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Abstract (English)

This thesis follows the study and development of an adaptive optics full-field optical coherence
tomography (AO-FFOCT) system, aiming for high resolution en face human retinal imaging.
During the quantification of the effects of geometrical aberrations on the FFOCT system per-
formance, it is shown that, with spatially incoherent illumination, the lateral resolution of
FFOCT is insensitive to aberrations, which only cause the FFOCT signal reduction. Since low
order aberrations like myopia and astigmatism dominate in human eye, a non-conjugate AO
configuration by using transmissive wavefront corrector is suggested and applied for low order
aberrations correction to simplify the AO-FFOCT system. Wavefront corrections are done with
a wavefront sensorless method by using FFOCT signal level as the metric. Experiments with
scattering samples and artificial eye model are conducted to demonstrate the feasibility of the
customized AO-FFOCT system for aberration correction. In order to resolve the eye motion
effects and employ real-time matching of the optical path lengths of the two interferomet-
ric arms in FFOCT, a system combination of traditional spectral-domain OCT with FFOCT
is adopted. With this combined system, high resolution FFOCT cellular retinal imaging is
achieved in human eye in vivo for the first time.

Keywords:

Full-field optical coherence tomography, Adaptive optics, Spatial coherence, High
resolution, Retinal imaging, Ophthalmology





Résumé (Français)

Cette thèse traite de l’étude et du développement d’un système d’optique adaptative pour la
tomographie par cohérence optique plein champ (AO-FFOCT en anglais) appliquée à l’imagerie
haute résolution de la rétine. L’analyse de l’effet des aberrations géométriques sur les perfor-
mances en FFOCT a montré que pour une illumination spatialement incohérente, la résolution
transverse est insensible aux aberrations et ne fait que diminuer le niveau du signal. Comme
ce sont des aberrations de bas ordres comme la myopie et l’astigmatisme qui prédominent pour
l’œil humain, une méthode d’optique adaptative avec une configuration sans conjugaison qui
utilise une correction de front d’onde en transmission est suggérée, puis appliquée à la correction
de ces ordres afin de simplifier le système d’AO-FFOCT. Des corrections de front d’onde sont
effectuées sans analyseur de surface d’onde, en utilisant le niveau du signal de FFOCT comme
métrique. Des expériences avec des échantillons diffusants et un œil artificiel sont menées pour
démontrer la faisabilité d’un système d’AO-FFOCT conçu pour la correction d’aberration. Afin
de résoudre les problèmes posés par les mouvements oculaires et de compenser en temps réel la
différence de chemin optique entre les deux bras de l’interféromètre, l’instrument de FFOCT est
couplé à un système d’OCT spectral. Avec cette combinaison de systèmes, l’imagerie FFOCT
in vivo cellulaire de la rétine à haute résolution a été réalisée pour la première fois sur l’œil
humain.

Mots clés:

Tomographie par cohérence optique plein champ, Optique adaptative, Cohérence
spatiale, Haute résolution, Imagerie de la rétine, Ophtalmologie
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Introduction

After about 25 years of development, optical coherence tomography (OCT) has become a pow-
erful imaging modality [1, 2]. Similar to ultrasound technique but using light illumination,
optical coherence tomography (OCT) has been broadly used in biomedical imaging due to
its high resolution, high sensitivity and non-contact advantages. By measuring the echoes of
backscattered light that indicates the structures inside biological samples with light interfer-
ometry, cross-sectional images are usually formed. OCT techniques have proved important
and successful applications in ophthalmology, especially in retinal imaging. The cross-sectional
depth exploration of the retinal layers offers important information of pathologies for early di-
agnosis of retinal diseases and tracing disease evolutions. Nevertheless, due to the habitual use
of imaging devices like fundus camera or scanning laser ophthalmoscope (SLO), ophthalmolo-
gists often ask for en face images of OCT. Thanks to the speed improvement of OCT systems,
en face retinal images can be obtained by real-time 3-dimension imaging. But because of the
requirement of large depth of focus, low numerical aperture (NA) objectives are typically used
in traditional OCTs results in relatively lower spatial resolution compared with microscopes
that use high NA objectives.

Developed in ESPCI Paris, Full-field OCT (FFOCT) is a kind of parallel OCT techniques
that use full-filed illumination and an array detector to acquire en face images perpendicular to
the optical axis without lateral scanning [3, 4]. By utilising high NA microscope objectives in
a Linnik interferometer configuration, FFOCT is able to achieve standard microscope spatial
resolution. Since its introduction, FFOCT has been applied in various researches and medical
studies like rapid histological evaluation of ex vivo tissue samples, human breast and brain
tissue characterization, human inner fingerprint detection, non-destructive material evaluation
and also ex vivo ophthalmology studies to provide morphological characterization of the ocular
tissues. While FFOCT system is able to achieve micron resolution in 3-dimension with micro-
scope objectives and broadband light source to select ballistic photons from scattering light,
aberration needs to be considered when apply it to in-depth imaging into biological samples or
eye imaging.

Aberrations present in the eye are typically induced by the curvature irregularities of cornea
and crystalline lens, tear film or some eye diseases. It is one of the main limitations that
degrade the imaging performance of variety of optical instrumentations for eye imaging, espe-
cially for retinal examination when the eye works as an optical element of the imaging sys-



2 Introduction

tem. Adaptive optics (AO), which is originally developed for astronomical imaging to correct
atmosphere-induced wavefront distortion, are broadly used to measure and correct eye aberra-
tions in retinal imaging in combination with different imaging modalities like flood-illuminated
ophthalmoscope, SLO and OCT. Typically, with AO added, the spatial resolution and signal
to noise ration (SNR) of these systems are increased result in better visualization of the retinal
structures.

As a part of the ERC HELMHOLTZ synergy program whose aim is to explore the holistic
evaluation of light and multi-wave techniques in ophthalmic studies, the work expound in this
thesis belongs to a sub-project aiming to apply FFOCT system for high resolution en face

human retinal imaging. To apply FFOCT for in vivo retinal imaging, eye aberration is the
first important thing that needs to be considered. This thesis therefore is concerned with the
effects of aberrations on the performance of FFOCT and the development of an AO-FFOCT
for aberration correction. Then the subsequent work is to adapt FFOCT to in vivo human
retinal imaging.

The thesis is divided into three main parts:

The first part focuses on OCT and AO as well as their applications in human retinal imaging.
In chapter 1, the backgrounds and basic principles of OCT is introduced. The definition of
various parameters such as resolution, field of view and sensitivity indicating OCT performances
are detailed. Various OCT techniques are briefly discussed based on their imaging formation
methods. In chapter 2, the causes of wavefront aberrations are discussed. The representation of
aberrations by Zernike polynomials and aberration quantification by Strehl ratio are presented.
What’s more, the concept of AO and its basic components are illustrated. Different wavefront
correctors and wavefront sensing methods are presented as well as the pros and cons and their
potential applications. Chapter 3 aims to introducing the imaging properties of human eye,
including its structural and geometrical formation, especially on the human retina structures
and functions. Also, current retinal imaging modalities such as fundus camera, SLO and OCT
are presented and compared. The combination of these retinal imaging techniques with AO are
also discussed.

The second part of the thesis focus on FFOCT and its adaptive optics. Chapter 4 intro-
duces the basic layout of FFOCT system and its imaging acquisition methods. The FFOCT
performance parameters are presented and the comparison its main features with the other
OCT techniques are shown. It also includes the applications of FFOCT together with some
newly developed FFOCT techniques such as dynamic FFOCT for intra-cellular motion detec-
tion and FFOCT for inner fingerprint imaging. Chapter 5 focuses on the work on quantifying
the FFOCT resolution performance in presence of aberrations. Both theoretical analysis and
experimental results are presented to show that in FFOCT system with a spatially incoherent
illumination, its lateral resolution is insensitive to geometrical aberrations with only signal level
reduction, while it is not the case in the other OCT techniques with spatially coherent illu-
minations. This surprising finding supports FFOCT for human retinal imaging even without
AO when aberration is not too large. In chapter 6, a simplified AO-FFOCT system is intro-
duced with non-conjugate AO by using an transmissive liquid crystal spatial light modulator
(LCSLM) for low order aberration correction. A wavefront sensorless method is applied that
further simplified the system with the image intensity as the metric since aberration affects only
the signal level in FFOCT. Non-conjugate AO is compared with conjugate-AO experimentally.
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And the system is applied for sample induced aberration correction in a ficus leaf and also
mouse brain tissue slice. At last, the AO-FFOCT retinal imaging is demonstrated with an
artificial eye model to improve signal level by correcting low order aberrations.

The third part of the thesis mainly shows the application of FFOCT for in vivo human
retinal imaging. In chapter 7, in order to resolve the problem of optical path length (OPL)
matching in FFOCT for in vivo, the FFOCT is combined with a SDOCT system to realise
real-time matching of the OPL for FFOCT. The evaluation of the illumination on eye safety is
calculated. The combined system performance is validated by doing artificial eye model retinal
imaging. Finally, in vivo human retinal imaging are performed with the combined system and
the results are presented. En face high resolution FFOCT images of different retinal layers
are acquired showing cellular level retinal structures like nerve fibres, blood vessels as well as
retinal photoreceptors.

In the end of this thesis, a conclusion sums all the achievements of this thesis work and the
current stage of FFOCT system in human retinal imaging. Also the perspectives and challenges
of FFOCT for in vivo human retinal imaging and eye examination are discussed.





Part I

Optical Coherence Tomography and
Adaptive Optics in Retinal Imaging
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Optical coherence tomography (OCT)
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8 Chapter 1. Optical coherence tomography

1.1 Imaging in scattering media

With the rapid development of science and technology, many optical imaging techniques have
been greatly improved. Optical imaging techniques refreshed our understanding of the world
with tremendous performances, particularly in biology studies which have benefited a lot with
the advances of optical microscopies. But in medical imaging, methods like ultrasound, com-
puted tomography and magnetic resonance are still more preferred compared to optical modal-
ities. This is due to the fact that the optical imaging window is considered to be from visible to
near-infrared (NIR) spectrum (400-1350 nm)as light in this spectrum range suffers low absorp-
tion by biological tissues (figure 1.1(a)), while the heterogeneous structures in biological tissues
are mostly in this range of optical wavelengths and strongly scatter light (figure 1.1(b)).This
prevents optical instruments from in-depth imaging and has made optical imaging being a
complementary method in many applications in medical imaging.

Figure 1.1 – Absorption and scattering in biological tissue [5]. (a)Absorption coefficient versus optical
wavelength in the range of 0.1−12um. (b) Ratio of the reduced scattering coefficient to the
absorption coefficient versus optical wavelength in the range of 400 − 1800nm, scattering
outside of this range is not characterized since it is dominant by absorption.

When doing optical imaging in scattering tissue, due to small variations of refractive index
between biological structure, only extremely weak light would be backscattered and most of
the light would be scattered by the surrounding structures. According to the Lambert-Beer
law, the intensity of backscattered light, more precisely ballistic light, which contains the most
useful information of the sample structures, decreases exponentially with the imaging depth.
The multiply scattered signals would degrade the contrast, the resolution as well as the imaging
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depth. So, to perform better optical imaging, the main challenge is to extract these low ballistic
signals while rejecting the multiply scattered light.

To accomplish this challenge, different methods like spatial filtering [6], time reversal [7,8] or
coherence detection [9] have been exploited. For example, the widely used confocal microscope
is based on spatial filtering of out-of-focus light with a optically conjugated pinhole in front
of the detector. The multiply scattered light rejection in confocal microscope has been both
theoretically discussed and experimentally demonstrated in [10]. By combining the spatial
filtering and coherence detection, imaging through scattering to produce high contrast images
from very weak signals can also be achieved in optical coherence tomography (OCT) [1, 11],
which is explained in details in the following sections.

1.2 Introduction of OCT

The OCT technique was first invented in the early 1990s in MIT [1]. Based on low coherence in-
terferometry, OCT is now a well-established imaging modality by measuring the magnitude and
echo time delay of backscattered light. It can provide cross-sectional (B-scan) and 3-dimensional
volumetric internal sample structures with resolutions of 1 − 15um by laterally scanning the
optical beam and performing axial measurements of echo time delay (A-scan)(figure 1.2). Com-
pared with other imaging methods, its non-invasiveness, high resolution, high sensitivity, low
cost and easy to use advantages make OCT a powerful imaging modality with applications
across many clinical fields as well as fundamental scientific and biological researches.

Figure 1.2 – OCT cross-sectional or 3-dimentional image formation [12]. Measurements of the
backscattered light versus imaging depth forms axial scans(A-scan). By scanning the op-
tical beam in transverse direction, a series of A-scans forms a cross-sectional OCT image
(B-scan). Multiple B-scans would generate 3-dimensional OCT data sets by raster scanning.

OCT holds the features of both ultrasound and microscopy. Figure 1.3 shows the comparison
of these imaging techniques in parameters as resolution and imaging depth. The clinical ultra-
sound uses acoustic waves with frequencies raging between 3 − 40MHz and gives a resolution
of 0.1 − 1mm [13]. Sound waves at these frequencies are transmitted with minimal absorption
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in biological tissues so that deep imaging is possible in ultrasound. Although with higher fre-
quency ultrasound (up to 100MHz), imaging resolution of 15 − 20um could be achieved, the
imaging depths would be limited to only a few millimetres as high frequencies sound waves
are strongly attenuated in biological tissues. On the other hand, microscopy and confocal mi-
croscopy have high lateral resolutions up to 1um. However, imaging depth is limited because
image signal and contrast are significantly degraded by optical scattering. Imaging can be
performed to only a few hundred micrometers in most of the tissues.

OCT just fills the gap between ultrasound and microscopy. With current technology, imaging
resolution of 1−15um and a penetration depth of 2−3mm can be achieved. The high resolution
of OCT imaging enables the visualization of tissue architectural morphology. The fact that
OCT itself is also an optical imaging technique makes its imaging depth limited by the effects
of absorption and scattering within the biological samples. The axial resolution of OCT is
determined by the bandwidth of the light source. Better axial resolution can be achieved with
broader bandwidth.

Figure 1.3 – Comparison of resolution and imaging depth for ultrasound, OCT and confocal mi-
croscopy [12].

After its invention, OCT has found successful application in ophthalmology imaging and has
become a clinical standard in this field, especially in retinal imaging [14]. High resolution and
non-contact imaging of anterior segment as well as retina is possible with OCT as the trans-
parency of the eye offers easy access of the OCT beam to these eye structures with minimal
optical attenuations and scattering. OCT performs non-invasive optical biopsy of living retina
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which was only possible in ex vivo histology before. The high resolution cross-sectional section-
ing of retina layers offers great potential for not only pathologies detection such as macular hole
and retinal detachment (figure 1.4) [15,16], but also early diagnosis of common eye disease like
glaucoma [17] with the cell morphology and vascular structures revealed in individual retinal
layers.

Figure 1.4 – OCT human retinal images indicating macular hole and detachment [15]. (a)OCT
image shows a macular hole on the retina.(b) OCT image demonstrates detachment of the
neurosensory retina.

The development of new light sources, high performance computers, different illumination
geometries, and image construction methods is pushing OCT to achieve higher resolution and
signal to noise (SNR) levels, faster imaging speed, lager imaging depth, and better image in-
terpretation. Besides its application in ophthalmology field, OCT have also been utilised in
many diverse areas such as oncology [18–20], dermatology [21–26], dentistry [27,28], etc. Many
alternative OCT techniques have also emerged based on the original OCT with endoscopic
imaging probes giving access to internal organs [29–31], or signal orientations to explore various
biological sample properties. Optical coherence elastography measures sample elastic proper-
ties [32–36], polarization sensitive OCT detects tissue birefringence information [25,26,37–39],
phase-sensitive OCT reveals cellular morphology and dynamics [40–42], angiography OCT
forms vascular maps [43–45] while Doppler OCT could offer functional information of blood
flow [46–49]. Combination of difference OCT techniques and also complementary imaging
modalities have also been demonstrate to do multifunctional imaging [50–53].

1.3 Low coherence interferometry (LCI)

Interferometry is an important method for the measurement of small optical path length
changes, from which small displacements, refractive index changes or surface irregularities can
be extracted. As mentioned before, OCT is based on a so called low coherence interferometry
(figure 1.5(a)) to detect the magnitude and echo time delay of the backscattered light for sample
structure reconstructions. Interferometry measures the electric field of the optical beam rather
than its intensity. The function form of the electric field in a light wave is

E(t) = E0cos(2πνt− 2π
λ
z). (1.1)



12 Chapter 1. Optical coherence tomography

As show in figure 1.5a, the most commonly used interferometer in LCI is Michelson inter-
ferometer. Light Ei(t) from the source is directed into the beamsplitter that splits the beam
into the reference arm and a sample arm. The sample arm beam incident on the tissue and
undergoes partial reflection whenever it encounters a structure or surface within the tissue.
Thus the sample reflected beam Es(t) contains multiple echoes from the interfaces within the
tissue. The reference arm beam is directed to a reference mirror and reflected Er(t). Both
beams travel back toward the beamsplitter, recombined and interfered, result in the output
beam, which is the sum of the electromagnetic fields of both arms

Eo(t) ∼ Es(t) + Er(t). (1.2)

As the detector measures the output intensity which is proportional to the square of the
electromagnetic field, it can be written as

Io(t) ∼ 1
4

|Es|2 +
1
4

|Er|2 +
1
2
EsErcos(2

2π
λ

∆l) (1.3)

in which ∆l is the path length difference between the sample arm and reference arm. Varying the
position of the reference mirror changes the value of ∆l will cause the two beams to interference
constructively or destructively. The intensity will oscillate between maximum and minimum
each time the path length between reference arm and sample arm changes by one optical
wavelength.

Figure 1.5 – Intereference in low coherence interferometry. (a) A classic Michelson interferometer in
which the backscattered or backreflected light is interfered with a scanning reference mirror.
(b) If the light source is coherent, interference fringes will be observed for a wide range of
path length difference. (c) If low coherence length light is used, interference occurs only
when the optical path lengths of the two arms are matched within the coherence length lc.

As it is shown in figure 1.5(b), if the light beam is coherent, interference patterns will be
observed for a wide range of relative path length differences of the reference and sample arms.
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However, in optical imaging, it is crucial to know the precise position of the structures within
the sample, thus light with a low temporal coherence length (broad bandwidth) should be
used. Low temporal coherence light is characterized by the temporal coherence length lc,which
is inversely proportional to the frequency bandwith. It is also the spatial width of the field
autocorrelation produced by the interferometer. With low temporal coherence length light
(figure 1.5(c)), interference could only be seen when the paths travelled by the reference and
sample arm beams are nearly equal. If the paths are mismatched by more than the coherence
length of the light, the two electromagnetic fields from the two beams are not correlated, thus
no interference effects are observed.

1.4 OCT performances

The OCT system performances are typically defined by several important parameters such as
resolution, field of view and sensitivity. Figure 1.6 illustrate the basic sample arm geometrics
of typical OCT systems.

1.4.1 Axial resolution

The dependence of the interference range on the temporal coherence length lc of the broadband
source in LCI, as explained in section 1.3, distinguishs OCT from traditional microscopy tech-
niques, in which both axial and lateral resolution is dependent on the numerical aperture (NA)
of the objectives. In OCT techniques, the determination of the axial resolution is independent
of the beam focusing, given by the width of the electromagnetic field autocorrelation function.
With a Gaussian-shaped spectrum, the OCT axial resolution is calculated as

∆z =
2ln2
π

· λ
2

∆λ
(1.4)

in which λ is the center wavelength of the light source and ∆λ is the full-width-half-maximum
(FWHM) of the spectrum.

1.4.2 Lateral resolution

The lateral resolution of OCT is determined by the diffraction limited spot size on the focus
plan that is proportional to wavelength and inversely proportional to the NA or the focusing
angle of the beam. This could be calculated as

∆x = ∆y =
4λ
π

· f
d

(1.5)

in which λ is the center wavelength, d is the size of the incident beam on the objective lens
and f is the focal length [12]. So better lateral resolution could be obtained with large NA
objective to form smaller spot size.

In fact in fiber-based OCT systems, the single mode fiber end works as a pinhole aperture
in a reflection mode confocal microscopy to reject out-of-focus light and scattered photons,
while explained later in full-field OCT (FFOCT) with spatially incoherent illumination the
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spatial coherence area works as pinholes. In this way, the lateral resolution is actually slightly
improved, calculated as

∆x = ∆y = 0.37 · λ

NA
(1.6)

in which λ is the center wavelength and NA is the effective numerical aperture of the system [12].

1.4.3 Field of view

Here, we define the depth of focus (depth of field)of OCT as the axial field of view. OCT
imaging is usually performed with low NA focusing. As in microscopy, the axial field of view
in OCT is related to the transverse resolution, defined as

FOVaxial =
π∆x2

2λ
, (1.7)

and the lateral field of view is typically determined by the scanning angle and can be calculated
as

FOVlateral = 2 · f · θmax (1.8)

in which f is the focal length of the objective and θmax is the maximum one-side scanning angle.

As discussed later, FFOCT achieves 3-dimensional imaging by doing en face imaging with
depth scanning. The axial field of view is then limited by sample scattering and the lateral
field of view is depend on the detector array size and system magnification.

Figure 1.6 – Schematic of OCT sample arm optical geometrics. Formulas for calculating resolution
and field of view of typical OCT systems are provided.
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1.4.4 Sensitivity

OCT is able to measure very weak signal due to the fact that it detects the amplitude instead
of the intensity with interferometry that is equivalent to optical heterodyne detection. The
weak electric field of the sample beam from the tissue is multiplied by the large amplitude field
form the reference arm, thus amplified the interference signal amplitude.

The most well-known expression for signal-to-noise ration (SNR) calculation is

SNR = 10log(
ηP

2hνBdetection
), (1.9)

in which η is the detector responsivity, hν is the photon energy, P is the signal power from the
sample arm and Bdetection is the electronic detection bandwidth. As Bdetection is related with
A-scan depth and time, higher optical power would be needed to achieve the same SNR for
higher imaging speed or resolution. Detailed calculation of the sensitivity for various modes of
OCT could be found in section 2.9 in reference [12]. Based on the optical design and acquisition
requirements, current OCT systems could reach sensitivities up to around −110dB [54].

1.5 OCT techniques

Based on the image generation geometries, point-by-point scanning or en face plane-by-plane
imaging, OCT techniques can be briefly divided into scanning OCT or parallel OCT.

1.5.1 Scanning OCT

In scanning OCT systems, spatially coherent illumination like super-luminescent diode (SLD)
or frequency-swept laser are typically used.

In early developed OCT systems, a scanning reference arm is implemented in a time-domain
LCI with lateral scanning sample arm. In such systems, an A-scan is acquired by axially
scanning the reference mirror to detect axial positions of the light re-emitting sites in samples.
A series of A-sans at different lateral positions are performed using the lateral OCT beam
scanner to addresses laterally adjacent sample positions in order to generate two-dimensional
cross-sectional images (B-can). Such type of OCT modality in which the depth profile in
the sample is obtained sequentially in time by scanning the reference mirror with a constant
speed is called time-domian OCT (TD-OCT) as shown in figure1.7(a) [1]. en face scanning
TD-OCT technique named optical coherence microscopy (OCM) has also been developed to
achieve higher lateral resolution with higher NA objectives [55]. In OCM, instead of acquiring
A-lines by scanning the reference mirror, en face image is obtained first by fast modulation
of the lateral scanners. 3-dimensional image is then acquired by doing depth scanning with
reference mirror.

Since the needs for mechanical scanning to obtain A-scans in TD-OCT limits the acquisition
speed and SNR, soon after the report of TD-OCT, Fourier-domain OCT (FD-OCT) techniques
was developed with increased imaging speed and system sensitivity [56–59], in which the depth
profile is resolved in Fourier space as a function of the frequency. A-scans then be acquired by
a Fourier transform of the frequency encoded profiles. Two methods are developed to record
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Figure 1.7 – Schematic of different scanning OCT techniques. (a)Time-domain OCT with scanning
reference mirror, (b)Spectral-domain OCT with spectrometer amd (c)Swept-source OCT with
wavelength swept source.

the frequency spectrum of the interference signal. One uses a diffraction gating and a high
speed line-scan camera to form a spectrometer, in which the spectrum frequency is associated
with the depth location of the backscattering features with in the sample. This technique is
called spectral-domain OCT (SD-OCT) [59–61] as shown in figure 1.7(b). The other method
of FD-OCT is using an narrow-bandwidth, frequency-swept light source and a photodiode as
detector is called swept-source OCT (SS-OCT) (figure 1.7(c)) [62–64], in which the frequency
profile is obtained by rapidly swept the emission wavelength of the light source and record the
instantaneous interferometric signal with the photodetector as a function of time.

In FD-OCT techniques, there is a significant improvement in imaging speed since there is
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no need for the scanning of reference arm. With the same imaging speed of TD-OCT and
FD-OCT, FD-OCT techniques will offer considerably better sensitivity.

1.5.2 Parallel OCT

Figure 1.8 – Schematic of parallel OCT techniques. (a)Wide-field OCT with spatially coherent illu-
mination like SLD [65]. (b)Full-filed OCT with spatially incoherent illumination like halogen
lamp [4].

Parallel OCT system takes en face images without lateral scanning. Unlike OCM technique,
in which lateral scanning works with photodiode to to form an en face image, parallel OCT
enables non-scanning en face imaging with the planes that are perpendicular to optical axis
with specific detectors and methods and achieves high pixel density images over the wide fields
of view. Parallel OCT could be achieved with either spatially coherent illumination or spatially
incoherent illumination. Parallel OCT system with spatially coherent light source like SLD or
femtosecond laser is called wide-field OCT (WFOCT) [65–69], while the system with spatially
incoherent light source like halogen lamp or LED is called full-field OCT (FFOCT) [4].

In WFOCT systems as shown in figure 1.8(a), as spatially coherent illumination is used,
optical beams are usually broadened with lens to form parallel illumination on both sample
the reference mirror. En face images of large field could be achieved without scanning. With
powerful laser sources or SLDs, WFOCT has high sensitivity. But due to the fact that spatially
coherent light is used, WFOCT usually suffers strong cross-talks generated by the multiply
scattered light collected by parallel detection [70–72].

The details of FFOCT system would be introduced in chapter 4, briefly speaking, as shown
in figure 1.8(b), FFOCT uses spatially incoherent source in a Linnik interferometer, in which
microscope objectives are used in both arms to achieve high spatial resolution. As demonstrated
in [70], the cross-talks are severely reduced in FFOCT with spatially incoherent light sources.
Also, due to the spatial incoherence of illumination, the spatial resolution of FFOCT is found
to be insensitive to geometric aberrations, which is well established in chapter 5.
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Wavefront correction with adaptive optics
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2.1 Wavefront aberration

Optical wavefront is an imaginary surface that connecting all the wave points with identical
phase, or geometrically points with identical optical path length (OPL) from one point of the
source. In a perfect optical imaging system, when the light from one point of the object could
direct into a corresponding single point on the detection plan after passing through all the optics,
it is usually called a diffraction-limited imaging system in which flat wavefront are formed in
the pupil plan. But in realistic imaging systems, due to the imperfection of optical elements or
the inhomogeneity of light propagating medium, optical wavefront could be distorted, resulting
in blurring of the image. These causes of the departure of the optical wavefront from the
predictions of paraxial optics is called optical aberrations or wavefront aberrations.

Technical developments have helped to remove most of the optical element-induced aberra-
tions in imaging systems. Multi-element objectives are used to remove both monochromatic and
chromatic aberrations in microscopy. Non-planar folding of the off-axis spherical mirror [73],
toroidal mirror [74] or off-plane design of reflective optics [75] has also been implemented in
retinal imaging systems to reduce system induced aberrations. But sample-induced wavefront
aberration is still another challenge for optical imaging. Wavefront distortions could be induced
by the atmosphere turbulence in telescope imaging, the structure heterogeneity of biological
sample in deep tissue imaging, the curvature irregularities of the cornea and lens or eye diseases
in human eye imaging, etc.

2.2 Aberration representation with Zernike polynomi-
als

It is needed to mathematically represent wavefront aberrations in order to evaluate their effects
on imaging. Due to the complicity of a wavefront surface, polynomials are typically used to
simplify the description. And the commonality of circular apertures in telescopes and lens
makes treatment in polar coordinates more preferable. Zernike polynomials is one of the most
commonly used orthonormal polynomials over circular pupils that have been widely used in
astronomy and in vision for wavefront aberration representation [76–79].

Any wavefront aberration function could be decomposed into a linear combination Zernike
polynomials as

W (r, θ) = W (Rρ, θ) =
∞

∑

i=0

ciZi(ρ, θ) (2.1)
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in which W (r, θ) is the wavefront aberration with circle pupil size of R, ρ is the normalized pupil
radius ρ = r/R, Zi(ρ, θ) are a set of Zernike polynomials and ci are the ith Zernike coefficient
which determine the weight of each Zernike mode in the overall wavefront structure. Owing to
the orthonormality, ci could be calculated by

ci =
1
π

∫ 2π

0

∫ 1

0
W (Rρ, θ)Zi(ρ, θ)ρdρdθ. (2.2)

Figure 2.1 – First 15 Zernike circle polynomials and their surface map representations [80].
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The orthonormality of Zernike polynomials is defined as

1
π

∫ 2π

0

∫ 1

0
Zi(ρ, θ)Zj(ρ, θ)dρdθ = δij (2.3)

in which δij is the Kronecker delta. δij = 1 when i = j; otherwise, δij = 0.
Figure 2.1 shows the first 15 Zernike circle polynomials, as shown in the formulas of different

Zernike polynomials, higher-order polynomials is balanced with lower-order polynomials so that
each Zernike polynomials gives a minimum variance. And the orthonormality of ensures that
we can truncate the Zernike modes to lower orders without affecting the remaining Zernike
coefficients. All the Zernike modes except for piston have a mean of zero.

To quantify the similarity of the aberrated wavefront to a reference flat wavefront, the wave-
front error σ (or root mean square (RMS))of the wavefront aberration for a circular pupil is
used and can be expressed as

σ2 =
1
π

∫ 2π

0

∫ 1

0
(W (Rρ, θ) −W0(Rρ, θ))2ρdρdθ. (2.4)

Since the reference is considered to be flat and equal to zero, and if the aberrated wavefront
is decomposed by Zernike polynomials, according to equation 2.1 and 2.2, the wavefront error
could be calculated as

σ2 =
1
π

∫ 2π

0

∫ 1

0
(

∞
∑

i=0

ciZi(ρ, θ))2ρdρdθ =
∞

∑

i=0

c2
i . (2.5)

This equation is commonly used to give a parameter for the image quality with a given wavefront
aberration, especially for ocular aberrations. And typically the coefficients for piston and tilt
(i = 0, 1, 2) are ignored as this do not change the image quality.

2.3 Strehl ratio

Beside of the wavefront error σ, Strehl ratio is another parameter that gives information about
the degradation of image quality of wavefront aberrations. Strehl ratio S is defined as the the
ratio of the "best focus" image intensity from a point source in the presence of aberrations
compared to its maximum diffraction-limited intensity using an ideal optical system without
aberrations. Thus the Strehl ratio has a value between 0 and 1, and mathematically can be
expressed as

S =
1
π2

|
∫ 2π

0

∫ 1

0
ei2π∆W (ρ,θ)ρdρdθ|2 (2.6)

in which ∆W is the wavefront aberration relative to the reference wavefront. An estimation
formula is also widely used for simple approximation of the Strehl ratio down to 0.1 expressed
as:

S ≈ e−σ2

(2.7)

in which σ is the wavefront error defined by equation 2.4. Based on the Maréchal criterion [81],
system could be considered as aberration-free when the Strehl ration is bigger than 0.8, which
corresponding to a wavefront error 6 λ/14.
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2.4 Adaptive optics (AO)

2.4.1 Introduction of AO

Adaptive optics (AO) is a kind of technology, rather than an imaging system, that can be used
in combination with imaging modalities to dynamically sensing and compensating the wavefront
aberrations induced by systems or samples to improve the optical image quality. Based on the
general definition, AO is actually far more common in our daily life, for example, the human
eye itself is an adaptive system that could alter the pupil size and lens curvature to form
good images on the retina, or the autofocus function in every cellphone camera with internal
control loops. The concept of AO was first proposed in 1953 by Horace W. Babcock [82] and
originally applied to astronomical telescopes [83] for correcting wavefront distortions induced
by atmosphere turbulence due to the variations of refractive index in different layers. Compared
with sending imaging systems to outer space to get rid of the aberration effects, AO coupled
telescopes are more cost-efficient and can also achieve resolution close to diffraction-limit.

Figure 2.2 – Simplified schematic of a basic adaptive optics system in an optical imaging system
[84].

Beside of its indispensable application in astronomical imaging, AO has actually played
a significant role in various biological imaging areas to improve image quality. Although the
modern optical systems could be almost perfect, aberrations could still come from the imperfect
assembly of customized systems, the inhomogeneity of imaging medium and also the sample
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itself. Particularly in retina imaging, as optical wavefront need to pass the anterior part of
the eye, from where most of the ocular aberration is induced, AO is essential in many in vivo

retinal imaging modalities like fundus camera [85], scanning laser ophthalmoscopy (SLO) [86]
and OCT, which will be discussed in section3.1.2, to achieve better resolution.

Figure 2.2 shows a simplified schematic of the AO part for an optical imaging system. The
incoming light is aberrated with distorted wavefront. Reflected by an adaptive mirror (de-
formable mirror), the light is then split by a beamsplitter with part of it going to the wavefront
sensor and the rest to the high resolution camera. The wavefront aberration is measured by
the sensor and through the control system the measured aberration is inversely applied to the
adaptive mirror to correct the distorted wavefront. Thus the corrected wavefront would go to
the imaging system to form high resolution images. The main part of an AO system is the
wavefront corrector for aberration correction and the wavefront sensor for aberration determi-
nation. Of course many wavefront sensorless methods have also been developed, which will also
be discussed.

2.4.2 Wavefront corrector

As a key part of an AO system, wavefront corrector works by altering the OPL to delay the
leading parts of the aberrated wavefront so that the trailing parts could catch up to form
a flat wavefront. Based on the way of changing the OPL, wavefront correctors can be briefly
divided into two catalogues: changing the physical shape of the reflective surface like deformable
mirrors; and altering the refractive index by transmissive devices like liquid crystal spatial light
modulators or adaptive liquid lens. Depends on the nature of aberrations being corrected,
imaging system requirements and correction accuracy, different wavefront correctors have their
own pros and cons.

Deformable mirror

Up to today, many kinds of deformable mirrors have been developed and used in AO systems.
The earliest implementation is segmented mirror [87] that are made by a number of closely
assembled small mirrors with square, hexagonal or circular shapes. Each segment is controlled
separately with actuators that are able to perform piston-only (figure 2.3(a)) or piston with
tip and tilt (figure 2.3(b)) motions. Segmented mirrors are able to approximate the wavefront
correction with relatively large number of segments, but the discontinuity between segments
would induce discontinuous phase correction to the incoming wavefront that will weaken the
correction performance. Also the gap between different segmented mirrors would cause energy
lose and light scattering due to the diffraction form the edge of the segments. These problems
are solved by deformable mirrors with continuous surface (figure 2.3(c)).

Deformable mirrors with continuous surface also work with physical deformations to match
the required wavefront correction shape. While the reflecting surface is continuous, the devices
that perform the deformation can be either continuous like in membrane mirror [88] or bimorph
mirror [89], or discrete like in edge-actuated deformable mirror [90].
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Figure 2.3 – Simplified schematic of different deformable mirrors and the wavefront representa-
tion. (a)Segmented mirror that has piston-only actuators; (b)Segmented mirror that has
piston with tip and tilt actuators; and (c) Deformable mirror with continuous reflective sur-
face.

Liquid crystal spatial light modulator

Liquid crystal spatial light modulators (LCSLM) are operated by altering the orientation of
liquid crystals with electrostatic forces to change the refractive index of different pixels in-
dependently. The phase or amplitude or both of the wavefront could be varied in either a
transmissive or reflective way. As the performance of LCSLM is wavelenth and polarization
dependent, its application is limited to small bandwidth polarized light. But as the pixels of
LCSLM can be very small and independent, it can achieve high-order aberration corrections
with large number pixels and a low control voltage. Although the phase modulation range is
confined from 0 to 2π, aberration correction for larger dynamic range could be achieved by
phase wrapping techniques [91].

In our work on the AO-FFOCT, we choose to use a transmissive LCSLM [92] as it fits per-
fectly for our simplified AO-FFOCT system, which will be discussed in details in chaper 6. The
LCSLM is a transmissive hexagonal array SLMs (figure 2.4(a)) achieves more than 90% trans-
mittance with 127 pixels of anisotropic nematic liquid crystal molecules that are aligned with
their long axes parallel, but with their centres randomly distributed as shown in figure 2.4(b).
With no voltage applied, the liquid crystal molecules lie parallel and maximum retardation is
achieved. When voltage is applied, liquid crystal molecules begin to tip perpendicular causing
a reduction in the effective birefringence and hence, retardance.

Adaptive liquid lens

Adaptive liquid lenses are transimissive wavefront correctors based on the physical change of the
liquid lens shape and have the advantages of intrinsic smooth continuous interface, adaptively
tunable optical power, polarization insensitive and also vibration resistance with two density-
matched liquids employed. Using the electrowetting [93] or dielectrophoretic [94] phenomena,
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Figure 2.4 – Transmissive liquid crystal spatial light modulator [92]. (a)Hexagonal SLM pixel ge-
ometry with 127 pixels; (b)Liquid crystal variable retarder construction showing molecular
alignment without and with applied voltage.

the interface properties between two immiscible liquids could be altered to change the liquid lens
curvature. This could also be achieved by applying a hydraulic pressure in one of the chamber to
displace the liquid and bend the deformable membrane (figure 2.5), which is used to separate
the two liquids. Many methods have been proposed to generate the required pressure such
as thermal, electromagnetic, electrostatic, piezoelectric actuators and so on [95–98]. Adaptive
liquid lenses are relatively new technology and are promising in many applications like cellphone
cameras and vision sciences.

Figure 2.5 – Adaptive liquid lens couvature changes [99]. By adjusting the voltage, the hydraulic
pressure is altered to bend the deformable membrane.
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2.4.3 Direct wavefront sensing

Wavefront sensing deals with the aberration determination. Many AO systems nowadays do
have a way to sense the optical wavefront directly with enough spatial resolution and speed
to apply a real-time correction with wavefront correctors. There are various kinds of direct
wavefront sensing techniques have been developed such as curvature sensing [100,101], pyramid
wavefront sensor [102, 103], coherence-gated wavefront sensing [104,105]. Beside these, Shack-
Hartmann wavefront sensor is probably the simplest in concept and most widely used in both
astronomy and ophthamology applications.

Shack-Hartmann wavefront sensor

Invented in 1971, the Shark-Hartmann wavefront sensor is an optical system derived from the
Hartmann method [106] for a number of measurements like human eye aberration determina-
tion, laser beam quality evaluation, and astronomical aberration measurement. As shown in
figure 2.6 Shark-Hartmann wavefront sensor is composed of a 2D array of miniaturized lenslets
that is placed in front of a detector at a distance equal to the focal length of the lenslets. Typ-
ically, the lenslets array is conjugated with the pupil plane of an optical system. When there
is no aberration, the wavefront arriving at the lenslets array is planar thus the incoming light
is formed into many small spots onto the detector as shown in figure 2.6(a). When aberration
presents, the small spots focused on the detector is shifted from the center optical axis position
as shown in figure 2.6(b). These displacements of the small spots corresponding to the local
slope of the wavefront arriving at the lenslets. With centroid algorithm [107] and wavefront
reconstruction method [108], the wavefront within the subaperture could be estimated.

2.4.4 Indirect wavefront measurement based on image analysis

The performance of direct wavefront measurement in AO systems could be limited by many
sources of errors such as the accuracy of the wavefront sensor, non-common path errors, back
reflection from lens based systems, etc. Also the lack of guiding star in many situations makes
wavefront measurement ambiguous as the wavefront sensor would response to all the light
impinging upon it and one cannot be sure whether the measured wavefront corresponds to
the aberration that are induced to the light coming from the focal plan. For these reasons,
Indirect methods that rely on the optical image itself, which is formed by the light coming
from the focal plan, as the source for wavefront measurement has been developed. The basic
principle is to use the effects of aberrations on the image to optimize the image quality. With a
wavefront corrector in the optical beam path, known aberrations are generated before images are
recorded. By analysing how the additional known test aberrations changes the image quality,
optimization could be achieved by various algorithms to decide the best aberration correction
parameters for wavefront corrector. In contrary to the direct wavefront measurement which
invariably adds extra hardware like Shack-Hartmann wavefront sensor, indirect methods needs
only the wavefront corrector. Up to today, methods like metric-based sensorless algorithms,
phase diversity and pupil segmentation have been developed and applied to various applications
like microscopy or OCT.
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Figure 2.6 – Principle of operation of a Shark-Hartmann wavefront sensor [109]. The wavefront
spot patterns produced by a planar wavefront (a) and by an arbitrarily aberrated wavefront
(b). The blue dotted circles represent the lenslets.

Metric-based sensorless algorithms

The concept of metric-based sensorless algorithms, or sensorless AO, is actually analogue to
what people do when adjusting a microscope for focusing. While adjusting the distance between
the objective and specimen, the operator is actually evaluating the imaging quality based on
the intrinsic appreciation of good image, which should be sharp and reveal enough details and
contrast, until the image quality is maximised. Although the process is subjective, it is still a
search algorithm in which the distance change works as an input that alters the image metric
until it is maximized. In sensorless AO, the variable input could be all the aberration modes like
defocus, astigmatism, coma, spherical, etc. Various type of aberration modes could be applied
with a wavefront corrector in the system. The image metric is defined mathematically as the
contrast, total intensity, or parameters of interested image regions. The choice of different
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optimization algorithms in sensorless AO actually leads to considerable differences in their
performance. Briefly, these approaches can be divided into two categories: model-agnostic
algorithms and model-based algorithms.

Model-agnostic algorithms are designed to solve problems with very little background and
no theoretical model is available for describing how aberrations will affect the functional image
metrics. Methods like hill-climbing [110],genetic search [111, 112],conjugate gradient methods
[113], etc. have been developed and applied to microscopy and imaging. The drawback of these
methods is that they require large number of measurements for optimization and still may not
be able to achieve the global optimum.

Model-based algorithms have been implemented in a range of imaging techniques [114–117]
since the effects of aberrations on the imaging process can be modelled using theory or through
empirical observations. Still these algorithms are metric-based, but in contrast to model-
agnostic algorithms, the iamging model is used here to determine an orthogonal set of test
aberration modes which affects the metric independently, allowing the determination of the
optimum aberration correction with few test images per modes. Zernike polynomials are the
most widely used approach as the orthogonality ensures that the parameters of each modes
are determined independently, leading to non-iterative operations. The metric of test images
could be approximated by quadratic, Gaussian or Lorentzian functions to define the optimum
parameters. Figure 2.7 shows an example of the general procedure of model-based algorithms.
The algorithm we applied to our AO-FFOCT system for low order aberration correction is also
a model-based wavefront sensorless algorithm which will be discussed in section 6.3.

Figure 2.7 – General procedure of model-based algorithms [118]. Three test images of speckle pat-
terns(a1,b1,c1) while changing the parameters of one specific aberration mode are taken.
The respective metric values are calculated (a3,b3,c3) and modelled metric curve (black
solid line) allows the determination of the optimal parameter for this specific mode(d1,d3).
Some procedures could be applied to the other orthogonal aberration modes.

Phase diversity

In phase diversity method, a small set of test images are recorded with different test aberrations
(phase-only) added. The actual aberrations, which are coherent with all the test images, are
determined with phase retrieval algorithms. Instead of relying on a single metric, the full
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information content of different images is combined to find the most likely form of all the
aberration modes. The exact implementation of phase diversity varies such as the heuristic
approaches in electron microscopy [119] or wide-filed microscopy [120] and also a maximum
likelihood approach in astronomical applications [121, 122].

Pupil segmentation

For pupil segmentation [123], instead of using a phase modulation, the test aberration is a spatial
amplitude modulation. By exciting fluorescence through various subregions of the microscopy
objective pupil and acquiring separate fluorescence images, the lateral shift of the signal could
be acquired, which gives an estimation of the average wavefront title of that subregion. Simply
speaking, it is an inverse Hartmann test. A more recent pupil segmentation method called
zonal-based approach [124, 125] uses full-pupil illumination and takes total intensity as the
metric while performs sequential 2D tip-tilt scans of different segments of the wavefront to
determine the optimal condition.

2.5 Computational adaptive optics

Besides the AO techniques discussed in former section that wavefront shaping could be done
with many hardware methods, it is also possible to do wavefront correction computationally.
It has been shown that using interferometric detection, the complex optical wavefront could be
measured. Thus the phase of the wavefront could be modified computationally. Analogous to
what people do with a wavefront corrector, computational AO modifies the wavefront by adding
different phase filters to the original data. And the similar methods to hardware AO with image
metrics, wavefront sensor or guiding stars have also been performed in computaional AO using
the interferometric data [126–128]. Computational AO has been applied for high-resolution
human retinal imaging in different kinds of OCT systems for aberration correction [129–131].
Note that computational AO methods are mostly adapted to systems with spatially coherent
illumination.
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3.1 Imaging properties of human eye

The human eye,one of the most finely tuned evolutions in the animal world, is a robust and
unique organ that works as a complete imaging system. It is composed of refracting optics
(cornea and crystalline lens), aperture (iris) and photosensitive detector (retina). Compared
with artificial imaging systems, which are often composed of complex optical parts to ensure
high imaging performance, the eye is rather simple but does great job for vision. It forms high
resolution images of objects from a large field of view at different distance using transparent
tissue to the retina. And the detected light signal is converted into elecro-chemical impulses
in neurons. The eye provides the only direct view of the central nervous system, thus it is
quite interesting for early detection of retinal and possibly systemic diseases. But if we want
to inversely image the retina, the optical properties of human eye impose severe constraints on
how much information we can get and how well we can resolve the details. This includes the
eye aberration and eye motion problems.

3.1.1 The structure and geometry of human eye

As shown in figure 3.1(a), the eye ball is a hollow and approximately spherical structure.
Externally it is mostly covered by sclera, a resistant and flexible tissue that contains many
collagen fibres, to protect and maintain the shape of the eye ball. While in the anterior part,
it is a transparent portion that is called cornea. The cornea is avascular tissue that admits
and helps to focus light when it enters the eye. Internal to the sclera, there are two layers: the
choroid and the retina. The choroid lies adjacent to the sclera and contains numerous blood
vessels to provide nutrients and oxygen to the other tissues. It also contains pigmented cells
that absorb light and prevent it from being reflected within the eye ball. The retina, where the
light is absorbed by the photoreceptors after image formation, is the neural and sensory layer
of the eye ball. Structural details of human retina will be further discussed in the following
section.

The light reaching the eye ball is first refracted by the transparent cornea. After the cornea,
before the iris and lens, the anterior chamber is filled with a thin watery fluid called aqueous
humour, that helps to maintain the shape of the front part of the eye and provides nutrients
to the lens and cornea. The iris contains two types of smooth muscles, circular muscles and
radial muscles, and has an opening in the centre called pupil whose size is adjustable (2 mm
to 8 mm) by the muscles to control the amount of light entering the eye. The crystalline lens
is a transparent, biconvex, elastic structure that works together with cornea to form images on
the retina. while the cornea has a fixed optical power, the lens is an active optical component
that could change its shape from time to time by ciliary body to focus objects from various
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distances. After the light is refracted by the lens, it enters the posterior chamber filled with
vitreous humour and then reaches the retina.

Figure 3.1(b) shows the average values of the main geometrical and optical information of
human eye. Unlike most artificial system, the human eye is not a centred optical system. The
ocular surfaced are not spherical in shape and they are not perfectly aligned. The visual axis
is decentred around 5 degree from the geometrical axis, focusing light on the fovea area on the
retina that provides the highest resolution.

Figure 3.1 – Schematic representation of the structure and geometry of human eye [132, 133].
(a) Schematic cross-section of the human eye structure. (b) Main geometrical and optical
information of human eye. Refractive indices (blue), curvature radii (black), and distance
(red) in mm.

Human retina

As mentioned before, the retina is the most inner coating of the eye ball. It is a light sensitive
layer that works much the same way as the film in a camera. After the image is formed on the
retina layer, the light striking the retina initiates a cascade of chemical and electrical events
that ultimately trigger nerve impulses. These are sent to various visual centres of the brain
through the fibres of the optic nerve.

Figure 3.2 shows a cross-sectional representation of the layer structures of retina. From the
direction of the incoming light, the inner limiting membrane separates the retina from the
vitreous humour. The retinal nerve fibre layer (RNFL) lies immediately after the membrane.
RNFL contains axons of the ganglion cells that form the optic nerve. The nerve fibres are
converged and leave the eye though optical disc, which is a blind spot as no photoreceptors
lies in this area. The nerve fibres are connected to the photoreceptors via a series of complex
links with ganglion, amacrine, bipolar and horizontal cells, which make up the next few layers
(Ganglion cell layer, Inner/Outer plexiform layer and Inner/Outer nuclear layer) in the retina
before the photoreceptors. The photoreceptor layer contains light sensing rods and cones.
They are large molecule chemicals that change shape when they are energized and the energy
is passed to nerve endings when relaxed. The rods are for dim light and black/white vision,
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while the cones are for color vision with the combination of three different types. The central
part of the fovea contains only cones which are smaller (around 2um in diameter) and more
densely packed in this region than elsewhere in the retina, giving a higher visual acuity in this
region. The layers at the front of the retina are thinner or completely absent at the fovea,
thus increasing the amount of light reaching the photoreceptors. The last layer of retina that
lies closely to the choroid is the retinal pigment epithelium (RPE) which is a single layer of
hexagonal cells of pigment bits tightly packed together. RPE is quite important in protecting
retina from the damaging effects of light, maintaining the photoreceptor structure, providing
energy and needed components to retina, balancing the pH, and also getting rid of damaged or
dead photoreceptor cells.

Figure 3.2 – Cross-sectional representation of retina shwoing the principal layers [132].

3.1.2 Eye aberrations

In an aberration-free optical imaging system like a microscope, the system resolution, or the
point spread function (PSF), is limited by diffraction. With larger numerical aperture (NA),
smaller PSF could be achieve. But for human eye, the first restriction is that the eye pupil
size is limited to maximum 8mm, corresponding to 0.23 NA. This is not the only problem as
aberration exits in every eye due to the refractive indexes mismatch in the anterior part. The
benefits of increased numerical aperture of any pupil sizes larger than 3mm are defeated by
the presence of aberration, which distort the PSF (see figure 3.3). Studies have shown that the
balance between diffraction with blurs the image for small pupils and aberration is between
2 − 4mm pupils, depending on the individuals [134–136].
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Figure 3.3 – The constraints between diffraction and aberration on the PSF of the eye [137]. The
top row shows the point spread function of an eye with no aberrations. As the pupil size
increases the PSF decreases in size, offering the potential for higher resolution. The lower row
shows the point spread functions for an eye with typical aberrations. In this case aberrations,
particularly for the larger pupil sizes, blur the PSF. The best pupil size for lateral resolution
in a typical eye is between 2 − 4mm.

The magnitude of aberration is strongly dependent on individual factors such as age, state of
accommodation, or the particular direction through the ocular media. It also varies spatially
across the pupil, over time, and with field location in the retina. As discussed in section 2.2,
with the orthogonality over circular pupils, any wavefront profile is able to be decomposed into
a weighted sum of these polynomials, making Zernike polynomials the most popular represen-
tation of ocular polynomials. With the representation of Zernike polynomials, the aberration
of the eye has been well characterized. Many studies on eye aberrations tests have shown that
low order Zernike polynomials are actually dominating [138–141]. Figure 3.4 is the measured
wavefront aberrations in large human population samples using Shack-Hartmann aberrometry
by Proter et al [138] showing that the majority of the eyes’ aberration lies within the low or-
der modes such as defocus and astigmatism, which accounting for more than 92% of the total
wavefront aberration variance in the eye.

Although eye is a simple optical system, it is a complex biological organ with various and
continous physical and physiological processes, resulting in the aberration of eye and the cor-
responding PSF being not static but fluctuate with time [141]. This is mostly due to changes
in accommodation level as well as the change in shape of crystalline lens, pupil size, eye move-
ments and the tear film. Althought these micro-fluctuations might be small enough to produce
perceptible effect on vision under normal circumstances, they are though to be large enough to
affect retinal image quality [142]. The accommodation of the eye leads to a focus error fluctu-
ate at a frequency around 5Hz [142]. The crystalline lens change would introduce fluctuations
in higher-order Zernike terms with temporal frequencies of up to 2Hz at least [143] and the
fluctuations of the eye’s aberration have a non-negligible effect up to temporal frequencies of
30Hz [144]. The dynamic nature of the ocular aberration indicates that, instead of applying
a static correction, a real-time measurement and/or correction is needed to achieve optimal
correction.
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Figure 3.4 – The wavefront aberration decomposed into Zernike polynomials for a large human
population over a 5.7mm pupil [138].The percentages listed above the first eight modes
represent the percentage of the variance of the wave aberration accounted for by each Zernike
mode. The majority of the aberration power is found in the low order modes like defocus
and astigmatism.

3.1.3 Eye movements

The human eye is constantly in motion with voluntary or involuntary movements, which move
a stimulus projected onto the retina over dozens to hundreds of photoreceptors. The voluntary
movements includes pursuit, the slow movement for focusing and maintaining the image on the
fovea, and saccade, the renunciation of image hold on the fovea like a change in observation
direction. There are also several involuntary movements like torsion, drift, tremor and micro-
saccades. Torsion is the rotation of the eye ball around the axis to follow head movements. Drift
is a slow movement of the eye during eye fixation. Tremor is the high frequency oscillations of
the eye to maintain the image on the retina, which is also referred as physiological nystagmus.
What’s more, there are micro-saccades that are fast micro movements of the eye during fixation
to correct the effect of drift. The voluntary movements usually can be removed to some extend
by fixation, while the involuntary movement is usually not able to stop due to people’s conscious
participation and concentration. Eye movements with fixation typically still produce gaze
instability of 10 or 15 arc minutes during sustained periods of attempted steady gaze [145,
146]. Table 3.1 summarizes the amplitude, speed, duration and frequency of the involuntary
movements that could still exit with fixation. These movements are too small to be seen with the
naked eye or with mid-level eye movement monitors, but they are a significant source of image
artifact when imaging the retina with high resolution systems such as OCT or SLO. For eye
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Table 3.1 – Quantitative values of involuntary eye movements [148]

Drift Micro-saccades Tremor
Amplitude 2 − 5min 2 − 15min 50 − 60arcsec
Speed 6 − 30min/s 10 − 100◦/s 18 − 20min/s
Duration 0.2 − 1sec 10 − 30ms
Frequency 0.2 − 2Hz 30 − 100Hz

imaging, studies have also shown the correlation of eye axial movements with heartbeat [147].
These cardic-induced eye movements is due to the entire head movement and could be reduced
with head fixation during imaging.

3.2 Retinal imaging

The eye is one of the key elements in the vision. Thus understanding how the eye works, espe-
cially the function of the retina, is the first step towards understanding vision. By imaging and
looking at retina would give much more information on how each retina component contributes
to the vision. What’s more, many important eye diseases as well as systemic diseases manifest
themselves in the retina. The needs of retinal images at cellular level to the study and diagnosis
of eye diseases are also important reasons why it is necessary to develop high resolution retinal
imaging techniques. Improved retinal imaging systems that could offer better image quality
would benefit dealing with all stages of various ocular diseases like glaucoma, diabetic macular
edema (DME) or age-related macular degeneration (AMD). These includes the study of the
causes of diseases and their progression with time, the development of a treatment for each dis-
ease, the early diagnosis of the diseases, and the treatment itself to see whether it is of a surgical
nature. The anatomy of retina is well-documented with high resolution images from standard
microscopes on excised sections of retina tissues. Ex vivo imaging of diseased retina tissues also
provides useful information of the diseases and their effects on the retina. But imaging excised
retina tissue could not provide direct functional information of retina. What’s more, with ex-
cised retina tissue, structural changes may have already happened to various parts. Imaging
excised retina tissue is also not possible to follow the development of a disease, thus plays no
role in the disease diagnosis and treatment. All these reasons have pushed on the development
of in vivo retinal imaging techniques that are non-invasive, high resolution, and can operate at
high imaging speed. These includes the most popular retinal imaging techniques that are being
used in the hospital nowadays such as fundus camera, scanning laser ophthalmoscope(SLO),
and optical coherence tomography(OCT). And the requirements of high resolution images have
also been achieved with the combination of these technique with AO techniques discussed in
chapter 2.

3.2.1 Flood illuminated fundus camera

The development of fundus camera could be dated back to 1800s with the first concept intro-
duced in 1823. In 1851, Hermann von Helmholtz introduced the Ophthalmoscope. Nowadays,
fundus camera is a specialized low power microscope with an attached camera. It works by
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capturing a photography of the posterior chamber of the eye that could show the structures
of the central and peripheral retina, retinal vessels, optic disc and macula (see figure 3.5(a)).
Through the retinal fundus photography, the appearances of retinal diseases could be visual-
ized such as the damage to the optic nerve by glaucoma (figure 3.5(b)) or the damage to the
retinal blood vessels from diabetes (figure 3.5(c)). With technology develoment, fundus camera
can also be performed with colored filters, or with specialized dyes including fluorescein and
indocyanine green. Fundus camera is fist retina imaging system that was coupled with AO
system to improve the image quality. The first in vivo images of cone receptors using a high
resolution flood illuminated fundus camera is achieved in 1996 by Miller et al [149]. After the
introduction of AO into eye aberration measurement, various AO fundus camera systems have
been built to image retinal structure and function in both normal and diseased eyes [150–153].

The fundus photography provides a bird’s view of the top most layer, the inner limiting
membrane, as well as the other underlying layers of the retina. While retina contains multiple
layers that have specific functions in visual perception, different abnormalities often begin in a
particular layer before spreading into the other layers. The fact that fundus camera could not
offer specific depth examination of the retinal layers prevent it from offering early and accurate
diagnosis of retinal diseases.

Figure 3.5 – Retinal fundus photography showing noraml retina (a), glaucoma (b), and diabetes
(c) [154–156].

3.2.2 Scanning laser ophthalmoscope

Scanning laser ophthalmoscope (SLO) is an eye examination method based on confocal laser
scanning microscope for diagnostic imaging. By scanning a point source rapidly across the
retina with horizontal and vertical scanning mirrors, raster images of specific retina areas could
be created. With the reflected light passing through a pinhole that is confocal to distinct layer,
SLO could resolve retinal layer structure at microscopic level. With the confocal method,
reduced scattering is achieved as only light from a particular point and retinal layer is detected.
And the fast scanners used in SLO make video rate imaging of retina possible.

However, due to the exists of eye aberrations, using SLO to monitor individual retinal cells is
still problematic as lateral resolution would be diminished. So adding AO to SLO for wavefront
correction to achieve better lateral resolution is essential to resolve cellular structure of retinal
layers. The first attempt for AO-SLO is demonstrated in 1980s with a deformable mirror to
correct estimated aberrations [157]. And the further invention of Shack-Hartmann wavefront
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sensor has pushed AO-SLO technique to achieve much higher lateral resolution [86], larger
field view [158], and the ability to visualize the distribution of cone photoreceptors around the
fovea and the rod photoreceptors(see figure 3.6) [159, 160]. The imaging of Retinal Pigment
Epithelium (RPE) cells in patients with and without retinal disease has also proved possible
with the use of AOSLO [161]. As the loss of RPE cells represents the primary pathology of
macular degeneration, this provides a possible future avenue for tracking RPE degradation in

vivo.

Compared with other retinal imaging techniques like retinal dissection and fluorescein an-
giography, AOSLO is able to resolve single photoreceptor on living human retina as well as to
track retina changes over time or eye movements without injecting any fluorescein dye. Al-
though SLO provides high lateral resolution with good axial resolution, the nature that the
axial resolution is dependent on the NA of the eye still limits the axial sectioning ability of
SLO to around 10um.

Figure 3.6 – AO-SLO images of the cone and rod mosaic at locations spanning 30◦ NR to 30◦

TR [160].Images are displayed with a logarithmic intensity scale to enhance the visualization
of the rod photoreceptors. The scale bar is 25um.

3.2.3 OCT retinal imaging

As discussed in chapter 1, OCT has emerged as a powerful imaging technology in biomedicine.
It fills the gap in terms of resolution between microscopy and larger scale imaging techniques
like ultrasound or MRI. With the advantages of non-contact feature,high sensitivity, and high
imaging speed with micron-scale resolution, OCT has been successfully applied to ophthalmic
and especially retinal imaging. OCT has significantly improved the potential for early diagnosis,
understanding of retinal disease pathogenesis, as well as monitoring disease progression and
response to therapy.
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Ultrahigh-resolution OCT retinal imaging

Figure 3.7 – Comparison of normal optic nerve head imaged with different optical coherence to-
mography (OCT) technologies [162].(a) Standard-resolution OCT image with axial reso-
lution of 10um, 512 transverse pixels (axial scans), acquired in 1.3 seconds. (b) Ultrahigh-
resolution (UHR) OCT image with axial resolution of 3um, 600 transverse pixels, acquired
in 4 seconds. (c) High-definition image using high-speed UHR OCT with axial resolution of
2um, 2048 transverse pixels, acquired in 0.13 seconds. High-speed imaging enables raster
scan patterns for comprehensive 3-dimensional mapping of the retina (3D OCT). Examples
of 2 different scan patterns are shown: (d) 10 cross-sectional images with 2048 axial scans
(transverse pixels) each for high-definition imaging, (e) 170 images with 512 axial scans each
for 3D OCT imaging, (f–h), representative high-definition OCT images of the macula, (i)
representative cross-sectional images along orthogonal planes of the optic disc generated from
the 3D OCT data set, and (j) volume rendering of the macula from the 3D OCT data. ELM:
external limiting membrane; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plex-
iform layer; IS/OS: boundary between the inner and outer segments of the photoreceptors;
NFL: nerve fiber layer; OPL: outer plexiform layer; RPE: retinal pigment epithelium.

For any kinds of retinal imaging modality, the eye itself always acts as the imaging objective.
Thus, the resolutions are mostly limited by the optics of the eye. However, unlike fundus cam-
era or SLO, in which the axial resolution is depend on the large depth of focus of the eye optics,
the axial resolution in OCT is decoupled from the eye optics. The high axial resolution of OCT
results from the coherent detection scheme of LCI and depends on the axial coherence length of
the OCT light source. As discussed in section 1.4, the axial resolution (coherence length) is in-
versely proportional to the spectrum bandwidth of the light source. Development of ultrabroad
bandwidth light sources and high-speed detection techniques has improved the ophthalmic
OCT imaging significantly, allowing 3 dimensional ultrahigh-resolution OCT (UHR-OCT) to
perform non-invasive optical biopsy of the living human retina [163–165]. The improved axial
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resolution and imaging speed enable high-definition, two-dimensional tomograms, topographic
thickness maps of all major intra-retinal layer as well as volumetric quantification of pathologic
intra-retinal changes [166–168].

Figure 3.7 shows the comparison of the normal optical nerve head imaged by three different
OCT systems: Standard OCT system ( 10um axial resolution, 400A − scans/s, Fig. 3.7(a)),
UHR OCT using time domain detection ( 3um axial resolution, 150A− scans/s, Fig.3.7(b)),
and high-speed UHR OCT using Fourier domain detection ( 2um axial resolution, 25000A−
scans/s, figure 3.7(c)). The high-speed UHR OCT not only reduces eye motion artifacts with
its fast imaging speed, it also enables better delineation of the intra-retinal layers with its higher
axial resolution, smaller speckle size, and increased A-line numbers.

AO-OCT retinal imaging

Figure 3.8 – Comparison of (top) cell size in a histological cross section of the human retina with
(bottom) the resolving capability of the major types of retinal imaging modalities with
and without AO [169].The vertical and horizontal dimensions of the solid black symbols
denote, respectively, the lateral and axial resolution of the instruments. Examples shown
include the commercial confocal scanning laser ophthalmoscope (cSLO), confocal scanning
laser ophthalmoscope with adaptive optics (AO–cSLO), flood illumination with adaptive
optics, commercial OCT, ultrahigh-resolution OCT (UHR–OCT), and ultrahigh-resolution
OCT with adaptive optics (UHR–AO–OCT).

High axial resolution in OCT could be achieved by using ultra-broad bandwidth light source,
but the highest lateral resolution for retinal imaging is still limited by the finite size of the
pupil and also the existed aberrations due to the imperfections of the eye optics (section3.1.2).
To improve the lateral resolution of retinal imaging modalities, the pupil is usually dilated to
ensure the best possible diffraction limited PSF. And to compensate the limitation induced
by aberrations, AO is typically combined with OCT to achieve close to diffraction-limited
lateral resolution. The combination of OCT with AO permits the access to the full retinal
reflection that exists a large pupil size, resulting in improving the visualization and detection
of microscopic structures in the retina. Compared with commercial OCT system, AO-OCT
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could have not only higher lateral resolution, but also a smaller lateral speckle size and higher
signal collection efficiency. The combination of AO with high-speed UHR-OCT offers the
state-of-the-art performance with an isotropic 3 dimensional resolution of 2.5 × 2.5 × 3um3

(width×length×depth) in retinal tissue. Figure 3.8 shows the comparison of the 3 dimensional
resolution of various retinal imaging systems. In general, AO-UHR-OCT provides the best
resolving capability currently to resolve cells in all three dimensions. Besides of the advantages
offered by AO to OCT retinal imaging, AO actually brings some drawbacks. These includes
the increased system complexity, physical size, and expense. Thus wavefront-sensorless [170]
and also computational AO [129] have also been applied to OCT retinal imaging to get rid of
some of these drawbacks.

Figure 3.9 – Images acquired with AO-UHR-OCT. [171].In a log-scale B-scan focused on the outer
retina, the ELM, IS/OS, and COST bands are clearly visible, demarcating the IS and OS of
the cones. In a linear-scale, magnified view (bottom left), the IS/OS and COST reflections
from individual cones are clearly visible, with red and yellow boxes outlining the relatively
transparent individual inner and outer segments. The width of the bright reflections is con-
sistent with known IS widths, while their height is comparable to the axial PSF height, which
suggests origination at thin reflectors. Axial displacement of neighboring reflectors is appar-
ent in both layers. When focus is shifted to the inner retina, individual nerve fiber bundles,
up to 50um in diameter but separated as little as 5um, become visible. A magnified view of
the latter (lower right) reveals capillaries (arrows) lying in multiple plexuses. These individual
structures of the inner and outer retina appear as uniform bands in clinical OCT images.

The first implementations of AO-OCT were performed with TD-OCT using an en face

coherence-gated OCT camera [172] and conventional TD-OCT based on tomographic scan-
ning (xz) [173]. But the fundamental technical limits, especially in imaging speed, prevented
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their application in scientific and clinical studies. In 2005, the feasibility of in vivo 3 dimensional
celluar resolution retinal imaging were demonstrated with Fourier domain detection. The first
implementation of AO with SD-OCT was by using a broadband source to illuminated a line on
the retina, revealing cone photoreceptors transversely and axially [174]. Soon, a point scanning
AO-OCT was developed with X-Y raster scanning system [175], which becomes a template
for successive AO-SD-OCT systems. Nowadays, AO–OCT systems have been used to capture
volume images of retinal structures that were previously only visible with histology. In order to
demonstrate the benefit of AO correction to OCT retinal imaging, a representative AO-UHR-
OCT retinal image recorded in a healthy volunteer is displayed in figure 3.9. When the focus
was set to the outer retina, the zoom in to the photoreceptor layer (Figure 3.9(B)) shows a
discrete spacing of high reflective spots in the IS/OS and the COST bands that correspond
to individual cone photoreceptors. When shift the focus to the inner retina, individual nerve
fiber bundles becomes visible. The signal originating from the RPE corresponds to a diffuse
speckle pattern. Recently, with a 3D image registration and data analysis method, RPE cells
were visualized and characterized in 3D with AO-OCT system [176].

Figure 3.10 – Full-field swept-source OCT retinal imaging with computaional AO [130]. (left) Setup
of the full-field swept-source OCT for retinal imaging. Light from a tunable light source is
split into reference (green) and sample arm (blue); the sample light illuminates the retina
and the backscattered light (red) is imaged onto the camera where it is superimposed with
the reference light. (right)Retinal volume acquired by FF-SS-OCT at NA 0.2 corresponding
to 7mm pupil diameter after aberration removal. (a) B-scan (sectional view) from the
recorded volume; the dashed green lines indicate the location of the curved en face images
shown in (b–e). (b–e) Averaged (b–d) and unaveraged (e), aberrationcorrected en face
images with magnification of a small area in the green boxes; the same area is shown
before aberration removal (dashed red boxes); nerve fiber layer (b), small capillaries (c)
and photoreceptor mosaic (d,e) are only visible after correction. (f) Wavefront used for
aberration correction of the green box in (d) with defocus removed. (g) Corresponding
PSF. Scale bars are 0.5mm.

As discussed before, the possible diffraction-limited PSF for retinal imaging depends on the
eye pupil size. Thus, in high resolution applications, en face OCT techniques, of which the
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optical beam covers the full pupil, may be advantageous compared with scanning OCT sys-
tem, which usually uses beam size smaller than the eye pupil size. En face OCT systems
record images with planes perpendicular to the optical axis, maintaining high lateral resolu-
tion throughout the imaging depth. Figure 3.10(left) shows a recently published remarkable
full-filed swept-source OCT which can obtain truly coherent 3 dimensional tomograms of the
living human retina with high image quality [130]. The aberrations are obtained and corrected
computationally using a modal-based method with the phase information of the en face im-
ages. Figure3.10(right) shows the in vivo retinal image of human eye with 7mm pupil. Without
the aberration correction, the volumes were laterally blurred in all layers of the retina. With
this significant image degradation, we can hardly see any lateral structures. The structure of
the nerve fiber layer and small capillaries became visible and single photoreceptor cells were
identified after aberration corrected computationally.
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4.1 Introduction

Full-field OCT (FFOCT) was originally developed in our lab with the conceivability of creating
a high-resolution but easy-to-use OCT device [3, 4]. As discussed in chapter 1, traditional
OCT systems obtain cross-sectional (B-scan) and 3 dimensional images by laterally scanning
a point light source across the sample with axial measurements (A-scan)of the backscattered
and back-reflected light. While in FFOCT, instead of taking images by raster scanning like
traditional scanning OCT system, it takes en face images with planes that are perpendicular to
the optical axis. Depth imaging is achieved by scanning the sample along the optical axis, thus
no large depth of field is needed, allowing using large NA optics to achieve much higher lateral
resolution than traditional OCT. In this way, FFOCT achieves both high axial resolution
with coherence gating effect like traditional OCT and high lateral resolution with high NA
objective like microscopes. Following the development of the first prototype model, subsequent
improvements to the original instrument have revealed a resolution capability surpassing that
of the most advanced femtosecond laser systems, but using a simple white light source [177,
178]. In FFOCT, by illuminating the entire field with a spatially incoherent source with low
temporal coherence length like halogen lamps or LEDs, en face images is recorded with a 2
dimensional detector array such as CCD or CMOS camera. The differences of FFOCT with
most optical coherence microscopy (OCM) systems and wide-field OCT (WFOCT) are that
OCM and WFOCT use spatially coherent light sources. Although they all take en face images,
OCM would also need to do raster scanning of the light focused at the required depth. The use
of a spatially incoherent illumination has been proved to severely reduce the cross-talk effects
in FFOCT compared with WFOCT with spatially coherent illumination [70]. Also, taking the
advantage of spatially illumination in FFOCT, the lateral resolution is found to be insensitive
aberrations. This has been proved both theoretically and experimentally and will be discussed
in details in chapter 5.

4.2 Basic principles of FFOCT

4.2.1 Basic layout

The schematic of general FFOCT setup is shown in figure 4.1(left). Briefly speaking, it is a
combination of an interferometer with a microscope. A spatially incoherent broadband light
source is coupled into a Michelson interferometer in a Linnik configuration that has both mi-
croscope objectives in the sample arm and reference arm. The optical beam from the source is
divided into two arms by a broadband non-polarizing beamsplitter cube: one goes to the sam-
ple and the other goes to the reference mirror. The backscattered beams are recombined and
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Figure 4.1 – Schematic of FFOCT. (left) Diagram of a conventional FFOCT in a Linnik interferometer.
BS: beamsplitter; PZT: piezoelectric transducer. (right) Digram showing FFOCT takes en

face images with planes(xy) that are perpendicular to the optical axis(z).

imaged on the camera. The optical sectioning ability is from the low coherence interference of
the two arms to select optical slices that are perpendicular to the optical axis(figure 4.1(right)).
Interferometric amplitudes which form the FFOCT images are obtained using the combination
of two or four phase shifting images by modulating the path difference with a piezoelectric
transducer (PZT) in the reference arm.

The spatially incoherent light source is a key element in FFOCT as its various features
would have a direct impact on the imaging performance of FFOCT. The spectral properties
of the illumination light determine both the lateral and axial resolution. The wavelength
also determines the depth of penetration into the samples. To maximize the imaging depth,
wavelength within the near-infrared window (650nm−1350nm) is typically selected to minimize
the optical absorption. The optical power plays a role on the imaging speed. The spatial
incoherence of the source in FFOCT not only helps to avoid cross-talks but also has a close
relationship with the lateral resolution of FFOCT in case of aberration exists (see chapter 5).

The camera used in FFOCT should also be selected with great care as it is crucial for the
quality of the images.Currently silicon cameras based on CCD or CMOS technologies or InGaAs
cameras have been applied in FFOCT systems. Camera parameters, such as spectral sensitivity,
dynamic range as well as frame rate, are of great importance fro FFOCT. Silicon based cameras
could not detect light with wavelength longer than 1.1um while InGaAs cameras are sensitive to
wavelength between 0.9um and 1.7um, which would offer possibilities of better penetration in
highly scattering samples [179, 180]. A high dynamic range detector is particularly important
in FFOCT to resolve small modulations on a large background signal with low noise. High
frame rates are extremely crucial for high speed imaging of FFOCT and plays an important
role in applying FFOCT for in vivo imaging to damp the artifacs of sample motions.
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4.2.2 Image acquisition

The broadband source used in FFOCT ensures that interference only happens within the co-
herence length, between the light back-reflected from the reference mirror and backscattered
from the selected depth volume in the sample. FFOCT acquires en face tomographic images
that intends to reveal the intensity of the backscattered light from the selected depth volume.
The amplitude of the backscattered light could be calculated by combining two or four images
taken with an imposed reference mirror modulation. The reference mirror is modulated with
PZT by two or four values of the phase ψ shifted by π or π/2, respectively. The recorded signal
of the direct image is given by

I(x, y) =
I0

4
{Rinc(x, y) +Rref(x, y) + 2

√

Rsam(x, y) ·Rref (x, y)cos[φ(x, y) + ψ]} (4.1)

in which:

– φ is the phase difference between the sample signal and reference signal;

– ψ is the phase shift induced by the shift of the reference mirror with the PZT;

– I0 is the photon flux of the illumination;

– Rref is the reflectivity of the reference, which is rather uniform;

– Rsam is the reflectivity of the sample structures within the coherence volume that is
conjugated to the reference mirror;

– Rinc is the reflectivity of all the other structures that are out of the coherence volume and
other stray reflections.

With a two-phase modulation, the reference mirror is shifted corresponding to a phase shift
of π. Thus the recorded signal of the two direct images would be:

I1(x, y) =
I0

4
{Rinc(x, y) +Rref(x, y) + 2

√

Rsam(x, y) ·Rref (x, y)cos[φ(x, y) + 0]} (4.2)

I2(x, y) =
I0

4
{Rinc(x, y) +Rref(x, y) + 2

√

Rsam(x, y) ·Rref(x, y)cos[φ(x, y) + π]} (4.3)

By subtracting the two consecutive images, we would get

I1(x, y) − I2(x, y) = I0

√

Rsam(x, y) · Rref(x, y)cos[φ(x, y)] (4.4)

As in OCT images, speckles always exist since the interference happens with the light backscat-
tered by different tissue structures inside the coherence volume. The amplitude and phase of
the recorded backscattered signals are random. Thus, by just taking the absolute value of the
real part of the resulted complex signal would still keep most of the information.
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Four four-phase modulation method, the reference mirror is shifted consecutively with a
phase shift of π/2, the subtraction of every other direct images results in:

I1(x, y) − I3(x, y) = I0

√

Rsam(x, y) · Rref(x, y)cos[φ(x, y)] (4.5)

I2(x, y) − I4(x, y) = I0

√

Rsam(x, y) · Rref(x, y)sin[φ(x, y)] (4.6)

Thus,
√

[I1(x, y) − I3(x, y)]2 + [I2(x, y) − I4(x, y)]2 = I0

√

Rsam(x, y) · Rref(x, y) (4.7)

While Rref is homogeneous, this result in a signal proportional to
√

Rsam(x, y) that is the
amplitude of the backscattered signal intensity.

The above methods show how single en face tomogram is acquired with FFOCT. Typically,
multiple images is taken at the same imaging depth for averaging to improve the signal to noise
ratio. To acquire 3 dimensional images, the imaging depth is shifted successively across the
sample volume of interest, acquiring tomograms of different imaging depth that could reveal
the 3 dimensional structure of the sample. Due to the refractive index mismatch between the
imaging sample and the reference arm immersion medium, the optical coherence plane would
be varied from the focal plane in the sample when only the sample is elevated to image deeper.
Thus defocus would occur and lead to the degradation of the signal level. Thus, a dynamic
adjustment of the two arms would be needed to match the coherence plane with the focal plane
when imaging deeper. For the detailed methods, one can refer to [181, 182]. Figure 4.2 shows
an example of FFOCT 3 dimensional imaging of a 5 days post fertilization (dpf) zebrafish larva
embedded in agar. By taking 300 en face tomograms (xy plane), the entire fish is imaged and
combine to form a 3 dimensional view.

A

B

Figure 4.2 – 3 dimensional imaging of 5dpf Zebrafish larva with FFOCT [183]. (A) One single en

face tomograms (xy plane) acquired in a side view of the larva. (B) 300 tomograms are
acquired across the entire fish and combined to form a 3 dimensional image. Here the top
view (xz plane) acquired with a maximum projection of the 3 dimensional data is displayed.
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4.3 FFOCT performances

4.3.1 Resolution

As mentioned before that traditional OCT produces axially oriented images, a depth of field is
needed as the coherence gate is scanned across the imaging depth. Thus, low NA objectives is
typically used in order to obtain a relatively large imaging depth, which on the other hand limits
the lateral resolution. While in FFOCT, en face tomograms is taken. High NA microscope
objectives could be used to achieve high lateral resolution, up to around 1um. For FFOCT the
lateral resolution in calculated in the same way as optical microscopy:

∆x = ∆y =
1.22λ
2NA

. (4.8)

As in traditional OCT, the determination of the axial resolution FFOCT relies mostly on the
coherence length of the illumination source. With a Gaussian-shaped spectrum, the FFOCT
axial resolution is calculated as equation 1.4:

∆z =
2ln2
π

· λ
2

∆λ
.

However, with a very high NA objective in FFOCT, the depth of focus of the objective might
appear smaller compared to the temporal coherence length. In these cases, the axial resolution
is actually still defined by sectioning ability offered by the depth of focus of the objective [183].

4.3.2 Field of view

The lateral field of view of FFOCT is depend on the camera pixel size, pixel numbers as well
as the magnification of the system.

The imaging depth, or axial field of view, of FFOCT is mainly controlled by the extinction of
the ballistic signal, which is a consequence of the absorption and scattering of light in the sample.
This attenuation is also affected by the illumination wavelength. With illumination wavelength
in the near-infrared window (650nm − 1350nm), absorption is minimized to ensure better
penetration into the sample. Multiple scattering also affects the imaging depth. Although
the multiple scattering light might not interfere with the reference beam, it is still detected
on the camera thus limiting the detected number of useful photons. Aberration induced by
the sample is another factor that limits the imaging depth, especially in large NA conditions.
That’s why defocus correction is necessary when doing depth imaging with FFOCT, even in
relatively homogeneous samples. Currently, the typical imaging depth of FFOCT ranges from
100um − 500um. Recently, the developments of dark-field FFOCT [184] and smart-OCT [8]
have showed improved imaging depth with modified versions of FFOCT to better select the
ballistic photons by filter multi-diffusion photons with either physical or numerical ways.

4.3.3 Sensitivity

The sensitivity of FFOCT is defined as the smallest detectable reflection coefficient, giving a
SNR of 1. Regardless of the effects of multi-diffusion, aberrations and other reflections along
the optical path, the SNR of FFOCT with four-phase modulation can be written as:
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SNR =
4N0

√

Rref · Rs

B
=

4N0

√

Rref · Rs√
Nsat

(4.9)

in which:

– 4N0 is the total number of incoming photons;

– Rref is the reflectivity of the reference mirror;

– Rs is the reflectivity of the structures of the interest;

– Nsat is the full-well capacity of the camera;

– B is the shot noise, B =
√
Nsat.

Generally, the camera is almost filled with the photons coming from the reference arm (N0 ·
Rref) and the incoherent counted photons coming from all the other structures that are out of
the coherence volume and other stray reflections (N0 ·Rinc). Thus: Nsat = N0(Rref +Rinc):

SNR = 4
√

Nsat ·
√

Rref · Rs

Rref +Rinc
(4.10)

when SNR = 1, we would have Rs = Rmin:

Rmin =
(Rref +Rinc)2

16Nsat ·Rref
(4.11)

In most of our systems, we chose to use silicon wafers as reference mirror, which provides a
reflection coefficient of about 30% at the interface with air. In a typical sample, where the
incoherent intensity corresponds to 10% of saturation of a CMOS Adimec camera (FWC of
1, 6Me−), we obtain Rmin = 2.1 × 10−8, which corresponds to a sensitivity of 77 dB.

4.3.4 Comparison of FFOCT with other OCT techniques

Table 4.1 summarize the main features of FFOCT compared with traditional scanning OCTs,
scanning OCM and WFOCT.

4.4 LightCT scanner

The LightCT scanner [186] is a commercialized FFOCT system developed by LLTech, an ESPCI
Paris spin-off. The picture of the system is shown in figure 4.3. This system presents all the
advantages of a good commercial system. It can provide consistent and reproducible images
of a given sample, is relatively easy to use, and has long range 3D translations. However, its
design is fixed, its software only optimized for a small number of imaging conditions, and is not
very robust to external mechanical noise since the sample is hold by the motorized translations
that are mechanically decoupled of the rest of the setup. The sample is sandwiched between a
silica coverslip and the bottom of sample holder, which presents the advantage of flattening the
sample. This is important in order to image nice 2D transverse views of the sample, and also
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Table 4.1 – Comparison of main features of various OCT systems [185]

Scanning OCTs Scanning OCM WFOCT FFOCT
(SDOCT/SSOCT)

Resolution
Axail 3 − 10um 3 − 8um 3 − 8um 0.5 − 8um
Lateral 10um 0.5 − 2um 0.5 − 2um 0.5 − 2um
Speed 100G 1-10G 10-50G 10-50G
(Pixels/s) >100G with 1 processed 1 processed

swept source image image
Sources SLD/Lasers SLD/Lasers SLD/Lasers Thermal sources

LEDs
Typical power 10 − 100mW 10 − 100mW 1mW 0.5 − 2mW
Sensitivity 100/110dB 100/110dB 80 − 90dB
Aberration With AO With AO With AO No loss of resolution
correction Signal reduction only
Sensitivity to Correction Correction Correction Correction
movements possible possible unlikely unlikely

reduce optical aberrations. LightCt scanner uses 10X, 0.3NA objectives and a thermal source
that gives an isotropic 3D resolution of 1um. Coupled to the long range motorized translations,
it can acquire large field of views (0.8 × 0.8mm2 for single shot, and can be further extended
to the order of 1” in diameter by translating the sample and combining different frames).

Figure 4.3 – Picture of the LLTech lightCT scanner [186].
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4.5 FFOCT applications

Due to the nature of high spatial resolution and taking images with en face planes, FFOCT has
been applied to medical diagnosis to target complementing histology of ex vivo tissues [187–192],
functional imaging related with cellular metabolism [193],blood flow [194] or tissue elastography
[195], study of embryology and developmental biology [196,197], material characterization and
non-destructive testing [198], and also biometrics like fingerprints imaging [199].

4.5.1 Histological evaluation of ex vivo tissues

A

B

D

C

E

Figure 4.4 – Comparison between FFOCT and Histology [200]. (A,B) Large field image of a breast
sample affected by DCIS acquired with FFOCT (A) and histology (H & E staining; (B–E)
Zoom in from boxes represented in (A), showing a normal fibrous tissue (C), enlarged
ducts(D), and the collagen organization around the carcinomatous cells in a tumorous re-
gion(E).

With the advantage of high lateral resolution with relative large imaging field of view, the
applications of FFOCT are demonstrated mostly to medical diagnosis with label-free ex vivo

tissues [187–192]. Compared with biopsy and histology, which are invasive and time-consuming,
FFOCT offers the possibility to provide tomographic images of spatial resolution and contrast
similar to that of histology images, without the need for tissue processing and preparation.
A large number of images of different pathologies, mostly cancers [191, 192], are available on
the LLTech image altas website [201]. FFOCT has demonstrated high levels of sensitivity and
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specificity for most of the pathologies, often over 90%. It is reported to reach 100% correct
identification of tumours in ex vivo kidneys [190], offering similar results as histology. Figure
4.4 shows a comparison between FF-OCT and a regular Hematoxylin and Eosin (H & E) stain
histology of a breast sample that was affected by a ductal carcinoma in situ (DCIS). FF-OCT
notably reveals normal adipocytes, normal and abnormal collagen fibers, and enlarged ducts.
These indicators are characteristics of DCIS, that could be identified with 90% sensitivity and
75% specificity with FFOCT [191].

FFOCT is believed to have great potential in many clinical or surgical contexts, such as being
an adjunct tool to histology in intraoperative consultation, obtaining diagnostically relevant
tissue during biopsy procedure, or selecting tissue before cryopreservation in biobanking. For
the cases when FFOCT does not have enough specificity compared with the gold standard
histology, the diagnosis sensitivity and specificity could further be improved by combining with
other imaging modalities, such as fluorescence [178,202], photothermal [203], elastography [195],
polarization [204] or multispectral and hyperspectral imaging [205,206] to offer complementary
information.

4.5.2 Dynamic FFOCT imaging

Motion is a key factor in living systems, one can use FFOCT to assess the evolution of struc-
tures with time. Blood flows can be imaged and analysed, and individual erythrocytes can
be tracked if the frame rate of the camera is good enough compared to the flow of red blood
cells [194]. Dynamic FFOCT aims to highlight intracellular movements and vibrations, that
take place inside cells and contributing to its own function [193]. For that matter we record
a short movie of en face interferometric images. By calculating the standard deviation of the
interferometric signal over time, it gives the amplitude of the signal fluctuations, a substantially
different contrast in comparison with the regular FF-OCT signal. This dynamic FFOCT signal,
indicating the fluctuations of the backscattered intensity, is linked with the local metabolism
inside the sample. To extract more information from intracellular dynamics, the timescales of
these variations could also be analysed by calculating the Fourier transform of the time signal.
Signals of different frequency bands could be integrated to show dynamic signal originating
from different timescales [200].

Figure 4.5 shows the images of static and dynamic FFOCT of the retinal ganglion cell layer
in mouse. Thanks to its high spatial resolution, in the ganglion cell layer, FFOCT is able to
separate the contribution of the strongly scattering ganglion cells axons to the one of capillaries
walls and to the least scattering structures of ganglion cells . Figure 4.5(left) presents a typical
FFOCT image of a mouse retinal ganglion cell layer. Figure 4.5(right) displays the amplitude
of the temporal fluctuations. The signal from stationary axons and blood vessels is hidden
while adding an intracellular contrast, which notably allows the detection of some cell nuclei
and enhances the signal from the red blood cells trapped inside the capillaries, thanks to
their highly fluctuating membranes. By considering the relative frequencies of the temporal
fluctuations. Structures with different signal fluctuation frequencies are able to be separated.
Figure 4.5(center) shows a RGB image with the slowly varying structures (< 0.5Hz) displayed
in red, the intermediate structures in green, and the fastest structures (> 10Hz) in blue.
This display enables the identification of two cell populations: round cells with almost no
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Figure 4.5 – Static and dynamic FFOCT of the retinal ganglion cell layer in mouse [185]. These
panels display 3 different views of the same plane inside the ganglion cell layer of a mouse
retinal explant, about 30um from the surface of the retina. The left hand panel presents
the static contrast of this plane offered by FFOCT. By taking advantage of the dynamics
inside the living cells of this retina, the Fourier transform of the temporal signal fluctuations
is computed. The center panel shows an RGB combination of different frequency bands:
The red color represents the low temporal frequencies (< 0.5Hz), the green the intermediate
frequencies (between 0.5 and 10Hz), and the blue emphasizes the fastest pixels (> 10Hz).
The right hand panel is the same image as the blue component of the image in the center
panel. The scale bar is 30um.

intracellular inhomogeneity and some cells that have a faster cytoplasm with a slower dark area
which could correspond to the nucleus. These two cell populations could be respectively the
displaced amacrine cells and the ganglion cells, which would offer a way to discriminate these
cells without any label in an active retina.

4.5.3 Inner fingerprint imaging

Figure 4.6 – Comparison of internal fingerprints taken by FFOCT with external fingerprints taken
by FTIR [185]. (left)In vivo FFOCT image of internal fingerprint taken a few hundred
micrometers below the skin surface and (right) total reflection image of the same external
fingerprint (inversed contrast).

Most optical fingerprint sensors today are based on frustrated total internal reflection(FTIR),
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which produces images by reflecting light from areas where the skin does not come in contact
with a glass plate, a technique that captures details from only the very top layer of skin. Since
imitation fingerprints could easily trick up to 80% of these standard fingerprint sensors and
it would fail to produce adequate images for identification when a finger has creases, is dirty,
scarred or too wet/dry, considerable interests goes to image the inner fingerprint, which serves
as a template for external fingerprint regrows and is believed to be less affected by the surface
damage. With its 3 dimensional imaging ability, OCT has been applied for fingerprint imaging
and en face OCT images of internal fingerprints [207]could be reconstructed. On the contrary,
FFOCT is able to capture these en face images without the acquisition of 3 dimensional data
volume [199]. Figure 4.6 shows the comparison of internal fingerprints images taken fast FFOCT
fingerprint imaging with the external fingerprints taken by FTIR.



CHAPTER 5

FFOCT resolution insensitive to aberrations

Table of contents
5.1 Aberration fuzziness and PSF . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 The unexpected PSF determination using nanoparticles in FFOCT . . . . 61

5.3 Optical coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Temporal coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.2 Spatial coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Van Cittert-Zernike theorem . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Theoretical system PSF analysis in various OCTs . . . . . . . . . . . . . . 65

5.4.1 Scanning OCT with spatially coherent illumination . . . . . . . . . . 66

5.4.2 WFOCT with spatially coherent illumination . . . . . . . . . . . . . 66

5.4.3 FFOCT with spatially incoherent illumination . . . . . . . . . . . . . 68

Non-aberrated condition . . . . . . . . . . . . . . . . . . . . . . . . . 68

Aberrated condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Experimental confirmation with extended object . . . . . . . . . . . . . . . 71

5.5.1 USAF imaging with defocus . . . . . . . . . . . . . . . . . . . . . . . 71

5.5.2 UASF imaging with random aberration . . . . . . . . . . . . . . . . . 72



60 Chapter 5. FFOCT resolution insensitive to aberrations

5.1 Aberration fuzziness and PSF

In the development of a generalized model of an imaging system, it is specifically assumed that
the presence of a point-source object yields at the exit pupil a perfect spherical wave, converging
toward the ideal geometrical image point. Such a system was called diffraction-limited and the
PSF is a diffraction-limited spot. But as discussed in section 2.1 and section 3.1.2, aberrations
often exist in imaging systems due to the optical system design (e.g. a photographic lens at
full aperture) or the wavefront distortions induced by multi-scale aberrating structures along
the light path from the object to its image. This is the case in astronomy where images of stars
are blurred by the atmospheric turbulence or in human vision because of the eye aberrations
are more and more pronounced when the pupil size is increase (e.g. night vision). In both case
successful aberration corrections have been obtained by using AO.

We are used to observe images that are affected by aberrations (figure 5.1). They are various
equivalent ways to quantify the fuzziness either in the real space using the PSF that reflects the
spread of the image of a spatial unit source of light in the object plane or its Fourier transform
(transfer function) that express the contrast of periodic object images [208]. In the hypothesis
of a linear relationship between the object considered as a source and its image, there is a
simple relation between the object, the image and the PSF: the image is the convolution of
the object (within the magnification of the optical system) with the imaging system PSF. Note
that the spatial coherence of the object illumination must be considered: complex amplitude
must be used in the case of a coherent illumination, whereas intensity is used for an incoherent
illumination [208, 209]. Here coherent as well as incoherent illuminations are used as we are
dealing with imaging interferometers we will have to consider amplitudes.

Figure 5.1 – Aberrations reduce the sharpness of the images (Cornu, Polytechnique, 1897).
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5.2 The unexpected PSF determination using nanopar-
ticles in FFOCT

During the work of quantifying the effects of geometrical aberrations on FFOCT image, we
found that the FFOCT PSF width is almost insensitive to the aberrations induced to the
imaging system. By using a commercial FFOCT system LLtech LightCT scanner (section 4.4),
experiments has been done with gold nanoparticles in order to follow how the PSF would be
affected by various level of defocus aberration. The PSF of such system has a width of about
1.5um, meaning that with gold nanoparticles having a diameter much smaller than this value,
we can record a reliable PSF. The 40nm radius gold particles solution was diluted and dried
on a coverslip so that single particles could be imaged. By moving the sample stage by 10um,
20um and 30um a variable noticeable defocus was induced to the targeted particle if we account
for the 0.3 numerical aperture of the microscope (corresponding to RMS of 0.13um,0.26um and
0.39um). The initial system resolution of 1.5um corresponds to 2.5 pixels on the camera. By
adding 10um, 20um and 30um defocus, the sample PSF would be broadened by 2.3 times, 4.6
times and 6.9 times. To match the coherence plane with the defocused coverslip in the sample
arm for FFOCT imaging, the FFOCT reference arm length is also shifted by 10um, 20um and
30um correspondingly. FFOCT images (figure 5.2(a-d)) and the corresponding signal profiles
(figure 5.2(e-h)) of the same nanoparticle were displayed in figure 5.2. With more defocus added
the signal level of the gold nanoparticles is reduced, but the normalized signal profiles graph
(figure 5.2(i)) shows clearly that the size of the particle that corresponds to the system PSF
width keeps the same for all the situations.

One can argue that the PSF is not strictly the same: indeed one can first observe more
pronounced wings. As we will see later this is due to the fact that we shift from the product
of 2 Bessel functions (Reference PSF times the Object PSF) of the same width (Object PSF
without aberrations) to a single Bessel one. The symmetry breaking could be due to a small
misalignment of the microscope objective. Finally we have to underline that if the width
appears unaffected by the strong defocus, the magnitude of the PSF is reduced by more than
20 times, which matches with the theoretical amplitude reduction that would be induced by
30um defocus with 0.3NA objective in FFOCT. This signal reduction will be used as the metric
of our aberration correction, which will be discussed in chapter 6.

5.3 Optical coherence

Before going to the theoretical analysis to explain the above unexpected phenomenon in FFOCT,
it is important to understand an important concept, the optical coherence. Note that the one
of the most important difference between FFOCT and many other traditional OCT techniques
is the spatial coherence of the illumination.

In physics, two wave sources are perfectly coherent if they have a constant phase difference
and the same frequency to enable stationary interference, which is an ideal condition as it
never quite occurs in reality. In optical interferometry, optical coherence refers to the ability
of a light waves to produce interference patterns. If two light waves are brought together and
they produce no interference pattern (no regions of increased and decreased brightness), they
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Figure 5.2 – FFOCT experiment results of gold nanoparticles by adding different levels of defocus
using LightCT scanner [210]. FFOCT images (a-d) and the corresponding intensity profile
(e-h) of a targeted nanoparticle are shown for well-focused (a,e) and defoused for 10um (b,f),
20um (c,g) and 30um (d,h) situations. Normalized PSF profiles are shown in (i) indicating
no obvious broadening are observed after inducing different level of defocus.
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are said to be incoherent; if they produce a "perfect" (clear with the best contrast) interference
pattern, they are said to be fully coherent; If the two light waves produce a "less-than-perfect"
interference pattern, they are said to be partially coherent or low coherent.

5.3.1 Temporal coherence

As what have been described in section 1.3 of low coherence interferometry for OCT, the low
coherence refers to the temporal coherence of the illumination, which describes the correlation
between waves observed at different moments in time. This can be observed in the Michelson
interferometer, in which light wave interferes with time-delayed version of itself, as shown in
figure 5.3. when one of the mirrors is moved away gradually, the time for the beam to travel
increases and the fringes become dull and finally are lost, showing temporal coherence. The
light which travels along the path to mirror M1 travels a distance 2d further than the light
which travels along the path to mirror M2. When d = 0, we would see clear interference fringes.
When d increases, however, the interference fringes would become less distinct. While for very
large d, over the coherence length lc, the interference pattern would vanish completely, leaving
only a diffuse spot of light.

Note that, the axial sectioning abilities in both FFOCT and traditional OCT techniques all
come from the low temporal coherence of the illumination, defined by half of the temporal
coherence length of the illumination as equation 1.4

∆z =
lc
2

=
2ln2

π
· λ

2

∆λ
.

5.3.2 Spatial coherence

Beside of the temporal coherence, the correlation between waves at different points in space is
defined as the spatial coherence. This phenomenon can be observed in Young’s interferometer,
in which a light interferes with a spatially-shifted version of itself ,as shown in figure 5.4.
A light source is used to simultaneously illuminate a pair of small pinholes, separated by a
distance d, in an opaque screen. The light emanating from the pinholes interferes on a second
screen some distance away. In a manner similar to that described for temporal coherence,the
separation d of the two pinholes could be increased. For small values of d, one sees a distinct
pattern of interference fringes on the screen. As d is increased, however, the fringes become
less distinct (except for the pattern on the optical axis). And for sufficiently large d, over the
spatial coherence length ls = 2ρ, no fringes are visible and only a diffuse spot of light remains
on the screen. This critical value ρ is the radius of the spatial coherence area (CA), within
which the pinholes must lie to observe interference.

In traditional scanning OCT systems, SLD/lasers is used as the source to generate point
scanning across the sample. These SLD/lasers are spatially coherent sources. Parallel OCT
systems can also use spatially coherent illumination as in WFOCT. While in FFOCT system,
spatially incoherent source is used, to minimize crosstalk that could be generated due to scat-
tering. The use of this spatially incoherent illumination in FFOCT is also the main reason why
we observe this unexpected phenomenon shown in the former section.
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Figure 5.3 – Schematic of a Michelson interferometer [211]. Light from a source S (which could be
anything: sunlight, laser light, starlight) is directed upon a half-silvered mirror M0, which
sends 50% of the light towards mirror M1 and 50% of the light towards mirror M2. The light
is reflected from each of these mirrors, returns to the beamsplitter M0, and equal portions
of the light reflected from M1 and M2 is combined and projected on the screen B. The
interferometer is tunable, in that we can adjust the distance of the mirror M1 from the
beamsplitter.

Figure 5.4 – Young’s two-pinhole experiment [212]. Light emanating from a thermal source of trans-
verse size a is incident upon an opaque screen a distance L away. The screen is perforated
by two holes separated by a distance d.

Van Cittert-Zernike theorem

To decide the CA in imaging systems with spatially incoherent illumination, one should know
about the famous van Cittert-Zernike theorem that was published by Dutch physicists P.H.
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van Cittert in 1934 [213] and followed by a simpler derivation by F. Zernike in 1938 [214]. The
theorem is a rigorous theoretical calculation of the increase of spatial coherence on wave prop-
agation, which implies that the spatially incoherent wavefront would appear mostly coherent
after travelling for large distances. Intuitively, one can consider the wavefronts created by two
incoherent sources. The coherence of the wavefront would be dominated by the near by source
if we measure the wavefront right in front of one of the sources. However, the measurement
would not be dominated only by a single source if we make the measurement far away from the
sources; both sources will contribute almost equally to the wavefront, meaning the wavefront
would be spatially coherent as it propagate to large distances. This is especially relevant for
astronomy, where all the stars are spatially incoherent sources, as the light waves become more
coherent via the van Cittert-Zernike theorem, the single point sources within the star become
more indistinguishable making the luminous star appears more point-like when imaging far
away.

The Van Cittert-Zernike theorem states that there is a Fourier transform relationship be-
tween the mutual intensity function and spatial intensity distribution of an extended incoherent
source. For detailed description of van Cittert-Zernike theorem, one can refer to chapter 10 in
the book by Born and Wolf [208]. In the case shown in figure 5.4, the coherence angle can be
calculated as

α ≈ sinα ≈ λ

a
(for small α), (5.1)

corresponding to the CA with a radius of ρ at the pinhole plane

ρ = 1.22 · λ · L
a

(5.2)

meaning that significant interference fringes would appear if two pinholes lie within this trans-
verse area. The further the pinholes are from the source, the greater the radius of CA is.

5.4 Theoretical system PSF analysis in various OCTs

As mentioned before aberrations are known to blur optical images by perturbing the wavefronts;
more precisely the distorted optical images are obtained by amplitude or intensity convolution
of the diffraction-limited images with the aberrated PSF. Depending on the nature of the illu-
mination, spatially coherent or incoherent, amplitude or intensity has to be considered. Here,
instead of considering the PSF of a classical imaging system such as a microscope, we will
pay attention to the system PSF of interferometric imaging systems for which an undistorted
wavefront from a reference beam interferes with the distorted wavefront of the object beam.
To express the unique behavior of FFOCT that uses spatially incoherent sources we will suc-
cessively consider the cases of scanning OCT with spatially coherent illumination, WFOCT
with spatially coherent illumination and FFOCT with spatially incoherent illumination. Usu-
ally when scanning the field of view for a flying spot image, each acquisition (voxel or line) is
an independent event and this is equivalent to an incoherent illumination with various CAs.
Surprisingly scanning OCT and incoherent illumination FFOCT are not equivalent in presence
of aberrations: Indeed, in spatially incoherent full-field interferometer, the system PSF width
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is almost insensitive to aberrations and only the signal amplitude is reduced by the wavefront
distortions.

In order to stick to the PSF definition, we will consider a point scatterer as our object and
will analyze the response of the imaging system to such object. Suppose the sample arm PSF
of the interferometer is hs, the reference arm PSF of the interferometer is hr and the single
point scatterer in the detection plane is at position (x, y) = (a, b). For simplification, we ignore
all the constant factors in the following expressions. So in all the three cases, the sample field
at the detection plane would be

gs = hs(x− a, y − b). (5.3)

5.4.1 Scanning OCT with spatially coherent illumination

In the case of traditional scanning OCT, the reference field of each scanning position at the
detection plane would be hr(x, y). Since coherent illumination is used, interference happens
at each scanning position that can be indicated as a multiplication of the sample field and
reference field. To form the full image of the point scatterer which represent the system PSF,
the interference field of each scanning position should be summed up. Thus the final field
is a integral of the interference field at each position across the scanning filed that can be
represented in a convolution of the two fields:

〈gs·gr〉scanningOCT =
∫ ∫

hs(x
′−a, y′−b)·hr(x−x′, y−y′)dx′dy′ = hs(x−a, y−b)∗hr(x, y), (5.4)

in which x′ and y′ are dummy variables limiting by the imaging field. Thus, the system PSF
of scanning OCT system is actually a convolution of the sample arm PSF and the reference
arm PSF as shown in figure 5.5(a-c). When aberrations exist, the convolution of the aberrated
sample arm PSF with the diffraction-limited reference arm PSF results in an aberrated system
PSF for the scanning OCT systems (figure 5.5(d-f)).

5.4.2 WFOCT with spatially coherent illumination

In the case of WFOCT, as coherent sources are used, the optical beams are typically broadened
by lenses to form parallel illuminations on both arms of the interferometer(see section 1.5.2).
Thus plane waves impinge on both the object and the reference mirror. In the sample arm, the
point scatterer will send a spherical wave back that will be focus on the camera plane that can
be described by expression 5.3. For the reference arm, consider it as homogeneous illumination,
a plane wave will be reflected back by the reference mirror and form a uniform field at the
camera plane. Thus the interference happen between the two arms would be

〈gs · gr〉W F OCT = hs(x− a, y − b) (5.5)

as constant value is ignored. So the system PSF is actually defined by the sample PSF. It
is illustrated in figure 5.5(g-i). When aberrations distort the backscattered wavefront of the
sample arm, the aberrated sample arm PSF and the uniform reference field interfere, resulting
in an aberrated system PSF for the wide-filed OCT systems (figure 5.5(j-l)).
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Figure 5.5 – Illustration of single point scatterer (PSF) interferences in both non-aberrated and aberrated sample arm PSF situations for scanning
OCT and wide-field OCT with spatially coherent illumination and FFOCT with spatially incoherent illumination [210]. (a), (g), and
(m) Non-aberrated sample arm PSF. (d), (j), and (p) Aberrated sample arm PSF. (b) and (e) Scanning reference arm PSF for scanning OCT.
(h) and (k) Constant reference field for WFOCT. (n) and (q) Reference arm PSFs for FFOCT. (c), (f ) ,(i), (l), (o), and (r) The corresponding
interference signal (system PSF). Different colors in (n) and (q) indicate the spatial incoherence from each other.
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5.4.3 FFOCT with spatially incoherent illumination

When we deal with the case of full-field OCT with spatially incoherent illumination, we have to
go back to the basic definition of the spatial coherence of the beams that impinge the reference
arm as well as the sample arm of the interferometer. As shown in figure 5.6, let’s consider a
circular uniform incoherent source located in the image focal plane of a microscope objective
with a focal length of f0, which could be obtained with a standard Koehler illumination with
LED or halogen lamp illuminations. The source illuminates the field of view of the microscope
objective.

One first step is to determine the spatial coherence length in the field of view. As discussed
before, based on the Van Cittert-Zernike theorem, if the pupil diameter is D, according to
equation 5.1, the coherence angle would be

α ≈ λ

D
. (5.6)

According to equation 5.2, the radius of the CA at the level of focal plane would be

ρ = 1.22 · λ · f0

D
≈ 1.22 · λ

2 ·NA. (5.7)

We can say that, in absence of aberrations, the focal plane is “paved” by small CAs of radius ρ.
This radius is also the radius of the diffraction spot that limits the resolution of the microscope
objective in absence of aberrations. When going from one diffraction spot to the next adjacent
diffraction spots the incoherent plane waves impinging the objective are separated by ±λ on
the edges of the pupil.

Figure 5.6 – Illustration of the Van Cittert-Zernike theorem defining the coherence angle α in the
case of an objective with a focal length f0 and pupil diameter D [215].

Non-aberrated condition

In absence of aberrations for an interferometry like full-field OCT, the single point scatterer
at the object plane of the sample arm lies in a single CA (figure 5.7(a)) and the backscattered
signal will only interfere with signal reflected from the corresponding CA in the reference arm
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(figure 5.7(c)). Note that the size of the CAs is the same as the diffraction spot, the signal from
one CA at the camera plane could be expressed as the reference PSF. Thus the interference
would be

〈gs · gr〉F F OCT = hs(x− a, y − b) · hr(x− a, y − b) (5.8)

The system PSF is actually the dot product of the sample PSF and the reference PSF as
shown in figure 5.5(m-o). The overall signal reflected from the reference mirror at the camera
is still homogenous but we displayed it by combining multiple reference PSFs reflected from
different CAs that have different spatial modes.

Figure 5.7 – Illustration of the sample and reference wavefronts in spatially incoherent interfer-
ometer with a single point scatterer in cases of non-aberrated and aberrated sample
arm [210]. Different colors in CAs and wavefronts indicate different spatial modes.

Aberrated condition

When aberrations exist in the sample arm, the various CAs in the object plane will have larger
sizes and will overlap each other (figure 5.7(b)). This results in the backscattered signal of the
single point scatterer in the sample arm containing not only the spatial mode of the targeted
focus CA but also the modes from the overlapped adjacent CAs. Thus with aberrations that
create a broadened sample PSF, interference will happen not only with the reference beam
corresponding to the targeted CA, but also with the beams corresponding to the adjacent CAs.
What we want to demonstrate and to illustrate by an experiment is that the interference signal
with the targeted focus CA gives a much stronger signal than the one with the adjacent CAs
resulting in an “interference” PSF that is much thinner than the one of the classical broadened
sample PSF. At the level of the image plane, the interference between the sample aberrated
beam and the non aberrated reference beam is only constructive in a zone limited by the spatial
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coherence of the reference beam. In order to be more quantitative we are going to compare this
by the Strehl ratio approach(section 2.3).

The “best focus” signal intensity damping compared to the diffraction limited PSF is given
(for small aberrations) by the Strehl ratio that is proportionnal to the peak aberrated image
intensity. As equation 2.7

S ≈ e−σ2

where σ is the root mean square deviation over the aperture of the wavefront phase defined by
equation 2.4

σ2 = (std(φ))2.

In our case, suppose φ is the phase of the interference wavefront between the sample signal and
the reference signal corresponding to the targeted focus CA, then the phase of the interference
wavefront with the reference signals corresponding to an adjacent CAs is φ + φ1, where φ1 is
a phase that varies linearly from one edge of the pupil to the other in the range of ±2π. A
comparison between the signal ratio of the interference signal with the targeted CA and the
one with an adjacent CAs

Stargeted = e−((std(φ))2) ≫ Sadjacent = e−((std(φ+φ1))2) (5.9)

shows that the influence of off axis CAs is negigeable.

Let’s consider various aberrations leading to a significant Strehl ratio of 0.3, numerical calcu-
lations results are shown in figure 5.8. For defocus, the intensity ratio of the interference with
adjacent CAs is damped for about 740 times compared with the interference with the targeted
focus CA, resulting in a signal damping or an amplitude damping of 27.1 times. The amplitude
damping ratio is calculated by

Amplitude damping =

√

Stargeted

Sadjacent
(5.10)

as amplitude instead of intensity is obtained in full-field OCT signal.

It’s easy to prove that this value is fixed for all the axisymmetric aberrations like defocus,
astigmatism, spherical aberrations, etc. While for coma with a Strehl ratio of 0.3, the simulated
amplitude damping ratio is 13.4 − 53.0 times depending on the spatial position of the adjacent
CAs. In another word, the interference signal was severally damped going from the targeted
CA to the adjacent CAs. Thus in the camera plane, as shown in figure 5.5(p-r), the interference
signal results in a dot product of the aberrated sample PSF with the reference PSF correspond-
ing to the targeted focus CA since the interference with the reference PSFs corresponding to
the adjacent CAs are significantly degraded. This actually matches with equation 5.8 for non-
aberrated situation, the system PSF could be calculated by the dot product of the sample PSF
and the reference PSF. For distorted sample PSF (mostly broadened), its interference with the
reference channel conserves the main feature of an unperturbed PSF with only a reduction in
the full-fielf OCT signal level. We mentioned “almost” for the resolution conservation, because
there are situations in which the product of the reference arm PSF with off-center aberrated
sample arm PSF may results in losing some sharpness due to the high side lobes of the Bessel
PSF function.
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Figure 5.8 – Aberrated interference wavefronts and numerical simulations of the Strehl ratio and
amplitude damping for interference with targeted CA and adjacent CAs [210]. De-
focus, astigmatism, coma and spherical aberration are considered. The damping for coma
varies depending on the spatial position of the adjacent CAs.

5.5 Experimental confirmation with extended object

To further validate the theoretical analysis of the lateral resolution merit of FFOCT with
spatially incoherent illumination, an USAF resolution target setting at the best focus position
is used as an extended sample for FFOCT imaging with different aberrations induced into the
FFOCT sample arm. Besides the FFOCT image, the direct reflectance image of the USAF is
also recorded simply by blocking the FFOCT reference arm, working as a wide-field microscope.
The system resolution and sample arm resolution is then compared through these images.

5.5.1 USAF imaging with defocus

Figure 5.9 shows the experiment results of imaging an USAF resolution target with a FFOCT
system that is developed by O. Thouvenin and described in [178]. In the this FFOCT system,
40X 0.8NA microscope objectives are used. Defocus aberration is added by shifting the USAF
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for 20um (RMS=1.85um) in the sample arm while the whole reference arm is also shifted for
the same amount of length to match the coherence plane with the USAF. The shifting of 20um

corresponding to about 6 times of the depth of focus of the objective, thus the direct reflectance
image of the UASF shows blur of the patterns after defocus is added. On the contrary, the
FFOCT image of the USAF shows that all the pattens are well resolved, meaning that the
system resolution id preserved even in presence of important defocus.

Figure 5.9 – Comparison of the direct reflectance image and FFOCT image of an USAF resolution
target after inducing defocus aberration in the sample arm [185]. The direct reflectance
image(left) shows the blur of the small patterns on the target while the FFOCT image shows
all the patterns are resolved even with defocus added. Scale bar: 40 um.

5.5.2 UASF imaging with random aberration

With a customized AO-FFOCT system, of which the system design will be discussed in details
in chapter 6, experiments were also done with USAF by inducing random aberration into the
FFOCT sample arm with a LCSLM. Here, a random aberration (root-mean-square (RMS)
wavefront error=0.27λ, corresponding to a Strehl ratio=0.06, (see figure 5.10(g)) was induced
with the LCSLM in the sample arm by generating and applying random voltages within the
adjusting range across the LCSLM pixels. Based on equation ??, the Strehl ratio is calculated
by the square of the ratio of mean FFOCT image intensity after and before the aberration was
applied. Figure 5.10 shows the sample reflectance images and FFOCT images of the USAF
resolution target before and after the random aberration was induced. The reflectance image is
blurred after the aberration is added, while there is no obvious blurring of the line patterns in
the FFOCT image but only a reduction of the image intensity. The normalized intensity of the
selected line in the reflectance image shows a distortion after the aberration was added, while
it shows a conservation of the shape for the FFOCT image.
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Figure 5.10 – Comparison of the direct reflectance images (b,c) and FFOCT images (e,f) of an USAF resolution target before (b,e) and after
(c,f) inducing a random aberration in the sample arm [216]. (a,d)The comparison of the normalized reflectance intensity and FFOCT
signal of the selected line without (blue) and with (red) aberration added.The plot of the random aberration pattern is shown in (g). Scale
bar: 100 um.
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6.1 Simplifying AO for low order aberrations in FFOCT

The ultimate goal of my project is to apply FFOCT for human retinal examinations. As
already discussed in section 3.1.2, despite of scattering problems inside the retinal tissues,
there are also multi-scale aberrating structures in the eye that could degrade the optical im-
age quality when doing retinal examinations. Thus a wavefront adaptive system is typically
needed to achieve diffraction-limited imaging. The basic concept of AO has been discussed in
chapter 2. Originally proposed and developed for astronomical optical telescopes to correct
the atmosphere-induced aberrations, adaptive optics (AO) has found valuable applications to
correct biological tissue-induced aberrations in biological and medical imaging, especially for
retinal imaging to visualize cellular structures. AO assisted fundus photography (section 3.2.1),
scanning laser ophthalmoscopy (section 3.2.2) and OCT (section 3.2.3) systems have achieved
reliable images of cones and rods photoreceptors.

6.1.1 Plane conjugation in AO induce system complexity

Figure 6.1 – Schematic of a wavefront sensorless AO-OCT system for in vivo human retinal imag-
ing [170]. The deformable mirror plane and trial lens plane are all conjugated to the eye
pupil plane with lens pairs, increasing the optical path length and system complexity.
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In general, the AO part in many systems such as two-photon microscopy [104] or AO-OCT
systems (see figure 6.1) [75,170,174,175,217,218] has strict conjugation of the image focal plane
of the microscope objective or of the eye pupil with the wavefront sensors or correction devices.
For both pupil AO, in which conjugation is done to the pupil plane, and conjugate AO, in
which conjugation is done to the plane where the aberrations dominate, a plane is needed for
wavefront measurement and the inverse phase mask needs to be applied to the same plane with
the conjugated wavefront correctors. The advantages and disadvantages of both conjugations
have been discussed in [219]. For high order aberrations, due to the diffractive effects of wave
propagation, one cannot rely on simple geometrical optics propagation of the wavefront. In
these cases, strict pupil conjugation appears to be mandatory. However, the telescopic systems
needed to achieve strict pupil conjugation would increase the system complexity and the optical
path length, which would be really difficult for FFOCT system since the two arms in FFOCT
have to be balanced within less than one micrometer due to the axial sectioning of FFOCT.

6.1.2 Non-conjugate AO for eye’s low order aberration correction

The requirements of strict plane conjugation would appear differently for low order aberrations.
As showed already in section 3.1.2, for eye aberrations, the low order Zernike polynomials are
actually dominate, meaning that the aberrated wavefront passing though the eye would look like
the same during its propagation. So, to develop an AO-FFOCT for human retina examinations,
we propose that a transmissive wavefront corrector that could be roughly set in the beam path
without strict conjugation would be enough for eye’s low order aberration corrections, analogous
to commonly used spectacles for correcting eye’s myopia and astigmatism. In this way, we would
be able to overcome the complex setups realizations for AO-FFOCT.

While different wavefront correctors have been developed and applied for eye’s diffraction-
limited imaging, they all have pros and cons when considering parameters like temporal band-
width, reflectivity, mirror diameter, number of actuators, etc [220]. Transmissive liquid crystal
spatial light modulator (LCSLM)(section 2.4.2) [92,221–224] would fit for our application. With
a large number of pixels and a low control voltage, it can alter the wavefront in transmissive
way when light passing through. LCSLMs have already been used in some studies to change
the refractive state [223] or to correct the aberrations of the eye [224], but in these cases pupil
conjugation using telescopes have been used as this is done in astronomy for a small field of
view. The confined 2π phase-modulation range of LCSLM might limit the correction of aber-
rations with large magnitudes. But the adjusting range would be doubled as the incoming
and outgoing beams both induce optical path difference. Finally either phase wrapping could
be used to extend the dynamic range [91, 223] or simple visual corrections for defocus and
astigmatism could be added to the sample optical path.

6.1.3 Wavefront sensorless method further simplify the system

In most AO systems, direct wavefront measurements are usually demonstrated with a wave-
front sensor or coherence-gated wavefront sensing. But due to the lack of generally adaptable
wavefront sensors and the inherent complexity of the coherent wavefront sensing, wavefront
sensorless methods have also been developed such as metric-based sensorless algoritms, phase
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diversity, pupil segmentation, etc (section 2.4.4). As we already discussed in the chapter 5, in
FFOCT, aberrations actually do not affect the width of the system PSF but rather the signal
level, which is an unexpected property of full-field spatially incoherent interferometry. There-
fore, a wavefront sensorless method that relies on the improvement of image quality would
be used for the optimization process. The algorithm would be explained in section 6.3. No
wavefront sensor is needed which further simplified the AO-FFOCT system.

Figure 6.2 – Schematic of AO-FFOCT system coupled with LCSLMs [216]. BS: beamsplitter, LC-
SLM: liquid crystal spatial light modulator, PZT: piezoelectric transducer.

6.2 The compact AO-FFOCT setup

The AO-FFOCT system schematic is shown in figure 6.2. Based on a Linnik interferometer, a
LED with 660nm center wavelength and 25nm bandwidth (Thorlabs) is used as the incoherent
light source. The illumination beam is split into the reference arm and the sample arm at a ratio
of 50 : 50 with a non-polarizing beamsplitter. Two 4X/0.2NA Plan APO objectives (Nikon)
are used, one is in the sample arm to simulate the open pupil human eye and the other is in
the reference arm. A reference mirror attached to a piezoelectric transducer (PZT) is placed
at the focal plan of the objective in the reference arm while the imaging sample would be
placed in the sample arm. The back-reflected beams from the reference mirror and the sample
are recombined by the beamsplitter and focused with an achromatic doublet lens onto a fast
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(150fps) CMOS camera (MV-D1024E-160-CL-12, PhotonFocus). The setup is well aligned to
ensure that the focusing of the two arms and their optical paths are matched. The PZT creates
a four-phase modulation of the reference mirror and a FFOCT image can be reconstructed with
these four corresponding images. Usually several FFOCT images are averaged to improve the
signal to noise ratio (SNR). 5 images were used for the experiments described here, requiring
about 150ms in total. The system has a field of view of 1.7 × 1.7mm2 with the theoretical
resolutions of 2um (lateral) and 7.7um (axial).

To conduct the wavefront correction, a transmissive LCSLM is inserted into the sample arm
beam path at about 2.5cm after the back aperture of the objective lens. Hence no strict plane
conjugations are utilized. Another identical LCSLM is also set in the reference arm beam path
for dispersion correction. A polarizer is inserted in the illumination path since the LCSLM
works only with polarized light. By electronically varying the orientation of the molecules
inside the pixels of the LCSLM, the refractive index of the pixels is altered independently from
each other, generating variable phase masks to correct the wavefront of the polarized light
passing through them.

6.3 Aberration correction algorithm

Since aberrations affect only the signal level without reducing the image resolution in FFOCT,
a wavefront sensorless approach based on the FFOCT signal level is used for aberration cor-
rection. This method consists of the sequential adjustment of the coefficients of low order
orthogonal Zernike polynomial functions applied to the LCSLM to optimize the metric func-
tion. The mean intensity of FFOCT image was used as the metric function for LCSLM-induced
aberration correction with USAF resolution target as the sample. For in-depth sample-induced
aberration correction, the average intensity of the 300 pixels with maximum intensity values
in the FFOCT image was used as the metric function. This is due to the mean intensity of
the overall image would be less sensitive to the AO process since most parts of the FFOCT
image has very low or even no signal. Of course the optimization process could also be re-
stricted to specific region of interest. Indeed anisoplanatism does exist as demonstrated later
in figure 6.4, but the experiment results show acceptable correction with this simple AO al-
gorithm. No phase wrapping was used for experiments discussed in this chapter because the
magnitude of the wavefront distortions to be compensated was within the dynamical range
of the SLM. Coefficients were indeed selected within the adjusting range of the LCSLM. The
orthogonality of different Zernike modes ensures that the coefficient of each mode for optimal
correction is determined independently [76, 225]. This algorithm has been proposed and used
by many groups with different wavefront shaping methods and optimization metrics in specific
applications [117,118,170], including in FFOCT for defocus aberration correction [181]. For the
aberration correction experiments mentioned in this these, only Zernike modes 3 to 8 were op-
timized just to demonstrate the feasibility of our system and method. For each mode, FFOCT
images were taken for 7 different coefficients within the adjusting range. With the extracted
metric function values, B-spline interpolations were done and the coefficient that produced the
highest metric function was chosen as the correction value.
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6.4 LCSLM-induced aberration correction

6.4.1 Non-conjugate AO

To test the performances of the AO-FFOCT system with non-conjugate AO and wavefront
sensorless algorithm, experiments of LCSLM-induced aberration correction were first conducted
by imaging a negative USAF resolution target. As shown in figure 6.3, in this experiment
LCSLM2 were inserted into the sample arm for aberration introduction at about 5cm after
the original LCSLM1 which was used for aberration correction, thus there is no well-defined
conjugation between the aberration introduction plane and the correction plane. A glass slide
was inserted into the reference arm for dispersion compensation. The USAF target was set
at the best focus position in the sample arm and a random aberration mask (RMS=0.23λ,
Strehl ratio=0.12) was generated and applied to the LCSLM2. Figure 6.4(a) shows the original
FFOCT image with the added aberration. By using the wavefront correction algorithm and
applying the correction phase mask onto LCSLM1, defocus, astigmatism, coma and spherical
aberration were corrected successively. Figure 6.4(b)-(g) show the images after each correction
with a clearly visible improvement of image quality after each optimization process. The curves
in Figure 6.4(h) shows the increase of the metric function and also the mean intensity changes
of the corresponding selected regions indicated in Figure 6.4(a,g). The fact that different levels
of improvement were achieved for different regions with the same correction phase mask for
each Zernike mode implies the existence of anisoplanatism in our experiment. Nevertheless,
the mean intensity of the FFOCT image got an increase of 135% after the overall correction,
reaching 80% of the non-aberrated FFOCT image, while having diffraction-limited resolution.
The experiment was repeated for 3 times with different random aberrations and it results
in an average increase of the mean intensity to 78.0% ± 2.2% of the non-aberrated image,
corresponding to a Strehl ratio of 0.61 ± 0.035.
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Figure 6.3 – Schematic of adaptive optics FFOCT system for LCSLM-induced aberration correc-
tion [216]. LCSLM2 was inserted at 50mm after LCSLM1. For non-conjugate AO exper-
iment,LCSLM2 was used for aberration introduction and LCSLM1 was used for aberration
correction. For conjugate AO experiment, LSCLM2 is used for both aberration introduction
and correction.
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Figure 6.4 – FFOCT images of a negative USAF resolution target during the non-conjugate AO correction process of a random aberration [216].
(a) original image with a random aberration added, (b)-(g) images after defocus, astigmatism 45, astigmatism 0, coma 90, coma 0 and spherical
aberration were corrected respectively, (h) graph of the metric function (black curve) increase after each correction step and mean intensity
changes (red, blue and green dashed curves) of the corresponding selected regions indicated in (a,g). Scale bar: 350um.
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6.4.2 Conjugate AO

For comparison, conjugate AO experiment was conducted by using the same LCSLM for aber-
ration introduction and correction. With the same random aberration induced by LCSLM2,
aberration correction was demonstrated also on LCSLM2 itself. With the same algorithm,
Zernike modes 3-8 was corrected by applying net voltages of random pattern plus the Zernike
modes to LCSLM2. As shown in figure 6.5, the whole correction result in the mean intensity
of the FFOCT image reaching 86% of the non-aberrated FFOCT image. Again, the three
repeated experiments result in an average increase of the mean intensity to 84.3% ± 2.1% of
the non-aberrated image, corresponding to a Strehl ratio of 0.71 ± 0.036.

Figure 6.5 – FFOCT images of a negative USAF resolution target before and after the conjugate
AO correction process of a random aberration [216]. (a) original image with a random
aberration added, (b) image after defocus, astigmatism 45, astigmatism 0, coma 90, coma
0 and spherical aberration were corrected.Scale bar: 350um.

6.5 Sample induced aberration correction

6.5.1 Ficus leaf experiment: weak aberration correction

Due to the spatial variations of refractive index within biological samples and surface topogra-
phy, aberration distortion is severe when imaging into the sample volume. In order to further
demonstrate the feasibility of our system and method even for weak aberrations correction,
experiments of sample induced aberrations corrections were done with a ficus leaf. The system
setup described in figure 6.2 was used here. By imaging at a depth of 75um under the leaf sur-
face only weak aberrations are induced and we can thus check the sensitivity of our correction
approach; the low order contents of the self-induced sample aberrations were corrected step by
step with the aforementioned methods. As showed in figure 6.6, the optimized image (figure
6.6(b)) shows an intensity increase compared with the original image (figure 6.6(a)) and from
the zoomed in images, more structured information appears. This is due to the fact that the
correction process increased the SNR and more signals that were buried by the noise before
appear after the AO correction. The graph of the metric function while adjusting the coeffi-
cients of each Zernike mode is displayed in figure 6.6(c). The highest positions of each curve
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correspond to the coefficients used for the optimal correction of each mode. Figure 6.6(d) shows
the increase of metric function. The whole correction process results in 13.3% improvement of
the metric function. The metric function improvement increases to 35.5% when imaging deeper
at 120um under the leaf surface in another experiment.

Figure 6.6 – Comparison of FFOCT images of a ficus leaf (a) before and (b) after sample self-
induced aberration was corrected when imaging at a depth of 75um. [216]. (c) Graph
of the metric function during the optimization process and (d) graph of the metric function
increase after each correction step. Scale bar: 500um, Zoomed in area: 425 × 425um.

6.5.2 Mouse brain slice: strong aberration correction

After showing the ability of this AO-FFOCT approach to optimize the signal even with a low
level of aberration, we checked another biological tissue of relevance that suffers from strong
scattering and stronger aberrations:the brain tissue, where FFOCT signal is usually strongly
reduced when imaging deep in the sample. Experiments were conducted with a fixed mouse
brain tissue slice to correct the wavefront distortion. Imaging was performed at 50um under the
brain tissue surface without liquid matching fluid and the results are shown in figure 6.7. The
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high-signal fiber-like myelin structures appeared much more clearly after the whole correction
process because of the increased SNR; indeed the metric function was increased by 121%.

Figure 6.7 – Comparison of FFOCT images of fixed mouse brain tissue slice before (a) and after (b)
sample self-induced aberration was corrected when imaging at a depth of 50um [216].
Scale bar: 500um.

Figure 6.8 – Schematic of the AO-FFOCT system for retinal imaging with an artificial eye moel
[226]. the original sample arm (black dashed line box) is replaced by the artificial eye model
with a dispersion compensation (DC) block(red dashed line box).
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6.6 AO-FFOCT retinal imaging of artificial eye model

The above studies that showing low order aberration correction in a simple manner for FFOCT
opens the path to a straightforward implementation of AO-FFOCT for retinal examinations in
the future. In the case of retinal examinations, we can restrict aberration correction to the main
aberrations (e.g. focus and astigmatism) that will improve the SNR and skip the high order
aberrations. Ultimately, the lens in the eyeball will play the role of the objective used in the
sample arm in our experiments, therefore path and dispersion compensation [227] will need to
be applied taking into consideration of the eye characteristics. To demonstrate the feasibility of
the our FFOCT system for retinal imaging and also the AO part for eye aberration correction,
an artificial eye model [228] with solid-state tissue phantom that have realistic artificial retinal
layers are used for the first demonstration of retinal imaging.

Since the eye lens would be used as the objective in the sample arm in FFOCT for beam
focusing to the retina, as shown in figure 6.8, the AO-FFOCT setup would need to be modified.
Compare with the setup shown in figure 6.2, the original sample arm (figure6.8(black dashed
line box)) will be replaced by the artificial eye model and a tude of water is inserted in front
for the dispersion compensation with the reference arm (figure6.8(red dashed line box)).

By translating the model eye along the optical axis, three retina layers were detected. The
corresponding FFOCT images are displayed in figure 6.9(a-c). Based on the second layer, the
model eye self-induced aberrations corrections were done to improve the image signal level by
using the same algorithm as described in section 6.3. After the optimization process, the im-
proved FFOCT retinal images are shown in figure 6.9(d-f). The curves in figure 6.9(g) shows
the average image intensity of the FFOCT images along different depth while the peaks indi-
cating the three detected layers. The signal level for all the layers is increased after aberration
correction. Taking the second layer as an example, the signal level has increased by 48% after
subtracting the background noise.

Although we could successively achieve the FFOCT imaging of various retinal layers in this
artificial eye model, it is really time consuming for the OPL matching as we have to translate
the eye model along the optical axis with micrometer steps. To apply FFOCT for in vivo

human retinal imaging, this would be impossible as the eye itself has uncontrollable motions.
Thus, easy and fast OPL matching would be essential for in vivo human retinal imaging, which
will be discussed in the following part of this these.
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Figure 6.9 – AO-FFOCT retinal image of an artificial eye before and after aberration correction [215].(a-c) FFOCT imagex of three retinal layers
before aberration correction. (d-f) FFOCT images of the corresponding three retinal layers after aberration correction with the LCSLM. (g) The
curves showing the average signal level along different depth in the retinal layers before and after aberration correction.
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7.1 Introduction

Following all the studies we have demonstrated in part II of this thesis, the final goal is to
apply FFOCT for in vivo high resolution human retinal imaging. In chapter 5, both theoretical
analysis and experimental validation have shown the spatial resolution merit of FFOCT that
the PSF width is independent of geometrical aberrations with only the signal level reduction
by using the spatially incoherent illumination. Thus in terms of human retinal imaging that
aberration would exist due to the imperfections of the cornea and lens, FFOCT should keep
the near diffraction-limited lateral resolution to resolve cellular structures. Since FFOCT is de-
tecting the amplitude, the signal reduction ratio is proportional to the square root of the Strehl
ratio. Therefore, only aberrations with large values would affect the FFOCT image quality.
The studies showed in chapter 6 provide a much simplified AO-FFOCT system design, that no
strict pupil conjugation is implemented for the wavefront corrector with the aberration origin
plane with a wavefront sensorless method. This design is proposed for low order aberration
correction like human eye. The system is quite compact with a transmissive wavefront corrector
implemented, which is essential for FFOCT imaging to balance the sample arm and reference
arm within micrometers. For human eyes, in which only low order aberrations like defocus
and astigmatism dominate, AO-FFOCT imaging by correcting large defocus and astigmatism
would be enough to retrieve back the image quality. While for good eyes that no obvious aber-
rations exist, high resolution FFOCT retinal imaging would be possible even without wavefront
correction.

To successfully apply FFOCT for in vivo human retinal imaging, there are still several ob-
stacles that need to be resolved besides eye aberration: the OPL matching and eye motions.
As discussed in section 6.6, while imaging different layers of artificial retinal layers, it is really
time consuming to translate the model eye along the optical axis with micrometer steps to
match the OPL of the reference arm with various retinal layers. This manipulation is obviously
impossible for in vivo experiments as the eye itself exhibits various motions and it cannot be
really static for minutes during OPL matching process. What we need would be a real-time
indicator of the OPL matching with different retinal layers during in vivo experiments. For
this reason, we proposed a combination of FFOCT with traditional SDOCT so that the OPL
could be matched by overlapping the images of the FFOCT reference mirror with different
retinal layers through the cross-sectional OCT image by translating the imaging system. With
a new fast speed camera working up to 750 Hz implemented, the eye motions are considered
to the stabilized enough during the image acquisition, meaning that the OPL difference does
not exceed a small fraction of the wavelength (1/10 typically).
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7.2 Combining FFOCT with SDOCT

The combined system schematic is showed in figure 7.1: A customized FFOCT system is com-
bined with the Thorlabs GANYMEDE-II SDOCT system. In the FFOCT part, a LED with
λ = 850nm center wavelength and 30nm bandwidth (Thorlabs) is used as the incoherent light
source, giving an axial resolution of 8um in water. An Olympus 10X/0.25NA Plan Achromat
objective is used in the reference arm with a silicon mirror supported by a piezoelectric trans-
ducer placed at the focal plan of the objective. Since the FFOCT resolution is not sensitive to
aberrations and only the signal level is damped while only low order aberrations dominate in
human eyes, a transmissive adaptive liquid lens [99], which is for only defocus and astigmatism
correction, is designed to be installed in the sample arm (not used for the experiments demon-
strated in this thesis). The human eye is supposed to be aligned in the sample arm along the
optical axis with the human head pressed against the headrest for minimizing head movements.
Dispersion is balanced with a glass window between the microscope objective in the reference
arm and the human eye. The back-reflected beams from the two arms are combined and im-
aged onto a high-speed (750fps) CMOS camera (Q-2A750-Hm/CXP-6, ADIMEC) for FFOCT
imaging, the system sensitivity is about 77dB as calculated in section 4.3.3. The Thorlabs
GANYMEDE-II SDOCT system uses a broadband SLD with centre wavelength of 930nm, giv-
ing an axial resolution in water of 4.5um. The system comes with a scanning system kit that
contains X and Y scanners while the reference arm is customizable. With the system working
at the highest scan rates of 36kHz, the SDOCT has a sensitivity of about 96dB.

As it is illustrated in figure 7.1, the two OCTs are combined by joining the sample arm of the
SDOCT system with the illumination path of the FFOCT through a dichroic mirror. The reason
why we are not combing the SDOCT sample arm through the FFOCT sample arm in front of
the eye is that, the dichroic mirror used for beam combination has various coating films that
will induce multiple reflections for only one arm of the FFOCT. This results in the unbalance
of the wavefront property between the sample arm and reference arm in FFOCT, degrading the
FFOCT imaging performance. Thus adding the dichroic mirror in the illumination path will
avoid this unbalance effects. The drawback of the system design is that the eye pupil would be
far from the scanners in the SDOCT, limiting the SDOCT beam scanning range on the human
retina. The combined system is mounted on a platform with 3-dimensional mobility offered by
precise translating motors. The OPL of SDOCT customized reference arm is matched with the
OPL of the SDOCT sample arm to the silicon mirror in the FFOCT reference arm. In this way,
we are able to take advantages of the larger depth of field of SDOCT cross-sectional image for
real-time matching the OPL of the FFOCT, which is relatively difficult to be balanced within
1 um for the two arms with different geometries, by overlapping the SDOCT image of the
FFOCT reference mirror and the various retinal layers through moving the whole system while
the human eye is looked into the system on axis. Theoretically, by simultaneously recording with
both FFOCT and SDOCT, the SDOCT cross-sectional images will offer the depth information
where en face FFOCT images are taken. For in vivo experiments we have conducted, the
FFOCT camera is working at a speed of 400Hz. With 2-phase modulation, the FFOCT images
can be recorded at a frequency of 200Hz, which is fast enough to freeze the eye motion during
an image acquisition according to the studies demonstrated in [147, 229]. The effects of the
lateral eye movements on an image stack are then corrected with ImageJ plugin "Template
Matching" [230] and several images are averaged to improve the SNR.
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Figure 7.1 – Schematic of the combined system of FFOCT with SDOCT [231]. The SDOCT sample arm is combined with FFOCT through FFOCT
illumination path with a dichroic mirror. OPLs are matched between the SDOCT reference arm with SDOCT sample arm to the FFOCT
reference mirror. Both systems can work independently but simultaneously. The combined system is mounted on a platform with 3-dimensional
translating mobility. BS: beamsplitter; DC: dispersion compensation; DM: dichroic mirror.
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Table 7.1 – Maximum Permissible Exposure (MPE) for Extended Source Ocular Exposure to a Laser Beam for Wavelengths from 700nm to
1400nm [232]
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7.3 Eye safety analysis

The instrument safety analysis is crucial as we are going to apply the system for in vivo human
retinal imaging. Based on the American National Standard for Safe Use of Lasers (ANSI Z136.1-
2014) [232], the ocular exposure safety is carefully analysed. Since both FFOCT and SDOCT
is used in our system, the maximum permissible exposures (MPE) for both light sources are
calculated.

For FFOCT imaging, the extended light source has a wavelength of λ = 850nm with a
bandwidth of 30nm. As the wavelenth is within the range of 700nm to 1400nm, only thermal
hazard need to be considered based on table 7.1. Before calculate the MPE, several parameters
need to be decided. According to table 7.2, with a center wavelength of 850nm (the shortest
wavelength is 825nm), the wavelength correction factor:

CA = 100.002(λ−700) = 1.78 (7.1)

With the current system design, the FFOCT system magnification is:

M =
flens

feye
=

400mm

16.7mm
≈ 24times, (7.2)

in which flens is the focal length of the tube lens in front the camera and feye is object focal
length of a human eye [233]. With the Adimec CMOS camera, the active sensor area size is:

Acamera = (1440pixels× 12um)2 = 17.28mm× 17.28mm (7.3)

as the camera have 1440 × 1440 pixels with a pixel size of 12um. With a field stop in the
illumination path, we have limiting a circular imaging area on the retina that just fills the
camera sensor area. Thus, the illumination area on the retinal would have a diameter of:

dr =
17.28mm

24
= 720um. (7.4)

Thus, the full angular subtense of retinal area would be calculated as:

α = arctan
720um

16.7mm
= 43mrad. (7.5)

As αmin = 1.5mrad < α = 43mrad < αmax = 100mrad, according to table 7.3, the extended
source correction factor:

CE =
α

αmin
=

43

1.5
= 28.67. (7.6)

And the parameter T2, the exposure duration beyond which the thermal MPE for an extended
source is constant in term of irradiance, is:

T2 = 10 × 10(α−1.5)/98.5 = 26.38s. (7.7)

Thus, the MPE for FFOCT illumination could be calculated based on table 7.1.

• If we consider the extreme case that the illumination is continuous up to 30000s,
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MPEc = 1.8CACET
−0.25
2 ×10−3 = 1.8×1.78×28.67×26.38−0.25 = 40.53mW/cm2. (7.8)

• If the illumination is less than T2, suppose 10s,

MPE10 = 1.8CACEt
−0.25 × 10−3 = 1.8 × 1.78 × 28.67 × 10−0.25 = 51.66mW/cm2. (7.9)

• In the in vivo human retinal imaging experiments, 40 tomographic images will be acquired
continuously with 2-phase modulation and 400Hz camera speed, the imaging time would
be 0.2s, which is less than T2,

MPE0.2 = 1.8CACEt
−0.25 ×10−3 = 1.8×1.78×28.67×0.2−0.25 = 137.36mW/cm2. (7.10)

For our experiment setup, the irradiance is measured to be only 8mW/cm2 in front of the
human cornea, more than 5 times lower than the MPE for continuous illumination and more
than 17 times lower than the MPE for a illumination duration of an imaging period. Note
that, this calculations also satisfied with the newly released American National Standard for
Ophthalmics - Light Hazard Protection for Ophthalmic Instruments (ANSI Z80.36-2016) [234].

Table 7.2 – Wavelength Dependent Parameters and Correction Factors [232]
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Table 7.3 – Extended Source Parameters and Correction Factors for Wavelengths from 400nm to
1400nm [232]

For SDOCT, the illumination has a wavelength of 930nm. According to section 5.2.1 in ANSI
standard for Ophthalmics - Light Hazard Protection for Ophthalmic Instruments [234], for an
ophthalmic instrument that images the retina or the anterior segment of the eye by using a
small moving irradiated area, for the thermal hazard prevention, the radiation energy entering
the eye shall be less than or equal to 1.32mW . In our combine system, the energy entering the
eye is only 250uW . Thus it if far more than safe for SDOCT illumination.

While imaging the retina by the combined system of FFOCT and SDOCT simultaneously,
not only each light source alone should below the applicable limits, also it should be satisfied
with the requirements based on section 5.4.3 in ANSI standard for Ophthalmics - Light Hazard
Protection for Ophthalmic Instruments [234] for multiple source instruments:
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ESDOCT

MPESDOCT

+
EF F OCT

MPEF F OCT

=
0.25mW

1.32mW
+

8mW/cm2

40.53mW/cm2
= 0.387 ≤ 1, (7.11)

meaning that our system illumination is under the safety limitation level.

7.4 System performance validation with artificial eye
model

With the system and methods described above, retinal imaging is first done with the artificial
eye model to validate the system performance before moving to in vivo human experiments. The
artificial eye model is mounted on axial in the FFOCT sample arm. By translating the system
along the optical axis, cross-sectional SDOCT image starts to show the artificial retinal layers
(figure 7.2 (a)). Since the OPL of the SDOCT reference arm is mathed with its sample arm until
the FFOCT reference mirror, thus the SDOCT image of the FFOCT reference mirror always
exist at a fixed location (figure 7.2 (b)). The OPL of FFOCT is matched by overlapping the
SDOCT mirror image with the SDOCT image of different artificial retinal layers by translating
the system (figure 7.2 (c)). And in the cases when the OPL is matched, the FFOCT en face

images are recorded. Figure 7.2 (d-f) are the en face FFOCT retinal images of the artificial
eye model corresponding to the retinal layers showing in figure 7.2 (a) from the top to the
bottom. Compared with the artificial eye model retinal imaging showed in section 6.6, which
takes much longer time to blindly scan along the depth with micrometer steps to search for
the retinal layers, the method demonstrated here with the combined system offers a real-time
method for the OPL matching, which would help a lot for in vivo experiments.

Figure 7.2 – Retinal imaging results with the combined system on aretifical eye model [231]. (a-c)
show the cross-sectional SDOCT images of artificial retinal layers (a), the FFOCT reference
mirror (b) and the overlap of the FFOCT reference mirror image with an artificial retinal
layer (c). (d-f) show the corresponding en face FFOCT images of the three different artificial
retinal layers.
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7.5 In vivo human retinal imaging

All the preliminary studies show that FFOCT is promising for high resolution en face retinal
imaging and the combined system is able to overcome the difficulties for fast OPL matching for
in vivo experiments, we finally applied our system for in vivo human retinal imaging. Informed
consent was obtained for the subject and the experimental procedures adhered to the tenets of
the Declaration of Helsinki.

7.5.1 FFOCT retinal imaging of the fovea

Experiment is first performed in the fovea area to image the IS/OS photoreceptor layer. The
head of the subject is placed on a chin platform and pressed against a self-designed headrest.
The SDOCT starts to do real-time line scanning of the retina. By looking into the scanning
line of SDOCT as a fixation target, the imaging is done at the fovea area. The SDOCT image
of the retinal fovea is showed in figure 7.3(a), which shows the IS/OS layer and RPE layer of
the retina. By translating the system along the optical axis, the SDOCT image of IS/OS layer
is overlapped with the SDOCT image of the FFOCT reference mirror (indicating as the red
dashed line in figure 7.3(a)). In the meantime, the FFOCT imaging is launched and 40 FFOCT
images are taken during a period of 200ms. The black box in the fundus photography (acquired
with SPECTRALIS retinal imaging platfrom [235]) shown in figure 7.3(b) indicates the FFOCT
imaging region with a green dashed line indicating the SDOCT scanning location. The acquired
FFOCT images is processed by ImageJ with the plugin "Template matching" for lateral motion
correction through cross correlation of the detected structural signals, and the stack is averaged
to improve the image SNR. The final FFOCT image of the fovea is shown in figure 7.3(c) with
zoomed in areas at about 1◦ eccentricity from the fovea (figure 7.3(d)) and the fovea center
(figure 7.3(e)). Note that the subject has a pupil of 4.5mm during the experiment, no pupil
dilation is applied and no AO correction is conducted. The theoretical resolution would be 4um,
which is not enough to resolve all of the cone cells in the fovea center. Thus, the 2D power
spectra got by Fourier transform (figure 7.3(f)) of the FFOCT image shows no Yellot’s ring,
the radius of which is proportional to the detected cone photoreceptor spacing [176, 236, 237].
Nevertheless, some cone cells with bigger signal are detectable and appears in the image, which
offers the basis for the cross correlation to correct the lateral motion artefacts before averaging.
The imaging location of this experiment is further confirmed by doing the fovea imaging around
the photoreceptor layer with an AO-microscope ( RTX1T M Adaptive Optics Retinal Camera,
Imagine eyes [238]), and the images is shown in figure 7.3(g-j) for comparison. Note that even
with AO, the AO retinal camera is also not able to resolve the cone photoreceptor at the fovea
center as no Yellot’s ring appears in the 2D power spectra (figure 7.3(j)).
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Figure 7.3 – In vivo human retinal imaging at the fovea. (a) The SDOCT cross-sectional image of the retinal fovea center with the red dashed line
indicates the depth where FFOCT image is taken. (b) Fundus photography with the black box indicating the FFOCT imaging area and the
green dashed line showing the SDOCT scanning position. (c) In vivo FFOCT image of the human retinal fovea without AO and the zoomed in
areas at about 1◦ eccentricity from the fovea (d) and the fovea center (e). (f) The 2D power spectra of (c). (g-i) The AO-microscope image
of the same fovea area as (c-e) for comparison. (j) The 2D power spectra of (g). Scale bar: 50um.
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Figure 7.4 – In vivo human retinal imaging of retinal near periphery at 6◦ eccentricity down from the fovea center with a field of view of
2.4◦ × 2.4◦. (a) The SDOCT cross-sectional image of the imaging position with the red (RNFL) and blue (IS/OS) dashed line indicating
the FFOCT imaging depth. (b) Fundus photography with the black box indicating the the FFOCT imaging area and the green dashed line
showing the SDOCT scanning position. (c-d) In vivo FFOCT image of the human retinal periphery at 6◦ eccentricity at the RNFL (c) and
IS/OS photoreceptor layer (d) without AO. (e) The 2D power spectra of the (d) showing the Yellot’s ring, indicating the cone photoreceptor
spacing.(f-h) The AO-microscope image around the RNFL (f) and IS/OS photoreceptor layer (g) at the same retinal area and the 2D power
spectra (h) of (g). Scale bar: 100um.
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7.5.2 FFOCT retinal imaging of retinal near periphery

Experiment on in vivo human retinal imaging is further done to image the retinal near periph-
ery. Here, by changing the position of the fixation target, retinal imaging is done at about 6◦

eccentricity down from the fovea center. Experimental results are shown in figure 7.4. Fig-
ure 7.4(a) shows the cross-sectional SDOCT image of the imaging area with the red (RNFL)
and blue (IS/OS) dashed line indicating the overlapped positions with the FFOCT reference
mirror image for en face FFOCT imaging. Here, two retinal layers are imaged with FFOCT
sequentially (each with a stack of 40 images) by translating the system along the optical axis:
the retinal nerve fibre layer (RNFL) and the IS/OS photoreceptor layer. Figure 7.4(b) shows
the fundus photography again with the black box indicating the FFOCT imaging region and
the green dashed line indicating the SDOCT scanning location. Figure 7.4(c) is the averaged
FFOCT image of the RNFL, in which, the orientation of the nerve fibres are visible as well as a
large blood vessel. Figure 7.4(d) is the FFOCT image of the IS/OS photoreceptor layer shows
clearly the retinal cone photoreceptor mosaic as well as the shadows of the distribution of blood
vessels. The images of the cone photoreceptors have an averaged size of about 5.5 − 6um in
diameter, corresponding to a real cone photoreceptor size of around 4um in diameter with a
FFOCT lateral resolution of 4um. The 2D power spectra of the FFOCT image of the IS/OS
layer shows the Yellot’s ring (figure 7.4(e)), which corresponding to the spatial frequency of the
cone photoreceptor, meaning that we are resolving the cone photoreceptors in this FFOCT im-
age. The circumferential-averaged power spectra give a maxima at 31.6cyc/degree, corresponds
to a cone spacing of about 9.5um. This matches with the values given in references [176, 236]
for cone spacing at around 6◦ − 7◦ eccentricity.

Again, retinal imaging by the AO-microscope is done around the same retinal layers at the
same retinal area. The images are shown in figure 7.4(f,g). The 2D power spectra (figure
7.4(h)) shows the Yellot’s ring with the circumferential-averaged power spectra give a maxima
at 31.9cyc/degree, corresponds to a cone spacing of about 9.4um. This is close to what we have
got with FFOCT image. The FFOCT RNFL image (figure 7.4(c)) shows obvious advantage
compared with AO-microscope RNFL image (figure 7.4(f)) as the axial sectioning ability is
poorer in the AO-microscope, making it difficult to select only specific retinal layers. Thus
the small blood vessels, which supposed to be under the RNFL appears in the AO-microscope
image. For the IS/OS photoreceptor layer image, FFOCT image SNR is lower compared with
the AO-microscope image (figure 7.4(g)). This might due to the fact that we are not correcting
the aberrations in the eye, which supposed to affects the signal level of FFOCT as explained
in chapter 5. Also, the smaller axial sectioning offered by FFOCT selects the signal from a
thinner retinal layer, which would give a relative lower signal.
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In this thesis, I have mainly discussed most of my work on a sub-project of ERC HELMHOLTZ
that aims to apply FFOCT for high resolution human retinal examination. It starts from the
evaluation of the effects of aberrations on FFOCT, followed by the development of a compact
AO-FFOCT system, and finally ended by the application of FFOCT for the very first high
resolution in vivo en face FFOCT human retinal imaging without AO. All these researches
have proven that FFOCT could be a highly promising high resolution in vivo en face retinal
imaging modality for clinical studies and medical diagnosis.

• I have first tried to quantify how FFOCT performances vary when aberration exists. It
has been shown that, in FFOCT system, due to the use of a spatially incoherent illumi-
nation, the lateral resolution is almost insensitive to geometrical aberrations while only
the signal level is reduced. This is demonstrated by theoretical analysis which compared
FFOCT with traditional scanning OCTs and WFOCTs that use spatially coherent illu-
minations, followed by a numerical simulations with various basic Zernike polynomials
applied to FFOCT. Experimental confirmations were conducted with nanoparticles as
well as extended objects with defocus and random aberrations. More precisely, aber-
rations induce no obvious lateral resolution degradation with only the signal reduction
proportional to the square root of the Strehl ratio. Let us consider the realistic case of
a diffraction-limited imaging system with a PSF width of 2um that allows for instance
resolving the cones in retinal imaging. With a Strehl ratio of 0.1, which is considered to
give a low quality image, the PSF would be broadened to about 6um that would mask
the cell structures. But in full-field OCT system, the same Strehl ratio would only reduce
the signal by a factor of 3.1 while keeping the image sharpness.

• Secondly, A compact AO-FFOCT has been developed with an transmissive LCSLM as the
wavefront corrector by adapting non-conjugate AO, meaning no strict plane conjugation
between the wavefront corrector with the plane of aberration origin or pupil plane, for
low order aberrations correction. A wavefront sensorloess algorithm by using the FFOCT
signal level as the correction metric has been applied, which further simplified the system.
Our experiments on correcting a random aberration induced by LCSLM has shown that
the corrected FFOCT image signal level with non-conjugate AO reaches 78.0% ± 2.2%

of the non-aberrated situation, which is slightly inferior but still acceptable compared
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with a conjugate AO experiment which results in a corrected FFOCT image signal level
reaching 84.3% ± 2.1% of the non-aberrated image. The AO-FFOCT has been applied
to sample-induced aberration correction of a ficus leaf and a fixed mouse brain tissue
slice to improve the SNR of the FFOCT images when doing in-depth imaging. These
experiments that simulate eye aberration correction in a simpler manner open the path
to a straightforward implementation of AO-FFOCT for retinal imaging. AO-FFOCT
retinal imaging has then been demonstrated in an artitifial eye model showing signal
improvement for all the detected retinal layers. Nevertheless, this experiment exposed
the difficulties for the OPL matching for retinal imaging as the two arms of FFOCT has
different optical geometries.

• At last, I have shown in this thesis the application of FFOCT for high resolution in vivo

human retinal imaging. To solve the OPL matching difficulties, a commercial SDOCT
system has been combined with our customized FFOCT to offer real-time OPL match
through the cross-sectional SDOCT image. To resolve the eye motion problem during
FFOCT image acquisition, a new fast CMOS camera working at a highest speed of 750Hz

has been implemented. The feasibility has been validated with the artificial eye model.
In vivo en face FFOCT human retinal imaging has been performed for the first time on
an healthy eye without AO of both the RNFL and the IS/OS photoreceptor layer. The
orientation of the retinal nerve fibres, the distribution of the retinal blood vessels as well
as the cone photoreceptor mosaic are all detected in the high resolution FFOCT retinal
images. No AO correction has been used in these experiments thanks to the resolution
merit of FFOCT, and the better axial sectioning ability of FFOCT shows better retinal
layer selection compared with AO-microscope used in the hospitals nowadays.

To successfully transform FFOCT to a clinical imaging modality for retinal examination,
there are still several tasks ahead:

• The system we have now shows relatively low SNR for retinal imaging thus we were not
able to image several other retinal layers that has lower reflectivity. This might due to
the fact that we did not conduct aberration correction to improve the FFOCT signal
level. As shown in chapter 7, an adaptive liquid lens is actually designed be installed in
the FFOCT sample arm to correct the defocus and astigmatism, which would be help to
improve the SNR. Then the dispersion would need to be compensated between all the
arms of the combined system. The aberration of the eye to be imaged could be measured
by an autorefractor to avoid the time needed for the AO process during the imaging
process.

• Currently, the FFOCT system is not able to take 3D image stack for in vivo retinal
imaging due to the eye motions. The axial eye movements would stop the FFOCT from
doing precise depth scanning for each en face image. To resolve this issue, we suggest
again to utilise the depth information that could be offered by the SDOCT cross-sectional
image. By synchronize the data acquisition of SDOCT and FFOCT, for each FFOCT
en face image, the depth information could be retraced through the overlapped location
of SDOCT image of the FFOCT mirror with the SDOCT image of the cross-sectional
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retinal layers. In this way, we might also be possible to take advantage of the axial eye
motions to scanning across the full retina and reconstruct the FFOCT 3D image based
on the depth information gained from SDOCT images.

• The en face FFOCT imaging of different retinal layers have been demonstrated on ex vivo

retina tissue to characterize various retinal structures [239,240]. In the near future, more
in vivo studies would also be indispensable to understand not only the histology of healthy
retina but also the pathology of different retinal diseases to provide high sensitivity and
specificity for future clinical diagnosis.

• Last but not least, our group is also working on applying FFOCT for in vivo human
cornea imaging in a non-contact approach. From what we have acquired, FFOCT offers
a comparable resolution as SLO while having a much larger imaging field. The system
will also be combined with a SDOCT to do in vivo 3D imaging. Thus, in the future, we
can expect an FFOCT system that could perform high resolution in vivo en face imaging
on both human cornea and retina.
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Résumé 
 

Cette thèse traite de l’étude et du 
développement d’un système d’optique 
adaptative pour la  tomographie par 

cohérence optique plein champ (AO-FFOCT 

en anglais) appliquée à l’imagerie haute 
résolution de la rétine. L’analyse de l’effet des 
aberrations géométriques sur les 

performances en FFOCT a montré que pour 

une illumination spatialement incohérente, la 

résolution transverse est insensible aux 

aberrations et ne fait que diminuer le niveau 

du signal. Comme ce sont des aberrations de 

bas ordres comme la myopie et 

l’astigmatisme qui prédominent pour l’œil 
humain, une méthode d’optique adaptative 
avec une configuration sans conjugaison qui 

utilise une correction de front d’onde en 
transmission est suggérée, puis appliquée à 

la correction de ces ordres  afin de simplifier 

le système d’AO-FFOCT. Des corrections de 

front d’onde sont effectuées sans analyseur 
de surface d’onde, en utilisant le niveau du 
signal de FFOCT comme métrique. Des 

expériences avec des échantillons diffusants 

et un œil artificiel sont menées pour 
démontrer la faisabilité d’un système d’AO-

FFOCT conçu pour la correction d’aberration. 
Afin de résoudre les problèmes posés par les 

mouvements oculaires et de compenser en 

temps réel la différence de chemin optique 

entre les deux bras de l’interféromètre, 
l’instrument de FFOCT est couplé à un 
système d’OCT spectral. Avec cette 
combinaison de systèmes, l’imagerie FFOCT 
in vivo cellulaire de la rétine à haute 

résolution a été réalisée pour la première fois 

sur l’œil humain. 
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Abstract 
 

This thesis follows the study and development 

of an adaptive optics full-field optical 

coherence tomography (AO-FFOCT) system, 

aiming for high resolution en face human 

retinal imaging. During the quantification of 

the effects of geometrical aberrations on the 

FFOCT system performance, it is shown that, 

with spatially incoherent illumination, the 

lateral resolution of FFOCT is insensitive to 

aberrations, which only cause the FFOCT 

signal reduction. Since low order aberrations 

like myopia and astigmatism dominate in 

human eye, a non-conjugate AO configuration 

by using transmissive wavefront corrector is 

suggested and applied for low order 

aberrations correction to simplify the AO-

FFOCT system. Wavefront corrections are 

done with a wavefront sensorless method by 

using FFOCT signal level as the metric. 

Experiments with scattering samples and 

artificial eye model are conducted to 

demonstrate the feasibility of the customized 

AO-FFOCT system for aberration correction. 

In order to resolve the eye motion effects and 

employ real-time matching of the optical path 

lengths of the two interferometric arms in 

FFOCT, a system combination of traditional 

spectral-domain OCT with FFOCT is adopted. 

With this combined system, high resolution 

FFOCT cellular retinal imaging is achieved in 

human eye in vivo for the first time. 
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