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Introduction

Light scattering from polarizable objects is an effect which manifests itself in a

multitude of everyday life situations [Feynman, 1965; Jackson, 1999]. For instance,

light is expected to propagate in straight line. Yet, we can see sunlight beams because

airborne particles scatter it in every directions. Keeping eyes up, the sky is blue due to

Rayleigh scattering by nitrogen or oxygen molecules. Going beyond our atmosphere,

the brightness of the solar corona results from Thomson scattering of light on free

electrons close to the sun. Light therefore gives information about the structure of the

matter through which it passes. Particularly, this matters is composed of particles

that have their own resonant frequency, and the latter is responsible for the different

colors belonging to objects around us. When the light frequency coincides with this

resonant frequency, the scattering is strongly enhanced and we say that the light-matter

interaction is resonant. Besides, as we will see, when many particles are subjected to

an electromagnetic field, they may interact and react collectively to the field [Gross

and Haroche, 1982]. The purpose of this manuscript is to study how a resonant light

interacts with a system composed of many light-induced dipoles in interaction. The

purpose of this introduction is to explain why this subject is of current interest and

why we used dense alkali vapors confined in nano-scale cells to study it.

Light scattering in dense ensembles: motivations

The scattering of light with a wavelength λ, resonant with a single polarizable object,

is well understood nowadays: the electromagnetic field polarizes the object, leading to

a driven dipole that emits light in turn. This dipole is characterized by a resonant

frequency ω0 and a spectral width Γ0. The situation involving two emitters is still

under control: they interact via resonant interaction between light-induced dipoles if

the separation distance between them is smaller than λ̄ = λ/(2π). There, modifications

of the spectral properties of the two-body system have analytical expressions. To

date, there is nevertheless no general theory describing the scattering of many dipoles

interacting in a small volume λ̄3. As a result, systems composed of emitters with

a spatial density N such that C = N λ̄3 ≥ 1 have led to fundamental researches in

various domains of physics.

The current trend is towards shrinking the dimensions of light-matter based devices.



Thus, nano-physics is certainly one of the fields most immediately concerned by this

interaction. For example, the emissivity of a system composed of many antennas

placed in a small volume [Huang et al., 2010] (C > 10) can suffer from the coupling

between the different emission modes due to dipole-dipole interactions. The latter

could also be handle in order to use nano-plasmonic oscillators as transducers or

sensors [Thijssen et al., 2013]. Another current area of research concerns the promising

atomic-like properties of systems based on semicondutor quantum dots [Awschalom,

Loss, and Samarth, 2002]. To enhance their coupling to light, such systems are often

placed in micro-cavities, and similarly, their scattering properties could then be altered

due to dipole-dipole interactions [Solomon, Pelton, and Yamamoto, 2001].

Although interesting for many applications, artificial atoms, such as the one described

above, are more complex than “real atoms”. In particular, it is hard to make them

identical (leading to inhomogeneous broadening). They also interact strongly with

their environment through non-radiative processes. On the contrary, real atoms are

the simplest polarizable objects. In particular, the expression for the polarizability of

alkali atoms – having only one valence electron in their electronic core – is well-known.

The complexity of manipulating atoms is one of the counterparts of using them over

artificial atoms. We will show that this difficulty can be overcome to a certain extent.

However, their very low non-radiative decay and high reproducibility (every atom is

the same) make them ideal candidates to study the modification of the light scattering

due to dipole-dipole interaction in dense ensembles.

Collective effects in light scattering from atomic ensembles have gained a renewed

interest recently with the recognition that they can degrade the accuracy of atom-based

sensors such as optical clocks by introducing unwanted energy level shifts [Chang, Ye,

and Lukin, 2004; Bromley et al., 2016; Campbell et al., 2017]. These probe-induced

shifts can generate biases in the reference frequency of the clock that can reach the

10−18 level in relative uncertainties: the order of magnitude is comparable to the limits

of the current best performing atomic clocks [Riehle, 2017]. Alternatively, the collective

response can be an asset if properly handled, and several recent works suggest how it

can be used to enhance light-matter interfaces [Bettles, Gardiner, and Adams, 2015,

2016; Shahmoon et al., 2017; Perczel et al., 2017]. These works suggest placing the

atoms in lattice geometries. The lattice configuration could then be tailored in such

way that constructive or destructive interferences between the field radiated by the

emitters allow to tune the dipole-dipole interaction at will.

All systems presented in the above paragraph deal with cold atoms (temperature

below the milli-Kelvin range) apparatuses. In these experiments, the atomic motion
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is essentially frozen, which is very convenient to study their properties by only

considering the internal degrees of freedom of the atoms. In this manuscript, we

use high-temperature alkali vapors instead: we now explain why this is not just

contradictory.

Thermal atomic vapors in nano-scale geometries

This Thesis work was carried out – with the support of the DGA-DSTL program –

between the University of Durham (United Kingdom) and the Laboratoire Charles

Fabry of the Institut d’Optique at Palaiseau (France). In the group of Palaiseau, the

research line is the study of mesoscopic systems of atoms in interactions using cold

atoms experiments [de Léséleuc et al., 2017; Pellegrino et al., 2014]. In the group

of Durham, a similar thematic is studied with cold atoms [Busche et al., 2006], but

they also have a longstanding experience with the manipulation of hot atomic vapor

systems [Siddons et al., 2008; Zentile et al., 2015a]. This manuscript results from

the will to study the scattering of light in dense ensembles sharing the experience of

the two groups. This will grew out of the desire to compare the modification of light

scattering in dense atomic ensemble using cold and hot gases. The triggering element

of this Thesis was the work of James Keaveney [Keaveney et al., 2012b]. In this paper,

the group of Durham measured strong modifications of the resonant frequency ω0 and

decay rate Γ0 as a function of the density in a thin and hot atomic vapor slab. Few

years later, the group of Palaiseau realized an experiment with a dense microscopic

atomic sample but reported negligible shifts and spectral widths as a function of the

atomic density [Jennewein et al., 2016], indicating that cold and hot atoms do not

behave in the same way. To understand the origin of this difference, a collaboration

between the two groups led to undertake new experiments with the hot thermal vapor

system.

First of all, working with thermal vapor is an almost ideal situation to study light

scattering in dense ensembles: the density of atoms scaling exponentially with temper-

ature, very dense atomic samples can be produced with a relative ease1 [Keaveney,

2014]. Furthermore, from an experimental point of view, hot vapor set-ups are much

simpler than laser-cooled experiments. As a consequence, practical applications using

these systems are numerous, particularly concerning their potential as future atomic

1Consider a cesium vapor at 300 ◦C, the corresponding density is N = 4 × 1022 at·m−3. In
comparison, Bose-Einstein condensates, involving demanding experimental conditions, reach at
most few 1020 at·m−3.
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sensors. For instance, vapor cells has been used as brain sensor [Sander et al., 2012],

to build a Faraday filter [Zentile et al., 2015b], for terahertz imaging [Wade et al.,

2016] or as microwave electrometers [Sedlacek et al., 2012]. In addition, Refs. [Griffith

et al., 2009; Sheng et al., 2013] also reported that these vapor cells could serve as

very-high sensitive magnetometers. Finally, recent works proved that the storage of

light information up to one second in a thermal vapor is possible [Katz and Firstenberg,

2018] and robust to atomic motion [Cherroret et al., 2019]: this time scale is very

promising to consider thermal vapor as quantum memory for future communication

networks [Sangouard et al., 2011].

Reducing the size of these cells to the millimeter scale, there has been a vast interest

in harnessing their potential as miniaturized atomic-clocks [Kitching, Knappe, and

Hollberg, 2002; Knappe et al., 2005]. The strong interaction between two Rydberg

atoms in the blockade regime2 led to study the coherent excitation of Rydberg

atoms in micrometer-sized atomic vapor cells. Based on that technology, researchers

from the the University of Stuttgart (Germany) recently succeeded in producing a

room-temperature single-photon source [Ripka et al., 2018]. All these examples show

that miniaturization of thermal vapor system is a burgeoning area of research with

up-and-coming applications.

The system used in this Thesis is a vapor cell with sub-micrometer thickness. The

results presented in this manuscript therefore builds on a long experience acquired

in the Laboratoire de Physique des Lasers located in Villetaneuse (France) and the

Institute for Physical Research at Ashtarak (Armenia). As we will see in the first

chapter, the nano-geometry is first an asset to study resonant dipole-dipole interactions.

However, with the growing in the number of platforms using miniaturized light-matter

interfaces, characterizing the modifications that the cell itself possibly induces on

the optical response of a vapor confined inside, naturally emerges as a second main

impetus of the PhD project.

The two main motivations for this manuscript are therefore:

1. The study of the resonant dipole-dipole interaction in dense ensembles.

2. The characterization of systems composed of a vapor confined in a miniaturized

geometry.

2Rydberg atoms are highly excited atoms that particularly interact very strongly with each other
via the dipole-dipole interaction. The Rydberg blockade regime corresponds to the inhibition of
the excitation of ground-state atoms to the Rydberg state by the presence of another nearby
Rydberg atom [Browaeys, Barredo, and Lahaye, 2016].
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When this is done, we will have a good understanding of the optical response of a

vapor confined in a nano-cell and hence of the biases when using them as sensors. In

order to deal with the two above subjects, the manuscript is structured as follows:

Thesis summary

r In Chapter 1, we recall the main equations governing the interaction of light with

a dense atomic ensemble and present explicitly the advantages and drawbacks

of using thermal vapor confined in a nano-cell. We also derive the equations

describing the transmission of light through the vapor: this will be in this

manuscript the main observable to characterize the atomic optical response.

r In thermal vapors, atoms move. We show in Chapter 2 that this motion leads

to a non-local response of the atomic vapor. When the distance characterizing

this non-local response is larger than the cell size, we enter what we will call the

mesoscopic regime.

r We will show in Chapter 3 that when the atomic density increases, the medium

becomes local again. We will use this fact to clarify to a certain extent the origin

of the atomic spectral shifts due to the resonant dipole-dipole interaction.

r When atoms are close to a surface, as is the case in a nano-cell, the van der

Waals interaction can alter the atomic properties. The purpose of Chapter 4 is

to introduce a new versatile method to characterize as precisely as possible the

influence of this interaction on the optical response of the system.

r In Chapter 5, we present the fabrication and characterization of a new generation

of all-glass super-polished nano-cells. These cells could be used to test the influence

of the surface roughness on the spectra.

r In most of the Thesis, we used transmission spectroscopy to gain information

on the optical response of the vapor confined in the nano-cell. In the (final)

Chapter 6, we collect the off-axis light scattering and compare this method

with the results obtained throughout the manuscript.
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Introduction

In this first chapter, we introduce the concepts and theoretical formalism used

throughout this Thesis to describe the interaction of a light with a wavelength λ and a

collection of interacting particles. Generally speaking, the theory should rely on a fully

quantum description of both the atoms and light. However, we will show that under

some approximations, both of them can be treated classically.

We will start the discussion with a single two-level system and show that its

behavior is similar to the one of a classically driven damped harmonic oscillator.

Then, considering two atoms, it will turn out that they strongly interact via dipole-

dipole interactions as soon as their inter-atomic distance is smaller than the reduced
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wavelength λ̄ = λ/2π = 1/k`, where k` is the light wave-vector. Further increasing

the number of particles, we will consider a many-body system with a volume density

N . A collective parameter N /k3
` will emerge as a figure of merit for quantifying the

interactions. It indicates that dipole-dipole interaction becomes important as soon as

many atoms are confined in a small volume λ̄3.

As we have seen in the general introduction, one of the purposes of this manuscript

is to study the interaction between a dense atomic sample (N /k3
` � 1) and light nearly

resonant (k` = ω`/c ∼ ω0/c where ω0 and ω` are the resonant frequency and the laser

frequency respectively) with this ensemble. Previous experiments that investigated

the dense regime (i.e. N /k3
` ≥ 1) can be grouped into two categories. We make a

distinction between experiments where the size L of the atomic sample is (i) much

larger than λ or (ii) on the order of λ. We will show that the second approach is

more appropriate to perform direct measurement of the near-resonant dipole-dipole

interaction. For this last purpose, numerous studies were conducted using small and

cold atomic clouds (temperature Θ ∼ µK) and we are going to report the main

results obtained in these experiments. However, the system we have opted for in this

manuscript is different. It consists of thermal vapors of alkali-metal atoms (Θ > 300K)

confined in a nano-scale cell: we will explain the motivations that led us to choose

such a system to study the interactions.

In order to reveal the latter experimentally, we will mainly observe the transmission

of light through the nano-cell. We will derive this observable starting from a microscopic

approach and give an analytical expression in the simplest case possible of a cold,

dilute and large atomic ensemble. It will pave the way for the following experimental

chapters.

Using dense thermal vapors confined in a nano-scale system raises a series of open

questions. First of all, interactions in dense atomic clouds is currently a hot topic

of research: it is fair to say that going from one or two single emitters to a large

number of particles is a theoretical problem with no general settled solution. In

thermal vapors, atomic motion is responsible for the Doppler effect that significantly

complicates the static case. The collisions between atoms can also modify their spectral

properties. In addition, the nano-metric geometry leads to several complications

presented here as a non-exhaustive list: (i) when the atomic medium thickness is

on the order of the wavelength of the light, dipole-dipole interactions have been

predicted to be medium-size dependent [Friedberg, Hartmann, and Manassah, 1973],

(ii) when the thickness of the cell becomes smaller than the distance characterizing

the relaxation of the dipoles (due to a radiative decay or thermalization with other
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atoms), collisions with the surfaces of the cell are playing an important role in the

response of the system [Schuurmans, 1976]. (iii) When the cell thickness becomes

smaller than λ̄, the van der Waals interaction between a dipole and a nearby surface

becomes significant [M. Ducloy and M. Fichet, 1991]. We introduce in this first chapter

the prerequisites to help addressing all these issues.

1.1 Theory of light induced dipole-dipole interactions

We begin the discussion by considering a single two-level atom interacting with an

electromagnetic field. We will show that the dipole induced by the field can be described

fully classically if the latter is weak enough. In response to the light excitation, the

dipole emits a field that can excite another dipole: this is the dipole-dipole interaction.

Finally, we explain the difficulties arising when the number of particles increases.

1.1.1 Single two-level atomic system

Two-level atomic system We first consider the simplest possible case of a two-level

atom with ground state |1〉 and excited state |2〉. The level spacing corresponds here

to a π optical transition along the x-axis and we set, without loss of generality, the

ground (respectively excited) state energy to 0 (respectively ~ω0 ' h× 380 THz). The

Hamiltonian in the {|1〉 , |2〉} basis is given by

Ĥ0 = ~ω0 |2〉 〈2| . (1.1)

A convenient tool to study the evolution of a state |ψ〉 is the density matrix operator

ρ̂ = |ψ〉 〈ψ|. In the same basis, the density matrix can be written as:

ρ̂ =

(
ρ11 ρ12

ρ21 ρ22

)
. (1.2)

Diagonal terms ρ11 and ρ22 correspond respectively to the ground and excited state

populations and the crossed terms ρ21 = ρ∗12 are the atomic coherences.

Coupling to light: atomic dipole When light impinges on an atom, an electron can

be promoted to the excited state. This interaction is represented by the dipole operator

that couples the states |1〉 and |2〉. It can be written D = d12 |1〉 〈2|+ d21 |2〉 〈1|, with

dij the only non-zero dipole matrix coefficients, and its average value is given by:
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〈D〉 = Tr(ρD) = d12ρ21 + d21ρ12. (1.3)

When the average is non-zero, we commonly say that light induces a dipole.

The light inducing the dipoles in our case comes from a monochromatic and linearly

polarized laser used in continuous wave (cw) mode. We work in the framework of the

semi-classical approximation: when the number of photons in the coherent mode of

the laser is large, the electromagnetic field behaves like a classical wave [Gardiner

and Zoller, 2014]. We assume that the laser light is polarized along the x axis (i.e.

E(r, t) = E(r, t)ex) and we write

E(r, t) = E0(r) cos(ω`t) =
1

2
E0(r)eiω`t + c.c. . (1.4)

The equations that govern the coupling between the laser light and the atoms are the

optical Bloch equations (OBE).

Optical Bloch equations These equations are a set of coupled linear equations that

describe the time dependence of the density matrix elements. They are textbook

material and we write them using the rotating wave approximation1 as in Ref. [Grynberg

et al., 2010]:

ρ̇22 = −id12E0(r)

2~
(
eiω`tρ21 − e−iω`tρ12

)
− Γ0ρ22, (1.5)

ρ̇11 = − ˙ρ22, (1.6)

ρ̇21 = −iω0ρ21 +
iE0(r)e−iω`t

2~
(ρ11 − ρ22)− Γ0

2
ρ21, (1.7)

ρ̇12 = ˙ρ21
∗. (1.8)

The decay rate Γ0 describes spontaneous emission and originates from the coupling to

the vacuum fluctuations.

In the rotating frame we can rewrite Eq. (1.3) as:

〈D〉 =

d︷ ︸︸ ︷(
d12ρ21e

iω`t
)
e−iω`t +

d∗︷ ︸︸ ︷(
d21ρ12e

−iω`t
)
e+iω`t = de−iω`t + d∗eiω`t (1.9)

and using the OBE, we derive the two following equations that govern the evolution of

the dipole and populations, with ∆ = ω` − ω0:

1In the rotating wave approximation, the terms which oscillate rapidly in the equations have been
neglected.
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ḋ =

(
i∆− Γ0

2

)
d− i |d12|2

2~
(ρ22 − ρ11)E0(r), (1.10)

˙ρ22 = − ˙ρ11 = − i
~

Im (dE∗0(r))− ρ22Γ0. (1.11)

We solve numerically this coupled system and display in Fig. 1.1(a-c) the on-resonance

(∆ ∼ 0) steady-state amplitude solutions for populations and d when the driving

field varies. For low driving, ρ22 ' 0 and ρ11 ' 1 (see also Fig. 1.1(b)) and the dipole

moment strength is proportional to the field amplitude: this is the weak driving field

regime. We will use this approximation in all this work and ignore any power saturation.

It is valid for |E0(r)|2 � (~2Γ2
0)/|d12|2 and generally requires laser intensities smaller

than some mW.cm−2 for alkali-atom in the low-lying states2. In this weak regime,

we display the dipole evolution as a function of time after switching on the laser in

Fig. 1.1(d). The dipole moment reaches steady-state after a transient regime of several

1/Γ0.

Weakly driven quantum dipole In the weak driving approximation, Eq. (1.10)

becomes

ḋ =

(
i∆− Γ0

2

)
d+ i

|d12|2

2~
E0(r) (1.12)

and its solution is given by:

d(t) = dst

(
1− e(i∆−

Γ0
2 )t
)

, (1.13)

with

dst =
1

2
ε0α(ω`)E0(r). (1.14)

In the above equation, we have introduced the frequency-dependent atomic polariz-

ability

α(ω`) =
−3πiΓ0/k

3
`

i∆− Γ0/2
, (1.15)

which is basically the optical response of a single particle.

From the solutions of the OBE, two important characteristics of the coupling

between the laser and the atom appear:

2It turns out that in thermal vapors, the condition is less strict due to various broadening. In
Appendix B, we show the limit of the weak-driving limit.
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Figure 1.1: Weak probe approximation (a) Steady-state populations with respect to the

Rabi-frequency Ω = d12E0/� normalized by the natural line-width Γ0 and (b) populations

as a function of time in unit of 1/Γ0. Thick lines: Ω/Γ0 = 0.01, transparent lines:

Ω/Γ0 = 20. (c) steady-state dipole moment at resonance as a function of the normalized

Rabi-frequency. In transparent dotted line: result in the weak probe regime (i.e. imposing

ρ22 � 0 in the simulation). In red full line: result with no approximation. (d) Evolution of

the dipole moment at resonance in the weak probe approximation (Ω/Γ0 = 0.01). The

dipole experiences a transient evolution and reaches steady state dst after several relaxing

times 1/Γ0.

� In the the weak driving limit, the induced dipole is proportional to the driving

field.

� The proportionality constant α is the polarizability which is a Lorentzian function

of the driving frequency ω� that is centred on the resonance of the dipole ω0.

The classical harmonic oscillator We show now that this light-matter coupling can

be retrieved with a fully classical approach. For this purpose, we consider the classical

model introduced by Lorentz for the electron. The equation of motion for the particle

of mass m and charge q, elastically bound to the nucleus, and driven by an electric
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field is given by:

mẍ = qE(r,ω`)− Γẋ−mω2
0x. (1.16)

Here, Γ is a dissipation term responsible for the damping and ω0 is the resonant

frequency of the system related to its spring force strength. In the near resonant limit,

ω` ∼ ω0 and the dipole moment d(t) = qx(t) can be rewritten in the same form as

Eq. (1.13) with:

dst = −iq
2E/(2mω0)

i∆− Γ/2
. (1.17)

We therefore showed that in the weak driving field regime, a quantum two-level system

behaves like a one-dimensional (1D) classical harmonic oscillator provided that the

damping rate is assimilated to the spontaneous decay Γ0 and that the transition dipole

moment d12 is q
√

~/(mω0). As a consequence, systems composed of many atoms are

expected to behave as an ensemble of classical coupled radiators. We now show how

two dipoles in interaction is different from the individual case.

1.1.2 Resonant dipole-dipole interaction between two atoms

Dipole-dipole interactions is a term often used in the literature to describe different

physical situations. We make here a distinction between the resonant and non-resonant

dipole-dipole interactions. In the non-resonant case, also called the van der Waals

regime, two dipoles in the same state can interact. It is usually associated with a

virtual exchange of photons through the vacuum field and can only be understood

quantum-mechanically [Cohen-Tannoudji, Diu, and Laloe, 2018]. This is not the

subject of this manuscript3. We rather concentrate on the resonant dipole-dipole

interaction which, mediated by the dipole field, can be completely described classically.

The dipole field A dipole d1 placed in r1 emits a field at a position r = |r| given

by [Jackson, 1999; Feynman, 1965]:

3Note however that in Chapter 4, we will study the van der Waals interaction of an atom with a
surface.
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E1(r) =
k3
`

4πε0

{
[3(d1.n̂)n̂− d1]

(
1

(k`R)3
− i

(k`R)2

)
+ [(d1.n̂)n̂− d1]

1

k`R

}
× eik`R

(1.18)

= [G]d1,

where n̂ is the unit vector in the direction of r − r1, R = |r − r1| and [G] the

vacuum green tensor. This field can drive other dipoles and this is at the origin of the

dipole-dipole interaction. Namely, the field felt by an atom at a position r′ is now the

sum of the external field E0 and the field radiated by other particles at this position

r′. We call this resulting field the local field Eloc(r
′).

It can be seen from Eq. (1.18) that the field emitted by a dipole depends on its

orientation. To simplify the discussion we consider now two atomic dipoles that can

only oscillate along one direction, let us say the x-axis4. In this case, Eq. (1.14) is still

valid since:

d1 = ε0 [α]Eloc, (1.19)

with

[α] =

α(ω`) 0 0

0 0 0

0 0 0

 , (1.20)

where [α] is the polarizability tensor that reduces to a scalar quantity. Indeed, because

the dipoles are solely allowed to oscillate along the x−axis, only the component of the

field in that particular direction can drive another dipole (see Fig. 1.2(a)).

We now place another atom at a position r2 and denote by θ the angle between the

x−axis and the inter-atomic direction. The situation is illustrated in Fig. 1.2(a). The

second atom can now be driven by the projection on ex of the field emitted by the

first atom:

E1x(r) =
k3
`

4πε0

[(
1

(k`r12)3
− i

(k`r12)2

)(
3 cos2 θ − 1

)
+

1

k`r
sin2 θ

]
eik`r12d1 = Gxd1,

(1.21)

where r12 = r1 − r2. In the following, we show that the dipole-dipole interaction that

4In the quantum mechanical picture, this is equivalent to a two-level system connected by a π
transition. We could allow the dipole to oscillate in 3D, as in the case of a multilevel atom, at the
price of unnecessary cumbersome equations that add nothing new to the discussion.
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originates from the term Gx(|r12|) ≡ G, is responsible for the modification of the

resonant frequencies and decay rates of the two dipoles.

Dipole-dipole shift and broadening The total field impinging on each dipole is now

the sum of the laser field and the field radiated by the other dipole. Using Eq. (1.12)

for the two dipoles, we find the coupled system:ḋ1 =
(
i∆− Γ0

2

)
d1 + i |d12|2

2~ (E0(r1) + d2G) ,

ḋ2 =
(
i∆− Γ0

2

)
d2 + i |d12|2

2~ (E0(r2) + d1G) .
(1.22)

In the coupled basis, we form d± = (d1 ± d2)/
√

2 and we get the two equations:

ḋ± =

(
i∆− Γ0/2± i

|d12|2

2~
G

)
d± +

E0(r1)± E0(r2)√
2

(1.23)

= (i(∆− ω±) + Γ±) d± +
E0(r1)± E0(r2)√

2
. (1.24)

These equations are similar to Eq. (1.12) and we see that the coupled dipoles solutions

d± are shifted and broadened by the quantities ω± and Γ± given by:

ω± = ∓|d12|2

2~
Re(G), (1.25)

Γ± = Γ0 ±
|d12|2

2~
Im(G). (1.26)

Equations (1.25) and (1.26) show that the dipole-dipole shift and broadening directly

originates from the real and imaginary part of the vacuum green’s function G. It is

worthwhile pointing out that these quantities do not depend on the average of the

dipole moment: the eigen-energies of the coupled system do not rely on the state in

which it is prepared, but are rather an intrinsic property of the dipolar transition.

In Fig. 1.2(b), we represent the dependence Γ+ and ω+ in units of Γ0 according to

r12 in the case of θ = 0. Importantly, the shift in the near-field regime (k`r12 � 1) is

proportional to 1/(k`r12)3. We are going to come back to this result in the next section

where we will study the case of many atoms in interaction. When k`r12 > 1, the shift

and broadening display an oscillating behavior with a period λ. When k`r12 � 1, the

broadening converges to 2Γ0. We would find 0 for Γ− and these changes in the dipole

lifetime give rise to the so-called sub and super-radiant states [Bettles, Gardiner, and

Adams, 2016].
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Figure 1.2: Two interacting dipoles (a) The angle between the atomic dipole moment

and the inter-atomic distance is denoted by θ. Dipoles are only allowed to oscillate along

(Ox) such that only the component E1→2,x along (Ox) of the dipole field E1→2 emitted

by the first dipole induces the second dipole. (b) In the (arbitrary) case of θ = 0, dipole

dipole shift ω+ and broadening Γ+ are represented in unit of Γ0 as a function of the

inter-atomic distance r12. In the near field region (r12 � λ), the inset panel (red square)

shows the 1/(k�r12)
3 dependence of the shift. At really short distances (green square),

even dipole approximation is expected to fail: quadrupole, octupole, etc... contributions

should be included. In the far field, an oscillatory behavior with a period λ is observed.

1.1.3 Interaction in dense atomic systems

We have just seen that two coupled oscillators feature two eigen-modes with different

eigen-frequencies and damping rates. We now present the difficulties encountered in

the case of an ensemble constituted of many atomic dipoles in interaction.

Coupled dipole model A way to treat this problem is to consider the many-body

system as an ensemble of coupled radiators [Javanainen et al., 1999; Svidzinsky, Chang,

and Scully, 2010]. In this approach, an ensemble of closed equations describes the total

external field driving each atom. In what follows, we adopt two simplified notations for

the dipole field: (a) Erj→ri(ri) is the field emitted by a dipole dj placed at a position

rj , that is acting at a position ri on a dipole di. (b) Eri(r) represents the field emitted
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by a dipole di placed in ri calculated at a position r in the space. The idea of the

coupled dipole approach is that a dipole di feels the external driving field E0(ri) and

the sum of fields from all other dipoles:

E(ri) = E0(ri) +
∑
j 6=i

Erj→ri(ri). (1.27)

The coupled system (Erj→ri(ri) ∝ dj) is usually solved numerically and the resulting

field everywhere in space is given by the superposition principle:

E(r) = E0(r) +
∑
i

Eri(r). (1.28)

However, in our study, at least two major complications prevent us from using this

coupled-dipole method:

r The computer time for a simulation grows as the cube of the atom number [Ja-

vanainen et al., 2014] and current atomic numbers in simulations (10000 at

most) is significantly smaller than in usual atomic vapors5.

r The coupled dipole approach including room-temperature atomic motion has not

been solved to date: neglecting this motion for thermal vapors is not conceivable.

We consequently rather use a “standard” electrodynamics approach describing the

vapor as a continuous polarizable medium.

The continuous polarizable medium. In this approach the medium is described by

a continuous distribution of atoms with a volume density N . We therefore convert

sums to integrals in Eqs. (1.27) and (1.28). Concerning the expression governing the

driving field, summation over j 6= i requires to exclude a small volume V ′ of the total

volume of interest V :

∑
j 6=i

Erj→ri(ri)→
∫
V−V ′

d3r′′NEr′′→r′(r′). (1.29)

In the heuristic approach introduced by Lorentz, the volume V ′ is a small sphere that

radiates a field −P/(3ε0) [Lorentz, 2011]. The polarization P = Nd stands for the

volume density of dipoles. The local field at a position r′ can therefore be written as:

5Take for example a usual density of 1020 at·m−3 and the volume of a cylinder πω2
0L with a waist

ω0 = 100 µm and L = 100 nm. The number of atoms is about 3× 105.
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Eloc(r
′) = E0(r′) +

∫
V

d3r′′NEr′′→r′(r′)︸ ︷︷ ︸
Mean field

+
P (r′)

3ε0︸ ︷︷ ︸
Polarization field

. (1.30)

The field everywhere space, outside of the volume V ′ then becomes:

E(r) = E0(r)︸ ︷︷ ︸
External laser

field

+

∫
V

d3r′′NEr′(r)︸ ︷︷ ︸
total dipole
field Ed(r)

. (1.31)

The two last equations constitute the major result of this part. On the one hand,

expression (1.30) gives the (local) field inducing atomic dipoles at a position r′. On

the other hand, expression (1.31) provides the total field everywhere in space resulting

from the superposition of the external laser field E0(r) and total dipole field Ed(r) at

a position r.

In the two-atom case we have seen that the shift of the resonance due to the

dipole-dipole interaction could be estimated via the green tensor. Similarly here, the

shift of the resonances in the many-body system is expected to be related to the

strength of the local field. To find an order of magnitude of the interaction we can

assume that dipoles only interact by pairs and we neglect three-body interactions. In

the near field regime (if we neglect retardation effects), we see from Eq. (1.21) that the

dipole-field is proportional to 1/(k`〈r12〉)3 where 〈r12〉 is a mean distance between the

atoms in a given pair. Since the density of atoms is roughly N ∼ 1/〈r3
12〉, we expect as

of now the shift of the resonance to be related to

∆ω ' Γ0C, (1.32)

where the collective parameter

C = N λ̄3 =
N
k3
`

. (1.33)

This parameter indicates that the dipole-dipole interaction should be important when

the density is such that many atoms lie in a small sphere of volume λ̄3.

1.2 Experiments in the dense regime

Collective interaction in dense samples (C > 1) is a current burgeoning field of research

relying on recent technological advances [Davis et al., 1995]. In this section we first
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focus on a non-exhaustive list of recent experiments using atoms. It helps understanding

the reasons for working with an alkali atomic vapor confined in a nano-cell. Advantages

and drawbacks of using such a device also naturally emerge. Particularly, we will see

that the use of a small system (L < λ) is appropriate to perform direct measurement

of the near-resonant dipole-dipole interaction. For instance, transmission spectroscopy

is an available quantity to probe the interactions and we will finally derive this physical

quantity starting from a microscopic approach.

1.2.1 Cold atoms versus thermal vapors

Experiments with cold atoms With the advances in laser cooling techniques [Aspect

et al., 1988] of the 90’s, the manipulation of motion-frozen atomic ensembles of

adjustable density has been made possible. Cold atom experiments (100 nK < Θ <

few µK) therefore emerged as an obvious platform to study collective scattering in the

dense regime of interaction. A collection of spectroscopic experiments were undertaken

and can be grouped in two categories:

r Large and optically thick ensembles of cold atoms [Bender et al., 2010; Bienaimé

et al., 2010; Chalony et al., 2011; Balik et al., 2013] (see top left part of Fig. 1.3)

r Small (typically with sub-wavelength size) and optically thin atomic clouds [Pel-

legrino et al., 2014; Jennewein et al., 2016; Corman et al., 2017](see top right

part of Fig. 1.3)

Experiments in the first category mainly studied macroscopic collective effects such

as Mie scattering [Bender et al., 2010], the average radiation force acting on a large

cloud of atoms [Bienaimé et al., 2010] or the coherent collective flash in the forward

direction [Chalony et al., 2011]. Due to large optical depths6 (OD), these experiments

were conducted either at intermediate densities [Balik et al., 2013] (C ∼ 0.01) or far

detuned [Bender et al., 2010]. A way to access resonant features even for dense atomic

samples consists in probing thinner systems to reduce the optical depth. One method

to produce small and dense samples is to load microscopic dipole traps (L ∼ 1 µm)

with randomly positioned resonant scatterers thanks to a high-aperture aspherical

lens. In these experiments [Jennewein et al., 2016; Corman et al., 2017] where C ∼ 1,

the failure of the continuous medium theory has been observed. The microscopic

6The optical depth is define as the neperian logarithm of the transmission through a material
− ln(T ). Typically, OD=1 means that the transmission factor is 1/e ∼ 0.3.
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L � λ

L ∼ λ

L ∼ λ

Thermal

vapours

Cold

atoms

High optical depth

No light transmission

Indirect measurements

Small optical depth

Light transmission

Direct measurements

Figure 1.3: Cold and large vs hot and small ensembles Left column: large ensembles

(L � λ). Right column: thin ensembles (L ∼ λ). Top line: cold atomic clouds. Bottom

line: hot thermal vapors.

approach based on the coupled dipole theory, though closer to experiments, presents

no quantitative agreement with the data either. This unexplained disagreement was

one of the key motivations that triggered my Thesis project. However we decided to

approach the dense regime in a somewhat different configuration.

Experiment with vapor cells Another angle to study resonant dipole dipole inter-

actions with atoms is to use thermal vapors confined in spectroscopic cells. In these

systems, atoms are not cold any more and the density of atoms is related to the

temperature-dependent (typically 20◦C< Θ < 400◦C) vapor pressure via the ideal gas

law. This temperature is the one of a reservoir of atoms connected to a spectroscopic

30



1.2 Experiments in the dense regime

transparent enclosure together constituting a vapor cell. In macroscopic cells (mm

to cm thick such as in bottom left part of Fig. 1.3), density dependent (C ∼ 10)

shifts and widths were observed. The importance of atom-atom collisions due to

motion was also reported [Maki et al., 1991; Weller et al., 2011]. As in the case of cold

atoms, the optical depth reached in these dense and large systems is very large (OD

≥ 10). These experiments were therefore conducted either far-detuned [Weller et al.,

2011] or using elaborate techniques such as selective reflection [Maki et al., 1991].

This last technique consists in exploiting the modification of a reflected beam at a

dielectric-vapor interface. In the early 2000s, sub-micrometer cells (see bottom right

part of Fig. 1.3) were developped in Armenia in the group of D. Sarkisyan [Sarkisyan

et al., 2001]. Density-dependent collective shifts were observed [Keaveney et al., 2012b]

at really high density (C ∼ 50) with these nano-cells. This is the experimental system

used in this Thesis. It is described in more details in the next experimental chapters.

In comparison to cold atoms, the use of thermal vapors features strengths and

weaknesses. From a theoretical point of view, the task appears much harder since

thermal atoms move. As we saw in the previous section, it first makes the coupled

dipole model very challenging to use. Phenomena such as atom-atom collisions also

lead to difficulties in the modelling of the system. Finally, atom-wall collisions and

interactions, coming from the necessity of confining the atoms, also take place. From

an experimental perspective however, spectroscopic investigations are much simpler

once the nano-cell is built: (i) high collective parameters are simply reached by just

turning up the reservoir temperature, (ii) the system-size can be measured much more

accurately using optical techniques. Finally, (iii) the compactness of the system allows

to change easily the method to probe the interaction, switching for example, from

transmission to fluorescence techniques.

1.2.2 From microscopic radiators to macroscopic observables

In this Thesis, the main observable used to probe dipole-dipole interactions is the

optical transmission7 through the nano-cell. As compared to reflection, a technique

widely used hitherto with nano-cells [M. Ducloy and M. Fichet, 1991], transmission

spectroscopy presents at least two main advantages:

1. By inspection with the far-detuned signal, the transmission dip at resonance

gives information about the atomic density N in the nano-cell.

7In Chapter 4, we perform fluorescence spectroscopy and compare the results to the transmission
case. We derive the associated equations there.
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Chapter 1: Light induced dipole-dipole interactions

2. The interpretation of spectral features arising from any expected or unexpected

phenomenon is significantly easier starting from a Lorentzian profile rather than

a dispersive signal.

Because we do not intend to solve all problems at once, we start by deriving the

transmission through a motion-frozen atomic slab closely following the derivation

made in Ref. [Fearn, James, and W Milonni, 1996] to solve Eq. (1.31). We use the

local relation (1.19) into Eq. (1.18) to find the dipole field radiated at a given point r

in space by a small volume d3r′ around r′, polarized along the x−axis:

δEd(r) =
k3
`

4π

{
[3(êx.n̂)n− êx]

(
1

(k`R)3
− i

(k`R)2

)
− [(êx.n̂)n− êx]

1

k`R

}
× eik`Rα(ω`)Eloc(r

′)d3r′ (1.34)

and we recall that R=|r− r′|, n̂ = (r− r′)/R and êx is the unit vector for the x-axis.

For a continuous medium of atomic volume density N , infinite extension in x′, y′

directions8and of thickness L along z′ axis, the total dipole field is written as:

Ed(r) =
k3
`

4π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ L

0

dz′N{
[3(êx.n̂)n̂− êx]

(
1

(k`R)3
− i

(k`R)2

)
− [(êx.n̂)n̂− êx]

1

k`R

}
(1.35)

× eik`Rα(ω`)Eloc(r
′).

Performing the integrals over x′ and y′ in the far field regime (i.e. ignoring 1/R3 and

1/R2 terms) is a standard textbook result. It can be shown (Appendix A.1 or [Fearn,

James, and W Milonni, 1996]) that the same results survives the near field corrections

and that the dipole field projected along the x−axis only depends on z and stands for:

Ed(z) =
ik`Nα(ω`)

2

∫ L

0

dz′Eloc(z
′)eik`|z−z

′|, (1.36)

where by translation invariance in the system, the local field only depends on z’.

Finally using Eq. (1.31), the field transmitted at a position z after the slab can be

written on its final form:

8The laser beam waist used in the manuscript is on the order of 100 µm and therefore much larger
than L. It justifies the use of a 1D model.
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Et(z) = E0(z) + Ed(z). (1.37)

In the laboratory, we measure transmission spectra defined as the squared ratio of the

total transmitted field to the one out of resonance:

T (ω`) =

∣∣∣∣Et(z)

E0(z)

∣∣∣∣2 . (1.38)

We have derived from a microscopic approach the transmission through an atomic slab

of thickness L. This is an important achievement because we will use it extensively in

the following chapters. Note that, within this formalism, the term absorption stands

for destructive interferences between the incident laser field and the induced dipole

field appearing in the numerator. Quite often in the literature, the term extinction is

mentioned to describe this effect. In the next section, we use this last formula to give

insights on our experimental investigation of the interactions.

1.2.3 A transmission model to probe interactions

The transmission coefficient that we just derived depends on the laser frequency

through the atomic polarizability α(ω`). To illustrate this transmission model, we

present in this part a theoretical transmission spectrum in the simplest case of a cold,

non-interacting and large atomic ensemble. It gives an overview of the way we plan to

reveal experimentally the dipole-dipole interactions.

Transmission without interaction In a large and dilute atomic ensemble, the

response function of the medium often called susceptibility can be written χ = Nα.

Besides, the local field reduces to E0e
ik`z

′
and using Eq. (1.37), we get for z > L:

Et = E0 (1 + ik`χL/2) . (1.39)

In Fig. 1.4(a-b), we display the real and imaginary parts of χ respectively associated

with the dispersive and absorptive properties of the gas. For a cold, dilute, large slab

of atoms (see Fig. 1.4(c)), the resulting transmission spectrum for a collectivity of

C = 10−5 and a slab of L = 1 mm has a Lorentzian symmetric shape centred around

the zero-detuning axis (see Fig. 1.4(d)).
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χ

E0 Et

T = |Et/Einc|20-4 -2 2 4

Δ/Γ0

0-4 -2 2 4

Δ/Γ0

(a)

(b) (d)

(c)χ′

χ′′

L

Large and dilute

cold atomic slab

Figure 1.4: Spectroscopic transmission model (a) Normalized real part of the suscepti-

bility χ′ associated with the dispersion properties of the gas. (b) Normalized imaginary part

of the susceptibility χ′′ associated with absorption. (c) Scheme of principle: transmission

through a cold dilute and large atomic slab of size L and density N . (d) Transmission

spectrum when the laser detuning Δ = ω� − ω0 varies for a collective parameter C = 10−5

and L = 1 mm. In dashed grey (respectively yellow), width and shift are Γ0 and 0

(respectively 2Γ0 and −Γ0).

Experimental investigation of the interactions We present in Fig. 1.4(d), a broad-

ened, and shifted spectrum for comparison (shift of χ: −Γ0, and width of χ: 2Γ0). The

experimental work in this Thesis consists in collecting many experimental spectra in a

given situation (density N and cell thickness L) and fitting it with the transmission

model letting the density of atoms, an extra shift and width as free parameters.

We expect these parameters to provide information on the nature of the interaction

(dependence with N for example).
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1.3 Using dense thermal vapors in nano-cells: open questions

Obviously, our experimental situation differs from the case of a dilute, large slab of

atoms fixed in vacuum. Working with a dense, thermal vapor confined in a nano-cell

provides a series of opens questions that will require all along this manuscript to refine

the transmission model introduced above.

1.3.1 Atomic motion in thermal vapors

Non-local effects Atomic motion in thermal vapors is one of the most obvious

modifications of the spectral properties9. How to include it starting from the microscopic

approach is not trivial. Reducing motional effects to Doppler shifts [Javanainen et al.,

2014; Bromley et al., 2016] is not valid when atoms moves over a distance larger than

a wavelength before they relax (i.e. v/Γ0 > λ). This is because the relation between

a dipole and the driving field is non-local. In the intermediate case (Θ = 100 µK

→ v ∼ 10 m.s−1), v/Γ0 ∼10 nm, some works are under way to include the motion

in a cleaner way [Zhu et al., 2016; Bromley et al., 2016]. For dilute thermal vapors

(Θ = 300 K → v ∼ 200 m.s−1), v/Γ0 � λ and non-local effects are expected to be

predominant. How do these effects modify the line-shapes? How should the theoretical

model be revised to account for this motion? Are non-local effects layer thickness or

density dependent? We will answer these questions in Chapter 2.

Collisions Due to their motion, atoms collide with the cell walls. When the relaxation

distance v/Γ0 is larger than the cell thickness, most of the atoms experience transient

dynamics. In this case, the atom-field relation is still more subtle and whether or

not the bulk atomic response χ holds is an open-ended question. Simultaneously,

atom-atom collisions may happen. Regardless of collision nature approximations, it

can be shown [Lewis, 1980] that it produces Lorentzian homogeneous line broadening

and shift. In practice, the line-width Γ0 has to be be corrected to include these effects.

Do we see the effect of the collisions in the experimental data? Does it modify the

non-local relation between the dipoles and field? How does it scale with the atomic

density? Can collisional shift be distinguished from the static Lorentz shift? Answering

these questions will link Chapter 2 and 3 together.

9It is common knowledge in macroscopic spectroscopic cells that inhomogeneous broadening due to
Doppler shift results in Gaussian line-shapes.
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1.3.2 Atomic vapor in a nano-cell

Density shifts While previous experiments with vapors reported the presence of

density shifts [Keaveney et al., 2012b; Maki et al., 1991], the situation is more confusing

in the cold-atoms community where experiments reported the presence of the shift [Roof

et al., 2016] or not [Jennewein et al., 2016; Corman et al., 2017]. Besides, theoretical

works showed that these shifts should depend on the medium geometry (slab [Friedberg,

Hartmann, and Manassah, 1973; Friedberg and T. Manassah, 2009], ellipse [Friedberg

and Manassah, 2010],...). The origin and condition of validity of these shifts are also

actual sources of debate [Javanainen et al., 2014; Keaveney et al., 2012b]. It is first

worth to clarify the situation. How is the local field expression in Eq. (1.36) refined to

account for dipole dipole interaction? Is the geometry dependence of quantum nature

or can it be explained classically? What is the role of the Fabry-Perot nature of the

cavity in this affair? Chapter 3 clarifies to a certain extent this long-standing debate.

Cavity effects The cells used in this manuscript are either made in sapphire (refractive

index ns = 1.76) or borofloat (ns = 1.46) leading to very low finesse cavities F ∼ 1.

This leads to a variety of complications to account for. First, the field driving the

dipoles is modified inside the cavity. Then, the field radiated by the atoms can be

multiply reflected hence leading to strong line-shape asymmetries that need to be

understood for fitting purposes. Bypassing a complete line-shape model is an approach

often used by many authors that could be misleading as we will see in Chapter 3. How

to account for the physical environment surrounding the atoms is clarified along the

different chapters.

Interaction with a surface Close to a surface, the van der Waals potential scales as

1/z3 in the non-retarded regime where z is the atom-surface distance. The order of

magnitude of this effect is comparable to the resonant dipole-dipole interaction. The

atoms experience a spatially varying potential that produces inhomogeneous shifts: it

is another source of non-Lorentzian line-shapes. In Chapter 4, we incorporate this

potential into the transmission model and we try to find a method to extract in a

precise way the interaction strength C3. It raises a panel of questions such as: (i) Does

C3 depends on the surface material? (ii) May surface roughness have a significant

impact on the spectra? (iii) Can a repulsive potential close to the surface induce an

atom-surface bound state? Does it even exist? We will try to answer this question in

Chapter 5.
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1.3.3 Coherent and incoherent light scattering

Last but not least, there are not less than two reasons for addressing all these previous

questions using off-axis fluorescence spectroscopy. As compared to transmission

spectroscopy, off-axis light scattering do not follow the Helmholtz equation where

the emitters can be described with an effective dielectric constant. This scattering

rather originates from the random positions of the scatterers in the ensemble [Schilder

et al., 2017]. It is therefore enlightening to investigate the presence or not of non-local,

cavity, surface or density effects on an incoherent light spectrum. This will be the

purpose of Chapter 6.
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Introduction

In Chapter 1, we pointed out the importance of the atomic motion in the optical

response of an ensemble of atoms. In this second chapter, we show that it leads to a

mesoscopic response of a vapor confined in a nano-cell. One important characteristic of

mesoscopic systems is the fact that their properties are not ruled by local quantities.

The mesoscopic regime arises when the size of the system becomes smaller than a

distance ξ characterizing the non-local response of the medium to an excitation.
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Non-locality is thus a prerequisite to the observation of mesoscopic behaviors. For

instance, the concept of local conductivity fails to describe the transport of electrons or

phonons when the distance over which the phase of the carriers is lost exceeds the size

of the system, as is the case in nano-wires [Agrat, Yeyati, and van Ruitenbeek, 2003;

Schwab et al., 2000]. In these systems the electrical potential (or the temperature) is

undefined and one uses instead a global conductance. Also, non-local effects are at

the origin of the low temperature anomalous conductivity of a metal at frequencies

ranging from GHz to infra-red [Pippard and Bragg, 1947], as the skin depth over

which the field varies near a surface is smaller than the mean-free path of the electrons

in the metal [Wooten, 1972; Gilberd, 1982]. In this particular situation, only the

electrons that move parallel to the surface of the metal can contribute significantly to

the conduction process.

In optics, non-locality is often observed in non-linear bulk media [Boyd, 2009;

C. Rotschild and Segev, 2006], in particular in the presence of long-range interactions

between particles [Busche et al., 2006]. In contrast, manifestations of non-local optical

properties in linear media are scarce. They have been observed for molecules near

metallic surfaces [Eagen et al., 1980; Ford and Weber, 1984] and the mesoscopic regime

was reached with nano-particles for which the electron mean-free path is on the order

of the particle size [Kreibig and Genzel, 1985; Voisin et al., 2001]. Also, the selective

reflection at the interface between a glass and a bulk atomic vapor [Cojan, J. L. , 1954;

Burgmans, Schuurmans, and Bölger, 1977; Briaudeau et al., 1998] was interpreted as

an indirect evidence of non-locality originating from the motion of the atoms and

their transient response following a collision with the glass surface [Schuurmans, 1976;

Nienhuis, Schuller, and Ducloy, 1988; Vartanyan and Trger, 1994; Vartanyan and Lin,

1995; Ritter et al., 2018].

In any homogeneous medium, the relation between the polarization vector and the

electric field at a frequency ω` is given by1 (one-dimensional model) [Landau and

Lifshitz, 1960]:

P (z,ω`) =

∫ +∞

−∞
dz′ε0χ(z − z′,ω`)E(z′) , (2.1)

where the susceptibility χ(z − z′,ω) describes the spatial response of the medium and

typically decays over a distance ξ, the so-called range of non-locality. In an atomic

vapor, the non-locality comes from the atomic motion and ξ is equal to their phase

coherence length, i.e. the distance travelled by the atoms before the phase of the light

excitation imprinted on them is lost. It is lost due to collisions with other particles or

1In contrast to Chapter 1, where we used the local relation P (z′) = ε0χ(z′)E(z′).
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to radiative decay and ξ = v/Γt with v the atom velocity and Γt the total homogeneous

line-width [Schuurmans, 1976; Nienhuis, Schuller, and Ducloy, 1988; Vartanyan and

Lin, 1995]. The total homogeneous line-width is the sum of the natural line-width Γ0

and collisional effects. In a nano-cell, the presence of the walls separated by a distance

L breaks the translational invariance and the mesoscopic regime is achieved as soon as

ξ & L. Confining vapors in nano-cells, the non-locality should give rise to a mesoscopic

response, as the system size is now on the order of the phase coherence length ξ, as

explained below. So far, the interplay between non-locality and system-finite size were

barely studied in nano-cells [Dutier et al., 2003b]. In particular, the question remains

whether the concept of susceptibility itself holds in the mesoscopic regime. Another

important issue to clarify is the range of experimental parameters for which the local

transmission model introduced in Eq. (1.31) remains valid.

Structure of the chapter. We first show that including the atomic motion in the

optical Bloch equations yields a non-local susceptibility with a spatial extension ξ.

Then, we point out that if the cell thickness L is such that ξ > L, the atoms do not

reach steady-state leading to a mesoscopic regime. With the initial aim of studying

dipole-dipole interactions, we confined a Cs atomic vapor in a nano-cell and collected

transmission spectra. In the dilute regime, we observed striking differences with respect

to usual spectra gathered in bulk cells. To explain these differences, we then derive

two transmission models that include the Fabry-Perot nature of the nano-cell. On the

one hand, Model 1 ignores the spatial extension ξ hence the non-local properties of

the vapor. On the other hand, Model 2 accounts for it and contains the mesoscopic

properties of the system. We fit the experimental spectra with the two models for

different cell thicknesses. A study of the fitted parameters reveals the mesoscopic

characteristics of the vapor-cell system.

2.1 Mesoscopic response due to the atomic motion

In this section, we explain the origin of the mesoscopic response of a thermal atomic

vapor confined in a nano-cell.
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2.1.1 Hydrodynamic Maxwell-Bloch equations for the coherence field

We aim at describing the propagation of a laser field along the z axis through an

atomic vapor. To this purpose, we decompose the linearly polarized, monochromatic

field driving the atom inside the cavity formed by the sapphire plates:

E(z, t) =
1

2

[
E(z)e−iω`t + E∗(z)eiω`t

]
, (2.2)

and the polarization of the atomic vapor:

P (z, t) =
1

2

[
P (z)e−iω`t + P ∗(z)eiω`t

]
, (2.3)

in their positive and negative frequency components. We first consider a given atomic

transition between ground and excited states, with respective hyperfine states F

and F ′. The transition frequency is ωFF’ and the dipole matrix element dFF’. For

this transition, we introduce the classical coherence field ρ21(z, t, v) = 〈ρ(i)
21 (t, v)〉atoms

where 〈. . .〉 is the configuration average of the coherences ρ
(i)
21 of all atoms i located

within the (z, z+ δz) slab and with velocities in the range (v, v+ δv) where δz, δv → 0.

The evolution of this field is given by the hydrodynamic equation:

∂ρ21(z, t, v)

∂t
=

Internal atom evolution
(Bloch equations)︷ ︸︸ ︷

−iωFF’ρ21(z, t, v) + i
dFF’E(z, t)

~
− Γt

2
ρ21(z, t, v)

atoms flying into and off
from the slab at position z︷ ︸︸ ︷
−v∂ρ21(z, t, v)

∂z
.

(2.4)

The quantity dFF’ is the dipole matrix element of the transition at a pulsation ωFF’

between states F and F ′. In the following, we will use the notation dFF’ = dCFF’ as2

in Ref. [Siddons et al., 2008]. The first part of the right hand side of the equation is

the standard Bloch equations for the evolution of the coherence under weak driving

(we explained this term in Chapter 1), when the population of the excited state can

be neglected (ρ22 → 0). In addition, since the field is defined as an average over many

atoms at a given location z, it can also change due to atoms flying into and off the

vapor slab at position z. It appears owing to the fact that we consider the coherence

field rather than the coherence of a given atom. The corresponding term is written

under the second brace. Using Eq. (2.2) and the rotating wave approximation, we

2We can find in Ref. [Siddons et al., 2008] that d = 3
√

ε0~Γ0λ3

8π2 and CFF’ are the Clebsch-Gordan

coefficients that depends on the hyperfine transition.
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obtain the time-independent equation

v
∂ρ21(z, v)

∂z
= −

[
Γt

2
− i∆FF’

]
ρ21(z, v) + i

dCFF’E(z)

2~
, (2.5)

where ∆FF’ = ω` − ωFF’ is the laser frequency detuning from the atomic transition.

2.1.2 Non-local susceptibility

To understand the origin of the non-locality, we take the Fourier transform of this last

equation with respect to z and t, resulting in3:

ρ21(k,ω`, v) = iCFF’
dE(k,ω`)

2~
1

Γt/2− i(∆FF’ − kv)
. (2.6)

In the (k,ω) space and for an homogeneous medium, the relation between the

polarization and the field is: P (k,ω`) = ε0χ(k,ω`)E(k,ω`). Besides, we have P (k,ω`) =

〈2N dCFF’ρ21(k,ω`, v)〉, with N the vapor density and where 〈. . .〉 is the average on the

the Maxwell Boltzmann velocity distribution Mb(v). Consequently the susceptibility

of the vapor in the (k,ω) space is
〈
χFF’
v (k,ω`, v)

〉
with:

χFF’
v (k,ω`, v) = iN C2

FF’d
2

~ε0
1

Γt/2− i(∆FF’ − kv)
. (2.7)

The k-dependence (not to be confused with k`, the wave-vector of the laser) resulting

from the Doppler effect is at the origin of the non-locality and leads to spatial

dispersion [Landau, Pitaevskii, and Lifshitz, 1960]. The inverse Fourier transform in k

yields the susceptibility in the (z,ω) space:

χFF’
v (z − z′,ω`, v) = iN C2

FF’d
2

~ε0
1

2π

∫ ∞
−∞

eik(z−z′)

Γt/2− i(∆FF’ − kv)
dk. (2.8)

To calculate the integral, we integrate in the k-complex plane.

When applying the residue theorem, care must be taken, as the position of the pole

3The driving field is monochromatic here. We do not write the delta function in the ω space for sake
of simplicity. The method can yet be generalized to more complex driving fields.
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Figure 2.1: Non-local and mesoscopic effects Illustration of the non-local response in

presence of an interface in a bulk cell (thickness Lbulk) and a nano-cell (thickness L).

Light orange fill: non-local response χ for ξ ∼ λ. Dark blue fill: local response χ for ξ � λ.

(a) In a bulk cell, the response function is not affected by the walls. (b) In a nano-cell, the

non-local response leads to mesoscopic effects: the atomic response is modified by the

presence of the walls.

k0 = (ΔFF’ + iΓt/2)/v in the plane depends on the sign of the velocity4. It leads to:

χFF’
v (z − z′,ω�, v) = 0 when

z − z′

v
< 0 , (2.9)

χFF’
v (z − z′,ω�, v) = iN C2

FF’d
2

�ε0|v| exp
[(

−Γt

2
+ iΔFF’

)
z − z′

v

]
when

z − z′

v
> 0 .

(2.10)

The expression (2.10) shows that the distance ξ over which the polarization depends on

the field (i.e. the range of non-locality) is ξ = |v|/Γt , thus confirming the qualitative

discussion at the beginning of the chapter. For a typical vapor at room temperature

(no collisional broadening), v � 200 m.s−1 and Γt = Γ0 � 2π × 10 MHz which leads

to ξ � 3 μm. This distance originates from the motion of the atoms and drastically

4The fact that χv(z − z′,ω�, v) depends on the sign of (z − z′)/v indicates that the optical response
at position z only depends on atoms located at position z′ < z moving with a positive velocity
and on atoms at z′ > z having a negative velocity.
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2.2 Measurement of the optical transmission of an atomic vapor in the dilute regime

modifies the properties of the field transmitted by the system, as we will see below.

Note: Non-locality is not specific to nano-cells and the susceptibility in large cells

is represented in Fig. 2.1(a). In this case, the distance ξ over which the atoms relax is

much smaller than the cell thickness (ξ � L) and the atoms reach steady-state. In a

nano-cell, the situation is different because atoms are closer to cell surfaces. Boundary

conditions due to atom-wall collisions must be accounted for independently.

2.1.3 Mesoscopic response of the vapor-cell system

Quenching collisions We assume quenching collisions with the cell walls [Schuur-

mans, 1976], i.e. the phases of the atomic coherences are reset upon collisions. Velocity

classes ±v become independent and the presence of the walls therefore breaks the

translational invariance in the medium (in contrast with elastic collisions). We express

this fact by multiplying χv(z− z′,ω`) by a top-hat function (ΠL
0 (z′) = 1 for 0 < z′ < L

and is null elsewhere). When ξ & L, the atoms mainly experience a transient flight

inside the cell. The non-local response of the medium then depends on the size L of

the entire system, and is not a characteristic of the bulk medium only (see Fig. 2.1(b)).

This regime, called mesoscopic, is not reached either in bulk cells where the atomic

response is not truncated (ξ < L), nor if the spatial extension ξ is neglected. Finally,

the response of the system is obtained by summing over all the atomic transitions:

χ
L
(z, z′,ω`) =

∑
F ,F ′

ΠL
0 (z′)×

〈
χFF’
v (z − z′,ω`, v)

〉
. (2.11)

This final expression will be used later in the chapter.

Now that we have described the origin of the mesoscopic regime, we present our

experimental work.

2.2 Measurement of the optical transmission of an atomic vapor in

the dilute regime

In this section, we present in more details our experimental set-up to observe the

optical transmission through the nano-cell. We particularly describe the methods used

to measure the vapor properties such as density N and thickness L. Subsequently, we

produce experimental transmission data and comment their spectral properties.
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Chapter 2: Mesoscopic reponse of a dilute atomic vapor confined in a nano-cell

2.2.1 The experimental set-up

Details about the nano-cell The sapphire cells used in this manuscript are built in

Armenia in the group of D. Sarkisyan [Sarkisyan et al., 2001]. Prior to filling, the

system is pumped to reach a vacuum level better than 10−3 mbar. The one used

in this chapter is loaded with Cs atoms. Both windows are made of 1 mm thick

sapphire (Al2O3) crystal with 20 mm×30 mm transverse dimensions. The crystal

plates are cut such that the surface plane is perpendicular to their optical axis to

avoid any birefringence issue. Their surface roughness is on the order of 3 nm rms.

One of these plates is slightly curved, with a radius of curvature R > 100 m leading

to a wedged shape (angle ∼ 10−4 rad). Both of them are connected together with a

thermo-resistant glue handed with platinum spacers. The resulting space between

them (i.e. the nano-cell), varies between 30 nm and 2 µm. We show a picture of the

nano-cell in Fig. 2.2(b). The windows are connected5 to the atomic reservoir whose

temperature defines the density of atoms inside the nano-cell.

Measurement of the temperature At thermodynamic equilibrium, the saturation

vapor pressure P at a temperature Θ is related to the atomic density with the ideal gas

law N = P/kBΘ, where kB is the Boltzmann constant. The vapor pressure dependence

with temperature can be found in Ref. [Zentile et al., 2015a] and differs from one

alkali to another. The main reason for measuring the temperature is that the top

part with the wedged sapphire windows must remain 30◦C warmer than the reservoir

to avoid vapor condensation. To this purpose, two alumina-chrome thermocouples

(type K) are positioned to measure the temperature of the side-arm and windows

heated by separated home-made ovens. The temperature measured by the reservoir

thermocouple should provide an information on the density of atoms in the nano-cell.

Due to possible temperature variations and because the reservoir thermocouple is not

directly in contact with the atoms, we cannot estimate the real atomic temperature

with a better precision than ∆Θ = ±10◦C. We will rather deduce more accurately the

atomic density directly from the spectral properties.

Measurement of the thickness A second important parameter in the system is the

cell thickness. It is measured by an off-resonant interferometric technique initially

described in [Jahier et al., 2000]. The idea is to collect the laser intensity reflected

5From our collaboration with colleagues in Armenia, we receive cells (with no details as to how they
are fabricated). Particularly, key points such as the use of glue or spacers and the connection of
the sapphire side-arm to the Pyrex vacuum manifold are kept secret.
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Figure 2.2: Experimental set-up (a) ECDL: DL-PRO external cavity diode laser from

TOPTICA. Ref. Cell: 7-cm Cs filled vapor cell for reference spectroscopy. Fabry-Perot:

home-made etalon for time-to-frequency laser scan linearization (see also Fig. 2.3(a-b)).

SMF: single-mode fiber. Lens: focal lens with a 75-mm focal length. Feedback loop (see

also Fig. 2.3(c)) NC: nano-cell. The transmitted light is collected on a photodiode placed

after the nano-cell. (b) Photograph of the Cs nano-cell. Newton fringes indicate the wedged

shape of the nano region. (c) Thickness measurement: the incident beam is reflected on

the sapphire-vacuum (S1) and vacuum-sapphire (S2) interfaces. The angle of the wedge is

exaggerated. The two reflections interfere to give the reflected signal R. (d) Normalized

reflection power R according to the cell thickness. Knowing where the optical contact (here

L = 0 correspond to the glued part) is, we deduce the cell thickness from the reflected

power intensity.
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Chapter 2: Mesoscopic reponse of a dilute atomic vapor confined in a nano-cell

from the interferences on the surfaces of the wedge of the cell (see Fig. 2.2(c)). Due to

the Fabry-Perot nature of the nano-cell, the reflection intensity with respect to the cell

thickness is proportional to:

R = 1−

∣∣∣∣∣∣∣
4ns/(1 + ns)

2

1−
(
ns−1
ns+1

)2

exp (2ik`L)

∣∣∣∣∣∣∣
2

. (2.12)

We display in Fig. 2.2(d) the normalized interferometric signal as a function of the

cell thickness. When we measure the cell thickness, the laser scan is stopped and its

frequency is set far-off resonance. The laser is focused on the cell with a waist (1/e2 in

intensity) smaller than 100 µm. With this method, the precision on the cell thickness

determination is mainly limited by the waist size and is typically between 5 and 10

nm. This is an important estimation because this parameter will be fixed in our fitting

procedures.

Driving field properties One major asset of the experimental system is that the

laser used for measuring the local cell size simultaneously drives an atomic slab of the

very same thickness (See Fig. 2.2(a) for set-up details). The external-cavity diode

laser (DL PRO from TOPTICA) has a spectral line-width better than tenths of kHz.

It impinges on the nano-cell at almost normal incidence. When the laser drives the

atoms, it is continuously scanned at a few Hertz rate around the alkali resonant line of

interest. In this chapter λ = 894 nm for the D1 line of Cs. The laser power is on the

order of 1 µW (if not recalled later, this is the case in all the manuscript) such that

the intensity of the laser incident on the atoms is way below the saturation threshold

(saturation parameter s < 0.1 [Steck]). As a result, we comply with the weak probe

approximation introduced in Chapter 1. The experimental limits of this regime are

further studied in Appendix B. In order to produce an experimental transmission

spectrum, i.e. a transmission according to the laser frequency, we need to calibrate the

signal collected on the photodiode. This is the purpose of the next part.

2.2.2 Calibration of the detection system

The laser light is transmitted through the vapor filled nano-cell and the result-

ing atomic spectra are collected on a silicon-based low-noise Thorlabs photodiode

(model DET36A/M). The raw data signal consists in a voltage as a function of time.

Inspired by a previous work [Keaveney, 2014], I have developed two procedures to
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2.2 Measurement of the optical transmission of an atomic vapor in the dilute regime

normalize transmission spectra:

Time-to-frequency normalization. To observe a transmission spectrum, we scan

the laser frequency over the atomic resonances. However, this scan is not linear with

time. In other words, there is a priori no linear relation between the recorded time on

the photodiode and the laser frequency. An home-made Fabry-Perot is initially used

to correct the time non-linearity in the laser frequency scanning. The spacing between

both mirrors of the cavity is about 10 cm leading to a free spectral range of about

1 GHz, but the exact value is not important. The calibration is done as follows:

r We first locate the arrival times corresponding to the transmission maxima of

the Fabry-Perot represented in Fig. 2.3(a).

r We fit these time locations with a linear function. The difference between the

experimental arrival times and the linear fit reveals the non-linearity in the laser

scanning (see Fig. 2.3(b)).

r We fit the difference by a polynomial function of order 3. Then, we subtract

from our experimental data this third-order correction. As a result, the relation

between the corrected time and the frequency becomes linear.

A 7-cm commercial spectroscopic cell is finally used to do the time-to-frequency

conversion [Steck]

Normalization of the transmission signal The intensity of the laser varies when

the frequency scan is performed. Several techniques are possible to correct for this

variation. The most simple method is to assume a linear variation and proceed to a

division of the raw data by a ramp matching the off-resonant signal. However, due

to Fabry-Perot effects on several elements of the set-up (lenses, cubes, wave-plates,

fibers...), this linear variation is not an ideal approximation. We have therefore set-up a

feedback loop to stabilize the laser intensity when it scans the frequency. The intensity

feedback loop is represented in Fig. 2.3(c) associated with a scheme of principle of its

operation. To adapt the optical intensity variation in real time, the corrector needs

to be much faster than the laser scan rate. Initially, we have built an home-made

proportional, integral, and differential controller (PID). It broke for unexplained

reasons and we finally used a commercial one (the LB1005 Servo controller from

Precision Photonics). In practice, we managed to correct intensity variations up to

0.5% of absorption, limited by residual Fabry-Perot effect after the controller. Thanks
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Figure 2.3: Calibration of the detection system (a) Transmission from a home-made

Fabry-Perot as a function of the time recorded on the photodiode. The red crosses show the

location of the peaks. (b) Top panel: Red crosses are the arrival time ta of the transmission

peaks as a function of the recorded time. The black dotted line is a linear fit to the

data (tb). Bottom panel: The subtraction of the arrival time by the linear fit show the

non-linearity in the laser scan (blue crosses). Red dotted line: 3rd order polynomial fit to

the data which is finally used to correct the initial recorded time. (c) Feedback loop. Initial

laser power before the loop: V0. The first diffraction order from the acousto-optic modulator

(AOM) is collected on a photodiode. The signal is sent on a proportional-integral-derivative

controller (PID) that acts back on the AOM to correct the intensity variations. The

corrected signal after the loop is V1. (d) Signals V0 and V1 (ideal representation) with

respect to time.
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2.2 Measurement of the optical transmission of an atomic vapor in the dilute regime

to this operation, we only have to divide the raw data by the transmission out of

resonance, which is expected to be flat (i.e.independent of the frequency, see Fig. 2.3(d)

for an ideal operation).

2.2.3 Experimental spectra in the dilute regime

Observation of the Dicke Narrowing We present in Fig. 2.4(b) spectra resulting

from the above calibrations for a temperature of Θ = 170◦C and different cell

thicknesses. For the sake of comparison, we superimpose as a dashed line a spectrum

obtained in a 7-cm reference spectroscopic cell. The scheme of the Cs D1 line energy

levels probed by the laser is represented in Fig. 2.4(a). The differences between the

spectra in nano and bulk cells are striking. First, we observe out of resonances that

the spectra collected in the nano-cell feature very long tails with respect to the large

cell spectrum. Also, the line-shapes obtained with the nano-cell are more narrow on

resonance and seem Lorentzian in comparison to the broad and Gaussian-like spectrum

observed in the bulk cell. These spectral properties have already been reported in many

studies [Briaudeau et al., 1998; Dutier et al., 2003a] and the phenomenon is commonly

known as the Dicke narrowing. The main idea of this narrowing is the fact that only

atoms flying parallel to the cell walls contribute significantly to the optical response (a

situation reminiscent of the anomalous skin depth described in the introduction). The

other atoms collide with the cell walls and do not reach steady-state: the cell acts like

a velocity filter.

Oscillation of the transmission with L Another striking feature can be observed

in Fig. 2.4(c), where we plot the value Tmin of the minimum of the transmission for

the hyperfine transition from F = 4 to F ′ = 3 according to the cell thickness. We see

that Tmin(L) does not decay exponentially as the Beer-Lambert law predict. This is

expected for two reasons6. Firstly, the atoms being in a cavity, the transmitted field

amplitude is not given by the Beer-Lambert law: a λ/2-periodic oscillation, originating

from the multiple reflections in the cavity, modulates the exponential decay. Secondly,

even without the cavity, the field inside the vapor cannot be exponential due to the

mesoscopic character of the system, which leads to a λ-periodic oscillation. This

λ-periodic oscillation, characteristic of the mesoscopic regime and commonly named

6The increase in transmission that we can see at L ∼ λ/4 is probably due to a inaccurate measurement
of the local thickness. Indeed, for L being a multiple of λ/4, we should use another laser to refine
the precision on the measurement (see also [Dutier, 2003]).
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Figure 2.4: Oscillation of the minimum of transmission (a) Scheme of the Cs D1 line
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extracted from the spectra.
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the collapse and revival of the Dicke narrowing [Dutier et al., 2003b] will be discussed

in more details in Chapter 6.

Based on the results of section 2.1, we will develop two models to interpret the

experimental data:

1. The Model 1, that incorrectly ignores the spatial extension ξ and therefore

neglects the mesoscopic regime.

2. The Model 2, that correctly accounts for the atomic motion and incorporates the

mesoscopic response.

2.3 Transmission through the nano-cell in the mesoscopic regime

In order to derive the field transmitted by the system, we first calculate the field

radiated by the atoms ignoring the sapphire cell. We then provide more general

expressions that account for the Fabry-Perot nature of the cell. We finally build

Model 1 and Model 2 to interpret the experimental data.

2.3.1 Field emitted by a vacuum-immersed thin atomic layer

We first consider an atomic slab of thickness L placed under vacuum, i.e. we do not

consider the sapphire windows of the nano-cell. As before, the slab is excited by a

plane wave (frequency ω`) with complex amplitude E0 exp[ik`z] where k` = ω`/c.

We recall from Chapter 1 that the amplitude of the field transmitted after the slab

is7 [Fearn, James, and Milonni, 1996]:

Et(z > L) = E0e
ik`z +

ik`
2ε0

∫ L

0

dz′P (z′,ω`)e
ik`(z−z′) . (2.13)

In a non-local linear medium consisting of atoms moving with velocity v (distribution

Mb(v)) as considered here, the relation between the polarization vector and the field is:

P (z,ω`) =

∫ ∞
−∞

dz′ε0χL(z, z′,ω`)E(z′), (2.14)

7Note that it is equivalent to Eq. (1.31), regardless of the relation (local or not) between the
polarization and the field.
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leading to the following expression for the transmitted field:

Et = E0e
ik`z +

∑
F ,F ′

ik`
2ε0

∫ L

0

dz′eik`(z−z
′)

[∫ ∞
−∞

dz′′ε0
〈
ΠL

0 (z′′)χFF’
v (z′, z′′,ω`, v)

〉
E(z′′)

]
︸ ︷︷ ︸

I=I1+I2

.

(2.15)

The average 〈...〉 on the Maxwell distribution is an integral over velocity
∫∞
−∞ dvMb(v).

It gives two integrals I1 for positive and I2 for negative velocity classes:

I1 =

∫ z′

0

dz′′ε0

∫ ∞
0

dvMb(v)
iNC2

FF’d
2

~ε0v
exp

(
z′ − z′′

v
(−Γt

2
+ i∆FF’)

)
E(z′′), (2.16)

I2 =

∫ L

z′
dz′′ε0

∫ 0

−∞
dvMb(v)

−iNC2
FF’d

2

~ε0v
exp

(
z′ − z′′

v
(−Γt

2
+ i∆FF’)

)
E(z′′). (2.17)

This separation into two integrals, one involving negative velocities, and the other

positive ones, using Eqs. (2.9) and (2.10) for χv(z
′ − z′′,ω`, v), also comes from the

assumption that the atoms loose their coherence at the boundaries of the slab.

Otherwise, an atom with a velocity −v would bounce off the surface, switching its

velocity to +v, and would contribute to the polarization even for z′ < z.

In order to proceed further, we need the expression of the field inside the vapor. As

we consider a dilute atomic medium placed in vacuum, we (i) neglect the reflection at

the boundaries of the slab, (ii) consider no extinction of the driving field along the

propagation8 and take E(z′′) ≈ E0 exp[ik`z
′′]. After some algebra, we end up with

(See more detail in Appendix A.2):

Et = E0e
ik`z

[
1−

∑
FF’

NC2
FF’d

2

2~ε0

∫ ∞
−∞

dvMb(v)

(
k`L

Λ
− k`|v|

Λ2
+
k`|v|e−

ΛL
|v|

Λ2

)]
,

(2.18)

where we have introduced Λ = Γt/2− i(∆FF’ − k`v). Equation (2.18) is equivalent to

the one derived by several authors [Vartanyan and Lin, 1995; Briaudeau et al., 1998]

starting from a different point of view, which made the non-locality less explicit than

the above derivation. We now discuss the contributions of the three integrals (labelled

J1, J2 and J3 respectively) in Eq. (2.18) (see also [Briaudeau et al., 1998]).

1. The first term J1 is the one we would have obtained had we simply taken for the

susceptibility χFF’
v (z, z′,ω`, v) of atoms at velocity v, the local, Doppler-shifted

8The model is therefore expected to be valid for small absorptions only.
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(and incorrect!) expression:

χFF’
v (z − z′,ω`, v) = i

NC2
FF’d

2

~ε0
1

Γt/2− i(∆FF’ − k`v)
δ(z − z′). (2.19)

Although intuitive, this approach would have missed the contributions from the

two remaining terms, which are important in the mesoscopic regime. The term

J1 dominates as soon as L & |v/Λ|. Close to resonance and for kv . Γt, this

yields L & ξ. This indicates that in large cells (L & fewµm), J1 is the dominant

contribution and the conventional dispersion theory9 applies.

2. The second and third terms J2 and J3 become important as soon as |v|/(|Λ|L) & 1,

i.e. L . ξ. These two terms are specific to the mesoscopic regime and are a

consequence of the non-local character of the atomic response. They dominate

for thin cells.

3. Finally, the third term J3 ∼ J2 exp[−L/ξ] describes the fact that the atomic

dipole stops emitting when it reaches the boundary of the slab. When J2 & J1,

we have seen that L < ξ and J3 ∼ J2, indicating that in the mesoscopic regime

it is not possible that J2 alone dominates.

2.3.2 Transmission through the nano-cell: Fabry-Perot effects

We now consider the more involved case where the atomic slab is confined between

the two windows of the cell (index ns), leading to a low-finesse cavity effect. This

situation has already been discussed, in particular in Ref. [Dutier et al., 2003a],

starting from a different point of view. In order to include these low-finesse cavity

effects, the amplitude coefficient in transmission t10 = 2ns/(1 + ns) and reflection

r20 = (1 − ns)/(1 + ns) of the driving field E0 on two closely spaced sapphire cell

walls with refractive index ns are taken into account. The driving field E± inside

the cavity is still considered in the dilute regime and can therefore can be written

as E+e
ik`z + E−e

−iklz ' t10/[1− r2
20 exp(2ik`L)]E0{exp[ik`z] + r20 exp[ik`(2L− z)]}.

Similarly, the radiated fields from the atoms are reflected multiple times inside cavity.

These fields, initially co- and counter propagating along z−axis inside the cavity

respectively give rise to an atom induced field after the cavity z > L of:

9The conventional dispersion theory is a common terminology that refers to the dispersion properties
of a medium in the steady-state regime. In our case, we refer to this terminology for a model
widely used for vapor cell, where the effects of the atomic motion on the optical response only
appears through a Doppler shift.
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Figure 2.5: Reflection and transmission of fields on the sapphire-vapor and vapor-
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and E− in the counter-propagating direction. They induce dipoles that initially emit fields

(in yellow) in the +z (respectively −z) directions. These fields are multiply reflected by

the cavity and give rise to a field EA+ (respectively EA−) propagating in the +z direction

outside the cavity. Atomic signals propagating backwards (z < 0) and contributing to the

reflection signal can be computed similarly.

EA+(z) =
∑
F ,F ′

t20 exp(ik�z)

1− r220e
2ik�L

ik�
2ε0

∫ L

0

dz′P (z′,ω�) exp(−ik�z
′) , (2.20)

EA−(z) =
∑
F ,F ′

r20t20 exp(ik�z)

1− r220e
2ik�L

ik�
2ε0

∫ L

0

dz′P (z′,ω�) exp(ik�z
′) . (2.21)

Equations (2.20) and (2.21), where t20 = 2/(1+ns), are valid whether the polarization-

field relation is local or not.

If the spatial extension of the susceptibility is neglected (i.e. χFF’
v takes the form of

Eq. (2.19)), the relation is local, and the spatial integration is easy: it is Model 1. If

the spatial extension of the susceptibility is kept (i.e. χFF’
v is given by Eq. (2.10)), the

relation is non-local and spatial integrals are more involved: it is Model 2. Finally,
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2.3 Transmission through the nano-cell in the mesoscopic regime

we obtain the transmission factor through the thin cell system T = |Et/Et0|2, where

Et = Et0 + EA+ + EA− is a coherent superposition of the transmitted atom-induced

field and transmitted driving field Et0 = t10t20/[1 − r2
20 exp(2ik`L)]E0 exp(ik`z). A

picture of the different fields involved to compute the transmission is represented in

Fig. 2.5. All the models presented in this Thesis have been implemented with Python

programs. Developing these programs for fitting purposes was also an important part

of my work. In order to reach reasonable computing time, all the integrals presented

above require analytical or semi-analytical forms that are detailed in Appendix A.3.

We now use these two models to interpret our experimental data.

2.3.3 The fitting procedure

In our models, we allow free parameters N , ∆P and ΓP to vary such that from now

on ∆FF’ = ω` − ωFF’ −∆p and Γt = Γ0 + Γp. The key point of the analysis is that

these parameters are constructed to describe bulk properties of the atomic vapor.

As a consequence, they can only account for bulk properties of the homogeneous

atomic ensemble such as collisions or the Lorentz field corrections. Crucially, they must

therefore not vary with the cell thickness L. This motivates one to fit experimental

data with Model 1 and Model 2 and compare the fitted parameters for different cell

thicknesses.

Fit with Model 1 The result of Model 1, for which we have adjusted the values

of N , ∆p and Γp to best fit an experimental spectrum obtained for L = 360 nm at

Θ = 170◦C, is shown in Fig. 2.6(a). Strikingly, it does not agree with the data: the

experimental line-width appears narrower than the calculated Doppler broadened

width. This is again a signature of the coherent Dicke narrowing already observed by

many authors [Dicke, 1953; Romer and Dicke, 1955; Dutier et al., 2003b; Sargsyan

et al., 2016]. In nano-cells, this emphasises the failure of the conventional dispersion

theory, which assumes the local susceptibility of the atomic gas given in Eq. (2.19) and

a Maxwell-Boltzmann velocity distribution. To improve our model, we first account

phenomenologically for the narrowing due to velocity selection caused by the surface.

We therefore suppose that mainly the atoms flying parallel to the windows contribute

to the signal [Briaudeau et al., 1998]. In Model 1 only, the Maxwell Boltzmann

distribution is replaced by Mb(v) = δ(v). The result, shown in Fig. 2.6(b) for the same

experimental spectrum, is in much better agreement with the data. Nonetheless, the

residuals reveal that the model fails to reproduce the narrow feature near resonance,
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Figure 2.6: Fitting with different models (a) and (b) Comparison of different fitting

models to an experimental transmission spectrum displayed in blue dots for L = 360 nm

and Θ = 170◦C (N = 5.6 × 1020 at·m−3). The green full line is Model 1 with a full

Maxwell Boltzmann integration: it fails to reproduce the data. The black dotted line

is Model 1, where the Maxwell Boltzmann distribution is replaced by δ(v) to account

phenomenologically for the presence of the interface. The red full line is Model 2. Zoom on

the optical transition 1 (see Fig. 2.4(a)) shows that only Model 2 reproduces accurately

the sharp features on resonance.

characteristic of the contribution from the slow atoms [Briaudeau et al., 1998].

Fit with Model 2 The fit of the data by Model 2 is presented in Fig. 2.6(b) for

the best found parameters N , Δp and Γp. The agreement is much better than with

Model 1. In particular, the narrow feature near resonance is reproduced accurately:

despite the fact that we keep the full Maxwell velocity distribution, the velocity

selection imposed in Model 1 and at the origin of the narrowing, is an automatic

consequence of the mesoscopic nature of this model. The long tails, characteristic

of the fast atoms contribution are also perfectly reproduced. The fitting procedure

described on a single spectrum can be extended to a whole set of data, previously

displayed in Fig. 2.4(a) for a temperature of Θ � 170◦C and a range of thicknesses

between 110 and 670 nm.

Even though residuals in Fig. 2.6(b) could discriminate between the two mod-

els [Hughes and Hase, 2010], the values of Δp and Γp returned by the fit will indicate

more clearly that only the complete Model 2 is correct, as we discuss below.
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Assignment of error bars. Assigning error bars for the fitted parameters N , ∆p and

Γp is a challenging part of the data analysis. This is so because it is extremely difficult to

assess precisely the experimental error associated with each data point (corresponding

to different laser detuning frequencies) of a single spectrum. As a consequence, no direct

χ2 analysis can provide a meaningful error on the fitted parameters. Nevertheless,

the error on the extracted parameters can be of two origins: (i) statistical errors, (ii)

systematic errors. The statistical error comes from the repetition of the measurement

at a same temperature and cell thickness. The fitted results for a parameter spread

around a mean value with a standard deviation ∆sta. The larger the absorption, the

better the signal to noise ratio and therefore the smaller the statistical error. The main

systematic bias originates from the fact that we need to evaluate the cell thickness

and let it fixed during the fitting procedure. We do so because if we let more than

three parameters to float, the fitting routine either not converge or give meaningful

results. We therefore propagate this error on the cell thickness (±2.5 nm). Namely, we

fit the spectra with two fixed values of the cell thickness: L− 2.5 nm and L+ 2.5 nm.

It gives two values for the parameter. The associated systematic error ∆sys is half

of the difference between these two values. The final error bar associated with each

parameter is finally:

∆ =
√

∆2
sta + ∆2

sys. (2.22)

Experimental observation of the mesoscopic regime Both parameters ∆p and Γp

characterize the bulk properties of the vapor and may only depend on the density N .

They should therefore remain constant when L varies. Importantly, the Fabry-Perot

nature of the cavity is already taken into account through the multiple reflections and

therefore should not contribute either to Γp and ∆p in the dilute regime. The evolution

of Γp for both models is represented in Fig. 2.7. For L ≥ 200 nm, only Model 2

presents no clear dependence with L. Furthermore, Γp extracted from this model

is in reasonable agreement with the expected self-broadening βN due to collisional

dipole-dipole interactions at the density corresponding to Θ ≈ 170◦C [Weller et al.,

2011]. For more details about collisional effects, refer to section 3.3 of Chapter 3.

Particular attention should be devoted to the different origins of Γp variations for lower

thicknesses. The small increase in Model 2 is due to the van der Waals interaction

between an atom and the surface: for Cs, the theoretical atom-sapphire interaction

coefficient C3 is around a few kHz·µm3 [Bloch and Ducloy, 2005; Whittaker et al., 2014]

and will be the subject of Chapter 4. Model 1 by contrast, yields a strong dependence
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Figure 2.7: Observation of the mesoscopic regime The experimental data used for

the fits are represented in Fig. 2.4(b). Fitted broadening parameter ΓP with respect to the

cell thickness L in black squares for the Model 1 and in red circles for the Model 2. For

thickness L < 100 nm, one observes the influence of the van der Waals interaction (blue

oval). The blue dotted line represents the theoretical collisional self-broadening prediction.

of Γp with L, which is not acceptable based on the arguments presented above. The

van der Waals effect is superimposed on a large variation from 250 to 550 MHz,

incorporated in the non-local model and corresponding to a transient broadening. The

agreement between Model 2 and the transmission spectra is therefore an experimental

report of the mesoscopic regime in the optical domain [Peyrot et al., 2019c].

60



2.4 Conclusion

2.4 Conclusion

The situation studied in this chapter, of an atomic vapor where the phase coherence

length exceeds the dimension of the system, is widely met in miniaturized atomic

sensors. The optical response of mesoscopic systems is now understood globally

using a transmission factor. This situation is evocative of the electrical conduction

in nano-photonics devices where the concept of local conductivity is no longer valid

and a global conductance has to be introduced. The analogy between our system

and the anomalous skin depth in metal is also striking. The formalism used in both

case to describe the propagation of the electric wave is similar. Particularly, we get

inspiration from the hydrodynamic derivative commonly used in this domain, to derive

the non-local susceptibility. It makes a strong parallel between these two communities.

We have shown that the propagation of light through nano-cells cannot be described

by local properties, and even the concept of non-local system-size-independent suscep-

tibility collapses. We have observed the transmission of light through a vapor confined

in a nano-cell. When the vapor is dilute enough, a small collisional broadening results

in a phase-coherence length ξ = v/Γt comparable to the cell thickness, leading to the

mesoscopic regime. In this regime, the non-local relation between P and E (Eq. (2.14))

also depends on L and the concept of size-independent susceptibility collapses, as is

also the case in nano-photonic devices [Eagen et al., 1980; Ford and Weber, 1984;

Cocoletzi and Mochn, 2005; Churchill and Philbin, 2016; Tserkezis, Mortensen, and

Wubs, 2017]. We have observed significant discrepancies between spectra obtained in

nano-cell with respect to more standard one usually obtain in bulk cells. We have

developed two models to interpret these differences. The theoretical Model 2 features

the mesoscopic properties of the system such as transient broadening or the collapse

and revival of the Dicke Narrowing [Dutier et al., 2003b]. As a consequence, it provides

consistent fitted parameters evolution with the cell thickness. Importantly, it allows

the extraction of meaningful quantities such as energy shift and line-width, hence

providing a theoretical framework for characterizing future atomic sensors. Finally the

excellent agreement with the data up to 20% light absorption is remarkable since

extinction of the driving field in the forward direction is not considered in this chapter.
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Introduction

In the first chapter of this manuscript, we have seen that dipole-dipole interactions

should start to play a significant role when light interacts with many emitters confined

in a volume smaller than λ̄3. Particularly, it should lead to a shift and broadening of

the optical response of the atomic ensemble. We have then highlighted in Chapter 2

that when the atoms move with a velocity v, the response of the system to the light

excitation is non-local. We introduced a distance ξ = v/Γt characterizing the relaxation

of the atoms. In a dense medium, the total homogeneous line-width Γt should therefore

increase due to dipole-dipole interactions and non-local effects play a minor role as ξ

can now be much smaller than the size of the system.



Chapter 3: Collective effects in a dense thin atomic vapor slab

Simultaneously, the influence of dipole-dipole interactions in small geometries has

resulted in a long-term debate about spectral energy shifts. Triggered in the early

1970s by Friedberg and Manassah [Friedberg, Hartmann, and Manassah, 1973], the

Cooperative Lamb Shift (CLS) contention has generated as many interests as chaos.

The origin of this frequency shift is confusing: for some it arises from virtual photon

exchanges triggered by the quantum vacuum fluctuations of the electromagnetic

field [Friedberg, Hartmann, and Manassah, 1973; Frucci et al., 2017], for others it is a

purely classical effect [Javanainen and Ruostekoski, 2016]. A clarification is therefore

needed. Particularly, there is no unambiguous demonstration of the phenomenon in

the literature. The conditions for validity of the CLS are also controversial. Can we

measure it experimentally? Beyond the CLS, is it possible to extract atomic properties

such as shift or broadening, not affected by the environment (cell walls for example)?

This are the questions we try to elucidate in this chapter.

Structure of the chapter We first present in more details the CLS controversy and

provide a hopefully clear demonstration in the slab geometry. In this context, we

modify the transmission model, including as a perturbation, density effects in the

dipolar field. We then explain the origin of the CLS and assess its domain of validity.

Subsequently, we measure the transmission through the nano-cell in the dense regime

and interpret the observed shifts. Extending our model to all perturbation orders in

atomic density, we are able to measure density shifts and broadening, not influenced

by their environment.

3.1 The Collective Lamb Shift

In this section, we first present the CLS controversy in more details. We then derive

the CLS in two steps: (i) we give an expression for the local field inside the slab to

find the field radiated by the dipoles, (ii) we expand the latter at second order in

density to derive the shift observed in transmission.

3.1.1 Origin of the controversy

The resonant dipole-dipole interactions between atoms should lead to a collective

frequency shift of the atomic lines. In the case of an atomic slab of thickness L and
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3.1 The Collective Lamb Shift

density N , it was predicted to be [Friedberg, Hartmann, and Manassah, 1973]:

∆CLS = ∆LL −
3

4
∆LL

(
1− sin 2k`L

2k`L

)
, (3.1)

where ∆LL = −π(N /k3
` )Γ0 is the Lorentz-Lorenz shift, k` = 2π/λ is the wave-vector1,

Γ0 is the natural line-width of the relevant atomic transition and N the volume density

of atoms. This result was derived using second order energy perturbations in the

dipole strength. The so-called Cooperative Lamb Shift was defined as:

∆CLS = Re (〈ψ|Vdd |ψ〉) , (3.2)

where Vdd is the dipole-dipole potential operator and 〈〉 the quantum average on a

weakly-driven (only one excitation in the system) system |ψ〉 describing the ensemble

of density N . The derivation of Eq. (3.1) starting from Eq. (3.2) made by the authors

involved intricate integrals, that have to be normalized in a quite obscure way to avoid

divergences2. As a matter of fact, this complexity clouded the meaning of the shift

which was furthermore not related to any observable quantity.

Four decades later, the first measurements of the CLS were reported using a layer of

Fe atoms [Röhlsberger et al., 2010] and a slab containing a hot alkali vapor [Keaveney

et al., 2012b]. Following these experiments, it was pointed out that Eq. (3.1) is valid

only in the low density limit (N /k3
` � 1 [Javanainen and Ruostekoski, 2016; Javanainen

et al., 2017]), a condition not met by the experiment of [Keaveney et al., 2012b] for

which N /k3
` ∼ 100. Reference [Javanainen et al., 2014] suggested that this CLS should

only be present when large inhomogeneous broadening is present, such as in a hot vapor.

However, subsequent experiments on ultra-cold atoms (insignificant inhomogeneous

broadening) either reported a shift consistent with the CLS prediction [Roof et al.,

2016], or a negligible shift [Corman et al., 2017]. Recently, theoretical work highlighted

that the CLS in a slab geometry [Javanainen and Ruostekoski, 2016] should merely

arise from cavity interferences between the boundaries of the medium. In contrast to

the original suggestion [Friedberg, Hartmann, and Manassah, 1973], in the cavity

viewpoint, the CLS would not be related to the Lorentz local field. Clearly, the

situation is confusing and further work is needed to clarify it. In order to do so, we

provide below a new, simpler, demonstration of the CLS in the slab geometry.

1Note that we assimilate here the wave-vector of the light k` and the one of the atom because the
laser is near-resonant.

2Despite many attempts of the authors for clarifying their demonstration (see for example [Friedberg
and Manassah, 2010]), the origin of some integrals remains unclear (especially Eq. 4.1 of [Friedberg,
Hartmann, and Manassah, 1973]).
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3.1.2 Local field in dense media

To derive the above CLS formula, we compute the field transmitted by the slab given

by Eq (1.37). It requires the expression of the dipole field appearing in Eq. (1.36)

which is recalled below:

Ed(z) =
ik`Nα(ω`)

2

∫ L

0

dz′Eloc(z
′)eik`|z−z

′| .

In this last formula, α and Eloc are respectively the atomic polarizability and the local

field defined in Chapter 1. In this chapter, we will assume a local relation between the

driving field and the atomic slab because we expect large broadening. In this case,

the relaxation distance ξ introduced in the previous chapter should be much smaller

than λ and the thickness L of the vapor. Non-local and mesoscopic effects should

therefore play no significant role in the atomic response. We will see below that this

approximation is justified in the case of our experiment. We therefore use the local

relations P = ε0χ 〈E〉 and P = ε0NαEloc, to substitute the local field with the mean

field 〈E〉:

Eloc(z
′) =

χ 〈E(z′)〉
Nα

. (3.3)

To find an expression for the mean field inside the slab (z′ ∈ [0,L]), we adapt the work

made in Ref. [Fearn, James, and W Milonni, 1996] to a finite-size medium. The mean

field in the slab is the sum of the driving field and the dipole field (see Eq. (1.31)). A

combination of Eqs. (1.36) and (3.3) yields:

〈E(z′)〉 = E0e
ik`z

′
+
ik`χ

2

[
eik`z

′
∫ z′

0

dz′′ 〈E(z′′)〉 e−ik`z′′ + e−ik`z
′
∫ L

z′
dz′′ 〈E(z′′)〉 eik`z′′

]
.

(3.4)

Because of the cavity-like geometry, we suggest a trial solution 〈E(z′)〉 = Etr1e
iktrz′ +

Etr2e
−iktrz′ with Etr1, Etr2 and ktr to be determined. Introducing it in the above

Eq. (3.4), we perform the spatial integration. We then regroup terms on both sides of

Eq. (3.4) for each wave vector class (ktr,−ktr, +k`,−k`). We find a set of four equations

with three unknowns:
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Etr1 =
ik`χ

2

[
Etr1

i(ktr − k`)
− Etr1

i(ktr + k`)

]
, (3.5)

Etr2 =
ik`χ

2

[
iEtr2

(ktr + k`)
+

iEtr2

(ktr − k`)

]
, (3.6)

0 = E0 +
ik`χ

2

[
iEtr1

ktr1 − k`
− iEtr2

ktr1 + k`

]
, (3.7)

0 =

[
Etr1e

i(ktr+k`)L

i (ktr1 + k`)
+
Etr2e

i(k`−ktr)L

i (k` − ktr)

]
. (3.8)

Notably, Eqs. (3.7) and (3.8) give:

ktr =
√

1 + χk` ≡ nk`. (3.9)

We retrieve here, starting from a microscopic approach, that light travels in a medium

with a refractive index n ≡
√

1 + χ. In a similar way, we find:

Etr1 =
t1E0

1− r2
2e

2ink`L
, (3.10)

Etr2 = r2e
2ink`LEtr1, (3.11)

with t1 = 2/(1 + n) and r2 = (n− 1)/(n+ 1). It is again exactly the field in a cavity of

index n surrounded by a vacuum-like (unitary index) medium. Note that the refractive

index notion is only valid when the atomic response to light is local.

We can now demonstrate the CLS.

3.1.3 The Collective Lamb Shift: a cavity-induced shift

The field that excite the atoms is the cavity field that we just derived. Consequently,

the field transmitted after the slab (z > L) can now be written:

Et(z) = E0e
ik`z +

ik`χ

2

∫ L

0

dz′
(
Etr1e

ink`z
′
+ Etr2e

−ink`z′
)
eik`(z−z

′). (3.12)

We Taylor-expand Et at second order in χ. With r2 ' χ/4 and t1 ' 1− χ/4, we get:

67



Chapter 3: Collective effects in a dense thin atomic vapor slab

Et(z) ' E0e
ik`z +

ik`χE0

2

∫ L

0

dz′
(
t1e

ink`z
′
+ r2t1e

−ink`z′
)
eik`(z−z

′). (3.13)

Performing the integral over z′, we find at second order in χ:

Et ' E0e
ik`z

[
1 + i

χk`L

2

(
1 +

iχk`L

4
− χ

4
+
χ

4

e2ik`L − 1

2ik`L

)]
. (3.14)

As in Chapter 1, the susceptibility of the dilute slab consisting of atoms with

polarizability α = i(6πΓ0/k
3
` )/(Γt−2i∆) (∆ = ω`−ω0 with ω0 the resonant frequency,

Γ0 the radiative line-width and Γt the total homogeneous line-width) is χ = Nα.

Using 1 + x ≈ 1/(1− x) for |x| � 1 in the parenthesis of Eq. (3.14), we obtain the

transmission coefficient:

T (∆) =

∣∣∣∣Et

E0

∣∣∣∣2 =

∣∣∣∣1− 3πNL
k2
`

Γ0

Γc − 2i(∆−∆c)

∣∣∣∣2 , (3.15)

with the thickness dependent shift

∆c = −3

4
∆LL(1− sin 2k`L

2k`L
) (3.16)

and width

Γc = Γt −
3

2
(k`L+

sin2 k`L

k`L
)∆LL. (3.17)

The offset −3
4
∆LL for the shift appearing in Eq. (3.16) is traced back to the transmission

through the first interface. To recover the extra offset ∆LL in Eq. (3.1), we must use

the Lorentz-Lorenz formula [Jackson, 1999] in Eq. (3.14): one sees in Fig. 3.1(a) that

the only effect of the local field correction χ = Nα/(1−Nα/3) is to translate ∆min

by a quantity ∆LL. All details on the calculation steps can be found in Appendix A.4.

This derivation therefore helps clarifying what is the CLS and its range of application:

r for a dilute medium, the line-shape is Lorentzian and the CLS is a frequency

shift of the position of the transmission minimum ∆min and not a shift of the

resonance ω0 of the bulk medium characterized by χ;

r it is a consequence of the reflection of the field at the boundaries of an atomic

slab surrounded by vacuum (medium with unitary index);
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Figure 3.1: Collective Lamb Shift (a) TheoreticalΔmin normalized by the Lorentz-Lorenz

shift according to the cell thickness. The parameter N/k3� (Γ0/Γt) = 10−4. Blue dots:

χ = Nα, yellow squares: χ = Nα/ (1−Nα/3). The CLS prediction from Ref. [Friedberg,

Hartmann, and Manassah, 1973] is superimposed as a dashed red line. (b) The same

quantity is plotted for χ = Nα. In blue dots, green squares and red triangles, the parameter

N/k3� (Γ0/Γt) is respectively equal to 10−4, 0.03 and 0.2.

� it includes the dipole-dipole interactions in the propagation. Namely, the field

that induces the dipoles propagates in a medium of index n;

� Eq. (3.1) is only valid in a medium for which χ � 1 at resonance, i.e.

(N /k3
� )(Γ0/Γt) � 1 hence refining the condition N /k3

� � 1 of Ref. [Javanainen

and Ruostekoski, 2016; Javanainen et al., 2017]. We see in Fig. 3.1(b) the

contribution of higher orders in density when the transmission T (Δ) is calculated

at all density order starting from Eq. (3.12).

In a nano-cell, the atomic slab is not surrounded by vacuum. Consequently, there is no

reason to believe that the shift should be given by Eq. (3.1) as the boundary conditions

are modified. In order to describe the situation when the medium surrounding the

atoms is not vacuum, we now investigate experimentally the shifts in a dense vapor

confined in a nano-cell.

3.2 Transmission through a dense atomic vapor slab

In this section, we first present our experimental set-up to study the dipole-dipole

interactions. In particular, we investigate the evolution of Δmin extracted from

the experimental spectra when the density of atoms increases. We finally extend
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Figure 3.2: Experimental details (a) The potassium nano-cell. (b) Atomic density as

a function of the reservoir temperature. (c) Energy diagram for the potassium D2 line.

(d) Saturated absorption spectrum used for frequency calibration in a 7-cm potassium

reference cell.

our theoretical model to all perturbation orders in χ to interpret the data more

quantitatively.

3.2.1 Preliminary experimental observations

Set-up details The experimental set-up to study density shifts is identical to the

one used in Chapter 2 except that here, the nano-cell is filled with potassium and

is represented in Fig. 3.2(a). Compared to earlier measurements performed with

rubidium [Keaveney et al., 2012b], or with cesium [Whittaker, 2017], potassium has

the advantage of a smaller hyperfine splitting in the ground state, which results into a

single atomic line at lower densities. The density curves represented in Fig. 3.2(b)

for many alkalis, explain to a certain extent the use of a nano-cell to study the

dipole-dipole interaction in the dense regime: we see that it is possible to change by

orders of magnitude the atomic density simply by varying the reservoir temperature.
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3.2 Transmission through a dense atomic vapor slab

The laser is scanned across the resonance over a range of about 30 GHz. We measure

the transmission of a laser beam nearly resonant with the D2 transition of potassium3

(λ ≈ 767 nm, Γ0 ≈ 2π × 6 MHz). The energy diagram is represented in Fig. 3.2(c).

Due to the small hyperfine splitting, the different transitions of the D2 line overlap

at room temperature in a bulk cell. We therefore perform a saturated absorption

spectroscopy in a reference cell for the frequency calibration (see Fig. 3.2(d)).

Observation of a blue to red transition of ∆min Figure 3.3(a) shows the measured

optical density OD, extracted from the transmission T via OD = − ln(T ), according

to the laser detuning ∆ for three values of the atomic density N . We plot ∆min,

defined as the detuning at which the OD is the largest, as a function of density for

various thicknesses L in Fig. 3.3(b). At high density (N /k3
` & 20), we observe a

red-shifted, linear variation of ∆min with N for all L. At low N , for L > λ/2, ∆min

exhibits a pronounced blue-shift, and turns into a red-shift at higher density. For

thicknesses L . λ/2, ∆min features a plateau at low N , as also seen in [Keaveney et al.,

2012b]. Similar blue-shifts of the minimal transmission were observed in a nano-cell of

cesium [Maurin et al., 2005], although much smaller than here, and recently in a slab

of ultra-cold rubidium atoms [Corman et al., 2017], where an evolution from the blue

to the red side of the resonance was also measured.

3.2.2 The refractive index model

To explain the data, we now develop a model that deconvolves the effects of the cavity

produced by the interface between the sapphire windows and the atomic medium,

and the bulk properties of the atomic medium. This was also the approach used in

Ref. [Keaveney et al., 2012b]. However, the model used there to extract the shift took

only partially the cavity effect into account (see details in the supplemental material

of [Peyrot et al., 2018]). Furthermore, as explained above, Eq. (3.1) is irrelevant

for the experimental situation of a nano-cell: the atomic slab should be dilute and

surrounded by vacuum for the formula to hold. The agreement between the measured

shift with respect to the cell thickness and Eq. (3.1) in Ref. [Keaveney et al., 2012b]

must therefore be considered as fortuitous.

Our new model incorporates the multiple reflections in the cavity. The atomic slab

is described by a continuous resonant medium with a refractive index n. Ascribing

3The natural isotopes of potassium are 39K, 41K and 40K. Their proportion are respectively 93%,
7% and less than 1%. We account in our models for the two predominant isotopes.
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slab of thickness L = 490 nm according to the detuning and for temperatures

Θ = (260◦C, 340◦C, 380◦C) (top, middle, bottom). It corresponds respectively to

N/k3� = (3, 29, 74). The red dashed line are Gaussian fits to extract Δmin. The frequency

Δmin of the maximum of the optical depth are spotted by the yellow symbols and are

reported on the right panel. (b) Δmin versus density N for L = 90 nm (yellow dots),

L = 110 nm (orange triangles), L = λ/2 = 380 nm (red squares) and L = 3λ/4 = 575 nm

(bordeaux stars).

a refractive index to a hot vapor confined in a nano-cell is far from being obvious,

as studied in Chapter 2 and by several authors (e.g. [Schuurmans, 1976; Vartanyan

and Lin, 1995; Zambon and Nienhuis, 1997; Dutier et al., 2003a]). Indeed, we saw

that the atomic motion is responsible for the non-local relation between the driving

field and the induced polarization. Besides, it should lead to a mesoscopic response

of the system if the spatial extension ξ is larger than the cell thickness L. For the

potassium vapor, the Doppler width ΔωD = k�〈v〉/(2π) ∼ 500 MHz where the most

probable velocity is given by 〈v〉 = √
2kBΘ/m with m the atomic mass and kB the

Boltzmann constant. When the density is as large as the ones used here, the collisional

broadening of the line exceeds by far the Doppler width (see below and Fig. 3.5(d)).

For a broadening of Γt = 2 GHz, the dipoles therefore reach their steady-state over a

distance ∼ ΔωD/(k�Γt) < 100 nm, much smaller than L and λ. Equivalently, ξ � [λ,L]
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3.2 Transmission through a dense atomic vapor slab

and it then becomes possible to define a steady-state, local refractive index.

We adapt the derivation made previously in Subsection 3.1.2 to the case of a

real cavity of index ns. It can be shown that Eqs. (3.10) and (3.11) hold provided

that transmission and reflection coefficients are replaced by t1 = 2ns/(n + ns) and

r2 = (n−ns)/(n+ns). Care must be taken for two reasons when using the superposition

principle in Eq. (3.12) to compute the transmitted field. First, the field radiated

by the atoms in the direction −z should now be included as in Eq. (2.21). Second,

the field radiated by the atoms is now multiply reflected by the empty cavity. The

dipole field is therefore multiplied by a factor F = t20/(1 − r2
20 exp(2ik`L)), where

r20 = (1− ns)/(1 + ns) and t20 = 2/(1 + ns), before giving rise to the transmitted field:

Et(z) =

Field Et0 transmitted
by the empty cavity︷ ︸︸ ︷
t10t20E0

1− r2
20e

2ik`
eik`z +

Field radiated by the atoms initially in the
+z direction and multiply reflected by the cavity︷ ︸︸ ︷

iFE0k`χ

2

∫ L

0

dz′
(
Etr1e

ink`z
′
+ Etr2e

−ink`z′
)
eik`(z−z

′)

+
iFE0r20k`χ

2

∫ L

0

dz′
(
Etr1e

ink`z
′
+ Etr2e

−ink`z′
)
eik`(z+z

′)︸ ︷︷ ︸
Field radiated by the atoms initially in the

−z direction and multiply reflected by the cavity

,

(3.18)

with t10 = 2ns/(1 + ns). Starting from Eq. (3.18), it is quite involved to find an

analytical expression for the transmission coefficient defined by t ≡ Et/Et0. However,

it can easily be shown from an interferences textbook argument [Javanainen and

Ruostekoski, 2016; Peyrot et al., 2018] that the intensity transmission coefficient

T = |t|2 can be written as:

T =

∣∣∣∣ t1t2/(1− r2
2e

2ink`L)

t10t20/(1− r2
20e

2ik`L)

∣∣∣∣2 . (3.19)

Instead of performing the full calculation to show that Eq. (3.18) matches Eq. (3.19),

we have checked it numerically. In other words, we retrieve again starting from the

microscopic approach, a result predicted by a macroscopic reasoning. We relate the

refractive index of the atomic slab to the electric susceptibility χ by n(∆) =
√

1 + χ(∆).

Here we take χ = Nα(∆,N ) with α(∆,N ) the polarizability of the atoms, including

the influence of the density at the single atom level through a broadening and a

shift as in the previous chapter. It is calculated by summing the contribution of all

hyperfine transitions of the potassium D2 line with Lorentzian profiles, weighted by
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Chapter 3: Collective effects in a dense thin atomic vapor slab

the corresponding Clebsch-Gordan coefficients4:

α(∆,N ) =
i

~ε0

∑
F ,F ′

d2C2
FF’

Γt/2− i∆t

. (3.20)

In Eq. (3.20), Γt = Γ0 + Γp is still the sum of the radiative line-width Γ0 and a width

Γp that accounts in a phenomenological way for any broadening mechanism inside

the gas beyond the cavity-induced broadening. In the same way, the total detuning

∆t = ∆FF′ −∆p, with ∆FF’ the hyperfine splitting and ∆p a phenomenological shift

inside the gas beyond the cavity-induced shift5. Whether the Doppler shift should

be included here or not is not crucial because, as we will see later, the experimental

collisional broadening exceeds by far the Doppler width.

The quantities ∆p(N ,L) and Γp(N ,L) therefore contain the physics not included in

the model: (i) the interaction of the atoms with the cell walls (only dependent on the

thickness L), (ii) the collisional dipole-dipole interactions between the light-induced

dipoles (only dependent on the density N ), and (iii) any extra effects that may depend

both on L and N . We now compare our transmission model T = |t(∆)|2 to the data.

Fitting experimental data Figures 3.4(a-b) show a comparison of the model’s

prediction and measured spectra. The agreement is very good. In particular, the

model reproduces the observed asymmetric line-shapes. Importantly, this is partly this

asymmetry that prevents from defining a meaningful shift based on the minimum

transmission ∆min. To demonstrate the importance of the sapphire layers in the optical

response, we also plot in Fig. 3.4(a-b) the result of Eq. (3.19) for the case of an atomic

layer immersed in vacuum (ns = 1): there, the asymmetry is nearly absent. The

asymmetry of the line-shape should be interpreted as an interference effect between

forwards and backwards waves in the cavity. When ns 6= 1, the dipole field on the red

and blue side of the transition does not have the same phase. This phase is represented

in Fig. 3.4(c-d). For example, in the case of L = λ/4 (Fig. 3.4(d)), we first see that far

from resonance, the radiated field is not in quadrature with the driving field: it is

more in phase on the red side and in opposition of phase on the blue side. It explains

the strong asymmetry of the line6 and why we can also observe transmission slightly

above unity on experimental spectra without violating energy conservation.

4This leads exactly to the susceptibility in Eq. (2.7) ignoring velocity effects.
5Introducing a single parameter ∆P for the shift, we assume that it does not depend on the hyperfine

transition.
6See also Chapter 6 in the case of fluorescence.
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3.3 Atomic properties in the dense regime

3.3.1 Density shifts and broadening

To fit the data with the model and obtain the good agreement shown in Figs. 3.4(a-b),

we let the density N (or equivalently the temperature7 Θ, the line shift Δp and the

broadening Γp as free parameters. In Figs. 3.5(a-b) we plot the fitted values of Δp and

7Although the temperature is left as a free parameter here, the fitted values are very close to the
values measured on the experiment by the thermocouple in contact with the reservoir.
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(dashed black line). The offset in dashed red line is interpreted in the main text. (d) Yellow

squares: slope ∂Γp/∂N of the width extracted from the cavity model as a function of L.

The red dashed line is the theoretical value of the self-broadening coefficient βN resulting

from the collisional interactions between atoms.
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3.3 Atomic properties in the dense regime

Γp as a function of the fitted N , for various thicknesses. To assign the error bars, three

contributions must be accounted for: (i) statistical errors, that are not completely

negligible here due to the fact that we repeated the measurement only few times. (ii)

systematic effects due to the variation of L, which is fixed in the fitting procedure, in

its uncertainty ±2.5 nm range (this two contributions have already been discussed in

section 2.3.3 of the previous chapter). (iii) Due to the large asymmetries observed

even at large detuning, the normalization process is hard to carry out. Particularly,

the transmission intensity is not completely flat out of resonance. It generates a

third contribution to the error bar that we estimate by normalizing the data by two

different methods: (1) normalization by a linear function interpolating the first and

last points of the spectrum, (2) normalization by the first value of the transmission of

the spectrum. We fit the data normalized by the two procedures and the systematic

error associated is half the difference between the results for the two procedures. The

final error bar is the quadratic sum of the three contributions.

We now analyse quantitatively the results obtained. We see that both ∆p and Γp

can be written as:

∆P =∆Offset(L) +
∂∆P

∂N
(L)N , (3.21)

ΓP =ΓOffset(L) +
∂ΓP

∂N
(L)N . (3.22)

The offsets on the two quantities originate from the interaction between the

atoms and the cell walls. For the shift, it is due to van der Waals atom-surface

interaction that we will study in chapter 4. The offset on ΓP is mainly a transient

broadening originating from atom-wall quenching collisions that dominate at low

density. Figure 3.5(b) indicates that ΓP is much larger than the Doppler width. The

broadening is therefore dominated by the density-dependent contribution coming from

the collisional dipole-dipole interactions. It validates a posteriori the local refractive

index approach and the fact that we do not need to include the velocity distribution

in the model.

The dependence of the extracted parameters ∆P and ΓP is also linear with the

density. Particularly, the transition from blue-to-red that we observed with ∆min in

Fig. 3.3(b) has completely disappeared on ∆P. It means that our model includes this

phenomenon that we explain as a competition between two effects:

1. when the density increases, the real (respectively imaginary) part of the refractive

index n is not purely associated with the real (respectively imaginary) part of
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Chapter 3: Collective effects in a dense thin atomic vapor slab

the susceptibility. Indeed, when χ is not small compared to unity, n =
√

1 + χ 6=
1 + χ/2. The apparent blue shift is consequently not a shift of the resonance of

χ but rather comes from a mixing of the real and imaginary part of χ due to

the propagation of light in a medium of index n. We did not find a completely

convincing physical reason that would rather distort the line-shape towards the

blue rather than the red side of the resonance.

2. At large densities, the red shift of the resonance of χ, that we extract in Fig. 3.5(a)

is larger than the blue shift due to the propagation. The position of the minimum

of transmission therefore features the transition from the blue-to-red side of the

resonance.

We finally note that the extracted parameters ∆p and Γp accounts for all the

cavity effects. This is one of the main achievements of this Thesis: we are now able to

measure the properties of a medium deconvolved from an environment that alter its

spectral properties. We now try to clarify the origin of the linear behavior observed in

Figs. 3.5(a-b).

3.3.2 Collisional or collective effects?

To remove the influence of quenching collisions with the surface on the shift and

broadening (an effect depending on L only), we fit the data presented in Figs. 3.5(a-b)

by a linear function and extract the slopes (∂∆P/∂N )(L) and (∂ΓP/∂N )(L). We plot

in Figs. 3.5(c-d) these slopes with respect to the cell thickness L. Both quantities

feature an offset that we now try to interpret.

Collisional or collective shift? The linear dependence of the shift with density can

originates from two scenarii. It could either be related to the local field corrections

or to collisional effects. These two cases are respectively the static and dynamic

version of the dipole-dipole interaction. We have shown in Appendix A.4 that using

the Clausius-Mossoti relation for the susceptibility yields the thickness-independent

Lorentz shift ∆LL = −π(N /k`)3Γ0. The collisional shift is less well documented. A

dimensional analysis suggests that it is proportional to density and independent of the

velocity. Consider indeed an atom that moves around another atom at a distance

λ̄ = 1/k`: the shift associated with one collision is about Γ0, as predicted by the

dipole-dipole potential at this distance8. During a time τ = λ̄/v, the number of

8In the near field regime the dipole-dipole potential is Vdd ∼ ~Γ0/(k`r)
3.
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3.3 Atomic properties in the dense regime

collision is τ × γc with γc = Nσsv [Lewis, 1980] the collision rate and σs the cross

section of the atom. Since the cross section σs ∝ 1/k2
` for resonant processes, the total

shift is therefore expected to vary as:

∆coll ∼ Γ0τγc =
N
k3
`

Γ0. (3.23)

Reference [Maki et al., 1991] pointed out that experiments performed in the linear

regime of interaction (i.e. the weak driving approximation) cannot distinguish between

the static and dynamic contributions to the shift, both linear with density. As a

consequence, the offset on the shift slope appearing in Fig. 3.5(c) (red dotted line)

results from these two phenomena. In the strong driving limit, these two contributions

should not scale identically with N [Maki et al., 1991]. Going beyond the weak driving

field approximation does not cause any particular experimental difficulty. However,

deriving a full transmission model in this regime, which is absolutely required to

interpret the data, would be a highly non-trivial undertaking.

We observe a residual oscillation of the shift slope with an approximate period

of half a wavelength (black dotted line). This oscillation is unexpected: all known

dependences of ∆p with the cell thickness are included and it should result in a

shift slope being a bulk property of the medium, i.e. independent of L. It is though

not to exclude that we overlooked a systematic error in the data analysis. Residual

biases, originating from non-local effects that are not included in this analysis, could

also result in an apparent oscillation. Another final possibility that could explain

this oscillation is the discrete nature of the atoms: their position correlations would

introduce an effective shift and broadening that may depend on L. This interpretation

is now supported by a work in progress that should appear in [Dobbertin, 2020]. In

this work, the authors perform the following analysis:

1. They compute the numerical solution of the discrete scattering model with a

Greens tensor including the effects of the cavity to generate transmission spectra.

2. They fit these profiles with Eq. (3.19), that do not include the correlations (this

is exactly what we have done in our analysis).

3. They extract a similar oscillation of the slope of the shift versus density as a

function of the cell thickness.

This surprising and unexpected matching certainly calls for new measurements with

a systematic comparison to this new theoretical approach.
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Chapter 3: Collective effects in a dense thin atomic vapor slab

Collisional broadening A complete analysis of collisional processes is beyond the

scope of this manuscript. However, according to the standard line-broadening the-

ory [Lewis, 1980], the collisional broadening is Lorentzian and proportional to the

density of atoms9: Γcol = βN . The coefficient of proportionality β depends on the

atomic transition. It is given by [Weller et al., 2011]:

β = Γ0

(
λ

2π

)3

× δ1,2, (3.24)

where δ1,2 = 1 for the D1 line and
√

2 for the D2 line. For the D2 line of potassium,

Γ0 ' 2π × 6 MHz, λ = 767 nm and δ1,2 =
√

2 leading to β = 9.7× 10−8 Hz·cm3. The

slopes of the broadening with respect to density, presented in Fig. 3.5(d), are in very

good agreement with this theoretical prediction superimposed on the graph in dashed

line. Due to this collisional broadening, the larger the density, the broader the line: it

leads to a saturation phenomenon that we finally discuss now.

3.3.3 Saturation of the susceptibility

In Fig. 3.6(a), we plot the value of the minimum of transmission Tmin as a function

of N for different cell thicknesses. We observe that although the density increases,

the quantity of absorption clearly saturates. This phenomenon is a consequence

of the self-collisional broadening. To see how this comes about, we recall that the

susceptibility can be written as χ = Nα with α given by Eq. (3.20). If the collisional

broadening is proportional to the density of atoms, the susceptibility is no longer

linear with density and the saturation occurs. To observe this saturation in the

optical response χ, we fit the spectra associated with the data presented in Fig. 3.6(a)

with our transmission model (Eq. (3.19)). From the fitted parameters ∆p, Γp and N ,

we can compute theoretically the susceptibility associated with these transmission

spectra. We present in Fig. 3.6(b) the maximal value of the modulus of χ typically

obtained on resonance. We see that in our case, the saturation occurs at a density of

N > 1022 at·m−3. Besides, we note that the susceptibility almost reach unity (see also

Ref. [Keaveney et al., 2012a], where such large susceptibility have also been observed.).

Reference [Javanainen et al., 2014] pointed out that in presence of inhomogeneous

broadening, the polarizability of each velocity class gets suppressed by a quantity

Γ0/∆ωD where ∆ωD is the inhomogeneous Doppler width. It gives a ratio of approxi-

9This is valid in the binary approximation which does not break for the range of density studied in
this manuscript.
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mately 0.01 between the total susceptibility and the one from each velocity class. It

ultimately boils down to two conclusions:

r The saturation occurs whenever the medium becomes homogeneously broadened

i.e. when βN � ∆ωD.

r The effective susceptibility of each velocity class is much smaller than unity.

This could be the reason why we still observe a linear behavior of spectral

shifts and widths with respect to the density. Indeed, we saw at the beginning

of the chapter that the condition to observe first-order shifts in density was

N /k3
` (Γ0/Γt)� 1. In an inhomogeneously broadened medium, it is likely that

this condition should be replaced by N /k3
` (Γ0/(∆ωD + Γt))� 1.

3.4 Conclusion

In conclusion, we performed a new series of measurements of the transmission of

near-resonant light through an alkali vapor with nano-meter scale thickness in order to

investigate the origin and validity of the CLS. We found that the CLS, as initially

predicted by [Friedberg, Hartmann, and Manassah, 1973], is valid for a dilute enough

(N /k3
` (Γ0/Γt) � 1) slab of atoms surrounded by vacuum. In this case only, it

corresponds to the displacement of the minimum of transmission. When the medium is

not vacuum, we have observed asymmetric spectra: it prevents from defining a shift in
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Chapter 3: Collective effects in a dense thin atomic vapor slab

a meaningful way. A model, deconvolving the cavity effect from the atomic properties

of the slab, accurately reproduced the observed strong asymmetries of the line-shapes.

Using this model, we extracted from our data shifts and widths of the bulk atomic

medium resonance. We found a linear dependence of these quantities with respect to

the density that led to a saturation of the susceptibility of the atomic vapor.

Several questions have not been solved yet:

r First, we observed an oscillation of the slopes of the shift when the cell thickness

varies (see Fig. 3.5)(c). This is unexpected! Besides, a recent theoretical predic-

tion [Dobbertin, 2020] tends to show that it would originate from the atomic

correlations between the atoms due to their discrete nature. This interpretation

is still preliminary and calls for future in-depth investigations.

r Secondly, the role of the inhomogeneous broadening in the observation of density

shifts is not fully clarified: when do the different velocity classes start to interact?

Does it require that the homogeneous broadening exceeds the Doppler width? Is

the presence of inhomogeneous broadening a necessary condition to observe the

shifts, as suggested by Ref. [Javanainen et al., 2014]?

r Finally, our experiment was done in the linear regime of interaction and as

a result, we have not been able to distinguish between static and dynamic

dipole-dipole shifts. Extending the model to strong driving, also including the

cavity effects, is however a highly non-trivial work.

In this chapter, ξ � L and the relaxation of the dipoles is mainly limited by

collisions. When density effects are smaller, we have seen in Chapter 2 that the walls

of the nano-cell play an important role in the optical response of the system. Another

effect due to the nano-cell walls that we ignored so far is the long-range van der Waals

interaction between an atom and a neighboring surface. This is the subject of the next

chapter.
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Introduction

In the previous chapters, we have investigated the dependence of the line-shifts with

respect to the density of atoms N and the thickness of the medium L. There, we have

seen that the optical response of an atomic vapor in a nano-geometry can be affected

by the presence of the cell walls. Particularly, it induces a thickness-dependent offset

of the shift that needs to be characterized.

Placing atoms close to surfaces is not necessarily a drawback since it offers new

possibilities for engineered atom-atom and atom-light interactions. In nano-photonic

devices for example, light can be tightly confined in sub-wavelength geometries where

atoms lie in the vicinity of surfaces [Mitsch et al., 2014]. In this case, coupling to
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matter depends on the direction of light propagation and this may have applications

in quantum information science [Lodahl et al., 2017]. This has stimulated a recent

growth in the number of platforms where atoms are kept close to surfaces, ranging

from nano-fibers [Le Kien, Balykin, and Hakuta, 2004; Vetsch et al., 2010; Patterson

et al., 2018] and nano-cells [Sarkisyan et al., 2001]; to waveguides [Ritter et al.,

2018] and microtoroidal optical resonators [J. Alton et al., 2010]. Simultaneously,

shrinking the dimensions of atom-based sensors [Knappe et al., 2005; Wade et al.,

2017] increases the number of atoms close to a surface relative to atoms in the bulk.

Atom-surface interactions are therefore becoming increasingly important: they may

limit the ultimate achievable precision of atom vapor sensors and they are crucial in

understanding the dynamics in each new platform. However, despite their significance,

direct measurements of atom-surface interactions are scarce.

So far, we attributed the modification of the optical response caused by the surface

to atomic collisions with a wall or cavity effects originating from the reflections of light

on a dielectric interface. In this chapter, we study another effect due to the surface:

the van der Waals (vdW) interaction. Measuring the vdW atom-surface interaction —

which scales with the distance z to the surface as 1/z3 in the non-retarded regime— is

challenging as it requires placing the atoms in a given internal state at a distance

z < λ/(2π) from the surface. Here λ is the wavelength of the strongest atomic

transition from the considered state. Previous experiments on vdW atom-surface

interactions often used sophisticated techniques like reflections of cold atoms on a

surface [Landragin et al., 1996; Mohapatra and Unnikrishnan, 2006] or high-lying

atomic states [Fichet et al., 2007]. High-lying states allow easier access to the vdW

regime as: (i) transitions among higher-lying states correspond to longer wavelengths

λ, relaxing the constrain on the atom-surface distance; and (ii) these transitions

have larger dipole matrix elements, resulting in a stronger vdW C3 coefficient in the

atom-surface potential V (z) = −C3/z
3. However, for many applications [Knappe

et al., 2005; Mitsch et al., 2014], it is the properties of the atom-surface potential

for the low-lying states that are of most interest because atoms naturally lie in the

ground state.

Spectroscopy of thermal vapors contained in cells is an attractive method for the

measurement of atom-surface interactions [M. Ducloy and M. Fichet, 1991; Failache

et al., 1999; Fichet et al., 2007], since it can be used for a large range of vapors, atomic

or molecular, and surfaces. However, measurements have low precision for weak vdW

interaction strengths of ground state atoms, mainly limited by the uncertainty in

estimating collisional processes in dense vapors [Fichet et al., 2007; Laliotis et al.,
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2008]. A recent method that measured the ground state vdW interaction based on

fluorescence spectroscopy in low-density thermal vapors [Whittaker et al., 2014] also

raised debate [Bloch, 2015] about the absolute achievable precision of the measurements,

since the theoretical model used neglected atomic motion in the spatially varying

atom-surface potential. Finding simple and precise methods that would allow reliable

extraction of the ground-state atom-surface potential parameters, and characterization

of the atom dynamics in the proximity of surfaces in new platforms, remains an open

goal.

Finally, the 1/z3 dependence of the shift is valid when the distance z to the surface

verifies: (Few nm) ≤ z ≤ λ. On the one hand, retardation effects have to be taken

into account at larger atom-surface distances, resulting in the Casimir-Polder regime:

V (z) ∝ 1/z4 (See e.g. the review [Hinds, 1991]). On the other hand, a repulsive

potential barrier has been predicted very close to the surface [Lima et al., 2000]. We

expect these effects to be of minor importance with respect to the vdW interaction in

our set-up. Can we though see traces of their influence on experimental transmission

spectra?

Structure of the chapter In a first section, we will review some elements of the vdW

atom-surface theory in order to predict expectations for the C3 coefficient in different

atom-material configurations. Then, we shall study experimentally the atom-surface

interaction looking at the optical response of the vapor in the extremely thin region of

the nano-cell. In order to extract properly the effect of the surface and get the C3

coefficient, we will refine our transmission model to account for the motion of the

atoms in the spatially-varying potential. In a last brief section, we will present the

limitations and perspectives of adapting the work presented in this chapter to other

atom-surface potential dependences.

4.1 Theory of vdW atom-surface interaction

In this section, we first derive the spatial dependence of the vdW interaction starting

from a classical analogy. We then give the expression of the potential when the atomic

states considered lie far from any plasmonic resonance of the dielectric material. We

finally compute the atom-surface coefficient strength C3 for an atom of Cs close to a

sapphire or a borosilicate wall.
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V (z)

z

x

y

d

dI

ns

z−z 0

Figure 4.1: Atom-surface interaction Illustration of a surface of refractive index ns

acting on an atomic dipole d. The effect is similar to the interaction with an image dipole

dI placed symmetrically with respect to the surface plane. The resulting dipole-dipole

potential is V (z) = −C3/z
3 with z the distance to the surface.

4.1.1 Atom-surface potential near a dielectric surface

The derivation of the atom-surface potential closely follows the work presented in

Ref. [Fichet et al., 1995].

The classical analogy From an electrostatic point of view, the effect of a dielectric

wall (with refractive index1 ns) on a particle of charge q placed at a distance z from

the surface, can be modelled assuming an image charge −q (n2
s − 1) / (n2

s + 1), located

at a position −z. In the same way, the effect of a dielectric surface on an electric

dipole d is similar to the one of an image dipole dI with spatial components given by:

dIx,y = −n2
s − 1

n2
s + 1

dx,y, (4.1)

parallel to the surface and:

dIz =
n2
s − 1

n2
s + 1

dz, (4.2)

perpendicular to the surface, as represented in Fig. 4.1. In the near field regime (i.e.

neglecting retardation effects), the resulting interaction potential for the two dipoles

1The case of a perfect reflector such as a metallic surface corresponds to ns → ∞.
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separated by a distance 2z can be written as:

Vcl = −1

2
dI ·E = −1

2
dI · 1

4πε0

[3 (d · êz) êz − d]

(2z)3
, (4.3)

where E is the electrostatic field (see first part of Eq. (1.18)) radiated by the real

dipole acting on its image. Using Eqs. (4.1) and (4.2), it gives:

Vcl = − 1

4πε0

n2
s − 1

n2
s + 1

(
d2
x + d2

y + 2d2
z

16z3

)
. (4.4)

Quantum mechanical atom-surface potential In contrast to dipole-dipole interac-

tions that we studied in the previous chapters, the vdW interaction is not a resonant

process. In other words, it occurs between atoms in the same atomic state. Conse-

quently, there is no light-induced dipole and the field E introduced previously is virtual:

the vdW interaction can only be consistently described as a quantum-mechanical

effect. It can be shown [Fichet et al., 1995] that the corresponding atom-surface

operator VAS is still given by Eq. (4.4), where d is now the electric dipole moment

operator. At first order perturbation in energy, the resulting shift of an atomic state

|a〉 can be written as:

V (z) = 〈a|VAS |a〉 = −C3

z3
, (4.5)

where the C3 involved 〈d2
x〉, 〈d2

y〉 and 〈d2
z〉 that are non-zero for an atom in a given

atomic state while 〈dx〉=〈dy〉=〈dz〉 = 0. In order to calculate the C3 coefficient, we

need more details about the dielectric surface.

4.1.2 Calculation of the atom-surface C3 coefficient for a Cs atom placed

close to a dielectric surface

The quantum average given by Eq. (4.5) is a sum over all atomic levels |m〉 connected

by electric dipole transition to |a〉. When these transitions do not lie close to plasmonic

resonances of the medium, C3 can be written as:

C
|a〉
3 = − 1

4πε0

∑
states|m〉

ns(ωam)2 − 1

ns(ωam)2 + 1

( |dam
x |2 + |dam

y |2 + 2|dam
z |2

16z3

)
. (4.6)

The quantities dam
x...z = 〈a| dx...z |m〉 are the dipole matrix elements along the x, y

and z axis respectively, corresponding to optical transitions from states |a〉 to |m〉 of
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frequency ωam. The case including the plasmonic resonances of the material is more

involved and is described theoretically in Ref. [Fichet et al., 1995]. Experimental works

have investigated this plasmonic coupling and found the existence of thermally excited

surface modes [Laliotis et al., 2014] or negative values for C3 [Failache et al., 1999].

This subject is beyond the scope of the present manuscript.

When measuring the shift on an optical transition, the effective C3 results from the

difference between the excited and ground states coefficients. Namely, if the optical

transition couples the initial |a〉 and final states |b〉, the effective C3 is given by:

C3 = C
|b〉
3 − C

|a〉
3 . (4.7)

In our experiment, we probe the Cs D1 line. We therefore need the coefficients for

the 6S1/2 and 6P1/2 states. Knowing the dipole matrix elements for the corresponding

transitions and the refractive index of the surface for the appropriate range of

frequencies allows one to calculate the effective strength of the vdW interaction. In

Tabs. 4.1 and 4.2 we display the main contributions to these two coefficients in the

case of a sapphire and borosilicate2 surface respectively. The dipole matrix elements

are theoretically calculated using Ref. [Safronova, Safronova, and Clark, 2016] and the

Alkali Rydberg Calculator (ARC) Python package [Sibalic, Pritchard, and Weatherill,

2017]. The refractive index of sapphire (respectively borosilicate) is calculated from

the data in Ref. [Weber, 1991] (respectively by the constructor Borofloat33).

The resulting C3 coefficients for the D1 line transition, calculated for the sapphire

and borosilicate surface are:

CSa
3,th = 1.10± 0.03 kHz · µm3, (4.8)

CBo
3,th = 0.83± 0.02 kHz · µm3. (4.9)

The error bars associated with the theoretical values are due to the different models

used by the authors [Safronova, Safronova, and Clark, 2016; Sibalic, Pritchard, and

Weatherill, 2017] to calculate the dipole matrix elements.

In the next section, we will investigate the vdW interactions experimentally.

Particularly, we will try to extract the C3 coefficient for the D1 line of Cs close to a

sapphire surface.

2We will use the coefficient for the borosilicate surface in the next chapter.
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Hyperfine transition Contribution to CSa
3,th Reference

(kHz·µm3)

6S1/2 ↔ 6P1/2 0.42 [Safronova, Safronova, and Clark, 2016]
6S1/2 ↔ 6P3/2 0.83 [Safronova, Safronova, and Clark, 2016]
6S1/2 ↔ 7P3/2 0.01 [Safronova, Safronova, and Clark, 2016]

Total C
6S1/2

3 = 1.258(2)

6P1/2 ↔ 6S1/2 0.42 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 7S1/2 0.37 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 8S1/2 0.02 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 5D3/2 1.01 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 6D3/2 0.37 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 7D3/2 0.09 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 8D3/2 0.04 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 9D3/2 0.02 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 10D3/2 0.01 [Sibalic, Pritchard, and Weatherill, 2017]

Total C
6P1/2

3 = 2.36(3)

Table 4.1.: Dominant contributions to the cesium-sapphire vdW constant C3 for 6S1/2

and 6P1/2 states.

Hyperfine transition Contribution to Cboro
3,th Reference

(kHz·µm3)

6S1/2 ↔ 6P1/2 0.32 [Safronova, Safronova, and Clark, 2016]
6S1/2 ↔ 6P3/2 0.63 [Safronova, Safronova, and Clark, 2016]
6S1/2 ↔ 7P3/2 0.01 [Safronova, Safronova, and Clark, 2016]

Total C
6S1/2

3 = 0.960(1)

6P1/2 ↔ 6S1/2 0.32 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 7S1/2 0.28 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 8S1/2 0.02 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 5D3/2 0.76 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 6D3/2 0.28 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 7D3/2 0.07 [Safronova, Safronova, and Clark, 2016]
6P1/2 ↔ 8D3/2 0.03 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 9D3/2 0.01 [Sibalic, Pritchard, and Weatherill, 2017]
6P1/2 ↔ 10D3/2 0.01 [Sibalic, Pritchard, and Weatherill, 2017]

Total C
6P1/2

3 = 1.79(1)

Table 4.2.: Dominant contributions to the cesium-borosilicate vdW constant C3 for 6S1/2

and 6P1/2 states.

89



Chapter 4: Atom-surface interactions

4.2 Precise measurement of atom-wall vdW interaction

In this section, we present a method to measure precisely a C3 coefficient using the

wedged shape of the nano-cell. We illustrate it by a measurement of the vdW induced

shift of the cesium 6S1/2 → 6P1/2 transition in the presence of a sapphire surface.

4.2.1 An innovative method to extract precisely the vdW coefficient

In order to determine precisely the vdW atom-surface interaction, our new method

is based on two ideas, building on the work of [Whittaker et al., 2014] but using

transmission spectroscopy:

1. It uses an atomic vapor confined in a nano-cell. As a consequence, the vdW

shift is spatially inhomogeneous: the signal observed is integrated over atomic

positions in the cell. Particularly, the position of the minimum of transmission is

not related to the C3 coefficient. Our method therefore relies on a full model of

the optical response.

2. In any atomic vapor, Ref. [Laliotis et al., 2008] pointed out that the “interplay

between the location of the resonance (i.e. frequency shift as possibly resulting from

collisions) and the C3 value [...] makes it very difficult to extract unambiguously

the vdW interaction”. To circumvent this problem, we use the wedged shape of

the nano-cell: this allows access both to the region where vdW interactions have

strong effects on the total transmission signal, and the region where atoms in the

bulk, not affected by the vdW induced shifts, dominantly contribute. Spectra

from the thick region yield the collisional parameters for the bulk atomic vapor,

thus allowing reliable fitting of thin-region spectra using our model.

Our method can be used with reflection, fluorescence or transmission signals from the

atoms confined in the nano-cell. In this chapter, we perform transmission measurements

to benefit from the knowledge in spectroscopy acquired in the previous chapters3.

Particularly, the theoretical analysis of transmission spectra in nano-cells is significantly

more complicated than for transmission through a bulk vapor. As we already saw, a

number of effects starts to play a role with the reduction of the vapor thickness L

(see Fig. 4.2(b)): (i) for micrometer thick layers, the cell walls act as a low-finesse

3We are also not aware of any measurement of low-lying atomic states vdW potential using
transmission spectroscopy of thermal vapors.
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Figure 4.2: A method to extract vdW interactions (a) Optical set-up similar to the

ones of previous chapters. The two photodiodes measure reflections R for thickness

calibration and transmission T . The two ovens are PID-controlled by a system described in

Fig. 4.3. (b) The wedged shape of the cell allows probing the transmission in thick cell

regions, where the contribution of atoms close to surfaces is negligible compared to the

contribution of the atoms in the bulk. It also allows going to sub-100 nm thick region

where the atoms are strongly affected by the vdW potential, due to the interaction of their

dipole with its image in the surface. (c) This gives rise to a position z dependent level

shift V (z), here calculated for the D1 Cs transition.

cavity, resulting in level shifts, as studied in Chapter 3; (ii) the cell windows also

cause dephasing of atoms upon direct collisions. Atoms flying off the walls experience

transient dynamics during a time 1/Γt, with Γt the collisionally broadened line-width.

For a cell thickness below v/Γt (v is the average atom velocity), a significant number

of probed atoms experience this transient regime, which significantly modifies the

measured transmission, as seen in Chapter 2. For cesium atoms at a temperature

Θ = 200◦C, this corresponds to a distance of ∼ 1 μm. Finally, (iii) at atom-surface

distances z < λ/(2π) atomic energy levels experience a vdW shift from the two

surfaces:
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V (z) = −C3

z3
− C3

(L− z)3
, (4.10)

as represented in Fig. 4.2(c). Equation (4.10) for V (z) accounts only for the interaction

of a dipole with its image in the sapphire. The interaction of a dipole image with its

dipole images is neglected because it contributes for less than a few percent in the C3,

as shown in Refs. [Dutier, 2003] and [Hinds, 1991]. We now illustrate our method on a

Cs vapor confined in a sapphire nano-cell.

4.2.2 Atoms flying in a spatially varying potential

Experimental details The experimental set-up (see Fig. 4.2(a)) is almost the same

as the one presented in the two previous chapters. Here, the cell is filled with Cs

instead of K. I have also added an active feedback system to control and stabilize the

temperatures of both the reservoir and windows. The feedback loop, represented in

Fig. 4.3(a), is operated by an Arduino controller. The controller is used to switch solid-

state-relay from Crydom in order to turn on and off the reservoir and window ovens.

As explained in the previous chapters, the exact value of the temperatures measured is

not crucial4. However, thanks to this control, we ensure that the temperature remains

constant within a few Celsius degree over the time of the experiment (see Fig. 4.3(b)).

It prevents from large atomic density fluctuations that could impact the collisional

processes that we try to estimate.

Using the wedged shape of the nano-cell, we obtain transmission spectra of the

vapor represented in Fig. 4.4(a) for a range of cell thickness L = 50− 275 nm and a

temperature of 235◦C (density N = 6× 1021 at·m−3). The data result from an average

over 100 realizations and we can measure in this way an absorption as low as 1%. The

lowest signal-to-noise (SNR) ratio that we obtain is around 5, proving the excellent

stability of the optical set-up. The SNR is limited by small oscillations on the base line

(intensity collected on the photodiode without atoms) that are attributed to residual

Fabry-Perot effects on lenses, cubes etc... The choice in the temperature therefore

results from a compromise. On the one hand, broadening of the line due to collisions

shortens the spatial response extension5 ξ of the susceptibility. Broadening should

therefore diminish the vdW effect due to the surface on the spectra. On the other

hand, working with a reduced density would result in even smaller absorption rates,

4As long as the temperature of the reservoir remains 30◦C colder than the one of the windows.
5ξ = v/Γt, as seen in Chapter 2.
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Figure 4.3: Control of temperatures (a) Two thermo-resistances PT100 are used

to measure the temperature of the window (Θwin) and the reservoir (Θres). A circuit

consisting of two resistances in series powered in 5 V, produces a voltage compatible with

the Arduino analog inputs (A0,A1). This voltage depends on the measured temperature.

The micro-controller is programmed such as to provide an output current only if the

measured temperature is below its set-point. In this case, a solid-state relay (SSR from

Crydom) works as a closed switch and the power supply drives the thermo-heater associated

with the oven. The circuit is similar for both window and reservoir ovens. (b) Example of

controlled temperatures as a function of time.

hence affecting the SNR.

Fitting with Model 2 We recall that we developed a model in Chapter 2, called

Model 2. This model worked up to 20% of absorption and included several effects: (i)

the non-local correction due to atomic motion, (ii) the quenching collisions with the

cell walls and (iii) the reflection of the fields induced by the cavity. We now use this

model to fit our experimental data. It fits well the measured transmission spectra

for cell thicknesses L ≥ 175 nm (see for example Fig. 4.4(b)) where the signal is

dominated by atoms far from the surface. In this region, fitting the temperature,

level shift Δp and broadening Γp allows us to obtain the collisional self-broadening

ΓP0/(2π) = 830± 10 MHz (see Fig. 4.4(c)) and shift ΔP0/(2π) = −10± 20 MHz (see

Fig. 4.4(d)) in the bulk vapor, arising solely from atom-atom collisions. The values

and error bars are the mean and standard error of the fitted values for cell thicknesses

L ≥ 175 nm.

For cell thicknesses L ≤ 175 nm, the contribution from atoms close to the surface
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Figure 4.4: Bulk vapor properties (a) Measured transmission spectra at 235◦C, for cell
thickness L in the range 50–225 nm. The left and right peaks correspond respectively to

the F = 4 → 3 and F = 4 → 4 transitions of the Cs D1 line. Model 2, not including atom-

surface interactions, fits well spectra in the thick part of the cell (b), allowing the extraction

of bulk properties of the vapor from values obtained for large L. (c-d): Determination of the

collisional broadening ΓP0 and shift ΔP0 in the bulk vapor. For small L, the influence of

the atom-surface interactions appears as an additional thickness-dependent line broadening

and transition shift.
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becomes significant. Model 2 captures this atom-surface interaction phenomenologically

as a cell thickness dependent shift and broadening, as shown in Fig. 4.4(c-d). However,

this phenomenological fit does not provide direct access to the C3 vdW coefficient. In

addition, Fig. 4.5 indicates that fine features of thin-cell spectra are not captured by

Model 2. This motivated us to extend this model to explicitly include the spatially-

varying vdW potential.

Atoms flying in a spatially varying potential Due to the divergences in z = 0 and

z = L of the potential (see Eq. (4.10)), the method adopted in Chapter 2 to solve the

equation for coherences cannot be applied. Particularly, the Fourier transform used to

derive Eq. (2.6) from Eq. (2.5) has no analytical solution in this case. We therefore

find another way to derive the atomic polarization P . Namely, we start back with

Eq. (2.5) recalled below:

v
∂ρ21(z, v)

∂z
= −

[
Γt

2
− i∆FF’(z)

]
ρ21(z, v) + i

dFF’E(z)

2~
,

where the detuning ∆FF’ = ω` − ωFF’(z) is now spatially dependent. The resonant

frequency is shifted as ωFF’(z) = ωFF’ + V (z) with V (z) given by Eq. (4.10). We

remind that in the nano-cell, the field E(z) propagates forwards and backwards. For

the general driving field

E(z) = E+e
ik`z + E−e

−ik`z, (4.11)

consisting of the co-propagating E+ and counter-propagating E− fields along the

z-axis, we write the coherences as:

ρ21(z, v) = ρ+(z, v)eik`z + ρ−(z, v)e−ik`z. (4.12)

We thus obtain the two following equations from Eq. (2.5):

v
∂ρ+

∂z
= − [Γt/2− i(∆FF’(z)− k`v)] ρ+ + i

dFF’E+

2~
, (4.13)

v
∂ρ−
∂z

= − [Γt/2− i(∆FF’(z) + k`v)] ρ− + i
dFF’E−

2~
. (4.14)
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Using the variation of constant method for differential equations, we find for v 6= 0:

ρ+(z, v) = ρ+(z0, v)e−Λ+/v + i
dFF’E+

2~v

∫ z

z0

dz′ exp

[
Λ+(z′)− Λ+(z)

v

]
, (4.15)

ρ−(z, v) = ρ−(z0, v)e−Λ−/v + i
dFF’E−

2~v

∫ z

z0

dz′ exp

[
Λ−(z′)− Λ−(z)

v

]
, (4.16)

where z0 depends on the boundary conditions and the primitive

Λ±(z) =

∫
du

Γt(u)

2
− i [∆FF’(u)∓ k`v] . (4.17)

Had we ignored the vdW potential, we would have found:

Λbulk
± (z) = [(ΓP0 + Γ0)/2− i(∆FF’ ∓ k`v)] z (4.18)

and the reasoning that will follow would have exactly led to Model 2. If we now take

into account the effect of the surface, the primitives are rather given by:

Λ±(z) =

{
Γ0 + ΓP0

2
− i(ω` − ωFF’ −∆P0 ∓ klv)

+iC3

[
1

2z3
− 1

2z(L− z)2

]}
z. (4.19)

In the above equation, we have assumed that the decay rate was not affected by the

surface, which is justified as we are far from polaritonic resonances of the crystal

surface [Failache et al., 2002]. The first part of Eq. (4.19) describes the bulk properties

of the medium (Eq. (4.18)), while the second line is due to the atom-surface vdW

potential.

As in Chapter 2, we assume a loss of coherence at a collision of an atom with

the cell walls (quenching collisions [Schuurmans, 1976] ). It leads to the boundary

conditions ρ±(v > 0, z = 0) = ρ±(v < 0, z = L) = 0. Three cases can therefore been

distinguished:
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4.2 Precise measurement of atom-wall vdW interaction

ρ±(z, v > 0) = i
dFF’E±

2~v

∫ z

0

dz′ exp

[
Λ±(z′)− Λ±(z)

v

]
, (4.20)

ρ±(z, v < 0) = −idFF’E±
2~v

∫ L

z

dz′ exp

[
Λ±(z′)− Λ±(z)

v

]
, (4.21)

ρ±(z, v = 0) =
idF,F’E±/2~

Γt − i∆F,F’(z)
. (4.22)

Knowing the coherences, we can compute the polarization:

P (z,ωl) = 2NdF,F’CF,F’〈ρ(z)〉, (4.23)

where 〈...〉 is the average over Maxwell Boltzmann velocity distribution. There are two

underlying assumptions to write Eq. (4.23):

r We have assumed an homogeneous atomic density N . This remains valid as long

as V (z)� kBΘ. In our case, the kinetic energy is in the THz range, much larger

than the vdW potential (smaller than tenths of GHz for the vast majority of the

atoms).

r Assuming a Maxwell Boltzmann velocity distribution for the velocity has also

raised question [Todorov and Bloch, 2017], but no deviation from this distribution

has been observed to date [Bloch et al., 2019].

Now that we have expressed the polarization P , we can use Eqs. (2.20) and (2.21)

to compute the transmitted field6.

By using Eq. (4.19) in Eqs. (4.20-4.21) to obtain the coherence field for each velocity

class at location z, we included the internal atomic dynamics as the atoms move

relative to the surface, thus experiencing time-varying level shifts due to the vdW

interaction V (z). In previous works based on fluorescence measurement [Whittaker

et al., 2014], the motion was not accounted for [Bloch, 2015]. From now on we call this

model Model 3.

6Note that in the simulations, we have to use a truncation of the spatial integration of Lcut = 0.1 nm
to avoid numerical divergences. We have checked that the results do not depend on the value of
Lcut if Lcut ≤ L/100.

97



Chapter 4: Atom-surface interactions

Data, L = 60 nm, Θ = 235◦C

Fit Model 2

Fit Model 3

Probe detuning ∆/(2π) (GHz)

-1 0 1 2

R
es

id
u

al
s

(×
10

00
)

1

0.99

0.98

0.985

0.980

P
ro

b
e

T
ra

n
sm

is
si

on
T

-4 -2 0 2 4

-1
0
1

Figure 4.5: Comparison of Model 2 and Model 3 Model 2 (black dotted line), not

including atom-surface interactions, misses line-shape features for spectra in the thin

cell region (circles), as highlighted on the zoomed inset. This is despite the fact that in

addition to temperature, we take the broadening ΓP and shift ∆P as free parameters

to phenomenologically account for atom-surface interactions. Model 3 (red solid line)

— that includes atom motion in the spatially dependent vdW potential explicitly —

reproduces the asymmetric double-peak feature perfectly, with only the temperature and

C3 as free parameters when imposing bulk-determined line shift ∆P = ∆P0 and broadening

ΓP = ΓP0.

4.2.3 Determination of the C3 coefficient

We present the best fit of the data for a thin cell with L = 60 nm in Fig. 4.5. Model 3

has only two free parameters, the temperature (or equivalently the density N ) and C3,

as ∆P0 and ΓP0 are constrained to their bulk extracted values (see Eq. (4.19)). Yet, it

shows outstanding agreement compared to Model 2 that only phenomenologically

accounts for atom-surface vdW interactions. In particular, the red-side asymmetry

cannot be retrieved without taking properly the vdW shift into account. The value

for C3 is extracted from fitting the spectra for each cell thickness L (main panel of

Fig. 4.6). Thin cells yield a larger fraction of atoms close to the surface, where the
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4.2 Precise measurement of atom-wall vdW interaction

vdW potential induces large level shifts, and allow tighter constraints on the fitted

parameters. This is visible on the map presented in the top insets of Fig. 4.6, where

the region that minimizes the mean square error σ2 is more tightly localized along the

C3-axis for thin cells.

Error bars assignment For each cell thickness, we extract a value of C3 from the fit

of the spectrum. The error bar for each C3 is attributed as follows: we fix the thickness

measured with an uncertainty of 5 nm. Collisional line-width and shift are also fixed to

their bulk values ∆P0 and ΓP0 measured at large cell thicknesses. We perform an error

propagation in the following way: we vary within their error intervals ∆P, ΓP and L

and repeat the fitting procedure to find the C3 that minimizes the sum of squared

residuals. We thus obtain the systematic error on C3 associated with the uncertainty

in the determination of these fixed parameters. When applying this procedure, we find

that the extracted C3 is insensitive to the value of ΓP0. On the contrary, it is very

sensitive to the value of ∆P0 and L, which are by far the main contributors to the

uncertainty of C3. The error bars assigned for each thickness in Fig. 4.6 correspond

to the variation of C3 by changing ∆P0 (respectively L) within a range of ±20 MHz

(respectively ±2.5 nm). We assume no statistical correlation between the errors due to

L and ∆P0. As a consequence, we take for the error bar on each C3 (associated with

one cell thickness) the quadratic sum of these two errors. Note that due to the good

signal to noise ratio and to the averaging over many realizations, statistical error are

negligible.

Final value for C3 In order to give a final value for the extracted C3, we make the

final assumption that it does not vary with the cell thickness. This approximation

assumes that retardation effects would not lead to an effective dependence of C3 with

L. The final value of the cesium-sapphire C3 coefficient is then assigned, together with

its error bar, as an average weighted by the individual error bar of each point. We

obtain CSa
3,exp = 1.26± 0.10 kHz·µm3, in good agreement (see the side scale in Fig. 4.6)

with the theoretical value CSa
3,th = 1.10± 0.03 kHz·µm3 obtained in the first section

of this chapter [Peyrot et al., 2019b]. In comparison to other similar measurements

(See Refs. [Sargsyan et al., 2017; Whittaker et al., 2014]), our result is closer from

the Lifshiftz theory of vdW interaction. Besides, the error bar reported in these two

works are most likely underestimated. The reason is that they neither used a complete

model describing the transient evolution of atoms in the spatially varying potential,

nor assessed correctly the systematic errors such as collisional effects or cell thickness
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Figure 4.6: Determination of the C3 coefficient for the D1 line of Cs atoms close to

a sapphire surface Main plot: C3 (circles) obtained by fitting Model 3 to the transmission

spectra for different cell thicknesses. Error bars are systematic. Top insets: temperature-C3

maps of the sum of squared residuals σ2 for Model 3 normalized by the best value found

for Model 2, for two cell thicknesses indicated by vertical shaded bars on the main plot.

The final value of C3, obtained as a weighted average, is in excellent agreement with the

theoretical prediction (side scale).

indetermination.

In the last short section, we show the limitations and perspectives of using vapor to

study surfaces properties.
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4.3 Long-range Casimir-Polder regime and short-range repulsive po-

tential

As we have seen previously, transmission spectra of atomic vapor close to surfaces

incorporate contributions of atoms at different distances from the surface. This was

one of the main reason to build a model describing the complete line-shape to extract

precisely the vdW C3 coefficient. When the exact dependence of the interaction

with the atom-surface distance is not already known, the advantages of our method

largely vanish. We illustrate this point with a short discussion about the long-range

Casimir-Polder interaction. Also, very close to a surface, a repulsive potential has been

predicted together with an analytical form [Vargas and Mochn, 1996; Lima et al.,

2000]. In this case, our method can be used and we finally suggest the perspective to

explore the effects that can have this repulsive potential on an experimental spectrum.

4.3.1 Retardation effects in the van der Waals potential

At the beginning of this chapter, the interaction of an atom with a surface has been

understood as the interaction between a dipole d and its image dI in the surface. If

this atom is at an appreciable distance of the surface (z > λ/(2π)), the time taken

for the electric field to travel from the dipole to its image and return can be larger

than the period of fluctuations of the dipole itself. These fluctuations can only be

understood within the quantum electrodynamics theory and are by far beyond the

scope of this manuscript. However, an order of magnitude of the period of fluctuations

can be given by the time corresponding to one oscillation of the dipole moment. This

time is the inverse of the resonant frequency of the atom 1/ω0. The distance travelled

by light during this time is c/ω0 ∼ (3× 108m·s−1)/(2× 1015m·s−1) ∼ 150 nm. If the

atom-surface distance z > 75 nm, the field initially emitted by d and inducing dI

would return and find that the direction of d is now different from the original one. As

a consequence, the attractive interaction is less favorable and retardation effects would

lead to a dependence in 1/z4 of the interaction [Israelachvili, 2011].

References [Wylie and Sipe, 1984, 1985] show that the position-dependent atom-

surface interaction potential is quite complicated to write down explicitly. Particularly,

the general potential is not a sum of the short (1/z3) and long (1/z4) range con-

tributions; otherwise it would scale as 1/z3 for large z, in contradiction with the

Casimir-Polder regime. Our spectroscopic technique is not adapted to search experi-
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mentally for the spatial form of the potential. The reason is that we need an analytical

form of the potential to derive the primitives in Eq. (4.18) and fit the data with the

model. Without this analytical form, the line-shape is not calculated correctly and

the extracted parameters cannot be interpreted (as it was the case for ΓP and ∆P

extracted at low L in Fig. 4.4(c-d)). Notably, had we found a spatial dependence of C3

when L varies (originating for example from atoms experiencing an interaction with

the surface in the Casimir-Polder regime) in Fig. 4.6, we could not have extracted any

meaningful information about the underlying process.

4.3.2 Using the repulsive potential to trap atoms close to surfaces

Very close to a wall, the presence of a repulsive potential is also expected. The physical

origin of this potential is that an atom moving toward the wall cannot penetrate the

surface simply because the electronic shell of the projectile is repelled by the electronic

density formed by the atoms belonging to the surface [Vargas and Mochn, 1996].

The complete atom-surface potential should therefore be the sum of the attractive

and repulsive contributions. The simplest form possible for the repulsive potential is

given by the hard-wall approximation [Israelachvili, 2011], consisting of an infinite

potential barrier at the surface location. More realistic models, that allow for a finite

deformation of the surface, rather suggest power law or exponential potentials. The

latter can be written:

Vrep(z) = Ae−αz, (4.24)

where A and α are two constants that depend on the properties of both the atom

and the surface considered. The combination of a vdW attractive and exponential

repulsive potential is represented in Fig. 4.7(a), where the full potential stands for:

Vtot(z) = −C3

z3
+ Ae−αz. (4.25)

Searching for a signature of this full potential in the spectra was also an initial

motivation of this Thesis. As pointed out in Ref. [Chang et al., 2014], the combination

of attractive and repulsive surface forces potentially allows guiding or trapping of

atoms in close proximity to surfaces. The ability to trap atoms in controlled geometries

(for example small channels etched on the surface) using the properties of the surface,

could lead to hybrid nano-scale atom-surface meta-materials [Whittaker et al., 2014].

As recently demonstrated using He scattering from LiF targets [Cantini and Tatarek,
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Figure 4.7: The repulsive potential (a) Sum of the repulsive and attractive potentials.

The well-shape of the resulting total potential can be exploited to trap atoms at few

nano-meters from the surface. With the value C3 = 1.2 kHz·μm3, A = 4× 1013 Hz and

α = 2× 109 m−1, the signature of the well should give rise to the presence of a small peak

of absorption at a detuning of about 8 GHz. (b) Experimental spectrum for L = 94 nm,

Θ = 235◦C. The laser is scanned up to 10 GHz on the red side of the resonance. The

inset does not reveal any sign of the absorption peak around 8 GHz. The fact that the

transmission is slightly above 1 around −3 GHz is discussed in Chapter 3.

1981; Debiossac et al., 2014], atoms can be trapped in this full potential very close to

a surface (see Fig. 4.7(a)). In these experiments, the authors investigate the diffracting

pattern of an atomic beam scattered by the surface. They particularly show that

the diffraction patterns allow to identify so-called bound-states of the atom-surface

potential.

Surprisingly, there is to our knowledge no investigation of the full potential using

spectroscopic methods. A previous work suggested that in the case of a Cs atom close to

a sapphire surface, the coefficients of the repulsive potential should be A = 4× 1013 Hz

and α = 2×109 m−1 [Lima et al., 2000]. If these figures are correct, we would expect to

observe the signature of atoms trapped at about 5 nm from the surface corresponding

to a detuning of 8 GHz. Indeed, as we can see in Fig. 4.7(a), the well-shaped of the

potential should lead to a surplus of atoms in a slice of energy centred around 8 GHz.

It would lead to a small peak of absorption at this detuning.

In Fig. 4.7(b), we scan the laser up to 10 GHz on the red side of the resonance to

look experimentally for this surplus of atoms. As we can see, we could not find any

sign of the presence of atoms in the well of this potential. The small variations in the

intensity are mainly limitations of the SNR ratio due to unwanted interferences effects

already discussed. There are several possibilities that can explain the absence of this
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absorption peak:

r The SNR (about 5) is too small to observe it.

r As predicted in Ref. [Vargas and Mochn, 1996], the repulsive potential could

possibly be highly dependent on the surface quality. No particular care of

polishing have been taken for the sapphire cell used so far in this manuscript.

r A final possibility could be that the values given in Ref. [Lima et al., 2000] for

the repulsive potential constants are not correct.

All these assumptions will be tested further in the next chapter.

4.4 Conclusion

In this chapter, we have investigated the van der Waals interaction between a surface

and an atomic vapor confined in a nano-cell. We have first recalled the Lifshitz theory

of the non-retarded vdW interaction and calculated the C3 coefficient characterizing

the 1/z3 spatial dependence of the interaction. We have found that for an atom

of cesium close to a sapphire surface, the coefficient corresponding to the D1 line

transition is CSa
3,th = 1.10 ± 0.03 kHz · µm3. This result uses the latest calculations

of dipole matrix elements for low-lying cesium transitions and is therefore the most

accurate prediction to date for this configuration. Subsequently, we have proposed

an innovative method to measure precisely the value of C3 using a vapor confined

in a nano-cell. Up to now, the accuracy of the measured C3 using atomic vapor was

limited by the effect of collisions on the atomic spectra. Using the wedged shape

of the nano-cell allows to access both the thick region where we can extract these

collisional properties and the thin region where the vdW interaction is predominant.

We have illustrated our method with a measurement of C3 for the D1 line for the

cesium-sapphire configuration. In order to extract C3, we have extended the model

presented in Chapter 2 to account for the motion of the atoms in a spatially-varying

potential. The final extracted value CSa
3,exp = 1.26 ± 0.10 kHz·µm3 is in reasonable

agreement with the theoretical prediction.

The presented method can be easily adopted for characterizing the interaction

between any atom or molecule that can be produced in a vapor and any surface

suitable for cell fabrication. However, it requires an analytical form of the atom-surface

potential. We have seen that it is not particularly suited to determine an unknown
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spatial dependence and have illustrated our purpose in the case where the retardation

effects lead to the Casimir-Polder regime of vdW interaction. Finally we have also seen

that at really short distances from the surfaces a repulsive potential originates from

the fact that atoms cannot penetrate the surface. Based on earlier predictions, we have

shown that it should lead to an absorption peak in the spectra lying at about 8 GHz

from the natural resonance. We finally discussed the reasons which could explain the

absence of this signature in the experimental spectrum.

In the next chapter of this manuscript, we will present a new generation of home-made

nano-cells whose surface roughness rms is better than 2�A. We will do spectroscopic

measurement on this cell to investigate further the presence of the repulsive potential.
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Introduction

As we have seen in the previous chapters, the interaction of light with an alkali vapor

largely depends on the characteristics (size, refractive index,...) of the cell confining

the atoms. Therefore, the possibility to change the nature of the cell is first a good

opportunity for us to investigate how the spectral properties are modified when using

a different system. Actually, the motivations for building new types of nano-cells are

numerous. Indeed, miniaturization of devices confining atomic vapors has set the stage

for the development of various compact light-matter interfaces [Petelski et al., 2003;

Wasilewski et al., 2010]. In a near future, an attractive idea is to manufacture systems
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based on the nano-cell technology, where the atoms can be confined in any conceivable

geometry [Gmeiner et al., 2016].

So far, we have used sapphire cells developed by our Armenian partners in the

context of a scientific collaboration. However, the fabrication steps of these cells

are confidential: it prevents us from modifying their properties (geometry, material,

surface roughness, etc...). The ability to gain knowledge on the engineering processes

required to build such nano-cells is a first step to develop more involved designs. At the

nano-scale level, one of the first key points is the quality of the cell walls in terms of

surface finish. Using the know-how of our optical workshop at the Institut d’Optique,

we tackled this particular technical problem. Developing surfaces with ultra-low

surface roughness is an asset to reduce stray light, which limits the signal-to-noise

ratio of light-matter interaction with nano-metric atomic ensembles. Besides, super-

polished surfaces can be ideal candidates for the fabrication of glass micro-cavities

for quantum electrodynamics experiments [Roy and Barrett, 2011]. Finally, building

cells with high-quality surfaces can be an advantage to study the presence of the

atom-surface repulsive potential that we introduced in the previous chapter. Indeed, as

the corrugation of the surface is expected to modulate the repulsive potential [Vargas

and Mochn, 1996; Farias and Rieder, 1998], the position of an atom with respect to

the surface would be ill-defined, complicating the spectroscopic investigation of this

potential. Can we see the effect of the repulsive potential on spectral properties of

atoms confined near super-polished surfaces? If not, what should be the appropriate

experiment to observe it? We will attempt to give an answer to these questions at the

end of the chapter.

Structure of the chapter In a first section, we report on the fabrication and

characterization of a new super-polished wedged borosilicate nano-cell. Then we will

present the first spectroscopic results we obtained with these cells. The cells have

also been polished on the side and we have built a new optical set-up to observe the

off-axis fluorescence from the vapor. We finally investigate in more details the repulsive

potential problematic.
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5.1 Fabrication and characterization of super-polished wedged borosil-

icate nano-cells

In this section, we report on the fabrication of glue-free all-glass nano-cells with a

thickness varying between the optical contact (zero) and a maximum thickness of few

hundred nano-meters. The surface of the cell has a root-mean-square (rms) roughness

of about 2 �A. The cell has been designed by Yvan Sortais (Institut d’Optique),

manufactured by Christian Beurthe (Institut d’Optique) and filled by Pierre Bonnay

(Observatoire de Paris).

5.1.1 Origin of the project

Motivations and specifications Our goal was to produce a new cell with the

following technical specifications:

r The thickness of the cell should vary linearly between 0 exactly and ∼ 1 µm. We

have seen in Chapter 4 that accessing extremely thin and thick regions provides

the ability to measure more precisely the atom-surface interaction properties.

The possibility to probe different system sizes is also an asset to study the

dependence of spectral properties such as width and shift with the medium

thickness as reported in Chapters 2 and 3.

r The cell assembling is done with optical bonding (see more details at the end

of section 5.1.2) and makes no use of glue. This is a technological asset that

prevents from any degasing when the temperature is raised. Indeed, most glues

operate in a range of temperature that does not exceed a few hundreds of Celsius

degrees. However, one may need to operate at much larger temperatures in the

future to increase significantly the density of atoms [Peyrot et al., 2018], or to

study the dependence with temperature of the surface properties [Laliotis et al.,

2014].

r Finally, we require a low surface roughness of better quality than the one

we currently use (∼ nm). We therefore want to engineer surfaces with a rms

roughness better than 1 nm.
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Figure 5.1: The Big-mac Photographs of the initial solution for the nano-cells project.

The nano-cells are in the medium layer and the Newton colors (photograph (c)) indicate

the varying in the cells thickness. The photographs are taken prior to filling with the alkali.

From the ”Big-Mac” to ”Mini-Macs” It is quite common in the French laboratories

to attribute names to experiments. When I arrived to start this Thesis, I was supposed

to work with the so-called Big-Mac cell which was expected to fulfil the above technical

criteria. I am not going to give details for this choice of name. It is left to the reader’s

imagination. This masterpiece was realized at the Institut d’Optique and photographs

of the design is presented in Fig. 5.1. The cell was made of silica and composed of three

parts. The central part contained the nano-cell and the purpose of the bottom/top

parts was to avoid the bending of the surfaces due to pressure forces when pumping1.

Although the construction of the cell took a very long time, the system unfortunately

never worked properly. Namely, we did not observe an interpretable spectroscopic

signal in the cell. Besides, the massive dimension of the cell (diameter ∼ 12 cm, height

∼ 20 cm) was an obvious drawback to heat the system uniformly. It led to a new and

more reasonable design, both in size and in material cost, that we called Mini-Macs,

in the living memory of the Big-Mac.

1This was partly due to the diameter-to-thickness ratio of the Big-Mac. It is also one of the reasons
to consider smaller geometries.
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Figure 5.2: Cell assembling (a) Photograph of the cell. (b) Schematic of the cell (front

view and side view).

5.1.2 Steps of fabrication

The Mini-Mac project The new generation of cells that we built is made of four

parts that are optically bonded together, leading to a monolithic ensemble (see

Fig. 5.2(a)). Using the same material for all parts avoids differential thermal expansion

that could damage the optical bonding. Borofloat glass has been chosen for its good

optical properties in the visible and near-infrared spectrum, and also because it is

more easily super-polished than other materials used in previous cells (sapphire for

instance). This glass was also chosen to facilitate the sealing to the Pyrex side arm that

will contain the Cs reservoir, as the thermal expansion coefficients and the softening

temperatures of both glasses are similar. However, unlike sapphire, and similar to fused

silica, it reacts2 with alkali at temperatures exceeding ∼ 250◦C (see also Sec. 5.3.3).

The central part (A) (see Fig. 5.2(b)) is machined using boring-bits so as to let a

6-mm external diameter, 4-mm internal diameter, and 25-mm long tube protrude

from the front face to allow for connection to a Pyrex loading manifold containing the

Cs reservoir. Glass is then removed from the inside of part (A) using milling-bits. In

this hollow piece, a thick plate (B), carefully angled on one side, is introduced. The

2These reactions are not well documented. We have observed with large cells a brown cover on the
surface at temperatures exceeding 250◦C.
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cell is closed by two thick plates (CL) and (CR) wedged by 1◦ to dismiss unwanted

reflections. Plate (B) is optically contacted on one side on plate (CR). On the other

side, the gap formed by the angle between plate (B) and plate (CL) constitutes the

nano-enclosure and, therefore, its realization is crucial. The two main manufacturing

difficulties that we will detail are: (i) the polishing of the different surfaces to reach

excellent surface roughness and (ii) the control of the nano-gap thickness.

Surface roughness In order to realize surfaces with very low roughness such as those

inside the thin wedge, we first grind them finely using alumina abrasives and a brass

grinding wheel. The surfaces are then manually polished on a pitched wheel using an

aqueous solution of rare earth oxide abrasives with a fine particle size (≤ 1µm). The

final polish is performed with an increasingly diluted solution, leading to a super-polish.

To the best of our knowledge, this procedure leads to better roughness on borosilicate

glass compared to other polishing methods [Li et al., 2008; Frost et al., 2008]. Standard

polish is obtained by using rougher abrasives and stopping the polishing procedure

before the above-mentioned final dilution step.

Realization of the prism-shaped cell The thin wedge of plate (B) is realized by

polishing iterations and controls of the wedge thickness and flatness between two

polishing steps. This is done with an interferometric technique, using a Helium-Neon

laser and a Fizeau interferometer. The wedge is realized so that four fringes appear

in the interferogram, parallel to the y axis (see also Newton colors in Fig. 5.2(a))

with equal inter-fringe spacing. This corresponds to a thickness variation of 1.2 µm.

In addition, the absolute thickness is controlled such that, along its thickest edge,

the plate thickness exceeds the thickness of plate (A) by ∼ 300 nm (see Fig. 5.3(a)),

forming a ridge that will eventually be removed. This is controlled mechanically,

using an electronic depth gauge with a resolution of 100 nm. Parts A and B are

then optically contacted on a parallel plate (P1) and polished simultaneously so as

to remove the 300-nm thick ridge and bring parts (A) and (B) to equal height for

closing purpose. This height equalization is controlled interferometrically using a flat

etalon (P2), as shown in Fig. 5.3(b). This procedure ensures that final assembly brings

the closing plate (CL) in optical contact with both parts (A) and (B). Therefore, the

wedge thickness should vary between 0 exactly and about 900 nm.

All parts of the cell are cleaned with alcohol prior to final assembly by optical

contact (no glue is used). The bonding of two surfaces is done at room temperature. It

relies on the presence of hydroxyl molecules, which are bonded to the silicon atoms
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Figure 5.3: Realization of the edge Procedure to realize a thin wedge with thickness

varying between 0 and 900 nm. Parts (A) and (B) are optically contacted on a parallel

plate (P1). (a) The thickness of part (B) first exceeds that of part (A) by 300 nm. The flat

etalon (P2) therefore sits on the ridge of part (B), leading to interference fringes (between

part (A) and the flat etalon) with different white light colors on each side of the ridge. (b)

After flattening the ridge and equalizing the heights of part (A) and (B), the flat etalon

sits equally on parts (A) and (B), leading to equal color fringes.

of the glass and bring the two surfaces together by hydrogen bonding, mediated by

the presence of water molecules [Cocheteau, 2014; Whittaker, 2017]. The bonding is

obtained by pressing lightly onto the parts to be connected until white light color

fringes disappear and are replaced by a uniform dark fringe where the two parts are in

contact. The only requirements are the absence of dust and the complementarity of

the two surfaces to be bonded: in our case, we found that a flatness difference of 30

nm rms or less was sufficient to achieve a stress-resistant and vacuum-tight optical

bonding.

Once the cell is assembled we connected it to a turbo-molecular pumping stage via

a Pyrex loading manifold, and baked the cell-manifold assembly at 350− 400◦C for

four days while pumping. Although the pressure inside the cell cannot be evaluated

precisely3, this procedure proved to be necessary both to get rid of water vapor and

residual contaminants inside the cell prior to filling the reservoir with Cs and to

reinforce the optical bonding4. Cesium was then transferred, using a low temperature

flame, from an ampoule with a breakable seal to the cell reservoir. The vapor filling

step took place at the Laboratoire GEPI of the Observatoire de Paris.

3At the end of the pumping procedure, we measured at room temperature a pressure of 8×10−9 mbar
at the pumping stage. The pressure inside the cell is certainly higher, due to the limited conductance
of the Pyrex loading tube.

4It is likely that the temperature of this initial baking was too cold. It should rather be larger than
500◦C (see also Ref. [Whittaker, 2017]) to make the optical bonding permanent. One of the cells
we built lost the optical bonding, probably for this reason.
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Thermo-heaters
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Figure 5.4: New oven design Thermo-heaters are introduced in copper via appropriated

apertures in the Teflon parts. The two copper ovens are separated by a 1-cm PTFE piece.

Connections to translation stages have been manufactured in order to have the possibility

to move the cell with respect to the laser beam and hence probe different cell thicknesses.

New oven design The Armenian oven we have used so far is too small to contain

the borosilicate cells. We have therefore built another oven in the mechanical workshop

of Durham University. The oven is composed of two materials: (i) copper is used for its

good thermal conductivity (∼ 350 W·m−1·K−1) to ensure a quick and homogeneous

heating of the cells with HT15W thermo-heaters from Thorlabs. (ii) It is surrounded

by Teflon (PTFE) which has a very low thermal conductivity (∼ 0.25 W·m−1·K−1)
hence being an ideal candidate to insulate both the two ovens (reservoir and windows)

from each other and from the exterior. The design, realized with the Autodesk Inventor

software, is represented in Fig. 5.4.

In the following part, we will verify that the cell produced meets the initial technical

specifications.

5.1.3 Characterization of the optical properties

Characterization of the surface roughness Figure 5.5(d) shows a typical roughness

profile, measured using an optical heterodyne profiler (ZYGO 5500) with a sensitivity

of 0.2 A rms. The spatial resolution of the profiler is 1 μm, on the order of the distance

travelled by the atomic dipoles of the vapor before they reach a steady state (limited

by collisions inside the gas or radiative decay). To investigate atom-surface interactions

over shorter travelling distances, and account for the transient response of the vapor

to finer details of the surface [Peyrot et al., 2019c], we characterize the surface on a
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Figure 5.5: Roughness characterization Top: AFM imaging of (a) a standard polish

and (b) a super-polished surface of our cell. Bottom: roughness profiles acquired with (c)

the AFM and a spatial resolution of 20 nm and (d) the optical heterodyne profiler (spatial

resolution: 1 μm). Red (blue) traces correspond, respectively, to the super-polish (standard

polish) surfaces. (e) Rms roughness versus averaging area.
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Figure 5.6: Wedge thickness characterization We have built two cells with different

wedge angles. We represent the 2D mapping of the two wedges thickness (resolution of

the prism along x and y axes: 0.5 mm)

smaller scale. To do so, we acquire images of the super-polished surfaces using an

atomic force microscope (AFM 5500 from Keysight Technologies) in a tapping mode,

equipped with a silicon tip (n-type). The spatial resolution of the AFM imaging is

given by the radius of the tip (∼ 10 nm or less). Typical images and roughness profiles

acquired with the AFM are shown in Figs. 5.5(a-b-c) for a super-polish and a standard

polish. As expected, the roughness is lower for a super-polish than a standard polish.

In Fig. 5.5(e), we summarize the results obtain with the different techniques and show

that we have been able to produce a surface with a rms surface roughness of about

2 �A (This value depends on the surface on which the roughness is averaged, as shown

in Fig. 5.5 (e)).

Characterization of the prism size Using the method to measure the thickness

that we presented in Chapter 2, we characterized the local thickness of the wedge.

We represent a 2D map (x, y) of the local thickness in Fig. 5.6 for two cells that we

have realized. We see on these figures that the thickness goes exactly to zero and

increases linearly to about λ/2 and 3λ/4 for the two different wedges. The larger

wedge corresponds to the procedure to obtain a wedge with a thickness of 900 nm.

The final thickness is slightly smaller than expected. This is probably due to van der

Waals forces between plates CL and B.

All things considered, we have fabricated and characterized a new generation of

super-polished cells where a Cs vapor is confined in a nano-geometry [Peyrot et al.,

2019a]. In the following section we will produce the first spectroscopic results obtained

with these cells.
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5.2 First experimental observation using fluorescence spectroscopy

In this section we build a fluorescence optical set-up and optimize the signal-to-noise

ratio of the detection system. We will also present the first spectroscopic results

obtained with the cells presented in the first section. More quantitative fluorescence

experiments will be investigated in the next (final) chapter.

5.2.1 A new experimental set-up

Fluorescence set-up The optical set-up is represented in Fig. 5.7. The oven is

designed to observe off-axis fluorescence via a side-window. Thanks to a 3D translation

stage, a lens with a 5 cm focal length is placed such that the atomic slab lies in its

focal plane. We use a collimator to image this slab on a Thorlabs multi-mode fiber

core. The fiber is connected to a single-photon counting-module (SPCM-AQRH-14-FC

from Excelitas). The module detects single photons with a detection efficiency of about

40% at 894 nm and generates a transistor-transistor-logic (TTL) level pulse for each

photon detected. Each pulse arrival time is recorded by the use of a high resolution

counting module (HRM TDC from sensL). The time resolution of the SPCM and

HRM are respectively 350 and 27 ps. The detection system is much faster than what

we require to do fluorescence spectroscopy5. However, it would in principle be possible

to investigate with this set-up ultra-fast atomic coherent dynamics [Keaveney, 2014;

Ripka et al., 2016; Whittaker, 2017], or measure intensity temporal correlations.

First experimental spectra To obtain a single spectrum, we record the arrival time

of each photon during one laser scan. These times are referenced with respect to the

laser trigger and we bin them to create a histogram (see Fig. 5.7). The bin size is chosen

so as not to degrade the spectral resolution6. We can accumulate data by repeating

this procedure over many laser scans to reduce the statistical noise. We present in

Fig. 5.8(a) examples of spectra obtained for different cell thicknesses between 50 and

376 nm for a temperature of 220◦C. We present fluorescence spectra normalized by

the most significant bit value in the histogram. We see that without any particular

care, we obtain very nice signal-to-noise ratios (SNR is about 5 for L = 150 nm). To

5The laser scans in 100 ms a 20 GHz frequency range. To be able to resolve a line-width as narrow
as Γ0/(2π) = 6 MHz, we would require a time resolution of 30 µs.

6Typically, if we scan the laser around 20 GHz and want to observe spectroscopic features as sharp
as 6 MHz, we need at least 4000 bins. In practice, the line-width is larger than 50 MHz and 1000
bins is enough.
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Figure 5.7: Fluorescence optical detection The laser diode is scanned around the vapor

resonances. The set-up allows to measure 90◦ off-axis fluorescence. A 5-cm lens, placed

on a 3D translation stage, images the atomic slab on the input of a multi-mode fiber.

The fiber is connected to a single-photon counting module (SPCM) that produces a TTL

pulse for each detected photon. A counting card is used to collect the arrival times of the

photons with respect to the laser trigger time. A Python program is finally used to create

a histogram of the arrival times.

observe thinner slab thickness, we need to improve this signal-to-noise ratio though.

5.2.2 Improving the signal-to-noise ratio

The predominant source of noise originates from photons generated in the laboratory

which reach the detector (room-light, other electronic devices, etc...). To reduce as

much as possible this noise we have combined the use of a home-made black chamber

and a narrow bandpass filter FB900-40 (FWHM: 40 nm around 900 nm, transmission

rate of about 70% at 894 nm) from Thorlabs. With this configuration, we reduced

the parasite counting rate from more than a million count per second (saturation of

the detector) to the dark-count limit (50 clicks per second) even with the room light

on. When the laser drives the atoms, two types of photons can be collected by the

detector: (i) fluorescence signal from the atoms, (ii) stray light of the laser radiation
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Figure 5.8: First fluorescence spectra (a) 90◦ off-axis fluorescence spectra obtained for

Θ = 220◦C and a range of thickness going from 50 nm (purple) to 376 nm (yellow). (b)

Optimal configuration to reduce the stray light on the detector. The linear polarization

after the half-wave plate needs to be in the direction of the detection path. (c) Count-rate

on the SPCM as a function of the wave-plate angle.

on the cell surfaces. The latter is now the main limitation for the signal-to-noise ratio

(SNR) and there is no easy way to reduce it. We have noticed that the atomic signal

does not depend on the incoming linear laser polarization while the noise does. We

therefore used a half wave-plate to investigate the dependence of this noise with the

incident laser polarization. We show in Fig. 5.8(c) the dependence of the photon

count-rate on the SPCM as a function of the rotation angle of the wave-plate. We

choose the horizontal orientation7 (direction of the detection system, see Fig. 5.8(b)),

that maximizes the SNR. In the next section we will show the experimental results with

the best SNR obtained and study the presence (or not) of the repulsive atom-surface

potential presented in the previous chapter in the spectral response of the vapor.

5.3 Atom-surface repulsive potential

We recall that an atom placed in the vicinity of a surface is subjected to an atom-surface

potential and that this potential is expected to be the sum of an attractive long-range

(vdW) and a repulsive short-range contributions. At the end of Chapter 4, we pointed

7Due to the angle-dependent emission pattern of a dipole, we observe a minimal scattering when the
polarization is along the detection axis.
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out three reasons that could prevent us from observing the signature of the repulsive

potential close to a surface. In this section, we will try to address these three points:

(i) we will look for the signature of the repulsive potential in the far-detuned wings

of the spectra with the best SNR possible. (ii) We will provide simulations of the

expected spectral signature and try to evaluate the effect of the surface roughness and

temperature on these features. (iii) Finally, we will come back on the plausibility of

the potential given in Ref. [Lima et al., 2000].

5.3.1 Searching for the signature of the repulsive potential

We show in the main panel of Fig. 5.9 a spectrum obtained with the best SNR for

L = λ/8 and a temperature of 215◦C. To obtain this spectrum, we scanned the laser

up to 25 GHz without mode-hop on the red side of the transition. Although the

laser intensity is PID-controlled, as in the previous chapters, a small variation of the

intensity during the scan remains. We have therefore normalized the spectra, i.e divide

the signal by a ramp matching the variation of the laser intensity. This remains valid

in the weak driving regime, where the number of emitted photons is proportional to

the laser intensity. This is how we get the flat signal at very large detuning even in log

scale8. If the values given by Ref. [Lima et al., 2000] for the repulsive potential are

correct, we are searching for a spectral peak9 located around 8 GHz from the natural

atomic resonance, as explained in the previous chapter. We report no sign of this peak

neither at 8 GHz (see the inset in Fig. 5.9) nor up to 25 GHz.

5.3.2 Spectroscopy with a repulsive potential: simulations

To interpret the absence of spectral peaks at 8 GHz, we extend our model of

transmission to include the repulsive potential. In a first approximation, we assume

that the quantity −ln(T ) is close enough to our fluorescence measurement to provide

the spectral signatures that we expect10. We use the model developed in the previous

chapter to simulate spectra with the repulsive potential. To this purpose, we need to

compute again the primitives given in Eq. (4.17), accounting now for the full potential.

8We also note that the SNR obtained is not particularly better with respect to transmission
techniques. We have a SNR of 20 for L = λ/8. In transmission, the corresponding absorption was
about 5% for a residual oscillation on the base-line of 0.2 %.

9In fact, we expect two peaks corresponding to the two scanned transitions.
10We will investigate the actual differences between transmission and fluorescence spectra in the final

chapter.
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Figure 5.9: Searching for the repulsive potential Fluorescence spectrum for

L = λ/8 ∼ 110 nm and Θ = 215◦C. The laser is scanned without mode-hop up

to 25 GHz on the red side of the transition. Blue dots: experimental data, red full (respec-

tively black dashed) line: prediction of the model including the full atom-surface potential

for C3 = 1.26 kHz·μm3, α = 2× 109 m−1 and A = 4× 1013 Hz (respectively 0 Hz). The

plotted quantity is the optical density (−ln(T ), where T is the transmission) normalized

to its larger value. The parameters in the model used for the fit are ΓP0 = 310 MHz,

L = 110 nm. We have added a relative and frequency independent noise of 5.4× 10−2

to account for the conditions of the experiment. Inset: the presence of the two spectral

features due to the full atom-surface potential appears on the theoretical curve with non

vanishing A, but not on the data.

Adapting Eq. (4.25) to the case where the two walls of the cell act on the atoms, the

full potential spatial dependence is:

V2−walls(z) =
C3

z3
+ Ae−αz +

C3

(L− z)3
+ Ae−α(L−z). (5.1)

The primitives of Eq. (4.17) have the following analytical expressions:

Λ±(z) =

{
Γ0 + ΓP0

2
− i(ω� − ωFF’ −ΔP0 ∓ klv)

+i

[
C3

2z3
− C3

2z(L− z)2
− Ae−αz

αz
+

Ae−α(L−z)

αz

]}
z. (5.2)

We can now use the complete model to simulate the result we would expect for the
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conditions of the experiment: (Θ ∼ 215◦C, ΓP0 = 310 MHz, L = λ/8 ∼ 110 nm). We

also introduce a relative noise amplitude of 5.4× 10−2 to best model the experimental

situation11. We represent in Fig. 5.9 the result of the simulation. We observe the

signature of the repulsive potential in the small increase in fluorescence that appears

more clearly in the inset. In comparison, we have represented the same simulation for

A = 0, where the peaks at 8 GHz are absent.

We have then investigated the influence of various parameters on the strength and

location of the spectral features appearing in the inset of Fig. 5.9. First of all, we

have remarked that increasing the broadening decreases the amplitude of the peaks.

This confirms the fact that when the total homogeneous line-width Γt increases, the

spatial relaxation distance ξ = v/Γt decreases and atoms are more sensitive to the bulk

than to surfaces. Then, we have tested the influence of the surface roughness. To this

purpose, we have introduced a random fluctuation on the distance to the surface for

all spatial integrations in the model12. We report that as long as the surface roughness

is smaller than 2 nm, the prediction represented in Fig. 5.9 is not changed. Above this

value, the peaks start to spread and finally disappear. The surface roughness that

we use is smaller than 2 �A: it should therefore not affect the signal that we expect.

Finally, we found that the parameters describing the potential (C3,A and α) are

decisive because they change drastically the form of the potential hence the location

and depth of the well. In Chapter 4, we have determined experimentally the value of

C3. However, the figures for A and α for the repulsive potential have been taken from

Ref. [Lima et al., 2000]. We finally examine the plausibility of these numbers.

5.3.3 Adsorption of atoms on a surface

In the previous chapter, we suggested that the well formed by the attractive (van der

Waals) and repulsive potentials originates from the adsorption of atoms on the surface.

According to the type of interaction between the adsorbate (vapor) and the absorbent

(surface), adsorption can be either physisorption or chemisorption [Stephens, Rhodes,

and Wieman, 1994]. In the case of chemisorption, the bonding is usually covalent

(strong) and the process is permanent. This is favored by high temperature and leads

to a deterioration of the cells that we mentioned at the beginning of Sec. 5.1.2. When

the bonding is due to van der Waals forces, one rather refers to physisorption.

11Without this noise, the signal obtained in the simulation would exactly go to zero far off resonance.
12Typically, we take z → z + δz in Eq. (5.2), with δz chosen randomly between 0 and the rms

roughness.
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Reference [Stephens, Rhodes, and Wieman, 1994] gives a comprehensive analysis

of these different phenomena in the case of a Cs vapor close to various surfaces. In

particular, the authors measured that the bonding energy related to the physisorption

process is in the eV range. The order of magnitude is consistent with the ones used in

the experiments using scattering of atomic beam on surfaces [Farias and Rieder, 1998;

Debiossac et al., 2014]. This information tells us that the figures given in Ref. [Lima

et al., 2000] cannot be realistic: they suggest a potential well depth of several GHz

(typically ∼ 0.03 meV for 8 GHz). After a more in-depth bibliographic review, we found

that the same authors (Ref. [Lima et al., 2000]) admitted that they had considered

a very shallow surface well [Passerat de Silans et al., 2006] and that atoms should

be trapped much closer from the surface (few �A). In light of this information, it is

not surprising that our experiment could not extract information about the repulsive

potential.

Finally, we suggest more appropriate directions for a future investigation of adsorption

phenomena based on Refs. [Stephens, Rhodes, and Wieman, 1994; Passerat de Silans

et al., 2006]. The physisorption process can be related to an adsorption energy Ea.

In order to measure this adsorption energy, the authors of Ref. [Stephens, Rhodes,

and Wieman, 1994] built a cell where the atomic chamber can be decoupled from the

reservoir. In this case, the number of atoms n0 in the closed volume is equal to the

sum of atom number in the vapor nvap and stuck on the wall nwall:

n0 = nvap + nwall. (5.3)

The number of atoms stuck on the wall is nwall = Sexp (Ea/(kbΘs)) with Θs the

temperature of the surface and S a proportionality constant that depends on the

geometry of the cell. They performed absorption spectroscopy as a function13 of Θs to

find the value of Ea. A similar experiment could be used to measure the adsorption

energy of Cs atoms close to sapphire or borosilicate surface.

A measurement of the adsorption energy would lead to the depth of the potential

well. Knowing the attractive potential strength C3 one could in principle construct a

repulsive potential form (choosing the parameters A and α) that leads to a consistent

value for the well depth. Ultimately, it should be in principle possible to load bound

states of the full potential with photo-association techniques [Passerat de Silans et al.,

2006; Afanasiev, Melentiev, and Balykin, 2007]. This method consists in using two

resonant lasers to induce a transfer of the atoms to the bound states of the potential

13The authors of Ref. [Stephens, Rhodes, and Wieman, 1994] pointed out that it is more appropriate
to decrease rather than to increase temperature to avoid chemisorption.
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by a Raman transition14.

Conclusion

In conclusion, we have built a new generation of wedged and super-polished nano-cells.

The fabrication makes no use of glue and the cells are assembled by optical bonding.

They are filled with cesium and we have described the manufacturing steps to achieve

the desired technical specifications. Namely, we have characterized the wedge of the

cells in terms of local thickness and surface roughness:

r The cell thickness goes from exactly 0 (optical contact) to λ/2 and 3λ/4 for the

two cells respectively.

r The surface roughness of the super-polished parts is about 2 �A rms.

Concerning the atom-surface repulsive potential, we have realized that the con-

stants describing the repulsive potential given in Ref. [Lima et al., 2000] were not

correctly assessed. We have suggested few directions to follow in order to carry on

this investigation. We also want to point out that the work concerning the repulsive

potential (i.e. model including the spatially varying potential) could nonetheless find

applications using artificial repulsive potentials [Desbiolles and Dalibard, 1996; Hinds,

Boshier, and Hughes, 1998]

Finally, we have built a new optical detection scheme in which we are able to collect

off-axis fluorescence from the vapor confined in the cell. We have optimized the SNR

and we will use this set-up in the last chapter to investigate more quantitatively the

fluorescence signals.

14Due to atomic-motion, this experiment should probably be conducted with a cold atomic cloud
rather than an atomic vapor.
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Introduction

In this Thesis, we have mainly studied the transmission of light through a thermal

atomic vapor. In this case – referred to as on-axis or coherent scattering – the field

emitted by the atoms interferes with the driving field. At the end of the previous

chapter, we also considered the possibility to observe the optical response of the

vapor from a different point of view: when a medium consists of randomly positioned

polarizable particles, light can be scattered in other directions than the one in which

the laser propagates. Throughout this chapter, we will call this configuration off-axis

scattering, incoherent scattering or fluorescence without distinction.

Fluorescence spectroscopy is interesting mainly because it allows for single photon

detection on a laser-free background. For example, a four-wave mixing scheme has

been used with rubidium vapors to create entangled photons pairs [Shu et al., 2016] or

to demonstrate the heralded generation of bichromatic single photons [Whiting et al.,
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2017]. Reference [Mercadier et al., 2013] studied the transport properties of photons in

the vapor and evidenced the presence of long-lived scattering events (Lévy-flights). The

ratio of single to multiple scattering has also been investigated [Dussaux et al., 2016]

by measuring the correlations between emitted photons. Finally, the manipulation of

single photons led to the development of quantum hybrid platforms combining the

advantages of both quantum dots and atomic vapor properties [Akopian et al., 2011;

Ulrich et al., 2014].

Off-axis scattering of light in small thermal atomic vapors (thickness L ≤ λ) has

been less studied than coherent scattering. Historically, experiments in this regime

have built on the seminal work of Dicke [Romer and Dicke, 1955]: in this vein, several

works reported the observation of sub-Doppler spectroscopic signals [Cojan, J. L. ,

1954; Schuurmans, 1976] and were followed by similar studies [Briaudeau et al., 1998;

Dutier et al., 2003a] mainly using coherent techniques such as transmission or selective

reflection. Only recently, atom-surface interactions have been investigated using vapors

confined in nano-cells [Whittaker et al., 2014; Fichet et al., 2007]. Few works finally

reported comparisons between transmission and fluorescence in such small systems (see

for instance Ref. [Sarkisyan et al., 2004]). In this chapter, we will study the off-axis

light scattering from a thermal vapor confined in a nano-cell and investigate the

differences with respect to a coherent detection technique such as transmission that

we developed in the previous chapters. We note that the results in this chapter are

preliminary and have not yet been the subject of a scientific publication.

Structure of this chapter In a first section, we investigate experimentally the

differences between the optical response of a vapor observed in transmission and in

fluorescence. Based on the observation, we will build a new model to describe the

off-axis light scattering. We then show experimental fluorescence spectra in the very

thin region, affected by the van der Waals interaction. Finally we shall study the

effects of the resonant dipole-dipole interaction on the spectral widths and shifts of

the fluorescence lines when the density of the vapor increases.

6.1 Fluorescence spectroscopy versus transmission spectroscopy

In this section we compare the spectral properties of the vapor confined in a nano-cell

in two configurations: (i) light is collected on-axis (transmission), (ii) light is collected

off-axis (fluorescence). We then study more in details a phenomenon called the collapse

and revival of the Dicke narrowing [Dutier et al., 2003b] with the two techniques.

126



6.1 Fluorescence spectroscopy versus transmission spectroscopy

Based on the differences that we observe, we finally derive a new model to study

off-axis light scattering.

6.1.1 Comparison of spectroscopic properties

Using the set-up presented in Fig. 6.1(a), we can observe simultaneously the on-axis

transmission with a photodiode and the off-axis fluorescence thanks to a detection

system depicted in the previous chapter. We present in Fig. 6.1(b-c) a comparison of

fluorescence and transmission spectra for a temperature of Θ = 210◦C at a thickness

of L = λ/4 and L = λ/2 respectively. The first difference that we observe concerns the

symmetry of the line-shape. In the case of transmission, we observe for L = λ/4 a

strong asymmetry on the blue side1 of the resonance in Fig. 6.1(b). We have seen in

Chapter 3 that this asymmetry originates from the Fabry-Perot effect and that it is

expected to appear for L = λ/4 + ` · λ/2 with ` ∈ N. Surprisingly, the line-shape is

completely symmetric for the fluorescence spectrum. This first analysis shows that the

Fabry-Perot nature of the cavity should play a minor role for light scattered off-axis.

We can also note that the optical response for L = λ/2 are really similar in both

cases (see Fig. 6.1(c)). The authors of Ref. [Sarkisyan et al., 2004] always found

fluorescence spectra narrower than the transmission ones. We will show below that this

holds as long as the collisional broadening remains negligible compared to the Doppler

width. We therefore compare the two techniques at a lower temperature (Θ = 140◦C),

where the collisional broadening is very low. We display in Fig. 6.2(a) a line-shape

comparison for L = λ/2 and we see that the fluorescence spectrum is indeed narrower.

It confirms the observations of Ref. [Sarkisyan et al., 2004]. The line-width gives us

information on the role of the different velocity classes in the optical response. It has

for example been predicted [Dutier et al., 2003b] that the narrowing of the line-shape

due to the motion of the atoms, should be maximal for L = λ/2 + `λ with ` ∈ N. To

observe this phenomenon, we perform a series of measurements at Θ = 140◦C and

different cell thicknesses. We then fit the spectra in transmission and fluorescence with

a model composed of Lorentzian functions to extract the width. As explained in the

previous chapters, we do not expect this procedure to provide quantitative results.

However we should extract a qualitative information concerning the dependence of

the width with the cell thickness. We observe in Fig. 6.2(b) the dependence of the

extracted widths as a function of the thickness around L = λ/2. For the fluorescence

1The difference between the line-shapes in transmission and fluorescence cannot be explained by a
rescaling of the detuning axis. We note that we already observed such asymmetry in Fig. 3.4(b).
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Figure 6.1: Optical set-up and cavity effects (a) Optical set-up similar to the one

presented in the previous chapter. Here, we collect simultaneously the on-axis transmission

on a photodiode and the off-axis fluorescence on the single photon counter module.

(b, respectively c) Fluorescence in arbitrary units (a.u) and optical density (−ln(T )) for

Θ = 210◦C and L = λ/4 (respectively L = λ/2). Spectra obtained with the borosilicate

cell.

spectra the width increases monotonically (in contradiction to the prediction for the

oscillatory behavior mentioned above). On the contrary for the transmission spectra,

the width decreases from L = λ/4 to L = λ/2 and increases afterwards2.

This last observation is striking and agrees with one made in Ref. [Sarkisyan et al.,

2004]. In the next part, we try to understand more deeply the origin of this narrowing.

6.1.2 Collapse and revival of the Dicke narrowing

In his 1953 paper, Dicke showed that an emitter that experiences multiple collisions,

with a mean free path much smaller than the wavelength of the emitted radiation,

exhibits narrower line-shape compared to the standard Doppler width corresponding to

its velocity [Dicke, 1953]. The result was derived under the condition that “collisions

should not influence the internal state of the radiator”. As we have seen in this

manuscript and in many references cited before, a narrowing of optical spectra occurs

2For a more explicit observation of the collapse and revival of the Dicke narrowing one can refer to
Refs. [Sarkisyan et al., 2004; Dutier et al., 2003b].
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Figure 6.2: Transmission vs fluorescence: Dicke narrowing (a) Spectra for L = λ/2

and Θ = 140◦C. Blue dots: fluorescence. Red square: optical density (−ln(T )). (b) Width

extracted from the fit of the data with a model based on Lorentzian profiles. Red squares:

transmission. Blue circles: fluorescence. Error bars are statistical. Spectra obtained with

the borosilicate cell. We use the notation ∆ω 6= Γt to recall that no quantitative meaning

should be attributed to this quantity since the line-shape is not Lorentzian.

in thermal vapor cells of thickness L ≤ λ. Although this effect was also termed

Dicke narrowing, it is a priori not obvious that spectral line narrowing should occur,

since atoms are completely depolarized when they collide with a cell wall (quenching

collisions).

In the previous section, we saw that both transmission and fluorescence spectral

lines were narrowed. However, the oscillatory behavior, named Collapse and revival of

the Dicke narrowing has only been observed in transmission (or selective reflection)

and has no equivalent in fluorescence [Dutier et al., 2003b; Sarkisyan et al., 2004]. In

the following, we show that the narrowing of the lines originates from two distinct

processes that are not immediately related to the initial work of Dicke.

Incoherent velocity selection A velocity selection of the atoms contributing to the

signal (transmission or fluorescence) occurs because only dipoles flying parallel to the

surface have enough time to reach steady-state. As we have already seen in Chapter 2,

the dipole moment of an atom with non-zero velocity in a direction perpendicular

to the surface is quenched by atom-wall collisions. The width of the line due to

this velocity selection increases monotonically with the size of the cell. Indeed, for a

given laser waist size, the larger the cell the less strict is the velocity selection (see

Fig. 6.3(a-c)). This source of narrowing is not a coherent process (it does not depend
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Figure 6.3: Coherent versus incoherent narrowing (a) Incoherent velocity selection.

Single-atom process: a single emitter collides with a wall before reaching steady-state. (b)

Coherent narrowing of the line. Two-body process: coherences from atoms at a position

z in the cell propagating towards the other wall with a velocity v along z axis interfere

with the coherences of atoms at position L− z propagating in the other direction with a

velocity −v. (c) Illustration of the incoherent velocity selection: only small velocities, with

small Doppler shifts contribute to the signal. (d) Illustration of the coherent narrowing of

the line: there is an increase of signal at Δ = 0 due to constructive interferences.

on the phase of the dipole), and therefore does not produce periodic collapses and

revivals. Besides, in contrast to the coherent narrowing that we discuss now, it can be

understood simply as a single-atom process.

Coherent narrowing of the atomic lines The collapse and revival of the narrowing

cannot be explained by the above velocity selection argument (see also Ref. [Sargsyan
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et al., 2016]). In their observations, the authors of Refs. [Dutier et al., 2003b; Sarkisyan

et al., 2004] reported the presence of a cell thickness periodic narrow contribution on

resonance (∆ = ω` − ω0 = 0). We now show that this periodic oscillation originates

from interferences between pairs of velocity classes, v and −v symmetrically positioned

around the zero-velocity class (see Fig. 6.3(b)). To this purpose, we perform the

following simulation: first, we ignore the cavity effects (i.e. we neglect the Fabry-Perot

nature of the cell and take ρ(z, v) = ρ+(z, v) where ρ+ is defined in Eq. (4.12)), which

do not play any role in the narrowing. We use Eqs. (4.20) and (4.21) to compute the

quantities:

M = |ρ(z, v) + ρ(L− z,−v)| ×Mb(v), (6.1)

φ = Arg [Mb(v) (ρ(z, v) + ρ(L− z,−v))] , (6.2)

where Arg is the argument of a complex number. Assuming first no decoherence (the

total homogeneous line-width is Γt = 0) and the laser on resonance (∆ = 0), we see that

M is λ/2 periodic with the distance z to the first surface (see Fig. 6.4(a)). The crucial

point is the phase information: we see in Fig. 6.4(b) that the phase φ does not depend

on the atomic velocity class for a given position z. Besides, we observe a π phase shift

between the positions z ∈ [`λ, `λ+ λ/2], ` ∈ N and z ∈ [(2`+ 1)λ/2, (l + 1)λ], ` ∈ N.

The signal collected in the experiment is integrated over all positions z in the cell. We

can now understand the increase of signal on resonance at L = λ/2 (see Fig. 6.3(d)).

Integrating the coherences over z = 0→ λ/2 includes only in-phase terms: the peak

on resonance is maximal for this particular thickness. Now, if we consider L = λ, the

phase opposition implies that the contributions of the coherence for z = 0 → λ/2

are exactly cancelled by the contributions from z = λ/2→ λ. The same argument

can be extended for larger cell thicknesses. We now discuss what happens when the

homogeneous linewidth increases and when the laser is not on resonance.

In presence of homogeneous broadening (Γt = Γ0, the natural line-width), the

same argument as above holds (see the dependence of M and φ in Figs. 6.4(c-d)).

However, the contrast is degraded and we have observed that the collapses of the

narrowing vanish almost completely as soon as Γt = 5Γ0. This explains why the

observation of the Collapse and Revival of the Dicke narrowing has been performed at

very low temperature (Θ = 118◦C for Ref. [Dutier et al., 2003b] and Θ = 120◦C in

Ref. [Sarkisyan et al., 2004], where the broadening due to collisions is smaller than

Γ0). Finally, we display M and φ in the case of ∆� Γt = Γ0 in Figs. 6.4(e-f). We see
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Figure 6.4: Collapse and revival of the Dicke Quantities M and φ (see main text) in

the (v, z) plane. v is the projection of the velocity in the direction perpendicular to the

surfaces. (a-b) the laser detuning is ∆ = 0 and the homogeneous line-width is Γt = 0.

(c-d) ∆ = 0 and Γt = Γ0, (e-f) ∆ = 10Γ0 and Γt = Γ0.
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there that the summation over the atomic pairs [(z, v), (L− z,−v)] has no particular

structure in the (z, v) plane. This finally explains why the narrow feature only appears

on resonance.

In conclusion, the coherent narrowing results from the interference of pairs of atoms

with opposite velocity and located symmetrically with respect to the center of the cell.

Besides, the resulting spectral feature is a contribution from all velocity classes on

resonance in contrast to the incoherent narrowing which involved only low velocity

classes. We also note that the signal resulting from the interferences is not only

narrowed: it is periodically stronger in amplitude when L = λ/2 + `λ, ` ∈ N. Finally,

this oscillation does not appear in fluorescence: we conclude that in some way, there is

no interferences between the different pairs in this case.

6.1.3 A fluorescence model to study the interactions

Based on the observations we have made concerning the differences between transmis-

sion and fluorescence spectra, we now derive a model aiming at simulating the off-axis

scattering from the atomic vapor confined in a nano-cell. The intensity collected by a

detector placed at a point r in space is given by:

I ∝ 〈|Etot|2〉, (6.3)

where 〈...〉 denotes the ensemble average over different atomic spatial configurations

and Etot is the sum of the driving field E` and the field scattered by the laser-induced

dipoles Esc. Without loss of generality, we can write:

Esc = 〈Esc〉+ δEsc, (6.4)

where 〈δEsc〉 = 0. The first and second terms in this equation are usually associated

with the coherent and incoherent light scattering. On the one hand, the coherent

part corresponds to the solution of the Helmoltz equation for the field scattered by a

medium described by a dielectric constant. On the other hand, the incoherent part is

related to the random positions of the atoms in the ensemble [Schilder et al., 2016].

We can rewrite the intensity at any point in space as:

I ∝ 〈|E` + 〈Esc〉+ δEsc|2〉. (6.5)

We develop the modulus square:
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I ∝

〈
|E`|2 + (E` · 〈Esc〉+ c.c.) + (E` · δEsc + c.c.) + |〈Esc〉|2 + |δEsc|2

〉
. (6.6)

Because 〈δEsc〉 = 0 we can rewrite this sum as:

I ∝ 〈|E`|2〉+ (E` · 〈Esc〉+ c.c.) + |〈Esc〉|2 + 〈|δEsc|2〉. (6.7)

In the direction of propagation of the laser, as |E`| � |〈Esc〉|, the interference between

the laser field and the coherent light scattering (two first terms on the right side of

Eq. (6.7)) largely dominates over the two last terms of the equation. This explains

why we neglected the incoherent light scattering term |δEsc|2 in the previous chapters.

In every other direction, the laser field is null because its distribution in the ~k-space is

a Dirac delta-function centred on ~k`. The off-axis intensity is therefore:

I(r) ∝ |〈Esc〉|2 + 〈|δEsc|2〉. (6.8)

It can be shown that in a one-dimensional model, where the laser propagates in a

direction z in a medium with finite extension along z and infinite extension along x

and y, the coherent light scattering 〈|〈Esc|2〉 is also peaked around ~k` [Schilder et al.,

2016]. If the system is not one-dimensional, the coherent scattered light is distributed

in a cone around ~k = ~k` (see more details in Ref. [Schilder et al., 2017]). In our case,

the transverse direction is the laser waist (w0 ∼ 100 µm) that is much larger than the

medium size (L ∼ λ). We therefore neglect the term |〈Esc〉|2 for the intensity collected

at almost normal incidence. We obtain:

I ∝ 〈|δEsc|2〉 = 〈

∣∣∣∣∣∑
i

Edi(
~k,~r)

∣∣∣∣∣
2

〉, (6.9)

where Edi(
~k, r) is the field radiated by a dipole di placed at a position ri in the vapor,

calculated at a position r corresponding to a direction ~k 6= ~k` in space. In the far field

regime, it leads to:

I ∝ 〈

∣∣∣∣∣∑
i

die
i~k·(~r−~ri)

|~r − ~ri|

∣∣∣∣∣
2

〉. (6.10)

Because |r| � |ri| we can take the denominator out of the sum. Besides, we assume

that the medium is dilute enough such that the dipoles are only induced by the laser
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Figure 6.5: Phase matching condition (a) When light is collected on-axis, �k� − �k = 0

and all fields emit in phase. There is phase matching. (b) When light is collected off-axis,

�k� −�k = 0 and the phases of the different fields calculated at a position r can be different.

The phase matching condition is lost. (c) Illustration in the transverse plane. When the

waist of the laser w0 � λ, the phase of the fields collected off-axis are uniformly distributed

in [0, 2π].

field E�. Thus, di = αiE� with αi the polarizability of the dipole di. The intensity

becomes:

I ∝ 〈
∣∣∣∣∣∑

i

αiE�(ri)e
i�k·(�r−�ri)

∣∣∣∣∣
2

〉. (6.11)

We then develop the modulus square

I ∝ 〈
∑
i

αiE�(ri)e
i�k·(�r−�ri)

∑
j

α∗jE
∗
� (rj)e

−i�k·(�r−�rj)〉, (6.12)

which can be separated into two terms:

I ∝ 〈
∑
i=j

|αiE�(ri)|2 +
∑
i �=j

αiα
∗
jE�(ri)E

∗
� (rj)e

i�k·(�rj−�ri)

︸ ︷︷ ︸
∝ei(�k− �k�)·( �rj−�ri)

〉. (6.13)

When �k = �k�, the average of the second term vanishes. This is because the summation

is carried out over various phase terms (�k − �k�) · (�rj − �ri) uniformly distributed in

[0, 2π] (it happens when the size of the waist is much larger than the size of the cell,

see also Fig. 6.5(c)). In Fig. 6.5(a-b), we illustrate the phase matching condition

responsible for the cancellation of this term. As a result,

I ∝ 〈
∑
i=j

|αiE�(ri)|2〉. (6.14)

135



Chapter 6: Off-axis fluorescence spectroscopy

Performing the average, we transform the sum in integral using ρ(z) = 〈αiE`(ri)〉
where 〈αiE`(ri)〉 is the configuration average for the coherences of all dipoles di located

within the (z, z + δz) slab. Thus3:

I ∝
∫ L

0

dz′ |ρ(z′)|2 . (6.15)

We have observed in the spectra that the different velocity classes do not interfere.

From this experimental observation, we can conclude that4

I ∝
∫ L

0

dz′
∫ ∞
−∞

dvMb(v) |ρ(z′, v)|2 . (6.16)

Finally, the coherence ρ is induced by the forward and backward cavity fields E+

and E− introduced in Chapter 4. We show that if the two associated coherences ρ+ and

ρ− interfere, it leads to an oscillation of the width with a period λ/2 (see Fig. 6.6(a)).

Without interference, this oscillation disappears (see Fig. 6.6(b)). The only solution

that is in agreement with our experimental results presented in Fig. 6.6(c) is when

these contributions do not interfere. We end up with the final formula5:

I ∝
∫ L

0

dz′
∫ ∞
−∞

dvMb(v) |ρ−(z′, v)|2 + |ρ+(z′, v)|2 . (6.17)

This result is preliminary and care should be taken when using it. We note however

that it agrees with the formula given in Ref. [Andreeva et al., 2007] in the limit of

weak driving.

6.2 van der Waals interaction in fluorescence

In this section, we present a first attempt to extract the atom-surface C3 coefficient

from fluorescence spectra of the Cs D1 line. We first show that we are able to see the

influence of the surface phenomenologically with a model that does not include the

spatially varying atom-surface potential. A model including this potential is under

development.

3Note that in the regime of weak excitation, |ρ|2 = ρ22 as introduced in Chapter 1.

4We have dismissed the following situation: I ∝
∫ L

0
dz′
∣∣∣∫∞−∞ dvMb(v)ρ(z′, v)

∣∣∣2, where the velocity

classes interfere.
5We have dismissed the following situation: I ∝

∫ L
0

dz′
∫∞
−∞ dvMb(v) |ρ−(z′, v) + ρ+(z′, v)|2, where

the coherences ρ− and ρ+ interfere.
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Figure 6.6: No cavity interferences (a) Width of spectra simulated with a model where

we let the coherences ρ− and ρ+ interfere as a function of the cell thickness. The widths

are extracted by Lorentzian fits and are normalized by the total homogeneous line-width

Γt. The width features a λ/2 oscillation whose amplitude depends on Γt (b) Width of

spectra assuming no interference (we use Eq. (6.17)). The oscillation is not present. The

increase in the width for short thickness (L < λ/2) is due to transient broadening. (c)

Experimental width Δω as a function of the cell thickness for a temperature Θ = 175◦C.
The experimental data do not feature the λ/2-periodic oscillation with the cell thickness.

It seems to indicate that only a model with no cavity interference is appropriate.

6.2.1 Initial results: extraction of the bulk properties

Extraction of the bulk properties We follow the same experimental procedure as

in Chapter 4 to extract the C3 coefficient. We represent in Fig. 6.7(a-b-c) experimental

spectra obtained for Θ = 210◦C. We first use Eq. (6.17) and Eqs. (4.20), (4.21)

and (4.18) to model our data. We superimpose on these graphs the best fit to the

data where we have adjusted ΔP, ΓP and an additional offset to account for the

off-resonant noise. The model reproduces almost perfectly the line-shape: we have

therefore managed to include the velocity selection at the origin of the incoherent
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Figure 6.7: Bulk vapor properties Experimental fluorescence spectra. Temperature of

the cesium reservoir of Θ = 210◦C and cell thickness L = 150, 170 and 190 nm in (a),

(b), (c) respectively. The square, triangle and circle are reported on the right panels to

indicate the corresponding spectrum. The best fit using the non-local fluorescence model

that does not include the atom-surface potential (see details in main text) is superimposed

as a dashed red line. (d-e) Extracted ΔP (triangles) and ΓP (circles) as a function of the

cell thickness L. Full symbols: non-local model. Empty symbols: local model. The bulk

properties of the medium ΔP0 and ΓP0 are extracted at large enough cell thickness.

narrowing. Indeed, despite the integration over Maxwell Boltzmann velocities, the

theoretical line-shape is not Doppler broadened, in agreement with the experimental

data.

We represent in Fig. 6.7(d-e) the extracted values for the parameters ΔP and ΓP

as a function of the cell thickness. We first note that the value extracted for ΓP

is independent of the cell thickness and in excellent agreement with the collisional

broadening predicted at this temperature for the D1 line of cesium. As in Chapter 4, we

report the phenomenological signature of the van der Waals potential in the red shift

of ΔP for L ≤ 150 nm. We extract the bulk properties of the vapor ΔP0 = −65± 12

MHz and ΓP0 = 237 ± 8 MHz taking the mean and the standard deviation of the
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Figure 6.8: Red-side asymmetry Right panel: Blue circles, experimental spectrum for

L = 65 nm and Θ = 210◦C. Black dotted line: best fit using Eq. (6.17) for the fluorescence

not including the spatial dependence of the atom-surface potential (i.e. the coherences

are calculated using Eqs. (4.20) and (4.21) together with Eq. (4.18)). Red dashed line:

local model (see details in the main text) including the spatial dependent shift. (b) Zoom

on the left of the F = 4 → F ′ = 3 transition: only the model that accounts for the

inhomogeneous line shift is able to reproduce the asymmetry.

parameters for L ≥ 150 nm.

Observation of the asymmetry We show in Fig. 6.8 a spectrum in the thin region

(L = 65 nm). The influence of the atom-surface interaction is more visible using

the log-scale. The asymmetry on the red side of the transition originates from the

spatially-dependent van der Waals shift. The model not including the atom-surface

potential fails to reproduce this asymmetry. We have not developed yet a non-local

model that include atom-surface interaction for fluorescence. As a preliminary result,

we show that a local model for the fluorescence (i.e. we still use Eq. (6.17) but the

coherences are calculated with Eq. (4.22), without integration over Maxwell Boltzmann

distribution) is able to reproduce accurately the asymmetry. However, without taking

into account the atomic motion, we cannot give a meaningful interpretation of the C3

coefficient returned by the fit.
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6.2.2 Work in progress

Effect of the temperature In the future, we could investigate the dependence of

the atom-surface interaction with the temperature. The properties of the interaction

are only affected by a change in the temperature of the cell windows while a change in

the temperature of the reservoir (i.e. a different vapor density) should not affect the

interaction [Laliotis et al., 2008]. The influence of the temperature on the interaction

originates from temperature dependent polaritonic surface modes [Passerat de Silans

et al., 2009]. Reference [Laliotis et al., 2014] indicates that a change in the temperature

of several hundreds of degrees is required to see a modification of the C3 coefficient. The

borosilicate cells, that cannot be used above 250◦C are therefore not good candidates

for this experiment. Due to the glue used to build the sapphire cells, the maximum

allowed operation temperature is 400◦C. As a consequence, we should develop another

design for both cell and oven to perform this experiment.

Effect of the material In principle, we have all the tools (experimental and theo-

retical) to compare the van der Waals interaction for cesium atoms close to sapphire

and borosilicate using transmission spectroscopy. However, we have not been able to

obtain satisfactory agreement between theory and experiment when adjusting our

transmission model to the spectra obtained with the home-made borosilicate cell

built in the previous chapter. We attribute the above discrepancy to a still not well

understood additional Fabry-Perot effect. Fluorescence spectra are more promising

since we have obtained very good agreement between theory and experiment for

spectra in the thick regions (see Figs. 6.7(a-b-c)). Due to the lack of a full model in the

thin region we cannot yet extract the C3 coefficients with these spectra. We have finally

already seen differences between the two cells when we compare the phenomenological

influence of the surface on the parameters ∆P extracted with the non-local model. We

have compared the value of ∆P as a function of the cell thickness for the two cells

heated at equivalent windows temperatures (Θwin = 220◦C). We have observed that

the shift is larger in the case of a sapphire window than a borosilicate window. This is

in qualitative agreement with the Lifshitz theory on van der Waals interaction because

the C3 is expected to be larger in the case of sapphire (see Eqs. (4.8) and (4.9)).

140
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6.3 Resonant dipole-dipole interactions

To conclude this chapter, we revisit the resonant dipole-dipole interaction using

fluorescence spectroscopy. In particular, we investigate the dependence with L and N
of the shifts (and widths) modified by the resonant dipole-dipole interaction.

6.3.1 Collective Lamb Shift in fluorescence

In Chapter 2, we demonstrated that for a dilute enough atomic slab placed in vacuum,

the minimum of transmission should be shifted by a quantity called the Collective

Lamb Shift (CLS). We represent in Fig. 6.9(a) theoretical simulations to compare

the dependence of the line peak in the case of transmission and fluorescence. Using

Eq. (6.17), we see that in a regime where N /k3
` (Γ0/Γt)� 1, the fluorescence peak is

not shifted. We superimpose for comparison the results we obtained in Chapter 3 in

transmission. The absence of CLS in the case of fluorescence was expected for at least

two reasons:

r Fluorescence is not a coherent process described by the Helmoltz equation for

the propagation of light in a medium of index n. Therefore, it does not verify

the conditions under which we derived the CLS.

r We note that in Eq. (6.16), the different terms in the summation are symmetric

around zero-detuning. As a result, the signal resulting from the integration

cannot be shifted.

Subsequently, we have led an experiment where we compare simultaneously the

positions of the peaks in fluorescence and transmission. The temperature of the reservoir

in the borosilicate cell is Θ = 210◦C and the medium thickness varies between 70 and

550 nm. We display the results in Fig. 6.9(b). The experiment clearly confirms the

simulations: out of the range where the van der Waals interaction displaces the energy

levels in the two cases, only the transmission peak position is thickness-dependent6.

We therefore demonstrate here that cavity effects, responsible for the CLS in the

transmission of atomic lines has no equivalent in fluorescence. Besides, even when the

medium surrounding the atoms is not vacuum, the line-shape remains symmetrical out

of the range where the van der Waals interaction plays a significant role (L ≥ λ/(2π)).

6Note that due to the asymmetry of the line-shape in the case of transmission, this thickness
dependence is not the Cooperative Lamb shift which is only valid when the medium is surrounded
by vacuum, as we showed in Chapter 2.
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Figure 6.9: Revisiting the CLS in fluorescence (a) Simulations. Positions of the peak

(minimum for transmission, maximum for fluorescence) of the resonance as a function of the

cell thickness for N/k3� (Γ0/Γt) = 10−4. (b) Experiment. Position of the F = 4 → F ′ = 3

resonant feature for transmission and fluorescence spectra collected in a borosilicate cell at

a reservoir temperature of Θ = 210◦C. Error bars are smaller than the markers.

This is an important result of this chapter: the Fabry-Perot nature of the cavity does

not induce shift or any modification of the off-axis optical response. In other word, the

off-axis optical response seems to be directly related to the bulk vapor properties.

6.3.2 Dependence of shifts and widths with density

To investigate the modification of the bulk vapor properties when the density increases,

we have collected fluorescence spectra for different temperatures of the reservoir.

We display in Fig. 6.10 these spectra at a fixed cell thickness as a function of the

density in the borosilicate (panel (a)) and sapphire cells (panel (b)). We see that as

the density increases, the line becomes very broad. We have fitted the spectra with

the non-local model and extracted the parameters ΔP and ΓP as a function of the

density for different cell thicknesses. We observe a linear dependence of the shifts and

the widths with respect to the density (see Fig. 6.11(a-b)).

As in the case of transmission (see Figs. 3.5(c-d)), we represent in Fig. 6.11(c-d) the

slopes ∂ΔP/∂N and ∂ΔP/∂N as a function of the cell thickness. For the broadening,

we observe that at very low thickness, the extracted slope is in excellent agreement with
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Figure 6.10: Fluorescence versus density (a) Fluorescence spectra in the borosilicate

cell as a function of the temperature for L = 330 nm. (b) Same quantity for the sapphire

cell and a cell thickness of L = 300 nm.

the theoretical prediction for the collisional broadening coefficient β (0.75 Hz·cm3).

However, the collisional broadening coefficient seems to increase with the cell thickness.

This result is unexpected. One possible explanation of this phenomenon could be that

when we collect light at ∼ 90◦ from the optical axis, light initially scattered by the

atoms could excite other atoms (multiple scattering) in the direction in which light

is collected. To verify this last hypothesis, one could lead an experiment where the

statistical properties of the collected photons would be measured, as in Ref. [Dussaux

et al., 2016]. We have observed the same dependence (agreement with the collisional

broadening at low L and increase for large L) when we realized the experiment with

the sapphire cell. For the shift, we observe a similar behavior. The slope clearly

increases with the cell thickness.

Conclusion

In this chapter, we have analysed quantitatively the off-axis light scattering by a

thermal vapor confined in a nano-cell. To this purpose, we have first performed a

systematic comparison between fluorescence and transmission spectra for identical

parameters of thickness and density. We have particularly observed that a maximal

narrowing only occurs in transmission for the particular thickness of L = λ/2. This
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Figure 6.11: Density shifts and widths in fluorescence Left pannels: Extracted width

ΓP (a) and shift ∆P(b) as a function of the atomic density for different cell thicknesses.

Spectra obtained with the borosilicate cell. Dashed lines are linear fit to the experimental

points. (c) and (d): slopes of the linear fit for the widths and shifts respectively as a

function of the cell thickness. The dashed red line indicates the theoretical prediction for

the collisional broadening.

phenomenon is actually λ-periodic with the cell thickness7, and originates from the

mesoscopic character of the vapor that we already encountered in Chapter 2. We have

analysed in more depth the physical origin of the periodic behavior and showed that it

corresponds to interferences between opposite velocity classes of the atomic ensemble

confined in the cell.

We have used this observation to make assumptions in order to derive a new

theoretical model for studying the off-axis light scattering from the vapor. Using this

model, we have started the analysis of the van der Waals atom-surface interaction

7This period particularly indicates that this are not cavity effects which are λ/2-periodic with the
cell thickness.
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based on the method outlined in Chapter 4. We have also suggested several experiments

that could be done in the future regarding interesting applications using atoms in the

vicinity of a surface.

Finally we revisited experimentally the resonant dipole-dipole interaction with an

off-axis detection technique. We first confirmed experimentally and theoretically that

the Collective Lamb Shift is a quantity that can only be measured in transmission.

It is therefore a quantity related to the coherent response of the vapor. Due to the

absence of asymmetry caused by cavity effects, the line-shape is easier to model in

fluorescence by comparison to transmission spectra. The access to the bulk properties is

hence facilitated. We therefore conclude this chapter highlighting the fact that off-axis

fluorescence detection is an alternative method to transmission to gain information on

the optical response of a vapor confined in a nano-cell. On the one hand, all coherent

effects resulting from the phase imprinted by the laser are lost and the method should

not be used if such effects are of interest. On the other hand, if the goal is to suppress

unwanted and complex line-shape modifications to extract the response of the bulk

vapor, the fluorescence technique is possibly more appropriated.
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Conclusion

Let us recall the main results presented in this manuscript. Although some of the

outlooks for this project have already been mentioned throughout the different chapters,

we will also suggest some final tracks that would be interested to explore in the future.

In the first chapter of this manuscript, we recalled the equations governing the

interaction of a resonant light with an ensemble of atoms in interaction. In particular, we

show that, as soon as there are more than several atoms in the ensemble, computational

times to describe the exact optical response quickly diverge. Consequently, we considered

another theoretical approach to interpret the experimental results obtained in this

manuscript: we have adopted a mean-field theory in which the atomic ensemble is

considered as a continuous polarizable medium. In this framework, we have derived

ab initio the transmission of light through a motionless, thick and dilute atomic

ensemble. We explained that in order to study the resonant dipole-dipole interaction

in dense ensembles, thin systems were appropriate to reduce the optical density. It

led us to anticipate the modifications of the spectral transmission properties that

could occur working with a dense thermal vapor confined in a nano-cell. At the end of

this chapter, we have formulated a series of question that we tried to answer in the

following chapters and that we now summarize.

First of all, we had to deal with atomic motion. Inspired by several works of the

community, we have highlighted explicitly that atomic motion induces a non-local

response of the vapor to the incident electromagnetic field. The important quantity

is the distance over which they relax: ξ = v/Γt, with v the atomic velocity and Γt

the total homogeneous line-width. In large cells of thickness L � ξ, where atoms

can reach steady-state, non-locality gives rise to the well-known Doppler-broadened

spectra. In short cells (L < ξ), collisions with the cell walls quench atomic dipoles

and the optical response depends on the size of the system: this is the mesoscopic

regime. In this regime, the modification of the line-shape is drastic: spectra can be very

narrow and we explained in Chapter 6, the different origins of what is commonly called

Dicke narrowing. When the density of the medium increases, atom-atom collisions

understood as a dynamic resonant dipole-dipole interaction become predominant. As a

consequence, the total homogeneous broadening increases. The optical response of the

medium becomes local again and this is in this framework that we investigated the

effects of density on the atomic resonant frequency ω0.
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The first motivation for this Thesis was to understand the origin of the so-called

Cooperative Lamb Shift (CLS). We have first shown that the origin of this shift was due

to dipole-dipole interaction included in the propagation of light in a thin slab acting

as a Fabry-Perot cavity. We have then related the CLS to an observable quantity: this

is the displacement of the minimum of transmission of an atomic slab surrounded by

vacuum. Finally, we refined the condition to observe it (optical response χ� 1) and

pointed out that in a real cavity such as a nano-cell, this quantity was not measurable.

To account for the physical environment around the atoms we have developed a full

model of transmission through the nano-cell system with which we have extracted the

bulk atomic properties (shifts, widths) deconvolved from the cavity effects.

Our second motivation was to characterize the effects of the miniaturization of the

cell on the spectral properties of the vapor. In addition to the growing influence of

collisions with the wall, atoms close to surfaces are subjected to the van der Waals

atom-surface interaction. We have developed a new method to determine precisely the

influence of this interaction. Particularly, we have measured a C3 coefficient in very

good agreement with the theoretical prediction, hence validating a versatile method

that could be used in a variety of situations including different atoms and cell materials.

In the last chapter, we investigated the properties of light scattered off-axis by the

vapor. We saw that due to the incoherent nature of this light, the line-shapes were

easier to interpret. Particularly, we report no measurable modification of the optical

response attributed to the cavity in this configuration. For future applications that

would not require the coherent nature of the light scattering, this method is therefore

perhaps more appropriated. Finally, we presented the fabrication and characterization

of a new generation of all-glass super-polished nano-cells, with a surface roughness of

about 1 �A rms. We conclude this manuscript with several perspectives made possible

with this technological development.

1. We have seen that cavity effects can play a significant role in the transmission of

light through the cell. In the future, we can imagine applying dielectric coatings

on the cell walls as for increasing or decreasing the reflectivity of the surfaces.

On the one hand, we could make a better-finesse cavity to favor cavity-induced

dipole-dipole interactions. On the other end, we could make this effect completely

negligible. In a more exotic way, we could even apply different coatings for

each wall to mimic a situation where the cell would be composed of different

materials. Similarly, we could imagine to apply on the surfaces an anti-relaxation

coating, to change the boundary conditions of the light-matter interaction as

in Ref. [Seltzer and Romalis, 2009]. In this situation, it is not sure whether or
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not we could reach the mesoscopic regime induced by the non-local response

of the atoms. In the nano-geometry, this is a technological challenge to apply

these coatings. First, care should be taken to leave free areas for the molecular

bonding. Second, calculations of the dielectric coating layer thickness have to be

accounted for in the realization of the wedge geometry.

2. We have not studied in this manuscript the effect of the surface roughness on the

spectral properties of the vapor. However, the quality of the surface is predicted

to play a significant role in the way atoms are adsorbed on the surface walls. It

would be really enlightening to measure the adsorption energy as a function

of the surface roughness. In the longer term, we could consider manufacturing

surfaces with a roughness down to the atomic level using for example lithographic

techniques.

3. Finally, it would be very interesting to investigate the multiple scattering events.

We have seen in the last chapter that it could depend on the cell thickness. We

could also investigate the dependence of such events as a function of the angle

with which we collect the signal. To this purpose, we should investigate the

statistical properties of light collected on the side of the cell.

As a final statement, as dipole-dipole interaction in miniaturised geometries are a

promising tool for future several applications, I hope that this manuscript contributed

to a certain extent to characterise some of the effects that could bias the way light

interacts with matter in these devices.
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In this appendix, we compute several integrals that we mentioned throughout the

manuscript.

A.1 Calculation of the dipole field integral

Integral to compute The purpose of this Appendix is to derive Eq. (1.36):

Ed(z) =
ik`Nα(ω`)

2

∫ L

0

dz′Eloc(z
′)eik`|z−z

′|,

starting from Eq. (1.35) projected on ex:

Ed(r) =
Nα(ω`)k

3
`

4π

∫ ∞
−∞

dx′
∫ ∞
−∞

dy′
∫ L

0

dz′{[
3(ex.n̂)2 − 1

]( 1

(k`R)3
− i

(k`R)2

)
−
[
(ex.n̂)2 − 1

] 1

k`R

}
(A.1)

× eik`REloc(r
′).

Demonstration The demonstration closely follows the work made in Ref. [Fearn,

James, and W Milonni, 1996] that includes both near and far-field contributions. We

start to note that ex · n̂ = (x− x′)/R and that the local field only depends on z′ such

that we obtain:
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Ed(r) =
Nα(ω`)k

3
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4π

∫ ∞
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dx′
∫ ∞
−∞

dy′
∫ L

0
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− i

(k`R)2
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−
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1

k`R

}
(A.2)

× eik`REloc(z
′).

We now use polar coordinates: (x− x′) = R cosφ and R2 = R2− (z− z′)2 which leads

to:

Ed(r) =
Nα(ω`)k

3
`

4π

∫ ∞
0

R dR
∫ 2π

0

dφ

∫ L

0

dz′{[
3
R2 cosφ2

R2
− 1

](
1

(k`R)3
− i

(k`R)2

)
−
[
R2 cosφ2

R2
−R2

]
1

k`R3

}
(A.3)

× eik`REloc(z
′).

Performing the integration over φ and using R dR = R dR, the integral is rewritten

as:

Ed(r) =
Nα(ω`)

4

∫ ∞
|z−z′|

dR

∫ L

0

dz′{
(1− ik`R) ·

(
1

R2
− 3
|z − z′|2

R4

)
+
(
R2 + |z − z′|2

) k2
`

R2

}
× eik`REloc(z

′).

(A.4)

We now need to introduce the special integral:

Fn =

∫ ∞
|z−z′|

dz′
eik`R

Rn
, n = 0, 1, 2, 3, 4. (A.5)

A simple variable change R′ = R− |z − z′| and applying the residue theorem allows

to derive:

F0 = − 1

ik`
eik`|z−z

′|. (A.6)

Using integration by parts, we find the following recurrence relation:
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Fn(z, z′) =
1

ik`

[
nFn+1 −

eik`|z−z
′|

|z − z′|n

]
. (A.7)

As we can write the dipole field under the form:

Ed(r) =
Nα(ω`)

4

∫ z

0

dz′F2(z, z′)− ik`F1(z, z′)− 3|z − z′|2F4(z, z′)

+ 3ik`|z − z′|2F3(z, z′) + k`F0(z, z′) + k2
` |z − z′|2F2(z, z′) (A.8)

and applying the relation (A.7) leads to Eq. (1.36).

A.2 Calculation of the transmission through an atomic slab surrounded

by vacuum

The purpose of this Appendix is to derive Eq. (2.18) starting from Eqs. (2.15), (2.16)

and (2.17). We start to derive the two intergrals I1 and I2. . Because the driving fields

propagates in the medium without any reflection, we can write it as E(z′′) = E0e
ik`z

′′
.

As in the manuscript, we also introduce Λ+ = Γt/2− i (∆FF’ − k`v) for the sake of

readability. Starting from Eqs. (2.16) and (2.17) we obtain:

I1 =
iE0N ε0C2

FF’d
2

~

∫ +∞

0

dv
Mb(v)

v
exp

(
−z′(Γt/2− i∆FF’)

v

)∫ z′

0

dz′′ exp

(
z′′Λ+

v

)
,

(A.9)

I2 =− iE0N ε0C2
FF’d

2

~

∫ 0

−∞
dv
Mb(v)

v
exp

(
−z′(Γt/2− i∆FF’)

v

)∫ L

z′
dz′′ exp

(
z′′Λ+

v

)
.

(A.10)

Performing the spatial integral we have:
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I1 =
iE0N ε0C2

FF’d
2

~

∫ +∞

0

dvMb(v) exp

(
−z′(Γt/2− i∆FF’)

v

)exp
(
z′Λ+

v

)
− 1

Λ+

 ,

(A.11)

I2 =− iE0N ε0C2
FF’d

2

~

∫ +∞

0

dvMb(v) exp

(
−z′(Γt/2− i∆FF’)

v

)exp
(
LΛ+

v

)
− exp

(
z′Λ+

v

)
Λ+

 .

(A.12)

We now rewrite Eq. (2.15) as:

Et = E0e
ik`z +

∑
F ,F ′

ik`
2ε0

∫ L

0

dz′eik`(z−z
′) (I1 + I2) , (A.13)

that can be expressed as:

Et =E0e
ik`z −

∑
F ,F ′

E0NC2
FF’d

2k`
2~

eik`z× (A.14)

∫ L

0

dz′


∫ ∞

0

dvMb(v)

1− exp
(
−z′Λ+

v

)
Λ+

− ∫ 0

−∞
dvMb(v)

exp
(

(L−z′)Λ+

v

)
− 1

Λ+

 .

(A.15)

We perform the second spatial integration:

Et =E0e
ik`z −

∑
F ,F ′

E0NC2
FF’d

2k`
2~

eik`z× (A.16)


∫ ∞

0

dvMb(v)

 L

Λ+

+ v
exp

(
−LΛ+

v

)
− 1

Λ2
+

+

∫ 0

−∞

 L

Λ+

− v
exp

(
LΛ+

v

)
− 1

Λ2
+

 .

(A.17)

A final variable change v → |v| leads to Eq. (2.18) and concludes this demonstration.
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A.3 Calculation of the transmission through an atomic slab in a

Fabry-Perot cavity

In this Appendix, we provide semi-analytical1 results for the field transmitted to a

non-local slab of atoms placed in a Fabry-Perot cavity. Although the derivation is

painful, we provide semi-analytical results because a fully-numerical model is way

too slow for fitting procedures. In contrast to the above Appendix A.2, the driving

field and emitted fields are multiply reflected in the cavity. In this case, the field

transmitted by the cavity is:

Et = Et0 + EA+ + EA− , (A.18)

where EA+ and EA− are defined in Eqs. (2.20) and (2.21). Our work here is to

compute EA+ and then EA− . For the sake of simplicity, we use the reduced notation

A = t20/(1− r2
20 exp 2ik`L). Starting from Eq. (2.20), and using Eq. (2.14):

EA+ = F exp(ik`z)
∑
F ,F ′

ik`
2ε0

∫ L

0

dz′ exp(−ik`z′)
∫ ∞
−∞

dz′′ε0χL(z′, z′′,ω`)E(z′′). (A.19)

Using Eqs. (2.11), (2.9) and (2.10) we can express the field EA+ by the means of

two integrals involving positive and negative velocities on a reduced spatial domain2:

EA+ = −AB
∑
F ,F ′

(IA1 − IA2) , (A.20)

where B = (k`NC2
FF’d

2)/(2~),

IA1 =

∫ ∞
0

dv
Mb(v)

v

∫ L

0

dz′ exp (−ik`z′)
∫ z′

0

dz′′ exp

(
(z′ − z′′)(−Γt

2
+ i∆FF’)

v
)

)
E(z′′),

(A.21)

IA2 =

∫ 0

−∞
dv
Mb(v)

v

∫ L

0

dz′ exp (−ik`z′)
∫ L

z′
dz′′ exp

(
(z′ − z′′)(−Γt

2
+ i∆FF’)

v

)
E(z′′).

(A.22)

1We perform the spatial integrations and leave the velocity integration that has no analytical
solution.

2We recall that the main argument to calculate separately the contributions from positive and
negative velocity is that the coherence is quenched at a wall collision
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In the dilute regime, the field that excites the atoms is the one of an empty cavity:

E(z′′) = E0
t10

1− r20 exp 2ik`L︸ ︷︷ ︸
C

(
eik`z

′′
+ r20 exp (ik`(2L− z′′))

)
. (A.23)

There is no particular difficulties in the integration steps: it mainly involves primitives

of exponentials such that in Appendix A.2. We provide the results of the cumbersome

successive integrations:

IA1 = E0C

∫ ∞
0

dvMb(v)

{
L

Λ+

+
v

Λ2
+

(
exp(−Λ+L

v
)− 1

)
(A.24)

+
r20e

2ik`L

Λ−

[
(1− e2ik`L)

2ik`
+

v

Λ+

(
exp(−Λ+L

v
)− 1

)]}
(A.25)

and

IA2 = E0C

∫ 0

−∞
dvMb(v)

{
−L
Λ+

+
v

Λ2
+

(
exp(

Λ+L

v
)− 1

)
(A.26)

+
r20e

2ik`L

Λ−

[
(e2ik`L − 1)

2ik`
+

v

Λ+

exp(
Λ−L

v
)

(
1− exp(−Λ+L

v
)

)]}
.

(A.27)

We now compute EA− :

EA− = r20F exp(ik`z)
∑
F ,F ′

ik`
2ε0

∫ L

0

dz′ exp(+ik`z
′)

∫ ∞
−∞

dz′′ε0χL(z′, z′′,ω`)E(z′′).

(A.28)

As before, we can rewrite EA− as:

EA+ = −AB
∑
F ,F ′

(IA3 − IA4) , (A.29)

where:
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IA3 =

∫ ∞
0

dv
Mb(v)

v

∫ L

0

dz′ exp (+ik`z
′)

∫ z′

0

dz′′ exp

(
(z′ − z′′)(−Γt

2
+ i∆FF’)

v
)

)
E(z′′),

(A.30)

IA4 =

∫ 0

−∞
dv
Mb(v)

v

∫ L

0

dz′ exp (+ik`z
′)

∫ L

z′
dz′′ exp

(
(z′ − z′′)(−Γt

2
+ i∆FF’)

v

)
E(z′′).

(A.31)

We finally give the results of the integrations:

IA3 = E0C

∫ ∞
0

dvMb(v)

{
1

Λ+

[
v

Λ−

(
exp(−Λ−L

v
)− 1

)
+

exp(2ik`)− 1

2ik`

]
(A.32)

+
r20e

2ik`L

Λ−

[
L+

v

Λ−

(
exp(−Λ−L

v
)− 1

)]}
, (A.33)

IA4 = E0C

∫ 0

−∞
dvMb(v)

{
1

Λ+

[
v

Λ−

(
exp(

Λ+L

v
)− exp(2ik`L)

)
+

1− exp(2ik`)

2ik`

]
(A.34)

+
r20e

2ik`L

Λ−

[
−L+

v

Λ−

(
exp(

Λ−L

v
)− 1

)]}
. (A.35)

We have derived the expression that allows to compute EA+ and EA− in a reasonnable

computing time. Ultimately, having the field transmitted by the Fabry-Perot cavity

without atoms:

Et =
t10t20 exp(ik`z)

1− r20 exp(2ik`L)
, (A.36)

we can compute the transmission factor:

T =

∣∣∣∣ EtEt0
∣∣∣∣2 , (A.37)

which is used for fitting the data.
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A.4 Collective Lamb shift

A.4.1 Taylor-expansion of the field transmitted by a dense atomic slab

In this Appendix we provide the calculation steps to derive the Collective Lamb shift.

Particularly, we detail the Taylor expansion to go from Eq. (3.12) to Eq. (3.15). We

first make the calculation without the Lorentz field correction and we show that the

latter only introduces an additional shift offset ∆LL.

We start from Eq. (3.12) recalled below:

Et(z) = E0e
ik`z +

ik`χ

2

∫ L

0

dz′
(
Etr1e

ink`z
′
+ Etr2e

−ink`z′
)
eik`(z−z

′). (A.38)

We do a Taylor-expansion of Et at second order in χ. Therefore we expand the term

in the integral at first order in χ. We have particularly:

n =1 +
χ

2
+ O(χ2), (A.39)

t1 =
2

1 + n
=

1

1 + χ
4

+ O(χ2)
= 1− χ

4
+ O(χ2), (A.40)

r2 =
n− 1

n+ 1
=

χ
2

+ O(χ2)

2 + χ
2

+ O(χ2)
=
χ

4
+ O(χ2). (A.41)

With exp(2ink`L) = (1 + ik`χL+ O(χ2)) exp(2ik`L), we can neglect the terms in the

denominator of E1 and E2 :

Etr1 =
t1E0

1− r2
2 exp(2ink`)L

=
(

1− χ

4
+ O(χ2)

)
E0, (A.42)

Etr2 =
t1r2 exp(2ink`L)E0

1− r2
2 exp(2ink`)L

=
(χ

4
+ O(χ2)

)
E0. (A.43)

Using Eqs. (A.42), (A.43) and exp(2ink`z
′) = (1 + ik`χz

′ + O(χ)) exp(2ik`z
′) in

Eq. (3.12):
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Et(z) = E0e
ik`z +

ik`χE0

2

∫ L

0

dz′

{(
(1− χ

4
+ O(χ2)

) (
1 + ik`χz

′ + O(χ2)
)
eik`z

′

(A.44)

+
(χ

4
+ O(χ2)

)
eik`(2L−z

′)

}
eik`(z−z

′). (A.45)

Performing the integral over z′, it leads to Eq. (3.14) that is recalled below:

Et ' E0e
ik`z

[
1 + i

χk`L

2

(
1 +

iχk`L

4
− χ

4
+
χ

4

e2ik`L − 1

2ik`L

)
+ O(χ2)

]
. (A.46)

Finally, using 1 + x ∼ 1/(1− x) in the parenthesis3, the transmitted field can be

written as:

Et ' E0e
ik`z

[
1 +

iχk`L
2

1− iχk`L
4

+ χ
4
− χ

4
e2ik`L−1

2ik`L

+ O(χ2)

]
. (A.47)

In order to proceed further, we need a more explicit expression for the optical

response χ.

A.4.2 Calculation without Lorentz field correction

Ignoring the local field corrections (i.e. the polarisation field in Eq. (1.30)), the relation

between χ and the polarisability (the response from a single emitter) α is χ = Nα.

Using α = (6iπ/k3
` )/(Γt − 2i∆), introducing ∆LL = −πΓ0N /k3

` and multiplying

numerator and denominator of Eq. (A.50) by (Γt − 2i∆), we have:

T =

∣∣∣∣Et

E0

∣∣∣∣2 =

∣∣∣∣1− 3πNΓ0L/k
2
`

Γt − 2i∆− 3/2k`L∆LL + 3/2i∆LL ((exp(2ik`L)− 1)/(2ik`L)− 1)
+ O(χ2)

∣∣∣∣2 .

(A.48)

Regrouping real and imaginary parts in the denominator leads to:

3We point out that this transformation is only valid at first order in χ. Particularly, to find higher
density orders for the shift, one should include all the relevant terms at the beginning of this
demonstration.
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T =

∣∣∣∣Et

E0

∣∣∣∣2 =

∣∣∣∣∣∣1− 3πNΓ0L/k
2
`[

Γt − 3
2
∆LL(k`L+ sin2(k`L)

k`L

]
− 2i

[
∆ + 3

4
∆LL

(
1− sin(k`L) cos(k`L)

k`L

)] + O(χ2)

∣∣∣∣∣∣
2

.

(A.49)

We finally retrieve Eq. (3.15).

A.4.3 Calculation with Lorentz field correction

Ultimately, we show that the effect of the Lorentz local field is to shift the resonance

by exactly |∆LL|. We now use the Clausius-Mossoti relation to relate the susceptibility

and the polarizability: χ = Nα/(1−Nα/3). Starting from Eq. (A.50), we can easily

derive:

∣∣∣∣Et

E0

∣∣∣∣2 =

∣∣∣∣∣1 +
iNαk`L

2

1− Nα
3
− iNαk`L

4
+ Nα

4
− Nα

4
e2ik`L−1

2ik`L

+ O(χ2)

∣∣∣∣∣
2

. (A.50)

The only difference caused by the Lorentz correction is the term Nα/3 at denomi-

nator. Applying the same transormation that the one to obtain Eq. (A.48), we see

that the only effect is to shift the resonance by a quantity |∆LL|. We thus retrieve the

full formula for the Collective Lamb shift of Eq. (3.2).
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B.1 Testing the limits of the weak-driving regime

In this Appendix, we show the dependence of the absorption in the nano-cell as a

function of the power of the laser. The experiment is carried out at Θ = 170◦C and

L = 220 nm. In Fig. B.1(a), we observe that for increasing laser power P�, the quantity

of absorption decreases. This is due to a power broadening which appears when the

linear response of the dipole is no longer valid [Grynberg et al., 2010]. We can also

note that for high laser powers, a structure appears at the center of each hyperfine

transition. This effect is similar to a pump-probe effect. Indeed, due to the thin nature

of the cell, the laser reflected on the second interface can induce saturated absorption.

In the case of a Cs atom, the saturation intensity for a linearly polarized light is

Isat � 2 mW·cm−2 [Steck]. In Fig. B.1(b), we represent the evolution of the transmission

at resonance as a function of I/Isat. The waist is about w0 � 500 μm and we use

I = P�/(πw
2
0). We observe that as long as I/Isat < 100, the experiment can be

considered in the weak driving regime. For experiments with thermal vapors, we

therefore do not require that I/Isat < 1, as would be the case for cold dilute gases.
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Figure B.1: Saturation of optical transitions due to power effects (a) Transmission

spectra for different laser powers. The power goes from P� = 3 μW in pink full line to

P� = 4 mW in dashed brown line. (b) Transmission at resonance with respect to the

saturation parameter I/Isat.



Chapter B: Weak driving regime

We have not led a quantitative analysis in the strong driving regime, which is much

more involved. However our findings are not surprising: to observe the effect of the

saturation, the broadening should be larger than the Doppler width and the broadening

due to collisions. In our case we see that the full width at half maximum is about 500

MHz. The power induced broadening can be written as [Grynberg et al., 2010]:

Γ0

√
1 + I/Isat (B.1)

This explains qualitatively why we observe the saturation of I/Isat > 102. We refer

to Ref. [Sargsyan et al., 2016] for a more complete study of the strong driving regime.
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Resumé en Francais

Introduction

Les vapeurs atomiques confinées dans des cellules nanométriques constituent une

plateforme intéressante pour la réalisation de senseurs atomiques. Dans cette thèse,

nous étudions l’interaction entre la lumière et un ensemble d’atomes d’alcalins dans

une telle cellule. Nous nous concentrons sur les phénomènes qui pourraient modifier la

réponse optique du système et ainsi affecter la précision du senseur.

Chapitre 1

Dans le premier chapitre, les prérequis théoriques pour décrire l’interaction de la

lumière avec la matière sont introduits. En particulier, le champ rayonné par un dipôle

à l’origine de l’interaction dipôle-dipôle est explicité. En augmentant progressivement

le nombre d’atomes, nous soulevons le problème fondamental des systèmes composés

de nombreuses particules en interaction. En synthétisant la littérature concernant les

réalisations expérimentales reliées à cette problématique, la nano-cellule de vapeur

utilisée dans cette thèse est remise dans son contexte. En utilisant des vapeurs

chaudes d’alcalins confinées en nano-cellules, il est clairement établi que de nombreuses

modifications de la réponse optique des atomes à une excitation lumineuse sont

attendues. Nous développons finalement un modèle simpliste décrivant la transmission

de la lumière à travers la cellule. Ce modèle sera raffiné tout au long des chapitres

suivants.

Chapitre 2

Premièrement, le mouvement des atomes dans la vapeur induit une réponse non-locale

à la lumière. La non-localité est caractérisée par la distance parcourue par les atomes

pour atteindre leur régime stationnaire. Cette distance, aussi appelée distance de

relaxation, s’écrit ξ = v/Γt, où v est la vitesse de l’atome et Γt la largeur spectrale

homogène totale. Quand la distance de relaxation des atomes excède la taille de la

cellule, la réponse optique dépend de la taille du système. Cette réponse non-locale

Chapter C
French summary



est à l’origine du rétrécissement spectral observé dans de nombreuses références. Le

mouvement des atomes est introduit dans notre modèle de transmission et le modèle

théorique reproduit parfaitement les données expérimentales. En transmission, nous

avons montré que cela entraine une modification des propriétés de la vapeur avec une

période égale à la longueur d’onde de la transition optique.

Chapitre 3

La largeur spectrale homogène augmente avec la densité atomique. Ainsi, dans les

systèmes atomiques denses, la réponse redevient locale. Dans ce régime cependant,

l’interaction dipôle-dipôle résonnante engendre des déplacements de fréquence collectifs

pour des ensembles dont la taille est sub-longueur d’onde : le Collective Lamb Shift

(CLS). Nous avons démontré que ces shifts sont induits par la cavité formée par

la cellule, clarifiant ainsi un débat de plus de 40 ans. En particulier, nous avons

montré que l’origine de ces shifts ne provient pas d’un déplacement de la fréquence

de résonnance des atomes mais plutôt d’un déplacement du minimum du spectre de

transmission. Ensuite, nous avons mis en évidence que le CLS ne peut pas être mesuré

dans une expérience de vapeur confinée dans une nano-cellule car le milieu confinant

les atomes possède un indice différent de l’unité. Pour extraire les déplacements

énergétiques dans les milieux denses, un modèle de transmission à travers la cellule est

utilisé pour déconvoluer les effets de cavité des propriétés intrinsèques aux atomes.

Chapitre 4

Proche des surfaces, la réponse optique des atomes est aussi impactée par l’interaction

de van der Waals (vdW). Cette interaction est importante lorsque les atomes se

situent à une distance plus petite que λ/(2π) des parois de la cellule. A cause de la

compétition entre différents déplacements énergétiques (interaction dipôle-dipôle,

interaction atome-surface...), l’extraction des paramètres caractérisant l’interaction

atome-surface est compliquée. Particulièrement dans le cas des états faiblement excités

où l’influence de la surface est limité, extraire avec précision la force de l’interaction

est une tâche délicate. Nous avons introduit une nouvelle méthode pour extraire avec

précision la force de cette interaction. Pour cela, nous avons utilisé la forme en coin

de la cellule pour déterminer les effets de densités dans les parties épaisses, où les

atomes sont peu sensibles à l’interaction de vdW. Puis, après avoir fixé les propriétés



atomiques correspondantes, le mouvement des atomes dans un potentiel dépendant de

la distance atome-surface est utilisé pour extraire le coefficient C3 caractérisant l’effet

de la surface en régime non retardé.

Chapitre 5

L’interaction d’un atome avec la surface peut dépendre de la rugosité de celle-ci mais

aussi de son matériau. De plus, il pourrait être possible d’exploiter les propriétés d’un

potentiel répulsif proche de surface pour piéger des atomes à quelques nanomètres de la

surface et ainsi réaliser de nouvelles interfaces ou la lumière pourrait interagir fortement

avec les atomes. Pour répondre à cet enjeu, nous avons réalisé à l’atelier d’optique

de l’Institut d’Optique une nouvelle génération de nano-cellules en Borosilicate. Ces

cellules ont deux caractéristiques inédites. Premièrement, elles sont réalisés d’un bloc :

les différents éléments de la cellules sont adhérés moléculairement et l’assemblement

ne fait usage d’aucune colle qui pourrait être source de biais supplémentaire pour

la réponse optique. Deuxièmement, l’enceinte confinant les atomes est polie afin

d’atteindre une rugosité de surface de quelques �A. Nous avons obtenus de premiers

résultats spectroscopiques, présentés à la fin du chapitre.

Chapitre 6

Dans un ultime chapitre, nous avons observé les propriétés de la réponse optique des

atomes en fluorescence. La technique de fluorescence consiste à collecter la lumière

hors-d’axe. Nous avons premièrement comparé les différences spectrales entre la

spectroscopie de fluorescence (processus incohérent) et de transmission (processus

cohérent). Nous avons à la fois constaté l’absence de shift de cavité ainsi que la

disparition de l’oscillation du rétrécissement spectral de période λ observé dans le

Chapitre 2. En se basant sur ces observations expérimentales, nous avons construit un

modèle classique pour décrire la réponse des atomes collectée hors-axe.

Conclusion

En conclusion, nous avons étudié les propriétés de la réponse atomique dans une

vapeur chaude d’alcalin confinée dans une cellule nanométrique. En particulier nous

avons clarifié le rôle du mouvement des atomes, de la cavité formée par la cavité ainsi



que l’effet de la surface.
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Bienaimé, T., Bux, S., Lucioni, E., Courteille, P. W., Piovella, N., and Kaiser, R.,

“Observation of a cooperative radiation force in the presence of disorder,” Phys.

Rev. Lett. 104, 183602 (2010) [cited in page 29].

Bloch, D., “Comment on “optical response of gas-phase atoms at less than λ/80 from a

dielectric surface”,” Phys. Rev. Lett. 114, 049301 (2015) [cited in pages 85 and 97].

Bloch, D. and Ducloy, M., “Atom-wall interaction,” Advances In Atomic, Molecular,

and Optical Physics, 50, 91 (2005) [cited in page 59].

Bloch, D., Todorov, P., Carlos de Aquino Carvalho, J., Maurin, I., and Laliotis, A.,

“Search for deviations from the ideal maxwell-boltzmann distribution for a gas at an

interface,” (2019) p. 60 [cited in page 97].

Boyd, R., Non-Linear Optics (Academic Press, 2009) [cited in page 40].

Briaudeau, S., Saltiel, S., Nienhuis, G., Bloch, D., and Ducloy, M., “Coherent doppler

narrowing in a thin vapor cell: Observation of the dicke regime in the optical

domain,” Phys. Rev. A 57, R3169 (1998) [cited in pages 40, 51, 54, 57, 58, and 126].

Bromley, S. L., Zhu, B., Bishof, M., Zhang, X., Bothwell, T., Schachenmayer, J.,

Nicholson, T. L., Kaiser, R., Yelin, S. F., Lukin, M. D., Rey, A. M., and Ye, J.,

“Collective atomic scattering and motional effects in a dense coherent medium,”

Nature Communications 7 (2016), 10.1038/ncomms11039 [cited in pages 12 and 35].

Browaeys, A., Barredo, D., and Lahaye, T., “Experimental investigations of

dipole–dipole interactions between a few rydberg atoms,” Journal of Physics B:

Atomic, Molecular and Optical Physics 49, 152001 (2016) [cited in page 14].

Burgmans, A. L. J., Schuurmans, M. F. H., and Bölger, B., “Transient behavior of

optically excited vapor atoms near a solid interface as observed in evanescent wave

emission,” Phys. Rev. A 16, 2002 (1977) [cited in page 40].

Busche, H., Huillery, P., Ball, S., Ilieva, T., Jones, M., and Adams, C., “Contactless

nonlinear optics mediated by long-range rydberg interactions,” Nat. Phys 13, 655

(2006) [cited in pages 13 and 40].

C. Rotschild, B. Alfassi, O. C. and Segev, M., “Long-range interactions between optical

solitons,” Nat. Phys 2, 769 (2006) [cited in page 40].

168

http://dx.doi.org/10.1103/PhysRevLett.104.183602
http://dx.doi.org/10.1103/PhysRevLett.104.183602
http://dx.doi.org/10.1103/PhysRevLett.114.049301
http://dx.doi.org/10.1016/S1049-250X(05)80008-4
http://dx.doi.org/10.1016/S1049-250X(05)80008-4
http://dx.doi.org/10.1117/1.3115345
http://dx.doi.org/10.1103/PhysRevA.57.R3169
http://dx.doi.org/10.1038/ncomms11039
http://dx.doi.org/10.1088/0953-4075/49/15/152001
http://dx.doi.org/10.1088/0953-4075/49/15/152001
http://dx.doi.org/10.1103/PhysRevA.16.2002
http://dx.doi.org/10.1038/nphys40585
http://dx.doi.org/10.1038/nphys40585
http://dx.doi.org/10.1038/nphys445


Bibliography

Campbell, S. L., Hutson, R. B., Marti, G. E., Goban, A., Darkwah Oppong, N.,

McNally, R. L., Sonderhouse, L., Robinson, J. M., Zhang, W., Bloom, B. J., and

Ye, J., “A fermi-degenerate three-dimensional optical lattice clock,” Science 358, 90

(2017) [cited in page 12].

Cantini, P. and Tatarek, R., “Selective-adsorption structures in the inelastic scattering

of he-graphite (0001),” Phys. Rev. B 23, 3030 (1981) [cited in page 102].

Chalony, M., Pierrat, R., Delande, D., and Wilkowski, D., “Coherent flash of light

emitted by a cold atomic cloud,” Phys. Rev. A 84, 011401 (2011) [cited in page 29].

Chang, D. E., Sinha, K., Taylor, J. M., and Kimble, H. J., “Trapping atoms using

nanoscale quantum vacuum forces,” Nature Communications 5, 4343 EP (2014),

article [cited in page 102].

Chang, D. E., Ye, J., and Lukin, M. D., “Controlling dipole-dipole frequency shifts

in a lattice-based optical atomic clock,” Phys. Rev. A 69, 023810 (2004) [cited in

page 12].

Cherroret, N., Hemmerling, M., Nador, V., Walraven, J. T. M., and Kaiser, R.,

“Robust coherent transport of light in multilevel hot atomic vapors,” Phys. Rev.

Lett. 122, 183203 (2019) [cited in page 14].

Churchill, R. J. and Philbin, T. G., “Electromagnetic reflection, transmission, and

energy density at boundaries of nonlocal media,” Phys. Rev. B 94, 235422 (2016)

[cited in page 61].

Cocheteau, N., Caractrisation et modlisation dune adhrence molculaire renforce, Ph.D.

thesis (2014) [cited in page 113].

Cocoletzi, G. H. and Mochn, W. L., “Excitons: from excitations at surfaces to

confinement in nanostructures,” Surface Science Reports 57, 1 (2005) [cited in

page 61].

Cohen-Tannoudji, C., Diu, B., and Laloe, F., Mcanique quantique, 2nd ed. (EDP

science, 2018) [cited in page 23].
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Röhlsberger, R., Schlage, K., Sahoo, B., Couet, S., and Rüffer, R., “Collective lamb
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Titre : Interaction dipôle-dipôle dans des vapeurs denses d'alcalins confinées en cellules 
nanométriques 

Mots clés : Interaction dipôle-dipôle résonnante, nano-cellule, cavité Fabry-Pérot, déplacement 
énergétique, transmission, van der Waals, surface, senseur atomique  

Résumé : Les vapeurs atomiques confinées dans 
des cellules nanométriques constituent une 
plateforme intéressante pour la réalisation de 
senseurs atomiques. Dans cette thèse, nous 
étudions l’interaction entre la lumière et un 
ensemble d’atomes d’alcalins dans une telle 
cellule. Nous nous concentrons sur les 
phénomènes qui pourraient modifier la réponse 
optique du système et ainsi affecter la sensibilité 
du senseur. Premièrement, nous étudions la 
réponse non locale à la lumière induite par le 
mouvement des atomes dans la vapeur 
thermique. Quand la distance de relaxation des 
atomes excède la taille de la cellule, la réponse 
optique dépend de la taille du système. En 
transmission, nous avons montré que cela 
entraine une modification des propriétés de la 
vapeur avec une période égale à la longueur 
d’onde de la transition optique.  Nous avons  

 ensuite montré que lorsque la densité augmente, 
la réponse redevient locale. De plus, dans ce 
régime dense,  l’interaction dipôle-dipôle 
résonnante engendre des déplacements de 
fréquences collectifs pour des ensembles sub-
longueur d’onde. Nous avons démontré que ces 
shifts sont induits par la cavité formée par la 
cellule, clarifiant ainsi un débat de plus de 40 ans. 
Pour ce faire, nous avons développé un modèle 
pour extraire les effets de la densité déconvolués 
de ceux de la cavité. Proche des surfaces, la 
réponse optique des atomes est aussi impactée 
par l’interaction de van der Waals. Nous avons 
introduit une nouvelle méthode pour extraire 
avec précision la force de cette interaction. Nous 
avons également construit une nouvelle 
génération de nano-cellules super-polies en verre 
et enfin comparé les propriétés spectrales en 
transmission et spectroscopie hors d’axe.  

 

 

Title : Dipole-dipole interaction in dense atomic alkali vapors confined in nano-scale cells 

Keywords : Resonant dipole-dipole interaction,  nano-cell, Fabry-Pérot cavity, energy shift, 
transmission, van der Waals, surface, atomic sensor 

Abstract : Alkali vapors confined in nano-scale 
cells are promising tools for future integrated 
atom-based sensor. In this thesis, we investigate 
the interaction between light and an ensemble of 
atoms confined in a nano-geometry. We focus on 
the different processes that can modify the optical 
response of the atomic ensemble and possibly 
affect the sensitivity of a sensor based on that 
technology. First, we study the non-local response 
of atoms to a light excitation due the atomic 
motion in thermal vapors. When the distance over 
which the atoms relaxes is larger than the size of 
the cell, the optical response depends on the size 
of the system. We have observed that for 
transmission spectroscopy, this leads to a periodic 
modification of the optical response with a period 
equal to the wavelength of the optical transition. 
Subsequently we showed that when the density of 

atom increases, the atomic response becomes local 
again. In this dense regime, the resonant dipole-
dipole interaction in a sub-wavelength geometry 
leads to collective frequency shifts of the spectral 
lines. We demonstrate that these shifts were 
induced by the cavity formed by the cell walls, 
hence clarifying a long-standing issue. We 
developed a model to extract the density shifts 
deconvolved from the cavity effects. Close to a 
surface, the optical response is also affected by the 
van der Waals atom-surface interaction. We 
introduced a new method to extract precisely the 
strength of this interaction. We also developed a 
new generation of super-polished glass nano-cells 
and we presented promising spectroscopic signals. 
Finally, using these cells, we have compared 
transmission and off-axis spectroscopic 
techniques. 
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