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En fait, leur fusée n’était pas très, très au point, mais ils avaient
calculé qu’elle avait quand même une chance sur un million de
marcher. Et ils se dépêchaient de bien rater les 999 999 premiers
essais pour être sûrs que le millionième marche.

—Les Shadoks, Saison 1, Épisode 27. Jacques Rouxel
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Chapter 1

Résumé

1.1 Contexte

Les progrès des méthodes experimentales pour mesurer et manipuler des
systèmes quantiques individuels avec une grande précision, comme dans la
première expérience du contrôle quantique en temps réel [61], encouragent le
développement de lois de contrôle automatique pour manipuler l’état d’un
système quantique. Aujourd’hui, la communauté des physiciens s’oriente
vers des conceptions d’ingénierie prometteuses pour le calcul quantique [21,
30, 54, 58, 20]. L’un des éléments de base est la stabilisation d’un état
quantique. Cette procédure de stabilisation pourrait être présente lors de la
préparation d’un état fragile et fortement intriqué qui pourrait être utilisé
sur un ordinateur quantique [53]. La procédure de stabilisation pourrait
également être utilisée dans des applications de métrologie quantique [29].
Les applications de contrôle, en tant que partie de la couche sous-jacente
correspondant au traitement quantique robuste de l’information, visent à
concevoir des méthodes pour protéger l’information quantique en présence
de perturbations [36, 28, 1, 60, 2].

L’utilisation des mesures quantiques non-destructives (QND) — en anglais
quantum non-demolition measurement — est devenue un élément fondamen-
tal pour le contrôle quantique basé sur la mesure [38]. Une mesure QND est
essentiellement une version en temps continu du postulat de projection [10],
où effectuer une mesure en temps continu fait que l’état quantique converge
progressivement vers un état propre de l’opérateur de mesure, mais l’état
résultant est aléatoire. Chacun de ces états propres reste donc non perturbé
sous la rétroaction quantique associée à la dynamique de la mesure. Les états
propres QND sont donc des états d’équilibre stables naturels d’un système
quantique mesuré, et la stabilisation d’un état propre cible grâce à une loi
de contrôle appropriée constitue un élément de base pour des procédures de
contrôle plus complexes, tels que la stabilization des varietés d’états quan-
tiques comme réquis pour implementer algorithmes de correction d’erreurs
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8 CHAPTER 1. RÉSUMÉ

quantiques [1].
Les contrôles basés sur la mesure reposent principalement sur deux ar-

chitectures : le contrôle basé sur l’état et le contrôle proportionnel. Dans
l’approche basée sur l’état [74], le contrôleur suppose qu’un observateur
d’état (aussi appelé «filtre quantique de Bayes») capture de manière efficace
l’évolution de l’état quantique. En effet, plusieurs articles ont developpé des
techniques pour stabiliser un état QND cible [50, 71, 69, 70, 44]. Tandis que
les systèmes quantiques deviennent de plus en plus complexes, plusieurs dif-
ficultés dans cette approche doivent encore être surmontées. Parmi celles-ci,
les lois de contrôle proposées dans les travaux précédents sont assez com-
plexes; la mise en marche basée sur un observateur d’état quantique devien-
dra rapidement difficile avec la dimension croissante des systèmes, comme
requis pour les technologies quantiques visant le développement de l’ordina-
teur quantique. En outre, l’étude de convergence est compliquée, et aucun
de ces schémas de rétroaction ne permet d’assurer une convergence exponen-
tielle. Il est bien connu que la convergence exponentielle est un indicateur de
la robustesse lorsque le système interagirait avec d’autres sous-systèmes ou
serait sujet à certaines perturbations. En revanche, on peut montrer que la
convergence du système en boucle ouverte sous la mesure QND vers l’ensem-
ble de ses états stationnaires est exponentielle. L’absence d’une propriété
similaire démontré pour la sélection d’un état QND cible sous l’effet d’un
contrôleur d’état quantique est donc une thématique de recherche ouverte.

Dans le cas de contrôle proportionnel, aussi connu dans la littérature
en physique sous le nom de «rétroaction markovienne» —en anglais Marko-
vian feedback— la mesure est simplement renvoyée directement au système.
Remarquablement, on peut voir l’équation en boucle fermée comme une re-
formulation des opérateurs de dissipation tel que l’état cible est l’unique
état stationnaire de la dynamique [73]. De plus, la convergence exponen-
tielle vers l’état cible peut être montrée avec des preuves algébriques directes
[64, 65, 63]. Néanmoins, il peut être démontré que les états QND ne peuvent
pas être stabilisés dans cette architecture du contrôle. En effet, il semble
qu’un contrôleur plus complexe doit être utilisé afin de biaiser l’évolution
stochastique vers un état propre cible.

Les développements historiques sur la conception des systèmes de con-
trôle classiques, avec des résultats majeurs tels que le régulateur Proportion-
nel Intégral Derivée (PID) [9, 40], encouragent à rechercher des alternatives
aux architectures des systèmes de contrôle exposés toute a l’heure, telles
que l’utilisation des filtres passe-bas qui pourraient être plus faciles à imple-
menter plutôt qu’un filtre d’état quantique complet.

La lacune existante entre les deux architectures de contrôle quantique,
contrôle proportionnel est contrôle basé sur l’état, n’est pas là en raison d’un
manque d’intérêt. Cependant, des problèmes tels que vérifier que le système
en boucle fermée soit bien posé [15, 18, 5], ou l’analyse de convergence en
boucle fermée font qu’il est difficile de trouver des alternatives. Efforts dans
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cette direction considerent la formulation de filtres réduits ou filtres passe
bas qui permettent de faciliter les calculs en ligne [52, 47, 60]. On peut
considérer aussi éviter tout filtre, en concevant des contrôles pré-calculés
hors-ligne et mis en œuvre sous forme des signaux variant dans le temps
[77, 48]. Sinon, il est tout à fait possible de considerer uniquement l’intensité
de la mesure comme paramètre de contrôle pour encourager des «sauts» vers
un état particulier [67, 68, 13].

1.2 Énoncé du problème et idée principale
Conformément aux éléments précédents, les objectifs principaux de cette
thèse sont

• La stabilisation exponentielle d’un état propre QND prescrit,

• Identifier des opportunités vers l’implémentation des lois de contrôle
calculables de manière efficace dans un contexte expérimental.

En termes d’ingénierie du contrôle, l’idée principale poursuivie dans cette
thèse pour atteindre les deux objectifs repose sur

Utiliser du bruit pour piloter l’actionneur.

Plus précisément, dans cette thèse il est presenté une nouvelle architec-
ture de contrôle quantique, dans laquelle l’actionneur unitaire est piloté par
un processus stochastique. En effet, il consiste en l’application d’un sig-
nal de commande piloté par un mouvement brownien, dont la variance est
régulée par un gain dépendant de l’état quantique. Dans ce contrôle assisté
par le bruit, la conception de la loi du contrôle1 profite de la dynamique
du bruit brownien et de la dynamique en boucle ouverte du système QND
pour réaliser la stabilisation globale : lorsque le système s’approche d’un
état propre aléatoire indesiré de l’opérateur de mesure, il suffit d’injecter du
bruit pour «secouer» le système, en decourageant la convergence du système
vers ces situations non-voulus, le système finise pour converger a l’état cible.

L’analyse de stabilité est étudiée à travers de la version stochastique de
le méthode directe de Lyapunov. Dans cette thèse, on montre que l’utili-
sation du bruit permet d’obtenir des fonctions de Lyapunov globales avec
décroissance exponentielle [41]. Donc la théorie basique sur la convergence
des martingales en temps continu suffit pour assurer la convergence expo-
nentielle globale vers l’état propre cible.

De plus, l’analyse de la stabilité de la dynamique en boucle fermée sug-
gère l’utilisation de filtres réduits pour calculer la loi de contrôle. Con-
trôler en «secouant» l’état ne nécessite que des informations sur les popula-
tions autour des états propres QND. Étant donné que cette information est

1cf. épigraphe.
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disponible avec le processus de mesure, cela signifie que seule l’information
classique sur l’état est nécessaire pour piloter l’état quantique vers un état
propre QND cible. De plus, on peut montrer que les termes associés au
contrôle unitaire stochastique admettent soit une expression sous forme fer-
mée, soit une approximation en lesdites populations de l’état propre. Ainsi,
le filtre ne dépend que des probabilités classiques. Formulations de filtres
reduits de ce genre, qui croît linearement en function des paramètres comme
la dimension de systèmes augmente, pourrait voir un role plus prominent
dans des technologies quantiques avancées.

1.3 Plan de la thèse

La structure de cette thèse est la suivante:

• Le chapitre 3 présente d’abord les modèles mathématiques correspon-
dant aux mesures QND en temps continu. Le comportement dy-
namique des systèmes QND à boucle ouverte est présenté. Il est mon-
tré via une fonction de Lyapunov originale que, pour toute condition
initiale, l’état converge de manière exponentielle vers l’ensemble des
états propres QND, l’ensemble de vecteurs propres de la matrice hermi-
tienne de la mesure. Cette propriété de «multistabilité stochastique»
signifie que le système converge vers l’un des états QND possibles, mais
en moyenne, le système ne bouge pas vers un état QND en particulier.
Nous présentons ensuite le problème de contrôle, qui consiste à sta-
biliser de manière exponentielle un état propre QND parmi l’ensemble
existant en boucle ouverte. Les architectures de contrôle existantes
sont rappelées. Enfin, la stratégie de commande constituant le coeur
de cette thèse est présentée.

La présentation de ce chapitre sur l’exposition des travaux précédents,
et la preuve de convergence exponentielle vers l’ensemble des états pro-
pres QND suit les lignes des articles [22, 24].

• Dans le chapitre 4 nous utilisons le contrôle proportionnel et le con-
trôle assisté par bruit pour stabiliser de manière exponentielle un qubit
sujet aux mesures QND en temps continu. Dans le contrôle propor-
tionnel, il peut être facilement montré que presque tout état pur peut
être stabilisé de manière exponentielle, à condition de disposer d’une
efficacité de mesure parfaite. Néanmoins, lorsque l’on vise des états
proches a un état propre QND du qubit, le taux de convergence décroît
vers zéro. Pour aborder la stabilisation des deux états propres QND de
l’opérateur de mesure, nous utilisons l’approche assistée par bruit. La
stabilisation exponentielle est montrée via des arguments classiques
de la théorie stochastique de Lyapunov. En ce qui concerne la loi
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de contrôle, le contrôleur dépend uniquement de la coordonnée corre-
spondant à l’axe de mesure, ce qui permet de déduire un filtre d’ordre
réduit pour obtenir une stabilisation exponentielle.
Ce chapitre adapte les idées trouvées dans [22] pour obtenir la stabili-
sation exponentielle d’un qubit. Ici la stratégie utilise un bruit éxogene,
au lieu d’une version dynamique du feedback Markovien utilisé dans
ledit papier.

• Dans le chapitre 5 nous étendons la stratégie de contrôle assistée par
bruit à un système QND à plusieurs niveaux, en utilisant un seule
contrôle avec un Hamiltonian fixe. L’extension diffère sensiblement du
qubit en raison de la présence de multiples états propres orthogonaux
à l’état cible, et sur la manière dont l’hamiltonien du contrôle «con-
necte» les états QND. La stratégie du control est de «secouer» le sys-
tème lorsqu’il s’approche d’états propres indésirables en y appliquant
un bruit fort, tout en s’appuyant sur la dynamique en boucle ouverte
pour atteindre progressivement la cible. Pour montrer que le bruit
éloigne le système des voisinages des états propres QND non-voulus,
des méthodes basiques de la théorie des graphes impliquant l’inversion
d’une matrice laplacienne sont utilisées pour montrer la décroissance
exponentielle autour desdits états. Ensuite, l’analyse sur la fonction
de Lyapunov montre que, en combinaison avec la dynamique en boucle
ouverte, on peut établir une convergence exponentielle de la fonction
de Lyapunov en boucle fermée. Cette fonction est une supermartin-
gale avec une décroissance exponentielle, impliquant la stabilité ex-
ponentielle globale. Le schéma de contrôle et son analyse de stabilité
suggèrent l’utilisation d’un filtre approximatif qui ne fait que suivre les
populations des états propres de l’opérateur de mesure. Ceci consiste
à remplacer les termes correspondant à la dissipation faite par le bruit
par la matrice laplacienne associée au graphe de connectivité induit
par le hamiltonien d’actionnement.
Ce chapitre est basé principalement sur [24], ici on ajoute quelques

explications additionnelles.

• Le chapitre 6 étudie le problème de correction d’erreurs quantiques
en temps continu pour le code de correction d’erreurs à trois qubits.
Cela implique de rendre une variété cible d’états quantiques globale-
ment attractive. Nous adaptons la loi du contrôle assisté par bruit
aux spécificités du problème de la correction d’erreurs. Il est possi-
ble de montrer que la dynamique en boucle fermée résultante stabilise
la variété cible de manière exponentielle. Néanmoins, il y a quelques
différences par rapport aux problémes de stabilisation précédents qui
doivent être prises en compte ici: d’abord, ayant une donnée initiale
appartenant à la varieté cible, il est nécessaire de montrer qu’elle est
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protégée des erreurs detectées ; deuxièmement, les actions de contrôle
doivent être minimisées pour que des erreurs additionnelles à cause de
ladite action soient évitées. En outre, une formulation de filtre d’ordre
réduit est présenté, qui est basé sur des probabilités classiques. L’étude
sur la protection induite par la dynamique de correction d’erreur en
boucle fermée contre les perturbations est étudié numériquement. Les
performances de cette loi de contrôle et du filtre réduit sont étudiées
numériquement. La procédure de contrôle considerée dans ce chapitre
constitue une première extension à plusieurs entrées et sorties — en
anglais multi-input multi-output (MIMO) — du contrôle assisté par
bruit considéré dans les chapitres précédents.
Les résultats de ce chapitre suivent l’article [23].



Chapter 2

Introduction

2.1 Background

We are now at a stage where measuring and controlling quantum systems
is experimentally realizable, as in the first real time quantum feedback ex-
periment [61]. Now, the physics community has been moving towards engi-
neering designs that are truly promising for quantum computation [21, 30,
54, 58, 20]. One of the elementary building blocks is the stabilization of a
quantum state. This stabilization procedure could be present while prepar-
ing a fragile and highly entangled state as an input to be used on a quantum
computer [53]. It could be used as well in applications of quantum metrology
[29]. Applications of feedback, as part of the control layer underlying robust
quantum information processing devices, aim towards developing continous-
time methods that can be used to protect quantum information in the pres-
ence of perturbations [1, 49]. The design of the control layer has motivated
the study of different quantum feedback schemes, notably coherent feedback,
reservoir engineering and measurement-based feedback.

Coherent feedback is a formulation where the control signals, sensors
and controller, are quantum mechanical [46]. This concept has given rise
to mathematical formulations that have promising capabilities for modelling
and analysis of networks of interconnected quantum systems [35, 39]. In close
relation, reservoir engineering techniques consists on engineering a coupling
between a system of interest and a dissipative ancilliary quantum system
in the aim of mantaining the coherence of some particular quantum states
[57, 49]; the coupling is done such that the entropy of the main system is
evacuated through the dissipation of the ancilliary one.

At the core of this thesis is the use of continuous-time measurement-
based feedback. In this feedback scheme, a continuous-time signal provides
weak information, associated to a weak backaction, on the quantum state.
Quantum non-demolition (QND) measurements [38] are a standard element
for measurement-based feedback control. A QND measurement is essen-

13
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tially a continuous-time version of the projection postulate, characterized
by a Hermitian operator. Performing a continuous measurement makes the
quantum state progressively converge to a random eigenstate of the mea-
surement operator. Each eigenstate is a steady state of the dynamics, and
hence remains unperturbed under the backaction associated to this quan-
tum measurement. Thus, the use of a QND measurement can be seen as
a non-deterministic preparation tool, and an additional feedback control is
necessary for preparing a particular QND eigenstate. The goal of this thesis
is to address this control layer in continuous-time.

Measurement-based feedback controls have been based mainly on two
feedback structures: state feedback and static output feedback. In the state
feedback approach [74], the controller assumes that a state observer (often
called the "quantum Bayes filter") efficiently captures the evolution of the
quantum state.

Several papers have indeed considered ways to stabilize a target QND
eigenstate [50, 71, 69, 70, 44] under state feedback. As engineered quantum
systems become more complex, there are still several issues that need to be
addressed. Among them, the feedback laws proposed in existing work can
be quite complex; the implementation based on a quantum state observer
would scale poorly with increasing system dimension as will be needed by
advanced quantum technologies. In addition, the associated convergence
analysis is rather involved and none of these feedback schemes are shown to
ensure exponential convergence. It is well-known that exponential conver-
gence is an indication of robustness when the system would interact with
other subsystems or would perform subject to some perturbations. More-
over, it can be shown that the convergence of the open-loop system under
QND measurement towards the set of its steady states is exponential. The
absence of a proven similar property for the selection of one target QND
steady state under quantum state feedback thus appears as an avoidable
gap.

In the static output feedback, also known in the physics literature as
Markovian feedback [74], the measurement output is fed-back into the sys-
tem. In analogy with classical systems, the feedback is dependent on con-
stants that define a set-point for the closed-loop dynamics. Remarkably, we
can consider the closed-loop equation as a reformulation of the dissipation
operators such that target state is the only steady state of the closed-loop
dynamics [73, 74]. Moreover, exponential convergence of the target state
does hold with direct algebraic proofs [64, 65, 63]. Unfortunately, this feed-
back is not without inconvenients: for one, perfect stabilization of a target
pure state depends on having a perfect measurement efficiency, that is, there
is no loss of information from the measurement device to the environment.
Additionally, it can be shown that QND eigenstates cannot be stabilized
under this setting. Indeed, a more involved controller needs to be used in
order to bias the stochastic evolution towards a target eigenstate.
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The developments of classical control systems design, with major results
such as PID control [9, 40], encourage to look for alternatives to the previous
two quantum feedback architectures, and motivate the search of dynamical
feedback approaches, such as the use of reduced quantum filters that are
easier to compute rather than a full quantum state filter.

The gap that exists currently between the two measurement-based quan-
tum feedback structures, static output feedback and state feedback, is not
due to lack of interest. However, problems like well-posedeness of the closed-
loop system [15, 18, 5] and convergence analysis seem to make difficult to find
alternatives. Some efforts in this direction include low dimensional formula-
tions of quantum filters or low-pass filters that would be easier to compute
online [52, 47, 60]. Another possibility is on avoiding a quantum filter alto-
gether, by proposing pre-computed controls that are computed off-line and
implemented as time-varying signals [77, 48]. Else, it is as well possible
to consider the mesurement strength as a control parameter to encourage
"jumps" towards a particular state [67, 68, 13].

2.2 Problem statement and main idea
In accordance with the previous exposition, there are two main goals that
drive this Thesis

• Achieve exponential stabilization of a prescribed QND eigenstate,

• Identify opportunities towards the implementation of efficiently com-
putable controls on an experimental setup,

In control engineering terms, the main idea pursued in this Thesis to address
both goals is

Use an exogenous noise to drive the actuator.

More precisely, in this Thesis we propose a new actuation strategy where
the unitary actuator is driven by a stochastic process. It consists on the
application of a control signal driven by a Brownian motion, whose variance
is regulated by a state-dependent gain.

In this noise-assisted feedback architecture, the control design strategy1

exploits the QND dynamics to achieve global stabilization: since in open-
loop the system converges to a random eigenstate of the measurement op-
erator, it suffices to apply noise to "shake" away the system when it is close
to an undesired eigenstate; by selectively rejecting undesired situations, the
stochastic evolution is biased to the target.

The control synthesis is be setup as a stabilization problem through the
stochastic version of Lyapunov’s second method. In this Thesis, we show

1cf. ephigraph.
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that the stochastic actuation strategy, driven by Brownian noise, allows to
obtain closed-loop Lyapunov functions with exponential decay, thus stan-
dard martingale theory is enough to ensure the global exponential conver-
gence towards the target eigenstate.

Interestingly, the stability analysis of the closed-loop dynamics suggests
the use of reduced filters to compute the feedback law. Controlling by "shak-
ing" the state just needs information on the populations on the QND eigen-
states. Since this information is available from the measurement operator,
this means that only classical information on the state is needed to drive
the quantum state towards a target QND eigenstate. Furthermore, it can
be shown that the terms associated to the stochastic unitary control admit
either a closed form expression or an approximation in terms of the said
eigenstate populations, thus the filter only depends classical probabilities.
Formulations of reduced-order filters of this type, scaling linearly in terms
of its parameters as the dimension of the system increases, could see an
increasing role as needed for advanced quantum technologies

2.3 Thesis outline
The structure of this Thesis is as follows:

• Chapter 3 first presents the mathematical models corresponding to
continuous QND measurements. The dynamical behaviour of the
open-loop QND systems is introduced. We show via an original Lya-
punov function that, for any initial condition, the state converges
exponentially towards the set of QND eigenstates. This "stochastic
multistability" property means that the state converges to one of a
few steady state situations, but on average it does not move to any
particular one. We then present the control problem, which is to expo-
nentially stabilize a QND eigenstate amongst the open-loop set. The
associated existing feedback designs are overviewed. Lastly, I present
the control strategy that will be common for the rest of this Thesis.
The presentation of this Chapter on precedent works and the proof of
exponential convergence towards the set of QND eigenstates follows
mostly the lines of the articles [22, 24].

• Chapter 4 provides the continuous-time static output feedback and
noise-assisted feedback to exponentially stabilize a qubit under QND
measurements. In static output feedback, it can be easily shown that
any pure state on the qubit can be exponentially stabilized when hav-
ing a high measurement efficiency. Nevertheless, when aiming towards
a QND eigenstate, the convergence rate decreases towards zero. To ad-
dress the two QND eigenstates of the measurement operator, we intro-
duce the noise-assisted approach. Exponential stabilization is shown
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via standard Lyapunov arguments. With respect to other feedback
laws, here controller only depends on the single coordinate along the
measurement axis, this allows to derive a reduced order filter to achieve
exponential stabilization.
This Chapter adapts the ideas found on [22] to exponentially stabilize
a qubit. The main difference with said article is the use of an exter-
nal Brownian noise instead of a dynamical modification of Markovian
feedback.

• Chapter 5 extends the noise assisted feedback strategy to a multi-level
QND system. The extension differs substantially from the qubit due
to the presence of multiple eigenstates orthogonal to the target, and
how the feedback Hamiltonian connects the QND eigenstates. The
control strategy “shakes” the system away from undesired eigenstates
by applying strong noise there, while relying on the open-loop dy-
namics to reach the target. To show that noise drives the state away
undesired eigenstate, methods of graph theory involving the inversion
of a Laplacian matrix are used to show exponential decay around the
undesired QND eigenstates. Next, analysis done on the Lyapunov
function exploits the open-loop dynamics to show exponential decay
to the target. Convergence analysis is done using standard stochastic
Lyapunov methods; with the two properties said above, the control
strategy ensures that the closed-loop Lyapunov function is a super-
martingale with exponential decay in all the state space, implying a
progressive approach to the target state. The feedback scheme and its
stability analysis suggest the use of an approximate filter which only
tracks the populations of the eigenstates of the measurement operator.
This consists on replacing the terms corresponding to the dissipation
induced by the noise with the Laplacian matrix associated with the
connectivity graph of the feedback Hamiltonian.
This Chapter follows mainly [23] with additional explanations.

• Chapter 6 studies the standard quantum error correction using the
three-qubit bit-flip code in continuous-time. This entails rendering
a target manifold of quantum states globally attractive, that states
within the manifold should remain unperturbed. We show that the
resulting closed-loop dynamics can be shown to stabilize the target
manifold exponentially. There are however some differences with re-
spect to the previous stabilization problems: first, given an initial data
on the target manifold, it is necessary to show how the said data is
protected from errors; second, control actions must be minimized in
order to avoid inducing more errors. It is further presented a reduced-
order filter formulation with classical probabilities. The performance
of the control law to protect information against disturbances is stud-
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ied numerically, as the that of the reduced filter. The feedback scheme
considered in this chapter is a first extension of the noise assisted feed-
bcack scheme to a multi-input multi-output (MIMO) setting.
The results of this Chapter are based on [23].



Chapter 3

Quantum non-demolition
measurements and feedback

Dans ce chapitre, nous introduisons les modèles mathématiques correspon-
dant aux mesures QND en temps continu. Nous presentons le comportement
dynamique des systèmes QND à boucle ouverte. Il est montré via une fonc-
tion de Lyapunov originale que, pour toute condition initiale, l’état converge
de manière exponentielle vers l’ensemble des états propres QND, l’ensemble
de vecteurs propres de la matrice hermitienne de la mesure. Cette propriété
de «multistabilité stochastique» signifie que le système converge vers l’un
des états QND possibles, mais en moyenne, le système ne bouge pas vers
un état QND en particulier. Nous présentons ensuite le problème de con-
trôle, qui consiste à stabiliser de manière exponentielle un état propre QND
parmi l’ensemble existant en boucle ouverte. Nous rappelerons aussi les ar-
chitectures de contrôle existantes. Enfin, nous presenterons la stratégie de
commande constituant le coeur de cette thèse.

The concept of measurement and feedback, which are so natural in engi-
neering applications, becomes more subtle in the quantum domain. In order
to control the system, a measurement must be performed, but due to the
measurement back-action, this would invariably perturb the system. The
formalism of stochastic master equations [25, 11] provides a mathematical
framework to model this measurement process. It is then possible to use the
information obtained from the measurements to influence the behavior of a
quantum system.

Next, we need to make sure that the measurement iteslf does not per-
turb the target state. A special case of stochastic master equations are
those that model quantum non-demolition (QND) measurements, which are
a continuous-time versions of the projection postulate. The eigenstates of
the measurement operator, called QND eigenstates, are equilibria of the
measurement dynamics and thus naturally protected from the measurement
backaction. Then, a QND measurement can be chosen advantageously such

19
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that its eigenstates/eigenspaces contain states/subspaces suitable for quan-
tum computation. Thus, an appropiate QND measurement can itself be
considered as an open-loop preparation tool for quantum states [33], al-
though the resulting state will be random. Then, added to a fixed QND
measurement, feedback control can be used for preparing a target QND
eigenstate with probability one.

Throughout this chapter, we overview some properties of stochastic mas-
ter equations and in paricular of QND systems, which are considered as our
open-loop models. Afterwards we will present the feedback stabilization
problem, the previous work around this problem, and lastly address the
control methodology that will be pursued in this Thesis.

3.1 Open loop-models: continuous QND measure-
ments

The mathematical setup for quantum measurements in continuous time is
that of stochastic master equations, for a more complete introduction, the
reader is encouraged to follow the book of A. Barchielli & M. Gregoratti
[11] for a mathematical introduction, or the lecture notes of H. Carmichael
[25]. We do not consider here discrete-time models, for which the reader
is invited to read the previous works [12, 4, 3, 6], addressing discrete-time
quantum measurements and feedback control.

We work in a finite dimensional complex Hilbert space H isomorphic to
Cn. The kets |x〉 are complex vectors on Cn and 〈x| its complex conjugate
transpose called bra, Tr ( · ) denotes the trace operator, [ ·, ·] denotes the
commutator and ‖ · ‖ is the norm induced by the inner product 〈 ·||· 〉.

The state space is set of density matrices as

S = {ρ ∈ Cn×n : ρ ≥ 0, ρ = ρ†,Tr (ρ) = 1},

ρ† is the Hermitian conjugate of ρ, ρ ≥ 0 means that ρ is positive semidef-
inite, i.e. 〈ψ|ρ|ψ〉 ≥ 0 for all ψ ∈ H. The set of density matrices S is the
convex hull of the set of pure states

P = {ρ ∈ Cn×n : ρ = |ψ〉〈ψ|, ψ ∈ Cn, ‖ψ‖2= 1},

and mixed states are the states for which Tr
(
ρ2) < 1.

The open-loop systems describing a quantum system subject to several
continuous measurements correspond to Itō stochastic differential equations
of the form:

dρ =
∑

µ

DLµ(ρ)dt+ √
ηMLµ(ρ)dWµ , (3.1)

dYµ = √
ηTr

(
(Lµ + L†

µ)ρ
)
dt+ dWµ ,
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where we have defined the superoperators

D(L, ρ) = LρL† − 1
2(L†Lρ+ ρL†L) ,

M(L, ρ) = Lρ+ ρL† − Tr(ρ(L+ L†))ρ ,

Each Wµ is an independent Brownian motion, i.e. dWµ dWµ′ = δµ,µ′ and
each Yµ corresponds to an independent measurement output channel [11].
The linear operator Lµ is the measurement operator, and each ηµ ∈ [0, 1]
represents the corresponding measurement efficiencies, i.e. the ratio of the
corresponding channel linking the system to the outside world which is effec-
tively captured by the measurement device; channels µ with ηµ = 0 represent
pure loss channels.

We recall here the result of existence and uniqueness of solutions of (3.1)

Theorem 3.1.1. The open-loop system (3.1) admits a unique solution (ρt).
The set of states S is a positively invariant set under (3.1), i.e., the solution
takes values in the set of states S and it is defined for all t ≥ 0.

Proof. This result has been shown, e.g., in [56, 11, 50]. Existence and
uniqueness of solutions can be shown via standard arguments of SDE’s de-
fined on compact sets. The assertion that S is a positively invariant set of
(3.2) is more subtle, but it can be seen in the following way: remark that,
with Itō’s rule, Equation (3.2) admits the following formulation

ρt+dt =
MdY ρtM†

dY +
∑

µ(1 − ηµ)LµρtL
†
µdt

Tr
(
MdY ρtM†

dY +
∑

µ(1 − ηµ)LµρtL
†
µdt
) ,

with MdY = I − 1
2
∑

µ L
†
µLdt+

∑
µ

√
ηµLµdYµ. Then it becomes clear that

Eq. (3.2) preserves trace and positive semi-definiteness of ρ.

Quantum non-demolition measurements are characterized by a Hermi-
tian measurement operator, i.e., Lµ = L†

µ. In this general setting, the open-
loop system (3.2) allows to weakly measure non-commuting observables in
parallel [37]. As such, operators must commute in order that Eq. (3.2)
admits steady states —cf. Chapter 6. We consider here the case of a single
QND measurement

dρ =
(
LρL− 1

2L
2ρ− 1

2ρL
2)dt+ √

η(Lρ+ ρL− 2 Tr (ρL) ρ)dW, (3.2)

We associate to L its spectral decomposition L =
∑d

`=1 λ`Π`; λ` are the
d-distinct eigenvalues of L with corresponding projection operators Π` re-
solving the identity. We define the population of the eigenspace associated
with Π` as

p`(ρt) := Tr (ρtΠ`) ≥ 0,
∑

`

Tr (ρtΠ`) = 1, ∀t ≥ 0.
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We summarize in the following Lemma, the asymptotic behaviour of an
open-loop QND system with a single measurement. It formalizes the point
of view of a QND measurement as a continuous-time analog of the projection
postulate [71, 50, 16]; in addition, we provide an estimate of the exponential
convergence rate towards the set of steady states via an original Lyapunov
function.

Lemma 3.1.1. Consider the open-loop system (3.2) and the subspace pop-
ulations p`(ρ), 1 ≤ ` ≤ d. Then

(i) For any `, the subspace population p`(ρt) is a martingale for all t ≥ 0,
i.e. E[p`(ρt)] = p`(ρ0).

(ii) Given an initial condition ρ0 ∈ S, if there exists ` such that p`(ρ0) = 1
and pk 6=`(ρ0) = 0, then ρ0 is a steady state of (3.2).

(iii) The Lyapunov function

Vo(ρ) =
d∑

k=1

∑
k′<k

√
pk(ρ)

√
pk′(ρ), (3.3)

decreases exponentially as

E[Vo(ρt)] ≤ exp(−rt)Vo(ρ0),

for all t ≥ 0 and ρ0 ∈ S with rate

r = 1
2ηmin

k,k′
(λk − λk′)2.

In this sense, system (3.2) converges towards the set of invariant states
described in point (ii).

Proof. For each `, the subspace populations p`(ρ) satisfy the stochastic dif-
ferential equation (SDE)

dp`(ρ) = Tr
(
(LρL− 1

2L
2ρ− 1

2ρL
2)Π`

)
dt−√

ηTr ((Lρ+ ρL− 2 Tr (ρL) ρ)Π`) dW

= Tr
(
ρ(LΠ`L− 1

2L
2Π` − 1

2Π`L
2)
)
dt−2√

η
(

Tr (LΠ`ρ)−Tr (ρL) Tr (ρΠ`)
)
dW

= 2√
η
(
λ` −

d∑
s=1

λsps(ρ)
)
p`(ρ)dW.

Taking the expectation yields d
dtE[p`(ρ)] = 0, so indeed p`(ρ) is a mar-

tingale, i.e. E[p`(ρt) ] = p`(ρ0), ∀t ≥ 0.
Take ρ0 such that p`(ρ0) = 1. Plugging into Eq. (3.2) we have

DL(ρ`) = Lρ0L− 1
2L

2ρ0 − 1
2ρ0L

2 = λ2
`ρ0 − 1

2(2λ2
`ρ0) = 0,
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and

ML = √
η(Lρ0 + ρ0L− 2 Tr (ρ0L) ρ0) = 2√

η(λ`ρ0 − Tr (λ`ρ0) ρ0) = 0.

Thus ρ0 is a steady state of (3.2).
As for point (iii), Vo is a positive definite function on S and 0 only when

p`(ρ) = 1 for some `. It remains to check that it is a supermartingale with
exponential decay. From Itō’s formula, the variable ξk := √

pk satisfies the
SDE

dξk = −1
2η(λk −$(ξ))2ξkdt+ √

η(λk −$(ξ))ξkdW, (3.4)

with ξ = (ξk)1≤`≤d and $(ξ) =
∑d

s=1 λsξ
2
s .

Under the ξ coordinates,

Vo(ξ) =
d∑

k′=1

∑
k′<k

ξkξk′ .

We detail the computations for a single product of ξkξk′ , as the other terms
in the summation are computed in the same manner. From Itō’s formula

d(ξkξk′) = (dξk)ξk′ + ξk(dξk′) + (dξk)(dξk′)
= −1

2η(λk −$(ξ))2ξkξk′dt+ √
η(λk −$(ξ))ξkξk′dW

− 1
2η(λk′ −$(ξ))2ξkξk′dt+ √

η(λk′ −$(ξ))ξkξk′dW

+ η(λk −$(ξ))(λk′ −$(ξ))ξk′ξkdt

= −1
2η(λk − λk′)2ξk′ξkdt+ √

η(λk + λk′ − 2$(ξ))ξkξk′dW.

The expectation satisfies dE[ξkξk′ ] = −1
2η(λk −λk′)2E[ξk′ξk]dt. Then the

Markov generator ,detailed in Appendix (A.3), associated to
∑d

k′=1
∑

k′<k dE[ξkξk′ ]
reads

AVo = −η
2

d∑
k′=1

∑
k′<k

(λ` − λ`′)2 ξkξk′ .

Since each component of ξ(t) remains non-negative for all t, this readily
yields

AVo ≤ −η
2

(
min

k′,k 6=k′
(λk − λk′)2

)
Vo.

By Theorem A.0.1 in Appendix, Vo decays exponentially towards zero, im-
plying that solutions of (3.2) converge with exponential speed towards the
set of states described in point (ii).

3.2 Control problem and existing feedback designs
QND measurements are a common element in measurement based feedback.
Part of this consideration is the practical interest of such measurements for
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engineering quantum systems: from property ii) of Lemma 3.1.1, steady
states remain unperturbed from the measurement process. On the other
hand, QND measurements pose interesting challenges: as seen in Lemma
3.1.1, the open-loop system stochastically converges to one of a few steady-
state situations, but on the average it does not move closer to any particular
one. It is then our goal to bias this average to a target eigenstate.

The control objective is to ensure convergence to a target QND eigen-
state, indexed by ` ∈ {1, . . . , d} for all realizations. More precisely, we will
design a real-valued continuous stochastic control process v, depending on
the state ρ, such that limt→∞ E[p`(ρ)] = 1 with exponential convergence
rate, for any initial condition ρ0 ∈ S.

Feedback actions are incorporated as a unitary actuators of the form
Ut = exp (−iHdv), where H = H† is the actuation Hamiltonian, and dv is
the control process that drives the actuator. To the QND dynamics (3.1),
we add unitary actuators of form

ρt+dt =
∑

ν

Uν(t)(ρt + dρt)Uν(t)† (3.5)

with m measurements channels {Yµ}1≤µ≤m.
We aim to showing exponential convergence via global Lyapunov func-

tions V (ρ) such that V (ρt) is a supermartingale with exponential decay for
all t ≥ 0 and for all ρ0 ∈ S.

3.2.1 Static output feedback

We consider the simplest possible feedback control scheme, a proportional
output feedback of the form

dv = fdt+ σdY,

where f, σ are constants. Since the control signal depends on a stochastic
process, care is needed in order to derive the closed-loop dynamics.

Since dv depends on a stochastic proces, care is needed to derive the
closed-loop dynamics. The derivation of the closed loop dynamics was first
done in [73], here we only provide a simpler formulation. We relate Eq. (3.1)
with (3.5) via the Baker-Campbell-Hausdorff (BCH) formula

exHPe−xH =
∑

j

Tj
xj

j! ,

the terms Tj of the series expansion on the right hand side of are defined
recursively as T0 = P and Tj+1 = [H,Tj ] for j ≥ 0. We identify the right
hand side up-to second order of the BCH formula with Itō’s formula. Take
P = ρt + dρt and consider Itō rules (dW 2 = dt, dWdt = dt2 = 0). The
closed-loop equation reads
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dρ = −if [H, ρ]dt− iσ
√
η[H,Lρ+ ρL]dt
+ DL(ρ)dt+ σ2DH(ρ)dt

+ √
ηDL(ρ)dW − iσ[F, ρ]dW.

The simplicity of the feedback scheme makes it attractive for experi-
mental implementations, since there is no control processing overhead in
the feedback loop. This feedback equation has been derived as well using
the rules of the quantum stochastic calculus [35]. The next Lemma shows
that the controller (3.6) cannot be tuned to achieve global asymptotic sta-
bility towards a prescribed QND eigenstate Π`.

Lemma 3.2.1. Consider the closed-loop system (3.6) with L = L†. There
does not exist H, f and σ such that the closed-loop system (3.6) converges
towards a chosen QND closed-loop steady-state, i.e. Π` for some chosen
` ∈ {1, . . . , d}.

Proof. If Π` is a steady-state of (3.6) and since f, σ are constants, then

−if [H,Π`] − iσ
√
η[H,LΠ` + Π`L] + DL(Π`) + σ2DH(Π`) = 0,

and √
ηM(L,Π`) − iσ[H,Π`] = 0.

Since LΠ` = λ`Π`, the second condition implies that σ[H,Π`] = 0. By
plugging this into the other steady-state constraint, we get f [H,Π`] = 0 and
σ2DH(Π`) = −σ2

2 [H, [H,Π`]] = 0. If f = σ = 0, we are in open-loop and Π`

is not globally asymptotically stable. When σ or f are not zero, we must
have [H,Π`] = 0. Then we have dTr (ρΠ`) = 0. Thus Tr (ρtΠ`) = Tr (ρ0Π`)
is a time invariant and we cannot have convergence towards ρ`.

In this static output feedback [74, 72], we can consider the role of the con-
trol as to advantageously changing the dissipation operators of the average
dynamics, as it can be rewritten as

dρ = −if [H, ρ]dt− iσ
√

η
2 [HL+ LH, ρ]dt

+ D(L−iσ
√

ηH)(ρ)dt+ D(iσ
√

1−ηH)(ρ)dt
+ √

ηM(L−i
√

η σH)(ρ)dW − (1 − η)iσ[H, ρ]dW. (3.6)

Markovian feedback is constrained to having measurement efficiency η =
1 in order to use this feedback for stabilizing a target pure state. When
η < 1, the state is subject to significant noise, namely, purity is limited by
the dissipation term D(iσ

√
1−ηH)(ρ). With perfect measurement efficiency,

exponential stability of the target state follows from algebraic arguments,



26CHAPTER 3. QUANTUM NON-DEMOLITION MEASUREMENTS AND FEEDBACK

provided that there is some liberty on adding open loop Hamiltonians, say
Ho, H̃ = H +Ho. The following theorem, taken from [64, 65] gives general
conditions for stabilization under static output feedback.

Theorem 3.2.1. Consider the closed-loop system (3.6) with η = 1. Set the
Hilbert space decomposition H = HS ⊕ HR and let ΠS ,ΠR be the orthogonal
projections on HS ,HR respectively. Under the Matrix decomposition

A =
[
AS AP

AQ AR

]
, (3.7)

let L̃ = L− iH and H̃ = LH +HL† +Ho fullfil the conditions L̃Q = 0 and
H̃P = −i1

2 L̃
†
SL̃P .

Then for any ρ0 ∈ S the solution of Eq. (3.6) converges to the largest
invariant set contained in

{ρ ∈ S : Tr (ΠRρ) = 0}, (3.8)

Moreover, if the invariant set (3.8) consists of a single pure state ρd,
then E(ρt) → ρd with exponential rate given by the minimum eigenvalue of
L̃†

P L̃P .

Given a fixed QND measurement operator L and for a target state ρd

such that [ρd, L] 6= 0, there always exist a feedback Hamiltonian H such that
ρd is globally stable. The explicit construction is not trivial and depends on
the specific form of L, explicit algorithms are provided in [64, 63]. The need
for a single pure state goes back to [34].

To summarize, static output feedback is a simple feedback that avoids
the overhead of needing a quantum state estimator to compute the control
law; furthermore, states stabilizable under this feedback are exponentially
stable. The main observation that we can take from this approach, is the
use of a stochastic process, the measurement output, to drive the control
fields. Just keeping f and σ constant does not allow for QND stabilization,
so a dynamical approach is necessary. State feedback is one alternative.

3.2.2 State feedback

State feedback is a control approach where a the control signal is dependent
on the quantum state ρ, computed through a quantum filter. Previous works
[31, 32] have considered a closed-loop model where the control signal is a
function of the state implemented through a deterministic actuation, that is

dv = f(ρ)dt

which corresponds to a closed-loop equation of the form

dρ = −if(ρ)[H, ρ]dt+ DL(ρ)dt+ √
ηML(ρ)dW. (3.9)
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QND eigenstate stabilization by quantum state feedback

Stabilization by quantum state feedback of QND eigenstates has been ex-
plored and solved in several papers [71, 76, 50, 69]. Although they all start
with Lyapunov control techniques and the open-loop martingale

Ṽ (ρ) = 1 − Tr (ρΠ`) , (3.10)

they also involve specific stochastic arguments combining arguments on the
support of the closed-loop trajectories with Doob inequalities in order to
establish the global asymptotic almost sure convergence for the closed-loop
system [50, 69]. Let us explain the basic reason why it is difficult, as already
highlighted in [71], to construct quantum state feedback and a strict closed-
loop Lyapunov function in this case.

From (3.9), the Lyapunov function candidate (3.10) satisfies dE[Ṽ (ρ)] =
f(ρ) Tr (i[H, ρ]Π`) dt. The quantum state feedback

f(ρ) = − Tr (i[H, ρ]Π`) (3.11)

makes this expectation decreasing. It does not mean, that for all realizations,
Tr (ρtΠ`) → 1 as t → ∞. In particular, any QND state Π`′ with `′ 6= ` is a
closed-loop steady state since Tr (i[F,Π`′ ]Π`) = 0, for any choice of H. In
a stochastic convergence setting, such steady states are harder to treat, as
there will be realizations that can even converge to maxima of a stochastic
Lyapunov function.

It could be tempting to follow the deterministic intuition and try to
define a local region of atraction. Unfortunately, due to the stochastic nature
of the problem, a local stability result on its own is of no interest. To
develop further on this remark, let 0 < γ < 1 and consider level sets like
Q<1−γ = {ρ = Ṽ (ρ) < 1 − γ}, similarly Q<1−γ/2, so Q<1−γ ⊂ Q<1−γ/2.
Then the set S \ Q<1−γ/2 contains all QND eigenstates Π`′ , `′ 6= `, and
d
dtE[V (ρ)] ≤ 0 for all ρ ∈ Q<1−γ/2 with the control the control 3.11. In
the deterministic theory this is enough to show that any trajectory that
starts at Q<1−γ/2 remains there, and it converges towards Π`. Unfortunately
for, stochastic systems, this statement is weaker: Doob’s supermartingale
inequality (see e.g., [42, Chapter 2]), provides a bound in probability Pr for
exiting the set Q<1−γ/2 with initial condition on Q<1−γ . We have for all
ρ0 ∈ Q<1−γ

Pr( sup
0≤t<∞

Ṽ (ρt) ≥ 1/2) ≤ V (ρ0)
1 − γ/2 ≤ 1 − γ

1 − γ/2 < 1.

The above probability estimate holds for any 0 < γ < 1. The question is
now whether or not this probability estimate gives any relevant information
on how well the control improves convergence to the target. Take any initial
state diagonal on the eigenbasis of L, and such that 1 − Tr (ρρ0) < 1 − γ.
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With this initial condition, f(ρ0) = − Tr (i[H, ρ0]Π`) = 0 and Eq. (3.9)
remains in open-loop regime for all t ≥ 0, i.e. Π` does not attract the state
more than any other eigenstate Π`′ for `′ 6= `. This illustrates that a closed-
loop Lyapunov function having a minimum at ρ = Π` does not automatically
hint at the fact that the latter is more attractive than other critical points.

To achieve a global stability result, analytical approaches have followed
a stabilization strategy that consists on defining a local stability region Q,
where V (ρ) is decreasing in expectation, and to show that trajectories that
start outside, or that exit such level set will attain back in finite time. The
controls are explicitly designed to apply perturbations which remove the
undesired steady states [50, 70]. These previous works have only considered
the context of quantum spin systems (cf. Section 5.5 of Chapter 5), that is,
systems of dimension n = 2J + 1 where the measurement operator L is of
the form

L =
2J∑

m=0
(J −m)|J-m〉〈J-m|

and the actuator Hamiltionian H is a tri diagonal matrix

H =
2J−1∑
m=0

√
(m+1)(2J−m)

2i (|J-m〉〈J-m-1| − |J-m-1〉〈J-m|)

thus Π` = |J-`〉〈J-`|, ` = 0, . . . , 2J . The biggest limitation when constrain-
ing to quantum spin systems is that the structure of the actuator Hamilto-
nian, that is, the way it couples different eigenstates, could change on other
types of physical systems.

In [50], global stabilization of quantum spin systems is achieved by intro-
ducing a control with hysteresis that gives a constant input whenever Ṽ (ρ)
is close to one, and then switching to the Lyapunov feedback 3.11 once ρ is
close enough to the goal state Π`. The control law is the following

Control Law 3.2.1 (Mirrahimi & Van Handel [50]). Consider the system
(3.9) evolving in the set S. Let Π` be a rank-1 projector of L and let γ > 0.
Consider the following control law:

1. f(ρt) = − Tr (i[H, ρt]Π`) if Tr (ρtΠ`) ≥ γ.

2. f(ρt) = 1 if Tr (ρtΠ`) ≤ γ/2.

3. If ρt ∈ B = {ρ : γ/2 < Tr (ρΠ`) < γ}, then f(ρt) = − Tr (i[H, ρ]Π`)
if ρt las entered B through the boundary Tr (ρΠ`) = γ, and f(ρt) = 1
otherwise.

Then there exists γ > 0 s.t. f(ρt) globally stabilizes (3.9) around Π` as
t → ∞.
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The design of the hysteresis could pose problems for real-time imple-
mentation. Moreover, the presence of a constant input could excite spuri-
ous dynamics that are often neglected when performing the approximations
yielding to the closed-loop model. This motivates the search of smooth
control laws.

Tsumura [70] proposes a continuous approach, again for quantum spin
systems, where the control is perturbed by the addition of a term that only
vanishes on the target state. The control law is

Control Law 3.2.2 (Tsumura [70]). The control law

f(ρ) = −αTr (i[H, ρ]Π`) + β(λ` − Tr (ρL)), α, β > 0, β2

8αη < 1,

globally stabilizes (3.9) around Π` as t → ∞.

The convergence proof then involves a combination of Lyapunov function
on part of the state space, and probabilistic arguments on the other part.
With the feedback (3.2.2), the set {ρ ∈ S : V (ρ) ≤ β2

8αη } satisfies dE(V ) ≤ 0
defining a kind of attraction set for the control Lyapunov function. Thus
trajectories that do not exit this region of attraction will converge to the tar-
get. Outside the region of attraction, both feedback schemes 3.2.1 and 3.2.2
rely on ensuring that trajectories will reach again this region of attraction.
This involves specific arguments of the closed-loop trajectories involving the
support associated to the SDE (3.9). We refer to [50, 69, 70] for more details.

While convergence is proven in a proper probabilistic sense, all those
methods only establish asymptotic convergence. Having a stronger global
convergence result like exponential convergence is important for robustness
and estimation of convergence speed. The robustness is practically impor-
tant in particular towards unmodeled dynamics. This could concern other
system elements like actuators, but at very least there is the quantum fil-
ter which estimates the state ρ from the measurement inputs with a finite
convergence speed. The convergence speed is particularly important in ap-
plications where feedback control is applied to protect the fragile quantum
systems from perturbing effects, like decoherence. The strongest result with
deterministic actuation, as far as our knowledge goes, is given in Liang et.
al. [44]; the authors provide an estimate of the Lyapunov exponent for a
qubit, valid for the final approach of the target state after an unspecified
final initial transient.

As far as we know, a state feedback scheme ensuring global exponential
convergence via simple Lyapunov arguments has remained an open issue.

Engineering issues: implementation of the closed-loop filter

The implementation of the quantum filter is not without challlenges: when
the dimension n of the system is large, the filter requires to store and update
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in real-time the n(n−1)/2 components of the estimated density matrix. This
estimate is computed via the quantum filter:

dρ̂ = −if(ρ̂)[H, ρ̂]dt+ DL(ρ̂)dt+ √
ηML(ρ̂)(dY − 2 Tr (ρ̂L) dt). (3.12)

Usually, it is assumed that ρ0 = ρ̂0. Then, standard results in quantum
filtering theory [18, 5, 50, 19] guarantee that, the quantum filter (3.12) is
the best estimate of the true state ρ conditioned to the observations Yτ ,
τ ∈ [0 , t], that is, ρ̂t = E[ρ |Y0≤τ≤t]. A separation principle [18] allows us to
just consider (3.9) as the closed-loop system. This mathematical property is
useful to do control design, since one needs to analyze only the system (3.9)
rather than analyzing the extended plant-observer system (ρ, ρ̂) described
by Equations (3.9) and (3.12).

In practice the filter (3.12) must be computed in real-time. This can
pose several challenges in experimental settings; as the dimension of quan-
tum systems grows, the implementation of the filter under experimental
constraints— like the lifetime of the real quantum system— becomes un-
practical. Measurement-based quantum feedback that relies as less as possi-
ble on real-time computations is the way to go for the coming years. A first
step towards this goal is on finding opportunities for formulating reduced
order filters as to avoid to compute the conditional density matrix in real
time.

From our point of view, for QND systems the biggest hint towards a
reduction of the filter comes from the structure fixed by the measurement
operator L. In open-loop, the dynamics can be reduced exactly to the
d-equations of the populations pk(ρ)1≤k≤d (cf. Lemma 3.1.1), that is, it is
only necessary to track the diagonal elements of ρ in the eigenbasis fixed by
L. In the current setting, the only term that poses problems for a similar
reduction in Eq. (3.9) is the actuation term −i f(ρ)[H, ρ]dt. Indeed, from
any j ∈ {1, . . . , d}, pj(ρ) satisfies

dpj(ρ) = −f(ρ) Tr (i[H,Πj ]ρ) dt+ 2√
η
(
(λj −

d∑
s=1

λsps(ρ))
)
pj(ρ)dW,

The actuation term Tr (i[H,Πj ]ρ) cannot be expressed as linear combi-
nations of the populations {pk(ρ)}1≤k≤d. If that would be the case, then
i[H,Πj ] would be diagonal in the eigenbasis of L, thus 0 = [i[H,Πj ], L] =
−[i[L,H],Πj ], but this cannot be possible as it is assumed that [H,L] 6= 0
to enable non-trivial transitions. The term Tr (i[H,Πj ]ρ) corresponds to
off-diagonal elements of the density matrix ρ in the eigenbasis fixed by the
measurement eigenprojectors— the so called quantum coherences.

It seems that a deterministic actuation strategy precludes any significant
reduction for the quantum filter. In contrast to static output feedback, where
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there is no control processing overhead involved, this seems dissapointing.
There have been efforts two bridge the gap between the two quantum feed-
back architechtures, in order to keep the control processing overhead at a
minimum, as it appears unnecessary for QND eigenstate stabilization. In
the present task, the asymptotic behavior is directly visible on the measure-
ment signal. Indeed, the measurement signal corresponding to pk(ρt) = 1
for all t ≥ 0 is Yt = Y0 + 2λkt+Wt, with thus an expectation that directly
informs on the eigenstate via the drift λk t, and a standard deviation in

√
t.

This suggests to use the measurement output explicitly in the feedback loop
[48, 77, 22]. Recent works have presented schemes that use the measurement
signal in the feedback loop with a quantum filter, that is, the controls are
of the form

dvt = ftdt+ σtdY.

In [48, 77], local optimal controls are formulated in having ft and σt as
state-dependent controls, but do not provide stability statements. Moreover,
in those works they have proposed the use of pre-computed controls that
avoid the use of a quantum filter. We proposed a similar feedback scheme
in [22] restricted for the case of a qubit. In this case we constructed controls
f(ρ), σ(ρ) to exponentially stabilize the eigenstate of a qubit measurement
operator. Moreover, we showed that the controller did not needed to track
quantum coherences, it only depended on tracking the populations on the
eigenstates of the qubit, but we did not went further on showing a simplified
setup that avoided the use of a full quantum filter.

We noticed that the main contribution for these results, was the use
of the measurement output as a particular choice of a stochastic process
driving the control. In this case, the measurement output is correlated with
the Brownian motion corresponding to the measurement backaction. The
main idea of this thesis revolves around the use of exogenous and independent
Brownian motions to drive the control fields.

3.3 Main contribution: noise-assisted feedback sta-
bilization

There are two main issues that we want to address for stabilization of a
QND eigenstate:

• Achieve exponential stabilization of a prescribed QND eigenstate. Lemma
3.1.1 indicates that the open-loop system (3.2) approaches exponen-
tially the set of QND eigenstates, the resulting state being at random.
Then a point of view on the role of feedback is that it has to dis-
courage the system to converge towards any undesired situation. The
challenge is to show that this procedure induces exponential conver-
gence towards the target state.
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• Identify opportunities towards the implementation of efficiently com-
putable controls on an experimental setup. Global stabilization of a
QND eigenstate can be achieved by using a quantum filter, but the
explicit dependence of known control laws on quantum coherences pre-
clude a simpler implementation. Developing feedback controls that are
dependent only on observed quantities, like monitoring the population
on a target eigenstate, and the formulation of reduced models that
avoid the computation of the full quantum state.

The main idea to address this two problems is

Use an external noise to drive the actuator.

Here the control law dv present on the unitary actuation e−iHdv will
have attached a gain computed via a quantum filter, but now we let the
state feedback signal dv to be driven by Brownian noise, i.e. dv = σ(ρt)dB,
where Bt a standard Brownian motion independent of Wt. We will construct
controls continuously differentiable σ(ρ). Our approach for m measurements
and c controls translates to the closed-loop SDE:

dρ =
m∑

µ=1
DLµ(ρ)dt+√

ηMLµ(ρ)dW+
c∑

ν=1
σν(ρ)2DHν (ρ)dt−iσν(ρ)[Hν , ρ]dBν ,

(3.13)
Where dBν dBν′ = δν,ν′dt, dWµ dWµ′ = δµµ′dt, dBνdWµ = 0.

Theorem 3.3.1. Let σ(ρ) be a smooth function of ρ. Then the closed-loop
system (3.13) admits a unique solution on the set S.

Proof. From Eq. (3.13), the smooth control σ(ρ) is bounded since it is de-
fined on a compact set and the terms DH(ρ) = −1

2 [H, [H, ρ]] and −i[H, ρ]
are Lipschitz in ρ. Terms corresponding to the QND measurement fullfills
the existence and solution properties by Theorem (3.1.1). Putting all to-
gether, existence and uniqueness of solutions on (3.13) follows from standard
arguments of SDE’s.

The way we address the two problems at the beginning of this section is

• Exponential stabilization via noise-assisted feedback. The main idea
relies on the fact that the open loop system (3.2) stochastically con-
verges to one of a few steady-state situations, i.e. to a state supported
on one of the eigenspaces of the measurement operator, but on the av-
erage does not move closer to any particular state. Thus it suffices that
the controller tracks the eigenspace populations {pk(ρ)}1≤k≤d, that is,
the diagonal elements on the eigenbasis fixed by the measurement.
Control design consists then on activating noise only when the state
is close to a bad equilibrium, in order to "shake it" away from it.



3.3. MAIN CONTRIBUTION: NOISE-ASSISTED FEEDBACK STABILIZATION33

As the control selectively rejects the undesired situations, we rely on
the open-loop dynamics to progressively reach the target. We will
show that this procedure induces global exponential convergence to a
target eigenstate Π`. Convergence analysis is done by defining global
Lyapunov functions that are supermartingales with exponential decay
for all initial condition.

• Reduced order filtering. Moreover, we address the design of reduced
filters that only tracks the eigenspace populations. The construction
relies first on the fact that Bν is a Brownian motion independent of
each internal Brownian motion Wµ, and thus independent of the his-
tory of all the measurements channels. Thus, the filter (3.13) follows
the same conditional statistics than

dρ̂ =
m∑

µ=1
DLµ(ρ̂)dt+ √

ηµMLµ(ρ̂)dW +
c∑

ν=1
σν(ρ̂)2DHν (ρ̂)dt, (3.14)

where ρ̂t = E[ρt|{Yµ(τ)}1≤µ≤m, τ ∈ [0, t]]. With this reduction, we
bypass the need of tracking the quantum coherences that were present
under the deterministic actuation of the filter (3.9). In the sequel we
will address how to provide either direct reductions, or approximations
of this conditional filter by a filter that only tracks the populations of
the measurement operator. With this we have effectively a filter that
computes classical probabilities.
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Chapter 4

Exponential stabilization of a
qubit

Dans ce nous utilisons le contrôle proportionnel et le contrôle assisté par
bruit pour stabiliser de manière exponentielle un qubit sujet aux mesures
QND en temps continu. Dans le contrôle proportionnel, il peut être facile-
ment montré que presque tout état pur peut être stabilisé de manière expo-
nentielle, à condition de disposer d’une efficacité de mesure parfaite. Néan-
moins, lorsque l’on vise des états proches a un état propre QND du qubit, le
taux de convergence décroît vers zéro. Pour aborder la stabilisation des deux
états propres QND de l’opérateur de mesure, nous utilisons l’approche as-
sistée par bruit. La stabilisation exponentielle est montrée via des arguments
classiques de la théorie stochastique de Lyapunov. En ce qui concerne la loi
de contrôle, nous developpons une loi du contrôle qui ne dépend uniquement
que de la coordonnée correspondant à l’axe de mesure, ce qui permet de
déduire un filtre d’ordre réduit pour obtenir une stabilisation exponentielle.

4.1 Introduction

The low dimension and simple topology of a qubit make the control problem
easy to visualize. We will use this setup to illustrate the control methodol-
ogy and associated implementation questions. We evaluate the use of static
output strategy which, with perfect measurement efficiency, stabilizes expo-
nentially any state but the QND eigenstates of the qubit. Then we show how
the use of noise-assisted feedback aexponentially stabilizes an eigenstate of
the measurement operator.

Lastly, we present a proposal for a reduced order filter that could be
efficiently computed in practice. Regarding the feedback structure, static
output feedback avoids the overhead of a state estimator. With noise assisted
feedback we need a quantum state observer to compute the control law, but
the situation is not as bad as it seems: first, the control law only depends

35
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Figure 4.1: Angles θ and φ on the Bloch sphere.

on tracking the eigenstates of the measurement operator. Second, the use
of noise allows to formulate a reduced order filter that only computes these
eigenstates, thus avoiding to compute any other off-diagonal element of the
density matrix. This may not seem as a large gain in a qubit system, but it
serves as a proof of principle that will be revisited in later chapters.

The results of this chapter are based on the investigations done in [22],
published in the Proceedings of the 2018 IEEE Conference on Decision and
Control.

4.2 Qubit system
Qubit systems are defined on a two-dimensional Hilbert space H = C2.
Since the state ρ is Hermitian, positive and of trace 1, it can be decomposed
on the Pauli matrix basis

ρ = 1
2(I + xX + yY + zZ), (4.1)

where (x, y, z)ᵀ := (Tr (ρX) ,Tr (ρY ) ,Tr (ρZ))ᵀ are the coordinates of the
Bloch vector and the Pauli matrices

X =
[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, (4.2)

which together with the identity form a basis of the set of 2 × 2 Hermitian
matrices when this are multiplied by real coefficients.

It is useful to use as well the following representation for pure states on
the Bloch sphere

ρ = 1
2

[
1 + cos(θ) e−iϕ sin(θ)
eiϕ sin(θ) 1 − cos(θ)

]
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the Bloch coordinates for pure states read

x = sin θ cosϕ,
y = sin θ sinϕ,
z = cos θ.

We will consider a qubit being measured with the operator Z. Let
{ΠZ+1,ΠZ−1} denote the eigenstates of Z with eigenvalues {+1,−1} re-
spectively, thus Z = ΠZ+1 − ΠZ−1. On the Bloch sphere, these states
correspond to the north pole and south pole respectively, and measurement
of the Z matrix corresponds to measurements along the z-axis of the sphere.

The open-loop system describing a measurement on the qubit obeys the
SDE

dρ = Γ
(
ZρZ − ρ

)
dt−

√
ηΓ
(
Zρ+ ρZ − 2 Tr (ρZ) ρ

)
dW, (4.3)

The following proposition follows directly from Lemma 3.1.1

Proposition 4.2.1. For the open-loop system (4.3), the Lyapunov function
Vo(ρ) =

√
1 − Tr (ρZ)2 decays as E[Vo(ρt)] ≤ e−2ηΓtVo(ρ0), ∀t ≥ 0.

Simulations of the open-loop dynamics are provided in Figure 4.2a.
Our control problem is then to stabilize a target eigenstate {ΠZ+1,ΠZ+1}.

We choose ΠZ+1 as the target eigenstate, the procedure to stabilize ΠZ+1
follows in the same manner.

We now compare the static output feedback with our noise assisted con-
trol design. The former is attractive because it is easy to show exponential
convergence and that the controller only depends on constants. The analysis
for the latter is relatively more involved, and it requires a state estimator in
order to compute the feedback law. However we will show that this is not
such a big issue, the use of noise allows to consider reduced order filters that
estimate only the z-axis. Since the Boch sphere depends on three variables,
this may seem a small advantage with respect to other known control laws
that might require full knowledge of the state, but it serves as a proof of
principle that later will be extended to higher dimensional systems.

4.3 Static output feedback on a qubit
As we exposed in the introduction, there is an obstruction for static out-
put feedback to stabilize a QND eigenstate. One could ask about defining
the static output feedback gains as to approach arbitrarily a target QND
eigenstate. The next Proposition indeed shows that, at least for a two-level
system, any other pure state can be exponentially stabilized by a static out-
put feedback with a fixed measurement operator and detection efficiency
η = 1. We use the standard Pauli matrix and Bloch sphere notation for the
qubit system.
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(a) Simulation of the qubit system (4.3). We take Γ = 1, η = 0.5. In gray:
100 individual trajectories with ρ0 = I/2 (z0 = 0). The ensemble average
(in blue) remains constant around 0, in agreement with the martingale
property.

(b) Exponential decay of the qubit system (4.3) towards the set
{ΠZ+1,ΠZ−1}, in terms of the Lyapunov function V (ρ) = 1 − Tr (ρZ)2.
The ensemble average depicted in blue, decays with rate 1, in agreement
with Proposition 4.2.1.

Figure 4.2: Simulations of the open loop system
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Proposition 4.3.1. Consider (3.6) with n = 2, η = 1, and L =
√

ΓZ,
H = Y . Take θ̄ /∈ {kπ : k ∈ Z} and set f = −Γ sin(θ̄) cos(θ̄), κ =

√
Γ sin(θ̄).

Then the closed-loop system exponentially stabilizes the pure state:

ρ̄ = 1
2

[
1 + cos(θ̄) sin(θ̄)

sin(θ̄) 1 − cos(θ̄)

]
,

as the Lyapunov function

V (ρ) = 1 − Tr (ρρ̄)

decreases according to E(V (ρt)) = e−rtV (ρ0) ∀t ≥ 0 with rate r = 2Γ(sin θ̄)2.

The proof is based on standard matrix manipulations showing dE(V ) =
−Γ(sin θ̄)2E(V ) dt. By modifying the actuation Hamiltonian as F = UᾱY U †

ᾱ,
where Uᾱ = exp(−iᾱZ/2) is a rotation of angle ᾱ around the z axes of
the Bloch sphere associated to the qubit, the same feedback gains stabilize
Uᾱρ̄U

†
ᾱ. With ᾱ ∈ [0, 2π] and θ̄ ∈]0, π[, any pure state different from the two

eigenstates of Z are thus obtained via Uᾱρ̄U
†
ᾱ.

While we have shown that we could approach the eigenstates of the
measurement Z, we can directly note two things: First, the associated con-
vergence rate approaches to zero as the target state approaches an eigenstate
of Z (cf. Lemma 3.2.1). Second, exact exponential stabilization depends on
having a perfect detection device: as soon as η < 1, the closed-loop system
is subject to significant noise, which limits the rate of purity towards the
target. Simulations are provided in Figure 4.3.

4.4 Noise assisted stabilization of Qubit eigenstates

It was already highlighted in [71] the difficulties associated to designing a
globally stabilizing control law even in the case of a qubit. It was noted there
that in principle it suffices that the control drives a continuous field that only
vanishes on the target. This is the approach followed in the literature, e.g.
[44, 69, 71, 50]. The point of view adopted here is, in a sense, weaker: the
control field on (3.13) will be for a large parte of the state space, turned-
off. It is only when the state is closed to an undesired situation that the
controller will be turned on. It suffices to show that this procedure induces
exponential convergence. We can readily illustrate on the qubit how the use
of noise allows us to exponentially stabilize a target eigenstate. From (3.13)
with L = ΓZ, Γ > 0, and H = Y , the closed loop dynamics read

dρ = Γ
(
ZρZ − ρ

)
dt−

√
ηΓ
(
Zρ+ ρZ − 2 Tr (ρZ) ρ

)
dW

+ σ(ρ)2(Y ρY − ρ)dt− iσ(ρ)2[Y , ρ]dB (4.4)
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Figure 4.3: Simulation of the qubit closed-loop system under the static
output feedback of Proposition 4.3.1. The initial state is ρ0 = I/2, and
the target state ρ̃ of the form given in Proposition 4.3.1. On Bloch sphere
coordinates, the average state approaches the target state ρ̃, which has been
chosen close to the north pole ΠZ+1.
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We will target the stabilization of the eigenstate ΠZ+1 of the measure-
ment operator Z, stabilization of the other state ΠZ−1 follows the same
lines.

Control Law 4.4.1. Let σ̄ > 0, and define σ(ρ) as

σ(ρ) = σ̄ ϕ

(Tr (ρΠZ−1) − pmin

pmax − pmin

)
(4.5)

where ϕ ≥ 0 is a smooth function on [0, 1] defined as ϕ(] − ∞, 0]) = 0 and
ϕ(]1,∞) = 1, and parameters σ̄ > 0, 1 > pmax > pmin > 1/2.

Proposition 4.4.1. Consider the closed-loop system (4.4) with control law
as given in (4.5). Let p ∈]1/2, 1] and set the control parameters σ̄ =√

cηΓ
2pmax−1 , pmin > p. Then the Lyapunov function

V (ρ) =
√

1 − Tr (ρΠZ+1) (4.6)

satisfies E[V (ρt)] < e−ηΓrtV (ρ0) for all t ≥ 0, and the state ΠZ+1 is globally
exponentially stable with rate r = min{c/2 , 1

2}.

Proof. We compute the formula for the generator AV (ρ)

AV (ρ) = −
σ(ρ)2(Tr (ρΠZ−1) − Tr (ρΠZ+1)

)
2
√

1 − Tr (ρΠZ+1)

− ηΓ
2(1 − Tr (ρΠZ+1))3/2 (1 − Tr (ρZ))2 Tr (ρΠZ+1)2

− σ(ρ)2

2(1 − Tr (ρΠZ+1))3/2 Tr (i[Y , ρ]ΠZ+1)2

The main idea of the control law 4.4.1 is that σ(ρ) is close to 1 as soon
as Tr (ρΠZ−1) > pmin > p. Accordingly, we choose the parameter pmax close
to pmin such that the region where σ(ρ) is monotonically decreasing is small.
When Tr (ρΠZ−1) ≥ pmax, we have

AV (ρ) ≤ −
σ(ρ)2(Tr (ρΠZ−1) − Tr (ρΠZ+1)

)
2
√

1 − Tr (ρΠZ+1)
≤ −σ(ρ)2(2p− 1)

2 ≤ −ηΓc
2 V (ρ)

Otherwise σ(ρ) = 0 when Tr (ρΠZ+1) ≥ 1 − p > 1/2 and

AV (ρ) < −2ηΓ
√

(1 − Tr (ρΠZ+1) Tr (ρΠZ+1)2 ≤ −ηΓ
2 V (ρ).

Since V (ρ) = 0 when ρ = ΠZ+1 this implies that ΠZ+1 is globally exponen-
tially stable with rate r as described above.
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Simulations of the closed loop qubit system are provided in Figure 4.5a.
Compared to relying on the pure static output feedback of Proposition 4.3.1
to stabilize a state close to ΠZ+1, the average exponential decay is about
three times faster.

Some remarks are useful to gain intuition on the role of noise on achieving
exponential stabilization. Consider the system (4.4) on the (x, y, z)-coordinates
of the Bloch sphere. These read

dz = 2
√
ηΓ(1 − z2)dW − 2σ(z)2zdt+ 2σ(z)xdB (4.7)

dy = −2Γydt+ 2
√
ηΓyzdW (4.8)

dx = −2Γxdt− 2
√
ηΓxzdW − 2σ(z)2xdt− 2σ(z)zdB. (4.9)

Note that when y0 = 0, the equation of the y-coordinate is decoupled from
(z, x), and so we can restrict the dynamics to the ball {(x, z) : x2 + z2 ≤ 1}.

We consider first two situations for the variable σ(z) that follows the
control logic 4.4.1, which in Bloch coordinates reads

σ(z) = σ̄ ϕ
((1 − z)/2 − pmin

pmax − pmin

)
.

Take σ(z) = σ̄ > 0. Added to the measurement dynamics, the terms de-
pending on σ correspond —up-to a factor 2σ— to a standard Brownian
motion on the circle (see, e.g. [55, Chapter 5]). A Brownian motion on
the circle does not change the purity of the state on the Bloch sphere, but
on average it decays exponentially towards (0, 0) with rate 2σ2. Intuitively,
if the gain σ is strong enough, this average dynamics would dominate the
measurement dynamics and the state would be driven towards the center
of the Bloch sphere. At (0, 0), σ(z) = 0 and Eq. (4.7) is in open-loop,
and by 3.1.1, the probability that zt → 1 is less than or equal to 1/2. The
role of the smooth control law 4.4.1 is to re-activate noise from as soon as
zt < 1 − 2pmin < 0, to drive again the trajectory towards the centre of the
circle, and give another chance for z to converge towards 1. The use of a
smooth control law ensures continuity of the closed-loop trajectories.

Estimating the speed of convergence

The Lyapunov function used in Proposition 4.4.1 is a natural measure of a
distance for the two-level system (corresponding to the trace fidelity/Bures
distance), but there is an under-estimation of the convergence rate. Having
a tighter bound is important specially towards providing an estimate of
robustness. By design, the convergence rate is limited by the open-loop
convergence rate, which from Lemma 3.1.1 is r = 2ηΓ. The reason for it is
that control actions are unitary, they cannot modify the purity of the state.
We propose a Lyapunov function to provide a tighter bound, a description
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of the parameters is given in figure 4.4a.

Ṽ (ρ) =


√

(1−z)(1+α+(1−α)z)√
2(1+α)

, z := Tr (ρZ) ≥ 0,
1√
2
(
1 − α2 + α

√
α2 − 2 α

1+αz
)
, z < 0

(4.10)

For z ≥ 0, the function (4.11) corresponds to a re-scaling (1 − z) 7→ (1 −
α)(1 − α) with respect to the open-loop Lyapunov function. When α =
1, it corresponds to the Lyapunov function (4.6). The idea is that the
three functions have the same tangent around z = 1, thus (4.11) correctly
measures the distance around the target. For z < 0 we have just chosen a
monotonically decreasing, concave function with derivative defined at z = 0.

Theorem 4.4.1. Consider the closed-loop system (4.4) and the Lyapunov
function (4.10) for some small parameter α > 0. Under the control law
4.4.1, set pmax > pmax > p > 1/2, and choose the control gain σ̄ as

σ̄2 ≥ sup
z∈[−1,−2p+1]

 2ηγ/(1 + α)2

m(z)
(
|z|(α− 2z

1+α)(1 + α)
)
 ,

where
m(z) = 2α3(1−z)2

(1+α)2(α− 2αz
1+α )3/2( 1−α2+α

√
α2−2αz/(1+α) )

.

Then AṼ (ρ) ≤ − 2ηΓ
(1+α)2 Ṽ (ρ) for all ρ ∈ S.

Proof. We analyze the closed-loop evolution for the two regions z ≥ 0 and
z ≤ 0. Using Itō’s formula we get:

• For z ≥ 0, σ(z) = 0 by control law 4.4.1 , thus the behavior of Ṽ in
open loop is:

AṼ (ρ) = −2ηΓ
(

1+z
(1+α)+(1-α)z

)2
Ṽ dt ≤ −2ηΓ

(1+α)2 Ṽ (ρ) dt .

• For z ≤ −2p+ 1, and σ 6= 0, we compute:

AṼ = 2α3

(1+α)2 · (1−z)
(α2−2αz/(1+α))3/2

·

(
−( ηΓ(1+z)2+σ2x2+σ2|z|(1+α)(α− 2z

1+α ) ) (1−z)
)

1−α2+α
√

α2−2αz/(1+α)
· Ṽ dt . (4.11)

We can then achieve a convergence rate r if we can choose

σ̄2 ≥
(

r
m(z) − ηΓ(1 + z)2

)
/
(
|z|(α− 2z

1+α)(1 + α)
)
,

for all z < 0. To get a finite σ with this formula we need r
m(z) −η(1+z)2

negative at z = 0, or converging to zero at least linearly in |z| when z
converges to zero from below. One checks that this is indeed the case
for r ≤ ηΓm(0) = 2ηΓ/(1 + α)2. This rate matches the one for z ≥ 0.
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(a) In black: open-loop Lyapunov function (3.3). In blue, closed-loop function
(4.6). In red: proposed function (4.11) with α = 0.1.
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(b) Selection of optimal gain σ̄ with η = .8, γ = 1, α = .1 and 2p− 1 = .1.

Figure 4.4: Comparison of Lyapunov functions on the qubit and selection
of optimal gain

One can find numerically the value for σ̄. An example is given in figure
4.4b, and simulations comparing with the standard Lyapunov function can
be found in figure 4.5b.

4.5 Reduced order filtering on the qubit

The control that drives the strength of the noise still depends on computing
the control law from a quantum filter, which provides the best estimate of
the state based on the measurement outcomes. Interestingly, the stability
analysis shows that it is sufficient to consider only the measured coordinate
to do control. With this in mind, we will introduce a reduced order fil-
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(a) Simulation of the controlled qubit system of Proposition 4.4.1, plotting√
1 − Tr (ρΠZ+1) =

√
1−Tr(ρZ)

2 Here σ̄ = 8 and pmin = 0.6, pmax = .7 η = 0.5,
and Γ = 1 . In gray: 1000 individual trajectories with ρ0 = I/2. In blue: ensemble
average. In green: Bound from Proposition 4.4.1.

(b) Simulation of the controlled qubit system of Proposition 4.4.1, under the Lya-
punov function Ṽ of Theorem 4.4.1. From the control law 4.4.1, p = .55, pmax = .65,
pmin = .6. The control gain σ̄2 = 3500 is chosen from figure 4.4b. In gray: 200
individual trajectories with ρ0 = I/2. In blue: ensemble average. In green: Bound
from Theorem 4.4.1.

(c) Simulation of the controlled qubit system with the reduced filter (4.12).

Figure 4.5: Stabilization of Qubit QND eigenstates.
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ter which will be later extended in other high dimensional settings. More
precisely, consider the quantum filter for this two-level system which reads

dρ = Γ
(
ZρZ−ρ

)
dt−

√
ηΓ
(
Zρ+ρZ−2 Tr (ρZ) ρ

)
(dY −2

√
ηΓ Tr (ρZ) dt)

+ σ(ρ)2(Y ρY − ρ)dt− iσ(ρ)2[Y , ρ]dB

where dY = 2
√
ηΓ Tr (ρZ) dt+dW is the measurement outcome. We can

consider the conditional expectation with respect to Yt, then the stochastic
term dependent on Bt vanishes because the noises are conditionally inde-
pendent. We consider then the state ρ̂, the Bayesian estimate of ρt knowing
ρ0 and the measurements Yt, t ∈ [0, T ], but not Bt. This state reads

dρ̂ = Γ
(
Zρ̂Z−ρ̂

)
dt−

√
ηΓ
(
Zρ̂+ρ̂Z−2 Tr (ρ̂Z) ρ̂

)
(dY −2

√
ηΓ Tr (ρ̂Z) dt)

+ σ(ρ̂)2(Y ρ̂Y − ρ̂)dt.

Since Y ZY = −Z, the dissipation σ(ρ̂)2(Y ρ̂Y − ρ̂) induced by the noise
can be expressed in terms of the state ẑ := Tr (ρ̂Z). This obeys the SDE

dẑ =
√
ηΓ(1 − ẑ2)(dY − 2

√
ηΓẑdt) − σ2(ẑ)ẑdt. (4.12)

We have a fiter formulation based only on knowledge of the z-measurement
axis. In the sequel we will propose higher dimensional extensions of this
reduced-order formulation, where only the eigenstate populations are needed
to compute the feedback law. This corresponds to constructing filters based
on classical probabilities. This is a point of depart from the usual measure-
ment based feedback, which always assumes an underlying quantum filter,
and control laws usually considered tracking the coherences between pop-
ulations. Numerical simulations, provided in Figure 4.5c suggest that this
filter is robust against wrongly estimated parameters where the closed-loop
convergence rate is slightly slower.

4.6 Moving beyond a qubit: generation of GHZ
states

We can readily extend the ideas developed on a qubit for other type of
systems.

A Greenberger-Horne-Zeilinger (GHZ) state for d-qubits (d > 2) is an
entangled state of the form

|GHZ〉d = |0〉⊗d + |1〉⊗d

√
2

.

To prepare this highly entangled state, the measurement operator

L =
∑

s,s′, s<s′

ZsZs′
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is a natural choice, as the state |GHZ〉 belongs to the eigenspace of L with
corresponding eigenvalue d(d− 1)/2. This measurement operator possesses
full permutation symmetry and simultaneous bit-flip symmetry which in-
duces a symmetric subspace common to the measurements of dimension
d+1

2 if d is odd and d
2 + 1 if d is even. It is instructive to consider the case

d = 3 with control goal to prepare the target state |GHZ〉3, as it will serve as
a point of departure towards the next section on quantum error correction.

Denote as ΠGHZ the projector associated with the eigenspace of L =
Z1Z2 + Z2Z3 + Z1Z3 with eigenvalue 3. Its complement I − ΠGHZ cor-
responds to the eigenspace with eigenvalue −1. To preserve the bit-flip
symmetry and thus remain on the symmetric subspace of H generated by
the measurement, we choose as feedback Hamiltonian H = (X1 +X2 +X3)
driven by the single Brownian motion Bt.

The projector ΠGHZ is not of rank 1, but we have a perfect symmetry
in the system. As such, with the two projectors this system can be seen as
an effective qubit system. From the techniques that we developed on the
qubit, we consider the control law

Control Law 4.6.1. Let σ̄ > 0, and define σ(ρ) as

σ(ρ) = σ̄ ϕ

((1 − Tr (ρΠGHZ)) − pmin

pmax − pmin

)
(4.13)

where ϕ ≥ 0 is a smooth function on [0, 1] defined as ϕ(] − ∞, 0]) = 0 and
ϕ(]1,∞) = 1, and parameters σ̄ > 0, 1 > pmax > pmin > 1/2.

The controller does not indicate at all, if the asymptotic eigenstate cor-
responds to |GHZ〉3. Since the feedback Hamiltonian only performs local
operations on each qubit, it is impossible to generate |GHZ〉3 from a com-
pletely mixed state [66] . A condition for the feedback to generate the state
|GHZ〉3 is that the initial state has to be defined on the subspace spanned
by |0̃〉 = |GHZ〉3 and |1̃〉 = 1√

6
(
|100〉 + |010〉 + |001〉 + |011〉 + |110〉 + |101〉

)
,

where |0̃〉 is the target and |1̃〉 generates the eigenspace of L with eigen-
value −1. Simulations in figure 4.6 with initial state ρ0 = |ψ0〉〈ψ0|, |ψ0〉 =

1√
23 (|0〉 + |1〉) ⊗ (|0〉 + |1〉) ⊗ (|0〉 + |1〉) show the exponential preparation of

the target state |GHZ〉3. In practice this initial state can be easily prepared
with local means.

4.7 Conclusions

We have addressed the stabilization of the eigenstates of a measurement op-
erator for a two-level system. We first considered approaching such eigen-
states via proportional output feedback, we can stabilize all pure states on
the Bloch sphere, except the QND steady states. This indicates that for the



48 CHAPTER 4. EXPONENTIAL STABILIZATION OF A QUBIT

Figure 4.6: Preparation of the state |GHZ〉3.

QND eigenstates as targets, one must make a more involved controller in
order to bias the stochastic evolution towards the desired extremum. Pre-
vious work like [50, 69] has turned to specific stochastic controller designs
to achieve this goal, on the basis of a quantum state observer. In this chap-
ter we have shown that just adapting intensity of the noise that drives the
control – as a function of the estimated quantum state – is sufficient to ob-
tain global exponential stabilization, something that previous state feedback
controls do not achieve or at least could not prove. In our case, the proof
is a direct consequence of standard stochastic convergence theorems with a
strict Lyapunov function. Interestingly, this controller architecture can be
re-interpreted as allowing non-unitary controls, as we can discard the noise
driving the closed-loop equation. This idea has been exploited to construct
a reduced filter that is just a function of the estimated measurement axis.

Before moving on to more complex systems, we highlight some common
underlying questions that will appear in the next chapters:

• While stochastic Lyapunov methods provide a simple and well-proved
state feedback law, we have seen that "natural" candidate Lyapunov
functions can yield to an under-estimation of the actual closed-loop
convergence rate. In the case of the qubit this has been improved by
proposing an alternative Lyapunov function in Theorem 4.4.1. Is there
a more sistematic way to find more "informative" Lyapunov functions
that provide an accurate convergence rate?

• We can discard the noise terms to obtain a reduced order filter that
does not need to track coherences between the states. In the case
of the qubit this filter only depends on the tracking the qubit QND
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eigenstates. Is there a systematic way to formulate similar reduced
order filters in higher dimensions?

These questions will be addressed in the sequel.



50 CHAPTER 4. EXPONENTIAL STABILIZATION OF A QUBIT



Chapter 5

Exponential stabilization of a
quantum non-demolition
measurement eigenstate

Dans ce chapitre nous étendons la stratégie de contrôle assistée par bruit
à un système QND à plusieurs niveaux, en utilisant un seule contrôle avec
un Hamiltonian fixe. L’extension diffère sensiblement du qubit en raison
de la présence de multiples états propres orthogonaux à l’état cible, et sur
la manière dont l’hamiltonien du contrôle «connecte» les états QND. La
stratégie du control est de «secouer» le système lorsqu’il s’approche d’états
propres indésirables en y appliquant un bruit fort, tout en s’appuyant sur la
dynamique en boucle ouverte pour atteindre progressivement la cible. Pour
montrer que le bruit éloigne le système des voisinages des états propres QND
non-voulus, nous utilisons des méthodes basiques de la théorie des graphes
impliquant l’inversion d’une matrice laplacienne pour montrer la décrois-
sance exponentielle autour desdits états.

Ensuite, l’analyse sur la fonction de Lyapunov montre que, en combi-
naison avec la dynamique en boucle ouverte, on peut établir une convergence
exponentielle de la fonction de Lyapunov en boucle fermée. Cette fonction
est une supermartingale avec une décroissance exponentielle, impliquant la
stabilité exponentielle globale. Le schéma de contrôle et son analyse de sta-
bilité suggèrent l’utilisation d’un filtre approximatif qui ne fait que suivre
les populations des états propres de l’opérateur de mesure. Ceci consiste à
remplacer les termes correspondant à la dissipation faite par le bruit par la
matrice laplacienne associée au graphe de connectivité induit par le hamil-
tonien d’actionnement.

51
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5.1 Introduction
This chapter is dedicated to the extension for stabilizing a QND eigenstate
of a multi-level quantum system with a single measurement operator under
a non-degeneracy condition. We recall the closed-loop SDE

dρ = DL(ρ)dt+ √
ηML(ρ)dW + σ(ρ)2DH(ρ)dt− iσ(ρ)[H, ρ]dB, (5.1)

here L =
∑d

k=1 λkΠk; λ1, ..., λd are the distinct real eigenvalues of L with
corresponding orthogonal rank 1 projectors Π1, ...,Πd resolving the iden-
tity, i.e.

∑d
k=1 Πk = I. The feedback Hamiltonian H makes the analysis

more involved than in the case of the qubit: indeed, the matrix H specifies
the coupling amongst the QND eigenstates of the measurement operator L,
fixing the structure of the set of all direct and indirect couplings between
eigenstates.

For QND systems, a difficulty appears when trying to transfer the pop-
ulation on a state between two QND eigenstates which are indirectly con-
nected; the closed-loop trajectory must pass trough at least another QND
eigenstate, hence Tr (ρΠ`) = 0 and the image of ρ remains orthogonal to Π`.
This explains why on previous approaches, the control is set to a constant
value when the image of ρ is almost orthogonal to the target Π` [50, 69, 70].

A more precise analysis has to take into account the direct and indi-
rect connnections between the QND eigenstates. The closed-loop Lyapunov
function needs to take this into account while being a useful measure of a dis-
tance to the target state. The strategy to construct a closed-loop Lyapunov
function consists on considering the mapping

{pk(ρ)}k∈{1,...,d}\{`} 7−→
∑

s∈{1,...,d}\{`}

√ ∑
k∈{1,...,d}\{`}

αs,kpk(ρ).

The weighted sum
∑

k∈{1,...,d}\{`} αs,kpk(ρ) is inspired by the stability anal-
ysis done in [6]; the role of the weights is to bring out the connectivity
structure induced by the feedback Hamiltonian. Indeed, these weights are
obtained through an inversion of the Laplacian matrix describing the con-
nectivity graph induced by the feedback Hamiltonian. Elementary results
on graph theory allow to use the weights advantageously to deduce exponen-
tial decay of the closed-loop Lyapunov function around an undesired QND
eigenstate by exploiting the dissipation term induced by the actuation.

Locally around the target Π`, the behaviour of the square root map
defined above is similar to that of the open-loop Lyapunov function (3.3).
As said before in the case of the qubit, exponential convergence around
the target state holds for a large part of the domain, except at the other
QND eigenstates. Thus, considering the square root as a way to deduce
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exponential convergence is a natural choice to use the open-loop dynamics
to enforce exponential convergence around the target state.

The control law is an extension of the case treated in the previous chap-
ter: it consists on monitoring the populations of the QND eigenstates. In
this setting, the controller will wait until the system is close to one of the
few steady-state situations, namely, the state is close to a QND eigenstate
{Πk}1≤k≤d. When the population around an undesired eigenstate is large
enough, the controller activates the noisy actuator until the state is driven
away from the undesired situation. Then the controller deactivates the noisy
input so that the system returns to the open-loop regime, and so there is a
non-null probability of converging to the target. This procedure is repeated
until the state converges to the desired eigenstate. Lyapunov analysis con-
sists in showing that the closed-loop Lyapunov function is a supermartin-
gale with exponential decay, showing exponential convergence towards the
desired eigenstate.

The remaining of this chapter is structured as follows: First we remind
some elementary notions of graph theory that will be needed in the sequel.
Next, we present the control law and its associated stability analysis for
exponential stabilization of a QND eigenstate. The stability analysis sug-
gests that we can approximate the quantum filter by filters that only track
the populations of the QND eigenstates. To do this, the terms of the filter
that are due to the actuation are replaced by the terms corresponding to
the associated Laplacian matrix. This endows a nice structure to the filter,
the properties of the Laplacian matrix on its rows and columns imply that
populations are preserved, hence it is a formulation consisting on classical
probabilities. Applications towards stabilizing quantum spin systems and to
generate entanglement on multi-qubit systems is discussed. Lastly, simula-
tions suggest that the use of the reduced-filter serves as a good replacement
for the quantum filter.

The results of this chapter are based on the article [24], submitted to
Automatica.

5.2 Connectivity graph and Laplacian matrix
We associate to the closed-loop system (5.1) an undirected graph G = (V,E)
called the connectivity graph; V is the set of vertices, consisting on the QND
eigenstates and E is the set of edges, consisting of all pairs of eigenstates
directly coupled by H, that is

V = {Πk, 1 ≤ k ≤ d},
E = {(Πk,Πk′) : k 6= k′,Hk,k′ = Hk′,k 6= 0, }.

A path in a graph is a finite sequence of edges (Π1,Π2), . . . (Πs − 1,Πs)
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such that (Πk,Πk+1) ∈ E for all k ∈ {1, . . . , s}. Two vertices Πj ,Πj′ are
connected if there exists a path joining Πj ,Πj′ . The graph G(H) is said to
be connected if for all Πj ,Πj′ ∈ V , j 6= j′, Πj and Πj′ are connected.

Now consider the following d × d real symmetric matrix with (k, k′)
elements

∆k,k′ = Tr (ΠkDH(Πk′)) (5.2)

combining the spectral decomposition of L =
∑

k λkΠk with the actuator
Hamiltonian H. Its off-diagonal elements are non negative since ∆k,k′ =
Tr (ΠkHΠk′H) ≥ 0 for k 6= k′. Its diagonal elements are non positive since

∆k,k = Tr (ΠkHΠkH) − Tr
(
ΠkH

2
)

= Tr (ΠkHΠkH) − Tr (ΠkH(Π1 + . . .+ Πd)H)
= −

∑
k′ 6=k

Tr (ΠkHΠk′H) .

Thus ∆ is a Laplacian matrix.

Proposition 5.2.1. Assume G to be connected. For any positive reals βk,
k ∈ {1, . . . , d}, k 6= `, there exists a vector α ∈ Rd, αk 6=` > 0, α` =
0, such that ∆(H)α = β where β is a vector in Rd of the form β

ᵀ =
[β1, . . . , β`−1,−

∑
k βk, β`+1, . . . , βd]

Proof. This is a consecuence of known results on graph theory [14, Chapter
4]. The minimum eigenvalue of ∆ is always 0, and sinceG is connected, it has
multiplicity one with eigenvector (1, . . . , 1)ᵀ. Thus, any vector orthogonal to
(1, . . . , 1)ᵀ is on the image of ∆(H). The vector β as defined above fullfills
this requirement.

5.3 Exponential stabilization via noise-assisted feed-
back

We state the main convergence theorem. The main idea comes down to using
noise to discourage the system to converge towards an eigenstate different
from Π`. In accordance to this, we consider the closed-loop equation (5.1)
with the following control:

σ(ρ) = σ̄ ϕ

(maxk 6=` pk(ρ) − pmin

pmax − pmin

)
(5.3)

where σ ≥ 0 is a smooth saturating function in [0, 1] as in the control law
4.4.1 and with parameters σ̄ > 0 and 1 > pmax > pmin >

1
2 . Since

∑
k pk = 1,

each pk ≥ 0 and pmin >
1
2 , the function ρ 7→ σ(ρ) is smooth despite the use

of a max in its definition.
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Theorem 5.3.1. Assume that L is not degenerate, and each projector Πk

is a rank one projector. Consider the closed-loop system (5.1) with feedback
gain σ(ρ) given by (5.3) for a given projector Π` with ` ∈ {1, . . . , d}. As-
sume that the graph associated to the Laplacian matrix ∆ defined in (5.2)
is connected. Then exists p ∈]1

2 , 1[ such that for any choice of parame-
ter σ̄ > 0 and parameters 1 > pmax > pmin ≥ p, the closed-loop trajec-
tories converges exponentially to Π` in the sense that, exist ν > 0 and
C > 0 (depending on σ̄, pmax, pmin) such that, for any initial state ρ0 ∈ S,
E
[√

1 − p`(ρt)
]

≤ Ce−νt
√

1 − p`(ρ0).

If the graph associated to ∆ is not fully connected then exists a partition
of {1, . . . , d} = I ∪ J (I, J 6= ∅, I ∩ J = ∅) such that H = ΠIHΠI + ΠJHΠJ

with ΠI =
∑

k∈I Πk and ΠJ =
∑

k∈J Πk. Then any trajectory ρt of (5.1) with
any feedback scheme starting from Tr (ρ0ΠI) = 0 (resp. Tr (ρ0ΠJ) = 0),
satisfies Tr (ρtΠI) = 0 (resp. Tr (ρtΠJ) = 0) for t > 0. Thus, closed-
loop convergence to p` = 1 with ` ∈ I is impossible when Tr (ρ0ΠI) =∑

k∈I pk(ρ0) = 0. In this sense the above connectivity condition on the
graph of ∆ cannot be weakened.

Proof. Construction of the Lyapunov function. We do not prove directly
that

√
1 − p`(ρ) is a closed-loop Lyapunov function. Instead we construct

a closed-loop Lyapunov function V (ρ) equivalent to
√

1 − p` (i.e. c∗V (ρ) ≤√
1 − p`(ρ) ≤ c∗V (ρ) with 0 < c∗ < c∗) such that AV ≤ −rV . More

precisely,
Vα(ρ) =

∑
s∈{1,...,d}\{`}

√ ∑
k∈{1,...,d}\{`}

αs,kpk(ρ) (5.4)

where the positive parameters αs,k are given by solving d − 1 linear
systems as in Proposition 5.2.1, indexed by s:∑

k′

∆k,k′αs,k′ = −βs,k

with βs,k > 0 for k 6= ` and βs,` = −
∑

k 6=` βs,k′ . When the (d−1)×d matrix
β is chosen of maximal rank d − 1, then the obtained matrix α is also of
maximal rank d− 1. Since

∑
k∈{1,...,d}\{`} pk = 1 − p`, one has

c∗Vα(ρ) ≤
√

1 − p`(ρ) ≤ c∗Vα(ρ)

where c∗ = 1
(d−1)

√
α∗ and c∗ = 1

(d−1)√α∗
with

α∗ = min
s,k∈{1,...,d}\{`}

αs,k and α∗ = max
s,k∈{1,...,d}\{`}

αs,k.

Construction of the Markov generator. The rest of the proof consists in
showing that for any such choice of maximal rank matrix β, the resulting
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Vα becomes an exponential Lyapunov function as soon as p is close enough
to 1 and pmin > p. This is based on the following simple but slightly tedious
computations of AVα:

AVα(ρ) = σ2(ρ)
2 fα(ρ) − η

2gα(ρ) − σ2(ρ)
8 hα(ρ) (5.5)

with

fα(ρ) =
∑

s

Σkαs,k Tr (ΠkDH(ρ))√
Σkαs,kpk

gα(ρ) =
∑

s

(
Σkαs,k(λk − Tr (Lρ))pk

Σkαs,kpk

)2√
Σkαs,kpk

hα(ρ) =
∑

s

(Σkiαs,k Tr ([Πk,H]ρ))2

(Σkαs,kpk)3/2 .

These expressions rely on the following general formula based on Itō rules
(ak > 0 constant)

d

√∑
k

αkpk =
∑

k αkdpk

2
√∑

k αkpk

− (
∑

k αkdpk)2

8 (
∑

k αkpk)3/2

with E[dpk] = σ2(ρ) Tr (ΠkDH(ρ)) dt and

E[(Σkαkdpk)2] = σ2 (Σkiαk Tr ([Πk,H]ρ))2 dt

+ 4η (Σkαk(λk − Tr (Lρ))pk)2 dt.

The next steps in the proof consist in showing that the Lyapunov func-
tion is exponentially converging in the sense of showing an exponential decay
inequality for AVα. We treat first the regions where feedback is active, and
show that this implies exponential decay at a neighborhood of the several
maxima of Vα. Next, we show that, with no active feedback, AVα(ρ) is expo-
nentially decreasing except when Vα(ρ) is in a maximum. Since we choose a
smooth control, this implies that V (ρ) is a supermartingale with exponential
decay for all ρ ∈ S, implying global exponential convergence.

Active feedback contribution For p ∈ [0, 1] set

Sp ,
{
ρ ∈ S | ∃j 6= `, pj(ρ) ≥ p

}
.

Take ρ ∈ Sp with p = 1. Then there exists j ∈ {1, . . . , d}/{`} such that
ρ = Πj ,

∑
k αs,kpk(ρ) = αs,j > 0 and

Σkαs,k Tr (ΠkDH(ρ)) = −βs,j < 0.

Consequently fα(ρ) = −
∑

s∈{1,...,d}/{`}
βs,j√
αs,j

< 0 with Vα(ρ) =
∑

s
√
αs,j >

0.
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By continuity of fα \ Vα on S1/2, exist εf > 0 and p ∈]1/2, 1[ such that

∀ρ ∈ Sp, fα(ρ) ≤ −εfVα(ρ).

Taking pmin > p̄, we ensure that the feedback will only be turned on
when it contributes a negative term to AVα.

Open-loop contribution For all ρ ∈ S \ {Π`}, χ(ρ) = gα(ρ) \ Vα(ρ) is well
defined. Since Tr (ρL) =

∑
k λkpk(ρ), the function χ(ρ) depends only on

the populations pk. Consider the following parametrization exploiting the
degree 0 homogeneity of χ versus the populations:

r = 1 − p`, xk = pk/(1 − p`) for k 6= `.

For ρ ∈ S \ {Π`}, the function χ admits the following smooth expression
with the variables r ∈ [0, 1] and xk ∈ [0, 1] satisfying

∑
k 6=` xk = 1:

χ(r, x) =
∑

s 6=`

(Σk 6=`αs,k(λk−$(r,x))xk

Σk 6=`αs,kxk

)2√
Σk 6=`αs,kxk∑

s 6=`

√
Σk 6=`αs,kxk

with $(r, x) = (1 − r)λ` + r
(∑

k 6=` λkxk

)
. Clearly χ(r, x) ≥ 0. Consider the

solutions (r, x) of χ(r, x) = 0. Necessarily, they satisfy

∀s 6= `,
∑
k 6=`

αs,k(λk −$(r, x))xk = 0.

Since the (d − 1) × d matrix αs,k is of maximal rank d − 1, ∀k 6= ` we
have (λk − $(r, x))xk = 0. Taking the sum versus k 6= `, one gets (1 −
r)
(
λ` −

∑
k 6=` λkxk

)
= 0 implying two possibilities:

• if λ` =
∑

k 6=` λkxk, then $(r, x) = λ` and (λk − λ`)xk = 0 for k 6= `.
Since λk 6= λ` this implies that xk = 0. But this is not possible since∑

k 6=` xk = 1.

• if r = 1, then $(r, x) =
∑

k′ 6=` λk′xk′ . But for k 6= ` one hasλk −
∑
k′ 6=`

λk′xk′

xk = 0.

Since λk 6= λk′ for k 6= k′ and xk ∈ [0, 1] with
∑

k 6=` xk = 1, exits
necessarily j 6= ` such that xj = 1 and xk = 0 for k 6= `, j.

Consequently, the non negative smooth function χ(r, x) vanishes only at
d − 1 isolated points, r = 1 and xk = δkj labelled by j 6= `. By continuity
for any p < 1 (p > 0), exists θp > 0 such that ∀ρ ∈ S \ Sp different of Π`,
χ(ρ) ≥ θp. This proves that

∀ρ ∈ S \ Sp, gα(ρ) ≥ θpVα(ρ).
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To conclude, consider AVα given in (5.5). Since hα ≥ 0, we have

∀ρ ∈ S, AVα(ρ) ≤ σ2(ρ)
2 fα(ρ) − η

2gα(ρ).

Consider the feedback gain σ(ρ) with pmin > p. Then

∀ρ ∈ Spmax , AVα(ρ) ≤ − σ̄2

2 εfVα(ρ)

and

∀ρ ∈ S \ Spmax , AVα(ρ) ≤ −η
2θpmaxVα(ρ).

For all ρ in S, one has AVα(ρ) ≤ −νVα(ρ) where ν is equal to min
(

σ̄2εf

2 ,
ηθpmax

2

)
.

A direct application of Theorem A.0.1 recalled in Appendix ensures E(Vα(ρt)] ≤
Vα(ρ0)e−νt.

5.4 Approximated quantum filtering

We now address the construction of the reduced-order filter. A first reduc-
tion consists in replacing ρt in the feedback law by %̂t corresponding to the
Bayesian estimate of ρt knowing ρ0 and Yτ for τ ∈ [0, t]. One discards here
the knowledge of Bt. Then, %̂t obeys to the following stochastic differential
equation:

d%̂t = DL(%̂t)dt+ √
ηML(%̂t)

(
dYt − 2√

ηTr (%̂tL) dt
)

+ σ(%̂t)2DH(%̂t)dt. (5.6)

This reduced filter (5.6) does not admit a closed-form expression in terms
of pk(%̂) = Tr (%̂Πk) in general, as Tr (DH(%̂)Πk), includes coherences of the
type < k|ρ|k′ >. The stability analysis of section 5.3 suggest an approxima-
tion.

Let pj(ρ) > 1 − ε, for some j 6= ` and some 1 − ε > pmin. Con-
sider a decomposition of ρ into ρ =

∑d
s=1 ps|s〉〈s|,

∑
s ps = 1, for some

orthonormal basis {|s〉}d
s=1. Enumerate the states as s̃ the |s̃〉 ∈ Range(Πj),

|s⊥〉 ∈ Kernel(Πj); the constraint on Tr (ρΠj) gives 1 − ε ≤ Tr (ΠjρΠj) =∑
s ps Tr (Πj |s〉〈s|Πj) =

∑
s̃ ps̃〈j||s̃〉〈s̃||j〉 which implies that mins,j |〈s̃||j〉|

∑
s̃ ps̃ ≥

1 − ε, similarly
∑

s⊥ ps⊥ ≤ ε. From both it follows that ‖Πjρ(I − Πj)‖2
F =∑

s̃,s⊥ ps̃ps⊥ |s⊥〉〈s̃| ≤ ε
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Write ρ = ΠjρΠj +(I−Πj)ρΠj +Πjρ(I−Πj)+(I−Πj)ρ(I−Πj). Then

Tr (DH(ρ)Πk)

≤ Tr
(

DH

(∑
s̃

ps̃Πj |s̃〉〈s̃|Πj
)
Πk

)
+ (2

√
ε+ ε)‖DH(Πk)‖F

=
∑

s̃

ps̃|〈s̃||j〉|
(

Tr
(
DH

(
Πj
)
Πk

)
+ (2

√
ε+ ε)‖DH(Πk)‖F

)
= −

∑
s̃

ps̃|〈s̃||j〉|
(
∆k,j(H) + (2

√
ε+ ε)‖DH(Πk)‖F

)
. (5.7)

Thus, given a small ε, the dissipation term Tr (DH(ρ)Π`) admits an
approximation in terms of the eigenstate populations of L. We discard the
positive terms of order

√
ε and consider then the following approximated

filter for populations p̂k to estimate pk(%̂):

dp̂k = 2√
ηp̂k

(
λk −$(p̂)

)(
dYt − 2√

η$(p̂)dt
)

+ σ2(p̂)
d∑

k′=1
∆k,k′ p̂k′ dt (5.8)

where $(p̂) =
∑d

k′=1 λk′ p̂k′ with p̂ = (p̂1, . . . , p̂d), where the Laplacian
matrix is given by (5.2) and the coherences 〈k|%̂|k′〉, k 6= k′, are set to
zero in (5.8). The above approximate filter requires to store and update in
real-time only d real numbers. Moreover it has a nice structure: standard
arguments show that, for any measurement trajectory Yt, the components
of p̂ remain non negative and their sum remains equal to one. Moreover, in
open-loop (σ ≡ 0), this population filter is exact.

5.5 Simulations
This section is devoted to numerical estimation of closed-loop convergence
rates and investigation of the related robustness on a specific physical quan-
tum systems already considered in the litterature [50, 62, 77].

In this section we consider a quantum spin systems with fixed angular
momentum J. This is a system of dimension n = 2J + 1 where the measure-
ment operator L is the diagonal matrix (measurement along the z-axis)

L =
2J∑

m=0
(J −m)|J-m〉〈J-m|

and the actuator Hamiltionian H is a tri diagonal matrix (rotation around
the y-axis)

H =
2J−1∑
m=0

√
(m+1)(2J−m)

2i (|J-m〉〈J-m-1| − |J-m-1〉〈J-m|)
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The Hilbert basis is made of the 2J + 1 ortho-normal vectors |J-m〉 for
m = 0, . . . , 2J .

All the simulations below correspond to J = 2 (n = 5), detection effi-
ciency η = 8/10:

L =


2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 -1 0
0 0 0 0 -2

 , H = 1
2i


0 −2 0 0 0
2 0 −

√
6 0 0

0
√

6 0 −
√

6 0
0 0

√
6 0 −2

0 0 0 2 0

 .

According to lemma (3.1.1), the open-loop convergence rate is η/2 = 0.4.
The control goal is to stabilize the spin-0 state Π` associated to the zero
eigenvalue of L. For the noise-assisted feedback gain (5.3), we take σ̄ =

√
5η,

pmax = pmin + 0.05, pmin = 0.9 or pmin = 0.6 with the saturation function
ϕ(s) = min(1,max(0, s)). A closed-loop simulation set is made of 1000
realizations starting from the fully depolarized state ρ0 = I/5. For each
simulation set, we get an approximation of the ensemble average trajectory
t 7→

√
1 − Tr (Π`ρt) ≡

√
1 − 〈0|ρt|0〉 and compute an estimate of its expo-

nential converge rate following Theorem 5.3.1 since the Laplacian matrix
∆

∆ =


-1 1 0 0 0
1 -5

2
3
2 0 0

0 3
2 -3 3

2 0
0 0 3

2 -5
2 1

0 0 0 1 -1

 ,

inherits of the tridiagonal structure of H and thus admits a connected graph.
Figure 5.1 illustrates a first simulation set with pmin = 0.9 close to 1

for which one should have, according to Theorem 5.3.1, exponential conver-
gence, estimated here to ν ≈ 0.04. This closed-loop rate is much smaller
than the open-loop one η/2 = 0.4. This is in agreement with the rate ν
implicitly exhibited by the proof of theorem 5.3.1 assuming pmax close to 1
(here pmax = 0.95).

In the second simulation set of figure 5.2, one decreases to pmax = 0.65
and observes a much faster convergence rate around 0.2, one half of the open-
loop convergence rate. This indicates that such noise-assisted feedback could
be tuned to achieve convergence rate similar to the open-loop one.

In the above simulations, the feedback is based on the ideal value ρt of
the quantum state. In the simulation sets below, the feedback depends on
the approximated population vector p̂ obtained by the low-order approxi-
mate filter (5.8) where the simulation set of figure 5.3a differs from the one
of figure 5.2 just by replacing in the feedback law the ideal populations p
by the approximated ones p̂ solutions of (5.8). One observes a reasonable
decrease of the convergence rate form 0.19 to 0.12 illustrating the practical



5.5. SIMULATIONS 61

Figure 5.1: Ideal closed-loop simulations with pmin = 0.9. In gray: selection
of 200 individual trajectories t 7→

√
1 − Tr (Π`ρt); In red: average over 1000

realizations.

Figure 5.2: Ideal closed-loop simulations with pmin = 0.6. In gray: selection
of 200 individual trajectories t 7→

√
1 − Tr (Π`ρt); In red: average over 1000

realizations.
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interest of such low-dimensional filters. Last simulation set of figure 5.3b
evaluates the impact of a feedback delay of 0.5 time unit in the closed-loop
simulations of figure 5.3a. Despite a decrease by a factor two of the conver-
gence rate, feedback latency of 1/4 of the open-loop convergence time does
not destabilize this feedback scheme which appears here to have promising
robustness properties.

5.6 Conclusions

We have shown that the use of Brownian motion to drive the controls allows
for exponential stabilization of a prescribed QND eigenstate. A crucial dif-
ference on the stability analysis with respect to other chapters, is that of the
connectivity graph induced by the feedback Hamiltonian. Lyapunov analy-
sis is more subtle, since it needs to take into account the direct and indirect
connections between QND eigenstates to achieve exponential stabilization.
Here, we introduced a Lyapunov function which takes into account this con-
nections, while still being related to a measure of a distance. Combining
the feedback action with the measurement dynamics, we prove exponential
stability of the target eigenstate.

Some themes in this chapter still leave room for improvement, in at least,
the following directions:

• While our proof of exponential convergence can provide an estimate
of the convergence rate, the Lyapunov function nor the other control
parameters where not optimized in order to maximize the speed of con-
vergence. We have shown numerically that the closed-loop convergence
rate apparently can be made similar to the open-loop convergence rate
with our approach, suggesting that a precise analysis of convergence
rate can be done.

• In numerical simulations, the reduced approximate filter (5.8) appears
good enough to achieve global exponential stabilization. We conjec-
ture that this can be proven, for this filter. In the next Chapter we
find a case for which it is possible to formulate an approximate reduced
quantum filter that is expressed solely in terms of the eigenstate pop-
ulations.

• The capability of performing several quantum measurements and of
applying different unitary feedback controls on a single quantum sys-
tem motivates the study of multi-input multi-output (MIMO) quan-
tum feedback schemes. A MIMO version of static output feedback
was introduced in [26] and an implementation was made in [21] con-
sidering non-commuting measurement operators. In contrast, for QND
systems with multiple measurements, these operators must commute
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(a) Closed-loop simulations with pmin = 0.6 with the approximate
population filter (5.8). In gray: selection of 200 individual trajec-
tories t 7→

√
1 − Tr (Π`ρt); In red: average over 1000 realizations.

(b) Closed-loop simulations with pmin = 0.6 with the approximate
population filter (5.8) and feedback delay of 0.5. In gray: selection
of 200 individual trajectories t 7→

√
1 − Tr (Π`ρt); In red: average

over 1000 realizations.

Figure 5.3: Simulation of the quantum spin system with a reduced filter and
subject to imperfections.
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so that there exist common eigenspaces. A general MIMO extension
of Theorem 5.3.1 should be feasible along the same lines as the present
work.



Chapter 6

On continuous-time quantum
error correction

Ce chapitre étudie le problème de correction d’erreurs quantiques en temps
continu pour le code de correction d’erreurs à trois qubits. Ce code correcteur
utilise la redondance pour protéger l’information quantique. Des mesures
de parité sur les qubits voisins permettent de localiser les erreurs, et des
actions du contrôle unitaires sur chaque qubit individuel permettent de faire
la correction. En temps continu, cela implique de rendre une variété cible
d’états quantiques globalement attractive. Nous adaptons la loi du contrôle
assisté par bruit aux spécificités du problème de la correction d’erreurs. Il est
possible de montrer que la dynamique en boucle fermée résultante stabilise la
variété cible de manière exponentielle. Néanmoins, il y a quelques différences
par rapport aux problémes de stabilisation précédents qui doivent être prises
en compte ici: d’abord, ayant une donnée initiale appartenant à la varieté
cible, il est nécessaire de montrer qu’elle est protégée des erreurs detectées
; deuxièmement, les actions de contrôle doivent être minimisées pour que
des erreurs additionnelles à cause de ladite action soient évitées. En outre,
nous présentons une formulation de filtre d’ordre réduit, qui est basé sur des
probabilités classiques. L’étude sur la protection induite par la dynamique
de correction d’erreur en boucle fermée contre les perturbations est faite
numériquement. Nous étudions numéiquement la performance de cette loi
de contrôle et du filtre réduit. La procédure de contrôle considerée dans ce
chapitre constitue une première extension à plusieurs entrées et sorties —
en anglais multi-input multi-output (MIMO) — du contrôle assisté par bruit
considéré dans les chapitres précédents.

6.1 Introduction

The development of methods for the protection of quantum information in
the presence of disturbances is essential to improve existing quantum tech-

65
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nologies [58, 54]. Decoherence is regarded as the major obstacle towards
scalable and robust quantum information processing, caused by the inter-
action between the system of interest and other subsystems present in the
environment. Quantum error correction (QEC) codes have emerge as a tool
to fight this decoherence, by encoding a logical state into multiple physical
states. Similarly to classical error correction, this redundancy allows to pro-
tect quantum information from disturbances by stabilizing a submanifold of
steady states, which represent the nominal logical states [45, 53]. As long
as a disturbance does not drive the system out of the basin of attraction of
the original nominal state, the logical information remains unperturbed. To
stabilize the nominal submanifold in a quantum system, a syndrome diag-
nosis stage performs quantum non-destructive (QND) measurements which
extract information about the disturbances without perturbing the encoded
data. Based on this information, a recovery feedback action restores the
corrupted state.

QEC is most often presented as discrete-time operations towards digital
quantum computing, see e.g. [53]. Not only the design of the underlying con-
trol layer, but also the proposal of analog quantum technologies, like solving
optimization problems by quantum annealing, motivate a study of QEC in
continuous-time, among them using the tools of reservoir engineering and
measurement-based feedback.

Reservoir engineering techniques consists on coupling the system that
we wish to control with a dissipative ancilliary quantum system, such that
the entropy introduced by errors on the main system is evacuated through
the dissipation of the ancilliary one. Methods of reservoir engineering for
autonomous quantum error correction [51, 28, 27] aim towards hardware
efficient quantum computing [36]. An advantage of this approach is that
there is no need for a complicated external control loop to correct errors.
However, the challenge is to implement the specific ancillary system and
coupling within experimental constraints.

Advances in experimental methods for performing high-fidelity quantum
measurements encourage the consideration of measurement-based feedback
strategies for quantum information processing tasks. In the context of QEC,
this has been addressed in [1, 2, 60, 47], essentially as proposals illustrated
by simulation. The short dynamical time scales encountered in experimental
setups represent one of the main obstacles to implement complex feedback
laws. Furthermore, the data acquisition and post-processing of the measure-
ment signal leads to a latency in the feedback procedures. This motivates
the development of efficiently computable control techniques that are robust
against unmodeled dynamics.

The goal of this chapter is to establish analytical results about the con-
vergence rate of QEC systems towards the nominal submanifold, a prereq-
uisite for analytically quantifying the protection of quantum information. It
is indeed well known that exponential stability is an indicator of robustness
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with respect to unmodeled dynamics.
To obtain exponential convergence in a compact space, it is necessary to

suppress any spurious unstable equilibria that might remain in the closed-
loop dynamics. In the present chapter, in the context of QEC, we propose as
well a noise-assisted quantum feedback, acting with Brownian noise whose
gain is adjusted in real-time. We show via standard stochastic Lyapunov
arguments that this new approach renders the target subspace, containing
the nominal encoding of quantum information, globally exponentially stable
thanks to feedback from syndrome measurements.

Furthermore, our strategy allows to work with a reduced state estimator:
while other feedback schemes require to keep track of quantum coherences,
our controller only tracks the populations on the various joint eigenspaces
of the measurement operators (via classical Bayesian estimation). From a
data statistics viewpoint, this corresponds to a reduced-order formulation
that depends only on classical probabilities. Since up to quantum noise this
information is directly proportional to the measurement outputs, it could
open the door towards using even simpler filters in practical setups.

The structure of the rest of this chapter is as follows: In section 6.2
we present the dynamical model of the three-qubit bit-flip code, which is
the most basic model in QEC. In section6.3, we review the previous work
that has been done on QEC using measurement based feedback. In section
6.4 we introduce our approach to feedback using noise and we prove expo-
nential stabilization of the target manifold of the three-qubit bit-flip code.
Section 6.4.4 examines the performance of this feedback to protect quantum
information from bit-flip errors.

The results of this chapter are based on the article [23], to appear at
Proceedings of the 11th IFAC Symposium on Nonlinear Control Systems.

6.2 Dynamics of the three-qubit bit-flip code

The three-qubit bit-flip code corresponds to a Hilbert space H = (C2)⊗3 '
C8, where ⊗ denotes tensor product (Kronecker product, in matrix repre-
sentation). We denote In the identity operator on Cn and we write Xk, Y k

and Zk the local Pauli operators acting on qubit k, e.g. X2 = I2 ⊗ X ⊗ I2.
We denote {|0〉, |1〉} the usual basis states, i.e. the -1 and +1 eigenstates of
the Z operator on each individual qubit [53].

The encoding on this 3-qubit system is meant to counter bit-flip errors,
which can map a ±1 eigenstate of Zk to a ∓1 eigenstate for each k = 1, 2, 3.
More precisely, the nominal encoding for a logical information 0 (resp. 1)
is on the state |000〉 (resp. |111〉). A single bit-flip on e.g. the first qubit
brings this to X1|000〉 = |100〉 (resp. |011〉), which by majority vote could
be brought back to the nominal encoding.

Bit-flip errors occurring with a probability γk dt � 1 during a time inter-
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val [t, t+dt] are modeled by disturbance channels, with Lk+3 = √
γk Xk and

ηk+3 = 0, k = 1, 2, 3. The measurements needed to implement “majority
vote” corrections, so-called syndromes, continuously compare the Z value of
pairs of qubits. The associated measurements correspond to Lk =

√
Γk Sk

for k = 1, 2, 3, with S1 = Z2Z3, S2 = Z1Z3, S3 = Z1Z2 and Γk represent-
ing the measurement strength. This yields the following open-loop system
with multiple measurement channels:

dρ =
3∑

k=1
ΓkDSk

(ρ)dt+
√
ηkΓkMSk

(ρ)dWk +
3∑

s=1
γsDXs(ρ)dt, (6.1)

dYk = 2
√
ηkΓk Tr (Skρ) dt+ dWk, k ∈ {1, 2, 3}. (6.2)

We further define the operators:

ΠC = 1
4
(
I8 +

3∑
k=1

Sk

)
, Πj := XjΠCXj , j ∈ {1, 2, 3}, (6.3)

corresponding to orthogonal projectors onto the various joint eigenspaces
of the measurement syndromes. The first one ΠC projects onto the nom-
inal code C := span(|000〉, |111〉) (+1 eigenspace of all the Sk), whereas
Πj projects onto the subspace where qubit j is flipped with respect to the
two others. Similarly to the single measurement case, we define for each
k ∈ {C, 1, 2, 3},

pt,k(ρ) := Tr (Πkρt) ≥ 0
the so-called population of subspace k, i.e. the probability that a projective
measurement of the syndromes would give the output corresponding to sub-
space k. By the law of total probabilities we have

∑
k∈{C,1,2,3} pt,k = 1 for

all t.
We have the following behavior in absence of feedback actions and dis-

turbances. This is the equivalent, for invariant subspaces, of Lemma 3.1.1.

Lemma 6.2.1. Consider equation (6.1) with γs = 0 for s ∈ 1, 2, 3.

(i) For each k ∈ {C, 1, 2, 3}, the subspace population pt,k(ρ) is a martin-
gale i.e. E(pt,k(ρ)|p0,k(ρ)) = p0,k(ρ) for all t ≥ 0.

(ii) For a given ρ0, if there exists k̄ ∈ {C, 1, 2, 3} such that p0,k̄(ρ) = 1 and
p0,k(ρ) = 0 for all k 6= k̄, then ρ0 is a steady state of (6.1).

(iii) The Lyapunov function

V (ρ) =
∑

k∈{C,1,2,3}

∑
k′ 6=k

√
pkpk′(ρ),

decreases exponentially as

E[V (ρt)] ≤ e−rtV (ρ0)
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for all t ≥ 0, with rate

r = 4 min
k∈{1,2,3}

ηkΓk.

In this sense the system exponentially approaches the set of invariant
states described in point (ii).

Proof. The first two statements are easily verified, following the same lines
as in the case with a single measurement (6.2.1). We prove the last one.
The variables ξj = √

pj , j ∈ {1, 2, 3, C} satisfy the following SDE’s:

dξC = −2ξC
( ∑

k∈{1,2,3}
ηkΓk(1 − ξ2

C − ξ2
k)2
)
dt

+ 2ξC
( ∑

k∈{1,2,3}

√
ηkΓk(1 − ξ2

C − ξ2
k) dWk

)
,

dξj 6=C = −2ξj

(
ηjΓj(1 − ξ2

C − ξ2
j )2 +

∑
k∈{1,2,3}\j

ηkΓk(ξ2
C + ξ2

k)2
)
dt

+ 2ξj

(√
ηjΓj(1 − ξ2

C − ξ2
j ) dWj −

∑
k∈{1,2,3}\j

√
ηkΓk(ξ2

C + ξ2
k) dWk

)
,

while V =
∑

k∈{C,1,2,3}
∑

k′ 6=k ξkξk′ . Noting that 2(1−ξ2
C −ξ2

k) and 2(ξ2
C +ξ2

k)
just correspond to 1±Tr (ρSk), we only have to keep track of ± signs in the
various terms to compute

AV = −2
∑

k∈{C,1,2,3}

∑
j∈{C,1,2,,3}\k

ξjξk

∑
l∈{1,2,3}

εj,k,lηlΓl

where, for each pair (j, k), the selector εj,k,l ∈ {0, 1} equals 1 for two l
values, namely εC,k,l = εk,C,l = 1 if l 6= k ∈ {1, 2, 3} and εj,k,j = εj,k,k = 1 for
j, k ∈ {1, 2, 3}. This readily leads to AV ≤ −4 mink∈{1,2,3}(ηkΓk) V .

We conclude by Theorem A.0.1 and noting that V = 0 necessarily cor-
responds to a state as described in point (ii).

The above Lyapunov function describes the convergence of the state
towards Tr (Πkρ) = 1, for a random subspace k ∈ {C, 1, 2, , 3} chosen with
probability p0,k. We now address how to render one particular subspace
globally attractive, here the one associated to nominal codewords and with
projector ΠC .

6.3 Some open issues on continuous-time QEC
Quantum error correction in continuous time with measurement-based feed-
back was first investigated in by Ahn et.al. [1]. Subsequent works [2, 60, 47]
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have been looking to improve mainly one issue, which is addressing the real-
time implementation of the control layer. The use of a full quantum filter
seems unnecessary for this application, as the measurements are specifically
tailored to localize the errors. Thus, in open loop, it is possible to design
reduced filters that only track errors in real time. The challenge comes when
considering the feedback action into the filter. Another point is that con-
trol design could be improved in order to provide estimates of convergence.
We review the existing work on the subject to highlight the challenges; as
in previous chapters, it is by changing the actuation strategy that we will
address both issues.

The continuous-time closed-loop model considered in previous works [1,
2, 60, 47] considers a deterministic actuation of the form

dρ = −i
3∑

j=1
uj(ρ)[Xj , ρ]dt+

3∑
k=1

ΓkDSk
(ρ)dt+

√
ηkΓkMSk

(ρ)dWk

+
3∑

s=1
γsDXs(ρ)dt, (6.4)

the role of the controls uj , j ∈ {1, 2, 3} is to counteract the error terms
DXs(ρ) present in Eq. (6.4). The control design goal is to minimize the
distance to the codespace manifold V ′(ρ) = 1 − Tr (ρΠC). In the absence of
perturbations, the control law

uj(ρ) = −λ sign
(

Tr (i[Xj , ρ]ΠC)
)
, j ∈ {1, 2, 3}), λ > 0

makes
d

dt
E[V ′(ρ)] = E[

3∑
j=1

uj(ρ) Tr (i[Xj , ρ]ΠC)]

negative. This only shows that Tr (ρΠC) is increasing on average. It does not
mean that, for all individual realizations, Tr (ρΠC) converges to 1. Indeed,
the above control law does not prevent convergence towards a state sup-
ported on an error eigenspace, since uj(ρ) = 0 for any state that commutes
with ΠC . Other control proposals [60, 2] do not provide similar stabiliza-
tion statements. Optimal control strategies have also been considered [47],
by monitoring the error populations and applying discrete kicks when the
population on a particular error subspace is close to one. This could have
a negative effect on implementations, as in practice it could excite spurious
subsystems that are not usually taken into account in the approximations
used to model the nominal system.

Another point is with respect to the issues related to real-time implemen-
tation of the feedback law. Implementing the quantum filter verbatim on an
experiment would not be without challenges, since in this simplified setting,
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as the dimension of the Hilbert space grows as 2d for d qubits. It is funda-
mental to show that we can reduce the overhead of computing the quantum
filter. Towards this end, Mabuchi & Van Handel [47] propose a reduced
filter describing the dynamics of the system in open-loop subject to errors.
It consists on a formulation based on a Wonham filter that only tracks the
populations on the error subspaces pj(ρ). The formulation comes down to
the observation that the measurement operators fix a common eigenbasis,
restricting the dynamics of the filter to the diagonal elements of the density
matrix in said eigenbasis. With the actuation strategy present in Eq. 6.4, it
is not possible to express the terms due to feedback as a linear combination
of the error populations. Indeed, it can be seen that for any j ∈ {1, 2, 3},
the terms Tr (i[Xj ,Πk]ρ) correspond to the symmetric (j, k) off-diagonal el-
ements of the density matrix ρ. Thus the dimension of the filter grows as
O(d2) in the number of physical qubits d.

Since the information on the population on an error subspace is directly
proportional to the measurement outputs — up-to some disturbing noise—
the idea of bypassing the filter altogether has been considered as well in
Sarovar et. al. [60]. It consists on adding low-pass filters of the form
Rj(t) =

∫ t
t−T e

−r(t−t′)dYj(t). The control uj in Eq. (6.4) is implemented as
a function of Rj(t). Recalling that S1 = Z2Z3, S2 = Z1Z3, S3 = Z1Z2,
the control logic is easy to understand since it follows the logic given by the
syndrome measurements

• If R3(t) < 0 and R1(t) > 0, apply correction via X1.

• If R3(t) > 0 and R1(t) < 0, apply correction via X3.

• If R3(t) < 0 and R1(t) < 0, apply correction via X2.

• If R3(t) > 0 and R1(t) > 0, do not apply feedback.

The presence of noise has negative effects on the control, as the control
signals become innacurate [60], thus potentially causing the feedback action
to be more counterproductive than it should be. Stability analysis of a
system with controls computed by similar filters does not seem an easy task
(cf. Concluding remarks in Chapter 7). But it is important to emphazise
that this kind of controllers, needing only coarse-grained information on the
state, are being actively pursued in current experimental setups.

Despite the lack of further study, the motivation behind these works is
clear: it is unsatisfactory to use a full quantum filter to do quantum error
correction in continuous-time. The intuition on the problem suggests that
it is only necessary to track the populations on the error eigenspaces in
order to do correction. It is the actuation strategy that poses a challenge
to define a closed-loop population filter; under the actuation present in Eq.
(6.4), there is the need to track off-diagonal block terms, which define the
couplings amongst the eigenspaces.
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The objectives pursued in the rest of this chapter are not markedly dif-
ferent than those presented before, and we will use noise-assisted feedback
to address them. Namely: on one hand, we have shown that the open-loop
system (6.1), the support of ρt tends to belong to one of the joint eigenspaces
of the syndrome measurements as t → ∞ with exponential speed, but the
resulting eigenspace will be at random. The control goal is to show that
we can approach a target eigenspace, namely, that corresponding to the
codespace, globally exponentially attractive. Furthermore, in the context of
QEC, it is clear that tracking the populations on an error eigenstate is the
only relevant control variable, as it is directly suggested by the syndrome
measurements. Regarding this issue, the strategy is to first show that those
control variables are enough to achieve exponential stabilization assuming a
nominal quantum filter. Next, it will be shown how the use of noise to drive
the controls allows us to bypass the filtering reduction issues in closed-loop
that were present on previous actuation strategies, by formulating filters that
track the populations on the error subspaces. Contrary to the approximate
filter considered in Chapter 5, this formulation is exact.

6.4 Error correction as noise-assisted feedback sta-
bilization

6.4.1 Controller design

Error correction requires to design a control law satisfying two properties:
• Stabilization of target manifold: drive any initial state ρ0 towards a

state with support only on the nominal codespace C = span{|000〉, |111〉}.
This comes down to making Tr (ρtΠC) → 1 as t → ∞. To address this
first point, the strategy —similar to the previous chapters— comes
down to defining a Lyapunov function V (ρ) and constructing controls
such that it is a supermartingale with exponential decay on S.

• Protection of information: for Tr (ΠCρ0) = 1 and in the presence of
disturbances γs 6= 0, minimize the distance between ρt and ρ0 for all
t ≥ 0.

We now directly address the first point, the second one will be discussed in
the sequel.

As mentioned in the introduction, this problem has already been consid-
ered before, yet without proof of exponential convergence. We will extend
our noise-assisted feedback scheme to three controls

ujdt = σj(ρ)dBj ,

with Bj(t) Brownian motions independent of any Wk(t). As control Hamil-
tonians we take Hj = Xj , thus rotating back the bit-flip actions. The rea-
soning on using a noisy input is similar to previous chapters: to destabilize



6.4. ERROR CORRECTION AS NOISE-ASSISTED FEEDBACK STABILIZATION73

the open-loop equilibria where pk(ρ) = 1 for any k ∈ {1, 2, 3}, while progre-
sively approaching the state towards pC(ρ) = 1. The closed-loop dynamics
in Itō sense then writes:

dρ =
3∑

k=1
ΓkDSk

(ρ)dt+
√
ηkΓkMSk

(ρ)dWk +
3∑

s=1
γsDXs(ρ)dt

+
3∑

j=1
−iσj(ρ)[Xj , ρ]dBj + σj(ρ)2DXj (ρ)dt . (6.5)

The last term can be viewed as “encouraging” a bit-flip with a rate depending
on the value of σj and thus on ρ. The remaining task is to design the gains
σj , which in general can follow some dynamic control logic.

There are many options for designing σj — its only essential role is to
“shake” the state when it is close to Tr (ΠCρ) = 0, since the open-loop
behavior already ensures stochastic convergence to either Tr (ΠCρ) = 0 or
Tr (ΠCρ) = 1. The following simple hysteresis-based control law illustrated
by figure 6.1 depends only on the variables pt,k and should not be too hard
to implement in practice. Select real parameters αj and βj such that 1

2 <
βj < αj < 1 for j ∈ {1, 2, 3}, and take a constant c > 0.

Control Law 6.4.1. Select σj(ρ) for each j ∈ {1, 2, 3} as follows

1. If pj(ρ) ≥ αj then take σj(ρ) =
√

6cηΓ
2α1−1 ;

2. If pj(ρ) ≤ βj then take σj(ρ) = 0;

3. When entering or moving in the hysteresis region, i.e. the values of pj

in ]βj , αj [ not covered by the above two cases: keep the previous value
of σj(ρ).

Contrary to the preceding sections, here we consider a continuous control
with hysteresis. The reasoning behind it comes down to being able to chose
separately when to turn-on/turn-off the noisy input. Having αj close to one
means that the controller will wait more until it applies a correction, but the
error is better localized. On the other hand, having α close to 1/2, yields a
larger control gain, improving the convergence rate to the target manifold,
but with the risk of manipulating quantum information more than necessary,
which could yield to an error induced by feedback. In the sequel it will be
discussed how the choice of αj , and βj affects the the capability of the
controller to protect encoded information.

We can replace the above control law by a smooth control in the same
lines as chapters 4 and 5. That is, we consider the control law

σj(ρ) = c ϕ

(
pj(ρ) − βj

αj − βj

)
, j ∈ {1, 2, 3}, (6.6)
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Figure 6.1: for αj ≡ α and βj ≡ β, the 6 active feedback zones in the simplex{
(p1,p2,p3)

∣∣ p1,p2,p3 ≥ 0, p1 + p2 + p3 ≤ 1
}

.

where again ϕ ≥ 0 is a smooth saturating function on [0, 1], i.e. ϕ(]−∞, 0]) =
{0} and ϕ([1,+∞[) = {1}. The proof of convergence follows the same lines
as the control with hysteresis. The main difference is that the hysteresis-
based controller can be fine tuned to highlight the capabilities of information
protection. Simulations in Figures 6.2a and 6.3) compare both schemes.

6.4.2 Closed-loop exponential stabilization

We propose the closed-loop Lyapunov function:

V (ρ) = V1(ρ) + V2(ρ) + V3(ρ) (6.7)

with
V1(ρ) =

√
2p1(ρ) + p2(ρ) + p3(ρ),

V2(ρ) =
√

p1(ρ) + 2p2(ρ) + p3(ρ),

and
V3(ρ) =

√
p1(ρ) + p2(ρ) + 2p3(ρ).

Theorem 6.4.1. Consider system (6.5) with γs = 0, s ∈ {1, 2, 3} and
feedback gains (σj) designed in items 1, 2 and 3 in the control law 6.4.1.
Then

E[V (ρt)] ≤ V (ρ0)e−rt, ∀t ≥ 0,

with the exponential convergence rate estimated as:

r =
(

min
j∈{1,2,3}

ηjΓj

)
min

(
c , 4

3
√

2 min
(s,x1,x2,x3)∈K

g(s, x1, x2, x3)
)

> 0
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where the function g(s, x1, x2, x3), given in Eq. (6.10), is a smooth, strictly
positive function defined on the compact set

K =
{

(s, x1, x2, x3) ∈ [0, 1]4
∣∣∣ x1 + x2 + x3 = 1; sxj ≤ αj

}
For a heuristic estimate of r, take s = αj with xj = 1 for some j to get

r ∼
(

min
j∈{1,2,3}

ηjΓj

)
min

(
c, 8√

2(1 − ᾱ)2
)

with ᾱ = maxj∈{1,2,3} αj . Typically one would take c = 1 and α1 = α2 =
α3 = α close to 1. When ηjΓj are all equal, such a rough estimate simplifies
to r = 4

√
2(1 − α)2ηΓ .

Proof. We consider the following partition of the state-space: Q := ∪3
j=1
{
ρ ∈

S | pj(ρ) ≥ αj
}

and S/Q. Then we analyze how the diffusion behaves on
such a partition, by computing its infinitesimal generator. By design of the
hysteresis, well-posedness of the solution then follows from standard argu-
ments on the construction of solutions of SDE’s. There remains to check
that AV (ρ) ≤ −rV (ρ).

From (6.5) compute AV (ρ) = E
[
dVt | ρt = ρ

]
/dt for any value of the

control gain-vector σ. We take ηj ≡ η and Γj ≡ Γ1. With F1 = 2Π1+Π2+Π3
and V1(ρ) =

√
Tr (F1ρ), we get

AV1(ρ) =
2σ2

1
(
1 − f1

)
+ σ2

2
(
1 − 2(p1(ρ) + p2(ρ))

)
+ σ2

3
(
1 − 2(p1(ρ) + p3(ρ))

)
2
√
f1

− 4ηΓ
f1

√
f1

((
(p2(ρ) + p3(ρ))(1 − f1)

)2 +
(
p1(ρ) + (p1(ρ) + p3(ρ))(1 − f1)

)2

+
(
p1(ρ) + (p1(ρ) + p2(ρ))(1 − f1)

)2
)

− σ2
1 Tr2 ([X1, ρ]F1) + σ2

2 Tr2 ([X2, ρ]F1) + σ2
3 Tr2 ([X3, ρ]F1)

4f1
√
f1

(6.8)

where f1 = Tr (F1ρ) = 2p1(ρ) + p2(ρ) + p3(ρ). Since
√
f1 ≥ 1

3
√

2V , we have

AV1(ρ) ≤
2σ2

1
(
1 − f1

)
+ σ2

2
(
1 − 2(p1(ρ) + p2(ρ))

)
+ σ2

3
(
1 − 2(p1(ρ) + p3(ρ))

)
2
√
f1

−V 4ηΓ
3
√

2

(
(p2(ρ)+p3(ρ))(1−f1)

)2
+
(

p1(ρ)+(p1(ρ)+p3(ρ))(1−f1)
)2

+
(

p1(ρ)+(p1(ρ)+p2(ρ))(1−f1)
)2

f2
1

.

Via circular permutation and summation, we get

AV (ρ) ≤
3∑

j=1
σ2

j (ρ)gj(ρ) − 4ηΓ
3
√

2g(ρ)V (ρ) (6.9)

1Otherwise we can take 4ηΓ = 4 minj∈{1,2,3} ηjΓj and the equality in Eq. (6.8) becomes
an inequality, and the computations follow identically.
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where
gj(ρ) = 1−fj√

fj

+ 1−2(pj(ρ)+pj′ (ρ))
2
√

fj′
+ 1−2(pj(ρ)+pj′′ (ρ))

2
√

fj′′

with {j, j′, j′′} = {1, 2, 3} and

g(ρ) =(
(p2(ρ) + p3(ρ))(1 − f1)

)2 +
(
p1(ρ) + (p1(ρ) + p3(ρ))(1 − f1)

)2 +
(
p1(ρ) + (p1(ρ) + p2(ρ))(1 − f1)

)2

(2p1(ρ) + p2(ρ) + p3(ρ))2

+
(
(p3(ρ) + p1(ρ))(1 − f2)

)2 +
(
p2(ρ) + (p2(ρ) + p1(ρ))(1 − f2)

)2 +
(
p2(ρ) + (p2(ρ) + p3(ρ))(1 − f2)

)2

(2p2(ρ) + p3(ρ) + p1(ρ))2

+
(
(p1(ρ) + p2(ρ))(1 − f3)

)2 +
(
p3(ρ) + (p3(ρ) + p2(ρ))(1 − f3)

)2 +
(
p3(ρ) + (p3(ρ) + p1(ρ))(1 − f3)

)2

(2p3(ρ) + p1(ρ) + p2(ρ))2 .

When ρ ∈ Q, we have pj ≥ αj > 1/2 for a unique j ∈ {1, 2, 3}, since
p1(ρ) + p2(ρ) + p3(ρ) ≤ 1. Assume first that p1(ρ) ≥ α1, thus σ1 =

√
6cηΓ

2α1−1
and σ2(ρ) = σ3(ρ) = 0. Since g(ρ) ≥ 0, inequality (6.9) implies

AV ≤ 6cηΓ
2α1−1

(
1−f1√

f1
+ 1−2(p1(ρ)+p2(ρ))

2
√

f2
+ 1−2(p1(ρ)+p3(ρ))

2
√

f3

)
.

Since f1 ≥ 2α1, 1 − 2p1 ≤ 0, f1 ≤ 2 and V ≤ 3
√

2 we get

AV ≤ 6cηΓ
2α1−1

1−2α1√
f1

= − 6cηΓ
V
√

f1
V ≤ −cηΓV.

We get a similar inequality when p2(ρ) ≥ α2 or p3(ρ) ≥ α3. Thus

∀ρ ∈ Q, AV (ρ) ≤ −cηΓV (ρ).

Consider now ρ ∈ S/Q. Then, pj(ρ) < αj for all j. Since σj(ρ) = 0
when pj(ρ) ≤ 1/2 we have σ2

j (ρ)gj(ρ) ≤ 0. From (6.9), we have AV (ρ) ≤
− 4ηΓ

3
√

2g(ρ)V (ρ). Let us prove that g(ρ) ≥ r for any ρ ∈ S/Q. With s =
p1(ρ) + p2(ρ) + p3(ρ) and xj = pj(ρ)/s, g can be seen as a function of
(s, x1, x2, x3),

g(ρ) = g(s, x1, x2, x3) ,(
(x2 + x3)(1 − f1)

)2 +
(
x1 + (x1 + x3)(1 − f1)

)2 +
(
x1 + (x1 + x2)(1 − f1)

)2

(1 + x1)2

+
(
(x3 + x1)(1 − f2)

)2 +
(
x2 + (x2 + x1)(1 − f2)

)2 +
(
x2 + (x2 + x3)(1 − f2)

)2

(1 + x2)2

+
(
(x1 + x2)(1 − f3)

)2 +
(
x3 + (x3 + x2)(1 − f3)

)2 +
(
x3 + (x3 + x1)(1 − f3)

)2

(1 + x3)2

(6.10)

with fj = 1 − s − sxj . Here (s, x1, x2, x3) belongs to the compact set
s ∈ [0, 1], xj ≥ 0,

∑
j xj = 1 and sxj ≤ αj for all j. On this compact set, g
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is a smooth function. Moreover it is strictly positive since g = 0 implies that
s = 1 and xj = 1 for some j ∈ {1, 2, 3} which would not satisfy sxj ≤ αj

i.e. lie in Q. This means that minρ∈S/Q g(ρ) > 0.
Taking all things together, we have proved that AV (ρ) ≤ −rV (ρ) always

holds and we can conclude with Theorem A.0.1.

6.4.3 Reduced order filtering

We now address the design of a reduced filter that only tracks the error
populations. The quantum filter for the closed-loop system (6.5) reads

dρ =
3∑

k=1
ΓkDSk

(ρ)dt+
3∑

k=1

√
ηkΓkMSk

(ρ)
(
dYk − 2

√
ηkΓk Tr (Skρ) dt

)

+
3∑

s=1
γsDXs(ρ)dt+

3∑
j=1

−iσj(ρ)[Xj , ρ]dBj + σj(ρ)2DXj (ρ)dt . (6.11)

where dYk = 2
√
ηkΓk Tr (Skρ) dt + dWk is the measurement outcome of

syndrome Sk, and the random dBj applied to the system are accessible too
a posteriori.

Instead, we can replace the state ρt in the feedback law, by ρ̂t corre-
sponding to the Bayesian estimate of ρt knowing its initial condition ρ0 and
the syndrome measurements Yk between 0 and the current time t > 0, but
not the dBj . The state ρ̂t obeys to the SME:

dρ̂ =
3∑

k=1
ΓkDSk

(ρ̂)dt+
3∑

k=1

√
ηkΓkMSk

(ρ̂)
(
dYk − 2

√
ηkΓk Tr (Skρ̂) dt

)
+

3∑
j=1

(γs + σ2
j (ρ̂))DXj (ρ̂)dt (6.12)

where dYk = 2
√
ηkΓk Tr (Skρ) dt + dWk with ρ governed by (6.5) where

σj(ρ) is replaced by σj(ρ̂). Denote p̂j = Tr (Πj ρ̂) and ŝk = Tr (Skρ̂). Then
we have

dŝ1 = −2(γ2 + σ2
2 + γ3 + σ2

3)ŝ1dt

+ 2
√
η1Γ1(1 − ŝ2

1)
(
dY1 − 2

√
η1Γ1ŝ1dt

)
+ 2

√
η2Γ2(ŝ3 − ŝ1ŝ2)

(
dY2 − 2

√
η2Γ2ŝ2dt

)
+ 2

√
η3Γ3(ŝ2 − ŝ1ŝ3)

(
dY3 − 2

√
η3Γ3ŝ3dt

)
(6.13)

with p̂1 = (1 + ŝ1 − ŝ2 − ŝ3)/4. The formulae for dŝ2, dŝ3 and p̂2 p̂3 are
obtained via circular permutation in {1, 2, 3}. Since the feedback law de-
pends only on the populations p̂j , it can be implemented with the exact
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quantum filter reduced to (ŝ1, ŝ2, ŝ3) ∈ R3. Contrarily to the full quan-
tum filter (6.11), here the syndrome dynamics ŝk are independent of any
coherences among the different subspaces. Thus, instead of using nine vari-
ables by including such coherences, the reduced order formulation through
noise-assisted feedback only needs three.

6.4.4 On the protection of quantum information

It is well-known in control theory that exponential stability gives an indi-
cation of robustness against unmodeled dynamics. In the present case, this
concerns the first control goal, namely stabilization of ρt close to the nom-
inal subspace C in the presence of bit-flip errors γs 6= 0. About the second
control goal, namely keeping the dynamics on C close to zero such that log-
ical information remains protected, the analysis of the previous section is
less telling.

We can illustrate both control goals by simulation. As in [1] we set as
initial condition ρ0 = |000〉〈000| and simulate 1000 closed-loop trajectories
under the feedback law of section 6.4.1. We compare the average evolution of
this encoded qubit with a single physical qubit subject to a X decoherence
of the same strength, since this is the situation that the bit-flip code is meant
to improve.

The figures in this section are meant to examine two main situations:
Performance of the closed-loop system with respect to changes in the control
parameters, and performance of the closed-loop system when the control law
is computed via the reduced order filters.

We fix for all simulations the initial state is ρ0 = |000〉〈000| and the
nominal system parameters of the closed loop system (6.5) are Γj = 1,
γj = 1/64, ηj = 0.8. Control parameters or changes on the nominal system
parameters will be specified in the figures.

In all the simulations the colors are: solid red: mean overlap of the
logical qubit versus the code space. Solid black: mean fidelity of the logical
qubit versus ρ0. Solid blue: mean correctable fidelity under active quantum
feedback. Dashed line: mean fidelity towards |0〉〈0| for a single physical
qubit without measurement/control and subject to bit-flip disturbances with
γ = 1/64.

The observations found in the simulations are the following:

• In Figure 6.2a we consider that the quantum filter perfectly follows
(6.5), and set the control parameters βj = 0.6, αj = 0.95.
This Figure corresponds to simulating the ideal situation. Regarding
the first control goal, we observe that the controller indeed confines
the mean evolution to a small neighborhood of C, for all times, as ex-
pected from our analysis. Regarding the second criterion, the distance
between ρt and ρ0 cannot be confined to a small value for all times.
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Indeed, majority vote can decrease the rate of information corruption
but not totally suppress it; as corrupted information is irremediably
lost, ρt progressively converges towards an equal distribution of logical
0 and logical 1. However, for the protected 3-qubit code, this infor-
mation loss is much slower than for the single qubit; this indicates
that the 3-qubit code with our feedback law indeed improves on its
components.

• Figure 6.2b corresponds to the situation where the control parameters
arec chosen to maximize the decay rate towards the target manifold.
n our feedback design, making αj closer to 1/2 would improve the
convergence rate estimate in Theorem 6.4.1. Accordingly, we set the
control parameters as βj = 0.52, αj = 0.57 for this simulation. The
simulation indicates that making αj closer to 1/2 has a negative effect
on the codeword fidelity, since it means that we turn on the noisy
drives more often. Indeed, compared to figure 6.2a, in Figure 6.2b the
codespace fidelity is slightly improved, at the cost of a faster decay
of the codeword fidelity, at almost double the speed. Thus, there
is a tradeoff when setting the value where the control input is non-
zero. Analytically computing the optimal tradeoff is an open problem,
but simulations clearly show that intermediate values of the control
parameters delivers better overall results.

• Figure 6.3 changes the control law with the smooth control law (6.6)
with βj = 0.6, αj = 0.95. Compared to Figure 6.2a, performance
under the smooth control law is slightly worse than the one with hys-
teresis, with a difference of around a five percent loss in the codeword
fidelity at t = 100. This is probably due to the lack of fine-tuning
present in the hysteresis control developed in this chapter. In prac-
tice, this loss of fidelity could be offset by the simpler implementation
of the smooth control law, compared to the controller with hysteresis.

• Figure 6.4a corresponds to a simulation where the control law is com-
puted via the reduced filter formulated in (6.13). No imperfections
such as delays in the feedback loop or modelling erros are considered.
We do not observe a noticeable qualitative difference of the codespace
and codeword fidelities with respect to the ideal situation of Fig. 6.2a,
in agreement to the fact that the filters defined in (6.13) are an exact
reduced order formulation of the full quantum filter 6.11.

• Figure 6.4b corresponds to a more realistic situation where the same
control law relies on the reduced order quantum filter (6.13) corrupted
by errors and feedback latency. We observe that these errors contribute
the largest to a decrease in the performance.
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6.5 Conclusions
We have approached continuous-time quantum error correction in the same
spirit as [1], and showed how introducing Brownian motion to drive control
fields yields exponential stabilization of the nominal codeword manifold.
The main idea relies on the fact that the SDE in open loop stochastically
converges to one of a few steady-state situations, but on the average does
not move closer to any particular one. It is then sufficient to activate noise
only when the state is close to a bad equilibrium, in order to induce global
convergence to the target ones.

In a purely discrete error correction scenario, the syndrome measurement
extracts information about the disturbances, while a unitary gate is solely
in charge of recovering the encoded state. We have exploted a combination
of both the measurements and the noise-assisted feedback to arrive to a
nominal eigenspace of the measurements. This general idea can be extended
to other systems with this property, and in particular to more advanced
error-correcting schemes.

The convergence rate obtained is dependent on our choice of Lyapunov
function and on the values of αj ; from parallel investigation it seems possible
to get a closed-loop convergence rate arbitrarily close to the measurement
rate. However, unlike in classical control problems, the key performance
indicator is not how fast we approach the target manifold. Instead, what
matters is how well, in presence of disturbances, we preserve the encoded
information. Towards this goal, we should refrain from disturbing the system
with feedback actions; accordingly, we have noticed that taking αj closer to
1 can improve the codeword fidelity, despite leading to a slower convergence
rate estimate.
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(a) Ideal situation where the feedback of subsection 6.4.1 is based on ρ governed
by (6.5). Control parameters are βj = 0.6, αj = 0.95, c = 3/2.
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(b) Simulation comparing the effect of changing the control parameters. Control
parameters are βj = 0.52; αj = 0.57, c = 3/2.

Figure 6.2: Closed-loop simulations with direct state feedback.
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Figure 6.3: Closed loop simulation considering an ideal situation but with
the smooth control (6.6).The control parameters are βj = 0.6, αj = 0.95
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(a) Simulation where the control law 6.4.1 is computed via the
reduced filter formulated in . Filter system and control parameters
are the same as in figure 6.2a.
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(b) Simulation considering a more realistic case where feedback is
based on the reduced order filter (6.13) including modeling/mea-
surement errors and feedback latency. Marked with subscript ∗,
the parameter values used in (6.13) are as follows: γ∗ = 0.8γ,
Γ∗ = 0.9Γ, η∗ = 0.9η; constant measurement bias according

to dY∗,1 = dY1 +
√

ηΓ
10 dt, dY∗,2 = dY2 −

√
ηΓ

10 dt and dY∗,3 =

dY3 +
√

ηΓ
20 dt, , and feedback latency of 1/(2Γ); measurement sig-

nals Yk are based on (6.5) with nominal values identical to simu-
lation of figure 6.2a and control values σj(ρ̂).

Figure 6.4: Closed-loop simulations assuming quantum filter and reduced
order filter
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Chapter 7

Concluding remarks and
perspectives

La stabilisation d’un état propre QND est un probème de base en contrôle
quantique basé sur la mesure, mais tellement different d’un problème du
contrôle standard. En effet, il parait que ça suffit que le contrôleur ne fait
rien, sauf dans quelques situations. Et la, il est suffisant de secouer l’état
pour ensortir le système de cette situation indésirable. Nous avons utilisé
des mouvements browniens pour montrer que cette procédure est exponen-
tiellement stable.

Au delà de l’étude de convergence exponentielle, qui fait la partie in-
tegrale de cette thèse, plusieurs avenues de recherche peuvent être suivies.
Parmi elles:

• L’optimisation de la vitesse de convergence en utilisant le contrôle as-
sisté par bruit. Cette amelioration à été remarqué de manière em-
pirique.

• L’analyse de robustesse du filtre reduit. Plus important, proposer des
architechtures du contrôle par retour dynamique de sortie, e.g., filtre
passe-bas.

• Nous avons étudié le code correcteur d’erreur autant q’une memoire
quantique. Le pas suivant est le développement des algorithmes de con-
trôle en temps continu pour des autres tâches impliquant le traîtement
quantique de l’information, e.g., calcul quantique adiabatique avec cor-
rection d’erreurs active.

• Le développement des outils analytiques pour étudier la protection de
l’information quantique en temps continu.
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7.1 Towards robust control methods for quantum
information processing

Stabilizing a particular eigenstate of a quantum non-demolition measure-
ment is a basic problem in quantum control, but also remarkably different
from a standard control problems. With respect to previous design method-
ologies, it seems that the best course of action to achieve global exponential
stabilization of QND systems is for the controller to do nothing on a large
region of the state-space, and only act on the system when the state is suf-
ficiently close to an undesired eigenstate. It suffices then to show that when
the control is active, this induces exponential convergence towards the tar-
get. In order to prove this apparently simple requirement, it was needed
to introduce a new element, namely, Brownian motion to drive the unitary
control fields. With the introduction of Brownian noise it was possible for us
to provide closed-loop Lyapunov functions that are supermartingales with
exponential decay. This yields automatically strong global stochastic stabil-
ity statements about the closed-loop dynamics, something that was missing
in previous works on the topic and that we felt it deserved full attention.

In our current setting, our results still leave room for improvement on
the side of convergence analysis. While we have a well-proven convergence
analysis with a closed-loop Lyapunov function with exponential decay, an
improvement with respect to the current stability analysis is on providing
sharp estimates of closed-loop convergence rates. It was shown that even
on simple cases, closed-loop design using "natural" measures of a distance,
yielded to subestimations on the speed of convergence. Even more, on higher
dimensions, simulations suggested that noise could be fine-tuned to improve
the convergence speed beyond the estimation given by Lyapunov analy-
sis. Finding useful measures of a distance that provide accurate closed-loop
convergence speeds, are fundamental pre-requisite in order to provide sharp
estimates of robustness against unmodeled perturbations.

The use of Brownian motion to drive the control fields fits nicely into
the QND eigenstate stabilization problem; other quantum control problems
could call for different actuators, so one could think as well of controls driven
by other types of stochastic processes —like Poisson or Lévy processes— and
then adapting the design methodology to the specificities of the problem.
An omission in this thesis is that we did not addressed in detail the idea
of considering dynamic extensions of the Markovian feedback in the sense
of Wiseman [75, 77, 48, 22]; the main reason is because we found that an
exogenous Brownian motion was best suited towards QND eigenstate sta-
bilization, which was the base control problem of this thesis. For other
problems, like targeting states which are not QND eigenstates, a dynami-
cal version of Markovian feedback could yield improved stability rates with
respect to the current situation with static output feedback.
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The design of the control layer for quantum information processing tasks
has been relatively unexplored in the context of measurement-based feed-
back. However, as technologies improve, feedback designs should see in-
creased attention as analog quantum information tasks, notably analog quan-
tum simulation and quantum annealing, become more prominent. In this
thesis it was explored —even if briefly— the design of the continuous-time
control layer for a quantum error correcting scheme. In this context, we
have shown that with noise-assisted feedback it is possible to render a tar-
get manifold of quantum states globally exponentially attractive. Moreover,
the control law requires to compute only the variables corresponding to the
population of the state on the joint eigenspaces of the syndrome measure-
ment operators.

Several questions remain open in this direction, mainly with respect to
the information protection capabilities of the closed-loop system. Using
noise-assisted feedback, the intuition on the control law is that noise en-
courages bit-flips. As counterintuitive as it may seem, since this control is
activated carefully, namely, whenever the state is close to an error subspace,
we can show that the codespace is globally attractive. So far it is an open
issue to analytically quantify the loss of fidelity between the state subject to
perturbations with respect to the initial states, but simulations show that
feedback control indeed improves on its individual components. Providing
quantitative estimates of this information protection is an open issue that
is important to have to show the ultimate utility of quantum feedback. In
addition, another open issue is the analysis of robustness against imperfec-
tions like delays in the feedback loop, bias in the measurement signal or
robustness of the filter against mismatch on the system parameters.

From a broad point of view, Lyapunov functions are a powerful tool
to analyze the convergence of nonlinear systems towards an invariant set.
Beyond control problems, this could be useful to characterize long term
behaviours of other processes, for instance, the rate of purification of a
system subject to several, possibly non-commuting, measurements [59, 37].

7.2 Towards dynamical output feedback controllers

The use of noise provided us with insight to propose reduced order filters
that depend only on the populations around the QND eigenstates, that is,
the diagonal of the state ρ in the eigen-basis of the measurement operator L.
It was shown how we could either find closed form expresions of the filters in
terms of said populations, or find approximate filters with the same struc-
ture. The importance of such reduction is that the reduced filter only grows
linearly as a function of the populations as dimension increases. Simulations
show that these filters are a good enough approximation for online compu-
tations, so their use in experimental implementations is promising. Here



88 CHAPTER 7. CONCLUDING REMARKS AND PERSPECTIVES

we did not adressed the convergence analysis of the closed-loop dynamics
of the plant and reduced filter, however, the stability analysis and control
methodology developed here makes us believe that closed-loop convergence
can be proved.

Measurement-based feedback control problems are fundamentally con-
trol problems where only limited knowledge of the system is available. A
main initial motivation that drove this thesis was studying dynamical output
feedback schemes. So far it seems that closed-loop analysis is challenging on
this setup. The experience gained in this thesis and numerical simulations
do suggest some candidates. Information on the QND eigenstates can be
seen on the asymptotic regime of the measurement output, thus the idea of
using a perturbing noise to "shake" the state towards a target state seems
close in spirit to what an extremum seeking agorithm would do [7]. We can
consider an even simpler case, using a simple low-pass filter to filter out the
measurement outcomes and trying to control the system with the knowledge
obtained from the measurements. Consider the dynamical system

dρ = Γ
(
ZρZ − ρ

)
dt−

√
ηΓ
(
Zρ+ ρZ − 2 Tr (ρZ) ρ

)
dW

+ σ(ξ)2
(
ZρZ − ρ

)
dt− iσ(ξ)[Y , ρ]dB,

dY = 2
√
ηΓ Tr (ρZ) dt+ dW,

dξ = −2ε
√
ηΓξdt+

√
εdY.

The quantum system is a qubit system with measurements on the z-axis,
and we consider that the actuation is done through via a Brownian motion.
The control function σ(ξ) is a smooth function similar to previous chapters,
but dependent on the simple low-pass filter denoted by the ξ variable. We
translate our control design from the previous chapters and implement it on
Fig. 7.1. As before, in gray it is plotted 100 realizations and the ensemble
average in blue.

Qualitatively speaking, the qubit system converges to the excited state at
speed that seems exponential but with a small delay. The delay comes from
the timescale set by the parameter ε; setting it small yields a less noisy ξt, but
at the expense of making the filter too slow. The difficulty on analyzing this
system comes from the fact that ξ does not have an equilibrium point, but a
stationary probability distribution. In the absence of control the dynamical
system composed by the (ρ, ξ) variables does converge towards a stationary
solution, namely ρ converges to one of the eigenstates of the Z operator;
accordingly ξ admits stationary probability distributions corresponding to
that of a Ornstein-Uhlenbeck process with drift. Unfortunately, the tools of
stochastic Lyapunov stability theory used here does not cover cases like this
to construct stabilizing controls.
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Figure 7.1: Closed-loop simulations of a qubit system where the control
depends on a low-pass filter. Here η = 0.5,Γ = 1, ε = .1 and ρ0 = I/2,
ξ0 = 0. The smooth control σ(ξ) = σ̄ϕ

(
(1−ξ)/2−pmin

pmax−pmin

)
as in 4.4.1 with

pmin = 0.6 and pmax = 0.7.

A more interesting situation for the use of a low-pass filter is on its
use for continuous-time quantum error correction, although some additional
adjustments are necessary. The closed-loop system describing three qubit
bit-flip code and the low-pass filters is

dρ =
3∑

k=1
ΓkDSk

(ρ)dt+
√
ηkΓkMSk

(ρ)dWk +
3∑

s=1
γsDXs(ρ)dt

+
3∑

j=1
−iσj(ξ)[Xj , ρ]dBj + σj(ξ)2DXj (ρ)dt

dYk = 2
√
ηkΓk Tr (ρSk) dt+ dWk, k ∈ {1, 2, 3}

dξk = −2εk
√
ηΓξkdt+ √

εkdYk.

Coarse information on the error populations is then obtained as p1 =
(1+ξ1 −ξ2 −ξ3)/4 (similarly for the other variables). From what we learned
in Chapter 6, there are two rules of thumb that we should follow: first,
errors must be sufficiently localized so that the controller does not cause a
logical error; second, the controller should refrain as much as possible from
disturbing the system with feedback actions. As the filtered signals ξk are
noisy, this means that we have to take some extra care in order to avoid the
feedback to do a harmful action. A choice for the saturating function σ(ξ)
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is

σk(pk) =
√
c ηkΓk ϕ

(
pk − βk

αk − βk

)
=
√
c ηkΓk

(
tanh

(
θ( pk−βk

αk−βk
)
)

+ 1
)

2 , k ∈ {1, 2, 3},

with αk > βk > 1/2. The control input is quickly attenuated as soon as
ξk(t) < αk. As the function decreases to zero faster than a polynomial, there
is a low probability that some spurious noise drives turns the control back
on. The gain in the linear region can be modified through the parameter θ.

As for the rate of data acquisition, making εk small gives a cleaner signal,
at the expense that the filter is at slower timescale. Making this parame-
ter larger improves the speed at which the controller can response, but at
the expense of having a lower signal-to-noise ratio that could yield to an
undesired feedback action.

In the simulations of figures 7.2 and 7.3, we take αk = 0.95, βk = 0.9 and
θ = 30, so that the controller is turned on as less as possible. Simulations
show that the biggest impact on performance comes from the parameter εk,
which sets the timescale of the filtered signals pk. In figure 7.3, εk = 0.1 gives
a slow timescale, and the information is degraded quite fast. Remarkably,
in figure 7.2, setting εk = 0.5 yields better overal results. Even with the risk
of having a too much noisy control input, it seems that having a faster filter,
and a highly damped feedback action, is the better choice. The reasoning
on this is that, the filter cannot be too slow to detect an error, that is, its
characteristic timescale cannot be too slow compared to the timescale of the
errors γs. Else, there is a probability of having logical errors in the detection
stage that could further damage information. Notice that the closed-loop
response under the low-pass filter of figure 7.2 behaves quite similar as the
filter with delay in figure 6.4b.

It would be an open issue to show convergence of similar filters that
are able to extract information on the state in an efficient manner, and
to develop tools to characterize convergence. This would be an important
step towards the implementation of continuous-time control laws via analog
electronics.
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Figure 7.2: Closed-loop simulations of the three qubit bit-flip code. Settings
on the quantum system are the same as the ideal situation of Fig. 6.2a.
Parameters of the low-pass filter are: ξk(0) = 1 and εk = 0.5, k ∈ {1, 2, 3}.
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Figure 7.3: Same closed-loop system with a low-pass filter. Here εk = 0.1,
k ∈ {1, 2, 3}.
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Appendix A

Lyapunov’s second method
for stochastic stability

We provide some background from stochastic stability and refer the reader to
[43, 42, 41] for the proof of these results and for further reference. Consider
diffusion processes xt on Rn, corresponding to solutions of Itō stochastic
differential equations of the form

dx = θ(x)dt+ σ(x)dW, (A.1)

where the
theta, σ are regular functions of x that satisfy the usual conditions for ex-
istence and uniqueness of SDE’s [8]. In this appendix it is assumed that
S, a compact subset of Rn is positively invariant, that is, if x0 ∈ S, then
xt ∈ S, ∀t ≥ 0 with unit probability.

For a real-valued twice continuously differentiable function V , Itō’s for-
mula [55] yields

dV =
(∑

i

θi
∂

∂xi
V + 1

2
∑
i,j

σiσj
∂2

∂xixj
V
)
dt+

∑
i

σi
∂

∂xi
V dWi. (A.2)

The Markov generator associated with (A.1) is

AV =
∑

i

θi
∂

∂xi
V + 1

2
∑
i,j

σiσj
∂2

∂xixj
V, (A.3)

for any function V in its domain. It is related to (A.2) [55, Chapter 7] by

E[V (x(t))] = V (x(0)) + E
[∫ t

0
AV (x(s))ds

]
.

We now state the Lyapunov criteria for stochastic stability. Let I :=
{x ∈ S : θ(x) = σ(x) = 0} be a set of steady states of Eq. (A.1) and let

93



94APPENDIX A. LYAPUNOV’S SECOND METHOD FOR STOCHASTIC STABILITY

V (x) be a nonnegative real-valued twice continuously differentiable function
with respect to x ∈ S everywhere except possibly for x ∈ I, V (x) = 0 for
x ∈ I.

The stochastic counterpart of Lyapunov’s second method provides a suffi-
cient criterion for proving the stability of continuous-time diffusion processes
in terms of the expectation of a scalar positive function V . Essentially if
AV (x) ≤ 0, AV (x) < 0, ∀x 6∈ I, then V (xt) decreases in expectation over
time; then results on martingale theory imply that it must converge to zero,
which in turn implies convergence of xt towards the set I.

We consider the following specific definition of stability

Definition A.0.1 (Khasminskii [41]). Consider the diffusion process on S
governed by (A.1) with 0 ∈ I and p > 0. Let ‖ · ‖ be a norm defined on
S. The equilibrium solution xt = 0 is said exponentially stable if, for some
constants C > 0 and r > 0

E(‖xt‖p) ≤ C‖x0‖pe−rt.

Theorem A.0.1 (Khasminskii [41]). Asume that there exists a positive con-
stant r such that

AV (x) ≤ −rV (x), ∀x ∈ S.

then
E[V (x(t))] ≤ V (x(0)) exp(−r t),

i.e., V (xt) is a supermartingale with exponential decay, and x(t) converges
towards the set {x : V (x) = 0}.

Moreover, if there exist strictly positive constants p, k1, k2 and k3 such
that for all x ∈ S we have

• AV (x) ≤ −k3‖x‖p,

• k1‖x‖p ≤ V (x) ≤ k2‖x‖p.

Then the equilibrium solution xt = 0 is globally exponentially stable in the
sense of definition A.0.1.

The first part Theorem A.0.1 just says that x

A.1 Lyapunov functions for QND systems
From a stochastic stability point of view, this thesis revolves around defin-
ing Lyapunov functions V and constructing controls such that V is a su-
permartingale with exponential decay in the sense of Theorem A.0.1. The
following pages consists on some common observations that appeared on the
Lyapunov analysis of the precedent sections, and we add some computations
that could be useful for further research.
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The Lyapunov functions used in this thesis are of the form

V (ρ) =
∑

s

√
Tr (Qsρ) (A.4)

where Qs =
∑

k αs,kΠk, with αs,k positive constants and recall that Πk

are the d − 1 projectors orthogonal to the target Π`, 1 − Π` =
∑

k 6=` Πk.
The Qs are non-negative Hermitian operators whose kernels intersections
coincide with the target eigenspace of L, and Tr (Qsρ) = 0 only when V (ρ) =
0.

With this condition, we can always find c1, c2 such that c1
√

1 − p` ≤
V (ρ) ≤ c2

√
1 − p`. Itō’s formula applied to the concave function V (ρ) yields

dV = 1
2
∑

k

√
Tr (Qkρ)

(
Tr (Qk dρ)
Tr (Qkρ) − (Tr (Qk dρ))2

4 Tr (Qkρ)2

)
. (A.5)

To design stabilizing feedback controls, an important observation is that
a closed-loop Lyapunov function having a minimum at Π` does not automat-
ically hint at the fact that the latter is more attractive than other critical
points, which are maxima of V (ρ). The role of feedback is to preserve the
monotonicity of the square root by making AV (ρ) strictly negative even
when the state ρ is supported on an eigenspace orthogonal to the target,
implying that, in expectation, V is monotonically decreasing at maxima.

In the qubit case, with Lyapunov function√
1 − Tr (ρΠz)

when ρ = ΠZ1 we have

d
dtE[V (ρ)]

∣∣
ρ=ΠZ−1

= −ηΓσ̄2

2 .

For the multi-level case with single actuator

dρ = DL(ρ)dt+ √
ηML(ρ)dW + σ(ρ)2DH(ρ)dt− iσ(ρ)[H, ρ]dB,

the Lyapunov function
∑

s∈{1,...,d}\{`}
√∑

k∈{1,...,d}\{`} αs,kpk(ρ) is monoton-
ically decrasing at the extrema thanks to the tuning procedure of Proposition
5.2.1, so

d
dtE[V (ρ)]

∣∣
ρ=Πj

= −
∑

s∈{1,...,d}/{`}

βs,j√
αs,j

< 0, j 6= `

.
In the case of the three qubit bit-flip code For the Lyapunov function

(6.7) on the QEC scheme, it can be equally verified that

d2

dσ2E[V (ρ)] = −ηΓc√
2



96APPENDIX A. LYAPUNOV’S SECOND METHOD FOR STOCHASTIC STABILITY

when Tr (ρΠj) = 1 for an error projector j ∈ {1, 2, 3}
Once we are able to establish that V is monotonically decreasing at the

extrema, the square root endows the Lyapunov function of the following
properties that are used to deduce exponential convergence close to a target
eigenstate (3.13), by exploiting positivity of ρ and the geometry fixed by the
QND eigenspaces.

1. The Hessian of V (ρ) is negative semidefinite for all ρ.

2. V (ρ) is a positively homogeneous function of the populations {pk(ρ)}k 6=`,
pk(ρ) = Tr (ρΠk).

It is convenient to think of the eigenstate populations in terms of the
homogeneous coordinates, p` := 1 − x`, pk := x`xk for each k 6= `. Then√

Tr (ρQs) =
√∑

s,k 6=`

αkpk = √
x`

√∑
s,k 6=`

αkxk, (A.6)

Since for any ρ0 ∈ S, ρt ≥ 0 for all t ≥ 0, the Markov generator for
the square root process AV (ρ) would be defined everywhere except possibly
when the state ρ is supported on the subspace with projector Π`. Since
σ(ρ) = 0 when Tr (Π`ρ) = 1 and the open-loop system is at an equilib-
rium, the stochastic Lyapunov theory is equiped to deal with the singularity
when Tr (Π`ρ) = 1 [41]. For QND systems, we can go further and show
that AV (ρ) is actually a continuous function of ρ. We show this by exploit-
ing the transformation of the closed-loop generator into the homogeneous
coordinates described previously.

Lemma A.1.1. Consider the closed-loop system (3.13) and V (ρ) be of the
form (A.4).

• Assume that there exist constants c1, c2 such that

c1

√
1 − Tr (ρΠ`) ≤ V (ρ) ≤ c2

√
1 − Tr (ρΠ`).

• The control σ(ρ) Eq. (3.13) is a smooth and bounded function of ρ and
there exists ε > 0 such that σ(ρ) = 0 when 1 − Tr (ρΠ`) ≤ 1 − ε.

Then, V (ρt) is an Itō diffusion defined on the compact set

P̃ = {(p1(ρ), . . . ,pd(ρ)) ∈ Rd |
∑
k 6=`

pk(ρ) = 1 − p`(ρ), 0 ≤ pk(ρ) ≤ 1}

for all t ≥ 0 and the Markov generator AV (ρ) is a continuous function
defined on P̃ .
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Proof. We do not prove directly that the generator of V (ρ), rather we use
the first assumption to show that

√
1 − Tr (ρΠ`) is a continuous function

on P̃ , the conditions on the theorem allow us to conclude. The Markov
generator of

√
1 − Tr (ρΠ`) is

A
√

1 − Tr (ρΠ`) = −1
2v(ρ)

(
σ(ρ)2 Tr(DH(Π`)ρ)

1−p`
+ (λ`−

∑
k

λkpk)2p2
`

(1−p`)2 + σ(ρ)2(Tr([H,ρ]Π`))2

(1−p`)2

)
.

The assumption on the control implies directly that the terms multiply-
ing σ are bounded and continuous functions on P̃ . It suffices then to verify
the term

µ(p1, . . . ,pd) = (λ` −
∑

k λkpk)2p2
`

(1 − p`)2 .

Under the homogeneous change of coordinartes p` := 1 − x`, pk := x`xk,
0 ≤ x` ≤ 1, with

∑
k 6=` xk = 1. Under these coordinates

µ(x) =
(∑

s

(λs − λ`)xs
)2(1 − x`)2,

µ(x) is a smooth function of x, since the map φ = (x1, . . . , x`−1, x`, x`+1, . . . , xd) 7→
(x`x1, . . . , x`x`−1, x`x`+1, . . . , x`xd) is a continuous bijection this implying
continuity of A

√
1 − Tr (ρΠ`).

For the sake of comparison, we consider two Lyapunov functions used
in previous works, e.g. [50, 69] : V1(ρ) = 1 − (Tr (ρΠ`))2 and V2(ρ) =
1 − Tr (ρΠ`). V1 is concave, so its second derivative is negative, but it is not
a homogeneous function of the populations. V2 is homogeneous, but its sec-
ond derivative is zero. It appears that having a homogeneus Lyapunov func-
tion with non-vanishing second derivative is essential when targeting QND
eigenstates. In [17] it is showed exponential convergence of a projector Π` in
terms of V2(ρ) = 1 − Tr (Π`ρ), when Π` is not a QND eigenstate, extending
the result of Theorem 3.2.1. On deterministic systems, exponential con-
vergence of a function V (x) is related to exponential convergence of

√
V (x)

up-to a numerical factor on the convergence rate. Since the square root does
not commute with the expectation, the same thing cannot be said for super-
martingales; observe by Jensen’s inequality that E(

√
V2(xt)) ≤

√
E(V2(xt)),

so showing the exponential convergence of V2(xt) as in [17] implies exponen-
tial convergence of

√
V2(xt), since here we do the inverse, our approach is

weaker.
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RÉSUMÉ

Dans cette thèse, nous développons des méthodes de contrôle pour stabiliser des systèmes quantiques en temps con-

tinu sous mesures quantiques non-destructives. En boucle ouverte, ces systèmes convergent vers un état propre de

l'opérateur de mesure, mais l'état résultant est aléatoire. Le rôle du contrôle est de préparer un état prescrit avec une

probabilité de un. Le nouvel élément pour atteindre cet objectif est l'utilisation d'un mouvement Brownien pour piloter

les actions de contrôle. En utilisant la théorie stochastique de Lyapunov, nous montrons stabilité exponentielle globale

du système en boucle fermés. Nous explorons aussi la syntèse du contrôle pour stabiliser un code correcteur d'erreurs

quantiques en temps continu. Un autre sujet d'intérêt est l'implementation de contrôles efficacement calculables dans un

contexte expérimental. Dans cette direction, nous proposons l'utilisation de contrôles et filtres qui calculent seulement les

characteristiques classiques du système, correspondant a la base propre de l'opérateur de mesure. La formulation de

dites filtres est importante pour adresser les problèmes de scalabilité du filtre posées par l'avancement des technologies

quantiques.

MOTS CLÉS

Contrôle quantique, information quantique, correction d'erreurs quantiques, systèmes stochastiques.

ABSTRACT

In this thesis, we develop control methods to stabilize quantum systems in continuous-time subject to quantum non-

demolition measurements. In open-loop such quantum systems converge towards a random eigenstate of the measure-

ment operator. The role of feedback is to prepare a prescribed eigenstate with unit probability. The novel element to

achieve this is the introduction of an exogenous Brownian motion to drive the control actions. By using standard stochas-

tic Lyapunov techniques, we show global exponential stability of the closed-loop dynamics. We explore as well the design

of the control layer for a quantum error correction scheme in continuous-time. Another theme of interest is towards the

implementation of efficiently computable control laws in experimental settings. In this direction, we propose the use control

laws and of reduced-order filters which only track classical characteristics of the system, corresponding to the populations

on the measurement eigenbasis. The formulation of these reduced filters is important to address the scalability issues of

the filter posed by the advancement of quantum technologies.

KEYWORDS

Quantum control, quantum information, quantum error correction, stochastic systems.
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