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Résumé en français

Introduction
Les changements climatiques et les interventions humaines ont modifié le cycle de l’eau

terrestre au cours des dernières décennies. La modélisation du débit des rivières, qui mesure
avec précision l’état du système hydrologique, est un moyen pratique de quantifier et de
comprendre les impacts du climat et des activités humaines. Cependant, de nombreuses
sources d’incertitude peuvent a�ecter l’exactitude de l’estimation du débit. Ces sources
incluent les incertitudes dans les variables atmosphériques qui sont utilisées pour forcer
les modèles, les incertitudes dans le modèle lui-même (structure et paramètres du modèle)
et les incertitudes dans la formulation des activités humaines. Sur la base de la revue des
études en cours présentées dans le chapitre 1, cette thèse a pour objectifs de 1) quantifier et
comparer les incertitudes de di�érentes sources, 2) d’attribuer le biais du modèle à di�érentes
sources d’incertitudes et 3) d’évaluer l’impact des activités humaines dans le contexte d’autres
sources d’incertitudes. De nouvelles approches sont développées pour ces objectifs et toutes
les applications sont centrées sur les régions chinoises.

Quantification de l’incertitude avec une nouvelle approche
l’incertitude existe dans les variables atmosphériques (p.e., les précipitations) et peut être

estimée à parmi plusieurs jeux de données. Le chapitre 2 introduit une nouvelle approche
tridimensionnelle de partitionnement de la variance, particulièrement adaptée à la quantification
de l’incertitude entre plusieurs jeux de données comportant des variations temporelles et
spatiales. Les multiples jeux de données qui nous intéressent sont organisés selon trois
dimensions (c’est-à-dire le temps, l’espace et l’ensemble) illustrées dans la Figure 1.

L’incertitude Ue est estimée sous la forme du rapport de la racine carrée de la variance à la
dimension d’ensemble (Ve) et de la moyenne du grand ensemble de tous les jeux de données
(µ).

Ue =
p

Ve/µ (1)

La variance d’ensemble (Ve) est une intégration de la moyenne de quatre types de variances de
données d’origine (�2

e ), la moyenne temporelle (�2
e_t

), la moyenne spatiale (�2
e_s) et la grande

moyenne (�2
e
(µts)).

Ve =
mn(l � 1)
3(mnl � 1) [

�2
e_t
+ �2

e_s

2
+ �2

e + �
2
e
(µts)] (2)

m, n, l sont les tailles en trois dimensions, respectivement. Parmi les di�érentes variances,
les �2

e_t
et �2

e_s sont des mesures couramment utilisées pour estimer l’incertitude dans diverses
études, tandis que les variations temporelles ou spatiales doivent être éliminée en raison de la
limite de leur algorithme pour estimer ces deux métriques.
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F����� 1 – L’illustration de l’approche de partitionnement de variance en trois dimensions. Le
jeu de données d’origine est organisé en trois dimensions : temps, espace et ensemble (la zone
bleue). Les détails des dénotations et des formulations peuvent être trouvés dans le Chapitre 2,
Figure 2.1 et Annexe A.

La mise en œuvre de la nouvelle estimation de l’incertitude (Ue) pour di�érents produits
de précipitation (Table 2.1) montre que Ue est généralement plus grand que les deux mesures
classiques �2

e_t
et �2

e_s (rapport de la racine carrée de leurs valeurs à la moyenne, Figure
2) car temporelle et spatiale les variations sont prises en compte dans l’estimation Ue. Les
di�érents produits de précipitation basés sur des pluviomètres ont le moins d’incertitude car
ils se basent sur des observations similaires et les méthodes d’interpolation n’entraînent pas
de grande di�érence entre les jeux de données. Les ensembles de données de précipitations
combinées avec les observations, les satellites, les prévisions et les données de réanalyse ont
un Ue modéré, car ils reposent sur di�érentes sources de produits, tandis que les observations
contraindront les valeurs proches du système réel. Le plus grand Ue se trouve parmi les modèles
de circulation générale (GCMs) car il n’y a pas de contrainte sur la variabilité temporelle dans
les modèles de GCMs. Les variations du modèle et les di�érences dans les conditions initiales
entraîneront de grandes di�érences dans la production finale des précipitations dans le GCMs.
Ue est plus grand pour les grandes régions (région 9,10,11) que pour les petites régions en
raison des plus fortes hétérogénéités spatiales.

Attribuer le biais de décharge à di�érentes sources d’incertitude
Di�érentes incertitudes peuvent survenir et interagir les unes avec les autres, ce qui

rend di�cile la détermination de la source l’incertitude principle et de comparer les sources
d’incertitudes. Le chapitre 3 introduit un cadre ORCHIDEE-Budyko, qui permet d’attribuer
le biais de la décharge modélisée par un modèle de surface terrestre à di�érentes sources (p.e.,
variables atmosphériques, structures de modèle) avec l’hypothèse de Budyko.

Le concept de base peut être expliqué à l’aide de l’illustration de la Figure 3. Nous
dispersons les points qui représentent les relations entre l’évapotranspiration potentielle
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F����� 2 – La relation entre Ue et (a) l’écart type spatial normalisé - N.s.std (
q
�2

e_t
/µ) et

(b) le temps normalisé écart type - N.t.std (
q
�2

e_s/µ). Les valeurs proches des symboles
indiquent di�érentes régions spécifiées dans la Figure 2.2.

annuelle modélisée et l’évapotranspiration réelle modélisée avec la précipitation (points
rouges). Le point A représente l’état moyen de la simulation du modèle et la courbe représente
la relation de Budyko estimée suivant l’état modélisé. Comme il existe des incertitudes dans
de nombreuses sources, le débit estimé de la rivière est di�érent des observations. Les points
B, C, D représentent trois états supposés di�érents qui pourraient modifier les simulations du
modèle pour correspondre aux observations des débits en modifiant uniquement le P (point
B) ou le PET (point C) ou le ET (point D). La di�érence entre leurs nouvelles valeurs de P,
PET , ET aux nouveaux états (B, C, D) peut être expliquée par les di�érentes incertitudes.
Les variations de P et de PET sont attribuées à l’incertitude des variables atmosphériques et
les variations de ET sont attribuées a la structure et aux parameters du modèle. Cependant,
cette approche ne donne qu’un éventail des incertitudes maximal. L’état naturel réel se situe
très probablement dans la zone ombrée de la Figure 3. La possibilité de sources d’incertitude
di�érentes peut être évaluée en consultant d’autres études dans des régions présentant des
caractéristiques climatiques ou géophysiques similaires, mais pour lesquelles les données sont
moins incertaines.

Budyko curve - model
Budyko curve - shifted

Modeled annual values

Modeled representative state
(P, PET, ET)

PET/P

E
T/
P

State-Assumption 1
(P’, PET, ET’)

State-Assumption 2
(P, PET’, ET’)

State-Assumption 3
(P, PET, ET’)

F����� 3 – L’illustration du cadre ORCHIDEE-Budyko.

La mise en œuvre dans le bassin versant source de la rivière Tarim (Yarkand par exemple)
est présentée dans la table 1. La décharge observée pour le Yarkand est 140,4 mm/an alors
qu’ORCHIDEE la sous-estime à 59,0 mm/an. Il existe trois options di�érentes (B, C et D)
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pour faire correspondre le débit lorsque nous augmentons les précipitations de 76,1%, passant
de 247,3 mm/an à 435,4 mm/an (point B), ou que nous réduisons le PET de 81,9%, de 1240,4
mm/an à 225,0 mm/an (point C) ou nous diminuons le ET de 43,2% de 188,3 mm/an à 106,9
mm/an.

T���� 1 – Les valeurs moyennes annuelles pour di�érentes composantes eau-énergie (P,
ET , PET ; unités en mm/an) et leurs relations (P - ET , PET/P et ET/P) pour les trois
sous-bassins amont. Yarkand est pris comme exemple et la table complète se trouve dans
la Table 3.5. Les scénarios correspondent aux diagnostics du modèle actuel (A) et des trois
hypothèses de biais énumérées ci-dessus de B à D. Les valeurs en gras sont les principaux
facteurs modifiés au sein des trois composantes du cycle eau-énergie. Le rapport de variation
(C.R.) indique le rapport entre la valeur de changement et la valeur d’origine (unité en %).
Alors que la plage de biais (B.R.) indique le biais entre valeurs actuelles et ce qu’elles devraient
être (unité en %).

P PET ET P � ET PET/P ET/P Facteur C.R. B.R.

Yarkand

A 247,3 1240,4 188,3 59,0 5,02 0,76 - - -
B 435,4 1240,4 294,9 140,5 2,85 0,68 P 76,1 -43,2
C 247,3 225,0 106,9 140,4 0,91 0,43 PET -81,9 451,2
D 247,3 1240,4 106,9 140,4 5,02 0,43 ET -43,2 76,1

En faisant référence à d’autres études sur des régions présentant des caractéristiques
climatiques ou géophysiques similaires, nous évaluons la possibilité de di�érentes sources
d’incertitude. Les résultats montrent que dans le bassin versant de Yarkand, l’apport d’eau
dans le système (P) est certainement sous-estimé car il devrait y avoir un ratio plus élevé
de fonte des glaciers et une tendance plus élevée du débit compte tenu de sa fraction de
surface de glacier élevée. Cependant, le biais en P n’est pas le seul facteur en cause, puisque
PET est excessivement élevé (1240,4 mm/an) pour cette région montagneuse, car les régions
proches ne disposent que de 580 à 720 mm/an de PET . PET n’est également pas le seul
facteur d’incertitude, car le chargement de PET uniquement réduira le rapport PET/P (indice
d’aridité) à 0,91, ce qui est peu probable pour une région aux précipitations limitées. La
surestimation de ET est possible, mais ce n’est pas le seul facteur à prendre en compte, car
seule la modification de ET augmentera le rapport PET/P à 5,02, ce qui n’est pas une valeur
réaliste pour le captage en rivière. Les explications complètes se trouvent dans les sections
3.4.3 et la Table 3.6.

Activités humaines et comparaisons des grandeurs
Les activités humaines sont des facteurs importants qui modifient le cycle naturel de l’eau

et le débit des rivières. Le chapitre 4 passe en revue les études associées aux di�érents types
d’activités humaines et à leurs impacts sur le débit des rivières en termes de débit totale et
extrêmes. L’impact de l’activité humaine sur le débit des rivières a été généralisé à la Figure 4.

Di�érentes utilisations des sols et régulations des barrages ont lieu à di�érents endroits et
leurs impacts sur les régimes de débits des rivières peuvent entraîner des variations dan les
amplitudes et phases. La modification des forêts (déforestation et reboisement) modifie à la
fois la valeur totale de l’apport en eau et les débits extrêmes des rivières (pics de crue et faible
débit). L’expansion de la zone urbaine augmente le pic d’inondation et réduit le temps de
résidence de l’eau dans la zone. Il augmente également la valeur totale de l’apport en eau en
raison de la moindre évaporation. L’eau utilisée à des fins domestiques et industrielles modifie
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F����� 4 – Le résumé illustratif de l’impact de l’utilisation des terres et des eaux ainsi que
des barrages sur le débit des rivières.

peu le débit du fleuve (2,0 % en moyenne pour la Chine), tandis que la consommation d’eau
agricole diminue le rendement total en eau de 7,4 % (en moyenne pour la Chine) pour les
cultures. La consommation d’eau a très peu d’impact sur les débits extrêmes, tandis que la
régulation du barrage modifie principalement le cycle inter-annuel en diminuant les fortes
crues et en augmentant les débits faibles. La quantité totale d’eau diminue légèrement à cause
des barrages en raison de l’augmentation de la surface de l’eau et de l’utilisation de l’eau pour
l’agriculture essentiellement.

Le chapitre 4 passe également en revue les approches utilisées pour quantifier les impacts
humains sur le débit des rivières. Ils sont classés en deux groupes di�érents selon que l’impact
humain est estimé directement par les modèles. Les concepts de base, les modèles exacts, les
études de cas, les avantages et les inconvénients des deux groupes d’approche sont détaillés
dans le chapitre 4.

Le chapitre 4 évalue également l’impact de l’utilisation de l’eau par l’homme et de la
régulation de l’eau en comparant les débits observés des cours d’eau et des cours d’eau
naturalisés à 84 stations sur les fleuves de Chine. Trois mesures di�érentes sont utilisées pour
quantifier les changements sous forme de valeurs moyennes µ représentant le débit annuel total
du fleuve et deux mesures de mise en phase, la période de concentration Cp représentant la
période au cours de laquelle le débit de la rivière est le plus élevé et le degré de concentration
Cd représentant le magnitude de décharge dans la période du débit maximal (équation 4.13 -
4.18). Les résultats montrent que l’impact humain est faible dans le sud de la Chine, tandis qu’il
est important dans les régions du nord où l’agriculture est très développée. Les principales
caractéristiques de l’impact humain sont les suivantes : 1) le débit total de la rivière diminue
(�µ < 0, 2) la période de concentration est retardée (�Cp > 0) car la consommation d’eau est
concentrée au printemps et au début de l’été lorsque le débit naturel du fleuve n’a pas atteint
son niveau le plus élevé. En période d’inondation, lorsque le débit de la rivière est élevé, les
besoins en eau de l’homme (impact humain) deviennent moins importants. 3) Le degré de
concentration diminue (�Cd < 0), indiquant que le débit de la rivière est distribué de manière
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plus uniforme après la réglementation humaine.

Les changements dans les métriques du débit de la rivière dus aux interventions humaines
sont comparés à l’incertitude du débit natural modélisé (Figure 5). La di�érence entre des
simulations forcées par di�érentes entrées atmosphérique est due à la limitation de nos
connaissances sur les variables naturelles, y compris le forçage et les modèles. Les métriques
(µ, Cp ou Cd) sont estimées séparément pour des simulations de décharge conduites avec
di�érentes entrées de forçage (WFDEI_CMA, E2O, ITPCAS, WFDEI_CRU). L’incertitude
de la décharge modélisée est évaluée comme étant la di�érence des métriques (�µ, �Cp ou
�Cd) pour un forçage donné (E2O, ITPCAS, WFDEI_CRU) par rapport à forçage de référence
(WFDEI_CMA). Les comparaisons pour chaque bassin versant est tracée dans la Figure 5.
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F����� 5 – Comparaison des impacts humains et de l’incertitude de la simulation de décharge
entraînée par di�érents intrants de forçage.

Les résultats montrent que la di�érence entre le débit simulé du fleuve, qui est causé par
la limitation des connaissances, est plus grande que le décalage du débit du fleuve dû aux
interventions humaines dans la plupart des régions en termes de débit moyen (�µ) (Figure 5).
Cela signifie que le choix d’un forçage di�érent entraînera une di�érence de simulation de
décharge plus grande que ce qui peut être détecté comme étant l’impact humain. L’estimation
de l’impact humain n’est donc pas crédible dans ce cas. Cependant, l’écart de di�érence dû
à la limitation des connaissances est moins important pour les métriques de phasage que
la période de concentration (�Cp) et la degee de concentration (�Cd) que pour les valeurs
moyennes degré de concentration. La proportion de captages qui remplissaient la condition,
à savoir que la di�érence due à la limitation des connaissances est moins importante que le
changement dû à l’impact humain, est plus élevée pour �Cp et �Cd . Par conséquent, Cp et Cd

sont de meilleurs indicateurs que les moyens pour attribuer l’impact humain. Nous appliquons
le même processus aux précipitations et à l’évapotranspiration potentielle dans le chapitre 4,
et les résultats montrent que nous avons déjà une bonne connaissance de la phase des variables
de forçage, mais la capacité du modèle à estimer la phase de débit du fleuve doit encore être
améliorée.

Conclusions et perspectives
En conclusion, cette thèse porte principalement sur les incertitudes inhérentes à l’évaluation

de l’impact du changement climatique et à la gestion humaine sur le cycle de l’eau. Les
incertitudes des variables atmosphériques sont estimées avec une nouvelle approche de
partitionnement de variance en trois dimensions. Le biais de décharge entre les simulations et
les observations est attribué aux incertitudes du forçage et à celles dues aux modèles. Les
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résultats montrent que les incertitudes dans le forçage sont grandes et plus grandes que celles
pouvant être causées par les modèles. L’impact humain évalué par la di�érence entre le débit
observé et le débit naturalisé est inférieur aux incertitudes liées au débit modélisé pour la
plupart des régions, en particulier dans le sud de la Chine. Cela indique que l’attribution des
changements à l’impact humain n’est pas possible pour ces régions. Alors que, pour la zone
d’irrigation intensive (p.e., le nord de la Chine, le centre du Yangtsé), l’impact humain est
plus important que les incertitudes, ce qui permet de pensez que les changements pourront
être attribués aux activitités humaines.

La perspective de cette thèse appelle des améliorations dans les modèles pour qu’ils traitent
mieux des activités humaines. Les interactions des interventions humaines avec le système
d’eau naturel doivent être considérées à une résolution plus élevée de la modélisation de la
surface terrestre. L’analyse des incertitudes est également nécessaire pour l’évaluation de
l’impact de l’homme, en particulier dans les régions fortement incertaines (p.e., forçage de
variables ou de modèles). Ces développement proposées pour les modèles de surface seront
discutées plus en détail dans ma thèse chinoise qui sera publiée dans six mois.
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In this chapter, we present the general background which calls for the further understanding
of the topic of uncertainties in climate change and human impacts (section 1.1). Focused
on the China regions, we review the associated studies that show the current state of our
understanding and the technologies have reached (section 1.2). The scientific questions and
the objectives of this thesis are concluded based on the reviewed studies (section 1.3). The
thesis structure is introduced in the end (section 1.4).

1



2 Chapter 1. Introduction

1.1 Scientific context

The global water cycle is undergoing changes in the context of climate change (Gates et al.
2000; Huntington 2006; Gerten et al. 2008). While, the regional signal is more significant as
di�erent changes in the trends of river discharge and the occurrence of hydrological extremes
(e.g., floods, droughts) are found in di�erent regions (Gates et al. 2000; Wisser et al. 2010;
Immerzeel et al. 2010). The spatial variations of hydrological changes are observed in China
as well. The river discharge in the Yellow River was sharply decreased in the last century
especially in the 1990s as the zero-flow days reached up to 226 days in 1997 (Xu 2004). The
occurrence of floods and droughts in the Yangtze River basin are found increasing especially
after 2000 (Chen et al. 2014). These regional changes will exert direct influence on local
social development and thus require equal attention at a regional scale to that of global scale.

The changes in regional hydrological regimes are a combined result of climate change
and human activities (Wang et al. 2010b; Yang et al. 2010; Zhang et al. 2010; Yang et al.
2012a; Zhao et al. 2014; Lu et al. 2015; Jiang and Wang 2016). The changes in climate (e.g.,
precipitation, temperature) vary across space regarding its trend and its magnitude by the
influence of various regional climate systems (IPCC 2013). Moreover, the human activities
take place with spatiotemporal variations, and the interactions between human and nature are
complex in terms of the physics and the consequences (Piao et al. 2010; Nazemi and Wheater
2015a; Nazemi and Wheater 2015b; Wada et al. 2017). It calls for further investigation
on how the climate and human are a�ecting the water cycle as well as the corresponding
methodologies for the purpose.

Modeling is a practical way to hindcast the water cycle in the historical period or the
future (Döll et al. 2009; Hanasaki et al. 2010; Guimberteau et al. 2012b). Modeling also
provides estimates of variables that are di�cult to measure but can improve the understanding
of water processes (e.g., the soil moisture, the actual evapotranspiration, Potter et al. 2005;
Weiß and Menzel 2008). It makes the simulations possible under di�erent scenarios which
help to attribute the hydrological changes to di�erent reasons (Chen et al. 2009; Schewe
et al. 2014). However, there are many uncertainties which can a�ect the accuracy of model
simulations and result in di�erent conclusions (Beven and Freer 2001; Refsgaard et al. 2006).
The uncertainties are either because of the inaccuracy of data measurements or due to the
deficiency of the model ability to represent natural physical processes (Moradkhani et al. 2005;
Thyer et al. 2009; Montanari et al. 2009). These uncertainties are in many cases interrelated
with each other (Renard et al. 2010). Therefore, recognizing the uncertainties and their impact
on the water cycle, exploring and disentangling the interactions between uncertainties are
essential in the hydrological modeling.

Humans are playing a role in changing the hydrology for the benefit of social development
(Haddeland et al. 2006; Wada et al. 2017). However, human interference varies in time and
space, and it is especially strong in the area where the agriculture widely distributes and when
society is rapidly developing (Haddeland et al. 2006). China is one of the countries that
rely highly on agriculture, and it experienced rapid increases in both its population and its
economy in the last few decades (Liu et al. 2008; Piao et al. 2010). China also spans a large
area with di�erent climate types and topography (Wang et al. 2017a). Thus the water cycle in
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China and its responses to the climate and human activities have their di�erent characteristics
which need an overall review. The methodologies for estimating the hydrological responses
and their peculiarities should be summarized as well for better understanding and utilization
of the methodologies.

In this chapter, the current studies on the spatial variations in hydrological changes and
the association with climate change and human impacts are reviewed. The descriptions of
di�erent uncertainties in hydrological modeling, as well as the current quantification methods
of the uncertainties, are also collected and discussed in this chapter. The scientific questions
that remain to be investigated are summarized based on the current studies.

1.2 Literature review

1.2.1 Climate change and hydrological impacts in China

China spans a broad range of longitude and latitude and has complex topographic conditions
and climatic features (Wang et al. 2017a). Changes in the climate over China in the meantime
have significant spatial variations as the trend in atmospheric variables (e.g., precipitation,
temperature) are di�erent at the regional scale (IPCC 2013). In a report by China’s National
Climate Change Program (CNCCP 2007), it was shown that China observed an average
temperature increase of 0.5-0.8 oC during the past 100 years (1900-2000). There was no
obvious trend of change in annual precipitation, but there exists considerable variation among
regions. The decrease in annual precipitation was significant in the northern China, averaging
2.0-4.0 mm/yr while precipitation was increased in the southern China with a rate of 2.0-6.0
mm/yr. The observed river discharge1 measures the responses of the land water system
to the changing environment, and it has significant spatial variations similar to that of the
precipitation. Zhang et al. (2007) analyzed the gauge discharge records in six large river basins
in China (i.e., Hai River, Yellow River, Huai River, Yangtze River, Southeast Rivers and Pearl
River, Figure 1.1) over period 1950-2004. They concluded that the basins in northern China
were experiencing significantly declining in discharge during the study period, especially in
the 1990s. Among which the Yellow River, Huai River and Hai River are the basins where the
discharge changed significantly. While in southern China, the discharge changes were not
apparent (e.g., the Yangtze River, the Southeast and Pearl River). The similar changes are
also reported in studies by others and on the tributaries of those large river basins with direct
gauge observations (Yang et al. 2005; Yang et al. 2012b; Zhang et al. 2013; Zhao et al. 2013;
Wei et al. 2016).

The Yangtze River basin, a representative region of southern China, has the longest river
in China with a typical monsoon climate in the middle-low latitudes (Chen et al. 2016). The
mean temperature is 14.0 oC and mean precipitation is 1045 mm/yr for the whole Yangtze
River basin for 1955-2011 (Chen et al. 2014). The long-term average runo� depth2 is 515
mm/yr, accounting for 49.2% of the precipitation (Chen et al. 2014). There is a significant

1Discharge: the volumetric flow rate of water that is transported through a given cross-sectional area.
2Runo� depth: the depth to which a watershed (drainage area) would be covered if all of the runo� for a

given period of time were uniformly distributed over it.
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Figure 1.1 – The map of China and the main rivers.

increase in temperature, but no trend is detected for the precipitation for the Yangtze (Chen
et al. 2014). The change in the observed discharge is not significant at the lower Yangtze river
(Zhang et al. 2007), while a small but statistically significant increase in discharge and ratio
of discharge to precipitation (approximating runo� ratio3) is found upstream of the middle
Yangtze River (Chen et al. 2014). The increase in the ratio is probably caused by increasing
water storage and deforestation, which increases the speed and ratio of surface runo� in the
humid Yangtze (Chen et al. 2014). For the source catchment of Yangtze, observed discharge
decreased from the 1950s to 1980s and then started increasing in the warming environment
(Xiong et al. 2013). Correlation of the discharge change to the cumulative temperature deficit
indicates that the glacier melting may induce the discharge increases in the headwater regions
of Yangtze River (Xiong et al. 2013). However, the glacier impact is not shown in the middle
or lower Yangtze because the proportion of glacier melt becomes small compared to the
total runo� in estimations in the lower Yangtze as many river tributaries join the mainstream
(Immerzeel et al. 2010). Concerning the seasonal discharge in the middle-low Yangtze,
increasing trend (albeit not strong) is detected in the discharge in winter or dry seasons, while
the discharge in summer especially in October is decreasing (Chen et al. 2016; Guo et al.
2018). These changes are mainly because of dam constructions and regulations in the Yangtze
River basin rather than the climate change as the dams store extra water in flood seasons for
reducing the flooding risk and for electricity production, and then it is released in the dry

3Runo� ratio: the ratio of the total runo� to the precipitation over a watershed (drainage area).
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seasons (Chen et al. 2016). For the other rivers in southern China (e.g., Pearl River, rivers in
the southeast), the discharge is mainly influenced by precipitation as for the Yangtze, and the
variability of observed discharge is always highly correlated to that of precipitation (Li et al.
2016c). The climate change, especially the precipitation changes, will exert direct impacts on
the river discharge.

The Yellow River basin, a representative region of the northern basins, has the second
longest river in China with semi-arid climate types (Yang et al. 2015a). The Yellow River
originates from the north Qinghai-Tibet Plateau and the changes of water yield4 in the plateau
has significant impacts on the whole Yellow River because the water yield in the upstream
accounts for more than 44.8% of that for the whole basin (Wei et al. 2016). The Yellow River
has experienced a decreasing trend in discharge ranging from 1.0 mm/10a to 16.1 mm/10a
at di�erent gauges (Zhao et al. 2014). The discharge in the 1990s has declined to 34.2% of
that in the 1950s (Wei et al. 2016). The zero-flow days occurred in the lower Yellow and
increased to the highest (226 days) in 1997 (Xu 2004). Although the changes in forcing
variables are also significant as the precipitation was decreased by 11.7 mm/10a (1.9-47
mm/10a, Wei et al. 2016), human activities are generally regarded as the dominant factor of
the discharge reduction with their contribution to the discharge ranging between 55-83% by
di�erent estimations (Wang et al. 2010b; Yang et al. 2010; Zhao et al. 2014). Various human
activities, especially the water consumption for agricultural use, dam storage and the changes
in land use are associated with the discharge reduction in di�erent studies (Wei et al. 2016).
After 2000, the natural runo� has recovered by 14% in observations, probably because of
the combined impacts of precipitation increases (Tang et al. 2013), the reforestation in the
middle Yellow (Wang et al. 2011a), and the improved water management among the dams in
the whole river basin (Zhang et al. 2009).

With respect to other north river basins such as Songhua River, Liao River, Hai River,
Huai River and their tributaries, the observed discharge variations are similar to that of the
Yellow River as a significant reduction of discharge is found in the historical period (Zhang
et al. 2010; Yang et al. 2012a; Lu et al. 2015; Jiang and Wang 2016). Estimated by di�erent
approaches with a set of assumptions, human impacts contribute more to the discharge change
than that caused by the climate (Gao et al. 2013; Chang et al. 2016; Jiang and Wang 2016).
Increasing water consumption is the main factor controling discharge change while water
projects (e.g., dams and floodgates) also play a role in the discharge change, such as that in the
Yellow River (Zhang et al. 2010; Jiang and Wang 2016).

Another hotspot region with significant climate change and hydrological alteration is
northwest China, where the climate is dry with very little precipitation (Zhou et al. 2018).
The precipitation change varies spatially and shows a remarkable rise in the North Xinjiang
(Kong and Pang 2012). Compared to the precipitation, the temperature increase is apparent in
northwestern China and over the main rivers of Tarim, Aksu, Heihe River and Urumqi River
for instance (Wang et al. 2010b; Kong and Pang 2012). The snowmelt runo� has apparently
increased from 1970 to the present in the upstream of the Heihe River (Wang et al. 2010a).

4Water yield: the total amount of water generated by precipitation, snow and glacier melt and groundwater.
It consists of surface runo�, subsurface drainage and groundwater recharge. And it equals to the precipitation
over a catchment minus the evapotranspiration back to the atmosphere in area free of glaciers.
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The time of snowmelt has shifted ahead and the peak discharge has increased in the snow
season (Wang et al. 2010a). Temperature increasing also results in accelerating glacier retreat
and increases of glacier melt in the high mountains and river basins where the glacier melting
is one of the major sources (e.g., Aksu, Yarkand, Kumalak; Wang et al. 2012a; Kundzewicz
et al. 2014; Wang et al. 2017a). Kong and Pang (2012) have pointed out that Kumalak river is
more sensitive to climate change than Urumqi River as 57% of the discharge in Kumalak is
ice-melt while it is only 9% for the Urumqi River. The relation of the temperature and the
glacier melt has been proven with a lag time of the discharge phase (1-3 day time lag between
the phases of temperature and the observed discharge, Krysanova et al. 2015).

Although there have been some studies that discussed the climate change impacts on
hydrology in northwestern China as presented above, those studies mainly focused on
catchments with a very small areas in the river sources regions. Studies for large basins are still
lacking. The situation is attributed to two major reasons. First, the collection of high-quality
climatic and hydrological data is challenging for large basins because of the coarse gauge
network and high heterogeneity of forcing variables in the mountainous area (Zhou et al.
2018). The hydrological processes in the floodplain and oases are more complicated than
that in the headwater catchments. Agricultural activities are mainly concentrated over the
lower plains and will significantly change the natural discharge, while the e�ect of human
interference in oases is not well understood or quantified in such dry areas (Tao et al. 2011;
Zhou et al. 2011).

Summary

Climate change and the impacts on the hydrology vary in space in mainland China. For the
regions in southern China, the precipitation dominates the changes in river discharge, while
there are no significant signals in the trends. For the regions in northern China, precipitation
has significantly decreased in the last half-century which is in line with the decreasing
discharge. However, because humans highly rely on water resources, the contribution of
human activities is always regarded as the main contributor to the discharge decline through
simulations. Many studies target on eastern China in terms of climate change and hydrological
responses because of su�cient data and relatively simple physical interactions in the regions.
While for the regions in northwestern China, the estimation of the discharge response is more
complicated owing to data scarcity, large spatial heterogeneity, high uncertainty in glacier
changes and intensive human activities. The studies over those regions are therefore fewer and
need to be strengthened especially in large basins.

1.2.2 Uncertainties in modeling discharge

The human impact on river discharge is not easily measurable and needs di�erent models
for its estimation. However, the quantitative reconstruction of the changes and impact
assessment with models may arrive at di�erent conclusions because the used data are not
perfectly describing the natural variables and the models are not perfectly describing the
physical processes. There are probably large diversities among the results if di�erent inputs,
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di�erent methods or di�erent model settings are used for estimations (Refsgaard et al. 2006).
The possible uncertainty sources that may a�ect the model results are reviewed in this section.

Atmospheric variables

The primary uncertainty comes from the uncertainties in atmospheric variables. For
example, as the dominant factor in driving the entire water cycle, the precipitation (P)
and its measurement are a�ected by many factors (e.g., the size and location of the orifice
of instruments, the recording errors, Dingman 2015; Mcmillan et al. 2012). Wind may
significantly reduce the precipitation catch, especially of small drops and snowflakes (Mueller
and Kidder 1972; Sevruk 1982). The measurement error tends to be larger for low-intensity
precipitation because the amount is not enough to trigger a record and the amount is easy to
evaporate (Mcmillan et al. 2012; Ne� 1977). The measurement of storm rainfall is also di�cult
because of the accompanying strong wind. Despite the di�culties of making precipitation
measurements, the conversion of precipitation records to what the end users can use introduces
other uncertainties. Firstly, because the precipitation records are reported in a fixed short
interval (e.g., hourly precipitation, Lenderink and Van Meijgaard 2008), while the data to the
public are most in daily, the temporal variations of the records at the sub-daily time scale are
therefore not able to be captured with public datasets. Secondly, because the precipitation is
measured at point gauges, the precipitation between the gauges are estimated with di�erent
interpolation methods which are not necessarily able to describe the spatial heterogeneity
(Haddeland 2002). This situation is more serious in the areas with low-gauge density (e.g.,
mountainous areas, dry areas) and areas with high heterogeneous precipitation events (e.g.,
orographic rains and storms, Adam et al. 2006; Biemans et al. 2009; D’Orgeval and Polcher
2008). The same problems exist for other forcing variables (e.g., wind speed, temperature,
radiation, etc., Xu and Luo 2015). However, because the spatial variations or the impacts
of those variables are not as strong as that of the precipitation, the spatial features of other
variables have received less attention.

The uncertainty of the temporal and spatial variations in precipitation are partly solved
by improving the interpolation algorithms and by using remote sensing (e.g., satellite, radar
radiation, Hong et al. 2006; Tapiador et al. 2012). Frequency analysis of hourly precipitation
over available gauges reveals the temporal patterns of di�erent precipitation types (e.g.,
hourly distribution of the precipitation) and can be used to interpolate precipitation in time
(Lenderink and Van Meijgaard 2008; Shen et al. 2014). Remote sensing can capture the
spatial pattern of the potential precipitation (not the actual precipitation reaching the ground)
which helps to describe the spatial heterogeneity (Shen et al. 2014) of the actual precipitation.
Statistical approaches have also been developed for the orographic e�ects of precipitation
in mountains (Adam et al. 2006). Precipitation can also be estimated by models (global or
regional circulation models). Because these models poorly describe the precipitation spatial
patterns, downscaling (e.g., statistically or physical methods) is applied for further usage of
the modeled results (Chen et al. 2011; Wilby et al. 2014; Yang et al. 2012b). With the variety
of methods, there have been many precipitation datasets that can be used to drive models (Sun
et al. 2018). The variations of these precipitation datasets will be quantitatively analyzed in
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Chapter 2 in this thesis.
There are many other atmospheric variables (e.g., temperature, radiation, wind) which

have similar temporal and spatial variations. Moreover, uncertainties exist for these variables
either through measurement or modeling. Although these variables do not directly a�ect
the water flux (e.g., precipitation) entering the system, they change the thermodynamics
which can propagate to the estimation of potential evapotranspiration (PET). The actual
evapotranspiration (ET), which denotes the amount of water that leaves land water system and
goes back to the atmosphere, will be a�ected by both the P and PET . PET is not measurable,
and there are many kinds of approaches for estimating PET . No matter which approach is
used, the uncertainty in the aerodynamic variables will propagate to the final PET estimations,
resulting the uncertainties in PET .

Models

The second source of uncertainty is the model diversity in estimating hydrological
responses to climate change. A model is an abstraction, simplification and interpretation of the
real world (Refsgaard et al. 2006). Di�erent researchers have developed di�erent algorithms
according to their experiments and understanding of the physical processes. The choice of
modules is subjective but limited by data su�ciency (Clark et al. 2008). Lumped conceptual
models require fewer model inputs than physically based models, and many physical processes
in the lumped conceptual models are simplified (e.g., the energy balance, the evaporation
estimation, Beven and Freer 2001; Gaume et al. 1998). Moreover, di�erent modules can
be selected for the same physical process. For example, both the Green-and-Ampt method
and the Horton method estimate the infiltration rates while the Horton equation is empirical
(D’Orgeval et al. 2008; Dingman 2015; Yu et al. 1999). The methods for estimating the
evaporation are even more varied than that for the infiltration (e.g., the Bowen ratio method, the
water-balance method, the Dalton equations, McMahon et al. 2013). The routing processes are
simplified using di�erent methods, and two routing module methods can be chosen depending
on whether the model is grid-based (e.g., Total Runo� Integrating Pathways-TRIP, Oki and
Sud 1998) or basin-based (e.g., Lohmann routing model, Lohmann et al. 1996). All these
methods deal with di�erent processes which di�er in terms of their basic assumptions, their
required data and thus the scope of their application. They are coded to di�erent modules to
integrate with the core model. The diversity of modules will result in di�erences in model
outputs, and this can be regarded as the uncertainty in model structures.

These modules have a certain ability to describe the physics. Thus the selection of the
module is not very strict. The improvement of the modules is always on the way to integrate the
better understanding of physical processes. For example, the land surface model ORCHIDEE
(Organizing Carbon and Hydrology In Dynamic EcosystEms) was initially developed in the
1980s by the Laboratoire de Météorologie Dynamique (IPSL-LMD) (Ducoudré et al. 1993). It
was directly developed in the GCM but later extracted from the GCM for o�ine (no coupled)
applications (Rosnay and Polcher 1998). The model allowed irrigation interactions with soil
moisture after 2003 (Rosnay et al. 2003) and interactions with river discharge after 2005
(Ngo-Duc 2005). Di�erent infiltration methods were tested in 2008 (D’Orgeval and Polcher
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2008). The snow and soil freezing scheme was updated in 2012 (Gouttevin et al. 2012). An
improved snow scheme was tested in 2013 (Wang et al. 2013a). The routing scheme was also
updated recently based on high-resolution (1 km) topography information (Nguyen-Quang
et al. 2018). The continuous exploration of the natural physical phenomena with the support of
field experiments and numerical models helps drive the development of models and decreases
of the uncertainties due to the deficiency of model structures.

The parameters comprise another model uncertainty source. Most of the model parameters
have di�erent values over space while they are taken as constants in models for simplification.
For example, in the Variable Infiltration Capacity (VIC) model, the maximum soil depth is
taken as 1.9 m in the model in all implementations (Rodell et al. 2004). The parameter for
the order in variable infiltration equation ranges from 0.2 to 0.6 which is determined by the
soil properties, while it is calibrated to be a constant for the entire space (Koch et al. 2016).
These parameters are in general “free” and can be calibrated to a particular situation when the
model is applied (Refsgaard 1997). However, the shortcoming is that the uncertainty from
other sources (e.g., the model inputs and model structures) are probably attributed to the
parameters, and in some cases, the parameters will be out of its reliable range to meet the
calibration requirements (Zhou et al. 2018). The uncertainty in the parameters is generally
reduced by applying field experiments for local studies (El Kateb et al. 2013). However, the
parameters obtained from field experiments are still di�cult to apply at large scales because
of the spatial variations (Haddeland 2002; Xu and Luo 2015) . Uncertainty analysis is instead
a more popular way to quantify the impacts of parameters to the model results. With the
uncertainty analysis, the consequence of the parameter selection can be measured and then
controlled within a limit (Beven and Freer 2001). The details of the uncertainty analysis are
introduced in section 1.2.3 in this chapter.

Human activities

The third uncertainty is related to human activities (Krzysztofowicz 2001). Human
activities (e.g., irrigation, dam regulation, water consumption) have been incorporated into
some models as di�erent modules (Hanasaki et al. 2006; Haddeland et al. 2006; Hanasaki et al.
2010; Guimberteau et al. 2012b). Compared to the natural processes, the parameterisation of
human activities is more subjective and lacks information. Moreover, there are di�erences
between the real actions and set modules which have been written in models. For example,
although the regulation rules for any dams, canal gates and pumps have been set for di�erent
occasions, there is a deviation of the real operations from the standard rules because the
participation of experts (Ehsani et al. 2016; Nazemi and Wheater 2015a; Nazemi and Wheater
2015b). The actual decisions will, to some degree, deviate from what is built in models. These
di�culties make the parameterisation hard to correctly represent the human interventions to
the natural water cycle.

The uncertainty can also result from unanticipated changes in nature, human goals,
interests, activities, demands and impacts especially for future projections (Krzysztofowicz
2001). Concerning human interference with nature, we consider the human impacts to be
stable or with a consistent trend in a short future period. However, for example, China’s reform
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and opening policy has suddenly stimulated the social-economic development as well as the
consumption of water and loss of land area for urbanisation (Liu et al. 2014a; Liu and Tian
2010). On the contrary, from the end of the 20th century, the “Grain for Green” policy has
boosted the increasing of forest area, especially in the hydrological-fragile areas. The shift of
trends in forest area has caused opposite impacts (increasing river discharge) on the water
sphere (Wang et al. 2011a) while negative impacts (decreasing river discharge) are found a
few years later which were not considered at the beginning of the a�orestation projects (Zhang
et al. 2016, discussed in Chapter 4). There are other human activities (e.g., irrigation, dam
construction or removal) can start from a specific time in a region but it is di�cult to involve
them in a model which is designed decades ago without knowing when, where and how the
human activities a�ect the future.

Summary

In conclusion, there are three major uncertainty sources in hydrological modeling. They
are the data uncertainty (also named natural variability or aleatory in the literature), the
model uncertainty (also named knowledge uncertainty or epistemic) which includes the
uncertainty in model structure and model parameters, and the third uncertainty which results
from human interferences. Great e�orts (e.g., merged products, improvement in algorithms,
experiments) have been done to reduce the uncertainties from the di�erent sources. However,
the uncertainties are not and can never be eliminated. Moreover, di�erent uncertainties coexist
and also interact in the modeling. There is a necessity to quantify the impact of uncertainty
from a single source and separate the impacts from the interaction of multiple sources.

1.2.3 Uncertainty quantification

Uncertainty analysis

The model outputs are subject to imprecision with uncertainty because of the various
uncertainty sources introduced above. Uncertainty analysis is a derivation of the probability
distribution of the model outputs based on the probabilistic description of model inputs and
the models (UNESCO 2005). The uncertainty analysis can be an analytical way that involves
all the di�erentiation of model equations and the exact probability distribution of all model
inputs and parameters (Pechlivanidis et al. 2011). It derives the statistics of model output from
the knowledge of statistical properties of the system itself and the input data (Langley 2000).
However, this approach is strongly limited because of its severe requirements on the data
information and model equations (Pechlivanidis et al. 2011). To decrease the di�culty, many
assumptions on the data properties and statistical models are required to avoid describing
the natural variability and model processes in an overly complex manner (e.g., the standard
probability distribution of the parameter, rainfall-runo� equations). Because the method
is analyzing the full probability distribution of model input, model structures and model
results, it is called probabilistic analysis in Montanari et al. (2009). The philosophy is used
by Krzysztofowicz (2002) in a Bayesian Forecasting System and by Montanari and Brath
(2004) in a meta-Gaussian rainfall-runo� approach. Other methods based on the Bayesian
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basis, can also be used as the probabilistic framework (Montanari 2007), e.g., particle filters
(Moradkhani et al. 2005) and Bayesian total error analysis (Thyer et al. 2009).

The alternative solution, which is more commonly used, is to use sampling strategies to
derive the statistics of model outputs numerically (Montanari 2007). Uncertainty is quantified
by running the model repeatedly with di�erent sets of parameter values sampled from a given
probability distribution (Pechlivanidis et al. 2011). Although this approach is computationally
expensive, it requires no access to the model equations and avoids simplification of model
processes (Pechlivanidis et al. 2011). It thus can be integrated with many existing hydrological
models (Zadeh 2005), e.g., TOPMODEL (Beven and Freer 2001), HYMOD (Montanari 2005).
The sampling method is the basic philosophy of the Generalized Likelihood Uncertainty
Estimation (GLUE) (Beven and Freer 2001; Beven and Prophecy 1993). The Monte Carlo
sampling method is always used together with GLUE as it obtains random sampling in the
input data space and the system space (Ballio and Guadagnini 2004; Kuczera and Parent
1998). It does not necessarily require the knowledge of the probability of the samples, but the
model performance will screen the samples with a given criterion to obtain the collection of
samples (Beven and Freer 2001; Beven and Prophecy 1993). With the model results generated
by the samples, the statistics (e.g., mean, standard deviation, skewness) and the probability
distribution of the model output can be determined. The GLUE-based approaches are limited
to the analysis of parameters, and they are not able to deal with the uncertainty in model inputs
or model structure (Jacquin and Shamseldin 2007). Because the sampling methods does not
provide a probabilistic solution to the parameters, they are regarded as the non-probabilistic
way which is di�erent from the probabilistic approach introduced in the previous paragraph
(Montanari 2007).

Sensitivity tests

As mentioned above, the analytical approaches desperately require the knowledge of
equations on the system input and model itself (Montanari et al. 2009). The sampling
approaches are unable to deal with the uncertainties from model inputs and model structures
(UNESCO 2005). The sensitivity analysis is instead the most welcoming approach for
assessing the impact of di�erent uncertainty sources. The theory of sensitivity analysis is
simple since the model simulations are compared in di�erent states with di�erent model
settings of interest (e.g., di�erent forcing inputs, di�erent model structure, di�erent model
parameters) while keeping all other model settings as the same (UNESCO 2005). The changes
in the simulations between di�erent states are regarded as the model sensitivity to the changes
in the model settings. Compared to uncertainty analysis, the sensitivity analysis does not
need to find and assess all states in the whole feasible spaces, but the users can evaluate any
states of interest with very few numbers of model runs compared to the sampling approaches
(Tang et al. 2007). The sensitivity test is also a simplification of the sampling approach in
assessing the parameter impact by giving only a few parameter settings instead of searching
for the whole parameter space. The shortcoming for the sensitivity analysis is that it only
evaluates the model sensitivity to the given model settings, it cannot show the real probability
distribution of the model outputs (UNESCO 2005). The given model settings are assumed
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as equally frequent although they are not in reality and some of the model settings may be
probably out of the reliable range because of the low requirement to the understanding of the
models (Zhou et al. 2018).

A few implementations of sensitivity tests are listed in Table 1.1. These studies span
di�erent regions in China and focus on di�erent hydrological patterns (e.g., total water
resources, flood and drought, flood frequency, glacier melt). By applying di�erent numbers
and types of the uncertainty sources (e.g., emissions, climate models, downscaling models
and hydrological models), the sensitivity of the hydrological change to di�erent uncertainty
sources are compared in Table 1.1 in a very simple way as the hydrological sensitivity to
di�erent uncertainty sources are placed in an order. The emissions or the downscaling
model will not become the primary factor that changes the final model outputs in most of the
cases. Because the climate model determines the driving forcing and the hydrological model
determine the physical processes of rainfall-runo� change, both are the major factors that
result in significant hydrological changes. It is therefore necessary to further investigate how
the climate forcing and the hydrological model change the water cycle.

Summary

In conclusion, knowing the uncertainties from di�erent sources that are further a�ecting
the hydrological model simulations, many studies have focused on di�erent approaches that
quantify the hydrological responses to the uncertainties. Uncertainty analysis is frequently
used and can be grouped to probabilistic approaches which depend on the full probability
distribution, and non-probabilistic approaches which are sampling-based. Sensitivity tests is
also an e�ective way to assess the sensitivity of hydrological responses to di�erent uncertainty
sources. Although there have been many implementations related to the uncertainties, research
is still needed to deepen the understanding on how the uncertainties, especially from the model
inputs and hydrological models, a�ect the water cycle modeling. The separation of the impact
from di�erent sources is not well known. The significance of the human intervention on the
water cycle is not clear, especially compared to the uncertainties of the forcing and that of the
models.

1.3 Scientific questions and objectives

1.3.1 Scientific questions

By reviewing the above literature, we can draw a few conclusions as below:

• The model input data uncertainty, especially for the precipitation, has been recognized
by the science community. Comparisons between di�erent precipitation datasets have
been conducted. However, the precipitation comparison among datasets of di�erent
types (e.g., gauge-based datasets, merged productions with satellite or radar, pure model
datasets) is lacking, and therefore the uncertainties in di�erent data types are not well
assessed.
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Table 1.1 – Implementations of sensitivity tests among the emissions, climate models,
downscaling models and hydrological models.

No Region Target Emission
(RCP)

Climate
Model
(GCM)

Down-
scaling
Model

Hydro-
logical
Model

References

1 Global water
resources

3 8* Hagemann et al. (2013)

2 China water avail-
ability

2 5* 8* Li et al. (2016b)

3 Northeastern
China

extreme
flow

3 6* Qi et al. (2016)

4 Pearl flood fre-
quency

3 5 2 Liu et al. (2013a)

5 Xijiang
(Pearl)

extreme
flow

3 4* 4 * 4 Yuan et al. (2017)

6 Hanjiang
(Yangtze)

hydrology 2 20* Shen et al. (2018)

7 Jinhua
(South-
east)

High-flow 4 3* 10 3** Tian et al. (2015)

8 Huai runo� 3 3 Liu et al. (2012)
9 Benbu

(Huai)
drought 3 2 3* Duan and Mei (2014)

10 Huangfu
chuan,
xiangxi

discharge 7 Xu and Luo (2015)

11 Tarim discharge 3 3* Liu et al. (2013b)
12 Tarim glacier

melt
3 9 6 Duethmann et al. (2016)

Note:
The numbers represent the number of di�erent datasets/methods used in the sensitivity test
** represents that the uncertainty source is the primary
* represents that the uncertainty source is the primary (or secondary if there is ** for any source)
The study case with no stars means the hydrological sensitivity to all sources is equivalent
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• The hydrological response to di�erent uncertainty sources are investigated using
uncertainty or sensitivity analysis in many implementations. However, the separation of
impacts from the interactions of di�erent uncertain sources is not well known, and the
reliability of the solutions needs further study and discussion.

• Human activity plays an important role in hydrological changes and is a significant
uncertainty source. While, when and how much human activities are a�ecting the
water cycle, particularly in China in the past, present and future, need an overall review.
The magnitude of the human impact should also be evaluated and compared with the
possible uncertainties from other sources.

• Most of the regions in the eastern Chinese mainland have been well investigated in
terms of their climatic characteristics and hydrological changes. However, the regions
in northwestern China, e.g., the Tarim basin, have received very little attention owing to
the di�culties related to data scarcity, hydrological complexity and human activities.
Parallel comparisons to the changes over the whole of China should be conducted as
well.

The scientific question are therefore posted as “what are the magnitudes of various

uncertainties, their sources, interactions and spatial variations?” To address the
scientific questions, we need to solve the technical problems as 1) to quantify the
uncertainty in the model inputs and the models; 2) to explore the interactions of
uncertainty from di�erent sources; 3) to compare the magnitude of human impact with
our knowledges of natural variables.

1.3.2 Objectives

• Investigate the uncertainties in precipitation, especially for di�erent types of precipitation
products; quantify the variances among di�erent precipitation datasets due to the
variations between datasets; compare the ensemble variance with the temporal and
spatial variances in precipitation patterns; verify the estimated uncertainty with current
available technologies.

• Implement a Land Surface Model (ORCHIDEE) in the Tarim basin and estimate the
hydrological variables (e.g., discharge, evapotranspiration); analyze the model bias with
discharge observations; attributes the bias to uncertainty in model inputs and model
structure with a Budyko approach; verify and assess the likehood of di�erent biases.

• Review the literature of human activities (e.g., land use, water use, dams) in China in
the past; review the impact (e.g., magnitudes, spatial and temporal patterns) of di�erent
human activities on water cycle; review the methods that are used to quantify the
impacts of human activities; categorize the methods and compare the peculiarities of
the di�erent methods into di�erent categories;

• Qualify the human impact on river discharge and compare the influence due to the
limitation of knowledges of natural variables in the forcing and model simulations;
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identify the metrics that can be used to attribute the human impact and identify the
catchments where the human impact assessment is easier and with higher confidence.

1.4 Plan of the thesis

CH2. A variance partitioning approach
(precipitation uncertainty and ensemble)

• Uncertainties in different precipitation types
• Ensemble analysis and its association with uncertainties

CH3. ORCHIDEE-Budyko framework
(uncertainty integration)

CH4. Review and human impact assessment
(Human activities and	limit	of	knowledge	of	nature)

• Land Surface Modeling (ORCHIDEE)
• Uncertainty integration with Budyko
• Take Tarim basin as the example

• Human activities (land, water use, regulations)
• Methods categorization and comparison

• Human impacts VS. simulation uncertainties

Input	
uncertainty Model	uncertainty

Human	activities	

Figure 1.2 – Flow-chart of the thesis

The structure of the thesis is organized as follows (refer to the illustration in Figure 1.2).
In Chapter 1, the background of the research topics, the related literature, the scientific

questions and the objectives of the thesis are introduced.
In Chapter 2, a new approach of partitioning the variances in an ensemble analysis is

introduced and applied to precipitation datasets. The uncertainties of di�erent types of
precipitation are analyzed and associated with the uncertainty estimation with the newly
proposed approach.

In Chapter 3, a framework named ORCHIDEE-Budyko, which can be used to attribute the
model bias in discharge estimation to the uncertainties in model inputs and the model itself, is
introduced. The Tarim basin is chosen as the example.

In Chapter 4, the recent literature about human activities, particularly in China, is reviewed
in terms of understanding the impacts on hydrology. The methods that have been used to
estimate the human impacts are also reviewed, and their peculiarities are compared between
di�erent approaches. The human impact identified by the di�erence between observed and
naturalized river discharge is compared with the influence due to limitation of our knowledges
of natural variables on the forcing variables and estimated water cycle.



16 Chapter 1. Introduction

In Chapter 5, the conclusions are summarized based on the previous chapters. The key
points are further explained and discussed. The perspectives are provided on the basis of the
results of the thesis.
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In this chapter, we present a new approach which can be used to estimate uncertainties
among multiple datasets. Precipitation is taken as the example variable to explain the features
of the new approach. The uncertainty characteristics within multiple precipitation products
of di�erent types and their physical meanings are analyzed as well. The background of
the uncertainties in precipitation and the trend of using multiple ensembles to reduce the
uncertainty influence are introduced in section 2.1. The proposed three-dimensional approach
is introduced in the methodological part (section 2.2). The general precipitation characteristics
and the di�erences in di�erent precipitation types are presented in section 2.3. The diagnostics
of the precipitation with new approach are shown in section 2.4 and their comparisons
discussed in section 2.5. Following is the section of discussion and conclusion (section 2.6).

2.1 Introduction
Precipitation is the dominant variable in the global water cycle. The amount of precipitation

is vital in assessing the water resources of a specific place, and the accuracy determines the
quality of water cycle modeling. The gauge measurements of precipitation are considered
to have high data quality. However, the accuracy does not perform well in spaces with high
spatial heterogeneity in mountainous areas and during storms (Hijmans et al. 2005; Roe 2005;
Andermann et al. 2011). A few di�erent interpolation methodologies were introduced to
covert these point measurements to spatial datasets and therefore a few grid-based precipitation
datasets have been released for grid-analysis (e.g., Harris et al. 2014; Sche� and Frierson 2015).
With technologies supported by remote sensing and radar detection, the spatial distribution of
precipitation can be obtained and then merged with the gauge observations for scientific and
general usage (Zhao and Fu 2006; Adler et al. 2018; Sun et al. 2018). Datasets only driven
by models are also available (e.g. General Circulation Models, GCMs) especially for the
implementations in the historical period before measurements and the future (Li et al. 2011a;
Chadwick et al. 2013; Wang and Chen 2014).

Because of the di�erences in the used information (e.g., observations from di�erent gauges,
di�erent remote sensing products) and the methodologies (e.g., interpolation methods or
climate model algorithms), there are di�erences between di�erent precipitation products. The
di�erences between the precipitation products are also called uncertainties. Many studies
have attempted to understand and quantify the uncertainties of precipitation. Although the
causes to the uncertainties have been generally summarized, quantification and removal of the
uncertainties are still limited over large spaces. Using the ensembles consisting of multiple
models to generate a weighed simulation have become popular in the climate-related research
(Milly et al. 2005; Christensen and Lettenmaier 2006; Tebaldi et al. 2011; Yang et al. 2012a;
Schewe et al. 2014). This method has been widely accepted and applied because it reduces the
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requirements for understanding the uncertainties. It also reduces the dependence on a single
dataset and the risk of large deviations in individual datasets. A few statistical metrics are
used to quantify uncertainties among the multiple datasets for an ensemble.

The standard deviation is the most popularly used index to measure the extent of the
deviation of a data group. It is most used for evaluating the results at di�erent time steps for
the spatial mean (Seneviratne et al. 2016; Shen et al. 2018) or seen as a map of the standard
deviation for temporal means (Rocheta et al. 2014). However, the approach can provide
only the deviation of results in only one of the spatiotemporal dimensions. It is unavoidable
because the standard deviation approach only operates in one dimension. Similar to the
standard deviation, the uncertainties can be taken in quantiles (e.g. 75%(25%) or 95%(5%)
of the results, Orlowsky and Seneviratne 2014). The approach is especially applicable to
the variables that are not normally distributed (e.g., precipitation). However, the standard
deviation approach uses collapsed information in either the spatial or temporal dimension. It
also needs a su�cient number of models for obtaining the quantiles.

If the number of models are su�cient, the consensus of multiple models is sometimes
taken as the measurement of uncertainties. It is measured as the ratio of models agreeing on a
certain conclusion to the whole number of models. For example, in Figure SPM.8-b in the
IPCC report (Stocker et al. 2013), stipplings are used to indicate grid boxes where more than
90% of the members agreed on the sign of rainfall change while leaving as white where 66% of
models do not agree on either increases or decreases in rainfall. It only evaluates the variation
on the final conclusions but ignores the processes. It also requires quite a large number of
models to generate a reliable number ratio so that the method is limited in applications with a
large number of similar inputs (e.g. GCMs).

A few indices have been developed to quantify the uncertainties in results for the water
cycle components (e.g. precipitation). These indices have disadvantages that they only
evaluate the uncertainty in one dimension (time or space) with the other dimension collapsed
by averaging. Because of the limitation, the temporal variations or the spatial heterogeneity
is ignored in obtaining the uncertainty range. The uncertainty results thus cannot reveal
the model variation based on spatiotemporal dimension as a whole. Moreover, a su�cient
number of models is needed for these indices especially for the quantiles and consensus which
restricts their applicability. In this study, we aim to introduce a new approach which can
quantify the model variation over spatiotemporal dimensions without any aggregation in
time or space. The uncertainty among the multiple ensemble products is also evaluated with
the new approach. Examples for precipitation are provided for better understanding of the
properties of the present approach.

2.2 Methodology and datasets

The coe�cient of variation (Cv), also known as the relative standard deviation (a ratio
of the standard deviation to the mean, �2/µ), is a standardized measure of dispersion of a
probability distribution or frequency distribution (Everitt 2013). However, it works for one
dimension as the previously introduced indices, leading to the fact that regional aggregation is
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obligatory for generating the regional means or evaluating the temporal variation (McSweeney
and Jones 2013). Sche�e (1999) introduced the grand variance that measures the total
variations across time and space dimensions. Sun et al. (2010) partitioned the grand variance
into temporal and spatial dimensions, named as time variance and space variance, respectively.
The variance is closely associated with the variation at each time step (or at each grid), but it
integrates the variation in the time dimension (or the space dimension) to evaluate the overall
performance in this dimension. The relative amount of the variance determines the dominant
dimension which contributes more to the data variation. For example, the space variance of
global annual-average temperature is much larger than time variance since the temperature
di�erence in regions (from the equator to polar) is generally larger than the di�erences among
seasons in a specific region. Moreover, the temperature di�erence between latitude zones
is more significant than that between time steps. The approach prevents aggregation before
spatiotemporal analysis, and all the spatial and temporal variation remains for evaluation.

By analogy, when using multiple models as an ensemble, the grand variance of the whole
dataset is therefore related to not only the spatial or temporal variations but also the variations
among di�erent models. The partitions of the total grand variance can expand to time
variance, space variance and the third component "ensemble variance" which represents the
intra-ensemble variations (namely the variation of the values in di�erent models at the same
time step and same grid point). For climatic variables, the temporal and spatial variations are
inherent, while the ensemble variation is artificially induced by using multiple models. With a
lower proportion of ensemble variance to the grand variance, the ensemble members are more
consistent with each other, and the agreement level of the ensemble results is higher since less
uncertainty comes from the model variations. It therefore can serve as an indicator of the
agreement among ensemble members for regional analysis and measures uncertainty in the
model ensemble output.

2.2.1 Mathematical Derivation

The dataset has to be organized in three dimensions of (1) time with a regular time
interval (e.g. monthly or annual), (2) space with regular spatial units where all the grids are
re-organized in a new dimension from the original latitude-longitude grids, (3) ensemble with
di�erent ensemble members regarded as the third dimension. Thus, the dataset array can be
reformed as

Z = [zi jk] (2.1)

with i-th time step (i = 1, 2, . . . ,m), j-th grid ( j = 1, 2, . . . , n), and k-th ensemble member or
ensemble model (k = 1, 2, . . . , l).

We define the three dimensions as time, space and ensemble dimension and the means
for these three dimensions are called temporal mean, spatial mean and ensemble mean,
respectively. The corresponding variances are named time variance, space variance and
ensemble variance, respectively. The grand mean (µ), grand variance across time, space and
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ensemble models (�2) as well as the total sum of squares (SST) are defined as.

µ =
m’
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n’
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l’
k=1

zi jk/(mnl) (2.2)
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SST
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The derivation starts from the third ensemble dimension. For a specific k
th ensemble member,
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Where �2(µts) is the variance of the grand mean for each member of the ensemble, and �2
ts
[k],

the grand variance in space and time for ensemble member k, can be split using the average of
the space variance at each time step �2

s [k, :] and the variance of the spatial mean �2(µs[k, :]),
denoted as

�2
ts
[k] = m(n � 1)

mn � 1
�2

s [k, :] +
n(m � 1)
mn � 1

�2(µs[k, :]) (2.9)

One can refer to Sun et al. (2010) and Sun et al. (2012) or Supporting Information Text S1.1
for detailed derivations of �2

s
[k, :] and �2(µs[k, :]). Similarly, �2

ts
[k] can also be split into the

average of the time variance from all regions �2
t
[:, k] and the space variance of the temporal
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mean �2(µt[:, k]), expressed as
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With Eq. (2.9) and Eq. (2.10), we can have
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Substituting Eq. (2.11) into Eq. (2.8) results in
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The first term on the right-hand side of Eq. (2.12) can be transformed to:
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where �2
s_t

is the average of space variance of the temporal mean across each ensemble
member, �2

s represents the grand mean of �2
s
, the grand variance across time and ensemble

dimensions. Then Eq.(2.12) becomes:
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where �2
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is the average of time variance of the spatial mean across ensembles, �2
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the grand mean of �2

t
, the grand variance across space and ensemble dimensions. �2

e
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reprents the variance of the spatial-temporal means (µts). Similarly, the derivation can start
from any of the other two dimensions. The SSTs derived from time and space dimensions are
formulated, respectively, as
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Where each variable is defined in the Supporting Information Text S1.2. Averaging these
three SSTs defined in Eqs. (2.14) - (2.16) leads to

SST =
nl(m�1)

3 [�
2
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2
t_e

2 + �2
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2
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3 [�
2
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2
e_s

2 + �2
e + �

2
e
(µts)] (2.17)
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With the total degree of freedom (m ⇥ n ⇥ l � 1), the grand variance is expressed as

�2 =
nl(m � 1)
3(mnl � 1) [

�2
t_s
+ �2

t_e

2
+ �2

t
+ �2

t
(µse)]|                                                {z                                                }

Vt

+
lm(n � 1)
3(mnl � 1) [

�2
s_t
+ �2

s_e

2
+ �2

s + �
2
s
(µet)]|                                                {z                                                }

Vs

+
mn(l � 1)
3(mnl � 1) [

�2
e_t
+ �2

e_s

2
+ �2

e + �
2
e
(µts)]|                                                {z                                                }

Ve

(2.18)

where Vt , Vs and Ve represent the time, space and ensemble variances, respectively. The
partitions of the three dimensions are symmetrical. To facilitate the understanding of the
partitioning results, a visual illustration of the present approach is shown in Figure 2.1.

Note that Ve is based on the combination of variance across the ensemble dimension of
temporal and spatial values (�2

e , zone B3), temporal mean (�2
e_t

, zone C3), spatial mean (�2
e_s,

zone C6) and the grand variance of the spatiotemporal mean for a single ensemble member
(�2

e
(µts), zone F3). These variances rely on di�erent zones, which displays the symmetry of

the partitioning results.
To explore the relative e�ects of the three parts, we can quantify the contribution of each

part to the total grand variance. The variance proportions are therefore defined as: Pt = Vt/�2

for time; Ps = Vs/�2 for space and Pe = Ve/�2 for ensemble dimension. Similar to the
definition of standard variation and standard deviation, the deviation in this three dimensional
approach can be quantified as the ratio of the square root of the variance to the grand mean
(i.e., U =

p
V/µ for the grand variance, Ut =

p
Vt/µ for the time dimension, Us =

p
Vs/µ

for the spatial dimension and Ue =
p

Ve/µ for the ensemble dimension). For the ensemble
dimension, the Pe is a measurement of the variation among models which integrates the
variations in time and space dimensions. The Ue is a measurement of the relative uncertainty
among the models. Both the two metrics avoid any aggregation of spatiotemporal dimensions.

2.2.2 Study area and data descriptions

China is large in its area, and di�erent climate types are encountered in the mainland
(Kottek et al. 2006). To facilitate the comparisons and analysis that have spatial variations,
ten di�erent regions are defined in Figure 2.2 as the (1) Songhua River Basin, (2) Liao River
Basin, (3) Hai River Basin, (4) Yellow River Basin, (5) Huai River Basin, (6) Yangtze River
Basin, (7) Southeast China, (8) South China, (9) Southwest China, (10) Northwest China.
The entire Chinese mainland is numbered as the 11st region. Most of the regions are natural
river basins, and this definition is better in water resources analysis than definitions using
longitude-latitude grids or that are based on administrative regions.

As shown in Table 2.1, thirteen precipitation datasets from di�erent sources are collected
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Figure 2.1 – The illustration of the partitioning time-space-ensemble variance method. The
original dataset is organized in three dimensions of time, space and ensemble. The denotations
of the zones are listed to the right. The grand variance is defined as �2 and the grand mean
µ. The subscripts t, s, and e represent time, space and ensemble, respectively. Zone A
(µi) indicates the average mean in for i dimension; zone B (�2

i
) indicates the variance for i

dimension; zone C (�2
i_ j

) indicates the variation across i dimension of the average means of
µ j ; zone D (µi j) indicates the average means across i and j dimensions; zone E (�2

i j
) indicates

the variation across i and j dimensions; zone F (�2
i
(µ j k)) indicates the variation across i

dimension of the average means across j and k dimensions. The detailed definitions of these
denotations can be found in Supporting Information Text S1.2.

Figure 2.2 – The regions in China that defined in this chapter.
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for comparison. All these datasets are categorized into three groups, i.e., gauge-based products,
merged products and General Circulation Models (GCMs). The gauge-based products only
rely on the gauge measurements, but the collected gauges and algorithms to generate the
precipitation map are di�erent among di�erent products. CMA (China Meteorological
Administration) dataset uses the densest gauges and probably has the best quality to capture
the spatiotemporal variations of the precipitation. CMA is therefore chosen as the reference
datasets for comparisons, and it is excluded when estimating the ensemble means of the
gauge-based products.

The merged precipitation products rely on databases from many various sources including
satellite remote sensing, radar radiation or re-analysis dataset. These datasets are also
assimilated with gauge observations to correct potential biases. The GCMs precipitation
is modeled without correction from any measurements. The di�erence among GCMs is
therefore a result of the model di�erences (e.g., initial conditions, model algorithms, numerical
simulations). They also have a di�erent synoptic variability as they are not constrained
to follow a specific trajectory in the manifold of all possible climatic solutions. There are
more than 20 datasets of GCMs, while only four are randomly taken to match the number
of gauge-based products and merged products. All the datasets have been interpolated to
0.5o spatial resolution. The overlap time span of all the datasets is from 1979 to 2005 for the
maximum coverage of all products. Four di�erent products are included in each precipitation
group, which can explain more than 80% of the uncertainties when much more models are
used. The details of the explanation is shown in the appendix A.

2.3 Uncertainty in precipitation products

2.3.1 Uncertainty between di�erent precipitation groups

The ensemble means of the long-term annual precipitation (1979-2005) at each grid are
estimated and mapped as Figure 2.3. The ensemble mean of the gauge-based products has
excluded the CMA dataset. The ensemble means for the precipitation in three groups are
obtained by averaging the datasets in corresponding group. The annual precipitation is 589.8
mm/yr (1.6 mm/day) in the China mainland with CMA data (Table 2.2). The absolute bias in
other gauge-based products, merged products and GCM is -4.1, 63.1, 232.0 mm/yr (with the
bias as -0.7%, +20.4% and +41.3%) respectively. The spatial pattern of the annual precipitation
shows a decreasing trend from the southeast China (>1600 mm/yr) to the northwest China
(<400 mm/yr) and all the ensemble means for the three groups capture the spatial gradient.

However, because of the deviation of precipitation in di�erent groups, the land area with a
certain magnitude of annual precipitation can change and shift in its locations. The annual
precipitation is an important factor that determines the climate type in the Köppen-Geiger
climate classification system (Kottek et al. 2006). For instance, 2.66⇥106km2 (28.2% of the
China mainland area) has annual precipitation more than 800 mm/yr in CMA dataset, which
can be categorized as the humid region (Table 2.2). 3.88⇥106km2 has annual precipitation
less than 400 mm/yr, belonging to the dry area. 2.89⇥106km2 locates in the transition area,
with annual precipitation between 400 and 800 mm/yr.
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For precipitation from other products, the statistics demonstrate the di�erences in climate
pattern determined by annual precipitation. The spatial patterns of the gauge-based products are
almost the same as that of the CMA data. The area of the dry area decreases by 0.67⇥106km2

in the merged products compared to that of the observations, while the transition and humid
area increases by 0.29⇥106km2 and 0.38⇥106km2 respectively. The GCMs produce more
precipitation than the other two groups, and the dry area decreases the most by 16.4% while the
humid area increases by 53.7% compared to that identified by the observations. Although the
change in the ratio within the transition area is very small (+3.1%), the area moves northward.

(a) CMA (b) Gauge-based

(d) GCMs(c) Merged Products

Figure 2.3 – Long-term (1979-2005) annual precipitation in di�erent precipitation groups.
(a) Annual precipitation of CMA dataset, (b) ensemble means of annual precipitation in
gauge-based products excluding CMA, (c) ensemble mean of annual precipitation of all
merged products, (d) ensemble man of annual precipitation of all GCMs. CMA has no
observations in Taiwan.

Table 2.2 – The averaged annual precipitation (mm/yr) in di�erent precipitation groups
(i.e., CMA, gauge-based products, merged products and GCMs) and the area with di�erent
precipitation magnitudes as well as the proportion (Prop.) of the area to the whole China
mainland. The unit of the area is 106km2. The area of Taiwan region is not included in the
CMA dataset.

Datasets CMA Gauge-based Merged GCMs
Value Bias Value Bias Value Bias Value Bias

Annual Precipitation 589.8 – 585.7 -4.1 710.2 120.4 833.1 243.3
Precipitation
magnitude Area Prop. Area Prop. Area Prop. Area Prop.

<400 mm 3.88 0.410 3.87 0.409 2.80 0.296 2.26 0.239
400-800 mm 2.89 0.305 2.87 0.303 3.18 0.336 2.93 0.310

>800 mm 2.66 0.281 2.72 0.288 3.48 0.368 4.27 0.451

The di�erences in annual precipitation of gauge-based products from CMA dataset are
within 200 mm/yr and 25% in ratio for the major part of the mainland (Figure 2.4-a,b).
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Apparent underestimation is found along the Kunlun Mountains and the Qilian Mountains in
the northwest China, which might be caused by the coarse distribution of gauges and bias
in the interpolation algorithm in the mountainous area. Significant overestimation is found
along the Himalaya Mountains because the gauges with high precipitation in the south of the
Himalayas may contribute to the overestimation in other global gauge-based products (e.g.,
CRU, GPCC) while the CMA gauges are national. The precipitation di�erence in the merged
products to CMA is similar to that of the observations in the east part of China and along
the Himalayas (Figure 2.4-d). The precipitation in the Centeral Tibetan Plateau is larger in
the merged products, mainly because other measurement means (i.e., remote sensing, radar)
have detected the precipitation in the region where the gauges are not presented. GCMs
overestimate the precipitation (Figure 2.4-e,f), with the precipitation in almost half of the area
overestimated by 50% (Figure 2.4-f). The most significant overestimation is found along the
Kunlun Mountains and the Himalayas. The orographic e�ect might be overestimated in the
GCM models, indeed the gauge observations represent the precipitation patterns well.

(e)

(a) Gauge-based (b) Gauge-based

(c) Merged Products (d) Merged Products

(e) GCMs (f) GCMs

-400 -200 0 200 400 600 800 1000 1200 -100 -50 0 50 100 150 200

Figure 2.4 – The di�erence of precipitation data from di�erent sources to that of CMA and
the normalized di�erence compared to the precipitation in CMA.
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2.3.2 Uncertainties in space

In addition to the precipitation di�erence found in the three precipitation groups when
compared to the CMA, there are also di�erences among datasets within the same precipitation
group. The spatial standard deviation (s.std) of the annual precipitation among di�erent
datasets is calculated. The ratio of the s.std to the annual precipitation in CMA dataset is also
mapped in Figure 2.5.

(a) Gauge-based (b) Gauge-based

(c) Merged Products (d) Merged Products

(e) GCMs (f) GCMs

0 20 40 60 80 1000 50 100 150 200 250 300 350 400
Standard Deviation (mm) Normalized Standard Deviation (%)

Figure 2.5 – The standard deviation (s.std) of the annual precipitation over China in each
group and the normalized standard deviation by dividing by the annual precipitation of CMA.

Among the datasets based on gauge observations, the s.std is small in most of China
(<50 mm/yr). It is higher in the south of China (50-100 mm/yr) although the area is not
continuous in space. The highest s.std occurs along the Himalayas. The ratio of the s.std
to the annual precipitation in CMA shows low values (<10%) in the east China. While the
ratio is high in the west China especially in the Himalayas and the centre Tarim, where the
annual precipitation is among the lowest in China. Regarding the merged precipitation, the
s.std shows high values (>200 mm/yr) in the southwest China (e.g., the Tibet Plateau, Yunnan
Province, Guangxi Province). Moderate s.std is found in the northeast China, north China and
southeast China. The s.std ratio has the highest values (>100%) in the west around the north
part of the Tibet Plateau. A moderate ratio (>40%) is found in the Tarim basin and other parts
of the Tibet Plateau. There is a geophysical belt of the area where the s.std ratio is between
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10% to 20% from the southwest China to the northeast China (Figure 2.5-d). Di�erent from
the gauge-based and merged products, the s.std among GCMs has the highest value (>400
mm/yr) in the south China (Figure 2.5-e). The s.std ratio to the annual means of CMA shows
similar patterns in the west China to that of the merged products but with higher magnitudes.
Moreover, the ratio is higher in the east as the small ratio (<10%) is only found in the northeast
and the centre China.

The magnitude of the s.std demonstrates the variations among di�erent precipitation
products. The GCMs have the largest di�erences between models because there are no
constraints of any forcing conditions and no measurements are used for bias correction
in model simulations (Figure 2.4-f and 2.5-f). Di�erent merged products have moderate
variations between each other which might be induced by di�erent means of precipitation
measurements and the results are constrained with gauge observations. The di�erences among
the gauge-based products are the smallest especially in the east China. The low density of
the gauges and the orographic e�ect in the mountainous area are the main causes of the
uncertainties between di�erent datasets (Figure 2.4-b and 2.5-b).

2.3.3 Uncertainties across time

As discussed above, there are di�erences in the precipitation values between precipitation
groups (Figure 2.3 and 2.4) and variations exist among the datasets within the same group. Both
of the absolute di�erences and the spatial variations have significant spatial variations across
the China mainland especially in the west China. In this section, the annual precipitation in ten
di�erent regions and the whole China mainland are analyzed to show the spatial heterogeneity
of the quantity of precipitation (Figure 2.6).

The time length of the datasets varies from one group to the other (Table 2.1) and therefore
the time length of the group is chosen as the overlap period of all datasets within that group.
As shown in Figure 2.6, the annual precipitation of the GCMs is apparently higher than that
of the gauge-based products or merged products for almost all regions, which agrees with
the spatial patterns in Figure 2.4-f and the statistics in Table 2.2. The annual precipitation in
the gauge-based products is similar to that of CMA except in the southwest China (Figure
2.6-i) for the overestimation along the Himalayas (Figure 2.4-b). The precipitation in merged
products is higher in the southwest and northwest China, in accordance with Figure 2.4-d.

The standard deviation shown in Figure 2.6 represents the variations of the datasets
within the same group at each time step. The normalized standard deviation facilitates the
comparisons between di�erent regions by comparing the width of the uncertainty range (shaded
area) in the same scale of the y-axis. High deviations are found in all three precipitation groups
in the southwest China (Figure 2.6-i) because of the large di�erences along the Himalayas.
The deviations among the gauge-based products and the merged products in other regions are
small and getting smaller along with time. It is mainly because the observations are used to
control the data quality, more observations are integrated, and technologies improve with time.
A large deviation is found in the merged products in 10-northwest China (Figure 2.6-j) and the
4-Yellow River Basin (Figure 2.6-d), where the annual precipitation is among the lowest and
dry climate dominates. The model deviation of GCMs varies among regions as it is smallest
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Figure 2.6 – The normalized temporal variations (to CMA annual means) of di�erent
precipitation groups and the standard deviation within the same dataset group. The value
on the top right of each panel is the annual regional precipitation estimated in CMA dataset
(1979-2015). All the regional average precipitation is normalized (divided by the annual
precipitation). The shade represents the standard deviation of the annual precipitation in each
year among the datasets within that group.
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in the 1-Songhua River Basin (Figure 2.6-a) and the 6-Yangtze River Basin (Figure 2.6-f),
while it is among the highest in the 8-south China and the west China (9,10), agreeing with
the deviation maps in Figure 2.5.

The temporal variations of the gauge-based products and merged products agree well with
that of the CMA dataset, while the temporal variation of GCMs ensemble is weaker and not
well correlated with that of the CMA. The main reason is that GCMs are not constrained in
their sub-decadal variability and the sequence of the wet and dry years can be very di�erent
from that of the observations. So a smoother result can be obtained when we build the
ensemble means from the GCMs. While this is di�erent for the gauge-based and merged
products, as they have a strong co-variance and the ensemble mean preserves this co-variance.

For the entire Chinese mainland (Figure 2.6-k), the standard deviation remains stable for
di�erent precipitation groups. In contrast, the annual precipitation spans the largest di�erence
in the mainland compared to those divided basins (Figure 2.3). However, the spatial variation
has been collapsed when estimating the regional precipitation for temporal analysis. It is
therefore interesting to see if the variations in the time dimension and in the space dimension
can be compared or integrated with each other among the precipitation datasets.

2.3.4 Variations in the time and space dimensions

The precipitation varies in time and space. However, it is averaged either in the time
dimension to compare the spatial patterns (Figure 2.3) or in space dimension to compare
the temporal variations (Figure 2.6). The deviations in the time and space dimensions are
therefore very rarely compared. Herein, the standard deviation of the temporal and spatial
variations in annual precipitation datasets are compared in Figure 2.7 in ten regions and the
Chinese mainland for di�erent precipitation groups.

The gauge-based products provide similar annual regional precipitation to CMA over
the China mainland and ten specific regions except for the region 7-southeast China (Figure
2.7-g). The regional precipitation is larger in merged products than that of observations. The
spatial variations are the same for the GCMs, while the magnitude of the deviation in GCMs
is even larger except in the region 8-south China (Figure 2.7-h). These results indicate the
reduced ability of merged products and GCMs in reproducing the total value of the annual
precipitation.

Regarding the variations in time and space dimensions, the 3-Hai River basin and 7-
southeast China have the comparable values of temporal standard deviation (t.std) and spatial
standard deviation (s.std). It is mainly because these two regions are relatively small so that
the spatial heterogeneity is not strong in a given climate type. The t.std is also large in these
regions (Figure 2.6). So that the t.std is similar to s.std. Larger s.std is found in the regions
of 1-Songhua River basin, 2-Liao River basin, 5-Huai River basin and 8-South China. The
area of these regions is larger than the previous two basins, and the spatial heterogeneity is
therefore larger than that in the previous two basins. For the other four regions (i.e., 4-Yellow
River basin, 6-Yangtze River basin, 9-southwest China, 10-northwest China) and the China
mainland, the spatial variation is significantly larger than the variations in the time dimension.
The main reason is that these large regions span areas with di�erent climate types where the
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Figure 2.7 – The spatial standard deviation (s.std, horizontal) and temporal standard deviation
(t.std, vertical) of the annual precipitation in di�erent precipitation groups for ten regions
and the mainland China. The cross centre represents the long-term means of the regional
annual precipitation. The horizontal error bar represents the spatial standard deviation (spatial
variation of the long-term annual precipitation at all the grids). The vertical error bar represents
the temporal standard deviation (temporal variations of region-averaged annual precipitation
in di�erent years).
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annual precipitation may be significantly di�erent in the annual means. For example, in the
CMA dataset, the annual precipitation over China mainland is 592.6±25.0 mm/yr in di�erence
years, while it is 592.6±494.5 mm/yr at di�erent grids in China. The very small ratio of the
t.std to s.std (25.0/494.5=0.05) indicates a higher reliability of annual regional precipitation in
a specific year than the reliability of the annual precipitation at a specific grid point.

2.4 Variances in precipitation products

2.4.1 Variances in three dimensions

The standard deviations in either the space dimension or the time dimension in Figure 2.7
are estimated based on the ensemble means of the same precipitation group. The di�erences
among datasets within that group (used to build the ensemble mean) are therefore not
considered. On the other hand, although the standard deviation among the ensemble members
can be compared with either the spatial means or the temporal means in Figure 2.5 and 2.6,
it cannot evaluate the impact of ensemble variations on both the temporal dimension and
spatial dimension together. It is therefore more di�cult to compare the variation among the
datasets together with the spatial variation and temporal variation by current approaches. A
method which can integrate the variations together in the ensemble dimension, the temporal
dimension and the spatial dimension is therefore needed for their comparisons.

As introduced in the methodology section, the ensemble variance can be estimated by
the proposed three-dimensional partitioning approach. The input annual precipitation to the
approach is organized into three dimensions as (1) time, 27 years from 1979 to 2005, (2) space,
the number of 0.5o grids in a specific region and (3) ensemble, the number of the models in a
same precipitation groups (4 models in all three groups).

The grand variance and the variances in three di�erent dimensions (i.e., time, space and
ensemble) for all the regions are mapped in Figure 2.8. It is similar for data groups of gauge-
based products and the merged products for the grand variance (total value of the variance for
all three dimensions, Figure 2.8-a,b,c), while the grand variance in GCMs is approximating
twice the values of the grand variance in regions 9-south China and 10-southwest China.
The di�erences are mainly constituted by the space variance and ensemble variance (Figure
2.8-i,l).

The time variance (Vt) is the smallest of all three variance proportions, and there are very
little di�erences of Vt in the north China (Figure 2.8-d,e,f). Vt in the gauge-based products is
higher than that in the merged products and GCMs in regions 8-southeast China and 9-south
China, indicating a relatively strong temporal variation in the annual precipitation series. For
the space variance (Vs), similar patterns are found in the gauge-based products and merged
products (Figure 2.8-g,h), the 7-Yangtze River basin and 9-southwest China have the largest
Vs because the precipitation significantly varies in space in these two regions. Vs is higher in
the precipitation of GCMs especially in the 9-southwest China, indicating the strong spatial
heterogeneity in the GCM models over the Himalayas (Figure 2.8-i). The ensemble variance
(Ve) is relatively small in most of the regions in gauge-based products (Figure 2.8-j), with
the highest Ve occuring in 9-southwest China. It indicates that the model variation between
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Figure 2.8 – The maps of the grand variance (V) and variances in di�erent dimensions (Vt , Vs,
Ve) for three di�erent precipitation groups.

datasets in the observation group is small. Similar small values of Ve are found in the northern
regions in merged products as well as in the GCMs for the regions in north China, while the
intra-ensemble variations are large in the south especially the 9-southewest China and 8-south
China in the GCMs (Figure 2.8-k,l).

In conclusion, the grand variance and variances in three di�erent dimensions are generally
larger in the dataset group consisting in GCMs. The variations for the gauge-based products
and merged products are similar in values and spatial distribution. However, the statistics
only show the total variances without consideration of the absolute regional means. The
deviations which are estimated as the ratio of the square root of the variance to the mean
(i.e., U, Ut , Us, Ue) should be evaluated to eliminate the systemic e�ect of the average means.
Moreover, it is not easy to capture how the three variances vary with each other from Figure
2.8. The normalized variance proportion in time, space and ensemble dimensions Pt , Ps, Pe

are therefore analyzed as well in the next sections.

2.4.2 Variance proportions in three dimensions

All of the variance proportions are normalized so that the comparison between variances
in di�erent dimensions becomes easy. As shown in Figure 2.9, the Pt is in general the
smallest among the three variances and the Ps is the largest, which agrees with the standard
deviation comparisons in Figure 2.7. The Ps is especially large in the 7-Yangtze River basin
and 10-northwest China because the area is the largest and they span di�erent climate zones
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(Figure 2.9-d,e,f). The ensemble variance Pe is smaller than the Pt in the observation dataset
group in the east China (Figure 2.9-g), which is probably because the gauge-based products
are based on similar sets of observations to some degree and the orographic e�ect is not
obvious in the east so that interpolation will not induce large uncertainties in the precipitation
maps. Pe is generally lower than the Ps while an exception is found for the GCMs in the
8-southern China (Figure 2.9-i), indicating significant variations in di�erent GCM models in
estimating the precipitation. The model deficiency to represent the monsoonal flows in GCMs
may result in the large di�erences.

0 1.00.20.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a) (b) (c)

(d) (e)

(g)
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(h) (i)
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Figure 2.9 – The maps of variance proportion in di�erent dimensions (Pt , Ps, Pe) for three
di�erent precipitation groups.

The variance proportions are plotted in a ternary diagram in Figure 2.10. The scatter is
distinguished in colours and shapes to represent three di�erent precipitation groups. The
numbers representing the regions are labelled near the scatter points. In general, the space
variance proportion (Ps) dominates the variances as it is larger than 0.5 in most of the regions
in di�erent precipitation groups (zone V and VI). The larger Ps agrees with the standard
deviation in Figure 2.7 and Ps of regions of 4, 6, 9, 10, 11, which has very large space standard
deviation in Figure 2.7 has the largest Ps in the right bottom corner of Figure 2.10. Pt is the
largest among the three variance proportions for region 3, 1, 5 in gauge-based products as
well as regions 3, 1, 5, 8 in merged products (zone III and IV in Figure 2.10), agreeing with
the larger temporal deviation in Figure 2.7.

All the ensemble variance proportion Pe is lower than 0.2 for the precipitation group of
gauge-based products, and the Pe is the highest in 9 of 10 regions (zone IV and V). The Pe in
the merged products expands with the largest value of 0.35 in region 9. However, the Pe is
still not the dominant variance since there are no values in the zone I and II, the Pe is larger
than the temporal variance Pt in regions-4, 6, 9, 10, 11(zone VI).
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Figure 2.10 – Ternary diagram of the variance proportion in time, space and ensemble
dimensions over the annual precipitation data. Six zones are divided in the diagram as (I)
where Pe > Pt > Ps, (II) where Pe > Ps > Pt , (III) where Pt > Pe > Ps, and (IV) where
Pt > Ps > Pe, (V) Ps > Pt > Pe and (VI) where Ps > Pe > Pt .
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For the precipitation ensemble of GCMs, the Pe dominates the variances in region 8 where
is the most a�ected by tropical cyclones. It shows the significant variations among di�erent
GCM models and the variation has exceeded both the temporal variation and spatial variation.
Also, the Pe for other regions are not the dominated, it is larger than Pt which represents the
temporal variation. The choice of GCMs becomes more critical since di�erent GCMs provide
results with high uncertainty compared to the temporal variations.

The lines which represent the ratios of the ensemble variance to other two variances
Ket = Pe/Pt and Kes = Pe/Ps are added in Figure 2.11. Most of the scatter is located in the
area with Kes < 1, indicating that the choice of precipitation products will not a�ect the results
in spatial analysis (spatial heterogeneity). For the scatter in the area IV and V in Figure 2.10,
the Ket is also smaller than 1.0, the dataset choice will not introduce significant di�erences
in the temporal analysis (i.e., annual precipitation) as well. Half of the scatter for merged
products and all GCMs is located in the area with Ket > 1. The Ket is even larger than 4 for
regions of 8, 9, 10 and 11. It indicates that the choice of any dataset from the merged products
or GCMs will have large uncertainty in the temporal analysis, that is, any of the single model
among them has very low reliability on the temporal variations and obtaining ensemble means
is highly recommended. While the choice of a single model will not a�ect the spatial analysis
since the spatial patterns will be similar in any datasets in the group for the low Kes. For the
scatters with high Kes and high Ket (e.g., region 8 for the GCMs), the spatial patterns may
di�er among datasets, but the spatial heterogeneity may also vary between di�erent GCMs.
An ensemble is needed for either the spatial analysis or the temporal analysis to avoid large
bias in a single dataset.

2.4.3 Deviations in three dimensions

Opposite of the spatial patterns of the variances (Figure 2.8), the larger values of the
deviation occur in the northwest, and lower values occur in southern China in general (Figure
2.12). It is because of the decreasing gradient of precipitation from the southeast to the
northwest China (Figure 2.3). Although both the ensemble means and the variances are
among the lowest in the northwest China, the total deviation (U =

p
V/µ) is the highest in this

region (U=0.89, Figure 2.12-a,b,c) for all three groups. U is relatively small in the 1-Songhua
River (U=0.27) in the northeast and 8-South China (U=0.29) for the gauge-based products
and 6-Yangtze River has relatively lower U in the merged products and GCMs in the east part
of China.

The variation in time and space dimension are inherent, and they show the temporal
variation and spatial heterogeneity of the precipitation characteristics. It is found that the Ut

is small and contributes very little to the total U, indicating the weak fluctuation of annual
precipitation compared to spatial variations (Figure 2.12-d,e,f). The Ut values are the smallest
for GCMs, in accordance with the temporal variations in Figure 2.6. The relative variance in
space dimension (Us) contributes the most the total variance, especially in the northwest China
(Us=0.77 for the gauge-based products, Figure 2.12-g). The high values indicate the strong
spatial heterogeneity of precipitation in the region compared to the mean values. However,
because the GCMs have di�culity to describe the spatial variation in the northwest, the
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Figure 2.11 – Same as Figure 2.10 while the ratio of Ket = Pe/Pt and Kes = Pe/Ps is divided
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Figure 2.12 – The maps of deviations (U, Ut , Us, Ue) estimated as the ratio of the square root
of the corresponding variances (i.e., V , Vt , Vs, Ve) to the regional mean (µ) for three di�erent
precipitation groups.



2.5. Uncertainty and metric comparisons 41

Us(=0.51) is smaller than that of the gauge-based and merged products.
As presented previously, the variations in time and space dimension are the inherent

characteristics of the precipitation patterns, it is not the absolute value (i.e., Ut or Us) but the
deviation of the value to that of the observations show the ability of the products to represent
the spatiotemporal patterns. The relative variance in the ensemble dimension (Ue) shows the
variations among di�erent products in the same group. It thus can be called the "uncertainty"
level as what is defined for the standard deviation. For the gauge-based products, the Ue is
smaller than 0.1 for the regions in the east China, indicating that the model di�erences are
small compared to the annual means. The Ue value is higher for the 9-southwest (=0.30) and
10-northwest China (=0.37), showing large variations even in the gauge-based products. The
Ue is similar to that of the gauge-based products in the west China (=0.36), while it is larger in
the east especially for the 6-Yangtze River and 4-Yellow River (more than two times larger than
Ue of the gauge-based products). For the GCM precipitation, the uncertainty increases for the
eastern regions as expected, while it decreases in 10-northwest China (Ue=0.25) compared to
that of the other two groups. The result is di�erent from the expectation that in the northwest,
all the absolute bias (Figure 2.4-e,f), the spatial standard deviation (Figure 2.5-e,f) and the
temporal standard deviation (Figure 2.6-j) are larger than that of the other two groups.

2.5 Uncertainty and metric comparisons

2.5.1 Uncertainty and standard deviations

As shown in equation 2.18, the ensemble variance is formulated as

Ve =
mn(l � 1)
3(mnl � 1) [

�2
e_t
+ �2

e_s

2
+ �2

e + �
2
e
(µts)] (2.19)

It combines four elements which calculate the variation of di�erent values across the ensemble
dimension (i.e., the variance of original temporal and spatial values-�2

e , of the temporal
mean-�2

e_t
, of the spatial mean-�2

e_s and of the grand mean-�2
e
(µts)). Among which, the �2

e_t

is the average mean of the square of spatial standard deviation (s.std) in Figure 2.5-a,c,e for
all grids in a specific region and �2

e_s average mean of the square of the temporal standard
deviation (t.std) in Figure 2.6 in each time step in a specific region. These are two classic
metrics that are used to quantify model uncertainties. �2

e and �2
e
(µts) are overall estimations

of the spatiotemporal variations. The di�erence is only whether the averaging of across the
time and space dimensions is before or after the variation calculation.

We will compare the uncertainty that quantified by the variance partitioning approach
with the two classic metrics to better understand the similarities and di�erences of the new
estimation. To facilitate the comparisons, we normalize the three metrics as the square root and
divided by the mean. The uncertainty level which quantified with the variance is formulated
as

Ue =
p
(Ve)/µ (2.20)
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And the classic metrics are
N .t.std =

q
�2

e_s/µ (2.21)

N .s.std =

q
�2

e_t
/µ (2.22)

The uncertainty metric is compared with the average mean of the normalized spatial standard
deviation (N.s.std) for all grids in specific region and the average mean of the normalized
temporal standard deviation (N.t.std) for each region (Figure 2.13).
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Figure 2.13 – The relation of the Ue to (a) the normalized spatial standard deviation - N.s.std
and (b) the normalized temporal standard deviation - N.t.std.

The Ue is in line with both the N.s.std and N.t.std when the Ue is smaller than 0.2 where
the regions from 1 to 8 are generally included for all three precipitation groups (Figure 2.13).
The Ue is in general larger than the N.s.std and N.t.std for the products. It is simply because
the variations of the other dimension have collapsed when calculating the spatial deviation
(or temporal deviation). For the regions 6 and 10, the N.s.std is larger than the Ue due to the
e�ect of variations in original dataset (�2

e and �2
e
(µts), Figure 2.14). For the regions 9, 10

and 11, the values of the N.s.std and N.t.std deviate from the 1:1 line of the Ue. These regions
feature with strongly space heterogeneities (Figure 2.5) as the spatial variation across space is
extremely higher than the temporal variation. While the estimation of the two classic metrics
needs to average one of the dimensions which can result in the loss of information of that
dimension. Because the estimation of N.t.std needs the averaging in spatial dimension which
may include more information than that in the time dimension, the deviation between N.t.std
and Ue (Figure 2.13-b) is larger than that between N.s.std and Ue (Figure 2.13-a).

2.5.2 Decomposing the ensemble variance

By decomposing the equation 2.19, the contributions of the four components to the total
value are shown in Figure 2.14. For all the three precipitation groups, the �2

e is the dominant
component, simply because all the other components are estimated first by averaging the
original data which is the most varying in either time or space dimension. The contributions
di�er in three precipitation groups as it is stable and around 0.65 for the gauge-based products,
generally between 0.4 and 0.5 for the merged products and between 0.5 and 0.6 for the GCMs.

The other three components are similar in their values, with a limit of 0⇠0.3. For the
gauge-based products, the variation of the ensemble means �2

e
(µts) is the smallest, indicating
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Figure 2.14 – The proportion of the four components in equation 2.19 to the Ve in three
precipitation groups, (a) gauge-based products, (b) merged products and (c) GCMs. The
contribution are normalized so that the sum of them is 1.0 for each region.

the least systematic uncertainty among di�erent products. While, both the merged products
and GCMs have large systematic uncertainty (bias in the mean values, also see Table 2.2).
The proportions of the �2

e_t
and �2

e_s slightly shift around 0.15 for regions from 1 to 8. While
for the region 9, 10 and 11, the �2

e_t
increases, indicating that the spatial heterogeneity of the

temporal means is significant for these regions. On the contrary, the �2
e_s decreases because

the spatial averaging has collapsed the spatial variations. The very small contribution of the
�2

e_s which is related to the N.t.std is the inherent reason that there is larger deviation between
the N.t.std and the Ue.

Although all the variations are used as the metrics for evaluating the variations among
multiple datasets, there are limitations for each of the variations. For the variation of
temporal mean �2

e_t
and spatial mean �2

e_s, the collapse of a dimension has ignored part of the
information (also introduced in the Introduction). The variation of original data �2

e cannot
account for the systematic uncertainty while the variation of the grand mean �2

e
(µts) has

ignored both the temporal variability and spatial heterogeneity. Therefore, it is di�cult to use
any of these metrics to represent others either from the theory or the results (Figure 2.14).
Integration of di�erent components is therefore needed and able to represent other metrics to
di�erent degrees.

What is interesting is that the variability of the proportions of �2
e_t

and �2
e_s (or �2

e and
�2

e
(µts)) are opposite and the sum of their proportions is stable around 0.3 (or 0.7). It is

known that the variation in the time dimension and that in the space dimension should be
considered together. In addition, the total ensemble variance (Ve) is in proportion with the sum
of variations in the two dimensions (time and space). Moreover, the ensemble variance (Ve) is
also in proportion with the sum of the variations in original data and that of the systematic
uncertainty. As concluded, the ensemble variance (Ve) shows an integrated variation from
di�erent aspects of multiple datasets and has better ability to demonstrate the uncertainties
compared to other metrics.

2.5.3 Uncertainty with other metrics

To further verify the applicability of uncertainty metric Ue to represent uncertainties among
multiple datasets, a few other coe�cients (i.e., absolute bias in percentage-apb, Normalized
Root Mean Square Error-rmse_nor , correlation coe�cient, Nash-Sutcli�e E�ciency-NSE)
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are imported and compared with Ue. The coe�cients are estimated between each single model
in a group with the ensemble means of datasets in that group. These coe�cients may to some
degree indicate the deviations of the considered product to the ensemble means. Di�erent
coe�cients reflect the similarities between two series from di�erent angles. For example, the
apb and rmse_nor shows the value deviations from the other in one order and two orders. The
correlation coe�cient shows the similarity in the temporal variation, while NSE integrates
the value deviations as well as the temporal variation.

For all the four coe�cients, the Ue show a positive relation with the increasing of the
deviations (i.e., higher apb, higher rmse_nor , lower correlation and lower NSE), indicating
that the ensemble means have changed in a larger degree from the original datasets with
higher Ue (Figure 2.15). The spread of coe�cients from di�erent models in the same group
indicates di�erences among the models because they have the same reference time series
(i.e., ensemble means). The standard deviations of the coe�cients for each dataset group for
each region are plotted in Figure 2.16, and their linear regression relation identified by the
regression lines. Known from Figure 2.16, the standard deviation of the coe�cient increases
with higher Ue either for single precipitation group (colored best-fit lines in Figure 2.16) or
the total scatters (black best-fit line in Figure 2.16). Only the exception is the correlation
coe�cient for gauge-based datasets because the temporal variabilities are highly accorded
with each other, and the di�erence is not large between di�erent products (Figure 2.16-c).
The positive correlation of the Ue with the increasing coe�cients deviation still exist for the
remaining scatters and for the total values. As concluded, the relation tests regarding the value
of coe�cients and the standard deviation among models indicate that the Ue is capable of
representing the intra-ensemble variations.

2.6 Discussion and Conclusion

2.6.1 What is the uncertainty means among precipitation groups

This chapter estimates the uncertainties among precipitation products in di�erent groups
(i.e., gauge-based products, merged products and GCMs). Because the generation methods of
these precipitation products are di�erent, the uncertainties among products therefore show
di�erent physical meanings from one group to another. The gauge-based products (i.e., GPCC,
CRU, CPC and UDEL) use observed data from global atmospheric gauges, while the density of
ground observation gauges, the representatives of the gauges and the interpolation algorithms
for converting the gauge observations to grids dataset vary from product to product (see Table
1 in Tapiador et al. 2012). Therefore, the uncertainties among the multiple products measure
the di�erences caused by the di�erence of used gauge observations and the interpolation
approaches.

Among the merged precipitation products, the CMAP, GPCP and MSWEP use di�erent
sources of precipitation data (e.g., gauge observations, satellite remote sensing, atmospheric
model re-analysis). These di�erent precipitation sources are averaged using di�erent weights.
Thus the di�erences among the three merged products are associated with the precipitation
sources and the weight of the gauge observations. The ERA-Interim is re-analysis model
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Figure 2.15 – The relation between the uncertainty Ue with other currently used coe�cients
(a) the absolute bias in percentage, (b) normalized root mean square error, (c) correlation
coe�cient, (d) Nash-Sutcli�e E�ciency. The dashed lines show the linear regression of the
values in di�erent dataset groups.
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Figure 2.16 – The relation between the uncertainty Ue with the standard deviation coe�cients
for di�erent datasets in a same precipitation group.
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output, while it uses near-real-time assimilation with data from global observations (Dee et al.
2011). Thus the forecasting model is constrained to observations and forced to follow the real
system to some degree. The temporal variability of the merged products is therefore consistent
while the absolute values are di�erent from the gauge-observed precipitation (Figure 2.6).

GCMs are precipitation estimations, and there are not any observations that constrain the
simulation development. Therefore, the model algorithms will definitely a�ect the accuracy
of models and the model errors have been validated in many studies over di�erent places
using the observations. In addition to inherent model, the initial condition of the GCMs will
result in a spread of simulations as well. Kay et al. (2015) repeatedly run the same GCM with
a very small di�erence in the initial conditions, and there is a spread of the model outputs
after a number of time steps of running (see Figure 2 in Kay et al. 2015). Therefore, the
uncertainty estimated by the proposed approach evaluates the model variations resulted from
the di�erences in the model and the initial conditions. The uncertainty is also larger than the
results of the other two precipitation groups which are constrained by observations.

2.6.2 Features and applicability of the approach

The proposed variance partitioning approach works in three dimensions, and it is able to
use all of the information in the time and the space dimensions among the multiple ensemble
members. Compared to the current commonly used metrics (e.g., standard deviation), the new
estimation of uncertainty avoids aggregation in both temporal and spatial dimensions. The
result of the new uncertainty is, in general, larger than the values which are estimated by old
metrics.

The results of the partitioning approach can be a�ected by the choice of the time step
intervals. For example, the time variation or time variance proportion will significantly
increase if the time interval is chosen as one month. The inter-annual variation of precipitation
will result in higher Vt and lower Vs or Ve. It depends how significant the inter-annual variability
is compared to the intra-annual variations.

The present approach has a flexible structure that potentially deals with di�erent problems
from global to regional dimensions. The time dimension can consider intervals from daily,
monthly, annual or to decadal analysis which corresponds to climate change scopes. The
ensemble dimension is applicable from 2 members (i.e., model evaluation between simulations
and observations) to any number of multi-models (consensus evaluation, Tebaldi et al. 2011;
McSweeney and Jones 2013). The present approach is applicable to any variables that are
organized in the three dimensions such as climatic variables (e.g., temperature, evaporation),
hydrological variables (e.g., soil moisture, runo�) or environmental variables (e.g., drought
index). Based on these advantages, the three-dimensional partitioning approach can widely be
applied in the hydroclimatic analysis.

2.6.3 Conclusion

The uncertainties among multiple precipitation datasets are investigated over China in this
chapter. Thirteen precipitation datasets are categorized as three groups (i.e., gauge-based
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products, merged products and GCMs) in terms of the way the datasets were generated.
A new three-dimensional partitioning approach is proposed to assess the model variation
among di�erent datasets in the same precipitation group. The ensemble variance (Ve), the
variance proportion (Pe) and the deviation (Ue) are estimated. Pe is a relative proportion of
the ensemble variation to variations of other dimensions (i.e., time and space). Ue indicates
the uncertainty level of the multiple datasets compared to the ensemble means. The Ue is
compared with the current coe�cients (e.g., standard deviation) to show its applicability. The
main conclusions are listed as:

1. The magnitude of the intra-ensemble variations in three precipitation groups is di�erent.
The GCMs show the largest intra-ensemble variations in both the spatial dimension and
the temporal dimension. The datasets based on gauge-based products have the least
intra-ensemble variations among the three precipitation groups.

2. The model variation is larger in the south and west China especially in the mountainous
area (e.g., the Himalayas and the Kunlun Mountains). It demonstrates the di�culty of
precipitation measurement and modeling in these areas with strong orographic e�ects.

3. The spatial variation is generally larger than the temporal variation for the annual
precipitation in di�erent regions. The proposed new three-dimensional partitioning
approach additionally estimates the ensemble variance among the multiple models.
Although the ensemble variance is not the dominant proportion in the total (sum of the
time, space, ensemble variances), it is larger than the temporal variance in some cases
which means the ensemble will significantly change the temporal patterns of original
datasets.

4. The metric Ue is estimated and used to represent the uncertainty level of the multiple
datasets to the ensemble means. The Ue is higher in the northwest and the southwest
regions where the topography weather dynamics are more complicated.

5. The uncertainty metric Ue is correlated with some other coe�cients (e.g., standard
deviation, correlation, Nash-Sutcli�e E�ciency) that are used to identify the similarities
between models. The correlation proves that the Ue can be used as an indicator of
intra-ensemble variations. The Ue is in the meantime superior to other metrics since it
integrates the variation in both time and space dimensions.
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Known from the literature presented in Chapter 1, the Tarim basin in China is one
of the regions where there are high uncertainties in both the meteorological observations
and hydrological modeling. The precipitation is very light over the Tarim but with strong
heterogeneity in space (see Chapter 2). The water source of the Tarim basin replies on glacier
melt and thus it is sensitive to climate change, especially global warming over Central Asia.
Human activities in the meantime play an important role in the Tarim basin by shifting the
natural water cycle and discharge regimes in the lower oases. Therefore, the Tarim basin
is a region where the climate change and human activities interact with high uncertainties
due to the lack of data or model practices (see details in section 3.2). This chapter attempts
to assess the factors that a�ect the model accuracy in hydrological modeling in the Tarim
basin. Supplementary literature (section 3.1) and a new framework (ORCHIDEE-Budyko,
section 3.3.1) are proposed for this purpose. The model bias is attributed to uncertainties
in the forcing variables (especially the precipitation) and the model structure. The human
impact on the discharge is also discussed in section 3.4. The chapter was published to the
international journal Hydrology and Earth System Science.

Xudong Zhou et al. (2018). “Understanding the water cycle over the upper Tarim Basin:
retrospecting the estimated discharge bias to atmospheric variables and model structure.”
Hydrology and Earth System Sciences 22, Pages 6087–6108. ���: 10.5194/hess-22-6087-
2018

https://doi.org/10.5194/hess-22-6087-2018
https://doi.org/10.5194/hess-22-6087-2018


3.1. Introduction 51

Understanding the water cycle over the upper Tarim Basin:
retrospecting the estimated discharge bias to atmospheric

variables and model structure
Xudong Zhou1,2, Jan Polcher2, Tao Yang1, Yukiko Hirabayashi3, Trung Nguyen-Quang2

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai
University, 210098, Nanjing, China

2Laboratoire de Météorologie Dynamique du CNRS, IPSL, École Polytechnique, 91128,
Paris, France

3Department of Civil Engineering, Shibaura Institute of Technology, Tokyo, Japan

Abstract

The bias in atmospheric variables and that in model computation are two major causes
of failures in discharge estimation. Attributing the bias in discharge estimation becomes
di�cult if the forcing bias cannot be evaluated and excluded in advance in places lacking
qualified meteorological observations, especially in cold and mountainous areas (e.g., the
upper Tarim Basin). In this study, we proposed an Organizing Carbon and Hydrology In
Dynamic EcosystEms (ORCHIDEE)-Budyko framework which helps identify the bias range
from the two sources (i.e., forcing and model structure) with a set of analytical approaches.
The latest version of the land surface model ORCHIDEE was used to provide reliable discharge
simulations based on the most improved forcing inputs. The Budyko approach was then
introduced to attribute the discharge bias to two sources with prescribed assumptions. Results
show that, as the forcing biases, the water inputs (rainfall, snowfall or glacier melt) are very
likely underestimated for the Tarim headwater catchments (-43.2 % to 21.0 %). Meanwhile,
the potential evapotranspiration is unrealistically high over the upper Yarkand and the upper
Hotan River (1240.4 and 1153.7 mm yr�1, respectively). Determined by the model structure,
the bias in actual evapotranspiration is possible but not the only contributor to the discharge
underestimation (overestimated by up to 105.8 % for the upper Aksu River). Based on a
simple scaling approach, we estimated the water consumption by human intervention ranging
from 213.50 ⇥108 m3 yr�1 to 300.58 ⇥108 m3 yr�1 at the Alar gauge station, which is another
bias source in the current version of ORCHIDEE. This study succeeded in retrospecting the
bias from the discharge estimation to multiple bias sources of the atmospheric variables and
the model structure. The framework provides a unique method for evaluating the regional
water cycle and its biases with our current knowledge of observational uncertainties.

3.1 Introduction

A failure of discharge estimation can easily happen to a researcher especially when
exploring a new region. It is often attributed to model inapplicability to the region, and tuning
the model parameters is a common way to eliminate the discharge bias (Refsgaard 1997;
Westerberg et al. 2011). However, a hidden assumption is often ignored that the atmospheric
variables (or named here forcing) are essentially correct, while it may fail in some regions
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(Fekete et al. 2004; Adam et al. 2006). Without knowing the bias in forcing, the calibration
becomes meaningless if the model parameters are tuned to values that are far from their
physical meaning (Hernández and Francés 2014; Qin et al. 2018a; Qin et al. 2018b). Thus,
an important step before applying a model to a new region is to understand where the bias
sources lie and their relative relations (Renard et al. 2010).

In situ measurements are considered most reliable sources for atmospheric variables and
thus can be used to evaluate or further correct the variables used to drive hydrological models
(Wang et al. 2017b). However, larger uncertainties are still found in mountainous and arid
areas due to the poor representativity of in situ observations (Adam et al. 2006; Harris et al.
2014; Yang and Lu 2014; Wang et al. 2018). For instance, the precipitation (P) over the
mountainous area is mostly underestimated due to rare observations at high altitude and
orographic e�ects (Harris et al. 2014). A total of 20.2 % of the precipitation is underestimated
over global orographically a�ected regions according to Adam et al. (2006). Arid areas
receive less water input but have larger relative uncertainties in precipitation (Fekete et al.
2004), which are crucial to regional runo� (R) generation. Meanwhile, the energy flux over
arid regions varies significantly. Thus the potential evapotranspiration (PET) and the actual
evapotranspiration (ET) are quite uncertain over those areas (Federer et al. 1996; Weiß and
Menzel 2008); in the meanwhile, the PET and ET are variables unable to directly measure for
a basin. Investigation of their errors and relations based on the model simulation becomes
necessary.

Model e�ciency needs to be verified firstly. The model performance is generally evaluated
on the agreement of a single variable, and discharge is the most commonly used as it is the
result of all the water–energy processes. It reveals the accuracy of the whole system while also
accumulating all the errors from the forcing and the model. Therefore, a multivariable analysis
based on the relation between variables is needed for overall evaluation (Kavetski et al. 2006).
These relations represent typical climatic and regional characteristics; i.e., the aridity index
(PET / P) reveals the energy and water input over a specific region (Zomer et al. 2007; Zomer
et al. 2008), and the ratio of evapotranspiration to precipitation (ET / P) is relevant to the land
cover conditions (Liu et al. 2003; Yang et al. 2008a). The Budyko hypothesis is a widely
accepted empirical relation between ET / P and PET / P (Webster 1976). The shape of the
optimal Budyko curve reflects local climatic and underlying characteristics (Ponce et al. 2000;
Yang et al. 2007). Hence with a Budyko curve derived from land surface model simulations,
biases of the water–energy components (P, ET or PET) can be assessed. For example, Adam
et al. (2006) quantified the precipitation bias in orographically a�ected areas using the Budyko
hypothesis, although their work attributed all the bias in discharge simulation to the forcing
with an incorrect assumption that their model was perfect.

Most of the hydrological models, with either a lumped or a distributed concept, are
dependent on the calibration. Because of the assumption that water input (P) is correct and a
very crude description of energy processes, the ET is the variables which can be adjusted to
meet the water mass balance. Most of the bias is therefore assumed to derive from the ET. It
may mislead the relations between PET / P and ET / P, which represents the climatic and
regional characteristics (Liu et al. 2003; Zomer et al. 2007; Yang et al. 2008a; Zomer et al.
2008). Land surface models (LSMs) are almost independent of the calibration process, with
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most of the model parameters obtained from multiple maps (e.g., land cover, land use, soil
textures). Based on their substantial physically based modules, the LSMs have been widely
used to estimate most of the components in the continental water cycle (Yu et al. 1999; Yu
2000; Pitman 2003; Trenberth et al. 2007; Renard et al. 2010). Although the LSMs do not
necessarily provide good estimates of discharge (Giorgi and Francisco 2000; Fekete et al.
2004; Yu et al. 2006; Knutti et al. 2010), they prevent all the bias being revised by calibration.
In return, the modeled discharge bias can reveal the biases related to model input or model
structure, which have not attracted enough attention.

The Tarim Basin – located in the northwest of China, central Asia; surrounded by high
mountains; and punctuated by oases in the center of deserts – is a region integrating the
mountainous, arid and cold characteristics in di�erent parts (Yang et al. 2015a; Yang et al.
2015b). The precipitation is mainly distributed over the upper mountainous area around
the boundaries, and the snowmelt and glacier melt are major contributors to the local water
resources (Gao et al. 2010; Pritchard 2017). However, the meteorologic observations on
the water input components are sparse, and the gauges are not representative because the
surface conditions are heterogeneous especially in the mountainous area (Shen et al. 2010). In
the lower oases, intensive irrigation is developed, which is hugely reliant on the discharge
flowing from the headwater catchments (Mamitimin et al. 2014; Ren et al. 2018), causing
considerable changes in the natural river discharge downstream of the area (Zhou et al. 2000;
Tao et al. 2011). In reality, human intervention is very di�cult to model as it is policy related
and because of the lack of an e�cient dataset. The anthropogenic e�ects on the water cycle,
accompanying the climatic and topographic characteristics, make the Tarim one of the most
challenging places to apply land surface models.

There are three major steps in this study, Firstly, we generated a best-possible forcing
dataset for the Tarim domain which reduces as far as possible the biases using refined
data sets. The refined forcing then drove an improved land surface model (Organizing
Carbon and Hydrology In Dynamic EcosystEms: ORCHIDEE) to obtain the improved
discharge estimations. Secondly, the estimated discharge was compared with in situ discharge
observations (Sect. 3.4.1), and the evidence of their bias analyzed (Sect. 3.4.2). In the third
step, the possible bias sources from the forcing and model structure were qualified with the
Budyko hypothesis (Sect. 3.4.3), and their possibilities are discussed in Sect. 3.4.4. The
model bias due to ignorance of human intervention is estimated based on the bias analysis
over the headwater catchments in Sect. 3.4.5.

3.2 Study area and hydro-meteorological characteristics

The Tarim Basin locates in the northwest of China, surrounded by the Kunlun Mountains
in the south, the Tienshan Mountain in the north and the Pamirs Plateau in the west (Fig.
3.1). Its U-shaped terrain blocks the westerly atmospheric water vapor transport that leads
to relatively low precipitation inside the basin (Wu et al. 2012b). As simulated by Wu et al.
(2012b), 63 % of the water vapor enters Tarim through the eastern passway, but it only happens
in summer, contributing around 54 % of the total annual precipitation, leading to a strong
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seasonality in precipitation (Tao et al. 2011). Combined with the glacier melt during warm
summer, 70 % of the annual discharge is concentrated in the period from June to October (Liu
et al. 2010b). The high seasonality implies a high risk of water deficit in dry seasons and
endangers the ecosystem along the rivers (Döll et al. 2009), which requires human regulation
to allow for e�cient agriculture.

Despite the high interannual variability, the precipitation is heterogeneously distributed
due to orographic e�ects (Wu et al. 2012b). It ranges from 200 to 500 mm yr�1 in the
mountainous area, while there is less than 50 mm in the central Tarim (Chen et al. 2007). The
mountainous glacier melt/snowmelt occurs in the same place where precipitation is generated.
The mountainous area contributes almost all the river runo� of the Tarim Basin, while the
plains of Tarim contribute little to the water resource of the main Tarim (Yang et al. 2015b;
Shi et al. 2016). In the upper Tarim, only three water systems (the Yarkand, the Hotan and the
Aksu rivers; see Fig. 1) have natural hydraulic connections to the mainstream - the Tarim
(Yang et al. 2015b). The water originating from the mountains flows through the oases where
people live and allows intensive agriculture (Mamitimin et al. 2014). As a consequence, a
large proportion of the water is extracted for human utilization in the oases, so that only 8.7
%, 43.4 % and 30.6 % of the discharge from headwater regions of the Yarkand, Hotan and
Aksu rivers can finally reach Tarim mainstream, respectively (25.3 % in overall in 1995; Zhou
et al. 2000). The Kaxgar River is another major tributary of the Tarim, but it has already dried
up before water could reach the mainstream due to natural evaporation/leakage and human
intervention. Of all the water consumption, agriculture irrigation accounts for more than 95
% in the Tarim Basin (Zhou et al. 2000); hence the dominant human influence in the Tarim
Basin is considered to be the irrigation influence.

There are 11 665 glaciers with a total area of 19 878 km2 and a volume of 2313 km3

distributed over the Tarim (Liu et al. 2006). The glacier melt is a critical contributor to
the local water resource. According to Zhou et al. (2000) and Shangguan et al. (2009),
the estimated glacier melt accounts for around 40 % of the total river runo� for the whole
Tarim. However, due to the climate change, a large number of the glaciers were in retreat
during the last 40 years (1960s–2001). In the upper Tarim, the Yarkand River has su�ered the
most significant glacier area changes (-205 km2) with a relative proportion of -6.1 %. The
most significant retreat rate (-7.9 %) in glacier area occurs on the Pamirs Plateau in the west
(Shangguan et al. 2009). All the changes in glaciers will result in the alteration in the river
discharge and also the human interactions.

3.3 Data and Models

3.3.1 Data and simulation description

River discharge observations

River discharge is a very reliable and integrated observation of the continental water
cycle which is always used as a validation variable (Yang et al. 2017). Over the headwater
catchments, there are 13 hydrological gauges recorded in the Hydrological Yearbooks of
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China issued by the Ministry of Water Resources, though only six gauges are selected with
consideration of their locations and data completeness. Two gauges (1, 2) are in the upper
Yarkand River, two (3, 4) are in the upper Hotan River, and two (5, 6) are in the upper Aksu
River, while no gauge is found on the Kaxgar River. For the gauges in headwater catchments,
the discharge is considered free of human intervention, i.e., irrigation or reservoir regulation,
so to a large extent they represent the natural environment (Cui et al. 2018). This facilitates
model validation. Moreover, on the mainstream of Tarim, one gauge (7, Alar) was selected at
the junction of three upstream rivers (Fig. 3.1). Di�erent from the headwater gauges, the river
discharge at Alar has been significantly altered by human consumption after flowing through
the irrigation area (Mamitimin et al. 2014). Hence, the observations are no longer natural
values but can be used to quantify the influence resulting from human activities.
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Figure 3.1 – The major rivers and the glacier distribution in the Tarim Basin. The upper
Yarkand River catchment is defined by hydrological gauges 1 (JK) and 2 (KQ), the upper
Hotan River catchment is defined by hydrological gauges 3 (TGZLK) and 4 (WLWT), and the
upper Aksu River catchment is defined by hydrological gauges 5 (SLGLK) and 6 (XHL). The
upper Tarim Basin is defined by hydrological gauge 7 (Alar).

Near-surface atmospheric conditions

Near-surface atmospheric conditions are crucial to hydrological responses (Adam et al.
2006). However, both the model simulation and gridded forcing generated from observations
are proven to have large uncertainties where observations are sparse and heterogeneity is
strong (Harris et al. 2014; D’Orgeval et al. 2008), i.e., in the arid and mountainous area, so
that, in practice, several forcing datasets are always used in parallel to generate an ensemble
of climate conditions which hopefully tracks the uncertainties (Knutti et al. 2010; Tebaldi and
Knutti 2007). Alternatively, when possible, regional datasets which contain more information
than global datasets are used to move the forcing closer to true values (Ines and Hansen 2006).
In this study, several sets of estimated forcing inputs based on WATCH (Water and Global
Change Harding et al. 2011; Weedon et al. 2014) are developed and then used to drive the
land surface model (Fig. 3.2). The best simulations among them will be used to analyze the
accompanying bias with its driving forcing.
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Figure 3.2 – The flowchart of the 5 experiments designed for driving the ORCHIDEE in this
study. WFD and WDDEI are two basic forcing datasets. The underlined terms with numbers
are five experiments while the grey arrows represent the development of the forcing compared
to their previous ones.

A pair of reference forcing datasets are WFD (WATCH Forcing Data, 1958–2001; Weedon
et al., 2010, 2011) and WFDEI (WATCH Forcing Data methodology applied to ERA-Interim
data, 1979-2012, Weedon et al. 2014). They use the same methodologies but have slight
di�erences in the basic data, processing and formatting (Weedon et al. 2014). In brief, WFDEI
is an evolution of WFD where the underlying re-analysis is now ERA-Interim but using the
same bias correction methodology. This product has been proven to be superior to WFD. CRU
(Climate Research Unit) monthly total precipitation observations were used to biascorrect the
precipitation in WFD and WFDEI datasets. However, the WFD uses a previous version CRU
TS 2.10 before the CRU TS 3.1 used in WFDEI was released (Weedon et al. 2014). The two
CRU datasets di�er in the time period (CRU TS 2.10: 1901–2002; CRU TS 3.1: 1979–2009;
Jones and Harris, 2013), in the stations used and in the methods employed; see Harris et al.
(2014) for details. Hence, there are still some di�erences between the two which could further
a�ect the hydrological responses. The two datasets are named WFD-CRU and WFDEI-CRU
for later description, and the time step for all the forcing variables is 3 h.

The CRU datasets were constructed by monthly observations at meteorological stations
across the world’s continents. The observations were then interpolated to 0.5o longitude -
latitude grid cells. Though the CRU compares favorably to some other gridded datasets, it has
significant deviations over regions and time periods with sparser observational data (Harris
et al. 2014). Moreover, because only the monthly total precipitation was used to correct
WFDEI and WFD, it cannot improve the temporal variabilities at smaller time steps (i.e., daily
or sub-daily). However, the precipitation variations in a short period would result in di�erent
hydrological responses even in the condition of the total monthly amount remaining the same
(Potter et al. 2005).

Hence, in addition, the WFDEI-CRU dataset was further corrected by the gridded daily
precipitation data from the China Meteorological Administration (named CMA). The CMA
precipitation product compiles 2416 national meteorological monitoring stations over China,
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using the climatological optimal interpolation method to generate the gridded 0.5o precipitation
field from 1951 to 2016 (Shen et al. 2010). PRISM (Parameter-elevation Regression on
Independent Sloped Methods; Daly et al. 2008) was used to lessen the orographic e�ects
(Shen et al. 2010). The density of meteorological stations used in the CMA is much higher
than that used for CRU. For instance, there are only six gauges over the Tarim Basin in
the CRU database, while 39 gauges are recorded in the CMA system (Tao et al. 2011) so
that it can to a certain degree improve the data applicability where precipitation is spatially
inhomogeneous compared to CRU datasets. Given that the CMA data provide the daily
information, it also improves the temporal variations of precipitation rather than using the
total monthly value in CRU datasets. The corrected atmospheric input dataset is hereafter
referred to as WFDEI-CMA.

Glacier melt dataset

As mentioned in Sect. 2, glacier melt is a vital water input to the Tarim. However, glacier
runo� measurement is so di�cult for such large regions that model-based estimates of the
glacier melt are necessary. In general, a glacier module is not coupled in LSMs (Fraedrich et al.
2005). Hence, rather than building a separate glacier module, we use an independent daily
glacier melt dataset obtained from the glacier model called HYOGA2 (meaning glacier in
Japanese), which has been proven reliable over the globe (Hirabayashi et al. 2013). HYOGA2
is a temperature-index-based model utilizing an extensive global-scale glacier inventory
and has several improvements compared to its first version (HYOGA) in model parameter
simulation as well as the temporal extent. More details can be found in the original papers
(Hirabayashi et al. 2010; Hirabayashi et al. 2013). The glacier melt is added to the rainfall
series of WFDEI-CMA as an additional water flux to the system. The melt water hence
participates instantaneously in the water cycle without delays such as stores in ice, glacier
pack or groundwater recharge beneath the ice being considered. This method was chosen for
its simplicity and the lack of knowledge on the details at the transition between the glacier and
the soil. Daily values are uniformly distributed over the eight time steps per day of WFDEI.
By adding the glacier melt, the fourth new forcing dataset is generated as WFDEI-CCG.

3.3.2 Land Surface Model-ORCHIDEE

The land surface model ORCHIDEE (Organizing Carbon and Hydrology In Dynamic
EcosystEms) was developed by the Laboratoire de Météorologie Dynamique (IPSL-LMD)
(Ducoudré et al. 1993; Rosnay and Polcher 1998; D’Orgeval and Polcher 2008). After more
than 20 years of development, ORCHIDEE has been validated from the global scale (Alkama
et al. 2010) to typical regional cases, e.g., tropical rainforest area (Amazon, Guimberteau et al.
2012a), semiarid regions (Western Africa, D’Orgeval et al. 2008) and middle-latitude regions
(Europe, Tallaksen and Stahl 2014). Within ORCHIDEE, only SECHIBA (Schematisation
des Echanges Hydriques I’Interface entre la Biosphere et I’atmosphere), which represents
the energy and water fluxes between land surfaces and the atmosphere, is used in this study.
The hydrological module in SECHIBA is based on developments by Rosnay et al. (2003) and
D’Orgeval (2006). Thirteen types of vegetation are defined (D’Orgeval and Polcher 2008), and
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dynamic leaf area index is computed to generate the interception and transpiration. The vertical
soil water movement is represented by di�usion-type equations resolved on a fine vertical
discretization (11 levels) and partitioning between infiltration and surface runo� through a
time-splitting procedure (Rosnay et al. 2002; D’Orgeval and Polcher 2008; Guimberteau
et al. 2012a). The routing is conducted based on a linear reservoir concept through redefined
routing units which are di�erent from the atmospheric grids (Guimberteau et al. 2012a). The
ORCHIDEE version used in this study is available at https://forge.ipsl.jussieu.fr/orchidee/
(Nguyen-Quang et al. 2018).

Evapotranspiration simulation

On top of precipitation, evapotranspiration and potential evapotranspiration are two
important fluxes, and their errors are key to the water cycle modeling. In ORCHIDEE, the
evapotranspiration is calculated with energy balance and resistance concepts. The potential
evapotranspiration is defined as “the amount of evapotranspiration that would occur if enough
water was available at the surface”, as explained in Barella-Ortiz et al. (2013). The PET is
computed as the sum of the potential soil evaporation and the potential transpiration from
vegetation. For soil evaporation, the di�usive equations are taken with the ratio of the humidity
gradient, the aerodynamic resistance and the air density. The virtual surface temperature is
used instead of the actual one to compute the saturate humidity, while the virtual surface
temperature is calculated through an unstressed surface energy balance. The method has been
proven superior to other di�usive methods in the reference paper (Barella-Ortiz et al. 2013).
The potential transpiration is driven by the potential evaporation between the evaporating
surface and the overlying air but is limited by vegetation resistances. The maximal water loss
under stress-free conditions is the potential transpiration (Guimberteau et al. 2012a). The
actual evapotranspiration is a function of the potential evaporation but is modeled by a series
of resistances (canopy and aerodynamics) of the surface layer. The details of the methods in
simulating PET and ET can be found in D’Orgeval (2006), Guimberteau et al. (2012a), and
Barella-Ortiz et al. (2013).

Snow and soil freezing scheme

There is on key improvement which has been implemented in the current version of
ORCHIDEE, that is, the snow and soil freezing scheme. Snow and soil freezing are two crucial
water processes in cold regions; snow covers nearly half of land area (Wang et al. 2013b),and
the frozen soils occupy 55 % to 60 % of the land surface of the Northern Hemisphere in
winter (Zhang et al. 2003). Snow plays an important role in both the energy and water flux
as the snow cover is first an insulation which prevents the heat loss from the soil. It also
increases the thermal inertia of the surface by adding a new phase change and acts as a
moisture reservoir which stores winter precipitation that is released in spring or early summer.
In the old ORCHIDEE version, a constant density and very simple heat capacity are applied
for the snow. The snowmelt directly feeds the runo� without refreezing, and the snow layer
is mixed with the first soil layer so that they are equal in temperature. While in the new
snow scheme, the snow layer is defined and separated from the soil layers. The snowpack
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is represented in three layers which adequately resolve the snow thermal gradients between
the top and base of the snow cover. The energy balance and the temperature of the snow
body become more realistic. Refreezing of the snowmelt is allowed, which makes the energy
changes more reliable. The snow properties are more detailed than before, i.e., the density,
albedo and roughness. All the improvements have been validated over France and northern
Eurasia and already implemented in the current ORCHIDEE (Wang et al. 2013b).

Soil freezing impedes water infiltration and drainage, thus leading to changes in hydrological
responses (Woo and Marsh 2005). At small scales, the soil freezing alters the soil structure
and therefore its water capacity, which has a consequence on the water flux between soil
and atmosphere, as well as the water availability for plants (Pitman et al. 1999; Huang et al.
2018). On the other hand, the frozen soil changes the latent heat exchange, which delays the
soil temperature signal (Boike et al. 1998). Soil thermal characteristics are also improved
due to the di�erent thermal properties of ice and water. In the old soil thermal equations,
thermal advection and phase change of the water are not considered when resolving the latent
heat exchanges (Gouttevin et al. 2012). The mechanical e�ects of soil freezing are therefore
ignored. In the new soil freezing scheme, the apparent soil heat capacity can be increased by
considering the ice content of the soil layer during a freezing-temperature window between 0
and -2 oC. A temperature correction is applied if any soil layer is entirely frozen or thawed.
Moreover, the soil heat conductivity is changeable according to the ice content in the soil,
which a�ects the thermal propagation in the vertical soil column. Finally, the hydraulic
conductivity is reduced as a function of the ice content. Liquid water is not allowed to cross
the frozen soil layers. Thus infiltration and drainage are forced to stop. Full descriptions of
the new freezing soil equations and the parameterizations setting can be found in (Gouttevin
et al. 2012).

Human intervention

Irrigation is included in the current version of ORCHIDEE. The irrigation requirement
is estimated as the deficit of the available water of the corresponding grid to the potential
evapotranspiration. The irrigation extracts water from the local grid first and then its
neighboring grids if necessary (Guimberteau et al. 2012a). This solution is acceptable for
most of the humid regions at a 0.5o resolution since the rivers are very likely within 100 km.
However, for dry regions, the Tarim for example, the irrigation area is concentrated, with
controlled irrigation infrastructures. The nearby rivers are far from the irrigation area, and the
irrigated water is not taken directly from the rivers but transported from upstream by channels.
Due to the shortcoming of the scheme and the lack of knowledge on the local irrigation,
we turned o� the irrigation in ORCHIDEE. In the Tarim Basin, the irrigation accounts for
more than 95 % of the consumed water (Zhou et al. 2000), so that the di�erence between the
simulated discharge and observations can be attributed to neglecting irrigation in the model.

In conclusion, as shown in Fig. 3.2, four di�erent forcing inputs are prepared to drive the
ORCHIDEE simulations, two basic forcing datasets (WFD-CRU and WFDEI-CRU), one after
correction by CMA (WFDEI-CMA) and then one after adding glacier melt (WFDEI-CCG).
Among them, the input water amounts are di�erent, while WFDEICMA and WFDEI-CCG
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have the same other forcing variables as WFDEI-CRU. Additionally, the experiment with
the newly developed snow and soil freezing scheme is named WFDEI-CCG-SF based on the
forcing dataset WFDEI-CCG. Because the WFD covers the overlapping period 1901–2002,
the WFDEI covers the period 1979–2014, CMA covers years 1951–2016 and the glacier melt
dataset covers 1958–2001, all the simulations and analysis in this paper are over the overlap
period 1979–2001. The monthly discharge measurements for those chosen hydrological
gauges over 1979–2001 are then compiled. Spatial resolution for all the forcing inputs remains
0.5 o (about 50 km at the Equator), and the time step is 3 h.

3.3.3 Main biases over the headwater catchments

In the water cycle, all the water entering a specific river basin will become ET back to the
atmosphere and discharge (R) flowing out of the basin as long-term water storage changes are
negligible. The underestimation of discharge is thus attributable either to the underestimation
of water inputs or to overestimation of evapotranspiration. The possible biases from water
inputs and the ET estimation are discussed in this section.

Bias in precipitation

The Tarim Basin is one of the areas where significant deviations exist among di�erent
modeled precipitation estimates and observation-derived datasets because of the sparse
observations and orographic e�ects (Fekete et al. 2004; Wu et al. 2012b). Meanwhile, the
precipitation bias might not be well addressed in the CMA system because the number of
meteorological gauges is still too limited in the Tarim region to build a reliable interpolation
climate field (Shen et al. 2010). Although Xie et al. (2007) have tried to use other gauges
outside China, the density of the gauge distribution is extremely low around the boundaries
of the Tarim Basin where most of the precipitation is generated. Furthermore, due to the
orographic e�ects, the precipitation over the mountainous area is larger and with more
significant heterogeneity than that in the plains (Daly et al. 2008; Chorley et al. 2003),
while the center of the precipitation events is hard to observe for the nearby gauges. Adam
et al. (2006) has pointed out that the orography could cause 41.6 % underestimation of the
precipitation over the northwestern North American mountainous ranges, and the deviations
are larger at higher altitude.

Bias in rainfall and snowfall repartition

The di�erences between WFDEI-CRU and WFDEI-CMA are not only in the total amount
of precipitation but also in the proportion of rainfall and snowfall (Table 3.3). Compared to
the rainfall, the snowfall is more di�cult to observe and a�ected by a large uncertainty; hence
in the CMA dataset, only the rainfall was recorded and then used to scale the CRU dataset but
keeping the relative proportion of liquid and solid precipitation provided by WFDEI-CRU.
The energy needs for phrases change are considerably di�erent for the liquid from the solid
water. Berghuijs et al. (2014) suggested snow will lead to more runo� than rain in similar
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conditions based on the observations over the US and China. The impact of the precipitation
type on the evapotranspiration rate is a�ected by many factors and hard to measure.

Bias in glaciers melt

HYOGA2 is a state-of-the-art global glacier model but has not been calibrated over the
Tarim Basin. The general bias for global estimation is around -5.0 % compared to the available
global glacier mass balance measurements (Hirabayashi et al. 2013). The estimated annual
glacier melt amount is 81.0 ⇥108 m3 yr�1 for the whole Tarim Basin (Table 3.3), significantly
lower than previous estimations (133.4 ⇥108 m3 yr�1, Yang 1991) and (144.16 ⇥108 m3 yr�1,
Gao et al. 2010). On the one hand, the di�erence in the forcing which drives the glacier
melting model is probably one of the causes of the deviation. On the other hand, all the glacier
melt is evenly distributed in a whole grid. It leads to a higher infiltration ratio and thus feeds
more evaporation (Berger and Entekhabi 2001; Potter et al. 2005). This also artificially forces
part of the glacier melt to flow out of the grid not belonging to the right basin. However, it is
unable to eliminate this problem with the current gridded concepts. Finer spatial resolution in
glacier dataset and model simulation is needed to lessen the impacts of discretization.

Bias in potential evapotranspiration estimation

As described in Sect. 3.2.1, the PET estimation is independent of underlying conditions
(e.g., topography, vegetation) because enough water is provided. It is therefore determined
only by forcing conditions, especially the humidity gradient and aerodynamic conditions (e.g.,
radiation flux, wind). Temperature also plays a role in its estimation. Thus, the bias in PET is
mainly propagated from various forcing variables.

Bias in actual evapotranspiration estimation

Overestimation (underestimation) of the actual ET will also result in the discharge
underestimation (overestimation). Many processes can cause ET errors either by the biases in
PET or the stress functions which limit the potential evaporation. The vegetation fraction,
vegetation type, surface slope and soil properties are all the uncertain sources a�ecting the
final ET estimation.

Bias sources category

With the main biases listed as above, we consider bias in any processes that changes P or
PET as bias from forcing and bias in any processes that directly changes ET as bias caused
by model structure. Although the shifts in forcing variables will change the ET estimation -
for example, the P restricts the available water for ET - this shift still belongs to the forcing
category since the relation is indirect. The biases which directly a�ect ET include biases in
infiltration, soil water movement, snow processes, vegetation representation and many other
model processes. And all these are considered as biases caused by model structures.
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3.3.4 Budyko hypothesis

Budyko hypothesis is an empirical expression for the coupling of the water and energy
balances at the surface. It uses the relation between the water and energy balance equation
to partition P into ET and R. The Budyko curve is the analytical solution to the Budyko
hypothesis, expressed as the evapotranspiration rate (ET / P) being a function of the aridity
index (PET / P, Webster 1976). Many forms of Budyko curves have been developed and can
be categorized into a non-parameter group and parameter group depending on whether there
is an adjustable parameter describing the Budyko shape (Table 3.1).

Table 3.1 – Di�erent formulas of Budyko curves. Note that the aridity index is expressed as ;
= PET/P.

No. Parameter Formula Reference
1 Non-parameter ET/P = 1 � e

(�;) (Schreiber 1904)
2 Non-parameter ET/P = ; tanh(1/;) (OL’DEKOP 1991)
3 Non-parameter ET/P = 1/(1 + (1/;)2)0.5 (Pike 1964)
4 Non-parameter ET/P = {[1 � e

�;] · ; · tanh(1/;)}0.5 (Webster 1976)
5 Parameter n ET/P = 1/[1 + (1/;)n]1/n (Choudhury 1999) ; (Yang et al.

2008a)
6 Parameter $ ET/P = 1 + ; � [1 + (;)$]1/$ (Fu 1981)
7 Parameter $ ET/P = (1 +$;)/(1 +$; + 1/;) (Zhang et al. 2001)

The forms without parameters (formulas 1 to 4) are universal for most of the basins,
while they are unable to capture the various landscape characteristics across regions (Yang
et al. 2007). Regarding the e�ects of landscape characteristics, adjustable parameters and
corresponding formulas were introduced as formula (5) to (8). Although they have di�erent
analytical expressions, the shape of these curves is quite similar (Gerrits et al. 2009) and
their parameters are highly correlated (Yang et al. 2008a). Hence, from the formulas with
parameters, Fu’s equation (formula 6) is chosen in this study as it is more often used in the
China region.

The ranges of the aridity index (PET / P) correspond to the regional precipitation feeds
and climate types (Table 3.2). For example, the precipitation for a semiarid region ranges
from 400 to 800 mm yr�1, and the regional aridity index mostly ranges from 2 to 5. Moreover,
the Budyko curve is a reflection of the landscape characteristics which can influence the water
movement through di�erent hydrological cycles (Dingman 2015) and thus changes the ET
rate. Many surface conditions are related to the Budyko parameter setting. (1) Vegetation
types and vegetation cover a�ect the ET rate. Transpiration accounts for about 42 % (25
%–64 % depends on di�erent models) of global ET (Zhang et al. 2004). Regions that have
a larger fraction of vegetation cover or are covered by vegetation with bigger leaves and
deeper roots tend to have a larger transpiration rate as well as ET rate; i.e., the forested
catchment tends to show a higher evaporation ratio than the grass-covered catchments (Zhang
et al. 2004; Carmona et al. 2014). (2) Properties of soil determine infiltration rates and the
amount of evapotranspirable water. Steeper slopes are more likely to shed surface water as
runo� (Yang et al. 2007; Yu et al. 2014). Limit of infiltration ability also matters as intense
precipitation rates (Berger and Entekhabi 2001; Potter et al. 2005) or freezing soils tend to
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force the water into the surface runo� (the solid frozen soil limits the percolation of infiltrated
water, Gouttevin et al. 2012). (3) The ability to transmit or retain infiltrated water of soil
also determines the evapotranspiration rate; the soil with larger water conductivity is likely to
release more subsurface water rather than evaporation (Yang et al. 2007). (4) The soil depth
determines the ability to store infiltrated water. Rocky mountains or regions with thin soil
would produce more runo� and less ET (Yang et al. 2008a; Dingman 2015).

Table 3.2 – The definition of climate types by precipitation and aridity index ((Ponce et al.
2000)).

Climatic types P(mm/yr) Aridity index (PET/P)
Superarid <100 >30
Hyperarid 100-200 12-30

Arid 200-400 5-12
Semiarid 400-800 2-5
Subhumid 800-1600 0.75-2

Humid 1600-3200 0.375-0.75
Hydrperhumid 3200-6400 0.1875-0.375
Superhumid >6400 <0.1875

3.3.5 Bias assessment with ORCHIDEE-Budyko framework

The Budyko formulation relates the ET to PET and P. Both the biases from the water flux
(P) and energy flux (PET) will propagate to ET. The shape parameter of the Budyko curve is
obtained by fitting the PET / P and ET / P relation; it is thus a reflection of the model if we
use the simulated PET and ET fluxes (i.e., ORCHIDEE simulations in this study, red dots
and red curve in Fig. 3.3). However, because of the existing bias in all the three variables,
the relations of the three components may have been shifted to an unrealistic state (point A
in Fig. 3.3). Therefore, the changes in P, PET or ET which can shift the system back to
a reliable state are considered as the possible bias. The di�erence between the unrealistic
state with their corrected values provides the estimation of how the forcing or the model
would need to be changed for the model to produce the realistic discharge values. To separate
the individual e�ect of the single water–energy component on the hydrologic cycle, three
independent assumptions are made as follows, and the illustration can be found in Fig. 3.3.

The red dots in Fig. 3.3 represent the states of the PET / P and ET / P according to
ORCHIDEE estimations and forcing inputs for each year. Point A represents the representative
state, which is the average of the dots’ locations. It reflects the current model and is probably
in an unrealistic state because the modeled discharge (P-ET) may be with bias compared to
the observations.

Assumption 1. Only the water input (P) is uncertain. Because the model structure remains
unchanged, the relation between ET / P and PET / P still follows the original Budyko line
regardless of how P changes. The PET is assumed to be independent of P, while the ET
is modified as a result of P changes. To meet the deviation between simulated discharge
(RS) and the observed discharge (RO), the representative point (long-term “corrected” annual
ET / P against long-term “corrected” annual PET / P) should be shifted along the Budyko
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Budyko curve - model
Budyko curve - shifted

Modeled annual values

Modeled representative state
(P, PET, ET)

PET/P

E
T/
P

State-Assumption 1
(P’, PET, ET’)

State-Assumption 2
(P, PET’, ET’)

State-Assumption 3
(P, PET, ET’)

Figure 3.3 – The illustration of the ORCHIDEE-Budyko framework. Point A represents the
average state among the modeled annual values (with land surface model-ORCHIDEE), and
the red curve is the simulated Budyko curve following the modeled state. Point B, C, D
represent the representative state with shifting the P, PET and ET respectively with di�erent
assumptions to meet the discharge observations. A shifted Budyko curve (blue) is obtained
crossing the point D which indicates a new state of model structure. The new points of B and
C still stay on the original Budyko curve indicating that the model structure remain the same
and the changes only relate to forcing variables. The shade area is the area among the three
shifted states.
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curve from current point “A” to the new point “B”, where the di�erence between the “true”
precipitation (P0) and the “true” evapotranspiration (ET’) equals the observed discharge (P0 -
ET’ = RO). The possible maximum bias in P is calculated as

Bias(P) = (P � P
0)/P

0 ⇥ 100%. (3.1)

Assumption 2. Only the PET is uncertain. The P remains the same, while ET changes
because of the changes in PET. Under these conditions, the model structure still remains
unchanged, and so does the Budyko curve. Then the representative point should be shifted
along the Budyko curve to point “C” to decrease the ET ratio to meet the discharge observation
(ET’ = P

0 - RO). The PET is changed to a “true” PET’, and the possible maximum bias in
PET is calculated as

Bias(PET) = (PET � PET0)/PET0 ⇥ 100%. (3.2)

Assumption 3. Only the ET is uncertain. P and PET, which are mainly linked to the
forcing, remain the same, while the ET, which is significantly a�ected by the model structure,
is assumed biased. It is essentially relevant to the model processes rather than the forcing
dataset. To compensate the discharge bias, the ET should be decreased to point “D” where the
ET equals precipitation minus observed discharge (ET’ = P

0 - RO). The possible maximum
bias in ET is calculated as

Bias(ET) = (ET � ET0)/ET0 ⇥ 100%. (3.3)

With the target ET’, a new Budyko curve can be drawn for new relations between P, PET
and the new ET (the blue lines in Fig. 3.3). However, all the assumptions are proposed in
conditions of only one variable being uncertain, but in reality any of the three variables can be
biased at the same time. The final probable “corrected” state may be located in the shaded
area identified by the three states (Fig. 3.3).

3.4 Results and discussion

3.4.1 Forcing and discharge comparison

Forcing inputs comparison among experiments

We specify P as the sum of all the water inputs into the system, which include the
atmospheric water flux (in its liquid and solid phases) and glacier melt. The precipitation for
the three headwater catchments and the upper Tarim is listed in Table 3.3 for each simulation.
The interannual variations and the intra-annual cycle of total precipitation over upper Tarim
Basin are plotted for di�erent forcing in Fig. 3.4.

The annual cycle of the two basic forcing datasets WFD-CRU and WFDEI-CRU are
similar, while the precipitation in WFDEI-CRU is slightly larger in monthly values (Fig. 3.4a,
red and blue lines). The deviation is the result of their expanding di�erences after 1990 (Fig.
3.4b). The precipitation di�erence is mainly due to the fact that two di�erent versions of CRU
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Table 3.3 – The five simulations in this study and basic diagnostics of the water inputs over
three headwater catchments and the Upper Tarim basin. Units: 108 m3 yr�1.

Subbasins Area (km2) Simulations Precipitation Rainfall Snowfall Glacier

Yarkand 55637

WFD-CRU 80.19 11.16 69.03 -
WFDEI-CRU 82.04 20.82 61.22 -
WFDEI-CMA 117.73 92.35 25.38 -
WFDEI-CCG 141.21 104.09 25.38 11.74WFDEI-CCG-SF

Hotan 34557

WFD-CRU 31.83 6.63 25.20 -
WFDEI-CRU 33.34 4.37 28.97 -
WFDEI-CMA 82.71 72.13 10.58 -
WFDEI-CCG 137.34 99.45 10.58 27.31WFDEI-CCG-SF

Aksu 31982

WFD-CRU 76.11 49.06 27.05 -
WFDEI-CRU 78.03 41.83 36.19 -
WFDEI-CMA 106.38 72.22 34.16 -
WFDEI-CCG 120.23 79.15 34.15 6.93WFDEI-CCG-SF

Tarim 359022

WFD-CRU 435.94 221.55 214.39 -
WFDEI-CRU 473.31 246.35 226.96 -
WFDEI-CMA 649.71 524.08 125.63 -
WFDEI-CCG 758.74 578.60 125.62 54.52WFDEI-CCG-SF

（a） （b）

Figure 3.4 – The inter-annual cycle and intra-annual series of the precipitation (including
rainfall, snowfall and glacier) in di�erence simulations for the Upper Tarim basin.
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(CRU TS 2.10 and CRU TS 3.1) are used for precipitation correction in WFD and WFDEI
(See subsection 3.1.2 or Weedon et al. 2014). The precipitation di�erence between the two
CRU datasets is relatively small, while the CMA dataset increases the precipitation to a large
extent, by 37.3 %, compared to CRU for the upper Tarim Basin (Table 3.3). The changes
mostly occur during summer when the peak of CMA precipitation is more than twice as
large as precipitation in CRU. The shape of the annual cycle changes greatly as the timing
of the peak is shifted from April to July. However, the precipitation amount in winter (DJF)
decreases in CMA, to which the decrease in snowfall is the major contributor. The changes in
rainfall and snowfall are similar in all three headwater catchments (Table 3.3) and the upper
Tarim Basin.

Adding the glacier melt leads to negligible changes during winter and spring but large
increases in the total water inputs in summer (JJA) when the temperature is higher. The
estimated glacier melt is 9.1 %, 25.8 % and 6.1 % to the total water inputs for the upper
Yarkand River, upper Hotan River and upper Aksu River. It significantly increases after 1990
(Fig. 3.5; the trend is +3.8 ⇥108 m3 yr2, p = 0.024), being consistent with its ratio to the total
water input (r = 0.918, p < 0.001). The trend is mainly caused by climate warming as the
glacier melt is highly correlated with the summer temperature (r = 0.852, p < 0.001). The
increasing trend has also been documented in glacier runo� observations (Shangguan et al.
2009).

Figure 3.5 – The temporal variations of the glacier melt, the proportion of glacier melt in the
water input and the average summer temperature over the Upper Tarim basin. They are in
good correlation and have a consistent increasing trend after 1990.

Assessment of the discharge estimations with observations

Evaluating the bias in precipitation over meteorological rain gauges is not convincing as
most gauges are located at lower altitude, which makes it di�cult to capture regional patterns
as intensive precipitation occurs over higher mountains. Instead, the discharge measurement
can serve as a better reference since it integrates the net water flux over the entire basin.
Therefore, driven by the forcing, ORCHIDEE was used to simulate the river discharge and for
comparison to in situ observations (Fig. 3.6). The corresponding assessment using criteria for
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the three headwater catchments are plotted in Fig. 3.7. For the three headwater catchments
where most of the discharge of the Tarim Basin is generated, the discharge is significantly
underestimated, with the underestimation ratio reaching 90 % (Figs. 3.6b, d, f, 3.7a) for CRU
datasets. Discharge increases after the precipitation is corrected by the CMA dataset, with the
absolute bias decreasing to around 80 %. Adding glacier melt also increases the discharge but
by a relatively small amount. Changes in the model structure (new snow and soil freezing
scheme) further decrease the bias, especially for the Aksu River. The final biases of the
discharge for the three subbasins are -71.1 %, -47.8 % and -49.4 %. The gradual improvements
and corresponding magnitude changes are visible in the annual discharge variability in Fig.
3.6b, d and f.

Besides the increase in the annual mean discharge, the amplitude of the interannual cycle
of the discharge is also improved by the progressive changes. The estimated discharge peaks
have been shifted from April in CRU simulations to the summer (July or August) by CMA
correction and adding glaciers (Fig. 3.6a, c, e). Correspondingly, the correlation of the annual
variability between the estimated and observed discharge has increased above 0.9 for all the
three subbasins with the WFDEI-CCG forcing (Fig. 3.7b). However, contrary to the upper
Yarkand River and the upper Hotan River, the introduction of the new snow and soil freezing
scheme decreases the discharge correlation for the upper Aksu River from 0.91 to 0.42. An
early discharge peak exists in May, while not enough runo� is generated in the summer
period (Fig. 3.6e). Although the correlation decreases, it does not mean the model/simulation
deteriorates because correlation only evaluates the similarity of temporal variation but ignores
the fact that the discharge amount has been better estimated (Figs. 3.6e and 3.7a).

By extracting the observed discharge in the first and last 5 years from the whole period,
we can notice there is an obvious shift of the discharge peak from August to July in the three
headwater catchments (Fig. 3.6a, c, e). The regional precipitation changes largely cause the
shift, but the increasing temperature also allows the snow/glacier to melt at a higher rate in the
most recent period. Furthermore, increasing trends are detected after the 1990s (Fig. 3.6b, d,
f), as the increasing trend is 1.43 ⇥108 m3 yr2 (or 0.77 ⇥108 m3 yr2, 1.78 ⇥108 m3 yr2) for the
upper Yarkand (or Hotan, Aksu) River. The increasing trends are consistent with the glacier
melt, glacier proportion in water input and summer temperature in the same period (Fig. 3.5).

The trends in the estimated discharge are also calculated and compared with the observed
trends, expressed as the ratio of the trend in estimation to that in observations (Fig. 3.7c).
For CRU simulations, no increasing trend is detected since the ratio is less than 0. The
CMA correction increases the ratio for all three subbasins to around 0.3, which means the
precipitation accounts for only around 30 % of the discharge increase. Adding the glacier
melt increases the ratio from 0.35 to 0.54 for the upper Hotan River and from 0.31 to 0.76
for the upper Aksu River; the improvement of the glacier melting is comparable to the CMA
correction. However, no apparent changes are detected for the upper Yarkand River. By
comparing the criteria between WFDEI-CMA and WFDEI-CCG, we find that, although adding
the glacier melt does not change much the absolute amount of discharge or the correlation, the
increased trend in discharge has been considerably improved. The increasing glacier melt is,
therefore, one of the contributors to the discharge trend in the Tarim. The modification of the
snow and soil freezing scheme increases the trend ratio in the upper Aksu River up to 0.72,
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Figure 3.6 – The inter-annual cycle and intra-annual series of the discharge simulation for
three headwater catchments and the Upper Tarim basin, a,b-Yarkand, c,d-Hotan, e,f-Aksu
and g,h for the Upper Tarim. Observed discharge for each subbasin was aggregated by the
measurements at separated discharge gauges and shown as the black solid line. The simulated
discharges at the corresponding grids were extracted from each experiment and plotted as
the color lines with markers. The dotted line and dotdash line in the inter-annual cycle plots
represent the observed discharge in di�erent periods.
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(a) (b)

(c)

Figure 3.7 – The discharge diagnostics of di�erent experiments for three catchments (round-
Yarkand, square-Hotan and triangle-Aksu). a) represents the absolute bias in percentage,
b) represents the correlation of the inter-annual cycle and c) represents the ratio of the
trend in estimated discharge to that in observed discharge for period 1990-2001. S0 to S4
correspond to the experiments WFD-CRU, WFDEI-CRU, WFDEI-CMA, WFDEI-CCG and
WFDEI-CCG-SF respectively.

while slightly decreasing it for the two other catchments.

In brief, the gradual refinement of the forcing datasets (from WFD-CRU to WFDEI-CRU
to WFDEI-CMA to WFDEI-CCG) is e�ective for improving the model performance using
di�erent criteria (bias, correlation, proportion to the trend) to compare the observed discharge.
Thethree criteria are independent as they stand for the averages, the variation and the trend,
which can capture the various aspects of the model agreement to the observations. The
responses are similar for di�erent catchments, but at di�erent magnitude at di�erent stages.
The correction of the CMA dataset is the most significant improvement to all the criteria. The
role of glaciers melting is critical for the trend analysis. The modification in the snow and soil
freezing scheme increases the total discharge amount but could lead to adverse responses in
the correlation and trend simulation. However, the impact of the modification of the model
structure is not larger than changes resulting from the forcing biases. From the previous
analysis, we can conclude that the simulations of WFDEI-CCG and WFDEI-CCG-SF are
comparable in the correlation and trend analysis, while WFDEI-CCG-SF is better regarding
the water quantity. Therefore, the further study on the bias is all based on the WFDEI-CCG-SF
simulation.
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3.4.2 Evidence of the bias in estimated discharge for the headwater
catchments

Although the simulations with WFDEI-CCG-SF are better than other experiments, there
are still biases compared to the observations (Fig. 3.7a). In this section, we aim to find
evidence of the biases. The annual mean water balance components (rainfall, snowfall, glacier
melt, estimated ET and discharge RS) of the three upper catchments are plotted as bars with
their relations quantified by comparison to the discharge observations (RO, red lines in Fig.
3.8a, c, e) in WFDEI-CCGSF. Their annual cycles are also plotted as Fig. 3.8b, d and f over
the three headwater catchments. Over a long enough period, the changes in terrestrial water
storage are assumed negligible compared to the water fluxes, so that the water input into the
system either returns to the atmosphere through ET or flows out of the basin as RS.

From the left panels of the Fig. 3.8, we have a visual impression of the relative amount of
di�erent water inputs and their contribution to the ET or discharge. Note that the sum of the
ET and RS is not exactly equal to P because in ORCHIDEE the discharge is represented at
the outflow of the grid and not at the confluence point of the analyzed catchment with other
tributaries. The largest bias is 8 % for the upper Yarkand River (Fig. 3.8a, ET / P + RS / P =
0.92), while it matches exactly for the upper Aksu River. The bias can be added to the current
RS if necessary.

Among the three headwater catchments, the upper Hotan River has the best discharge
simulation compared to the observations (RS / RO = 0.52). The annual cycle of the water also
matches well as all the P, ET and discharge RO or RS have the synchronous peaks in summer
(Fig. 3.8d). There are also deviations between P and E, which represent the net water inputs
to the system and the estimated discharge (the shaded area with blue lines in Fig. 3.8d). The
deviation implies the regional water storage changes; in summer the soil moisture increases
to store the abundant water inputs, which are later released in autumn and winter when the
drainage rate is larger than infiltration. The water storage decreases as a result by then. It is
the natural adjustment to the strong seasonality in water inputs.

As the neighboring catchment of the upper Hotan River, the upper Yarkand River has
similar phases of estimated flux ratios (ET / PET, ET / P, RS / P) and interannual variations.
However, the estimated discharge rate is smaller (RS / RO = 0.29) than that of the upper Hotan
River. Underestimation in water inputs in summer and autumn is possibly the reason as there
is no obvious water storage gaining in the summer period and the ratio of observed discharge
to regional precipitation is unrealistically high (> 0.9, Fig. 3.8b).

The upper Aksu River has di�erent characteristics from the other two regions since it
lies in the northern part of the Tarim. It has a larger snowfall proportion in the precipitation.
Meanwhile, it has the largest ratio of estimated ET / PET, the largest runo� generation ratio
(RS / P = 0.35) and the least discharge simulation error (RS / RO = 0.51). However, there is
certainly large bias in the regional precipitation as the discharge has exceeded the precipitation
input in the summer period (July and August). The estimated annual cycle of discharge
diverges from the observations (Fig. 3.8f), as its peak advances by 2 months and the discharge
estimation significantly exceeds the observations in spring (MAM). The runo� generation
ratio in the summer period is also unrealistically low.
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(a)

(c)

(e) (f)

(d)

(b)

Figure 3.8 – The water input components (rainfall, snowfall, glacier melt), evapotranspiration
and discharge for three headwater catchments (a-Yarkand, c-Hotan and e-Aksu from the top to
the bottom) in the WFDEI-CCG-SF simulation. In the left panels, the amounts of di�erent
variables are plotted as bars, while the average mean of the observed discharge (RO) is plotted
as the red line. RS denotes the simulated discharge by ORCHIDEE. In the right panels, the
annual cycle of the water inputs (blue line), evapotranspiration (green shadow), estimated
discharge (runo� plus drainage, solid black line), observed discharge (dashed black line)
and the changes in terrestrial water storage (TWS, slashed area) changes are plotted as b,d
and f. The green slashed area represents decreasing in TWS and the white one slashed area
represents increasing in TWS.
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In summary, the biases in discharge estimation exist in terms of the total amount and the
annual cycle. Precipitation is one of the largest bias sources, which makes the bias analysis in
models more di�cult.

3.4.3 Bias range and possibility analysis for the headwater catchments

Although either P or PET or ET can cause final underestimation of discharge over the three
headwater catchments, quantifying the bias in each flux is challenging and impractical due to
the lack of direct measurements and the strong heterogeneity over the mountainous area. To
separate the individual bias, we use the Budyko hypothesis by assuming only one variable is
uncertain, while the other two are assumed to have negligible errors, with which we “correct”
the model simulation to meet the discharge observation and obtain the possible bias range.
Then we evaluate the possibility of rejecting the assumption to find the most likely bias source
by checking the status of the water system (i.e., amount of the water–energy components
and their relations) in indirect ways. The water–energy components used in the Budyko
analysis are all ORCHIDEE outputs of the most satisfactory simulation, WFDEI-CCG-SF. The
corresponding characteristics of the water– nergy components for three headwater catchments
are listed in Table 3.4.

Table 3.4 – The water-energy components for the headwater catchments in WFDEI-CCG-SF
simulation. Units: mm yr�1.

Precipitation Rainfall Snowfall Glacier ET RS PET RO

Yarkand 247.3 198.8 48.5 22.4 188.3 59.1 1240.4 140.4
Hotan 317.8 287.2 30.6 78.9 236.9 81.3 1153.7 118.9
Aksu 365.8 255.5 110.3 22.4 238.1 128.0 631.8 250.1

Bias ranges estimated by the ORCHIDEE-Budyko framework

The ORCHIDEE-estimated evapotranspiration rate (ET / P) against the estimated aridity
index (PET / P) over each subbasin in each year is scattered as red points in Fig. 3.9.
Point A represents the Budyko relation between long-term average annual ET / P and the
long-term average annual PET / P. According to the categories introduced by Ponce et al.
(2000), all three catchments belong to semiarid climate zones by the definition of the annual
average precipitation (Table 3.2). Hence the aridity index is supposed to range from 2 to 5.
Regarding the high elevation and cold temperature, the PET rate is likely to be smaller than
the representative climate of this aridity index. Thus the aridity index for the three catchments
is supposed to be lower than expected. It is realistic for the upper Hotan River and the upper
Aksu River as their aridity is 3.63 and 1.73, respectively. While the aridity index for the upper
Yarkand River is 5.02, which can be categorized as a semiarid or arid region, this is not very
likely since the upper Yarkand River is providing water resources for the irrigated area over
the lower Yarkand oases (Zhou et al. 2000; Mamitimin et al. 2014).

However, because there is still a bias in the ORCHIDEE discharge estimations with the
observations, the current state A is not correct. Based on the assumptions introduced in Sect.
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(a) (b)

(c)

Figure 3.9 – Budyko relation for three headwater catchments (a-Yarkand, b-Hotan, c-Aksu).
The red points represent the values for each year, the P is obtained from the forcing, while
ET and PET are obtained from the model. Point A represents the long-term average Budyko
relation and red lines are the optimal fitted Budyko line. Either the water input P, the potential
evapotranspiration PET or the actual evapotranspiration ET can be modified to meet the
observed discharge, which correspondingly shift the representative points from A to B, C or D.
B and C stay in the original Budyko curve while a new optimal fitted Budyko curve through
point D can be built after the changes in ET . The shaded area is the most likely area when not
only single variable is changing.
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3.5, the three possible “corrected” states by shifting the P, PET and ET are shown in Fig.
3.9 for the three headwater catchments. Taking the upper Yarkand River as an example (Fig.
3.9a), if we consider only P to be biased (assumption 1), the P has to be shifted from 247.3
to 435.4 mm yr�1. PET remains the same, and the ET changes accordingly, but the relation
between ET / P and PET / P still follows the Budyko curve. The state is shifted from point A
to point B with the P change ratio as 76.1 %. Reversely, the possible bias of P is -43.2 %
((247.3–435.4)=435.4 ⇥ 100 %). Similarly, to change the PET in order to shift the state to
correct (point C, assumption 2), the PET has to be shifted from 1240.4 to 225.0 mm yr�1. The
possible bias in PET is 451.2 %. To change the ET in order to shift the state to correct (point
D, assumption 3), the ET has to be shifted from 188.3 to 106.9 mm yr�1, and the possible
bias in ET is 76.1 %. The route is the same for the other two catchments, and their results are
listed in Table 3.5.

Table 3.5 – The annual average values for di�erent water-energy components (P, ET , PET ;
units in mm yr�1) and their relations (P-ET , PET/P and ET/P) for the three upstream
subbasins. The scenarios correspond to the diagnostics of current model (A) and three bias
assumptions list above from B to D. The bold values are the main factors changed within the
three basic water-energy components. The changing ratio (C.R.) indicates the ratio of the
changing value to the original value (unit in %). While the bias range (B.R.) implies the bias
of the values in the current variables compared to the values they should be (unit in %).

P PET ET P-ET PET/P ET/P Factor C.R. B.R.

Yarkand

A 247.3 1240.4 188.3 59.0 5.02 0.76 - - -
B 435.4 1240.4 294.9 140.5 2.85 0.68 P 76.1 -43.2
C 247.3 225.0 106.9 140.4 0.91 0.43 PET -81.9 451.2
D 247.3 1240.4 106.9 140.4 5.02 0.43 ET -43.2 76.1

Hotan

A 317.8 1153.7 236.9 80.9 3.63 0.75 - - -
B 402.3 1153.7 283.3 119.0 2.85 0.70 P 26.6 -21.0
C 317.8 615.2 198.8 118.9 1.94 0.63 PET -46.7 87.5
D 317.8 1153.7 198.8 118.9 3.63 0.63 ET -16.1 19.1

Aksu

A 365.8 631.8 238.1 127.7 1.73 0.65 - - -
B 553.3 631.8 303.1 250.2 1.14 0.55 P 51.3 -33.9
C 365.8 174.1 115.7 250.1 0.48 0.32 PET -72.4 262.4
D 365.8 631.8 115.7 250.1 1.73 0.32 ET -51.4 105.8

The previous analysis is based on the assumptions that the P and PET are independent
and only a single variable is uncertain, which might be invalid in reality. However, the three
assumptions provide the bias boundaries of each variable, and the final system reproducing
observed RO is likely to be located within the shaded area shown in Fig. 9. Taking the
Hotan River as an example, to meet the discharge observation, the final changes in P will be
0 %–26.6 %, the decrease in PET will be 0 %–46.7 % and the decrease in ET will range 0
%–16.1 %. While in turn, we also conclude that the P is underestimated by 0 %–21.0 %, the
PET is overestimated by 87.5 % at most and the ET is overestimated by 19.1 % at most. If we
know the bias for any single variable, the feasible ranges will be narrower than at present.
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Ranking the bias possibility

Although the Budyko approach provides us with possible ranges for the bias of each
variable, it is still di�cult to determine the bias source without proper bias measurements for
each of the forcing variables. We alternatively compare the regional diagnostics with nearby
regions or regions with similar climatic and regional characteristics which have qualified
observations in an indirect way. In doing so, we can generally rank the occurrence possibility
of an uncertain variable.

From multiple-model analysis based on CMIP5 general circulation models (GCMs), the
estimated PET over the western boundary of the Tarim Basin is about the same as over the
Tibetan Plateau (Sche� and Frierson 2015). However, because of the unpredictable biases
in GCMs, the absolute values are not highly reliable in their simulation. Nevertheless, the
equivalent relation provides us with the ranges of PET over the Tarim headwater catchments
by referring to the observations over the Tibetan Plateau, where the topography changes are
relatively small and the observations are more abundant. According to (Chen et al. 2006), who
used site observations from 101 stations over the Tibetan Plateau, the annual average PET over
the plateau ranges from 580 to 720 mm yr�1. Hence the PET over the upper Yarkand River
and the upper Hotan River is probably overestimated (1240.4 and 1153.7 mm yr�1). Therefore,
only changes in P or ET are not satisfactory because the PET is unchanged. For the upper
Yarkand River, the PET is not the only error source, because, to match the discharge deviation
by only decreasing PET, the PET should be decreased to 225 mm yr�1, which exceeds the
referenced PET range. Moreover, because Yarkand and Hotan are neighboring regions which
have similar climates, the PET should be a similar amount in each (615.2 mm yr�1 if only
PET is uncertain in the upper Hotan River, while 225 mm yr�1 in the Yarkand River). The
estimated PET over the Aksu River is realistic since the PET is 631.8 mm yr�1 for the current
scenario, but it would decrease to 174.1 mm yr�1 if only the PET changed, which is too low.
Besides the absolute value of PET, the ratio PET / P also shifts when PET changes, which
means the climatic types can be changed. Only decreasing the PET in the upper Yarkand and
the upper Aksu River would cause significant decreases in the aridity index (from 5.02 to 0.91
for the upper Yarkand, from 1.73 to 0.48 for the upper Aksu River), which are not realistic for
these regions.

ET computation is sensitive to the climatic conditions and the surface conditions; hence
the absolute value of ET significantly varies in time and space, and its bias very di�cult to
quantify. The evapotranspiration ratio to precipitation (ET / P) is typical for specific climatic
types or regions with similar land cover types (Yang et al. 2007). (Liu et al. 2003) estimated
the evapotranspiration ratio to precipitation using a remote-sensing approach over regions of
Canada. They concluded that the ratio ET / P is 32 % for barren land and 18 % for snow/
ce land. In general, most of the catchment area of the three headwater catchments consists
of barren and snow/ice land. Because of its lower latitude, the ET ratio could be higher but
still below the rate for cropland (67 %). Therefore, only changes in P are not very likely
for Yarkand and Hotan (ET / P is 0.68 for Yarkand and 0.70 for Hotan after the correction).
Higher P for the upper Aksu River is likely to maintain a realistic ET / P ratio.

The biases of the three variables (P, ET, PET) have relatively weak dependence because
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they are governed by di�erent processes. P and PET are quite independent because they
relate to di�erent forcing variables. Although the ET amount is linked to two other variables,
the ET bias is weakly dependent, and it also comes more from the surface conditions and
model biases. The chances of biases arising from each variable are about the same in theory.
However, based on the analysis of the model output and the assumed bias-corrected scenarios,
there are some priorities for the bias sources over each subbasin. The possibility of biases and
the supporting arguments are listed in Table 3.6 for each headwater catchment. For instance,
for the upper Yarkand subbasin, an increase in P, especially the glacier melt, is necessary
because of the lower glacier melt ratio compared to the Hotan basin (Sect. 5.1.2.3) and the
small trend in model discharge compared to the discharge observation (Sect. 4.2). However,
only increasing the precipitation is not su�cient because the current PET is very likely too
high compared to the surrounding regions (PET = 1240.4 mm yr�1, while PET ranges 580-720
mm yr�1 over the Tibetan Plateau). Meanwhile, only decreasing the PET without changing
other variables would cause a very low PET rate (225 mm yr�1) and low aridity index (PET / P

= 0.91), which is not realistic for this region. Modification in ET is possible but not adequate
due to the overestimated PET. Hence, this error analysis reveals that increasing precipitation
over the upper Yarkand subbasin is quite necessary, the overestimation of PET is very likely
and modification in ET estimation is possible but not fundamentally necessary. For the upper
Hotan River, the most likely biases come from the overestimation of PET, while the two other
variables are possible sources. An increase in precipitation and changes in temporal variability
are necessary for the upper Aksu subbasin, but they are not the only causes, as either the PET
or ET, or both, is overestimated.

Table 3.6 – Summary of the possible causes of the underestimation in discharge and the
corresponding arguments. Three levels of the possibility are presented as Yes: with direct
argument, likely: with indirect argument, No: with negative argument.

Subbasin Variable Is it a factor? Is it the only factor?

Yarkand
P underestimation YES: Glacier (low glacier

ratio, smaller trend in dis-
charge simulation)

Likely NO (very high PET=1240.4
mm yr�1; high ET/P = 0.68)

PET overestimation Likely YES: Very high
PET=1240.4 mm yr�1

NO (very low PET=225.0 mm/yr;
low PET/P=0.91)

ET overestimation Likely NO (very high PET=1240.4
mm yr�1; high PET/P=5.02)

Hotan
P underestimation Likely NO (very high PET=1153.7

mm yr�1; high ET/P=0.70)
PET overestimation Likely YES: Very high

PET=1153.7 mm yr�1

ET overestimation Likely NO (very high PET=1153.7
mm yr�1)

Aksu
P underestimation YES: P < R in summer Likely NO (low PET/P=1.14)
PET overestimation NO (very low PET=174.1 mm yr�1,

very low PET/P=0.48)
ET overestimation
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3.4.4 Human intervention in the lower oases

The current ORCHIDEE version does not yet take into account the intensified evapotran-
spiration caused by human activities especially through irrigation, which is a major process in
the hydrological cycle transferring water to the atmosphere. As a consequence, in the lower
oases the simulated discharge at the Alar station is significantly larger than the observations
(Fig. 3.6g, h; 146.59 ⇥108 m3 yr�1 in WFDEI-CCG-SF simulation to 43.34 ⇥108 m3 yr�1 in
observation). However, because the biases of the upstream discharge will propagate to the
Alar station, the catchment of which includes the three basins discussed above, the currently
estimated discharge is thus underestimated compared to the potential river flow at Alar, which
is the natural river flow without human intervention.

We use two simple approaches to estimate this underestimation. In the first one, according
to the work of (Tao et al. 2011), all the water increment of the Alar gauge station is caused by
the water changes from the three headwater catchments. Hence the underestimation of the
discharge to the potential river flow at Alar equals the underestimation of discharge from those
three catchments. The increment at Alar should be 110.25 ⇥108 m3 yr�1 (observed 192.15
⇥108 m3 yr�1 from the three headwater catchments minus simulated 81.9 ⇥108 m3 yr�1), so
that the potential river flow at Alar should be 256.84 ⇥108 m3 yr�1 ( = 146.59+110.25), and
the influence of human activities on the increase of ET can be estimated as 213.50 ⇥108 m3

yr�1 (= 256.84-43.34), 83.1 % of discharge.
A second simple scaling approach to obtaining the potential river flow at Alar is that

we assume the model bias for the whole upper Tarim Basin is constant over space. The
scaling factor is 2.35 (= 192.15 / 81.9); hence the potential discharge at Alar should be 343.92
⇥108 m3 yr�1 (=146.59 ⇥ 2.35). And the influence of human activities on the increase of
ET is estimated as 300.58 ⇥108 m3 yr�1(= 343.92 - 43.34), 87.4 % of the discharge. The
overestimation over the discharge observation is the amount caused by additional human
intervention, especially the irrigation-caused evapotranspiration.

To validate the proposed values, we collected the irrigation area over the Tarim Basin
using the FAO Global Map of Irrigation Areas (Siebert et al. 2013), according to which the
total irrigated area for the upper Tarim Basin is 13548.5 km2. In addition, Zhou et al. (2000)
provides the gross irrigation quota as 1.77 ⇥106 m3 km�2; hence the total irrigation water
consumption will be 239.80 ⇥108 m3 yr�1. Hence the results of the two approaches assessing
human net abstraction are -11 % and 25 % (213.50 ⇥108 m3 yr�1 and 300.58 ⇥108 m3 yr�1,
respectively) in relation to the consumption data, which are acceptable figures because of the
unknown biases in irrigation area as well as the gross irrigation quota. The proportion of
the consumed water (83.1 %– 87.4 %) is higher than the estimation (74.7 %) in 1995, which
could be explained by the intra-annual variation of inflow and abstraction.

3.5 Conclusions

In this work, we proposed an ORCHIDEE-Budyko framework which is used to attribute
the modeled discharge bias to di�erent sources as the forcing and model structure. Bias in
the precipitation (P) and any processes related to the potential evapotranspiration (PET) is
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considered as bias from forcing and bias in any processes a�ecting the actual evapotranspiration
(ET) estimation is considered as bias from model structures. The discharge simulation was
provided by the land surface model ORCHIDEE with latest developments in its modules and
driven by the most improved forcing inputs (WFDEI-CCG-SF). However, underestimation in
the discharge still exists over the three Tarim headwater catchments, where the biases of P,
PET and ET are analyzed with a Budyko analytical approach. With a set of assumptions, we
isolated the biases in three variables, and their possibilities were assessed with information
from nearby and hydroclimatically similar regions. Results show that precipitation (here
considered as the sum of rainfall, snowfall and glacier melt) nderestimation is highly likely
for the upper Yarkand River and the upper Aksu River, while the overestimation of PET is
likely to a�ect the upper Yarkand River and the upper Hotan River. The overestimation in ET
is possible but not likely the only cause for the discharge underestimation for all headwater
catchments. In the lower oases, humans consume 83.1 %–87.4 % of the discharge for irrigation,
which is also a bias source in the current version of model. Thus, inclusion of detailed human
modules is needed for any large-scale model.

In this attempt to analyze the performance of a complex land surface model over the Tarim
Basin, large biases are found in the discharge estimation. Our finding that the bias is most
likely caused by the forcing variables rather than the model is probably the reason for the
failures of other models in specific regions as well. Our work provides more information
about the Tarim Basin’s water cycle and guidance for future studies that the bias in forcing
variables should firstly be assessed and reduced in order to perform pertinent analysis of the
regional water cycle. Land surface models are a recommended tool for water cycle analysis
because of their independence of calibration and good ability to simulate most variables of the
water cycle and their interplay, which facilitates the identification of bias sources. This kind
of application along with the improvements of forcing data is also important for predicting
water resources in the Tarim as well as other high-altitude basins in central Asia in a changing
climate.
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Chapter 2 introduces a new approach which estimates the uncertainties in the atmospheric
variables. Chapter 3 introduces a ORCHIDEE-Budyko framework which aims to attribute the
model bias in river discharge to both uncertainties in atmospheric variables and the model
itself. This chapter will then focus on the human activities which act as the third uncertainty
source in hydrological modeling (see section 1.2.2). Di�erent kinds of human activities
and their impact on river discharge over Chinese regions are introduced in section 4.2. The
methodologies for quantification of the human impact are introduced and compared in section
4.3. Finally, the magnitude of the human impact estimated at a number of river discharge
gauges is compared with the uncertainties in precipitation among multiple products. The
impact of model simulation on the uncertainty changes through hydrological processes is also
discussed in section 4.4.

4.1 Introduction

China is experiencing rapid growth in its population after the People’s Republic of China
was founded in 1949, and the economy is exploding after China’s reform and opening in 1978
(Liu et al. 2014a). Along with the increasing population and economy, the needs for land and
water have also increased for di�erent purposes such as residence, food and industries (Liu
et al. 2014b; Xu and Luo 2015) . Transitions from forests to cropland and urban areas occurred
in large parts of China with di�erent patterns and di�erent magnitudes (Liu et al. 2008; Liu
and Tian 2010). The land cover transition is an important factor that changes land surface
properties. Water consumption1 has significantly increased in di�erent sectors which has
resulted in uneven water pressures in di�erent places across China. To better manage the rivers
and increase electricity production, a large number of dams was built and used to regulate
the river discharge to optimize benefits (Yang and Lu 2014). All the human activities finally
exert impacts on river discharge, though the e�ective ways, the places, the temporal scale and
the magnitude of the impact vary among di�erent human activities (Piao et al. 2010; Wang
et al. 2011a; Yang et al. 2015a; Li et al. 2016c). In this chapter, three major human activities
(i.e., land-use change, water consumption and dam construction) are reviewed regarding their
evolutions in China and their impacts on river discharge in the literature. The methods that
are proposed to quantify the human impact on discharge are also reviewed. The methods
are divided into two groups (i.e., indirect approaches and direct approaches) depending on
whether the human impact is estimated directly or in an indirect way. The peculiarities of
these methods are discussed based on their estimations and existing studies.

Human impact is estimated with di�erent magnitudes over regions because the human
interferences vary over space (Zhao et al. 2014; Jiang and Wang 2016; Li et al. 2016c; Guo
et al. 2018). The abundance of water at local regions also a�ect the relative impact of humans.
As we have shown in previous chapters, there are various uncertainty sources in hydrological

1Water consumption: the actual amount of water used for di�erent products. It equals to water withdrawal
from natural water bodies minus the water return to the water system including the evapotranspiration to the
atmosphere and return water to rivers, lakes, soil, groundwater.
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modeling, and the uncertainty will finally propagate to a�ect the accuracy of model predictions
(e.g., the discharge). The question is whether the uncertainty in a model simulation due to
the di�erent uncertainties is larger than the magnitude of human impact that is defined as the
alteration of discharge by humans. If the modeled uncertainties caused by the various sources
are larger than that can be a�ected by humans, the assessment of human impact will lack
credibility since it is di�cult to ensure the modeled changes in discharge are only associated
with human activities. Therefore, in this chapter, the human impacts are estimated as the
di�erence between observed and naturalized river discharge at some available gauges. The
discharge di�erences caused by humans are compared with the uncertainties in the modeled
river discharge caused by other sources.

4.2 How humans change river discharge

4.2.1 Land-use change (LUC)

Land-use change (LUC) is one of the major factors that change the river discharge, and
humans play the dominant role in recent rapid LUC evolutions (Liu and Tian 2010). LUC
does not directly change the river flow, but it alters the water cycle processes (e.g. infiltration,
evapotranspiration, lateral flow) through changes in surface and soil properties. The impact of
LUC on discharge varies in regions as the LUC varies in space and time (Liu et al. 2003; Liu
and Tian 2010) and the types of LUC (e.g. urbanisation, deforestation, reforestation) a�ect
the discharge in di�erent ways. The magnitude of LUC impacts depends on its type as well as
its density in specific regions.

China experienced a rapid loss of forest of 38.4 million ha (hereafter Mha, 21.8%) from
1700 to 2005, while the cropland and urban area increased by 39.7 Mha and 17.1 Mha,
respectively (Liu and Tian 2010). The changing trend was not stable during the historical
period as the forest kept decreasing until its minimum area around 90 Mha in the 1950s and
then rapidly increased to ⇠140 Mha in 2000 (Figure 4.1). 77.0% of the forest degraded to
woodland, and the woodland showed an opposite trend to that of the forest. Cropland increased
slowly before the 1930s, while it accelerated to its historical maximum of 152 Mha in 1950s.
It then decreased at a low rate until 135 Mha in 2005. The urban area increased at a stable
speed after 1950 until 18.8 Mha in 2005.
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Figure 4.1 – Changes in total area of cropland, urban, forest and woodland in China during
1700-2005 (Liu and Tian 2010).
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LUC varies in basins and a significant loss of forest occurred in the northeast (e.g., the
Songhua River basin, Liao River basin; Figure 4.2) and the southwest (e.g., upper and middle
of the Yangtze River basin) during the last three centuries (1700-present, Liu and Tian 2010).
The deforestation is concentrated in the recent century (1900-present, Figure 4.3). The
Songhua River and the Yangtze River are the most a�ected river basins before the mid-1950s
(Liu et al. 2008). The Pearl River and the Yellow River were su�ering deforestation during
1945-1955 (Liu et al. 2008). No apparent changes are found in the Haihe River, Huai River,
the Southwest Basin and the Continental Basin, while the forest significantly increased by 2.5
Mha in the Southeast during the last century (Liu et al. 2008).

Songhua 
River

Liao River
Hai River

Huai River

Yangtze River

Pearl River

Yellow 
River

Southeast
Southwest

Northwest

Figure 4.2 – The map of China and the main rivers (same as Figure 1.1).

After the 1950s, the cropland decreased especially after the China’s reform and opening
up in 1978. During the 1980s to 2000, 46.0% of the area with decreased cropland was used
for urban construction, and the ratio increased to 55.4% during 2000-2010 (Liu et al. 2014b).
The urban area increased from 6.59 Mha in 1949 to 19.8 Mha in 2016 according to national
statistics. The eastern plain and southeastern China, which include provinces of Beijing,
Shanghai, Guangdong, Zhejiang, Jiangsu, Shandong and Tianjin, occupy the largest urban area
(12.5 Mha) and have the largest increasing ratio in history (Liu and Tian 2010) (Figure 4.4).
Most of the remaining area with decreased cropland were used for ecological construction
(i.e., a�orestation), accounting for 34.54% of the total decreased cropland (Liu et al. 2014b).
From 1990, the forest/grass-based vegetation restoration projects, especially the “Grain for
Green project”, stimulated the a�orestation, especially in ecologically fragile regions (e.g.,
the Loess Plateau). 28.0 Mha of plantations established from 2001 to 2007 (Chazdon 2008)
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Figure 4.3 – Changes in forest area for each river basin during 1900-2000 based on reconstructed
historical land-use data (unit: 1,000 ha) (Liu et al. 2008)

and the forest area has increased from 174.9 Mha in 2004 to 207.7 Mha in 2016 for the whole
China, of which 33.4% is a�orestation.

Cropland
Forest
Grassland
Water bodies
Built-up area
Unused area

Figure 4.4 – The land use map (1 km resolution) in China in 2015.

Di�erent types of LUC will change the surface conditions and further a�ect the water cycle.
However, their impacts on the river discharge are di�erent in terms of the magnitude of LUC
itself and the ways it changes the water cycle. The characteristics of the a�ected area also a�ect
the relative impact of the LUC. In the following three subsections, the impacts of deforestation,
urbanisation and a�orestation on the hydrological components (i.e., evapotranspiration and
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water yield2) are introduced, respectively. The introduction below reviews the di�erent types
of land-use change and the impact of LUC on the hydrological elements through literature.

Deforestation

Deforestation is one of the major LUC patterns in the period of population expansion and
economic growth. Despite the degradation from forest to woodland, most of the deforestation
area was transformed to cropland for food production (Liu and Tian 2010). The shift mainly
changes the surface conditions (e.g., roughness, albedo ratio) and soil properties (e.g. cohesion,
soil moisture content, water holding capacity) (Sirajul Haque et al. 2014). It then a�ects the
evapotranspiration (ET) rate and the water yield finally changes the river discharge.

The ET is simulated to decrease over the deforested area in most studies (Twine et al. 2004;
Mao and Cherkauer 2009). The main causes include (1) the water retention capacity decreases
because the reduced soil cohesion in the deforested area decreases the residence time of soil
moisture and the soil ability to hold water (Chen et al. 2009). (2) the evapotranspirable water
decreases because of the decrease in root depth and drier soil (Jiang et al. 2014). (3) the
changes in surface conditions decreases the ET rate with lower Leaf Area Index (LAI, Liu
et al. 2013a), higher albedo ratio (Myhre and Myhre 2003) and lower surface roughness (Mao
and Cherkauer 2009). However, because some of the forest areas were converted to paddy
land where the ET is significantly high during the crop growth, opposite trend of the total ET

is estimated especially in the east and south China (Liu et al. 2008).
The change of water yield due to LUC is opposite to that of the ET because of the water

balance law as the total amount of water yield is estimated to increase in the deforested area
in southern China (Wang et al. 2015). The runo� coe�cient (ratio of water yield to the
precipitation) is also increased either in simulations or field experiments (El Kateb et al. 2013).
The flood risk increases as higher flood peaks are predicted in deforested area mainly because
of the reduced retential of water storage in soils (Liu et al. 2008). Evidence also shows that in
developing countries where the largest deforestation is ongoing, the flood risk and severity
increased in terms of the flood duration, the victims and people forced to move as well as the
economic damage (Hattermann et al. 2017; Zong and Chen 2000). Similar to the trend in the
ET , there are a few studies that indicate the opposite trends in water yield with deforestation
(Liu et al. 2008).

The availability of hydrological data restricts research on the deforestation impact on river
discharge in China as very few gauges have discharge measurements before the 1950s, and
the large-scale decrease in the forest has taken place before that (Figure 4.3). In the recent
half-century after the 1950s, the deforestation impact has been investigated over regions with
di�erent climate types. (Cui et al. 2007) stated that the transpiration decreases and the runo�
increases in the Tibet Plateau in deforestation scenario simulation. The annual runo� increases
by about 1.4% (12.6 mm) in the deforestation scenario over the East River in southern China
(warm and wet, Niu and Sivakumar 2014). The similar conclusion is found in the dry area in
the north China (Wang et al. 2017a) and cold area the northeast China (Zhang et al. 2014).

2Water yield: the total amount of water generated by precipitation, snow and glacier melt and groundwater.
It consists of surface runo�, subsurface drainage and groundwater recharge. And it equals the precipitation over
a catchment minus the evapotranspiration back to the atmosphere in area free of glaciers.
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However, it is di�cult to evaluate the net impact of deforestation because the impact is
generally too small to discern from the natural climate variability and change (Sitch et al. 2005).
In the simulations based on scenarios, the other factors except the forest area are considered
unchanged, which it is not realistic (Cui et al. 2007; Niu and Sivakumar 2014) as climate
change takes place anytime and anywhere. On the other hand, although the deforestation
will decrease the ET , ET can increase due to irrigation over the new cropland and higher
atmospheric demand produced by climate change (Liu et al. 2008). The o�setting impact
on the discharge change increases the di�culty in identifying the deforestation impact on a
long-term scale. Therefore, in most of the studies, deforestation is only explained as a reason
for the increase of water yield in specific regions without robust quantification.

urbanisation

The direct impact of urbanisation compared to the natural area is the increase of the
impervious surface. The annual ET in the urban area is estimated to decrease because of the
decline in vegetation cover and less soil exposure with an increase in impervious surface (Liu
et al. 2008). The urbanisation has the only a slight impact on annual water yield (Du et al.
2012; Zhou et al. 2013) on a regional level probably because the urban area still accounts
for only a small proportion of the whole. However, remarkable changes are found in the
flood events in cities. The impervious surface redistributes the ratio of surface runo� and
the subsurface drainage because infiltration is restrained (Xu and Zhao 2016). The runo�
coe�cient increases especially during flood events (Shi et al. 2007; Xu and Zhao 2016). The
flood peak discharge increases and the peak time advances because the residence time is short
on the impervious surface (Shi et al. 2007; Zhou et al. 2013). The river network has been
partly replaced by built-up areas so that the ability of water to flow is reduced, which increases
the risk of waterlogging in the urban area (Deng et al. 2015; Xu et al. 2014; Wu et al. 2018).

The studies of the urbanisation impact on the water cycle are mainly local and in developed
areas. One of the regions which experienced significant expansion in the urban area is the
Pearl River Delta in the south China. Weng (2001) stated that there is an increase of 8.1 mm
in annual runo� depth due to the growing urban area during 1989-1997 over the Pearl River
Delta. Jia et al. (2015) stated that the runo� coe�cient increased by 13.4% and the flood peaks
increased by 12.9% in Shenzhen city (south China) due to the urbanisation. In the Yangtze
River Delta in the middle of China, Du et al. (2012) stated that the annual runo� increased
slightly while the flood peaks increased more significantly (2.3% to 13.9% in estimation) in
the Qinhuai Basin (Nanjing). Chen et al. (2009) estimated that the peak discharge for flooding
with the recurrence interval of 100 years would increase by 2.3% and the total runo� increases
by 3.0% if the current urban proportion increased from 9.2% to 17% in a future scenario
over the Taihu basin (lower Yangtze River Basin). The similar conclusion is also found in
the north China as Zhang et al. (2015) stated that decreases of the green cover are associated
with an increasing runo� coe�cient in Beijing. However, studies on the relation between
urbanisation and runo� are fewer in northern China than that in southern China, probably
because the cities in the south are experiencing a rapid expansion of urban area and the risk of
heavy rain is also higher. The occurrence of city floods has been increased in the large cities



88 Chapter 4. Human impact on river discharge in China regions - a review

(e.g., Guangzhou, Shenzhen, Nanjing, Wuhan) with the interactions of climate change (e.g.,
sudden heavy storms, long-lasting rains).

A�orestation

In general, the impact of a�orestation on the water cycle is the opposite to that of
deforestation. Increasing in the ET and decreasing in water yield are found in observed data as
well as in some simulated cases (Dijk and Keenan 2007; Niu and Sivakumar 2014; Zhang et al.
2017; Li et al. 2018). The impact on the water cycle varies in space, and it is more apparent in
the water-limited area (e.g., northern China) than in the energy-limited area (e.g., southern
China) (Zhang et al. 2017). In some tropical areas, the a�orestation impact on water yield is
less significant because changes in the underlying conditions do not change the soil moisture
much (Farley et al. 2005; Li et al. 2007). The influence on the seasonality of hydrology is
similar across di�erent climates as the flood peaks decrease and the low flow in dry seasons
increases (Liu et al. 2014c). Increased soil moisture and the increasing capacity for soil water
storage are considered as the explanations.

A�orestation aims to control soil erosion and restore the sustainability of local ecosystems
(Song et al. 2014). Although it has achieved these goals in many a�orested areas, a new
problem is found in some places: excessive a�orestation exerts negative impacts on the local
environment. Revegetation needs water for the new plantation and creates conflicts between
the demand and available soil water (Feng et al. 2016). The soil moisture rapidly decreases
because of the high potential evapotranspiration of the forest (Jia et al. 2017). The water yield
has decreased to a low level which is di�cult to maintain the water demands downstream
(Zhang et al. 2008). The most typical case is the a�orestation in the Loess Plateau (Figure
4.5).

Figure 4.5 – The area of the a�orestation in the Yellow River basin. (Feng et al. 2016)

From 2001, the “Grain for Green Project” started with a total investment of USD 8.7
billion and 32 Mha has been planned for the a�orestation area until 2010 (Cao et al. 2011),
for which nearly half of the a�orestation area is in the middle of the Yellow River, leading to
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an increase of vegetation cover by 25% in the Loess Plateau over the last decade (Feng et al.
2016; Zhang et al. 2018). With the increasing forest, average water yield decreased by 50
mm/yr in the Loess plateau, accounting for 50% of its natural level (Sun et al. 2006). The soil
moisture deficit increased, and the available soil water decreased to 8-10 m which is di�cult
for the new vegetation to reach (Wang et al. 2011b). The decreased soil moisture, in turn,
restricts the sustainability of forest growth, leading to stunted or “small old” trees, and even
plant mortality (McVicar et al. 2007).

There should be an equilibrium vegetation cover which can ensure the ecological function
of the forest with the least negative impact on other sectors (Zhang et al. 2018). Zhang et al.
(2018) suggested a value for the equilibrium vegetation cover fraction of 0.43 on average
over the Loess Plateau while the current average forest cover has reached 0.48. Therefore,
vegetation restoration solutions must be tailored to the water availability and other ecological
conditions in a region (Chen et al. 2015; Normile 2007). Further revegetation on the Loess
Plateau and any other environmentally fragile areas should be applied with caution (Zhang
et al. 2018).

4.2.2 Water consumption

Water is the most important element for human beings, food production and economic
development. Humans take water for domestic, agricultural and industrial sectors from the
water cycle (e.g. surface water, groundwater). According to the latest bulletin of water
resources in China in 2016 (Ministry of Water Resources 2016), the total gross water use3 is
604.02 km3, among which the irrigation water use is 376.80 km3 (62.4%). The domestic and
industrial water use accounts for 13.6% (82.16 km3) and 21.6% (130.80 km3) of the total,
respectively. The total water use accounts for 18.6% of the total water resources (3247.4 km3)
in 2016, which is a large proportion that can a�ect the hydrograph.
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Figure 4.6 – The gross water use in China historical period (1949-2016).

3Water use: gross water taken from water bodies. It includes water used for di�erent products, evapotranspi-
ration to the atmosphere and return water to the land system (e.g., rivers, lakes, soil, groundwater).
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The gross water use in China has exploded in the last half-century as the total water use in
the year 1949 is estimated as 103.1 km3, and 97% of which was used for agriculture (Figure
4.6). In 1980, the total water use rapidly increased and reached 443.7 km3. Among which the
water used for agriculture increased to quadruple its level in 1949. The ratio of domestic and
industrial water usage sharply increased to 16.6% of the total. In the 1990s, the agricultural
water use became stable, while the use for domestic and industrial purposes kept increasing
and doubled in the end of 20th century based on the level in the 1980s. From 1997 to 2016,
when the national reports were introduced, the water use in di�erent sectors is available with
good reliability. The total water use increased by 8.5% in total. The industrial, domestic and
agricultural water use changed by 16.7%, 56.5% and -4.8%, respectively. The water usage
structural has improved as the water taken for agriculture decreased from 70.4% in 1997 to
62.4% in 2016 (Ministry of Water Resources 2016).

Part of the water taken for di�erent purposes will be consumed (e.g., stored in food or
industrial products) and the left will return to rivers or groundwater aquifers or evaporate to
the atmosphere. The ratio of the water consumption to the gross water use is around 0.64 for
agriculture, 0.25 for industrial and domestic sectors, 0.8 for environmental water. The total
water consumption accounts for 53% of the total water use and thus the reduction of water
accounts for around 9.8% of the total water resources for the China mainland. Although the
water consumption data is not available before 1997, the magnitude of the water consumption
can easily get with a proportion of the gross water use since the e�ciency of water usage was
not significantly changed.
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Figure 4.7 – The gross water consumptions in China historical period (1997-2016).

The e�ect of water consumption to the river change is direct as water is withdrawn from
water bodies (e.g. rivers, reservoirs, lakes, groundwater) and transferred to di�erent sectors
(e.g. farms, factories, residences) over space. The discharge in rivers or the storage in the
water reservoirs (i.e. dam-formed reservoirs, lakes, groundwater) immediately decreases due
to the abstraction of water. The magnitude of the hydrograph change depends on the amount
of water demand and the proportion to the available water at the extraction point. Although
part of the water returns to the land-water system, there is a time lag, and the e�ects are not at
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the point where the water is abstracted.

The change due to domestic and industrial demand is about the same in each month and
is always taken as the monthly average of the annual total in model simulations (Hanasaki
et al. 2006). The impact of domestic and industrial water consumption is sometimes ignored
because these two types account for a small proportion of the total water usage and they are not
consumptive water use (Haddeland et al. 2006) as more than 80% of the taken water returns
to the rivers (Neverre et al. 2016). The irrigation water demand varies by month according
to the crop growth period which peaks in the late spring and early summer. The demand is
also related to the available water at the local scale, since the demand decreases in wet years
because more demand can be satisfied by local water rather than requesting water from water
bodies far away.

Regarding the irrigation water consumption in China, 7.4% of the total water resources is
consumed for irrigation, while the proportion varies in di�erent places: only 4.0% (0.9%-5.3%)
is consumed in the four southern river basins (i.e., Yangtze, Southeast, Pearl and Southwest),
while 23.9% (17.1%-37.3%) is consumed in northern river basins (i.e., Songhua, Liao, Hai,
Yellow, Huai, Northwest) (Table 4.1). Hai river has the largest proportion of irrigation
water consumption (37.3%) which is probably a basin with a significant irrigation impact
on river discharge. The Northwest area is another basin which deserves attention because
the agricultural consumption is high (39.7 km3, next to the Yangtze) and the irrigation water
consumes 93.9% of the total water consumption. Moreover, less water returns to rivers
because of the dry continental climate in the northwest China. Therefore, the impact of
irrigation is significant as irrigation reduced the surface runo� by more than 80% in the Tarim
River (Hao et al. 2015; Zhou et al. 2018), much higher than the average level (26.1%) shown
in Table 4.1. Consideration of the water consumption, especially the irrigation water, is thus
very necessary in northern China.

Despite the water consumption, cross-basin water transfer across basins is also directly
changing the hydrographs. The South-to-North water diversion project, the largest water
diversion project in China, transfers 2.39 km3 per year from the Han River and 8.9 km3 per
year from the Yangtze River to the north each year at the current stage (Kong et al. 2018) and
is planned to transfer 44.8 km3 per year in total by 2050 (Zhang 2009). The impact on the
river discharge over places where water is removed is limited to within 1% since the abstracted
water only accounts for a small proportion of the original river flow (Gu et al. 2012; Wang
et al. 2016). While the transferred water may exert more significant changes of hydrographs in
areas receiving water as the natural water resources of Hai River is 38.8 km3 in 2016 (Table
4.1). However, quantitative assessment on the hydrological impact in areas receiving water
is very little probably because the water distribution along the transfer route and among the
di�erent sectors is not precise. Assessment of the eco-environmental e�ects of the water
transfer project is now more popular than the assessment of the impact on the hydrograph
(Yan et al. 2012).
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4.2.3 Dams and dam regulation

China has the largest number of dams in the world (Lehner et al. 2011; Yang and Lu 2014;
Ministry of Water Resources 2016). The total number of the dams exceeded 96000 in 2016
(Ministry of Water Resources 2016). There were very few dams on record in China before the
1950s as there were only 22 dams located in China among the global 5268 dams recorded in
the Global Reservoir and Dam (GRanD) database (Lehner et al. 2011). Most of the dams
were built after the 1950s (Figure 4.8a). The number of the dams increased dramatically
during 1950s-1970s as there have been 72131 dams recorded in documents. The number kept
increasing at a high rate to 86900 sites around the year 1982. The total number then decreased
by 4.6% until 1990 because the removal of small and old dams. The dam number increased
after that but at a low rate. The total number of large dams4 kept increasing after the 1970s. It
increased from 283 dams in 1973 to 639 dams in 2016 (Ministry of Water Resources 2016).
Both the capacity of all reservoirs or of the large reservoirs increased from the 1970s, and the
increase of the total capacity is mainly owing to the large dams (Figure 4.8b). After 2003,
the rate of reservoir capacity reached a high level because a few mega dams5 were built (e.g.
the Three Gorges Dam-TGD, 39.3 km3, 2003-2009; Xiaowan Dam, 15.1 km3, 2002-2010;
Xiluodu Dam, 12.8 km3, 2005-2013).
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Figure 4.8 – The development of the (a) number of dams in China and (b) the total capacity of
the reservoirs in China (Yang and Lu 2014). The black lines represent the total dams, and the
red lines represent the large dams with a capacity larger than 108m3.

The estimated total storage capacity of all the reservoirs in China exceeded 794 km3,
accounting for 24.5% of the annual water resources in 2016 (Yang and Lu 2014; Ministry of
Water Resources 2016). All the dams act as a huge regulator of land surface water resources
and the amount of water stored in the dams varies by year. For example, the actual water stored
in the dams at the end of 2016 was 395.4 km3 (49.8% of the total storage capacity and 12.2%
of the total water resources). Dams directly alter the inter-annual river discharge through
regulation, and the dam’s impact on discharge is determined by their designed purposes. In
general, the flood peaks decrease because dams store water amounts associated with extreme
high floods to reduce the downstream flood risk. The low flow in dry seasons increases

4Large dams: dams with a storage capacity larger than 108m3

5Mega dams: dams with a storage capacity larger than 10 km3.
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because dams release their stored water when the river discharge reduced to a very low level.
The dams built mainly for flood control have a higher impact on flood peaks; the dams built
for water supply change more the low flow and increase the reliability of water supply during
drought; the dams mainly designed for hydropower generation change the discharge mainly
after flooding season. For the dams which are the critical projects in a region with multiple
objectives (e.g. the TGD in the Yangtze River, Xiaolangdi Dam in the Yellow River), the dam
impact on river discharge is more complicated.

The analysis of the dam impacts is generally conducted by comparing the discharge before
and after the dam’s construction with observed or simulated data. Yu et al. (2011) estimated
that the discharge in the wet season (May to October) decreased by 10.3% (from 280.3 km3

in 2003-2008 to 251.5 km3 in 1953-1980) at Yichang hydrological gauge (right after the
TGD) after the TGD started to store water in 2003. The discharge increased by 8.0% for the
rest of the months after 2003. Chen et al. (2016) estimated that 30-43% of the increment in
January-March arise from the releases from the TGD. Although the change in discharge is not
only the result of the dam regulation, the climate change may also change the discharge, the
sudden change of the runo� ratio in the wet season and other months around 2003 indicates the
influence from dam construction. Regardless of the natural climate variation, the proportion
of the discharge in the wet season decreased by 4% which indicates that part of the water in
the wet season has been stored in the dams (Yu et al. 2011). According to the report from
the Three Gorges Company, the TGD decreased the flood by 83.1 km3 in the flood seasons
and increased by more than 120.4 km3 the water in the dry season in total during 2010-2015
that helped to overcome the flood and drought risk in downstream area (China Three Gorges
Corporation 2016).

The alteration in the seasonality of hydrological cycle is apparent in the wet regions where
the water consumption is small compared to the water resources, and the dams are mainly
built for electricity production (e.g. the Yangtze River, the Pearl River, Wu et al. 2012a; Yu
et al. 2011). The conclusion is di�erent in the Yellow River basin where the built dams are
mainly regulated for increasing water availability (Yang et al. 2008b). Although the released
river discharge may increase in the dry season for a single dam, the overall impact of the
cascades is negative in that more water is used as a result of the dams regulation (Ouyang
et al. 2011). The variability of annual cycle did not change a lot because the phases of river
discharge and water demand are similar in seasons.

Except for the inter-annual cycle changes of discharge, the dams may reduce the annual
total stored water. Yang et al. (2015a) estimated that 0.3 km3/yr (0.77% of the water stored
in the TGD) is lost due to the increased evaporation over water surface of the TGD (⇠1084
km2). Together with the initial filling of the TGD, the water discharge decreased by 3-14 km3

yr�1 (0.25%-1.17% of the total annual water resource of the Yangtze River). The loss can be
significantly high in China as the total surface area of all dams at designed water level reaches
26870 km2, which is 32.7% of the current lake surface area (Yang and Lu 2014). On the
other hand, as the dam regulation increases the availability of water usage, more agricultural
demand is satisfied and the lost water increases because a large proportion of agricultural
water evaporates to the atmosphere. However, the contribution of dams to the increased
evapotranspiration through irrigation is not well evaluated currently in China.
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The dam influence on discharge will cause other ecological problems over the lakes
downstream. The Dongting Lake and Poyang Lake are the two largest lakes that are still
naturally connected with the Yangtze River. The lake storage is therefore a�ected by the
water level in the Yangtze River. Because the Three Gorges Dam, which is upstream to the
outlets of the two lakes, reduces the release in flood season especially at the end of the flood
season, the water level downstream at the outlets of the two lakes becomes lower than normal
(decreased by at most 2.0-2.8 m). The release from the two lakes therefore increases because
there are no sluices for the water exchanges. The water storage in the two lakes decreases
which threatens the ecosystems and the water availability in the lake area (Lai et al. 2014a;
Lai et al. 2014b). The river-lake interactions with dam regulation and whether the two lakes
need gate controlling are a subject of debate among the researches, public and government.

Moreover, because China has the largest density of dams in the Yangtze and the Yellow
River, the cumulative e�ect of the cascaded dams on the discharge becomes another topic
of study for hydrologists (Ouyang et al. 2011). The single dam e�ect is amplified through
the cascades, e.g., the maximum di�erence between the inlet and outlet of Long-Liu section
(from Longyangxia Dam to Liujiaxia Dam), with three large dams and a few small dams,
decreased from 430 to 115 m3 s�1 (Ouyang et al. 2011). The cascaded dams also increase the
residence time of water (Vörösmarty et al. 1997). The response of the river discharge to the
precipitation in the Yangtze River has changed from one month in the 1980s to two months in
the past decade as determined by isotopic approaches (Li et al. 2016a). The delayed residence
time reduces the speed of land water refreshing and in the meanwhile increases the risk of
environmental problems. The cumulative dam e�ect is more associated with the water quality
or the ecosystem rather than the flow regime (Kibler and Tullos 2013).

4.2.4 Summary

In conclusion, this section reviewed three major human activities that change river
discharge and the related studies in Chinese regions. The Land-use change, mainly consisting
of deforestation, urbanisation and a�orestation, indirectly alters the river discharge since land-
use change alters the properties of the land surface. The altered properties will then change the
water yield through changes in water processes such as infiltration and evapotranspiration. The
water consumption in three sectors, domestic, industrial and agricultural water use, directly
change the river discharge by withdrawing water from water bodies. Dams a�ect the river
discharge through regulation by controlling the dam release with certain regulation rules to
maximize the benefits.

The di�erent Land-water use and dam regulation take place in di�erent places, and their
impacts on the river discharge regimes vary in magnitudes (Figure 4.9). Forest change (i.e.,
deforestation and a�orestation) change both the total value of water yield and the extremes of
river discharge (i.e., flood peaks and low flow). Urban area expansion increases the flood peak
and decreases the flood residence time in cities. It also increases the total value of water yield
due to less evaporation. Water used for domestic and industrial purposes change little the river
discharge (2.0% in average for China), while agricultural water consumption decreases the
total water yield by 7.4% (in average for China). The water consumption has very little impact
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on the discharge extremes, while the dam regulation mainly changes the inter-annual cycle
by decreasing the high floods and increasing the low flow. The total water amount slightly
decreases due to dams because of the increases in water surface and human water usage.
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Figure 4.9 – The illustrative summary of the impact of land and water use as well as the dams
on river discharge.

Recognizing the impacts of human activities and their magnitudes are necessary for
understanding how and how much human beings are a�ecting the natural river discharge.
It is a mean of evaluating the hydrological impacts of current engineering projects (e.g.,
dams, agricultural irrigation projects, water-transfer projects), economic developments (e.g.,
urbanisation, GDP increasing) and policies (e.g., "Green for Grain" projects). The results of
scenario analysis also provide guidance for future policies and adaptation actions.

4.3 Quantification methodologies of the human impacts

As described in the above section, the impacts of human activities are various in time and
space. The magnitude and the direction of the impacts on the means of river discharge and
the extremes are also di�erent. Quantifying the impacts is needed to understand the human
interventions. On the other hand, these human activities may also occur together and interact
with each other in specific regions. Climate change also takes place with human interventions
which make the quantification more complicated. Therefore, separating the impacts out of the
climate variabilities and isolating the individual human impact is with di�culty.

There have been a few approaches designed for this purpose and a large number of
implementations on global catchments. Two review papers (Dey and Mishra 2017; Wang and
Chen 2014) have reviewed those approaches although they mainly focused on the indirect
approaches (i.e., estimate the human impact in an indirect way) but paid very little attention
to direct quantitative technologies. Here, this section will give a brief introduction of those
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indirect approaches but emphasize the direct approaches. The corresponding implementations
in Chinese regions and the peculiarities of the two types of approacher are discussed.

4.3.1 Indirect approaches

Basic concepts

The indirect approaches estimate the human impacts on river discharge indirectly. These
methods assume that the changes in any hydrological components are a result of combined
e�ect from climate change and human activities.

�Q = �Q
c + �Q

h (4.1)

where the �Q is the total change in discharge, and �Q
c and �Q

h are the changes induced by
climate change and human activities, respectively. The impact of human activities can be
obtained if the impact of climate change is estimated and excluded from the total. Therefore,
the indirect approaches mainly aim at quantifying the impacts of climate change with di�erent
strategies.

The primary assumption of these indirect methods is that there is a natural period when the
human impacts are considered negligible. Statistical analysis (e.g., Mann-Kendall test, Pettitt
test, Double-mass curve test) is applied to the discharge to find the change-point that separates
the pre-e�ect and post-e�ect periods. Various models (equation 4.2) are set-up and calibrated
with hydroclimatic observations (Qpre) in the pre-e�ect period. Only the variables that are
free of human interventions can be used as the variables (x

c

i
) in the model (e.g., precipitation,

temperature, discharge in the natural state).

Q̂pre = f (xc

1, x
c

2, ..., x
c

i
, ..., xc

n
), i = 1, 2, ..., n (4.2)

In the post-e�ect period, both the climate change and human interventions exert influence
on the river discharge, and the impact (changes compared to the pre-e�ect period) can be
quantified as the averaged discharge measurement in the post-e�ect period (Qpost) minus the
averaged pre-e�ect discharge (Qpre, see equation 4.3).

�Q = �Qc + �Qh = Qpost � Qpre (4.3)

The impact of climate change on the river discharge is mainly caused by the alteration in
the forcing variables (e.g., precipitation, temperature, radiation, wind, etc.). These alterations
are driven by large-scale atmospheric dynamics and are not a�ected by human interventions.
With the model set-up in the pre-e�ect period (equation 4.2) and the new climate in the
post-e�ect period (x

c

i,post
), the discharge response to the only climate change is estimated as

Q̂
c

post
= f (xc

1,post
, xc

2,post
, ...xc

i,post
, ..., xc

n,post
), i = 1, 2, ..., n (4.4)

The impact of climate change (�Q̂c) is then estimated as the di�erence between the model
estimation driven by the new climate in post-e�ect period (Q̂c

post
) and the discharge in pre-e�ect
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period (Qpre)(see equation 4.5). In some cases, the discharge measurement Qpre is replaced
by its estimation Q̂pre.

�Q̂c = Q̂
c

post
� Qpre (4.5)

The impact of human activities (�Q̂h) can thus be estimated as the di�erence between �Q

and �Q̂c or by subtracting the estimated discharge in new climate without human impacts
(Q̂c

post
) from discharge in post-e�ect period (Qpost).

�Q̂h = �Q � �Q̂c = Qpost � Q̂
c

post
(4.6)

The contribution of climate change (⌘c) and human activities (⌘h) to the total changes is
estimated as

(
⌘c = �Q̂c/�Q

⌘h = �Q̂h/�Q

(4.7)

Di�erent approaches and case studies

The key to the indirect approaches is to estimate the river discharge in the post-e�ect
period only considering climate variabilities without human activities. It requires that the
model settings in the pre-e�ect period only depend on climate forcing or other variables free
of human interventions (equation 4.2). According to the variables and strategies used for
building the model, these approaches can be categorized into the following two groups.

• Constructing the models by forcing inputs. It is the most used way of modeling, and
there have been many kinds of methods to set-up such models. For example, the
regression model (Miao et al. 2011) and Neural Networks (Liu et al. 2010a) based on
the observed discharge and forcing components are e�ective approaches to obtain a
rainfall-runo� relationship. The precipitation (P) is the dominant variable for the water
cycle. Temperature (T) or the potential evapotranspiration (PET) are often accounted
for in the models since they are related to the actual evapotranspiration (ET) back
to the atmosphere. Elastic models relate the increments of observed discharge with
the changes in forcing components (Jiang et al. 2011). The discharge changes due to
climate change in the post-e�ect period can be directly estimated by the increments of
the climate variables (e.g., P, T , PET , radiation). These statistical methods strongly
rely on the data, but they require a very low understanding of physical mechanisms.
Budyko-related methods are also statistical approaches, but they relate P, ET and PET

by an empirical Budyko curve (Yuan et al. 2016). The contribution of climate change
will be firstly estimated from the curve according to the shift of the representative points
which represent the system in di�erent statuses. The remaining di�erence from the
observations represents the impact of human activities. Moreover, there are many kinds
of hydrological models and land surface models driven by the climate forcing (Lu et al.
2015). These models are improved compared to the statistical approaches in terms of the
representation of physical mechanisms (e.g., infiltration, evaporation, runo� generation).
The underlying conditions (e.g., soil types, land cover) are considered as well. The
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climate impacts in the post-e�ect period are estimated with the new forcing, but other
underlying conditions remain as the pre-e�ect conditions. The human impacts are then
estimated by subtracting the climate impacts.

• Constructing a model of discharge free of human interventions as paired comparisons.
For a few regions with sparse data and complex surface conditions (e.g., mountains,
deserts), the models are di�cult to build, and the accuracy of forcing variables are
probably not acceptable for the model set-up. The discharge model can be established
with discharge measurements at reference gauges where the human interventions are
negligible. One approach links the downstream discharge with the discharge at upstream
gauges (Tao et al. 2011). The upstream gauges are considered free of human impacts
in both pre-e�ect and the post-e�ect period. The climate change is considered to be
the same for both the upstream and downstream areas. In this case, the estimated
downstream discharge with a relation from the pre-e�ect period and upstream discharge
in post-e�ect period is the result of a climate-e�ect scenario, and the remaining part
results from the influence of human activities. For example, there is very little human
interventions in the source catchments of the Tarim basin (see Chapter 3), while the large
area of the human activities (mainly the irrigation) is between the source catchments
and the lower target gauge (Alar, see Figure 3.1). The climate change is considered to
be the same for both the upstream and downstream area over the whole period. The
climate impact on the downstream gauge in the post-e�ect period is estimated by the
established model driving by measured discharge at the upstream gauge in the same
period. The di�erence between the estimated discharge and the measurements at the
downstream gauge can be recognized as the human impacts. The other approach is
to establish the model with a similar basin nearby and free of human activities in the
whole period which acts as the upstream area in the previous method. A few studies
that used these indirect approaches are listed in Table 4.2.

Table 4.2 – Implementations of the indirect approaches in quantifying human impacts on river
discharge.

Methods References
Regression Linear Regression Kong et al. (2016), Miao et al. (2011), and

Wang et al. (2012a)
Multi Regression Jiang et al. (2011) and Xu et al. (2004)
Neural Network Liu et al. (2010a)
Paried comparison Tao et al. (2011)

Elasticity Jiang et al. (2011)
Budyko Jiang et al. (2015), Yuan et al. (2016), and

Zhao et al. (2014)
Hydrological Models Lu et al. (2015) and Ye et al. (2013)

Advantages and Disadvantages

These indirect approaches are widely applied in many case studies in the globe at di�erent
spatial scales because of their simple concepts and low data requirements. Comparison among
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models in order to analyze the uncertainties and possible physical explanations of the discharge
change is easy because of a large number of di�erent approaches in the group.

However, these indirect approaches are short in the following aspects,

• The primary assumption of the indirect approaches is that the human impact is considered
negligible in the pre-e�ected period while because the two periods are mainly separated
through the discharge time series, only the time with intensive human activities which
immediately change the discharge can be detected (e.g. dam construction, land cover fast
change such as forest fires). Other activities (e.g., land use change with deforestation,
a�orestation, urbanisation) which take a long time to cast measurable impacts on
discharge are di�cult to detect. The detection based on discharge is also sometimes
not perfect since climate may dominate the changes in discharge so that the separation
indicates the point of changes in climate rather than the human impact.

• The indirect approaches estimate the human impacts (⌘h) on the changes of river
discharge in the post-e�ect period compared to the pre-e�ected period (�Q, equation
4.3). When the assumption that the human impact is negligible in the pre-e�ect period
is valid, the �Q̂h represents the total impact due to human interference. While the
assumption is not always valid in reality because the human activities (e.g., land and
water use) in the defined pre-e�ect period have already existed and therefore the impacts.
The �Q only evaluates the human impacts due to changes in human activities rather than
the absolute impact because the human impact in the pre-e�ect period is considered as
natural variability. The separation of the periods is therefore related to the point where
the human activities have changed the most significantly.

• The model ability in estimating the river discharge is overvalued in the post-e�ect
period because the model is not validated with the new climate and human impact in
the post-e�ect period. The estimation of the human impact is made by extracting the
discharge estimation with only the climate change from the observed discharge will
attribute the model bias to the impact of human activities.

• The human impact is a sum of the impact from all kinds of human activities. The impact
of individual human activity cannot be disentangled with these indirect approaches.
Therefore, there is a need to develop models which can separate the impact of individual
human activities.

• These indirect methods are unable to project the future human impacts because they use
observed discharge as a result of combined impacts by human activities and climate
change. Only the climate change impacts can be obtained from model estimation, and
the human impacts cannot be obtained because of the lack of observed discharge (see
equation 4.6).
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4.3.2 Direct approaches

Basic concepts

The direct approaches, namely, are the approaches that estimate the human impacts directly
rather than subtracting the climate impacts from the total (equation 4.6). A qualified model is
set-up to estimate the discharge based on di�erent variables (x

c

i
, x

h

j
) and models ( f (x)),

Q̂ = f (xc

1, x
c

2, ..., x
c

i
, ..., xc

n
; x

h

1, x
h

2, ..., x
h

j
, .., xh

m
), i = 1, 2, ..., n; j = 1, 2, ...,m (4.8)

The impact of any human activities (Q̂h) is estimated by the di�erence between simulations
with human interventions (Q̂) and without such activities (Q̂�h, equation 4.9).

Q̂�h = f (xc

1, x
c

2, ..., x
c

i
, ..., xc

n
), i = 1, 2, ..., n (4.9)

Q̂h = Q̂ � Q̂�h (4.10)

Compared to the models for indirect approaches (equation 4.2), the variables used in the direct
approaches are not limited to the climatic variables (x

c

i
). The variables (x

h

j
) and processes

related to human interventions (e.g., water consumption amount, irrigation, dam regulation)
are also included. These approaches estimate the absolute value of human impact (Q̂h) rather
than the human impacts to the changes (�Q̂h). Therefore, there is no need to separate the
pre-e�ect and post-e�ect periods. The impacts of human activities that took place in the
pre-e�ect period can be evaluated as well. The length of the period is not limited while
the statistical analysis of the change-point needs a relatively long period for the indirect
approaches.

Di�erent approaches and case studies

There have also been many kinds of approaches that can estimate the human impact
directly, only if the models are integrated with the modules and variables that represent the
human activities.

• The impacts of land use change have been able to be modeled in many hydrological
models or land surface models (Liu et al. 2008; Liu et al. 2013b; Niu and Sivakumar
2014). Di�erent types of land use are represented in models with di�erent parameters
(e.g. the root depth, the infiltration rate, the leaf area index, the roughness, the
albedo ratio). Knowing the spatial distribution of land-use in di�erent periods, the
discharge a�ected by human activities is obtained, and the discharge di�erence versus
the simulation with the land use scenario and scenario with its natural state (e.g., forest)
gives the impact of the land use. The method is the same for evaluating human impacts
of deforestation, urbanisation or a�orestation, as long as these land-use change patterns
can be represented in the model. Niu and Sivakumar (2014) assessed the land use
change by di�erent scenarios of deforestation and a�orestation at di�erent rates in the
East River Basin with the VIC model. Chen et al. (2009) estimated the urbanisation
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impact on storm-runo� generation with scenarios with di�erent urban area proportions
(9.2%, 14% and 17%) in Taihu Lake with the HEC-HMS model. While Du et al.
(2012) used di�erent land cover maps in 1988 and that planned in 2018 to predict the
urbanisation impact in Qinhuai Basin with the HEC-HMS model.

• The water consumption can be considered in models in either an independent or a
coupled way. Water consumption for domestic and industrial purposes are human-
dominated and mainly independent of the hydrological processes (Hanasaki et al.
2006). These demands are always estimated using quota methods according to the
population and Gross Domestic Product for each small model unit (e.g., lon-lat grids,
administration unit) (Wada et al. 2017). The irrigation demand is calculated as the
insu�cient water between potential transpiration to the actual transpiration over the
croplands (Guimberteau et al. 2012b). These demands take water from the water system
and thereby change the hydrographs. The hydrological impact of the water consumption
is evaluated as the di�erences between estimations with and without consideration of
these water consumptions.

• Dam regulation is considered in studies which focus more on the inner-annual cycle of
discharge. Such models include the dam regulation rules to represent the dams’ function
in altering the dam inflow. Despite case studies which have detailed regulation rules for
each dam, the generalisation of the dam regulation is the main di�culty for large-scale
studies. The dam release was estimated simply as (Meigh et al. 1999).

Qout = kr ⇥ Sr(
Sr

Sr,max

)1.5 (4.11)

Where Qout is the dam release, kr is the outflow coe�cient, Sr is the current dam storage
and Sr,max is the maximum value active storage capacity. However, the complexity
of the dam release is higher in reality as the dam has to balance the dam release and
the water left in dams to meet the downstream water demands (Hanasaki et al. 2006)
and other purposes (e.g. hydropower generation and the flood control Haddeland et al.
2006) in the future. Two major groups of dam regulation are proposed for large-scale
modeling in the current literature. The first one is based on Hanasaki et al. (2006) for
which dams only serve the water consumption needs and the release is estimated by a
set of given equations and parameters. The other group is developed from Haddeland
et al. (2006) in which the dam release is optimized to satisfy multiple objectives (e.g.
water consumption need, hydropower, flood control). The later model is retrospective
as the inflow in the future year (12 months) is known and used to determine the dam
release. It therefore has high uncertainties if used for future projections.

The implementations of direct approaches to determine water consumption and dams are
rare in the large Chinese regions. The di�culties inherent in setting up a reliable large-scale
hydrological or land surface model and the di�culties to establish the module to represent
human activities restrict the implementations of the direct approaches.



4.3. Quantification methodologies of the human impacts 103

Advantages and disadvantages

Compared to the indirect approaches, the human impact on discharge is directly estimated
by comparing the results with and without activating the modules that represent human
processes (equation 4.10). The advantages of the direct approaches include

• The direct approaches evaluate the pure impacts of the human activities on river
discharge, rather than the contribution to the discharge changes between two separate
periods. The results of the impact analysis therefore provide more insights for practical
water management.

• The separation of pre-e�ect and post-e�ect periods is not needed so that the human
impacts in the whole period can be assessed. The results are not a�ected by the accuracy
of the estimation of the change-point, and the bias in the results is therefore only induced
by the model abilities rather than other processes.

• The human activities are represented in more detail in the direct models using physical
mechanisms. The division of a single human process and the understanding of factors
that a�ect single human activities becomes possible with the direct approaches.

Two major problems limit the development and implementation of the direct approaches.
They are the accuracy of the model simulation either for the natural water cycle or the human
activities and the complexity of the models.

• The ability of the modules to represent the natural water cycle and human activities
determines the accuracy of the impact assessment. However, because these models are
mainly implemented in large-scale regions, there are many uncertainty sources which
a�ect the final results. Bias in forcing inputs has been shown to play an important role
in the model uncertainty (see Chapter 2 and 4). However, the forcing bias is di�cult to
assess and to remove in the current stage for large-scale analysis.

• The generation of the water management may introduce extra uncertainties to the model
results and the implementation of such parameterisation is di�cult as we do not have
the natural flow to see if the results produced by the model is correct. For example, the
dam regulation rules are considered to be the same for the dams with the same main
purpose in the current implementations, while the dam regulation in reality also takes
into account the local situation. The real action of the regulation is also a�ected by the
dam managers. Because we cannot assess the forcing errors, but the parameterisation
can easily be tuned, the representation of the human processes can compensate the
errors in rainfall and the evaporation formulation.

• The spatial and time resolution is sacrificed to reduce the computing consumptions in
large-scale analysis. The locations of the human impacts as well as the impact in a short
period cannot be considered as a result. The interactions between the human activities
and nature and that among di�erent human activities are simplified to some degree and
generalized to decrease the model complexity as well as the simulation cost.
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However, this disadvantage is not fundamental and can be solved with the improvement of
our understanding about the physical processes and the advances of technologies.

4.3.3 Towards integrating human impacts at high resolution

In the real world, the human activities have interacted with the natural water cycle. The
amount of available water limits the total consumption for di�erent sectors. The amount of
soil moisture together with the climate determines the crop water needs and irrigation amount
for the agriculture. The irrigated water then infiltrates to the soil and part of it is absorbed by
the plants and transpired to the atmosphere. The rest of the water either evaporates or joins
the water cycle as return water. How much the water can be used and how much the water
returns depend on irrigation methods and the soil properties. The dams regulate the river
discharge and change the seasonal water availability especially in the dry period. The shift
in the discharge regimes further changes the amount of water that can be used for di�erent
social-economic sectors. The amount of water availability, the way the plants use irrigation
water, and the return-water e�ect on the river system may di�er in di�erent models, and the
interactions among these processes di�er from model to model.

The interactions between the human water use and natural processes are considered in
di�erent ways between models (e.g., PCR-GLOBWB, H08 and LPJmL) which are shown
in Figure 4.10. The sources of water consumption in the three models are di�erent. In
PCR-GLOBWB, the water consumption withdraws water from sources such as the surface
water, groundwater and desalized water. In H08, the water consumption withdraws water
from the surface water, the medium-size reservoirs and then the nonrenewable and nonlocal
blue water (NNBW), among which the NNBW is assumed as unlimited. In the LPJmL, the
consumption withdraws water from the river discharge and then lakes and reservoirs. If
the water demand is not satisfied, the model will search water from neighbouring grids for
available water. Reservoirs in the LPJmL provides water for the downstream within five grids.
In H08 and LPJmL, the dam release is determined by the dam regulation rules, and it is also
a�ected by the downstream water demands.

However, there are a few limitations when these models account for the water interactions.
The locations of the water consumption (i.e., agriculture, residence, factories) are not specified
in the unit of the model simulation (approximating 0.5o in the lat-lon grid). The water demands
at specific locations are summed and considered as a whole for water supply. The locations
of the water sources relative to these demands are also not precise. Moreover, there are no
reliable river networks (not the routing route in the models at coarse resolution) identified
in the models, and thus the water demands only consume water from the total amount of
surface water or the reservoirs of specific grids. However, water is often pumped from the
nearest river in reality. On the other hand, the abstracted water is not distributed to the points
where the water is needed but evenly distributed over the grid space. The evapotranspiration
rate may also di�er from reality because of the added water. The influence range of the
reservoirs is prescribed by users, but this range is not easy to be assessed in the natural system
and it varies from dam to dam. Neverre et al. (2016) introduced a new strategy to find the
demand-reservoir associations based on a "least cost" function, which considers the distance
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Figure 4.10 – The illustration of the interactions between land surface processes and human
activities in three global hydrological models (a) PCR-GLOBWB (PCRaster GLOBal Water
Balance Sutanudjaja et al. 2017), (b) H08 (Hanasaki et al. 2010) and (c) LPJmL model
(Lund-Potsdam-Jena managed Land, Rost et al. 2008).
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of the water demand to the dam and uphill height from the path. This links the water demand
with the water sources by practical experience and have been validated in the north Africa.
However, these links are still virtual as there are no real connections such as rivers or channels
between them.

The above limitations mainly result from the lower spatial resolution in the global
hydrological models which are in turn constrained by the resolution of the forcing variables.
Compared to the spatial heterogeneity of the forcing variables, the spatial heterogeneity of
the river channels is more significant, and the river surface only accounts for a very small
proportion of the land area. The location of water abstraction should be more accurate than that
dealt with in these models. More detailed topographic information has become available (e.g.,
1 km in HydroSHEDS) and routing approaches based on such high-resolution topography
have been developed in (Nguyen-Quang et al. 2018; Zhou et al. 2018). The integration of
human interventions and the interactions between human water management and natural water
processes should be further improved.

4.4 Comparisons of human impacts to other uncertainties

From the previous literature review, we know that the human impacts on the water cycle
vary in space. The magnitude of the impact is also di�erent for human activities and in
di�erent places. Therefore, in this section, we will quantify the human impacts on river
discharge by analyzing the census data (observed discharge and naturalized discharge). The
significance of human impacts is then compared to the uncertainties in precipitation datasets
and uncertainties caused by models. The purpose of this section is to find whether our
knowledge on the forcing is su�cient to attribute the human impact, and where the condition
can be satisfied.

4.4.1 Data and gauge introduction

The dataset involves 84 available gauges over the Chinese mainland. The locations of
these gauges with their corresponding upstream area are shown in Figure 4.11. Most of the
gauges are located along the Yellow River (middle China), Songhua River (Northeastern
China), Pearl River (Southwestern China), Hai River basin (Northern China near Beijing) and
part of the Huai River basin (Eastern China). The colour shows the number of gauges that can
monitor the discharge of the region. Among the five large basins, the upper Yellow river is
monitored by the most gauges (5 gauges), while most of the upstream area is monitored by
one or two gauges. There are a few gauges which do not belong to these five large basins.

The period of the dataset covers the years from 1956 to 2000. All the discharge is collected
at a monthly interval. The observed discharge is measured at corresponding gauges. The
natural river discharge has been interfered with by humans as they withdraw water through
pipes, regulate the water through dams, and transfer water across basins through di�erent
projects. The di�erences between the observed discharge, which has been altered, and its
natural state is the e�ect of human interference.
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Figure 4.11 – The upstream area of all the 84 hydrological gauges. The number corresponding
to the area represents the number of the gauges having same upstream area.

The estimation of the natural river discharge is challenging because there are human
water usage is scattered and consists of many sectors. The data is collected through di�erent
deparments and it is di�cult to access for the public. Model estimation is an alternative way
to estimate all the water consumption but the processes to build and validate the model also
require quite a large amount of data. Thus, the naturalized river discharge used in this section
is obtained from basin managers. They have statistical data in good quality and covering all the
kinds of water consumption. The statistical data for di�erent water sectors (e.g., agriculture,
domestic and industrial water) is added to the observed discharge. The changes resulting from
the cross-basin water projects and the changes in water storage in dams are also considered to
estimate the naturalized discharge:

Qnat = Qobs +Qagr +Qind +Qdom ± Qpro ± Qstore (4.12)

Where Qnat is the naturalized discharge, Qobs is the discharge observed at the corresponding
gauge. Qagr , Qind , Qdom denote the discharge that transports for water usage in agriculture,
industry and domestic sectors, repectively. Qpro denotes the discharge related to the amount
of water exchange through water transfer projects. Finally, Qstore denotes the changes in dams
that can regulate the natural river discharge. The di�erence between the naturalized river
discharge from the observed river discharge is that caused by human intervention, and the
ratio of this di�erence to the naturalized discharge is regarded as the human impact.

4.4.2 Quantification of human impacts

The human impacts on river discharge are shown in two di�erent aspects. On the one hand,
water consumption for various purposes directly decreases the naturalized river discharge. On
the other hand, human regulation, especially the dams, alters the discharge phases (annual
cycle, seasonality). Therefore, the quantification of the human impacts at those gauges is



108 Chapter 4. Human impact on river discharge in China regions - a review

conducted from two aspects.

Alteration in discharge amount

The map of the observed discharge flux is shown in Figure 4.13-a. The three largest basins
have a di�erent magnitude of discharge values, as the averaged discharge exceeds 6000 m3 s�1

in the Pearl River (Figure 4.12-a, Wuzhou). It is around 2000 m3 s�1 in the Songhua River
(Figure 4.12-b, Jiamusi) while it is below 1000 m3 s�1 in the Yellow River (Figure 4.12-c,
Lijin). The Hai River has the least amount of discharge since there is not much precipitation
in addition to significant human water consumption. The observed discharge is less than 800
m3 s�1 for those small river basins. The spatial pattern of the naturalized river discharge is
quite similar to that of the observed river discharge (Figure 4.13-b). The largest di�erence is
on the lower reaches of the Yellow River (⇠1000 m3 s�1, Figure 4.13-c, Figure 4.12-c). The
water consumption is significant from the middle of the Yellow River and in the tributary of
the Yellow River (i.e., Han River, Wei River). For the Songhua River and the Pearl River, the
humans consume 300-400 m3 s�1 in the lower mainstream.
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Figure 4.12 – The samples of a few gauges in the dataset.

The proportion of discharge di�erence to the naturalized river discharge shows the
magnitude of the human water consumption to the natural river discharge (Figure 4.13-d).
The proportion is small, within in -10%, for the tributaries of the Songhua River basin,
the headwater catchment of the Yellow River basin and the whole Pearl River basin. The
water consumption accounts for 10%-20% of the naturalized discharge in the lower Songhua
River. The ratio of the water consumption to the river discharge increases to 30%-40% in
the Hai River, where the Beijing area relies heavily on the nearby water supply. The largest
alteration is at the gauges of reservoirs (i.e., Guanting Reservoir, -60.1%, Figure 4.12-f; Cetian
Reservoir, -73.3%, Figure 4.12-h). In the Huai River basin, the alteration of the river discharge
is within 30%, and most of it is used for agriculture (Figure 4.12-d). In the Yellow River basin,
significant alteration of the river discharge is monitored except for the upstream (up Lanzhou
gauge). The water consumption accounts for ⇠33.8% in the middle Yellow (Huayuankou
gauge) and 55% in the lower Yellow River (Lijin gauge, Figure 4.12-c).



4.4. Comparisons of human impacts to other uncertainties 109

(a) (b)

(c) (d)

O
bs

er
ve

d 
di

sc
ha

rg
e 

(m
3 /s

)

N
at

ur
al

iz
ed

 d
is

ch
ar

ge
 (m

3 /s
)

W
at

er
 c

on
su

m
pt

io
n 

(m
3 /s

)

Al
te

ra
tio

n 
in

 m
ea

n 
va

lu
e 

(%
)

Figure 4.13 – Di�erent discharge characteristics at the gauges (a) observed discharge, (b)
naturalized discharge, (c) di�erence of the observed discharge from the naturalized discharge
and (d) the proportion of the di�erence to the naturalized discharge.

Alteration in discharge variability

Another alteration of the river discharge is the shift of its seasonality. The discharge varies
within a year, and a large proportion of the discharge concentrates in the flood season. The
concept of concentration period (Cp) and concentration degree (Cd) (Jiang et al. 2005; Li et al.
2008; Li et al. 2011b) is modified to evaluate the annual distribution of the river discharge and
its changes due to human intervention.

The monthly discharge is represented as a vector with its quantity and the direction for a
year that can be seen as a circle (360o, Figure 4.14).

Qi,x = Qi ⇥ cos(✓i) (4.13)

Qi,y = Qi ⇥ sin(✓i) (4.14)

Qx =

12’
i=1

Qi,x (4.15)

Qy =

12’
i=1

Qi,y (4.16)

Cp =
arctan(Qy/Qx)

2⇡/12
(4.17)
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Cd =

q
Q

2
X
+Q

2
y/

12’
i=1

Qi (4.18)

where Qi is the monthly discharge at the i-th month. ✓i is the angle of the corresponding
month, with 30o in January, 60o in February, ..., 360o in December. Qi,x is the decomposition
of the monthly discharge in the x-axis and Qx is the sum of all the months. Qi,y and Qy are
along the y-axis. Cp is the concentration period but has been transferred to a monthly value.
Cd denotes the concentration degree of the discharge.
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illustration.

The concentration period (Cp) for the observed river discharge and the naturalized discharge,
as well as their di�erence, are shown in Figure 4.15. Cp for the Pearl River for the naturalized
river discharge (Figure 4.15-b) is mainly between 7.0 and 7.5 (early July), and there are a few
gauges with Cp in June. The Cp for the northern basins are mainly located between 7.5 and
8.0 (late July). There are no significant di�erences between di�erent gauges. While Cp for the
observed discharge (Figure 4.15) has larger di�erences for the Yellow River, the lower Yellow
has the latest Cp in September and a Cp for the middle Yellow is in August. The concentration
period for the Hai River ranges from early June to late August. Moreover, the Hai River is
where the Cp is shifted in advance by the most significant degree (1.4 months, Figure 4.15-c,
Figure 4.12-g). It is caused by the dam regulation that increases the dam release in the spring
but decreases the peak discharge in the flood period for water storage. The most delayed Cp
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occurs in the lower Yellow River (1.0 month at Lijin gauge, Figure 4.12-c) and in the middle
Yellow River (0.9 months at Longmen gauge).
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Figure 4.15 – Concentration period (Cp) for the annual (a) observed discharge (b) naturalized
discharge and (c) the Cp di�erence of the observed discharge from that of the naturalized
discharge (�Cp). The regions with changes less than 0.25 month (⇠ one week) are not shown
in the subplot c.

The concentration degree (Cd) for the observed and naturalized discharge is shown in
Figure 4.16. A higher Cd represents a more concentrated discharge around the concentration
period (Cp) while a lower Cd indicates a more even distribution of the river discharge over
the whole year. As shown in Figure 4.16-b, Cd for the naturalized river discharge is higher
than 0.5 in the Songhua River basin and the Hai River basin. Its value is between 0.4-0.5 in
the Pearl River basin, Huai River basin and the up-middle of the Yellow River basin. For
the lower Yellow, the natural river discharge is more evenly distributed as the Cd is within
0.3 and 0.4. Most of the Cd decreases are for the observed river discharge which is modified
by humans (Figure 4.16-c). The most significant decrease occurs in the Fengman reservoir
(-0.42) in the Songhua River basin, and in the middle of the Yellow River (-0.23). Cd for these
gauges has decreased among 0.1-0.2 (Figure 4.16-a, Figure 4.12-e), which means there is a
very low fluctuation of the river discharge in the annual cycle after human interventions.

4.4.3 Uncertainties due to limitation of knowledge on the nature

As shown in Chapter 2 and Chapter 3, there are uncertainties in di�erent products of
forcing variables because the representation of the nature variability di�ers from di�erent
product providers. The di�erences are due to our limits in knowing the natural variables.
Applying the products to model simulations will further cause a shift of the model output
from its real status. This shift can also be caused by applying di�erent models which indicates
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Figure 4.16 – Concentration degree (Cd) for the annual (a) observed discharge (b) naturalized
discharge and (c) the Cd di�erence of the observed discharge from that of the naturalized
discharge (�Cd). The regions with changes less than 0.05 are not shown in the subplot c.

that our knowledge on the model processes is also limited.
However, the shift due to the knowledge limitation can not be measured directly because the

real status is unknown. The alternative way is to compare the di�erences between descriptions
on the same objects from independent sources. The larger the di�erences among di�erent
descriptions are, the more significant our limitation on the knowledge of the natural variability
is. On the contrary, we have good confidence if there is only very little di�erences between
independent descriptions.

In hydrological simulations, if the di�erence in estimated river discharge due to limitation
of knowledge on the nature is smaller or much smaller than the shift in river discharge due to
human activities, the results are with high significance. The limitation will not change the
assessment of human impact a lot. While on the contrary, if the di�erence due to limitations
is larger than human impact, we cannot make sure the estimation of human impact is realiable
because something we do not know has been attributed to the human impact. And the bias in
human impact assessment can be higher than the human impact itself.

In this study, we use four di�erent sets of forcing inputs (Table 4.3). Among the four forcing
products, the WFDEI_CMA and WFDEI_CRU products are gauge-based (interpolation from
gauge observations), and their spatial resolution is 0.5o. The ITPCAS and E2O are reanalysis
products with the spatial resolution as 0.1o and 0.25o. Since the WFDEI_CMA dataset uses
the most gauges in the Chinese region, it is used as a reference. The four forcing products
are used to drive ORCHIDEE to provide other variables in the water cycle (e.g. potential
evapotranspiration, river discharge). The regional precipitation or the estimated variables
driven by the forcing is compared with that of the WFDEI_CMA and the di�erences are
considered to be the di�erence due to our knowledge on natural variability.
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Table 4.3 – The four di�erent precipitation products used for comparing the uncertainties.

Name Spatial resolution Data type Provider
WFDEI_CMA 0.5o Gauge-based WFDEI corrected with CMA precipita-

tion (China Meteorological Administra-
tion)

ITPCAS 0.1o Reanalysis product Institute of Tibetan Plateau Research
Chinese Academy of Sciences

E2O 0.25o Reanalysis product Earth2Observe project
WFDEI_CRU 0.5o Gauge-based WFDEI corrected with CRU precipita-

tion (Climatic Research Unit)

The di�erence can be explained by three indicators as the same as those used for identifying
the shift of river discharge due to human activities in the previous subsection. The di�erence in
the mean value (�µ) represents the changes in the average state, the di�erence in concentration
period (�Cp) and concentration degree (�Cd) represent the changes in the phase of the river
discharge. The comparisons between the di�erence due to our limitation on knowledge and
the shift due to human activities are conducted for the discharge, precipitation and potential
evapotranspiration, respectively.

4.4.4 Results

Knowledge on estimated river discharge

Driven by the four sets of forcing inputs, the ORCHIDEE provides the estimations of
river discharge at all the gauges for each forcing. The di�erence between the simulations
of a certain forcing is compared to that driven by WFDEI_CMA and shown in the y-axis in
Figure 4.17. The shift of the observed discharge due to human activities on the mean value
and phases is shown in the x-axis. We can find in Figure 4.17a, for most of the catchments,
human consumes water and reduces the natural river discharge by a ratio ranging [-50%, 0%].
There are a few gauges (e.g., Hai R. and Huai R.) where human activities have reduced the
natural river discharge by more than 50%. While for the concentration period (�Cp, Figure
4.17b), the shift of �Cp is within [-0.5, 0.5], representing a relatively small change. While the
gauges in Hai R. (•) are experiencing an advancing concerntration period with �Cp less than
-0.5, which indicates that the water consumption ratio to the river discharge in the Hai River is
higher in winter season rather than the spring or summer. It is mainly because the irrigation
water usage, which mainly occurs before summer, is not dominant in the water usage for those
gauges. On the contrary, the concentration period in the Yellow River (H) is delayed with �Cp

larger than 0.5, indicating that the water consumption ratio is higher before the peaks, showing
a higher water demand in spring and early summer, especially for irrigation. In addition, the
concentration degree shows the magnitude of the even distribution of river discharge. We
can find that most of the catchments show a small shift within [-0.1, 0.1]. There is a sharp
decrease of Cd for Yellow River (H) which shows the observed discharge has become flat
compared to the naturalized. An increase of Cd is found for Songhua River (+), showing an
increasing in its high-flow concentration because the water consumption in low-flow seasons
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is higher in the ratio to river discharge. The shift of Cd for other catchments is not apparent.
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Figure 4.17 – Comparison of the shift due to human impacts on river discharge (SH) and the
di�erence due to the limitation of knowledge on the natural variability (DL) of the estimated
river discharge. The three columns indicate di�erent human activities as the shift in the mean
value-�µ, in the concentration period-�Cp and in the concentration degree-�Cd . The green
area represents where the DL is smaller than SH. The number in percentage represents the
ratio of the points that located in the green area to the total. Di�erent colors represent results of
di�erent forcing inputs to the reference forcing (WFDEI_CMA) and di�erent shapes represent
di�erent catchments. Note that the bias (�µ) in some of the catchments has exceeded 100%
so that they are not shown in the graphic.

In terms of the di�erence between estimated river discharge of a certain forcing to that of
the reference WFDEI_CMA (y-axis), we can find a large spread of the scatter on the mean
values (Figure 4.17a). Ignoring the points that show a 100% bias, the ITPCAS underestimates
the river discharge compared to that of the WFDEI_CMA. The di�erence between simulations
of E2O and that of the WFDEI_CMA is also large since there are very few points showing
a bias within 50%. The simulation of WFDEI_CRU is better consistent with the results of
WFDEI_CMA than the other two forcing inputs since only the precipitation di�ers. The
spread of the di�erence due to forcing di�erence is higher for most of the catchments and
forcings (white area), especially when the shift due to human impact is relatively small. The
ratio of the points that located in the green area where the DL is smaller than SH is only 13.5%,
indicating the di�erence between estimations of river discharge driven by two di�erent forcing
inputs is larger than the shift of river discharge on mean values for most of the catchments. In
which the mean value is not suggested to be used as an indicator to attribute the human impact.

In terms of the phasing, the spread of the di�erences in estimations is smaller for �Cp

and �Cd than that for the mean values �µ, especially for the catchments having large shift
due to human impacts (e.g., Hai River and Yellow River). Thus, for the assessment of these
catchments with strong human intervention, it is su�cient to use the concentration period
as the metric. However, the metric is not performing well for the regions with small human
intervention (with �Cp less than 0.3) as higher DL than the SH is found. The overall ratio of
the points is thus increased but limited to 27.4%. The ratio is higher for the concentration
degree (�Cd) as 34.5%, showing a higher possibility that the di�erence due to our limitation
of knowledge is less than the shift due to human impact. Therefore, compared to the mean
values, the concentration period and concentration degree which represent the phasing of
the river discharge are better to be used to attribute the human impact. Compared to the
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concentration period (Cp), the Cd is better for catchments where the shift due to human impact
is not strong, while on contrary the Cp is better for catchments where human impact has
reached a strong level. The shift on the concentration degree (�Cp) has spatial features which
are related to the dominant way of human water use (e.g., advancing for the Hai River, and
delayed for the Yellow River). But it is not shown for the concentration degree and the mean
values. Thus, we suggest that we use the concentration period (Cp), which representing the
phase of river discharge, to attribute the human impact instead of using the mean value (µ)
and the concentration degree (Cd).

Knowledge on the forcing variables

Our limitation of the knowledge on the natural system (i.e., deviation of the estimated river
discharge from simulations driven by di�erent forcing) can be resulted from the forcing input or
the model processes. Thus we do the same routine but compare the di�erence of precipitation
between a certain forcing and that in the reference forcing (WFDEI_CMA), which is shown in
Figure 4.18. In general, the coverage of the catchments, where the precipitation di�erence is
less than the shift due to human impact, is higher than that of the river discharge shown in
Figure 4.17. The spread of the DL on the precipitation is also smaller than that of the river
discharge, which together indicate that we have better knowledge of the precipitation than of
the estimated river discharge.

The E2O precipitation has a systemic error as the mean value is generally higher than
the precipitation in WFDEI_CMA. While the systemic error is not shown apparently in the
phasing metrics. The spread of the mean values are obviously higher than that for either
the concentration period or the concentration degree. And the spread for the concentration
degree (�Cp) is very small, especially for the regions where the human impact is higher.
The comparsion between Figure 4.18b and Figure 4.17b shows that we already have good
knowledge to capture the phase (concentration degree) of the precipitation in di�erent forcing
products, the spread in the estimated river discharge is therefore dominated by the amplification
of the models. The conclusion is relatively valid for the concentration degree but both the
precipitation and the model are contributing to the spread of estimated river discharge in terms
of the mean values.
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Figure 4.18 – Same as Figure 4.17, but the y-axis is represented as the di�erences in the
precipitation between a certain forcing with the reference forcing.

The same routine is done for the potential evapotranspiration (PET) which are shown
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in Figure 4.19. The distribution of the scatter and the coverage are similar to that of the
precipitation (Figure 4.18). As discussed in the Chapter 3, the estimation of PET is more
related to the forcing variables except the precipitation. Thus, together with the conclusions
made on the precipitation, we can conclude that, we already have good knowledge on the
phasing of the forcing variables. The spread between the DL in estimated river discharge is
mainly caused by the models. Therefore, there is still a need to improve the model ability
to predict the phase of the discharge. Compared to the mean values, the phase (Cp and Cd)
are more suitable for attributing the human impacts. While we are limited by the ability to
measure and estimate the water fluxes.
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Figure 4.19 – Same as Figure 4.17, but for potential evapotranspiration.

Catchments that are marked by three metrics

The previous discussion mainly focuses on an overall evaluation of the three metrics (mean
value, concentration period, concentration degree) over all the catchments. The proportion
of the catchments that met the condition, that di�erence due to limitation of knowledge on
the natural system is smaller than the shift due to human impact, is calculated. We plot the
locations of these catchments to show where the three metrics can be used for attributing the
human impact.

As shown in Figure 4.20a, the catchments that met the condition are mainly the Songhua
River and the mid-up stream of the Yellow River for the mean values. While the Hai River
and Huai River can be remarked if concentration period is used as the metric. This is more
realistic since the human water usage and its shift on the natural river discharge have been well
identified for these two river basins. More catchments are identified using concentration degree
compared to that identified using concentration period, and the number for the catchments is
larger for concentration degree than that for the concentration period. This has been shown in
the proportion of the catchments that met the condition (DL < SH) in Figure 4.17. Though,
because the spread of the concentration period (Cp) for the precipitation and for the river
discharge is smaller than that of the concentration degree (Cd), concentration period (Cp)
is better suitable for attributing human impacts, especially for the regions that are strongly
a�ected by human activities.
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Figure 4.20 – The catchments that met the conditions that the di�erence due to limitation of
knowledge on the natural system is smaller than the shift due to human impact in terms of (a)
mean values -�µ, (b) concentration period - �Cp and (c) concentration degree - �Cd . The
numbers indicate the total number of catchment that met the conditions in any forcing inputs.
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4.5 Summary

Human activity has become one of the major factors that a�ect natural hydrological
cycle in the world. It is even dominant in some basins as it significantly changes the total
available water resources and the flow regimes in the annual cycle, which will further a�ect the
agricultural, domestic and industrial sectors. Therefore, there is an urgent need to understand
the roles of human activities in altering discharge and how much the impacts are in river
basins.

In China, land-use change is ongoing although the rate has slowed down. The decreasing
of cropland and increasing of forest and urban areas are the predicted trends in the near future.
The reverse impact of significant a�orestation and the impact of changes in the equilibrium
vegetation cover over regions need further study. The increasing risk of city floods with rapid
urbanisation also requires more investigations. The water consumption in di�erent sectors has
been stable for a decade, and more attention is needed better understanding the impact on the
spatial heterogeneity over the large scale in China especially in places where the irrigation is
intensively developed (e.g., the middle Yellow River, the Tarim Basin in the northwest China).
The cumulative impact of the cascaded dams has received very little attention in the past, most
probably because of the limit of technologies. Research has to focus on the overall impact of
the huge number of dams in China in the future.

There are two groups of approaches that can quantify the human impact on the water
cycle depending on whether the human impact is directly estimated. Because di�erent human
activities may take place together and interact with each other, indirect approaches have
inherent di�culties to separate the impact of the individual human activity. Direct approaches
with modules that particularly designed for the human activity are appropriate for such a
purpose, but they need improvements in order to better describe the human intervention with
interactions and at a higher spatial resolution.

The di�erence between the observed and the naturalized river discharge is caused by
human intervention. The di�erence can be explained as the shift of the mean values (�µ),
concentration period (�Cp) and concentration degree (�Cd) which represent the magnitude
and the phase of the river discharge. In general, the human impact is significant in northern
China in the regions where agriculture is highly developed or domestic demand is high (e.g.,
the Yellow River basin, the Hai River basin and the northeast Songhua River basin), but the
water resource is limited. The deviation of the river discharge from its reality can be also
caused by the limitation of our knowledge on the natural system. The impact of the limitation
is quantified as the di�erence between simulations driven by four di�erent forcing inputs and
is compared with the shift due to human impact on river discharge. Results show that we
have better knowledge on the phasing of the forcing variables (e.g., precipitation, potential
evapotranspiration) than that of the mean values. Concentration period (�Cp), representing
the peak of the high-flow season, is the best suitable metric for attributing the human impact,
because the spread of �Cp is smaller than that of the other two metrics, especially for the
catchments where human impact is higher. However, the deviation of river discharge on the
phasing is mainly contributed by the models and therefore, there is still a need to improve the
model ability to predict the phase of the river discharge. A larger e�ort is needed to improve
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the ability of measuring and estimating the water fluxes either in the forcing variables or the
models.
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5
Conclusions and perspectives
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This thesis focuses on the uncertainties that can a�ect our understanding and prediction of
the regional water cycle and impact our assessment of climate change and human activities on
river discharge. We reviewed the current studies about the uncertainties and developed new
approaches to quantify and compare the uncertainties from di�erent sources. Based on the
results and arguments in the previous chapters, we conclude this thesis by answering a few
questions (not only the scientific questions) and give our perspectives on this topic and the
future work we will continue to do.
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5.1 Conclusions

Why we study uncertainty?

1. There are many sources of uncertainties. Three major sources of uncertainty can be
identified when modeling the response of river discharge to climate change and human
activities. Uncertainty exists along with measurements of the atmospheric variables
and parameterisation of models that describe natural processes. These uncertainties are
mainly induced because of our limitations in measurement accuracy and understanding
of the real world. Uncertainties also increase when the point measurements are converted
to space for model usage as interpolation approaches cannot perfectly represent the
spatial heterogeneities of natural variables.

2. Uncertainties are di�cult to measure. The uncertainties among di�erent forcing
products and models are di�cult to measure since the "true" values/states of nature are
not known. These uncertainties may occur together in the modeling, and the interaction
increases the di�culty in attributing di�erent uncertainties. The understanding of the
physical meanings of uncertainties and associated approaches also need development to
measure the uncertainty.

3. Uncertainty analysis increases the credibility of results. By simply using a few sets of
datasets or simulations (e.g., multiple precipitation products in Chapter 2, ORCHIDEE
and Budyko methods in 3, multiple model simulations with di�erent forcing inputs in
Chapter 4), the possible ranges are obtained for variables of interest. Although it is still
possible that the state to meet the observations is outside of the uncertainty range, the
uncertainty analysis (or sensitivity test) increases the credibility of results. Therefore,
uncertainty analysis is very necessary for the studies of natural processes.

How significant are the uncertainties?

1. The uncertainties and their magnitude depend on the datasets and the models used.
For example, the uncertainties in the gauge-based precipitation products are smaller
than that of the merged products or GCMs (Chapter 2). The uncertainty among
gauge-based products is induced by the density of gauge used and the conversion of
point measurement to space. While merging with other products (e.g., satellite and
re-analysis data) increases the variations among di�erent merged products. The GCMs
are run without the constraints of observed data. Thus the uncertainty caused by the
di�erences in models and initial conditions becomes large.

2. The uncertainties in the land surface model structure is probably smaller than that of the
atmospheric variables in the Tarim basin (e.g., precipitation, Chapter 3). Retrospective
approaches show that the precipitation and the potential evapotranspiration (associated
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with atmospheric conditions) are further from the "true" state than the di�erence of actual
evapotranspiration (associated with models) and its "true" values. The orographic e�ect
and spatial heterogeneity of the forcing variables are the main causes of uncertainties in
atmospheric variables.

3. The magnitude of the human impact on river discharge is higher in the northern river
basins where there is intensive irrigated agriculture. The uncertainty caused by ignoring
human water management in models is therefore larger than uncertainties in precipitation
(Chapter 4). While the human impact is relatively small in other regions especially in
southern China, the uncertainties in precipitation will dominate the final results. The
uncertainties are higher in the mean values of the estimated river discharge or the forcing
variables. While, the uncertainties for the phasing, e.g., the concentration period and
concentration degree, are less than that of the water fluxes.

What has been done and is useful to the research community?

1. The thesis proposes a new three-dimensional variance partitioning approach which can
estimate the variances and the uncertainty among multiple datasets (Chapter 2). The
uncertainty estimation integrates variations in the original dataset, the temporal means,
the spatial means and the overall means for each dataset (see equation 2.19). It uses all
information across the temporal and spatial dimensions and is the first method which
avoids the collapse of dimensions in assessing uncertainties among multiple datasets
with temporal and spatial variations. The presented approach can be further utilized for
data with three dimensions in other specific fields.

2. The thesis proposes an ORCHIDEE-Budyko framework which can be modified to
assess the reliability of simulations by any other hydrological or land surface models
(Chapter 3). The framework also provides an example to trace back the discharge
bias to multiple uncertainty sources of the atmospheric variables and the model
itself. The Budyko hypothesis is empirical but strongly associated with climatic and
geographic characteristics, and therefore reference studies can be helpful for analysing
the uncertainties of the study area with similar climatic or geographic features.

3. The thesis reviews the major human activities that occur in China in di�erent time
periods and over di�erent places (Chapter 4). It helps readers find the most significant
type of human impact over the area of their interest. The thesis also reviews a collection
of approaches for quantifying human impact on river charge. The characteristics of
these approaches and their advantages/disadvantages are discussed for easier selection
by readers.

4. The thesis quantifies human impact (mainly by human water consumption and regulation)
at the available gauges (84 gauges) by analyzing the di�erence between observed river
discharge and naturalized river discharge (Chapter 4). The relative magnitude of the
human impact and the deviation of estimations from the reality due to the limitation
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of knowledge on the natural system are compared. Results inspire that the phasing
metrics are better than the mean values to attribute the human impact. And ignoring
uncertainties analysis is not appropriate for human impact assessment over those regions
with a relatively small human impact (e.g., southern China).

5.2 Perspectives

1. Dealing with human activities. Human activities especially the water consumption
and dam regulation are changing the natural river discharge. Although there are
already a few approaches and attempts to assess the human impact, the interactions of
human intervention with natural river system are cursory in modeling and need to be
strengthened. The spatial resolution of atmospheric forcing is being developed (from
degrees to at most 0.1o), which requires corresponding adaptations to consider human
interventions at a higher resolution. The adaptations which will be further discussed in
my Chinese thesis (coming in six months) which mainly includes:

• a higher resolution routing scheme. The resolution of a routing scheme is limited
mainly by forcing resolution and thus is very coarse for most of the land surface
models. Also, there is not a concept of river network in those grid-to-grid routing
and even in the old ORCHIDEE routing because the LSMs put more attention
on the vertical water fluxes than the horizontal fluxes. Therefore, a new routing
scheme will be developed based on the old ORCHIDEE routing to better define
the routing units their connections and the routing strategy.

• new strategy of locating the water use, water abstraction and dams. The location
of the water use, water abstraction and dams are simply put into a single grid
without taking into account their exact locations at coarse spatial resolutions. The
water is exchanged within the grid or between a few grids nearby. For models at
higher spatial resolution, the locations of water use, rivers, dams become more
precise, so the strategy should be improved to find reliable abstraction points from
nearby water bodies (e.g., rivers, dam reservoir).

• near-real water abstraction strategies and dam regulation rules. The priority of
various water demand (e.g., agricultural, domestic, industrial water) is di�erent.
The gross water use for di�erent purposes can be simply summed up and distributed
water to sectors from higher priority to the lower. The strategies should be improved
in high-resolution models as the water demand changes with di�erent distance
to the water bodies. The distribution of water among demands from upstream
to downstream should be considered, in addition to the return water. The dam
regulation needs also improvement from those used for coarse resolution because
the locations become more precise, the linkages become more clear, and the
routing timestep is shortened. The function of dam regulation is supposed to be
more important in higher-resolution modeling, since the exchanges between grids
to grids are more significant in higher resolutions.
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2. Dealing with uncertainty. There are big di�culties in a short time to improve the
accuracy of all atmospheric products or the algorithms/parameters in all models.
Therefore, uncertainty analysis or sensitivity test with multiple di�erent forcing inputs
and models (types or model settings) is highly recommended for studies related to the
climate-hydrology modeling. In further analyzing the human impact, the sensitivity of
the estimated human impact will need to be assessed to ensure the credibility of the
results.
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A
Submitted paper II

The submitted paper to Earth System Dynamics is based on the same methodology
introduced in Chapter 2. The main di�erence in this study from that presented in Chapter
2 is that this paper mainly deals with the variance (an estimation of the variations among
multiple datasets) while Chapter 2 focuses on the uncertainty (the variation compared to the
average means). This paper uses only the precipitation in GCMs to explain the features of the
variance proportion approach. The propagation of uncertainties from atmospheric variables to
the modeled land surface variables (e.g., evapotranspiration, runo�, soil moisture) are further
discussed with support of the CMIP5 and GLDAS products.
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Quantifying ensemble variance across a multi-model dataset
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Abstract

Model variation indicates the reliability of ensemble results from multi-model ensemble
analysis. This study develops a three-dimensional partitioning approach that is applied to
quantify the model variation in hydroclimatic variables from di�erent models in projects
CMIP5 and GLDAS. Results suggest the ensemble variance (Pe), which indicates variations
in model predictions, agrees to the indication of model similarity evaluated by commonly
used model performance coe�cients. The contribution of forcing inputs to the variations in
hydrological variables (e.g. runo�, soil moisture) is comparable to that resulted from model
variations. In addition, the increasing Pe across land surface processes also indicates land
surface models are inducing uncertainties to the water system in every step of hydrological
simulation. With flexible structures, the present approach avoids collapse of spatial and
temporal information in the analysis and is widely applicable to climate studies or environmental
fields for inter-models comparisons.

A.1 Introduction

Due to coordinated e�orts from various institutions and individuals in more recent years,
a wide range of datasets has been available for climatic analysis and land surface variables
(e.g. General Circulation Models-GCMs, Global Land Data Assimilation Systems-GLDAS)
(Meehl et al. 2007; Greve et al. 2014). Model estimations vary in space and time because
of di�erences in their initial conditions, algorithms and parameter sets (Knutti et al. 2010;
Getirana et al. 2011). Therefore, scientists prefer using multiple datasets to obtain ensemble
means and reduce the dependence on a single dataset when model sensitivity is not well
understood and the bias is not well addressed (Yang et al. 2011; Yang et al. 2012a; Chadwick
et al. 2013). An uncertainty criterion associated with the reliability of multi-model estimations
always relies on the ensemble means.

Model variation can be visualized as the uncertainty range of the results. Smaller
uncertainty range infers stronger model agreement on the final ensemble means. The
uncertainty range is generated at each time step by quantiles commonly regarded as 5% and
95% with su�cient models or by the standard variation with few models. This method is
always taken for long-term analysis at annual scale and ignores the temporal processes and the
extremes within a short time interval (e.g. monthly variability). Moreover, spatial aggregation
for the target region is required in advance, leading to the loss of spatial heterogeneity
information in regional analysis.
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There are some performance coe�cients, the algorithms of which involve temporal
processes and extremes (e.g. correlation coe�cient, Nash-Sutcli�e e�ciency coe�cient).
Each coe�cient cannot however evaluate the variation among multiple models because its
output relies on two inputs of data series. Similar to the uncertainty range analysis, spatial
aggregation is also obligatory to generate the spatial mean for regional evaluation. The
di�erence between them is that performance coe�cient gives one value for the entire period
while the other generates several values at each time step.

Alternatively, model agreement can be defined as the ratio of the number of models
agreeing on a certain conclusion to the total model number. For example, the IPCC applied
stipplings to indicate grid boxes where more than 90% of the members agree on the sign
of rainfall change while leaving as white where 66% of models do not agree on increase or
decrease in rainfall (IPCC 2013, Figure SPM.8-b). This method evaluates the variation on the
final conclusions but ignores the processes. It also requires a quite large number of models to
generate a reliable number of the ratios, which is limited to a large number of similar inputs
(e.g. GCMs). Moreover, it is always applied in grids analysis rather than regional analysis.

As concluded, the quantification of model variation is necessary in climatic analysis
and there have been a few criteria proposed for this purpose. However, there is a lack of
critical quantification means that prevents regional analysis from aggregation in the spatial or
temporal scales. This study aims to build a new approach designed with three dimensions
for quantifying variations among multiple models. The present approach is compared with
commonly used performance coe�cients in evaluating model similarity. The properties of
the present approach are discussed by means of implementations related to climatic fluxes
and hydrological variables provided by the Coupled Model Intercomparison Project Phase 5
(CMIP5) and the Global Land Data Assimilation System (GLDAS).

A.2 Methodology

A.2.1 Method development

The coe�cient of variation (Cv) is designed to describe the data variation (Everett and
Watson 1998). It works for one dimension, leading to the fact that regional aggregation
is required to generate the regional mean and evaluate the temporal variation (McSweeney
and Jones 2013). Sche�e (1999) introduced the grand variance that measures the total
variations across time and space scales. Sun et al. (2010) partitioned the grand variance into
temporal and spatial dimensions, named time variance and space variance, respectively. It can
determine the dominant dimension in the analysis of data variability. For example, the space
variance of global annual-average temperature is much larger than the time variance since the
di�erence in regional temperatures (from the equator to polar) is generally greater than the
di�erence among seasons in a specific region. Temperature di�erence between latitude zones
is more significant than that between time steps. Their approach prevents aggregation from
spatiotemporal analysis. All the spatial and temporal variation in other words remains in the
analysis.

With regarding multiple models as an ensemble by analogy, the total grand variance can
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expand to time variance, space variance and the third component "ensemble variance" that
represents the inter-ensemble variations. The variation of the whole dataset is therefore related
to not only the spatial or temporal variation but also the variations among di�erent models.
For climatic variables, the temporal and spatial variations are inherent while the ensemble
variance results from the use of multiple models. With a smaller ratio of ensemble variance
to the grand variance, the ensemble members are more consistent with each other, and the
agreement level of the ensemble results is higher with less uncertainty. The ratio can therefore
serve as an indicator of the agreement among ensemble members for regional analysis.

A.2.2 Mathematical Derivation

The dataset has to be organized in three dimensions of (1) time with a regular time
interval (e.g. monthly or annual), (2) space with regular spatial units where all the grids are
re-organized in a new dimension from the original latitude-longitude grids, (3) ensemble with
di�erent ensemble members regarded as the third dimension. Thus, the dataset array can be
reformed as

Z = [zi jk] (A.1)

with i-th time step (i.e., i = 1, 2, . . . ,m), j-th grid (i.e., j = 1, 2, . . . , n), and k-th ensemble
member or ensemble model (i.e., k = 1, 2, . . . , l).

We define the three dimensions as time, space and ensemble dimension and the means
for these three dimensions are called temporal mean, spatial mean and ensemble mean,
respectively. The corresponding variances are named time variance, space variance and
ensemble variance, respectively. The grand mean (µ), grand variance across time, space and
ensemble models (�2) as well as the total sum of squares (SST) are defined as.

µ =
m’

i=1

n’
j=1

l’
k=1

zi jk/(mnl) (A.2)

�2 =
SST

mnl � 1
(A.3)

SST =

m’
i=1

n’
j=1

l’
k=1

(zi jk � µ)2 (A.4)

The derivation starts from the third ensemble dimension. For a specific kth ensemble member,
the grand mean is formulated as µts[k] =

Õ
m

i=1
Õ

n

j=1 zi jk/(mn), leading to the total squares
rewritten as

SST =

m’
i=1

n’
j=1

l’
k=1

(zi jk � µts[k] + µts[k] � µ)2 (A.5)
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and then expanded and rearranged as

SST =
Õ

m

i=1
Õ

n

j=1
Õ

l

k=1 (zi jk � µts[k])2

+2 ⇥Õ
l

k=1 (µts[k] � µ)
"
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i=1

n’
j=1

(zi jk � µts[k])
#

|                         {z                         }
=0

+

"
m’

i=1
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j=1

#

|      {z      }
=mn

Õ
l

k=1 (µts[k] � µ)2 (A.6)

SST =

m’
i=1

n’
j=1

l’
k=1

(zi jk � µts[k])2 + mn

l’
k=1

(µts[k] � µ)2 (A.7)

SST = (mn � 1)
l’

k=1
�2

ts
[k] + mn(l � 1)�2(µts) (A.8)

Where �2(µts) is the variance of the grand mean for each ensemble member, and �2
ts
[k], the

grand variance in space and time for ensemble member k, can be split using the average of
the space variance at each time step �2

s [k, :] and the variance of the spatial mean �2(µs[k, :]),
denoted as

�2
ts
[k] = m(n � 1)

mn � 1
�2

s [k, :] +
n(m � 1)
mn � 1

�2(µs[k, :]) (A.9)

One can refer to (Sun et al. 2010; Sun et al. 2012) or Supporting Information Text S1.1 for
detailed derivations of �2

s
[k, :] and �2(µs[k, :]). Similarly, �2

ts
[k] can also be split into the

average of the time variance from all regions �2
t
[:, k] and the space variance of the temporal

mean �2(µt[:, k]), expressed as

�2
ts
[k] = n(m � 1)

mn � 1
�2

t
[:, k] + m(n � 1)

mn � 1
�2(µt[:, k]) (A.10)

With Eq. (A.9) and Eq. (A.10), we can have

�2
ts
[k] = 1

2

⇢
m(n � 1)
mn � 1

[�2(µt[:, k]) + �2
s [k, :]] +

n(m � 1)
mn � 1

[�2(µs[k, :]) + �2
t
[:, k]]

�
(A.11)

Substituting Eq. (A.11) into Eq. (A.8) results in

SST =
m(n�1)

2
Õ

l

k=1[�2(µt[:, k]) + �2
s [k, :]]

+
n(m�1)

2
Õ

l

k=1[�2(µs[k, :]) + �2
t
[:, k]] + mn(l � 1)�2(µts) (A.12)

The first term on the right-hand side of Eq. (A.12) can be transformed to:

m(n � 1)
2

l’
k=1

[�2(µt[:, k]) + �2
s [k, :]] = lm(n � 1)


�2

s_t
+ �2

s

2

�
(A.13)
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where �2
s_t

is the average of space variance of the temporal mean across each ensemble
member, �2

s represents the grand mean of �2
s
, the grand variance across time and ensemble

dimensions. Then Eq.(A.12) becomes:

SST = lm(n � 1)

�2

s_t
+ �2

s

2

�
+ ln(m � 1)


�2

t_s
+ �2

t

2

�
+ mn(l � 1)�2

e
(µts) (A.14)

where �2
t_s

is the average of time variance of the spatial mean across ensembles, �2
t

represents
the grand mean of �2

t
, the grand variance across space and ensemble dimensions. �2

e
(µts)

reprents the variance of the spatial-temporal means (µts). Similarly, the derivation can start
from any of the other two dimensions. The SSTs derived from time and space dimensions are
formulated, respectively, as

SST = lm(n � 1)

�2

s_e + �
2
s

2

�
+ mn(l � 1)


�2

e_s + �
2
e

2

�
+ nl(m � 1)�2

t
(µse) (A.15)

SST = nm(l � 1)

�2

e_t
+ �2

e

2

�
+ nl(m � 1)


�2

t_e
+ �2

t

2

�
+ ml(n � 1)�2

s
(µet) (A.16)

Where each variable is defined in the Supporting Information Text S1.2. Averaging these
three SSTs defined in Eqs. (A.14) - (A.16) leads to

SST =
nl(m�1)

3 [�
2
t_s+�

2
t_e

2 + �2
t
+ �2

t
(µse)]

+
lm(n�1)

3 [�
2
s_t+�

2
s_e

2 + �2
s + �

2
s
(µet)]

+
mn(l�1)

3 [�
2
e_t+�

2
e_s

2 + �2
e + �

2
e
(µts)] (A.17)

With the total degree of freedom (m ⇥ n ⇥ l � 1), the grand variance is expressed as

�2 =
nl(m � 1)
3(mnl � 1) [

�2
t_s
+ �2

t_e

2
+ �2

t
+ �2

t
(µse)]|                                                {z                                                }

Vt

+
lm(n � 1)
3(mnl � 1) [

�2
s_t
+ �2

s_e

2
+ �2

s + �
2
s
(µet)]|                                                {z                                                }

Vs

+
mn(l � 1)
3(mnl � 1) [

�2
e_t
+ �2

e_s

2
+ �2

e + �
2
e
(µts)]|                                                {z                                                }

Ve

(A.18)

where Vt , Vs and Ve represent the time, space and ensemble variances, respectively. The
partitions of the three dimensions are symmetrical. To facilitate the understanding of the
partitioning results, a visual illustration of the present approach is shown in Figure A.1.
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Figure A.1 – The illustration of the partitioning time-space-ensemble variance method. The
original dataset is organized in three dimensions of time, space and ensemble. The denotations
of the zones are listed in the right. The grand variance is defined as �2 and the grand mean
µ. The subscripts t, s, and e represent time, space and ensemble, respectively. Zone A
(µi) indicates the average mean in for i dimension; zone B (�2

i
) indicates the variance for i

dimension; zone C (�2
i_ j

) indicates the variation across i dimension of the average means of
µ j ; zone D (µi j) indicates the average means across i and j dimensions; zone E (�2

i j
) indicates

the variation across i and j dimensions; zone F (�2
i
(µ j k)) indicates the variation across i

dimension of the average means across j and k dimensions. The detailed definitions of these
denotations can be found in Supporting Information Text S1.2.
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Note that Ve is based on the combination of variance across the ensemble dimension of
temporal and spatial values (�2

e , zone B3), temporal mean (�2
e_t

, zone C3), spatial mean (�2
e_s,

zone C6) and the grand variance of the spatiotemporal mean for a single ensemble member
(�2

e
(µts), zone F3). These variances rely on di�erent zones, which displays the symmetry of

the partitioning results.
To explore the relative e�ects of the three parts, we can quantify the contribution of each

part to the total grand variance. The variance proportions are therefore defined as: Pt = Vt/�2

for time; Ps = Vs/�2 for space and Pe = Ve/�2 for ensemble. The Pe, a measurement of the
variation among models, avoids any aggregation of spatiotemporal scales.

A.3 Model application

A.3.1 Data and data pre-processing

Atmospheric fluxes and the land surface variables are featured with significant spatial
and temporal variabilities (Chadwick et al. 2013) that are di�cultly captured in models. The
magnitudes of model variations vary because of di�erent inputs and algorithms. Quantifying
the variance magnitude can therefore understand how the model similarities change with
di�erent physical processes.

The Coupled Model Intercomparison Project Phase 5 (CMIP5) provides a set of outputs
with coupled atmosphere-ocean general circulation models and land surface models. Among
all the variables, precipitation dominates the land surface processes. We therefore investigate
the variances in precipitation among 20 General Circulation Models (GCMs, Table A.1) in
CMIP5 project. Each of the variables from CMIP5 (e.g. precipitation, evapotranspiration,
runo�, and soil moisture) is then compared with that from the Global Land Data Assimilation
System (Rodell et al. 2004, GLDAS) for examining the di�erence in the variances predicted by
the two ensembles. All the data are interpolated to 1o ⇥ 1o grids using a bilinear interpolation
as suggested by (Wang et al. 2012b). Thirty largest river basins calculated by TRIP (Oki and
Sud 1998) are chosen (see Figure A.5 and Table A.2) for regional analysis. The total basin
area accounts for 38.2% of the global land area.

A.3.2 Partitioning ensemble variance of precipitation among GCMs

The variance partitioning adopts monthly precipitation for the historical period of 1991-
2000 using 20 GCMs. The size of the space dimension is determined by the basin size at
1o resolution. The original spatial grids (latitude-longitude grids) are re-organized to one
dimension with the spatial heterogeneity. The size of the dataset for each basin thus amounts
to 120 months with a certain number of spatial units and 20 ensemble members.

The variance proportions of ensemble Pe, space Ps and time Pt for all basins are mapped
in Figure A.2. In general, the Pe is not the major contribution to the grand variance as
Pe < 0.5. The magnitude of Pe is relevant to local climate types as the largest values distribute
in the dry basins (e.g. Sahara and South-eastern Australia). The precipitation over these
basins has very low space variance (Figure A.2-b), which indicates weak spatial heterogeneity
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in the precipitation compared to the variation across models. Moderate Pe (0.25-0.40) is
found in north America and central Asia where the dominant climate is temperate continental.
The Pe for other basins is lower in spite of di�erent magnitudes of space variance (Ps) and
time variance (Pt). For example, Pt is the highest for basins over eastern and northeastern
Asia where there is a transition from maritime to continental climate. Similar magnitude
of space variance proportion Ps or Pt is found in the south America and middle and south
Africa with typical tropical climate. The Ps for the Nile river basin (No. 2) is the highest
because the basin covers a wide range of climate types from tropical to dry climate. Thus, the
magnitude of Pe reveals the ability of the models to reproduce the atmospheric water cycle
in di�erent climate types. The basins covering di�erent climate types have a larger Pe than
those in relatively uniform climate zones. Improving the model ability across climate types
can decrease the variances among di�erent model members and increase the applicability of
GCMs for large-scale analysis.

（a）

（b）

（c）

Figure A.2 – The global maps for (a) ensemble variance proportion-Pe, (b) space variance
proportion-Ps and (c) time variance proportion-Pt over the global 30 largest basins of the
monthly precipitation among 20 GCMs during the period 1991-2000. The full maps of other
variances and their proportions can be found in Figure A.10 of the Supporting Information.

The partitioning method is data-based; thus, the results may be a�ected by the dataset
size. We therefore conducted sensitivity tests to the number of GCMs, the spatial resolution
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and the time length of the datasets (Figure A.6-A.9). With the increasing number of GCMs,
Pe increases with declining uncertainty range (Figure S2). The results for most of the basins
become stable when 10 models are used, and removing one model from them leads to
insignificant e�ect on the results (Figure S3). The increase in the spatial resolution (from
2o ⇥ 2o to 0.5o ⇥ 0.5o) does not change the priorities of all the variances although it slightly
decreases the space variance proportion Ps (Figure A.8). The change in the time length of the
dataset (from 15 years to 5 years) has insignificant impacts on the results. In addition, the
dataset at 1o resolution and 10 years can capture all the necessary features from the time and
space scales.

A.3.3 Comparison of precipitation in GCMs and GLDAS

Four land surface models (i.e., Noah, CLM, VIC and Mosaic) are integrated in GLDAS,
and their precipitations are the same as these models are forced by the Global Meteorological
Forcing Dataset from the Princeton University. The precipitation in GCMs is compared with
the GLDAS precipitation in terms of absolute bias, correlation, Nash-Sutcli�e coe�cient
and the ratio of Root Mean Square Error (RMSE) to the average mean of the observations
(i.e., RMSE/obs) referred to normalized RMSE (Figure A.3). Each boxplot represents the
variations for each basin with di�erent GCMs. The aggregation of the spatial means at each
time step is required to calculate these coe�cients.
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Figure A.3 – The global maps for (a) ensemble variance proportion-Pe, (b) space variance
proportion-Ps and (c) time variance proportion-Pt over the global 30 largest basins of the
monthly precipitation among 20 GCMs during the period 1991-2000. The full maps of other
variances and their proportions can be found in Figure A.10 of the Supporting Information.
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With increasing Pe, the absolute bias increases especially when Pe > 0.3. The variation of
the absolute bias for di�erent basins also increases with Pe although the relation is not apparent
for 0.2 < Pe < 0.3. The change of the correlation coe�cient indicates a systematic decrease
of correlation with increasing Pe (Figure A.3-b). With a higher Pe, the correlation of the data
between models becomes lower, indicating lower similarities and larger variations between
models. The range of the correlation coe�cient increases because of larger variations among
basins. The median value for the Nash-Sutcli�e coe�cient also decreases with increasing Pe

with its maximum value around 0.8 at the minimum Pe of 0.12. Similarly, the normalized
RMSE shows lower model quality with a higher Pe, indicating large variations among the
whole ensemble members. In general, the model quality decreases with increasing Pe due to
larger variations among GCMs. This result is applicable to other models in addition to GCMs,
and a greater Pe leads to lower quality and larger uncertainty among models.

A.3.4 Comparison of other variables between CMIP5 and GLDAS

Other than the dominant precipitation, CMIP5 provides extra variables in the water cycle
although they are driven by di�erent precipitation datasets. The variations in model outputs
are partly due to the precipitation di�erences. With GLDAS, we can see how the variances are
distributed by other processes because of the same precipitation for di�erent GLDAS models.
The variables in GLDAS and CMIP5 are progressed in the same way as the precipitation in
CMIP5 for all the 30 basins.

The grand variance for the basins in GLDAS models is smaller than that of the CMIP5
because less models are used and the variance for precipitation is zero which deduces the
model uncertainty for other variables. The Pe for each forcing variable is also zero as expected.
The Pe for land surface variable is thus directly attributable to the land surface models, while
Pe for each variable in CMIP5 is interacted by the forcing and the models.

As show in Figure A.4-a, the ensemble variance for evapotranspiration (Evap) increases
from 0.06 in GLDAS to 0.32 in CMIP5 due to the forcing variations. This indicates the
model diversity insignificantly a�ects evapotranspiration while the forcing plays more critical
role in determining the evapotranspiration variations between models. The magnitudes of
the variances caused by forcing and models are similar for runo� (RF, ⇠0.18) and land soil
moisture (SM, ⇠0.47). A very large Pe is found for the soil moisture (⇠0.94). This is caused
by the combination of the forcing di�erence, model variations and the di�erent definitions of
the soil moisture in the models. The depth of soil layers and their pedological characteristics
vary from one model to another. In this case, soil wetness Index (SWI), normalized by
the maximum and minimum soil moistures, is adopted and its ensemble variance indicates
comparable spreads caused by the definitions and the forcing or model variations. Therefore,
it is necessary to uniform the definition of soil moisture across models if multiple model
ensembles are used.

The results also show the model is inducing variations or uncertainties in every step
of the water cycle processes as the ensemble variance increases from precipitation to
evapotranspiration, runo� and the soil moisture. The contribution of the forcing di�erence to
the ensemble variances is amplified because of model variations. On the other hand, there
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Figure A.4 – The comparisons of the variances (Pe, Ps, Pt) for di�erent variables of precipitation
(Pr), evapotranspiration (Evap), runo� (RF), soil moisture (SM) and soil wetness index (SWI)
provided by CMIP5 and GLDAS. The diagnose of each variance proportion is plotted as
boxplot with the ranges (i.e., 5%, 25%, 75% and 95%) representing the spread of the basins.

is useful information revealed by the space variance proportion Ps and the time variance
proportion Pt (Figure A.4-b and A.4-c). The runo� has a larger Ps than the precipitation and
evapotranspiration, indicating the runo� generation increases the spatial heterogeneity of water
distribution. The soil moisture has the largest Ps in GLDAS, indicating a more heterogeneous
distribution of underground water resources. Opposite to the space variance trend among the
variables, the Pt decreases after the hydrological processes. The soil moisture has the least
time variation among the variables. With the comparison of the variance proportion, we can
therefore conclude that the land surface processes will increase the spatial heterogeneity of
water resources but act as a bu�er in the time scale.

A.4 Discussion and conclusion

This study presents a new three-dimensional partitioning approach to quantify model
variation among multiple models in ensemble analysis. Compared to the two-dimensional
space-time partitioning approach introduced by (Sun et al. 2010), the present approach o�ers a
third dimension that quantifies the model variations in the spatiotemporal analysis. Moreover,
our approach can reduce to a two-dimensional approach when one of the three dimensions is
set to an identical unit. The previous approach for grid-based analysis is therefore the special
case of ours. The superiority of the present approach is to consider all information across
time, space and ensemble dimensions and to avoid aggregation of spatial or temporal variation
which is vital information for climatic analysis (Giorgi and Francisco 2000). It is particularly
applicable to regional studies (e.g. river basins, climatic zones or nations). The deterministic
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variance proportion Pe is proposed for quantifying the variations among multiple models for
all the grids and the whole time period, preventing decision making from a large number of
coe�cients at all the grids.

The present approach is tested with monthly precipitation among 20 GCMs. The findings
suggest the ensemble variance proportion Pe is closely related to climate types. The Pe is
higher in dry zones with temperate continental climate while it is lower in the area controlled
by maritime climate. The comparison of precipitations estimated by the GCMs and the
GLDAS shows Pe is highly correlated with model performance coe�cients (e.g. correlation
and Nash-Sutcli�e coe�cient). A higher Pe agrees to the degradation of model similarity
(lower correlation and lower Nash-Sutcli�e coe�cient). Further application of the present
approach to the land surface models demonstrates the model is inducing uncertainties to the
water system in every step of the hydrological process. The ensemble variance due to GCMs
forcing is comparable to that caused by the model variations. In order to obtain more reliable
ensemble model results, future research should be alerted to the forcing bias in water cycle
simulation.

The present approach has a flexible structure that potentially deals with di�erent problems
from global to regional scale. The time dimension can consider intervals from daily analysis
to monthly, annual or decadal analysis which corresponds to climate change scopes. The
ensemble dimension is applicable from 2 members (i.e., model evaluation between simulations
and observations) to any number of multi-models (consensus evaluation, McSweeney and
Jones 2013; Tebaldi et al. 2011). The present approach is applicable to any variables that are
organized in the three dimensions such as climatic variables (e.g. temperature, evaporation),
hydrological variables (e.g. soil moisture, runo�) or environmental variables (e.g. drought
index). Based on these advantages, the three-dimensional partitioning approach can widely be
applied in hydroclimatic analysis.
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Supplementary materials

In this chapter, the supporting information has included the necessary details about the
equations and the definitions of di�erent variables.

S1.1 Model description

The derivation method here is similar to the work of (Sun et al. 2010) rather than the
definition of variables. For a specific dataset k, the grand mean µts through space-time scale
is

µts[k] =
1

m ⇥ n

m’
i=1

n’
j=1

zi jk (A.19)

The total squares for di�erence from the grand mean is

SST[k] =
m’

i=1

n’
j=1

(zi jk � µts[k])2 (A.20)

while the grand variance �2
ts

is

�2
ts
[k] = 1

m ⇥ n � 1

m’
i=1

n’
j=1

(zi jk � µts[k])2 (A.21)

If the derivation is started from spatal scale, equation A.20 can be rewritten by incorporating
the spatial mean of each time step µs[k, i] =

Õ
l

j=1 zi jk/n

SST[k] =
m’

i=1

n’
j=1

(zi jk � µs[k, i] + µs[k, i] � µts[k])2 (A.22)

It can be expanded and then rearranged as

SST[k] =
m’
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n’
j=1

(Zi jk � µs[k, i])2

+ 2 ⇥
m’

i=1
(µs[k, i] � µts[k]) ⇥

"
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j=1
(Zi jk � µs[k, i])

#

|                      {z                      }
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+

"
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#

| {z }
=n

m’
i=1

(µs[k, i] � µts[k])2

(A.23)

SST[k] =
m’

i=1

n’
j=1

(Zi jk � µs[k, i])2 + n

m’
i=1

(µs[k, i] � µts[k])2 (A.24)
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SST[k] = (n � 1)
m’

i=1
�2

s
[k, i] + n(m � 1)�2(µs[k, :])

=(n � 1)�2
s [k, :] + n(m � 1)�2(µs[k, :])

(A.25)

�2
ts
[k] = m(n � 1)

mn � 1
�2

s [k, :] +
n(m � 1)
mn � 1

�2(µs[k, :]) (A.26)

Here �2
s [k, :] is the average of the spactial variance at each time step and �2(µs[k, :]) is the

variance of the spatial mean. Or, the grand variance can be split using the average of the
temporal variance from all regions �2

t
[:, k] and the spatial variance of the temporal mean

�2(µt[:, k]) if we started from temporal scale.

�2
ts
[k] = n(m � 1)

mn � 1
�2

t
[:, k] + m(n � 1)

mn � 1
�2(µt[:, k]) (A.27)

The equation A.26 and A.27 are used in the formal paper as equation 8 and 9.

S1.2 Definition of the variables

Zone A:
A1:

µt[s, e; n ⇥ l]; µt[ j, k] = 1
m

l’
i=1

zi jk

A2:

µs[e, t; l ⇥ m]; µs[k, i] =
1
n

l’
j=1

zi jk
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l
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k=1

zi jk
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Zone C:
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S1.3 Coe�cient estimation

The equations for estimating the model performance coe�cients in subsection A.3.3 and
Figure A.3 in manuscript are listed here. Aggregation in the space dimension is necessary for
conducting the estimations.

P1k[i] =
n’

j=1
Pk[i, j] (A.28)

P2[i] =
n’

j=1
PGLDAS[i, j] (A.29)

Where Pk[i, j] denote the precipitation value of the k-th GCM model precipitation at time
step i and space unit j, P1k[i] denotes the spatial mean at time step i, PGLDAS donotes the
GLDAS precipitation at time step i and space unit j, P2[i] denotes the spatial mean at time
step i.

The coe�cients of the precipitation in the k-th GCM model and GLDAS are therefore
estimated as
The absolute bias in precentage:

PABk = (1 �
Õ

m

i=1 P1k[i]Õ
m

i=1 P2[i] ) ⇥ 100% (A.30)
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The correlation coe�cient:

CORk =
m
Õ

m

i=1(P1k[i] ⇥ P2[i]) �Õ
m

i=1 P1k[i] ⇥
Õ

m

i=1 P2[i]q
m
Õ

m

i=1 P1k[i]2 � (Õm

i=1 P1k[i])2
q

m
Õ

m

i=1 P2[i]2 � (Õm

i=1 P2[i])2
(A.31)

The Nash-Sutcli�e E�ciency coe�cient:

NSEk = 1 �
Õ

m

i=1(P1k[i] � P2[i])2Õ
m

i=1(P2[i] � P2[i])
(A.32)

The Normalized RMSE:

NRMSEk =

q
1
m

Õ
m

i=1(P1k[1] � P2[i])2

P2[i]
(A.33)

Supplementary figures

Figure A.5 – The global 30 largest regions with their regional average Aridity index.
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Figure A.6 – The sensitivity test of the number of selected models. At each number N
(2 � N  20), N models are randomly selected out from the total 20 models for 40 times. The
range (5% to 95%) of the variance estimation is plotted as boxplot with the mean value as the
red line.
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(a) (b)

Figure A.7 – (a) The collection of the mean value for the Pe over the 30 basins in the sensitivity
test. (b) Same as (a), while the Pe is divided by the maximum Pe which is the value with 20
models.

(a) (c)(b)

(d) (e) (f)

Figure A.8 – The changes of di�erent variances and proportions for all the basins at di�erent
spatial resolution of 2o ⇥ 2o, 1o ⇥ 1o and 0.5o ⇥ 0.5o.

(a) (c)(b)

(d) (e) (f)

Figure A.9 – The changes of di�erent variances and proportions for all the basins with di�erent
time length for 15 years, 10 years and 5 years.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure A.10 – The global map for (a) grand mean-µ, (b) grand variance-�2, (c) the time
variance-Vt , (d)the time variance proportion-Pt , (e) the space variance-Vs, (f) the space variance
proportion-Ps, (g) the ensemble variance-Ve and (h) the ensemble variance proportion-Pe for
the selected 30 largest basins in the historical period (1991-2000).
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Table A.1 – The general circulation climate models (GCM) and the descriptions used in the
manuscript.

No. GCM Name Latitude res-
olution

Longitude
resolution

Institution

1 CMCC-CESM 3.75 3.75 Centro Euro-Mediterraneoperi
Cambiamenti Climatici,
Bologna, Italy

2 CMCC-CM 0.75 0.75
3 CMCC-CMS 1.875 1.875

4 CNRM-CM5 1.4063 1.4063 Centre National de Recherches
Météorologiques, Toulouse,
France

5 CNRM-CM5-2

6 FGOALS-g2 2.828 3.0 Institute of Atmospheric Physics,
Chinese Academy of Sciences,
Beijing, China

7 HadCM3 3.75 2.5 Met O�ce Hadley Centre,
Devon, UK8 HadGEM2-CC 1.875 1.25

9 HadGEM2-ES 1.875 1.25
10 inmcm4 2 1.5 Institute for Numerical Mathe-

matics, Moscow, Russia
11 IPSL-CM5A-LR 1.8750 3.75 Institut Pierre-Simon Laplace,

Paris, France12 IPSL-CM5A-MR 2.5 1.25
13 IPSL-CM5B-LR 1.8750 3.75
14 MIROC4h 0.5625 0.5625 AORI (Atmosphere and Ocean

Research Institute, The
University of Tokyo, Chiba,
Japan), NIES (National Institute
for Environmental Studies,
Ibaraki, Japan), and JAMSTEC
(Japan Agency for Marine-Earth
Science and Technology,
Kanagawa, Japan)

15 MIROC5 0.5625 0.5625
16 MIROC-ESM-

CHEM
2.8125 2.8125

17 MIROC-ESM 2.8125 2.8125

18 MPI-ESM-LR
1.8750 1.8750

Max Planck Institute for
Meteorology, Hamburg,
Germany

19 MPI-ESM-MR
20 MPI-ESM-P
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Table A.2 – The information for the global largest 30 rivers with their rank, name, upstream
area and regional aridity index. The basins are sorted by their upstream area.

No River name Area (103km2) Aridity index
1 Amazon 5852 1.25
2 Nile 3825 0.29
3 Zaire 3697 0.89
4 Mississippi 3202 0.68
5 Amur 2902 0.61
6 Parana 2658 0.71
7 Yenisei 2581 0.88
8 Lena 2417 0.78
9 Ob 2312 0.85
10 Niger 2239 0.32
11 Zambezi 1988 0.46
12 Sahara 1818 0.02
13 Yangtze 1794 1.01
14 Mackenzie 1712 0.75
15 Ganges 1628 0.90
16 Chari 1571 0.22
17 Volga 1454 0.88
18 Great lakes 1240 1.18
19 Indus 1143 0.37
20 Syr-Darya 1070 0.28
21 Nelson 1047 0.68
22 Orinoco 1039 1.38
23 Murray 1031 0.34
24 Great Artesian 977 0.14
25 Shatt al-Arab 967 0.21
26 Orange 943 0.22
27 Yellow 893 0.50
28 Yukon 852 0.69
29 Senegal 847 0.16
30 Chott_Jerid 842 0.05



150 Appendix A. Submitted paper II



B
List of abbreviations

151



152 Appendix B. List of abbreviations

LMD Laboratoire de Météorologie Dynamique
CNRM Centre National de Recherches Météorologiques
CEH Centre for Ecology & Hydrology
LSCE Le Laboratoire des Sciences du Climat et de l’Environnement
HHU Hohai University

CMA China Meteorological Administration
CMCC Canadian Memorial Chiropractic College
CMIP5 Coupled model intercomparison project phase 5
CRU Climatic Research Unit
E2O Earth2Observe
ERA-I ERA-Interim
GCM Global Circulation Model
GPCC Global Precipitation Climatology Centre
GPCP Global Precipitation Climatology Project
HadCM Hedley Centre Coupled Model Version
IPCC Intergovernmental Panel on Climate Change
IPSL Institut Pierre Simon Laplace
ITPCAS Institute of Tibetan Plateau Research Chinese Academy of Sciences
LUC Land Use Change
MIROC Model for Interdisciplinary Research On Climate
MSWEP Multi-Source Weighted-Ensemble Precipitation
N.s.std Normalized spatial standard deviation
N.t.std Normalized temporal standard deviation
ORCHIDEE Organizing Carbon and Hydrology In Dynamic EcosystEms
RCM Regional Circulation Model
s.std spatial standard deviation
t.std temporal standard deviation
UDEL University of Delaware
VIC Variable Infiltration Capacity
WFDEI WATCH Forcing Data ERA-Interim
WFDEI_CMA WFDEI corrected with CMA precipitation
WFDEI_CRU WFDEI corrected with CRU precipitation
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Titre : Impact du changement climatique et de la gestion humaine sur le cycle de l’eau en Chine: faire face
aux incertitudes

Mots clés : Les incertitudes, Impact humain, Changement climatique, Cycle de l’eau, Chine

Résumé : En se concentrant sur différentes
sources d’incertitude pouvant affecter la précision
des modèles de modélisation hydrologique et d’ana-
lyse d’impact, cette thèse passe en revue les études
antérieures et propose de nouvelles approches pour
estimer et comparer les incertitudes avec leurs ap-
plications concentrées sur la Chine. Cette thèse
propose d’abord une approche tridimensionnelle de
la partition de la variance qui estime l’incertitude
des multiples produits de précipitation de types
différents. La nouvelle estimation utilise des informa-
tions complètes dans les dimensions temporelle et
spatiale et constitue donc un indicateur plus com-
plet pour l’évaluation de l’incertitude, en particulier
pour plusieurs jeux de données. Cette thèse pro-
pose ensuite un cadre ORCHIDEE-Budyko permet-
tant d’attribuer le biais de décharge entre la simu-
lation du modèle (fournie par le modèle de surface
ORCHIDEE) et les observations aux sources d’incer-
titude des variables atmosphériques et de la struc-
ture du modèle. Le cadre qualifie la possibilité d’in-
certitudes différentes avec l’hypothèse de Budyko
basée sur des facteurs physiques et le soutien de

littératures existante. Cette thèse passe enfin en re-
vue les activités humaines et leur impact sur le débit
des rivières en Chine, ainsi que les approches as-
sociées utilisées pour la quantification. L’impact hu-
main qui a été quantifié par la différence entre le débit
fluvial observé et celui qui a été naturalisé est ensuite
comparé à des simulations multi-modèles conduites
par différents forçages. Les résultats montrent que
l’incertitude dans les variables atmosphériques (par
exemple, les précipitations) est grande, en particu-
lier pour les modèles de circulation générale (GCMs).
L’incertitude des précipitations est très probablement
supérieure à celle de l’incertitude du modèle. L’in-
certitude associée au débit modélisé avec différents
forçages est supérieure à l’ampleur de l’impact hu-
main pour la plupart des régions, en particulier dans
le sud de la Chine, ce qui rend la la quantification
de l’impact humain pour ces régions difficile. Cette
compréhension des incertitudes dans le cycle natu-
rel de l’eau et de la gestion que lui imposent les
hommes est une condition préalable à toute tentative
de modélisation des pressions anthropiques.

Title : The Impact of Climate Change and Human Management on the Water Cycle of China: Dealing with
Uncertainties

Keywords : Uncertainties, Human impact, Climate change, Water cycle, China

Abstract : Focusing on different uncertainty sources
that can affect the model accuracy of hydrological mo-
deling and impact analysis, this thesis reviews the
past studies and provides new approaches for es-
timating and comparing the uncertainties with their
applications concentrated over China. This thesis
first proposes a three-dimensional variance partitio-
ning approach that estimates the uncertainty among
multiple precipitation products with different types.
The new estimation uses full information in tempo-
ral and spatial dimensions and thus is a more com-
prehensive metric for uncertainty assessment espe-
cially for multiple datasets. This thesis then proposes
a ORCHIDEE-Budyko framework that helps attribute
the discharge bias between model simulation (pro-
vided by land surface model ORCHIDEE) and ob-
servations to uncertainty sources of atmospheric va-
riables and model structure. The framework qualifies
the possibility of different uncertainties with physical-
based Budyko hypothesis and support of related lite-

ratures. This thesis finally reviews the human activi-
ties and their impact on river discharge over China re-
gions as well as the related approaches that used for
the quantification. The human impact that quantified
as the difference between observed river discharge
and the naturalized ones is then compared with multi-
model simulations driven by different forcing inputs.
Results show that the uncertainty in atmospheric va-
riables (e.g., precipitation) is large especially for Ge-
neral Circulation Models (GCMs). Precipitation uncer-
tainty is very likely larger than that of the model uncer-
tainty. The uncertainty in the modeled discharge with
different forcing is larger than the magnitude of hu-
man impact for most of the regions especially in south
China, which impedes the credibility of human impact
quantification for those regions. This understanding of
uncertainties in the natural water cycle and the mana-
gement humans impose on it is a prerequisite before
attempting to model the anthropogenic pressures.
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