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Abstract
Recent development in deep learning have achieved impressive results on image under-
standing tasks. However, the success of deep learning based approaches on such tasks
heavily depends on employing the appropriate deep neural network architecture for the
task of interest and having available a large-size manually labeled dataset for training. In
this context, the objective of this dissertation is to propose deep learning techniques and
architectures for core image understanding tasks in order to (1) drastically improve the
effectiveness (i.e., accuracy) with which those tasks are performed, and (2) make their
learning process more annotation efficient, i.e., less dependent on the availability of large
amounts of manually labeled training data.

We first focus on improving the state-of-the-art on object detection. More specifically,
we attempt to boost the ability of object detection systems to recognize (even difficult)
object instances by proposing a multi-region and semantic segmentation-aware ConvNet
based representation that captures a diverse set of discriminative appearance factors. Also,
we aim to improve the localization accuracy of object detection systems by proposing
iterative detection schemes and a novel localization model for estimating the bounding box
of the objects. We demonstrate that the proposed technical novelties lead to significant
improvements in the object detection performance of PASCAL and MS COCO benchmarks.

Another core image understanding task of which we wish to improve the state-of-the-art
is that of pixel-wise image labeling. Here we explore a family of deep neural network
architectures that perform structured prediction by learning to (iteratively) improve some
initial estimates of the output labels. The goal is to identify which is the optimal architecture
for implementing such deep structured prediction models. In this context, we propose to
decompose the label improvement task into three steps: detecting which initial labels are
incorrect, replacing those erroneous labels with new ones, an finally refining the renewed
labels by predicting residual corrections w.r.t. them. We evaluate the explored architectures
on the disparity estimation task and we demonstrate that the proposed architecture achieves
state-of-the-art results on the KITTI 2015 benchmark.

In order to accomplish our goal for annotation efficient learning, we propose a self-
supervised learning approach that learns ConvNet-based image representations by training
the ConvNet to recognize the 2d rotation that is applied to the image that it gets as input. We
empirically demonstrate that this apparently simple task actually provides a very powerful
supervisory signal for semantic feature learning. Specifically, the image features learned
from this task exhibit very good results when transferred on the visual tasks of object
detection and semantic segmentation, surpassing prior unsupervised learning approaches
and thus narrowing the gap with the supervised case.

Finally, also in the direction of annotation efficient learning, we proposed a few-shot
object recognition system that after its training is able to dynamically learn novel categories
from only a few samples (e.g., only one or five examples) while it does not forget the
categories on which it was trained. In order to implement the proposed recognition system
we introduce two technical novelties, an attention based few-shot classification weight
generator, and implementing the classifier of the ConvNet model as a cosine similarity
function between feature representations and classification vectors. We demonstrate that the
proposed approach achieves state-of-the-art results on relevant few-shot benchmarks.
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Résumé

L’objectif de cette thèse est de faire progresser l’efficacité de l’analyse d’image pour les

données et les applications du monde réel. Plus précisément, il se concentre sur les tâches

de reconnaissance d’objets, de détection d’objets et d’étiquetage des images à l’échelle

du pixel, qu’elles répondent “quoi” et “où” quelque chose est représentée dans une image.

Perfectionner ce type de compréhension d’image est une condition préalable à la mise au

point des systèmes d’intelligence artificielle, comme les voitures qui circulent dans les

rues de la ville, les robots autonomes qui effectuent des tâches d’entretien ménager, ou

des dispositifs d’aide aux personnes malvoyantes qui aident leurs utilisateurs à percevoir

leur environnement. Afin d’atteindre l’objectif susmentionné, la thèse est divisée en deux

parties, intitulées “Méthodes d’apprentissage profond pour l’analyse efficace d’images” (en

anglais “Effective Deep Learning for Image Understanding”) et “Méthodes d’apprentissage

profond pour l’analyse efficace d’images en limitant l’annotation humaine” (en anglais

“Annotation Efficient Deep Learning for Image Understanding”), chacun d’entre eux poursuit

un sous-objectif différent.

1ère Partie: Méthodes d’apprentissage profond pour l’analayse efficace d’images

L’objectif de la première partie de la thèse est de faire progresser l’état de l’art sur les

deux majeures tâches de l’analyse d’image, la détection d’objets et d’étiquetage des images

à l’échelle du pixel, en proposant des approches efficaces basées sur l’apprentissage profond.

Représentations discriminantes pour la détection d’objets. Un élément central d’un

système de détection d’objets est un modèle qui reconnaı̂t si une région d’image contient

ou non un objet d’intérêt. Afin d’améliorer la précision de ce modèle, nous proposons

une représentation de région d’image enrichie basée sur ConvNet qui code l’apparence de
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plusieurs régions (autour de la région d’image d’entrée) ainsi que des fonctionnalités de

segmentation sémantique. Ceci est réalisé en concevant une architecture ConvNet multi-

composants où chaque composant du réseau est forcé de se concentrer sur une région

différente de l’objet d’intérêt. L’objectif est de rendre la représentation basée sur ConvNet

capable de capturer un ensemble diversifié de facteurs d’apparence discriminants, telles que

les caractéristiques d’apparence pure d’ un objet, l’apparence distincte de ses différentes

régions (parties d’objet), l’apparence du contexte, l’apparence des deux côtés des limites de

l’objet, ou l’information consciente à la segmentation sémantique. Nous pensons qu’une

représentation aussi riche améliorera les capacités de reconnaissance du système de détection,

même lorsqu’il est confronté aux instances d’objets difficiles que l’on rencontre souvent

dans la tâche de détection d’objets. De plus, la représentation obtenue a une sensibilité

de localisation accrue, ce qui est essentiel pour la détection d’objets. Nous exploitons

ces propriétés du module de reconnaissance proposé en l’intégrant dans un mécanisme de

localisation itératif qui, à partir de certaines régions initiales de l’image, alterne entre la

classification de ces régions et l’affinement de leurs emplacements afin de mieux localiser

les objets d’intérêt. Grâce à l’utilisation efficace de nos modules, nous détectons les objets

avec une très grande précision. Sur les défis de détection de PASCAL VOC2007 et PASCAL

VOC2012, nous obtenons un mAP de 78, 2% et 73, 9% respectivement, surpassant de loin

tout ouvrage publié antérieurement.

Localisation précise d’objet dans la détection d’objets. En plus de l’aspect reconnais-

sance, nous essayons d’améliorer la précision de localisation des systèmes de détection

d’objets en concevant un nouveau modèle de localisation qui prend comme entrée une

région de recherche dans une image et qui vise à localiser précisément un objet dans cette

région. La majorité des approches antérieures, afin de mettre en œuvre de tels modèles

de localisation, adoptent le paradigme de régression des boı̂tes, qui utilise une fonction de

régression afin de prédire directement les coordonnées de la boı̂te qui entoure étroitement

l’objet d’intérêt. Cependant, nous croyons qu’essayer de régresser directement les coor-

données de la boı̂te cible constitue une tâche d’apprentissage difficile qui ne peut donner

des résultats suffisamment précis. C’est pour cette raison que nous formulons le problème

de localisation avec une dense méthode de classification. Plus précisément, étant donné la
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région de recherche, notre modèle attribue des probabilités conditionnelles à chaque ligne

et colonne de cette région. Ces probabilités fournissent des informations utiles concernant

l’emplacement des limites de l’objet à l’intérieur de la région de recherche et permettent

l’inférence précise de la boı̂te de l’objet dans un cadre probabiliste simple.

Nous implémentons notre modèle de localisation avec une architecture ConvNet cor-

rectement adaptée, appelée LocNet, et nous l’intégrons sur une méthodologie de localisation

itérative. Nous démontrons expérimentalement que LocNet présente des performances de

localisation supérieures aux modèles de régression en boı̂tes et qu’il permet d’améliorer

significativement la métrique mAP lorsque l’on considère des valeurs élevées pour le seuil

IoU (intersection-over-union), i.e., une précision de localisation élevée. De plus, il peut être

facilement couplé à des systèmes de l’etat de l’art en détection d’objets, ce qui leur permet

d’améliorer leurs performances. Enfin, nous adaptons la méthodologie de localisation à

la tâche de génération de propositions de localisation d’objets. Le système qui en résulte,

appelé “AttractionNet”, permet d’obtenir des résultats d’etat de l’art dans cette tâche et,

lorsqu’il est couplé à un système de détection basé sur LocNet, d’obtenir une excellente

performance de détectiond d’objet.

Prédiction de structure basée sur les réseaux de neurones profonds pour l’étiquetage

d’images à l’échelle du pixel L’un des principaux défis de l’étiquetage des images à

l’échelle du pixel est d’apprendre l’espace commun des variables d’entrée et de sortie. Une

approche fondée sur les données pour l’apprentissage implicite de cet espace commun

consiste à entraı̂ner un réseau neuronal profond de sorte que, en donnant en entrée une

estimation initiale des étiquettes de sortie et de l’image d’entrée, on puisse prévoir une

nouvelle estimation affinée pour les étiquettes. Nous appelons ces méthodes des “modèles

d’entrées-sorties conjointes et profondes”. Dans ce contexte, la contribution de notre thèse

est d’explorer quelle est l’architecture optimale pour réaliser cette tâche d’amélioration

du label. Nous soutenons que les approches antérieures qui consistaient soit à prédire

directement les nouvelles estimations des étiquettes, soit à prédire les corrections résiduelles

par rapport aux étiquettes initiales à l’aide d’architectures de réseaux profonds à propagation

avant sont sous-optimales. Nous proposons plutôt une architecture générique qui décompose

la tâche d’amélioration des étiquettes en trois étapes : (1) détecter les estimations initiales
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incorrectes des étiquettes, (2) remplacer les étiquettes incorrectes par de nouvelles étiquettes,

et enfin (3) affiner les étiquettes renouvelées en prédisant les corrections résiduelles. De

plus, nous explorons et comparons diverses architectures alternatives pour des “modèles

d’entrées-sorties conjointes et profondes” qui se composent des composants “Détecter”,

“Remplacer” et “Affiner” mentionnés ci-dessus. Nous évaluons de manière approfondie

les architectures explorées dans la tâche difficile de l’estimation de la disparité (en anglais

“disparity estimation” or “stereo matching”) et nous présentons les résultats quantitatifs

et qualitatifs sur trois ensembles de données différents qui démontrent les avantages de

notre approche. Enfin, le réseau neuronal d’estimation des disparités qui met en œuvre

l’architecture générique proposée obtient d’excellents résultats sur le benchmark KITTI

2015, dépassant largement les approches précédentes.

2ème Partie: Méthodes d’apprentissage profond pour l’analayse efficace d’images en

limitant l’annotation humaine

La deuxième partie de la thèse porte sur l’exploration des techniques qui permettent

d’apprendre les modèles d’analyse d’images sans avoir besoin d’une grande quantité de

données de formation étiquetées manuellement. Deux approches générales qui tentent

de contourner la dépendance des approches fondées en apprentissage profond à l’égard

d’ensembles de données de grande taille étiquetées manuellement sont l’apprentissage à

l’aide de données non étiquetées (i.e., l’apprentissage non supervisé) ou l’apprentissage

fondé sur des données étiquetées de problèmes différents mais semblables pour lesquels

les étiquettes sont plus faciles à obtenir ou déjà disponibles (i.e., l’apprentissage par trans-

fert). Dans notre cas, nous proposons deux approches, une approche d’apprentissage par

représentation non supervisée, qui fait partie de l’approche plus large d’apprentissage non

supervisé, et une approche d’apprentissages peu-instantanés (en anglais “few-shot learning”),

qui fait partie de l’approche plus large d’apprentissage par transfert.

Apprentissage non supervisé de la représentation d’images. Les réseaux de neurones

convolutifs (ConvNets) se sont avérés extrêmement efficaces pour résoudre les tâches

d’analyse d’images grâce à leur capacité inégalée d’apprendre des représentations d’images

sémantiques de haut niveau par un apprentissage supervisé. Par exemple, les représentations
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d’images obtenues par l’entraı̂nement d’un ConvNet sur les ensembles de données de

classification d’images de ImageNet [129] ou Place205 [175], qui contiennent des millions

d’images annotées manuellement, ont obtenu des résultats remarquables lors de leur transfert

sur des tâches d’analyse d’images en aval, telles que la détection d’objets et la segmentation

sémantique d’images. Compte tenu de notre objectif, une question très intéressante est

de savoir si l’apprentissage de la représentation sémantique d’images est possible sans

supervision humaine, i.e., sans la nécessiter d’effort d’annotation manuelle. Une approche

prometteuse pour résoudre le problème posé par cette question est l’apprentissage auto-

supervisé. L’apprentissage auto-supervisé est une forme d’apprentissage non supervisé qui

définit une tâche de “prétexte” sans annotation en utilisant l’information visuelle présente

sur les images afin de fournir un signal de supervision de substitution pour l’apprentissage

de la représentation sémantique des images.

Suivant cette approche, notre contribution est de proposer d’apprendre les représentations

d’images en entraı̂nant un ConvNet à reconnaı̂tre la rotation 2D qui est appliquée à l’image

qu’il reçoit en entrée. Nous démontrons qualitativement et quantitativement que cette

simple tâche fournit en fait un signal de supervision très puissant pour l’apprentissage de la

représentation sémantique d’images. Nous évaluons de manière exhaustive notre méthode à

l’aide de différents benchmarks d’apprentissage non supervisés et nous démontrons dans

chacun d’eux des performances d’etat de l’art. Plus précisément, nos résultats par rapport à

ces repères révèlent des améliorations importantes par rapport aux approches antérieures

pour l’apprentissage non supervisé de la représentation, ce qui réduit considérablement

l’écart avec l’apprentissage supervisé des caractéristiques. Par exemple, dans la tâche de

détection PASCAL VOC 2007, le modèle AlexNet qui est entraı̂né au préalable avec notre

méthode d’apprentissage non supervisé atteint une mAP de 54, 4%, soit seulement 2,4 points

de moins que dans le cas supervisé. Nous obtenons des résultats tous aussi bons lorsque

nous transférons les représentations d’images basées sur notre méthode d’apprentissage non

supervisée sur diverses autres tâches, telles que la classification ImageNet, la classification

PASCAL, la segmentation PASCAL, et la classification CIFAR-10.

L’apprentissage de nouvelles catégories en utilisant peu d’exemples. L’apprentissage

peu-instantané (en anglais “few-shot learning”) est lié au problème plus large de l’apprentissage
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par transfert qui tente de stocker et d’exploiter les connaissances acquises tout en apprenant

à résoudre un problème afin d’apprendre plus tard à résoudre plus efficacement un problème

nouveau mais lié. Dans le “few-shot learning” en particulier, l’objectif est d’exploiter les

connaissances acquises afin de réduire drastiquement le nombre d’exemples d’entraı̂nement

requis pour le nouveau problème ou, en d’autres termes, de résoudre plus efficacement

le nouveau problème tout en ayant accès à très peu d’exemples d’entraı̂nement pour ce

problème. Par exemple, dans la reconnaissance d’objets, les connaissances acquises en

apprenant à reconnaı̂tre les chats et les lions pourraient être exploitées en apprenant à re-

connaı̂tre la nouvelle catégorie tigre à partir de seulement quelques exemples d’entraı̂nement,

e.g., un seul (1-shot) ou cinq (5-shot). Le système visuel humain fait preuve d’une telle

capacité d’apprentissage par transfert ; il apprend sans effort de nouveaux concepts visuels à

partir d’un ou de quelques exemples grâce à sa capacité d’exploiter son expérience passée

du monde visuel. L’imitation de ce comportement sur les systèmes de vision artificielle est

un problème de recherche intéressant et difficile à résoudre.

Dans ce contexte, notre contribution est de proposer un nouveau système de reconnais-

sance d’objets qui, après son entraı̂nement, est capable d’apprendre dynamiquement de

nouvelles catégories à partir de quelques exemples seulement (typiquement, seulement un

ou cinq), sans oublier les catégories sur lesquelles il a été formé. Pour réaliser cela, nous

proposons (a) d’étendre un système de reconnaissance d’objets avec une composante de

réseau neuronal supplémentaire qui, à partir de quelques exemples d’entraı̂nement d’une

nouvelle catégorie, génère les poids de classification pour cette catégorie, et (b) de recon-

cevoir le classificateur d’un modèle ConvNet comme fonction de similarité cosinus entre

la représentation d’images et des vecteurs poids de classification. Cette dernière, en plus

d’unifier la reconnaissance des catégories nouvelles et initiales, conduit également à des

représentations d’images qui donnent de meilleurs résultats sur les nouvelles catégories.

Nous évaluons en profondeur notre approche sur MiniImageNet, où nous réussissons à

améliorer l’état de l’art antérieur sur la reconnaissance “few-shot” (i.e., que nous obtenons

56.20% et 73.00% respectivement sur les réglages 1-shot et 5-shot) tout en ne sacrifiant

aucune précision sur les catégories initiales, une caractéristique que la plupart des approches

antérieures manquent. Nous appliquons également notre approche sur le benchmark Ima-
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geNet de Hariharan et Girshick [51] où nous obtenons également des résultats de l’etat de

l’art.
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3-2 The posterior probabilities that our localization model yields given a region

R. Left Image: the in-out conditional probabilities that are assigned on

each row (py) and column (px) of R. They are drawn with the blues curves

on the right and on the bottom side of the search region. Right Image: the

conditional probabilities pl, pr, pt, and pb of each column or row to be the

left (l), right (r), top (t) and bottom (b) border of an object’s bounding box.

They are drawn with blue and red curves on the bottom and on the right side

of the search region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

21
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tions of the detection pipeline.Top-Right: Recalls for the Fast-RCNN model after

one iteration of the detection pipeline. Bottom-Right: Recalls for the Fast-RCNN

model after four iterations of the detection pipeline. . . . . . . . . . . . . . . . 103

3-7 mAP as a function of the IoU threshold on PASCAL VOC2007 test set. Left plot:
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boxes are drawn with blue color, and the ground truth bounding box is drawn

with green color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3-10 Illustration of the image areas being attended by our box proposal generator algo-

rithm at each iteration. In the first iteration the box proposal generator attends the

entire image since the seed boxes are created by uniformly distributing boxes across

the image. However, as the algorithm progresses its attention is concentrated on the

image areas that actually contain objects. . . . . . . . . . . . . . . . . . . . . . 114
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3-11 Illustration of the consecutive bounding box predictions made by our category

agnostic location refinement module. In each row, from left to right we depict a

seed box (iteration 0) and the bounding box predictions in each iteration. Despite the

fact that the seed box might be quite far from the object (in terms of center location,

scale and/or aspect ratio) the refinement module has no problem in converging to

the bounding box closest to the seed box object. This capability is not affected even

in the case that the seed box contains also other instances of the same category as

in rows 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3-12 AttractioNet work-flow. The Attend Refine Repeat algorithm is implemented

through a CNN model, called AttractioNet, whose run-time work-flow (when

un-rolled over time) is illustrated here. On each iteration t the box-wise part of the
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feature maps FI (extracted from the image-wise part of the CNN architecture) as

well as a set of box locations Bt−1 and yields the refined bounding box locations Bt

and their objectness scores Ot using its category agnostic object location refinement

module and its category agnostic objectness scoring module respectively. To avoid

any confusion, note that our AttractioNet model does not include any recurrent

connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3-13 Attend & Refine Network architecture. The Attend & Refine Network is the

box-wise part of the AttractioNet architecture. In this figure we depict the work-

flow for a single input box B. Specifically, given an input box B and the image

convolutional feature maps FI , the Attend & Refine Network yields (1) the in-

out location probability vectors, px and py, (using its object location refinement

sub-network) and (2) the objectness scalar probability pobj (using its objectness

scoring sub-network). Given the in-out probabilities, px and py, the object location

inference is formulated as a simple maximum likelihood estimation problem that

results in the refined bounding box coordinates B̃. . . . . . . . . . . . . . . . . 117
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3-14 Recall versus IoU overlap plots of our AttractioNet approach under different test

cases: 10 proposals (R@10), 100 proposals (R@100), 1000 proposals (R@1000),

100 proposals and small sized objects (R@100-Small), 100 proposals and medium

sized objects (R@100-Medium) and 100 proposals and large sized objects (R@100-

Large). (Left) Results in the first 5k images of COCO validation set. (Right)

Results in the PASCAL VOC2007 test set. . . . . . . . . . . . . . . . . . . . . 123

3-15 Comparison with previous state-of-the-art. Comparison of our AttractioNet box
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a function of the IoU threshold for 10, 100 and 1000 box proposals respectively and

the sub-figures (d), (e) and (f) plot the recall as a function of the IoU threshold for

100 box proposals and with respect to the small, medium and large sized objects

correspondingly. Also, the sub-figures (g), (h), (i) and (j) plot the average recall

as a function of the proposals number for all the objects regardless of their size as

well as for the small, medium and large sized objects respectively. The reported

results are from the first 5k images of the COCO validation set. . . . . . . . . . . 124

3-16 Average recall versus the repetitions number of the active box proposal generation

algorithm in the COCO validation set. Note that 0 repetitions is the scenario of
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3-17 Detection results: Average precision versus AttractioNet box proposals num-

ber. (a) During test time a single scale of 600 pixels is being used. (b) During test

time two scales of 500 and 1000 pixels are being used. The reported results are

from 5k images of COCO validation set. . . . . . . . . . . . . . . . . . . . . . 131

3-18 Qualitative results in COCO. The blue rectangles are the box proposals generated

by our approach that best localize (in terms of IoU) the ground truth boxes. The red

rectangles are the ground truth bounding boxes that were not discovered by our box

proposal approach (their IoU with any box proposal is less than 0.5). Note that not

all the object instances on the images are annotated. . . . . . . . . . . . . . . . 132

25



4-1 In this figure we visualize two different types of erroneously labeled image

regions. On the left hand are the ground truth labels and on the right hand

are some initial label estimates. With the red rectangle we indicate a dense

concentration of “hard” mistakes in the initial labels that it is very difficult to

be corrected by a residual refinement component. Instead, the most suitable

action for such a region is to replace them by predicting entirely new labels

for them. In contrast, the blue eclipse indicates an image region with “soft”

label mistakes. Those image regions are easier to be handled by a residual

refinement components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4-2 In this figure we demonstrate the generic architecture that we propose for the dense

image labeling task. In this architecture the task of the deep joint input-output

model is decomposed into three different sub-tasks that are: (1) detection of the

erroneous initial labels, (2) replacement of the erroneous labels with new ones

(leading to a renewed label map U ), and then (3) refinement Y ′ of the renewed

label map. The illustrated example is coming from the dense disparity labeling task

(stereo matching). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

26



4-3 Here we provide an example that illustrates the functions performed by

the Detect, Replace, and Refine steps in our proposed architecture. The

example is coming from the dense disparity labeling task (stereo matching).

Specifically, subfigures (a), (b), and (c) depict respectively the input image

X , the initial disparity label estimates Y , and the error probability map E

that the detection component Fe(.) yields for the initial labels Y . Notice the

high similarity of map E with the ground truth error map of the initial labels

Y depicted in subfigure (d), where the ground truth error map has been

computed by thresholding the absolute difference of the initial labels Y from

the ground truth labels with a threshold of 3 pixels (red are the erroneous

pixel labels). In subfigure (e) we depict the label predictions of the Replace

component Fu(.). For visualization purposes we only depict the Fu(.) pixel

predictions that will replace the initial labels that are incorrect (according to

the detection component) by drawing the remaining ones (i.e., those whose

error probability is less than 0.5) with black color. In subfigure (f) we depict

the renewed labels U = E � Fu(X, Y,E) + (1− E)� Y . In subfigure (g)

we depict the residual corrections that the Refine component Fr(.) yields for

the renewed labels U . Finally, in the last subfigure (h) we depict the final

label estimates Y ′ = U + Fr(X, Y,E, U) that the Refine step yields. . . . . 144

4-4 Percentage of erroneously estimated disparity labels for a pixel x as a function

of the percentage of erroneous initial disparity labels in the patch of size w × w

centered on the pixel of interest x. The patch size w is set to 65. An estimated pixel

label y′ is considered erroneous if its absolute difference from the ground truth

label is more than τ0 = 3 pixels. For the initial disparity labels in each patch, the

threshold τ of considering them incorrect is set to (a) 3 pixels, (b) 5 pixels, (c) 8

pixels, and (d) 15 pixels. The evaluation is performed on 50 images of the Synthetic

test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4-5 Here we illustrate some examples of the disparity predictions that the “X-

Blind” architecture performs. The illustrated examples are from the Syn-

thetic and the Middlebury datasets. . . . . . . . . . . . . . . . . . . . . . . 156
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4-6 Illustration of the error probability maps E that the error detection com-

ponent Fe(X, Y ) yields. The ground truth error maps are computed by

thresholding the absolute difference of the initial labels Y from the ground
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Chapter 1

Introduction

1.1 Objective

The objective of this thesis is to propose deep learning based approaches that would advance

the effectiveness of machine image understanding to real-world data and applications.

But what do we mean by machine image understanding? In general, machine image

understanding can be defined as any machine process that, given an image, extracts a

description from that image that is useful for the user of the process. Specifically in this

thesis we are interested with the following image understanding tasks:

Object recognition and detection: The most simple and commonly studied image under-

standing task is that on which the machine process gets as input an image that is

assumed to be the picture of a single object, and it has to recognize if the object

belongs to one of several predefined semantic categories (e.g., dogs, cats, cars, or

bikes). This type of image understanding task is typically called object recognition.

Due to its assumption about the input image, the usefulness of object recognition is

relatively limited in real-world applications where the processed images can depict

numerous objects and in various spatial positions in the image. Therefore, a much

more interesting image understanding task is that of object detection that given an

image requires to find in that image all the object instances of one or more semantic

categories in form of bounding boxes that tightly enclose those objects. In Figure 1-1
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Figure 1-1: Object detection example. We draw the ground truth bounding boxes of the human and
horse objects depicted in the image.

we provide an object detection example for the semantic categories person and horse.

Pixel-wise image labeling: Another very important type of image understanding tasks is

that of assigning a descriptive label to each pixel of an image. For example, in

the semantic segmentation task each pixel of an image is labeled with a semantic

category that describes that pixel (e.g., road, person, car, or pavement; see example

in Figure 1-2). Another instance of the pixel-wise image labeling task that we are

interested with in this thesis is that of depth estimation from a stereo image (also

called disparity estimation). In depth estimation each pixel of the left image of the

stereo rig is assigned a continuous label that indicates its horizontal displacement in

the right image (i.e., disparity). Those disparity maps reveal the depth (from the stereo

camera) of the surface of the scene objects depicted in the image (see Figure 1-3).

It is evident that object recognition, object detection, and pixel-wise image labeling

tasks are answering “what” and “where” is something depicted in an image. Perfecting

such type of machine image understanding is prerequisite for being able to develop artificial

intelligence systems, such as self-driving cars that navigate through city streets, autonomous

robots that perform household maintenance duties, assistance devices for visually impaired

people that describe the environment where their user moves, or augmented reality systems
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Figure 1-2: Pixel wise labeling - semantic segmentation example. We visualize the ground truth
semantic label of each pixel of the image.

Figure 1-3: Pixel wise labeling - depth estimation example. We visualize the ground truth depth
label of each pixel of the image.

that enhance or alter our visual perception with computer generated visual information.

1.2 Deep learning approach

As already mentioned, in order to accomplish our objective we employ deep learning

techniques. Deep learning belongs to the broader family of machine learning techniques that

learn from data the computational model that performs a certain task (as opposed to explicitly

programming it). In deep learning particularly, deep neural networks, which are cascades

of non-linear processing units arranged in sequential order, learn to gradually transform

the inputs to more abstract and composite representations till they end up with the final

outputs. For example, in the object recognition case, a deep neural network might learn a
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first representation level that transforms an image to oriented edges, a second representation

level that composes and encodes arrangements of oriented edges that form object parts (such

as nose, eyes, car wheel, etc), and a third representation level that composes and encodes

arrangements of object parts that form objects such as faces, cars, or elephants, and thus

recognizing the object depicted in the input image (see Figure 1-4). The most common type

of deep neural networks for learning image understanding tasks is that of convolutional

neural networks (ConvNets).

The most prominent approach with which deep neural networks learn to perform a task

is via supervised learning. In supervised learning, the deep neural network is trained to

approximate a function that maps inputs to outputs based on example input-output pairs.

This set of input-output pairs (aka training examples) consist the training data for learning

and are obtained by manually labeling input data with the desired outputs according to the

definition of the task of interest. For instance, in object recognition a training example is an

image and its semantic category label, in object detection a training example is an image

and a list that includes the bounding box coordinates and the semantic category labels of

each object of interest in the image, and in pixel-wise image labeling a training example is

an image and the ground truth label values of each pixel. The goal is after training, the deep

neural network to be able to generalize well on new input data, for which their outputs are

unknown, and provide for them a good estimate of their ground truth outputs.

1.3 Challenges

Recent developments in supervised deep learning have achieved impressive results on

learning image understanding tasks. For instance, the (relatively simple) object recognition

task can be practically solved now if the proper ConvNet architecture is employed and

enough labeled training data are available. However, devising and deploying effective deep

learning based approaches for more complicated image understanding problems, such as

object detection and pixel-wise image labeling, is far from trivial. Furthermore, even for

object recognition, collecting large-size labeled datasets is a very laborious effort that limits

the employment of machine image understanding models in real world data and applications.
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Figure 1-4: Representation hierarchies learned by a deep neural network (source [85]).

Figure 1-5: Instances of the semantic object motorbike (indicated by red bounding boxes). The
motorbike in the red box of first (from the left) image is easy to be recognized. In contrast, the
motorbikes in the red boxes of the remaining three images are much more difficult to be recognized
due to the cluttered environment (second image), heavy occlusions (third image), or being on the
background of the image (fourth image).

In the remaining of this section we discuss in more detail those challenges.

1.3.1 Object detection challenges

1.3.1.1 Detecting difficult object instances

Detecting objects in an image requires at minimum a recognition model that given an image

region (i.e., a rectangular image patch) predicts whether or not it contains an object of interest.

Despite the fact that ConvNet based approaches have achieved remarkable results on object

recognition benchmarks, the problem of recognizing objects in real-world object detection

applications is much more difficult. Specifically, most object recognition benchmarks

include images on which the objects are depicted in iconic-view. That means that the objects
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are on the foreground of the image, unobstructed by other items, and in neatly composed

scenes (see for example the motorbike instance in the first from the left image of Figure 1-5).

Such object instances are very easy to be recognized by ConvNet based recognition models.

However, an object detection system should be able to process images from everyday life

scenes, which means that its recognition model should be able to recognize object instances

that might be in the background of the image, in “tricky” viewpoints, significantly occluded,

or in cluttered environments (see for example the motorbike instances in the last three from

the left images of Figure 1-5). Recognizing such difficult object instances is a much more

challenging task that requires more powerful ConvNet based image representations. Even

more, in object detection the recognition model must be localization sensitive, in the sense

that if a given image region depicts an object but without localizing it accurately enough

in order to be considered that it detects it, then the recognition model should classify that

image region as negative (i.e., that it does not detect the object of interest). For instance, in

PASCAL VOC [33] detection challenge an image region is considered to detect an object

if the Intersection over Union (IoU) between the bounding box of the image region and

the ground truth bounding box of the object is greater or equal to 0.5. Making ConvNet

based recognition models exhibit such localization sensitivity is a challenging problem due

to the built-in localization invariances of ConvNet models, which stem from the use of

max-pooling or other similar down-sampling layers.

1.3.1.2 Accurate object localization in object detection

Achieving accurate object localization is the ultimate goal of object detection and a very

daunting problem in practice. For instance, addressing the object localization aspect of

object detection by naively examining all possible locations (i.e., box sizes, aspect ratios, and

2D positions) with a recognition model is computationally prohibitive and likely to generate

many spurious detections. Instead, most prior approaches detect objects by classifying (with

the recognition model) and refining (via bounding box regression) a few candidate bounding

boxes. Those initial candidate bounding boxes are generated either by sliding window

schemes or most commonly by other algorithmic components designed to generate for a

given image a set of bounding boxes that cover with high recall all the objects that appear
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in the image regardless of their semantic category, i.e., category agnostic box proposal

algorithms. However, if the initial candidate bounding boxes miss an object, i.e., if there is

no box proposal in the proximity of the object of interest, then the detection system would

fail to detect it. Therefore, in order to address this issue, considerable efforts must be given

in developing effective box proposal algorithms that rarely miss an object and / or detection

systems that are more robust with respect to quality of the initial bounding boxes.

Furthermore, although many detection benchmarks, such as in PASCAL VOC [33],

decide whether an object has been successfully detected using loose localization criteria

(e.g., in PASCAL VOC, a detection threshold of 0.5 IoU is used for deciding whether

an object has been successfully detected), in real life applications a higher localization

accuracy (e.g., IoU > 0.7) is normally required. Such a need is also reflected in the recently

introduced COCO detection challenge [91], which uses as evaluation metric the traditional

average precision (AP) measurement but averaged over multiple IoU thresholds between

0.5 (loosely localized object) and 1.0 (perfectly localized object) so as to reward detectors

that exhibit good localization accuracy. Devising ConvNet-based detectors that exhibit such

highly accurate (and not loose) localization of ground truth objects makes the localization

aspect of object detection even more challenging.

1.3.2 Structured prediction in pixel-wise image labeling

Differently from the object recognition and object detection problems, in pixel-wise image

labeling problems there is rich structure not only on the input images but also on the output

labels. For example, see in Figure 1-3 how the output disparity labels form continuous

surfaces when their corresponding image pixels belong to the same object or how they

discontinue across object boundaries. This means that the output variables (pixel labels)

interrelate not only with the input variables (image pixels) but also with other (nearby)

output variables. Therefore, in order for a pixel-wise image labeling algorithm to be able to

achieve accurate and precise labeling results, it has to consider the dependencies that exist

in the joint space of both the input and the output variables.

Deep learning approaches that implement the pixel-wise image labeling task by simply
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employing independent ConvNet based patch predictors [34, 92, 37, 101, 110], which

directly predict each pixel label given as input an image patch centered on it, cannot capture

those joint dependencies. In order to model such joint dependencies, several approaches

combine independent pixel-wise ConvNet predictors with Conditional Random Fields

(CRFs) [80, 73] that refine and disambiguate their predictions [135, 11, 174, 12]. CRFs

employ graphical models that encode the known structure of the label / output space with

pairwise edge potentials between the graph nodes of output variables, and predict the image

labels by performing maximum a posteriori inference in this graphical model. For example,

in the case of semantic segmentation, those pairwise potentials enforce label consistency

among similar or spatially adjacent pixels. However, a major drawback of most CRF based

approaches is that the pairwise potentials have to be carefully hand designed in order to

incorporate simple human assumptions about the structure of the output labels and at the

same time to allow for tractable inference. Instead, it would be more interesting and practical

to be able learn the joint structure of both input and output variables in a data-driven way.

1.3.3 Dependence on large volumes of annotated training data

Deep learning successes on image understanding tasks hugely depend on the availability

of massive amounts of manually labeled training data. However, having humans annotate

such large set of data is error prone, expensive, and very slow. Furthermore, for some types

of visual data, such as medical data, there is lack of qualified human experts that are able

to annotate them. In contrast, there might be vast amounts of available unlabeled visual

data (e.g., 350 million images are uploaded on Facebook daily and 65 hours of video are

uploaded on YouTube per minute) that would remain unexploited if human supervision is

prerequisite. Even more, it is impractical to constantly have to annotate big volumes of new

visual data whenever the visual environment that an image understanding model perceives

change (e.g., in case of autonomous robots) or whenever new visual concepts need to be

taken into account (e.g., introducing to a recognition model novel semantic categories that

need to be recognized). Therefore, it would be desirable to being able to learn effective

image understanding models without requiring massive amount of manually labeled training
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data.

1.4 Thesis structure and contributions

Given the nature of the above challenges, we analyze our objective into two sub-objectives,

named “effective deep learning for image understanding” and “annotation efficient learning”.

Therefore, we break our thesis into two parts with the subject of each of them being the

pursuit of the corresponding sub-objective. In the remaining of this section, we describe the

objective of each part, we introduce our work towards achieving it, and we highlight the

contributions.

1.4.1 Part 1: Effective deep learning for image understanding

The objective of the first part of the thesis is to make progress to the state-of-the-art of two

core image understanding problems, object detection and pixel-wise image labeling, by

proposing effective deep learning based approaches.

1.4.1.1 Discriminative representations for object detection

As already explained, a core component of an object detection system is a recognition model

that given an image region recognizes whether or not it tightly encloses an object of interest.

In order to improve the accuracy of this model, we propose an enriched ConvNet-based

image region representation that encodes the appearance of multiple regions (around the

input image region) as well as semantic segmentation aware features. This is achieved

by designing a multi-component ConvNet architecture where each network component is

forced to focus on a different region of the object of interest. The goal is to make the learned

representation to be able to capture a diverse set of discriminative appearance factors, such

as its pure appearance characteristics, the distinct appearance of its different regions (object

parts), context appearance, the joint appearance on both sides of the object boundaries,

or semantic segmentation aware information. We believe that such a rich representation

will improve the recognition capabilities of the detection system even when faced with
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the difficult object instances that are often encountered in the object detection task (see

discussion in 1.3.1.1). Furthermore, the learned representation exhibits increased localization

sensitivity, which is essential in object detection. We exploit these properties of the proposed

recognition module by integrating it on an iterative localization mechanism that starting

from some initial candidate regions in the image alternates between classifying them and

refining their locations such that they more tightly enclose the objects of interest. Thanks to

the efficient use of our modules, we detect objects with very high accuracy. On the detection

challenges of PASCAL VOC2007 and PASCAL VOC2012 we achieve mAP of 78.2% and

73.9% correspondingly, surpassing by a significant margin any prior or contemporaneous

published work.

This work was accepted for publication at ICCV 2015. Implementation code and models

are published at https://github.com/gidariss/mrcnn-object-detection.

1.4.1.2 Accurate object localization in object detection

Apart from the recognition aspect, we attempt to boost the localization accuracy of object

detection systems by devising a novel localization model that, given a loosely localized

search region inside an image, aims to return the accurate location of an object in this

region. Most prior approaches, in order to implement such localization models, adopt the

bounding box regression paradigm, which uses a regression function to directly predict the

four object bounding box coordinates. However, we believe that trying to directly regress

the target bounding box coordinates, constitutes a difficult learning task that cannot yield

accurate enough bounding boxes. Instead we formulate the localization problem in a dense

classification way. Specifically, given the search region our model assigns conditional

probabilities to each row and column of this region, where these probabilities provide useful

information regarding the location of the boundaries of the object inside the search region

and allow the accurate inference of the object bounding box under a simple probabilistic

framework.

We implement our localization model with a properly adapted ConvNet architecture,

called LocNet, and we incorporate it on an iterative localization methodology. We show

experimentally that LocNet exhibits superior localization performance to bounding box
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regression models, achieves a very significant improvement on the mAP for high IoU

threshold on PASCAL VOC2007 test set, and that it can be very easily coupled with recent

state-of-the-art object detection systems, helping them to boost their performance. We

also demonstrate that our detection approach can achieve high detection accuracy even

when it is given as input a set of sliding windows, thus proving that it can be independent

of box proposal methods. Finally, we adapt the overall localization methodology to the

box proposal generation task and the resulting system, called “AttractionNet”, achieves

state-of-the-art box proposal results that when coupled with a LocNet based detection system

achieve excellent detection performance.

Parts of this work were accepted for publication at CVPR 2016 and BMVC 2016. Imple-

mentation code and relevant data are published at https://github.com/gidariss/

LocNet and at https://github.com/gidariss/AttractioNet.

1.4.1.3 Deep structure prediction for pixel-wise image labeling

As already explained, one of the main challenges of pixel-wise image labeling is to learn

the joint space of both input and output variables. A data-driven approach for implicitly

learning this joint space is by training a deep neural network such that, given as input an

initial estimate of the output labels and the input image, it will be able to predict a new

refined estimate for the labels. We refer to these methods as deep joint input-output models.

In that context, the contribution of our thesis on the pixel-wise image labeling problem is on

exploring what is the optimal architecture for performing the label improvement task. We

argue that the prior approaches of either directly predicting new label estimates or predicting

residual corrections w.r.t. the initial labels with feed-forward deep network architectures

are sub-optimal. Instead, we propose a generic architecture that decomposes the label

improvement task to three steps: (1) detecting the initial label estimates that are incorrect,

(2) replacing the incorrect labels with new ones, and finally (3) refining the renewed labels

by predicting residual corrections w.r.t. them. Furthermore, we explore and compare

various other alternative architectures for deep joint input-output models that consist of

the aforementioned Detection, Replace, and Refine components. We extensively evaluate

the examined architectures in the challenging task of dense disparity estimation (stereo
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matching) and we report both quantitative and qualitative results on three different datasets

that demonstrate the advantages of our approach. Finally, our dense disparity estimation

network that implements the proposed generic architecture, achieves state-of-the-art results

on the KITTI 2015 benchmark surpassing prior approaches by a significant margin. We

also provide preliminary results of our approach in two semantic segmentation tasks, the

Cityscapes and the ECP facade parsing tasks, obtaining very promising experimental results.

This work was accepted for publication at CVPR 2017.

1.4.2 Part 2: Annotation efficient deep learning for image understand-

ing

The second part of the thesis focuses on exploring techniques that will allow to learn image

understanding models without requiring extensive amount of manually labeled training data,

or as we call it, in an annotation efficient learning way. Two broad approaches that try to

circumvent the dependence of deep learning models on large-size manually labeled datasets

are learning using unlabeled data (i.e, unsupervised learning) or learning using labeled data

of different but similar problems for which labels are easier to obtain or already available

(i.e., transfer learning). In our case, we propose two approaches for annotation efficient

learning, an unsupervised representation learning approach, which belongs to the broader

unsupervised learning approach, and a few-shot learning approach, which belongs to the

broader transfer learning approach.

1.4.2.1 Unsupervised visual representation learning

ConvNets have been proven extremely successful at solving image understanding tasks

thanks to their unparalleled ability to learn high level semantic image features through

supervised learning. For instance, the image features learned by training a ConvNet on

the image classification datasets of ImageNet [129] or Place205 [175], which contain

millions of manually annotated images, have achieve remarkable results when transferred on

downstream image understanding tasks, such as object detection and semantic segmentation.

Given our goal for annotation efficient learning, a very interesting question is whether
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semantic visual representation learning is possible without human supervision, i.e., without

requiring any manual annotation effort. A promising approach for the problem posed by this

question is self-supervised learning, which is a form of unsupervised learning that defines

an annotation free pretext task, using only the visual information present on the images, in

order to provide a surrogate supervision signal for semantic feature learning.

Following this approach, our contribution is to propose to learn image representations

by training ConvNets to recognize the 2D rotation that is applied to the image that it gets

as input. We demonstrate both qualitatively and quantitatively that this apparently simple

task actually provides a very powerful supervisory signal for semantic feature learning. We

exhaustively evaluate our method in various unsupervised feature learning benchmarks and

we exhibit in all of them state-of-the-art performance. Specifically, our results on those

benchmarks demonstrate dramatic improvements w.r.t. prior state-of-the-art approaches in

unsupervised representation learning and thus significantly close the gap with supervised

feature learning. For instance, in PASCAL VOC 2007 detection task our unsupervised pre-

trained AlexNet model achieves the state-of-the-art (among unsupervised methods) mAP

of 54.4% that is only 2.4 points lower from the supervised case. We get similarly striking

results when we transfer our unsupervised learned features on various other tasks, such as

ImageNet classification, PASCAL classification, PASCAL segmentation, and CIFAR-10

classification.

This work was accepted for publication at ICLR 2018. Implementation code and trained

models are published at https://github.com/gidariss/FeatureLearningRotNet.

1.4.2.2 Few-shot visual learning without forgetting

Few-shot learning is related to the broader transfer learning problem that attempts to store

and exploit the knowledge acquired while learning to solve one problem in order later on

to more efficiently learn to solve a different / novel but related problem. In the few-shot

learning specifically, the goal is the acquired knowledge to be exploited in order to drastically

reduce the amount training examples required for the novel problem or in other words to

more effectively solve the novel problem while having access to very few training examples

for that problem. For example, in the object recognition application, the knowledge acquired
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while learning to recognize cats and lions could be exploited when learning to recognize the

novel category tiger from only a few training examples of tigers, e.g., only one (1-shot) or

five (5-shot) training examples. The human visual system exhibits such transfer learning

ability; it effortlessly learns novel visual concepts from only one or a few examples thanks

to its ability to exploit its past experience about the visual world. Mimicking that behavior

on artificial vision systems is an interesting and challenging research problem. Solving it

moves us towards the direction of annotation efficient learning.

In this context, our contribution is to propose a few-shot visual learning system that

is capable of dynamically learning novel categories from only a few training data (e.g.,

1 or 5 training examples per category) while at the same time is not forgetting the initial

categories on which it was trained (here called base categories). In order to achieve that

we propose (a) to extend an object recognition system with an attention based few-shot

classification weight generator, and (b) to redesign the classifier of a ConvNet model as

the cosine similarity function between feature representations and classification weight

vectors. The latter, apart from unifying the recognition of both novel and base categories,

also leads to feature representations that generalize better on “unseen” categories. We

extensively evaluate our approach on Mini-ImageNet where we manage to improve the prior

state-of-the-art on few-shot recognition (i.e., we achieve 56.20% and 73.00% accuracy on

the 1-shot and 5-shot settings respectively) while at the same time we do not sacrifice any

accuracy on the base categories, which is a characteristic that most prior approaches lack.

Finally, we apply our approach on the recently introduced few-shot benchmark of Hariharan

and Girshick [51] where we also achieve state-of-the-art results.

This work was accepted for publication at CVPR 2018. Implementation code and rele-

vant data are published at https://github.com/gidariss/FewShotWithoutForgetting.

1.5 Publications

The work during this PhD lead to the following publications:

• Spyros Gidaris and Nikos Komodakis. “Object detection via a multi-region and

semantic segmentation-aware cnn model.” Proceedings of the IEEE International
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Conference on Computer Vision (ICCV), 2015.

• Spyros Gidaris and Nikos Komodakis. “Locnet: Improving localization accuracy

for object detection.” Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition (CVPR), 2016.

• Spyros Gidaris and Nikos Komodakis. “Attend Refine Repeat: Active Box Proposal

Generation via In-Out Localization.” Proceedings of the British Machine Vision

Conference (BMVC), 2016.

• Spyros Gidaris and Nikos Komodakis. “Detect, replace, refine: Deep structured

prediction for pixel wise labeling.” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

• Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Representation

Learning by Predicting Image Rotations.” International Conference on Learning

Representations (ICLR), 2018.

• Spyros Gidaris and Nikos Komodakis. “Dynamic Few-Shot Visual Learning without

Forgetting.” Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

Also, under preparation for submission are the following journal papers:

• An extended version of our ICLR 2018 paper, “Unsupervised Representation Learning

by Predicting Image Rotations”.

• An extended version of our CVPR 2018 paper, “Dynamic Few-Shot Visual Learning

without Forgetting”.

• Extended versions of our CVPR 2016 and BMVC 2016 papers combined into a single

journal paper.

1.6 Outline

As already explained, this thesis is organized into two parts. The first part includes chap-

ters 2, 3, and 4; in chapter 2 we present our work on devising a discriminative image

representation for the object detection task, in chapter 3 we focus on the localization aspect

of object detection and we propose a novel object localization model capable of boosting the
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localization accuracy of object detectors, and in chapter 4 we present our work on exploring

and devising deep structured prediction models for pixel-wise image labeling problems.

The second part includes chapters 5 and 6; in chapter 5 we present our unsupervised visual

representation learning approach, and in chapter 6 we present our few-shot visual learning

system. Finally, we conclude our thesis in chapter 7 where we also present possible avenues

for future work.
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Chapter 2

Discriminative Representations for

Object Detection

2.1 Introduction

In this chapter we deal with the object detection task. Over the past few years, tremendous

progress has been achieved on the task of object detection thanks to the recent advances of

deep learning community [83, 6, 58, 78, 144]. Among them, most notable is the work of

Sermanet et al. [137] with the Overfeat framework and the work of Girshick et al. [43] with

the R-CNN framework.

Overfeat [137] uses two CNN models that are applied on a sliding window fashion on

multiple scales of an image. The first is used to classify if a window contains an object and

the second to predict the true bounding box location of the object. Finally, the dense class

and location predictions are merged with a greedy algorithm in order to produce the final set

of object detections.

R-CNN [43] uses Alex Krizhevsky’s Net [78] to extract features from box proposals

provided by selective search [153] and then classifies them with class specific linear SVMs.

The authors manage to train networks with millions of parameters by first pre-training on

the auxiliary task of classifying the images of ImageNet dataset [129] and then fine-tuning

on a small set of images annotated for the detection task. This simple pipeline surpasses by

a large margin the detection performance of all the previously published systems, such as
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Figure 2-1: Left: detecting the sheep on this scene is very difficult without referring on the context,
mountainish landscape. Center: In contrast, the context on the right image can only confuse the
detection of the boat. The pure object characteristics is what a recognition model should focus on in
this case. Right: This car instance is occluded on its right part and the recognition model should
focus on the left part in order to confidently detect.

deformable parts models [35] or non-linear multi-kernel approaches [154]. Their success

comes from the fact that they replaced the hand-engineered features like HOG [21] or

SIFT [93] with the high level object representations produced from the last layer of a CNN

model. By employing an even deeper CNN model, such as the 16-layers VGG-Net [144],

they boosted the performance another 7 points.

In this chapter we aim to further advance the state-of-the-art on object detection by

improving on two key aspects that play a critical role in this task: object representation and

object localization.

Object representation. One of the lessons learned from the above-mentioned works is

that indeed powerful representations are essential on object detection. However, instead of

proposing only a network architecture that is deeper, here we also opt for an architecture of

greater width, i.e., one whose last hidden layers provide features of increased dimensionality.

In doing so, our goal is to build a richer and more discriminative candidate box representation.

This goal is accomplished at two levels:

(1). At a first level, we want our object representation to capture several different

aspects of an object such as its pure appearance characteristics, the distinct appearance

of its different regions (object parts), context appearance, the joint appearance on both

sides of the object boundaries, and semantics. We believe that such a rich representation

will further facilitate the problem of recognizing (even difficult) object instances under a

variety of circumstances (like, e.g., those depicted in Figure 2-1). In order to achieve our

goal, we propose a multi-component CNN model, called multi-region CNN hereafter, each

60



component of which is steered to focus on a different region of the object thus enforcing

diversification of the discriminative appearance factors captured by it.

Additionally, as we will explain shortly, by properly choosing and arranging some of

these regions, we aim also to help our representation in being less invariant to inaccurate

localization of an object. Note that this property, which is highly desirable for detection,

contradicts with the built-in invariances of CNN models, which stem from the use of

max-pooling layers.

(2). At a second level, inspired by the close connection that exists between segmentation

and detection, we wish to enrich the above representation so that it also captures semantic

segmentation information. To that end, we extend the above CNN model such that it also

learns novel CNN-based semantic segmentation-aware features. Importantly, learning these

features (i.e., training the extended unified CNN model) do not require having ground truth

object segmentations as training data.

Object localization. Besides object representation, our work is also motivated from

the observation that, due to the tremendous classification capability of the recent CNN

models [78, 167, 144, 66, 54, 147], the bottleneck for good detection performance is now

the accurate object localization. Indeed, it was noticed on R-CNN [43] that the most common

type of false positives is the mis-localized detections. They fix some of them by employing a

post processing step of bounding box regression that they apply on the final list of detections.

However, their technique only helps on small localization errors. We believe that there is

much more space for improvement on this aspect. In order to prove it, we attempt to build a

more powerful localization system that relies on combining our multi-region CNN model

with a CNN-model for bounding box regression, which are used within an iterative scheme

that alternates between scoring candidate boxes and refining their coordinates.

To summarize, the contributions of our work presented in this chapter, are as follows:

• We develop a multi-region CNN recognition model that yields an enriched object

representation capable to capture a diversity of discriminative appearance factors

and to exhibit localization sensitivity that is desired for the task of accurate object

localization.

• We furthermore extend the above model by proposing a unified neural network
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architecture that also learns semantic segmentation-aware CNN features for the task

of object detection. These features are jointly learnt in a weakly supervised manner,

thus requiring no additional annotation.

• We show how to significantly improve the localization capability by coupling the afore-

mentioned CNN recognition model with a CNN model for bounding box regression,

adopting a scheme that alternates between scoring candidate boxes and refining their

locations, as well as modifying the post-processing step of non-maximum-suppression.

• Our detection system achieves mAP of 78.2% and 73.9% on VOC 2007 [33] and

VOC2012 [32] detection challenges respectively, thus surpassing by a very significant

margin the previous state-of-the-art. (at the time of conducting the work presented in

this chapter).

The remainder of the chapter is structured as follows: We discuss related work in §2.2.

We describe our multi-region CNN model in §2.3. We show how to extend it to also learn

semantic segmentation-aware CNN features in §2.4. Our localization scheme is described

in §2.5 and implementation details are provided in §2.6. We present experimental results in

§2.7, qualitative results in §2.8 and conclude in §2.9.

2.2 Related Work

Apart from Overfeat [137] and R-CNN [43], several other recent papers are dealing with the

object detection problem using deep neural networks. One is the work of Zhu et al. [176],

which shares some conceptual similarities with ours. Specifically, they extract features

from an additional region in order to capture the contextual appearance of a candidate

box, they utilize a MRF inference framework to exploit object segmentation proposals

(obtained through parametric min-cuts) in order to improve the object detection accuracy,

and also use iterative box regression (based on ridge regression). More than them, we use

multiple regions designed to diversify the appearance factors captured by our representation

and to improve localization, we exploit CNN-based semantic segmentation-aware features

(integrated in a unified neural network architecture), and make use of a deep CNN model for

bounding box regression, as well as a box-voting scheme after non-max-suppression. Feature
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extraction from multiple regions has also been exploited for performing object recognition

in videos by Leordeanu et al. [87]. As features they use the outputs of HOG [21]+SVM

classifiers trained on each region separately and the 1000-class predictions of a CNN pre-

trained on ImageNet. Instead, we fine-tune our deep networks on each region separately

in order to accomplish our goal of learning deep features that will adequately capture their

discriminative appearance characteristics. Furthermore, our regions exhibit more variety on

their shape that, as we will see in section 2.3.1, helps on boosting the detection performance.

Szegedy et al. [149] designed a deep CNN model for object proposals generation and use

contextual features extracted by applying on large crops of the image a CNN model pre-

trained on the ImageNet classification task. Ouyang et al. [113] introduce a deep CNN with

a novel deformation constrained pooling layer, a new strategy for pre-training that uses the

bounding box annotations provided from ImageNet localization task, and contextual features

derived by applying a pre-trained on ImageNet CNN on the whole image and treating the

1000-class probabilities for ImageNet objects as global contextual features. In the SPP-

Net detection framework [55], instead of applying their deep CNN on each candidate box

separately as R-CNN does, they extract the convolutional feature maps from the whole

image, project the candidate boxes on them, and then with an adaptive max-pooling layer,

which consists of multiple pooling levels, they produce fixed length feature vectors that they

pass through the fully connected layers of the CNN model. Thanks to those modifications,

they manage to speed up computation by a considerable factor while maintaining high

detection accuracy. Our work adopts this processing paradigm.

Contemporary to our work are the approaches of [128, 42, 127] that are also based

on the SPP-Net framework. Ren et al. [128] improve the SPP framework by replacing

the sub-network component that is applied on the convolutional features extracted from

the whole image with a deeper convolutional network. The Fast R-CNN framework of

Girshick [42] simplifies the training phase of SPP-Net and R-CNN and speeds up both the

testing and the training phases. Also, by fine-tuning the whole network and adopting a

multi-task objective that has both box classification loss and box regression loss, its manages

to improve the detection accuracy of the system. Finally, Shaoqing et al. [127] propose

the Faster R-CNN framework that extends Fast R-CNN [42] by adding a new sub-network
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Figure 2-2: Multi Region CNN architecture. For clarity we present only four of the regions
that participate in it. An “adaptive max pooling” layer uses spatially adaptive pooling as in [55]
(but with a one-level pyramid). The above architecture can be extended to also learn semantic
segmentation-aware CNN features (see section §2.4) by including additional ‘activation-maps’ and
‘region-adaptation’ modules that are properly adapted for this task.

component for predicting class-independent proposals and thus making the system both

faster and independent of object proposal algorithms.

2.3 Multi-Region CNN Model

The recognition model that we propose consists of a multi-component CNN network, each

component of which is chosen so as to focus on a different region of an object. We call

this a Multi-Region CNN model. We begin by describing first its overall architecture. To

that end, in order to facilitate the description of our model we introduce a general CNN

architecture abstraction that decomposes the computation into two different modules:

Activation maps module. This part of the network gets as input the entire image and outputs

activation maps (feature maps) by forwarding it through a sequence of convolutional

layers.

Region adaptation module. Given a region R on the image and the activation maps of the

image, this module projects R on the activation maps, crops the activations that lay

inside it, pools them with a spatially adaptive (max-)pooling layer [55], and then

forwards them through a multi-layer network.
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Under this formalism, the architecture of the Multi-Region CNN model can be seen

in Figure 2-2. Initially, the entire image is forwarded through the activation maps module.

Then, a candidate detection box B is analyzed on a set of (possibly overlapping) regions

{Ri}ki=1 each of which is assigned to a dedicated region adaptation module (note that these

regions are always defined relatively to the bounding box B). As mentioned previously, each

of these region adaptation modules passes the activations pooled from its assigned region

through a multilayer network that produces a high level feature. Finally, the candidate box

representation is obtained by concatenating the last hidden layer outputs of all the region

adaptation modules.

By steering the focus on different regions of an object, our aim is: (i) to force the network

to capture various complementary aspects of the object’s appearance (e.g., context, object

parts, etc.), thus leading to a much richer and more robust object representation, and (ii)

to also make the resulting representation more sensitive to inaccurate localization (e.g., by

focusing on the border regions of an object), which is also crucial for object detection.

In the next section we describe how we choose the regions {Ri}ki=1 to achieve the above

goals, and also discuss their role on object detection.

2.3.1 Region components and their role on detection

We utilize 2 types of region shapes: rectangles and rectangular rings, where the latter type is

defined in terms of an inner and outer rectangle. We describe below all of the regions that

we employ, while their specifications are given in the caption of Figure 2-3.

Original candidate box: this is the candidate detection box itself as being used in R-

CNN [43] (Figure 2-3a). A network trained on this type of region is guided to capture the

appearance information of the entire object. When it is used alone, it consists the baseline

of our work.

Half boxes: those are the left/right/up/bottom half parts of a candidate box (Figures 2-3b,

2-3c, 2-3d, and 2-3e). Networks trained on each of them, are guided to learn the appearance

characteristics present only on each half part of an object or on each side of the objects

borders, aiming also to make the representation more robust with respect to occlusions.
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(a) Original box (b) Half left (c) Half right (d) Half up (e) Half bottom

(f) Central Region (g) Central Region (h) Border Region (i) Border Region (j) Context. Region
Figure 2-3: Illustration of the regions used on the Multi-Region CNN model. With yellow solid lines
are the borders of the regions and with green dashed lines are the borders of the candidate detection
box. Region a: it is the candidate box itself as being used on R-CNN [43]. Region b, c, d, e: they
are the left/right/up/bottom half parts of the candidate box. Region f: it is obtained by scaling the
candidate box by a factor of 0.5. Region g: the inner box is obtained by scaling the candidate box by
a factor of 0.3 and the outer box by a factor of 0.8. Region h: we obtain the inner box by scaling the
candidate box by a factor of 0.5 and the outer box has the same size as the candidate box. Region i:
the inner box is obtained by scaling the candidate box by a factor of 0.8 and the outer box by a factor
of 1.5. Region j: the inner box is the candidate box itself and the outer box is obtained by scaling
the candidate box by a factor of 1.8.

Central Regions: there are two type of central regions in our model (Figures 2-3f and 2-

3g). The networks trained on them are guided to capture the pure appearance characteristics

of the central part of an object that is probably less interfered from other objects next to it or

its background.

Border Regions: we include two such regions, with the shape of rectangular rings

(Figures 2-3h and 2-3i). We expect that the networks dedicated on them will be guided to

focus on the joint appearance characteristics on both sides of the object borders, also aiming

to make the representation more sensitive to inaccurate localization.

Contextual Region: there is one region of this type that has rectangular ring shape

(Figure 2-3j). Its assigned network is driven to focus on the contextual appearance that

surrounds an object such as the appearance of its background or of other objects next to it.

Role on detection. Concerning the general role of the regions on object detection, we

briefly focus below on two of the reasons why using these regions helps:

Discriminative feature diversification. Our hypothesis is that having regions that render

visible to their network-components only a limited part of the object or only its immediate
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surrounding forces each network-component to discriminate image boxes solely based on

the visual information that is apparent on them thus diversifying the discriminative factors

captured by our overall recognition model. For example, if the border region depicted on

Figure 2-3i is replaced with one that includes its whole inner content, then we would expect

that the network-component dedicated on it will not pay the desired attention on the visual

content that is concentrated around the borders of an object. We tested such a hypothesis by

conducting an experiment where we trained and tested two Multi-Region CNN models that

consist of two regions each. Model A included the original box region (Figure 2-3a) and the

border region of Figure 2-3i that does not contain the central part of the object. On model B,

we replaced the latter region (Figure 2-3i), which is a rectangular ring, with a normal box

of the same size. Both of them were trained on PASCAL VOC 2007 [33] train+val set and

tested on the test set of the same challenge. Model A achieved 64.1% mAP while Model B

achieved 62.9% mAP which is 1.2 points lower and validates our assumption.

Localization-aware representation. We argue that our multi-region architecture as well

as the type of regions included, address to a certain extent one of the major problems on the

detection task, which is the inaccurate object localization. We believe that having multiple

regions with network-components dedicated on each of them imposes soft constraints

regarding the visual content allowed on each type of region for a given candidate detection

box. We experimentally justify this argument in sections 2.7.2 and 2.7.3.

2.4 Semantic Segmentation-Aware CNN Model

To further diversify the features encoded by our representation, we extend the Multi-Region

CNN model so that it also learns semantic segmentation-aware CNN features. The mo-

tivation for this extension comes from the close connection between segmentation and

detection tasks as well as from the fact that segmentation related cues are empirically known

to often help object detection [27, 50, 106]. In the context of our multi-region CNN network,

the incorporation of the semantic segmentation-aware features is done by adding properly

adapted versions of the two main modules of the network, i.e., the ‘activation-maps’ and

‘region-adaptation’ modules (see architecture in Figure 2-4). We hereafter refer to the
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Figure 2-4: Multi Region CNN architecture extended with the semantic segmentation-aware CNN
features.

resulting modules as:

• Activation maps module for semantic segmentation-aware features.

• Region adaptation module for semantic segmentation-aware features.

It is important to note that the modules for the semantic segmentation-aware features are

trained without the use of any additional annotation. Instead, they are trained in a weakly

supervised manner using only the provided bounding box annotations for detection.

We combine the Multi-Region CNN features and the semantic segmentation aware CNN

features by concatenating them (see Figure 2-4). The resulting network thus jointly learns

deep features of both types during training.

2.4.1 Activation maps module for semantic segmentation-aware fea-

tures

Fully Convolutional Nets. In order to serve the purpose of exploiting semantic segmentation

aware features, for this module we adopt a Fully Convolutional Network [92] architecture,
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Figure 2-5: Illustration of the weakly supervised training of the FCN [92] used as activation maps
module for the semantic segmentation aware CNN features. Left column: images with the ground
truth bounding boxes drawn on them. The classes depicted from top to down order are horse, human,
and dog. Middle column: the segmentation target values used during training of the FCN. They
are artificially generated from the ground truth bounding box(es) on the left column. We use blue
color for the background and red color for the foreground. Right column: the foreground masks
estimated from our trained FCN model. These clearly verify that, despite the weakly supervised
training, our extracted features carry significant semantic segmentation information.

abbreviated hereafter as FCN, trained to predict class specific foreground probabilities (we

refer the interested reader to [92] for more details about FCN where it is being used for the

task of semantic segmentation).

Weakly Supervised Training. To train the activation maps module for the class-specific

foreground segmentation task, we only use the annotations provided on object detection

challenges (so as to make the training of our overall system independent of the availability

of segmentation annotations). To that end, we follow a weakly supervised training strategy

and we create artificial foreground class-specific segmentation masks using bounding box

annotations. More specifically, the ground truth bounding boxes of an image are projected
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on the spatial domain of the last hidden layer of the FCN, and the ”pixels” that lay inside the

projected boxes are labeled as foreground while the rest are labeled as background (see left

and middle column in Figure 2-5). The aforementioned process is performed independently

for each class and yields as many segmentation target images as the number of our classes.

As can be seen in Figure 2-5 right column, despite the weakly supervised way of training,

the resulting activations still carry significant semantic segmentation information, enough

even to delineate the boundaries of the object and separate the object from its background.

Activation Maps. After the FCN has been trained on the auxiliary task of foreground

segmentation, we drop the last classification layer and we use the rest of the FCN network

in order to extract from images semantic segmentation aware activation maps.

2.4.2 Region adaptation module for semantic segmentation-aware fea-

tures

We exploit the above activation maps by treating them as mid-level features and adding

on top of them a single region adaptation module trained for our primary task of object

detection. In this case, we choose to use a single region obtained by enlarging the candidate

detection box by a factor of 1.5 (such a region contains semantic information also from

the surrounding of a candidate detection box). The reason that we do not repeat the same

regions as in the initial Multi-Region CNN architecture is for efficiency as these are already

used for capturing the appearance cues of an object.

2.5 Object Localization

As already explained, the proposed Multi-Region CNN recognition model exhibits the

localization awareness property that is necessary for accurate object localization. However,

by itself it is not enough. In order to make full use of it, our recognition model needs

to be presented with well localized candidate boxes that in turn will be scored with high

confidence from it. The solution that we adopt consists of 3 main components:

CNN region adaptation module for bounding box regression. We introduce an extra
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4 (e) Step 5
Figure 2-6: Illustration of the object localization scheme for instances of the class car. Step 1: the
initial box proposal of the image. For clarity we visualize only the box proposals that are not rejected
after the first scoring step. Step 2: the new box locations obtained after performing CNN based
bounding box regression on the boxes of Step 1. Step 3: the boxes obtained after a second step of
box scoring and regressing on the boxes of Step 2. Step 4: the boxes of Step 2 and Step 3 merged
together. Step 5: the detected boxes after applying non-maximum-suppression and box voting on the
boxes of Step 4. On the final detections we use blue color for the true positives and red color for the
false positives. Also, the ground truth bounding boxes are drawn with green color. The false positive
that we see after the last step is a duplicate detection that survived from non-maximum-suppression.

region adaptation module that, instead of being used for object recognition, is trained to

predict the object bounding box. It is applied on top of the activation maps produced from

the Multi-Region CNN model and, instead of a typical one-layer ridge regression model [43],

consists of two hidden fully connected layers and one prediction layer that outputs 4 values

(i.e., a bounding box) per category. In order to allow it to predict the location of object

instances that are not in the close proximity of any of the initial candidate boxes, we use as

region a box obtained by enlarging the candidate box by a factor of 1.3. This combination

offers a significant boost on the detection performance of our system by allowing it to make

more accurate predictions and for more distant objects.

Iterative Localization. Our localization scheme starts from the selective search propos-

als [153] and works by iteratively scoring them and refining their coordinates. Specifically,

let Bt
c = {Bt

i,c}
Nc,t

i=1 denote the set of Nc,t bounding boxes generated on iteration t for class

c and image X . For each iteration1 t = 1, ..., T , the boxes from the previous iteration

Bt−1
c are scored with sti,c = Frec(Bt−1

i,c |c,X) by the recognition model Frec(.) and refined

into Bt
i,c = Freg(Bt−1

i,c |c,X) by the CNN regression model Freg(.), thus forming the set of

candidate detections Dt
c = {(sti,c, Bt

i,c)}
Nc,t

i=1 . For the first iteration t = 1, the box proposals

B0
c are coming from selective search [153] and are common between all the classes. Also,

those with score s0i,c below a threshold τs are rejected2 in order to reduce the computational

1In practice T =2 iterations were enough for convergence.
2We use τs = −2.1, which was selected such that the average number of box proposals per image from all
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burden of the subsequent iterations. This way, we obtain a sequence of candidate detection

sets {Dt
c}Tt=1 that all-together both exhibit high recall of the objects on an image and are

well localized on them.

Bounding box voting. After the last iteration T , the candidate detections {Dt
c}Tt=1

produced on each iteration t are merged together Dc = ∪Tt=1Dt
c. Because of the multiple

regression steps, the generated boxes will be highly concentrated around the actual objects

of interest. We exploit this “by-product” of the iterative localization scheme by adding

a step of bounding box voting. First, standard non-max suppression [43] is applied on

Dc and produces the detections Yc = {(si,c, Bi,c)} using an IoU overlap threshold of

0.3. Then, the final bounding box coordinates Bi,c are further refined by having each

neighboring box Bj,c ∈ N (Bi,c) to vote for the bounding box location using as weight its

score wj,c = max(0, sj,c):

B
′

i,c =

∑
j:Bj,c∈N (Bi,c)

wj,c ·Bj,c∑
j:Bj,c∈N (Bi,c)

wj,c
, (2.1)

where N (Bi,c) is the set of boxes in Dc that overlap with Bi,c by more than 0.5 on IoU

metric. The final set of object detections for class c will be Y′c = {(si,c, B
′
i,c)}.

In Figure 2-6 we provide a visual illustration of the object localization.

2.6 Implementation Details

For all the CNN models involved in our proposed system, we used the publicly available 16-

layers VGG model [144] pre-trained on ImageNet [22] for the task of image classification3.

For simplicity, we fine-tuned only the fully connected layers (fc6 and fc7) of each model

while we preserved the pre-trained weights for the convolutional layers (conv1 1 to conv5 3),

which are shared among all the models of our system.

Multi-Region CNN model. Its activation maps module consists of the convolutional

part (layers conv1 1 to conv5 3) of the 16-layers VGG-Net that outputs 512 feature channels.

The max-pooling layer right after the last convolutional layer is omitted on this module.

the classes together is around 250.
3https://gist.github.com/ksimonyan/
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Each region adaptation module inherits the fully connected layers of the 16-layers VGG-Net

and is fine-tuned separately from the others. Regarding the regions that are rectangular rings,

both the inner and outer box are projected on the activation maps and then the activations that

lay inside the inner box are masked out by setting them to zero (similar to the Convolutional

Feature Masking layer proposed on [18]). In order to train the region adaptation modules, we

follow the guidelines of R-CNN [43]. As an optimization objective we use the softmax-loss

and the minimization is performed with stochastic gradient descent (SGD). The momentum

is set to 0.9, the learning rate is initially set to 0.001 and then reduced by a factor of 10 every

30k iterations, and the minibatch has 128 samples. The positive samples are defined as the

selective search proposals [153] that overlap a ground-truth bounding box by at least 0.5.

As negative samples we use the proposals that overlap with a ground-truth bounding box on

the range [0.1, 0.5). The labelling of the training samples is relative to the original candidate

boxes and is the same across all the different regions.

Activation maps module for semantic segmentation aware features. Its architecture

consists of the 16-layers VGG-Net without the last classification layer and transformed to a

FCN [92] (by reshaping the fc6 and fc7 fully connected layers to convolutional ones with

kernel size of 7×7 and 1×1 correspondingly). For efficiency purposes, we reduce the output

channels of the fc7 layer from 4096 to 512. In order to learn the semantic segmentation

aware features, we use an auxiliary fc8 convolutional classification layer (of kernel size

1× 1) that outputs as many channels as our classes and a binary (foreground vs background)

logistic regression loss applied on each spatial cell and for each class independently. Initially,

we train the FCN with the 4096 channels on the fc7 layer until convergence. Then, we

replace the fc7 layer with another one that has 512 output channels, which is initialized

from a Gaussian distribution, and the training of the FCN starts from the beginning and is

continued until convergence again. For loss minimization we use SGD with minibatch of

size 10. The momentum is set to 0.9 and the learning rate is initialized to 0.01 and decreased

by a factor of 10 every 20 epochs. For faster convergence, the learning rate of the randomly

initialized fc7 layer with the 512 channels is multiplied by a factor of 10.

Region adaptation module for semantic segmentation aware features. Its architec-

ture consists of a spatially adaptive max-pooling layer [92] that outputs feature maps of 512
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channels on a 9× 9 grid, and a fully connected layer with 2096 channels. In order to train it,

we use the same procedure as for the region components of the Multi-Region CNN model.

During training, we only learn the weights of the region adaptation module layers that are

randomly initialized from a Gaussian distribution.

Classification SVMs. In order to train the SVMs we follow the same principles as in

[43]. As positive samples are considered the ground truth bounding boxes and as negative

samples are considered the selective search proposals [153] that overlap with the ground

truth boxes by less than 0.3. We use hard negative mining the same way as in [43, 35].

CNN region adaptation module for bounding box regression. The activation maps

module used as input in this case is common with the Multi-Region CNN model. The region

adaptation module for bounding box regression inherits the fully connected hidden layers of

the 16-layers VGG-Net. As a loss function we use the Euclidean distance between the target

values and the network predictions. For training samples we use the box proposals [153] that

overlap by at least 0.4 with the ground truth bounding boxes. The target values are defined

the same way as in R-CNN [43]. The learning rate is initially set to 0.01 and reduced by a

factor of 10 every 40k iterations. The momentum is set to 0.9 and the minibatch size is 128.

Multi-Scale Implementation. In our system we adopt a similar multi-scale implementa-

tion as in SPP-Net [55]. More specifically, we apply the activation maps modules of our

models on multiple scales of an image and then a single scale is selected for each region

adaptation module independently.

• Multi-Region CNN model: The activation maps module is applied on 7 scales of an

image with their shorter dimension being in {480, 576, 688, 874, 1200, 1600, 2100}.

For training, the region adaptation modules are applied on a random scale and for

testing, a single scale is used such that the area of the scaled region is closest to

224× 224 pixels. In the case of rectangular ring regions, the scale is selected based

on the area of the scaled outer box of the rectangular ring.

• Semantic Segmentation-Aware CNN model: The activation maps module is applied

on 3 scales of an image with their shorter dimension being in {576, 874, 1200}. For

training, the region adaptation module is applied on a random scale and for testing, a

single scale is selected such that the area of the scaled region is closest to 288× 288
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pixels.

• Bounding Box Regression CNN model: The activation maps module is applied on 7

scales of an image with their shorter dimension being in {480, 576, 688, 874, 1200, 1600, 2100}.

Both during training and testing, a single scale is used such that the area of the scaled

region is closest to 224× 224 pixels.

Training/Test Time. On a Titan GPU and on PASCAL VOC 2007 train+val dataset, the

training time of each region adaptation module is approximately 12 hours, of the activation

maps module for the semantic segmentation features is approximately 4 days, and of the

linear SVM is approximately 16 hours. In order to speed up the above steps, the activation

maps (conv5 3 features and the fc7 semantic segmentation aware features) were pre-cashed

on a SSD. Finally, the per image runtime is around 30 seconds.

2.7 Experimental Evaluation

We evaluate our detection system on PASCAL VOC 2007 [33] and on PASCAL VOC2012 [32].

During the presentation of the results, we will use as baseline either the Original candidate

box region alone (Figure 2-3a) and/or the R-CNN framework with VGG-Net [144]. We note

that, when the Original candidate box region alone is used then the resulted model is a real-

ization of the SPP-Net [55] object detection framework with the 16-layers VGG-Net [144].

Except if otherwise stated, for all the PASCAL VOC 2007 results, we trained our models on

the train+val set and tested them on the test set of the same year.

2.7.1 Results on PASCAL VOC 2007

First, we asses the significance of each of the region adaptation modules alone on the object

detection task. Results are reported in Table 2.1. As we expected, the best performing com-

ponent is the Original candidate box. What is surprising is the high detection performance

of individual regions like the Border Region in Figure 2-3i 54.8% or the Contextual Region

in Figure 2-3j 47.2%. Despite the fact that the area visible by them includes limited or not

at all portion of the object, they outperform previous detection systems that were based on

hand crafted features. Also interesting, is the high detection performance of the semantic
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Adaptation Modules areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
Original Box fig. 2-3a 0.729 0.715 0.593 0.478 0.405 0.713 0.725 0.741 0.418 0.694 0.591 0.713 0.662 0.725 0.560 0.312 0.601 0.565 0.669 0.731 0.617
Left Half Box fig. 2-3b 0.635 0.659 0.455 0.364 0.322 0.621 0.640 0.589 0.314 0.620 0.463 0.573 0.545 0.641 0.477 0.300 0.532 0.442 0.546 0.621 0.518
Right Half Box fig. 2-3c 0.626 0.605 0.470 0.331 0.314 0.607 0.616 0.641 0.278 0.487 0.513 0.548 0.564 0.585 0.459 0.262 0.469 0.465 0.573 0.620 0.502
Up Half Box fig. 2-3d 0.591 0.651 0.470 0.266 0.361 0.629 0.656 0.641 0.305 0.604 0.511 0.604 0.643 0.588 0.466 0.220 0.545 0.528 0.590 0.570 0.522
Bottom Half Box fig. 2-3e 0.607 0.631 0.406 0.397 0.233 0.594 0.626 0.559 0.285 0.417 0.404 0.520 0.490 0.649 0.387 0.233 0.457 0.344 0.566 0.617 0.471
Central Region fig. 2-3f 0.552 0.622 0.413 0.244 0.283 0.502 0.594 0.603 0.282 0.523 0.424 0.516 0.495 0.584 0.386 0.232 0.527 0.358 0.533 0.587 0.463
Central Region fig. 2-3g 0.674 0.705 0.547 0.367 0.337 0.678 0.698 0.687 0.381 0.630 0.538 0.659 0.667 0.679 0.507 0.309 0.557 0.530 0.611 0.694 0.573
Border Region fig. 2-3h 0.694 0.696 0.552 0.470 0.389 0.687 0.706 0.703 0.398 0.631 0.515 0.660 0.643 0.686 0.539 0.307 0.582 0.537 0.618 0.717 0.586
Border Region fig. 2-3i 0.651 0.649 0.504 0.407 0.333 0.670 0.704 0.624 0.323 0.625 0.533 0.594 0.656 0.627 0.517 0.223 0.533 0.515 0.604 0.663 0.548
Contextual Region fig. 2-3j 0.624 0.568 0.425 0.380 0.255 0.609 0.650 0.545 0.222 0.509 0.522 0.427 0.563 0.541 0.431 0.163 0.482 0.392 0.597 0.532 0.472
Semantic-aware region. 0.652 0.684 0.549 0.407 0.225 0.658 0.676 0.738 0.316 0.596 0.635 0.705 0.670 0.689 0.545 0.230 0.522 0.598 0.680 0.548 0.566

Table 2.1: Detection performance of individual regions on VOC 2007 test set. They were trained on
VOC 2007 train+val set.

Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN with VGG-Net 0.716 0.735 0.581 0.422 0.394 0.707 0.760 0.745 0.387 0.710 0.569 0.745 0.679 0.696 0.593 0.357 0.621 0.640 0.665 0.712 0.622
R-CNN with VGG-Net & bbox reg. 0.734 0.770 0.634 0.454 0.446 0.751 0.781 0.798 0.405 0.737 0.622 0.794 0.781 0.731 0.642 0.356 0.668 0.672 0.704 0.711 0.660
Best approach of [172] 0.725 0.788 0.67 0.452 0.510 0.738 0.787 0.783 0.467 0.738 0.615 0.771 0.764 0.739 0.665 0.392 0.697 0.594 0.668 0.729 0.665
Best approach of [172] & bbox reg. 0.741 0.832 0.670 0.508 0.516 0.762 0.814 0.772 0.481 0.789 0.656 0.773 0.784 0.751 0.701 0.414 0.696 0.608 0.702 0.737 0.685
Original Box fig. 2-3a 0.729 0.715 0.593 0.478 0.405 0.713 0.725 0.741 0.418 0.694 0.591 0.713 0.662 0.725 0.560 0.312 0.601 0.565 0.669 0.731 0.617
MR-CNN 0.749 0.757 0.645 0.549 0.447 0.741 0.755 0.760 0.481 0.724 0.674 0.765 0.724 0.749 0.617 0.348 0.617 0.640 0.735 0.760 0.662
MR-CNN & S-CNN 0.768 0.757 0.676 0.551 0.456 0.776 0.765 0.784 0.467 0.747 0.688 0.793 0.742 0.770 0.625 0.374 0.643 0.638 0.740 0.747 0.675
MR-CNN & S-CNN & Loc. 0.787 0.818 0.767 0.666 0.618 0.817 0.853 0.827 0.570 0.819 0.732 0.846 0.860 0.805 0.749 0.449 0.717 0.697 0.787 0.799 0.749

Table 2.2: Detection performance of our modules on VOC 2007 test set. Each model was trained on
VOC 2007 train+val set.

Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN with VGG-Net from [172] 0.402 0.433 0.234 0.144 0.133 0.482 0.445 0.364 0.171 0.340 0.279 0.363 0.268 0.282 0.212 0.103 0.337 0.366 0.316 0.489 0.308
Best approach of [172] 0.463 0.581 0.311 0.216 0.258 0.571 0.582 0.435 0.230 0.464 0.290 0.407 0.406 0.463 0.334 0.106 0.413 0.409 0.458 0.563 0.398
Best approach of [172] & bbox reg. 0.471 0.618 0.352 0.181 0.297 0.660 0.647 0.480 0.253 0.504 0.349 0.437 0.508 0.494 0.368 0.137 0.447 0.436 0.498 0.605 0.437
Original Candidate Box 0.449 0.426 0.237 0.175 0.157 0.441 0.444 0.377 0.182 0.295 0.303 0.312 0.249 0.332 0.187 0.099 0.302 0.286 0.337 0.499 0.305
MR-CNN 0.495 0.505 0.292 0.235 0.179 0.513 0.504 0.481 0.206 0.381 0.375 0.387 0.296 0.403 0.239 0.151 0.341 0.389 0.422 0.521 0.366
MR-CNN & S-CNN 0.507 0.523 0.316 0.266 0.177 0.547 0.513 0.492 0.210 0.450 0.361 0.433 0.309 0.408 0.246 0.151 0.359 0.427 0.438 0.534 0.383
MR-CNN & S-CNN & Loc. 0.549 0.613 0.430 0.315 0.383 0.646 0.650 0.512 0.253 0.544 0.505 0.521 0.591 0.540 0.393 0.159 0.485 0.468 0.553 0.573 0.484

Table 2.3: Detection performance of our modules on VOC 2007 test set. In this table, the IoU
overlap threshold for positive detections is 0.7. Each model was trained on VOC 2007 train+val set.

segmentation aware region, 56.6%.

In Table 2.2, we report the detection performance of our proposed modules. The Multi-

Region CNN model without the semantic segmentation aware CNN features (MR-CNN),

achieves 66.2% mAP, which is 4.2 points higher than R-CNN with VGG-Net (62.0%) and 4.5

points higher than the Original candidate box region alone (61.7%). Moreover, its detection

performance slightly exceeds that of R-CNN with VGG-Net and bounding box regression

(66.0%). Extending the Multi-Region CNN model with the semantic segmentation aware

CNN features (MR-CNN & S-CNN), boosts the performance of our recognition model

another 1.3 points and reaches the total of 67.5% mAP. Comparing to the recently published

method of Yuting et al. [172], our MR-CNN & S-CNN model scores 1 point higher than

their best performing method that includes generation of extra box proposals via Bayesian

optimization and structured loss during the fine-tuning of the VGG-Net. Significant is also

the improvement that we get when we couple our recognition model with the CNN model
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Figure 2-7: Top ranked false positive types. Top row: our baseline which is the original candidate
box only model. Bottom row: our overall system. We present only the graphs for the classes
boat, bottle, chair, and pottedplant (which are some of the most difficult classes of PASCAL VOC
challenge) for space efficiency reasons.

Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Original candidate box-Baseline 0.7543 0.7325 0.6634 0.5816 0.5775 0.7109 0.7390 0.7277 0.5718 0.7112 0.6007 0.7000 0.7039 0.7194 0.6607 0.5339 0.6855 0.6461 0.6903 0.7359
MR-CNN 0.7938 0.7864 0.7180 0.6424 0.6222 0.7609 0.7918 0.7758 0.6186 0.7483 0.6802 0.7448 0.7562 0.7569 0.7166 0.5753 0.7268 0.7148 0.7391 0.7556

Table 2.4: Correlation between the IoU overlap of selective search box proposals [153] (with the
closest ground truth bounding box) and the scores assigned to them.

Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Original candidate box-Baseline 0.9327 0.9324 0.9089 0.8594 0.8570 0.9389 0.9455 0.9250 0.8603 0.9237 0.8806 0.9209 0.9263 0.9317 0.9151 0.8415 0.8932 0.9060 0.9241 0.9125
MR-CNN 0.9462 0.9479 0.9282 0.8843 0.8740 0.9498 0.9593 0.9355 0.8790 0.9338 0.9127 0.9358 0.9393 0.9440 0.9341 0.8607 0.9120 0.9314 0.9413 0.9210

Table 2.5: The Area-Under-Curve (AUC) measure for the well-localized box proposals against the
mis-localized box proposals.

for bounding box regression under the iterative localization scheme proposed (MR-CNN &

S-CNN & Loc.). Specifically, the detection performance is raised from 67.5% to 74.9%.

In Table 2.3, we report the detection performance of our system when the overlap

threshold for considering a detection positive is set to 0.7. This metric was proposed

from [172] in order to reveal the localization capability of their method. From the table

we observe that each of our modules exhibits very good localization capability, which was

our goal when designing them, and our overall system exceeds in that metric the approach

of [172].
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Figure 2-8: Fraction of top N detections (N=num of objs in category) that are correct (Cor; in
white color), or false positives due to poor localization (Loc; in blue color), confusion with similar
objects (Sim; in red color), confusion with other VOC objects (Oth; in green color), or confusion
with background or unlabeled objects (BG; in purple color). Top row: our baseline which is the
original candidate box only model. Middle row: Multi-Region CNN model without the semantic
segmentation aware CNN features. Bottom row: our overall system. We present only the pie charts
for the classes boat, bottle, chair, and pottedplant (which are some of the most difficult classes of
PASCAL VOC challenge) for space efficiency reasons.

2.7.2 Detection error analysis

We use the tool of Hoiem et al. [61] to analyze the detection errors of our system. In Figure

2-8, we plot pie charts with the percentage of detections that are false positive due to bad

localization, confusion with similar category, confusion with other category, and triggered
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on the background or an unlabeled object. We observe that, by using the Multi-Region CNN

model instead of the Original Candidate Box region alone, a considerable reduction in the

percentage of false positives due to bad localization is achieved. This validates our argument

that focusing on multiple regions of an object increases the localization sensitivity of our

model. Furthermore, when our recognition model is integrated on the localization module

developed for it, the reduction of false positives due to bad localization is huge. A similar

observation can be deducted from Figure 2-7 where we plot the top-ranked false positive

types of the baseline and of our overall proposed system.

2.7.3 Localization awareness of Multi-Region CNN model

Two extra experiments are presented here that indicate the localization awareness of our

Multi-Region CNN model without the semantic segmentation aware CNN features (MR-

CNN) against the model that uses only the original candidate box (Baseline).

Correlation between the scores and the IoU overlap of box proposals. In this experi-

ment, we estimate the correlation between the IoU overlap of box proposals [153] (with the

closest ground truth bounding box) and the score assigned to them from the two examined

models. High correlation coefficient means that better localized box proposals will tend

to be scored higher than mis-localized ones. We report the correlation coefficients of the

aforementioned quantities both for the Baseline and MR-CNN models in Table 2.4. Because

with this experiment we want to emphasize on the localization aspect of the Multi-Region

CNN model, we use proposals that overlap with the ground truth bounding boxes by at least

0.1 IoU.

Area-Under-the-Curve of well-localized proposals against mis-localized proposals.

The ROC curves are typically used to illustrate the capability of a classifier to distin-

guish between two classes. This discrimination capability can be measured by computing

the Area-Under-the-Curve (AUC) metric. The higher the AUC measure is, the more discrim-

inative is the classifier between the two classes. In our case, the set of well-localized box

proposals is the positive class and the set of miss-localized box proposals is the negative

class. As well-localized are considered the box proposals that overlap with a ground-truth
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Approach trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN [43] with VGG-Net & bbox reg. VOC12 0.792 0.723 0.629 0.437 0.451 0.677 0.667 0.830 0.393 0.662 0.517 0.822 0.732 0.765 0.642 0.337 0.667 0.561 0.683 0.610 0.630
Network In Network [90] VOC12 0.802 0.738 0.619 0.437 0.430 0.703 0.676 0.807 0.419 0.697 0.517 0.782 0.752 0.769 0.651 0.386 0.683 0.580 0.687 0.633 0.638
Best approach of [172] & bbox reg. VOC12 0.829 0.761 0.641 0.446 0.494 0.703 0.712 0.846 0.427 0.686 0.558 0.827 0.771 0.799 0.687 0.414 0.690 0.600 0.720 0.662 0.664
MR-CNN & S-CNN & Loc. (Ours) VOC07 0.829 0.789 0.708 0.528 0.555 0.737 0.738 0.843 0.480 0.702 0.571 0.845 0.769 0.819 0.755 0.426 0.685 0.599 0.728 0.717 0.691
MR-CNN & S-CNN & Loc. (Ours) VOC12 0.850 0.796 0.715 0.553 0.577 0.760 0.739 0.846 0.505 0.743 0.617 0.855 0.799 0.817 0.764 0.410 0.690 0.612 0.777 0.721 0.707

Table 2.6: Comparative results on VOC 2012 test set.

Approach trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
MR-CNN & S-CNN & Loc. (Ours) VOC07+12 0.803 0.841 0.785 0.708 0.685 0.880 0.859 0.878 0.603 0.852 0.737 0.872 0.865 0.850 0.764 0.485 0.763 0.755 0.850 0.810 0.782
MR-CNN & S-CNN & Loc. (Ours) VOC07 0.787 0.818 0.767 0.666 0.618 0.817 0.853 0.827 0.570 0.819 0.732 0.846 0.860 0.805 0.749 0.449 0.717 0.697 0.787 0.799 0.749
Faster R-CNN [127] VOC07+12 0.765 0.790 0.709 0.655 0.521 0.831 0.847 0.864 0.520 0.819 0.657 0.848 0.846 0.775 0.767 0.388 0.736 0.739 0.830 0.726 0.732
NoC [128] VOC07+12 0.763 0.814 0.744 0.617 0.608 0.847 0.782 0.829 0.530 0.792 0.692 0.832 0.832 0.785 0.680 0.450 0.716 0.767 0.822 0.757 0.733
Fast R-CNN [42] VOC07+12 0.770 0.781 0.693 0.594 0.383 0.816 0.786 0.867 0.428 0.788 0.689 0.847 0.820 0.766 0.699 0.318 0.701 0.748 0.804 0.704 0.700

Table 2.7: Comparative results on VOC 2007 test set for models trained with extra data.

Approach trained on areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
MR-CNN & S-CNN & Loc. (Ours) VOC07+12 0.855 0.829 0.766 0.578 0.627 0.794 0.772 0.866 0.550 0.791 0.622 0.870 0.834 0.847 0.789 0.453 0.734 0.658 0.803 0.740 0.739
MR-CNN & S-CNN & Loc. (Ours) VOC12 0.850 0.796 0.715 0.553 0.577 0.760 0.739 0.846 0.505 0.743 0.617 0.855 0.799 0.817 0.764 0.410 0.690 0.612 0.777 0.721 0.707
Faster R-CNN [127] VOC07+12 0.849 0.798 0.743 0.539 0.498 0.775 0.759 0.885 0.456 0.771 0.553 0.869 0.817 0.809 0.796 0.401 0.726 0.609 0.812 0.615 0.704
Fast R-CNN & YOLO [126] VOC07+12 0.830 0.785 0.737 0.558 0.431 0.783 0.730 0.892 0.491 0.743 0.566 0.872 0.805 0.805 0.747 0.421 0.708 0.683 0.815 0.670 0.704
Deep Ensemble COCO [48] VOC07+12, COCO [91] 0.840 0.794 0.716 0.519 0.511 0.741 0.721 0.886 0.483 0.734 0.578 0.861 0.800 0.807 0.704 0.466 0.696 0.688 0.759 0.714 0.701
NoC [128] VOC07+12 0.828 0.790 0.716 0.523 0.537 0.741 0.690 0.849 0.469 0.743 0.531 0.850 0.813 0.795 0.722 0.389 0.724 0.595 0.767 0.681 0.688
Fast R-CNN [42] VOC07+12 0.823 0.784 0.708 0.523 0.387 0.778 0.716 0.893 0.442 0.730 0.550 0.875 0.805 0.808 0.720 0.351 0.683 0.657 0.804 0.642 0.684

Table 2.8: Comparative results on VOC 2012 test set for models trained with extra data.

boxes in the range [0.5, 1.0] and as mis-localized are considered the box proposals that

overlap with a ground truth bounding box in the range [0.1, 0.5). In Table 2.5, we report the

AUC measure for each class separately and both for the MR-CNN and the Baseline models.

2.7.4 Results on PASCAL VOC2012

In Table 2.6, we compare our detection system against other published work on the test set

of PASCAL VOC 2012 [32]. Our overall system involves the Multi-Region CNN model

enriched with the semantic segmentation aware CNN features and coupled with the CNN

based bounding box regression under the iterative localization scheme. We tested two

instances of our system. Both of them have exactly the same components but they have

being trained on different datasets. For the first one, the fine-tuning of the networks as well

as the training of the detection SVMs was performed on VOC 2007 train+val dataset that

includes 5011 annotated images. For the second one, the fine-tuning of the networks was

performed on VOC 2012 train dataset that includes 5717 annotated images and the training

of the detection SVMs was performed on VOC 2012 train+val dataset that includes 11540

annotated images. As we observe from Table 2.6, we achieve excellent mAP (69.1% and

70.7% correspondingly) in both cases setting the new state-of-the-art on this test set and for

those training sets.
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2.7.5 Training with extra data and comparison with contemporaneous

work

Approaches contemporary to ours [128, 42, 127, 126], train their models with extra data in

order to improve the accuracy of their systems. We follow the same practice and we report

results on Tables 2.7 and 2.8. Specifically, we trained our models on VOC 2007 and 2012

train+val datasets using both selective search [153] and EdgeBox [177] proposals. During

test time we only use EdgeBox proposals that are faster to be computed. From the tables, it

is apparent that our method outperforms the other approaches even when trained with less

data. Finally, at the time of completing this work, our entries were ranked ranked 1st and

2nd on the leader board of PASCAL VOC 2012 object detection comp4 benchmark (see

Table 2.8) and the difference of our top performing entry from the 3rd was 3.5 points.

2.8 Qualitative Results

In Figures 2-12, 2-13, and 2-14 we present some object detection examples obtained by

our approach. We use blue bounding boxes to mark the true positive detections and red

bounding boxes to mark the false positive detections. The ground truth bounding boxes are

marked with green color.

Failure cases. Accurately detecting multiple adjacent object instances remains in many

cases a difficult problem even for our approach. In Figure 2-9 we present a few difficult

examples of this type. In Figure 2-10 we show some other failure cases.

Missing annotations. There were also cases of object instances that were correctly

detected by our approach but which were not in the ground truth annotation of PASCAL

VOC 2007. Figure 2-11 presents a few such examples of non-annotated object instances.

2.9 Conclusions

In this chapter, we proposed a powerful CNN-based representation for object detection

that relies on two key factors: (i) diversification of the discriminative appearance factors
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(a) Aeroplane (b) Bicycle (c) Car (d) Sheep
Figure 2-9: Examples of multiple adjacent object instances where our approach fails to detect all of
them. We use blue bounding boxes to mark the true positive detections and red bounding boxes to
mark the false positive detections. The ground truth bounding boxes are drawn with green color.

Figure 2-10: Examples of false positive detections for the class boat due to the fact that the detected
bounding boxes do not include inside their borders the mast of the boat (it is worth noting that on
same cases also the annotation provided from PASCAL neglects to include them on its ground truth
bounding boxes). The false positive bounding boxes are drawn with red color and the ground truth
bounding boxes are drawn with green color.

(a) Bottle (b) Chair (c) Pottedplant (d) TV monitor
Figure 2-11 – Missing Annotations: Examples where our proposed detection system have truly
detected an object instance, but because of missed annotations it is considered false positive. For
those detections we used red bounding boxes. For any true positive detection on those images we use
blue bounding boxes and the corresponding ground truth bounding boxes are drawn with green color.

captured by it through steering its focus on different regions of the object, and (ii) the

encoding of semantic segmentation-aware features. By using it in the context of a CNN-

based localization refinement scheme, we show that it achieves excellent results that surpass

the state-of-the art by a significant margin.
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(a) Aeroplane detections.

(b) Bicycle detections.

(c) Bird detections.

(d) Boat detections.

(e) Bottle detections.

(f) Bus detections.

(g) Car detections.

Figure 2-12: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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(a) Cat detections.

(b) Chair detections.

(c) Cow detections.

(d) Dinningtable detections.

(e) Dog detections.

(f) Horse detections.

(g) Motorbike detections.

Figure 2-13: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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(a) Person detections.

(b) Pottedplant detections.

(c) Sheep detection.

(d) Sofa detections.

(e) Train detections.

(f) TV monitor detections.
Figure 2-14: We use blue bounding boxes for the true positive detections and red bounding boxes (if
any) for the false positive detections. The ground truth bounding boxes are drawn with green color.
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Chapter 3

Improving Localization Accuracy for

Object Detection

3.1 Introduction

In this chapter we focus on the localization aspect of the object detection problem. The

localization accuracy by which a detection system is able to predict the bounding boxes

of the objects of interest is typically judged based on the Intersection over Union (IoU)

between the predicted and the ground truth bounding box. Although in challenges such as

PASCAL VOC an IoU detection threshold of 0.5 is used for deciding whether an object

has been successfully detected, in real life applications a higher localization accuracy (e.g.,

IoU > 0.7) is normally required (e.g, consider the task of a robotic arm that must grasp

an object). Such a need is also reflected in the very recently introduced COCO detection

challenge [91], which uses as evaluation metric the traditional average precision (AP)

measurement but averaged over multiple IoU thresholds between 0.5 (loosely localized

object) and 1.0 (perfectly localized object) so as to reward detectors that exhibit good

localization accuracy.

Therefore, proposing detectors that exhibit highly accurate (and not loose) localization

of the ground truth objects should be one of the major challenges in object detection. The

aim of this work is to take a further step towards addressing this challenge. In practical

terms, our goal is to boost the bounding box detection AP performance across a wide range
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Figure 3-1: Illustration of the basic work-flow of our localization module. Left column: given a
candidate box B (yellow box), our model “looks” on a search region R (red box), which is obtained
by enlarging box B by a constant factor, in order to localize the bounding box of an object of interest.
Right column: to localize a bounding box the model assigns one or more probabilities on each row
and independently on each column of region R. Those probabilities can be either the probability
of an element (row or column) to be one of the four object borders (see top-right image), or the
probability for being on the inside of an objects bounding box (see bottom-right image). In either
case the predicted bounding box is drawn with blue color.

of IoU thresholds (i.e., not just for IoU threshold of 0.5 but also for values well above

that). To that end, a main technical contribution of this work is to propose a novel object

localization model that, given a loosely localized search region inside an image, aims to

return the accurate location of an object in this region (see Figure 3-1).

A crucial component of this new model is that it does not rely on the commonly used

bounding box regression paradigm, which uses a regression function to directly predict the

object bounding box coordinates. Indeed, the motivation behind our work stems from the

belief that trying to directly regress to the target bounding box coordinates, constitutes a

difficult learning task that cannot yield accurate enough bounding boxes. We argue that it is
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far more effective to attempt to localize a bounding box by first assigning a probability to

each row and independently to each column of the search region for being the left, right,

top, or bottom borders of the bounding box (see Fig. 3-1 top) or for being on the inside of

an object’s bounding box (see Fig. 3-1 bottom). In addition, this type of probabilities can

provide a measure of confidence for placing the bounding box on each location and they

can also handle instances that exhibit multi-modal distributions for the border locations.

They thus yield far more detailed and useful information than the regression models that

just predict 4 real values that correspond to estimations of the bounding box coordinates.

Furthermore, as a result of this, we argue that the task of learning to predict these probabilities

is an easier one to accomplish.

To implement the proposed localization model, we rely on a convolutional neural network

model, which we call LocNet, whose architecture is properly adapted such that the amount

of parameters needed on the top fully connected layers is significantly reduced, thus making

our LocNet model scalable with respect to the number of object categories.

Importantly, such a localization module can be easily incorporated into many of the

current state-of-the-art object detection systems [40, 42, 127], helping them to significantly

improve their localization performance. Here we use it in an iterative manner as part of a

detection pipeline that utilizes a recognition model for scoring candidate bounding boxes

provided by the aforementioned localization module, and show that such an approach

significantly boosts AP performance across a broad range of IoU thresholds.

Furthermore, inspired by the high localization accuracy of our methodology in the

detection task, we decided to adapt it to the category agnostic object proposal generation

task. The definition of this task is that for a given image a small set of bounding boxes

must be generated that will cover with high recall all the objects that appear in the image

regardless of their semantic category. In object detection, applying the recognition models

to such a reduced set of category independent location hypotheses [43] instead of an

exhaustive scan of the entire image [35, 137], has the advantage of drastically reducing the

amount of recognition model evaluations and thus allowing the use of more sophisticated

machinery for that purpose. As a result, proposal based detection systems manage to achieve

state-of-the-art results and have become the dominant paradigm in the object detection
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literature [43, 55, 42, 40, 41, 127, 164, 5, 142]. However, the usefulness of object proposals

(aka box proposals) is not limited only to the object detection task. To the contrary, they

are are utilized as a core component in many image understanding tasks such as weakly-

supervised object detection [15], exemplar 2D-3D detection [100], visual semantic role

labelling [49], caption generation [70], or visual question answering [138]. Due to that,

the box proposal generation task has received an increased amount of attention over the

last years. In our case, we exploit the two key ingredients of our overall object localization

methodology (devised for the detection task), which are iterative localization and the LocNet

bounding box localization module, in order to build an active box proposal generation

system that starts from a set of seed boxes, which are uniformly distributed on the image,

and then progressively (i.e., in iterative manner) moves its attention on the promising image

areas where it is more likely to discover well localized bounding box proposals. We call

our approach AttractioNet and a core component of it is a category agnostic version of the

LocNet module that is capable of yielding accurate and robust bounding box predictions

regardless of the object category.

To summarize, our contributions in this chapter are as follows:

• We cast the problem of localizing an object’s bounding box as that of assigning

probabilities on each row and column of a search region. Those probabilities represent

either the likelihood of each element (row or column) to belong on the inside of the

bounding box or the likelihood to be one of the four borders of the object. Both cases

are studied and compared with the bounding box regression model. To implement the

above model, we propose a properly adapted convolutional neural network architecture

that has a reduced number of parameters and results in an efficient and accurate object

localization network named LocNet.

• We extensively evaluate our approach on VOC2007 [33] and we show that it achieves

a very significant improvement over the bounding box regression with respect to the

mAP for IoU threshold of 0.7 and the COCO style of measuring the mAP. It also

offers an improvement with respect to the traditional way of measuring the mAP (i.e.,

for IoU > 0.5), achieving in this case 78.4% and 74.78% mAP on VOC2007 [33] and

VOC2012 [32] test sets, which were the state-of-the-art when finishing the work of
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this chapter. Given those results we believe that our localization approach could very

well replace the existing bounding box regression paradigm in future object detection

systems.

• Furthermore, we adapted the overall localization methodology of our detection system

to the object box proposal generation task. The resulting box proposal system, which

we call AttractioNet: (Att)end (R)efine Repeat: (Act)ive Box Proposal Generation via

(I)n-(O)ut Localization (Net)work, is evaluated both on PASCAL and on the more

challenging COCO datasets and it demonstrates significant improvement with respect

to the state-of-the-art on box proposal generation. Furthermore, we provide strong

evidence that our object location refinement module is capable of generalizing to

unseen categories by reporting results for the unseen categories of ImageNet detection

task and NYU-Depth dataset. Finally, we evaluate our box proposal generation

approach in the context of the object detection task using a VGG16-Net based detection

system and the achieved average precision performance on the COCO test-dev set

manages to significantly surpass all other VGG16-Net based detection systems while

even being on par with the ResNet-101 based detection system of He et al. [57].

The remainder of the chapter is structured as follows. We describe related work in §3.2.

Then we present our localization methodology for the object detection task with its ex-

perimental evaluation in §3.3. Its adaption to the box proposal generation task and the

corresponding experimental results are provided in §3.4. Finally, we conclude in §3.5.

3.2 Related work

Here we describe related work in the object detection and category agnostic box proposal

generation tasks.

Object detection. Most of the recent literature on object detection, treats the object

localization problem at pre-recognition level by incorporating category-agnostic object

proposal algorithms [153, 177, 120, 2, 75, 76, 4, 150, 149]. Those proposals are later

classified by a category-specific recognition model in order to create the final list of de-

tections [43]. Instead, in our work we focus on boosting the localization accuracy at
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post-recognition time, at which the improvements can be complementary to those obtained

by improving the pre-recognition localization. Till now, the work on this level has been

limited to the bounding box regression paradigm that was first introduced by Felzenszwalb

et al. [35] and ever-since it has been used with success on most of the recent detection

systems [43, 42, 127, 137, 55, 172, 176, 128, 113]. Given an initial candidate box that is

loosely localized around an object, a regression model tries to predict the coordinates of its

ground truth bounding box. Lately this model is enhanced by high capacity convolutional

neural networks to further improve its localization capability [40, 42, 137, 127]. There

are also some approaches that follow an iterative localization methodology for the object

detection task [8, 44, 160]. More notably, Caicedo et al. [8] and Yoo et al. [160] attempt

to localize an object by sequentially choosing one among a few possible actions that either

transform the bounding box or stop the searching procedure. We also follow an iterative

localization methodology in our work that is based however on a very accurate bounding

box localization module.

Category agnostic box proposal generation. Several approaches have been proposed

in the literature for this task [153, 4, 177, 76, 75, 2, 94, 14, 13, 17]. Among them our

work is most related to the CNN-based objectness scoring approaches [79, 39, 120] that

recently have demonstrated state-of-the-art results [120, 121]. In the objectness scoring

paradigm, a large set of image boxes is ranked according to how likely it is for each image

box to tightly enclose an object — regardless of its category — and then this set is post-

processed with a non-maximum-suppression step and truncated to yield the final set of

object proposals. In this context, Kuo et al. [79] with their DeepBox system demonstrated

that training a convolutional neural network to perform the task of objectness scoring can

yield superior performance over previous methods that were based on low level cues and

they provided empirical evidence that it can generalize to unseen categories. In order to

avoid evaluating the computationally expensive CNN-based objectness scoring model on

hundreds of thousands image boxes, which is necessary for achieving good localization

of all the objects in the image, they use it only to re-rank the proposals generated from a

faster but less accurate proposal generator thus being limited by its localization performance.

Instead, more recent CNN-based approaches apply their models only to ten of thousands
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image boxes, uniformly distributed in the image, and jointly with objectness prediction they

also infer the bounding box of the closest object to each input image box. Specifically, the

Region Proposal Network in Faster-RCNN [127] performs bounding box regression for that

purpose while the DeepMask method predicts the foreground mask of the object centred in

the image box and then it infers the location of the object’s bounding box by extracting the

box that tightly encloses the foreground pixels. The latter has demonstrated state-of-the-art

results and was recently extended with a top-down foreground mask refinement mechanism

that exploits the convolutional feature maps at multiple depths of a neural network [121].

Our work is also based on the paradigm of having a CNN model that, given an image

box, jointly predicts its objectness and a new bounding box that is better aligned on the

object that it contains. However, we advance the state-of-the-art on box proposal generation

by improving the aforementioned paradigm in two ways: (1) implementing the object’s

bounding box prediction step with a category agnostic LocNet model, and (2) actively

generating the set of image boxes that will be processed by the CNN model.

3.3 Object Localization Methodology

3.3.1 Overview

Algorithm 1: Object detection pipeline
Input :Image I , initial set of candidate boxes B1

Output :Final list of detections Y
for t← 1 to T do

St ← Recognition(Bt|I)
if t < T then

Bt+1 ← Localization(Bt|I)
end

end
D← ∪Tt=1{St,Bt}
Y← PostProcess(D)

Our detection pipeline includes two basic components, the recognition and the local-

ization models, integrated into an iterative scheme (see Algorithm 1). This scheme starts
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from an initial set of candidate boxes B1 (which could be, e.g, either dense sliding win-

dows [137, 116, 126, 86] or category-agnostic bounding box proposals [177, 153, 127]) and

on each iteration t it uses the two basic components in the following way:

Recognition model: Given the current set of candidate boxes Bt = {Bt
i}Nt
i=1, it assigns a

confidence score to each of them St = {sti}Nt
i=1 that represents how likely it is for those

boxes to be localized on an object of interest.

Localization model: Given the current set of candidate boxes Bt = {Bt
i}Nt
i=1, it generates a

new set of candidate boxes Bt+1 = {Bt+1
i }

Nt+1

i=1 such that those boxes will be closer

(i.e., better localized) to the objects of interest (so that they are probably scored higher

from the recognition model).

In the end, the candidate boxes that were generated on each iteration from the localiza-

tion model along with the confidence scores that were assigned to them from the recognition

model are merged together and a post-processing step of non-max-suppression [35] fol-

lowed by bounding box voting [40] (which is described in §2.5) applied to them. The

output of this post-processing step consists the detections set produced by our pipeline.

Both the recognition and the localization models are implemented as convolutional neu-

ral networks [83, 144, 78, 54]. More details about our detection pipeline are provided in

appendix A.1.

The focus of this section is to improve the localization model of this pipeline. The

abstract work-flow that we use for this localization model is that it gets as input a candidate

box B in the image, it enlarges it by a factor γ to create a search region R and then it returns

a new candidate box that ideally will tightly enclose an object of interest in this region (see

right column of Figure 3-1). The crucial question is, of course, what is the most effective

approach for constructing a model that is able to generate a good box prediction. One choice

could be, for instance, to learn a regression function that directly predicts the 4 bounding

box coordinates (see for more details section 3.3.2). However, we argue that this is not

the most effective solution. Instead, we opt for a different approach, which is detailed in

section 3.3.4.2.
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Figure 3-2: The posterior probabilities that our localization model yields given a region R. Left
Image: the in-out conditional probabilities that are assigned on each row (py) and column (px) of R.
They are drawn with the blues curves on the right and on the bottom side of the search region. Right
Image: the conditional probabilities pl, pr, pt, and pb of each column or row to be the left (l), right
(r), top (t) and bottom (b) border of an object’s bounding box. They are drawn with blue and red
curves on the bottom and on the right side of the search region.

3.3.2 Bounding box regression localization model

Here we describe in more detail the bounding box regression paradigm, which is used as a

baseline for our approach. In this case the localization model consists of four (ConvNet-

based) scalar regression functions fx(R, c), fy(R, c), fw(R, c), and fh(R, c) that given a

regions R 1 and a category c, they actually predict the coefficients of a geometric transfor-

mation that will ideally map the search regions R to a ground truth bounding box of the c

object category [43]. Specifically, if R = (Rx, Ry, Rw, Rh) are the coordinates of the search

region in form of its top-left corner (Rx, Ry) and its width and height (Rw, Rh), then the

predicted candidate box B̂ = (B̂x, B̂y, B̂w, B̂h) is given by the following equations:

B̂x = Rw · fx(R, c) +Rx (3.1)

B̂y = Rh · fy(R, c) +Ry (3.2)

B̂w = Rw · exp(fw(R, c)) (3.3)

B̂h = Rh · exp(fh(R, c)). (3.4)

1In many bounding box regression implementations the region R is identical to the input candidate box B.
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Hence, the four scalar target regression values T = {tx, ty, tw, th} for the ground truth

bounding box Bgt = (Bgt
x , B

gt
y , B

gt
w , B

gt
h ) are defined as:

tx =
Bgt
x −Rx

Rw

ty =
Bgt
y −Ry

Rh

(3.5)

tw = log(
Bgt
w

Rw

) th = log(
Bgt
h

Rh

)). (3.6)

3.3.3 LocNet: proposed localization model

Instead of the bounding box regression approach, we opt to formulate the localization

problem in a dense classification way. More specifically, given a search region R and

object category c, our object localization model considers a division of R in M equal

horizontal regions (rows) as well as a division of R in M equal vertical regions (columns),

and outputs for each of them one or more conditional probabilities. Each of these conditional

probabilities is essentially a vector of the form pR,c = {p(i|R, c)}Mi=1 (hereafter we drop the

R and c conditioning variables so as to reduce notational clutter). Two types of conditional

probabilities are considered here:

In-Out probabilities: These are vectors px = {px(i)}Mi=1 and py = {py(i)}Mi=1 that

represent respectively the conditional probabilities of each column and row of R to be

inside the bounding box of an object of category c (see left part of Figure 3-2). A row or

column is considered to be inside a bounding box if at least part of the region corresponding

to this row or column is inside this box. For example, if Bgt is a ground truth bounding

box with top-left coordinates (Bgt
l , B

gt
t ) and bottom-right coordinates (Bgt

r , B
gt
b ),

2 then the

In-Out probabilities p = {px, py} from the localization model should ideally be equal to the

following target probabilities T = {Tx, Ty}:

∀i ∈ {1, . . . ,M}, Tx(i) =

1, if Bgt
l ≤ i ≤ Bgt

r

0, otherwise
,

2We actually assume that the ground truth bounding box is projected on the output domain of our model
where the coordinates take integer values in the range {1, . . . ,M}. This is a necessary step for the definition
of the target probabilities

96



∀i ∈ {1, . . . ,M}, Ty(i) =

1, if Bgt
t ≤ i ≤ Bgt

b

0, otherwise
.

Border probabilities: These are vectors pl={pl(i)}Mi=1, pr = {pr(i)}Mi=1, pt = {pt(i)}Mi=1

and pb = {pb(i)}Mi=1 that represent respectively the conditional probability of each column

or row to be the left (l), right (r), top (t) and bottom (b) border of the bounding box of

an object of category c (see right part of Figure 3-2). In this case, the target probabilities

T = {Tl, Tr, Tt, Tb} that should ideally be predicted by the localization model for a ground

truth bounding box Bgt = (Bgt
l , B

gt
t , B

gt
r , B

gt
b ) are given by

∀i ∈ {1, . . . ,M}, Ts(i) =

1, if i = Bgt
s

0, otherwise
,

where s ∈ {l, r, t, b}. Note that we assume that the left and right border probabilities are

independent and similarly for the top and bottom cases.

3.3.3.1 Bounding box inference

Given the above output conditional probabilities, we model the inference of the bounding

box location B̂ = (B̂l, B̂t, B̂r, B̂b) using one of the following probabilistic models:

In-Out ML: Maximizes the likelihood of the in-out elements of B

Lin-out(B̂) =
∏

i∈{B̂l,...,B̂r}

px(i)
∏

i∈{B̂t,...,B̂b}

py(i)

∏
i/∈{B̂l,...,B̂r}

p̃x(i)
∏

i/∈{B̂t,...,B̂b}

p̃y(i), (3.7)

where p̃x(i) = 1 − px(i) and p̃y(i) = 1 − py(i). The first two terms in the right hand of

the equation represent the likelihood of the rows and columns of box B̂ (in-elements) to be

inside a ground truth bounding box and the last two terms the likelihood of the rows and

columns that are not part of B̂ (out-elements) to be outside a ground truth bounding box.
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Borders ML: Maximizes the likelihood of the borders of box B̂:

Lborders(B̂) = pl(B̂l) · pt(B̂t) · pr(B̂r) · pb(B̂b). (3.8)

Combined ML: It uses both types of probability distributions by maximizing the likeli-

hood for both the borders and the in-out elements of B̂:

Lcombined(B̂) = Lborders(B̂) · Lin-out(B̂). (3.9)

3.3.3.2 Discussion

The reason we consider that the proposed formulation of the problem of localizing an

object’s bounding box is superior is because the In-Out or Border probabilities provide

much more detailed and useful information regarding the location of a bounding box

compared to the typical bounding box regression paradigm. In particular, in the latter case

the model simply directly predicts real values that corresponds to estimated bounding box

coordinates but it does not provide, e.g, any confidence measure for these predictions. On

the contrary, our model provides a conditional probability for placing the four borders or

the inside of an object’s bounding box on each column and row of a search region R. As a

result, it is perfectly capable of handling also instances that exhibit multi-modal conditional

distributions (both during training and testing). During training, we argue that this makes

the per row and per column probabilities much easier to be learned from a convolutional

neural network that implements the model, than the bounding box regression task (e.g, see

Figure 3-3), thus helping the model to converge to a better training solution. Indeed, as we

demonstrate, e.g, in Figure 3-4, our CNN-based In-Out ML localization model converges

faster and on higher localization accuracy (measured with the mAR [64] metric) than a

CNN-based bounding box regression model [42, 40]. This behaviour was consistently

observed in all of our proposed localization models. Furthermore, during testing, these

conditional distributions as we saw can be exploited in order to form probabilistic models

for the inference of the bounding box coordinates.

Alternatively to our approach, we could predict the probability of each pixel to belong
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Figure 3-3: We show the evolution during training. In the left image the green squares indicate
the two highest modes of the left border probabilities predicted by a network trained only for a
few iterations (5k). Despite the fact that the highest one is erroneous, the network also maintains
information for the correct mode. As training progresses (50k), this helps the network to correct its
mistake and recover a correct left border(right image).

on the foreground of an object, as Pinheiro et al. [120] does. However, in order to learn

such a type of model, pixel-wise instance segmentation masks are required during training,

which in general is a rather tedious task to collect. In contrary, for our model to learn those

per row and per column probabilities, only bounding box annotations are required. Even

more, this independence is exploited in the design of the convolutional neural network that

implements our model in order to keep the number of parameters of the prediction layers

small (see § 3.3.3.3). This is significant for the scalability of our model with respect to the

number of object categories since we favour category-specific object localization that has

been shown to exhibit better localization accuracy [144].

3.3.3.3 Network architecture

Our localization model is implemented through the convolutional neural network that is

visualized in Figure 3-5 and which is called LocNet. The processing starts by forwarding the

entire image I (of size wI × hI), through a sequence of convolutional layers (conv. layers
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Figure 3-4: mAR as a function of the training iteration for the bounding box regression model
(Bbox reg.) and the In-Out ML localization model. In order to create this plot, we created a small
validation set of candidate boxes with a ground truth bounding box assigned on each of them, and
during training given those candidates as input to the models we measure the mAR of the predicted
boxes. We observe that the In-Out ML localization model converges faster and to a higher mAR than
the bounding box regression localization model.
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Figure 3-5: Visualization of the LocNet network architecture. In the input image, with yellow is
drawn the candidate box B and with red the search region R. In its output, the LocNet network
yields probabilities for each of the C object categories. The parameter M that controls the output
resolution is set to the value 28 in our experiments. The convolutional layers of the VGG16-Net [144]
that are being used in order to extract the image activations AI are those from conv1 1 till conv5 3.
The new layers that are not derived from the VGG16-Net [144], are randomly initialized with a
Gaussian distribution with standard deviation of 0.001 for the hidden layers and 0.01 for the final
fully connected layers.

of VGG16 [144]) that outputs the AI activation maps (of size wI

16
× hI

16
× 512). Then, the

region R is projected on AI and the activations that lay inside it are cropped and pooled

with a spatially adaptive max-pooling layer [55]. The resulting fixed size activation maps
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(14× 14× 512) are forwarded through two convolutional layers (of kernel size 3× 3× 512),

each followed by ReLU non-linearities, that yield the localization-aware activation maps

AR of region R (with dimensions size 14× 14× 512).

At this point, given the activations AR the network yields the probabilities that were

described in section §3.3.3. Specifically, the network is split into two branches, the X and

Y, with each being dedicated for the predictions that correspond to the dimension (x or y

respectively) that is assigned to it. Both start with a max-pool layer that aggregates the AR

activation maps across the dimension perpendicular to the one dedicated to them, i.e.,

AxR(i, f) = max
j
AR(i, j, f), (3.10)

AyR(j, f) = max
i
AR(i, j, f), (3.11)

where i,j,and f are the indices that span over the width, height, and feature channels of

AR respectively. The resulted activations AxR and AyR (both of size 14 × 512) efficiently

encode the object location only across the dimension that their branch handles. This

aggregation process could also be described as marginalizing-out localization cues irrelevant

for the dimension of interest. Finally, each of those aggregated features is fed into the final

fully connected layer that is followed by sigmoid units in order to output the conditional

probabilities of its assigned dimension. Specifically, the X branch outputs the px and/or

the (pl, pr) probability vectors whereas the Y branch outputs the py and/or the (pt, pb)

probability vectors. Despite the fact that the last fully connected layers output category-

specific predictions, their number of parameters remains relatively small due to the facts that:

1) they are applied on features of which the dimensionality has been previously drastically

reduced due to the max-pooling layers of equations 3.10 and 3.11, and 2) that each branch

yields predictions only for a single dimension.

3.3.3.4 Training

During training, the localization network learns to map a search regions R (created by

enlarging a candidate box B) in an image I to the target probabilities T that are conditioned

on the object category c. Given a set of NL training samples {(Bk, Tk, ck, Ik)}N
L

k=1 the loss
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function that is minimized is

1

NL

NL∑
k=1

Lloc(θ|Bk, Tk, ck, Ik), (3.12)

where θ are the network parameters that are learned and Lloc(θ|B, T, c, I) is the loss for one

training sample.

Both for the In-Out and the Borders probabilities we use the sum of binary logistic

regression losses per row and column. Specifically, the per sample loss of the In-Out case is:

∑
a∈{x,y}

M∑
i=1

Ta(i) log(pa(i)) + T̃a(i) log(p̃a(i)) , (3.13)

and for the Borders case is:

∑
s∈{l,r,u,b}

M∑
i=1

λ+Ts(i) log(ps(i)) + λ−T̃s(i) log(p̃s(i)) , (3.14)

where T̃ = 1− T . In objective function (3.14), λ+ and λ− represent the weightings of the

losses for misclassifying a border and a non-border element respectively. These are set as

λ− = 0.5 · M

M − 1
, λ+ = (M − 1) · λ− ,

so as to balance the contribution on the loss of those two cases (note that T̃s(i) will be

non-zero M − 1 times more than Ts(i)). We observed that this leads to a model that yields

more “confident” probabilities for the borders elements. For the Borders case we also tried

to use as loss function the Mean Square Error, while modifying the target probabilities to be

Gaussian distributions around the border elements, but we did not observe an improvement

in performance.

3.3.4 Experimental results

We empirically evaluate our localization models on PASCAL VOC detection challenge [31].

Specifically, we train all the recognition and localization models on VOC2007+2012 trainval
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Figure 3-6: Recall of ground truth bounding boxes as a function of the IoU threshold on PASCAL
VOC2007 test set. Note that, because we perform class-specific localization the recall that those plots
report is obtained after averaging the per class recalls. Top-Left: Recalls for the Reduced MR-CNN
model after one iteration of the detection pipeline. Bottom-Left: Recalls for the Reduced MR-CNN
model after four iterations of the detection pipeline.Top-Right: Recalls for the Fast-RCNN model
after one iteration of the detection pipeline. Bottom-Right: Recalls for the Fast-RCNN model after
four iterations of the detection pipeline.

Figure 3-7: mAP as a function of the IoU threshold on PASCAL VOC2007 test set. Left plot:
includes the configurations with the Reduced-MR-CNN recognition model. Right plot: includes the
configurations with the Fast-RCNN recognition model.
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sets and we test them on the VOC2007 test set. As baseline we use a ConvNet-based

bounding box regression model [40]. The remaining components of the detection pipeline

include:

Initial set of candidate boxes. We examine three alternatives for generating the initial set of

candidate boxes: the Edge Box algorithm [177] (EB), the Selective Search algorithm (SS),

and a sliding windows scheme. In Table 3.1 we provide the recall statistics of the those

bounding box proposal methods.

Recognition model. For the recognition part of the detection system we use either the

Fast-RCNN [42] or the MR-CNN recognition models that was presented in the previous

section. During implementing the latter one, we performed several simplifications on its

architecture and thus we call the resulting model Reduced-MR-CNN (those modifications

are detailed in the subsection that follows).

In the remaining of this subsection, we fist provide implementation details of the local-

ization and recognition models (§3.3.4.1), then we examine the performance of our approach

with respect to localization (§3.3.4.2) and detection (§3.3.4.3) accuracy. We also report the

detection accuracy of our approach for the sliding windows case (§3.3.4.4) and finally, we

provide preliminary results of our approach on COCO detection challenge in §3.3.4.5 and

qualitative results in §3.3.4.6.

3.3.4.1 Implementation details

For the implementation code of this section we make use of the Caffe framework [67].

During training of all the models (both the localization and the recognition ones) we fine-

tune only from the conv4 1 convolutional layer and above. As training samples we use

both selective search [153] and edge box [177] proposals. Finally, both during training

and testing we use a single image scale that is obtained after resizing the image such as its

smallest dimension to be 600 pixels.

Proposed localization models (In-Out ML, Borders ML, Combined ML): In order to

create the training samples we take proposals of which the IoU with a ground truth bounding

box is at least 0.4, we enlarge them by a factor of 1.8 in order to obtain the search regions R,

and we assign to them the ground truth bounding box with which the original box proposal
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has the highest IoU in order to obtain the target bounding boxes and the corresponding target

vectors T . This process is performed independently for each category. The parameter M

that controls the output resolution of our networks, is set to the value 28. For optimization

we use stochastic gradient descend (SGD) with mini-batch size of 128 training candidate

boxes. To speed up the training procedure we follow the paradigm of Fast-RCNN [42] and

those 128 training candidate boxes are coming from only two images on each mini-batch.

The weight decay is set to 0.00005 and the learning rate is set to 0.001 and is reduced by a

factor of 10 after each 60k iterations. The overall training procedure is continued for up to

150k iterations and it takes around 1.5 days in one NVIDIA Titan Black GPU.

Bounding box regression localization model: In our comparative experiments, for

the CNN architecture that implements the bounding box regression model we adopt the

one described in the previous chapter (i.e., in 2.6). As a loss function we use the sum of

sEuclidean distances between the target values and the predicted values of each training

sample. The final fully connected layer is initialized from a Gaussian distribution with

standard deviation of 0.01. The rest of training details (i.e., SGD, mini-batch, definition of

training samples) are similar to those used for the proposed localization models. As proposed

in Fast-RCNN [42], when training the bounding box regression model we simultaneously

train the Fast-RCNN recognition model with the two models sharing their convolutional

layers. In our experiments, this way of training improves the accuracy of both the Fast-

RCNN recognition model and the bounding box regression model. On the contrary, (for

simplicity) the newly proposed localization models (i.e., Borders ML, In-Out ML, and

Combined ML) are not trained simultaneously with the recognition model. We expect that

the joint training of these models with the recognition model can help to further improve

their overall performance.

Reduced MR-CNN recognition model: We based the implementation of this model

on the MR-CNN detection system that was described in the previous chapter. In this

implementation however, for efficiency reasons and in order to speed up the experiments,

we applied the following reductions: we include only six out of the ten regions proposed,

by skipping the half regions; we do not include the semantic segmentation-aware CNN

features; and we reduce the total amount of parameters on the region adaptation modules. In
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order to achieve the reduction of parameters on the hidden fully connected layers fc6 and

fc7 of the region adaptation modules, each of them is decomposed in two fully connected

layers without any non-linearities between them. Specifically, the fc6 layer with weight

matrix W6 : 25088×4096 is decomposed in the layers fc6 1 and fc6 2 with weight matrices

W6.1 : 25088× 1024 and W6.2 : 1024× 4096 correspondingly. The fc7 layer with weight

matrix W7 : 4096× 4096 is decomposed in the layers fc7 1 and fc7 2 with weight matrices

W7.1 : 4096× 256 and W7.2 : 256× 4096 correspondingly. To train the Reduced MR-CNN

network, we first train only the original candidate box region of it without reducing the

parameters of the fc6 and fc7 layers. Then, we apply the truncated SVD decomposition

on the aforementioned layers (for more details see section §3.1 of [42]) that results in

the layers fc6 1, fc6 2, fc7 1, and fc7 2. We copy the parameters of the resulting fully

connected layers to the corresponding layers of the remaining region adaptation modules of

the model and we continue training.

Fast-RCNN recognition model: We re-implemented Fast-RCNN based on the publicly

available code provided from Fast-RCNN [42] and Faster-RCNN [127]. Here we will de-

scribe only the differences of our implementation with the original Fast-RCNN system [42].

In our implementation, we have different branches for the recognition of a candidate box

and for its bounding box regression after the last convlutional layer (conv5 3 for the VGG16-

Net [144]) that do not share any weights. In contrary, the original Fast-RCNN model splits

to two branches after the last hidden layer. We applied this modification because, in our

case, the candidate box that is fed to the regression branch is enlarged by a factor α = 1.3

while the candidate box that is fed to recognition branch is not. Also, after the fine-tuning,

we remove the softmax layer of the recognition branch and we train linear SVMs on top of

the features that the last hidden layer of the recognition branch yields, just as R-CNN [43]

does. Finally, we do not reduce the parameters of the fully connected layers by applying the

truncated SVD decomposition on them as in the original paper. In our experiments those

changes improved the detection performance of the model.

Both the Fast-RCNN and Reduced-MR-CNN models use as top classification layers

class-specific linear SVMs [43].
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Initial set of
candidate boxes Number Recall

IoU≥0.5 IoU≥0.7 mAR
Sliding Windows around 10k 0.920 0.389 0.350
Edge Box around 2k 0.928 0.755 0.517
Sel. Search around 2k 0.936 0.687 0.528

Table 3.1: Recall statistics on VOC2007 test set of the box proposals methods that we use in our
work in order to generate the initial set of candidate boxes.

3.3.4.2 Localization performance

We first evaluate merely the localization performance of our models, thus ignoring in this

case the recognition aspect of the detection problem. For that purpose we report the recall

that the examined models achieve. Specifically, in Figure 3-6 we provide the recall as a

function of the IoU threshold for the candidate boxes generated on the first iteration and

the last iteration of our detection pipeline. Also, in the legends of these figures we report

the average recall (AR) [64] that each model achieves. Note that, given the set of initial

candidate boxes and the recognition model, the input to the iterative localization mechanism

is exactly the same and thus any difference on the recall is solely due to the localization

capabilities of the models. We observe that for IoU thresholds above 0.65, the proposed

models achieve higher recall than bounding box regression and that this improvement is

actually increased with more iterations of the localization module. Also, the AR of our

proposed models is on average 6 points higher than bounding box regression.

3.3.4.3 Detection performance

Here we evaluate the detection performance of the examined localization models when

plugged into the detection pipeline that was described in §3.3.1. In Table 3.2 we report

the mAP on VOC2007 test set for IoU thresholds of 0.5 and 0.7 as well as the COCO

style of mAP that averages the traditional mAP over various IoU thresholds between 0.5

and 1.0. The results that are reported are obtained after running the detection pipeline for

T = 4 iterations. We observe that the proposed InOut ML, Borders ML, and Combined ML

localization models offer a significant boost on the mAP for IoU ≥ 0.7 and the COCO style

mAP, relative to the bounding box regression model (Bbox reg.) under all the tested cases.

The improvement on both of them is on average 7 points. Our models also improve for the
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Detection Pipeline mAP
Localization Recognition Initial Boxes IoU ≥ 0.5 IoU ≥ 0.7 COCO style
– Reduced-MR-CNN 2k Edge Box 0.747 0.434 0.362
InOut ML Reduced-MR-CNN 2k Edge Box 0.783 0.654 0.522
Borders ML Reduced-MR-CNN 2k Edge Box 0.780 0.644 0.525
Combined ML Reduced-MR-CNN 2k Edge Box 0.784 0.650 0.530
Bbox reg. Reduced-MR-CNN 2k Edge Box 0.777 0.570 0.452
– Reduced-MR-CNN 2k Sel. Search 0.719 0.456 0.368
InOut ML Reduced-MR-CNN 2k Sel. Search 0.782 0.654 0.529
Borders ML Reduced-MR-CNN 2k Sel. Search 0.777 0.648 0.530
Combined ML Reduced-MR-CNN 2k Sel. Search 0.781 0.653 0.535
Bbox reg. Reduced-MR-CNN 2k Sel. Search 0.774 0.584 0.460
– Fast-RCNN 2k Edge Box 0.729 0.427 0.356
InOut ML Fast-RCNN 2k Edge Box 0.779 0.651 0.522
Borders ML Fast-RCNN 2k Edge Box 0.774 0.641 0.522
Combined ML Fast-RCNN 2k Edge Box 0.780 0.648 0.530
Bbox reg. Fast-RCNN 2k Edge Box 0.773 0.570 0.453
– Fast-RCNN 2k Sel. Search 0.710 0.446 0.362
InOut ML Fast-RCNN 2k Sel. Search 0.777 0.645 0.526
Borders ML Fast-RCNN 2k Sel. Search 0.772 0.640 0.526
Combined ML Fast-RCNN 2k Sel. Search 0.775 0.645 0.532
Bbox reg. Fast-RCNN 2k Sel. Search 0.769 0.579 0.458

Table 3.2: mAP results on VOC2007 test set for IoU thresholds of 0.5 and 0.7 as well as the COCO
style mAP that averages the traditional AP for various IoU thresholds between 0.5 and 1 (specifically
the thresholds 0.5:0.05:95 are being used). The hyphen symbol (–) indicates that the localization
model was not used at all and that the pipeline ran only for T = 1 iteration. The other entries are
obtained after running the detection pipeline for T = 4 iterations.

Year Metric Approach areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
2007 IoU ≥ 0.5 Reduced-MR-CNN & Combined ML & EB 0.804 0.855 0.776 0.729 0.622 0.868 0.875 0.886 0.613 0.860 0.739 0.861 0.870 0.826 0.791 0.517 0.794 0.752 0.866 0.777 0.784
2007 IoU ≥ 0.7 Reduced-MR-CNN & In Out ML & EB 0.707 0.742 0.622 0.481 0.452 0.840 0.747 0.786 0.429 0.730 0.670 0.754 0.779 0.669 0.581 0.309 0.655 0.693 0.736 0.690 0.654
2007 COCO style Reduced-MR-CNN & Combined ML & SS 0.580 0.603 0.500 0.413 0.367 0.703 0.631 0.661 0.357 0.581 0.500 0.620 0.625 0.545 0.494 0.269 0.522 0.579 0.602 0.555 0.535
2012 IoU ≥ 0.5 Reduced-MR-CNN & In Out ML & EB 0.863 0.830 0.761 0.608 0.546 0.799 0.790 0.906 0.543 0.816 0.620 0.890 0.857 0.855 0.828 0.497 0.766 0.675 0.832 0.674 0.748
2012 IoU ≥ 0.5 Reduced-MR-CNN & Borders ML & EB 0.865 0.827 0.755 0.602 0.535 0.791 0.785 0.902 0.533 0.800 0.607 0.886 0.857 0.848 0.826 0.496 0.765 0.673 0.831 0.676 0.743
2012 IoU ≥ 0.5 Reduced-MR-CNN & Combined ML & EB 0.866 0.834 0.765 0.604 0.544 0.798 0.786 0.902 0.546 0.810 0.618 0.889 0.857 0.847 0.828 0.498 0.763 0.678 0.830 0.679 0.747

Table 3.3: Per class AP results on VOC2007 and VO2012 test sets.

mAP with IoU≥ 0.5 case but with a smaller amount (around 0.7 points). In Figure 3-7 we

plot the mAP as a function of the IoU threshold. We can observe that the improvement on

the detection performance thanks to the proposed localization models starts to clearly appear

on the 0.65 IoU threshold and then grows wider till the 0.9. In Table 3.3 we provide the per

class AP results on VOC2007 for the best approach on each metric. In the same table we

also report the AP results on VOC2012 test set but only for the IoU ≥ 0.5 case since this is
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Detection Pipeline mAP
Localization Recognition Initial Boxes IoU ≥ 0.5 IoU ≥ 0.7 COCO style
– Reduced-MR-CNN 10k Sliding Windows 0.617 0.174 0.227
InOut ML Reduced-MR-CNN 10k Sliding Windows 0.770 0.633 0.513
Borders ML Reduced-MR-CNN 10k Sliding Windows 0.764 0.626 0.513
Combined ML Reduced-MR-CNN 10k Sliding Windows 0.773 0.639 0.521
Bbox reg. Reduced-MR-CNN 10k Sliding Windows 0.761 0.550 0.436

Table 3.4: mAP results on VOC2007 test set when using 10k sliding windows as initial set of
candidate boxes. In order to generate the sliding windows we use the publicly available code that
accompanies the work of Hosang et al. [64] that includes a sliding window implementation inspired
by BING [14, 173]).

Figure 3-8: Plot of the mAP as a function of the iterations number of our detection pipeline on
VOC2007 test set. To generate this plot we used the Reduced-MR-CNN recognition model with the
In-Out ML localization model and Edge Box proposals.

the only metric that the evaluation server provides. In this dataset we achieve mAP of 74.8%

which was the state-of-the-art at the time of working this chapter (6/11/2015). Finally, in

Figure 3-8 we examine the detection performance behaviour with respect to the number of

iterations used by our pipeline. We observe that as we increase the number of iterations,

the mAP for high IoU thresholds (e.g., IoU ≥ 0.8) continues to improve while for lower

thresholds the improvements stop on the first two iterations.

109



3.3.4.4 Sliding windows as initial set of candidate boxes

In Table 3.4 we provide the detection accuracy of our pipeline when, for generating the

initial set of candidate boxes, we use a simple sliding windows scheme (of 10k windows per

image). We observe that:

• Even in this case, our pipeline achieves very high mAP results that are close to

the ones obtained with selective search or edge box proposals. We emphasize that

this is true even for the IoU≥ 0.7 or the COCO style of mAP that favour better

localized detections, despite the fact that in the case of sliding windows the initial set

of candidate boxes is considerably less accurately localized than in the edge box or in

the selective search cases (see Table 3.1).

• In the case of sliding windows, just scoring the candidate boxes with the recognition

model (hyphen (–) case) yields much worse mAP results than the selective search

or the edge box proposals case. However, when we use the full detection pipeline

that includes localization models and re-scoring of the new better localized candidate

boxes, then this gap is significantly reduced.

• The difference in the mAP results between the proposed localization models (In-Out

ML, Borders ML, and Combined ML) and the bounding box regression model (Bbox

reg.) is even greater in the case of sliding windows.

We note that we had not experimented with increasing the number of sliding windows.

Also, the tested recognition model and localization models were not re-trained with sliding

windows in the training set. As a result, we foresee that by exploring those two factors one

might be able to further boost the detection performance for the sliding windows case.

3.3.4.5 Preliminary results on COCO

To obtain some preliminary results on COCO, we applied our training procedure on COCO

train set. The only modification was to use 320k iterations (no other parameter was tuned).

Therefore, LocNet results can still be significantly improved but the main goal was to show

the relative difference in performance between the Combined ML localization model and the

box regression model. Results are shown in Table 3.5, where it is observed that the proposed

110



Detection Pipeline mAP
Localization Recognition Proposals Dataset IoU ≥ 0.5 IoU ≥ 0.75 COCO style
Combined ML Fast R-CNN Sel. Search 5K mini-val set 0.424 0.282 0.264
Bbox reg. Fast R-CNN Sel. Search 5K mini-val set 0.407 0.202 0.214
Combined ML Fast R-CNN Sel. Search test-dev set 0.429 0.279 0.263

Table 3.5 – Preliminary results on COCO. In those experiments the Fast R-CNN recognition
model uses a softmax classifier [42] instead of class-specific linear SVMs [43] that are being used
for the PASCAL experiments.

model boosts the mAP by 5 points in the COCO-style evaluation, 8 points in the IoU ≥ 0.75

case and 1.4 points in the IoU ≥ 0.5 case. More detection results on the COCO dataset are

provided in §3.4.2.3.

3.3.4.6 Qualitative results

In Figure 3-9 we provide same qualitative results that compare the proposed localization

models (In-Out ML, Borders ML, and Combined ML) with the bounding box regression

localization model.

3.4 Adaption to the box proposal generation task

3.4.1 AttractioNet box proposals

Algorithm 2: Attend Refine Repeat Box Proposal Generation
Input :Image I
Output :Bounding box proposals P
C← ∅, B0 ← seed boxes
for t← 1 to T do

/* Attend & Refine procedure */
Ot ← ObjectnessScoring(Bt−1|I)
Bt ← ObjectLocationRefinement(Bt−1|I)
C← C ∪ {Bt,Ot}

end
P← NonMaxSuppression(C)

Here we adapt the object localization methodology presented in the previous section,

which was devised for the object detection task, to the box proposal generation task. So,
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(a) Initial box (b) Regression (c) In-Out ML (d) Borders ML (e) Combined ML

Figure 3-9: Qualitative results of the bounding box localization step given an initial candidate box
(column (a)) from the bounding box regression model (column (b)), the In-Out ML localization model
(column (c)), the Borders ML localization model (column (d)), and the Combined ML localization
model (column (e)). The candidate box is drawn with yellow color, the predicted boxes are drawn
with blue color, and the ground truth bounding box is drawn with green color.
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similarly to the object detection case, we employ an active box proposal generation strategy,

which we call Attend Refine Repeat algorithm, that starts from a set of seed boxes, which

only depend on the image size, and it then sequentially produces newer boxes that will better

cover the objects of the image while avoiding the “objectless” image areas (see Figure 3-10).

At the core of this algorithm lies a CNN-based box proposal network that implements two

models:

Category agnostic localization model. This is the LocNet model presented in the previous

section (i.e., in §3.3), and specifically its In-Out ML version, adapted to the category

agnostic case. This means that, given an image I and a candidate box B, this model

must estimate the coordinates of a new box B̃ that would be more tightly aligned

on the object closest3 to the input box B regardless of what its semantic category

might be (as opposed to the LocNet model presented in §3.3 that performs category-

specific object location refinement). The form of the In-Out probabilities that this

category-agnostic LocNet model must predict are defined in §3.4.1.2.

Category agnostic objectness scoring model. Given a candidate box B and the image I ,

it scores the box B (with an objectness score O) based on how likely it is to enclose

an object, regardless of its semantic category.

The pseudo-code of the Attend Refine Repeat algorithm is provided in Algorithm 2.

Specifically, it starts by initializing the set of candidate boxes C to the empty set and

then creates a set of seed boxes B0 by uniformly distributing boxes of various fixed sizes

in the image (similar to Cracking Bing [173]). Then on each iteration t it estimates the

objectness Ot of the boxes generated in the previous iteration, Bt−1, and it refines their

location (resulting in boxes Bt) by attempting to predict the bounding boxes of the objects

that are closest to them. The results {Bt,Ot} of those operations are added to the candidates

set C and the algorithm continues. In the end, non-maximum-suppression [35] is applied to

the candidate box proposals C and the top K box proposals, set P, are returned.

The advantages of having an algorithm that sequentially generates new box locations

given the predictions of the previous stage are two-fold:
3By closest we mean the object whose bounding box has the highest intersection over union (IoU) overlap

with the input box B.
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Figure 3-10: Illustration of the image areas being attended by our box proposal generator algorithm
at each iteration. In the first iteration the box proposal generator attends the entire image since the
seed boxes are created by uniformly distributing boxes across the image. However, as the algorithm
progresses its attention is concentrated on the image areas that actually contain objects.

• Attention mechanism: First, it behaves as an attention mechanism that, on each iter-

ation, focuses more and more on the promising locations (in terms of box coordinates)

of the image (see Figure 3-10). As a result of this, boxes that tightly enclose the

image objects are more likely to be generated and to be scored with high objectness

confidence.

• Robustness to initial boxes: Furthermore, it allows to refine some initially imperfect

box predictions or to localize objects that might be far (in terms of center location,

scale and/or aspect ratio) from any seed box in the image. This is illustrated via a few

characteristic examples in Figure 3-11. As shown in each of these examples, starting

from a seed box, the iterative bounding box predictions gradually converge to the

closest (in terms of center location, scale and/or aspect ratio) object without actually

being affected by any nearby instances.
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Figure 3-11: Illustration of the consecutive bounding box predictions made by our category agnostic
location refinement module. In each row, from left to right we depict a seed box (iteration 0) and
the bounding box predictions in each iteration. Despite the fact that the seed box might be quite far
from the object (in terms of center location, scale and/or aspect ratio) the refinement module has
no problem in converging to the bounding box closest to the seed box object. This capability is not
affected even in the case that the seed box contains also other instances of the same category as in
rows 3 and 4.

3.4.1.1 Network architecture

We call the overall network architecture that implements the Attend Refine Repeat algo-

rithm with its In-Out object location refinement module and its objectness scoring module,

AttractioNet4. Given an image I , our AttractioNet model will be required to process mul-

tiple image boxes of various sizes, by two different modules and repeat those processing

steps for several iterations of the Attend Refine Repeat algorithm. So, in order to have an

efficient implementation we follow the SPP-Net [55] and Fast-RCNN [42] paradigm and

share the operations of the first convolutional layers between all the boxes, as well as across

the two modules and all the Attend Refine Repeat algorithm repetitions (see Figure 3-12).

Specifically, our AttractioNet model first forwards the image I through a first sequence of

convolutional layers (conv. layers of VGG16-Net [144]) in order to extract convolutional

feature maps FI from the entire image. Then, on each iteration t the box-wise part of the

4AttractioNet : (Att)end (R)efine Repeat: (Act)ive Box Proposal Generation via (I)n-(O)ut Localization
(Net)work
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Convolutional feature
maps of the entire image

Output box 
proposals

F I
Conv.
layers

: the image-wise part of the CNN architecture that 
  consists from convolutional layers of VGG-Net

Conv.
layers

Figure 3-12: AttractioNet work-flow. The Attend Refine Repeat algorithm is implemented through a
CNN model, called AttractioNet, whose run-time work-flow (when un-rolled over time) is illustrated
here. On each iteration t the box-wise part of the architecture (Attend & Refine Network: ARN) gets
as input the image convolutional feature maps FI (extracted from the image-wise part of the CNN
architecture) as well as a set of box locations Bt−1 and yields the refined bounding box locations Bt
and their objectness scores Ot using its category agnostic object location refinement module and
its category agnostic objectness scoring module respectively. To avoid any confusion, note that our
AttractioNet model does not include any recurrent connections.

architecture, which we call Attend & Refine Network, gets as input the image convolutional

feature maps FI and a set of box locations Bt−1 and yields the refined bounding box locations

Bt and their objectness scores Ot using its object location refinement module sub-network

and its objectness scoring module sub-network respectively. In Figure 3-13 we provide

the work-flow of the Attend & Refine Network when processing a single input box B. The

architecture of its two sub-networks is described in more detail in the rest of this section:

Object location refinement module sub-network. Differently from the localization

model architecture presented in §3.3.3.3, the convolutional layers of this sub-network output
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Figure 3-13: Attend & Refine Network architecture. The Attend & Refine Network is the box-wise
part of the AttractioNet architecture. In this figure we depict the work-flow for a single input box
B. Specifically, given an input box B and the image convolutional feature maps FI , the Attend &
Refine Network yields (1) the in-out location probability vectors, px and py, (using its object location
refinement sub-network) and (2) the objectness scalar probability pobj (using its objectness scoring
sub-network). Given the in-out probabilities, px and py, the object location inference is formulated as
a simple maximum likelihood estimation problem that results in the refined bounding box coordinates
B̃.

128 feature channels instead of 512, which speeds up the processing by a factor of 4 without

affecting the category-agnostic localization accuracy. Also, in order to yield a fixed size

feature for the R region, instead of region adaptive max-pooling this sub-network uses

region bilinear pooling [19, 17] that in our initial experiments gave slightly better results.

Finally, our version is designed to yield two probability vectors of size M 5, instead of C × 2

vectors of size M (where C is the number of categories), given that in our case we aim for

category-agnostic object location refinement.

Objectness scoring module sub-network. Given the image feature maps FI and the

window B it first performs region adaptive max pooling of the features inside B that yields a

fixed size feature (7× 7× 512). Then it forwards this feature through two linear+ReLU hid-

den layers of 4096 channels each (fc 6 and fc 7 layers of VGG16) and a final linear+sigmoid

layer with one output that corresponds to the probability pobj of the box B tightly enclosing

an object. During training the hidden layers are followed by Dropout units with dropout

probability p = 0.5.

5Here we use M = 56.
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3.4.1.2 Training

Training loss: During training the following multi-task loss is optimized:

1

NL

NL∑
k=1

Lloc(θ|Bk, Tk, Ik)︸ ︷︷ ︸
localization task loss

+
1

NO

NO∑
k=1

Lobj(θ|Bk, yk, Ik)︸ ︷︷ ︸
objectness scoring task loss

, (3.15)

where θ are the learnable network parameters, {Bk, Tk, Ik}N
L

k=1 are NL training triplets for

learning the localization task and {Bk, yk, Ik}N
O

k=1 are NO training triplets for learning the

objectness scoring task. Each training triplet {B, T, I} of the localization task includes the

image I , the box B and the target localization probability vectors T = {Tx, Ty}. If (B∗l , B
∗
t )

and (B∗r , B
∗
b ) are the top-left and bottom-right coordinates of the target box B∗ then the

target probability vectors Tx={Tx,i}Mi=1 and Ty={Ty,i}Mi=1 are defined as:

Tx,i =

1, if B∗l ≤ i ≤ B∗r

0, otherwise
and Ty,i =

1, if B∗t ≤ i ≤ B∗b

0, otherwise
, ∀i ∈ {1, . . . ,M} (3.16)

The loss Lloc(θ|B, T, I) of this triplet is the sum of binary logistic regression losses:

1

2M

∑
a∈{x,y}

M∑
i=1

Ta,i log(pa,i) + (1− Ta,i) log(1− pa,i) , (3.17)

where pa are the output probability vectors of the localization module for the image I ,

the box B and the network parameters θ. The training triplet {B, y, I} for the object-

ness scoring task includes the image I , the box B and the target value y ∈ {0, 1} of

whether the box B contains an object (positive triplet with y = 1) or not (negative triplet

with y = 0). The loss Lobj(θ|B, y, I) of this triplet is the binary logistic regression loss

y log(pobj) + (1− y) log(1− pobj), where pobj is the objectness probability for the image I ,

the box B and the network parameters θ.

Creating training triplets: In order to create the localization and objectness training

triplets of one image we first artificially create a pool of boxes that our algorithm is likely to
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see during test time. Hence we start by generating seed boxes (as the test time algorithm)

and for each of them we predict the bounding boxes of the ground truth objects that are

closest to them using an ideal object location refinement module. This step is repeated one

more time using the previous ideal predictions as input. Because of the finite search area of

the search region R the predicted boxes will not necessarily coincide with the ground truth

bounding boxes. Furthermore, to account for prediction errors during test time, we repeat

the above process by jittering this time the output probability vectors of the ideal location

refinement module with 20% noise. Finally, we merge all the generated boxes (starting from

the seed ones) to a single pool. Given this pool, the positive training boxes in the objectness

scoring task are those that their IoU with any ground truth object is at least 0.5 and the

negative training boxes are those that their maximum IoU with any ground truth object is

less than 0.4. For the localization task we use as training boxes those that their IoU with

any ground truth object is at least 0.5.

Optimization: To minimize the objective we use stochastic gradient descent (SGD)

optimization with an image-centric strategy for sampling training triplets. Specifically, in

each mini-batch we first sample 4 images and then for each image we sample 64 training

triplets for the objectness scoring task (50% are positive and 50% are negative) and 32

training triplets for the localization task. The momentum is set to 0.9 and the learning

schedule includes training for 320k iterations with a learning rate of lr = 0.001 and then

for another 260k iterations with lr = 0.0001. The training time is around 7 days (although

we observed that we could have stopped training on the 5th day with insignificant loss in

performance).

Scale and aspect ratio jittering: During test time our model is fed with a single image

scaled such that its shortest dimension to be 1000 pixels or its longest dimension to not

exceed the 1400 pixels. However, during training each image is randomly resized such

that its shortest dimension to be one of the following number of pixels {300 : 50 : 1000}

(using Matlab notation) taking care, however, the longest dimension to not exceed 1000

pixels. Also, with probability 0.5 we jitter the aspect ratio of the image by altering the image
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dimensions from W ×H to (αW )×H or W × (αH) where the value of α is uniformly

sampled from 2.2:.2:1.0 (Matlab notation). We observed that this type of data augmentation

gives a slight improvement on the results.

3.4.2 Experimental results

Here we perform an exhaustive evaluation of our box proposal generation approach, which

we call AttractioNet, under various test scenarios. Specifically, we first evaluate our approach

with respect to its object localization performance by comparing it with other competing

methods and we also provide an ablation study of its main novel components in §3.4.2.1.

Then, we study its ability to generalize to unseen categories in §3.4.2.2, we evaluate it in the

context of the object detection task in §3.4.2.3 and finally, we provide qualitative results

in §3.4.2.4.

Training set: In order to train our AttractioNet model we use the training set of MS

COCO [91] detection benchmark dataset that includes 80k images and it is labelled with 80

different object categories. Note that the MSCOCO dataset is an ideal candidate for training

our box proposal model since: (1) it is labelled with a decent number of different object

categories and (2) it includes images captured from complex real-life scenes containing

common objects in their natural context. The aforementioned training set properties are

desirable for achieving good performance on difficult test images (a.k.a. images in the wild)

and generalizing to unseen during training object categories.

Implementation details: In the active box proposal algorithm we use 10k seed boxes

generated with a technique similar to Cracking Bing [173]6. To reduce the computational

cost of our algorithm, after the first repetition we only keep the top 2k scored boxes and

we continue with this number of candidate box proposals for four more extra iterations.

In the non-maximum-suppression [35] (NMS) step the optimal IoU threshold (in terms

of the achieved AR) depends on the desired number of box-proposals. For example, for

6We use seed boxes of 3 aspect ratios, 1 : 2, 2 : 1 and 1 : 1, and 9 different sizes of the smallest seed box
dimension {16, 32, 50, 72, 96, 128, 192, 256, 384}.
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10, 100, 1000 and 2000 proposals the optimal IoU thresholds are 0.55, 0.75, 0.90 and 0.95

respectively (note that the aforementioned IoU thresholds were cross validated on a set

different from the one used for evaluation). For practical purposes and in order to have a

unified NMS process, we first apply NMS with the IoU threshold equal to 0.95 and get the

top 2000 box proposals, and then follow a multi-threshold NMS strategy that re-orders this

set of 2000 boxes such that for any given number K, the top K box proposals in the set

better cover (in terms of achieved AR) the objects in the image (see appendix A.2).

3.4.2.1 Object box proposal generation evaluation

Here we evaluate our AtractioNet method in the end task of box proposal generation. For that

purpose, we test it on the first 5k images of the COCO validation set and the PASCAL [31]

VOC2007 test set (that also includes around 5k images).

Evaluation Metrics: As evaluation metric we use the average recall (AR) which, for a

fixed number of box proposals, averages the recall of the localized ground truth objects for

several Intersection over Union (IoU) thresholds in the range .5:.05:.95 (Matlab notation).

The average recall metric has been proposed from Hosang et al. [64, 63] where in their

work they demonstrated that it correlates well with the average precision performance of

box proposal based object detection systems. In our case, in order to evaluate our method

we report the AR results for 10, 100 and 1000 box proposals using the notation AR@10,

AR@100 and AR@1000 respectively. Also, in the case of 100 box proposals we also report

the AR of the small (α < 322), medium (322 ≤ α ≤ 962) and large (α > 962) sized objects

using the notation AR@100-Small, AR@100-Medium and AR@100-Large respectively,

where α is the area of the object. For extracting those measurements we use the COCO API

(https://github.com/pdollar/coco).

Average recall evaluation. In Table 3.6 we report the average recall (AR) metrics of

our method as well as of other competing methods in the COCO validation set. We observe

that the average recall performance achieved by our method exceeds all the previous work
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Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
EdgeBoxes [177] 0.074 0.178 0.338 0.015 0.134 0.502
Geodesic [75] 0.040 0.180 0.359 - - -
Selective Search [153] 0.052 0.163 0.357 0.012 0.0132 0.466
MCG [4] 0.101 0.246 0.398 0.008 0.119 0.530
DeepMask [120] 0.153 0.313 0.446 - - -
DeepMaskZoom [120] 0.150 0.326 0.482 - - -
Co-Obj [53] 0.189 0.366 0.492 0.107 0.449 0.686
SharpMask [121] 0.192 0.362 0.483 0.060 0.510 0.665
SharpMaskZoom [121] 0.192 0.390 0.532 0.149 0.507 0.630
SharpMaskZoom2 [121] 0.178 0.391 0.555 0.221 0.454 0.588
AttractioNet (Ours) 0.328 0.533 0.662 0.315 0.622 0.777

Table 3.6: Average Recall results on the first 5k images of COCO validation set.

Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
EdgeBoxes [177] 0.203 0.407 0.601 0.035 0.159 0.559
Geodesic [75] 0.121 0.364 0.596 - - -
Selective Search [153] 0.085 0.347 0.618 0.017 0.134 0.364
MCG [4] 0.232 0.462 0.634 0.073 0.228 0.618
DeepMask [120] 0.337 0.561 0.690 - - -
Best of Co-Obj [53] 0.430 0.602 0.745 0.453 0.517 0.654
AttractioNet (Ours) 0.554 0.744 0.859 0.562 0.670 0.794

Table 3.7: Average Recall results on the PASCAL VOC2007 test set.

in all the AR metrics by a significant margin (around 10 absolute points in the percentage

scale). Similar gains are also observed in Table 3.7 where we report the average recall

results of our methods in the PASCAL VOC2007 test set. Furthermore, in Figure 3-14

we provide for our method the recall as a function of the IoU overlap of the localized

ground truth objects. We see that the recall decreases relatively slowly as we increase the

IoU from 0.5 to 0.75 while for IoU above 0.85 the decrease is faster. In Figure 3-15 we

compare the box proposals generated from our AttractioNet model (Ours entry) against those

generated from the previous state-of-the-art [121] (entries SharpMask, SharpMaskZoom and

SharpMaskZoom2) w.r.t. the recall versus IoU trade-off and average recall versus proposals

number trade-off that they achieve. Also, in Table 3.6 we report the AR results both for our

method and for the SharpMask entries. We observe that the model proposed in our work has

clearly superior performance over the SharpMask entries under all test cases.

Ablation study. We perform an ablation study of the two key ideas for improving

the state-of-the-art on the bounding box proposal generation task, the location refinement

module and the active box generation strategy. In order to assess the importance of our
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Figure 3-14: Recall versus IoU overlap plots of our AttractioNet approach under different test cases:
10 proposals (R@10), 100 proposals (R@100), 1000 proposals (R@1000), 100 proposals and small
sized objects (R@100-Small), 100 proposals and medium sized objects (R@100-Medium) and 100
proposals and large sized objects (R@100-Large). (Left) Results in the first 5k images of COCO
validation set. (Right) Results in the PASCAL VOC2007 test set.

Box refinement Active box generation # attended boxes AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
18k 0.147 0.260 0.326 0.122 0.317 0.412
18k 0.298 0.491 0.622 0.281 0.583 0.717
18k 0.328 0.533 0.662 0.315 0.622 0.777

Table 3.8: Ablation study of our AttractioNet box proposal system. In the first row we simply
apply the objectness scoring module on a set of 18k seed boxes. In the second row we apply on the
same set of 18k seed boxes both the objectness scoring module and the box refinement module. In
the last row we utilize our full active box generation strategy that in total attends 18k boxes of which
10k are seed boxes and the rest 8k boxes are actively generated. The reported results are from the
first 5k images of COCO validation set.

object location refinement module we evaluated two test cases for generating box proposals:

(1) simply applying the objectness scoring module on a set of 18k seed boxes (first row

of Table 3.8) and (2) applying both the objectness scoring module and the object location

refinement module on the same set of 18k seed boxes (second row of Table 3.8). Note that in

none of them is the active box generation strategy being used. The average recall results of

those two test cases are reported in the first two rows of Table 3.8. We observe that without

the object location refinement module the average recall performance of the box proposal

system is very poor. In contrast, the average recall performance of the test case that involves

the object location refinement module but not the active box generation strategy is already

better than the previous state-of-the-art as reported in Table 3.6, which demonstrates the

very good localization accuracy of our category agnostic location refinement module. The

active box generation strategy, which we call Attend Refine Repeat algorithm, attends in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 3-15: Comparison with previous state-of-the-art. Comparison of our AttractioNet box
proposal model (Ours entry) against the previous state-of-the-art [121] (SharpMask, SharpMaskZoom
and SharpMaskZoom2 entries) w.r.t. the recall versus IoU trade-off and average recall versus
proposals number trade-off that they achieve under various test scenarios. Specifically, the sub-
figures (a), (b) and (c) plot the recall as a function of the IoU threshold for 10, 100 and 1000 box
proposals respectively and the sub-figures (d), (e) and (f) plot the recall as a function of the IoU
threshold for 100 box proposals and with respect to the small, medium and large sized objects
correspondingly. Also, the sub-figures (g), (h), (i) and (j) plot the average recall as a function of
the proposals number for all the objects regardless of their size as well as for the small, medium
and large sized objects respectively. The reported results are from the first 5k images of the COCO
validation set.

total 18k boxes before it outputs the final list of box proposals. Specifically, it attends 10k

seed boxes in the first repetition of the algorithm and 2k actively generated boxes in each

of the following four repetitions. A crucial question is whether actively generating those

extra 8k boxes is really essential in the task or we could achieve the same average recall

performance by directly attending 18k seed boxes and without continuing on the active box

generation stage. We evaluated such test case and we report the average recall results in
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Figure 3-16: Average recall versus the repetitions number of the active box proposal generation
algorithm in the COCO validation set. Note that 0 repetitions is the scenario of simply applying the
objectness module on the seed boxes.

Table 3.8 (see rows 2 and 3). We observe that employing the active box generation strategy

(3rd row in Table 3.8) offers a significant boost in the average recall performance (between

3 and 6 absolute points in the percentage scale) thus proving its importance on yielding well

localized bounding box proposals. Also, in the right side of Figure 3-16 we plot the average

recall metrics as a function of the repetitions number of our active box generation strategy.

We observe that the average recall measurements are increased as we increase the repetitions

number and that the increase is steeper on the first repetitions of the algorithm while it starts

to converge after the 4th repetition.

Run time: In the current work we did not focus on providing an optimized implementa-

tion of our approach. There is room for significantly improving computational efficiency. For

instance, just by using SVD decomposition on the fully connected layers of the objectness
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Method Run time AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
COCO validation set

AttractioNet (Ours) 4.00 sec 0.328 0.533 0.662 0.315 0.622 0.777
AttractioNet (Ours, fast version) 1.63 sec 0.326 0.532 0.660 0.317 0.621 0.771

VOC2007 test set
AttractioNet (Ours) 4.00 sec 0.554 0.744 0.859 0.562 0.670 0.794
AttractioNet (Ours, fast version) 1.63 sec 0.547 0.740 0.848 0.575 0.666 0.788

Table 3.9: Run time of our approach on a GTX Titan X GPU. The reported results are from the
first 5k images of COCO validation set and the PASCAL VOC2007 test set.

module at post-training time (similar to Fast-RCNN [42]) and early stopping a sequence of

bounding box location refinements in the case it has already converged7, the runtime drops

from 4.0 seconds to 1.63 seconds with losing almost no accuracy (see Table 3.9). There are

also several other possibilities that we have not yet explored such as tuning the number of

feature channels and/or network layers of the CNN architecture (similar to the DeepBox [79]

and the SharpMask [121] approaches). In the remainder of this section we will use the fast

version of our AttractioNet approach in order to provide experimental results.

3.4.2.2 Generalization to unseen categories

So far we have evaluated our AttractioNet approach — in the end task of object box proposal

generation — on the COCO validation set and the PASCAL VOC2007 test set that are

labelled with the same or a subset of the object categories seen in the training set. In order to

assess the AttractioNet’s capability to generalize to unseen categories, as it is suggested by

Chavali et al. [10], we evaluate our AttractioNet model on two extra datasets that are labelled

with object categories that are not present in its training set (unseen object categories).

From COCO to ImageNet [129]. Here we evaluate our COCO trained AttractioNet

box proposal model on the ImageNet [129] ILSVRC2013 detection task validation set

that is labelled with 200 different object categories and we report average recall results in

Table 3.10. Note that among the 200 categories of ImageNet detection task, 60 of them,

as we identified, are also present in the AttractioNet’s training set (see Appendix A.3).

Thus, for a better insight on the generalization capabilities of AttractioNet, we divided the

ImageNet detection task categories on two groups, the categories seen by AttractioNet and

7 A sequence of bounding box refinements is considered that it has converged when the IoU between the
two lastly predicted boxes in the sequence is greater than 0.9.
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Method All categories Seen categories Unseen categories
AR@10 AR@100 AR@1000 AR@10 AR@100 AR@1000 AR@10 AR@100 AR@1000

AttractioNet (Ours) 0.412 0.618 0.748 0.474 0.671 0.789 0.299 0.521 0.673
EdgeBoxes [177] 0.182 0.377 0.550 0.194 0.396 0.566 0.160 0.344 0.519
Selective Search [153] 0.132 0.358 0.562 0.143 0.372 0.568 0.111 0.332 0.551
MCG [4] 0.219 0.428 0.603 0.228 0.447 0.623 0.205 0.395 0.568

Table 3.10: Generalization to unseen categories: from COCO to ImageNet. In this table we
report average recall results on the ImageNet [129] ILSVRC2013 detection task validation set that
includes around 20k images and it is labelled with 200 object categories. Seen categories are the set
of object categories that our COCO trained AttractioNet model ”saw” during training. In contrast,
unseen categories is the set of object categories that were not present in the training set of our
AttractioNet model.

Method AR@10 AR@100 AR@1000 AR@100-Small AR@100-Medium AR@100-Large
AttractioNet (Ours) 0.159 0.389 0.579 0.205 0.419 0.498
EdgeBoxes [177] 0.049 0.160 0.362 0.020 0.131 0.332
Selective Search [153] 0.024 0.143 0.422 0.008 0.085 0.362
MCG [4] 0.078 0.237 0.441 0.045 0.195 0.476

Table 3.11: Generalization to unseen categories: from COCO to NYU-Depth V2 dataset. In
this table we report average recall results on the 1449 labelled images of the NYU-Depth V2
dataset [143]. Note that the NYU-Depth V2 dataset is densely labelled with more than 800 different
categories.

the unseen categories, and we report the average recall results separately for those two

groups of object categories in Table 3.10. For comparison purposes we also report the

average recall performance of a few indicative other box proposal methods whose code is

publicly available. We observe that, despite the performance difference of our approach

between the seen and the unseen object categories (which is to be expected), its average

recall performance on the unseen categories is still quite high and significantly better than the

other box proposal methods. Note that even the non-learning based approaches of Selective

Search and EdgeBoxes exhibit a performance drop on the unseen by AttractioNet group

of object categories, which we assume is because this group contains more intrinsically

difficult to discover objects.

From COCO to NYU Depth dataset [143]. The NYU Depth V2 dataset [143] pro-

vides 1449 images (recorded from indoor scenes) that are densely pixel-wise annotated with

864 different categories. We used the available instance-wise segmentations to create ground

truth bounding boxes and we tested our COCO trained AttractioNet model on them (see

Table 3.11). Note that among the 864 available pixel categories, a few of them are “stuff”
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categories (e.g., wall, floor, ceiling or stairs) or in general non-object pixel categories that

our object box proposal method should by definition not recall. Thus, during the process of

creating the ground truth bounding boxes, those non-object pixel segmentation annotations

were excluded (see Appendix A.4). In Table 3.11 we report the average recall results of our

AttractioNet method as well as of a few other indicative methods whose code is publicly

available. We again observe that our method surpasses all other approaches by a significant

margin. Furthermore, in this case the superiority of our approach is more evident on the

average recall of the small and medium sized objects.

To conclude we argue that our learning based AttractioNet approach exhibits good

generalization behaviour. Specifically, its average recall performance on the unseen object

categories remains very high and is also much better than other competing approaches,

including both learning-based approaches such as the MSG and hand-engineered ones such

as the Selective Search or the EdgeBoxes methods. A performance drop is still observed

while going from seen to unseen categories, but this is something to be expected given that

any machine learning algorithm will always exhibit a certain performance drop while going

from seen to unseen data (i.e., training set accuracy versus test set accuracy).

3.4.2.3 Evaluation in the context of the object detection task

Here we evaluate our AttractioNet box proposals in the context of the object detection task

by training and testing a box proposal based object detection system on them (specifically

we use the fast version of AttractioNet).

Detection system. Our box proposal based object detection network consists of a Fast-

RCNN [42] category-specific recognition module and a LocNet Combined ML category-

specific bounding box refinement module that share the same image-wise convolutional

layers (conv1 1 till conv5 3 layers of VGG16-Net). The detection network is trained on

the union of the COCO train set that includes around 80k images and on a subset of the

COCO validation set that includes around 35k images (the remaining 5k images of COCO

validation set are being used for evaluation). For training we use our AttractioNet box
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proposals and we define as positives those that have IoU overlap with any ground truth

bounding box at least 0.5 and as negatives the remaining proposals. For training we use

SGD where each mini-batch consists of 4 images with 64 box proposals each (256 boxes

per mini-batch in total) and the ratio of negative-positive boxes is 3:1. We train the detection

network for 500k SGD iterations starting with a learning rate of 0.001 and dropping it to

0.0001 after 320k iterations. We use the same scale and aspect ratio jittering technique that is

used on AttractioNet and is described in section 3.4.1.2. During test time, as post-processing

we use a non-max-suppression step (with IoU threshold of 0.35) that is enhanced with the

box voting technique described in §2.5 with IoU threshold of 0.75. Note that we did not

include iterative object localization since the bounding box proposals are already very well

localized and we did not get any significant improvement from running the detection system

for extra iterations. Using the same trained model we provide results for two test cases: (1)

using a single scale of 600 pixels during test time and (2) using two scales of 500 and 1000

pixels during test time.

Detection evaluation setting. The detection evaluation metrics that we use are the

average precision (AP) for the IoU thresholds of 0.50 (AP@0.50), 0.75 (AP@0.75) and

the COCO style of average precision (AP@0.50 : 0.95) that averages the traditional AP

over several IoU thresholds between 0.50 and 0.95. Also, we report the COCO style of

average precision with respect to the small (AP@Small), medium (AP@Medium) and large

(AP@Large) sized objects. We perform the evaluation on 5k images of COCO 2014 valida-

tion set and we provide final results on the COCO 2015 test-dev set.

Detection results. In Figure 3-17 we provide plots of the achieved average precision

(AP) as a function of the used box proposals number and in Table 3.12 we provide the

average precision results for 10, 100, 1000 and 2000 box proposals. We observe that in

all cases, the average precision performance of the detection system seems to converge

after the 200 box proposals. Furthermore, for single scale test case our best COCO-style

average precision is 0.320 and for the two scales test case our best COCO-style average

precision is 0.337. By including horizontal image flipping augmentation during test time
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our COCO-style average precision performance is increased to 0.343. Finally, in Table 3.13

we provide the average precision performance in the COCO test-dev 2015 set where we

achieve a COCO-style AP of 0.341. By comparing with the average precision performance

of the other competing methods, we observe that:

• Comparing with the other VGG16-Net based object detection systems (ION [5] and

MultiPath [164] systems), our detection system achieves the highest COCO-style

average precision with its main novelties w.r.t. the Fast R-CNN [42] baseline being

(1) the use of the AttractioNet box proposals that are introduced in this chapter and

(2) the LocNet category specific object location refinement technique that replaces

the bounding box regression step.

• Comparing with the ION [5] detection system, which is also VGG16-Net based, our

approach is better on the COCO-style AP metric (that favours good object localization)

while theirs is better on the typical AP@0.50 metric. We hypothesize that this is due

to the fact that our approach targets to mainly improve the localization aspect of

object detection by improving the box proposal generation step while theirs targets to

improve the recognition aspect of object detection. The above observation suggests

that many of the novelties introduced on the ION [5] and MultiPath [164] systems

w.r.t. object detection could be orthogonal to our box proposal generation work.

• The achieved average precision performance of our VGG16-Net based detection

system is close to the state-of-the-art ResNet-101 based Faster R-CNN+++ detection

system [57] that exploits the (more) recent successes in deep representation learning

introduced — under the name Deep Residual Networks — in the same work by He

et al. [57]. Presumably, our overall detection system could also benefit from being

based on the Deep Residual Networks [57] or the more recent wider variant called

Wide Residual Networks [163].

• Finally, our detection system has the highest average precision performance w.r.t. the

small sized objects, which is a challenging problem, surpassing by a healthy margin

even the ResNet-101 based Faster R-CNN+++ detection system [57]. This is thanks

to the high average recall performance of our box proposal method on the small sized

objects.
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(a) (b)

Figure 3-17: Detection results: Average precision versus AttractioNet box proposals number.
(a) During test time a single scale of 600 pixels is being used. (b) During test time two scales of 500
and 1000 pixels are being used. The reported results are from 5k images of COCO validation set.

Test scale(s) # proposals AP@0.50 AP@0.75 AP@0.50:0.95 AP@Small AP@Medium AP@Large
600px 10 0.397 0.283 0.256 0.099 0.282 0.397
600px 100 0.509 0.330 0.313 0.140 0.345 0.472
600px 1000 0.514 0.334 0.320 0.141 0.356 0.485
600px 2000 0.510 0.334 0.319 0.133 0.357 0.485

500px, 1000px 10 0.404 0.293 0.264 0.105 0.290 0.401
500px, 1000px 100 0.519 0.351 0.325 0.165 0.354 0.473
500px, 1000px 1000 0.533 0.360 0.336 0.176 0.371 0.486
500px, 1000px 2000 0.532 0.358 0.336 0.175 0.371 0.489

500px, 1000pxF 2000 0.540 0.364 0.343 0.184 0.382 0.491

Table 3.12: Detection results: Average precision performance using AttractioNet box propos-
als. The reported results are from 5k images of COCO validation set. The last entry with the F
symbol uses horizontal image flipping augmentation during test time.

3.4.2.4 Qualitative results

In Figure 3-18 we provide qualitative results of our AttractioNet box proposal approach on

images coming from the COCO validation set. Note that our approach manages to recall

most of the objects in an image, even in the case that the depicted scene is crowded with

multiple objects that heavily overlap with each other.

3.5 Conclusions

We proposed a novel object localization methodology that is based on assigning probabilities

related to the localization task on each row and column of the region in which it searches
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Figure 3-18: Qualitative results in COCO. The blue rectangles are the box proposals generated
by our approach that best localize (in terms of IoU) the ground truth boxes. The red rectangles are the
ground truth bounding boxes that were not discovered by our box proposal approach (their IoU with
any box proposal is less than 0.5). Note that not all the object instances on the images are annotated.
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Method Base CNN AP@0.50 AP@0.75 AP@0.50:0.95 AP@Small AP@Medium AP@Large
AttractioNet based detection system (Ours) VGG16-Net [144] 0.537 0.363 0.341 0.175 0.365 0.469
ION [5] VGG16-Net [144] 0.557 0.346 0.331 0.145 0.352 0.472
MultiPath [164] VGG16-Net [144] - - 0.315 - - -
Faster R-CNN+++ [57] ResNet-101 [57] 0.557 - 0.349 0.156 0.387 0.509

Table 3.13: Detection results in COCO test-dev 2015 set. In this table we report the average
precision performance of our AttractioNet box proposals based detection system that uses 2000
proposals and two test scales of 500 and 1000 pixels. Note that: (1) all methods in this table
(including ours) use horizontal image flipping augmentation during test time, (2) the ION [5] and
MultiPath [164] detection systems use a single test scale of 600 and 800 pixels respectively while the
Faster R-CNN+++ entry uses the scales {200, 400, 600, 800, 1000}, (3) apart from the ResNet-101
based Faster R-CNN+++ [57] entry, all the other methods are based on the VGG16-Network [144],
(4) the reported results of all the competing methods are from the single model versions of their
systems (and not the model ensemble versions) and (5) the reported results of the MultPath system
are coming from 5k images of the COCO validation set (however, we expect the AR metrics on the
test-dev set to be roughly similar).

the object. Those probabilities provide useful information regarding the location of the

object inside the search region and they can be exploited in order to infer its boundaries

with high accuracy. We implemented our model via using a convolutional neural network

architecture properly adapted for this task, called LocNet, and we extensively evaluated it

on PASCAL VOC2007 test set. We demonstrate that it outperforms CNN-based bounding

box regression on all the evaluation metrics and it leads to a significant improvement on

those metrics that reward good localization. Importantly, LocNet can be easily plugged into

existing state-of-the-art object detection methods, in which case we show that it contributes

to significantly boosting their performance. Also, we demonstrate that our object detection

methodology can achieve very high mAP results even when the initial set of candidate boxes

is generated by a simple sliding windows scheme.

Furthermore, we adapted the object localization methodology (devised for the detection

task) to the box proposal generation task and built a novel box proposal generation system

called AttractioNet. We extensively evaluate our system on several image datasets (i.e.,

COCO, PASCAL, ImageNet detection and NYU-Depth V2 datasets) demonstrating in

all cases average recall results that surpass the previous state-of-the-art by a significant

margin while also providing strong empirical evidence about the generalization ability of our

approach w.r.t. unseen categories. Even more, we show the significance of our AttractioNet

approach in the object detection task by coupling it with a VGG16-Net based detector
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and thus managing to surpass the detection performance of all other VGG16-Net based

detectors while even being on par with a heavily tuned ResNet-101 based detector. We note

that, apart from object detection, there exist several other vision tasks, such as exemplar

2D-3D detection [100], visual semantic role labelling [49], caption generation [70] or visual

question answering [138], for which a box proposal generation step can be employed. We

are thus confident that our AttractioNet approach could have a significant value with respect

to many other important applications as well.
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Chapter 4

Deep structured prediction for

pixel-wise image labeling

4.1 Introduction

While the previous two chapters focused on the object detection problem, in this one we

deal with the pixel-wise image labeling problem (also called dense image labeling). Dense

image labeling is a problem of paramount importance in the computer vision community as

it encompasses many low or high level vision tasks including stereo matching [165], optical

flow [62], surface normals estimation [29], and semantic segmentation [92], to mention

a few characteristic examples. As already explained, the goal is to assign a discrete or

continuous value for each pixel in the image. Due to its importance, there is a vast amount

of work on this problem. Recent methods can be roughly divided into three main classes of

approaches.

The first class focuses on developing independent patch classifiers/regressors [141,

139, 140, 34, 92, 37, 101, 110] that would directly predict the pixel label given as input

an image patch centered on it or, in cases like stereo matching and optical flow, would

be used for comparing patches between different images in order to pick pairs of best

matching pixels [96, 162, 165, 166]. Deep convolutional neural networks (DCNNs) [84]

have demonstrated excellent performance in the aforementioned tasks thanks to their ability

to learn complex image representations by harnessing vast amount of training data [78, 144,
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57]. However, despite their great representational power, just applying DCNNs on image

patches, does not capture the structure of output labels, which is an important aspect of

dense image labeling tasks. For instance, independent feed-forward DCNN patch predictors

do not take into consideration the correlations that exist between nearby pixel labels. In

addition, feed-forward DCNNs have the extra disadvantages that they usually involve

multiple consecutive down-sampling operations (i.e., max-pooling or strided convolutions)

and that the top most convolutional layers do not capture factors such as image edges or

other fine image structures. Both of the above properties may prevent such methods from

achieving precise and accurate results in dense image labeling tasks.

Another class of methods tries to model the joint dependencies of both the input and

output variables by use of probabilistic graphical models such as Conditional Random Fields

(CRFs) [80]. In CRFs, the dense image labeling task is performed through maximum a

posteriori (MAP) inference in a graphical model that incorporates prior knowledge about

the nature of the task in hand with pairwise edge potential between the graph nodes of

the label variables. For example, in the case of semantic segmentation, those pairwise

potentials enforce label consistency among similar or spatially adjacent pixels. Thanks to

their ability to jointly model the input-output variables, CRFs have been extensively used in

pixel-wise image labeling tasks [73, 130]. Recently, a number of methods has attempted

to combine them with the representational power of DCNNs by getting the former (CRFs)

to refine and disambiguate the predictions of the later one [135, 11, 174, 12]. Particularly,

in semantic segmentation, DeepLab [11] uses a fully connected CRF to post-process the

pixel-wise predictions of a convolutional neural network while in CRF-RNN [174], they

unify the training of both the DCNN and the CRF by formulating the approximate mean-field

inference of fully connected CRFs as Recurrent Neural Networks (RNN). However, a major

drawback of most CRF based approaches is that the pairwise potentials have to be carefully

hand designed in order to incorporate simple human assumptions about the structure of the

output labels Y and at the same time to allow for tractable inference.

A third class of methods relies on a more data-driven approach for learning the joint

space of both the input and the output variables. More specifically, in this case a deep

neural network gets as input an initial estimate of the output labels and (optionally) the
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Figure 4-1: In this figure we visualize two different types of erroneously labeled image regions. On
the left hand are the ground truth labels and on the right hand are some initial label estimates. With
the red rectangle we indicate a dense concentration of “hard” mistakes in the initial labels that it is
very difficult to be corrected by a residual refinement component. Instead, the most suitable action
for such a region is to replace them by predicting entirely new labels for them. In contrast, the blue
eclipse indicates an image region with “soft” label mistakes. Those image regions are easier to be
handled by a residual refinement components.

input image and it is trained to predict a new refined estimate for the labels, thus being

implicitly enforced to learn the joint space of both the input and the output variables. The

network can learn either to predict new estimates for all pixel labels (transform-based

approaches) [161, 52, 88], or alternatively, to predict residual corrections w.r.t. the initial

label estimates (residual-based approaches) [9]. We will hereafter refer to these methods as

deep joint input-output models. These are, loosely speaking, related to the CRF models in

the sense that the deep neural network is enforced to learn the joint dependencies of both

the input image and output labels, but with the advantage of being less constrained about the

complexity of the input-output dependencies that it can capture.

Our work belongs to this last category of dense image labeling approaches, thus it is not

constrained on the complexity of the input-output dependencies that it can capture. However,

here we argue that prior approaches in this category use a sub-optimal strategy. For instance,

the transform-based approaches (that always learn to predict new label estimates) often

have to learn something more difficult than necessary since they must often simply learn to

operate as identity transforms in case of correct initial labels, yielding the same label in their
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output. On the other hand, for the residual based approaches it is easier to learn to predict

zero residuals in the case of correct initial labels, but it is more difficult for them to refine

“hard” mistakes that deviate a lot from the initial labels (see figure 4-1). Due to the above

reasons, in our work we propose a deep joint input-output model that decomposes the label

estimation/refinement process as a sequence of the following easier to execute operations:

(1) detection of errors in the input labels, (2) replacement of the erroneous labels with new

ones (i.e., directly predicting new pixel labels for the pixels detected as erroneously labeled),

and finally (3) an overall refinement of all output labels by predicting residual corrections

w.r.t. the labels generated by step (2). Each of the described operations in our framework is

executed by a different component implemented with a deep neural network. Even more,

those components are embedded in a unified architecture that is fully differentiable thus

allowing for an end-to-end learning of the dense image labeling task by only applying the

objective function on the final output. As a result of this, we are also able to explore a variety

of novel deep network architectures by considering different ways of combining the above

components, including the possibility of performing the above operations iteratively, as it

is done in [88], thus enabling our model to correct even large, in area, regions of incorrect

labels. It is also worth noting that the error detection component in the proposed architecture,

by being forced to detect the erroneous pixel labels (given both the input and the initial

estimates of the output labels), implicitly learns the joint structure of the input-output space,

which is an important requirement for a successful application of any type of structured

prediction model.

To summarize, the contribution of the work presented in this chapter are as follows:

• We propose a deep structured prediction framework for the dense image labeling task,

which we call Detect, Replace, Refine, that relies on three main building blocks: (1)

recognizing errors in the input label maps, (2) replacing the erroneous labels, and

(3) performing a final refinement of the output label map. We show that all of the

aforementioned steps can be embedded in a unified deep neural network architecture

that is end-to-end trainable.

• In the context of the above framework, we also explore a variety of other network

architectures for deep joint input-output models that result from utilizing different
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combinations of the above building blocks.

• We implemented and evaluated our framework on the disparity prediction (stereo

matching) and semantic segmentation tasks and we provide both qualitative and

quantitative evidence about the advantages of the proposed approach.

• We show that our disparity estimation model that implements the proposed Detect,

Replace, Refine architecture achieved state of the art results in the KITTI 2015 test

set outperforming (at the time of completing this work) all prior published work by a

significant margin.

The remainder of the chapter is structured as follows: We first describe our structured

dense label prediction framework in §4.2 and its implementation w.r.t. the dense disparity

estimation task (stereo matching) in §4.3. Then, we provide experimental results for the

disparity estimation and semantic segmentation tasks in §4.4 and §4.5 respectively and we

finally conclude the paper in §4.6.

4.2 Methodology

Let X = {xi}H×Wi=1 be the input image1 of size H ×W , where xi are the image pixels, and

Y = {yi}H×Wi=1 be some initial label estimates for this image, where yi is the label for the i-th

pixel. Our dense image labeling methodology belongs on the broader category of approaches

that consist of a deep joint input-output model model F (.) that given as input the image X

and the initial labels Y , learns to predict new, more accurate labels Y ′ = F (X, Y ). Note

that in this setting the initial labels Y could come from another model F0(.) that depends

only on the image X . Also, in the general case, the pixel labels Y can be of either discrete

or continuous nature. In this work, however, we focus on the continuous case where greater

variety of architectures can be explored. Note that in the discrete case (e.g., in the semantic

segmentation task), in label map Y = {yi}H×Wi=1 the label yi of the i-th pixel, instead of

being a continuous value as in the continues case, is defined as a probability vector with

the probability distribution of the possible discrete values. For example, in the semantic

1Here, for simplicity, we consider images defined on a 2D domain, but our framework can be readily
applied to images defined on any domain.
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Detect errors Replace Refine
E U Y'{X, Y}

Initial labels Error map Renewed labels Refined output labels

Input image

Figure 4-2: In this figure we demonstrate the generic architecture that we propose for the dense
image labeling task. In this architecture the task of the deep joint input-output model is decomposed
into three different sub-tasks that are: (1) detection of the erroneous initial labels, (2) replacement of
the erroneous labels with new ones (leading to a renewed label map U ), and then (3) refinement Y ′

of the renewed label map. The illustrated example is coming from the dense disparity labeling task
(stereo matching).

segmentation task, yi is the probability distribution over the available semantic categories

for the i-th pixel.

The crucial question is what is the most effective way of implementing the deep joint

input-output model F (.). The two most common approaches in the literature involve a

feed-forward deep convolutional neural network, FDCNN(.), that either directly predicts

new labels Y ′ = FDCNN(X, Y ) or it predicts the residual correction w.r.t. the input labels:

Y ′ = Y + FDCNN(X, Y ). We argue that both of them are sub-optimal solutions for

implementing the F (.) model. Instead, in our work we opt for a decomposition of the task

of model F (.) (i.e., predicting new, more accurate labels Y ′) in three different sub-tasks that

are executed in sequence.

In the remainder of this section, we first describe the proposed architecture in §4.2.1,

then we discuss the intuition behind it and its advantages in §4.2.2, and finally we describe

other alternative architectures that we explored in §4.2.3.

4.2.1 Detect, Replace, Refine architecture

The generic dense image labeling architecture that we propose decomposes task of the

deep joint input-output model in three sub-tasks each of them handled by a different learn-

able network component (see Figure 4-2). Those network components are: the error

detection component Fe(.), the label replacement component Fu(.), and the label refinement
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component Fr(.). The sub-tasks that they perform, are:

Detect: The first sub-task in our generic pipeline is to detect the erroneously labeled pixels

of Y by discovering which pixel labels are inconsistent with the remaining labels of Y

and the input image X . This sub-task is performed by the error detection component

Fe(.) that basically needs to yield a probability mapE = Fe(X, Y ) of the same size as

the input labels Y that will have high probabilities for the “hard” mistakes in Y . These

mistakes should ideally be forgotten and replaced with entirely new label values in the

processing step that follows (see Figures 4-3a, 4-3b, and 4-3c). As we will see below,

the topology of our generic architecture allows the error detection component Fe(.)

to learn its assigned task (i.e., detecting the incorrect pixel labels) without explicitly

being trained for this, e.g., through the use of an auxiliary loss. The error detection

function Fe(.) can be implemented with any deep (or shallow) neural network with

the only constraint being that its output map E must take values in the range [0, 1].

Replace: In the second sub-task, a new label field U is produced by the convex combination

of the initial label field Y and the output of the label replacement component Fu(.):

U = E � Fu(X, Y,E) + (1 − E) � Y (see Figures 4-3e and 4-3f). We observe

that the error probabilities generated by the error detection component Fe(.) now act

as gates that control which pixel labels of Y will be forgotten and replaced by the

outputs of Fu(.), which will be all pixel labels that are assigned high probability of

being incorrect. In this context, the task of the Replace component Fu(.) is to replace

the erroneous pixel labels with new ones that will be in accordance both w.r.t. the

input image X and w.r.t. the non-erroneous labels of Y . Note that for this task the

Replace component Fu(.) gets as input also the error probability map E. The reason

for doing this is to help the Replace component to focus its attention only on those

image regions that their labels need to be replaced. The component Fu(.) can be

implemented by any neural network whose output has the same size as the input labels

Y .

Refine: The purpose of the erroneous label detection and label replacement steps so far

was to perform a crude “fix” of the “hard” mistakes in the label map Y . In contrast,
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the purpose of the current step is to do a final refinement of the entire output label

map U , which is produced by the previous steps, in the form of residual corrections:

Y ′ = U + Fr(X, Y,E, U) (see Figures 4-3g and 4-3h). Intuitively, the purpose of this

step is to correct the “soft” mistakes of the label map U and to better align the output

labels Y ′ with the fine structures in the image X . The Refine component Fr(.) can

be implemented by any neural network whose output has the same size as the input

labels U .

The above three steps can be applied for more than one iterations which, as we will see

later, allows our generic framework to recover a good estimate of the ground truth labels

or, in worst case, to yield more plausible results even when the initial labels Y are severely

corrupted (see Figure 4-10 in the experiments section §4.4.3.5).

To summarize, the workings of our dense labeling generic architecture can be concisely

described by the iterative application of the following three equations:

E = Fe(X, Y ), (4.1)

U = E � Fu(X, Y,E) + (1− E)� Y, (4.2)

Y ′ = U + Fr(X, Y,E, U). (4.3)

We observe that the above generic architecture is fully differentiable as long as the function

components Fe(.), Fu(.), and Fr(.) are also differentiable. Due to this fact, the overall

proposed architecture is end-to-end learnable by directly applying an objective function

(e.g., Absolute Difference or Mean Square Error loss functions) on the final output label

maps Y ′.

4.2.2 Discussion

Role of the Detection component Fe(.) and its synergy with the Replace component

Fu(.): The error detection component Fe(.) is a key element in our generic architecture and

its purpose is to indicate which are the image regions whose labels are incorrect. This type

of information is exploited in the next step of label replacement in two ways. Firstly, the
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Replace component Fu(.) that gets as input the error map E, which is generated by Fe(.), is

able to know which are the image regions whose labels need to be replaced and thus it is able

to focus its attention only on those image regions. At this point note that, in equation 4.2,

the error maps E, apart from being given as input attention maps to the Replace component

Fu(.), also act as gates that control which way the information will flow both during the

forward propagation and during the backward propagation. Specifically, during the forward

propagation case, in the cases that the error map probabilities are either 0 or 1, it holds that:

U =

Y, if Fe(X, Y ) = 0,

Fu(X, Y,E), if Fe(X, Y ) = 1,

(4.4)

which basically means that the Replace component Fu(.) is being utilized mainly for the

erroneously labeled image regions. Also, during the backward propagation, it is easy to

see that the gradients of the replace function w.r.t. the loss L (in the cases that the error

probabilities are either 0 or 1) are:

dL

dFu(.)
=

0, if Fe(X, Y ) = 0,

dL
dU
, if Fe(X, Y ) = 1,

(4.5)

which means that gradients are back-propagated through the Replace component Fu(.) only

for the erroneously labeled image regions. So, in a nutshell, during the learning procedure

the Replace component Fu(.) is explicitly trained to predict new values mainly for the

erroneously labeled image regions. The second advantage of giving the error maps E as

input to the Replace component Fu(.), is that this allows the Replace component to know

which image regions contain “trusted” labels that can be used for providing information on

how to fill the erroneously labeled regions.

Estimated error probability maps by the Detection component Fe(.): Thanks to the

topology of our generic architecture, by optimizing the reconstruction of the ground truth

labels Ŷ , the error detection component Fe(.) implicitly learns to act as a joint probability

model for patches of X and Y centered on each pixel of the input image, assigning a high
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(a) Image X (b) Initial labels Y (c) Predicted errors E (d) Ground truth errors

(e) Fu(.) predictions (f) Renewed labels U (g) Fr(.) residuals (h) Final labels Y ′

Figure 4-3: Here we provide an example that illustrates the functions performed by the Detect,
Replace, and Refine steps in our proposed architecture. The example is coming from the dense
disparity labeling task (stereo matching). Specifically, subfigures (a), (b), and (c) depict respectively
the input image X , the initial disparity label estimates Y , and the error probability map E that
the detection component Fe(.) yields for the initial labels Y . Notice the high similarity of map E
with the ground truth error map of the initial labels Y depicted in subfigure (d), where the ground
truth error map has been computed by thresholding the absolute difference of the initial labels Y
from the ground truth labels with a threshold of 3 pixels (red are the erroneous pixel labels). In
subfigure (e) we depict the label predictions of the Replace component Fu(.). For visualization
purposes we only depict the Fu(.) pixel predictions that will replace the initial labels that are
incorrect (according to the detection component) by drawing the remaining ones (i.e., those whose
error probability is less than 0.5) with black color. In subfigure (f) we depict the renewed labels
U = E � Fu(X,Y,E) + (1−E)� Y . In subfigure (g) we depict the residual corrections that the
Refine component Fr(.) yields for the renewed labels U . Finally, in the last subfigure (h) we depict
the final label estimates Y ′ = U + Fr(X,Y,E, U) that the Refine step yields.

probability of error for patches that do not appear to belong to the joint input-output space

(X, Y ). In Figures 4-3c and 4-3d we visualize the estimated by the Detection component

Fe(.) error maps and the ground truth error maps in the context of the disparity estimation

task (more visualizations are provided in Figure 4-6). It is interesting to note that the

estimated error probability maps are very similar to the ground truth error maps despite the

fact that we are not explicitly enforcing this behaviour, e.g., through the use of an auxiliary

loss.

Error detection component and Highway Networks: Note that the way the Detection

component Fe(.) and Replace component Fu(.) interact bears some resemblance to the basic

building blocks of the Highway Networks [146] that are being utilized for training extremely

deep neural network architectures. Briefly, each highway building block gets as input some

hidden feature maps and then predicts transform gates that control which feature values will
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be carried on the next layer as is and which will be transformed by a non-linear function.

There are however some important differences. For instance, in our case the error gate

prediction and the label replacement steps are executed in sequence with the latter one

getting as input the output of the former one. Instead, in Highway Networks the gate

prediction and the non-linear transform of the input feature maps are performed in parallel.

Furthermore, in Highway Networks the components of each building block are implemented

by simple affine transforms followed by non-linearities and the purpose is to have multiple

building blocks stacked one on top of the other in order to learn extremely deep image

representations. In contrast, the components of our generic architecture are themselves deep

neural networks and the purpose is to learn to reconstruct the input labels Y .

Two stage refinement approach: Another key element in our architecture is that the

step of predicting new, more accurate labels Y ′, given the initial labels Y , is broken in

two stages. The first stage is handled by the error detection component Fe(.) and the label

replacement component Fu(.). Their job is to correct only the “hard” mistakes of the input

labels Y . They are not meant to correct “soft” mistakes (i.e., errors in the label values of

small magnitude). In order to learn to correct those “soft” mistakes, it is more appropriate to

use a component that yields residual corrections w.r.t. its input. This is the purpose of our

Refine component Fr(.), in the second stage of our architecture, from which we expect to

improve the “details” of the output labels U by better aligning them with the fine structures

of the input images. This separation of roles between the first and the second refinement

stages (i.e., coarse refinement and then fine-detail refinement) has the potential advantage,

which is exploited in our work, to perform the actions of the first stage in lower resolution

thus speeding up the processing and reducing the memory footprint of the network. Also,

the end-to-end training procedure allows the components in the first stage (i.e., Fe(.) and

Fu(.)) to make mistakes as long as those are corrected by the second stage. This aspect

of our architecture has the advantage that each component can more efficiently exploit its

available capacity.
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4.2.3 Explored architectures

In order to evaluate the proposed architecture we also devised and tested various other

architectures that consist of the same core components as those that we propose. In total,

the architectures that are explored in our work are:

Detect + Replace + Refine architecture: This is the architecture that we proposed in

section 4.2.1.

Replace baseline architecture: In this case the model directly replaces the old labels

with new ones: Y ′ = Fu(X, Y ).

Refine baseline architecture: In this case the model predicts residual corrections w.r.t.

the input labels: Y ′ = Y + Fr(X, Y ).

Replace + Refine architecture: Here the model first replaces the entire label map Y

with new values U = Fu(X, Y ) and then residual corrections are predicted w.r.t. the updated

values U , Y ′ = U + Fr(X, Y, U).

Detect + Replace architecture: Here the model first detects errors on the input label

maps E = Fe(X, Y ) and then replace those erroneous pixel labels Y ′ = E�Fu(X, Y,E)+

(1− E)� Y .

Detect + Refine architecture: In this case, after the detection of the errors E =

Fe(X, Y ), the erroneous pixel labels are masked out by setting them to the mean label

value lmu, U = E � lmu + (1− E)� Y . Then the masked label maps are given as input to

a residual refinement model Y ′ = U + Fr(X, Y,E, U). Note that this architecture can also

be considered as a specific instance of the general Detect + Replace + Refine architecture

where the Replace component Fu(.) does not have any learnable parameters and constantly

returns the mean label value, i.e., Fu(.) = lmu.

Parallel architecture: Here, after the detection of the errors, the erroneous labels are

replaced by the Replace component Fu(.) while the rest labels are refined by the Refine

component Fr(.). More specifically, the operations performed by this architecture are

described by the following equations:

E = Fe(X, Y ), (4.6)

146



U1 = Fu(X, Y,E), U2 = Y + Fr(X, Y,E), (4.7)

Y ′ = E � U1 + (1− E)� U2. (4.8)

Basically, in this architecture the components Fu(.) and Fr(.) are applied in parallel instead

of the sequential topology that is chosen in the Detect + Replace + Refine architecture.

Detect + Replace + Refine ×T : This is basically the Detect + Replace + Refine ar-

chitecture but applied iteratively for T iterations. Note that the model implementing this

architecture is trained in a multi-iteration manner (i.e., by feeding the output labels generated

at one iteration as input to the network at the next iteration).

X-Blind Detect + Replace + Refine architecture: This is a “blind” w.r.t. the image

X version of the Detect + Replace + Refine architecture. Specifically, the “X-Blind”

architecture is exactly the same as the proposed Detect + Replace + Refine architecture with

the only difference being that it gets as input only the initial labels Y and not the image X

(i.e., none of the Fe(.), Fu(.), and Fr(.) components depends on the image X). Hence, the

model implemented by the “X-Blind” architecture must learn to reconstruct the ground truth

labels by only “seeing” a corrupted version of them.

4.3 Detect, Replace, Refine for disparity estimation

In order to evaluate the proposed dense image labeling architecture, as well as the other

alternative architectures that are explored in our work, we use the dense disparity estimation

(stereo matching) task, according to which, given a left and right image, one needs to assign

to each pixel of the left image a continuous label that indicates its horizontal displacement in

the right image (disparity). Such a task forms a very interesting and challenging testbed for

the evaluation of dense labeling algorithms since it requires dealing with several challenges

such as accurately preserving disparity discontinuities across object boundaries, dealing

with occlusions, as well as recovering the fine details of disparity maps. At the same time

it has many practical applications on various autonomous driving and robot navigation or

grasping tasks.
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4.3.1 Initial disparities

Generating initial disparity field: In all the examined architectures, in order to generate

the initial disparity labels Y we used the deep patch matching approach that was proposed

by W. Luo et al. [96] and specifically their architecture with id 37. We then train our models

to reconstruct the ground truth labels given as input only the left image X and the initial

disparity labels Y . We would like to stress out that the right image of the stereo pair is not

provided to our models. This practically means that the trained models cannot rely only

on the image evidence for performing the dense disparity labeling task – since disparity

prediction from a single image is an ill-posed problem – but they have to learn the joint

space of both input X and output labels Y in order to perform the task.

Image & disparity field normalization: Before we feed an image and its initial dispar-

ity field to any of our examined architectures, we normalize them to zero mean and unit

variance (i.e., mean subtraction and division by the standard deviation). The mean and

standard deviation values of the RGB colors and disparity labels are computed on the entire

training set. The disparity target labels are also normalized with the same mean and standard

deviation values and during inference the normalization effect is inverted on the disparity

fields predicted by the examined architectures.

4.3.2 Deep neural network architectures

Each component of our generic architecture can be implemented by a deep neural network.

For our disparity estimation experiments we chose the following implementations:

Error detection component: It is implemented by 5 convolutional layers of which the

last one yields the error probability map E. All the convolutional layers, apart from the

last one, are followed by batch normalization [66] plus ReLU [97] units. Instead, the last

convolutional layer is followed by a sigmoid unit. The first two convolutions are followed

by max-pooling layers of kernel size 2 that in total reduce the input resolution by a factor

of 4. To compensate, a bi-linear up-sampling layer is placed on top of the last convolution

layer in order the output probability map E to have the same resolution as the input image.

The number of output feature planes of each of the 5 convolutional layers is 32, 64, 128,
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256, and 1 correspondingly.

Replace component: It is implemented with a convolutional architecture that first

“compress” the resolution of the feature maps to 1
64

of the input resolution and then “de-

compress” the resolution to 1
4

of the input resolution. For its implementation we follow

the guidelines of A. Newel et al. [109] which are to use residual blocks [57] on each layer

and parametrized (by residual blocks) skip connection between the symmetric layers in the

“compressing” and the “decompressing” parts of the architecture. The “compressing” part of

the architecture uses max-pooling layers with kernel size 2 to down-sample the resolution

while the “decompressing” part uses nearest-neighbor up-sampling (by a factor of 2). We

refer for more details to A. Newel et al. [109]. In our case, during the “compression” part

there are in total 6 down-sampling convolutional blocks and during the “decompression”

part 4 up-sampling convolutional blocks. The number of output feature planes in the first

layer is 32 and each time the resolution is down-sampled the number of feature planes is

increased by a factor of 2. For GPU memory efficiency reasons, we do not allow the number

of output feature planes of any layer to exceed that of 512. During the “decompression”

part, each time we up-sample the resolution we also decrease by a factor of 2 the number of

feature planes. The last convolution layer yields a single feature plane with the new disparity

labels (without any non-linearity). As already explained, during the “decompressing” part

the resolution is increased till that of 1
4

of the input resolution. The reason for early-stopping

the “decompression” is that the Replace component is needed to only perform crude “fixes”

of the initial labels and thus further “decompression” steps are not necessary. Before the

disparity labels are fed to the next processing steps, bi-linear up-sampling by a factor of 4

(without any learn-able parameter) is being used in order to restore the resolution to that of

the input resolution.

Refine component: It follows the same architecture as the replace component with the

exception that during the “compressing” part the resolution of the feature maps is reduced

till 1
16

of the input resolution and then during the “decompressing” part the resolution is

restored to that of the input resolution.

Alternative architectures: In case the alternative architectures have missing compo-

nents, then the number of layers and/or the number of feature planes per layer of the
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remaining components is being increased such that the total capacity (i.e., number of learn-

able parameters) remains the same. For the architectures that include only the Replace or

Refine components (i.e., Replace, Refine, Detect+Replace, and Detect+Refine architectures)

the “compression” - “decompression” architecture of this component “compresses” the

resolution till 1
64

of the input resolution and then “decompresses” it to the same resolution as

the input image.

Weight initialization: In order to initialize the weights of each convolutional layer we

use the initialization scheme proposed by K. He et al. [54].

4.3.3 Training details

We used the L1 loss as objective function and the networks were optimized using the

Adam [71] method with β1 = 0.9 and β2 = 0.99. The learning rate lr was set to 10−3 and

was decreased after 20 epochs to 10−4 and then after 15 epochs to 10−5. We then continued

optimizing for another 5 epochs. Each epoch lasted approximately 2000 batch iterations

where each batch consisted of 24 training samples. Each training sample consists of patches

with spatial size 256× 256 and 4 channels (3 RGB color channels + 1 initial disparity label

channel). The patches are generated by randomly cropping with uniform distribution an

image and its corresponding initial disparity labels.

Augmentation: During training we used horizontal flip augmentation and chromatic

transformations such as color, contrast, and brightness transformations.

4.4 Experimental results

In this section we present an exhaustive experimental evaluation of the proposed architecture

as well as of the other explored architectures in the task of dense disparity estimation.

Specifically, we first describe the evaluation settings used in our experiments (section 4.4.1),

then we report detailed quantitative results w.r.t. the examined architectures (section 4.4.2),

and finally we provide qualitative results of the proposed Detect, Replace, Refine architecture

and all of its components, trying in this way to more clearly illustrate their role (section

4.4.3).
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4.4.1 Experimental settings

Training set: In order to train the explored architectures we used the large scale synthetic

dataset for disparity estimation that was recently introduced by N. Mayer et al. [101]. We

call this dataset the Synthetic dataset. It consists of three different type of synthetic image

sequences and includes around 34k stereo images. Also, we enriched this training set with

160 images from the training set of the KITTI 2015 dataset [103, 104]2.

Evaluation sets: We evaluated our architectures on three different datasets. On 2000

images from the test split of the Synthetic dataset, on 40 validation images coming from

KITTI 2015 training dataset, and on 15 images from the training set of the Middlebury

dataset [133]. Prior to evaluating the explored architectures in the KITTI 2015 validation

set, we fine-tuned the models that implement them only on the 160 image of the KITTI 2015

training split. In this case, we start training for 20 epochs with a learning rate of 10−4, we

then reduce the learning rate to 10−5 and continue training for 15 epochs, and then reduce

again the learning rate to 10−6 and continue training for 5 more epochs (in total 40 epochs).

The epoch size is set to 400 batch iterations.

Evaluation metrics: For evaluation we used the end-point-error (EPE), which is the

averaged Euclidean distance from the ground truth disparity, and the percentage of disparity

estimates whose absolute difference from the ground truth disparity is more than t pixels (>

t pixel). Those metrics are reported for the non-occluded pixels (Non-Occ), all the pixels

(All), and only the occluded pixels (Occ).

4.4.2 Quantitative results

4.4.2.1 Disparity estimation performance

In Tables 4.1, 4.2, and 4.3 we report the stereo matching performance of the examined

architectures in the Synthetic, Middlebury, and KITTI 2015 evaluation sets correspondingly.

Single-iteration results: We first evaluate all the examined architectures when they are

applied for a single iteration. We observe that all of them are able to improve the initial

2The entire training set of KITTI 2015 includes 200 images. In our case we split those 200 images in 160
images that were used for training purposes and 40 images that were used for validation purposes
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> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures All All All All All
Initial labels Y 24.3175 22.9004 21.9140 21.1680 12.0218

Single-iteration results
Replace (baseline) 12.8007 10.4512 8.8966 7.7467 2.4456
Refine (baseline) 14.5996 12.2246 10.3046 8.7873 2.1235
Replace + Refine 11.1152 9.1821 7.8430 6.8550 2.2356
Detect + Replace 11.6970 9.2419 7.6812 6.6018 2.1504
Detect + Refine 10.5309 8.5565 7.2154 6.2186 1.8210
Parallel 11.0146 8.9261 7.5029 6.4742 2.0241
Detect + Replace + Refine 9.5981 7.9764 6.7895 5.9074 1.8569

Multi-iteration results
Detect + Replace + Refine x2 8.8411 7.2187 6.0987 5.2853 1.6899

Table 4.1: Stereo matching results on the Synthetic dataset.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ
Initial labels Y 18.243 26.714 86.125 15.664 23.986 82.330 14.208 22.282 78.758 13.237 21.044 75.579 6.058 8.709 25.598

Single-iteration results
Replace (baseline) 15.767 21.089 57.197 12.323 16.793 46.303 10.312 14.020 37.922 9.032 12.147 31.770 2.731 3.221 5.818
Refine (baseline) 13.981 19.742 58.039 11.110 16.042 47.732 9.266 13.406 39.218 7.889 11.392 32.467 1.953 2.551 5.665
Replace + Refine 14.262 19.257 52.036 11.297 15.701 43.905 9.552 13.459 37.910 8.408 11.891 33.125 2.292 2.908 6.216
Detect + Replace 15.368 20.984 58.745 11.243 16.169 48.568 8.957 13.176 40.663 7.571 11.179 34.482 2.013 2.676 6.462
Detect + Refine 13.732 19.375 56.383 10.718 15.552 46.281 8.893 12.975 38.197 7.600 11.012 31.478 2.105 2.626 5.389
Parallel 14.917 20.345 57.459 11.363 15.907 46.221 9.234 12.941 37.218 7.840 10.940 30.854 2.012 2.552 5.607
Detect + Replace + Refine 12.845 17.825 50.407 10.096 14.379 41.704 8.285 11.957 34.801 7.057 10.253 29.560 1.774 2.368 5.457

Multi-iteration results
Detect + Replace + Refine x2 11.529 16.414 47.922 8.757 12.874 37.977 6.997 10.482 30.634 5.911 8.916 25.514 1.789 2.321 4.971

Table 4.2: Stereo matching results on Middlebury.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ
Initial labels Y 8.831 10.649 98.098 6.412 8.253 96.559 5.222 7.059 94.742 4.514 6.339 93.139 1.700 2.457 31.214

Single-iteration results
Replace (Baseline) 4.997 5.668 37.327 3.329 3.888 27.890 2.452 2.892 19.643 1.924 2.292 15.226 0.858 0.923 3.165
Refine (Baseline) 4.429 5.165 33.028 3.075 3.714 25.107 2.370 2.924 19.610 1.933 2.404 15.978 0.867 0.953 3.384
Replace + Refine 3.963 4.529 27.411 2.712 3.209 21.465 2.082 2.507 16.481 1.735 2.098 13.611 0.802 0.865 2.859
Detect + Replace 5.126 5.751 35.554 3.469 4.005 27.656 2.517 2.953 20.519 1.911 2.269 15.947 0.886 0.943 3.108
Detect + Refine 4.482 5.169 34.992 3.054 3.634 26.453 2.328 2.799 19.004 1.865 2.258 14.686 0.863 0.926 2.952
Parallel 5.239 5.952 38.392 3.530 4.139 29.436 2.522 3.017 21.208 1.943 2.338 15.748 0.904 0.962 3.095
Detect + Replace + Refine 3.919 4.610 33.947 2.708 3.294 25.697 2.082 2.570 19.123 1.699 2.112 15.140 0.790 0.858 3.056

Multi-iteration results
Detect + Replace + Refine x2 3.685 4.277 28.164 2.577 3.075 20.762 2.001 2.424 16.086 1.652 2.004 13.056 0.779 0.835 2.723

Table 4.3: Stereo matching results on KITTI 2015 validation set.

label estimates Y . However, they do not all of them achieve it with the same success. For

instance, the baseline models Replace and Refine tend to be less accurate than the other

models. Compared to them, the Detect + Replace and the Detect + Refine architectures

perform considerably better in two out of three datasets, the Synthetic and the Middlebury

datasets. This improvement can only be attributed to the error detection step, which is

what distinguishes them from the baselines, and indicates the importance of having an

error detection component in the dense labeling task. Overall, the best single-iteration

performance is achieved by the Detect + Replace + Refine architecture that we propose

here and which combines both the merits of the error detection component and the two

stage refinement strategy. Compared to it, the Parallel architecture has considerably worse
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performance, which indicates that the sequential order in the proposed architecture is

important for achieving accurate results.

Multi-iteration results: We also evaluated our best performing architecture, which

is the Detect + Replace + Refine architecture that we propose, in the multiple iteration

case. Specifically, the last entry Detect + Replace + Refine x2 in Tables 4.1, 4.2, and 4.3

indicates the results of the proposed architecture for 2 iterations and we observe that it further

improves the performance w.r.t. the single iteration case. For more than 2 iterations we did

not see any further improvement and for this reason we chose not to include those results.

Note that in order to train this two iterations model, we first pre-train the single iteration

version and then fine-tune the two iterations version by adding the generated disparity labels

from the first iteration in the training set.

4.4.2.2 Label prediction accuracy Vs initial labels quality

In Figure 4-4 we evaluate the ability of each architecture to predict the correct disparity

label for each pixel x as a function of the “quality” of the initial disparity labels in a w × w

neighborhood of that pixel. To that end, we plot for each architecture the percentage of

erroneously estimated disparity labels as a function of the percentage of erroneous initial

disparity labels that exist in the patch of size w × w centered on the pixel of interest x. In

our case, the size of the neighborhood w is set to 65. An estimated pixel label y′ for the pixel

x is considered erroneous if its absolute difference from the ground truth label is more than

τ0 = 3 pixels. For the initial disparity labels in the patch centered on x, the threshold τ of

considering them incorrect is set to τ = 3 (Fig. 4-4.a), τ = 5 (Fig. 4-4.b), τ = 8 (Fig. 4-4.c),

or τ = 15 (Fig. 4-4.d). We make the following observations (that are more clearly illustrated

from sub-figures 4-4.c and 4-4.d):

• In the case of the Replace and Refine architectures, when the percentage of erroneous

initial labels is low (e.g., less than 10%) then the Refine architecture (which predicts

residual corrections) is considerably more accurate than the Replace architecture

(which directly predicts new label values). However, when the percentage of erroneous

initial labels is high (e.g., more than 20%) then the Replace architecture is more

accurate than the Refine one. This observation supports our argument that residual
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(a) Error threshold τ = 3 pixels (b) Error threshold τ = 5 pixels

(c) Error threshold τ = 8 pixels (d) Error threshold τ = 15 pixels

Figure 4-4: Percentage of erroneously estimated disparity labels for a pixel x as a function of the
percentage of erroneous initial disparity labels in the patch of size w × w centered on the pixel of
interest x. The patch size w is set to 65. An estimated pixel label y′ is considered erroneous if its
absolute difference from the ground truth label is more than τ0 = 3 pixels. For the initial disparity
labels in each patch, the threshold τ of considering them incorrect is set to (a) 3 pixels, (b) 5 pixels,
(c) 8 pixels, and (d) 15 pixels. The evaluation is performed on 50 images of the Synthetic test set.

corrections are more suitable for “soft” mistakes in the initial labels while predicting

an entirely new label value is a better choice for the “hard” mistakes.

• By introducing the error detection component, both the Refine and the Replace

architectures manage to significantly improve their predictions. In the Detect+Refine

case, the improvement is due to the fact that the error detection component sets the

“hard” mistakes to the mean label values (see the description of the Detect+Refine

architecture) thus allowing the Refine component to ignore the values of the “hard”

mistakes of the initial labels and instead make residual predictions w.r.t. the mean

label values (these mean values are fixed and known in advance and thus it is easier

for the network to learn to make residual predictions w.r.t. them). In the case of the
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All / All All / Est Noc / All Noc / Est Runtime
Architectures D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all D1-bg D1-fg D1-all (secs)
Ours 2.58 6.04 3.16 2.58 6.04 3.16 2.34 4.87 2.76 2.34 4.87 2.76 0.4
DispNetC [101] 4.32 4.41 4.34 4.32 4.41 4.34 4.11 3.72 4.05 4.11 3.72 4.05 0.06
PBCB [136] 2.58 8.74 3.61 2.58 8.74 3.6 2.27 7.71 3.17 2.27 7.71 3.17 68
Displets v2 [47] 3.00 5.56 3.43 3.00 5.56 3.43 2.73 4.95 3.09 2.73 4.95 3.09 265
MC-CNN [166] 2.89 8.88 3.89 2.89 8.88 3.88 2.48 7.64 3.33 2.48 7.64 3.33 67
SPS-St [158] 3.84 12.67 5.31 3.84 12.67 5.31 3.50 11.61 4.84 3.50 11.61 4.84 2
MBM [30] 4.69 13.05 6.08 4.69 13.05 6.08 4.33 12.12 5.61 4.33 12.12 5.61 0.13

Table 4.4: Stereo matching results on KITTI 2015 test set.

Detect+Replace architecture, the error detection component “dictates” the Replace

component to predict new label values for the incorrect initial labels while allowing

the propagation of the correct ones in the output.

• Finally, the best “label prediction accuracy Vs initial labels quality” behavior is

achieved by the proposed Detect + Replace + Refine architecture, which efficiently

combines the error detection component with the two-stage label improvement ap-

proach. Interestingly, the improvement margins w.r.t. the rest architectures is increased

as the quality of the initial labels is decreased.

4.4.2.3 KITTI 2015 test set results

We submitted our best solution, which is the proposed Detect + Replace + Refine architecture

applied for two iterations, on the KITTI 2015 test set evaluation server and we achieved

state-of-the-art results in the main evaluation metric, D1-all, surpassing at the time of

submission all prior work by a significant margin. The results of our submission, as well as

of other competing methods, are reported in Table 4.43. Note that our improvement w.r.t. the

best prior approach corresponds to a more than 10% relative reduction of the error rate. Our

total execution time is 0.4 secs, of which around 0.37 secs is used by the patch matching

algorithm for generating the initial disparity labels and the rest 0.03 by our Detect + Replace

+ Refine x2 architecture (measured in a Titan X GPU). For this submission, after having

train the Detect + Replace + Refine x2 model on the training split (160 images), we further

fine-tuned it on both the training and the validation splits (in which we divided the 200

3The link to our KITTI 2015 submission that contains more thorough test set results – both qualitative and
quantitative – is:
http://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?
benchmark=stereo&result=365eacbf1effa761ed07aaa674a9b61c60fe9300
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(a) Image X (b) Initial labels Y (c) Final labels Y ′ (d) Target labels
Figure 4-5: Here we illustrate some examples of the disparity predictions that the “X-Blind”
architecture performs. The illustrated examples are from the Synthetic and the Middlebury datasets.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel EPE
Architectures Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ Non-Occ All Occ

Synthetic dataset
Initial labels Y 24.3175 22.9004 21.9140 21.1680 12.0218
Detect + Replace + Refine 9.5981 7.9764 6.7895 5.9074 1.8569
“X-Blind” 16.0014 14.0196 12.5170 11.3758 3.8810

Middlebury dataset
Initial labels Y 18.243 26.714 86.125 15.664 23.986 82.330 14.208 22.282 78.758 13.237 21.044 75.579 6.058 8.709 25.598
Detect + Replace + Refine 12.845 17.825 50.407 10.096 14.379 41.704 8.285 11.957 34.801 7.057 10.253 29.560 1.774 2.368 5.457
“X-Blind” 16.845 22.037 57.324 14.038 18.562 48.356 12.212 16.217 41.941 10.914 14.509 37.022 2.878 3.656 7.945

KITTI 2015 dataset
Initial labels Y 8.831 10.649 98.098 6.412 8.253 96.559 5.222 7.059 94.742 4.514 6.339 93.139 1.700 2.457 31.214
Detect + Replace + Refine 3.919 4.610 33.947 2.708 3.294 25.697 2.082 2.570 19.123 1.699 2.112 15.140 0.790 0.858 3.056
“X-Blind” 5.040 5.602 32.575 3.671 4.135 24.566 2.722 3.099 18.069 2.191 2.505 14.359 0.910 0.966 2.997

Table 4.5: Stereo matching results for the “X-Blind” architecture. We also include the corresponding
results of the proposed Detect + Replace + Refine architecture to facilitate their comparison.

images of KITTI 2015 training dataset).

4.4.2.4 “X-Blind” Detect + Replace + Refine architecture

Here we evaluate the “X-Blind” architecture that, as already explained, it is exactly the same

as the proposed Detect + Replace + Refine architecture with the only difference being that as

input it gets only the initial labels Y and not the image X . The purpose of evaluating such an

architecture is not to examine a competitive variant of the main Detect + Replace + Refine

architecture, but rather to explore the capabilities of the latter one in such a scenario. In

Table 4.5 we provide the stereo matching results of the “X-Blind” architecture. We observe

that it might not be able to compete the original Detect + Replace + Refine architecture
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but it still can significantly improve the initial disparity label estimates. In Figure 4-5 we

illustrate some disparity prediction examples generated by the “X-Blind” architecture. We

observe that the “X-Blind” architecture manages to considerably improve the quality of the

initial disparity label estimates, however, since it does not have the image X to guide it, it is

not able to accurately reconstruct the disparity field on the borders of the objects.

4.4.3 Qualitative results

This section includes qualitative examples that help illustrating the role of the various

components of our proposed architecture.

4.4.3.1 Error Detection step

In Figure 4-6 we provide additional examples of error probability maps E (that the error

detection component Fe(X, Y ) generated w.r.t. the initial labels Y ) and compare them with

the ground truth error maps of the initial labels. The ground truth error maps are computed

by thresholding the absolute difference of the initial labels Y from the ground truth labels

with a threshold of 3 pixels (red are the erroneous pixel labels in the figure). Note that this is

the logic that is usually followed in the disparity task for considering a pixel label erroneous.

We observe that, despite the fact the error detection component Fe(.) is not explicitly trained

to produce such ground truth error maps, its predictions still highly correlate with them.

This implies that the error detection component Fe(.) seems to have learnt to recognize the

areas that look abnormal/atypical with respect to the joint input-output space {X, Y } (i.e., it

has learnt the “structure” of that space).

4.4.3.2 Replace step

In Figure 4-7 we provide several examples that more clearly illustrate the function performed

by the Replace step in our proposed architecture. Specifically, in sub-figures 4-7a, 4-7b,

and 4-7c we depict the input image X , the initial disparity label estimates Y , and the error

probability map E that the detection component Fe(.) yields for the initial labels Y . In sub-

figure 4-7d we depict the label predictions of the replace component Fu(.). For visualization
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purposes we only depict the Fu(.) pixel predictions that will replace the initial labels that are

incorrect (according to the detection component) by drawing the remaining ones (i.e., those

whose error probability is less than 0.5) with black color. Finally, in the last sub-figure 4-7e

we depict the renewed labels U = E�Fu(X, Y,E)+ (1−E)�Y . We can readily observe

that most of the “hard” mistakes of the initial labels Y have now been crudely “fixed” by the

Replace component.

4.4.3.3 Refine step

In Figure 4-8 we provide several examples that more clearly illustrate the function performed

by the Refine step in our proposed architecture. Specifically, in sub-figures 4-8a, 4-8b, and

4-8c we depict the input image X , the initial disparity label estimates Y , and the renewed

labels U that the Replace step yields. In sub-figure 4-8d we depict the residual corrections

that the Refine component Fr(.) yields for the renewed labels U . Finally, in last sub-figure

4-8e we depict the final label estimates Y ′ = U +Fr(X, Y,E, U) that the Refine step yields.

We observe that most of residual corrections that the Refine component Fr(.) yields are

concentrated on the borders of the objects. Furthermore, by adding those residuals on the

renewed labels U , the Refine step manages to refine the renewed labels U and align the

estimated labels Y ′ with the fine image structures in X .

4.4.3.4 Detect, Replace, Refine pipeline

In Figure 4-9 we illustrate the entire work-flow of the Detect + Replace + Refine architecture

that we propose and we compare its predictions Y ′ with the ground truth disparity labels.

4.4.3.5 Multi-iteration architecture

In Figure 4-10, we illustrate the estimated disparity labels after each iteration of our multi-

iteration architecture Detect + Replace + Refine x2 that in our experiments achieved the

most accurate results. We observe that the 2nd iteration further improves the fine details

of the estimated disparity labels delivering a higher fidelity disparity field. Furthermore,

applying the model for a 2nd iteration results in a disparity field that looks more “natural”,
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i.e., visually plausible.

4.4.3.6 KITTI 2015 qualitative results

We provide qualitative results from KITTI 2015 validation set in Figure 4-11. In order to

generate them we used the Detect + Replace + Refine x2 architecture that gave the best

quantitative results. We observe that our model is able to recover a good estimate of the

actual disparity map even when the initial label estimates are severely corrupted.

4.5 Experiments on semantic segmentation

In this section we provide some preliminary results obtained by applying the proposed

dense image labeling architecture to two semantic segmentation tasks. Note that in semantic

segmentation, each pixel of an image must be labeled with a semantic category (e.g., road,

building, window, door, fence, etc.).

4.5.1 Implementation details for the semantic segmentation case

In order to generate the initial labels Y in the semantic segmentation case we used an FCN

like architecture [92] based on the ResNet50 [57] network backbone. The proposed deep

joint input-output model, apart from the image X and the initial labels Y , also takes as input

feature maps generated by the FCN model during the label initialization step. We found that

this modification improves the quality of the generated labels. We also found advantageous

to apply a binary cross entropy loss on the error detection outputs using ground truth error

maps (defined from the initial label maps and the ground truth label maps) in order to better

force the network to learn the error detection step. Finally, in order to speed-up inference

time, the Detect, Replace, Refine steps are implemented with a single network that predicts

all those three outputs simultaneously.
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4.5.2 Cityscape results

We applied the proposed dense image labeling algorithm in the Cityscapes dataset [16] and

our algorithm manages to improve the segmentation accuracy (measured with the mean

Intersection-over-Union metric) from 70.09% (the Initial labels Y case) to 73.23% (the

Detect + Replace + Refine case). In Figure 4-12 we visualize the initial labels and the labels

estimated by our Detect + Replace + Refine architecture. We observe that the proposed

dense labeling algorithm has managed to improve the labeling accuracy on the borders of

the objects and also to recover objects with thin elongated structures (e.g., poles) that were

lost in the initial labels.

4.5.3 Facade Parsing results

We applied the proposed Detect + Replace + Refine labeling algorithm on the facade parsing

ECP dataset [151] and we provide visualizations in Figure 4-13. We observe again that our

dense labeling algorithms manages to significantly improve the labeling accuracy on the

borders of the objects.

4.6 Conclusions

In this chapter we explored a family of architectures that performs the structured prediction

problem of dense image labeling by learning a deep joint input-output model that (iteratively)

improves some initial estimates of the output labels. In this context our main focus was

on what is the optimal architecture for implementing this deep model. We argued that

the prior approaches of directly predicting the new labels with a feed-forward deep neural

networks are sub-optimal and we proposed to decompose the label improvement step in

three sub-tasks: (1) detection of the incorrect input labels, 2) their replacement with new

labels, and 3) the overall refinement of the output labels in the form of residual corrections.

All three steps are embedded in a unified architecture, which we call Detect + Replace +

Refine, that is end-to-end trainable. We evaluated our architecture in the disparity estimation

(stereo matching) task and we report state-of-the-art results in the KITTI 2015 test set. We
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also performed preliminary experiments in the semantic segmentation tasks and we report

some very promising results.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Predicted errors E (d) Actual errors
Figure 4-6: Illustration of the error probability maps E that the error detection component Fe(X,Y )
yields. The ground truth error maps are computed by thresholding the absolute difference of the
initial labels Y from the ground truth labels with a threshold of 3 pixels (red are the erroneous pixel
labels). Note that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse
and do not cover the entire image (e.g., usually there is no annotation for the sky), which is why
some obviously erroneous initial label estimates are not coloured as incorrect (with red color) in the
ground truth error maps.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Error map E (d) Fu(.) outputs (e) New labels U
Figure 4-7: Here we provide more examples that illustrate the function performed by the Replace
step in our proposed architecture. Specifically, sub-figures (a), (b), and (c) depict the input image X ,
the initial disparity label estimates Y , and the error probability map E that the detection component
Fe(.) yields for the initial labels Y . In sub-figure (d) we depict the label predictions of the replace
component Fu(.). For visualization purposes we only depict the Fu(.) pixel predictions that will
replace the initial labels that are incorrect (according to the detection component) by drawing the
remaining ones (i.e., those whose error probability is less than 0.5) with black color. Finally, in the
last sub-figure (e) we depict the renewed labels U = E � Fu(X,Y,E) + (1 − E) � Y . We can
readily observe that most of the “hard” mistakes of the initial labels Y have now been crudely “fixed”
by the Replace component.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Initial labels Y (c) Labels U (d) Fr(.) residuals (e) Final labels Y ′

Figure 4-8: Here we provide more examples that illustrate the function performed by the Refine
step in our proposed architecture. Specifically, in sub-figures (a), (b), and (c) we depict the input
image X , the initial disparity label estimates Y , and the renewed labels U that the Replace step
yields. In sub-figure (d) we depict the residual corrections that the Refine component Fr(.) yields
for the renewed labels U . Finally, in the last sub-figure (e) we depict the final label estimates
Y ′ = U + Fr(X,Y,E, U) that the Refine step yields.
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Middlebury dataset

Synthetic Dataset

KITTI 2015 Dataset

(a) Image X (b) Init. labels Y (c) Errors E (d) Labels U (e) Final labels Y ′ (f) Targets
Figure 4-9: Illustration of the intermediate steps of the Detect + Replace + Refine work-flow. We
observe that the final Refine component Fr(.), by predicting residual corrections, manages to refine
the renewed labels U and align the output labels Y ′ with the fine image structures in image X . Note
that in the case of the KITTI 2015 dataset, the available ground truth labels are sparse and do not
cover the entire image.
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Middlebury Dataset

Synthetic Dataset

(a) Image X (b) Initial labels Y (c) 1st iter. labels (d) 2nd iter. labels (e) Target labels
Figure 4-10: Illustration of the estimated labels on each iteration of the Detect, Replace, Refine
x2 multi-iteration architecture. The visualised examples are from zoomed-in patches from the
Middlebury and the Synthetic datasets.
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Figure 4-11: Qualitative results in the validation set of KITTI 2015. From left to right, we depict
the left image X , the initial labels Y , the labels Y ′ that our model estimates, and finally the errors of
our estimates w.r.t. ground truth.

167



Figure 4-12: Qualitative results in the validation set of Cityscapes dataset. From left to right, we
depict the input image X , the initial labels Y , the refined labels Y ′ that our model estimates, and
finally the ground truth labels. Note that the black image regions in the ground truth labels correspond
to the unknown category. Those “unknown” image regions are ignored during the evaluation of the
segmentation performance.

168



Figure 4-13: Qualitative results in the Facade parsing dataset. From left to right, we depict the input
image X , the initial labels Y , the refined labels Y ′ that our model estimates, and finally the ground
truth labels.
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Chapter 5

Unsupervised Visual Representation

Learning

5.1 Introduction

The subject of this chapter is unsupervised visual representation learning, i.e., learning

high level ConvNet based representations in an unsupervised manner that avoids manual

annotation of visual data. Lately, there is an increased interest for this problem due to

the desire for a more annotation efficient learning of ConvNet based image understanding

models, which is also one of the main goals of this thesis.

Among the various approaches for unsupervised feature learning, a prominent paradigm

is the so-called self-supervised learning that defines an annotation free pretext task, using

only the visual information present on the images or videos, in order to provide a surrogate

supervision signal for feature learning. For example, in order to learn features, [170] and [81]

train ConvNets to colorize gray scale images, [24] and [111] predict the relative position

of image patches, and [1] predict the egomotion (i.e., self-motion) of a moving vehicle

between two consecutive frames. The rationale behind such self-supervised tasks is that

solving them will force the ConvNet to learn semantic image features that can be useful

for other vision tasks. In fact, image representations learned with the above self-supervised

tasks, although they have not managed to match the performance of supervised-learned

representations, they have proved to be good alternatives for transferring on other vision
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tasks, such as object recognition, object detection, and semantic segmentation [170, 81,

171, 82, 24, 111, 112, 117, 25]. Other successful cases of unsupervised feature learning

are clustering based methods [28, 89, 159], reconstruction based methods [6, 65, 99], and

methods that involve learning generative probabilistic models [45, 26, 123].

Our work follows the self-supervised paradigm and proposes to learn image represen-

tations by training ConvNets to recognize the geometric transformation that is applied to

the image that it gets as input. More specifically, we first define a small set of discrete

geometric transformations, then each of those geometric transformations is applied to each

image in the dataset and the produced transformed images are fed to the ConvNet model

that is trained to recognize the transformation of each image. In this formulation, it is the

set of geometric transformations that actually defines the classification pretext task that the

ConvNet model has to learn. Therefore, in order to achieve unsupervised semantic feature

learning, it is of crucial importance to properly choose those geometric transformations (we

further discuss this aspect of our methodology in section 5.2.2). What we propose is to

define the geometric transformations as the image rotations by 0, 90, 180, and 270 degrees.

Thus, the ConvNet model is trained on the 4-way image classification task of recognizing

one of the four image rotations (see Figure 5-2). We argue that in order for a ConvNet

model to be able recognize the rotation transformation that was applied to an image it will

require to understand the concept of the objects depicted in the image (see Figure 5-1),

such as their location in the image, their type, and their pose. Throughout this chapter we

support that argument both qualitatively and quantitatively. Furthermore we demonstrate in

the experimental section of this chapter that despite the simplicity of our self-supervised

approach, the task of predicting rotation transformations provides a powerful surrogate

supervision signal for feature learning and leads to significant improvements on the relevant

benchmarks.

Note that our self-supervised task is different from the work of Dosovitskiy et al. [28]

and Agrawal et al. [1] that also involve geometric transformations. Dosovitskiy et al. [28]

train a ConvNet model to yield representations that are discriminative between images and

at the same time invariant on geometric and chromatic transformations. In contrast, we train

a ConvNet model to recognize the geometric transformation applied to an image. It is also
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90◦ rotation 270◦ rotation 180◦ rotation 0◦ rotation 270◦ rotation

Figure 5-1: Images rotated by random multiples of 90 degrees (e.g., 0, 90, 180, or 270 degrees). The
core intuition of our self-supervised feature learning approach is that if someone is not aware of the
concepts of the objects depicted in the images, he cannot recognize the rotation that was applied to
them.

fundamentally different from the egomotion method of Agrawal et al. [1], which employs

a ConvNet model with siamese like architecture that takes as input two consecutive video

frames and is trained to predict (through regression) their camera transformation. Instead, in

our approach, the ConvNet takes as input a single image to which we have applied a random

geometric transformation (i.e., rotation) and is trained to recognize (through classification)

this geometric transformation without having access to the initial image.

To summarize, the contribution of the work presented in this chapter are as follows:

• We propose a new self-supervised task that is very simple and at the same time, as we

demonstrate throughout this chapter, offers a powerful supervisory signal for semantic

feature learning.

• We exhaustively evaluate our self-supervised method under various settings (e.g. semi-

supervised or transfer learning settings) and in various vision tasks (i.e., CIFAR-10,

ImageNet, Places, and PASCAL classification, detection, or segmentation tasks).

• In all of them, our novel self-supervised formulation demonstrates state-of-the-art

results with dramatic improvements w.r.t. prior unsupervised approaches.

• As a consequence we show that for several important vision tasks, our self-supervised

learning approach significantly narrows the gap between unsupervised and supervised

feature learning.

In the following sections, we describe our self-supervised methodology in §2, we provide

experimental results in §3, and finally we conclude in §4.
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5.2 Methodology

5.2.1 Overview

The goal of our work is to learn ConvNet based semantic features in an unsupervised manner.

To achieve that goal we propose to train a ConvNet model F (.) to estimate the geometric

transformation applied to an image that is given to it as input. Specifically, we define a set

of K discrete geometric transformations G = {g(.|y)}Ky=1, where g(.|y) is the operator that

applies to image X the geometric transformation with label y that yields the transformed

image Xy = g(X|y). The ConvNet model F (.) gets as input an image Xy∗ (where the label

y∗ is unknown to model F (.)) and yields as output a probability distribution over all possible

geometric transformations:

F (Xy∗|θ) = {F y(Xy∗|θ)}Ky=1, (5.1)

where F y(Xy∗|θ) is the predicted probability for the geometric transformation with label y

and θ are the learnable parameters of model F (.).

Therefore, given a set of N training images D = {Xi}Ni=1, the self-supervised training

objective that the ConvNet model must learn to solve is:

min
θ

1

N

N∑
i=1

loss(Xi, θ), (5.2)

where the loss function loss(.) is defined as:

loss(Xi, θ) = −
1

K

K∑
y=1

log(F y(g(Xi|y)|θ)). (5.3)

In the following subsection we describe the type of geometric transformations that we

propose in our work.
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Image X

Predict 270 degrees rotation (y=3)Rotate 270 degrees

g (X , y=3)

Rotate 180 degrees

g (X , y=2)
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g (X , y=1)

Rotate 0 degrees

g (X , y=0)

Maximize prob.
F 3

(X 3
)

Predict 0 degrees rotation (y=0)

Maximize prob.
F 2

(X 2
)

Maximize prob.
F1

(X 1
)

Maximize prob.
F 0

(X 0
)

Predict 180 degrees rotation (y=2)

Predict 90 degrees rotation (y=1)

Objectives:

Figure 5-2: Illustration of the self-supervised task that we propose for semantic feature learning.
Given four possible geometric transformations, the 0, 90, 180, and 270 degrees rotations, we train
a ConvNet model F (.) to recognize the rotation that is applied to the image that it gets as input.
F y(Xy∗) is the probability of rotation transformation y predicted by model F (.) when it gets as
input an image that has been transformed by the rotation transformation y∗.

5.2.2 Choosing geometric transformations: image rotations

In the above formulation, the geometric transformations G must define a classification

task that should force the ConvNet model to learn semantic features useful for visual

perception tasks (e.g., object detection or image classification). In our work we propose

to define the set of geometric transformations G as all the image rotations by multiples of

90 degrees, i.e., 2d image rotations by 0, 90, 180, and 270 degrees (see Figure 5-2). More

formally, if Rot(X,φ) is an operator that rotates image X by φ degrees, then our set of

geometric transformations consists of the K = 4 image rotations G = {g(X|y)}4y=1, where

g(X|y) = Rot(X, (y − 1)90).

Forcing the learning of semantic features: The core intuition behind using these

image rotations as the set of geometric transformations relates to the simple fact that it

is essentially impossible for a ConvNet model to effectively perform the above rotation

recognition task unless it has first learnt to recognize and detect classes of objects as well
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Input images on the models

Conv1 27× 27 Conv3 13× 13 Conv5 6× 6

(a) Attention maps of supervised model

Conv1 27× 27 Conv3 13× 13 Conv5 6× 6

(b) Attention maps of self-supervised model

Figure 5-3: Attention maps generated by an AlexNet model trained (a) to recognize objects (super-
vised), and (b) to recognize image rotations (self-supervised). In order to generate the attention map
of a conv. layer we first compute the feature maps of this layer, then we raise each feature activation
on the power p, and finally we sum the activations at each location of the feature map. For the conv.
layers 1, 2, and 3 we used the powers p = 1, p = 2, and p = 4 respectively. For visualization of our
self-supervised model’s attention maps for all the rotated versions of the images see Figure 5-6.

as their semantic parts in images. More specifically, to successfully predict the rotation

of an image the ConvNet model must necessarily learn to localize salient objects in the

image, recognize their orientation and object type, and then relate the object orientation with

the dominant orientation that each type of object tends to be depicted within the available

images. In Figure 5-3b we visualize some attention maps generated by a model trained on

the rotation recognition task. These attention maps are computed based on the magnitude

of activations at each spatial cell of a convolutional layer and essentially reflect where the

network puts most of its focus in order to classify an input image. We observe, indeed, that

in order for the model to accomplish the rotation prediction task it learns to focus on high
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(a) Supervised model (b) Our self-supervised model

Figure 5-4: First layer filters learned by a AlexNet model trained on (a) the supervised object
recognition task and (b) the self-supervised task of recognizing rotated images. We observe that the
filters learned by the self-supervised task are mostly oriented edge filters on various frequencies and,
remarkably, they seem to have more variety than those learned on the supervised task.

level object parts in the image, such as eyes, nose, tails, and heads. By comparing them

with the attention maps generated by a model trained on the object recognition task in a

supervised way (see Figure 5-3a) we observe that both models seem to focus on roughly the

same image regions.

In Figure 5-6 we visualize the attention maps for all the rotated copies of the images. We

observe that the attention maps of all the rotated copies of an image are roughly the same,

i.e., the attention maps are equivariant w.r.t. the image rotations. This practically means that

in order to accomplish the rotation prediction task the network focuses on the same object

parts regardless of the image rotation. Furthermore, in Figure 5-4 we visualize the first layer

filters that were learnt by an AlexNet model trained on the proposed rotation recognition

task. As can be seen, they appear to have a big variety of edge filters on multiple orientations

and multiple frequencies. Remarkably, these filters seem to have a greater amount of variety

even than the filters learnt by the supervised object recognition task.

Absence of low-level visual artifacts: An additional important advantage of using

image rotations by multiples of 90 degrees over other geometric transformations, is that they
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can be implemented by flip and transpose operations (as we will see below) that do not leave

any easily detectable low-level visual artifacts that will lead the ConvNet to learn trivial

features with no practical value for the vision perception tasks. In contrast, had we decided

to use as geometric transformations, e.g., scale and aspect ratio image transformations, in

order to implement them we would need to use image resizing routines that leave easily

detectable image artifacts.

Well-posedness: Furthermore, human captured images tend to depict objects in an

“up-standing” position, thus making the rotation recognition task well defined, i.e., given an

image rotated by 0, 90, 180, or 270 degrees, there is usually no ambiguity of what is the

rotation transformation (with the exception of images that only depict round objects). In

contrast, that is not the case for the object scale that varies significantly on human captured

images.

Implementing image rotations: In order to implement the image rotations by 90, 180,

and 270 degrees (the 0 degrees case is the image itself), we use flip and transpose operations.

Specifically, for 90 degrees rotation we first transpose the image and then flip it vertically

(upside-down flip), for 180 degrees rotation we flip the image first vertically and then

horizontally (left-right flip), and finally for 270 degrees rotation we first flip vertically the

image and then we transpose it.

5.2.3 Discussion

The simple formulation of our self-supervised task has several advantages. It has the

same computational cost as supervised learning, similar training convergence speed (that

is significantly faster than image reconstruction based approaches; our AlexNet model

trains in around 2 days using a single Titan X GPU), and can trivially adopt the efficient

parallelization schemes devised for supervised learning [46], making it an ideal candidate

for unsupervised learning on internet-scale data (i.e., billions of images). Furthermore, our

approach does not require any special image pre-processing routine in order to avoid learning

trivial features, as many other unsupervised or self-supervised approaches do. Despite the

simplicity of our self-supervised formulation, as we will see in the experimental section of
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this chapter, the features learned by our approach achieve dramatic improvements on the

unsupervised feature learning benchmarks.

5.3 Experimental Results

In this section we conduct an extensive evaluation of our approach on the most com-

monly used image datasets, such as CIFAR-10 [77], ImageNet [129], PASCAL [31], and

Places205 [175], as well as on various vision tasks, such as object detection, object seg-

mentation, and image classification. We also consider several learning scenarios, including

transfer learning and semi-supervised learning. In all cases, we compare our approach with

corresponding state-of-the-art methods.

5.3.1 CIFAR experiments

We start by evaluating on the object recognition task of CIFAR-10 the ConvNet based

features learned by the proposed self-supervised task of rotation recognition. We will here

after call a ConvNet model that is trained on the self-supervised task of rotation recognition

RotNet model.

Implementation details: In our CIFAR-10 experiments we implement the RotNet

models with Network-In-Network (NIN) architectures [90]. In order to train them on the

rotation prediction task, we use SGD with batch size 128, momentum 0.9, weight decay

5e − 4 and lr of 0.1. We drop the learning rates by a factor of 5 after epochs 30, 60, and

80. We train in total for 100 epochs. In our preliminary experiments we found that we get

significant improvement when during training we train the network by feeding it all the four

rotated copies of an image simultaneously instead of each time randomly sampling a single

rotation transformation. Therefore, at each training batch the network sees 4 times more

images than the batch size.

Evaluation of the learned feature hierarchies: First, we explore how the quality of

the learned features depends on their depth (i.e., the depth of the layer that they come from)

as well as from the total depth of the RotNet model. For that purpose, we first train using the

CIFAR-10 training images three RotNet models which have 3, 4, and 5 convolutional blocks
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Model ConvB1 ConvB2 ConvB3 ConvB4 ConvB5

RotNet with 3 conv. blocks 85.45 88.26 62.09 - -
RotNet with 4 conv. blocks 85.07 89.06 86.21 61.73 -
RotNet with 5 conv. blocks 85.04 89.76 86.82 74.50 50.37

Table 5.1: Evaluation of the unsupervised learned features by measuring the classification accuracy
that they achieve when we train a non-linear object classifier on top of them. The reported results
are from CIFAR-10. The size of the ConvB1 feature maps is 96× 16× 16 and the size of the other
feature maps is 192× 8× 8.

respectively (note that each conv. block in the NIN architectures that implement our RotNet

models have 3 conv. layers; therefore, the total number of conv. layers of the examined

RotNet models is 9, 12, and 15 for 3, 4, and 5 conv. blocks respectively). Afterwards, we

learn classifiers on top of the feature maps generated by each conv. block of each RotNet

model. Those classifiers are trained in a supervised way on the object recognition task of

CIFAR-10. They consist of 3 fully connected layers; the 2 hidden layers have 200 feature

channels each and are followed by batch-norm and relu units. We report the accuracy results

of CIFAR-10 test set in Table 5.1. We observe that in all cases the feature maps generated

by the 2nd conv. block (that actually has depth 6 in terms of the total number of conv.

layer till that point) achieve the highest accuracy, i.e., between 88.26% and 89.06%. The

features of the conv. blocks that follow the 2nd one gradually degrade the object recognition

accuracy, which we assume is because they start becoming more and more specific on the

self-supervised task of rotation prediction. Also, we observe that increasing the total depth

of the RotNet models leads to increased object recognition performance by the feature maps

generated by earlier layers (and after the 1st conv. block). We assume that this is because

increasing the depth of the model and thus the complexity of its head (i.e., top ConvNet

layers) allows the features of earlier layers to be less specific to the rotation prediction task.

Exploring the quality of the learned features w.r.t. the number of recognized ro-

tations: In Table 5.2 we explore how the quality of the self-supervised features depends

on the number of discrete rotations used in the rotation prediction task. For that purpose

we defined three extra rotation recognition tasks: (a) one with 8 rotations that includes all

the multiples of 45 degrees, (b) one with only the 0◦ and 180◦ rotations, and (c) one with

only the 90◦ and 270◦ rotations. In order to implement the rotation transformation of the
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# Rotations Rotations Classification Accuracy

4 0◦, 90◦, 180◦, 270◦ 89.06
8 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦ 88.51
2 0◦, 180◦ 87.46
2 90◦, 270◦ 85.52

Table 5.2: Exploring the quality of the self-supervised learned features w.r.t. the number of recog-
nized rotations. For all the entries we trained a non-linear classifier with 3 fully connected layers
(similar to Table 5.1) on top of the feature maps generated by the 2nd conv. block of a RotNet model
with 4 conv. blocks in total. The reported results are from CIFAR-10.

45◦, 135◦, 225◦, 270◦, and 315◦ rotations (in the 8 discrete rotations case) we used an image

wrapping routine and then we took care to crop only the central square image regions that

do not include any of the empty image areas introduced by the rotation transformations

(and which can easily indicate the image rotation). We observe that indeed for 4 discrete

rotations (as we proposed) we achieve better object recognition performance than the 8

or 2 cases. We believe that this is because the 2 orientations case offers too few classes

for recognition (i.e., less supervisory information is provided) while in the 8 orientations

case the geometric transformations are not distinguishable enough and furthermore the 4

extra rotations introduced may lead to visual artifacts on the rotated images. Moreover, we

observe that among the RotNet models trained with 2 discrete rotations, the RotNet model

trained with 90◦ and 270◦ rotations achieves worse object recognition performance than

the model trained with the 0◦ and 180◦ rotations, which is probably due to the fact that the

former model does not “see” during the unsupervised phase the 0◦ rotation that is typically

used during the object recognition training phase.

Comparison against supervised and other unsupervised methods: In Table 5.3 we

compare our unsupervised learned features against other unsupervised (or hand-crafted)

features on CIFAR-10. For our entries we use the feature maps generated by the 2nd conv.

block of a RotNet model with 4 conv. blocks in total. On top of those RotNet features we

train 2 different classifiers: (a) a non-linear classifier with 3 fully connected layers as before

(entry (Ours) RotNet + non-linear), and (b) three conv. layers plus a linear prediction layer

(entry (Ours) RotNet +conv.; note that this entry is basically a 3 blocks NIN model with

the first 2 blocks coming from a RotNet model and the 3rd being randomly initialized and
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Method Classification Accuracy

Supervised NIN 92.80

Random Init. + conv 72.50

(Ours) RotNet + non-linear 89.06
(Ours) RotNet + conv 91.16

(Ours) RotNet + non-linear (fine-tuned) 91.73
(Ours) RotNet + conv (fine-tuned) 92.17

Roto-Scat + SVM [115] 82.3
ExemplarCNN [28] 84.3
DCGAN [123] 82.8
Scattering [114] 84.7

Table 5.3: Evaluation of unsupervised feature learning methods on CIFAR-10. The Supervised NIN
and the (Ours) RotNet + conv entries have exactly the same architecture but the first was trained fully
supervised while on the second the first 2 conv. blocks were trained unsupervised with our rotation
prediction task and the 3rd block only was trained in a supervised manner. In the Random Init. +
conv entry a conv. classifier (similar to that of (Ours) RotNet + conv) is trained on top of two NIN
conv. blocks that are randomly initialized and stay frozen. Note that each of the prior approaches has
a different ConvNet architecture and thus the comparison with them is just indicative.

Classes aero car bird cat deer dog frog horse ship truck

Supervised NIN 93.7 96.3 89.4 82.4 93.6 89.7 95.0 94.3 95.7 95.2
(Ours) RotNet + conv 91.7 95.8 87.1 83.5 91.5 85.3 94.2 91.9 95.7 94.2

Table 5.4: Per class CIFAR-10 classification accuracy.

trained on the recognition task). We observe that we improve over the prior unsupervised

approaches and we achieve state-of-the-art results in CIFAR-10 (note that each of the prior

approaches has a different ConvNet architecture thus the comparison with them is just

indicative). More notably, the accuracy gap between the RotNet based model and the fully

supervised NIN model is very small, only 1.64 percentage points (92.80% vs 91.16%). We

provide per class breakdown of the classification accuracy of our unsupervised model as

well as the supervised one in Table 5.4. In Table 5.3 we also report the performance of the

RotNet features when, instead of being kept frozen, they are fine-tuned during the object

recognition training phase. We observe that fine-tuning the unsupervised learned features

further improves the classification performance, thus reducing even more the gap with the

supervised case.

Correlation between object classification task and rotation prediction task: In Fig-
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(a) (b)

Figure 5-5: (a) Plot with the rotation prediction accuracy and object recognition accuracy as a
function of the training epochs used for solving the rotation prediction task. The red curve is the
object recognition accuracy of a fully supervised model (a NIN model), which is independent from
the training epochs on the rotation prediction task. The yellow curve is the object recognition
accuracy of an object classifier trained on top of feature maps learned by a RotNet model at different
snapshots of the training procedure. (b) Accuracy as a function of the number of training examples
per category in CIFAR-10. Ours semi-supervised is a NIN model whose first 2 conv. blocks are
RotNet model that was trained in a self-supervised way on the entire training set of CIFAR-10 and
the 3rd conv. block along with a prediction linear layer that was trained with the object recognition
task only on the available set of labeled images.

ure 5-5a, we plot the object classification accuracy as a function of the training epochs used

for solving the self-supervised task of recognizing rotations, which learns the features used

by the object classifier. More specifically, in order to create the object recognition accuracy

curve, in each training snapshot of RotNet (i.e., every 20 epochs), we pause its training

procedure and we train from scratch (until convergence) a non-linear object classifier on

top of the so far learnt RotNet features. Therefore, the object recognition accuracy curve

depicts the accuracy of those non-linear object classifiers after the end of their training

while the rotation prediction accuracy curve depicts the accuracy of the RotNet at those

snapshots. We observe that, as the ability of the RotNet features for solving the rotation

prediction task improves (i.e., as the rotation prediction accuracy increases), their ability

to help solving the object recognition task improves as well (i.e., the object recognition

accuracy also increases). Furthermore, we observe that the object recognition accuracy

converges fast w.r.t. the number of training epochs used for solving the pretext task of

rotation prediction.
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Semi-supervised setting: Motivated by the very high performance of our unsupervised

feature learning method, we also evaluate it on a semi-supervised setting. More specifically,

we first train a 4 block RotNet model on the rotation prediction task using the entire image

dataset of CIFAR-10 and then we train on top of its feature maps object classifiers using

only a subset of the available images and their corresponding labels. As feature maps we

use those generated by the 2nd conv. block of the RotNet model. As a classifier we use a set

of convolutional layers that actually has the same architecture as the 3rd conv. block of a

NIN model plus a linear classifier, all randomly initialized. For training the object classifier

we use for each category 20, 100, 400, 1000, or 5000 image examples. Note that 5000

image examples is the extreme case of using the entire CIFAR-10 training dataset. Also, we

compare our method with a supervised model that is trained only on the available examples

each time. In Figure 5-5b we plot the accuracy of the examined models as a function of the

available training examples. We observe that our unsupervised trained model exceeds in this

semi-supervised setting the supervised model when the number of examples per category

drops below 1000. Furthermore, as the number of examples decreases, the performance gap

in favor of our method is increased. This empirical evidence demonstrates the usefulness of

our method on semi-supervised settings.

5.3.2 Evaluation of self-supervised features trained in ImageNet

Here we evaluate the performance of our self-supervised ConvNet models on the ImageNet,

Places, and PASCAL VOC datasets. Specifically, we first train a RotNet model on the

training images of the ImageNet dataset and then we evaluate the performance of the self-

supervised features on the image classification tasks of ImageNet, Places, and PASCAL

VOC datasets and on the object detection and object segmentation tasks of PASCAL VOC.

Implementation details: For those experiments we implemented our RotNet model

with an AlexNet architecture. Our implementation of the AlexNet model does not have

local response normalization units, dropout units, or groups in the colvolutional layers while

it includes batch normalization units after each linear layer (either convolutional or fully

connected)1. In order to train the AlexNet based RotNet model, we use SGD with batch
1For the definition of the AlexNet model that we used see:
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Method Conv4 Conv5

ImageNet labels from [7] 59.7 59.7

Random from [111] 27.1 12.0

Tracking [156] 38.8 29.8
Context [24] 45.6 30.4
Colorization [170] 40.7 35.2
Jigsaw Puzzles [111] 45.3 34.6
BIGAN [26] 41.9 32.2
NAT [7] - 36.0

(Ours) RotNet 50.0 43.8
Table 5.5: Task Generalization: ImageNet top-1 classification with non-linear layers. We
compare our unsupervised feature learning approach with other unsupervised approaches by training
non-linear classifiers on top of the feature maps of each layer to perform the 1000-way ImageNet
classification task, as proposed by [111]. For instance, for the conv5 feature map we train the layers
that follow the conv5 layer in the AlexNet architecture (i.e., fc6, fc7, and fc8). Similarly for the conv4
feature maps. We implemented those non-linear classifiers with batch normalization units after each
linear layer (fully connected or convolutional) and without employing drop out units. All approaches
use AlexNet variants and were pre-trained on ImageNet without labels except the ImageNet labels
and Random entries. During testing we use a single crop and do not perform flipping augmentation.
We report top-1 classification accuracy.

size 192, momentum 0.9, weight decay 5e− 4 and lr of 0.01. We drop the learning rates

by a factor of 10 after epochs 10, and 20 epochs. We train in total for 30 epochs. As in the

CIFAR experiments, during training we feed the RotNet model all four rotated copies of an

image simultaneously (in the same mini-batch).

ImageNet classification task: We evaluate the task generalization of our self-supervised

learned features by training on top of them non-linear object classifiers for the ImageNet

classification task (following the evaluation scheme of [111]). In Table 5.5 we report the

classification performance of our self-supervised features and we compare it with the other

unsupervised approaches. We observe that our approach surpasses all the other methods by

a significant margin. For the feature maps generated by the Conv4 layer, our improvement

is more than 4 percentage points and for the feature maps generated by the Conv5 layer,

our improvement is even bigger, around 8 percentage points. Furthermore, our approach

significantly narrows the performance gap between unsupervised features and supervised

https://github.com/gidariss/FeatureLearningRotNet/blob/master/
architectures/AlexNet.py
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Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet labels 19.3 36.3 44.2 48.3 50.5

Random 11.6 17.1 16.9 16.3 14.1
Random rescaled [74] 17.5 23.0 24.5 23.2 20.6

Context [24] 16.2 23.3 30.2 31.7 29.6
Context Encoders [118] 14.1 20.7 21.0 19.8 15.5
Colorization [170] 12.5 24.5 30.4 31.5 30.3
Jigsaw Puzzles [111] (from [112]) 18.2 28.8 34.0 33.9 27.1
BIGAN [26] 17.7 24.5 31.0 29.9 28.0
Split-Brain [171] 17.7 29.3 35.4 35.2 32.8
Counting [112] 18.0 30.6 34.3 32.5 25.7

(Ours) RotNet 18.8 31.7 38.7 38.2 36.5
Table 5.6: Task Generalization: ImageNet top-1 classification with linear layers. We compare
our unsupervised feature learning approach with other unsupervised approaches by training logistic
regression classifiers on top of the feature maps of each layer to perform the 1000-way ImageNet
classification task, as proposed by [170]. All weights are frozen and feature maps are spatially
resized (with adaptive max pooling) so as to have around 9000 elements (as proposed by [170]).
All approaches use AlexNet variants and were pre-trained on ImageNet without labels except the
ImageNet labels and Random entries.

features. In Table 5.6 we report similar results but for linear (logistic regression) classifiers

(following the evaluation scheme of [170]). Again, our unsupervised method demonstrates

significant improvements over prior unsupervised methods.

Transfer learning evaluation on PASCAL VOC: In Table 5.8 we evaluate the task

and dataset generalization of our unsupervised learned features by fine-tuning them on the

PASCAL VOC classification, detection, and segmentation tasks. As with the ImageNet

classification task, we outperform by significant margin all the competing unsupervised

methods in all tested tasks, significantly narrowing the gap with the supervised case. Notably,

the PASCAL VOC 2007 object detection performance that our self-supervised model

achieves is 54.4% mAP, which is only 2.4 points lower than the supervised case. We provide

the per class detection performance of our method in Table 5.9).

Places classification task: In Table 5.7 we evaluate the task and dataset generalization

of our approach by training linear (logistic regression) classifiers on top of the learned

features in order to perform the 205-way Places classification task. Note that in this case the

learnt features are evaluated w.r.t. their generalization on classes that were “unseen” during
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Method Conv1 Conv2 Conv3 Conv4 Conv5

Places labels [175] 22.1 35.1 40.2 43.3 44.6
ImageNet labels 22.7 34.8 38.4 39.4 38.7

Random 15.7 20.3 19.8 19.1 17.5
Random rescaled [74] 21.4 26.2 27.1 26.1 24.0

Context [24] 19.7 26.7 31.9 32.7 30.9
Context Encoders [118] 18.2 23.2 23.4 21.9 18.4
Colorization [170] 16.0 25.7 29.6 30.3 29.7
Jigsaw Puzzles [111] (from [112]) 23.0 31.9 35.0 34.2 29.3
BIGAN [26] 22.0 28.7 31.8 31.3 29.7
Split-Brain [171] 21.3 30.7 34.0 34.1 32.5
Counting [112] 23.3 33.9 36.3 34.7 29.6

(Ours) RotNet 21.5 31.0 35.1 34.6 33.7
Table 5.7: Task & Dataset Generalization: Places top-1 classification with linear layers. We
compare our unsupervised feature learning approach with other unsupervised approaches by training
logistic regression classifiers on top of the feature maps of each layer to perform the 205-way scene
classification task of Places205 dataset [175]. All unsupervised methods are pre-trained (in an
unsupervised way) on ImageNet. All weights are frozen and feature maps are spatially resized (with
adaptive max pooling) so as to have around 9000 elements. All approaches use AlexNet variants and
were pre-trained on ImageNet without labels except the Place labels, ImageNet labels, and Random
entries.

the unsupervised training phase. As can be seen, even in this case our method manages

to either surpass or achieve comparable results w.r.t. prior state-of-the-art unsupervised

learning approaches.

5.4 Conclusions

In this chapter we proposed a novel formulation for self-supervised feature learning that

trains a ConvNet model to be able to recognize the image rotation that has been applied to

its input images. Despite the simplicity of our self-supervised task, we demonstrated that it

successfully forces the ConvNet model trained on it to learn semantic features that are useful

for a variety of visual perception tasks, such as object recognition, object detection, and

object segmentation. We exhaustively evaluated our method in various unsupervised and

semi-supervised benchmarks and we achieved in all of them state-of-the-art performance.

Specifically, our self-supervised approach managed to drastically improve the state-of-the-art
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Classification Detection Segmentation
(%mAP) (%mAP) (%mIoU)

Trained layers fc6-8 all all all

ImageNet labels 78.9 79.9 56.8 48.0

Random 53.3 43.4 19.8
Random rescaled [74] 39.2 56.6 45.6 32.6

Egomotion [1] 31.0 54.2 43.9
Context Encoders [118] 34.6 56.5 44.5 29.7
Tracking [156] 55.6 63.1 47.4
Context [24] 55.1 65.3 51.1
Colorization [170] 61.5 65.6 46.9 35.6
BIGAN [26] 52.3 60.1 46.9 34.9
Jigsaw Puzzles [111] - 67.6 53.2 37.6
NAT [7] 56.7 65.3 49.4
Split-Brain [171] 63.0 67.1 46.7 36.0
ColorProxy [82] 65.9 38.4
Counting [112] - 67.7 51.4 36.6

(Ours) RotNet 70.9 73.0 54.4 39.1
Table 5.8: Task & Dataset Generalization: PASCAL VOC 2007 classification and detection
results, and PASCAL VOC 2012 segmentation results. We used the publicly available testing
frameworks of [74] for classification, of [42] for detection, and of [92] for segmentation. For
classification, we either fix the features before conv5 (column fc6-8) or we fine-tune the whole model
(column all). For detection we use multi-scale training and single scale testing. All approaches
use AlexNet variants and were pre-trained on ImageNet without labels except the ImageNet labels
and Random entries. After unsupervised training, we absorb the batch normalization units in the
linear layers and we use the weight rescaling technique proposed by [74] (which is common among
the unsupervised methods). As customary, we report the mean average precision (mAP) on the
classification and detection tasks, and the mean intersection over union (mIoU) on the segmentation
task.

Classes aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

ImageNet labels 64.0 69.6 53.2 44.4 24.9 65.7 69.6 69.2 28.9 63.6 62.8 63.9 73.3 64.6 55.8 25.7 50.5 55.4 69.3 56.4
(Ours) RotNet 65.5 65.3 43.8 39.8 20.2 65.4 69.2 63.9 30.2 56.3 62.3 56.8 71.6 67.2 56.3 22.7 45.6 59.5 71.6 55.3

Table 5.9: Per class PASCAL VOC 2007 detection performance. As usual, we report the average
precision metric. The results of the supervised model (i.e., ImageNet labels entry) come from [24].

results on unsupervised feature learning for ImageNet classification, PASCAL classifica-

tion, PASCAL detection, PASCAL segmentation, and CIFAR-10 classification, surpassing

prior approaches by a significant margin and thus drastically reducing the gap between

unsupervised and supervised feature learning.
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0◦ rotation 90◦ rotation 180◦ rotation 270◦ rotation
(a) Attention maps of Conv3 feature maps (size: 13× 13)

0◦ rotation 90◦ rotation 180◦ rotation 270◦ rotation
(b) Attention maps of Conv5 feature maps (size: 6× 6)

Figure 5-6: Attention maps of the Conv3 and Conv5 feature maps generated by an AlexNet model
trained on the self-supervised task of recognizing image rotations. Here we present the attention
maps generated for all the 4 rotated copies of an image.
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Chapter 6

Few-Shot Visual Learning without

Forgetting

6.1 Introduction

Over the last few years, deep convolutional neural networks [78, 144, 148, 57] (ConvNets)

have achieved impressive results on image classification tasks, such as object recogni-

tion [129] or scene classification [175]. However, in order for a ConvNet to successfully

learn to recognize a set of visual categories (e.g., object categories or scene types), it requires

to manually collect and label thousands of training examples per target category and to apply

on them an iterative gradient based optimization routine [84] that is extremely computation-

ally expensive, e.g., it can consume hundreds or even thousands of GPU hours. Moreover,

the set of categories that the ConvNet model can recognize remains fixed after training. In

case we would like to expand the set of categories that the ConvNet can recognize, then we

need to collect training data for the novel categories (i.e., those that they were not in the

initial training set) and restart the aforementioned computationally costly training procedure

this time on the enhanced training set such that we will avoid catastrophic interference. Even

more, it is of crucial importance to have enough training data for the novel categories (e.g.,

thousands of examples per category) otherwise we risk overfitting on them.

In contrast, the human visual system exhibits the remarkably ability to be able to

effortlessly learn novel concepts from only one or a few examples and reliably recognize
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them later on. It is assumed that the reason the human visual system is so efficient when

learning novel concepts is that it exploits its past experiences about the (visual) world. For

example, a child, having accumulated enough knowledge about mammal animals and in

general the visual world, can easily learn and generalize the visual concept of “rhinoceros”

from only a single image. Mimicking that behavior on artificial vision systems is an

interesting and very challenging research problem with many practical advantages, such as

developing real-time interactive vision applications for portable devices (e.g., cell-phones),

and aligned with our goal of annotation efficient learning.

Research on this subject is usually termed few-shot learning. However, most prior

methods neglect to fulfill two very important requirements for a good few-shot learning

system: (a) the learning of the novel categories needs to be fast, and (b) to not sacrifice

any recognition accuracy on the initial categories that the ConvNet was trained on, i.e., to

not “forget” (from now on we will refer to those initial categories by calling them base

categories). Motivated by this observation, in this work we propose to tackle the problem

of few-shot learning under a more realistic setting, where a large set of training data is

assumed to exist for a set of base categories and, using these data as the sole input, we want

to develop an object recognition learning system that, not only is able to recognize these

base categories, but also learns to dynamically recognize novel categories from only a few

training examples (provided only at test time) while also not forgetting the base ones or

requiring to be re-trained on them (dynamic few-shot learning without forgetting). Compared

to prior approaches, we believe that this setting more closely resembles the human visual

system behavior (w.r.t. how it learns novel concepts). In order to achieve our goal, we

propose two technical novelties.

Few-shot classification-weight generator based on attention. A typical ConvNet

based recognition model, in order to classify an image, first extracts a high level feature

representation from it and then computes per category classification scores by applying a set

of classification weight vectors (one per category) to the feature. Therefore, in order to be

able to recognize novel categories we must be able to generate classification weight vectors

for them. In this context, the first technical novelty of our work is that we enhance a typical

object recognition system with an extra component, called few-shot classification weight
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generator that accepts as input a few training examples of a novel category (e.g., no more

than five examples) and, based on them, generates a classification weight vector for that novel

category. Its key characteristic is that in order to compose novel classification weight vectors,

it explicitly exploits the acquired past knowledge about the visual world by incorporating

an attention mechanism over the classification weight vectors of the base categories. This

attention mechanism offers a significant boost on the recognition performance of novel

categories, especially when there is only a single training example available for learning

them.

Cosine-similarity based ConvNet recognition model. In order for the few-shot clas-

sification weight generator to be successfully incorporated into the rest of the recognition

system, it is essential the ConvNet model to be able to simultaneously handle the classi-

fication weight vectors of both base and novel categories. However, as we will explain

in the methodology, this is not feasible with the typical dot-product based classifier (i.e.,

the last linear layer of a classification neural network). Therefore, in order to overcome

this serious issue, our second technical novelty is to implement the classifier as a cosine

similarity function between the feature representations and the classification weight vectors.

Apart from unifying the recognition of both base and novel categories, features learned

with the cosine-similarity based classifier turn out to generalize significantly better on novel

categories than those learned with a dot-product based classifier. Moreover, we demonstrate

in the experimental section that, by simply training a cosine-similarity based ConvNet recog-

nition model, we are able to learn feature extractors that, when used for image matching,

they surpass prior state-of-the-art approaches on the few-shot recognition task.

To summarize, the contribution of the work presented in this chapter are as follows:

• We propose a few-shot object recognition system that is capable of dynamically

learning novel categories from only a few training data while at the same time is not

forgetting the base categories on which it was trained.

• In order to achieve that we introduced two technical novelties, an attention based

few-shot classification weight generator, and the implementation of the classifier of a

ConvNet model as a cosine similarity function between feature representations and

classification vectors.
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• We extensively evaluate our object recognition system on Mini-ImageNet, both w.r.t.

its few-shot object recognition performance and its ability to not forget the base

categories, and we report state-of-the-art results that surpass prior approaches by a

very significant margin.

• Finally, we apply our approach on the recently introduced fews-shot benchmark of

Hariharan and Girshick [51] where we achieve state-of-the-art results.

In the following sections, we provide related work in §6.2, we describe our few-shot

object learning methodology in §6.3, we provide experimental results in §6.4, and finally

we conclude in §6.5.

6.2 Related work

Recently, there is resurgence of interest on the few-shot learning problem. In the following

we briefly discuss the most relevant approaches to our work.

Meta-learning based approaches. Meta-learning approaches typical involve a meta-

learner model that, given a few training examples of a new task, tries to quickly learn a

learner model that “solves” this new task [134, 152, 3, 107, 132]. Specifically, Ravi and

Larochelle [124] propose an LSTM [59] based meta-learner that is trained given as input

a few training examples of a new classification task to sequentially generate parameter

updates that will optimize the classification performance of a learner model on that task.

Their LSTM also learns the parameter initialization of the learner model. Finn et al. [36]

simplified the above meta-learner model and only learn the initial learner parameters such

that only a few gradient descent steps w.r.t. those initial parameters will achieve the maximal

possible performance on the new task. Mishra et al. [105] instead propose a generic temporal

convolutional network that, given as input a sequence of a few labeled training examples

and then an unlabeled test example, predicts the label of that test example. Our system also

includes a meta-learner network component, the few-shot classification weight generator.

Metric-learning based approaches. In general, metric learning approaches attempt to

learn feature representations that preserve the class neighborhood structure (i.e., features

of the same object are closer than features of different objects). Specifically, Koch et
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al. [72] formulated the one-shot object recognition task as image matching and train Siamese

neural networks to compute the similarity between a training example of a novel category

and a test example. Vinyals et al. [155] proposed Matching Networks that, in order to

classify a test example, employs a differentiable nearest neighbor classifier implemented

with an attention mechanism over the learned representations of the training examples.

Prototypical Networks [145] learn to classify test examples by computing distances to

prototype feature vectors of the novel categories. They propose to learn the prototype

feature vector of a novel category as the average of the feature vectors extracted by the

training examples of that category. A similar approach was proposed before by Mensink et

al. [102] and Prototypical Networks can be viewed as an adaption of that work for ConvNets.

Despite their simplicity, Prototypical Networks demonstrated state-of-the-art performance.

Our few-shot classification weight generator also includes a feature averaging mechanism.

However, more than that, it also explicitly exploits past knowledge about the visual world

with an attention based mechanism and the overall framework allows us to perform unified

recognition of both base and novel categories without altering the way base categories are

learned and recognized.

In a different line of work, Hariharan and Girshick [51] propose to use during training a

l2 regularization loss on the feature representations that forces them to better generalize on

“unseen” categories. In our case, the cosine-similarity based classifier, apart from unifying

the recognition of both base and novel categories, also leads to feature representations

that are able to better generalize on “unseen” categories. Also, their framework is able

to recognize both base and novel categories as ours. However, to achieve that goal they

re-train the classifier on both the base categories (with a large set of training data) and the

novel categories (with few training data), which is in general slow and requires constantly

maintaining in disc a large set of training data.
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6.3 Methodology

As an input to our object recognition learning system we assume that there exists a dataset

of Kbase base categories:

Dtrain =

Kbase⋃
b=1

{xb,i}Nb
i=1 , (6.1)

where Nb is the number of training examples of the b-th category and xb,i is its i-th training

example. Using this as the only input, the goal of our work is to be able to both learn to

accurately recognize base categories and to learn to perform few-shot learning of novel

categories in a dynamic manner and without forgetting the base ones. An overview of our

framework is provided in Figure 6-1. It consists of two main components, a ConvNet-based

recognition model that is able to recognize both base and novel categories and a few-shot

classification weight generator that dynamically generates classification weight vectors for

the novel categories at test time:

ConvNet-based recognition model. It consists of (a) a feature extractor F (.|θ) (with

learnable parameters θ) that extracts a d-dimensional feature vector z = F (x|θ) ∈ Rd from

an input image x, and (b) a classifier C(.|W ∗), where W ∗ = {w∗k ∈ Rd}K∗k=1 are a set of

K∗ classification weight vectors - one per object category, that takes as input the feature

representation z and returns a K∗-dimensional vector with the probability classification

scores p = C(z|W ∗) of the K∗ categories. Note that in a typical convolutional neural

network the feature extractor is the part of the network that starts from the first layer and

ends at the last hidden layer while the classifier is the last classification layer. During the

single training phase of our algorithm, we learn the θ parameters and the classification

weight vectors of the base categories Wbase = {wk}Kbase
k=1 such that by setting W ∗ = Wbase

the ConvNet model will be able to recognize the base object categories.

Few-shot classification weight generator. This comprises a meta-learning mechanism

that, during test time, takes as input a set of Knovel novel categories with few training

examples per category

Dnovel =

Knovel⋃
n=1

{x′n,i}
N ′n
i=1 , (6.2)

where N ′n is the number of training examples of the n-th novel category and x′n,i is its
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Feature Extractor

Dynamic Few-Shot Learning without Forgetting

Classifier

Classification 
weight vectors

Base Novel 

Few-shot 
classification weight 

generator

Test image

Training data for 
base categories

Few training data 
of novel category

Probability 
scores of 
base & novel 
categories 

Training procedure

Figure 6-1: Overview of our system. It consists of: (a) a ConvNet based recognition model (that
includes a feature extractor and a classifier) and (b) a few-shot classification weight generator. Both
are trained on a set of base categories for which we have available a large set of training data.
During test time, the weight generator gets as input a few training data of a novel category and
the classification weight vectors of base categories (green rectangle inside the classifier box) and
generates a classification weight vector for this novel category (blue rectangle inside the classifier
box). This allows the ConvNet to recognize both base and novel categories.

i-th training example, and is able to dynamically assimilate the novel categories on the

repertoire of the above ConvNet model. More specifically, for each novel category n ∈

[1, Nnovel], the few-shot classification weight generator G(., .|φ) gets as input the feature

vectors Z ′n = {z′n,i}
N ′n
i=1 of its N ′n training examples, where z′n,i = F (x′n,i|θ), and the

classification weight vectors of the base categories Wbase and generates a classification

weight vector w′n = G(Z ′n,Wbase|φ) for that novel category. Note that φ are the learnable

parameters of the few-shot weight generator, which are learned during the single training

phase of our framework. Therefore, if Wnovel = {w′n}
Knovel
n=1 are the classification weight

vectors of the novel categories inferred by the few-shot weight generator, then by setting

W ∗ = Wbase ∪Wnovel on the classifier C(.|W ∗) we enable the ConvNet model to recognize

both base and novel categories.

A key characteristic of our framework is that it is able to effortlessly (i.e., quickly

during test time) learn novel categories and at the same time recognize both base and novel
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categories in a unified manner. In the following subsections, we will describe in more detail

the ConvNet-based recognition model in §6.3.1 and the few-shot weight generator in §6.3.2.

Finally, we will explain the training procedure in §6.3.3.

6.3.1 Cosine-similarity based recognition model

A crucial difference of our ConvNet based recognition model compared to a standard one

is that it should be able to dynamically incorporate at test time a variable number of novel

categories (through the few-shot weight generator).

The standard setting for classification neural networks is, after having extracted the

feature vector z, to estimate the classification probability vector p = C(z|W ∗) by first

computing the raw classification score sk of each category k ∈ [1, K∗] using the dot-product

operator:

sk = zᵀw∗k , (6.3)

where wk is the k-th classification weight vector in W ∗, and then applying the softmax

operator across all the K∗ classification scores, i.e., pk = softmax(sj), where pk is the k-th

classification probability of p. In our case the classification weight vectors w∗k could come

both from the base categories, i.e., w∗k ∈ Wbase, and the novel categories, i.e., w∗k ∈ Wnovel.

However, the mechanisms involved during learning those classification weights are very

different. The base classification weights, starting from their initial state, are slowly modified

(i.e., slowly learned) with small SGD steps and thus their magnitude changes slowly over

the course of their training. In contrast, the novel classification weights are dynamically

predicted (i.e., quickly learned) by the weight generator based on the input training feature

vectors and thus their magnitude depends on those input features. Due to those differences,

the weight values in those two cases (i.e., base and novel classification weights) can be

completely different, and so the same applies to the raw classification scores computed with

the dot-product operation, which can thus have totally different magnitudes depending on

whether they come from the base or the novel categories. This can severely impede the

training process and, in general, does not allow to have a unified recognition of both type

of categories. In order to overcome this critical issue, we propose to modify the classifier
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(a) Cosine-similarity based features (b) Dot-product based features
Figure 6-2: Here we visualize the t-SNE [98] scatter plots of the feature representations learned with
(a) the cosine-similarity based ConvNet recognition model, and (b) the dot-product based ConvNet
recognition model. Note that in the case of the cosine-similarity based ConvNet recognition model,
we visualize the l2-normalized features. The visualized feature data points are from the “unseen”
during training validation categories of Mini-ImageNet (i.e., novel categories). Each data point in the
t-SNE scatter plots is colored according to its category.

C(.|W ∗) and compute the raw classification scores using the cosine similarity operator:

sk = τ · cos(z, w∗k) = τ · zᵀw∗k , (6.4)

where z = z
‖z‖ and w∗k =

w∗k
‖w∗k‖

are the l2-normalized vectors (from now on we will use the

overline symbol z to indicate that a vector z is l2-normalized), and τ is a learnable scalar

value1. Since the cosine similarity can be implemented by first l2-normalizing the feature

vector z and the classification weight vector w∗k and then applying the dot-product operator,

the absolute magnitudes of the classification weight vectors can no longer affect the value of

the raw classification score (as a result of the l2 normalization that took place).

In addition to the above modification, we also choose to remove the ReLU non-

linearity [108] after the last hidden layer of the feature extractor, which allows the feature

1 The scalar parameter τ is introduced in order to control the peakiness of the probability distribution
generated by the softmax operator since the range of the cosine similarity is fixed to [−1, 1]. In all of our
experiments τ is initialized to 10.
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vector z to take both positive and negative values, similar to the classification weight vectors.

Note that the removal of the ReLU non-linearity does not make the composition of the

last hidden layer with the classification layer a linear operation, since we l2-normalize the

feature vectors, which is a non-linear operation. In our initial experiments with the cosine

similarity based classifier we found that such a modification can significantly improve the

recognition performance of novel categories.

We note that, although cosine similarity is already well established as an effective

similarity function for classifying a test feature by comparing it with the available training

features vectors [155, 102, 125], in this work we use it for a different purpose, i.e., to

replace the dot-product operation of the last linear layer of classification ConvNets used

for applying the learnable weights of that layer to the test feature vectors. The proposed

modification in the architecture of a classification ConvNet allows us to unify the recognition

of base and novel categories without significantly altering the classification pipeline for the

recognition of base categories (in contrast to [102, 125]). To the best of our knowledge,

employing the cosine similarity operation in such a way is novel in the context of few shot

learning. Interestingly, concurrently to us, Qi et al. [122] also propose to use the cosine

similarity function in a similar way for the few-shot learning task. In a different line of work,

very recently Chunjie et al. [95] also explored cosine similarity for the typical supervised

classification task.

Advantages of cosine-similarity based classifier. Apart from making possible the

unified recognition of both base and novel categories, the cosine-similarity based classifier

leads the feature extractor to learn features that generalize significantly better on novel

categories than features learned with the dot-product based classifier. A possible explanation

for this is that, in order to minimize the classification loss of a cosine-similarity based

ConvNet model, the l2-normalized feature vector of an image must be very closely matched

with the l2-normalized classification weight vector of its ground truth category. As a

consequence, the feature extractor is forced to (a) learn to encode on its feature activations

exactly those discriminative visual cues that also the classification weight vectors of the

ground truth categories learn to look for, and (b) learn to generate l2-normalized feature

vectors with low intraclass variance, since all the feature vectors that belong to the same
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category must be very closely matched with the single classification weight vector of that

category. This is visually illustrated in Figure 6-2, where we visualize t-SNE scatter plots of

cosine-similarity-based and dot-product-based features related to categories “unseen” during

training. As can be clearly observed, the features generated from the cosine-similarity-

based ConvNet form more compact and distinctive category-specific clusters (i.e., they

provide more discriminative features). Moreover, our cosine-similarity based classification

objective resembles the training objectives typically used by metric learning approaches [60].

In fact, it turns out that our feature extractor trained solely on cosine-similarity based

classification of base categories, when used for image matching, manages to surpass all

prior state-of-the-art approaches on the few-shot object recognition task.

6.3.2 Few-shot classification weight generator

The few-shot classification weight generator G(., .|φ) gets as input the feature vectors

Z ′ = {z′i}N
′

i=1 of the N ′ training examples of a novel category (typically N ′ ≤ 5) and

(optionally) the classification weight vectors of the base categories Wbase. Based on them, it

infers a classification weight vector w′ = G(Z ′,Wbase|φ) for that novel category. Here we

explain how the above few-shot classification weight generator is constructed.

Feature averaging based weight inference. Since, as we explained in section § 6.3.1,

the cosine similarity based classifier of the ConvNet model forces the feature extractor to

learn feature vectors that form compact category-wise clusters and the classification weight

vectors to learn to be representative feature vectors of those clusters, an obvious choice is

to infer the classification weight vector w′ by averaging the feature vectors of the training

examples (after they have been l2-normalized):

w′avg =
1

N ′

N ′∑
i=1

z′i . (6.5)

The final classification weight vector in case we only use the feature averaging mechanism

is:

w′ = φavg � w′avg , (6.6)

201



where � is the Hadamard product, and φavg ∈ Rd is a learnable weight vector. Similar

strategy has been previously proposed by Snell et al. [145] and has demonstrated very good

results. However, it does not fully exploit the knowledge about the visual world that the

ConvNet model acquires during its training phase. Furthermore, in case there is only a single

training example for the novel category, the averaging cannot infer an accurate classification

weight vector.

Attention-based weight inference. We enhance the above feature averaging mechanism

with an attention based mechanism that composes novel classification weight vectors by

“looking” at a memory that contains the base classification weight vectorsWbase = {wb}Kbase
b=1 .

More specifically, an extra attention-based classification weight vector w′att is computed as:

w′att =
1

N ′

N ′∑
i=1

Kbase∑
b=1

Att(φqz
′
i, kb) · wb , (6.7)

where φq ∈ Rd×d is a learnable weight matrix that transforms the feature vector z′i to

query vector used for querying the memory, {kb ∈ Rd}Kbase
b is a set of Kbase learnable keys

(one per base category) used for indexing the memory, and Att(., .) is an attention kernel

implemented as a cosine similarity function2 followed by a softmax operation over the Kbase

base categories. The final classification weight vector is computed as a weighted sum of the

average based classification vector w′avg and the attention based classification vector w′att:

w′ = φavg � w′avg + φatt � w′att , (6.8)

where � is the Hadamard product, and φavg, φatt ∈ Rd are learnable weight vectors.

Why using an attention-based weight composition? Thanks to the cosine-similarity

based classifier, the base classification weight vectors learn to be representative feature

vectors of their categories. Thus, the base classification weight vectors also encode vi-

sual similarity, e.g., the classification vector of a mammal animal should be closer to the

classification vector of another mammal animal rather than the classification vector of a

2The cosine similarity scores are also scaled by a learnable scalar parameter γ in order to increase the
peakiness of the softmax distribution. This scalar learnable parameter is initialized to 10 on the experiments of
section 6.4.1 and to 30 on the experiments of section 6.4.2.
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vehicle. Therefore, the classification weight vector of a novel category can be composed

as a linear combination of those base classification weight vectors that are most similar to

the few training examples of that category. This allows our few-shot weight generator to

explicitly exploit the acquired knowledge about the visual world (here represented by the

base classification weight vectors) in order to improve the few-shot recognition performance.

This improvement is very significant especially in the one-shot recognition setting where

averaging cannot provide an accurate classification weight vector.

6.3.3 Training procedure

In order to learn the ConvNet-based recognition model (i.e. the feature extractor F (.|θ) as

well as the classifier C(.|W ∗)) and the few-shot classification weight generator G(., .|φ),

we use as the sole input a training set Dtrain =
⋃Kbase

b=1 {xb,i}
Nb
i=1 of Kbase base categories.

We split the training procedure into 2 stages and at each stage we minimize a different

cross-entropy loss of the following form:

1

Kbase

Kbase∑
b=1

1

Nb

Nb∑
i=1

loss(xb,i, b), (6.9)

where loss(x, y) is the negative log-probability − log(py) of the y-th category in the proba-

bility vector:

p = C(F (x|θ)|W ∗). (6.10)

The meaning of W ∗ is different on each of the training stages, as we explain below.

1st training stage: During this stage we only learn the ConvNet recognition model

without the few-shot classification weight generator. Specifically, at this stage we learn

the parameters θ of the feature extractor F (.|θ) and the base classification weight vectors

Wbase = {wb}Kbase
b=1 . This is done in exactly the same way as for any other standard

recognition model. Thus, during the 1st training stage the set of classification weight vectors

W ∗ in equation 6.10 is equal to the base classification weight vectors Wbase.

2nd training stage: During this stage we train the learnable parameters φ of the few-

shot classification weight generator while we continue training the base classification weight
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vectors Wbase (in our experiments during that training stage we froze the feature extractor).

In order to train the few-show classification weight generator, during each training iteration

we form the following two-step “training episodes”3:

• First, we randomly pick Knovel “fake” novel categories from the existing base cate-

gories and we treat them in the same way as we will treat the actual novel categories

after training. Specifically, instead of using the classification weight vectors in Wbase

(which are learned with stochastic gradient descent) for those “fake” novel categories,

we sample N ′ training examples (typically N ′ ≤ 5) for each of them, compute their

feature vectors Z ′ = {z′i}N
′

i=1, and give those feature vectors to the few-shot classifica-

tion weight generator G(., .|φ) in order to compute novel classification weight vectors

of those “fake” novel categories Note that during this process we take care to exclude

from the base classification weight vectors that are given as a second argument to

the few-shot weight generator G(., .|φ) those classification vectors that correspond

to the “fake” novel categories. The inferred classification weight vectors are used

for recognizing the “fake” novel categories. Thus, during this 2nd training stage the

set of classification weight vectors W ∗ in equation 6.10 is the union of the “fake”

novel classification weight vectors generated by G(., .|φ) and the classification weight

vectors of the remaining base categories.

• The second step of the “training episode” is to sample Tnovel test image examples

from the “fake” novel categories, and Tbase test image examples from the remaining

base categories and then classify them using the set of classification weight vectors

W ∗ that was formed from the 1st step of the training episode.

Both the step of generating classification weights vectors from training examples and the step

of applying the classification weight vectors to test examples are end-to-end differentiable.

Thus, by applying the cross entropy loss (equation 6.9) on the classification probabilities of

the T = Tnovel + Tbase test examples we are able to train both the learnable parameters of

the few-shot classification weight generator and the learnable parameters of the recognition

model (i.e., the base classification weight vectors Wbase).

3Note that during each training iteration of stochastic gradient descent the mini-batch that is formed could
include multiple different instances of such “training episodes”.
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Models 5-Shot learning – Knovel=5 1-Shot learning – Knovel=5
Novel Base Both Novel Base Both

Matching-Nets [155] 68.87 ± 0.38% - - 55.53 ± 0.48% - -
Prototypical-Nets [145] 72.67 ± 0.37% 62.10% 32.70% 54.44 ± 0.48% 52.35% 26.68%

Ours
Cosine Classifier 72.83 ± 0.35% 70.68% 51.89% 54.55 ± 0.44% 70.68% 39.17%
Cosine Classifier & Avg. Weight Gen 74.66 ± 0.35% 70.92% 60.26% 55.33 ± 0.46% 70.45% 48.56%
Cosine Classifier & Att. Weight Gen 74.92 ± 0.36% 70.88% 60.50% 58.55 ± 0.50% 70.73% 50.50%

Ablations
Dot Product 64.58 ± 0.38% 63.59% 31.80% 46.09 ± 0.40% 63.59% 24.76%
Dot Product & Avg. Weight Gen 60.30 ± 0.39% 62.15% 46.41% 44.31 ± 0.40% 61.99% 39.05%
Dot Product & Att. Weight Gen 67.81 ± 0.37% 62.11% 48.70% 53.88 ± 0.48% 62.28% 42.41%

Ablations
Cosine w/ ReLU. 71.04 ± 0.36% 72.51% 58.16% 52.91 ± 0.45% 72.51% 43.17%
Cosine w/ ReLU. & Avg. Weight Gen 71.30 ± 0.38% 72.47% 59.33% 53.19 ± 0.45% 71.70% 49.53%
Cosine w/ ReLU. & Att. Weight Gen 73.03 ± 0.38% 72.26% 61.05% 56.09 ± 0.54% 72.34% 51.25%

Table 6.1: Average classification accuracies on the validation set of Mini-ImageNet. The Novel
columns report the average 5-way and 1-shot or 5-shot classification accuracies of novel categories
(with 95% confidence intervals), the Base and Both columns report the classification accuracies
of base categories and of both type of categories respectively. In order to report those results we
sampled 2000 tasks each with 15× 5 test examples of novel categories and 15× 5 test examples of
base categories.

6.4 Experimental results

We extensively evaluate the proposed few-shot recognition system w.r.t. both its few-shot

recognition performance of novel categories and its ability to not “forget” the base categories

on which it was trained.

6.4.1 Mini-ImageNet experiments

Evaluation setting for recognition of novel categories. We evaluate our few-shot object

recognition system on the Mini-ImageNet dataset [155] that includes 100 different categories

with 600 images per category, each of size 84×84. For our experiments we used the splits by

Ravi and Laroche [124] that include 64 categories for training, 16 categories for validation,

and 20 categories for testing. The typical evaluation setting on this dataset is first to train a

few-shot model on the training categories and then during test time to use the validation (or

the test) categories in order to form few-shot tasks on which the trained model is evaluated.
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Models Feature
Extractor

5-Shot learning – Knovel=5 1-Shot learning – Knovel=5
Novel Base Both Novel Base Both

Matching-Nets [155] C64F 55.30% - - 43.60% - -
Ravi and Laroche [124] C32F 60.20 ± 0.71% - - 43.40 ± 0.77% - -
Finn et al. [36] C64F 63.10 ± 0.92% - - 48.70 ± 1.84% - -
Prototypical-Nets [145] C64F 68.20 ± 0.66% - - 49.42 ± 0.78% - -
Mishra et al. [105] RESNET 68.88 ± 0.92% - - 55.71 ± 0.99% - -

Ours C32F 70.27 ± 0.64% 61.08% 52.45% 54.33 ± 0.81% 61.09% 43.05%
Ours C64F 72.81 ± 0.62% 68.13% 57.72% 56.20 ± 0.86% 68.08% 48.09%
Ours C128F 73.00 ± 0.64% 70.90% 59.35% 55.95 ± 0.84% 70.72% 49.08%
Ours RESNET 70.13 ± 0.68% 80.16% 56.04% 55.45 ± 0.89% 80.24% 51.23%

Table 6.2: Average classification accuracies on the test set of Mini-ImageNet. In order to report
those results we sampled 600 tasks in a similar fashion as for the validation set of Mini-ImageNet.

Those few-shot tasks are formed by first sampling Knovel categories and one or five training

example per category (1-shot and 5-shot settings respectively), which the trained model uses

for meta-learning those categories, and then evaluating it on some test examples that come

from the same novel categories but do not overlap with the training examples.

Evaluation setting for the recognition of the base categories. When we evaluate our

model w.r.t. few-shot recognition task on the validation / test categories, we consider as base

categories the 64 training categories on which we trained the model. Since the proposed

few-shot object recognition system has the ability to not forget the base categories, we would

like to also evaluate the recognition performance of our model on those base categories.

Therefore, we sampled 300 extra images for each training category that we use as validation

image set for the evaluation of the recognition performance of the base categories and also

another 300 extra images that are used for the same reason as test image set. Therefore, when

we evaluate our model w.r.t. the few-shot learning task on the validation / test categories we

also evaluate w.r.t. recognition performance of the base categories on the validation / test

image set of the training categories.

Implementation details of training procedure of the proposed approach. During

the 1st training stage, the recognition model was trained for 60 epochs using a stochastic

gradient descent optimizer with momentum 0.9 and weight decay 5e − 4. The learning

rate was set to 0.1 for the first 20 epochs, then dropped to 0.006 for the next 20 epochs,

then again dropped to 0.0012 for the next 10 epochs, and finally again dropped to 0.00024
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for the remaining 10 epochs. Each training epoch lasted for 1000 training batches of size

256. During the 2nd training stage, our model was trained for 60 epochs using a stochastic

gradient descent optimizer with momentum 0.9 and weight decay 5e− 4. The learning rate

was set to 0.1 for the first 20 epochs, then dropped to 0.006 for the next 20 epochs, then

again dropped to 0.0012 for the next 10 epochs, and finally again dropped to 0.00024 for the

remaining 10 epochs. Each training epoch lasted for 1000 training batches. Each training

batch included 8 “training episodes”. For each “training episode” 5 “fake” novel categories

were sampled from the 64 base categories, Tnovel = 15 test images were sampled from

the “fake” novel categories, and Tbase = 15 test images were sampled from the remaining

base categories. Note that despite the fact that both training stages last for 60 training

epochs, because the training split of Mini-Imagenet is relatively small and there is a danger

of overfitting, the training snapshot (i.e., the model parameters at the end of each training

epoch) that “survives” from each training stage is that that achieves the highest accuracy

on the novel categories of the validation split of Mini-Imagenet. For more implementation

details we refer to the implementation code of this chapter.

6.4.1.1 Ablation study

In Table 6.1 we provide an ablation study of the proposed object recognition framework

on the validation set of mini-ImageNet. We also compare with two prior state-of-the-art

approaches, Prototypical Networks [145] and Matching Nets [155], that we re-implemented

ourselves in order to ensure a fair comparison. The feature extractor used in all cases is a

ConvNet model that has 4 convolutional modules, with 3 × 3 convolutions, followed by

batch normalization, ReLU nonlinearity4, and 2× 2 max-pooling. Given as input images of

size 84× 84 it yields feature maps with spatial size 5× 5. The first two convolutional layers

have 64 feature channels and the latter two have 128 feature channels.

Cosine-similarity based ConvNet model. First we examine the performance of the

cosine-similarity based ConvNet recognition model (entry Cosine Classifier) without training

the few-shot classification weight generator (i.e., we only perform the 1st training stage as

4Unless otherwise stated, our cosine-similarity based models as well as the re-implementation of Matching-
Nets do not have a ReLU nonlinearity after the last convolutional layer, since in both cases this modification
improved the recognition performance on the few-shot recognition task
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was described in section 6.3.3). In order to test its performance on the novel categories,

during test time we estimate classification weight vectors using feature averaging. We want

to stress out that in this case there are no learnable parameters involved in the generation

of the novel classification weight vectors and also the ConvNet model it was never trained

on the few-shot recognition task. Despite that, the features learned by the cosine-similarity

based ConvNet model match or even surpass the performance of the Matching-Nets and

Prototypical Networks, which are explicitly trained on the few-shot object recognition task.

By comparing the cosine-similarity based ConvNet models (Cosine Classifier entries) with

the dot-product based models (Dot Product entries) we observe that the former drastically

improve the few-shot object recognition performance, which means that the feature extractor

that is learned with the cosine-similarity classifier generalizes significantly better on “unseen”

categories than the feature extractor learned with the dot-product classifier. Notably, the

cosine-similarity classifier significantly improves also the recognition performance on the

base categories.

Removing the last ReLU unit. In our work we propose to remove the last ReLU

non-linearity from the feature extractor when using a cosine classifier. Instead, keeping the

ReLU units (Cosine w/ ReLU entries) decreases the accuracy on novel categories while

increasing it on base categories.

Few-shot classification weight generator. Here we examine the performance of our

system when we also incorporate on it the proposed few-shot classification weight generator.

In Table 6.1 we provide two solutions for the few-shot weight generator: the entry Cosine

Classifier & Avg. Weight Gen that uses only the feature averaging mechanism described in

section 6.3.2 and the entry Cosine Classifier & Att. Weight Gen that uses both the feature

averaging and the attention based mechanism. Both types of few-shot weight generators

are trained during the 2nd training stage that is described in section 6.3.3. We observe

that both of them offer a very significant boost on the few-shot recognition performance of

the cosine similarity based model (entry Cosine Classifier). Among the two, the attention

based solution exhibits better few-shot recognition behavior, especially in the 1-shot setting

where it has more than 3 percentage points higher performance. Also, it is easy to see that

the few-shot classification weight generator does not affect the recognition performance
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Novel All All with prior
Approach N ′=1 2 5 10 20 N ′=1 2 5 10 20 N ′=1 2 5 10 20

Prior work
Prototypical-Nets [145] (from [157]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6 53.6 61.4 68.8 72.0 73.8
Matching Networks [155] (from [157]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5 54.5 60.7 68.2 72.6 75.6
Logistic regression (from [157]) 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9 52.9 60.4 68.6 72.9 76.3
Logistic regression w/ H [51] (from [157]) 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9 53.2 59.1 66.8 71.7 76.3
SGM w/ H [51] - - - - - 54.3 62.1 71.3 75.8 78.1 - - - - -
Batch SGM [51] - - - - - 49.3 60.5 71.4 75.8 78.5 - - - - -

Concurrent work
Prototype Matching Nets w/ H [157] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5 56.4 63.3 70.6 74.0 76.2
Prototype Matching Nets [157] 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1 54.7 62.0 70.2 73.9 75.9

Ours
Cosine Classifier & Avg. Weight Gen 45.23 56.90 68.68 74.36 77.69 57.65 64.69 72.35 76.18 78.46 56.43 63.41 70.95 74.75 77.00

± .25 ± .16 ± .09 ± .06 ± .06 ± .15 ± .10 ± .06 ± .04 ± .04 ± .15 ± .10 ± .06 ± .04 ± .03
Cosine Classifier & Att. Weight Gen 46.02 57.51 69.16 74.83 78.11 58.16 65.21 72.72 76.50 78.74 56.76 63.80 72.72 75.02 77.25

± .25 ± .15 ± .09 ± .06 ± .05 ± .15 ± .09 ± .06 ± .04 ± .03 ± .15 ± .10 ± .06 ± .04 ± .04

Table 6.3: Top-5 accuracy on the novel categories and on all categories (with and without priors)
fot the ImageNet based few-shot benchmark proposed in [51] (for more details about the evaluation
metrics we refer to [157]). For each novel category we use N ′ = 1, 2, 5, 10 or 20 training examples.
Methods with “w/ H” use mechanisms that hallucinate extra training examples for the novel categories.
The second rows in our entries report the 95% confidence intervals.

of the base categories, which is around 70.50% in all the cosine-similarity based models.

Moreover, by introducing the few-shot weight generator, the recognition performance in both

type of categories (columns Both) increases significantly, which means that the ConvNet

model achieves better behavior w.r.t. our goal of unified recognition of both base and novel

categories. The few-shot recognition performance of our full system, which is the one that

includes the attention based few-shot weight generator (entry Cosine classifier & Att. Weight

Gen), offers a very significant improvement w.r.t. the prior state-of-the-art approaches on

the few-shot object recognition task, i.e., from 72.67% to 74.92% in the 5-shot setting and

from 55.53% to 58.55% in the 1-shot setting. Also, our system achieves significantly higher

performance on the recognition of base categories compared to Prototypical Networks5.

6.4.1.2 Comparison with state-of-the-art

Here we compare the proposed few-shot object recognition system with other state-of-the-art

approaches on the Mini-ImageNet test set.

Explored feature extractor architectures. Because prior approaches use several dif-

ferent network architectures for implementing the feature extractor of the ConvNet model,

5In order to recognize base categories with Prototypical Networks, the prototypes for the base categories
are computed by averaging all the available training features vectors
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we evaluate our model with each of those architectures. Specifically the architectures that

we evaluated are: C32F is a 4 module ConvNet network (which was described in § 6.4.1.1)

with 32 feature channels on each convolutional layer, C64F has 64 feature channels on

each layer, and in C128F the first two layers have 64 channels and the latter two have 128

channels (exactly the same as the model that was used in § 6.4.1.1). With RESNET we refer

to the ResNet [57] like network that was used from Mishra et al. [105] (for more details we

refer to [105]).

In Table 6.2 we provide the experimental results. In all cases, our models (that include the

cosine-similarity based ConvNet model and the attention-based few-shot weight generator)

achieve better few-shot object recognition performance than prior approaches. Moreover, it

is very important to note that our approach is capable to achieve such excellent accuracy on

the novel categories while at the same time not sacrificing the recognition performance of

the base categories, which is an ability that prior methods lack.

6.4.1.3 Qualitative evaluation with t-SNE scatter plots

Here we compare qualitatively the feature representations learned by the proposed cosine-

similarity based ConvNet recognition model with those learned by the typical dot-product

based ConvNet recognition model. For that purpose in Figure 6-2 we provide the t-SNE [98]

scatter plots that visualize the local-structures of the feature representations learned in those

two cases. Note that the visualized features are from the validation categories of the Mini-

ImageNet dataset that are “unseen” during training. Also, in the case of the cosine-similarity

based ConvNet recognition model, we visualize the l2-normalized features, which are the

features that are actually learned by the feature extractor.

We observe that the feature extractor learned with the cosine-similarity based ConvNet

recognition model, when applied on the images of “unseen” categories (in this case the

validation categories of Mini-ImageNet), generates features that form more compact and

distinctive category-specific clusters (i.e., more discriminative features). Due to that, as it

was argued in section §6.3.1, the features learned with the proposed cosine-similarity based

recognition model generalize better on the “unseen” categories than the features learned

with the typical dot-product based recognition model.
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6.4.2 Few-shot benchmark of Hariharan & Girshick [51]

Here we evaluate our approach on the ImageNet based few-shot benchmark proposed by

Hariharan and Girshick [51] using the improved evaluation metrics proposed by Wang et

al. [157]. Briefly, this benchmark splits the ImageNet categories into 389 base categories

and 611 novel categories; 193 of the base categories and 300 of the novel categories are used

for cross validation and the remaining 196 base categories and 311 novel categories are used

for the final evaluation (for more details we refer to [51]). We use the same categories split

as they did. However, because it was not possible to use the same training images that they

did for the novel categories6, we sample ourselves N ′ training images per novel category

and, similar to them, evaluate using the images in the validation set of ImageNet. We repeat

the above experiment 100 times (sampling each time a different set of training images for

the novel categories) and report in Table 6.3 the mean accuracies and the 95% confidence

intervals for the recognition accuracy metrics proposed in [157].

Implementation details of training procedure of the proposed approach. During

the 1st training stage, the recognition model was trained for 100 epochs using a stochastic

gradient descent optimizer with momentum 0.9 and weight decay 5e − 4. The learning

rate was set to 10−1 for the first 30 epochs, then dropped to 10−2 for the next 30 epochs,

then again dropped to 10−3 for the next 30 epochs, and finally again dropped to 10−4 for

the remaining 10 epochs. Each training epoch lasted for 4000 training batches of size

400. During the 2nd training stage, our model was trained for 6 epochs using a stochastic

gradient descent optimizer with momentum 0.9 and weight decay 5e − 4. The learning

rate was set to 10−2 for the first 4 epochs and then dropped to 10−3 for the final 2 epochs.

Each training epoch lasted for 4000 training batches. Each training batch included a single

“training episode” during which, 250 “fake” novel categories were sampled from the 389

base categories, Tnovel = 1500 test images were sampled from the “fake” novel categories,

and Tbase = 750 test images were sampled from the remaining base categories. Since the

feature extractor remains “frozen” during the 2nd training stage, we speed-up this training

stage by pre-computing and cashing to the hard disk the feature vectors of all ImageNet

6It was not possible to establish a correspondence between the index files that they provide and the
ImageNet images
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images. For more implementation details we refer to the implementation code of this chapter.

Comparison to prior and concurrent work. We compare our full system (Cosine

Classifier & Att. Weight Gen entry) against prior work, such as Prototypical-Nets [145],

Matching Networks [155], and the work of Hariharan and Girshick [51]. We also compare

against the work of Wang et al. [157], which is concurrent to ours. We observe that in all

cases our approach achieves superior performance than prior approaches and even exceeds

(in all but one cases) the Prototype Matching Net [157] based approaches that are concurrent

to our work.

Feature extractor: The feature extractor of all approaches is implemented with a

ResNet-10 [57] network architecture7 that gets as input images of 224 × 224 size. Also,

when training the attention based few-shot classification weight generator component of our

model (2nd training stage) we found helpful to apply dropout with 0.5 probability on the

feature vectors generated by the feature extractor.

6.5 Conclusions

In this chapter we proposed a dynamic few-shot object recognition system that is able

to quickly learn novel categories without forgetting the base categories on which it was

trained, a property that most prior approaches on the few-shot learning task neglect to fulfill.

To achieve that goal we proposed a novel attention based few-shot classification weight

generator as well as a cosine-similarity based ConvNet classifier. This allows our system to

recognize in a unified way both novel and base categories and also leads to learn feature

representations with better generalization capabilities. We evaluated our framework on Mini-

ImageNet and the recently introduced fews-shot benchmark of Hariharan and Girshick [51]

where we demonstrate that our approach is capable of both maintaining high recognition

accuracy on base categories and to achieve excellent few-shot recognition accuracy on novel

categories that surpasses prior state-of-the-art approaches by a significant margin.

7Similar to what it is already explained, our model does not include the last ReLU non-linearity of the
ResNet-10 feature extractor
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Chapter 7

Conclusions

7.1 Contributions

In this thesis we developed a series of deep learning based approaches that aimed on

improving the effectiveness of image understanding tasks (such as object recognition, object

detection, and pixel-wise image labeling) as well as making them less dependent on the

availability of large-size manually labeled training datasets.

More specifically, in order to boost the recognition aspect of object detection systems

we proposed a multi-region and semantic segmentation aware ConvNet-based image rep-

resentation. We integrated this recognition module on an iterative localization mechanism

and the resulting detection system achieved state-of-the-art results on PASCAL detection

challenge, surpassing prior approaches by a significant margin. The proposed idea of using

multiple regions in order to enhance the recognition performance of object detectors, has in-

spired subsequent work in object detection [164, 169] as well as in action recognition [119]

and weakly supervised object localization [69]. Furthermore, key ingredients of the lo-

calization methodology that was proposed in this work has been used from several object

detectors [5, 168, 56, 20] in order to boost their detection performance when participating

in the COCO detection challenge [91, 23].

We improved the localization accuracy of object detection systems by proposing a

novel localization model, called LocNet, that formulates the bounding box localization

problem as a dense classification task (instead of a bounding box regression one). The
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proposed LocNet based detection systems managed to achieve significant improvements on

the mAP for high IoU thresholds while also being more robust w.r.t. the quality of the box

proposals used as input to the detection system. We also adapted the above two localization

techniques (i.e, iterative localization and the LocNet module) to the category agnostic box

proposal generation task and the resulting system, called AttractioNet, achieved excellent

box proposal results. By feeding those AttractioNet box proposals to one of our LocNet

based detection systems we achieved state-of-the-art result among the VGG16-Net based

methods in the COCO detection challenge. In the COCO 2016 detection challenge [23]

our submission based on AttractioNet box proposals and the LocNet localization model

achieved state-of-the-art results among single model submissions (i.e., submissions that do

not use ensemble of models), while some other top-ranked entries also used AttractionNet

proposals [23].

In the pixel-wise labeling problem, we explored several deep neural network architectures

that perform structured prediction by learning to (iteratively) improve some initial (but

inaccurate) estimates of the output labels. The goal is to identify what is the optimal

architecture for implementing such deep structured prediction models. In this context, we

propose to decompose the label improvement task into three steps: 1) detecting the initial

label estimates that are incorrect, 2) replacing the incorrect labels with new ones, and finally

3) refining the renewed labels by predicting residual corrections w.r.t. them. We extensively

evaluated those architectures to the disparity estimation task (stereo matching) and the

proposed one, called Detect, Replace, Refine, achieved state-of-the-art results on the KITTI

2015 benchmark.

In order to reduce the dependence of deep learning based approaches on large-size

manually labeled training dataset, we proposed a self-supervised representation learning

approach that learns semantic ConvNet-based image features by training the ConvNet to

recognize the 2d rotation applied to an image. Despite the simplicity of the proposed

approach, the learned features exhibit very good results when transferred on the vision

tasks of object detection and semantic segmentation, surpassing prior unsupervised learning

approaches and thus narrowing the gap with the supervised case.

Finally, in order to achieve our goal of annotation efficient learning we also worked
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on the subject of few-shot object recognition. Specifically, we proposed a few-shot object

recognition system that learns to dynamically generate classification weights of visual

categories given as input a few examples of them. Thanks to this meta-learning mechanism

our system is able after its training to learn novel (unseen during training) categories

from only a few training data. Furthermore, unlike most previous approaches, our system

has the ability to not forget the categories on which it was trained when learning novel

ones. Experimental results on few-shot benchmarks showed that our approach outperforms

previous state-of-the-art methods.

7.2 Future work

In this thesis we focused our efforts on advancing the state-of-the-art on the image under-

standing tasks of object detection and pixel-wise image labeling w.r.t. the accuracy with

which those tasks are performed. However, in order to effectively employ deep learning

based solutions to mobile devices or other embedded systems (e.g., in self-driving cars,

or autonomous robots) it is also very crucial to decrease the computational and memory

complexity of such approaches without significantly hurting their accuracy. For example,

in case such image understanding models are going to be applied to videos, a promising

research avenue is to explore how to exploit the temporal dimension of the data in order

to decrease the per-frame computational cost of the models while at the same time their

accuracy remains the same. Apart from their speed, another practical limitation of deep

neural networks is that the are highly specialized to a single task and visual domain. Instead,

it would be desirable to have image understanding models that perform well on multi-

ple tasks and domains simultaneously without any performance loss compared to image

understanding models dedicated to a specific task and domain.

Many opportunities for improvement and alternatives to be explored exist also in the

annotation efficient objective of our work. For instance, more research should be conducted

on the problem of unsupervised image representation learning using still images. Also, very

interesting and promising research directions for unsupervised image representation learning

are those of exploiting the structure present in the temporal dimension of videos, exploiting
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extra sensor modalities, such as audio and / or textual inputs, together with the visual

modality, or by employing autonomous agents that learn to interact with their environment

(instead of only passively observing it). In the topic of few-shot learning, further research

is required on how to effectively store and exploit past visual experiences in memory

augmented neural networks. Related work has mostly focused on storing and exploiting

short-term memories [155, 105, 38, 68, 131], i.e., storing the few training examples of

a novel category in order to facilitate its recognition when a test example is presented.

However, the visual experiences seen during the training phase of the network (i.e., the

training examples of training categories) usually do not participate in the learning process

of a novel category. In our work we attempted to exploit such past visual experiences by

proposing to infer the classification weights of a novel category via an attention mechanism

over the corresponding weights of the training categories. Despite the success of our

approach we believe that there is still large room for improvement at this subject. Another

interesting research direction is on devising learning mechanisms that would adapt also

the feature representations when learning to recognize novel categories without over-fitting

on its few-training examples and without forgetting the categories already learned by the

model. Although, there is already important work in this subject [124, 36], we believe that

it necessitates further exploration. Finally, it is important to extend such few-shot object

recognition approaches to other (more complex) image understanding tasks, such as object

detection and semantic segmentation.
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Appendix A

Improving object localization accuracy

in object detection

A.1 Object detection pipeline

In Algorithm 1 of section §3.3 we provide the pseudo-code of the object detection pipeline

that we adopt. For clarity purposes, the pseudo-code that is given corresponds to the single

object category detection case and not the multiple object categories case that we are dealing

with. Moreover, the actual detection algorithm, after scoring the candidate boxes for the

first time t = 1, prunes the candidate boxes with low confidence in order to reduce the

computational burden of the subsequent iterations. For that purpose, we threshold the

candidate boxes of each category such that their average number per image and per category

is around 18 boxes. Also, during this step, non-max-suppression with IoU of 0.95 is applied

in order to remove near duplicate candidate boxes (in the case of using sliding windows

to generate the initial set of candidate boxes this IoU threshold is set to 0.85). A more

detailed algorithm of our detection pipeline is presented in Algorithm 2. Note that, since the

initial candidate boxes {B1
c}Cc=1 are coming from a category-agnostic bounding box proposal

algorithm, those boxes are the same for all the categories and when applying on them (during

t = 1 iteration) the recognition module, the computation between all the categories can be

shared.
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Algorithm 2: Object detection pipeline
Input :Image I, initial set of candidate boxes {B1

c}Cc=1

Output :Final list of per category detections {Yc}Cc=1

for t← 1 to T do
for c← 1 to C do

Stc ← Recognition(Bt
c|I, c)

if t == 1 then
{Stc,Bt

c} ← PruneCandidateBoxes({Stc,Bt
c})

end
end
if t < T then

for c← 1 to C do
Bt+1
c ← Localization(Bt

c|I, c)
end

end
end
for c← 1 to C do

Dc ← ∪Tt=1{Stc,Bt
c}

Yc ← PostProcess(Dc)
end

A.2 Multi-threshold non-max-suppresion re-ordering

As already described in section 3.4.1, at the end of our active box proposal generation

strategy we include a non-maximum-suppression [35] (NMS) step that is applied on the

set C of scored candidate box proposals in order then to take the final top K output box

proposals (see algorithm 2). However, the optimal IoU threshold (in terms of the achieved

AR) for the NMS step depends on the desired number K of output box-proposals. For

example, for 10, 100, 1000 and 2000 proposals the optimal IoU thresholds are 0.55, 0.75,

0.90 and 0.95 respectively. Since our plan is to make our box proposal system publicly

available, we would like to make its use easier for the end user. For that purpose, we

first apply on the set C of scored candidate box proposals a simple NMS step with IoU

threshold equal to 0.95 in order to then get the top 2000 box proposals and then we follow a

multi-threshold non-max-suppression technique that re-orders this set of 2000 box proposals

such that for any given number K the top K box proposals in the set better cover (in terms

of achieved AR) the objects in the image.
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Specifically, assume that {ti}Nk
i=1 are the optimal IoU thresholds for Nk different desired

numbers of output box proposals {Ki}Nk
i=1, where both the thresholds and the desired

number of box proposals are in ascending order1. Our multi-threshold NMS strategy starts

by applying on the aforementioned set L of 2000 box proposals simple single-threshold

NMS steps with IoU thresholds {ti}Nk
i=1 that results on Nk different lists of box proposals

{L(ti)}Nk
i=1 (note that all the NMS steps are applied on the same list L and not in consecutive

order). Then, starting from the lowest threshold t1 (which also is the more restrictive one)

we take from the list L(t1) the top K1 box proposals and we add them to the set of output

box proposals P. For the next threshold t2 we get the top K2 − |P| box proposals from

the set {L(t2) \ P} and again add them on the set P. This process continues till the last

threshold tNk
at which point the size of the output box proposals set P is KNk

= 2000. Each

time i = 1, ..., Nk we add box proposals on the set P, their objectness scores are altered

according to the formula õ = o+(Nk− i) (where o and õ are the initial and after re-ordering

objectness scores correspondingly) such that their new objectness scores to correspond to

the order at which they are placed in the set P. Note that this technique does not guarantee

an optimal re-ordering of the boxes (in terms of AR), however it works sufficiently well in

practice.

A.3 Common categories between ImageNet and COCO

In this section we list the ImageNet detection task object categories that we identified to be

present also in the COCO dataset. Those are:

airplane, apple, backpack, baseball, banana, bear, bench, bicycle, bird, bowl, bus,

car, chair, cattle, computer keyboard, computer mouse, cup or mug, dog, domestic

cat, digital clock, elephant, horse, hotdog, laptop, microwave, motorcycle, orange,

person, pizza, refrigerator, sheep, ski, tie, toaster, traffic light, train, zebra, racket,

remote control, sofa, tv or monitor, table, watercraft, washer, water bottle, wine

bottle, ladle, flower pot, purse, stove, koala bear, volleyball, hair dryer, soccer ball,

1We used the IoU thresholds of {0.55, 0.60, 0.65, 0.75, 0.80, 0.85, 0.90, 0.95} for the desired numbers of
output box proposals {10, 20, 40, 100, 200, 400, 1000, 2000}. Those IoU thresholds were cross-validated on a
validation set different than this used for the evaluation of our approach.

219



rugby ball, croquet ball, basketball, golf ball, ping-pong ball, tennis ball.

A.4 Ignored NUY Depth dataset categories

In this section we list the 12 most frequent non-object categories that we identified on the

NUY Depth V2 dataset:

curtain, cabinet, wall, floor, ceiling, room divider, window shelf, stair, counter, window,

pipe and column.
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