging, indeed in Fig. X.5 the scaling with NR is observable and
the change observed in the average value of the transmitted intensity is around 15%. If we extrapolate
to zero the curve at NR = 10 in panel (a) in Fig. X.5 we obtain a change of approximatively 30%.
Now let us remind that we used NR = 10 points in this study while the maximum number of points
available for this scattering medium (k0L = 30) is NR = 30 leading to a potential 90% increase of
the average transmitted intensity. This agrees with the prediction.

Note that the observation of a positive discrepancy between the numerical and the analytical calcula-
tions for ⟨IT ⟩− is a welcome news. Indeed, this configuration is the most interesting for applications
and could lead to an enhancement of the transmitted intensity higher than that predicted by the
model. Note that in that case the extra factor will probably not be universal and would deserve a
proper study.

Is the conditional statistics approach equivalent to a wavefront shaping experiment?

The universal behavior of the maximum change of average transmitted intensity predicted may
be difficult to observe due to a practical difficulty that increases when k0L increases. Indeed, the
correlation function decreases in amplitude with 1/(k0L) but the number of correlated points increases
inversely with k0L. Nonetheless, the scheme proposed in this chapter is sensitive to the spreading of
the “information” on various speckle spots, and it is harder to observe the same amount of variation
of the average transmitted intensity when k0L increases. Indeed, as represented in Fig. X.2, when
one increases the number of points under a constraint, the corresponding ensemble becomes smaller
and smaller thus harder and harder to observe. One could argue that it is thus impossible to
experimentally observe realizations of these ensembles without observing for a very long time a
dynamic scattering sample.

Nonetheless, it is possible that wavefront shaping could be the solution to observe such rare events.
Let us start by stressing that in the numerical experiment presented in this chapter we do not
shape the incident light (we send a plane wave at normal incidence), but we let the medium change
randomly and create some lucky realizations for which the plane wave is shaped for our purpose.
It would be interesting to study the opposite case for which the disorder is set, and the wave is
shaped to increase or reduce the scattered light in some chosen reflected speckle spots, and observe
the change of the transmitted intensity. Doing this in an area of typical size L in reflection may allow
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one to observe the change in the transmitted intensity described in this chapter without looking for
a long time for rare events. This result could thus have direct applications for wavefront-shaping
experiments [107, 120].



Chapter XI

Conclusion
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In this thesis we have studied statistical links between the scattered light in reflection and in trans-
mission of a complex medium.

The first part of this thesis was devoted to the study of the intensity-intensity correlation function
between reflection and transmission when the medium is illuminated with a plane wave at normal
incidence.

• In Chap. III we have studied this correlation in the diffusive regime numerically (in 2D) and
analytically in both 2D and 3D configurations. We have shown that the correlation function
is negative, has a typical size of L (thickness of the scattering sample), and has an amplitude
scaling as 1/(k0L) in 2D and as 1/(k0L)2 in 3D.

• In Chap. IV we have presented the measurement of the intensity-intensity correlation in R/T
performed at the University of Exeter (UK) by I. Starshinov, A.M Paniagua-Diaz and J.
Bertolotti in the framework of a collaboration with our group. The measurements confirms
that the correlation in 3D indeed tends towards a negative function of typical size L and of am-
plitude 1/(k0L)2 in the diffusive regime, but it also reveals a rich behavior for optical thickness
close to unity (single scattering regime λ ≪ ℓ ∼ L). In this regime, the correlation function
presents both a positive and a negative contribution and is sensitive to the angle of incidence.
This suggests that unusual scattering sequences contribute to the correlation function in R/T
in this regime.

• In Chap. V we have studied the intensity-intensity correlation in R/T numerically and ana-
lytically in 2D in the quasi ballistic regime (λ ≪ L ≪ ℓ), and observed a purely positive
contribution not dependent on the angle of incidence. The analytical study suggests the exis-
tence and the dominant weight of usually non-considered four fields diagrams in this regime.

• In Chap. VI we have proposed a new imaging modality based on the existence of this intensity-
intensity correlation in R/T, named Blind Ghost Imaging, and have presented a numerical
proof of concept.

The conclusion of this fist part of the thesis is that the intensity-intensity correlation function in R/T
is a rich and instructive observable. The power law decay with L of the amplitude of the correlation
for large optical thicknesses makes it usable even for thick scattering sample. From a theoretical point
of view, we can stress that the R/T correlation gives a direct access to the non-gaussian correlation
whatever the optical thickness (not being blurred by the C1 correlation).

The second part of this thesis was devoted to the study of the statistical dependency of the reflected
and the transmitted light.

• In Chap. VIII we have built the analytical joint density probability function of many reflected
and many transmitted intensities using diagrammatic techniques, and have supported its ex-
pression using numerical simulations.

• In Chap. IX we have used the joint probability density function built in Chap. VIII to quantify
analytically and numerically the mutual information (MI) between reflected and transmitted
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speckle patterns. We have studied this quantity versus the parameters of the system, the
number of reflected and transmitted speckle spots considered and their spacing. We have shown
that the MI between reflection and transmission is principally carried by loops of correlation.
We have discussed the competing effects between two points and three points loop processes and
have shown that they are the cause of the existence of an optimal transverse distance between
detectors in transmission and in reflection in order to have a maximum information contained
in reflection on the transmission. This optimal distance between detectors is predicted to
increase when the optical thickness increases. We have also shown that increasing the number
of measured speckle spots in reflection and transmission increases the information contained
in reflection on the transmission (as long as the distance between the points is larger than the
wavelength). This results is of practical interest for our objective of using the reflected intensity
to control the transmitted light.

• In Chap. X we have discussed the conditional average value of the transmitted intensity having
some information on the reflected intensity numerically and analytically. We have shown that
the change in the transmitted intensity is proportional to the intensity-intensity correlation in
R/T configuration, and that it scales linearly with the number of points from which we extract
information in reflection. Since the intensity correlation function in R/T is long range, there
are possibly many reflected spots available containing information on the chosen transmitted
intensity. This have led us to conclusion that regardless of the optical thickness of the scat-
tering sample, one can strongly modify the transmitted intensity factor taking all the reflected
information into account.

The conclusion of the second part of this thesis is that information on the transmission can be
obtained from measurements limited to reflection, and that this information is principally carried by
the long range intensity-intensity correlation function in R/T. Taking advantage on the long range
character of this function, we can find ways to use more than one speckle spots to infer the behavior
of the transmitted light.

In the future, the first objective is to complete the study of BGI in collaboration with our colleagues
from Exeter (UK). This is of practical interest and could additionally motivate additional research
on the intensity correlation in R/T. We believe that the reflection/transmission configuration is
interesting in many ways (practically and conceptually). It would be interesting to push deeper
the analytical study of the correlation in the single scattering regime (using the Radiative Transfer
Equation) in order to strengthen the comprehension of the variation of the correlation with the angle
of incidence. A full experimental study of the quasi ballistic regime is also needed to corroborate
our guess that in this regime, some non usual scattering sequences dominate the correlation in R/T.
Concerning the second part of this thesis, we believe a nice analytical follow up of this work would be
to manage to take into account both the the short range correlation and the long range correlation
in the analytical expression of the joint density probability functions. This could probably open new
questions currently out of reach. An experimental study of the MI would be certainly interesting,
but also difficult, due to its scaling as 1/(k0L)4 in 3D. The link between MI in R/T and wavefront
shaping in transmission using only reflected information is of great interest both conceptually and
practically. A clear numerical and/or experimental study of wavefront shaping in transmission using
only reflected information could help us propose a theory for this process.
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Analytical derivation of non gaussian
correlations in R/T, T/T and R/R

In this appendix we give the complete formulas of the non gaussian correlation functions in T/T,
RR and R/T derived with diffusion theory.

.1 Reflection/Transmission

In this subsection we give the final result of the derivation of the diagram represented in panel (b) in
Fig. III.10 in the diffusive regime. Let us call C2 the non gaussian contribution to the I-I correlation
coming from this diagram. Mathematically, this C2 contribution comes from a connected four fields
correlation which reads

⟨δERδE
∗
RδET δE

∗
T ⟩C2 =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)|⟨G(rR − r3)⟩|2|⟨G(rT − r4)⟩|2dr1...dr4dρ1...dρ4 (1)
and is equal to

C2(rR, rT ) = C∆
2 (rR, rT ) + Cin

2 (rR, rT ) + Cout
2 (rR, rT )

2 , (2)

where the three contributions come from the three terms labelled in the vertex in Eq. (III.53).

3D case

Here we give the final expressions of the different terms entering into Eq. (2) in dimension three.
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dq, (5)
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Figure 1 – Analytical predictions for the CRT
2 correlation (black solid line), Cout

2 correlation (red dotted line) and
Cin

2 correlation (green dash-dotted line) compared with the simulation of 2D wave propagation in a
disordered medium (blue dashed line). Parameters of the simulations: kℓ = 10, L/ℓ = 10, θa = 0.

2D case

Here we give the final expressions of the different terms entering into Eq. (2) in dimension two.

C∆
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
dq, (8)

where z0 is the extrapolation length (see Ref. [85] for details). We have represented these different
contributions in Fig. 1 in the case of wave propagation through 2D disordered slab. The contribution
Cout

2 is negative, whereas Cin
2 and C∆

2 are positive. In addition, Cin
2 and Cout

2 do not have the same
amplitude. However the sum of all terms, given by Eq. (2), turns out to be well approximated
by Cout

2 , as it was done in Ref. [85]. Both expressions are in good agreement with simulation of
microscopic wave propagation.

.2 Transmission/Transmission

In this subsection we give the final results of the derivation of the two diagrams represented in Fig. 2
in the diffusive regime in the T/T configuration. Let us call C2′ the non gaussian contribution to the



Appendix . Analytical derivation of CRT
2 , CT T

2 and CRR
2 . vii

I-I correlation coming from the diagram in panel (b) and C2′′ the one in panel (a) in Fig. 2.

⟨δET1δET2δE
∗
T1δE

∗
T2⟩C2′ =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)|⟨G(rT1 − r3)⟩|2|⟨G(rT2 − r4)⟩|2dr1...dr4dρ1...dρ4. (9)

⟨δET1δET2δE
∗
T1δE

∗
T2⟩C2′′ =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)⟨G(rT1 − r3)⟩⟨G(rT2 − r3)⟩∗⟨G(rT1 − r4)⟩∗⟨G(rT2 − r4)⟩dr1...dr4dρ1...dρ4. (10)
The only difference between the two diagrams is the exit vertex. In diffusive regime, C2′′ can be

Figure 2 – Two typical diagrams contributing to the connected four-field correlations. In T/T the diagram
depicted in panel (a) is not negligible and we have to consider both.

calculated from C2′ easily [65] using:
C2(rT1 , rT2) = C2′(rT1 , rT2) + C2′′(rT1 , rT2) = C2′(rT1 , rT2) (1 + ve(rT1 , rT2)) (11)

with
ve(rT1 , rT2) ∝ | Im [⟨G(rT1 , rT2)⟩] |2 (12)

the proportionality factor chosen so that ve(rT1 , rT1) = 1.

Consequently we only detail the derivation of C2′(rT1 , rT2) in the following. In transmission we follow
[34] and neglect the laplacian terms:

C2′(rT1 , rT2) = Cin
2′ (rT1 , rT2) + Cout

2′ (rT1 , rT2)
2 . (13)

2D case

In 2D we have
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To have the complete C2 we use Eq. (11).

3D case

In 3D we have
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Cout
2′ = 3π2L2
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To have the complete C2 we use Eq. (11).

Discussion

Let us here discuss the expressions Eq. (14) and Eq. (16). In Chap. IX, we argued that CT T
2 cannot

be put in a large optical thickness form as easily as CRT
2 . We can see this removing the z0/L terms

into the expressions Eq. (14) and Eq. (16) and consider that sh(q z0
L

)2 ∼ (q z0
L

)2 exactly like we did
for CRT

2 . Doing so the expressions Eq. (14) and Eq. (16) diverge. If we do not neglect the z0/L
terms in the sh but still do the approximation sh(q z0

L
)2 ∼ (q z0

L
)2 into Eq. (14) and Eq. (16) then the

integral converges thanks to the extra exp[qz0/L] in its denominator. The scaling of the CT T
2 thus

becomes CT T
2 ∼ 1/(k0Lk0ℓ) in 3D and CT T

2 ∼ 1/(k0ℓ) in 2D. Note that we neglect the variation of
the function inside the integral with b saying this which is not exactly correct.

.3 Reflection/Reflection

In this subsection we calculate the two diagrams represented in Fig. 3 in the diffusive regime in the
R/R configuration. Let us call C2′ the non gaussian contribution to the I-I correlation coming from
the diagram in panel (b) and C2′′ the one in panel (a) in Fig. 3.

⟨δET1δER2δE
∗
R1δE

∗
R2⟩C2′ =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)|⟨G(rR1 − r3)⟩|2|⟨G(rR2 − r4)⟩|2dr1...dr4dρ1...dρ4. (18)

the other diagrams reads

⟨δER1δER2δE
∗
R1δE

∗
R2⟩C2′′ =


|E(r1)|2|E(r2)|2 L(r2,ρ2) L(r1,ρ1) H(ρ1,ρ2,ρ3,ρ4)

L(r3,ρ3) L(r4,ρ4)⟨G(rR1 − r3)⟩⟨G(rR2 − r3)⟩∗⟨G(rR1 − r4)⟩∗⟨G(rR2 − r4)⟩dr1...dr4dρ1...dρ4. (19)
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Figure 3 – Two typical diagrams contributing to the connected four-field correlations. In R/R the diagram
depicted in panel (a) is not negligible and we have to consider both.

The only difference between the two diagrams is the exit vertex. In diffusive regime, C2′′ can be
calculated from C2′ easily [65] using:

C2(rR1 , rR2) = C2′(rR1 , rR2) + C2′′(rR1 , rR2) = C2′(rR1 , rR2) (1 + ve(rR1 , rR2)) (20)

with
ve(rR1 , rR2) ∝ | Im [⟨G(rR1 , rR2)⟩] |2 (21)

the proportionality factor chosen so that ve(rR1 , rR1) = 1.

In reflection, we do not know if the laplacian terms can be neglected and we thus keep them leading
to the final expression of C2 in R/R

C2(rR1 , rR2) = C∆
2 (rR1 , rR2) + Cin

2 (rR1 , rR2) + Cout
2 (rR1 , rR2)

2 . (22)

2D case

The different terms read in 2D:
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To have the complete C2 we use Eq. (20).

3D case

The different terms read in 3D:
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To have the complete C2 we use Eq. (20).



Impact of a non zero average field in the
intensity-intensity correlation functions.

As explained in Chap. IV, the measurement of the R/T intensity correlation is performed with a
laser illumination oriented with a non-zero angle with respect to the sample surface, that allows us to
measure the intensity of the fluctuating part of the fields, IR = |δE(rR)|2 and IT = |δE(rT )|2, only.
We want here to discuss what would be the R/T correlation if the mean fields were also measured.

⟨δIRδIT ⟩ − ⟨δ IRδ IT ⟩ = 2 Re

⟨ET ⟩⟨δE∗

T
IR⟩ + ⟨ER⟩⟨δE∗

R
IT ⟩


+ 2 Re [⟨ER⟩⟨ET ⟩∗⟨δE∗
RδET ⟩ + ⟨ER⟩⟨ET ⟩⟨δERδET ⟩∗] . (29)

Hence, the R/T correlation built from the total reflected and transmitted fields contains additional
interferences between the mean fields and the scattered fields. We illustrate their role in Fig. 4,
where we compare ⟨δ IT δ IR⟩/[⟨δ IT ⟩⟨δ IR⟩] [(a) panel] and ⟨δIT δIR⟩/[⟨δIT ⟩⟨δIR⟩] [(b) panel] calculated
for a 3D disordered slab (L/ℓ = 1, k0ℓ = 15, illumination angle θa = 45◦). On top of the long-range
component of ⟨δ IT δ IR⟩/[⟨δ IT ⟩⟨δ IR⟩], ⟨δIT δIR⟩/[⟨δIT ⟩⟨δIR⟩] also exhibits tiny oscillating contributions
and additional long-range contribution due to the four terms of Eq. (29). These contributions,
negligible in the deep diffusive regime L ≫ ℓ, become important at moderate optical depth L ∼ ℓ.
This explains why the positive contribution to the long-range correlation discussed in Chap. IV was
not detected in Ref. [85]. At large optical depth the two correlations are equal while it is no more
the case in the regime L ∼ ℓ where interference terms dominate.

Figure 4 – Comparaison of two R/T correlation functions calculated from numerical simulation of the wave
equation in a 3D slab. (a) Correlation function ⟨δ IT δ IR⟩/[⟨δ IT ⟩⟨δ IR⟩] built from fluctuating parts
of the fields; (b) Correlation function ⟨δIT δIR⟩/[⟨δIT ⟩⟨δIR⟩] built from the full fields. Parameters:
k0ℓ = 15, L/ℓ = 1, θa = 45◦.





Coupled-dipole method

When an object interacts with an electromagnetic field it develops a polarization. If one considers a
small enough volume inside the object, the induced polarization is uniform within this volume, and
hence that small region can be represented by a radiating electric dipole with the appropriate polar-
izability. Point dipoles are small by definition and the scattering problem for a medium composed
of them reduces to the problem of finding the value of the dipoles interacting with each other in the
electromagnetic field. This method called coupled dipoles method [25] is the one we use to calculate
numerically the intensity in the transmitted and reflected speckle patterns. Repeating the calcula-
tions for a large number of configurations of disorder (positions of scatterers) allows us to compute
statistics of fields and intensities. The system contains N randomly distributed non-overlapping
point scatterers, and is illuminated by a plane wave from the left at normal incidence. We deal with
TE-polarized waves with an electric field oriented along the invariance axis of the system (scalar
waves). The resonant point scatterers are described by their electric polarizability

α(ω) = − 2πd−2Γ
kd

0(ω − ω0 + iΓ/2) (30)

where ω0 is the resonance frequency, Γ the linewidth and d the dimension of the problem. This specific
form of the polarizability fulfills the optical theorem (energy conservation) in 2D and 3D scalar. From
the polarizability the scattering cross section σ(ω) = k3

0|α(ω)|2/4 in 2D (σ(ω) = k4
0|α(ω)|2/(4π) in

3D) and the scattering mean-free path ℓ(ω) = [ρσ(ω)]−1 can be deduced, where ρ = N/(LW d−1)
is the number density of scatterers. In the following, we consider scatterers at resonance (ω = ω0)
in order to reach large optical thicknesses with a reasonable number of scatterers (typically a few
hundreds).

In the coupled dipoles formalism, the exciting field Ej on scatterer number j is written as [25]

Ej = E0 (rj) + α (ω) k2
0

N
k=1
k ̸=j

G0 (rj − rk)Ek (31)

where G0 is the free-space Green’s function given by G0(r − r′) = (i/4) H0(k0|r − r′|) in 2D and
G0(r − r′) = exp [ik0|r − r′|] /[4π|r − r′|] in 3D. Equation (31) defines a set of N linear equations
that are solved by a standard matrix inversion procedure. Once the exciting field is known on each
scatterer, the field E(r) and the intensity at any position r inside or outside the scattering medium
can be calculated by a direct summation, using

E(r) = E0 (r) + α (ω) k2
0

N
j=1

G0 (r − rj)Ej. (32)





Intensity-intensity correlation in the
gaussian approximation for the field

In this appendix we give details about the derivation of the C1 correlation functions in T/T, R/R
and R/T.

.3.1 Field-field correlation in transmission

The easiest and most known geometry to test the analytical derivation of the C1 correlation function
is the transmission/transmission (T/T) geometry. In that case we can show with simple arguments
that C1 has a unitary value between two identical points. This simply comes from the fact that when
rT 1 = rT 2 we can not distinguish the diagram of the field-field correlation from the one giving the
diffuse intensity.

Let us remind that:
C1(rT 1, rT 2) = |⟨δET 1δE

∗
T 2⟩|2

⟨IT 1⟩⟨IT 2⟩
. (33)

We thus have to calculate the field-field correlation in transmission. Let us first have a quick dia-
grammatic analysis of Fig. II.13. We see that first the two fields propagate with straight lines up
to a point close to the boundary of the medium, then they travel with twisting lines up to a point
close to transmission where they split and leave with straight lines. The mathematical writing of
this scattering sequence is

⟨δET 1δE
∗
T 2⟩ =


|⟨E(r1)⟩|2 L(r1, r2)⟨G(rT 1 − r2)⟩⟨G(rT 2 − r2)⟩∗dr1dr2 (34)

= I0


exp


−z1

ℓ


L(z1, z2,q)eiq.(rt1−rt2)⟨G(k1)⟩⟨G(k2)⟩∗

× eik1.(rT 1−r2)e−ik2.(rT 2−r2)dr1dr2dk1/(2π)ddk2/(2π)ddq/(2π)d−1

= I0


exp


−z1

ℓ


L(z1, z2,q = 0) eik1z(L−z2)

k2
1z + kt2 − k2

eff

e−ik2z(L−z2)

k2
2z + kt2 − k∗2

eff

× eikT .∆Rdz1dz2dk1z/(2π)dk2z/(2π)dkT/(2π)d−1

≃ ℓI0


L(0, z2,q = 0)ie

ik1(L−z2)

2k1

ie−ik2(L−z2)

2k2
eikT .∆Rdz2dkT/(2π)d−1.

The only approximation done in Eq. (34) is the one done to access the last line, where we disconnected
the entrance point of the Ladder from the ballistic intensity. The main difference between this
derivation and the one done to access the diffuse intensity in transmission is the work done on the
exit vertex. A rough approximation would have been to disconnect the Ladder from the two average
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Green’s functions and to calculate the integration over all space of ⟨G(rT 1 − r2)⟩⟨G(rT 2 − r2)⟩∗ which
is proportional to the imaginary part of ⟨G(rT 1 − rT 2). Let us stress here that the disconnecting step
is more subtle here than in Eq. III.31 because we have to select one point for the Ladder to stop.
Should it be rT 1 or rT 2? In transmission this does not have a strong impact on the calculation, neither
it does in reflection, but in the case of reflection/transmission where should we stop? To avoid this
discussion and to have the same formalism in transmission, reflection and transmission/reflection we
do not split the Ladder and the exit vertex in the calculation of C1. In Eq. (34) k1 and k2 are defined
as k1 =


k2

0 − k2
T + i

k0

ℓ
= KT T + iK ′

T T = k2
∗ (35)

with K ′
T T ≥ 0. To do the integration over z2 we can use the expression of the Ladder
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Figure 5 – Numerical (dashed line) and analytical (solid line) calculation of C1(rT 1, rT 2) versus the transverse
distance normalized by λ for a thick (b = 10) and dilute (kℓ = 10) system.

⟨δET 1δE
∗
T 2⟩ ≃ ℓI0


L(0, z2,q = 0) e−2K′

T T (L−z2)

4(K2
T T +K ′2

T T )e
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
FT T (KT T , K

′
T T , z0, L)eikT .∆RdkT/(2π)d−1

and end up with a Fourier transform expression of a function FT T (KT T , K
′
T T , z0, L)

FT T (KT T , K
′
T T , z0, L) =


(L+ z0 − z2)

e−2K′
T T (L−z2)

4(K2
T T +K ′2

T T )dz2 (37)

≃ 1 + 2K ′
T T z0

4K ′2
T T (4[K2

T T +K ′2
T T ]) .

Keeping in mind that the normalizing factor is defined according to

⟨|δET |2⟩ ≃ dγI0z0

ℓ(L+ 2z0)


FT T (KT T , K

′
T T , z0, L)dkT/(2π)d−1 (38)

the C1 correlation in transmission can be calculated the following way

C1(rT 1, rT 2) = |


FT T (KT T , K
′
T T , z0, L)eikT .∆RdkT/(2π)d−1|2

(


FT T (KT T , K ′
T T , z0, L)dkT/(2π)d−1)2 . (39)
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In Fig. 5 we plot the numerically and analytically (using Eq. (39) ) calculated C1 correlation in
transmission of a thick (b = 10) and dilute (kℓ = 10) complex medium versus the transverse distance
normalized by the wavelength. We see a good agreement between numerics and analytics. The C1
correlation in transmission is an oscillating function whose value is unity at zero distance between
the points. We see that the typical oscillating distance is approximatively λ/2. We believe the
small difference between numerics and analytics is due to the fact that we use bulk (calculated for
an infinite medium) average Green’s functions in our calculation. Those average Green’s function
should be a good approximation of the Green’s function for points inside the medium. Nonetheless
we can see in Fig. II.13 that for C1 correlation the average Green’s functions connect points close to
the boundary to one point at the boundary and thus should differ from bulk Green’s functions.

.3.2 Field-field correlation in reflection

Let us go quickly through the exact same calculation in reflection. In that case

C1(rR1, rR2) = |⟨δER1δE
∗
R2⟩|2

⟨IR1⟩⟨IR2⟩
. (40)

The field-field correlation writes

⟨δER1δE
∗
R2⟩ =


|⟨E(r1)⟩|2 L(r1, r2)⟨G(rR1 − r2)⟩⟨G(rR2 − r2)⟩∗dr1dr2 (41)

= I0


exp


−z1

ℓ


L(z1, z2,q)eiq.(rt1−rt2)⟨G(k1)⟩⟨G(k2)⟩∗

× eik1.(rR1−r2)e−ik2.(rR2−r2)dr1dr2dk1/(2π)ddk2/(2π)ddq/(2π)d−1

= I0


exp


−z1

ℓ


L(z1, z2,q = 0) e−ik1zz2

k2
1z + kt2 − k2

eff

eik2zz2

k2
2z + kt2 − k∗2

eff

× eikT .∆Rdz1dz2dk1z/(2π)dk2z/(2π)dkT/(2π)d−1

≃ ℓI0


L(0, z2,q = 0)ie

ik1(L−z2)

2k1

ie−ik2(L−z2)

2k2
eikT .∆Rdz2dkT/(2π)d−1. (42)

In Eq. (41) k1 and k2 are defined as

k1 =

k2

0 − k2
T + i

k0

ℓ
= KRR + iK ′

RR = k2
∗ (43)

with K ′
RR ≤ 0. We can now do the integration over z2

⟨δER1δE
∗
R2⟩ ≃ ℓI0


L(0, z2,q = 0) e2K′

RRz2

4(K2
RR +K ′2

RR)e
ikT .∆Rdz2dkT/(2π)d−1 (44)

≃ dγI0z0

ℓ(L+ 2z0)


(L+ z0 − z2)

e2K′
RRz2

4(K2
RR +K ′2

RR)e
ikT .∆Rdz2dkT/(2π)d−1

≃ dγI0z0

ℓ(L+ 2z0)


FRR(KRR, K

′
RR, z0, L)eikT .∆RdkT/(2π)d−1
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and end up with a Fourier transform expression of FRR

FRR(KRR, K
′
RR, z0, L) =


(L+ z0 − z2)

e2K′
RRz2

4(K2
RR +K ′2

RR)dz2 (45)

≃ 2K ′
RRL

4K ′2
RR (4[K2

RR +K ′2
RR]) .

The last equality of Eq. (45) is the limit of FRR at large optical thickness. Taking into account that
the normalization factor writes:

⟨|δER|2⟩ ≃ dγI0z0

ℓ(L+ 2z0)


FRR(KRR, K

′
RR, z0, L)dkT/(2π)d−1 (46)

we can calculate the C1 correlation in reflection the following way:

C1(rR1, rR2) = |


FRR(KRR, K
′
RR, z0, L)eikT .∆RdkT/(2π)d−1|2

(


FRR(KRR, K ′
RR, z0, L)dkT/(2π)d−1)2 . (47)
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Figure 6 – Numerical (blue dashed line) and analytical (blue solid line) calculation of C1 in reflection of a thick
(b = 10) and dilute (kℓ = 10) sample.

In panel (a) of Fig. 6 we plot the numerically and analytically (using Eq. (47)) calculated C1 corre-
lation in reflection of a thick (b = 10) and dilute (kℓ = 10) complex medium versus the transverse
distance normalized by the wavelength. We see a good agreement between numerics and analytics.
The C1 correlation in reflection is an oscillating function whose value is unity at zero distance between
the points. We see that the typical oscillating distance is approximatively λ/2.

.3.3 Large optical thickness scaling of C1 in reflection/transmission

In this subsection we give details about the large optical thickness scaling of C1 in reflection/transmission.
Let us recall the expression of C1 valid in both 2D and 3D geometries:

C1(∆R = 0) ∝ L

ℓ

 dγI0z0

ℓ(L+ 2z0)


FRT (K,K ′) dkT

(2π)d−1


2

, (48)

with

FRT (K,K ′) =
e−(iK+K′)L


−1 + 2iKz0 + e2iKL[1 − 2iK(L+ z0)]


4(K2 +K ′2)4K2 . (49)

In this subsection we do not care about numerical constant, we only look for the scaling of the
quantity given in Eq. (48).
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2D case

In 2D we can rewrite Eq. (48) into

C1(∆R = 0) ∝ k2
0

Lℓ3




FRT (K,K ′) dkT

(2π)d−1


2

  
A

. (50)

The term called A into Eq. (50) writes

A =


 ∞

0

e−(iK+K′)L

−1 + 2iKz0 + e2iKL(1 − 2iK(L+ z0))


2(K2 +K ′2)4K2

dkT

2π


2

(51)

∼e−L/ℓk
2
0L

2

k8
0


 k0

0
e−i(

√
k2

0−k2
T L) dkT

2π


2

.

Using the fact that 
 k0

0
e−i(

√
k2

0−k2
T L) dkT

2π


2

∼ k2
0


 1

0
e−i(k0L

√
1−q2) dq

2π


2

(52)

∼ k2
0

k0L
,

we can give the final expression of the scaling of the value at zero transverse distance of C1 in R/T:

C1(∆R = 0) ∼ e−L/ℓL

ℓ

1
k2

0ℓ
2

1
k0L

. (53)

3D case

In 3D we can rewrite Eq. (48) into

C1(∆R = 0) ∝ 1
Lℓ3




FRT (K,K ′) dkT

(2π)d−1


2

  
A

. (54)

The term called A into Eq. (54) writes

A =


 ∞

0

 π

π

e−(iK+K′)L

−1 + 2iKz0 + e2iKL(1 − 2iK(L+ z0))


2(K2 +K ′2)4K2 kT

dkT

2π


2

(55)

∼L2

k2
0


 1

0
e−i(k0L

√
1−q2)q

dq
2π


2

∼ 1
k4

0
e−L/ℓ.

We can give the final expression of the scaling of the value at zero transverse distance of C1 in R/T:

C1(∆R = 0) ∼ e−L/ℓL

ℓ

1
k2

0ℓ
2

1
k2

0L
2 . (56)
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Discussion

Both the 2D and the 3D scalings of the value at zero transverse distance of C1 in R/T are proportional
to e−L/ℓ. In the diffusive regime this is the important term making the C1 correlation completely
negligible in comparison with non gaussian correlations scaling as 1/(k0L) in 2D and as 1/(k0L)2 in
3D.



Four-fields vertex

In this appendix we discuss the Born approximation for the four-fields vertex and its difference from
the full four-fields vertex. We do not enter the equation for the fourth order moment of the field
(equivalent of Bethe-Salpeter equation). We rather discuss the impact of the choice of the vertex in
the different diagrams one can build.

.4 First order Born approximation for the four-fields vertex

We start with the usual approximation for the four-fields vertex: the fields can only be scattered in
pairs by the disorder. We do not consider the possibility that three or four fields are scattered by
the same impurity.

.4.1 Four-fields vertex in the Born approximation

In Fig. 7 we represent the vertex in the Born approximation. This vertex is branched on the incident

Figure 7 – Four-fields vertex in the Born approximation. The vertex contains six different operators corresponding
to the common scattering of two fields.

average fields and iterated until the exit of the four fields from the sample. It contains 6 operators
and is branched with average Green’s functions (dotted lines). If you apply the first operator to
the four fields coming then E1 and E2 encounters a common scattering event while nothing happens
to E∗

1 and E∗
2 . If you now reapply the vertex and use for instance the sixth operator, then E2 and

E∗
2 encounters a common scattering event. Between the first and the second scattering event, the

fields propagates with average Green’s functions. One can observe that this procedure creates many
different scattering sequences, but only a few have non negligible value. In the next subsections we
discuss how the usual diagrams are created with the use of this vertex.
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.4.2 Average intensity and C1

Let us recover the two easiest four-fields scattering sequences using this vertex: the one leading to
the product of the average intensities and the one leading to the square modulus of the field-field
correlation responsible for the C1 correlation.

Figure 8 – Panel (a): repeated application of the operators 3 and 6 of the vertex represented In Fig. 7. Panel
(b): repeated application of the operators 2 and 4 of the vertex represented In Fig. 7. We recognize in
panel (a) the four-fields diagram responsible for the product of the average intensities. We recognize
in panel (b) the four-fields diagram responsible for the squared modulus of the field-field correlation.

In Fig. 8 we represent two scattering sequences obtained from the repeated application of the vertex
represented in Fig. 7. In panel (a) we applied a large number of times the third and sixth operators of
the vertex. We recognize in this figure two ladder diagrams giving rise to the independent propagation
of ⟨|δE1|2⟩ and ⟨|δE2|2⟩. In panel (b) we represent the scattering sequences obtained from the
application of a large number of times the second and the fourth operators. We recognize in this figure
two ladder diagrams giving rise to the modulus squared of the field-field correlation |⟨δE2δE

∗
1⟩|2. We

can keep in mind that when the fields arrived at the end of the propagation in the same configuration
that the one represented in panel (b) in Fig. 8 (E1 with E∗

2 and E∗
1 with E2) then they encounters

the same exit vertex as the one in the C1 correlation. This vertex gives the diagrams a short-range
character. Whereas when the fields arrived at the end of the propagation in the same configuration
that the one represented in panel (a) in Fig. 8 (E1 with E∗

1 and E∗
2 with E2) then they encounters

the same exit vertex that the one in average intensity diagrams. This vertex gives the diagrams a
long-range character.

.4.3 The C2 correlation

Let us now discuss how we can obtain the the two different C2 diagrams from the vertex represented
in Fig. 7. The first possibility to create a C2 diagram is the following. One first applies the second
and the fourth operators of the vertex represented in Fig. 7 a large number of times creating two
ladder diagrams (E1 with E∗

2 and E∗
1 with E2). At a certain point, the pairs of fields mix in order

to continue their propagation in ladder diagrams (E1 with E∗
1 and E∗

2 with E2). There are three
possibilities to do the mixing (using the vertex given in Fig. 7). The first one is simply to propagate
with average Green’s functions (panel (a) in Fig. 9), while for the second and the third possibilities
two fields encounter a common scattering event during the propagation (first and fifth operator of
the vertex represented in Fig. 7). We recognize at the end of the propagation the same exit vertex
as for the average intensities giving to these diagrams represented in Fig. 9 a long-range character.
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Figure 9 – In panel (a) we apply repeatedly the second and fourth operators of the vertex. At a certain point
we start to apply a large number of times the third and sixth operators of the vertex. This diagram
is the C2 diagram with the HA component of the Hikami box. In panels (b,c) we apply repeatedly
the second and fourth operators of the vertex. At a certain point we start to apply a large number
of times the third and sixth operators of the vertex. In between the two propagations with ladder
diagrams, we apply the first or the fifth operator of the vertex. These diagrams are the C2 diagram
with the HB and HC components of the Hikami box.

The second possibility to create a C2 diagram is the following. One first apply the third and the
sixth operators a large number of times creating two ladder diagrams (E1 with E∗

1 and E∗
2 with E2).

At a certain points, the pairs of fields mix in order to continue their propagation in ladder diagrams
(E1 with E∗

2 and E∗
1 with E2). There are three possibilities to do the mixing (using the vertex given

in Fig. 7). The first one is simply to propagate with average Green’s functions (panel (a) in Fig. 10),
while for the second and the third possibilities two fields encounter a common scattering event during
the propagation (first and fifth operator of the vertex represented in Fig. 7). We recognize at the end
of the propagation the same exit vertex as for the C1 correlation giving to these diagrams represented
in Fig. 10 a short-range character.

Figure 10 – In panel (a) we apply repeatedly the third and sixth operators of the vertex. At a certain point
we start to apply a large number of times the second and the fourth operators of the vertex. This
diagram is the C2 diagram with the HA component of the Hikami box and the short-range exit
vertex. In panels (b,c) we apply repeatedly the third and sixth operators of the vertex. At a certain
point we start to apply a large number of times the second and the fourth operators of the vertex.
In between the two propagations with ladder diagrams, we apply the first or the fifth operator of
the vertex. These diagrams are the C2 diagram with the HB and HC components of the Hikami
box and the short-range exit vertex.

.4.4 The C0 correlation

In this subsection we discuss the C0 diagrams. First we choose the following definition for the C0
diagrams: The C0 diagrams are all the diagrams connecting two ladders with one scattering event
(either in entrance or in exit of the propagation).
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Entrance crossing

Following the reasoning in the last subsection we discuss how to obtain the C0 diagrams with an extra
scattering event in entrance of the propagation using the vertex represented in Fig. 7. In Fig. 11 we
represent the first possibility to create a C0 diagram with the extra scattering event in entrance of
the sample. These diagrams can be obtained with the vertex represented in Fig. 7 using first the
fourth operator [panel (a)], or the second operator [panel (b)], or the first operator [panel (c)], or the
fifth operator [panel (d)] before a repeated application of the operators three and six of the vertex
represented in Fig. 7. The pairing of the two ladders gives to this diagram a long-range character.
This diagram is the original C0 diagram considered in [60, 91] and this is the one derived in the R/T
configuration in Chap. IV.

Figure 11 – Four different diagrams corresponding to the first C0 diagram with the extra scattering event in
entrance of the medium. The sum of the four diagrams represented gives the diagram considered in
Chap. IV. The extra scattering event connects two ladders and the pairing at the exit gives to this
diagram a long-range character.

In Fig. 12 we represent the second possibility to create a C0 diagram with the extra scattering event
in entrance of the sample. These diagrams can be obtained with the vertex represented in Fig. 7
using first the third operator [panel (a)], or the sixth operator [panel (b)], or the fifth operator [panel
(c)], or the first operator [panel (d)] before a repeated application of the operators two and four of
the vertex represented in Fig. 7. The pairing of the two ladders gives to this diagram a short-range
character.

Exit crossing

Now the consider the C0 diagrams with the extra scattering event in exit of the propagation. This
possibility gives rise to two different diagrams. In Fig. 13 we represent the first possibility to create
a C0 diagram with the extra scattering event in exit of the sample. These diagrams can be obtained
with the vertex represented in Fig. 7 using repeatedly the second and the fourth operators of the
vertex represented in Fig. 7 before applying first the third operator [panel (a)], or the sixth operator
[panel (b)], or the first operator [panel (c)], or the fifth operator [panel (d)]. The extra scattering
event gives a short-range character to this diagram.
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Figure 12 – Four different diagrams corresponding to the second C0 diagram with the extra scattering event in
entrance of the medium. The extra scattering event connects two ladders and the pairing at the
exit gives to this diagram a short-range character.

In Fig. 14 we represent the second possibility to create a C0 diagram with the extra scattering event
in exit of the sample. These diagrams can be obtained with the vertex represented in Fig. 7 using
repeatedly the third and the sixth operators of the vertex represented in Fig. 7 before applying first
the fourth operator [panel (a)], or the second operator [panel (b)], or the first operator [panel (c)],
or the fifth operator [panel (d)]. The extra scattering event gives a short-range character to this
diagram.

.5 The complete four-fields vertex

Let us now discuss the full four-fields vertex. In Fig. 15 we represent the vertex beyond its usual Born
approximation. In addition to the possibilities that two fields encounter a common scattering event,
one adds to the vertex the possibility that three and four fields encounter a common scattering event.
Those new possibilities can to be taken into account to modify the value of the existing diagrams
[121, 39], but they also create new topologies of diagrams as pointed out in ref. [39]). These diagrams
should be sub-leading in the diffusive regime because never observed for now.

The scattering sequence we specify in Fig. 16 corresponds to the unique application of the operator
of the common scattering of four fields contained in the vertex given in Fig. 15. This scattering
sequence is studied in detail in Chap. V and seems to be the dominant term of the non-gaussian
correlation functions in T/T, R/R and R/T in the quasi-ballistic regime (λ ≪ L ≪ ℓ).



Figure 13 – Four different diagrams corresponding to the first C0 diagram with the extra scattering event in
exit of the medium. The extra scattering event connects two ladders and gives to this diagram a
short-range character.

Figure 14 – Four different diagrams corresponding to the second C0 diagram with the extra scattering event in
exit of the medium. The extra scattering event connects two ladders and gives to this diagram a
short-range character.

... ...

Figure 15 – Scheme of the full four-fields vertex. Two, three and four fields can be scattered simultaneously by
the disorder.



Figure 16 – Diagram responsible for the dominant contribution of the non gaussian correlations in T/T, R/R
and R/T in the quasi-ballistic regime.
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Résumé

Les nuages, le lait, le papier, les tis-
sus biologiques appartiennent tous
à une même classe de milieux que
l’on nomme diffusants de part leur
habilité à transformer une onde in-
cidente collimatée en un faisceau
diffus. L’imagerie, ou le transfert
d’information à travers ces milieux
est a priori plus difficile qu’en milieu
homogène. Les méthodes actuelles
d’imagerie en milieu diffusant néces-
sitent souvent une caméra se situant
en transmission du milieu considéré
afin d’y mesurer la lumière diffusée.
La présence de cette caméra est
considérée comme une faille de ces
méthodes car la transmission de ces
milieux est dans la plupart des cas
hors d’atteinte par l’opérateur. Dans
cette thèse nous posons la question
du lien qui existe entre la lumière
réfléchie et la lumière transmise en
milieux fortement diffusant. Nous
traitons ce problème de manière
statistique et nous intéressons à la
dépendance statistique qui existe en-
tre la lumière réfléchie et la lumière
transmise. Nous verrons que ce lien
statistique persiste même pour des
milieux fortement diffusants, pouvant
donc en principe être a la base de
nouvelles méthodes d’imagerie ou de
contrôle du front d’onde en milieux
diffusants n’utilisant que des informa-
tions réfléchies par le milieu.

Mots Clés

Optiques, Milieux dilués, Corréla-
tions mésoscopiques, Théorie de
l’information, Imagerie.

Abstract

Clouds, milk, paper or biological tis-
sues are called scattering media for
light. Indeed when a plane wave en-
counters one of these media, the light
is scattered and loses its preferen-
tial direction. Consequently, imag-
ing through a complex medium is
more difficult than in a homogeneous
one. The existing methods rely on
a CCD camera measuring the trans-
mitted light. Nonetheless, in practi-
cal cases the transmitted side of the
sample is out of reach of the oper-
ator. In this thesis we interest our-
selves to the link that exists between
the reflected light and the transmit-
ted light for thick scattering media.
From a statistical point of view, this
link is equivalent to the statistical de-
pendency between the reflected light
and the transmitted light. We show
that the statistical dependency per-
sists even for very thick media al-
lowing us to propose new imaging
modalities based on it. This sta-
tistical dependency between the re-
flected and the transmitted light is a
very rich function of the parameters
of the system, and may allow us to
control the transmitted light using re-
flected informations only.

Keywords

Optics, Scattering media, Meso-
scopic correlations, Information the-
ory, Imaging.
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