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Résumé

Dans cette thèse, nous étudions les problèmes de contrôle et d’estimation non linéaire couplés avec ap-
plication à la navigation par corrélation de terrain (TAN en anglais). L’objectif est de guider et d’estimer
la position 3D d’un drone survolant une zone connue. La principale difficulté de cette application est la
nature de l’information disponible sur le système. En effet, on suppose que les seules données disponibles
sont la vitesse du système, une mesure de hauteur/sol et une carte de la zone survolée. Comme la carte
est généralement créée avec des données empiriques, cela pose un problème d’estimation très complexe
en soi qui a été étudié de manière approfondie depuis les années 50.

Habituellement, les problèmes d’estimation et de contrôle sont résolus séparément en invoquant le
classique principe de séparation qui stipule que de bonnes performances peuvent être obtenues en com-
binant un contrôleur avec information parfaite et un estimateur conçu indépendamment.

Cependant, le principe de séparation n’est applicable que pour des classes de systèmes très partic-
ulières, dont les systèmes linéaires. Ainsi, pour un système non linéaire général, le contrôle et l’estimation
doivent être gérés conjointement. La TAN est un bon exemple d’application non linéaire où le principe
de séparation ne peut pas être appliqué. En réalité, la qualité des observations dépend du contrôle et plus
précisément de la zone survolée par le drone. En conséquence, Les sujets suivant ont été étudiés

• La conception d’observateurs non linéaires et contrôle en retour de sortie pour la TAN avec des
cartes analytiques au sol dans un cadre temporel continu.

• Le problème couplé du filtrage optimal non linéaire et du contrôle optimal stochastique en temps
discret avec des informations imparfaites.

• La conception de schémas de commande prédictive duale explicite couplés à un filtre particualrie
et leur implémentation numérique vers une application non linéaire (y compris la TAN).

Concernant le premier sujet, la technique d’immersion et d’invariance a été utilisé pour concevoir des
observateurs non linéaires capables de reconstruire la position 3D du drone dans plusieurs cas de cartes au
sol (quadratiques, cubiques, gaussiennes). Il a été démontré que, sous condition de persistance d’excitation
sur la vitesse horizontale, l’erreur d’estimation converge vers zéro. Le problème de contôle en retour de
sortie a également été étudié en utilisant le concept de δ -persistance. Concernant le deuxième sujet,
une reformulation des problèmes de filtrage optimal non linéaire et de contrôle optimal stochastique en
temps discret avec information imparfaite en un seul problème d’optimisation a été proposée. Cela per-
met de justifier l’utilisation de deux étapes dans la résolution du problème sous des hypothèses naturelles
sur la fonction de coût. La première étape consiste à résoudre un problème classique d’estimation opti-
male. La quasi-optimalité de la moyenne empirique d’un filtre particulaire modifié par rapport à l’erreur
quadratique moyenne a été montrée dans cette thèse. Cela justifie l’utilisation du filtrage particulaire. La
deuxième étape consiste à résoudre un problème de contrôle optimal modifié avec un nouveau terme issu
d’une estimation optimale. Ceci établit une connexion avec le contrôle dual explicite dans lequel un nou-
veau terme représentant une mesure d’information est ajouté empiriquement au coût. En réalité, ce terme
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empirique peut être vu comme une approximation du terme issu de l’estimation optimale. En ce qui con-
cerne le troisième sujet, les filtres de Kalman sont répandus dans l’estimation d’états mais connus pour
être inefficaces pour la TAN contrairement aux filtres particulaires. En conséquence, au cours de cette
thèse, deux contrôleurs prédictifs stochastiques explicites duauxen retour de sortie pour des systèmes non
linéaire généraux, couplés à un filtre particulaire, ont été conçus et appliqués à la TAN. Les deux schémas
sont basés sur l’integrated experiment design, mais l’un contient une pénalisation de l’objectif de guidage
dans le coût et l’autre utilise une contrainte de Lyapunov. Les problèmes d’optimisation résultants sont
résolus grâce à une méthode d’approximation de Monte Carlo et les deux contrôleurs ont montré de bons
résultats en simulation.
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Chapter 1

Introduction

Problems of control and state estimation of dynamical systemswith imperfect information arewidespread,
for instance, in chemical engineering [Kumar and Ahmad, 2012], in electrical and mechanical engineer-
ing [Bolton, 2003], in mathematical finance [Mamon and Elliott, 2007] and in aerospace engineering
[Eren et al., 2017]. In this work, we study nonlinear coupled control and estimation problems in order
to solve a challenging application that is Terrain-Aided Navigation (TAN). The objective is to guide and
estimate the 3D position of a drone flying over a known area. The main difficulty of this application is
the nature of the available information on the system. Indeed, it is assumed that the only available data
are the speed of the system, a measurement of the height from the ground and a map of the area flied
over. As the map is generally created with empirical data, this leads to a very complex estimation prob-
lem in itself which has been thoroughly studied since the 50’s ([Dahia, 2005], [Melo and Matos, 2017],
[Sabatino et al., 2003]). Thus, adding guiding to the problem makes it even harder and lacks of treatment
in the literature.

Usually, estimation and control problems are solved separately invoking the classical separation prin-
ciple which states that good performance can be achieved by combining a controller with perfect infor-
mation on the state and an independently devised estimator. See [Hespanha, 2009] and [Bertsekas, 1995]
for examples in different frameworks.

However, the separation principle is known to hold true only for very particular classes of systems
including linear systems. Thus, for a general nonlinear system, control and estimation must be handled
jointly. TAN is a good example of nonlinear application where the separation principle cannot be applied.
Actually, the quality of the observations depends on the control and more precisely on the area that is flied
over by the drone. Figure 1.1 depicts two typical trajectories of a drone in TAN. The ellipses represent
the uncertainty on the final state. The red trajectory corresponds to flight over a flat area with constant
altitude. In this case, onemeasurement of height matches a whole horizontal area and the estimation error
on the horizontal position is of the same order of magnitude as the size of the area which can be very
large. On the contrary, if the drone flies over a rough terrain, which corresponds to the green trajectory,
then one measurement of height corresponds to a smaller area on the ground. The estimation error is
then reduced, as shown in Figure 1.1 where the green ellipse is smaller than the red one.

The main objective of the thesis is to tackle this problem and to design coupled control and estimation
methods for nonlinear dynamical systems applicable to terrain-aided navigation.

In Part I, we put ourselves in a simplified framework of TAN to understand how the control can
influence observability and how to build observers and control laws accordingly. Firstly, in Chapter 2,
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Figure 1.1: Example of trajectories of a UAV flying over a real terrain

we assume that the dynamics of the drone is a deterministic double integrator in continuous time. We
represent the state of the system with the 3D position, the 3D speed and with the control being the 3D
acceleration. We also assume that the altitude of the ground is represented by a map hM from R2 to R
which is a polynomial, a Gaussian, a sum of Gaussians or a Fourier serie. This modelling simplifications
allow us to get insight on which trajectory the drone must follow to be able to reconstruct its position. It
is done by computing the classical conditions for local weak observability [Besançon, 2007]. Actually,
it emerges that observability is guaranteed if the horizontal speed and acceleration are not colinear.

This condition is related to persistence of excitation (PE) of the horizontal speed. In adaptive control,
PE describes the fact that a vector signal must explore sufficiently many linearly independent directions
in the state space. This allows one to excite the system and make the estimation of some unknown
parameters possible (see [Narendra and Annaswamy, 2012]).

Following this concept in Chapter 3, we propose new observers for TAN based on two variants of
the Immersion and Invariance (I&I) technique [Astolfi et al., 2008] and a controller designed accord-
ingly. Observer design by I&I consists in defining a nonlinear estimation error in the augmented space
(state/observer) so that the manifold where the error vanishes is invariant and attractive. Our first ap-
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proach is to directly handle the nonlinearity of the map in the design of the nonlinear estimation error.
This technique has been successfully applied to the case of a polynomial map of degree 2 and a Gaussian
map with an additional measurement of the absolute altitude. In [Martin and Sarras, 2018], a similar
technique is used to show global convergence of a state observer for a particular nonlinear system. How-
ever, some maps are too complex to be tackled directly. Our second approach is then to immerse the
original system into a higher dimensional one for which observer design is easy. Eventually, one has to
make sure that the higher dimensional observer can be used to estimate the original system. This method
has been applied to the case of a cubic map and partially to the case of a trigonometric map.

In the direct approach, the resulting estimation error equation is very well-known in adaptive control.
Moreover, global convergence of the estimation error to zero is proven under a condition of persistence
of excitation on the horizontal speed. Intuitively, it states that the system must avoid to go in straight line.
In the indirect approach, a PE condition is still required but it is harder to interpret. PE has been widely
studied but it is still not obvious how to incorporate it in an output-feedback loop. Besides, continuous
time almost sure stochastic PE conditions have not been extensively studied.

That is why, afterwards, we focus on finding interesting sufficient conditions for the convergence of
the previous observers, in terms of output-feedback control and stochastic excitation.

It is rather simple to design a control law that ensures a PE condition on the speed. However, persistent
signals generally do not converge, think of sinusoidal signals for example. It means that, if one tries
to achieve output-feedback asymptotic stability, the speed cannot be persistent as classically defined.
Moreover, a stabilising controller is generally not persistent enough to ensure the convergence of the
estimation error to zero. Accordingly, an idea is to enforce the speed to verify a condition of δ-persistence
inspired from [Loría et al., 1999] and [Loría et al., 2002] which allows the whole system to converge.
More precisely, the speed is persistent with a time varying level of excitation. The latter is usually made
to decrease as some norm of the state of the system. This allow the true state of the system to converge
to an equilibrium point while ensuring that the estimation error goes to zero.

However, to apply existing results in [Loría et al., 2002], the level of excitation should be an increas-
ing and zero at zero function of the norm the estimation error. Although, the latter is unknown at all time
so it cannot be used in the design of the controller. Consequently, we choose to make the level of excita-
tion of the speed diminish as the estimated trajectory converges to the equilibrium. The main drawback
of the method is that, if the estimated trajectory converges too quickly, the level of excitation reaches zero
before the estimation error become small. However, we show that if the estimated trajectory converges
sufficiently slowly to the equilibrium then the whole system verifies the property of semi-global practical
stability.

The observer-controller performances are validated by numerical simulations in above cited cases. In
practice, the controller is composed of a stabilising term plus a term which is δ-persistent with respect to
the speed and the state of the observer. The excitation can be introduced by any classical PE signal like si-
nusoidal ones. Although, in simulations, stochastic signals may also be sufficient. In [Loría et al., 2002],
a Gaussian white noise is used. We give a new example of 2D rectangular processes that are almost
surely PE with a random level of excitation.

To sum up Part I, the observability properties of TAN with several types of analytical ground maps
are first studied in Chapter 2. Then, Chapter 3 is dedicated to the design of nonlinear observers and
control laws with a focus on the condition of persistence of excitation of the horizontal speed. Restricting
ourselves to analytical ground maps gives us an intuition and some avenues on how to deal with TAN for
real maps. Still, the previous framework does not provide good results for more complicated maps like
a sum of Gaussians even if the observability conditions are similar. Actually, the additional nonlinearity
in these cases makes the problem of finding a globally convergent observer too difficult.
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Therefore, in Part II, we decide to tackle the problem of estimation and control with terrain-aided
measurement for a real ground map in a discrete time stochastic framework. Concretely, our first mo-
tivation is to be able to use stochastic filters like particle filters to estimate the state of the drone. Our
second motivation is to use techniques from stochastic control with imperfect information, such as dual
stochastic Model Predictive Control, to couple the design of the estimator and of the controller.

To do so, we consider a general non-linear Markov chain to represent the state of the system and a
nonlinear observation equation to represent the noisy partial measurements. In this framework, as one
considers general non vanishing stochastic perturbation in a nonlinear system, it is impossible to get
exact output-feedback convergence of the state of the system or exact convergence of an estimator to the
true state. That is why, we decide to choose an optimisation-based solution to deal with estimation and
control.

In Chapter 4, we recall the fundamentals of stochastic control and filtering. On one hand, there is the
state estimation problem. In this framework, it corresponds to finding an estimator of the state as a func-
tion of the available information that minimised some estimation error. Customarily, one tries tominimise
themean square error between the state and the estimator. In this case, the best estimator is the conditional
expectation of the state with respect to all the available information. Additionally, if the system is linear
Gaussian then the Kalman filter gives the optimal solution in closed form [Anderson and Moore, 1979].
Although, for a general nonlinear non-Gaussian system, there is a closed form neither for the conditional
expectation nor for the conditional distribution (also called the filtering distribution). However, the latter
verifies a recursive equation, the so-called filtering equation, which is itself intractable. Consequently,
in practice, only approximations of the filtering equation are computed. Among the popular approxima-
tions are Extended Kalman filters, Unscented Kalman filters, Ensemble Kalman filters and particle filters.
Recently, particle filters have demonstrated their performance in terrain-aided navigation [Dahia, 2005],
[Murangira, 2014]. The principal reason is that particle filters (PF) can deal with nonlinear dynamics
or observation equation and with multimodal uncertainties which both appears in TAN. That is why, we
focus on PF in the following.

On the other hand, in the stochastic control framework, one does not look for control values but rather
for control policies that are measurable functions that map the available information to a control value.
An important property of the control when only partial information is available is that the controller
must look for more information to ensure a good estimation and a better control in the end. In other
words, for a general system, the controller may degrade the available information and prevent one from
building good estimators. This property, referred as the dual effect property, was first brought to light
by Feldbaum in his seminal work [Feldbaum, 1960]. It also means that the separation principle does
not apply in general. In [Bar-Shalom and Tse, 1974], a classification of control policies according to
their level of information use and probing is presented. It goes from open loop controls, where one
looks for controls values depending only on the initial information, to closed loop controls, where the
current information is used and the future one is predicted in some way. In the case of stochastic optimal
control with imperfect information as described in the survey paper [Mesbah, 2017], one can see from
the Dynamic Programming (DP) principle [Bertsekas, 1995] that optimal controls have the dual effect
properties. In this case, it is called implicit dual effect because it is only due to the optimality of the
controller without external excitation. However, as these problems are intractable in practice, suboptimal
output-feedback control laws are computed instead, with the idea to keep the dual effect property. They
are called dual controllers. There exist two kinds of dual controllers: implicit and explicit ones. The
idea behind implicit dual controllers is to keep the natural implicit dual effect coming from optimal
controls by approximating the DP equation. We do not consider implicit dual controllers in this work
as they are very difficult to combine with PF and computationally costly. Instead, we consider explicit
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dual controllers which are derived by solving a related open loop control problem where a measure of
information is added to the cost. This new cost allows the controller to recover the dual effect lost by doing
an open loop approximation. The main drawback of these controllers is that the measure of information
is generally empirical and hard to make theoretically grounded.

Therefore, our first contribution, gathered in Chapter 5, consists in the definition a new infinite hori-
zon multistage stochastic optimisation problem that gathers a stochastic optimal control problem with
imperfect information and an optimal estimation problem. This problem can be recast as a classical
infinite-time stochastic optimal control problemwith imperfect information by considering an augmented
control. The augmented controls are composed of an estimation policy and of the original control policy.
By applying the DP principle to this problem and, under natural assumptions on the cost function, one
can justify the use of two steps in the resolution of the problem:

• The first step is to solve a classical optimal estimation problem. From a more theoretical perspec-
tive, one would like to know if the Mean Square Error (MSE) associated with the empirical mean
of a PF converges to the optimal MSE, the one associated with the true conditional expectation.
There exist many results of convergence of PF to the true filtering distribution as the number of
particles goes to infinity. In [Crisan and Doucet, 2002], and [Arnaud Doucet et al., 2001] several
convergence results and error bounds are surveyed. The most classical error bounds involve inte-
grals of bounded continuous functions of the PF and the filtering distribution. These results do not
allow us to conclude as the mean is the integral of the identity which is unbounded. Surprisingly,
very few results concerning integrals of unbounded functions exist. Nevertheless, using the results
of [Hu et al., 2011], we provide an error bound between theMSE of the PF and the optimal one, for
a specific PF algorithm and a rather large class of models that contains TAN. Thus, the modified
PF solves approximately the optimal estimation problem for a square estimation error.

• Once optimal or near optimal estimation is achieved, we show that, to solve our new optimisation
problem, the last step is to solve a stochastic optimal control problem with imperfect information
where the cost function is composed of two terms that are contradictory in general. The first one
is the estimation error associated to the optimal estimator seen as a function of the state and the
available information. The second one is a classical cost function depending on the control and
on the state which can be, for instance, an economic cost, a penalisation of some guiding goal or
a combination of the two. Consequently, our claim is that classical explicit dual control problems
are approximations of the former optimal control problem. The estimation-based term which is
generally unknown is replaced by a related one usually independent of the observations such as the
Fisher Information Matrix.

One of the most common method to solve approximately infinite time stochastic optimal control
problems is Stochastic Model Predictive Control (SMPC). It consists first in solving a finite horizon
problem at the current. Then, one keeps and applies only the first optimal control to the true system.
Finally, these computations are repeated starting from the new current state in a receding horizon way.
In the case of partial information, the current state is usually replaced by the current estimation. A lot
work has been done using Kalman-like filters [Hovd and Bitmead, 2004], [Subramanian et al., 2015],
[Heitsch and Römisch, 2009], [Heirung et al., 2015]. Although few MPC methods uses PF in the litera-
ture (see [Sehr and Bitmead, 2016]).

Following the previous algorithm scheme, our second main contribution, gathered in Chapter 6, con-
sists in the design of two dual output-feedback SMPC methods which includes a particle filter for state
estimation. The first one consists in coupling a particle filter with the resolution by aMonte Carlo method
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of an explicit dual stochastic optimal control problem. The initial condition of each Monte Carlo trajec-
tory is chosen to be a particle from the particle filter. This allows the control to be aware of themultimodal
uncertainty on the state which is more difficult or even impossible with a Kalman-like filter. This has
been used in [Sehr and Bitmead, 2016] but not in the framework of dual control. The main drawback
of this method is that the cost function of the optimisation problem combines a stabilising term and an
information probing term. This creates a trade-off between going toward the guiding goal and looking
for more information. Indeed, if too much importance is given to the information term then probing will
be efficient but the system may get stuck far from the target. Conversely, if too much importance is given
to the stabilising term then the probing effect will not be sufficient and output-feedback performance may
be poor. It is difficult to know which case will occur beforehand. As a consequence, we propose another
dual MPC where the guiding objective is dealt with by a Lyapunov constraint coming from the theory of
Markov chain stability. The main consequence is that there is no more trade-off between guiding and in-
formation probing inside the cost. We prioritise the guiding goal and we only look for stabilising controls
that maximise the expected information.

Finally, these two algorithms are applied to TAN with a real ground map. The main challenge is
to solve the stochastic optimal control problem numerically. To do so, we consider a Monte Carlo ap-
proximation and solve it with a nonlinear programming solver. Besides, the real ground map is usually
obtained from discrete data. Thus, one has to interpolate the map during the resolution.

To sum up Part II, the basics of stochastic control and filtering are first described in Chapter 4. Sec-
ondly, the modelling of state estimation and stochastic optimal control for a general nonlinear system
gathered in one global stochastic optimisation problem is presented in Chapter 5. Finally, in Chapter 6,
two explicit dual output-feedback stochastic MPC schemes based on particle filtering are proposed and
tested on TAN with a real ground map.



Part I

Terrain-Aided Navigation with analytical
ground maps

7





Chapter 2

Terrain models and observability
conditions

In whole Part I, we consider the problem of Terrain-Aided Navigation in a simplified deterministic con-
tinuous time framework. The ground profile is assumed to be a simple known functions or combinations
of simple ones. The goal of this part is twofold. First, one would like to design observers and controllers
for as many different models of TAN as possible. Secondly, one is looking for some insight on how to
solve the problem of TAN with a complicated real maps. In Chapter 2, we define the several models of
maps and study the intrinsic observability properties of the resulting controlled system. One is willing
to identify the influence of the control on the observability of these systems.

2.1 General nonlinear observability conditions

2.1.1 General nonlinear controlled system

First, consider the following general nonlinear controlled dynamical system:

9x(t) = f(x(t), u(t)),

y(t) = h(x(t), u(t)), (2.1)

where ∀t ≥ 0:

• x(t) ∈ Rn is the state of the system.

• x(0) = x0 where x0 ∈ Rn is an initial condition.

• y(t) ∈ Rp is the output of the system.

• u(t) ∈ Rm is the input of the system. We denote by U , the set of possible input u(·).

• f : Rn × Rm −→ Rn represents the dynamics of the system and is assumed to beC∞ in x and u.

• h : Rn ×Rm −→ Rp is the observation function that links the output y(t) to the state x(t). In the
following, we also assume that h is C∞.

This model will be used in the following to present some general concepts in nonlinear observability
theory and nonlinear observer design.
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2.1.2 General definitions of observability

We consider a general nonlinear model of the form (2.1). We fix an input u(·) and an initial condition
x0. we define x(t;x0, u(·)) as the solution of equation (2.1) starting from x0 with input u(·). As the
model is nonlinear, classical Kalman rank condition [Hespanha, 2009] does not apply. Moreover, the
observability properties depend on the input.

2.1.2.1 Local weak observability

We would like to check if one is able to discriminate x0 from all other initial conditions using the output
y(·) and the control u(·). This is a problem of observability.

In the following, we recall several classical notions of nonlinear observability borrowed and adapted
from those in [Besançon, 2007]. It is important to notice that, as the input is fixed, we study the observ-
ability of an uncontrolled system parametrised by u(·). First we consider the definition of distinguishable
states.

Definition 2.1. A pair (x0, x
′
0) ∈ (Rn)2 is distinguishable with input u(·) if, ∃t ≥ 0 such that:

h(x(t;x0, u(·)), u(·)) 6= h(x(t;x′0, u(·), u(·)).

A state x is said to be distinguishable from x0 with input u(·) if the pair (x, x0) is distinguishable with
input u(·).

It is different from classical distinguishability defined in [Besançon, 2007]. Usually, one looks at ev-
ery possible input and shows that there exists one that is able to separate two different initial conditions.
Distinguishability from an particular initial condition with respect to some particular input is more con-
cerned with checking that a proposal input allows to discriminate this initial condition from other ones.
From this version of distinguishability, we define local weak observability at x0 with input u(·).

Definition 2.2. The system (2.1) is said to be locally weakly observable at x0 with input u(·) if there
exists a neighbourhood of x0, U, such that ∀x′0 ∈ U, ∃t ≥ 0 such that:

h(x(t;x0, u(·)), u(·)) 6= h(x(t;x′0, u(·), u(·)),
x(t;x′0, u(·)) ∈ U.

This notion means that one can distinguish all states near x0 while staying near x0 using the input
u(·). Therefore, this kind of property has a practical interest but is hard to check this form. That is why
we define the notion of observability space. As we are concerned with local properties for the moment,
we look for control values that locally allows observability. Thus we consider in the following definition
that u(·) ≡ u0 with u0 ∈ Rm.

Definition 2.3. The observability space with constant input u0, denoted by Ou0(h), is the smallest real
vector space of C∞ functions from Rn to R that contains the components of h(·, u0) and is stable under
the Lie derivative Lu0 which is defined by:

Lu0φ = dφf(x, u0)

The notion of observation space allows to write a sufficient condition of local weak observability
based on a rank condition.
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Definition 2.4. The system (2.1) is said to verify the observability rank condition at x0 with input u0 if:

dim(dOu0(h)|x0) = n

where dOu0(h)|x0 is the set of dφ(x0) with φ ∈ Ou0(h)

Proposition 2.1. If the system (2.1) satisfy the observability rank condition at x0 with input u0, then it
is locally weakly observable at x0 with input u0.

Proof. The proof can be found for a more general case in [Hermann and Krener, 1977]. The idea is that
the rank condition allows one to construct a local diffeomorphism around x0 with functions fromOu0(h).
As these functions can be "observed", the result follows.

2.1.2.2 Universal and persistent inputs

Conditions of local weak observability from the last section give insight on how a constant control must
be chosen depending on the initial state x0. We are now interested in finding conditions on the input
u(·) to ensure that observability is preserved along the trajectory. This leads to the definition of universal
inputs.

Definition 2.5. An input u(·) is an universal input on [0, t] if for any x0 6= x′0, there exists τ ∈ [0, t] such
that h(x(τ ;x0, u(·)), u(·)) 6= h(x(τ ;x′0, u(·), u(·)).

From Definition 2.5, one can derive an equivalent integral property:

Proposition 2.2. An input u(·) is universal on on [0, t] if and only if ∀x0 6= x′0:∫ t

0
‖h(x(τ ;x0, u(·)), u(·))− h(x(τ ;x′0, u(·)), u(·))‖2dτ > 0.

Universal inputs are inputs that never destroy the observability of the system. A related property is
the property of regular persistence of the input.

Definition 2.6. A input u(·) is said to be regularly persistent if ∃t0 ≥ 0, T > 0 and there exists κ : R −→
R increasing with κ(0) = 0 such that, ∀t ≥ t0, ∀x 6= x′:∫ t+T

t
‖h(x(τ ;x, u(·)), u(·))− h(x(τ ;x′, u(·)), u(·))‖2dτ ≥ κ(‖x− x′‖).

Obviously, from Proposition 2.2, a regularly persistent input is an universal input. Informally, a reg-
ularly persistent input excites the system consistently to ensure observability on a receding time horizon.
It happens to be a useful property to force the convergence of some observers.

2.2 Observability properties in Terrain-Aided Navigation

The objective of this section is to check the observability rank condition in Terrain-Aided Navigation.
To do so, we first define several models of ground maps in closed form and then apply the theory from
Section 2.1.1.
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Figure 2.1: Example of a UAV localized by Terrain-Aided Navigation

2.2.1 Dynamical models for Terrain-Aided Navigation (TAN) with closed-form ground
maps

We consider the scenario of a drone evolving in a 3D space without direct measurements of its 3D po-
sition. This scenario can occur after a GPS failure or simply because GPS devices are not used as they
are easy to jam. It is assumed instead that the drone is equipped with a radar-altimeter. A radar-altimeter
gives a measurement of the vertical distance between the drone and the ground. It is also assumed that
the terrain flied over by the drone is known. The issue of the following is to determine if these two pieces
of information are sufficient to reconstruct the horizontal and the vertical position of the drone. This
problem is called Terrain-Aided Navigation and is represented in Figure 2.1. Figure 2.2 represents the
test map that has been used throughout the thesis.

For the sake of simplicity, the drone is represented by a point in 3 dimensions and we suppose that
either its 3D speed or its 3D acceleration is controlled. In any case, the inertial speed i.e. the speed
in the inertial frame is supposed to be known. It is a substantial simplification as in many applications
the inertial speed is not measured but the speed in the body frame is. Pose estimation is then generally
needed to reconstruct the inertial speed. However, one can imagine that an external estimation loop is
run such that the inertial speed is reconstructed precisely. Occasionally, we will assume that an addi-
tional measurement of altitude is available mainly to simplify the design of some observers. It is not
a restrictive assumption as baro-altimeters are very common in aircrafts. We make the previous sim-
plifying assumptions because we want to focus on the main difficulty of the problem of TAN which is
the nature of the available information on the position. Actually, the available information depends on
the nature of the area that is flied over by the drone and consequently on the input. For example, let us
assume that the drone flies over an ambiguous area, like a flat or a periodic one, with constant altitude
then one measurement of height matches a whole horizontal area. The resulting estimation error on the
horizontal position is of the order of magnitude of the size of the area which can be very large. On the
contrary, if the drone flies over a rough terrain, then one measurement of height corresponds to a smaller
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Figure 2.2: Example of a real terrain

area on the ground and the estimation error is reduced. Intuitively, the more perturbed the ground flied
over is, the more information it contains. The idea of the following is to verify this intuition by studying
the dynamical model of the drone with different types of maps.

Consequently, in the sequel, the dynamics of the drone is either a simple or a double integrator in 3D
with control on the speed or on the acceleration.:

9X = V, (2.2)

or

9X = V,

9V = U, (2.3)

where

• X = (x1, x2, x3) is the 3D position with (x1, x2) being the horizontal 2D position and x3 the
altitude of the drone,

• V = (v1, v2, v3) is the 3D speed with (v1, v2) being the 2D horizontal speed and v3 the vertical
speed. V is the input in the system (2.2),

• U = (u1, u2, u3) is the 3D acceleration with (u1, u2) being the 2D horizontal acceleration and u3

the vertical acceleration. U is the input in the system (2.3).

In the casewhere the inertial speed of the drone and its height with respect to the ground aremeasured,
the observation equation reads:

y = h(X,V ), (2.4)
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with

h(X,V ) =

„

x3 − hM (x1, x2)
V



.

If the altitude is also measured, the observation equation is written as follow:

y = halt(X,V ), (2.5)

with

halt(X,V ) =

»

–

hM (x1, x2)
x3

V

fi

fl ,

where hM : R2 −→ R represents the profile of the ground. In equation (2.5), it is supposed that hM is
measured because measuring x3 and x3 − hM is equivalent to measuring x3 and hM .

In part I, we consider maps hM that can be written under closed form. In the sequel, we study in
detail maps that have the following forms.

• A polynomial function of degree 2:

hM (x1, x2) = a20x
2
1 + a11x1x2 + a02x

2
2 + a10x1 + a01x2 + a00, (2.6)

with (a20, a11, a02, a10, a01, a00) ∈ R6. Figure 2.3 represents a portion of the map presented in
Figure 2.2 and its least-square polynomial approximation of order 2. It is a typical example of the
possible uses of quadratic maps in TAN.

Figure 2.3: Representation of a part of the real map and its quadratic approximation

• A polynomial function of degree 3:

hM (x1, x2) = a30x
3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2 (2.7)

+ a20x
2
1 + a11x1x2 + a02x

2
2 + a10x1 + a01x2 + a00,

with (a30, a21, a12, a03, a20, a11, a02, a10, a01, a00) ∈ R10. As in the quadratic case, Figure 2.4
represent a cubic approximation of the real map. For the sake of clarity, the approximations in
Figure 2.3 and 2.4 are done on a large area which make them rough. Indeed, in practice, one
would need much more precise approximations.
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Figure 2.4: Representation of a part of the real map and its cubic approximation

• A Gaussian function:

hM (x1, x2) = H0exp
ˆ

−1

2

“

x1 − x0
1 x2 − x0

2

‰

R

„

x1 − x0
1

x2 − x0
2

˙

, (2.8)

where H0 > 0 is the height of the Gaussian, X0 = (x0
1, x

0
2)
T ∈ R2 is the center of the Gaussian

and R is a symmetric positive definite 2 × 2 matrix that represents the width and the orientation
of the Gaussian.

• A finite sum of Gaussian functions:

hiM (x1, x2) = H iexp
ˆ

−1

2

“

x1 − xi1 x2 − xi2
‰

Ri
„

x1 − xi2
x2 − xi2

˙

,

hM =

ng∑
i=1

hiM , (2.9)

where ng ≥ 2 and for i = 1..ng, H i, Xi = (xi1, x
i
2)
T and Ri are the parameters of the Gaussian

hiM as described in equation (2.8). Figure 2.5 represents an approximation of another part of the
real map with a sum of 3 Gaussians.

Figure 2.5: Representation of a part of the real map and one possible approximation by a sum ofGaussians

The main advantage of polynomial maps is their potential to represent complicated real maps through
local or global interpolation and/or approximation while adding relatively simple nonlinearities in the
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system as shown in Figure 2.3 and 2.4. The main advantage of using Gaussian maps is to represent
multimodal maps, with several hills or peaks for instance as in Figure 2.5 with potentially one global
approximation. However, Gaussian maps introduces non polynomial nonlinearity in the observation
equation which makes observer design in this case very complex.

We also study with less detail the case of a map decomposed in spatial trigonometric functions.

Figure 2.6: Fourier approximation of the real terrain with ntri = 1600

• A spatial trigonometric function:

hM (x1, x2) = αcos(ω1x1 + φ1)cos(ω2x2 + φ2) (2.10)

where α ∈ R is a Fourier coefficient, (ω1, ω2) ∈ (R+)
2 are pulsations and (φ1, φ2) ∈ R2 are the

phases at the origin.

• A sum of spatial trigonometric functions:

hiM (x1, x2) = αicos(ωi1x1 + φi1)cos(ωi2x2 + φi2)

hM =

ntri∑
i=1

hiM , (2.11)

where ntri ≥ 2, for i = 1, .., ntri, αi, (ωi1, ω
i
2) and (φi1, φ

i
2) are the parameters of trigonometric

functions as in equation (2.10). Figure 2.6 represents a Fourier approximation of the map in Figure
2.2 with 1600 pulsations (ωi1, ω

i
2).

As for polynomial maps, it is well known that the potential of approximation of such maps is huge but
dealing with the cosines in the dynamics is a big issue in observer design. That is why, the full treatment
of this case is still open.
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Actually, a problem of observability arises with the observation equation (2.4) and (2.5) as one wants
to reconstruct a 3D position with a 2D measurement or a 2D horizontal position with a 1D measurement.
Therefore, the first step of the study is to look for conditions on the input and on the map of the ground
that makes the state observable.

2.2.2 Local weak observability of Terrain-Aided Navigation models

In this section, we fix a position X , a speed V and an acceleration U . Depending on the dynamics
considered in the following, X is a point in the statespace and V a constant input or (X,V ) is a point
in the statespace and U a constant input. To check if a model is locally weakly observable, we evaluate
the observability rank condition. To do so, The idea is to compute all the functions from the observation
spaceOU (h) (orOV (h)) by successively applying the Lie derivative on the component of the observation
function.

We focus on model (2.4) and we split the observation equation into a linear part hl and nonlinear part
hnl such that:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with hnl(X) = x3 − hM (x1, x2) and hl(X,V ) = V .
In the case of a double integrator, as the linear part is directly of the speed, its Lie derivatives are

constant so the only difficulty comes from the nonlinear part. We denote by hnlk the kth Lie derivative of
hnl in the direction of the dynamics considered. Then, hnl0 = hnl. Finally one only needs to check the
rank of the family

`

∇hl,∇hnlk
˘

k≥0
where∇ is the gradient operator.

2.2.2.1 Polynomial map of degree 2

We consider the dynamical model (2.3) of the double integrator with the observation equation 2.4 and
the map (2.6) which is polynomial of degree 2. The successive Lie derivatives of hnl up to order 2 read:

∇hnl0 =

»

—

—

—

—

—

—

–

−(2a20x1 + a11x2 + a10)
−(a11x1 + 2a02x2 + a01)

1
0
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

hnl1 =∇Thnl0

„

V
U



,

=− v1(2a20x1 + a11x2 + a10)− v2(a11x1 + 2a02x2 + a01) + v3,
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∇hnl1 =

»

—

—

—

—

—

—

–

−(2a20v1 + a11v2)
−(a11v1 + 2a02v2)

0
−(2a20x1 + a11x2 + a10)
−(a11x1 + 2a02x2 + a01)

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

hnl2 =∇Thnl1

„

V
U



,

=− v1(2a20v1 + a11v2)− v2(a11v1 + 2a02v2)

− u1(2a20x1 + a11x2 + a10)− u2(a11x1 + 2a02x2 + a01) + u3,

∇hnl2 =

»

—

—

—

—

—

—

–

−(2a20u1 + a11u2)
−(a11u1 + 2a02u2)

0
−(4a20v1 + 2a11v2)
−(2a11v1 + 4a02v2)

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We then define the observability matrix H by:

H =

»

—

—

—

—

—

—

–

0 0 0 −(2a20x1 + a11x2 + a10) −(2a20v1 + a11v2) −(2a20u1 + a11u2)
0 0 0 −(a11x1 + 2a02x2 + a01) −(a11v1 + 2a02v2) −(a11u1 + 2a02u2)
0 0 0 1 0 0
1 0 0 0 −(2a20x1 + a11x2 + a10) −(4a20v1 + 2a11v2)
0 1 0 0 −(a11x1 + 2a02x2 + a01) −(2a11v1 + 4a02v2)
0 0 1 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

It is not necessary to compute the other Lie derivatives of h because one can see that they do not depend
on X so their gradient do not bring vectors that are linearly independent of those of H as V is fully
measured. Therefore, as H is a square matrix, the observability conditions can be summed up in the
determinant of H . Finally,

det(H) =

∣∣∣∣−(2a20v1 + a11v2) −(2a20u1 + a11u2)
−(a11v1 + 2a02v2) −(a11u1 + 2a02u2)

∣∣∣∣ ,
=(2a20v1 + a11v2)(a11u1 + 2a02u2)− (2a20u1 + a11u2)(a11v1 + 2a02v2),

=2a20a11v1u1 + 4a20a02v1u2 + a2
11v2u1 + 2a11a02v2u2,

−(2a20a11u1v1 + 4a20a02u1v2 + a2
11u2v1 + 2a11a02u2v2),

=(a2
11v2 − 4a20a02v2)u1 + (4a20a02v1 − a2

11v1)u2,

=(a2
11 − 4a20a02)(u1v2 − u2v1).

Then,

dim
`

dOU (h)|(X,V )

˘

< 6⇔ det(H) = 0⇔ (a2
11 − 4a20a02) det

ˆ„

u1 v1

u2 v2

˙

= 0,

⇔ a2
11 − 4a20a02 = 0 or

„

u1

u2



//

„

v1

v2



.
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Finally, in this case, the rank condition is satisfied if:

• a2
11 − 4a20a02 6= 0 which means that the quadrics that corresponds to the map is non degenerate;

• and the horizontal acceleration is chosen to be non colinear to the horizontal speed.

The case of a cubic polynomial leads to similar sufficient conditions involving higher order coeffi-
cients so we omit the details of the computations.

2.2.2.2 Gaussian map

We analyse now the case of the Gaussian map (2.8). we consider successively dynamics (2.2) and (2.3)
to get a progressive insight because the conditions are less clear than in the polynomial case. Let us set:

Xce =

„

x1 − x0
1

x2 − x0
2



, V12 =

„

v1

v2



.

Xce represents the horizontal position centred at the centre of the Gaussian and V12 is the horizontal
speed. We first notice that: ∇(x1,x2)hM = −hMRXce. We start with the simple integrator.

Simple integrator

In this case, as V is an input h = h0 = hnl = x3 − hM . We compute several Lie derivatives:

∇hnl0 =

„

hMRXce

1



, (2.12)

hnl1 = ∇hnl0 V,

= v3 +XT
ceRV12hM ,

∇hnl1 = hM

„

−(XT
ceRV12)RXce +RV12

0



, (2.13)

hnl2 = ∇Thnl1 V,

= hM (−(XT
ceRV12)

2
+ V T

12RV12),

∇hnl2 = hM

„

−(−(XT
ceRV12)

2
+ V T

12RV12)RXce − 2(XT
ceRV12)RV12

0



,

hnl3 = ∇Thnl2 V,

= hM ((XT
ceRV12)

3 − 3(V T
12RV12)(XT

ceRV12)),

∇hnl3 = hM

„

−((XT
ceRV12)

3 − 3(V T
12RV12)(XT

ceRV12))RXce + (3(XT
ceRV12)

2 − V T
12RV12)RV12

0



.

(2.14)

One can see from the previous computations that some structure appears in the Lie derivatives which
leads to Proposition 2.3.

Proposition 2.3. ∀k ≥ 1, there exist polynomial functions gk : R2 −→ R and fk : R −→ R such that:

hnlk (X,hM , V ) = fk(v3) + hM (gk(V
T

12RV12, X
T
ceRV12)),
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and ∀(r, s) ∈ R+×R, gk(r, s) of degree k in s. Moreover, the following formula holds for the functions
gk, ∀(r, s) ∈ R+ × R and for k ≥ 1:

g1(r, s) = s,

gk+1(r, s) = −gk(r, s)s+
∂gk
∂s

(r, s)r.

Proof. The proposition is true for k = 1 according to equation (2.13) with g1(r, s) = s and f1(v3) = v3

Let us assume that, for some n ≥ 1, there exists gk : R2 −→ R and fk : R −→ R such that:

hnlk (X,V ) = fk(v3) + hM (gk(V
T

12RV12, X
T
ceRV12))

Then by definition,

hnlk+1 = V T∇hnlk .

Moreover,

∇hnlk = hM

„

−gk(V T
12RV12, X

T
ceRV12)RXce + ∂gk

∂s (V T
12RV12, X

T
ceRV12)RV12

0



. (2.15)

Finally,

hnlk+1 = hM (−(XT
ceRV12)gk(V

T
12RV12, X

T
ceRV12) +

∂gk
∂s

(V T
12RV12, X

T
ceRV12)V T

12RV12).

By setting, fk+1 = 0 and gk+1(r, s) = −gk(r, s)s+ ∂gk
∂s (r, s)r, and by noticing that if gk is of degree

k is s then gk+1 is of degree k + 1 in s, the result is proved ∀k ≥ 1.

We can deduce from Proposition 2.3 and equation (2.12) that:

dOV (h)|X=Span

ˆ„

−hMRXce

1



,

„

−hM ((XT
ceRV12)RXce +RV12)

0



, (2.16)

ˆ„

hMgk(V
T

12RV12, X
T
ceRV12)RXce + hM

∂gk
∂s (V T

12RV12, X
T
ceRV12)RV12

0

˙

k≥2

¸

.

Equation (2.16) leads to the following sufficient conditions of local weak observability.

Proposition 2.4. If Xce is not colinear to V12 and ∃k ≥ 1, ∃l ≥ 1 such that k 6= l and:∣∣∣∣ gk(V T
12RV12, X

T
ceRV12) gl(V

T
12RV12, X

T
ceRV12)

∂gk
∂s (V T

12RV12, X
T
ceRV12) ∂gl

∂s (V T
12RV12, X

T
ceRV12)

∣∣∣∣ 6= 0. (2.17)

then the system (2.2), (2.8) is locally weakly observable at X with input V .

Proof. The idea is to prove that the rank condition is verified at X with input V using the general form
of dOV (h)|X in equation 2.16 . To do so, we pick k and l form the statement of the proposition and we
compute the following determinant:

D : =

∣∣∣∣−hMRxce hMgkRXce + hM
∂gk
∂s RV12 hMglRXce + hM

∂gl
∂s RV12

1 0 0

∣∣∣∣ ,
D =

∣∣hMgkRXce + hM
∂gk
∂s RV12 hMglRXce + hM

∂gl
∂s RV12

∣∣ ,
D = h2

mdet(R)det
`“

Xce V12

‰˘

∣∣∣∣ gk gl
∂gk
∂s

∂gl
∂s

∣∣∣∣ .
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By construction, hM > 0 and det(R) > 0. Besides, by assumption,Xce and V12 are not colinear so

det
`“

Xce V12

‰˘

6= 0 and
∣∣∣∣ gk gl
∂gk
∂s

∂gl
∂s

∣∣∣∣ 6= 0.

Finally,D 6= 0 and dim(dOV (h)|X) = 3 which ensures that the system (2.2), (2.8) is locally weakly
observable at X with input V by Proposition 2.1.

Equation (2.17) is verified for a generical choice of V12 and U12 as (V T
12RV12, X

T
ceRV12) is the root

of some polynomial. Intuitively, Proposition 2.4 means that one can distinguish all 3D positions nearX
locally by going in straight line along a direction that is not parallel toXce.We now deal with the case of
a double integrator.

Double integrator

In this case, (X,V ) is the state and U the input. We define the horizontal acceleration as follows:

U12 =

„

u1

u2



.

As in the polynomial case the contribution of hl is easy to determine. Thus, we focus on hnl. Like
in the simple integrator case one can derive the successive Lie derivatives:

hnl0 = x3 − hM ,

∇hnl0 =

»

—

—

—

—

–

−hMRXce

1
0
0
0

fi

ffi

ffi

ffi

ffi

fl

, (2.18)

hnl1 = ∇Thnl0

„

V
U



, (2.19)

= v3 +XT
ceRV12hM ,

∇hnl1 =

»

—

—

—

—

–

−hM (XT
ceRV12)RXce + hMRV12

0
XT
ceRV12

hMRXce

1

fi

ffi

ffi

ffi

ffi

fl

,

hnl2 = ∇Thnl1

„

V
U



,

= hM (−(XT
ceRV12)

2
+ V T

12RV12 +XT
ceRU12),

(2.20)
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∇hnl2 =

»

—

—

–

hM ((−(XT
ceRV12)

2
+ V T

12RV12 +XT
ceRU12)RXce − 2(XT

ceRV12)RV12 +RU12)
0

hM (2RV12 − 2(XT
ceRV12)RXce)

1

fi

ffi

ffi

fl

,

hnl3 = ∇Thnl2

„

V
U



,

= hM ((XT
ceRV12)

3 − 3(V T
12RV12)(XT

ceRV12)

+ 2UT12RV12 + (1− 2(XT
ceRV12))(XT

ceRU12)) + u3.

(2.21)

The expression of ∇hnl3 becomes too long to be written here and as in the simple integrator, the Lie
derivatives can be expressed in a general form with a sequence of multivariate polynomials.

Proposition 2.5. ∀k ≥ 1, there exist functions gk : R5 −→ R and fk : R2 −→ R such that:

hnlk (X,V, U) = fk(v3, u3) + hM (gk(V
T

12RV12, U
T
12RU12, X

T
ceRV12, X

T
ceRU12, V

T
12RU12)),

and ∀(ru, rv, sxv, sxu, svu) ∈ R+2×R3, gk(ru, rv, sxv, sxu, svu) is polynomial in (ru, rv, sxv, sxu, svu).
Moreover, a possible choice of the function sequence (gk)k≥1 is the one for which the following recursion
holds for , ∀(ru, rv, sxv, sxu, svu) ∈ R+2 × R3 and for k ≥ 1:

gk+1 = −gksxv +
∂gk
∂sxv

rv +
∂gk
∂svu

ru +

ˆ

∂gk
∂sxu

+ 2
∂gk
∂rv

˙

svu +
∂gk
∂sxv

sxu,

Proof. The proposition is true for k = 1 according to equation (2.19) with g1(ru, rv, sxv, sxu, svu) = sxv
and f1(v3, u3) = v3

Let us assume that, for some k ≥ 1, there exists gk : R5 −→ R and fk : R2 −→ R such that:

hnlk (X,V ) = fk(v3, u3) + hMgk(V
T

12RV12, U
T
12RU12, X

T
ceRV12, X

T
ceRU12, V

T
12RU12).

Then by definition,

hnlk+1 =
“

V T UT
‰

∇hnlk .

Moreover, for k ≥ 1,

∇hnlk =

»

—

—

—

—

–

hM

´

−gkRXce + ∂gk
∂sxv

RV12 + ∂gk
∂sxu

RU12

¯

0

hM

´

2∂gk∂rv
RV12 + ∂gk

∂sxv
RXce + ∂gk

∂svu
RU12

¯

∂fk
∂v3

fi

ffi

ffi

ffi

ffi

fl

.

Then,

hnlk+1 =hM

ˆ

−gkXT
ceRV12 +

∂gk
∂sxv

V T
12RV12 +

∂gk
∂sxu

UT12RV12 +

2
∂gk
∂rv

V T
12RU12 +

∂gk
∂sxv

XceRU12 +
∂gk
∂svu

UT12RU12.+
∂fk
∂v3

u3

˙

.
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By setting,

gk+1 =− gkXT
ceRV12 +

∂gk
∂sxv

V T
12RV12 +

∂gk
∂sxu

UT12RV12

+ 2
∂gk
∂rv

V T
12RU12 +

∂gk
∂sxv

XceRU12 +
∂gk
∂svu

UT12RU12,

fk+1 =
∂fk
∂v3

u3,

one gets the result.

From Proposition 2.5, one gets directly that:

dOU (h)|(X,V )= Span

¨

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

–

0
0
0
1
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

0
0
0
0
1
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

−hMRXce

1
0
0
0

fi

ffi

ffi

ffi

ffi

fl

,

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

hM

´

−gkRXce + ∂gk
∂sxv

RV12 + ∂gk
∂sxu

RU12

¯

0

hM

´

∂gk
∂sxv

RXce + 2∂gk∂rv
RV12 + ∂gk

∂svu
RU12

¯

∂fk
∂v3

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

k≥1

˛

‹

‹

‹

‹

‹

‚

. (2.22)

Suppose that V12 is not colinear to U12. Let us define (xv, xu) as the coordinates of Xce in the basis
formed by (V12, U12). We can now state the equivalent of Proposition 2.5 for the double integrator:
Proposition 2.6. If V12 is not colinear to U12, ∃k ≥ 1, ∃l ≥ 1 such that k 6= l and:∣∣∣∣∣−xvgk + ∂gk

∂sxv
−xvgl + ∂gl

∂sxv

−xugk + ∂gk
∂svu

−xugl + ∂gl
∂svu

∣∣∣∣∣ 6= 0, (2.23)

the system (2.3), (2.8) is locally weakly observable at (X,V ) with input U .
Proof. Following the same reasoning as in Proposition 2.3, one only needs to compute the following
determinant:

D : =

∣∣∣∣−hMRXce hM (−gkRXce + ∂gk
∂sxv

RV12 + ∂gk
∂sxu

RU12) hM (−glRXce + ∂gl
∂sxv

RV12 + ∂gl
∂sxu

RU12)

1 0 0

∣∣∣∣ ,
D = h2

mdet(R)det
`“

V12 U12

‰˘

∣∣∣∣∣−xvgk + ∂gk
∂sxv

−xvgl + ∂gl
∂sxv

−xugk + ∂gk
∂svu

−xugl + ∂gl
∂svu

∣∣∣∣∣ .
As in proposition (2.3), D 6= 0 and the system (2.3), (2.8) is locally weakly observable at (X,V ) with
input U .

The property (2.23) is expected to be verified generically as (2.17). The property that V12 and U12

must not be colinear is more useful than its counterpart in the simple integrator case as both V12 and U12

are known. It is not surprising as more information is available in the double integrator case than in the
simple integrator one. It also matches the condition in the polynomial case.

We now extend these results to the more realistic case of a map as sum of Gaussian.
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2.2.2.3 Map as a sum of Gaussian

Let us set:

Xi
ce =

„

x1 − xi1
x2 − xi2



.

We recall that:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with hnl(X) = x3 −
∑ng

i=1 h
i
M (x1, x2) and hl(X,V ) = V .

We first notice that ∇(x1,x2)h
i
M = −hiMRiXi

ce.

Simple integrator

∇hnl0 =

„∑ng
i=1 h

i
MR

iXi
ce

1



, (2.24)

hnl1 = ∇Thnl0 V,

= v3 +

ng∑
i=1

hiMX
iT
ce R

iV12, (2.25)

(2.26)

Following the same path as in the case of one Gaussian, proposition (2.7) is stated as follows.

Proposition 2.7. ∀k ≥ 1, ∃ gk : R2 −→ R and fk : R −→ R such that:

hnlk (X,V ) = fk(v3) +

ng∑
i=1

hiM (gk(V
T

12R
iV12, X

iT
ce R

iV12)),

and ∀(r, s) ∈ R+ × R, gk(r, s) is polynomial in (r, s) in s. Besides, gk(r, s) is of degree n. Moreover,
the following recursion holds for the functions gk, ∀(r, s) ∈ R+ × R and for n ≥ 1:

gk+1(r, s) = −gk(r, s)s+
∂gk
∂s

(r, s)r

Proof. The proposition is true for k = 1 according to equation (2.25) with g1(r, s) = s and f1(v3) = v3

Let us assume that, for some k ≥ 1, there exists gk : R2 −→ R and fk : R −→ R such that:

hnlk (X,V ) = fk(v3) +

ng∑
i=1

hiM (gk(V
T

12R
iV12, X

iT
ce R

iV12)).

Then by definition,

hnlk+1 = V T∇hnlk .
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To simplify the notations we denote gk(V T
12R

iV12, X
iT
ce R

iV12) by gik and
∂gk
∂s (V T

12R
iV12, X

iT
ce R

iV12) by
∂gik
∂s :

∇hnlk =

«

−
∑ng

i=1 g
i
kR

iXi
ce +

∑ng
i=1 h

i
M
∂gik
∂s R

iV12

0

ff

. (2.27)

Finally,

hnlk+1 =

ng∑
i=1

hiM (−(XiT
ce R

iV12)gik + V T
12R

iV12
∂gik
∂s

).

By setting, fk+1 = 0 and gk+1(r, s) = −gk(r, s)s+ ∂gk
∂s (r, s)r, and by noticing that if gk is of degree

n is s then gk+1 is of degree k + 1 in s, the result is proved ∀k ≥ 1.

By equations and (2.24) and (2.27), one can see that:

dOU (h)|X= Span

¨

˝

„∑ng
i=1 h

i
MR

iXi
ce

1



,

˜«

−
∑ng

i=1 g
i
kR

iXi
ce +

∑ng
i=1 h

i
M
∂gik
∂s R

iV12

0

ff¸

n≥1

˛

‚.

(2.28)

Simple analytic conditions for local weak observability in this case are harder to provide as the directions
spanned by ∇hnlk are not a combination of Xce and V12 but a combination between the Xi

ce and V12.
However, this new complexity seems beneficial, at least intuitively, as it means that more directions are
spanned in the case of a sum of Gaussian than in the case of one Gaussian. For example, if ng = 2,
R1 = R2, and X1

ce, X2
ce and V12 are colinear then one can show that rank condition is not satisfied,

using that the same technique as in the single Gaussian case. However, it is a very particular case, with
many symmetries. It means notably that the drone is located on the line that connects the centres of the
two Gaussians and goes in that direction too. Moreover, if the drone deviates from this line the rank
condition is satisfied. This example illustrates the fact that the rank condition seems to fail only in very
special cases.

Double integrator

Using the same notations as in the single Gaussian case:

hnl0 = x3 −
ng∑
i=0

hiM ,

∇hnl0 =

»

—

—

—

—

–

−
∑ng

i=0 h
i
MR

iXi
ce

1
0
0
0

fi

ffi

ffi

ffi

ffi

fl

, (2.29)



26 CHAPTER 2. TERRAIN MODELS AND OBSERVABILITY CONDITIONS

hnl1 = ∇Thnl0

„

V
U



, (2.30)

= v3 +

ng∑
i=0

XiT
ce R

iV12h
i
M ,

∇hnl1 =

»

—

—

–

−
∑ng

i=0 h
1
M (XiT

ce R
iV12)RiXi

ce +
∑ng

i=0 h
i
MR

iV12

0∑ng
i=0 h

i
MR

iXi
ce

1

fi

ffi

ffi

fl

.

(2.31)

Proposition 2.8. ∀k ≥ 1, ∃ gk : R5 −→ R and fk : R2 −→ R such that:

hnlk (X,V, U) = fk(v3, u3) +

ng∑
i=0

hiM (gk(V
T

12R
iV12, U

T
12R

iU12, X
iT
ce R

iV12, X
iT
ce R

iU12, V
T

12R
iU12)).

and ∀(ru, rv, sxv, sxu, svu) ∈ (R+)2×R3, gk(ru, rv, sxv, sxu, svu) is polynomial in (ru, rv, sxv, sxu, svu).
Moreover, a possible choice of the function sequence (gk)k≥1 is the one for which the following recursion
holds for , ∀(ru, rv, sxv, sxu, svu) ∈ R+2 × R3 and for k ≥ 1:

gk+1 = −gksxv +
∂gk
∂sxv

rv +
∂gk
∂svu

ru +

ˆ

∂gk
∂sxu

+ 2
∂gk
∂rv

˙

svu +
∂gk
∂sxv

sxu.

Proof. The proposition is true for k = 1 according to equation (2.19) with g1(ru, rv, sxv, sxu, svu) = sxv
and f1(v3, u3) = v3

Let us assume that, for some k ≥ 1, there exists gk : R5 −→ R and fk : R2 −→ R such that:

hnlk (X,V, U) = fk(v3, u3) +

ng∑
i=0

hiM (gk(V
T

12R
iV12, U

T
12R

iU12, X
iT
ce R

iV12, X
iT
ce R

iU12, V
T

12R
iU12)).

Then by definition,

hnlk+1 =
“

V T UT
‰

∇hnlk .

Moreover, for k ≥ 1,

∇hnlk =

»

—

—

—

—

–

−
∑ng

i=0 h
i
Mg

i
kR

iXi
ce +

∑ng
i=0 h

i
M

∂gik
∂sxv

RiV12 +
∑ng

i=0 h
i
M

∂gik
∂sxu

RiU12

0∑ng
i=0 h

i
M

∂gik
∂sxv

RiXi
ce + 2

∑ng
i=0 h

i
M
∂gik
∂rv

RiV12 +
∑ng

i=0 h
i
M

∂gik
∂svu

RiU12
∂fk
∂v3

fi

ffi

ffi

ffi

ffi

fl

.

The result follows as in (2.5), by setting, ∀(ru, rv, sxv, sxu, svu) ∈ R+2 × R3 and for k ≥ 1:

gk+1 = −gksxv +
∂gk
∂sxv

rv +
∂gk
∂svu

ru +

ˆ

∂gk
∂sxu

+ 2
∂gk
∂rv

˙

svu +
∂gk
∂sxv

sxu.
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From proposition (2.8), one gets directly that:

dOU (h)|(X,V )=Span

¨

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

–

0
0
0
1
0
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

0
0
0
0
1
0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

—

—

–

0
0
0
0
0
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

»

—

—

—

—

–

−
∑ng

i=0 h
i
MR

iXi
ce

1
0
0
0

fi

ffi

ffi

ffi

ffi

fl

,

¨

˚

˚

˚

˚

˝

»

—

—

—

—

–

−
∑ng

i=0 h
i
Mg

i
kR

iXi
ce +

∑ng
i=0 h

i
M

∂gik
∂sxv

RiV12 +
∑ng

i=0 h
i
M

∂gik
∂sxu

RiU12

0∑ng
i=0 h

i
M

∂gik
∂sxv

RiXi
ce + 2

∑ng
i=0 h

i
M
∂gik
∂rv

RiV12 +
∑ng

i=0 h
i
M

∂gik
∂svu

RiU12
∂fk
∂v3

fi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‚

k≥1

˛

‹

‹

‹

‹

‚

.

(2.32)

As in the previous cases, the rank condition will be verified for a generical choice of vector V12 and U12

if the sum of Gaussian does not represent a pathological map, with concentric Gaussian for example.

The main conclusion that can be drawn from the study of the observability condition is that the more
complex themap is themore information it contains and themore likely it is to lead to observable systems.
It confirms the previous informal claim However, the conditions presented in this section, especially on
the control, are qualitative but not quantitative. They give a good insight on the nature of the problem
but no practical resolution scheme.

The goal of the next chapter is to find more quantitative and applicable conditions through observer
and controller design.
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Chapter 3

Observer and controller design for TAN
with analytical maps under persistence of
excitation

This chapter is firstly dedicated to observer design for the systems studied in Chapter 2. Actually, it
turns out that these observers converge under a condition of persistence of excitation on the speed. This
implies that there are also conditions on the control to ensure the convergence of the observer . Therefore,
the second goal of this chapter is to design controllers that simultaneously verify these conditions and
allow the system to reach his guiding objective. Finally, we study quite independently a special case of
stochastic persistent horizontal speed.

3.1 Nonlinear observer design by Immersion and Invariance (I&I) for
Terrain-Aided Navigation

Generally, an observer is defined as a dynamical system designed to asymptotically approach the un-
known state of the original system. The main difficulty is that it must be constructed using only the avail-
able information.There is no explicit form of observers that handles any system so it must be adapted to
the particular class of systems treated. The most popular nonlinear observer are the nonlinear Luenberger
and Kalman observers. They are especially well suited for a large class of nonlinear systems that still ex-
hibit some linear structure (see [Besançon, 2007]). Another family of nonlinear observers are high-gain
observers. They are based on the idea of compensating the nonlinearity buy using a high gain on the
innovation term. This also requires in general that the original system contains a linear detectable part
(see [Khalil and Praly, 2014]). In the sequel, we prefer to use a more general method, called Immersion
and Invariance (I&I), that is known to be able to deal with very nonlinear systems. Besides, it gives one
many degrees of freedom to choose the estimation error equation. In this section, we first recall the gen-
eral concepts of I&I applied to observer design. Then, we present the design of observers for the systems
with a quadratic map, a cubic map, a Gaussian map and a trigonometric map.

29
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3.1.1 Description of I&I for the design of observers of a general nonlinear system

To recall the general method of nonlinear observer design based on Immersion and Invariance, taken
from [Astolfi et al., 2008], we first rewrite the system (2.1) under the following form:

9η = f1(η, y, u), (3.1)
9y = f2(η, y, u),

where η ∈ Rn is the unmeasured part of the state, u ∈ Rm is the input, y ∈ Rp is the measured part of
the state and f1 and f2 correspond to the dynamics of η and y. It can always be done from the system
(2.1) if h is sufficiently smooth. The solutions of equation (3.1) are supposed to be forward complete for
simplicity. In the sequel, we recall the general definition of an observer from [Astolfi et al., 2008] so that
we can deal with all the different kinds of model of TAN in the same framework.

Definition 3.1. The dynamical system

9ξ = α(ξ, y, u), (3.2)

with ξ ∈ Rq, q ≥ n, is called a observer for the system (3.1) if there exist mappings β : Rq×Rp×R −→
Rq and φ : Rn × Rp × R −→ Rq that are left-invertible with respect to their first argument and such
that the manifold:

M = {(η, y, ξ, t) ∈ Rn × Rp × Rq × R : β(ξ, y, t) = φ(η, y, t)}, (3.3)

satisfies the following properties:

(i) all trajectories of the extended system (3.1), (3.2) that start inM stay inM at all times i.e. it is
positively invariant;

(ii) all trajectories of the extended system (3.1), (3.2) starting in a neighbourhood ofM asymptotically
converge toM i.eM is locally attractive;

If the attractivity property (ii) in Definition 3.1 holds for any (η(t0), y(t0), ξ(t0), t0) ∈ Rn × Rp ×
Rq × R then the system (3.2) is called a global observer.

The term, β(ξ, y, t)− φ(η, y, t) is in fact a nonlinear estimation error written in a very general form
andM is the subset of the extended space state/observer where this estimation error vanishes. From the
design of an observer ξ in definition (3.1) one can define an estimator of η as follows:

η̂ = φL(β(ξ, y, t), y, t), (3.4)

where φL is a left-inverse of φ.
The following proposition gives a general technique of construction of observers as described in

Definition 3.1.

Proposition 3.1. Consider the system (3.1), (3.2) and assume that there exist C1 mappings β and φ as
in definition (3.1) with the left-inverse of φ being φL. Assume in addition that:

1. For any y, t, β(·, y, t) is left-invertible and:

det
ˆ

∂β

∂ξ

˙

6= 0.
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2. The system

9z =− ∂β

∂y
(f2(η̂, y, u)− f2(η, y, u)) +

∂φ

∂y

∣∣∣∣
η=η̂

f2(η̂, y, u)− ∂φ

∂y
f2(η, y, u) (3.5)

+
∂φ

∂η

∣∣∣∣
η=η̂

f1(η̂, y, u)− ∂φ

∂η
f1(η, y, u) +

∂φ

∂t

∣∣∣∣
η=η̂

− ∂φ

∂t
,

with η̂ = φL(φ(η, y, t) + z) has a locally (resp. globally) asymptotically stable equilibrium at
z = 0, uniformly in η, y, and t.

Then the system (3.2) with:

α(ξ, y, t) = −
ˆ

∂β

∂ξ

˙−1
˜

∂β

∂y
f2(η̂, y, u) +

∂β

∂t
− ∂φ

∂y

∣∣∣∣
η=η̂

f2(η̂, y, u) (3.6)

− ∂φ

∂η

∣∣∣∣
η=η̂

f1(η̂, y, u)− ∂φ

∂t

∣∣∣∣
η=η̂

¸

, (3.7)

where η̂ = φL(β(ξ, y, t)), is a an observer (resp. a global observer) for the system (3.1).

Proof. See [Astolfi et al., 2008] for the complete proof. However, here is an outline of the proof. Con-
sider the nonlinear estimation error variables (also called off-the-manifold variables) z = β(ξ, y, t) −
φ(η, y, t). Then, by computing 9z and substituting with equation (3.1), one can show that z is of the form
(3.5). One can conclude, by assumption 2, that the associated manifoldM is positively invariant and
attractive which leads to the result.

Remark 3.1.

• Unlike Luenberger observers or others classical observers, the quantity that is defined as an ob-
server ξ does not directly approach η. We build instead an estimator η̂ that is a function of ξ and y
as described in equation (3.4). This usually allows one to incorporate additional nonlinear terms
in the observer and deal with very nonlinear systems.

• Actually, left-invertibility of φ implies that η̂ − η = 0 onM and attractivity ofM implies that
β(ξ, y, t) − φ(η, y, t) tends to 0 as t → +∞. However, attractivity ofM does not necessarily
imply that η̂ − η tends to 0 as t → +∞. For this to be true, one needs an additional regularity
assumption on φL. Typically, if φL is globally Lipschitz with respect to η and uniformly in t and
y, then ∃C > 0 such that ∀t, ∀y, ∀ξ:

‖η̂ − η‖≤ C‖β(ξ, y, t)− φ(η, y, t)‖,

and clearly η̂ − η → 0 if β(ξ, y, t) − φ(η, y, t) → 0 which makes η̂ a converging estimator. For
instance, if φL(χ, y, t) = E(y, t)χ+ F (y, t), where E is a bounded matrix with respect to y and
t, then φL is globally Lipschitz with respect to η and uniformly in t and y. The assumption of
uniformity w.r.t. y and t is important. For example, consider the dynamics of a simple integrator
(2.2) with known speed with η = X:

9η = V.
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It is well known that the speed is not enough to reconstruct the position. Nevertheless, if one
chooses β(ξ, y, t) = ξ, φ(η, y, t) = e−tη and α(ξ, y, t) = −ξ + e−tV , one gets that the dynamics
of z = β(ξ, y, t)− φ(η, y, t) is :

9z = −z.

Obviously, z → 0 as t→ +∞ and η̂ = etξ. However, by construction:

9̂η = et 9ξ + etξ,

= −etξ + V + etξ,

= V.

So, η̂ − η is constant. Usually, η̂ − η 6= 0 initially so η̂ − η does not tend to zero while z always
does. In this case, n = q, φ is invertible and φL(ξ, y, t) = etξ. Notice that φL is clearly Lipschitz
w.r.t. ξ but not uniformly in t as its Lipschitz constant is et.

As α is uniquely defined by φ, β and the dynamics of (3.1), the problem of finding a observer is
reduced to finding φ and β such that Assumption 2 is satisfied. It is a very complicated problem in
general but in the following we will use particular cases of observers:

In the sequel, we apply the general technique of Proposition 3.1 to the design of observers for Terrain-
Aided Navigation.

3.1.2 Application of I&I design to Terrain-Aided Navigation

In this section, we present the construction of observers for the dynamics (2.3) with the models of maps
(2.6) to (2.11). Two different versions of I&I are applied:

• The first one consists in considering the nonlinear systems in its original state space, i.e setting
q = n, and attacking directly the nonlinearity such that:

β(ξ, y, t) = ξ + ψ(y),

φ(η, y, t) = η.

In this case, one keeps the original variables η and uses ψ(y) as a corrective term to the observer
ξ. The addition of ψ is meant to give enough supplementary freedom in the total design to deal
with complex nonlinear systems.

• The second approach is to immerse the system into a higher dimensional space where the new
system has more structure i.e. choosing q > n, such that:

χ := φ(η, y, t) = φ(η),

pχ := β(ξ, y, t) = ξ.

Hopefully, with an appropriate choice of φ, the dynamics of χ is simple and χ̂ can be chosen as an
existing observers.

The first approach is successfully applied to the case of polynomial map of degree 2 and to the Gaussian
case with an additional measurement of altitude. This method fails as the maps becomes more compli-
cated e.g. a sum of Gaussian, a polynomial of degree 3 or sinusoidal. The second approach is successfully
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applied to the polynomial map of degree 3 the map represented by a truncated Fourier series. We recall
that the dynamics considered in the following is:

9X = V,

9V = U.

3.1.2.1 Direct method

We restrict ourselves to functions φ and β of the following form:

β(ξ, y, t) = ξ + ψ(y),

φ(η, y, t) = η

where ψ : R4 −→ R3 and 9ξ = α(ξ, y, U) are to be chosen. It appears that such a restriction is usual and
allows one to solve many problems (see [Astolfi et al., 2008]) These choices of φ and β clearly satisfiy
the required invertibility properties.

Polynomial map of degree 2

In this section, we consider the following observation equation:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with hl(X,V ) = V , hnl(X,V ) = x3 − hM (x1, x2), and

hM (x1, x2) = a20x
2
1 + a11x1x2 + a02x

2
2 + a10x1 + a01x2 + a00.

We set η = X = (x1, x2, x3).
The objective is to define an observer of η for the model of map (2.6) denoted by η̂ = (η̂1, η̂2, η̂2).

To do so, we define the estimation error, z, such that:

z := ξ + ψ(y)− η := pη − η. (3.8)

The dynamics of z can be deduced:

9z = 9ξ +
∂ψ

∂y
9y − 9η,

9z = 9ξ +
∂ψ

∂y

„

v3 − (2a20x1 + a11x2 + a10)v1 − (a11x1 + 2a02x2 + a01)v2

U



− V,

9z = 9ξ +
∂ψ

∂y

»

—

—

–

−(2a20v1 + a11v2) −(a11v1 + 2a02v2) 0
0 0 0
0 0 0
0 0 0

fi

ffi

ffi

fl

η +
∂ψ

∂y

„

v3 − a10v1 − a01v2

U



− V.

We recall that ∂ψ∂y =
”

∂ψ
∂hnl

∂ψ
∂V

ı

. This leads to:

9z = 9ξ +
∂ψ

∂hnl
“

−(2a20v1 + a11v2) −(a11v1 + 2a02v2) 0
‰

η +
∂ψ

∂y

„

v3 − a10v1 − a01v2

U



− V.
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Thus, ξ is defined by:

9ξ = α(ξ, y, U) :=− ∂ψ

∂hnl
“

−(2a20v1 + a11v2) −(a11v1 + 2a02v2) 0
‰

η̂

− ∂ψ

∂y

„

v3 − a10v1 − a01v2

U



+ V + ζ.

where ζ : R+ −→ R6 is a term added to deal with altitude estimation. Moreover we set:

Σ :=
“

−(2a20v1 + a11v2) −(a11v1 + 2a02v2) 0
‰T
, (3.9)

∂ψ

∂hnl
:= κ12Σ, (3.10)

with κ12 > 0. The idea behind this choice is to get the following error dynamics:

9z = −κ12ΣΣT z + ζ, (3.11)

9z = −κ12

»

–

(2a20v1 + a11v2)2 (2a20v1 + a11v2)(a11v1 + 2a02v2) 0

(2a20v1 + a11v2)(a11v1 + 2a02v2) (a11v1 + 2a02v2)2 0
0 0 0

fi

fl z + ζ.

(3.12)

Let us define ĥnl := η̂3 − hM (η̂1, η̂2). Then,

ĥnl − hnl = (η̂3 − η3)− a20(η̂2
1 − η2

1)− a11(η̂1η̂2 − η1η2)− a02(η̂2
2 − η2

2)− a10(η̂1 − η1)− a01(η̂2 − η2),

ĥnl − hnl = (η̂3 − η3)− a20(η̂2
1 − η2

1)− a11(η̂1η̂2 − η1η2)− a02(η̂2
2 − η2

2) +
“

−a10 −a01 1
‰

z.

It can be seen from equation (3.12) that the estimation in (x1, x2) can be treated independently of the
estimation of x3 with an appropriate choice of ζ. That is why, ζ is defined as follows:

ζ :=

»

–

0
0

−κ3(ĥnl − hnl)

fi

fl ,

with κ3 > 0. Finally, the error dynamics reads:

9z =−

»

–

κ12

„

(2a20v1 + a11v2)2 (2a20v1 + a11v2)(a11v1 + 2a02v2)

(2a20v1 + a11v2)(a11v1 + 2a02v2) (a11v1 + 2a02v2)2



0
0

−κ3a10 −κ3a01 κ3

fi

fl z

(3.13)

+ κ3

»

–

0
0

−a20(η̂2
1 − η2

1)− a11(η̂1η̂2 − η1η2)− a02(η̂2
2 − η2

2)

fi

fl .

Moreover, define the matrix

Σ0 :=

„

1 0 0
0 1 0



Σ. (3.14)

The goal of the sequel is to show the convergence of the system (3.13) to 0 by a Lyapunov method.
Note that the subsystem of (3.13) that corresponds to the error in horizontal position is a linear time
varying system that is well known in adaptive control. It is known to converge under an assumption of
boundedness and of persistence of excitation of Σ0.
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Assumption 3.1. Persistence of excitation
There exist some constants T, µ > 0, such that for all t ≥ 0,

1

T

∫ t+T

t
Σ0(τ)ΣT

0 (τ)dτ � µI, (3.15)

where � represents the classical partial order on symmetric semi-definite positive matrix.

Assumption 3.2. The functionsΣ0(t), ∂Σ0
∂t (t) are uniformly bounded, that is ‖Σ0(t)‖≤ cΣ and ∂Σ0

∂t (t) ≤
c 9Σ.

Assumption 3.3. The horizontal position coordinates (x1, x2) = (η1, η2) are bounded, i.e. |η1|≤ c1

|η2|≤ c2.

Proposition 3.2. Under Assumptions 3.1, 3.2, 3.3 and the gain selection (3.19), the system (3.13) is
uniformly globally exponentially stable (UGES) at z = 0.

Proof. Define the candidate Lyapunov function for the subystem z12 = (z1, z2) := (η̂1− η1, η̂2− η2) as

V12 := κ12z
T
12Ψ(t)z12 +

κ

2
|z12|2,

where κ > 0 and Ψ(t) is the 2× 2 symmetric matrix defined by:

Ψ(t) := (1 + c2
Σ)TI − 1

T

∫ t+T

t

∫ s

t
Σ0(τ)ΣT

0 (τ)dτds,

with cΣ ≥ ‖Σ0‖ for the matrix norm induced by the 2-norm on R3 and T coming from Assumption 3.1.
The form of V12 is inspired by the construction of strict Lyapunov functions for persistently excited

time-varying systems in [Maghenem and Loría, 2017] and [Malisoff and Mazenc, 2009]. Notice Ψ(t)
satisfies

TI � Ψ(t) � (1 + c2
Σ)TI, (3.16)

9Ψ(t) = − 1

T

∫ t+T

t
Σ0(τ)ΣT

0 (τ)dτ + Σ0(t)ΣT
0 (t).

Under the working assumptions, V12 is clearly positive definite and radially unbounded. Its time
derivative along trajectories of the error dynamics reads:

9V12 =− κκ12z
T
12Σ0(t)ΣT

0 (t)z12 −
κ12

T
zT12

ˆ∫ t+T

t
Σ0(τ)ΣT

0 (τ)dτ

˙

z12

+ κ12z
T
12Σ0(t)ΣT

0 (t)z12 − 2κ2
12z

T
12Ψ(t)Σ0(t)ΣT

0 (t)z12.

By definition of Ψ and using Assumption 3.1:

9V12 ≤− κ12(κ− 1)zT12Σ0(t)ΣT
0 (t)z12 − κµ|z12|2−2κ2

12(1 + c2
Σ)TzT12Σ0(t)ΣT

0 (t)z12

− 2κ2
12

T
zT12

˜ ∫ t+T

t

∫ s

t
Σ0(τ)ΣT

0 (τ)dτds

¸

Σ0(t)ΣT
0 (t)z12,
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By Cauchy-Swartz inequality and using Assumption 3.2 and the bounds on Ψ:

9V12 ≤− κ12

´

κ+ 2κ12(1 + c2
Σ)T − 1

¯

zT12Σ0(t)ΣT
0 (t)z12 − κ12µ|z12|2

+
2κ2

12

T
|z12|

ˇ

ˇ

ˇ

ˇ

∫ t+T

t

∫ s

t
Σ0(τ)ΣT

0 (τ)dτds

ˇ

ˇ

ˇ

ˇ

|Σ0(t)||ΣT
0 (t)z12|,

≤− κ12

´

κ+ 2κ12(1 + c2
Σ)T − 1

¯

zT12Σ0(t)ΣT
0 (t)z12 − κ12µ|z12|2

+ 2κ2
12c

2
ΣTcΣ|z12||ΣT

0 (t)z12|,

By applying Young’s inequality on |z12||ΣT
0 (t)z12| with constant ε′ > 0:

9V12 ≤− κ12

´

κ+ 2κ12(1 + c2
Σ)T − 1

¯

zT12Σ0(t)ΣT
0 (t)z12 − κ12µ|z12|2

+ ε′|z12|2+
κ4

12c
3
ΣT

2

ε′
zT12Σ0(t)ΣT

0 (t)z12,

=− κ12

ˆ

κ+ 2κ12(1 + c2
Σ)T − 1−

κ4
12c

3
ΣT

2

ε′

˙

zT12Σ0(t)ΣT
0 (t)z12 − (κ12µ− ε′)|z12|2.

With κ selected such that:

κ ≥1 +
κ4

12c
3
ΣT

2

ε′
− 2κ2

12(1 + c2
Σ)T, (3.17)

one finally obtains:

9V12 ≤− (κ12µ− ε′)|z12|2. (3.18)

This establishes the uniform global exponential stability of the equilibrium (z1, z2) = (0, 0).
We proceed now with the stability of the origin for the complete error dynamics. Take the positive

definite function

V123 := V12 +
1

2
|z3|2.

Its derivative along trajectories of the z-dynamics reads

9V123 ≤− κ12µ(z2
1 + z2

2)− κ3z
2
3 + κ3|a10||z1||z3|+κ3|a01||z2||z3|

+ κ3|z3|
∣∣a20(η̂2

1 − η2
1) + a11(η̂1η̂2 − η1η2) + a02(η̂2

2 − η2
2)
∣∣ ,

≤− κ12µ(z2
1 + z2

2)− κ3z
2
3 +

ε

2
z2

3 +
k2

3a
2
10

2ε
z2

1 +
ε

2
z2

3 +
κ2

3a
2
01

2ε
z2

2

+ κ3|z3|
∣∣a20(η̂2

1 − η2
1) + a11(η̂1η̂2 − η1η2) + a02(η̂2

2 − η2
2)
∣∣ ,

where for the second inequality we have simply applied Young’s inequality with ε > 0. We now bound
properly the last term in the previous inequalities. By using successively Young’s inequality with ε > 0,
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and the bounds on (x1, x2) from Assumption 3.3, we have for each separate term

κ3|z3||a20(η̂2
1 − η2

1)| = κ3|z3||a20||z1(z1 + 2η1)|≤ κ3|a20|(2c1|z3||z1|+|z3||z1|2),

≤ ε

2
z2

3 +
2c2

1κ
2
3a

2
20

ε
z2

1+ ≤ ε

2
z2

3 +
κ2

3a
2
20

2ε
z4

1 ,

= εz2
3 +

2c2
1k

2
za

2
20

ε
z2

1 +
κ2

3a
2
20

2ε
z4

2 ,

κ3|z3||a02(η̂2
2 − η2

2)| ≤ εz2
3 +

2c2
2κ

2
3a

2
02

ε
z2

2 +
κ2

3a
2
02

2ε
z4

2 ,

κ3|z3||a11(η̂1η̂2 − η1η2)| = κ3|z3||a11||(η2z1 + z1z2 + η1z2)|≤ κ3|z3||a11|(c2|z1|+|z1||z2|+c1|z2|),

≤ ε

2
z2

3 +
κ2

3a
2
11c

2
2

2ε
z2

1 + εz2
3 +

1

4ε
z2

1z
2
2 +

ε

2
z2

3 +
κ2

3a
2
11c

2
1

2ε
z2

2 ,

≤ 2εz2
3 +

κ2
3a

2
11c

2
2

2ε
z2

1 +
1

8ε
z4

1 +
1

8ε
z4

2 +
κ2

3a
2
11c

2
1

2ε
z2

2 .

Using these bounds and gathering terms, we have that 9V123 now reads:

9V123 ≤−
´

κ12µ−
κ2

3

2ε
(4c2

1a
2
20 + c2

2a
2
11 + a2

10)
¯

z2
1 −

´

κ12µ−
κ2

3

2ε
(4c2

2a
2
02 + c2

1a
2
11 + a2

01)
¯

z2
2 ,

− (κ3 − 5ε)z2
3 +

κ2
3

8ε

´

4a2
20 + a2

11

¯

z4
1 +

κ2
3

8ε

´

4a2
02 + a2

11

¯

z4
2 ,

≤−
´

κ12µ−
κ2

3

2ε
(4c2

1a
2
20 + c2

2a
2
11 + a2

10)
¯

z2
1 −

´

kµ− κ2
3

2ε
(4c2

2a
2
02 + c2

1a
2
11 + a2

01)
¯

z2
2 ,

− (κ3 − 5ε)z2
3 +

κ2
3

8ε
max

´

4a2
20 + a2

11, 4a
2
02 + a2

11

¯

‖z12‖4.

To conclude uniform global exponential stability, we take the candidate Lyapunov function

V := V123 +

˜

κ′ +
κ2

3

32κ12µε
max

´

4a2
20 + a2

11, 4a
2
02 + a2

11

¯

¸

V2
12.

with κ′ > 0, that after straightforward calculations gives

9V ≤ −
´

κ12µ−
κ2

3

2ε
(4c2

1a
2
20 + c2

2a
2
11 + a2

10)
¯

z2
1 −

´

κ12µ−
κ2

3

2ε
(4c2

2a
2
02 + c2

1a
2
11 + a2

01)
¯

z2
2

− (κ3 − 5ε)z2
3 − κ′‖z12‖4.

The claim is proven with the gain selection

κ3 > 5ε,

κ12µ >
κ2

3

2ε
max

´

4c2
1a

2
20 + c2

2a
2
11 + a2

10, 4c
2
2a

2
02 + c2

1a
2
11 + a2

01

¯

, (3.19)

κ′ > 0.

Remark 3.2.
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• Σ0 = MV12 withM =

„

2a20 a11

a11 2a02



soAssumption 3.1 is an assumption on the horizontal speed.

It is then clear that det(M) 6= 0 is a necessary condition of Assumption 3.1 which matches the
sufficient condition of observability for the polynomial map of degree 2. Moreover, the condition
of persistence of excitation on the speed means that the drone must change directions consistently
during a moving time window. It means that, necessarily, the acceleration vector U12 must not
be colinear to V12 sufficiently frequently which matches the sufficient conditions of observability.
One can conclude that Assumption 3.1 is very natural from a mathematical point of view.

• Assume that the map hM represents any smooth ground profile and that one has a good guess
on the actual horizontal position of the drone, denoted by sX12 = (x̄1, x̄2). Then, by the Taylor
formula:

hM (x1, x2) = hquad(x1, x2) + o(‖X12 − sX12‖
2
),

with

hquad(x1, x2) = hM (x̄1, x̄2) +
∂hM
∂X12

(X12 − sX12) +
1

2
(X12 − sX12)

T ∂2hM

∂X12
2 (X12 − sX12),

where X12 =

„

x1

x2



and ∂2hM
∂X12

2 is the hessian matrix of hM . With this representation one can

consider the quadratic form hquad to be the true ground profile and apply the previous observer
design with hnl = x3 − hquad. Proposition 3.2 shows that the resulting observer is uniformly
locally exponentially stable around sX12. This observer is interesting, for example, after some long
time control planning where sX12 is the guiding objective and when one already knows that X12

is near sX12. In this case one only needs a local controller/observer and could use our quadratic
approximation of the map.

• By definition of Σ0, the PE condition can be rewritten as follows

1

T

∫ t+T

t
V12(τ)V T

12(τ)dτ � µM−2.

It implies that if M is close to be singular, V12 must be very persistent. Actually ifM is close to
be singular, the map is close to be invariant under a translation in at least one direction. It follows
that V12 must be very persistent precisely in that direction because of the termM−2. For example,

suppose thatM = −
„

1 0
0 ε



with ε > 0 close to zero and that V12 is chosen as follows:

V12 =

„

α1cos(2π
T t)

α2sin(2π
T t)



,

with (α1, α2) ∈ R2. Then one gets:

1

T

∫ t+T

t
V12(τ)V T

12(τ)dτ =

„

α2
1 0

0 α2
2



.
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Thus, in this example, the PE condition is equivalent to:

|α1| ≥ µ
1
2 ,

|α2| ≥
µ

1
2

ε
.

Figure 3.1 shows examples of hnl with quadratic form M and decreasing values of ε from left to
right. It is clear from Figure 3.1c that, as ε goes to 0, the map becomes invariant in the direction of
x2 and |α2| must be larger and larger. It implies that V12 must be very persistent in that direction.

(a) ε = 0.5 (b) ε = 0.1 (c) ε = 0.001

Figure 3.1: Three examples of quadrics with quadratic form M with different values of ε

Numerical simulations

We present here the numerical implementation of the observer described in Proposition 3.2. Figure 3.2
shows the trajectory of the 3D position and its estimator and Figure 3.3 their time evolution. The test
ground map satisfies a20 = −2, a11 = −1, a02 = 3, a10 = a01 = a00 = 0 leading to a hyperbolic
paraboloid map. The system (2.3) is run with an open loop sinusoidal control such that the 2D horizontal
orbits are ellipses and the altitude stays constant. This implies in particular that the PE condition 3.1 is
verified. κ12 and κ3 are chosen to satisfy the conditions (3.19). Actually, the condition (3.19) is only
needed to ensure the convergence of pη3. Figures 3.3c and 3.3d confirm the exponential convergence
showed in Proposition 3.2.

Figure 3.2: Plot of the test quadratic ground map, the trajectory of the system and of the observer

The success of the presented global observer design is entirely due to the fact that the dynamics of
the horizontal estimation error can be easily decoupled from the vertical variables and easily made linear.
The reason behind this is that the third order term of hM vanishes. As it is not true for the other models
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(a) Plot of η1(t) and pη1(t) (b) Plot of η2(t) and pη2(t)

(c) Plot of ‖z12(t)‖ (d) Plot of η3(t) and pη3(t)

Figure 3.3: Time evolution of η, pη and z12 in the case of an ellipsoidal trajectory

of map we consider, this type of observer is hard to extend. For instance, for a polynomial map of degree
3, there would be additional quadratic terms in equation (3.13) that are hard to deal with directly. In
the case of a Gaussian map, as 9hM = XT

ceRV12hM , there still remains the nonlinear term hM in the
dynamics of the estimation error. In fact, the issue is that hM is unknown with the single measurement
hnl = x3 − hM . However, with a supplementary measurement of altitude, i.e considering model (2.5),
hM is known and a similar observer can be designed. It is the topic of the next section.

Gaussian map with an altitude measurement

In this section, we consider the following observation equation:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,
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with hl(X,V ) =

„

x3

V



, hnl(X,V ) = hM (x1, x2), and

hM (x1, x2) = H0exp
ˆ

−1

2

“

x1 − x0
1 x2 − x0

2

‰

R

„

x1 − x0
1

x2 − x0
2

˙

.

To lighten the computation, we consider normalised and centred horizontal state and control variables η,
Ṽ12 and rU12 defined by:

η =R
1
2Xce,

rV12 =R
1
2V12, (3.20)

rU12 =R
1
2U12,

where R
1
2 is the matrix square root of R. Thus, the new dynamics of the system can be expressed as

follows:

9η = rV12,

9x3 = v3,

9hM = −ηT rV12hM ,

9
rV12 = rU12,

9v3 = u3.

Therefore, one can define the estimation error like in the previous sections:

z := ξ + φ(hM , rV12)− η := pη − η, (3.21)

where ξ : R+ −→ R2 and φ : R4 −→ R2 are to be chosen. The dynamics of z can be deduced as
follows:

9z = 9ξ +
∂ψ

∂hM
(−ηT rV12hM ) +

∂ψ

∂Ṽ12

rU12 − rV12.

Then, ξ is chosen such that:

9ξ = α(ξ, y, U) :=
∂ψ

∂hM
(η̂T rV12hM )− ∂ψ

∂Ṽ12

rU12 + rV12.

Finally the dynamics of z becomes:

9z =
∂ψ

∂hM
(hM rV T

12)z.

As hm > 0, one can choose ∂ψ
∂hM

= −κ12
hM

rV12 with κ > 0 which leads to the following error equation:

9z = −κ12
rV12

rV T
12z. (3.22)
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Moreover, one possible choice of ψ is:

ψ(hM , rV12) = −κ12ln(hM )rV12, (3.23)

=
κ12

2
‖η‖2 rV12.

As equation (3.13) and (3.22) are the same up to a linear change of coordinates, we make the following
assumptions on rV12:

Assumption 3.4. There exist some constants T, µ > 0, such that for all t ≥ 0,

1

T

∫ t+T

t

rV12(τ)rV T
12(τ)dτ � µI, (3.24)

Assumption 3.5. There exists cV > 0, such that for all t ≥ 0, ‖rV12‖≤ cV .

Consquently, one can prove exponential convergence of the estimation error:

Proposition 3.3. Under Assumptions 3.4 and 3.5, the system (3.22) is UGES at z = 0.

Proof. The result follows as in Proposition 3.2 by considering the candidate Lyapunov function:

V12 := κ12z
TΨ(t)z +

κ

2
‖z‖2,

with κ > 0. Ψ(t) is the 2× 2 symmetric matrix defined by

Ψ(t) := (1 + c2
V )TI − 1

T

∫ t+T

t

∫ s

t

rV12(τ)rV T
12(τ)dτds.

Remark 3.3.

• Note that for the two proposed observers, the estimation error does not depend explicitly on the
control U . However, it depends on U through V . Indeed, in practice, U must be designed so that
V satisfies the PE conditions. This the is subject of a later section.

• As in the quadratic case, the case of a Gaussian with an altitude measurement has a very particular
structure. Actually, the use of the logarithm in (3.23) allows one to recover a quadratic structure and
to obtain a linear error equation. However, it is no longer possible if the altitude is not measured
hnl = x3−hM or for a sum of two Gaussian hnl = h1

M +h2
M . For this reason, the representation

of the map with Gaussians is hard to deal with the presented technique. For similar reasons, the
representation of the map with trigonometric functions is hard to handle directly.

Numerical simulations

Figure 3.2 depicts the trajectory of a drone flying over a hill represented by a Gaussian and its estimation
by the observer from Proposition 2.4. Figure 3.5 represents the time evolution of this trajectory and its
estimation. As in the polynomial case, Figure 3.5c confirms the exponential convergence of the estima-
tion error to zero. Unlike the polynomial case considered previously, as x3 is measured here, there is
no condition on the gain κ12 in this case. Proposition 2.4 ensures global convergence of the observer.
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Figure 3.4: Plot of the test Gaussian map, the trajectory of the system and of the observer

However, if the system is situated far from the centre of the Gaussian then the term ln(hM ) in (3.23) is
ill-defined numerically and the method fails. Intuitively, this system is poorly observable far from the
centre of the Gaussian because of the increasing flatness of the terrain. In other words, the local observer
described in Remark 3.2 could not work in this case as the hessian of hM would be close to singular.

The method presented in this section seems not to be suited for the treatment of more complex maps.
Therefore, in the following, we present and apply another class of methods based on an immersion of the
original into a higher dimensional space where the immersed dynamics is state affine for which classical
Kalman-like observers can be applied.

3.1.2.2 Method based on an immersion into an affine system

The goal of this section is to design observers using (3.1) with different choices of β and φ compared to
the last section. The idea is to work with an augmented system and new variables χ := φ(η) with q > n
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(a) Plot of η1(t) and pη1(t) (b) Plot of η2(t) and pη2(t)

(c) Plot of ‖z12(t)‖

Figure 3.5: Time evolution of η and pη the the case of an ellipsoidal trajectory

using the notations corresponding to (3.1) and (3.1). φ must be chosen such that the dynamics of χ is
simpler than the one of η so that an observer pχ = ξ can be easily found. An estimator of η is deduced by
taking η̂ = φL(pχ). Thus we restrict ourselves to the following choice of φ and β :

χ := φ(η, y, t) = φ(η),

pχ := β(ξ, y, t) = ξ.

with φ : Rn −→ Rq and q > n.

Kalman-like observer for state affine system

We recall the construction of a Kalman-like observer for state-affine systems.
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Definition 3.2. The system (2.1) is said to be state-affine in the unmeasured state if:

f(x, u) = A(u,Cx)x+B(u,Cx),

h(x) = Cx,

where A : Rm × Rp −→ Rn×n, B : Rm × Rp −→ Rn and C ∈ Rp×n leading to the following system:

9x = A(u, y)x+B(u, y), (3.25)
y = Cx.

In [Besançon, 2007], it is showed that, under a condition of regular persistence of y and u, a Kalman-
like observer can be designed.

Proposition 3.4. Assume that u is chosen such that v(t) := (u(t), Cx(t, x0, u(·)))T is regularly persis-
tent as in Definition 2.6 for the system:

9x = A(v(t))x,

y = Cx,

then, the system (3.26) admits an observer of the following form:

x̂(t) = A(u(t), y(t))x(t) +B(u(t), y(t))−K(t)(Cx̂(t)− y(t)),

withK(t) given by:

K(t) = P (t)CW−1,

and P (t) such that:

9P (t) = P (t)AT (u(t), y(t)) +A(u(t), y(t))P (t)− P (t)CTW−1CP (t) + V + δP (t),

where:

• P (0) = P T (0) andW = W T � 0.

• 2‖A(u(t), y(t))‖< δ or V = V T � 0.

Polynomial map of degree 3

In this section, we consider dynamics (2.3) with the following observation equation:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with

hl(X,V ) = V,

hnl(X,V ) = x3 − hM (x1, x2),

hM (x1, x2) = a30x
3
1 + a21x

2
1x2 + a12x1x

2
2 + a03x

3
2

+ a20x
2
1 + a11x1x2 + a02x

2
2 + a10x1 + a01x2 + a00.
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We set η = X = (x1, x2, x3). The idea is to consider the following overparametrization:

χ = φ(η) =

»

—

—

—

—

—

—

—

—

—

—

—

–

η3 − hM (η1, η2)
∂hM
∂x1
∂hM
∂x2
∂2hM
∂x21
∂2hM
∂x1x2
∂2hM
∂x22
η3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.26)

The dynamics of χ and V can be derived by simple calculations and reads:

9χ = Acub(V )χ+BcubV, (3.27)
9V = U.

where:

Acub(V ) =

»

—

—

—

—

—

—

–

0 −v1 −v2 0 0 0 0
0 0 0 v1 v2 0 0
0 0 0 0 v1 v2 0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and

Bcub =

»

—

—

—

—

—

—

—

—

–

0 0 1
0 0 0
0 0 0

6a30 2a21 0
2a21 2a12 0
2a12 6a03 0

0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

By construction, one has y =

„

χ1

V



.

Clearly the system (3.27) is affine with respect to χ so χ̂ can be chosen as the Kalman observer from
Proposition (3.4) and it will converge if U and y are regularly persistent as described in Proposition (3.4).

The next step is to make sure that φ left invertible. Actually, from the definition of hM and φ:

»

—

—

–

χ4

χ5

χ6

χ7

fi

ffi

ffi

fl

=

»

—

—

—

—

–

∂2hM
∂x21
∂2hM
∂x1x2
∂2hM
∂x22
η3

fi

ffi

ffi

ffi

ffi

fl

=

»

—

—

–

6a30 2a21 0
2a21 2a12 0
2a12 6a03 0

0 0 1

fi

ffi

ffi

fl

η +

»

—

—

–

2a20

a11

2a02

0

fi

ffi

ffi

fl

. (3.28)
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Thus, if rank

¨

˝

»

–

6a30 2a21

2a21 2a12

2a12 6a03

fi

fl

˛

‚= 2 then φ is left invertible and φL can be expressed as follows:

φL(χ) = Eχ− η0,

where E is a matrix of appropriate dimensions depending on

»

–

6a30 2a21

2a21 2a12

2a12 6a03

fi

fl and η0 is vector of dimen-

sion 3 extracted from

»

—

—

–

2a20

a11

2a02

0

fi

ffi

ffi

fl

.

Finally, by setting η̂ = E(χ̂)− η0, the estimation error can be written as follows:

pη − η = E(pχ− χ),

so if χ̂− χ converge to 0, then η̂ − η converges to 0.

Remark 3.4.

• In this case, φL satisfies the Lipschitz condition mentioned in Remark 3.1.

• The previous design can easily be extended to the case of polynomial maps of degree higher than
3. The idea is to add more components to φ that represent higher order derivatives. The resulting
dynamics would still be state-affine and a Kalman observer can be used. However, the dimension of
χ grows rapidly with the degree of hM which makes the practical implementation rapidly difficult.
With this potential extension in mind, it seems unnecessary to use higher order polynomials as
cubic splines are very efficient in practice. That is why, we only present the cubic case.

• Another possible extension is to use the previous observer for unstructured maps. Assume, as in
Remark 3.2 that, hM represents any realistic map. One can approximate hM with a polynomial of
degree 3, hcub. The approximation error can be seen as an additive noise on the measurement i.e:

hnl = x3 − hM = x3 − hcub + v(t).

As Kalman observer are known to be robust to measurement noise see, [Hespanha, 2009], the pre-
vious observer is expected to have to good performances if properly tuned. However, global poly-
nomial approximations are rarely precise if the original map has non-stationary variations. Never-
theless, local approximations like cubic splines are much more precise. The final extension would
then be to construct an observer of the system (3.27) where the coefficients (a30, a21, a12, a03)
may switch from different values depending on the horizontal position. To apply our observer,
one would have to identity the good coefficient by running several Kalman observers with all the
possible values of the coefficients simultaneously and keep the most likely estimate as it is done in
Interacting Multiple Model filtering for instance.

In the sequel we present a partial extension of this design to the case of a spatial trigonometric map.
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Map as a sum of spatial trigonometric functions

We start by defining an overparametrisation for the case of a single cosine. In this section, we consider
dynamics (2.3) with the following observation equation:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with

hl(X,V ) = V,

hnl(X,V ) = x3 − hM (x1, x2),

hM (x1, x2) = αcos(ω1x1 + φ1)cos(ω2x2 + φ2).

We also set η = X = (x1, x2, x3) and, similarly to the cubic case, we set:

χ = φ(η) =

»

—

—

—

—

—

–

hM (η1, η2)
∂hM
∂x1
∂hM
∂x2
∂2hM
∂x1x2
η3

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.29)

As ∂
2hM
∂x21

= −ω2
1hM and ∂2hM

∂x22
= −ω2

2hM , the dynamics of χ reads:

9χ = Atrig(V )χ+BtrigV, (3.30)
9V = U,

where

Atrig(V ) =

»

—

—

—

—

–

0 v1 v2 0 0
−ω2

1v1 0 0 v2 0
−ω2

2v2 0 0 v1 0
0 −ω2

2v2 −ω2
1v1 0 0

0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

,

and

Btrig =

»

—

—

—

—

–

0
0 0 1

fi

ffi

ffi

ffi

ffi

fl

.

The dynamics (3.30) is clearly affine w.r.t χ and y =

„

χ5 − χ1

V



so a Kalman observer could be

considered. However, the model of map (2.10) is periodic i.e. invariant under a particular translation
on (η1, η2) and the dynamics (2.3) is invariant under any translation on (η1, η2). It means that it is
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impossible to distinguish two different horizontal position (η1, η2) and (η1 + n1
2π
ω1
, η2 + n2

2π
ω2

) for any
(n1, n2) ∈ (N∗)2 and whatever control is applied. Therefore, there is no hope of building a global
observer. Nevertheless, with the model of sum of cosines (2.11), it seemsmore reasonable. As amatter of
fact, a sum of cosines can be non-periodic depending on the different spatial pulsations. In the following
we show that the same overparametrization can be done to each trigonometrical term of the map.

Consider now, the observation equation:

h(X,V ) =

„

hnl(X,V )
hl(X,V )



,

with

hl(X,V ) = V,

hnl(X,V ) = x3 − hM (x1, x2),

hM =

ntri∑
i=1

hiM ,

hiM (x1, x2) = αicos(ωi1x1 + φi1)cos(ωi2x2 + φi2).

We also set η = X = (x1, x2, x3) and, similarly to the single cosine case, we set:

χ =φ(η) =

»

—

–

χ1

...
χntrig

fi

ffi

fl

=

»

—

—

—

—

—

—

—

—

—

—

—

—

–

...
hiM (η1, η2)

∂hiM
∂x1
∂hiM
∂x2
∂2hiM
∂x1x2...
η3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.31)

Then the dynamics of χ reads:

9χ =

»

—

—

—

—

–

A1
trig(V ) 0 . . . 0

0
. . .

... . . .
0 A

ntrig
trig (V )

fi

ffi

ffi

ffi

ffi

fl

χ+

»

—

–

Btrig
...

Btrig

fi

ffi

fl

V,

where, for i = 1..ntrig:

Aitrig(V ) =

»

—

—

—

—

–

0 v1 v2 0 0
−ωi21 v1 0 0 v2 0
−ωi22 v2 0 0 v1 0

0 −ωi22 v2 −ωi21 v1 0 0
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

.
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In this case, y =

„

χ4ntrig+1 −
∑ntrig

i=1 χi1
V



. As this kind of map is in general non-periodic with no

symmetries, one can consider to use a Kalman observer with success as in the cubic case. However,
there remains the issue of finding the left inverse of φ for this type of map. As trigonometric functions
are involved in (3.29) and (3.31), a global inverse of φ does not exist. Finally, a solution could be to use
two compatible inverse and change between the two dynamically.

In conclusion of the whole section, we have provided observer designs through I&I with a direct
method in the case of a quadratic map and a Gaussian map with altitude measurement and with an over-
parametrisation and Kalman observers in the case of a cubic and a trigonometric map. The former
observers are proved to converge if the horizontal speed satisfies a well-known condition a persistence
of excitation while the sufficient conditions of convergence for the latter are less explicit. That is why, in
the following section, we focus on studying ways to ensure the classical persistence of excitation of the
horizontal via outputfeedback control and stochastic excitation.

3.2 Persistent output-feedback control and stochastic excitation
Assumption 3.1 concerns a priori only the horizontal speed. However, in the output-feedback loop of
a double integrator, one chooses the acceleration and not the speed. This means that the control law
must ensure, at the same time, the convergence of the true system and the persistence of the speed. The
design and study of such a controller is the first topic of the section. Besides in [Loría et al., 2002], a
continuous-time stochastic process is used as a persistent signal and convergence is obtained numerically.
It appears that almost sure PE in a continuous time framework has not been studied extensively. Thus, the
second topic of the section is to show that a class of 2-dimensional rectangular signal are almost surely
persistent.

3.2.1 Output-feedback control

In this section, we restrict ourselves to the 2D system

9X12 = V12,

9V12 = U12.

We also consider that an estimator fromSection 3.1.2.1 has already been designed leading to the following
error equation in 2D:

9z12 = −κ12V12V
T

12z12.

As we consider only 2D positions in this section, we simplify the notations by setting κ = κ12, z = z12

and V = V12. To match the notations of the previous sections, we also set η = X12. The equilibrium of
the system is translated to 0.

This leads to the following reformulation:

9η = V,

9V = U, (3.32)
9z = −κV V T z.
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The idea of the section is to find a control law that ensure the convergence of the full system (3.32). From
(3.32) and Proposition 3.2, one can guess that the controlU should be designed to enforce the convergence

of ζ =

„

η
V



to 0 while ensuring some condition of persistence of excitation so that z also converges

to 0. This property is known as δ-persistence and has been studied notably in [Loría et al., 1999] and
[Loría et al., 2002]. Notice that the control will depend explicitly on the time, so we consider an arbitrary
initial time t0 ≥ 0 and t ≥ t0. Thus, the control law, inspired from [Loría et al., 2002], is chosen as
follows:

U = −Kxη̂ −KvV + α
´

‖ζ̂‖
¯

φ(t), (3.33)

where:

• η̂ = η+z is the estimator of η and ζ̂ = ζ+

„

z
0



represents the augmented state (observer/horizontal

speed),

• Kx >,Kv > 0 are gains to tune,

• φ: R+ −→ R2 is of norm 1, is differentiable with bounded derivative, and satisfies the classical
condition of persistence of excitation, i.e. ∃T > 0, ∃µ > 0, ∃C 9φ > 0 such that ∀t ≥ 0:

1

T

∫ t+T

t
φ(τ)φT (τ)dτ � µ, (3.34)

‖φ(t)‖= 1, (3.35)

‖ 9φ(t)‖≤ C 9φ. (3.36)

• α: R+ −→ R is C1 and globally Lipschitz with constant L > 0, increasing and α(0) = 0 such
that, ∀(r1, r2) ∈ R2:

|α(r2)− α(r1)| ≤ L|r2 − r1|, (3.37)
α′(r1) ≤ L. (3.38)

From equation (3.32), the output feedback system can be written as follows:

9η = V,

9V = −Kxη −KvV + α p‖ζ‖qφ(t) +

ˆ

α

ˆ∥∥∥∥ζ +

„

z
0

∥∥∥∥˙− α p‖ζ‖q
˙

φ(t)−Kxz, (3.39)

9z = −κV V T z.

Intuitively, one would like the speed to be very persistent if the estimation error is large and less persistent
if it is small. This would allow the speed to be less and less persistent and to converge eventually. Actually,
this would be the case if the term ‖ζ̂‖ was replaced by ‖z‖ in (3.33). In this case, one could have applied
the result form [Loría et al., 2002]. However, z is unknown so it cannot be used directly in the controller.
Therefore, the main issue of the controller (3.33)is that U depends on ‖ζ̂‖ and not on ‖z‖. It means
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that if ζ̂ goes to zero too quickly then the speed is not persistent during enough time and the estimation
error does not go to zero. The goal of the following is then to find sufficient conditions on the speed
of convergence of ‖z‖ that allows system (3.39) to converge asymptotically. This starts by proving the
boundedness of the trajectories of (3.39)

3.2.1.1 Proof of boundedness

In the rest of section 3.2.1, we make the following assumption.

Assumption 3.6. Kx and Kv are chosen so that there exist two 4× 4 matrices P � 0 and Q � 0 such
that the following Lyapunov equation is verified:

PA+ATP = −Q, (3.40)
λmin(Q)− 2L‖P‖ > 0, (3.41)

where A =

„

0 I2

−KxI2 −KvI2



.

Assumption 3.6 means informally that the potentially destabilising effects of the δ-persistent input
αφ are compensated by the gainsKx andKv. Besides, (3.41) is rather classical in input-to-state stability
theory and has been studied in the Chapter 6 of [Khalil, 2002]. The idea of the following is then to prove
the boundedness of ζ in system (3.39) by arguments of input-to-state stability. This result is summed up
in Proposition 3.5.

Proposition 3.5. Under Assumption 3.6, the solutions of equation (3.39) are bounded. In particular,

ζ =

„

η
V



is bounded.

Proof. First, the boundedness of z is obtained by showing that Vz = ‖z‖2 is a non strict Lyapunov
function for the estimation error equation in (3.39):

9Ve = −κzTV V T z,

= −κ‖V T z‖2 ≤ 0.

Thus, ∀t ≥ t0,

‖z(t)‖≤ ‖z(t0)‖≡Mz. (3.42)

Secondly, one consider Vζ = ζTPζ as a candidate Lyapunov function for ζ:

9Vζ = ζT (PA+ATP )ζ + 2ζTP

„

0
α p‖ζ‖qφ(t)



+ 2ζTP

»

–

0
ˆ

α

ˆ∥∥∥∥ζ +

„

z
0

∥∥∥∥˙− α p‖ζ‖q
˙

φ(t)

fi

fl− 2Kxζ
TP

„

0
z



. (3.43)

From the Lipschitz property of α and the reverse triangle inequality, one gets:∣∣∣∣αˆ∥∥∥∥ζ +

„

z
0


∥∥∥∥˙− α p‖ζ‖q

∣∣∣∣ ≤ L‖z‖ (3.44)
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Therefore, combining (3.35), (3.42), (3.43), and (3.44):

9Vζ ≤ −ζTQζ + 2L‖P‖‖ζ‖2 + 2L‖P‖‖z‖‖ζ‖+ 2Kx‖P‖‖z‖‖ζ‖,
≤ −(λmin(Q)− 2L‖P‖)‖ζ‖2 + 2(L+Kx)‖P‖‖z‖‖ζ‖,
≤ −(λmin(Q)− 2L‖P‖)‖ζ‖2 + 2Mz(L+Kx)‖P‖‖ζ‖,

where λmin(Q) is the lowest eigenvalue of Q and ‖P‖= λmax(P ) is the highest eigenvalue of P. Thus,
for ε > 0, if 2(L+Kx)‖P‖‖z‖ ≤ 2(L+Kx)‖P‖Mz ≤ ε‖ζ‖ then

9Vζ ≤ −(λmin(Q)− 2L‖P‖−ε)‖ζ‖2. (3.45)

Under Assumption 3.6, as ε can be taken arbitrarily small, equation (3.43) shows that ζ is input-to-
state stable with respect to z. In particular, ζ is bounded as z is bounded.

3.2.1.2 Convergence of η̂ and V

In this section, we reformulate the system (3.39) into the following equivalent form:

9̂η = V − κV V T z,

9V = −Kxη̂ −KvV + α
´

‖ζ̂‖
¯

φ(t), (3.46)

9z = −κV V T z.

The formulation (3.46) happens to be easier to interpret and to deal with afterwards. Notably, the results
of the last section will allow us to show that system (3.46) is uniformly globally stable (UGS) and that

ζ̂ =

„

η̂
V



converges to 0. This is the topic of Proposition 3.6.

Proposition 3.6. Under Assumption 3.6, the system (3.46) is UGS at 0 and lim
t→+∞

‖ζ̂(t)‖ = 0.

Proof. One considers the following non-strict candidate Lyapunov function:

V = ζ̂TP ζ̂ + κ1‖z‖2,

where P is defined as in (3.40). One has:

9V = −ζ̂Qζ̂ + 2

„

−κV V T z
0



P ζ̂ + 2

«

0

α
´

‖ζ̂‖
¯

φ(t)

ff

P ζ̂ − κ1κ|zTV |
2
, (3.47)

Using (3.35) and (3.37):

9V ≤ −λmin(Q)‖ζ̂‖2 + 2L‖P‖‖ζ̂‖2 + 2κ‖P‖‖V ‖|zTV |‖ζ̂‖−κ1κ|zTV |
2
.

Using Young’s inequality for ε > 0:

9V ≤ −(λmin(Q) + 2L‖P‖−ε)‖ζ̂‖2 +
4κ2‖P‖2‖V ‖2

ε
|zTV |2 − κ1κ|zTV |

2
,

≤ −(λmin(Q) + 2L‖P‖−ε)‖ζ̂‖2 −

˜

κ1κ−
4κ2‖P‖2‖V ‖2∞

ε

¸

|zTV |2,
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where ‖V ‖∞ is the L∞ norm of V in time. Note that, under Assumption 3.6, V is bounded according
to Proposition (3.5). In particular, ‖V ‖∞ < +∞.Therefore, for κ1 sufficiently large, one has κ1κ −
4κ2‖P‖2‖V ‖2∞

ε > 0 and then:

9V ≤ −(λmin(Q) + 2L‖P‖−ε)‖ζ̂‖2.

Similarly to the previous section, under Assumption 3.6 for sufficiently small ε:

9V ≤ −λ‖ζ̂‖2 ≤ 0.

with λ = λmin(Q) + 2L‖P‖−ε > 0. As V is positive definite and decrescent, the system (3.46) is UGS.
In particular, we obtain again that ζ̂ and z are bounded. For the convergence of ζ̂, one would like to use
Barbalat lemma (lemma 2.12 [Narendra and Annaswamy, 2012]). To do so, first notice that, ∀t ≥ 0:∫ t

0
‖ζ̂‖2 ≤ V(0)

λ
.

Thus, ∫ +∞

0
‖ζ̂‖2 ≤ V(0)

λ
< +∞.

Secondly, as ζ̂, z and φ are bounded, one can see from system (3.46) that d‖ζ̂‖
2

dt is bounded. Consequently
by Barbalat’s lemma:

lim
t→+∞

‖ζ̂(t)‖ = 0

The next objective is to find conditions under which the estimation error z also converges to 0. The
first step is to characterise the δ-persistence of V w.r.t. ζ̂.

3.2.1.3 δ-persistence of V

Let r > 0. Set pζtot = (ζ̂, z). In the following, it is assumed that ‖pζtot(t0)‖≤ r. First, we define the
notion of δ-persistence of a signal ψ w.r.t. ζ̂.

Definition 3.3. A function of time ψ is said to be δ-persistence w.r.t. ζ̂ if ∀δ > 0, ∃Tδ > 0, ∃µδ > 0,
∀t ≥ t0.

min
τ∈[t,t+Tδ]

‖ζ̂(τ)‖≥ δ ⇒ 1

Tδ

∫ t+Tδ

t
ψ(τ)ψT (τ)dτ � µδI2,

With a slight abuse of notations, we define ψ : R× R4 −→ R2 by, ∀(t, ζ):

ψ(t, ζ) = α(‖ζ‖)φ(t) (3.48)

Then, t→ ψ(t, ζ̂(t)) verifies the property of δ-persistence w.r.t ζ̂ described in Proposition 3.7.
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Proposition 3.7. The function t→ ψ(t, ζ̂(t)) defined in equation (3.48) is δ-persistent w.r.t. ζ̂.

Proof. Fix δ > 0. Define Tδ = T with T from (3.34). Then, for t ≥ t0, if ∀τ ∈ [t, t + Tδ], ‖ζ̂(τ)‖≥ δ
then:

1

Tδ

∫ t+Tδ

t
ψ(τ, ζ̂(τ))ψT (τ, ζ̂(τ))dτ =

1

T

∫ t+T

t
α(‖ζ̂(τ)‖)2

φ(τ)φT (τ)dτ

As α is increasing:

1

Tδ

∫ t+Tδ

t
ψ(τ, ζ̂(τ))ψT (τ, ζ̂(τ))dτ � 1

T

∫ t+T

t
α(δ)2φ(τ)φT (τ)dτ,

From (3.34):

1

Tδ

∫ t+Tδ

t
ψ(τ, ζ̂(τ))ψT (τ, ζ̂(τ))dτ � µδI2,

with µδ = α(δ)2µ > 0

Proposition summarises the main result of this section

Proposition 3.8. Under Assumption 3.7, the function t→ V (t) solution of system (3.46) is δ-persistent
w.r.t. ζ̂.

Proof. To show that V is δ-persistent w.r.t. ζ̂, we use the technique of proof from [Panteley et al., 2001].
Let us fix ξ ∈ R2 such that ‖ξ‖= 1, our goal is then to compare the quantities defined, ∀t ≥ t0, by:

a(t) ≡ξTψ(t, ζ̂(t)),

af (t) ≡ξTV (t).

Consider w = aaf then:

9w = 9aaf + 9afa,

= afξ
T 9ψ + aξT (−Kxη̂ −KvV + ψ),

= afξ
T

˜

α
´

‖ζ̂‖
¯

9φ+
α′(‖ζ̂‖)
‖ζ̂‖

ζ̂T
9̂
ζφ

¸

+ aξT (−Kxη̂ −KvV + ψ),

= afξ
T

˜

α
´

‖ζ̂‖
¯

9φ+
α′(‖ζ̂‖)
‖ζ̂‖

(η̂TV − κ(zTV )V T η̂ + V T (−Kxη̂ −KvV + ψ))φ

¸

(3.49)

+ aξT (−Kxη̂ −KvV + ψ).

By applying Cauchy-Swartz inequality and using (3.35), (3.36), (3.37) and (3.38)

9w ≥− |af |
´

C 9φL‖ζ̂‖+L(‖ζ̂‖+ κ‖pζtot‖‖ζ̂‖
2

+ (Kx +Kv + L)‖ζ̂‖)
¯

(3.50)

−KvL‖ζ̂‖|af |−|a|Kx‖ζ̂‖+|a|2.
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As the system (3.46) is UGS, is is known that there exists aC0, increasing function γ such that, γ(0) = 0
and ∀t ≥ t0:

‖pζtot(t)‖ ≤ γ(‖pζtot(0)‖),

then, as ‖pζtot(0)‖≤ r and γ is increasing, ∀t ≥ t0:

‖ζ̂(t)‖ ≤ ‖pζtot(t)‖≤ γ(r). (3.51)

Using (3.51), one gets:

9w ≥ −|af |L((C 9ψ +Kx + 2Kv + L+ 1)γ(r) + κ(γ(r))3)− LKx(γ(r))2 + |a|2,

≥ −f(r)|af |−g(r) + |a|2, (3.52)

with f(r) = L((C 9ψ +Kx + 2Kv + L+ 1)γ(r) + κ(γ(r))3) and g(r) = LKx(γ(r))2.
Consider Tf = (k + 1)T a persistence horizon for V where k ∈ N is to be defined. Then, from

(3.52) and by using Cauchy-Swartz inequality, ∀t ≥ 0:

w(t+ Tf )− w(t) ≥
∫ t+Tf

t
|a(τ)|2dτ − f(r)T

1
2
f

ˆ∫ t+Tf

t
|af (τ)|2dτ

˙

1
2

− Tfg(r),

≥ ξT
ˆ∫ t+Tf

t
ψ(τ, ζ̂(τ))ψT (τ, ζ̂(τ))dτ

˙

ξ

− f(r)T
1
2
f

ˆ∫ t+Tf

t
|af (τ)|2dτ

˙

1
2

− Tfg(r).

Fix δ > 0 and t ≥ 0. Suppose that ∀τ ∈ [t, t+ Tδ], ‖ζ̂(τ)‖≥ δ then from Proposition 3.7:

w(t+ Tf )− w(t) ≥(k + 1)Tµδ − f(r)T
1
2
f

ˆ∫ t+Tf

t
|af (τ)|2dτ

˙

1
2

− (k + 1)Tg(r),

f(r)T
1
2
f

ˆ∫ t+Tf

t
|af (τ)|2dτ

˙

1
2

≥(k + 1)T (µδ − g(r)) + w(t)− w(t+ Tf ).

From (3.37) and (3.51):

|w|≥ −L(γ(r))2.

Thus,

f(r)T
1
2
f

ˆ∫ t+Tf

t
|af (τ)|2dτ

˙

1
2

≥(k + 1)T (µδ − g(r))− 2L(γ(r))2.

To show that V is δ-persistent, one needs the following assumption:

Assumption 3.7. µδ > g(r) = LKx(γ(r))2.
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Assumption 3.7 is quite difficult to check in practice because γ is not explicit but it can be reformu-
lated as follows:

Kx <
µα2(δ)

L(γ(r))2 ,

where 0 < µ < 1 and 0 < δ < r. Thus, under Assumption 3.7, one can do as in [Panteley et al., 2001]
and choose k such that:

(k + 1)T (µδ − g(r))− 2L(γ(r))2 ≥ T (µδ − g(r))

i.e.

k =

⌊
2L(γ(r))2

T (µδ − g(r))

⌋
+ 1.

Finally, ∀ξ ∈ R2 such that ‖ξ‖= 1

1

Tf

∫ t+Tf

t
|af (τ)|2dτ ≥ µf ,

1

Tf
ξT

ˆ∫ t+Tf

t
V (τ)V T (τ)dτ

˙

ξ ≥ µf ,

1

Tf

ˆ∫ t+Tf

t
V (τ)V T (τ)dτ

˙

� µfI2, (3.53)

with µf (r, δ) = T 2(µδ−g(r))2

(f(r))2T 2
f

.

Therefore, under Assumption 3.7, V is δ-persistent w.r.t. ζ̂.

This means, as expected, that the level of persistence of V decreases as ζ̂ tends to 0. Moreover,
Assumption 3.7 means informally thatKx must be sufficient small for fixed µ, δ and r. This is consistent
with our remark at the beginning of the section becauseKx small implies that η̂ converges slowly.

3.2.1.4 Convergence of z

The goal of the section is to obtain a result of local practical stability for the system (3.46) described in
Proposition 3.9.

Proposition 3.9. Assume that for some r > 0 and ε1 > 0, there exist δ(ε1) > 0 and a controller U from
(3.33) satisfying Assumptions 3.6, 3.7 and 3.8 at δ(ε1) and r. Therefore, if ‖pζtot(t0)‖≤ r, then there
exists t1 ≥ t0 such that ∀t ≥ t1:

‖pζtot(t)‖≤ ε1.

Proof. As the convergence of η̂ has been shown, there remains only to show the convergence of z. In the
following, we summarise the results established previous to precisely point out what kind of result must
be shown on z. Fix ε1 > 0. According to Section 3.2.1.2, the system (3.46) is UGS so ∃δ′ > 0 such that,
∀t1 ≥ 0:

‖pζtot(t1)‖≤ δ′ ⇒ ∀t ≥ t1, ‖pζtot(t)‖≤ ε1. (3.54)



58 CHAPTER 3. OBSERVER AND CONTROLLER DESIGN FOR TAN

Because of the equivalence of norms, ∃δ > 0 such that:

max(‖ζ̂‖, ‖z‖) ≤ δ ⇒ ‖pζtot‖≤ δ′ (3.55)

We recall that we consider r > 0 such that ‖pζtot(t0)‖≤ r. (3.46). We assume in the sequel that Assump-
tions 3.6 holds and that Assumption 3.7 holds at δ and r. From the proof of Proposition 3.5, one knows
that, ∀t2 ≥ t1:

‖z(t2)‖≤ ‖z(t1)‖, (3.56)

From Proposition 3.6, one knows that ‖ζ̂‖ converges to 0, so ∃tζ ≥ t0 such that:

‖ζ̂(tζ)‖≤ δ (3.57)

Combining the properties (3.54) to (3.57) one can see that it is now sufficient to show that, under suitable
additional assumptions, ∃tz ≥ t0 such that:

‖z(tz)‖≤ δ (3.58)

Equation (3.58) means that one only has to show that z reaches a neighbourhood of 0 of size δ. To
do so, one defines the reaching times Tζ̂ and Tz by:

Tζ̂ = inf{t ≥ t0, ‖ζ̂(t)‖≤ δ}, (3.59)

Tz = inf{t ≥ t0, ‖z(t)‖≤ δ}, (3.60)

with the convention that inf ∅ = +∞. From, (3.57), one gets that Tζ̂ < +∞ and one wants to show that
Tz < +∞

From Section 3.2.1.3, one can see that if, for t0 ≤ t1 ≤ t2, min
τ∈[t1,t2+Tf ]

‖ζ̂(τ)‖≥ δ, then ∀t ∈ [t1, t2]:

1

Tf

ˆ∫ t+Tf

t
V (τ)V T (τ)dτ

˙

� µfI2, (3.61)

From (3.16) and (3.18), note that while (3.61) holds true there exists a strict time dependent quadratic
Lyapunov function Vz for the subsystem of z such that:

(Tf + κ1)I � Vz � ((1 + (γ(r))2)Tf + κ1)I.

9Vz ≤ −(κµf − ε2)‖z‖2,

with κ1 > 0 and 0 < ε2 < κµf .
Then, for t0 ≤ t1 ≤ t2:

min
τ∈[t1,t2+Tf ]

‖ζ̂(τ)‖≥ δ ⇒ ∀t ∈ [t1, t2], ‖z(t)‖ ≤ zmax(t1, t) (3.62)

with zmax(t1, t) =
´

(1+(γ(r))2)Tf+κ1
Tf+κ1

¯

1
2 ‖z(t1)‖exp

´

−κµf−ε2
2Tf

(t− t1)
¯

. Equation (3.62) simply means

that, if ‖ζ̂‖ is sufficiently large on the interval [t1, t2+Tf ], then ‖z(t)‖ decreasing exponentially according
to the bound zmax. Let us define Tzmax by:

Tzmax = inf{t ≥ t0, zmax(t0, t) ≤ δ}.

Clearly, lim
t→+∞

zmax(t0, t) = 0 so Tzmax<+∞. Consequently, we make the following assumption:
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Assumption 3.8. Tzmax + Tf ≤ Tζ̂

Intuitively, Assumption 3.8 means that ζ̂ has to reach the neighbourhood of size δ long enough after
zmax to keep V persistent and allow z to converge. Thus, under Assumption 3.8, by replacing t1 by t0
and t2 by t0 + Tζ̂ − Tf ≥ t0 in (3.62), one gets:

min
τ∈[t0,Tζ̂ ]

‖ζ̂(τ)‖≥ δ ⇒ ∀t ∈ [t0, t0 + Tζ̂ − Tf ], ‖z(t)‖ ≤ zmax(t0, t),

min
τ∈[t0,Tζ̂ ]

‖ζ̂(τ)‖≥ δ ⇒ Tz ≤ Tzmax < +∞.

By definition min
τ∈[t0,Tζ̂ ]

‖ζ̂(τ)‖≥ δ holds true. So Tz < +∞ and one gets the result.

This is a result of practical stability because the controller (3.33) depends on δ which itself depends
on ε1. Besides, it is only local because it not clear if Assumption 3.7 is true for any r > 0. One would
need a more precise result on the δ-persistence of V . However, it is a substantial result as system (3.39)
has not been studied formally in the literature.

3.2.1.5 Numerical simulations

Figure 3.6 depicts an example of trajectory of η and pη from the system (3.39) with the control law (3.33).
Figure 3.7 represents the time evolution of η, pη and z. A target point in the state space has been selected
and the parameters in (3.33) have been chosen to ensure Assumption 3.8 in practice. It is confirmed by
Figure 3.7, as one can see that the estimation error converges to 0 much earlier than the estimator and
the true state converge to the target point. φ is a 2-dimensional vector of out-of-phase sinusoidal and
α(r) = εpertanh(r) with εper > 0 and tanh is the hyperbolic tangent. The choice of α is inspired by
[Loría et al., 2002]. The boundedness of tanh prevents the system from being subjected to unreasonably
high oscillations when the system starts far from the target. We have chosen the case of a Gaussian map
to demonstrate the performances of the controller but the same can be undertaken with a quadratic map
as the error equations are the same up to a linear change of coordinate.

3.2.2 An example of a piecewise constant almost surely persistent processes

The previous analysis of the system (3.32) has been undertaken in a deterministic framework. However,
it appears that, in practice, if the persistent term φ from (3.33) is stochastic, then the system (3.32) also
converges and in particular the estimation error tends to zero. In the sequel, let (Ω,F , P ) be a probability
space. As we study stochastic processes, Ω can be seen as the classical set of càdlàg functions from R
to Rd with d ≥ 1 and P the canonical associated probability distribution. In this section, we study the
particular 2D system:

9z = −κV V T z (3.63)

where V = (V (t, ω))(t,ω)∈[t0,+∞(×Ω = (v1(t, ω), v2(t, ω))(t,ω)∈[t0,+∞(×Ω is a R2-valued stochastic
process. We suppose that V belongs to the class of piecewise constant processes with time intervals of
constant size. We also suppose that v1 and v2 can only take two opposite values.

Formally, we assume that ∃∆ > 0, ∃a > 0 and there exists a discrete time stochastic process
(W i(ω))i≥0,ω∈Ω = (wi1(ω), wi2(ω))i≥0,ω∈Ω, such that for almost all ω, ∀i ∈ N, ∀t ∈ [t0 + i∆, t0 +
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Figure 3.6: Plot of the test Gaussian map, the trajectory of the outputfeedback system and the observer

(i+ 1)∆):

v1(t, ω) = wi1(ω) ∈ {−a, a}, (3.64)
v2(t, ω) = wi2(ω) ∈ {−a, a}.

These hypotheses make system (3.63) a switched system. PE conditions in switched systems has
been treated recently in [Lee and Jiang, 2008] and [Lee et al., 2014] but only in a deterministic frame-
work. Stochastic PE in a discrete-time framework has also been studied and review in [Bitmead, 1984].
However, sufficient conditions of almost sure PE in continuous-time as described in Assumption 3.1 seem
not to have been studied since. One may argue that since we assume that V is piecewise constant then
discrete-time results apply directly. However, the subtlety lies in the fact that Assumption 3.1 must hold
for any t ≥ t0 which cannot be treated by discrete-time results directly. Moreover, we focus on the clas-
sical PE condition because it implies exponential stability. There are more recent and weaker conditions
from [Barabanov and Ortega, 2017] and [Efimov et al., 2018]. They only require the receding horizon
integral to be bounded from below at a countable number of time points but they only imply non-uniform
asymptotic stability.

Therefore, the goal of the following is to find conditions on V that ensures for almost all ω, ∃T (ω) >
0, ∃µ(ω) > 0 such that ∀t ≥ t0:

1

T (ω)

˜∫ t+T (ω)

t
V (s, ω)V T (s, ω)ds

¸

� µ(ω)I2. (3.65)

If (3.65) is satisfied, then, for almost all ω, Proposition 3.2 can be applied and the system (3.63) converges
to 0 almost surely.
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(a) Plot of η1(t) and pη1(t) (b) Plot of η2(t) and pη2(t)

(c) Plot of ‖z12(t)‖

Figure 3.7: Time evolution of η and pη the the case of an ellipsoidal trajectory

3.2.2.1 Persistence of a 2D piecewice constant signal

The first step is to fix ω and to reformulate the persistence of excitation condition (3.65) on the function
of time V (·, ω) into a condition involving only the discrete time processW . To do so, we rewrite V in the
polar coordinates. Actually, in two dimensions, V is persistent if it switches between two independent
directions. As ‖V ‖ is constant from (3.64), it means that the corresponding angle must consistently
switch between two values. We omit ω as an argument when there is no ambiguity. It is clear from (3.64)
that, ∀t ≥ t0:

V (t) = r(t)u(t), (3.66)

where r(t) =
?

2a and u is defined such that:

u(t) =

„

cos(θ(t))
sin(θ(t))



, (3.67)
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where θ is such that ∃θ0 ∈ [0, π[ such that ∀i ∈ N, ∀t ∈ [t0 + i∆, t0 + (i+ 1)∆):

θ(t) = θi,

where (θi)i≥0 is a sequence of angles. As u(t)uT (t) =

„

cos2(θ(t)) cos(θ(t)) sin(θ(t))
cos(θ(t)) sin(θ(t)) sin2(θ(t))



, we

can limit ourselves to angles in [0, π). This means that we can assume that θi takes only two values in
such a way that θi ∈

{
θ0, θ0 + π

2

}
. It appears that the quantities that play a crucial role are the switching

times of θ. We define the sequence of switching of θ, (T kθ )k≥0, recursively as follows, ∀k ≥ 0:

T 0
θ = inf{t ≥ t0| θ(t) = θ0 +

π

2
},

T 2k+1
θ = inf{t ≥ T 2k

θ | θ(t) = θ0},

T 2k+2
θ = inf{t ≥ T 2k+1

θ | θ(t) = θ0 +
π

2
},

where we use the convention inf ∅ = +∞. Note that if for some k ≥ 0, T 2k
θ < +∞ (resp T 2k+1

θ < +∞)
then ∀t ∈ [T 2k

θ , T 2k+1
θ ), (resp ∀t ∈ [T 2k+1

θ , T 2k+2
θ ) ), θ(t) = θ0 + π

2 (resp θ(t) = θ0). The following
proposition gives a characterisation of persistent signal of the form (3.64).

Proposition 3.10. If V is piecewise constant as described in (3.64) and decomposed as in (3.67), then
the following are equivalent:

(i) ∀k ≥ 0, T kθ < +∞, sup{k ≥ 0| T 2k+1
θ −T 2k

θ } < +∞, and sup{k ≥ 0| T 2k+2
θ −T 2k+1

θ } < +∞,

(ii) ∃T > 0, ∃µ > 0 such that ∀t ≥ t0:

1

T

ˆ∫ t+T

t
V (s)V T (s)ds

˙

� µI2. (3.68)

Proof. First from (3.67), one can deduce that for any t ≥ t0 and T > 0:∫ t+T

t
V (s)V T (s)ds = 2a2

∫ t+T

t
u(s)uT (s)ds

Thus u is persistent if and only if V is.

(ii)⇒ (i): Suppose ∃T > 0, ∃µ > 0 such that ∀t ≥ t0:

1

T

ˆ∫ t+T

t
u(s)uT (s)ds

˙

� µI2. (3.69)

First, it is clear that ∀k ≥ 0, T kθ < +∞ if and only if T 0
θ < +∞ and ∀k ≥ 0, T kθ < +∞⇒ T k+1

θ <
+∞. Assume now by contradiction, that (i) does not hold true. Then

T 0
θ = +∞,

or ∃k ≥ 0 such that either

T kθ < +∞ and T k+1
θ = +∞,
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or

sup{k ≥ 0| T 2k+1
θ − T 2k

θ } = +∞,

or

sup{k ≥ 0| T 2k+2
θ − T 2k+1

θ } = +∞.

If T 0
θ = +∞, then ∀t ≥ t0, θ(t) = θ0 so ∀t ≥ t0:

det

ˆ∫ t+T

t
u(s)uT (s)ds

˙

= det(u(t0)uT (t0)) = 0,

which contradicts (ii). Similarly if ∃k ≥ 0 such that T kθ < +∞ and T k+1
θ = +∞ then θ is constant

after T kθ which leads ∀t ≥ T kθ to:

det

ˆ∫ t+T

t
u(s)uT (s)ds

˙

= 0

Which also contradicts (ii).
If sup{k ≥ 0| T 2k+1

θ − T 2k
θ } = +∞, then there exists a subsequence (T

2n(k)+1
θ − T 2n(k)

θ )k≥0 such
that lim

k→+∞
T

2n(k)+1
θ −T 2n(k)

θ = +∞. So ∃k0 ∈ N, such that T 2n(k0)+1
θ −T 2n(k0)

θ ≥ T+1. In particular,

u ≡ u(T
2n(k0)
θ ) on [T

2n(k0)
θ , T

2n(k0)
θ + T ) which leads to:

det

˜∫ T
2n(k0)
θ +T

T
2n(k0)
θ

u(s)uT (s)ds

¸

= det
´

u
´

T
2n(k0)
θ

¯

uT
´

T
2n(k0)
θ

¯¯

= 0

which contradicts (ii). We get similarly a contradiction if sup{k ≥ 0| T 2k+2
θ − T 2k+1

θ } = +∞. One
gets to a contradiction in each case so (i) holds true.

(i)⇒ (ii): Assume ∀k ≥ 0, T kθ < +∞, sup{k ≥ 0| T 2k+1
θ −T 2k

θ } < +∞, and sup{k ≥ 0| T 2k+2
θ −

T 2k+1
θ } < +∞. Set Tmax,π

2
= sup{k ≥ 0| T 2k+1

θ − T 2k
θ } and Tmax,0 = sup{k ≥ 0| T 2k+2

θ − T 2k+1
θ }.

From these, we define a candidate horizon of persistence of excitation T = max(Tmax,π
2
, Tmax,0) +

2∆. Intuitively, θ cannot stay constant during more than max(Tmax,π
2
, Tmax,0). Therefore, if T >

max(Tmax,π
2
, Tmax,0) then the value of θ changes at least once which happens to be sufficient to get

persistence of excitation. We add specifically 2∆ to ensure that
∫ t+T
t u(s)uT (s)ds can be bounded from

below by a matrix independent of t.
To do so precisely, we fix t ≥ t0 and and i ∈ N such that ti ≤ t ≤ ti+1 with ti = t0 + i∆. We also

setMi = u(ti)u
T (ti). From (3.67), one gets, ∀i ≥ 0:

Mi =

„

cos2(θi) cos(θi) sin(θi)
cos(θi) sin(θi) sin2(θi)



,

Mi ∈ {A1, A2},

with A1 =

„

cos2(θ0) cos(θ0) sin(θ0)
cos(θ0) sin(θ0) sin2(θ0)



and A2 =

„

sin2(θ0) − cos(θ0) sin(θ0)
− cos(θ0) sin(θ0) cos2(θ0)



.
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By (3.64), one can say that the switching times T kθ are exactly of the following form, ∀k ≥ 0:

T kθ = t0 + pk∆, (3.70)

with pk ∈ N. This is due to the fact that V is right continuous and that all the switches happen at a time
of the form (3.70). Thus, since the suprema in (i) are finite, they are equal to suprema on a bounded
subset on N so they are attained. Therefore, from the definition of T and equation (3.70), p = T

∆ ∈ N.
Moreover as, clearly, Tmax,π

2
≥ ∆ and Tmax,0 ≥ ∆, T ≥ 3∆ and p ≥ 3 This allows us to compute the

receding horizon mean of uuT in the following way:

1

T

ˆ∫ t+T

t
u(s)uT (s)ds

˙

=
1

T

ˆ∫ ti+1

t
u(s)uT (s)

˙

+
1

T

˜∫ ti+p−1

ti+1

u(s)uT (s)

¸

+
1

T

˜∫ t+T

ti+p

u(s)uT (s)

¸

,

=
1

T

¨

˝(ti+1 − t)Mi + ∆

p−1∑
j=1

Mi+j + (t+ T − ti+p)Mi+p

˛

‚

� ∆

T

p−1∑
j=1

Mi+j

Asmentioned earlier, u cannot be constant on [ti+1, ti+p−1) because ti+p−1−ti+1=T−∆ > max(Tmax,π
2
, Tmax,0).

This means that there exist 1 ≤ j1, j2 ≤ p − 1, with j1 6= j2 such thatMi+j1 = A1 andMi+j2 = A2.
Finally,

1

T

ˆ∫ t+T

t
u(s)uT (s)ds

˙

� ∆

T
(Mi+j1 +Mi+j2),

� ∆

T
(A1 +A2),

By noticing that A1 +A2 = I2, one obtains:

1

T

ˆ∫ t+T

t
u(s)uT (s)ds

˙

� ∆

T
I2,

1

T

ˆ∫ t+T

t
V (s)V T (s)ds

˙

� 2a2 ∆

T
I2,

and (ii) is proved with µ = 2a2 ∆
T .

3.2.2.2 Almost sure persistence of excitation

The main consequence of Proposition 3.10 is that, in order to show almost sure PE, one only needs to
check that the angle θ satisfies property (i) in Proposition 3.10 almost surely. It is a substantial simpli-
fication because condition (i) in Proposition 3.10 only involves discrete-time quantities. As a result, the
idea of this section is to give an example of process of the form (3.64) that satisfies (i) from Proposition
3.10.

To do so, consider a stochastic process (θ(ω, t))ω∈Ω, t≥t0 that is almost surely of the form described
in (3.67). It means that it can be represented by a discrete-time process (θi(w))ω∈Ω, i≥0. Let us set
A = {ω| θ verifies (i) from Proposition 3.10}. One can deduce that:
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A ={ω| ∀k ≥ 0, T kθ < +∞, sup{k ≥ 0| T 2k+1
θ − T 2k

θ } < +∞, sup{k ≥ 0| T 2k+2
θ − T 2k+1

θ } < +∞},
{ ω| ∃M > 0 s.t. ∀k ≥ 0, T kθ < +∞, T 2k+1

θ − T 2k
θ ≤M, T 2k+2

θ − T 2k+1
θ ≤M}.

By definition of T 2k+1
θ and T 2k+2

θ ,

A =
{
ω| ∀k ≥ 0, T kθ < +∞, and ∃M > 0 s.t. ∀i ≥ 0 (θi, . . . , θi+M ) 6= (θ0, . . . , θ0), and

(θi, . . . , θi+M ) 6=
´

θ0 +
π

2
, . . . , θ0 +

π

2

¯}
, (3.71)

The objective of the following is to build an example of process (θi) such that P (A) = 1. To do so,
first we fixM ∈ N∗, and set:

AM =
{
ω| ∀k ≥ 0, T kθ < +∞, and ∀i ≥ 0 (θi, . . . , θi+M ) 6= (θ0, . . . , θ0), and

(θi, . . . , θi+M ) 6=
´

θ0 +
π

2
, . . . , θ0 +

π

2

¯}
. (3.72)

Clearly, AM ⊂ A. Then, we consider (θi)i≥0 as the sample paths of a M -dependent process on{
θ0, θ0 + π

2

}
with the following probability distribution, ∀i ≥ 0:

P (θi+M = θ0| θi+M−1 = θ0, . . . , θi = θ0) = 0,

P
´

θi+M = θ0 +
π

2
| θi+M−1 = θ0 +

π

2
, . . . , θi = θ0 +

π

2

¯

= 0, (3.73)

P pθi+M = θ0| ∃ (i1, i2) ∈ 0, ..,M − 1 s.t. i1 6= i2 and θi1 6= θi2q = p,

with 0 < p < 1.
Intuitively, Equation (3.73) means that sample paths of (θi(w))ω∈Ω, i≥0 cannot be constant during a

time window strictly greater thanM . By simple manipulations of unions of set and of probabilities, one
gets:

P (∃i ≥ 0, θi+M = θ0, . . . , θi = θ0 or θi+M = θ0 +
π

2
, . . . , θi = θ0 +

π

2
) = 0,

P (∃k ≥ 0, T kθ = +∞) = 0.

and P (AcM ) = 0 which leads to P (AM ) = 1 and P (A) = 1.
Finally, a process defined by (3.73) verifies (i) from Proposition 3.10 with probability one. In par-

ticular, by Proposition 3.10, the continuous time process (θ(ω, t))ω∈Ω, t≥t0 defined by (θi(w))ω∈Ω, i≥0

is persistent almost surely and V verifies Assumption 3.1 almost surely.
As an extension of this result, on could imagine reproducing these arguments for higher dimensional

vectors V using an argument of recursion on the dimension. One could also study a process V that does
not have a constant norm or with time intervals of varying size.

To conclude Part I, one can say that the modelling of TAN provides tools to build nonlinear observers
and adapted controllers for interesting classes of ground maps. The Remarks 3.2 and 3.4 also give hints
on how to deal with real maps using analytical ones. However, this framework seems not to be able
to provide a systematic treatment of real empirical ground. That is why we move to a discrete-time
stochastic framework to deal with this issue in Part II.
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Part II

Terrain-Aided Navigation with real
ground maps

67





Chapter 4

Elements of stochastic control and
stochastic filtering

We have seen in Part I that the problem of TAN with a real ground map is hard to treat directly with
analytical methods because they require too much structure on the terrain profile and are not directly
compatible with terrain coming from numerical data. It turns out that the deterministic setting of Part I
is too rigid. In particular, the notion of observer of Proposition 3.1 is too demanding. Actually, terrain-
based estimation is classically solved by Bayesian methods which means that the stochastic framework
is natural for this application. Moreover, it is very hard to find explicit control laws in TAN with a real
map for the same reasons as in estimation. Therefore, optimal control techniques that allow one to define
a control implicitly for very general systems is much more promising. As in Part I, TAN with a real map
also need control and estimation methods that depend on each other. Motivated by the last remarks, the
goal of Part II is to present methods of optimal control and estimation methods for a general nonlinear
discrete-time stochastic system that are applicable to TAN with a real ground map.

We start by reviewing the classical methods of control and estimation in a stochastic discrete-time
framework, in Chapter 4, in the following way. First, the basics of optimal stochastic control are recalled.
Secondly, the principles of nonlinear stochastic filtering are presented and, in particular, the concepts of
particle filtering. Finally, the notions of dual effect and Stochastic Model Predictive Control (SMPC)
detailed.

4.1 Discrete-time Stochastic Optimal Control

Let (Ω,F , P ) be a probability space. For i ∈ N, B(Ri) denotes the Borel σ-algebra of Ri. P(Ri)
denotes the set of probability measures on Ri. In the following, random variables refer to measurable
functions from Ω to Ri. For a random variable X and a probability distribution, X ∼ p means that p
is the probability law of X . P (·|·) and E(·|·) denotes the conditional probability and expectation. For
µ ∈ P(Ri) and f : Ri −→ Rj integrable, we set 〈µ, f〉 =

∫
Ri f(x)µ(dx).

The goal of this section is to recall the basics of discrete-time deterministic optimal control, stochastic
optimal control including perfect/imperfect information problems with finite and infinite horizon.

69
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4.1.1 Deterministic case

4.1.1.1 Definitions

First, we recall the concept of deterministic discrete-time optimal control. The state of the controlled
deterministic dynamical system we consider is represented by a sequence (xk)k∈N valued in Rnx . It is
described by the following equation, ∀k ∈ N:

xk+1 = fdet(xk, uk), (4.1)

where:

• x0 is a fixed initial condition.

• (uk)k∈N is the control sequence valued in U ⊂ Rnu . U is the set of admissible control values.

• fdet: Rnx × Rnu −→ Rnx is (Borel)-measurable.

Additionally, to define an optimal control problem in this framework, one needs:

• A time horizon, T ∈ N∗ ∪ {+∞}. T < +∞ corresponds to a finite horizon problem while
T = +∞ corresponds to a infinite horizon one.

• If T < +∞, ∀i = 0, .., T − 1, an instantaneous cost gi: Rnx × Rnu −→ R and a final cost gF :
Rnx −→ R+.

• If T <=∞, we consider for simplicity a time homogeneous instantaneous cost g: Rnx×Rnu −→
R+ and a discount factor α ∈ (0, 1].

Then, a finite horizon optimal control problem in this framework is of the following form, for any initial
condition x0 ∈ Rnx :

V det
0 (x0) = min

u0,...,uT−1∈U

∑T−1
k=0 gk(x

′
k, uk) + gF (x′T )

s.t. x′k+1 = fdet(x′k, uk), ∀k = 0, .., T − 1,
x′0 = x0.

(4.2)

Similarly, a infinite horizon optimal control problem is of the following form:

V det(x0) = min
u0,...,uk,...∈U

∑+∞
k=0 α

kg(x′k, uk)

s.t. x′k+1 = fdet(x′k, uk), ∀k ≥ 0,
x′0 = x0.

(4.3)

V det
0 (x0) and V det(x0) are respectively the optimal values of the problems (4.2) and (4.3).

Remark 4.1.

• The cost function g is assumed to be non-negative to ensure that the problem (4.3) is well defined.
In the sequeal, we write "min" instead of "inf"’ in (4.2) and (4.3) because we assume that the
problems always admit a solution.
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• Under additional assumption of regularity on the cost function and the set of admissible controls,
the problem (4.2) is indeed a classical nonlinear programwhich is nonconvex as soon as the dynam-
ics (4.1) is nonlinear. Problem (4.2) appears typically after the discretisation of a continuous-time
deterministic problem or as an approximation of a discrete-time stochastic one.

• In deterministic control, open-loop control and feedback control represent the same class of control
law. More precisely, on one hand, an admissible open loop sequence of controls of the problem
(4.2), (u0, . . . , uT−1), can be written as a function of x0 such that, for k = 0, .., T − 1:

uk = π′k(x0),

where π′k: Rnx −→ U ⊂ Rnu is measurable. On the other hands, feedback controls are functions
of present and the past of the state of the system meaning that for k = 0, .., T − 1:

uk = πk(x0, . . . , xk),

where πk: (Rnx)k+1 −→ U ⊂ Rnu . It clear that any open loop control law can be seen as a
feedback control law where πk depends only on x0. Conversely, from equation (4.1), the state
is exactly predictable from the initial condition, x0, so (x0, . . . , xk) can seen as a deterministic
function of x0 such that:

(x0, . . . , xk) = F det(x0),

where F det: Rnx −→ (Rnx)k+1 is measurable. By setting π′k = πk ◦ F det, one gets an open
loop control law. In other words, the knowledge of the initial condition x0 or of the whole past
and present of the state of the system (x0, . . . , xk) are equivalent from the point of view of control
design. Besides, due to the dependency structure of equation (4.1), feedback of the form uk =
π(xk) are sufficient to get optimal controls.

4.1.1.2 Dynamic programming principle

We set additionally, for l = 0..T − 1 the cost-to-go of problem (4.2) and x ∈ Rnx as follows:

V det
` (x) = min

u`,...,uT−1∈U

∑T−1
k=` gk(x

′
k, uk) + gF (x′T )

s.t. x′k+1 = fdet(x′k, uk), ∀k = `, .., T − 1,

x′` = x,

(4.4)

V det
T (x) = gF (x).

The cost-to-go of the problem (4.2) satisfy the following backward recursive equation known as the
Bellman equation or the Dynamic Programming (DP) principle [Bellman, 1966]. For l = 0..T − 1, and
x ∈ Rnx :

V det
` (x) = min

u∈U
g`(x

′
`, u) + V det

`+1(x′`+1)

s.t. x′`+1 = fdet(x′`, u),
x′` = x.

(4.5)

V det
T (x) = gF (x).
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The major usefulness of this formulation is that, if, for ` = 0, .., T − 1, u∗` is a solution of (4.5) then the
vector of these controls, (u∗0, . . . , u

∗
T−1), is a solution of the problem (4.2). In the infinite horizon case,

because of the time-homogeneity hypothesis, the DP principle can be written as one fixed point equation,
for x ∈ Rnx :

V det(x) = min
u∈U

g(x, u) + αV det(x+)

s.t. x+ = fdet(x, u).
(4.6)

Similarly to the finite horizon case, if π(x) ∈ argmin
u∈U

g(x, u) + αV det(x+), the sequence (π(x0), . . . )

is optimal for (4.3).
The main inconvenient of Dynamic Programming is that it requires to be able to compute the optimal

values V det
` (x) and V det(x) for any x. In practice, it induces some space discretisation procedure and if

nx is too large (typically, nx ≥ 5), the computations become intractable. This issue is called the curse
of dimensionality [Bertsekas, 2011].

4.1.2 Stochastic case with perfect information

4.1.2.1 Definition

We consider now a discrete-time process X = (Xk)k∈N valued in Rnx representing the state of a con-
trolled stochastic dynamical system described by the following equation, ∀k ∈ N:

Xk+1 = f(Xk, Uk, ξk), (4.7)
X0 ∼ p0,

where:

• p0 is a probability law on Rnx .

• (Uk)k∈N is the control process valued in U ⊂ Rnu . U is the set of admissible control values.

• (ξk)k∈N are i.i.d. random variables valued in Rnξ distributed according to pξ. For each k ∈ N, ξk
represents an external disturbance on the dynamics.

• f : Rnx × Rnu × Rnξ −→ Rnx is measurable.

In fact, equation (4.7) defines (Xk)k∈N as a Markov Decision Process on Rnx . Its transition kernel is
denoted byK meaning that ∀A ∈ B(Rnx), for almost all (a.a.), x ∈ Rnx and a.a. u ∈ Rnu :

P (Xk+1 ∈ A|Xk = x, Uk = u) = K(A, x, u), (4.8)

whereK: B(Rnx)× Rnx × Rnu −→ R+ is such that:

• ∀A ∈ B(Rnx),K(A, ·, ·) is measurable.

• ∀x ∈ Rnx , ∀u ∈ Rnu ,K(·, x, u) is a probability measure on Rnx .



4.1. DISCRETE-TIME STOCHASTIC OPTIMAL CONTROL 73

Note that "almost all" in this case means almost surely with respect to the joint distribution ofXk andUk.
We omit this in the sequel concerning conditional probability and expectation if no ambiguity appears.
For any fixed control process U = (Uk)k∈N, we denote the probability distribution of X with control
U when X0 ∼ p0 and the resulting expectation operator respectively by PUp0 and EUp0 . Likewise, for
x ∈ Rnx , PUx and EUx denote the the probability and expectation of X with control U conditionally to
X0 = x. Sometimes in the sequel we will assume that K has a density w.r.t. the Lebesgue measure. In
this case, with a slight abuse of notation, (4.8) is written ∀A ∈ B(Rnx), for x ∈ Rnx and u ∈ Rnu :

P (Xk+1 ∈ A|Xk = x, Uk = u) =

∫
A
K(y, x, u)dy, (4.9)

where dy is the Lebesgue measure.
In this section, we assume that Xk is exactly known at any time k and therefore available for the

computation of Uk. In stochastic control, the nature of the decision, i.e. the choice of the control U , is
structurally different from the one in deterministic control as optimal feedback controls are better than
optimal open loop controls. Another way to describe it is to say that feedback control cannot be seen as
open loop control anymore in the stochastic case. Indeed, as in the previous section, open loop controls
can be written as follows, for k ≥ 0:

Uk = π′k(X0), (4.10)

and feedback controls in the following way:

Uk = πk(X0, . . . , Xk). (4.11)

It is clear that open-loop controls are still feedback controls but the converse no longer holds. Actually,
(X0, . . . , Xk) is not a deterministic function of X0 anymore. The knowledge of (X0, . . . , Xk) covers
the knowledge of X0 but is not equivalent to it because of the unforeseeable nature of the stochastic
disturbances in (4.7). This makes the class of feedback controls larger than the open loop control and
confirms our first claim that optimal feedback controls are better than optimal open-loop ones. This
phenomenon can be summarised as the fact that more information leads to better controls. It is called the
value of information. Illustrative examples of this property are given in [Bertsekas, 2011]. Due to the
Markov property of the system (4.7), the feedback controls (4.11) can be reduced to controls depending
only on the current state Xk, (see [Hernández-Lerma and Lasserre, 1996] for the details). The controls
are then chosen as follows for k ≥ 0:

Uk = πk(Xk), (4.12)

where πk: Rnx −→ U ⊂ Rnu is measurable.
Similarly to the deterministic case, one needs the following additional elements to define a stochastic

optimal control problem:

• A time horizon, T ∈ N∗ ∪ {+∞}. T < +∞ corresponds to a finite horizon problem while
T = +∞ corresponds to a infinite horizon one.

• If T < +∞, ∀i = 0, .., T − 1, an instantaneous cost gi: Rnx × Rnu × Rnξ −→ R+ and a final
cost gF : Rnx −→ R+.

• If T =∞, we consider also a time homogeneous instantaneous cost g: Rnx ×Rnu ×Rnξ −→ R+

and a discount factor α ∈)0, 1].
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All the costs functions are assumed to be nonnegative for simplicity. A finite sequence of measurable
functions as in (4.12), π = (π0, . . . , πT ) with T ∈ N∗ is called a finite horizon control policy. A infinite
sequence π = (πk)k≥0 is called a infinite horizon control policy. Policies with elements of the form
(4.12) are called non-randomised Markov policies.

The goal of finite horizon discrete-time stochastic control is then to find a finite horizon non-randomised
Markov control policy that minimises an expected cost under constraint on the control. We omit hard and
soft constraints on the state of the system because they are not of paramount importance in our treatment.
However, they could be added with an additional assumption of admissibility.

When the control U is chosen according to a policy π, we will denote the probability and expectations
P π and Eπ instead of PU and EU . In the infinite horizon case, due to time homogeneity, the optimal
policy can be looked for as the repetition of the same function π0 so that π = (π0, π0, . . . ). This leads
to the following optimisation problem, with a finite horizon, for x0 ∈ Rnx :

V0(x0) = min
π0,...,πT−1

Eπx0

”∑T−1
k=0 gk(Xk, Uk, ξk) + gF (XT )

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = πk(Xk), ∀k = 0, .., T − 1,
X0 = x0.

(4.13)

and its equivalent with an infinite horizon:

V (x0) = min
π0

Eπx0
“∑+∞

k=0 α
kg(Xk, Uk, ξk)

‰

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = π0(Xk), ∀k ≥ 0,
X0 = x0,

(4.14)

where V0(x0) and V (x0) are then the optimal values. When X0 ∼ p0, the two previous problems read:

V0(p0) = min
π0,...,πT−1

Eπp0

”∑T−1
k=0 gk(Xk, Uk, ξk) + gF (XT )

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = πk(Xk), ∀k = 0, .., T − 1,
X0 ∼ p0.

(4.15)

and its equivalent with an infinite horizon:

V (p0) = min
π0

Eπp0
“∑+∞

k=0 αg(Xk, Uk, ξk)
‰

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = π0(Xk), ∀k ≥ 0,
X0 ∼ p0.

(4.16)

Remark 4.2.

• We recall that we assume that the problems (4.13) and (4.14) have solutions. Classical sufficient
condition of existence of solutions for those problems are given in [Hernández-Lerma and Lasserre, 1996].

• The problems (4.13) and (4.14) are infinite dimensional so they are hard to solve directly. To do
so, an alternative method is to use the DP principle adapted to this framework.
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4.1.2.2 Dynamic Programming principle

We present here the version of the DP principle in the stochastic case with imperfect information. The
finite horizon cost-to-go is defined as follows, for ` = 1, .., T − 1 and x ∈ Rnx :

V`(x) = min
π`,...,πT−1

Eπ
”∑T−1

k=` gk(Xk, Uk, ξk) + gF (XT )|X` = x
ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = πk(Xk), ∀k = `, .., T − 1,

VT (x) = gF (x).

(4.17)

As in the deterministic case, the cost-to-go, for ` = 1, .., T − 1 and x ∈ Rnx , V` satisfies the following
Bellman equation:

V`(x) = min
u∈U

E rg`(X`, u, ξ`) + V`+1(X`+1)|X` = xs

s.t. X`+1 = f(X`, u, ξ`).
(4.18)

VT (x) = gF (x).

As in the deterministic case, one can compute optimal solutions of (4.13) by solving iteratively (4.18)
More precisely, if π∗` (x) ∈ argmin

u∈U
E rg`(X`, u, ξ`) + V`+1(X`+1)|X` = xs then (π∗0, . . . , π

∗
T−1) is a

solution of (4.13).
In the infinite horizon case, the DP principle reads:

V (x) = min
u∈U

E rg(X`, u, ξ`) + αV (X`+1)|X` = xs

s.t. X`+1 = f(X`, u, ξ`).
(4.19)

As for the finite horizon case, ifπ∗0(x) ∈ argmin
u∈U

E rg(X`, u, ξ`) + αV (X`+1)|X` = xs then (π∗0, π
∗
0, . . . )

is a solution of (4.14). Obviously, the curse of dimensionality is still a problem in the stochastic case.
Besides, equation (4.18) and (4.19) require the resolution of a stochastic nonlinear program which is
usually more difficult than solving a classical nonlinear program.

Assuming perfect information can be very limiting in many applications. In the following we recall
the extension of the previous results to the case of imperfect information.

4.1.3 Stochastic case with imperfect information

4.1.3.1 Information vector formulation

In this section, we still assume that the state of the system is represented by X = (Xk)k∈N and ruled by
equation (4.7). However, we assume that the state of the system is only available through some observa-
tions represented by a stochastic process Y = (Yk)k∈N valued in Rny which verifies, ∀k ∈ N:

Yk = h(Xk, ηk), (4.20)

where:

• (ηk)k∈N are i.i.d. random variables valued in Rnη distributed according to pη. For each k ∈ N, ηk
represents an external disturbance on the observations.
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• h : Rnx × Rnη −→ Rny is measurable.

Notice that, in general, discrete-time dynamics are seen as approximations of continuous-time ones which
are more realistic. However, concerning observations, the converse is true. In practice, observations are
available at discrete points in time. If the rate of measurement is high, then a model of continuous-time
observations can used as an approximation of a discrete-time one.

For k ∈ N, we define the vector of available information Ik as follows:

Ik = (Y0, U0, . . . , Yk−1, Uk−1, Yk), (4.21)

or equivalently, for k ∈ N:

I0 = Y0,

Ik+1 = (Ik, Uk, Yk+1). (4.22)

Intuitively, Ik gathers all the values that are available to one to compute the control. In general, Ik
does not contain the vector (X0, . . . , Xk) so policies of the form (4.11) are not admissible. Therefore,
one cannot do better than choosing Uk as a function of Ik, such that for k ≥ 0:

Uk = πk(Ik), (4.23)

where πk: (Rny × Rnu)k×Rny −→ U ⊂ Rnu is measurable. Using the same notations as in the perfect
information case, stochastic optimal control problems with imperfect information can be formulated as
follows, for i0 ∈ Rny :

V0(i0) = min
π0,...,πT−1

Eπp0

”∑T−1
k=0 gk(Xk, Uk, ξk) + gF (XT )|I0 = i0

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Yk = h(Xk, ηk),

Ik+1 = (Ik, Uk, Yk+1),
Uk = πk(Ik), ∀k = 0, .., T − 1,

(4.24)

where the expectation is taken over the distribution of (Xk, Yk)k∈N. The problem with infinite horizon
reads for i0 ∈ Rny :

V0(i0) = min
π0

Eπp0
“∑+∞

k=0 α
kg(Xk, Uk, ξk)|I0 = i0

‰

s.t. Xk+1 = f(Xk, Uk, ξk),
Yk = h(Xk, ηk),

Ik+1 = (Ik, Uk, Yk+1),
Uk = π0(Ik), ∀k ≥ 0.

(4.25)

The DP principle cannot be applied directly to the problems (4.24) and (4.25) as the process (Xk, Yk)k∈N
with control policies of the form (4.23) is no longer a Markov Chain. Actually, one can reformulate the
problem (4.24) as a perfect information problem on the information space with Ik as the new state of the
system and using equation (4.22) as the new dynamics. In fact, equation (4.22) describes a Markov chain
on the information space (see [Bertsekas and Shreve, 2004] for a formal justification). This reformulation
reads:
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V0(i0) = min
π0,...,πT−1

Eπp0

”∑T−1
k=0 ĝk(Ik, Uk) + ĝF (IT )|I0 = i0

ı

s.t. Ik+1 = (Ik, Uk, Yk+1),
Uk = πk(Ik), ∀k = 0, .., T − 1,

(4.26)

with ĝk(ik, u) = E[gk(Xk, u, ξk)|Ik = ik] and ĝF (iT ) = E[gF (XT )|IT = iT ]. Similarly, one gets the
reformulation in the infinite horizon case:

V (i0) = min
π0

Eπp0
“∑+∞

k=0 α
kĝ(Ik, Uk)|I0 = i0

‰

s.t. Ik+1 = (Ik, Uk, Yk+1),
Uk = π0(Ik), ∀k ≥ 0,

(4.27)

where ĝ(ik, u) = E[g(Xk, u, ξk)|Ik = ik].
ADP principle can be written on the information space but we omit it as it is not very useful. Actually,

in practice, it is hard to exploit directly the information vector to gain knowledge on Xk. Besides, the
dimension of Ik increases with time which makes the use of DP even less interesting. In the sequel, we
use an alternative representation of Ik called the filtering distribution.

4.1.3.2 Filtering distribution formulation

From Ik, one can derive two important quantities in stochastic control with imperfect information that are
the conditional distribution ofXk given Ik, called the filtering distribution, denoted by µk and the condi-
tional distribution of Xk+i given (Ik, Uk, . . . , Uk+i−1) for any i ∈ N∗, denoted by µk+i|k. Moreover, in
the following, we assume that the conditional distribution defined by equation (4.20) has a density with
respect to the Lebesgue measure such that there exists a likelihood function denoted by ρ. Therefore, for
k ∈ N, A ∈ B(Rnx) and B ∈ B(Rny) :

P (Yk ∈ B|Xk = xk) =

∫
B
ρ(yk, xk)dyk.

µ0 is supposed to be known. Thus, ∀(k, i) ∈ N2, and ∀A ∈ B(Rnx), µk and µk+i|k verify the following
nonlinear filtering equations:

µk+1|k(A) =

∫
Rnx

K(A, xk, Uk)µk(dxk), (4.28)

µk+1|k+1(A) =

∫
A ρ(Yk+1, xk+1)µk+1|k(dxk+1)∫

Rnx ρ(Yk+1, xk+1)µk+1|k(dxk+1)
, (4.29)

µk+i+1|k(A) =

∫
Rnx

K(A, xk+i, Uk+i)µk+i|k(dxk+i). (4.30)

One can sum up equations (4.28) to (4.30), in the following way, ∀(k, i) ∈ N2:

µk+1 = F pµk, Yk+1, Ukq , (4.31)
µk+i+1|k = G

`

µk+i|k, Uk+i

˘

, (4.32)

where F : P(Rnx)× Rny × Rnu −→ P(Rnx) and G : P(Rnx)× Rnu −→ P(Rnx).
µk is of central importance in Bayesian filtering as it contains and weighs the possible values of the

current state Xk knowing only the value of Ik. µk+i+1|k is more useful in predictive control because it
represents the future possible values of the state knowing only the current information.
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It can be shown that µk carries as much information as Ik. More precisely, looking at µk as ran-
dom variable on P(Rnx) equipped with the Borel sigma-algebra for the weak topology, it is a sufficient
statistics (see [Bertsekas and Shreve, 2004], [Bertsekas, 2011]). It means that the control policies can be
looked for as functions of µk instead of Ik such that, for k ≥ 0:

Uk = πk pµkq , (4.33)

where πk: P(Rnx) −→ U ⊂ Rnu is measurable. Moreover, another classical result in [Stettner, 1989]
and [Bertsekas and Shreve, 2004] is that equations (4.28) and (4.29) describe aMarkovChain onP(Rnx).
This implies that the problem (4.24) can be seen as a perfect information problem in the space of proba-
bility measures such that, for µ ∈ P(Rnx) :

V0(µ) = min
π0,...,πT−1

Eπ
”∑T−1

k=0 g̃k(µk, Uk) + g̃F (µT )|µ0 = µ
ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πk(µk), ∀k = 0, .., T − 1,

(4.34)

with g̃k(µk, u) = 〈µk, ck〉 and g̃T (µT ) = 〈µT , gF 〉 where ck depends on gk and the conditional
distribution of ξk knowing Xk. Its counterpart in the infinite horizon case reads:

V (µ) = min
π0

Eπ
“∑+∞

k=0 αg̃(µk, Uk)|µ0 = µ
‰

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = π0(µk), ∀k ≥ 0,

(4.35)

with g̃(µk, u) = 〈µk, c(·, u)〉 where c depends on g and the conditional distribution of ξk knowing
Xk. With a slight abuse of notation, we also write the optimal value of the problems (4.24) and (4.25),
respectively V0 and V .

4.1.3.3 Dynamic Programming principle

The DP principle in this framework is also described in [Bertsekas and Shreve, 2004]. The cost-to-go
can written as, for ` = 0, .., T − 1, and µ ∈ P(Rnx):

V`(µ) = min
π`,...,πT−1

Eπ
”∑T−1

k=` g̃k(µk, Uk) + g̃F (µT )|µ` = µ
ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πk(µk), ∀k = `, .., T − 1,

, (4.36)

VT (µ) = g̃F (µ). (4.37)

Then the corresponding Bellman equation is for ` = 0, .., T − 1, and µ ∈ P(Rnx):

V`(µ) = min
u∈U

E rg̃`(µ, u) + V`(µ`+1)|µ` = µs

s.t. µ`+1 = F pµ`, Y`+1, uq ,
, (4.38)

In the infinite horizon case, the Bellman equation is:

V (µ) = min
u∈U

E rg̃(µ, u) + αV (µ`+1)|µ` = µs

s.t. µ`+1 = F pµ`, Y`+1, uq ,
, (4.39)

The formulation (4.34) and (4.35) put to light two classical issues:
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• First, the problems (4.34) and (4.35) are theoretically perfect information ones and µk is a function
of Ik. However, in practice, for a general nonlinear or non Gaussian system (4.7), µk cannot
be written in closed form and approximations are needed. Thus, to design coupled control and
estimation method we also have to recall classical state estimation method. It can be stated as
finding an function of Ik that approaches Xk. This problem is strongly related to the problem of
approximating µk. These problems are the topic of Section 4.2.

• Secondly, the formulation (4.34) does not simplify the resolution of the problem (4.24) a priori as
the new state space is P(Rnx) which is only a metric space. However, if µk can be represented
by a finite number of parameters then one can come back to classical finite dimensional DP with
perfect information. Nevertheless, it is not true in general and optimal policies cannot be found
exactly in most cases. Suboptimal policies have to be computed instead. This is where the latter
formulations are useful because µk and the filtering equation are well known equations and many
finite dimensional approximations of it exist. Consequently, this has notably allowed to build many
suboptimal policies. There exist many ways to build suboptimal policies in a imperfect information
setting. This is the topic of Section 4.3.

4.2 State Estimation, Nonlinear Filtering and Particle Filters

The goal of state estimation in this framework is to build an estimator, denoted by pXk, that approaches the
true state of the system Xk in some sense, using only the available information Ik. Historically, this has
been done in an optimisation context where one tries to minimise the variance of pXk. This leads to the
well-known optimal estimation problem, see [Gelb, 1974] and [Anderson and Moore, 1979]. Actually,
it is known that the expectation of Xk conditionally to Ik minimises the variance. This expectation can
be computed in closed form only in the linear Gaussian case. As the linear and Gaussian assumptions
are very limiting in practice, nonlinear filtering methods have appeared as extensions of linear Kalman
filtering ones or not. In nonlinear filtering, the conditional expectation is not accessible explicitly so
approximations have to be done. To do so, one usually tries to first approximate µk with, for example,
Gaussian, sum of Gaussians or Monte-Carlo approximations. This approximation of µk allows then one
to build a suboptimal estimator of Xk and assess a measure of the estimation error like a covariance
matrix for instance. We focus our attention on particle filters as they are the only filters in the literature
able to deal with the nonlinearity in TAN with a real map. Therefore, in the following, we recall the main
features of linear and nonlinear stochastic filtering.

4.2.1 Optimal estimation

Classically, optimal estimation is concerned with finding an estimator ofXk as a function of Ik that min-
imises the conditional variance also named the conditional Mean Square Error (MSE). This optimisation
problem reads:

min
x̂∈Rnx

E
”

‖x̂−Xk‖2|Ik
ı

. (4.40)

By simple calculations, one gets that the almost surely optimal estimator w.r.t. the distribution of Ik is
the expectation of Xk conditionally to Ik, denoted in the following by X∗k :

pX∗k = E[Xk|Ik].
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Notice that pX∗k is also a solution of the problem of minimisation of the total MSE which reads:

min
πe

E
”

‖ pXk −Xk‖
2
ı

s.t. pXk = πe(Ik),
(4.41)

where πe: (Rny × Rnu)k ×Rny −→ Rnx is a measurable estimation law. To show this, consider any πe
and notice that πe(Ik) is admissible for the problem (4.40). Thus, by optimality of pX∗k :

E
”

‖ pX∗k −Xk‖
2
|Ik

ı

≤ E
”

‖πe(Ik)−Xk‖2|Ik
ı

.

By integrating over Ik, one gets:

E
”

‖ pX∗k −Xk‖
2
ı

≤ E
”

‖πe(Ik)−Xk‖2
ı

.

By noticing that pX∗k is measurable w.r.t. Ik, it is clear that pX∗k is optimal in (4.41).
pX∗k can also be written as the expectation of the distribution µk such that:

pX∗k = 〈µk, Id〉,

where Id is the Identity map. Thus, pX∗k is also optimal for the version of problem (4.41) where πe is
chosen as a function of µk. This problem reads:

min
πe

E
”〈
µk, g

mse
´

·, pXk

¯〉ı
s.t. pXk = πe(µk),

(4.42)

where the expectation is taken over Ik and gmse(x, x̂) = ‖x̂− x‖2.
Computing pX∗k is a complicated issue a priori because it requires the knowledge of µk which is itself

hard to compute. However, in the case of a linear dynamics and observation equation with Gaussian
noise, the Kalman filter gives a recursive equation for pX∗k and the conditional covariance matrix.

4.2.2 Linear Kalman filtering

In this section, we assume that the dynamics and the observation equation of the system have the following
form:

Xk+1 = FXk +GUk + ξk, (4.43)
Yk = HXk + ηk, (4.44)
X0 ∼ p0,

where:

• p0 is a Gaussian distribution on Rnx with mean sX0 and covariance matrix P0 � 0.

• F ∈ Rnx×nx , G ∈ Rnx×nu and H ∈ Rny×nx .

• (ξk)k∈N are Gaussian i.i.d. random variables valued in Rnξ with zero mean and covariance matrix
Q � 0 .
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• (ηk)k∈N are Gaussian i.i.d. random variables and independent of (ξk)k∈N valued in Rnη with zero
mean and covariance matrix R � 0.

It can be shown that under those assumptions, the conditional distributions µk and µk|k−1 are Gaussian,
see [Anderson and Moore, 1979] for the details. Then, they are characterised by their first and second
moments that are denoted respectively by pX∗k and P ∗k and by pX∗k|k−1 and P ∗k|k−1. More precisely, for
k ≥ 1:

pX∗k = E[Xk|Ik],

P ∗k = E[(Xk − pX∗k)(Xk − pX∗k)
T
|Ik],

pX∗k|k−1 = E[Xk|Ik−1, Uk−1],

P ∗k|k−1 = E[(Xk − pX∗k|k−1)(Xk − pX∗k|k−1)
T
|Ik−1, Uk−1].

It happens that the previous quantities follow recursive equations known as the Kalman filter. These
equation can be split into two steps coming from equations (4.28) and (4.29) called the prediction step
and the correction step. During the prediction step, one propagates pX∗k−1 and Pk−1 using the knowledge
of Uk−1 and the dynamics (4.43) to obtain pX∗k|k−1 and P ∗k|k−1. For simplicity, it is assumed that Y0 is
deterministic so that pX∗0 = sX0 and P ∗0 = P0. The prediction step reads:

pX∗k|k−1 = F pX∗k−1 +GUk−1, (4.45)

P ∗k|k−1 = FP ∗k−1F
T +Q. (4.46)

During the correction step, one incorporates the knowledge of Yk and the observation equation (4.44)
through a gainKk called the Kalman gain such that:

Sk = HP ∗k|k−1H
T +R, (4.47)

Kk = P ∗k|k−1H
TS−1

k , (4.48)
pX∗k = pX∗k|k−1 +Kk(Yk −H pX∗k|k−1), (4.49)

P ∗k = (I −KkH)P ∗k|k−1. (4.50)

Kk can be seen from equations (4.46) and (4.48) as the optimal trade-off of confidence between the
prediction from the dynamics (4.45) and the incoming observation Yk. The optimality properties of the
Kalman filter are studied in more detail in [Anderson and Moore, 1979].

It is also known and easily seen from equation (4.46) and (4.50), that Pk actually does not depend
on Ik. It means that in this case, the conditional MSE, which is the trace of P ∗k coincides with the total
MSE. It also means that the control has no impact on the MSE. That property is not true anymore for a
general nonlinear system.

As said earlier, the Kalman filter describes exactly the conditional density. More precisely, it can be
written as follows:

µk = N
´

pX∗k , P
∗
k

¯

,

where N stands for the normal distribution. Unfortunately, for a non Gaussian nonlinear dynamics and
observation equation, there is no exact representation of pX∗k and P ∗k and approximations are required
which is the topic of next section.
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4.2.3 Nonlinear filtering

There exist countless suboptimal nonlinear filters in the literature hence we only mention here the most
commonly used. The optimality properties of the linear Kalman filter are very appealing in practice.
Therefore, a natural idea is to try to extend it to nonlinear systems. Such filters have had a lot of success
until now but still cannot deal with certain very nonlinear systems. Following on that fact, alternative
nonlinear filters based on Sequential Monte Carlo methods called particle filters have appeared. In the
following, we present essentially these two types of filters with a focus on convergence results of particle
filters.

4.2.3.1 Nonlinear Kalman filters

We assume that f and h have the following form:

f(x, u, ξ) = fdet(x, u) + ξ, (4.51)
h(x, η) = hdet(x) + η, (4.52)

pξ = N (0, Q),

pη = N (0, R),

where fdet and hdet are differentiable.

The Extended Kalman filter

The most basic and most used nonlinear Kalman filter is the Extended Kalman filter (EKF). It is, in fact,
a direct copy of the Linear Kalman filter where the matrix from the linear dynamics are replaced by the
linearisation of the nonlinear one at the current estimate. More precisely, even if µk is not Gaussian in
general, it is still assumed that it can be represented by its first and second moment, respectively called
pXk and Pk for simplicity. The EKF can then be defined as follows, for k ≥ 1, first by its prediction step:

pXk|k−1 = Fk pXk−1 +GkUk−1, (4.53)
Pk|k−1 = FkPk−1F

T
k +Q. (4.54)

and secondly by its correction step:

Sk = HkPk|k−1H
T
k +R, (4.55)

Kk = Pk|k−1H
T
k S
−1
k , (4.56)

pXk = pXk|k−1 +Kk(Yk −Hk
pXk|k−1), (4.57)

Pk = (I −KkHk)Pk|k−1, (4.58)

where Fk = ∇xfdet( pXk, Uk), Gk = ∇ufdet( pXk, Uk), Hk = ∇hdet( pXk|k−1), Q � 0 and R � 0.
Notice that the matrices Q and R are data of the problem that are chosen by the user during the

modelling phase. In the linear case, the Kalman filter is optimal whatever the value of the matrices Q
and R is. It means, for instance, that if R is specified a priori as the mean sensor error, then it is optimal
to use this precise value of R in the filter. However, in a nonlinear case, the EKF is not optimal so the
matrices Q and R are not necessarily related to real quantities. In practice, Q and R can then be seen as
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tunable parameters. The tuning of the distribution of the noise is actually a recurring issue in nonlinear
filtering. In this case the approximation of µk, denoted by µEKFk reads:

µEKFk = N
´

pXk, Pk

¯

.

The conceptual simplicity of the EKF has one major drawback: it requires the linearisation of the
original system. The main consequence of this is that the EKF diverges if the initial error is too large or
if the system is too nonlinear. Besides, it also requires the computation of derivative which can be costly
in practice.

To avoid this issue, more elaborated Kalman filters have been designed. Among them, we present
the Unscented Kalman filter (UKF) [Julier and Uhlmann, 2004] and the Ensemble Kalman filter (EnKF)
[Evensen, 2003] due to their clear resemblance to particle filters. The main idea is not to propagate the
covariance matrix explicitly but to approach it with a sampling technique instead. For simplicity, we
assume that the dynamics is of the form (4.51) and the observation equation as in (4.52) with hdet linear
such that hdet(x) = Hx.

The Unscented Kalman filter

First, in the UKF, µk is also approximated by a Gaussian distribution such that µUKFk = N ( pXk, Pk).
The main difference with the EKF is that µUKFk is sampled in a deterministic way using the unscented
transform leading to 2nx + 1 particles denoted by (xik)i=0,..,2nx

. The unscented transform is usually
defined as follows, for k ≥ 1:

x0
k−1 = pXk−1, (4.59)

for i = 1, .., nx:

xik−1 = pXk−1 +

ˆc

nx
1− ω0

Pk−1

˙

i

, (4.60)

for i = nx + 1, .., 2nx:

xik−1 = pXk−1 −
ˆc

nx
1− ω0

Pk−1

˙

i−nx
, (4.61)

where
`a

nxPk−1

˘

i
is the ith column of the matrix square root of nxPk−1. The resulting particles are

then propagated using the nominal nonlinear dynamics such that, for i = 0, .., 2nx:

xik|k−1 = fdet(xik−1, Uk), (4.62)

The predicted mean and covariance are computed as follows:

pXk|k−1 =

2nx∑
i=0

ωixik|k−1, (4.63)

Pk|k−1 =

2nx∑
i=0

ωi(xik|k−1 − pXk|k−1)(xik|k−1 − pXk|k−1)
T

+Q, (4.64)
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where −1 < ω0 < 1 and ωi = 1−ω0

2nx
for i = 1, ..2nx. The correction step is basically the same as in the

original Kalman filter:

Sk = HPk|k−1H
T +R, (4.65)

Kk = Pk|k−1H
TS−1

k , (4.66)
pXk = pXk|k−1 +Kk(Yk −H pXk|k−1), (4.67)
Pk = (I −KkHk)Pk|k−1. (4.68)

The Ensemble Kalman filter

The Ensemble Kalman filter is based on a random sampling technique à la Monte Carlo rather than a
deterministic one in the UKF. This requires to simulate several trajectories of the system with different
realisations of the noise leading to a set of particles XN

k = (xik)i=1,..,N with N ≥ 1. During the
prediction step, the N particles are propagated according to the nonlinear dynamics, and the covariance
is computed with an empirical unbiaised estimator. It reads, for i = 1, .., N and k ≥ 1:

xik|k−1 = fdet(xik−1, Uk−1) + ξik, (4.69)

mk|k−1 =
1

N

N∑
i=1

xik|k−1, (4.70)

PNk|k−1 =
1

N − 1

N∑
i=1

(xik|k−1 −mk|k−1)(xik|k−1 −mk|k−1)
T
, (4.71)

where (ξik)i=1,..,N are i.i.d. random variables of law pξ. The correction step is analogous to the one in
the linear case and reads, for i = 1, .., N :

SNk = HPNk|k−1H
T +R, (4.72)

KN
k = PNk|k−1H

T (SNk )
−1
, (4.73)

xik = xik|k−1 +KN
k (Yk + ηik −H pX∗k|k−1), (4.74)

where (ηik)i=1,..,N are i.i.d. random variables of law pη. The approximation of µk, denoted by µNk is
defined as follows:

µNk =
1

N

N∑
i=1

δxik
,

where δx is the Dirac measure at x. The main advantage of the UKF and the EnKF compared to the EKF
is that the linearisation step is not required because the covariance matrix is computed in both cases using
the particles. Consequently, both filters aremore precise than the EKF for nonlinear systems that differ too
much from their linear approximation. See [Evensen, 2003] for a review on EnKF and some extensions,
and [Julier and Uhlmann, 2004] for a review of the UKF. Under assumptions of uniform observability,
the mean square stability of the presented nonlinear filters have been proven. See [Reif et al., 1999] for
the EKF, [Xiong et al., 2006] for the UKF and [Tong et al., 2016] the EnKF and [Karvonen, 2014] for a
review.
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However, this assumptions do not fit in the framework of a very nonlinear system especially with a
complicated map hdet. This leads to the main drawback of UKF and EnKF which is that, at some point,
µk or µk|k−1 is assumed to be Gaussian. It is explicit in the UKF. In the EnKF, it is assumed during
the correction step (4.73) to (4.74) that the predicted density µk|k−1 is Gaussian. First, this may lead to
poor performance if µk is multimodal. One needs to use more involved Kalman filters that uses Gaussian
mixture, see [Dovera and Della Rossa, 2011] for example, to deal with multimodality. Secondly, even
with those improvements, the approximations made cannot be controlled. For instance, in the case of the
EnKF, it cannot be shown that µNk tends to µk when N → +∞ for a non linear system. That is why,
in the following, we focus on particle filters, which do not assume the Gaussianity of the conditional
distribution.

4.2.3.2 Particle filtering

Definition

Algorithm 1 Particle filter (SIR) with adaptive resampling

1: Create a sample of N particles xi0 according to the law µ0 and initialize the weights ωi0 with 1
N .

2: for k = 0, 1, 2 . . . do
3: Prediction:
4: Given a control uk and a set of particles

`

xik
˘

i=1,..,N
and a set of normalised weights

`

ωik
˘

i=1,..,N
,

compute the predicted particles by drawing samples fromK:

xik+1|k ∼ K(dxk+1|k, x
i
k, uk), for i = 1, .., N,

ωik+1|k = ωik.

5: Correction:
6: Get the new observation Yk+1.
7: Compute the unnormalised updated weights

`

ω̃ik
˘

i=1,..,N
thanks to the likelihood function ρ:

ω̃ik+1 ∝ ωik+1|kρ(yk+1, x
i
k+1|k).

8: if Resampling criterion satisfied then
9: Draw the a posteriori particles

`

xik+1

˘

i=1,..,N
from the set

´

xik+1|k

¯

i=1,..,N
and

`

ω̃ik+1

˘

i=1,..,N
using a resampling technique and set ωik+1 = 1

N .
10: else
11: Set xik+1 = xik+1|k and ω

i
k+1 =

ω̃ik+1∑N
i=1 ω̃

i
k+1

.
12: end if
13: end for

A particle filter approximates the posterior distribution µk by a set ofN particles,
`

xik
˘

i=1,..,N
valued

inRnx , associated with nonnegative and normalized weights
`

ωik
˘

i=1,..,N
. This approximation is denoted
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by µNk and reads:

µNk =
N∑
i=1

ωikδxik
, (4.75)

The predicted distribution, µk|k−1, is also approximated, as an intermediate step, by the particles and
weights:

´

xik|k−1

¯

i=1,..,N
and

´

ωik|k−1

¯

i=1,..,N
. This approximate distribution is denoted by µNk|k−1,

and is defined as follows:

µNk|k−1 =
N∑
i=1

ωik|k−1δxik|k−1
.

As previously for Kalman filters, a particle filter is computed recursively following two steps: prediction
and correction. During the prediction step, the particles are propagated using an importance distribu-
tion that is often chosen as the Markov kernel from the dynamics, K. During the correction step, the
weights are updated thanks to Bayes’ rule and the incoming observation Yk. However, if one applies
naively Bayes’ rule at each step to update the weights, they tend to be concentrated on a few particles
letting the majority of them with a very low weight which makes them useless. This fundamental flaw
of particle filtering is called sample degeneracy [Li et al., 2014]. Usually, to remedy this issue, the pre-
dicted particles are resampled according to a resampling technique involving the updated weights. The
principle of resampling is to remove the particles with low weight and keep mostly the particles with
high weights. See [Li et al., 2015] for a review of existing resampling techniques. The resampling step
tends to keep particles that are very similar and hopefully near the true state of the system. In other
words, it concentrates them in some small areas in the state space. This phenomenon is known as sample
impoverishment, see again [Li et al., 2014]. It may be problematic because too much confidence may be
given to a potentially unreliable observation and the particles may get stuck on unlikely areas. In this
case, the filter loses robustness because of the lack of diversity in the cloud of particles. There exist many
techniques, surveyed in [Li et al., 2014], to deal with sample degeneracy and impoverishment. The most
common one is not to do the resampling step at each time step. This allows one to make a trade off
between degeneracy and impoverishment. Actually, criteria have been developed to decide whether or
not resampling is needed. A classical particle filter algorithm with adaptive resampling is summed up in
Algorithm 1.

In fact, sample degeneracy and impoverishment can be seen as causes of a more global problem
in particle filtering which is the mismatch between the predicted approximate distribution µNk|k−1 and
the likelihood at the new observation Yk, ρ(Yk, ·). In practice, this mismatch is known to be the cause
of divergence of the particle filter. Informally, it means that the information contained in the predicted
µNk|k−1 is not coherent with the new information contained in Yk. It can be characterised by the that
the integral term 〈µNk|k−1, ρ(Yk, ·)〉 is too small (see [Le Gland et al., 2004]). From a theoretical point
of view, it has been shown in [Le Gland et al., 2004] that if 〈µNk|k−1, ρ(Yk, ·)〉 is too small then some
error bounds deteriorate with time and allow the divergence of the filter which confirms the practical
considerations. The threemain causes of mismatch can be summed up and analysed intuitively as follows:

• First, assume that the observations are too precise, for example that ‖R‖ small in the Gaussian case.
Then, the support of the likelihood is small. It implies that it is very common that only few particles
have a high likelihood ρ(Yk, x

i
k|k−1). If additionally, those particles have a small predicted weight

ωik|k−1 then 〈µNk|k−1, ρ(Yk, ·)〉 is small indicating a mismatch, (see [Le Gland et al., 2004]).
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• Secondly, if the sample is degenerate, then, even if the likelihood is widespread and the particles
are well distributed in the state space, their mass is concentrated on few of them. Furthermore,
it is likely that these high-weighed particles have a low likelihood at some time because of their
intrinsic randomness. Therefore, sample degeneracy may cause mismatch.

• Finally, if the sample is impoverished, the situation is reversed compared to a degenerate one. The
total mass of the sample may be equally spread on the particles but the support of the predicted
approximation is small and the particles themselves are gathered in a small area in the state space.
Therefore, sample impoverishment may also cause mismatch.

The mismatch between the true predicted distribution and the likelihood is also an issue but it is more
complicated to analyse because one does not know µk. Nevertheless, this problem is also mentioned in
[Hu et al., 2011] and [Oudjane, 2000].

Note that Algorithm 1 does not requireK and ρ to have a specific structure which makes it appealing
to deal with arbitrarily nonlinear system. The other main advantage of particle filtering is the zoo of
theoretical convergence results and error bounds that can be proven between µk and µNk .

Convergence results and error bounds in particle filtering

In this section, we review the main classes of convergence results in particle filtering. The first crucial
step is the choice of the metric. We focus here on results of convergence and error bounds between
〈µNk , φ〉 and 〈µk, φ〉 when N → +∞ for any k, for any scalar test function φ in a particular class. The
main reason is that most of the popular metrics on probability measures can be written in this form. See
[Bilingsley, 2013] for the definitions of the most classical metrics on probability measures. We review
here three types of results: almost sure convergence, Central Limit Theorems, and Lp bounds.

In [Crisan and Doucet, 2002] and [Crisan, 2001], a classical particle filter is represented recursively
similarly to equation (4.31) such that, for k ≥ 0 and N ≥ 1:

µNk+1 = FN
`

µNk , Uk, Yk+1

˘

, (4.76)

where FN : P(Rnx)×Rny ×Rnu −→ P(Rnx) gathers the prediction, correction and resampling steps.
In [Crisan and Doucet, 2002], it is shown that under an assumption of continuity of FN w.r.t. the weak
convergence, 〈µNk , φ〉 converges to 〈µk, φ〉 as N → +∞ almost surely w.r.t. the randomness of the par-
ticles, for any continuous bounded φ. Furthermore, using the Portmanteau theorem [Bilingsley, 2013],
these results are useful to justify the computation of empirical probabilities. However, no rate of conver-
gence is given in this case.

In [Del Moral and Guionnet, 1999] and [Del Moral and Jacod, 2002], the authors show a Central
Limit Theorem (CLT) for a particle filter. The concept of the results is to show that, for any fixed
ik, the random variable WN

k =
?
N〈µNk − µk, φ〉 converges in distribution to a centred univariate

Gaussian with variance σ2
k depending mainly on ρ and φ. [Del Moral and Guionnet, 1999] considers

only bounded functions φ while [Del Moral and Jacod, 2002] considers classes of unbounded functions.
More recent results can be found in [Whiteley, 2013]. The limitations of CLT is that, due the definition
of the convergence in distribution, one can only deal with terms of the form E[ψ(WN

k )|Ik = ik] =
E
“

ψ
`
?
N〈µNk − µk, φ〉

˘

|Ik = ik
‰

with ψ bounded continuous.
In fact, in Chapter 5, we will be interested in controlling the MSE generated by the empirical mean,
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denoted by pXN
k and defined by:

pXN
k =

N∑
i=1

ωikx
i
k = 〈µNk , Id〉,

as it is very commonly used as an approximation of pX∗k . Thus, we would like to choose ψ as a norm
which is unbounded and φ as a coordinate function. By doing so, we would typically be able to control
a term like E

”

|〈µk, φ〉 − 〈µNk , φ〉|
2|Ik = ik

ı

.
This leads us naturally to L2 and more generally Lp-bounds. It is recalled in the survey paper

[Crisan and Doucet, 2002] that, if ρ(Yk, ·) is bounded, then for any boundedmeasurable φ, for any k ≥ 0,
for any ik, there exists Ck > 0 such that for N ≥ 1 :

E
”

|〈µk, φ〉 − 〈µNk , φ〉|
2|Ik = ik

ı

≤
Ck‖φ‖2∞

N
,

where ‖φ‖∞ denotes the L∞-norm of φ. As said earlier one would like to take φ as a coordinate function
which is unbounded so the previous classical bound cannot be applied. However, in [Hu et al., 2008]
and [Hu et al., 2011], Lp bounds with φ potentially unbounded are proven under additional assumptions.
These results will be used at some point in the sequel to study the optimality properties of pXN

k w.r.t. the
MSE.

To summarise, in this section, we have seen how one can compute an approximation of µk and an
estimator pXk ofXk as a function of Ik. As described at the end of Section 4.1.3, the next logical step is
to determine the control variable Uk as function of Ik.

4.3 Design of suboptimal policies
In view of the fact that optimal policies are unreachable in practice, we recall the classical classification
of suboptimal policies of the problems (4.34) and (4.35). Furthermore, we review the main optimisation-
based design technique: Model Predictive Control.

4.3.1 Dual effect and classification of suboptimal policies

In the perfect information setting, we have already seen that there exist only two interesting classes of
control policies: open-loop policies and feedback policies. Open-loop policies use only the knowledge of
X0 while feedback policies use the knowledge of (X0, . . . , Xk). In particular, a feedback policy already
uses the maximal amount of information on the system at each time so the control has no impact on
the quality of the future available information. It is no longer true in an imperfect information setting
where the control can actively look for better information. The control is then said to have the dual
effect property. This essential property has first been put to light by Feldbaum in his seminal work
[Feldbaum, 1960]. He states that the control must have two roles:

• It guides the system in a standard way, for instance, it can drive it to some target in the state space.

• It actively probes information to improve the quality of the future observations.

Control laws that exhibit dual effect are called dual controllers. In [Bar-Shalom and Tse, 1974], a classi-
fication of control policies with imperfect information is defined according to the quantity of information
used and the level of anticipation of the future. These classes of policies are defined as follows:
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• Open Loop (OL) policies. In this case, the current control, Uk depends only on the initial in-
formation I0, the knowledge of dynamics (4.7) and of (pξ). The sequence is determined once
for all at time k = 0 and never adapts itself to the available information. As said previously
in Section 4.1.2, OL policies perform the worst but are the easiest to compute. OL policies
in a stochastic framework are used in robust control and lead to robust optimisation problems
[Ben-Tal et al., 2009]. An application in robust path planning using a scenario approach is de-
scribed in [Blackmore et al., 2010].

• Feedback (F ) policies. In this class, Uk depends on Ik, the dynamics (4.7), pξ, the observation
equations (4.20) up to time k and of pη. A F policy incorporates the current available information
but never anticipates the fact that observations will be available at instants strictly greater than k. F
policies are typically built using the certainty equivalence principle [Bar-Shalom and Tse, 1974],
[Bertsekas, 2011]. The idea of certainty equivalence is to combine an estimation law πek and an
independently devised perfect information control law πck that usually stabilises the system with
full state information. The resulting control and estimator (Uk, pXk) read:

pXk = πek(Ik), (4.77)

Uk = πc( pXk).

It can be shown that, in the linear quadratic Gaussian case, optimal policies of the problem (4.24)
are of the form (4.77) where πc is linear and pXk = pX∗k = E[Xk|Ik]. Moreover, under classi-
cal Kalman observability conditions, this control law stabilises the output-feedback system. The
fact that the controller and the estimator can be designed completely independently with no al-
teration of the global performance is called the separation principle. See [Hespanha, 2009] and
[Åström, 2012] for a complete review of the separation principle in the linear deterministic and
stochastic case. In the nonlinear deterministic case, it is known that stabilizability and detectability
are not sufficient for output feedback stability in general, see [Andrieu and Praly, 2009]. However,
in [Khalil and Praly, 2014], a separation principle for a class of deterministic nonlinear systems is
given based on high gain observers and saturated control laws. A separation principle is proven for
a class bilinear stochastic systems in [Mohler and Kolodziej, 1981] and [Tenno and Nõmm, 2011].
In [Barty et al., 2006], a characterisation of the class of control that do not influence the informa-
tion is given. However, the separation principle does not hold in general and the control must
interact with the future information.

Policies of the form (4.77) occur very commonly inModel Predictive Control (MPC). MPC is the
subject of a Section 4.3.2.

• m-Measurement Feedback (m-MF ). In this class, Uk depends on Ik, the dynamics (4.7), pξ and,
for 1 ≤ m ≤ T , on the probability distribution of the future observations from time k to time
k +m, denoted by pYk:k+m . Similarly to F policies,m-MF policies can adapt themselves to the
current situation and also anticipate new observations up tom instants after k. A classical way to
design m-MF policies is to build an estimation law πek and a control policy πdk in the following
way:

pXk = πek(Ik), (4.78)

Uk = πdk( pXk; pYk:k+m).
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From (4.78), it is clear thatm-MF policies are dual controllers. Actually, such policies are often
the results of a dual stochastic MPC scheme [Mesbah, 2017], where the dependency on pYk:k+m is
hidden inside an optimisation problem.

• Closed Loop (CL) policies. This class is the extension of the m-MF class up to time T for T
finite or infinite such that:

pXk = πek(Ik), (4.79)

Uk = πdk( pXk; pYk:T ).

Optimal policies obtained from Dynamic Programming belong to this class. Indeed, each policy
obtained from the backward Bellman equation (4.38) or (4.39) minimises an instantaneous cost
plus a cost-to-go including the statistics of all the future possible observations. In other words,
optimal policies have the dual effect property. More precisely, it is called implicit dual effect as
it entirely comes from the optimality of the policy and the information feedback structure and not
from an explicit excitation.

The previous classification provides a theoretical guideline of how to build suboptimal control poli-
cies. In the following, we present the main optimisation-based technique to actually build suboptimal
control policies in this framework: Model Predictive Control.

4.3.2 Model Predictive Control

Dynamic planning problems are generally modelled as finite horizon optimal control problems. Intu-
itively, it is clear that the main difficulty appears when the prediction horizon is long because it requires
a lot of computational resources. Concurrently, stabilisation problems can be modelled by infinite time
optimal control problems. In both cases, the optimal control problem is generally intractable in itself. A
very popular idea is then to solve a short horizon optimal control problem, starting from the current state.
Afterwards, one keeps only the first optimal control and applies it to the real system. Finally, these steps
are repeated on the new state and on the next ones recursively. This method is called Model Predictive
Control (MPC) essentially because it involves specifically a prediction of the future states, unlike clas-
sical closed-form feedback control laws. Due to the use of a moving time window, MPC is also called
Receding Horizon Control.

Independently of optimisation considerations, MPC appears to be an efficient technique to develop
nonlinear control laws that deals with input and state constraints, see [Mayne, 2014] for a general review
onMPC. In the following, we reviewMPC and, in particular, StochasticMPC (SMPC) in the optimisation
framework described in Section 4.1.

4.3.2.1 Deterministic MPC

We recall the deterministic infinite horizon problem from Section 4.1, for α = 1 and x0 ∈ Rnx :

V (x0) = min
u0,...,uk,...∈U

∑+∞
k=0 g(x′k, uk)

s.t. x′k+1 = fdet(x′k, uk), ∀k ≥ 0,
x′0 = x0.

(4.80)
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As said previously, in MPC, one would like to solve a finite horizon version of this problem of the form
(4.3). Actually, following the DP principle, the problem (4.82) can be reformulated as a finite horizon
problem in the following way, for any 1 ≤ T < +∞:

V (x0) = min
u0,...,uT−1∈U

∑T−1
k=0 gk(x

′
k, uk) + g∗F (x′T )

s.t. x′k+1 = fdet(x′k, uk), ∀k = 0, .., T − 1,
x′0 = x0,

(4.81)

where g∗F (x) = V (x). This formulation does not remove the difficulty of the problem as g∗F is not known.
One would prefer a formulation like problem (4.3):

V0(x0, T ) = min
u0,...,uT−1∈U

∑T−1
k=0 gk(x

′
k, uk) + gF (x′T )

s.t. x′k+1 = fdet(x′k, uk), ∀k = 0, .., T − 1,
x′0 = x0,

(4.82)

where gF is properly chosen. Note that gF can be seen as a tractable approximation of g∗F . We omit
state constraints in this formulation for simplicity. The idea of MPC is first to solve the problem (4.82)
starting from the current state xk. Note that problem (4.82) is a nonlinear program that can be solved by
classical numerical optimisation techniques [Nocedal and Wright, 2006]. The optimal control sequence
is denoted by (u∗0, . . . , uT ). Secondly, one keeps the first control u∗0(x0) and discards the others. Finally,
the control u∗0(x0) is applied to real systems and the process is repeated on the next state. Thus, the
resulting deterministic feedback law, denoted by πMPC is defined as follows, for any x ∈ Rnx :

πMPC(x) = u∗0(x).

Notice that πMPC is independent of time because the problem (4.82) is time homogeneous. The se-
quence of controls applied to the system is then uMPC = (πMPC(x0), . . . , πMPC(xk), . . . ). The huge
success of deterministic MPC in practice, see for example [Qin and Badgwell, 2003], has given rise to
the theoretical issues of optimality and stability of the MPC policy uMPC . It has been studied notably in
[Grune and Rantzer, 2008] and [Grune, 2013]. It is proven that, under assumptions on the cost functions,
gk and gF , and the dynamics (4.1), the optimal value of the MPC finite horizon problem V0(x0, T ) tends
to the optimal value of the infinite horizon problem V (x0), when T → +∞. It is also shown that the
closed-loop system converges to an equilibrium point. This is typically done by showing that V0(x0, T )
is a discrete-time Lyapunov function.

4.3.2.2 Stochastic MPC with perfect information

Stochastic MPC with perfect information is the version of MPC where the dynamics of the system is
random as in (4.7) with full knowledge of the current state Xk at each time k. As in the deterministic
case, we study the infinite horizon problem, for α = 1 and x ∈ Rnx :

V (x) = min
π0

Eπx
“∑+∞

k=0 g(Xk, Uk, ξk)
‰

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = π0(Xk), ∀k ≥ 0,
X0 = x.

(4.83)

As in the deterministic case, using similar arguments to the ones in the proof of the DP principle, one
can show that the problem (4.83) can be reformulate as a finite horizon one:
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V (x0) = min
π0,...,πT−1

Eπx0

”∑T−1
k=0 gk(Xk, Uk, ξk) + g∗F (XT )

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = πk(Xk), ∀k = 0, .., T − 1,
X0 = x0,

(4.84)

where g∗F (x) = V (x). Again, g∗F is not known in practice so another cost gF is chosen which leads to
the following problem:

V0(x0, T ) = min
π0,...,πT−1

Eπx0

”∑T−1
k=0 gk(Xk, Uk, ξk) + gF (XT )

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Uk = πk(Xk), ∀k = 0, .., T − 1,
X0 = x0.

(4.85)

The idea of Stochastic MPC is basically the same as in classical deterministic MPC. One wants to
solve the problem (4.85), get the optimal control policy (π∗0, . . . , π

∗
T ) and keep only π∗0 . In principle,

since π∗0 is already an control law, one only needs to solve the problem (4.85) once. One can define the
ideal Stochastic MPC law, denoted by π∗MPC , such that, for x ∈ Rnx :

π∗MPC(x) = π∗0(x).

The stability and performance of the ideal SMPC policy are studied in [Chatterjee and Lygeros, 2015].
Unfortunately, solving (4.85) is already a hard problem. Closed form solution exists only for a few

models while numerical solutions require the discretisation of the state space and suffer from the curse of
dimensionality. See [Bertsekas, 2005b] for a review of Approximate Dynamic Programming and its link
to MPC, and [Dupacovà et al., 2000] for a review on methods based on scenario trees. We present, in the
following, the two simplest approximations of problem (4.85) in the literature: the deterministic nominal
approximation and the open-loop approximation. The deterministic nominal approximation consists in
a deterministic version of problem (4.85) where the random excitation ξk is replaced by a deterministic
statistics ξ̄ such as the mean. It reads, for x0 ∈ Rnx :

sV0(x0, T ) = min
u0,...,uT−1∈U

∑T−1
k=0 gk(x

′
k, uk, ξ̄) + gF (x′T )

s.t. x′k+1 = f(x′k, uk, ξ̄), ∀k = 0, .., T − 1,
x′0 = x0.

(4.86)

The open-loop approximation is simply a copy of problem (4.85) where the control policies are
restrained to deterministic sequences. It reads, for x0 ∈ Rnx :

V OL
0 (x0, T ) = min

u0,...,uT−1∈U
Eπx0

”∑T−1
k=0 gk(Xk, uk, ξk) + gF (XT )

ı

s.t. Xk+1 = f(Xk, uk, ξk),
X0 = x0.

(4.87)

The problem (4.86) is purely deterministic so it is relatively simple to solve. However, it only takes the
randomness of the system into account very slightly so it is not robust in general. On the contrary, the
problem (4.87) is a stochastic program and typically a robust optimal control problem seen from the
probabilistic perspective. Usually, soft state constraints in probability are added but we omit them for
simplicity. This kind of problem can be handled by numerical stochastic optimisation techniques. See
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[Fu, 2015] for a review on such techniques and [Calafiore and Fagiano, 2013] for an application of the
scenario approach to MPC.

Both the problems (4.86) and (4.87) lead to OL policies if solved once. However, if they are solved
in a receding horizon way, they lead to the following control law, for x ∈ Rnx :

πMPC(x) = u∗0(x),

where u∗0(x) is the first optimal control in (4.86) or (4.87). See [Mesbah, 2016] for a review of the main
applications of SMPC.

As discussed in Section 4.3.1, in the perfect information case, there exist only two classes of policies,
Feedback policies and Open Loop policies. In the imperfect information case, there exist more of them
which enables more types of MPC schemes.

4.3.2.3 Stochastic MPC with imperfect information

Similarly to the perfect information, SMPC with imperfect information is concerned with solving ap-
proximately the infinite horizon problem:

V (µ) = min
π0

Eπ
“∑+∞

k=0 g̃(µk, Uk)|µ0 = µ
‰

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = π0(µk), ∀k ≥ 0.

(4.88)

It can also be reformulated as a finite horizon problem, for any 1 ≤ T < +∞, and any µ ∈ P(Rnx):

V (µ) = min
π0,...,πT−1

Eπ
”∑T−1

k=0 g̃k(µk, Uk) + g̃∗F (µT )|µ0 = µ
ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πk(µk), ∀k = 0, .., T − 1,

(4.89)

where g̃∗F = V .
As previously, g̃∗F is unknown and replaced by a tractable final cost g̃F . The finite horizon problem

to solve is then, for any µ ∈ P(Rnx):

V0(µ, T ) = min
π0,...,πT−1

Eπ
”∑T−1

k=0 g̃k(µk, Uk) + g̃F (µT )|µ0 = µ
ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πk(µk), ∀k = 0, .., T − 1.

(4.90)

As in the perfect information case, the ideal imperfect information MPC scheme requires to solve the
problem (4.90) exactly and keep the first element of the optimal policy, π∗0 . The MPC control law reads,
for any µ ∈ P(Rnx):

π∗MPC(µ) = π∗0(µ).

The output-feedback stability and performance of this scheme have been studied in [Sehr and Bitmead, 2017a]
and [Sehr and Bitmead, 2017b] where it is applied to a finite state space case. Actually, building alter-
native tractable MPC policies is harder than in the perfect information case, especially because of the
need of dual effect. In the following, we present the general form of the main type of tractable imperfect
information SMPC schemes.
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Open-Loop Feedback SMPC

Classically in the literature and in many practical applications, the link between the control and the future
available information is ignored in the control design, invoking the separation principle. An example is
presented in [Bertsekas, 2005a]. According to the classification from Section 4.3.1, this corresponds to
F policies, also called Open-Loop Feedback (OLF ) policies in the context of MPC. As described by
equation (4.77), F policies are usually defined through a certainty equivalence principle using a perfect
information controller computed at a state estimator. In the MPC framework, the control and estimator
read:

pXk = πek(Ik), (4.91)

Uk = πMPC( pXk).

where πMPC is a SMPC controller as described in Section 4.3.2.2. Examples of such output feed-
back controllers are gathered in [Mesbah, 2016]. In [Hokayem et al., 2012], [Mishra et al., 2017] and
[Homer and Mhaskar, 2017], three variants of the previous scheme are proposed for a class of linear
Gaussian systems with bounded controls and a class of continuous-time stochastic nonlinear system with
a nonlinear observer. Additionally, stochastic output feedback stability is proven but a separation princi-
ple is assumed in both cases meaning that the controller is supposed to have no impact on the observer
convergence.

Those controllers are very common in industrial applications because they are easy to implement,
as long as one is able to compute the MPC law. However, in this form, the controller does not take
into account the current uncertainty on the estimator which reduces its robustness. An alternative idea
is to use the framework of problem (4.88) but, instead of propagating the full filter µk, one would only
propagate the predicted distribution µk+`|k from equation (4.30). Roughly speaking, the idea is to use
fully the knowledge of µk and use only the dynamics for the prediction of future states. The resulting
optimal control problem reads for any k ≥ 1:

VOLF (µk, T ) = min
u0,...,uT−1∈U

Eπ
”∑T−1

`=0 g̃`(µ̃`, u`) + g̃F (µ̃T )|µ̃0 = µk

ı

s.t. µ̃`+1|0 = G
`

µ̃`|0, u`
˘

∀` = 0, .., T − 1.
(4.92)

One aims a practical resolution in problem (4.92) thus the controls are open loop. In problem (4.92), we
emphasise the fact that the controller starts specifically at µk to show that the whole distribution µk is
used and not only an estimator pXk like in (4.91). The resulting MPC scheme reads:

πOLF (µk) = u∗0(µk),

where u∗0(µk) is the first optimal control in (4.92). An OLF MPC scheme combining a particle filter to
approximate µk and a Monte Carlo sampling technique to approach the problem (4.92) is presented in
[Sehr and Bitmead, 2016]

Regrettably, OLF MPC controllers are only passively learning. This means that it is completely
fortuitous that the uncertainty on the state is reduced after using a OLF MPC controller. It may happen
in practice but it is not designed for. Conversely, it may also increase the uncertainty on the state and
cause poor output-feedback performance in the end. The last remark drives us naturally to consider dual
MPC controller which are actively learning.
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Dual Stochastic MPC

Dual Stochastic MPC controllers indicate MPC schemes that belong to the m-MF or the CL class.
There are two main class of dual controllers: implicit dual controllers and explicit dual controllers. To
understand the concepts behind these two types of controller, one needs to go back to the problem (4.88).
As it was already briefly mentioned in Section 4.3.1, optimal policies from the problem (4.88) are CL
policies and show a property of dual effect that is called implicit dual effect. In fact, to find an optimal
policy, one needs to propagate the future information through equation (4.31) By the Dynamic Program-
ming principle, any optimal policy drives the future filtering distribution toward a minimum of the sum
of the instantaneous cost and the next cost-to-go. In this sense, an optimal policy is dual. It is called
implicitly dual because the dual effect only comes from considerations that are internal to the original
optimisation problem. More precisely, it comes from the feedback structure on Ik or µk of the prob-
lem (4.88). This dual effect is, by definition of optimality, improving control performance compared
to other policies. However, the fact that the trajectory of filtering distributions (µk)k=0,..,T is optimal
does not necessarily mean that state estimation is successful. This implication is not clear for a general
system with a general cost function, but it is true in many applications and notably in the case study of
[Sehr and Bitmead, 2017a]. That is why, in the literature, it is often tacitly assumed that going toward
the optimality of µk is beneficial for state estimation in some sense.

Implicit dual controllers can then be defined as suboptimal dual controllers designed to maintain
the implicit dual effect coming from optimality in (4.88). To do so, the first idea is to solve approxi-
mately the Bellman equation (4.38). See [Bayard and Schumitzky, 2008] for an example of an implicit
dual controller based on policy iteration and particle filtering. In [Weissel et al., 2008], approximate
DP is achieved thanks to a branch-and-bound algorithm and a new nonlinear filter. The second main
idea is to propagate the filtering distribution using scenario trees. It is a complicated problem because
in the imperfect information case, the structure of the tree must depend on the control to reproduce
accurately the feedback constraint. In [Subramanian et al., 2014] and [Subramanian et al., 2015], µk is
approximated respectively by a EKF and a UKF. These filters are used as nodes of a scenario tree to
anticipate the future information inside an optimisation problem. The issue of the dynamic tree structure
is handled by assuming that the innovation process has a fixed distribution though it is not mentioned
explicity. In [Hanssen and Foss, 2015], the future filtering distributions are simulated by a tree of EnKFs
inside the optimisation problem. However, the issue of the dynamic tree structure is not discussed.
The main flaw of the previous techniques is their numerical cost. In [Bayard and Schumitzky, 2008]
and [Weissel et al., 2008], only finite control spaces can be treated. In [Subramanian et al., 2016] and
[Hanssen and Foss, 2015], the size of the resulting nonlinear program grows very rapidly with the time
horizon.

The computational burden of implicit dual controllers comes mostly from the approximate propa-
gation of µk in the optimisation problem. To avoid this expensive step, an idea is to propagate only
the predicted distribution like in problem (4.92). The feedback structure is then removed and so is the
implicit dual effect. The new concept for making the controller actively learn is to add an explicit ex-
citation in the original problem. It can take the form of a constraint of persistence of excitation as in
[Marafioti et al., 2014]. However, the resulting controller is only adapted to slightly nonlinear systems.
In [Hovd and Bitmead, 2004], the covariance matrix of an EKF is minimised online inside the optimisa-
tion problem. It applies only on slightly nonlinear systems too. Besides, one reason to do explicit dual
control is precisely to avoid simulating the uncertainty on the state inside the optimisation problem.

That is why, we focus on the literature where the change in the original problem takes the form of a
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new constraint or a new cost, depending on the Fisher Information Matrix (FIM). Its inverse is a lower
bound of the estimation error covariance matrix of any unbiased estimator and is denoted by Jk in the
sequel. In particular, as the conditional expectation pX∗k is an unbiased estimator of Xk, the following
inequality holds, for k ≥ 0:

J−1
k � E

”

( pX∗k −Xk)( pX
∗
k −Xk)

T
ı

. (4.93)

It is an a priori quantitative measure of the available information at each time that is commonly used
in Optimal Design [Fedorov and Hackl, 2012], because it does not depend on the estimator used. In
[Tichavsky et al., 1998], a recursive way to compute the FIM, denoted by Jk, for a system of the form
(4.51)-(4.52) is presented. It reads:

J0 = P−1
0 ,

J+
k−1 = Jk−1 + E

“

F Tk−1Q
−1Fk−1

‰

, (4.94)

Jk = E
“

HkR
−1HT

k

‰

−Q−1E rFk−1s
`

J+
k−1

˘−1
E rFk−1s

T Q−1,

whereP0 is the covariancematrix associatedwith the initial distribution p0,Fk−1 = ∇xfdet(Xk−1, Uk−1)
and Hk = ∇hdet(Xk). In [Telen et al., 2017], a controller with a constraint on Jk is proposed. Usu-
ally, such controllers lead to infeasibilty problems that are also hard to anticipate in nonlinear cases. In
[Telen et al., 2017], this infeasibility issue is addressed but only in the deterministic framework. Adding
a scalar measure of information in the cost to create an explicit excitation is called integrated experiment
design. In integrated experiment design, one minimises a new cost denoted by gexk that realises a trade off
between the original costs gk and gF and a measure of information denoted by ginfok and ginfoF , depending
on Jk in practice, such that, for k = 0, .., T − 1:

gexk = gk + ginfok , (4.95)

gexF = gF + ginfoF .

After considering that Jk can be added to the state of the system, on can see ginfok as function from Rnx
to R+. The resulting optimisation problem can be written as follows:

VEX(µk, T ) = min
u0,...,uT−1∈U

Eπ
”∑T−1

`=0 g̃
ex
` (µ̃`|0, u`) + g̃exF (µ̃T |0)|µ̃0 = µk

ı

s.t. µ̃`+1|0 = G
`

µ̃`|0, u`
˘

∀` = 0, .., T − 1,
(4.96)

where g̃ex` = g̃` + g̃info` and g̃info` = 〈µ`, ginfo` 〉. The MPC law in this case reads:

πEX(µk) = u∗0(µk),

where u∗0(µk) is the first optimal control in (4.96). In [Telen et al., 2017] and [La et al., 2017], two in-
tegrated experimental controllers based on the FIM or a variant are proposed. However, both of them
are incompatible with particle filtering. See [Mesbah, 2017], for a complete review of all the different
flavors of explicit dual MPC.

Contrary to their implicit counterpart, explicit MPC controllers do not try to reach closed-loop op-
timality directly. They rather try to increase the quantity of available information and improve state
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estimation. There is then a tacit assumption that improving state estimation also improves closed-loop
control performance. As in the implicit case, it is not clear for a general system but confirmed in many
applications included TAN.

To understand the fundamental differences between implicit and explicit dual MPC, we present an-
other way of analysing the classification from Section 4.3.1 through the prism of caution, also called
conservativeness. In fact, in the imperfect information setting, pure OL policies are typically either not
robust, and fail in guiding the system, or overly robust, and lead to extremely cautious controls also named
small controls. Cautious controls are usually very costly in the end, because, for instance, the system is
too slow or its trajectory is too long. The extreme caution of OL policies is generally due to their over-
estimation of the risk of poor future performance which is itself caused by the lack of information. In
others words, robustOL policies are too safe. A very general example of method to build a finite horizon
OL-policies is to solve problem (4.92) starting from µ0 and apply the whole optimal sequence. In this
case, the overestimation of the risk comes from the fact that only µ`|0 is used to compute state uncer-
tainty. Intuitively, it is known that the prediction step represented by (4.28) tends to spread µ`|0 such that
the uncertainty on the state grows. One can see this phenomenon from (4.94). Clearly, the higher the
covariance matrix Q is, the less information is accumulated.

On the contrary, F -policies are, by nature, less cautious than OL policies because of the feedback
structure on the current information. OLF policies presented earlier use the knowledge of the current
level of uncertainty on the state, represented by µk. They also use a prediction of the state through
the dynamics, represented by µk+`|k. It means that the propagation of the uncertainty is the same in
OLF policies that in OL policies. The major difference comes from the fact that in OLF the predicted
distribution is propagated from µk. Thus, at each time k,OL policies use the distribution µk+`|0 whereas
OLF policies uses µk+`|k. Consequently,OLF policies are better thanOL-policies in assessing the risk
of poor performance and end up being less cautious.

However, OLF policies still can be too conservative or simply fail and cause the divergence of the
system. We have already mentioned the risk of divergence caused by OLF polices in the dedicated sec-
tion. Output-feedback divergence typically appears when the controller makes the quantity of available
information diminish. See [Anderson, 1985] for an example in adaptive control. Explicit dual MPC
seems well suited to fight this issue by construction. Nevertheless, it is clear from (4.96) that the propa-
gation of uncertainty in explicit dual MPC is as in OLF . In particular, an explicit dual controller does
not take into account the fact that more observations are available in the future unlike in implicit ones.
It focuses on keeping enough information. It is a very important point because, in some applications,
improving state estimation is irrelevant or even impossible but anticipate the future information is crucial.

For instance, in [Weissel et al., 2008], a 2D robot path-planning sheme with obstacles in an uncertain
environment and with imperfect information is proposed. The target area and the obstacles are handled by
a penalisation term in the cost. Figure 4.1 is taken from [Weissel et al., 2008] and represents trajectories
coming from 3 types of MPC schemes. The green curve corresponds to a deterministic MPC, the red
curve to an OLF MPC scheme and the blue curve to a implicit dual one Roughly speaking, two paths are
considered: the first one is safe and long (in red), the second one is shorter butmore risky (in blue) because
it requires to pass in a tiny space between two obstacles. It is assumed that the sensor are sufficiently
precise for the robot to able to follow the risky path if it uses the measurements. It is also assumed that
if it does not use any measurements it is too hazardous for it to follow the risky path. As expected, it is
shown in simulation that, if one uses the OLF controller, the robot always follows the safe path. Still,
with the implicit dual controller, the robot follows the risky path. The reason for this is that the OLF
ignores the fact that the future uncertainty will be small enough for the robot to follow the second path
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Figure 4.1: Example of the use of 3 types of MPC schemes on a wheeled-robot in a 2D environment with
obstacles.

with an acceptable risk. On the contrary, their implicit dual policy do anticipate the future observations
and is aware of their precision. It is not a surprise that the implicit dual controller performs better than
the OLF policy. Our main claim is that an explicit dual controller defined by problem (4.96) is of no use
in this example. The most important task in this example is not to improve the future information using
some metric but to assess dynamically the future state uncertainty. About the last point, OLF policies
and explicit dual ones behave in the same way because they both propagate only µk+`|k and not µk+`.
Consequently, an explicit dual MPC scheme is expected to produce the same result as an OLF policy in
the example of the article.

This illustrates the main difference between the explicit and the implicit dual effect in terms of uncer-
tainty propagation. To sum up, implicit dual effect is oriented toward improving directly the closed-loop
control performance through information propagation. The potential contraction of the state uncertainty
is only a bonus. On the contrary, explicit dual effect is focused on increasing the quantity of future
information and improving state estimation, as a way of improving the closed-loop control performance.

It is clear that implicit dual policies have solid theoretical foundations because there come from an
approximation of the Bellman equation. However, explicit dual policies are harder to justify formally be-
cause they require a change in the original problem that is empirical. It is true, in particular, in integrated
experimental design where the cost is generally modified to match practical considerations only. In the
following, we give a justification of the additional term in the cost using optimal estimation arguments.

Besides, in TAN with a real ground map, it is crucial to go over rough terrain to gain information.
As a result, explicit dual controllers seem well suited to TAN. This also justifies our focus on explicit
dual controllers in the following. Finally, it also appears in the literature that there are no explicit dual
controllers able to use directly a particle filter as a starting point in (4.96). In the sequel, we provide two
explicit dual MPC scheme applied to TAN that are able two use the full potential of a particle filter.



Chapter 5

Modelling of joint problem of optimal
control and estimation

In this section, we would like to provide a new vision on the problem of estimation and control of a
nonlinear stochastic system based on the definition of a multistage stochastic optimisation problem that
gathers optimal control and optimal estimation. Through this, we give a justification of the combined
use of particle filtering and Explicit Dual SMPC in coupled control and estimation methods. The first
motivation for this is that particle filters are not very used in stochastic control as we have seen in the
Section 4.3.2 dedicated to SMPC. It probably comes from the fact that particle filters are very recent
compared to Kalman filters and not very well known in the control community. Besides, particle filter
are complex and not necessarily easy to incorporate in a feedback. However, it surely has the potential to
solve very nonlinear practical problem. In fact, our first justification of the use of particle filtering is to
be able to deal with TAN with real ground maps. In this section, we give a more theoretical justification
oriented toward optimal estimation. Secondly, as we have seen in the Section 4.3.2 that Explicit Dual
SMPC is, by essence, hard to justify rigorously as it considers an optimal control problem that is modified
empirically. However, we give a more theoretically grounded justification in this section also coming
from optimal estimation.

5.1 Definition of the coupling optimisation problem

5.1.1 Setup of the problem of optimal control and estimation

In this section we consider the system (4.7) with the observation equation (4.20) and focus on the infinite
horizon case. The idea is to add an estimator as a variable in (4.35) that is also looked for as a function
of the available information. To do so we consider an augmented control Wk = (Uk, pXk) and the
corresponding augmented information vector Ĩk defined recursively as follows:

Ĩ0 = Y0,

Ĩk+1 = (Ĩk, Vk, Yk+1). (5.1)

99



100 CHAPTER 5. MODELLING OF JOINT PROBLEM OF CONTROL AND ESTIMATION

Wk is chosen as a function of Ĩk such that for k ≥ 0:

Wk = (Uk, pXk),

Uk = πc0(Ĩk),

pXk = πe0(Ĩk),

πaug = (πc0, π
e
0).

We also define the new augmented cost function gaug and dynamics faug in the following way, for x ∈
Rnx , v = (u, x̂) ∈ U × Rnx , ξ ∈ Rnξ :

gaug(x, v, ξ) = gc(x, u, ξ) + ge(x, x̂), (5.2)
faug(x, v, ξ) = f(x, u, ξ), (5.3)

where

• gc: Rnx × Rnu × Rnξ −→ R+ is the cost function of a classical stochastic optimal control,

• ge: Rnx × Rnx −→ R+ is a measure of the estimation error. Generally, ge is taken as the square
error, i.e. ge(x, x̂) = ‖x̂− x‖2 where ‖·‖ stands for the Euclidean norm on Rnx . However, the
L1-norm is very popular in machine learning and statistics [Vidaurre et al., 2013] and could be
considered as an alternative.

Note that the augmented dynamics faug does not depend on x̂ The main assumption in (5.2) is that the
total cost gaug can be separated as a sum of a control-oriented term and an estimation-oriented term. It
is a mild assumption as one can consider that the true underlying problem would be a bi-objective one
with gc and ge being the two cost functions. Intuitively, gc and ge are often anti-correlated because one
often needs to trade some control performance for a better estimation.

With this inmind, (5.2) can be seen as a trade-off coming from the conversion of a biobjective problem
into a mono objective one. The last remarks lead to the following optimisation problem for ĩ0 ∈ Rny :

rV (̃i0) = min
πc0,π

e
0

Eπp0

”∑+∞
k=0 α

kgaug(Xk,Wk, ξk)|Ĩ0 = ĩ0

ı

s.t. Xk+1 = faug(Xk, Vk, ξk),
Yk = h(Xk, ηk),

Ĩk+1 = (Ĩk, Vk, Yk+1),

Wk = (πc0(Ĩk), π
e
0(Ĩk)), ∀k ≥ 0.

(5.4)

If we write the problem (5.4) in terms of Uk and pXk then we get:

rV (i0) = min
πc0,π

e
0

Eπp0

”∑+∞
k=0 α

k(gc(Xk, Uk, ξk) + ge(Xk, pXk))|Ĩ0 = ĩ0

ı

s.t. Xk+1 = f(Xk, Uk, ξk),
Yk = h(Xk, ηk),

Ĩk+1 = (Ĩk, Uk, pXk, Yk+1),

Uk = πc0(Ĩk),
pXk = πe0(Ĩk), ∀k ≥ 0.

(5.5)

It is clear from the formulation (5.5) that the problem (5.4) combines a general problem of stochastic op-
timal control with imperfect information with a general problem of optimal estimation. The study of this
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formulation has been started in [Flayac et al., 2017]. It is actually inspired from [Copp and Hespanha, 2014]
in which a similar gathering is done in a min-max optimisation framework. Wewould like to write the DP
principle for the problem (5.4) to make explicit connections with classical optimal control and optimal
estimation. Note that the fact that the dynamics represented by faug actually does not depend on pXk will
be crucial when we write the Bellman equation for this problem.

As we did for the problem (4.25), we can rewrite the problem (5.4) in terms of the conditional dis-
tribution of Xk knowing Ĩk, denoted µ̃k. As for µk, one can derive the dynamics of µ̃k from equation
(4.28) and (4.29) using equation (5.3) and (4.20):

µ̃k+1 = F aug pµ̃k, Yk+1,Wkq , (5.6)

with F aug : P(Rnx)× Rny × Rnu −→ P(Rnx). This leads to the following reformulation:
rV (µ) = min

πaug0

Eπ
“∑+∞

k=0 α
kg̃aug(µ̃k,Wk)|µ̃0 = µ

‰

s.t. µ̃k+1 = F aug pµ̃k, Yk+1,Wkq ,
Wk = πaug0 (µ̃k), ∀k ≥ 0,

(5.7)

where, for µ ∈ P(Rnx) and v = (u, x̂) ∈ U × Rnx :

g̃aug(µ, v) = g̃c(µ, u) + g̃e(µ, x̂),

g̃c(µ, u) = 〈µ, c(·, u)〉,
g̃e(µ, x̂) = 〈µ, ge(·, x̂)〉,

with c: Rnx × Rny × Rnu −→ R+ depending on gc and the conditional distribution of ξk knowing Xk

as in (4.35).
One would like to use the structure of the cost to separate the problem of control and estimation. In

this sense, the formulation (5.7) is not practical because it involves µ̃k which depends on the estimator
whereas faug actually does not. To split the two problems, we start by noticing that, by writing equation
(4.28) and (4.29) for the augmented system, one gets:

F aug pµ̃k, Yk+1,Wkq = F pµk, Yk+1, Ukq .

Note that µ̃0 = µ0. This leads, by recursion on k, to µ̃k = µk almost surely. Finally, we can write our
coupled control and estimation problem as a perfect information problem with µk as the state:

rV (µ) = min
πc0,π

e
0

Eπ
”∑+∞

k=0 α
k(g̃c(µk, Uk) + g̃e(µk, pXk))|µ0 = µ

ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πc0(µk),
pXk = πe0(µk), ∀k ≥ 0,

(5.8)

5.1.2 Dynamic programming principle

From (5.8), the Bellman equation of the coupled problem reads:

rV (µ) = min
(u,x̂)∈U×Rnx

E
”

g̃c(µ, u) + g̃e(µ, x̂) + αrV (µ`+1)|µ` = µ
ı

s.t. µ`+1 = F pµ`, Y`+1, uq ,

rV (µ) = min
(u,x̂)∈U×Rnx

g̃c(µ, u) + g̃e(µ, x̂) + αE
”

rV (µ`+1)|µ` = µ
ı

s.t. µ`+1 = F pµ`, Y`+1, uq ,
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As F does not depend on x̂:

rV (µ) = min
u∈U

ˆ

min
x̂∈Rnx

g̃e(µ, x̂)

˙

+ g̃c(µ, u) + αE
”

rV (µ`+1)|µ` = µ
ı

s.t. µ`+1 = F pµ`, Y`+1, uq .
(5.9)

Equation (5.9) illustrates the fact that the problem (5.4), which gathers optimal control and optimal es-
timation, can actually be split back into a hierarchy of two problems. Indeed, it justifies the use of a
resolution scheme in two steps:

1. First, one solves the inner minimisation problem in (5.9):

min
x̂∈Rnx

g̃e(µ, x̂). (5.10)

Any solution of (5.10), which is an optimal estimation problem, gives a time homogeneous optimal
estimation policy denoted by πe∗(µ). In particular:

g̃e(µ, πe∗(µ)) = min
x̂∈Rnx

g̃e(µ, x̂) (5.11)

We set g̃e∗(µ) = g̃e(µ, πe∗(µ)).

2. Secondly, by substituting (5.11) in (5.9) one gets:

rV (µ) = min
u∈U

g̃e∗(µ) + g̃c(µ, u) + αE
”

rV (µ`+1)|µ` = µ
ı

s.t. µ`+1 = F pµ`, Y`+1, uq .
(5.12)

Equation (5.12) can be interpreted as the Bellman equation of a stochastic optimal control problem
on P(Rnx) which has the same optimal value as problem (5.7). The second step is then to solve
this problem:

rV (µ) = min
πc0

Eπ
“∑+∞

k=0 α
k(g̃c(µk, Uk) + g̃e∗(µk))|µ0 = µ

‰

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πc0(µk), ∀k ≥ 0.

(5.13)

Note that g̃e∗(µ) = 〈µ, ge(·, πe∗(µ))〉 so g̃e∗ is generally nonlinear in µ and cannot be represented
as an integral as in (4.35). Therefore, the problem (5.13) cannot be written back as a stochastic
optimal control problem with imperfect information. Nevertheless, it can be rewritten in terms of
Ik as follows, for i0 ∈ Rny :

rV (i0) = min
πc0

Eπ
“∑+∞

k=0 α
k(E[gc(Xk, Uk)|Ik] + E[ge(Xk, π

e
∗(Ik)))|Ik]|I0 = i0

‰

s.t. Ik+1 = (Ik, Uk, Yk+1),
Uk = πc0(Ik),

(5.14)

where πe∗ denotes here the optimal estimation policy written as a function of Ik.

This two-step scheme is not new in some sense because we have seen in section 4.3.1 that most of the
policies are built from an estimation step and control step. However, there are several major differences
with a classical scheme. First, it appears naturally from the coupled problem (5.4) meaning that the
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splitting is structural in this case and does not come from an assumption of separation. Secondly, the
actual value of pXk is not directly involved in the control problem (5.14) only µk. In practice however, the
same approximation of µk is used both in the estimation and the control step. Finally the control problem
(5.14) has new interesting properties as we will see in a Section 5.3.

The goal of the next two sections is to justify formally the use of particle filtering and Explicit Dual
SMPC in the practical resolution of the scheme described in this section.

5.2 Near-optimal nonlinear filtering

5.2.1 Statement of the problem

In this section, we suppose that the control process is a fixed deterministic sequence (uk)k≥0. For k ≥
0, we also consider a fixed deterministic sequence of observations (y0, . . . , yk). This is equivalent to
considering a fixed vector of information ik. µk is then the distribution of Xk conditionally to Ik = ik
and µk|k−1 is then the distribution of Xk conditionally to Ik−1 = ik−1.

In the previous section, we have seen that if we model the problem of control and estimation as an
optimisation problem then a step of optimal estimation is required at each time k. The optimal estimation
problem (5.10) is written at any µ but actually, it is only required to solve it at µk. The problem at µk
reads:

min
x̂∈Rnx

g̃e(µk, x̂). (5.15)

In terms of Ik, it reads:

min
x̂∈Rnx

E[ge(Xk, x̂)|Ik = ik]. (5.16)

The problem (5.15) can be hard to solve and to analyse if ge is a complex nonlinear nonconvex cost
function. Thus, we focus on the Mean Square Error (MSE) minimisation problem i.e. we assume that
ge(x, x̂) = ‖x̂− x‖2. We recall the problem seen in Section 4.2:

min
x̂∈Rnx

E[‖x̂−Xk‖2|Ik = ik]. (5.17)

We are concerned with conditional MSE in problem (5.17) precisely because it appears in step 1
in Section 5.1.2. However, we are also interested in the minimisation of the total MSE in which one
integrates also over ik. It is a more relevant a priori measure of the estimation error than the conditional
MSE because it does not depend on ik which is unknown initially. It is defined as follows:

min
πe

E
”

‖ pXk −Xk‖
2
ı

s.t. pXk = πe(Ik),
(5.18)

where the expectation is also taken over Ik. It is known that the optimal solution of the problems (5.17)
and (5.18) is given by the conditional expectation of Xk conditionally to Ik. We recall the definition of
the conditional expectation, denoted by pX∗k , in terms of µk:

pX∗k = E[Xk|Ik = ik] = 〈µk, Id〉, (5.19)
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where Id is the identity map on Rnx . From this, we define the conditional and total optimal MSE at time
k denoted respectively by econdk,∗ and etotk,∗, as follows, for any ik:

econdk,∗ (ik) = E
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

, (5.20)

etotk,∗ = E
”

‖Xk − pX∗k‖
2
ı

. (5.21)

The simpler problems (5.17) and (5.18) are still impossible to solve analytically because the condi-
tional distribution µk is not exactly known in general. Therefore, the issue of solving the problem (5.15)
approximately appears naturally. A related issue is to determine if it is possible to use an approximation
of µk coming from a particle filter to solve the problem (5.15) approximately. To define a candidate ap-
proximate solution, we consider a Monte Carlo approximation of µk and of µk+1|k denoted respectively
by µNk and µNk+1|k. We recall their general formulation, for N ≥ 1 and k ≥ 0:

µNk =
N∑
i=1

ωikδxik
, (5.22)

µNk+1|k =

N∑
i=1

ωik+1|kδxik+1|k
, (5.23)

where δx denotes the Dirac measure at x,
`

ωik
˘

i=1,..,N
are normalised weights inR+ and

`

xik
˘

i=1,..,N
are

randomparticles inRn. We also assume that this particle filter follows the algorithm from [Hu et al., 2011]
and recalled in Algorithm 2 with slight modifications to fit it in our controlled framework. The main fea-
ture of this particle filter algorithm is that it has an additional step that forces the mean likelihood of the
particles to be sufficiently high. A classical approximation of pX∗k is the empirical mean of the particle
filter that we denote by pXN

k . We recall its definition in the sequel:

pXN
k =

N∑
i=1

ωikx
i
k = 〈µNk , Id〉. (5.24)

Similarly to the optimal MSE, we define the empirical conditional and total MSE associated with
pXN
k denoted respectively by econdk,N and etotk,N , as follows, for any ik:

econdk,N (ik) = E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

, (5.25)

etotk,N = E
”

‖Xk − pXN
k ‖

2
ı

, (5.26)

where the expectation is also taken over the randomness of the particles.
Themain contribution of Section 5.2 is to show that under suitable assumptions on the dynamics (4.7),

the observation equation (4.20) and the particle filter from Algorithm 2, the empirical MSE converges to
the optimal MSE as the number of particle goes to infinity. More precisely, we prove, in teh sequel, new
error bounds between econdk,N (ik) and econdk,∗ (ik) and between etotk,N and etotk,∗.

5.2.2 Error bounds between the optimal MSE and the empirical MSE

The main difficulty in the following comes from the fact that, even if pXN
k is very commonly used as

an approximation of pX∗k , estimating rigorously the convergence of pXN
k to pX∗k cannot be achieved by
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Algorithm 2 Particle filter with a likelihood test
1: Create a sample of N particles xi0 according to the law µ0 and initialize the weights ωi0 with 1

N .
2: for k = 0, 1, 2 . . . do
3: Prediction:
4: Given a control uk and a set of particles

`

xik
˘

i=1,..,N
and a set of normalised weights

`

ωik
˘

i=1,..,N
,

compute the predicted particles by drawing samples fromK:

x̄ik+1|k ∼ K(dxk+1|k, x
i
k, uk), for i = 1, .., N,

ω̄ik+1|k = ωik.

5: Likelihood test:
6: Get the new observation yk+1.
7: if 1

N

∑N
i=1 ρ(yk+1, x̄

i
k+1|k) ≥ γk+1 where γk+1 > 0 is a threshold then proceed to Step 8 other-

wise return to Step 4.
8: Rename xik+1|k = x̄ik+1|k and ω

i
k+1|k = ω̄ik+1|k.

9: Correction:
10: Compute the unnormalised updated weights

`

ω̃ik
˘

i=1,..,N
thanks to the likelihood function ρ:

ω̃ik+1 ∝ ω̄ik+1|kρ(yk+1, x
i
k+1|k).

11: if Resampling then
12: Draw the a posteriori particles

`

xik+1

˘

i=1,..,N
from the set

´

xik+1|k

¯

i=1,..,N
and

`

ω̃ik
˘

i=1,..,N

using a resampling technique and set ωik+1 = 1
N .

13: else
14: Set xik+1 = xik+1|k and ω

i
k+1 =

ω̃ik+1∑N
i=1 ω̃

i
k+1

.
15: end if
16: end for

classical error bounds on particle filters seen in Section 4.2.3.2. In fact, one can see from equations
(5.19) and (5.24) that pX∗k and pXN

k can be seen as the integral of an unbounded function, Id, w.r.t. µk
and µNk . Therefore, it does not fit in the classical framework of weak error bounds reviewed in Section
4.2.3.2 and new ones are required.

To begin with, without assumptions, we can compare the several MSE using the optimality of econdk,∗
and etotk,∗. This is the topic of Proposition 5.1.

Proposition 5.1. The following inequalities hold, for any ik:

econdk,∗ (ik) ≤ econdk,N (ik),

etotk,∗ ≤ etotk,N .

Proof. It is clear fromAlgorithm 2 that
`

ωik
˘

i=1,..,N
and

`

xik
˘

i=1,..,N
are independent ofXk conditionally
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to ik so:

pX∗k = E rXk|Ik = iks = E
”

Xk|Ik = ik,
`

ωik
˘

i=1,..,N
,
`

xik
˘

i=1,..,N

ı

.

It means that pX∗k is the solution of the following problem:

min
x̂∈Rnx

E[‖x̂−Xk‖2|Ik = ik,
`

ωik
˘

i=1,..,N
,
`

xik
˘

i=1,..,N
].

Moreover, pXN
k is a function of ik,

`

ωik
˘

i=1,..,N
and

`

xik
˘

i=1,..,N
so it is admissible for the previous

problem. Therefore, by optimality of pX∗k :

E
”

‖Xk − pX∗k‖
2
|Ik = ik,

`

ωik
˘

i=1,..,N
,
`

xik
˘

i=1,..,N

ı

≤ E
”

‖Xk − pXN
k ‖

2
|Ik = ik,

`

ωik
˘

i=1,..,N
,
`

xik
˘

i=1,..,N

ı

.

Then, by integrating conditionally to ik:

E
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

≤ E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

,

econdk,∗ (ik) ≤ econdk,N (ik). (5.27)

By integrating over ik:

etotk,∗ ≤ etotk,N , (5.28)

and the result is proven.

We also assume that Xk is square integrable, i.e ∀k ≥ 0:

E[‖Xk‖2] < +∞.

This ensures that econdk,∗ (ik) < +∞ and etotk,∗ < +∞. The goal of this assumption is to avoid infinite
errors which make all the subsequent inequalities trivial.

Proposition 5.1 gives a natural lower bound on both the conditional and total MSE. To find upper
bounds, we will first treat the conditional case and then extend it to the total case by integrating over ik

5.2.2.1 Bound on the conditional MSE

This section is dedicated to the proof of an upper bound on econdk,N (ik) and of the convergence of econdk,N (ik)

to econdk,∗ (ik). The main result of this section is contained in Theorem 5.3.
First,we notice that econdk,N (ik) can be rewritten as follows:

econdk,N (ik) = E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

= E
”

‖Xk − pX∗k + pX∗k − pXN
k ‖

2
|Ik = ik

ı

, (5.29)

By Young’s inequality, we get for any ε > 0:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

+

ˆ

1 +
1

ε

˙

E
”

‖ pX∗k − pXN
k ‖

2
|Ik = ik

ı

,

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

+

ˆ

1 +
1

ε

˙

E
”

‖〈µk, Id〉 − 〈µNk , Id〉‖
2|Ik = ik

ı

.

(5.30)
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The last inequality can be rewritten as follows:

econdk,N (ik) ≤ (1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

efilterk,N (ik), (5.31)

where efilterk,N (ik) = E
”

‖〈µk, Id〉 − 〈µNk , Id〉‖
2|Ik = ik

ı

. One can deduce from Equation (5.31) that,

up to ε, it is sufficient to control the term efilterk,N (ik). For x = (x1, . . . , xnx) in the canonical basis of
Rnx , and j = 1, .., nx one defines the jth coordinate function, φj , such that, ∀x ∈ Rnx :

φj(x) = xj .

Then, efilterk,N (ik) can be decomposed as follows:

efilterk,N (ik) = E

»

–

nx∑
j=1

|〈µk, φj〉 − 〈µNk , φj〉|
2|Ik = ik

fi

fl ,

=

nx∑
j=1

E
”

|〈µk, φj〉 − 〈µNk , φj〉|
2|Ik = ik

ı

. (5.32)

This term can be seen as a quadratic error term of the particle filter µNk where the scalar test functions
are the coordinate maps. As said earlier, efilterk,N (ik) cannot be bounded by classical error bounds because
Id is not bounded. However, in [Hu et al., 2011], a bound on the Lp-norm for a class of potentially
unbounded test functions is given. The error bound is written conditionally to ik in the following form:

E
”

|〈µk, φ〉 − 〈µNk , φ〉|
p|Ik = ik

ı

≤ Ck|k
‖φ‖pk,p
Np−p/r , (5.33)

where p ≥ 2, 1 ≤ r ≤ 2, φ is a test function, ‖φj‖k,2 = max(1, 〈µ0, |φj |2〉
1
2 , . . . , 〈µk, |φj |2〉

1
2 ), and

Ck|k is a coefficient depending on ik. It was originally written conditionally to a sequence of observation
y0:k but the extension conditionally to ik is straightforward.

In the sequel, we would like to apply the bound (5.33) to efilterk,N (ik). To do so, we present the adapted
assumptions of [Hu et al., 2011] for the particular case φ = φj , p = 2 and r = 2.

Assumption 5.1. For any k ≥ 1, for 0 < εk < 1, for almost all ik, there exists Nk(ik) > 0 such that,
for N ≥ Nk(ik):

γk =
1

2
inf
ik
〈µk|k−1, ρ〉 > 0, (5.34)

P (〈µNk|k−1, ρ〉 > γk|Ik = ik) ≥ 1− εk. (5.35)

In particular, under Assumption 5.1, for almost all ik:

〈µk|k−1, ρ〉 > γk.

Assumption 5.2. For k ≥ 1 and for almost all yk, xk, xk−1 and uk−1:

ρ(yk, xk) < +∞,
K(xk, xk−1, uk−1) < +∞.
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For j = 1, .., nx, we denote respectively the L∞-norm of K, ρ and ρφj w.r.t. x by ‖K‖, ‖ρ‖ and
‖ρφj‖ i.e, for almost all ik:

‖K‖ = sup
x0,x1,

K(x1, x0, uk−1),

‖ρ‖ = sup
x
ρ(yk, x),

‖ρφ2
j‖ = sup

x
|φ2
j (x)ρ(yk, x)|.

Assumption 5.3. For k ≥ 1 and for almost all ik,

‖K‖ < +∞,
‖ρ‖ < +∞,

‖ρφ2
j‖ < +∞.

As ‖ρφj‖≤ ‖ρφ2
j‖

1
2 ‖ρ‖

1
2 , Assumption 5.3 implies that ‖ρφj‖< +∞. Proposition 5.2 presents then

an upper bound of econdk,N (ik).

Proposition 5.2. Under Assumption 5.1, 5.2 and 5.3, for ε > 0, for j = 1, .., nx and k ≥ 0, for almost
all ik, there exist Ck|k,j > 0 andMk|k,j > 0, such that for N ≥ Nk(ik):

econdk,N (ik) ≤ (1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
, (5.36)

where ‖φj‖k,2 = max(1, 〈µ0, |φj |2〉
1
2 , . . . , 〈µk, |φj |2〉

1
2 ). Besides,Ck|k,j andMk|k,j follow the following

coupled recursion, for almost all ik:

M0|0,j = 3, (5.37)

C0|0,j = 8 rC, (5.38)

Mk|k,j = 2 + αk,j

ˆ

1 +

ˆ

4− εk
1− εk

+ 1

˙

Mk−1|k−1,j

˙

(5.39)

C
1
2

k|k,j = 2
3
2 ( rC)

1
2M

1
2

k|k,j +
2

3
2 ( rC)

1
2βk,j

(1− εk)
1
2

M
1
2

k−1|k−1,j (5.40)

+
‖K‖

3
2 ‖ρ‖k,2βk,j

(1− εk)|γk2 − 〈µk|k−1, ρ〉|
M

1
2

k−1|k−1,jC
1
2

k−1|k−1,j + ‖K‖βk,jC
1
2

k−1|k−1,j ,

βk,j =
‖ρ‖(‖φjρ‖+γk

2 )
γk
2 〈µk|k−1, ρ〉

, (5.41)

αk,j = ‖K‖2
‖ρ‖(‖φ2

jρ‖+
γk
2 )

γk
2 〈µk|k−1, ρ〉

, (5.42)

where:

• rC > 0;
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• ‖ρ‖k,2 = 〈µk, ρ〉 ≤ ‖ρ‖,

• Nk(ik) ≥
‖ρ‖2k,2‖K‖

2max
j

Ck−1|k−1,j

|γk−〈µk|k−1,ρ〉|2εk
, with 0 < εk < 1 is fixed independently of ik.

Proof. We recall that under Assumption 5.1:

〈µk|k−1, ρ〉 > γk >
γk
2
.

Besides, ∀k ≥ 1, for 0 < εk < 1, for almost all ik, there exists Nk(ik) > 0 such that, ∀N ≥ Nk(ik):

P (〈µNk|k−1, ρ〉 >
γk
2
|Ik = ik) ≥ 1− εk.

Therefore, under the additional assumptions 5.2 and 5.3, we consider theorem 3.1 of [Hu et al., 2011]
with φ = φj , with p = r = 2 and with γk

2 instead of γk. It implies that, for j = 1, .., nx and k ≥ 1, for
almost all ik, ∃Ck|k,j > 0, such that ∀N ≥ Nk(ik):

E
”

|〈µk, φj〉 − 〈µNk , φj〉|
2|Ik = ik

ı

≤
Ck|k,j‖φj‖2k,2

N
,

E
”

‖〈µk, Id〉 − 〈µNk , Id〉‖
2|Ik = ik

ı

≤
∑n

j=1Ck|k,j‖φj‖
2
k,2

N
. (5.43)

By putting end to end the computations in [Hu et al., 2011], one can show that, for k ≥ 1, and
j = 1, .., nx,Ck|k,j follow the coupled equations (5.37) to (5.42) that involves another coefficient denoted
byMk|k,j . From the computation of Ck|k,j and Assumption 5.1, one can also show that Nk(ik) can be

chosen as such that Nk(ik) ≥
‖ρ‖2k,2‖K‖

2max
j

Ck−1|k−1,j

|γk−〈µk|k−1,ρ〉|2εk
, with 0 < εk < 1.

Then, by combining equations (5.31) and (5.43), one obtains ∀ε > 0, for almost all ik, ∀N ≥ Nk(ik):

econdk,N (ik) ≤ (1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
,

and one gets the result.

By combining Proposition 5.1 and 5.2, one finally gets Theorem 5.3.

Theorem 5.3. Under Assumption 5.1, 5.2 and 5.3, for ε > 0, for k ≥ 0, for almost all ik, ∃Ck|k,j > 0,
∀N ≥ Nk(ik):

econdk,∗ (ik) ≤ econdk,N (ik) ≤ (1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
.

In particular, for almost all ik:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

−→
N→+∞

E
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

. (5.44)
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Proof. As Proposition 5.1 requires no assumptions, Proposition 5.1 and 5.2 hold under Assumption 5.1,
5.2 and 5.3 and one gets directly that ∀ε > 0, for almost all ik, for any N ≥ Nk(ik):

econdk,∗ (ik) ≤ econdk,N (ik) ≤ (1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
.

By choosing ε = 1
Nq with 0 < q < 1, one can obtain from (5.45) that, for almost all ik, ∀N ≥ Nk(ik):

econdk,∗ (ik) ≤ econdk,N (ik) ≤
ˆ

1 +
1

N q

˙

econdk,∗ (ik) + p1 +N qq

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
. (5.45)

Moreover, the right-hand side converges such that:

ˆ

1 +
1

N q

˙

econdk,∗ (ik)+ p1 +N qq

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
−→

N→+∞
econdk,∗ (ik). (5.46)

Thus, it is now clear from (5.45) and (5.46) that for almost all ik:

econdk,N (ik) −→
N→+∞

econdk,∗ (ik),

which means that:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

−→
N→+∞

E
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

.

Theorem 5.3 basically means that pXN
k is near-optimal with respect to the conditional MSE. Besides,

equation (5.45) gives an estimation of the speed of convergence of the empirical MSE. For example, for
q = 1

2 , one can see that the speed of convergence of this MSE is of order 1?
N
. It is slower than usual in

Monte Carlo methods. One would rather expect a convergence rate of order 1
N as it is the case in equation

(5.43). The conservativeness of the bound (5.45) comes from our use of Young’s inequality instead of
Minkowsky’s inequality. Actually, a very similar reasoning could be undertaken using Minkowsky’s
inequality and one would get a better convergence rate but it would involve the conditional Root Mean
Square Errors (RMSE), (econdk,∗ )

1
2 and (econdk,N )

1
2 , and not the MSE. The RMSE is easier to interpret than

the MSE in practice in an estimation context for the same reasons that the standard deviation is easier to
relate to concrete data than the variance. However, minimising a MSE, which is the mean of a quadratic
form, is more adapted to the context of stochastic optimisation defined in Section 5.1.1. That is why, we
focus on MSEs and not RMSEs in this section even if we lose some precision in the error bounds.

In the sequel, we would like to extend the result of Theorem 5.3 to the total MSE. A intuitive way
would be to integrate equation (5.45) over ik. However, it is not possible in its current form because
Ck|k,j andMk|k,j depend on ik which makes the integrability on the right-hand of equation (5.45) hard
to evaluate. Moreover, the thresholdNk(ik) also depends on ik meaning that one would have to integrate
equation (5.45) conditionally to N ≥ Nk(ik) which is not satisfying. One cannot apply the Dominated
Convergence theorem either precisely because equation (5.45) does not hold true for sufficiently largeN
with a threshold independent of ik.
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5.2.2.2 Bound on the total MSE

The main contribution of this section is the extension of the result of Theorem 5.3 to the total MSE. This
result is presented in Theorem 5.5.

As in the conditional case, Proposition 5.1 provides a lower bound of etotk,N , we are then looking for
an upper bound of etotk,N . As suggested earlier, one would like to integrate the right-hand side of equation
(5.36) w.r.t. ik, which is defined, for ε > 0, for almost all ik and for any N ≥ Nk(ik) by:

(1 + ε)econdk,∗ (ik) +

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
.

Note first that E[econdk,∗ (ik)] = etotk,∗ < +∞ as Xk is square integrable. Secondly, one can notice that
∀k ≥ 0, ∀j = 1, .., n, 〈µk, |φj |2〉 is integrable because Xk is square integrable, by assumption. Thus,
for j = 1, .., nx, ‖φj‖2k,2 is integrable.

Actually, the first issue lays in the fact thatCk|k,j depends on ik and it is not clear at all from equations
(5.37) to (5.42) that each term Ck|k,j‖φj‖2k,2 is integrable w.r.t. ik. To bypass this issue, we show in the
following that Ck|k,j andMk|k,j can be bounded by related coefficients that are constant with respect to
ik under an additional assumption. The dependence of Ck|k,j and Mk|k,j on ik come from ‖K‖, ‖ρ‖,
‖ρφ2

j‖ and ‖ρφj‖. Therefore, to be able to remove this dependence, we assume that these quantities are
bounded uniformly in ik.

Assumption 5.4. ∀k ≥ 0, ∀j = 1, .., nx:

‖K‖∞ = sup
x1,x0,u0

K(x0, x1, u0) < +∞,

‖ρ‖∞ = sup
x,y

ρ(y, x) < +∞,

‖ρφ2
j‖∞ = sup

x,y
|φ2
j (x)ρ(y, x)|< +∞.

It is clear that Assumption (5.4) implies (5.3). As ‖ρφj‖∞ ≤ ‖ρφ
2
j‖

1
2

∞‖ρ‖
1
2∞, Assumption 5.4 implies

that ‖ρφj‖∞ < +∞
We can now state the following proposition:

Proposition 5.4. Under Assumptions 5.1, 5.2 and 5.4 , ∀k ≥ 0, ∀j = 1, .., nx, there exist C ′k|k,j > 0

andM ′k|k,j > 0 such that, for almost all ik:

Ck|k,j ≤ C ′k|k,j < +∞,

Mk|k,j ≤M ′k|k,j < +∞.

Proof. One defines C ′k|k,j , andM
′
k|k,j recursively as follows, ∀k ≥ 0, ∀j = 1, .., n:
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M ′0|0,j = 3, (5.47)

C ′0|0,j = 8 rC, (5.48)

M ′k|k,j = 2 + α′k,j

ˆ

1 +

ˆ

4− εk
1− εk

+ 1

˙

M ′k−1|k−1,j

˙

, (5.49)

(C ′k|k,j)
1
2 = 2

3
2 ( rC)

1
2 (M ′k|k,j)

1
2 +

2
3
2 ( rC)

1
2β′k,j

(1− εk)
1
2

(M ′k−1|k−1,j)
1
2 (5.50)

+
‖K‖

3
2∞‖ρ‖∞β′k,j

(1− εk)γk2
(M ′k−1|k−1,j)

1
2 (C ′k−1|k−1,j)

1
2 + ‖K‖∞β′k,j(C ′k−1|k−1,j)

1
2 ,

β′k,j =
‖ρ‖∞(‖φjρ‖∞ + γk

2 )
γ2k
2

, (5.51)

α′k,j = ‖K‖2∞
‖ρ‖∞(‖φ2

jρ‖∞ + γk
2 )

γ2k
2

. (5.52)

Because of Assumption 5.4, the following inequalities hold, ∀j = 1, .., n:

‖ρ‖ ≤ ‖ρ‖∞ < +∞,
‖ρφ2

j‖ ≤ ‖ρφ2
j‖∞ < +∞, (5.53)

‖ρφj‖ ≤ ‖ρφj‖∞ < +∞.

Thus, by recursion on k, ∀k ≥ 0, ∀j = 1, .., n

C ′k|k,j < +∞,

M ′k|k,j < +∞.

Moreover, from Assumption 5.1, for almost all ik:

〈µk|k−1, ρ〉 ≥ γk ≥
γk
2
, (5.54)

〈µk|k−1, ρ〉 −
γk
2
≥ γk

2
> 0,

1

|〈µk|k−1, ρ〉 − γk
2 |

=
1

〈µk|k−1, ρ〉 − γk
2

≤ 1
γk
2

. (5.55)

One needs to be able to bound the term 1
|〈µk|k−1,ρ〉−

γk
2
| from above uniformly in ik. Consequently, from

(5.53) and (5.55), ∀k ≥ 0, ∀j = 1, .., nx, for almost all ik:

αk,j ≤ α′k,j , (5.56)
βk,j ≤ β′k,j .

Finally, from (5.54), (5.56), equations (5.37) to (5.41) and equations (5.47) to (5.52), one can show
by recursion on k, that ∀k ≥ 0, ∀j = 1, .., n, for almost all ik:

Ck|k,j ≤ C ′k|k,j ,

Mk|k,j ≤M ′k|k,j .
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Besides, since γk, ‖ρ‖∞, ‖ρφ2
j‖∞ and ‖ρφj‖∞ do not depend on ik, C ′k|k,j andM

′
k|k,j do not depend on

ik either and one gets the result.

Finally, each term C ′k|k,j‖φj‖
2
k,2 is integrable which solves our first problem. Our second problem is

that the thresholdNk(ik) also depends on ik. Actually, under the same assumption, one can find a larger
threshold that does not depend on ik.

This is the topic of the next result which is the main one of the section:

Theorem 5.5. Under Assumptions 5.1, 5.2 and 5.4, for 0 < q < 1, for k ≥ 0, there exists sNk > 0, such
that for any N ≥ sNk

etotk,∗ ≤ etotk,N ≤
ˆ

1 +
1

N q

˙

etotk,∗+ p1 +N qq

∑n
j=1C

′
k|k,jE

”

‖φj‖2k,2
ı

N
< +∞. (5.57)

In particular:

E
”

‖Xk − pXN
k ‖

2
ı

−→
N→+∞

E
”

‖Xk − pX∗k‖
2
ı

. (5.58)

Proof. Under Assumptions 5.1, 5.2 and 5.4, Proposition 5.2 holds and implies that, for almost all ik,
∀N ≥ Nk(ik), ∀ε > 0:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

+

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
,

(5.59)

where Nk(ik) =
‖ρ‖2k,2‖K‖

2max
j

Ck−1|k−1,j

| γk
2
−〈µk|k−1,ρ〉|

2
εk

.

First, one can notice from (5.53), (5.55) and Proposition 5.4 that, ∀k ≥ 1, for almost all ik:

Nk(ik) ≤
‖ρ‖2∞‖K‖

2
∞

(γk2 )2εk
max
j

C ′k−1|k−1,j ≡ N̄k.

N̄k does not depend on ik then (5.59) is true for a number of particles independent of ik i.e for almost all
ik, ∀N ≥ N̄k, ∀ε > 0:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

+

ˆ

1 +
1

ε

˙

∑n
j=1Ck|k,j‖φj‖

2
k,2

N
.

By using Proposition 5.4 again:

E
”

‖Xk − pXN
k ‖

2
|Ik = ik

ı

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

+

ˆ

1 +
1

ε

˙

∑n
j=1C

′
k|k,j‖φj‖

2
k,2

N
.

Now one is able to integrate over ik, which leads to:

E
”

‖Xk − pXN
k ‖

2
ı

≤ p1 + εqE
”

‖Xk − pX∗k‖
2
ı

+

ˆ

1 +
1

ε

˙

∑n
j=1C

′
k|k,jE

”

‖φj‖2k,2
ı

N
.

(5.60)
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We recall that E
”

‖Xk − pX∗k‖
2
|Ik = ik

ı

and ‖φj‖2k,2 are integrable w.r.t. ik because Xk is square-
integrable. Moreover, from Proposition 5.1, and by taking ε = 1

Nq with 0 < q < 1, one can get
additionally that ∀k ≥ 0, ∀N ≥ sNk:

etotk,∗ ≤ etotk,N ≤
ˆ

1 +
1

N q

˙

etotk,∗+ p1 +N qq

∑n
j=1C

′
k|k,jE

”

‖φj‖2k,2
ı

N
< +∞.

The convergence result is straightforward from the previous equation.

Similarly to Theorem 5.3, Theorem 5.5 means that the total MSE associated with pXN
k is close to be

optimal if the number of particle is sufficiently high. Theorem 5.5 also provides an estimation of the rate
of convergence. This leads to several remarks and interpretations.
Remark 5.1.

• Assumption 5.2 is very mild because most systems have finite likelihood and transition kernel.
Besides, in Section 6.2 dedicated to TAN with a real ground map, we give an example of model in
TANwhere Assumptions 5.3 and 5.4 are verified. It requires that the likelihood function ρ vanishes
sufficientlywhen ‖x‖→ +∞ to counter the increasing effect ofφj as explained in [Hu et al., 2008].
Finally, Assumption 5.1 is natural in particle filtering. It requires that the predicted distribution
µk|k−1 and the predicted particles match the likelihood ρ for each information vector ik through
the following inequalities, for k ≥ 0, for ik:

〈µk|k−1, ρ〉 > γk,

P (〈µNk|k−1, ρ〉 > γk|Ik = ik) ≥ 1− εk.

As said in Section 4.2, the failure of this property a well known issue in particle filtering that is stud-
ied in more depth in [Hu et al., 2008], [Le Gland et al., 2004] and [Crisan and Doucet, 2002]. It is
notably showed that it has an impact on the precision of some error bounds. In [Hu et al., 2011], it
is proven that the first inequality and Step 7 in Algorithm 2 imply the second inequality Intuitively,
Step 7 in Algorithm 2 forces the particles to be positioned where the true state is the most likely to
be with respect to the new observation yk.

• The coefficients M ′k|k,j and C
′
k|k,j tend to +∞ with time. Actually, It can be easily seen from

equation (5.49) that, for j = 1..nx, and k ≥ 1,

M ′k|k,j ≥ αk,jθkM
′
k−1|k−1,j ,

with θk = 1 + 4−εk
1−εk ≥ 2. If αk,j ≥ 1 thenM ′k|k,j ≥ 2M ′k−1|k−1,j andM

′
k|k,j goes to +∞. From

equation (5.50), (C ′k|k,j)
1
2 ≥ 2

3
2 ( rC)

1
2 (M ′k|k,j)

1
2 andC ′k|k,j would go to+∞ too. By looking closer

to αk,j in equation (5.52), one can get:

α′k,j = ‖K‖2∞
‖ρ‖∞(‖φ2

jρ‖∞ + γk
2 )

γ2k
2

,

α′k,j = ‖K‖2∞
‖ρ‖∞
γk

‖φ2
jρ‖∞ + γk

2
γk
2

,
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with ‖ρ‖∞γk ≥ 1 from Assumption 5.1 and
‖φ2jρ‖∞+

γk
2

γk
2

≥ 1. Assume that αk,j < 1. One gets in

particular that ‖K‖2∞ < 1. It implies that for x0 ∈ Rnx , x1 ∈ Rnx and u ∈ Rnu :

K(x1, x0, u) < 1.

This means that the transition densities are very spread for each x0 and u. This excludes systems
with small noises whose distribution is a peak, like a Gaussian density with a small variance. For
this reason, we consider that ‖K‖2∞ ≥ 1 and consequently that C ′k|k,j andM

′
k|k,j go to +∞.

Thus, sNk tends to +∞ too which means that the error bound from Theorem 5.5 is not uniform in
k. This is classical for this type of error bound as described in [Crisan and Doucet, 2002]. To get
uniformity in k, one typically need a mixing assumption on K, see [Le Gland et al., 2004] for an
example of uniform bound in time.

• Theorem 5.3 justifies the use of particle in the framework of Section 5.1.2 because it shows that pXN
k

solves approximately the problem 5.17 which was the first objective of this section. Theorem 5.5
rather show the way to a proof of error bounds on particle filters oriented toward output-feedback
stabilisation. Actually, let us assume that a stricly suboptimal estimator of Xk w.r.t. to the total
MSE, denoted by pXsub

k , is available. For example, pXsub
k may come from a Kalman-like filter in a

nonlinear case. By optimality of pX∗k , one gets, for k ≥ 0:

E
”

‖Xk − pX∗k‖
2
ı

< E
”

‖Xk − pXsub
k ‖

2
ı

.

By Theorem 5.5, one gets for a sufficiently large N that:

E
”

‖Xk − pXN
k ‖

2
ı

< E
”

‖Xk − pXsub
k ‖

2
ı

,

meaning the particle filter has better performance than any other suboptimal filter if the number
of particles is sufficiently high. This result is not surprising and observed in practice. However, a
rigorous proof of such a result has never been made to the best of our knowledge.
A possible application could be, for example, to show the stability of the estimator pXN in terms
of the boundedness of E

”

‖Xk − pXN
k ‖

2
ı

by showing it for E
”

‖Xk − pXsub
k ‖

2
ı

for some pXsub
k .

In fact in [Reif et al., 1999], under a small error assumption, the stability of the Extended Kalman
filter is proven in terms of bounded MSE. Other results of stability of nonlinear filters can be found
in [Karvonen, 2014]. The idea would be to show that under the suitable assumptions, ∃C > 0,
such that ∀k ≥ 0 and for sufficiently high N :

E
”

‖Xk − pXN
k ‖

2
ı

≤ E
”

‖Xk − pXsub
k ‖

2
ı

≤ C.

This statement is not rigorous for the moment because one still needs a number of particle increas-
ing with k according to the previous remark. However, it seems to be a good alternative in order
to show MSE boundedness for a particle filter. Note that this kind of result is hard to obtain if
one considers directly the particle filter because one typically needs some nonlinear stochastic ob-
servability condition. See again [Karvonen, 2014]. Finally, this kind of result is very useful in an
output feedback control perspective because it could be a first step toward showing a moment sta-
bility result of the true state of system,Xk, in a nonlinear framework. See [Hokayem et al., 2012]
for an example of outputfeedback moment stability with bounded MSE in a linear context.
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5.3 Stochastic optimal control with an estimation-based cost
Following the concepts of MPC, one would like to approach the problem (5.13) by a finite horizon one,
for 1 ≤ T < +∞ and any µ ∈ P(Rnx):

rV0(µ, T ) = min
π0,...,πT−1

Eπ
”∑T−1

k=0 g̃
c(µk, Uk) + g̃e∗(µk, Uk) + g̃cF (µT ) + g̃eF (µT )|µ0 = µ

ı

s.t. µk+1 = F pµk, Yk+1, Ukq ,
Uk = πk(µk), ∀k = 0, .., T − 1,

(5.61)

where g̃cF (µT ) and g̃eF (µT ) are two final costs. The corresponding MPC law can be written as follows:

π∗MPC(µk) = π∗0(µk),

where π∗0 is the first optimal control law in (5.61).
The main interest of the problem (5.61) is that π∗MPC exhibits both implicit and explicit dual effect.

The implicit dual effect comes from the Bellman equation as in the classical case discussed in Section
4.3.1. It also manifests some explicit dual effect coming from the term ge(Xk, π

e
∗(Ik))) which depends

explicitly on Ik. The term E[ge(Xk, π
e
∗(Ik)))|Ik] also written as g̃e∗(µk) is the optimal mean estimation

error and can indeed be viewed as a measure of the quality of the available information as in explicit dual
SMPC from Section 4.3.2.3. As g̃e∗ is nonlinear in µk, the open loop approximation of problem (5.61)
still requires to propagate the filtering distribution. The open loop problem reads, for any µ ∈ P(Rnx):

rV0(µ, T ) = min
u0,...,uT−1∈U

E
”∑T−1

k=0 g̃
c(µk, uk) + g̃e∗(µk, uk) + g̃cF (µT ) + g̃eF (µT )|µ0 = µ

ı

s.t. µk+1 = F pµk, Yk+1, ukq .
(5.62)

More precisely, if one removes the feedback structure in problem (4.90) to get the open loop problem
(4.92), then the dependency of the cost g̃k on µk can also be removed because E[E[gk(Xk, uk)|Ik]] =
E[gk(Xk, uk)]. As a result, the cost depends only on µk+`|k. In problem (4.87), the dependency cannot
be omitted and µk+` must be computed inside the optimisation problem.

For this reason, g̃e∗(µk) is not a very practical measure of information. One would prefer a measure
of information that does not depend on the realisations of Ik. Therefore, it seems natural to approach
g̃e∗(µk) by classical measures of information used in explicit dual SMPC like a scalar function of the FIM.
As in Section 4.3.2.3, we denote such a measure by ginfo. We recall problem (4.96) in the framework of
this section:

VEX(µk, T ) = min
u0,...,uT−1∈U

E
”∑T−1

`=0 g̃
ex(µ̃`|0, u`) + g̃exF (µ̃T |0)|µ̃0 = µk

ı

s.t. µ̃`+1|0 = G
`

µ̃`|0, u`
˘

∀` = 0, .., T − 1,
(5.63)

where g̃ex = g̃c + g̃info and g̃info(µ) = 〈µ, ginfo〉. The MPC law in this case reads:

πEX(µk) = u∗0(µk),

where u∗0(µk) is the first optimal control in problem (5.63) The main statement of this section is that
explicit dual control problems can be considered as approximations of the problem (5.13) where g̃e∗ is
replaced by a reward on the a priori information g̃info∗ .

To conclude about joint modelling of control and estimation, we have seen that a coupled optimal
control and estimation can be split into two problems: one optimal estimation problem and one optimal
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control problem whose cost is based on optimal estimation. It is shown that in the case of MSE min-
imisation, the empirical mean from a modified particle is near optimal. Besides, explicit dual control
problems appear to be a good tractable approximation of the estimation-based optimal control problem.
This gives a more formal justification of the use particle filtering and explicit dual control in general.

In practice, it is still not clear in the literature how to use particle filtering in dual control. In the
sequel, we present two explicit dual SMPC schemes based on particle filtering and the Fisher Information
Matrix.
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Chapter 6

Dual Particle Fisher Stochastic Model
predictive control and its application to
TAN

The goal of this chapter is to present two explicit dual SMPC nonlinear controllers which combine a
particle filter for state estimation and the Fisher Information Matrix for active information probing. The
main difference between the two controllers is the way in which the stabilising effect is implemented
inside the optimisation problem. These controllers are applied to TAN with a real terrain and numerical
simulations and are displayed at the end of the section.

6.1 Design of the Dual Particle Fisher SMPC schemes

The main issue left from Chapter 5 is the practical design of a SMPC scheme based on problem (5.63).
To do so, we rewrite problem (5.63) in the original state space, for k ≥ 0:

VEX(µk, T ) = min
u0,...,uT−1

Eµk

”∑T−1
`=0 g

ex
` (X`, u`, ξ`) + gexF (XT )

ı

s.t. X`+1 = f(X`, u`, ξ`),
u` ∈ U`, ∀` = 0, .., T − 1,
X0 ∼ µk,

(6.1)

where ∀` = 0, .., T − 1, U` ∈ U is set of constraints on the control. We introduce these new sets to
include the case where one would like to restrain even more the values of the control. We recall that the
costs gex` and gexF are defined as follows, for ` = 0, .., T − 1 :

gex` = gc` + ginfo` ,

gexF = gcF + ginfoF .

The issue of the measures of information ginfo` and ginfoF has already been addressed in Section 4.3.2.3.
There still remains to decide on the costs gc` and gcF and the setsU`. There also remains to build a tractable
approximation of problem (6.1) that allows the use of a particle filter.

119
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6.1.1 Implementation of the guiding objective in Explicit Dual SMPC

The choice of the objective functions gc` and gcF and of the control constraintsU` is a matter of modelling.
Indeed, in receding horizon control, one often has an economic cost tominimise that comes from practical
considerations, such as a price or a fuel consumption. Moreover, the control must be designed to attain
some target in the state space: it is the guiding problem. There are three classical ways to represent and
address this issue in MPC:

• In classical MPC, notably in tracking MPC, the target is fixed a priori. It is for example, a steady
state, x̄ ∈ Rnx , in the deterministic setting. After choosing x̄, one adds a new term to the cost to
enforce stability in some sense. In this case, the general cost is decomposed in the following way,
for ` = 0, .., T − 1:

gc` = gstab` + geco` , (6.2)
gcF = gstabF + gecoF .

Thus, g` and gF realise a compromise between convergence and economic costs. For instance, in
the LQG case, gi(x, u, ξ) = xTMxx+ uTMuu whereMx andMu are positive definite matrices.
The first term drives the state of the system to zero and the second term penalizes high controls, that
can be expensive. The compromise is dealt with by tuning the matricesMx andMu. There also
exist methods based on stabilising state constraints but we omit them as they are not well adapted
to the stochastic case. See [Mayne et al., 2000] for a review of stabilisation techniques in classical
MPC.

• Conversely, in economic MPC, the economic costs geco` is fixed and the final cost is generally not
included. The guiding target is then derived from these costs. For example, in the deterministic
setting, one usually looks for an steady state x̄∗ that is, in some way, optimal w.r.t. geco` . The main
point here is that x̄∗ is not known beforehand.

• Finally, in some cases the guiding goal is fixed and the cost cannot be modified to make the system
converge. An alternative is then to add a drift constraint on the first control, u0, that enforces
the decreasing of some Lyapunov-like function, during the first time step only, such that, for ` =
0, .., T :

gc` = geco` , (6.3)
a negative drift condition on u0.

Actually, since u∗0 is the only control from the optimal sequence that is applied on the system,
the Lyapunov function decreases along the whole trajectory and then stability is obtained. It is
also known as Lyapunov Economic MPC, see [Ellis et al., 2014] for a review in the deterministic
setting. In the stochastic setting, it has been applied with output feedback for continuous-time non-
linear systems in [Homer and Mhaskar, 2017] and for a discrete-time linear system with bounded
controls in [Hokayem et al., 2012] and [Mishra et al., 2017]. To the best of our knowledge, these
concepts have not been used in the context of dual SMPC.

We consider, in a very broad sense, that our guiding objective is to reach some point in the state space
with high probability. Thus, we exclude the case of pure economic MPC. In the sequel, we consider the
two remaining approaches to build two new SMPC controllers.
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6.1.2 Penalising Fisher Dual Particle SMPC scheme

The first SMPC scheme presented here is based on the idea of the stabilising cost. Therefore the total
costs read a priori :

gex` = gstab` + geco` + ginfo` , (6.4)

gexF = gstabF + gecoF + ginfoF .

Notice that (6.4) represents the sum of three terms that usually contain weights that must be tuned.
By construction, the weights affect the convergence of the system to the guiding goal which makes their
tuning difficult. Roughly speaking, if too much importance is given to ginfoi then probing will be efficient
but the system may get stuck far from the target. On the contrary, if too much importance is given to gstabi

then the probing effect will not be sufficient and output feedback performance may be poor. It is difficult
to know which case will occur a priori depending of the value of the weights because the optimal costs
are not known at first sight. More precisely, this means that the weight on (ginfo` )

`=1,..T−1
and (ginfoF ),

denoted byαk, must decrease with k. Here k denotes the actual time and ` the time inside the optimisation
problem. In fact, if αk is constant, then the system will usually converge toward an point that is optimal
for the compromise realised by (6.4), like in Economic MPC. This compromise has to be oriented more
and more toward gstab to allow asymptotic stability. Therefore, by assuming that the weight on geco` is
fixed at a low value, it is clear that αk must decrease with k. As a result, we rather consider the following
total costs:

gex`,k = gstab` + geco` + αkg
info
` , (6.5)

gexF,k = gstabF + gecoF + αkg
info
F ,

where (αk)k≥0 is decreasing. No constraint on the control is added so that ∀` = 0, .., T − 1, U` = U .
The theoretical problem to solve is the particular case of (6.1) defined as follows, for k ≥ 0:

V pen
EX (µk, T ) = min

u0,...,uT−1

Eµk

”∑T−1
`=0 g

ex
`,k(X`, u`, ξ`) + gexF,k(XT )

ı

s.t. X`+1 = f(X`, u`, ξ`),
u` ∈ U , ∀` = 0, .., T − 1,
X0 ∼ µk.

(6.6)

The last step is the numerical resolution of problem (6.6). Note that one cannot draw samples from µk
directly in general becauseµk is unknown. An idea is to use a particle filterµNk as the initial distribution in
(6.6). Actually, it appears that, in output feedbackMPC, there is a synergy between the scenario approach
[Calafiore and Campi, 2006] and particle filtering. In fact, the initial condition for each independent
scenario can be chosen as a particle from the current set of particles. It improves global performance
compared to a similar technique involving a Kalman filter in which, the initials conditions are always
drawn according to a unimodal law. This method was already used in [Sehr and Bitmead, 2016] but not
in a dual MPC scheme. The approximation can be defined for k ≥ 0 by:

V pen
EX,N (µNk , T ) = min

u0···uT−1

∑Ns
i=1 ω

i
k

´∑T−1
`=0 g

ex
`,k

`

X l
`, u`, ξ

i
`

˘

+ gexF,k
`

Xi
T

˘

¯

s.t. Xi
`+1 = f(Xi

`, u`, ξ
i
`),

u` ∈ U ,
Xi

0 = xik, ∀i = 1, .., Ns, ∀` = 0, .., T − 1,

(6.7)

where:
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•
`

xlk
˘

l=1,..,N
and

`

ωlk
˘

l=1,..,N
are computed according to Algorithm (1).

• Ns < N is the number of scenarios considered. It is supposed to be less than the number of
particles for computational reasons. Thus, Ns particles must be extracted from the original set.

• (ξli)i=0,..,T−1,l=1,..,Ns
are i.i.d. random variables sampled from pξ.

The entire Outputfeedback SMPC controller described in this section is summed up in Algorithm 3
and has been presented in [Flayac et al., 2017].

Algorithm 3 Penalising Fisher Output-Feedback Control
1: Create a sample of N particles xi0 according to the law µ0 and initialize the weights ωi0 with 1

N .
2: for k = 0, 1, 2, . . . do
3: Solve problem (6.7) starting from the particles xik and the weights ωik.
4: Get an optimal sequence (u∗0, . . . , u

∗
T−1).

5: Set Uk = u∗0.
6: Compute the a posteriori particles xik+1 and weights ωik+1 given Uk according to Algorithm 1
7: end for

As said earlier, the tuning of αk is hard to realise and yet primordial because it directly impacts the
stability of the system. A way to avoid this difficult tuning is to put the stabilising effect in a constraint
which leads to our second dual SMPC scheme.

6.1.3 Lyapunov/Fisher Dual Particle SMPC scheme

Intuitively, the idea behind the controller of this section is to look for controls that minimise the loss
of information among the stabilising ones. One gives priority to the guiding goal in the form of a hard
constraint on the control as described in (6.3). There remains to decide on a drift constraint. In fact, in
the following we assume that our system would be stabilisable if we had perfect information.

6.1.3.1 Foster-Lyapunov drift in case of perfect information

As seen in the Section 4.1.2, in the perfect information case, the control is computed from state feedback
control policies, i.e. measurable maps, denoted by κk, that maps a state Xk to a control Uk. Since
equation (4.7) is time homogeneous, it is sufficient to consider a fixed control policy κ. Thus, for any κ,
one can define the corresponding closed loop system as follows, ∀k ∈ N:

Xk+1 = f(Xk, κ(Xk), ξk), (6.8)
X0 ∼ p0.

A state feedback control policy is said to be admissible if ∀x ∈ Rn, κ(x) ∈ U . Therefore, equation (6.8)
defines also a time-homogeneous Markov chain whose stability can be studied via the classical theory
of negative drifts conditions discussed in [Meyn and Tweedie, 2009]. In Proposition 6.1, we focus on
geometric drifts conditions that are closely related to Lyapunov conditions for exponential stability of
continuous-time processes.
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Proposition 6.1. Suppose that there exist b > 0 and λmin ∈ [0, 1), a measurable function V : Rnx −→
[0,+∞), a compact set C ⊂ Rnx and an admissible state feedback control policy κ such that, for any
x /∈ C:

E[V (f(x, κ(x), ξ0)] ≤ λminV (x),

supx′∈CEx′ [V (X1)] = b,

then, for any λ ∈ [λmin, 1[,

Ex[V (Xk)] ≤ λkV (x) + b(1− λ)−1,∀k ∈ N, ∀x ∈ Rn,

where Xk is computed with equation (6.8).

Proposition 6.1 is a slightly different reformulation of Proposition 1 in [Chatterjee and Lygeros, 2015]
that can be proven similarly. In particular, we consider that the parameter λ can be chosen arbitrarily in
[λmin, 1[. In practice, λ is a parameter to tune that determines the convergence speed of the system.
Moreover, as explained in [Chatterjee and Lygeros, 2015], if Proposition 6.1 is verified for a norm-like
function V then for r > 0, Px(‖Xk‖> r) decreases as the inverse of V so the distribution of state
concentrates itself around 0. We suppose that the assumptions in Proposition 6.1 are fulfilled and notably
that the system (4.7) can be stabilized with perfect information with some admissible state feedback
control policy κ.

6.1.3.2 Design of the optimisation problem

The purpose of ourMPC scheme is to compute controls that explicitly look for information byminimising
some functions of the FIM, ginfoi and ginfoT , over the controls that stabilise a state estimator. This is
guaranteed by the drift condition taken from Proposition 6.1 and applied to pX∗k only when pX∗k /∈ C. This
means that the constraint sets on the control are defined such that for someλ ∈ [λmin, 1), ∀` = 1, .., T−1:

U` = U ,

U0 = {u0 ∈ U s.t. E
pX∗k

”

V
´

f( pX∗k , u0, ξ0)
¯ı

≤ λV ( pX∗k), when pX∗k /∈ C}.

Thus, the stochastic optimal control problem to solve can be written as follows, ∀λ ∈ [λmin, 1):

V lya
EX = min

u0:T−1

Eµk

”

E[
∑T−1

`=0 g
ex
` (X`, u`, ξ`) + gexT (XT )|I0]

ı

s.t.s.t. X`+1 = f(X`, u`, ξ`),
ui ∈ U , ∀` = 0, .., T − 1,
X0 ∼ µk,

(6.9)

E
pX∗k

”

V
´

f( pX∗k , u0, ξ0

¯ı

≤ λV ( pX∗k), when pX∗k /∈ C, (6.10)

where:

gex` = geco` + ginfo` ,

gexT = gecoT + ginfoT .
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It is important to notice that the admissibility of the drift constraint is guaranteed by the existence of the
stabilising admissible state feedback policy κ. As for the previous SMPC scheme, we would like to solve
problem (6.6) using a Monte Carlo approximation. Keeping the notation from Section6.1.2, it reads:

V lya
EX,N (µNk , T ) = min

u0···uT−1

∑Ns
i=1 ω

i
k

´∑T−1
`=0 g

ex
`

`

X l
`, u`, ξ

i
`

˘

+ gexF
`

Xi
T

˘

¯

s.t. Xi
`+1 = f(Xi

`, u`, ξ
i
`),

u` ∈ U ,
Xi

0 = xik, ∀i = 1, .., Ns, ∀` = 0, .., T − 1,

(6.11)

1

Ndr

Ndr∑
j=1

V (f( pXN
k , u0, ξ̃

j
0) ≤ λV

´

pXN
k

¯

, when pXN
k /∈ C,

where:

• Ndr ∈ N∗ is the size of the sample used to approximate the expectation in the drift constraint.

• (ξi`)`=0,..,T−1,i=1,..,Ns
and (ξ̃j0)j=1,..,Ndr

are i.i.d. random variables sampled from pξ.

The entire Outputfeedback SMPC controller described in this section is summed up in Algorithm 4.
Notice that, if pXN

k ∈ C, then the constraint (6.10) is not assured to be feasible so the full-state policy κ
is used.

Algorithm 4 Lyapunov/Fisher Output Feedback Control
1: Create a sample of N particles xi0 according to the law µ0 and initialize the weights ωi0 with 1

N .
2: for k = 0, 1, 2, . . . do
3: if pXN

k /∈ C then
4: Solve problem (6.11) starting from the particles xik and the weights ωik.
5: Get an optimal sequence (u∗0, . . . , u

∗
T−1).

6: Set Uk = u∗0.
7: else
8: Set Uk = κ

´

pXN
k

¯

9: end if
10: Compute the a posteriori particles xik+1 and weights ωik+1 given Uk according to Algorithm 1
11: end for

This method has two main advantages compared to the one we presented in Algorithm 3:

• First, as mentioned earlier, in Algorithm 3, it is compulsory to decrease the weights on ginfo` and
ginfoT with time otherwise the system converged to a point that was far from the target. In fact,
tuning the initial value and the decreasing of αk is complicated a priori. In problem (6.9), the
stability properties are much less influenced by the cost because of the drift condition which is
a constraint. The most important parameter to tune is λ, and, in principle, it influences only the
convergence speed of the system and not its qualitative properties of stability.
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• Secondly, as stated in [Homer and Mhaskar, 2017], the stability properties are contained in one
constraint and are easier to achieve in practice. In fact, the convergence of the system depends
little on the quality of the solution of the optimisation problem and much more on its admissibility
which is easy to obtain with classical solvers.

The main drawback of this method is that it requires to know a drift function and an admissible
stabilising full state feedback policy. Both are not obvious to obtain for a general nonlinear system.
Another drawback is that the drift constraint is usually not compatible with state constraints because of
controllability issues.

In the following, the two new MPC scheme are validated on Terrain-Aided Navigation with a real
ground map.

6.2 Modelling of TAN with a real ground map

In this section, Algorithms 3 and 4 are applied to the guidance and localisation of a drone by terrain-aided
navigation. Our guiding goal is to drive a drone in a 3D space from an uncertain initial condition X0 to
a compact set centred around 0. If the original target is not 0 then a translation can be made to centre the
problem around 0. In the Cartesian coordinates, we assume that the dynamics of the drone are described
as follows:

• As in Chapter 2, the state is composed of a 3 dimensional position and a 3 dimensional speed:
Xk = (x1,k, x2,k, x3,k, v1,k, v2,k, v3,k) and the control of a 3 dimensional acceleration Uk =
(u1,k, u2,k, u3,k). Note that (x1,k, x2,k) represents the horizontal position and x3,k the altitude.

• its dynamics (6.12) is linear with bounded controls, for k ∈ N,

Xk+1 = AXk +BUk + ξk, (6.12)
‖Uk‖ ≤ Umax, (6.13)

where Umax > 0, A ∈ Rnx×nx and B ∈ Rnx×nu correspond to a discrete-time second order
system with damping on the speed, and ξk ∼ N (0, Q), as in (4.51). Q is usually chosen in the
following form:

Q =

»

—

—

—

—

—

—

–

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 q2

v1 0 0
0 0 0 0 q2

v2 0
0 0 0 0 0 q2

v3

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where qv1 > 0, qv2 > 0 and qv3 > 0. In this setting, the position Xk can attained any position
with a non-zero probability because of the Gaussian noise in our dynamical model (6.12). Thus,
classical linear controllers do not lead to bounded controls almost surely and a nonlinear feedback
controller must be designed.

We assume that the dynamics has a relatively simple form because the main difficulty of this appli-
cation is the nature of the observations. Indeed, we recall that, as in Chapter 2, the speed is measured.
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Besides, the only information on the position is a measurement of the difference between the altitude of
the drone, x3,k, and the altitude of the corresponding vertical point on the ground. We also suppose that
the ground is represented by a map, hM . In practice, hM is determined by a smooth interpolation of data
points on a bounded domain such that:

D = [x1,min, x1,max]× [x2,min, x2,max],

where (x1,min, x1,max, x2,min, x2,max) ∈ R4. Formally, it means that hM : D −→ R+ maps a hor-
izontal position (x1, x2) in D to the corresponding height of the terrain in R+. However, as Xk can
attain leave D with a non-zero probability, the map hM should be defined on R2 and not only on D.
Nevertheless, it is known in practice that the system will not leave D. To represent this additional in-
formation while keeping a Gaussian noise, we define an extended map h̃M : R2 −→ R+ such that, for
(x1, x2) ∈ R2:

h̃M (x1, x2) = hM (x1, x2) if (x1, x2) ∈ D, (6.14)
h̃M (x1, x2) ≥ ‖(x1, x2)‖ if (x1, x2) /∈ D.

Therefore, the observation equation reads:

Yk =

»

—

—

–

y1,k

y2,k

y3,k

y4,k

fi

ffi

ffi

fl

=

»

—

—

–

v1,k

v2,k

v3,k

x3,k − h̃M (x1,k, x2,k)

fi

ffi

ffi

fl

+ ηk, (6.15)

where ηk ∼ N (0, R) and R is defined as follows:

R =

»

—

—

–

r2
v1 0 0 0
0 r2

v2 0 0
0 0 r2

v3 0
0 0 0 r2

h

fi

ffi

ffi

fl

,

with rv1 > 0, rv2 > 0, rv3 > 0 and rh > 0.
From the definition of h̃M and the Gaussian noise in (6.15), the likelihood function can be described

as follows:

ρ(Yk, Xk) ∝ exp

ˆ

− 1

2r2
h

(y4,k − x3,k + h̃M (x1,k, x2,k))
2
˙

.

Notice that:

(y4,k − x3,k + h̃M (x1,k, x2,k))
2 ≥ 1

2

´

y2
4,k + x2

3,k + (h̃M (x1,k, x2,k))
2
¯

.

Besides, one gets from (6.14) that, if ‖(x1, x2)‖ is sufficiently large:

(y4,k − x3,k + h̃M (x1,k, x2,k))
2 ≥ 1

2
‖(y4,k, x1, x2, x3)‖2.
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As a result, one gets that:

ρ(Yk, Xk) = O

ˆ

exp

ˆ

− 1

4r2
h

‖(y4,k, x1, x2, x3)‖2
˙˙

when ‖(y4,k, x1, x2, x3)‖→ +∞ (6.16)

Intuitively, equation (6.16) means that the positions that are far outsideD are very unlikely. As required,
this represents the fact that one knows a priori that the state of the system is inside D. Besides, with a more
formal perspective, the exponential decay in equation (6.16) ensures that the boundedness assumption
5.4 holds true. Furthermore, it is not very restrictive to suppose that the whole speed vector is measured
because the speed on its own is not enough to reconstruct the whole state and the altitude measurement
is still required. The use of particle filters is totally justified for most of the maps, included the one
depicted in Figure 2.2. Actually, the conditional distribution µk is multimodal in this case and its modes
are closely related to the level sets of hM . In particular , Kalman filters cannot accurately deal with this
problem.

Moreover, it appears very naturally that dual control is required in this application. Indeed, the quality
of the observations depends on the control and more precisely on the area that is flied over by the drone.
Let us assume that the drone flies over a flat area with constant altitude. Then, one measurement of height
matches a whole horizontal area and the estimation error on (x1,k, x2,k) is of the order of magnitude of
the size of the area, which can be very large. On the contrary, if the drone flies over a rough terrain,
then one measurement of height corresponds to a smaller area on the ground and the estimation error is
reduced. Therefore, in TAN, information probing consists in flying over informative areas on the ground.

Concerning the cost functions, we choose the economic cost to be the norm of the control for both
algorithms such that ∀k = 0, .., T − 1:

gecok (Xk, Uk, ξk) = αeco‖Uk‖22,
gecoF = 0.

with αeco > 0 small. There exist many ways to define the loss of information that depends on the
FIM, see [Fedorov and Hackl, 2012]. From (4.93), the trace of J−1

k seems adapted if one wants initially
to minimise the MSE. However, it requires to compute the inverse of a matrix which happens to be
costly for an optimisation solver. That is why, we choose another loss of information defined as follows,
∀k = 0, .., T − 1:

ginfok (Jk) =
1

tr(J2
k )
, (6.17)

ginfoF (JT ) =
1

tr(J2
T )
,

where tr denotes the trace operator. Note that ginfok has the same monotony w.r.t. Jk as tr(J−1
k ) and does

not require complex computations. Furthermore, the square in (6.17) forces ginfok to be nonnegative even
if Jk is not positive definite. This may happen during the resolution depending of the type of optimisation
solver used.

In Algorithm 3, we have chosen the stabilising as the simple distance of the final state to the target.
It reads ∀k = 0, .., T − 1:

gstabk = 0,

gF (XT ) = ‖XT ‖22.
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We recall that in Algorithm 4, the guiding problem is addressed with a drift constraint that depends on
the dynamics. We have used the drift proposed in Proposition 8 of [Chatterjee and Lygeros, 2015] so that
V (X) = e‖X‖ and C is a ball centred around 0 whose radius depends only on the disturbances of the
dynamics. To guarantee the existence of an admissible stabilising state feedback policy κ, the maximum
control Umax must be sufficiently high. See [Chatterjee and Lygeros, 2015] for the precise definition of
κ, Umax and C adapted to system (6.12). This drift constraint is only valid for orthonormal dynamics so
we suppose that A is neutrally stable. It means that after a change of coordinates, it can be decomposed
in a Schur-stable block and an orthonormal block. The drift is then considered only on the last block as
the first one already ensures stability.

6.3 Numerical simulations

(a) Trajectory from the OLF controller over a flat area (b) Trajectory from the Penalising Fischer controller
over a flat area

(c) Trajectory from the Lyapunov Fischer controller over
a rough area

Figure 6.1: Realisation of a trajectory of the true state and the particles resulting from an OLF controller
and the two Fisher controllers on a real map



6.3. NUMERICAL SIMULATIONS 129

Figure 6.1 represents the horizontal projection of a trajectory and the associated particles obtained by
several controllers. The terrain map is at the background of the figure. Figure 6.1a represents a trajectory
resulting from Algorithm 4 where the weight on the information is put to zero. The resulting policy is
an OLF one. It is clear on Figure 6.1a that this policy is only passively learning. As a matter of fact,
the set of particles is very spread during most of the travel because the drone flies over a flat area. It
shrinks at the end because the target point happens to be located over a rougher area. We have tested the
Penalising Fisher scheme from Algorithm 3 at the same location on the map and a sample trajectory is
displayed in Figure 6.1b. As expected, the state estimation performed by the particle filter is much more
efficient with the dual controller. We have also tested but not displayed the Lyapunov Fisher scheme and
it gives similar results. Figure 6.1c depicts a sample trajectory resulting from the Lyapunov Fisher from
Algorithm 4 scheme near a mountain. One can see that the drone makes a detour to gain information as
in the previous case.

(a) RMSE in horizontal position (b) RMSE in altitude

Figure 6.2: Plot of the RMSE in position for 3 policies: without the FIM (blue), with the FIM and the
drift from Algorithm 4 (red), with the FIM and the distance to the target from Algorithm 3 (green)

Figure 6.2a and 6.2b shows RMSE respectively in horizontal position and altitude after 30 Monte
Carlo simulations of the three different policies described previously. It appears that, on average, the
horizontal estimation error is reduced with information probing. It is actually due to the fact that the
filter diverges in 30% of the cases without the FIM and 15% with the FIM. Moreover, the mean distance
between the final true state of the system and the target is of 267m with the Lyapunov Fisher scheme, of
385m with the Penalising Fisher scheme and of 457m without using the FIM in the controller.

To stress the difference between the two dual controllers, we have tested them on a simple artificial
map. Figure 6.3 depicts the results of the Penalising Fisher policy with 3 different tuning of αk. Figure
6.3 represents the results of the Lyapunov Fisher policy in the same scenario also with different tuning.
One see in 6.3a, if the weight αk is constant with k, then the system converges far from the target. This
does not happen with the Lyapunov Fisher scheme in any case. To sum up, Figure 6.3 and 6.4 show
that in the Penalising Fisher scheme, the weight on the FIM affect both the information probing and the
stability of the system in a complicated interconnected way. However, in the Penalising Fisher scheme,
the weight on the FIM affect only the information probing and cannot prevent the system from eventually
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going to the target. Besides, the choice of λ determines the convergence speed of the system.
The simulations were run in MATLAB and the optimisation problems were solved using the mod-

elling language AMPL and the solver Ipopt. Besides, thanks to user-defined functions in AMPL and a
library in C for 3D-spline interpolation, we have managed to deal with the interpolation of a real map in
AMPL. This is necessary for the computation of the FIM inside the optimisation problem.
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(a) Trajectory with a constant weight (b) Trajectory with a slowly decreasing weight

(c) Trajectory with a quickly decreasing weight

Figure 6.3: Realisation of a trajectory of the true state and the particles resulting from the Penalising
Fisher controller on an artificial map with different tuning of αk
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(a) Trajectorywith a small weight on the FIM and a small
λ

(b) Trajectory with a large weight on the FIM and a small
λ

(c) Trajectory with a large weight on the FIM and λ close
to 1

Figure 6.4: Realisation of a trajectory of the true state and the particles resulting from the Lyapunov
Fisher controller on an artificial map with and different tuning of the constant-in-time weight on the FIM
and of λ
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Conclusion

The objective of this thesis is to design coupled control and estimation methods for nonlinear dynamical
systems. The main target application is terrain-aided navigation, where the problem is to guide and
estimate the 3D position of a drone flying over a known area. TAN is a typical example of nonlinear
application where the separation principle cannot be applied. Therefore, there is a need for coupled
estimation and control methods. It is to be noted that the estimation problem created by TAN is in itself
difficult to analyse and solve. That is why, the contribution of this thesis is threefold:

• Nonlinear observability analysis and observer design for TAN with analytical ground maps has
been proposed in a continuous time deterministic. It has been shown that under a condition of
persistence of excitation on the horizontal speed, one can reconstruct the 3D position of the drone
in several cases of ground maps (quadratic, cubic, Gaussian). The problem of output-feedback
has also been studied using δ-persistence. Indeed, one needs the system to converge and to be
persistent at the same time which leads to a complex nonlinear stabilisation problem.

• A general formalisation of the joint problem of nonlinear optimal filtering and discrete-time stochas-
tic optimal control has been proposed. Under natural assumptions on the cost function one can
justify the use of two steps in the resolution of the problem. The first step is to solve a classical op-
timal estimation problem. Near optimality of the empirical mean of a modified particle filter w.r.t.
the mean square error has been shown in this thesis which justifies the use of particle filtering. The
second step is to solve a modified optimal control problem with a new term coming from optimal
estimation. This establishes a connection with explicit dual control where a new term representing
a measure of information is empirically added to the cost. Actually, this empirical term can be
seen as an approximation of the the term coming from optimal estimation.

• Following on the formalisation, two explicit dual stochastic MPC output-feedback controllers cou-
pled with a particle filter have been designed and applied to TAN. Both are based on integrated
experiment design but one contains with a penalisation of the guiding goal in the cost and the
other one uses a drift constraint toward the target. The resulting optimisation problems are solved
thanks to a Monte Carlo approximation method and both controllers have shown good results in
simulation.

The presented work has left several perspectives that could be investigated in the future:

Perspective #1: On could foresee mixing the different models of analytical maps from Section 2.2.1
to approximate a real map and use the corresponding observers. For example, one may want to approach
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the large scale variations of a real terrain with a Fourier approximation and its small scale variations with
cubic splines. As for the simpler case, the idea would be to immerse the whole resulting system into a
higher dimensional one and apply a Kalman observer.

Perspective #2: On could try to prove the output-feedback stability of the dual controllers in Section
6.1.3. It is a hard problem precisely because of the dual effect. Intuitively, one must ensure, in some way,
that some stochastic observability properties are maintained by the controller which is already hard to
make formal. However, the design of our Lyapunov controller has notably been inspired by the Lyapunov
MPC scheme from [Homer and Mhaskar, 2017]. In [Homer and Mhaskar, 2017], the authors managed
to prove the convergence of the output-feedback system by assuming the separation of the observer and
the controller and the existence of Control Lyapunov function. One could apply a similar idea to show the
convergence of the controller from Section 6.1.3 without assuming separation as it is not reasonable in
this case. Actually, one could use the knowledge of a drift function for the systemwith perfect information
and an assumption on the control forcing it to preserve the boundedness of the estimation error.

Perspective #3: In Section 5.2, one focuses on the near-optimality of the empirical mean w.r.t. the
MSE. It could be interesting to study the more general problem (4.40) where the expectation in the cost is
approximated by a particle filter. In [Chen et al., 1993], epi-convergence is used to show the convergence
of solution of Monte Carlo approximations of an Open-Loop stochastic control problem to the optimal
solution of the original problem. In [Vila and Gauchi, 2017], the previous result is extended to an Open-
Loop Feedback SMPC involving the predicted distribution. Therefore, it seems promising to try to prove
the convergence of the solution of the approximated estimation problem to the optimal estimator using
epi-convergence techniques by adapting those results.

Perspective #4: The current numerical scheme in Algorithm 3 and 4 is rather simple and uses
a convex programming solver in a heuristic way on a nonconvex problem. One could then work on
improving the efficiency of these numerical methods. For example, to deal with the nonconvexity of the
resulting nonlinear program more efficiently, one could try an Auxiliary-Function method. Besides, one
could also incorporate a paralellisation scheme like decomposition/coordination methods, to speed up
the Monte Carlo methods. Moreover, the stochastic optimisation problem (6.9) has a constraint in mean.
Thus, an Arrow-Hurwitz technique potentially combined with a convex relaxation could be promising
for the particular application of TAN.

Perspective #5: These methods have only been tested on an aerospace application but they seem
well suited for any nonlinear adaptive control. In fact, adaptive control applications typically require a
dual controllers to be able to estimate parameters. Moreover, the nonlinear identification part could be
done by an adequately designed particle filter.
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Titre : Méthodes d’estimation et de contrôle nonlinéaires couplées avec application à la navigation par
corrélation de terrain

Mots Clefs : estimation optimale, commande optimale stochastique, filtrage particulaire, commande
prédictive, observateurs nonlinéaires, navigation par corrélation de terrain

Résumé : Dans cette thèse, nous étudions les problèmes de contrôle et d’estimation non linéaire couplés
avec application à la navigation par corrélation de terrain (TAN en anglais). L’objectif est de guider et
d’estimer la position 3D d’un drone survolant une zone connue. La principale difficulté est la nature de
l’information disponible sur le système. En effet, les seules données disponibles sont la vitesse du système,
une mesure de hauteur/sol et une carte de la zone survolée. Habituellement, les problèmes d’estimation et
de contrôle sont résolus séparément en invoquant le principe de séparation. Cependant, il n’est applicable
que pour des classes de systèmes très particulières, dont les systèmes linéaires. Ainsi, pour un système non
linéaire général, le contrôle et l’estimation doivent être gérés conjointement. La TAN est une application
non linéaire où le principe de séparation ne peut pas être appliqué. En réalité, la qualité des observations
dépend du contrôle et plus précisément de la zone survolée par le drone. En conséquence, les principales
contribution de cette thèse sont la conception d’observateurs non linéaires et contrôle en retour de sortie
pour la TAN avec des cartes analytiques au sol dans un cadre temporel continu, la reformulation du prob-
lème couplé du filtrage optimal non linéaire et de contrôle optimal stochastique au sein d’un problème
d’optimisation global et la conception de schémas de commande prédictive duale explicite couplés à un
filtre particulaire et leur implémentation numérique pour la TAN.
Title : Coupled methods of nonlinear control and estimation applicable to Terrain-Aided Navigation

Keys words : optimal estimation, stochastic optimal control, particle filtering, model predictive control,
nonlinear observers, terrain-aided navigation

Abstract : In this work, we study nonlinear coupled control and estimation problems in order to solve
Terrain-Aided Navigation (TAN). The objective is to guide and estimate the 3D position of a drone flying
over a known area. The main difficulty of this application is the nature of the available information on the
system. Indeed, it is assumed that the only available data are the speed of the system, a measurement of
the height from the ground and a map of the area flied over. Usually, estimation and control problems are
solved separately invoking the classical separation principle. However, it is known to hold true only for
very particular classes of systems. Thus, for a general nonlinear system, control and estimation must be
handled jointly. TAN is a good example of nonlinear application where the separation principle cannot be
applied. Actually, the quality of the observations depends on the control and more precisely on the area
that is flied over by the drone. The main contribution of the thesis are the design of nonlinear observers and
output-feedback control laws for TAN with analytical ground maps, the reformulation of the joint problem
of nonlinear optimal filtering and discrete-time stochastic optimal control into one optimisation problem,
the design of output-feedback Explicit dual stochastic MPC schemes coupled with a nonlinear filter and
their numerical implementation to TAN.


	Introduction
	I Terrain-Aided Navigation with analytical ground maps
	Terrain models and observability conditions
	General nonlinear observability conditions
	General nonlinear controlled system
	General definitions of observability

	Observability properties in Terrain-Aided Navigation
	Dynamical models for Terrain-Aided Navigation (TAN) with closed-form ground maps
	Local weak observability of Terrain-Aided Navigation models


	Observer and controller design for TAN
	Nonlinear observer design by I&I for TAN
	Description of I&I for the design of observers of a general nonlinear system
	Application of I&I design to Terrain-Aided Navigation

	Persistent output-feedback control and stochastic excitation
	Output-feedback control
	An example of a piecewise constant almost surely persistent processes



	II Terrain-Aided Navigation with real ground maps
	Elements of stochastic control and stochastic filtering
	Discrete-time Stochastic Optimal Control
	Deterministic case
	Stochastic case with perfect information 
	Stochastic case with imperfect information 

	State Estimation, Nonlinear Filtering and Particle Filters
	Optimal estimation
	Linear Kalman filtering
	Nonlinear filtering

	Design of suboptimal policies
	Dual effect and classification of suboptimal policies
	Model Predictive Control


	Modelling of joint problem of control and estimation
	Definition of the coupling optimisation problem
	Setup of the problem of optimal control and estimation
	Dynamic programming principle

	Near-optimal nonlinear filtering
	Statement of the problem
	Error bounds between the optimal MSE and the empirical MSE

	Stochastic optimal control with an estimation-based cost

	Dual Particle Fisher SMPC and its application to TAN
	Design of the Dual Particle Fisher SMPC schemes
	Implementation of the guiding objective in Explicit Dual SMPC
	Penalising Fisher Dual Particle SMPC scheme
	Lyapunov/Fisher Dual Particle SMPC scheme

	Modelling of TAN with a real ground map
	Numerical simulations

	Conclusion


