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CHAPTER 1. INTRODUCTION

1.1 Industrial context

By 2030, considering the progress of High Performance Computing (HPC), aerospace manufactur-
ers like Safran Aircraft Engines (SAE), hope to be able to simulate a whole aircraft engine, at full
scale, using Computational Fluid Dynamic (CFD). Indeed, in the next 20 years, their objective is
to replicate all the physical phenomenon that occur inside an aircraft engine in order to certify it
without using expensive real-life tests rigs. However, some parts of the engine are still challenging
to model with existing codes. In particular, we can identify among them: (i) the rotating parts,
(ii) the reactive flows in the combustion chamber and (iii) the cooling systems. These three parts
are presented in Figure 1.1. For the rotating parts, the difficulty is to be able to move the mesh at
high speed inside another domain using efficient moving mesh methods. For reactive flows how-
ever, high fidelity chemical models are needed to describe the gas reactions inside the combustion
chamber and to ensure a strong coupling with the flow dynamics.

(i) the rotating parts 

(ii) the reactive flows in the 
combustion chamber 

(iii) the cooling systems 

Figure 1.1 – Slice view of Safran Aircraft Engines LEAP 1B
Credit: Safran Aircraft Engines.

1.1.1 Generalities on the cooling of aircraft engines

Concerning the cooling systems, their design plays a critical role in the life span of the aircraft en-
gine components. As mentioned by Hetmańczyk et al. in [1], the gas turbine engines operate in
one of the harshest environments. Indeed, their components are subjected to severe mechanical
loads, high temperatures, corrosion and erosion. These difficult conditions often cause consid-
erable damages on the engine components, that can even lead to cracking on one of the engine
parts. A way to improve the parts resistance is by studying the micro-structure of the material it-
self. To do so, mechanical engineers like in [1] have tried to find advanced alloys materials capable
of dealing with these harsh conditions. Another way consists in improving the efficiency of the
cooling systems in order to keep the material in an acceptable range of temperature to avoid any
weakening of the part caused by meeting with hot gases.

However, the efficiency of the cooling systems has been increasingly endangered over the past
decades. Indeed, in the last decades, we have observed an increase of the turbofans By-Pass Ratio
(BPR) which is defined by the following formula:

BPR =
ṁsecond ar y

ṁpr i mar y
(1.1)
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Figure 1.7 – Schematic view of the impingement jet in cross-flow [7]

.

models. Other numerical studies like in [9] were made at the Office National d’Etudes et de Recherche
Aérospatiales (ONERA) using hybrid numerical methods like the Zonal Detached Eddy Simulation
(ZDES) with parietal laws, computed with the CEDRE code, coupled with the Navier-Stokes solver
CHARME. For now, these numerical studies were not able to predict accurately the heat transfer
coefficient distribution on the impact plate. Indeed, in all of these research works, an over estima-
tion of the heat transfer coefficient distribution was found.

From these previous numerical studies, and from the preliminary results we obtained on this
geometry, some critical difficulties were reported to the research network of SAE. These critical
difficulties were first related to the aerodynamic boundary conditions of the problem. Indeed, we
noted that the velocity profiles at the geometry’s inlet and the turbulence rate of the primary flow
had not been measured by the experimental studies. For this reason, it was difficult for computer
scientists to know a priori the right inlet boundary condition to put on the geometry. Furthermore,
the pressure differential between the primary and the secondary flows was not clearly defined in
the experimental setup and thus, had to be assumed. After some numerical experiments made
during this PhD work, we managed to show that this lack of information had a damaging effect on
the heat transfer results. Finally, these difficulties were emphasized by the lack of references on
this particular case in the literature.

The goal of this PhD project is to address the challenges around the impingement jet cooling
and to find in what measure we are able to tackle them. To do so, we were advised by SAE to focus
our work on a more simple case, closely linked to the jet in cross-flow. Indeed, from our prelim-
inary analysis on the jet in cross-flow, the challenges of the cooling by impinging jet are mostly
related to the impinging jet itself, and our ability to capture the parietal heat exchanges in the
boundary layer formed by the impact plate. Furthermore, to our knowledge, the impingement jet
cooling has never been studied using an eulerian finite element framework. It was thus necessary
to study more in details a benchmark configuration of the latter in order to validate the finite el-
ement framework on this type of aerothermal problems. This benchmark configuration study is
the object of Chapter 2 and it is, in particular, the common thread running through this PhD work.
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CHAPTER 1. INTRODUCTION

1.2 State of the art

Over the last years, CFD in aerospace industry has reached a technological cross-road for sev-
eral reasons. Slotnick et al. from National Aeronautics and Space Administration (NASA) in [10]
propose to summarized these reasons in a technological road map given in Figure 1.8. Indeed,
for several years now, despite the fact that RANS and Hybrid RANS/Large Eddy Simulation (LES)
methods with improved Reynolds Stress Transport (RST) methods have reached high Technology
Readiness Level (TRL), computer scientists have observed that they are still unable to predict with
high accuracy the aerodynamic of turbulent flows in a large number of cases. In particular, as seen
in the last section, it brings issues in aerothermal simulations where the heat exchanges are ma-
jorly convective and occurs in turbulent boundary layers. The difficulty met by these methods is
to predict the turbulent flow separation in the boundary layers at flight Reynolds numbers i.e. at
Reynolds numbers above 105. The technology demonstration of these methods is indeed due in
2020. After this point, LES methods will need to demonstrate better TRL in order to allow com-
puter scientists to simulate unsteady separated flows in complex 3D geometries like the ones met
in rotating turbomachinery for example.

7
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Along these physical modeling considerations, research efforts are also needed at a software
level. Indeed, according to the technology road map, the convergence and robustness of CFD
solvers has not yet reached high TRL. The grid convergence is still difficult to achieve in a num-
ber of turbulent cases where prohibitive computational resources are needed. For this reason,
research work on the scalability and efficiency of solvers needs to be continuously updated, and
foundational mathematical research in highly scalable linear and non linear systems is still re-
quired. In particular, to improve the efficiency of numerical solvers, new reliable error estimates
need to be designed, tested and validated on realistic industrial cases. Improvements on error
analysis are also required to asses for the propagation of uncertainties during simulations. In par-
ticular, discretization error estimation is a key ingredient for the realization of an adaptive solution
process.

Indeed, closely linked to discretization error estimates, Adaptive Mesh Refinement (AMR) meth-
ods have yet to prove their capabilities in industrial CFD codes. For a few years now, aerospace
industry has welcomed these new techniques allowing to automatically adapt meshes according
to the simulations needs. The AMR strategies offer indeed the potential of a superior accuracy at
a reduced cost. However, these methods were, until recently, mostly applied to academic cases
where limited computational resources were needed. In fact, they were not widely spread due to
code robustness and software complexity issues. For many flows involving difficult flow physics
and complex geometries, many of the current AMR techniques are not strong enough to ensure
a robust solver convergence. For this reason, NASA predicts an entry in industrial production of
these adaptive techniques not until 2020. Before that, these techniques will need to demonstrate
their capabilities on realistic industrial cases where large computational resources are involved.

In fact, the fast development of the HPC at the hardware level keeps pushing computer scien-
tists to readjust their numerical tools, in order to improve the performances of their CFD codes on
new emerging hardware architectures. According to the NASA report, considering the actual evo-
lution of technologies, computer scientists predict that the future hardware systems will reach a
computational peak capacity of 30 Exa FLoating-point Operations Per Second (FLOPS) in 2030. To
reach this performance, it will be necessary to operate a complete change of paradigm in the nu-
merical simulation. This change of paradigm will require a complete restructuring of the hardware
architectures but also an effort from the numerical scientists to adapt their numerical methods to
the new computational systems.

Indeed, until today, the majority of numerical method developers did not take into account
these hardware considerations. It is therefore very difficult for today’s computer scientists to cap-
italize as much as possible on the new emerging hardware architectures. An algorithmic research
work effort is thus needed to continuously improve the scalability of numerical methods. This
notion is called the "co-design". The co-design allows developing numerical methods in close
consultation with the progress of HPC. In particular, it allows taking into account a high level of
parallelism in hardware systems during the development of numerical methods.

These considerations have also been noticed by the members of the ExaFLOW project in [11,
12]. In this project, they summarize the scientific locks that CFD has to overcome to reach the
exascale computation. They are stated as follows:

1. error control and adaptive mesh refinement in complex computational domains,

2. resilience and fault tolerance in complex simulations,

3. heterogeneous modeling,

4. evaluation of energy efficiency in solver design,

9
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5. parallel input/output and in-situ compression for extreme data.

1.3 Contribution of the thesis

The goal of this PhD thesis is then to bring a scientific contribution to this research framework. In-
deed, we propose in this work the development of a variational adaptive finite element method in
a massively parallel computational framework allowing to improve the aerothermal turbulent sim-
ulations related to the cooling of aircraft engines. More precisely, our goal is to develop a new mul-
tiscale mesh adaptation technique, adapted to the resolution of the highly convective aerothermal
problems in turbulent flows.

To do so, we first propose to study a complex industrial problem that requires heterogeneous
modeling taking into account: (i) the part’s thermal history, (ii) the unsteady and turbulent na-
ture of the flow, (iii) a complex three dimensional (3D) geometry, and above all, (iv) the multiscale
dominant aspects of the flow. In fact, we propose to use a novel set of CFD tools to solve the
aerothermal problem of the turbine vane cooling. More precisely, the research effort is put on a
benchmark configuration of the single impingement jet cooling. To our knowledge, this is the first
attempt to solve the impingement jet cooling problem using an adaptive eulerian finite element
framework.

To solve this aerothermal problem, we solve two different decoupled Partial-Differential Equa-
tion (PDE) systems. The first PDE system is dedicated to the solving of the unsteady incompress-
ible Navier-Stokes equations. It uses a stabilized finite element methods called the Variational
Multi-Scale (VMS) formulation under the assumption of a convection dominated regime. The sec-
ond PDE system is dedicated to the solving of the convection-diffusion equation for the tempera-
ture. It takes, as an input and from the previous resolution, the resulting velocity in the convection
term. We refer to the use of the well known Streamline Upwind Petrov/Galerkin (SUPG) scheme
introduced in [13] to stabilize the standard Galerkin formulation. Furthermore, as we solve decou-
pled aerothermal problems, additional numerical models are needed in order to achieve aerother-
mal coupling in the simulation. In this work, we use two different numerical models simultane-
ously: (i) the Sutherland law and (ii) the Smagorinsky Model (SM). These numerical models are
tested and validated on the benchmark case of a 3D ventilated cavity.

Furthermore, a new hierarchical control of errors is proposed via the development of a new
multiscale mesh adaptation technique based on recently developed subscales error estimators. In
this thesis, we compute the subscales error estimator using two different methods. The first one
uses stabilizing parameters derived from the VMS analysis and local norms defined on the ele-
ments. The second method uses a linear combination of bubble functions to establish a pointwise
computation of the error. The first contribution of this work is then to propose a new isotropic
mesh adaptation technique based on the previous subscales error estimator. To do so, we de-
fine a new isotropic metric tensor H i so and we solve an optimization problem under the con-
straint of a fixed number of elements. Until now, the VMS error estimators were only derived for
isotropic mesh adaptation. In this work, we also propose to use the sub-mesh scale information
for anisotropic mesh adaptation.

The second contribution is therefore to combine both the coarse scales interpolation error in-
dicator and the subscales error estimator for anisotropic mesh adaptation. To do so, we derive a
new anisotropic metric tensor H

new
ani so that allows taking into account the anisotropic variations

of the solution on the mesh and also relies upon the sub-grid information of the solution. This
new anisotropic mesh adaptation technique takes into account the finite element VMS frame-
work used for the numerical resolution of the convection-diffusion equation. In fact, the VMS
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approach allows quantifying the a posteriori subscales errors that can be used as weight to en-
rich the anisotropic error indicator of the conventional Hessian based approach. Unlike existing
anisotropic a posteriori error estimators, this hybrid approach takes advantages from both a priori
and a posteriori methods.

Finally, we propose a description of the parallel software capabilities of our finite element li-
brary Cimlib-CFD. First of all, we present the Finite Element (FE) framework, the mesh partition-
ing principles and the load balancing algorithms. Then, the algorithm behind parallel mesh adap-
tation is introduced as well as important notions on the particular treatment of the partitions’
interfaces. A mention of the parallel visualization tool is also proposed allowing to complete the
parallel computational framework developed in this work. Second of all, we propose a presen-
tation of the two hardware systems used to develop numerical tools and to produce numerical
results during the thesis. The first one is the lab’s cluster, called Cluster Intel, allowing the devel-
opment of numerical methods. The second one is the GENCI Occigen II supercomputer on which
we executed Cimlib-CFD for the first time during this PhD work. This system allows producing
numerical results using massively parallel computations. Taking into account the characteristics
of the super-computer, a fault tolerant checkpoint-restart procedure is developed. We then pro-
pose application cases for parallel computations. The first one is dedicated to a strong scalability
analysis of our finite element code on a well known benchmark. Then, parallel mesh adaptation
is tested on the two hardware systems for the case of the single impingement jet cooling. Finally,
we present a more complex but realistic industrial case that concerns the cooling of a complete
turbine vane composed by 39 holes.

1.4 Author’s contributions during the PhD
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2018.
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Communications
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Résumé du chapitre en français

Ce chapitre d’introduction nous permet d’abord de présenter le contexte industriel de cette thèse
en partenariat Convention Industrielle de Formation par la REcherche (CIFRE) avec SAE. Nous
proposons ici une description générale autour des enjeux du refroidissement des turbomachines
notamment via une analyse sur la diminution du FPR. En effet, cette diminution a pour effet de
fortement dégrader les performances des systèmes de refroidissement actuels et rend les prob-
lématiques autour du refroidissement des moteurs de plus en plus difficiles. Ensuite, certaines
considérations sur le refroidissement des aubes de turbines sont présentées. Notamment, il est
expliqué que l’augmentation de la température d’entrée des gazes dans la turbine haute pression
(TET) peut avoir un fort impact sur la résistance des matériaux qui la compose. Les techniques de
refroidissement des aubes sont décrites et plus particulièrement, la technique de refroidissement
par impact de jets sur la paroi interne de l’aube. La stratégie à complexité incrémentale de SAE
sur ce cas aérothermique est présentée. Il s’agit d’abord (i) de traiter le cas du refroidissement
d’un seul jet sur plaque plane, pour ensuite (ii) traiter le cas d’une rangée de jet sur paroi con-
cave, pour enfin (iii) s’intéresser à la géométrie complète de l’aube. Suivant cette stratégie, nous
présentons une géométrie préliminaire de jet à écoulement cisaillant amont étudiée en début de
thèse. Cette géométrie a été étudiée expérimentalement par d’autres laboratoires mais elle reste
aujourd’hui trop complexe à mettre en place pour plusieurs raisons. Dès lors, nous avons décidé
de nous ramener à une géométrie benchmark du même type mais plus largement étudiée dans la
littérature. Cette géométrie benchmark du jet impactant constitue notamment le fil rouge de ces
travaux de thèse.
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Nous proposons également dans ce chapitre un état de l’art technologique des méthodes numériques
liées à la CFD. En se basant sur un rapport de la NASA, nous mettons en évidence les difficultés des
méthodes actuelles, utilisées dans l’industrie, à déterminer avec précision l’aérodynamique des
écoulements turbulents. En parallèle de ces difficultés de modélisation physique, certaines con-
sidérations softwares sont prises en compte. Elles concernent notamment l’efficacité des solvers
numériques et le développement d’estimateurs d’erreur plus performants pour les améliorer. Etroite-
ment lié à cela, l’avancée technologique des méthodes d’adaptation de maillage est présentée
ainsi que la notion de co-design. Ces considérations sont reprises par les participants du projet
ExaFLOW qui résument parfaitement les objectifs de la CFD dans les années à venir:

1. le contrôle hiérarchique des erreurs et l’adaptation de maillage sur des géométries com-
plexes,

2. la résilience et et la "fault tolerance" des systèmes complexes,

3. l’efficacité des solveurs par des méthodes de Galerkin mixtes, continues ou discontinues et
par le choix approprié de préconditionneurs,

4. la modélisation hétérogène,

5. l’évaluation de l’efficacité énergétique dans l’implémentation du solveur,

6. l’implémentation parallèle et la compression des données de calcul.

L’objectif de ces travaux de thèse est donc d’apporter une contribution scientifique à ce con-
texte numérique. Pour cela, nous proposons de résoudre un cas industriel complexe faisant in-
tervenir une modélisation hétérogène prenant en compte: (i) l’histoire thermique de la pièce, (ii)
la nature turbulente et instationnaire de l’écoulement, (iii) une géométrie complexe en 3D et (iv)
les aspects multi-échelles de la simulation. De plus, dans ce travail, nous proposons un contrôle
hiérarchique des erreurs via le développement d’une nouvelle méthode d’adaptation de maillage
multi-échelle basée sur le développement récent d’estimateurs d’erreur à posteriori. Pour cela,
nous définissons deux nouveaux tenseurs métriques H i so et H

new
ani so qui permettent l’adaptation

isotrope du maillage en se basant sur l’information sous-échelle mais également la combinaison
de cette information avec les méthodes d’adaptation de maillage anisotropes conventionnelles
basées sur le Hessien. Enfin, ces méthodes numériques sont développées dans un contexte de
calcul massivement parallèle que nous nous attachons à présenter dans le dernier chapitre. No-
tamment, ce dernier chapitre permet de montrer les premiers résultats de Cimlib-CFD sur le su-
percalculateur national GENCI Occigen II avec la mise en place d’un cas massivement parallèle
représentant une aube de turbine complète composées de 39 trous.
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2.1 Introduction

This chapter is dedicated to the study of a single unconfined isothermal jet impinging normally
on a hot flat plate. In the past decades, several experimental and numerical studies like in [14–
19] have been made on this aerothermal problem. An example of a smoke visualization from the
experimental studies of Cornaro et al. in [16] is given in Figure 2.1. In the past, a large number
of different configurations have been studied. In particular, these studies have shown that the
configuration characteristics that had the most influence on the plate cooling were: (i) the shape
of the jet nozzle (round or square) (ii) the injection Reynolds number Rei n j (i.e. the Reynolds
number inside the inlet tube) and (iii) the normalized impact distance H/D, with H being the
impact distance and D the jet nozzle diameter.

� 

� 

Figure 2.1 – Experimental visualization of a single jet impinging on a flat plate for Rei n j = 60 000 and H/D = 2
from Cornaro et al. in [16]

In particular, for an impact distance of H/D = 2 and injection Reynolds numbers above 10
000, it has been noticed by experimental studies that the flow turbulence induced a very specific
heat transfer distribution on the plate. In fact, for this particular impact distance, the rebound of
the jet primary structures on the plate induces the creation of turbulent secondary vortices that
generate a local increase of convective heat transfer on the plate. Because of this local increase,
a secondary peak appears in the radial Nusselt number distribution. To better understand this
mechanism, the reader can refer to Figure 2.14 that will be presented later in this chapter. The
secondary peak is visible in the experimental results from Cooper et al. in Figure 2.2. Our study
aims at capturing this specific radial Nusselt number distribution associated with the particular
impinging jet configuration of H/D = 2.

In the past few years, several research units have tried to capture this secondary peak using
HPC associated with powerful CFD codes. Among them, important work from Tsubokura et al.
was made in [17] describing the flow behavior at the injection hole exit. In [20], Grenson et al. pro-
posed a LES simulation of the impingement jet cooling with Reynolds numbers up to 60 000 using
the finite-volume solver elsA from ONERA. More recently, Uddin et al. in [21] performed a fully
3D LES simulation in the exact same configuration using the FASTEST code. As well, Dairay et al.
in [22] and [23] proposed respectively a LES and a Direct Numerical Simulation (DNS) using the
finite difference code "Incompact3d" with an impact distance of H/D = 2. The particularity of this
latter work is the use of a conditional averaging post-processing procedure to compute the radial
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2.2 Preliminary study using the software ANSYS CFX and ANSYS Fluent

To begin this chapter on the single impingement jet cooling, we propose hereafter a preliminary
study made during this thesis using the commercial software ANSYS CFX and ANSYS Fluent. This
study allows testing a well known numerical framework in terms of meshing strategy, boundary
conditions, solvers and post-treatment procedures, on the resolution of the impingement jet cool-
ing. In particular, it makes it possible for us to confirm the conclusions from the literature [23–25]
concerning the capture of the secondary peak in the Nusselt number distribution for the impact
distance H/D = 2, using these commercial software.

2.2.1 Context and problematic of the study

The goal of this study is to realize a preliminary study on the single impingement jet cooling using
a numerical framework, currently used in aerospace research and industry. Indeed, ANSYS CFX
and Fluent are well known software, often used to solve this type of aerothermal problem. Several
numerical studies have already been made on the single impingement jet cooling using ANSYS
software. To cite only one of them, the work of Wienand et al. in [25] shows interesting results in
terms of radial Nusselt number distribution and velocity profiles in the boundary layer for differ-
ent impact distances H/D = {2,6,10,14}.

The first idea here is to reproduce the study, for the configuration H/D = 2, in order to validate
our problem’s setup in terms of geometry and boundary conditions. Secondly, this study allows us
to asses for the practical aspects of computation in terms of (i) discretization, (ii) available numer-
ical methods and (iii) possible post-treatment procedures. Finally, this study allows confirming
the conclusions of the literature review about the origins of the secondary peak and, in particular,
about the impossibility to capture it using steady-state RANS simulations.

2.2.2 Numerical methods

2.2.2.1 Structured 3D mesh

For both ANSYS CFX and ANSYS Fluent simulations, a structured hexahedral mesh is used. As
seen previously in this chapter, the secondary peak in the Nusselt number distribution appears
in the region between r /D ≈ 1.5 and r /D ≈ 2.6. Therefore, we build a mesh with a conic shape in
order to capture more precisely the evolution of the turbulence in the free jet region. This mesh
is presented in Figure 2.3. The height of the conic shape is Hc = 4.8D and the radius of the conic
shape is Rc = 3D.

Figure 2.3 – Initial meshing strategy for ANSYS simulations.

For the mesh in the near plate area, in order to capture accurately the variation of temperature
in the Z direction, the mesh size is chosen referring to the simulation of Wienand et al. in [25]. The
height of the first layer on the plate is set to z1 = 13e−8 m and the height ratio of the adjacent mesh
in two layers is set to 1.2. The successive layers are presented in Figure 2.4. With these parameters,
we get a value of z+ = 0.74.
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2.2.3.1 Velocity and pressure field

The resulting velocity and pressure fields computed with ANSYS CFX are given in Figure 2.6. In
this figure, we observe a time averaged solution of the problem. In fact, if we compare these results
to the visualization from Cornaro et al in Figure 2.1, we observe that the RANS equations have a
smoothing effect on the solution. Even if, by using the k−ω SST turbulence model, we indeed take
into account the effect of turbulence in the resolution of the velocity and pressure fields, we cannot
observe any influence of the turbulence on the macro-scale solution. In particular, as mentioned
in the introduction of the present chapter, we cannot observe the primary nor secondary vortices,
illustrated in Figure 2.14. The successive rebounds of the primary structures are not visible in these
results.

2.2.3.2 Comparison on the velocity profiles in the boundary layer

Now that we have analyzed the velocity field macro-scale results, let’s have a closer look on the ve-
locity profiles in the boundary layer. The results on the velocity profiles at location r /D = {0,1,2,3}
are presented in Figure 2.7. In this figure, we observe that, at location r /D = {1,2,3}, the velocity
profiles predicted by CFX are in good agreement with the experimental data. Then, for r /D = 3,
the results from CFX show an over-prediction of 8%. On the other hand, the results predicted by
Fluent are accurate at point r /D = 1 but shows a distinct over-prediction from the location be-
tween r /D = 2 and r /D = 3. The maximal gap between the radial velocity predicted by Fluent and
the radial velocity from the experiment is observed at point r /D = 2. At this point, the error is
estimated at about 40%.

2.2.3.3 Comparison on the radial Nusselt number distribution

The results on the radial Nusselt number distribution computed by ANSYS CFX and ANSYS Fluent
are presented in Figure 2.8. In general, both Fluent and CFX predict the tendency of the Nusselt
number decrease with the radius. The results are in relative good agreement with the experimental
data. Indeed, in the region 0 < r /D < 1, the predictions are both relatively accurate. The results
calculated by Fluent fit well with the experimental data, and the results calculated by CFX are 9
% higher than the experimental results. However, in the region 1 < r /D < 2, the secondary peak
in the Nusselt number distribution appears in the experimental data. On one hand, ANSYS-CFX
predicts a fluctuation of the Nusselt number distribution in this region but this fluctuation cannot
be identified as a proper secondary peak. On the other hand, ANSYS Fluent does not predict any
fluctuation in the Nusselt number distribution in this area. The missing secondary peak in these
simulations causes the inaccurate predictions in the next region 2 < r /D < 3. Finally, in the region
r /D > 3, when the radius increases, the effect of the missing secondary Nusselt peak decreases.
The slope of the Nusselt number in both simulations becomes indeed comparable to the Nusselt
number slope in the experimental data.

It is interesting to note that the location r /D = 2 is, indeed, the location where the maximal
error in the velocity profiles was found. Furthermore, it is also the location where the secondary
peak appears in the Nusselt number distribution. Therefore, we can clearly see that the missing
secondary peak in the radial Nusselt distribution is due to a poor resolution of the radial velocity
in the boundary layer. As expected, this result illustrates the need to have a highly precise flow
motion solution in the boundary layer in order to get the right convective heat transfer on the
plate.

2.2.4 Conclusions and discussions on the study

To conclude, this study allowed us first, by running simulations on trustworthy commercial soft-
ware, to test a computational framework currently used in aerospace research and industry. Fur-
thermore, it made it possible for us to validate the problem’s setup in terms of geometry and

21



CHAPTER 2. THE SINGLE IMPINGEMENT JET COOLING

Figure 2.6 – Resulting velocity magnitude and pressure field for RANS k −ω SST simulations with ANSYS
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boundary conditions. A structured type mesh was used here along with well known numerical
methods like the time averaged RANS equations combined with the k −ω SST turbulence model.
Finally, a well adapted post-treatment procedure designed to compute the radial Nusselt number
distribution was proposed and validated in this computational framework.

This study also allowed us to draw several conclusions on the impingement jet cooling itself. In
fact, from Section 2.2.3.1, we can conclude that it is impossible to obtain the primary nor the sec-
ondary vortices in the flow using the RANS equations. The smoothing effect cancels the rebound
of the primary vortices on the plate. The consequence of these missing vortices was directly ob-
servable on the heat transfer results. Indeed, the resulting radial Nusselt number distributions
from ANSYS CFX and Fluent were in relative good agreement with the experimental results except
at the location of the secondary peak. A closer look on the velocity profiles inside the boundary
layer showed the exact same results. Indeed, the RANS simulations allowed us to get good results
on the velocity profiles in the boundary layer, except where secondary vortices should appear.

Finally, this preliminary study demonstrates the impossibility to get a precise result on the
radial Nusselt number distribution of the impingement jet cooling using the ANSYS numerical
frameworks. In particular, it is clearly impossible to capture the flow motion that will give birth
to the secondary peak in the Nusselt number distribution. As mention in the introduction of the
present chapter, in order to solve this aerothermal case, we need a fully 3D turbulent and unsteady
resolution of the problem. The second part of this chapter aims at giving our developments and
results in this direction using Cimlib-CFD.

2.3 Numerical investigations using the finite element code Cimlib-CFD

In this section, we propose to test another numerical framework, that breakout from the one pre-
sented in the previous section. This framework uses the finite element code Cimlib-CFD, de-
veloped by the Computing and FLuid (CFL) research group at the Centre de Mise En Forme des
matériaux (CEMEF) MINES-Paristech laboratory. To our knowledge, this is the first attempt to
solve the impingement jet cooling problem using this finite element numerical framework. This
section gives the main outlines of our numerical investigations on this complex aerothermal case.

2.3.1 Geometry and boundary conditions

2.3.1.1 A fully 3D configuration

To begin this section, the 3D geometry of the problem is presented in Figure 2.9. The present con-
figuration has an axial symmetry of revolution around the Z axis going through the center of the
injection hole. As shown in previous studies and in particular by Dairay et al. in [23], a fully 3D
turbulent resolution is needed to solve this complex aerothermal problem. In fact, considering
that the jet is fully developed at the injection hole exit, it has been proven that the jet implies the
development of turbulent structures that will evolved in the three spatial directions X, Y and Z axis.

Referring to previous works on the subject [14, 15, 18, 19, 23, 25], the nozzle to plate distance
H is taken as two times the jet diameter D. In addition, we add an inlet tube of length 2D at the
injection hole. The radial size of the domain is taken as 10D. However, in order to reduce the size
of the domain and thanks to the cylindrical symmetry of the latter, we split the computation in
half, keeping only the X axis positive sector. To do so, we impose a symmetric boundary condition
on the plane (Y,Z) at x = 0. Several numerical experiments made during this work have shown that
this splitting had no influence on the final results.
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Figure 2.9 – Geometry of the computational domain

2.3.1.2 General boundary conditions

A representation of the problem boundary conditions is given in Figure 2.10. This figure repre-
sents a 2D slice of the 3D computation. The geometrical and physical parameters associated with
these boundary conditions are given on Table 2.1; along with other physical parameters of the
problem. The plate and the inlet tube edges are considered to be walls with no slip conditions.
On the top boundary of the domain, a co-flow with a magnitude representing 5% of the bulk ve-
locity is imposed. The choice of this value will be argue in the next section. At the outlet, to avoid
any re-circulation of degenerated vortices, we choose to impose an output velocity for which the
magnitude was determined after several tests on the geometry. At initialization, the velocity is null
everywhere in the domain except on the boundary conditions.

As in previous experimental studies [14, 15], the jet temperature is taken at Ti nlet = Ti ni t =

300 K. The plate is treated as an isothermal wall with a temperature Tpl ate = 330 K. In this work and
from a numerical point of view, we thus propose to solve a thermal convection-diffusion problem
with only Dirichlet boundary conditions.
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Figure 2.10 – Boundary conditions of the single impinging jet cooling
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Parameter Numerical value Parameter Numerical value
g 9.81 m.s−2 Vc 17.5 m/s
β 3.4e−3 K−1 Vb 13.8 m/s

ν f lui d 15.6e−6 m2.s−1 D 0.026 m
µ f lui d 19e−6 Pa.s H 0.052 m
ρ f lui d 1.225 kg .m−3 Lpl ate 0.260 m
λ f lui d 0.027 W.m−1.K−1 Ltube 0.052 m
α f lui d 20e−6 m2.s−1 Ti nlet 300 K

cp 1004 J.kg−1.K−1 Tpl ate 330 K
Rei n j 23000 p0 0 Pa

Table 2.1 – Geometrical and physical problem parameters

2.3.1.3 Co-flow boundary condition

For unconfined impinging jets, setting only a static pressure p0 on the top free boundary as for
standard outlets is usually not sufficient to obtain accurate simulations. In fact, re-circulation of
the ambient air occurs on this top boundary leading to massive inflow and outflow. To counter this
issue, Aillaud et al. in [19] suggest a specific treatment of this boundary condition by imposing a
weak constant and perpendicular co-flow directed towards the plate. In [6], the same author also
proposes a sensitivity analysis to demonstrate that: for a co-flow velocity magnitude inferior to 5%
of the bulk velocity, the co-flow has no influence on: (i) the mean flow, (ii) the jet dynamic and (iii)
the heat transfer. Furthermore, in the work of Hadziabdic et al. in [30], the authors also highlight
that, within this co-flow velocity magnitude range, the jet flow region is not influenced by the co-
flow. They explain this non-influence by the fact that the small intensity of the co-flow compared
to the jet velocity allows the jet flow to act as a shield preventing any influence of the co-flow on
the plate heat transfer. Furthermore, in [20], Grenson et al. propose to impose a velocity profile
along the radial direction for this boundary condition. The mean value of the profile is around
15% of the bulk velocity but the profile itself presents the interest to be equal to zero close to the
free jet region. However, it is equivalent to our configuration as we consider, in our geometry,
a pipe thickness that cancel the co-flow velocity near the free jet region. Finally, following the
argumentation of these three authors, and comparing our results with the numerical results of
Aillaud et al in [19], the velocity magnitude of our co-flow is fixed at 5% of the bulk velocity Vb .

2.3.1.4 Turbulent inlet

In the present configuration, the inlet velocity boundary condition is of major importance because
the jet needs to be fully developed at the injection hole exit. To treat this boundary condition, we
first propose to impose a mean velocity profile for which the bulk velocity is given by:

Vb =
Rei n j ×ν f lui d

D
(2.5)

with ν f lui d the air kinematic viscosity. Following the work of Cooper et al. in [15] and other au-
thors on the subject in [19, 23], the axial velocity is expressed using a specific power law profile for
turbulent pipe flows. Indeed, we need to choose a profile law that is applicable to fully developed
turbulent jets exiting a long tube. In direction Z, we have:

V(r ) =

(
1−

2r

D

)1/7.23

×Vc (2.6)

where r represents the distance to jet center axis and Vc is the centerline velocity. According to
Cooper et al., it is given by the following expression:

Vc =
Vb

0.811+0.038(log (Re)−4)
(2.7)
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Furthermore, to simulate a fully developed turbulent jet at the injection hole exit and because
we do not simulate the flow inside the long experimental tube, we add synthetic turbulent pertur-
bations which are superimposed on the mean velocity profile. These perturbations are computed
using the expression given by Gautier et al. in [31]. We have:

v ′
z = fmod (r )

N∑

m=1
Am(t ) cos(mθ+φm(t )) (2.8)

where θ is the angle on the inlet plane, m is an azimuthal mode and N is the number of excited
azimuthal modes. The amplitude and phase (Am(t ),φm(t )) are generated randomly up to a cutoff
frequency. Referring to Dairay et al. in [22, 23], the modulation function fmod (r ) is adjusted in
order to match roughly the experimental conditions. It is expressed as follows:

fmod (r ) = A(R− r )exp(−σ(R− r )) (2.9)

with A = 0.7σexp(1) and σ= 1/(0.02R).

In order to impose this turbulent inlet boundary condition, one can explore other solutions in
the literature. For example, a common way to impose this turbulent inlet is by adding isotropic ho-
mogeneous turbulence based on the approach of Bechara et al. in [32]. Doing so, the turbulence
is injected over the whole inflow section in order to feed the core region of the tube with resolved
turbulent content. Then, comparable to the solution proposed here but in a compressible fluid
context, Bogey et al. in [33] propose to generate vortex rings in the flow field in the close vicinity
of the tube’s wall. Doing so, it allows starting up the boundary layer inside the tube in order for the
flow to rapidly evolve into a turbulent state. Finally, other works like in [25] propose to compute
a preliminary simulation of the flow inside a long inlet tube. This allows computing the develop-
ment of turbulence inside a long tube in order to provide the unsteady inlet boundary condition
of a fully developed jet to the impinging jet cooling simulation. However, the drawback of this
solution is the need to have a well resolved preliminary computation that can be computationally
demanding.

2.3.2 Temporal and spatial discretizations

2.3.2.1 Temporal discretization

In Cimlib-CFD, we use implicit time integration schemes concerning the temporal discretization
of PDEs. Doing so, we thus circumvent the Courant–Friedrichs–Lewy (CFL) condition necessary
for the convergence of explicit time integration schemes. Therefore, we do not have any numerical
restriction on the choice of the simulation time step. The only thing that matters in this choice are
physical considerations.

Indeed, the time step of the simulation is chosen in order to capture the unsteady flow behav-
ior, in particular, at the injection hole exit where the generation of the main turbulent structures
occurs. The goal here is to compute a mean value of the heat transfer by still capturing the un-
steady flow characteristics that will drive the convective heat transfer on the plate. Therefore, the
time step ∆t is chosen with respect to the impinging frequency of the main large scale turbulent
structures. The impinging frequency f0 of these structures is computed thanks to the Strouhal
number StD = 0.79, the bulk velocity Vb and the diameter D of the injection hole (see [19] for more
details). We have:

f0 =
StDVb

D
(2.10)

Then, we can deduce a period for these main large scale structures which is equal to T0 = 0.0024 s.
After several numerical experiments, we decided to compute around 100 increments for each of
these periods. Therefore, we choose a time step equals to ∆t = 0.00002 s. For a time step of
∆t = 0.00002 s, the maximum CFL condition is evaluated around 0.3 which gives us confidence
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on our starting hypothesis. Finally, to be able to have a representative simulation of the problem
going from the beginning of the transient regime to an established unsteady regime, as in previous
works [19, 20, 23], we decide to take around 20 periods of the main large scale structures for sta-
tistical analysis. These considerations give us a total simulation duration of ttot al = 0.1 s counting
thus 5 000 increments.

2.3.2.2 Initial meshing strategy

The reference mesh for the simulation is presented in Figure 2.11. It is a fixed mesh, adapted
thanks to the well known Level-Set method mentioned in [34, 35] for example. This mesh counts
10 052 861 P1 elements and it is composed by different specific parts. The first specific part is a
geometric cone shape of axis Z going through the center of the injection hole. This geometric form
allows, on one hand, keeping a sufficient number of elements inside the inlet tube (see Figure 2.11
a)). And on the other hand, it allows refining the mesh in the central area of the domain where
most of the turbulent structures will appear. Doing so, we keep an accurate aerodynamic reso-
lution in the main region of interest but we also save an important number of elements from the
area located far from the central region.

The mesh is then adapted where the aerodynamic boundary layer is susceptible to appear i.e.
on the impingement plate (see Figure 2.11 c)). Because we use unstructured meshes, the mesh
sizes can be different from one direction to the other. For this reason, we plot the diameter of the
elements in Figure 2.11 a) and the minimal diameter of the elements in Figure 2.11 b). In this fig-
ure, we observe that we reach mesh sizes of order 10−6m on the plate. Furthermore, as we want to
capture the thermal activity on the plate, it is therefore necessary to have an important number of
elements inside this boundary layer. For this reason, in Figure 2.11 d), we plot the dimensionless
distance z+ that will be introduced in Section 3.4.2 to show that, in the near wall region, we keep a
value of z+ ≤ 1. For comparison, a similar mesh was proposed in the work of Wienand et al. in [25]
with, instead, 20 prism layers on the plate to achieve an acceptable value for the dimensionless
distance z+.

2.3.3 Available experimental and numerical data

In this section, we focus our interest on the plate heat transfer results and their validation with re-
spect to experimental and numerical references. Several experimental databases on Nusselt num-
ber distribution are available in the literature. In particular, data from the work of Baughn et al.
and Cooper et al. in [14] and [15] on the radial Nusselt number distributions are given in the ER-
COFTAC database. As we saw in introduction, Cornaro et al. in [16] also proposed an experimental
study to visualize the impingement jet flow at different Reynolds numbers but also with different
impact distances and different relative curvatures for the impingement plate. More recently, Fenot
et al. in [18] also proposed an experimental database for the impingement jet cooling in our spe-
cific configuration.

Concerning numerical references, the recent results from Aillaud et al. in [19] on the impinge-
ment jet configuration H/D = 2 and Re = 23 0000 are used in this paper. Indeed, we refer to the
database the author sent us for comparison.

2.3.4 Post-treatment procedure for the Nusselt number

From an industrial point of view, the main objective of this work is to evaluate the cooling perfor-
mance of the impingement jet. To do so, we compute the radial Nusselt number distribution on
the impingement plate. In the particular case of the impingement jet cooling, the Nusselt number
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a) 

b) 

c) 
d) 

Figure 2.11 – Initial fixed adapted mesh. a) Element size distribution over the domain; b) Minimal element
size distribution over the domain; c) Slice view of element diameters in plane (Z,X) at y = 0; d) Zoomed view
of z+ parameter on plane (Z,X) at y = 0
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is defined by the following formula:

Nu =

(
Lc hconv

λtot al

)

z=0
=

Lc hconv

λ f lui d
(2.11)

where Lc is the characteristic length of the problem; taken as the hole diameter D, hconv is the
convective heat transfer coefficient and λtot al is the fluid thermal conductivity. Since we use the
Van Driest damping function in the computation of λtot al , its value on the plate at z = 0 is equals
to λ f lui d (see Section 3.4.2 for more details).

2.3.4.1 Theoretical aspects

To evaluate the Nusselt number at each point of the plate, we start by normalizing the temperature.
Thus, we work with the normalized temperature θT and we have:

θT =
T−Ti nlet

Tpl ate −Ti nlet
(2.12)

Then, the heat flux from the hot surface to the fluid coolant is written as:

φconv = hconv
(
Tpl ate −Ti nlet

)
=−λ f lui d

[(
Tpl ate −Ti nlet

)(∂θT

∂z

)]

z=0
(2.13)

with

hconv =−λ f lui d

(
∂θT

∂z

)

z=0
(2.14)

Thus, we deduce the following formula for the Nusselt number:

Nu =
Lc hconv

λ f lui d
=−D

(
∂θT

∂z

)

z=0
(2.15)

With this expression, we note that, in this case, the local Nusselt number at each point of the plate
is computed only by extracting the normalized temperature gradient at z = 0.

2.3.4.2 Azimuthal and temporal averaging procedures

In order to compare our results with experimental and numerical references, we need to com-
pute an average value of the radial Nusselt number distribution. To do so, we first compute an
azimuthal average value of the Nusselt number. To achieve this, we set 73 probes on the plate
from which we extract the local Nusselt number Nu. These probes consists in 12 points spreading
in 6 azimuthal directions which allow us to obtain 12 concentric circles around the plate center.
The probes locations are presented in Figure 2.12. In this figure, the curved arrows represent the
azimuthal averaging procedure. Following these arrows, an azimuthal average value is computed
and a radial Nusselt distribution is drawn along the axis r /D in Section 2.3.5.4.

Then, since we solve an unsteady aerothermal problem, a temporal averaging procedure is
also needed. Referring to [19, 20, 23] and as explained in Section 2.3.2.1, we compute the temporal
average value of the Nusselt number over 20 cycles of the main large scale structure. The physical
duration of this averaging procedure is therefore around tmean = 0.05 s. To illustrate the unsteady
behavior of the simulation, we show in Figure 2.13 the local Nusselt number data extracted from
the 12 sensors along direction 1.

Remark 1 In Figure 2.13, the plot named "Di r0 Pt1" corresponds to the temporal data extracted
from the central point of the plate.
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2.3.5 Results and discussions

The results on the velocity and pressure fields (v,p) are obtained via the implicit solving of the
unsteady incompressible Navier-Stokes equations. The incompressible assumption stands here
because the maximum velocity encountered in the flow is around 20 m/s, giving a Mach Number
around 0.06 which less than the 0.3 limit for incompressible flows. The solver uses the stabilized
finite element formulation VMS and details about its resolution will be given in the next chapter.
Concerning the temperature T, we solve the convection-diffusion equation using the SUPG nu-
merical scheme to stabilized the standard Galerkin formulation. As well, details on the resolution
of this finite element problem will be given in the next chapter.

In this section, we present the results obtained with Cimlib-CFD using the previously de-
scribed boundary conditions, temporal/spatial discretizations and post-treatment procedures.
First, to introduce the general flow behavior of this specific configuration, we present the obtained
velocity/pressure fields over time. Then, to complete the flow analysis, a post-treatment procedure
on vortex identification is proposed. Furthermore, the velocity profiles inside the plate boundary
layer are analyzed and compared to experimental data. From the velocity profiles validation, we
complete our aerothermal analysis by a comparison of the resulting radial Nusselt number distri-
bution with experimental and numerical references.

2.3.5.1 Instantaneous velocity and pressure fields

The resulting velocity field over time is presented in Figure 2.14. As mention in the introduction
of the present chapter, the fundamental phenomenon that occurs during the impingement jet
cooling concerns the rebound of the primary structures when the jet impacts the hot plate. The
first primordial rebound takes place during the transitional flow at increment I = 700. As shown in
Figure 2.14, it generates secondary vortices in the primary vortex opposite direction near the wall
and induces a re-injection of cold fluid on the plate. Furthermore, we can observe at increment
I = 3 000 that the rebound phenomenon does not disappear over time. Indeed, it evolves into
a periodic wave that is caused by the successive rebounds of the successive primary structures
exiting the injection hole during the simulation.

The resulting pressure field over time is presented in Figure 2.15. We observe the same flow
structure than the velocity field. In particular, between increment I = 600 and I = 700, we can fol-
low the first rebound of the primary vortex on the plate. In this area, the inversion of the pressure
sign is a reliable parameter to identify the vortex directions that will be highlighted in the next
subsection. The birth of secondary vortices and thus the injection of cold fluid on the plate seems
to clearly start at increment I = 600. Then, as expected, at increment I = 3 000, we recover the pe-
riodic wave caused by the successive rebounds of the primary structures.

2.3.5.2 Vortex identification

To complete this aerodynamic analysis, we propose here to use the vortex identification technique
to theoretically identify the primary and the secondary vortices in the impinging jet. To do so, we
use the well known Q-criterion method, introduced by Haller et al. in [36], where Q is defined by:

Q =
1

2

[
(tr (∇v)2

− tr (∇v ·∇v)
]
=

1

2
||Ωv||

2
−||Sv||

2 (2.16)

where Ωv is the skew-symmetric part of the velocity gradient tensor and Sv is the symmetric part of
the velocity gradient tensor. In Cartesian coordinates, by simplification of the previous expression,
we have the following definition of Q:
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Figure 2.14 – Resulting velocity field over time
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Figure 2.15 – Resulting pressure field over time
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Referring to the work of Dairay et al. in [23], we extract the contour of iso-values of Q such that

Q = 100 Vb
2

D . The resulting contour is given in Figure 2.16 (without considering the colors).

As explained in the previous subsection, the primary vortices are identified by the flow vor-
tices rotating clockwise around the Y axis. In the same way, the secondary vortex are identified by
the flow vortices rotating anticlockwise around the Y axis. Therefore, to identify the vortices, we
compute the vorticity ω of the flow defined by:

ω= (ωx ,ωy ,ωz ) =

(
∂vz

∂y
−
∂vy

∂z
,
∂vx

∂z
−
∂vz

∂x
,
∂vy

∂x
−
∂vx

∂y

)
(2.18)

In particular, we extract the vorticity component around the Y axis called ωy . The sign of ωy

allows us to know if the flow is rotating clockwise or anticlockwise around the Y axis. In fact, if
ωy > 0, then the flow is rotating clockwise and if ωy < 0, then the flow is rotating anticlockwise.
The result are presented in Figure 2.16. In this figure, the red color corresponds to ωy > 0 and thus,
is associated to a primary vortex structure; as well, the blue color corresponds to ωy < 0, and thus,
is associated to a secondary vortex structure.

� = ʹ00 � = ͵00 � = ͸00 

� = 700 � = ͺ00 � = ͳ000 

� = ͵000 

Figure 2.16 – Resulting instantaneous vortex identification over time. Red color corresponds to ωy > 0 (pri-
mary vortex). Blue color corresponds to ωy < 0 (secondary vortex).

In Figure 2.16, from increment I = 200 to increment I = 600, we observe the rebound of the first
primary vortex on the impingement plate. Then, from increment I = 600 to increment I = 1000,
we observe the birth of the secondary vortices on the plate (see the blue color at increment I =
600). The secondary vortices then evolve into something more chaotic until increment I = 3000.
However, even if the structure of the fluid is less clear at increment I = 3000, if we look at the
bottom of the plate (see last picture in Figure 2.16), we find the previously mentioned periodic
wave that induces the injection of cold fluid air on the plate. Indeed, the circular blue regions on
this picture can be considered as cold spots, i.e. places where the plate meets with cold fluid.
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2.3.5.3 Velocity profiles in the boundary layer

Now that we have analyzed the overall flow behavior of the impingement jet, we propose here to
take an interest in the flow velocity profiles in the boundary layer formed by the impact plate. In-
deed, this region is of major importance because this is where the heat transfer between the plate
and the fluid occur. We base our aerodynamic analysis on the experimental study of Cooper et al.
in [15] and we refer to the experimental data from the ERCOFTAC database.

For the reader’s understanding, Figure 2.17 shows a schematic representation of the velocity
profile setup. To obtain them, we place 35 sensors distributed along the Z direction at each r /D
position. The sensors’ positions in the Z direction are chosen with respect to the experimental data
which are available for a height going from z/D = 0 to z/D = 0.4 (i.e. z = 0.0104m). At each itera-
tion, the radial and normal velocity components are extracted from the sensors. Then, a temporal
averaging procedure is done to obtain the time averaged velocity profiles at each r /D position.

Sensors 

Radial velocity (��) �/� = ͳ �/� = ʹ �/� = ͵ �/� = 0 

Normal velocity (��) 

Figure 2.17 – Schematic representation of the extracted radial and normal velocity profiles

We first analyze the velocity profile in the boundary layer at r /D = 0. At this position, the veloc-
ity component given by the experimental data is the normal velocity (i.e. the velocity component
along the Z axis). The results are presented in Figure 2.18. In this figure, we observe that our nu-
merical results are in good agreement with the experimental data. Indeed, the central point of the
plate seems to be well resolved by our numerical tools. This observation gives us confidence on
the fact that the inlet mean velocity profile is correct and well imposed at the tube’s entry.

Then, the experimental study gives the velocity profiles of the flow at 3 other positions: r /D =

1, 2, and 3 (i.e. r = 0.026m, 0.052m, and 0.078m). This time, the velocity component is the radial
one and the results are given in Figure 2.19. In this figure, we compare the resulting velocity pro-
files to the experimental ones. At each r /D position, the numerical result respects the expected
order of magnitude and corresponds to each experimental plot. In particular, in direction r /D = 1
the results fit well with the experimental data.

However, the results tend to be less accurate when we go further from the plate center, i.e.
when we look at direction r /D = 2 and r /D = 3. This loss of accuracy can be explained by the
unclear definition of the output velocity on the side of the domain (see −→v on the Outlet in Figure
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Figure 2.18 – Normal velocity profiles in the boundary layer at r /D = 0

2.10). Indeed, the location of this outlet boundary condition remains unclear in the literature and
the width of the domain can vary from a study to the other. During this work, a smaller geometry
of radial size 5D was tested and the results got better when increasing the size of the domain to
10D. Doing so, we indeed moved apart the outlet boundary condition from the plate center and
thus, reduced its effects on the flow. However, the effect of this boundary condition still seems to
play an important role and this problem should be addressed as a perspective.

Furthermore, we have good agreement with experimental data in the near plate region. How-
ever, going away from the plate, the results tend to be less accurate. This shows that the mesh
size in the boundary layer plays a crucial role on the velocity profiles results. We indeed used
anisotropic elements to be able to maximize the resolution inside this boundary layer in the Z
direction in order to capture the thermal gradients on the plate, without having prohibitive com-
putational costs inherent to isotropic meshes. In our case, anisotropic mesh adaptation seems to
be the best candidate to solve this problem.

2.3.5.4 Radial Nusselt number distribution

To finish the aerothermal analysis, we propose here to compare our results in terms of radial Nus-
selt number distribution with experimental and numerical references. It is first important to recall
that, as shown in Section 2.3.5.1, Section 2.3.5.2 and in previous works [37], the generated peri-
odic wave plays an important role in the convective heat transfer. In fact, the re-injection of cold
air created by the secondary vortices enhances locally the cooling and thus generates a secondary
peak in the radial Nusselt number distribution. This secondary peak is visible in Figure 2.20. It
appears experimentally at r /D ≈ 1.3 and reaches its maximum at r /D ≈ 2. The results obtained
thanks to the post-treatment procedure developed in Section 2.3.4 are given in Figure 2.20.

In this figure, we observe that the impact point is, again, well resolved by the proposed numer-
ical framework. Looking at the result obtained at the impact point in the analysis of the velocity
profiles, this result was expected. Indeed, in our case, the convective heat transfer are dominant.
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Figure 2.19 – Radial velocity profiles in the boundary layer at r /D = 1, 2, & 3

Figure 2.20 – Comparison of radial Nusselt number distribution with an experimental reference from
Baughn et al. in [14] and with a numerical reference from Aillaud et al. in [19].
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Therefore, the results on the velocity profiles in the boundary layer majorly drive the heat transfer
results on the plate. Consequently, the observations made on the velocity profiles still hold for the
analysis of the Nusselt number distribution. A loss of accuracy is observed when we get away from
the plate center and this can be explained by both (i) the outlet free boundary condition and (ii)
the mesh topology in the boundary layer.

Furthermore, the fact that our prediction of the Nusselt number is below the expected result
can also be explained by the lack of mixing in the boundary layer. Indeed, the more the flow will be
mixed in the boundary layer, the higher the convective heat transfer will be and thus, the higher
the Nusselt number will get. According to the literature on this subject, this mixing is majorly
driven by the inlet turbulent model used at the tube’s entry. As a perspective, it would also be in-
teresting to test other ways to impose the turbulent inlet boundary condition and observe their
effects on the Nusselt number distribution.

Despite that, in Figure 2.20, we observe that our results allow in a certain way to capture the
secondary peak in the radial Nusselt number distribution. In fact, even if we are quite far from
the expected radial distribution, we observe a secondary peak at the same position that the exper-
imental results. This shows that our unsteady simulation is able, in a certain way, to capture the
complex heat transfer on the plate. This was in fact expected from the results in Section 2.3.5.2
where we clearly showed our ability to capture the complex turbulent structures in the overall
analysis of the flow behavior.

2.4 Conclusion

To conclude, this chapter made it possible for us to better understand the complexity of the phys-
ical phenomenon occurring during the impingement jet cooling. We proposed in this chapter two
different numerical frameworks to solve this complex aerothermal problem. The first one used
ANSYS CFX and ANSYS Fluent and the second one used Cimlib-CFD. The preliminary study using
the ANSYS framework clearly showed the need to have a fully 3D turbulent and unsteady resolu-
tion of the problem in order to capture the very specific heat transfer distribution of the impinge-
ment jet cooling on the impact plate. To do so, we then proposed numerical investigations around
this complex aerothermal case using the finite element code Cimlib-CFD.

In Cimlib-CFD, we first proposed a description of the problem in terms of geometry and bound-
ary conditions. In particular, an argumentation on the top co-flow boundary condition and a
practical way to impose a turbulent inlet at the tube’s entry were developed. Then, we explained
the choices of spatial and temporal discretizations for this aerothermal simulation and a post-
treatment procedure on the Nusselt number was developed.

The overall observations on the results obtained using Cimlib-CFD showed our ability to cap-
ture the global turbulent behavior of the flow. Indeed, the instantaneous velocity and pressure
fields clearly showed the rebound of the primary vortices on the plate creating secondary vortices
in the opposite direction. In particular, these vortices were identified using a vortex identification
method that corroborated our results. With this phenomenological analysis, we managed to ex-
plain the re-injection of cold fluid air on the plate and thus, the appearance of the secondary peak
in the radial Nusselt number distribution.

From the analysis made on the velocity profiles in the boundary layer but also, from the anal-
ysis made on the Nusselt number distribution on the plate, the results showed that the impact
point was well resolved by the proposed numerical framework. However, from these results, sev-
eral perspectives can be proposed for future works. In fact, the influence of the outlet boundary
condition still seems to play a crucial role on the flow motion in the boundary layer. The location
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of this boundary condition and the way to impose it in the finite element framework is still an
open question. Furthermore, the mesh in the boundary layer can still be improve in order to cap-
ture more precisely both (i) the velocity profiles in the boundary layer and (ii) the thermal gradient
on the plate. To tackle this problem, anisotropic mesh adaptation seems to be the best solution.

Finally, even if we are confident that the proposed synthetic perturbations model for the tur-
bulent inlet boundary condition is, indeed, well suited for our simulation, other solutions can be
explored. Among others, we propose for future works a preliminary computation of the flow inside
a long inlet tube in order to provide the turbulent inlet boundary condition of a fully developed
jet. It will then be interesting to analyze the effects of this inlet boundary condition on the Nusselt
number distribution.

In the next chapter, we will present the set of numerical tools used to solve this kind of highly
convective aerothermal problem in Cimlib-CFD. In particular, we will propose additional numer-
ical models to reinforce the aerothermal coupling of the simulation. These numerical tools will be
validated on the benchmark case of the 3D ventilated cavity and different aerothermal couplings
will be tested in order to choose the best one for our simulations.

Résumé du chapitre en français

Ce chapitre est consacré à l’étude aérothermique d’un jet non-confiné, isotherme, impactant ver-
ticalement sur une plaque à refroidir. Ces dernières années, de nombreuses études numériques
et expérimentales ont été réalisées sur ce cas d’étude. En particulier, pour une distance d’impact
H/D = 2 et un nombre de Reynolds d’injection supérieur à 10 000, il a été remarqué que la tur-
bulence de l’écoulement générait une carte thermique très spécifique sur la plaque. En effet,
l’apparition de tourbillons secondaires dans l’écoulement va favoriser localement les échanges
thermiques convectifs et créer un second pique dans la distribution radiale du nombre de Nusselt.
Dans tous les travaux mentionnés, malgré la grande variété des méthodes numériques utilisées,
les auteurs insistent sur la difficulté de résoudre cette configuration aérothermique afin d’obtenir
une distribution radiale du nombre de Nusselt en corrélation avec les études expérimentales. En
particulier, ils mentionnent l’importance de réaliser une simulation turbulente et instationnaire
en 3D qui demande (i) de gérer des géométries complexes en 3D, (ii) d’avoir des méthodes de post-
traitement efficaces et (iii) d’avoir la possibilité d’utiliser d’importantes ressources de calcul.

Dans ce travail, nous proposons d’utiliser un nouvel ensemble d’outils CFD pour résoudre ce
problème aérothermique. C’est, à notre connaissance, la première fois que ce cas est réalisé avec
les outils numériques que nous développons au laboratoire. Pour cela, nous proposons d’abord
une description du problème et de ses conditions aux limites. Ensuite, le choix des discrétisa-
tions spatiales et temporelles est développé dans notre contexte numérique. Par la suite, nous
proposons une méthode de post-traitement développée sur MATLAB et implémentée pendant
la thèse qui permet d’obtenir en temps-réel la distribution radiale du nombre de Nusselt sur la
plaque.

Les résultats sur le comportement global de l’écoulement nous permettent de mettre en évi-
dence la capacité de nos méthodes numériques à capturer le comportement turbulent de l’écoulement.
En particulier, les visualisations instantanées des champs de vitesse et de pression permettent
d’observer le rebond des structures primaires sur la plaque, donnant naissance aux tourbillons
secondaires. De plus, le développement d’une méthode d’identification de tourbillons nous per-
met de corroborer ces résultats. Avec cette analyse, nous montrons notre capacité à expliquer
l’apparition du second pique dans la distribution radiale du nombre de Nusselt.

À partir de l’analyse faite sur les profiles de vitesse dans la couche limite mais également, à
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partir de l’analyse faite sur la distribution du nombre de Nusselt sur la plaque, les résultats mon-
trent que le point d’impact du jet est bien résolu avec les outils numériques proposés. Cependant,
venant de ces résultats, certaines perspectives peuvent être proposées. En effet, l’influence de la
condition aux limites de sortie semble toujours jouer un rôle crucial sur le déplacement du flu-
ide dans la couche limite. La localisation de cette condition aux limite et la manière de l’imposer
dans un framework éléments finis est toujours une question ouverte à ce jour. De plus, le maillage
peut également être amélioré dans la couche limite dans le but de capturer plus précisément (i) les
profiles de vitesse et (ii) les gradients thermiques sur la plaque. Pour résoudre cela, l’adaptation
anisotrope de maillage semble être la meilleure solution.

Enfin, même si nous sommes confiant que la proposition apportée pour générer des pertur-
bations synthétiques turbulente à l’entrée du jet est, en effet, la mieux adaptée à notre contexte
numérique, d’autres solutions peuvent être explorées. Parmi d’autres, nous proposons dans le
futur d’effectuer un calcul préliminaire d’un jet dans un long tube d’entrée de manière à fournir
un jet turbulent développé en entrée de la simulation du refroidissement par impact. Il sera alors
intéressant de regarder comment la distribution du nombre de Nusselt est affectée par cette nou-
velle condition aux limites.
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3.1 Introduction

In this chapter, we introduce the numerical methods used to solve aerothermal problems for tur-
bulent flows in Cimlib-CFD. It is first important to mention here that we solve decoupled aerother-
mal problems that require to solve two different PDE systems. The first PDE system is dedicated
to the implicit solving of the unsteady incompressible Navier-Stokes equations to compute the
velocity and pressure fields v and p. This solver uses the stabilized finite element method intro-
duced in [13, 38–40] and applied by Hachem et al. in [41]. In particular, the VMS formulation used
in the latter paper shows to be favorable for simulating flows in the Reynolds number range of the
present study. Indeed, the assumption of a convection dominant problem still hold in our case
since we deal with turbulent flows associated to high Reynolds numbers. The solving of this first
PDE system is the subject of Section 3.2.

The second PDE system is dedicated to the solving of the convection-diffusion equation for
the temperature u. It takes, as an input and from the previous resolution, the resulting velocity v

in the convection term. Considering the thermal diffusivity a f lui d of the problem, we compute it
from the physical parameters given in Table 2.1. We get:

a f lui d =
λ f lui d

ρ f lui d cp
= 22e−6 m2.s−1 (3.1)

Therefore, with a thermal diffusivity of this magnitude, the convective heat transfers are consid-
ered to be dominants during the cooling. We thus refer to the use of the well known SUPG scheme
introduced in [13] to stabilize the standard Galerkin formulation. The resolution of this thermal
finite element problem is the subject of Section 3.3. It is written in a generalized way using u to
refer to the solution of the problem that is, in our case, the temperature.

Furthermore, as we solve decoupled aerothermal problems, additional numerical models are
needed in order to achieve aerothermal coupling in the simulation. In this work, we use two dif-
ferent numerical models simultaneously: (i) The Sutherland law and (ii) the Smagorinsky Model
(SM). These additional numerical models are presented in Section 3.4.

Finally, in Section 3.5, we propose a numerical study of the 3D ventilated cavity in order to val-
idate the numerical methods implemented in Cimlib-CFD and the additional numerical models
that we add in order to achieve aerothermal coupling. This study is based on a well documented
benchmark and allows, in particular, to test different aerothermal coupling configurations in order
to choose the best one for our study.

3.2 The incompressible Navier-Stokes equations

3.2.1 Governing equations

To fix the notations, let Ω ⊂ R
d be the fluid domain, where d is the space dimension, and ∂Ω its

boundary. The strong form of the incompressible Navier Stokes equations reads:

{
ρ (∂t v+v ·∇v)−∇·σ= f

∇·v = 0
(3.2)

where ∇ is the gradient operator, t ∈ [0, ttot al ] is the time, v(x, t ) is the velocity, p(x, t ) is the pres-
sure, ρ= ρ f lui d is the density and x is the position vector. The Cauchy stress tensor σ for a Newto-
nian fluid is given by:

σ= 2µ ε(v)−p Id , (3.3)
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with Id the d-dimensional identity tensor and µ = µ f lui d the dynamic viscosity. The strain rate
tensor ε is defined by:

ε(v) =
1

2

[
∇v+∇

Tv
]

(3.4)

In order to close the problem, Eq. (3.2) are subject to the homogeneous Dirichlet boundary condi-
tions.

The weak form of problem (3.2) combined with (3.3) is obtained by multiplication of a test
function and integration by parts. Let H1(Ω) be the Sobolev space of square integrable functions

whose distributional derivatives are square integrable, and let V ⊂
[
H1(Ω)

]d
be a functional space

properly chosen according to the boundary conditions. Finally, let Q =
{

q ∈ L2(Ω) :
∫
Ω q = 0

}
. By

denoting (·, ·) the scalar product of the space L2(Ω), the weak form of problem (3.2) on ∂Ω reads:





Find (v, p) ∈ V ×Q such that:

ρ [(∂t v,w)+ (v ·∇v,w)]+
(
2µε(v) : ε(w)

)
−

(
p,∇·w

)
= (f,w) , ∀w ∈ V

(
∇·v, q

)
= 0, ∀q ∈ Q.

(3.5)

where ρ and µ are the density and the dynamic viscosity respectively.

The standard Galerkin approximation consists in decomposing the domain Ω into N ele-
ments Ωe such that they cover the domain. Therefore, the elements are either disjoint or share
a complete edge (or face in 3D). Using a partition Th , the above-defined functional spaces V and
Q are approached by finite dimensional spaces Vh and Qh such that:

Vh = {vh |vh ∈ C0(Ω)n ,vh|Ωe ∈ P1(Ωe )n , ∀Ωe ∈Th} (3.6)

Qh = {ph |ph ∈ C0(Ω)n , ph|Ωe ∈ P1(Ωe )n , ∀Ωe ∈Th} (3.7)

The Galerkin discrete problem consists therefore in solving the following mixed problem:





Find (vh , ph) ∈ Vh ×Qh such that:

ρ [(∂t vh ,wh)+ (vh ·∇vh ,wh)]+
(
2µε(vh) : ε(wh)

)
−

(
ph ,∇·wh

)
= (f,wh) , ∀wh ∈ Vh(

∇·vh , qh
)
= 0, ∀qh ∈ Qh .

(3.8)

It is well known that the stability of the semi-discrete formulation requires an appropriate
choice of the finite element spaces Vh and Qh that must fulfill a compatibility condition [42].
Accordingly, the standard Galerkin method using P1/P1 elements (i.e. the same piecewise lin-
ear space for Vh and Qh) is not stable. Moreover, convection-dominant problems (i.e. problems
where the convection term v · ∇v is much larger than the diffusion term ∇ ·

(
2µ ε

)
) also lead to a

loss of coercivity in the formulation (3.5). This phenomenon manifests itself as oscillations that
pollute the solution.

3.2.2 The VMS formulation applied to the Navier-Stokes equations

In this work, we use a VMS method [40] which circumvents both the previously stated problems
through a Galerkin approach. The basic idea is to consider that the unknowns can be split into two
components, a coarse one and a fine one, corresponding to different scales or levels of resolution.
First, we solve the fine scales in an approximate manner and then we replace their effect into the
large-scale equation. We present here only an outline of the method, and the reader is referred to
[41] for extensive details about the formulation.

3.2.2.1 Basic principles of the multiscale approach

Let us split the velocity and the pressure fields into resolvable coarse-scale and unresolved fine-
scale components: v = vh + v′ and p = ph + p ′. The same decomposition can be applied to the
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weighting functions: w = wh + w′ and q = qh + q ′. Subscript h is used hereafter to denote the
finite element (coarse) component, whereas the prime is used for the so called sub-grid scale (fine)
component of the unknowns. The enrichment of the functional spaces is performed as follows:
V = Vh ⊕V′, V0 = Vh,0 ⊕V′

0 and Q = Qh ⊕Q′. Thus, the finite element approximation for the time-
dependent Navier-Stokes problem reads:






Find(v, p) ∈ V ×Q such that:

ρ
(
∂t (vh +v′), (wh +w′)

)
Ω+ρ

(
(vh +v′) ·∇(vh +v′), (wh +w′)

)
Ω+

(
2µεεε(vh +v′) :εεε(wh +w′)

)
Ω

−
(
(ph +p ′),∇· (wh +w′)

)
Ω =

(
f, (wh +w′)

)
Ω , ∀w ∈ V0(

∇· (vh +v′), (qh +q ′)
)
Ω = 0, ∀q ∈ Q.

(3.9)
To derive the VMS formulation, we split Eq. (3.9) into a large-scale and a fine-scale problem.

Integrating by parts within each element, we obtain the so-called coarse-scale problem:





ρ
(
∂t (vh +v′),wh

)
Ω+ρ

(
(vh +v′) ·∇(vh +v′),wh

)
Ω+

(
2µεεε(vh) :εεε(wh)

)
Ω

−
(
(ph +p ′),∇·wh

)
Ω = (f,wh)Ω , ∀wh ∈ Vh,0(

∇· (vh +v′), qh
)
Ω = 0, ∀qh ∈ Qh .

(3.10)

and the so-called fine-scale problem:





ρ
(
∂t (vh +v′),w′

)
Ωe

+ρ
(
(vh +v′) ·∇(vh +v′),w′

)
Ωe

+
(
2µεεε(vh) :εεε(w′)

)
Ωe

−
(
(ph +p ′),∇·w′

)
Ω =

(
f,w′

)
Ω , ∀w′ ∈ V′

0(
∇· (vh +v′), qh

)
Ω = 0, ∀q ′ ∈ Q′.

(3.11)

where (·, ·)Ω represents the scalar product on the whole domain while (·, ·)Ωe is the scalar product
on element Ωe .

To derive our stabilized formulation, we first solve the fine scale problem (3.11), defined on
the sum of element interiors and written in terms of the time-dependent large scale variables.
Then we substitute the fine scale solution back into the coarse problem (3.10), thereby eliminating
appearance of the fine-scale while still modelling their effects. As in [41]; we recall here 3 important
remarks/assumptions that have to be made:

• by considering the small scale velocity as bubble functions vanishing on the boundaries
of the element, terms involving integrals over the element interior boundaries will be ne-
glected,

• we neglect the second derivatives of the weighting function in the momentum residuals of
(3.11),

• as the fine-scale space is assumed to be H1-orthogonal to the finite element space, crossed
viscous terms vanish in (3.10) and (3.11).

3.2.2.2 The fine scale sub-problem

Under several assumptions about the time-dependency and the non-linearity of the momentum
equation of the sub-scale system detailed in [41], the fine-scale solutions v′ and p ′ can be written
in terms of the time-dependent large-scale variables using residual-based terms that are derived
consistently. For all Ωe ∈Th , we have:

v′|Ωe = τKRM

p ′ ≈ τCRC
(3.12)

where the momentum residual RM and the continuity residual RC are expressed as:

RM = f−ρ∂t vh −ρvh ·∇vh −∇ph

RC =−∇·vh
(3.13)
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In this work, we adopt the definition proposed by Codina in [43] for the stabilizing coefficient
τK and τC:

τK =

[(
2ρ‖vh‖Ωe

he

)2

+

(
4µ

h2
e

)2]− 1
2

, (3.14)

τC =

[(
µ

ρ

)2

+

(
c2‖vh‖Ωe

c1he

)2] 1
2

(3.15)

where he is the characteristic length of the element and c1 and c2 are algorithmic constants. We
take them as c1 = 4 and c2 = 2 for linear elements. ‖vh‖Ωe is the coarse scale velocity norm on the
element, defined by:

‖vh‖Ωe =

√
v2

x,h +v2
y,h +v2

z,h (3.16)

3.2.2.3 The coarse scale sub-problem

Let us consider the coarse scale problem (3.10). Taking into account the assumptions prescribed
in [41] and recalled in Section 3.2.2.1 for the fine scale fields, the large-scale system becomes:






ρ (∂t vh ,wh)Ω+
(
ρvh ·∇vh ,wh

)
Ω+

(
ρvh ·∇v′,wh

)
Ω+

(
2µεεε(vh) :εεε(wh)

)
Ω

−
(
ph ,∇·wh

)
Ω−

(
p ′,∇·wh

)
Ω = (f,wh)Ω , ∀wh ∈ Vh,0(

∇·vh , qh
)
Ω+

(
∇·v′, qh

)
Ω = 0, ∀qh ∈ Qh .

(3.17)

Then, integrating by parts the third term in the first equation and the second term in the sec-
ond equation of (3.17) and substituting the expressions of both the fine-scale pressure and the
fine-scale velocity of (3.12), the large-scale system reads:






ρ (∂t vh ,wh)Ω+
(
ρvh ·∇vh ,wh

)
Ω−

∑
Ωe∈Th

(
τKRM,ρvh∇wh

)
Ωe

+
(
2µεεε(vh) :εεε(wh)

)
Ω

−
(
ph ,∇·wh

)
Ω−

∑
Ωe∈Th

(τCRC,∇·wh)Ωe
= (f,wh)Ω , ∀wh ∈ Vh,0(

∇·vh , qh
)
Ω−

∑
Ωe∈Th

(
τKRM,∇qh

)
Ωe

= 0, ∀qh ∈ Qh

(3.18)

Finally, substituing the residuals of the momentum equation and developping all the addi-
tional terms, we obtain a modified coarse scale formulation expressed exclusively in terms of
coarse scale variables. The new modified problem for linear tetrahedral elements can now be
decomposed into four main term: the first one is the standard Galerkin contribution, the second
and the third terms take into account the influence of the fine-scale velocity on the finite element
components and the last term models the influence of the fine-scale pressure onto the large-scale
problem. We finally get:

ρ (∂t vh +vh .∇vh ,wh)Ω+
(
2µεεε(vh) :εεε(wh)

)
Ω−

(
ph ,∇.wh

)
Ω+

(
∇.vh , qh

)
Ω− (f,wh)Ω

+
∑

Ωe∈Th

τK
(
ρ(∂t vh +vh .∇vh)+∇ph − f,ρvh∇wh

)
Ωe

+
∑

Ωe∈Th

τK
(
ρ(∂t vh +vh .∇vh)+∇ph − f,∇qh

)
Ωe

+
∑

Ωe∈Th

(τC∇·vh ,∇·wh)Ωe
= 0 ∀wh ∈ Vh,0 , ∀qh ∈ Qh

(3.19)

Compared to the standard Galerkin method, the proposed stable formulation involves addi-
tional integrals that are evaluated element-wise. These additional terms represent the stabilizing
effect of the sub-grid scales and are introduced in a consistent way in the Galerkin formulation.
They make it possible to avoid instabilities caused by both dominant convection terms and in-
compatible approximation spaces.
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3.3 Convection-diffusion equation

3.3.1 Governing equation

The second PDE system we solve is the thermal convection-diffusion system. To begin this section,
let’s introduce some notations. Referring to Irissarri et al. in [44], we express the PDE as:






∂t u −a∆u +v ·∇u = f i n Ω

u = g on Γg

Bu = h on Γh

(3.20)

where ∇ and ∆ are the gradient and the Laplacian operator, a is the diffusion coefficient and v

the velocity field. B is an operator acting on the boundary that defines the natural boundary
condition; g is the value of the Dirichlet boundary condition and h determines the Neumann
boundary condition. In this work, we consider only Dirichlet boundary conditions. For the case
of a convection-diffusion equation, we define the generic differential operator:

L u =−a∆u +v ·∇u (3.21)

We define the solution and test function spaces as standard Sobolev spaces:

S = {u ∈ H1(Ω) | u = g on Γg }
V = {w ∈ H1(Ω) | w = 0 on Γg }

(3.22)

The variational formulation of Eq. (3.20) is:






Find u ∈S such that:

a(w,u) = (w, f ), ∀w ∈ V

(3.23)

where a(·, ·) is a bilinear form, (·, ·) the L2(Ω) inner product.

3.3.2 The Galerkin FE formulation

Applying the Finite Element Method (FEM), we mesh the domain into N non-overlapping ele-
ments Ωe . We write Ω̃ and Γ̃ as:

Ω̃=

N⋃

e=1
Ωe Γ̃=

N⋃

e=1
Γe \Γ (3.24)

We define the FE solution and weighting function spaces S
h ⊂S and V

h ⊂ V such that:

S
h = {uh ∈ H1(Ω) | uh|Ωe ∈Pk , uh|Γg = g ∀Ωe ∈ Ω̃}

V
h = {wh ∈ H1(Ω) | wh|Ωe ∈Pk , wh|Γg = 0 ∀Ωe ∈ Ω̃}

(3.25)

with Pk the space of polynomial of degree k. In this work, we will only use linear elements, hence
k = 1.

With these definitions, we apply the standard Galerkin method:






Find uh ∈S
h such that,

a(wh ,uh) = (wh , f ), ∀wh ∈ V
h

(3.26)

It is well known that this formulation is unstable and leads to spurious oscillations when the
convective term of the equation is dominant. For this reason, we stabilize the formulation using
the SUPG numerical scheme.
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3.3.3 Streamline Upwind Petrov-Galerkin (SUPG) method

The SUPG method consists in introducing stabilizing terms in the standard Galerkin formulation.
To do so, for all terms in Eq. (3.26), we replace the weighting function wh by a new weighting
function wh+τe v·∇wh . This modification of the formulation is usually interpreted as adding more
weight to the node upstream, reducing the weight on the node downstream. It adds an artificial
weighted diffusion along the streamline direction. This stabilization is done locally and on each
element we have:

a(wh +τe v ·∇wh ,uh) = (wh +τe v ·∇wh , f ) ∀wh ∈ V
h (3.27)

Thanks to the bi-linearity of a(·, ·) and of (·, ·), the formulation can be written as:

a(wh ,uh)+a(τe v ·∇wh ,uh)− (τe v ·∇wh , f ) = (wh , f ) ∀wh ∈ V
h (3.28)

And so,
a(wh ,uh)+ (τe v ·∇wh ,L uh − f ) = (wh , f ) ∀wh ∈ V

h (3.29)

Finally, summing on each element, we have a new bi-linear form aτ(·, ·) and we can write the
following formulation:

aτ(wh ,uh) = a(wh ,uh)+
∑

Ωe∈Ω̃

(v ·∇wh ,τe (L uh − f ))Ωe = (wh , f ) ∀wh ∈ V
h (3.30)

Concerning the choice of the stabilizing parameter τe , we refer to Hughes et al. in [45] and we
choose:

τe =
he

2||v||2

(
coth(PeΩe )−

1

PeΩe

)
(3.31)

where he is the local mesh size, computed as described in [46]. PeΩe is the local Peclet number
defined as:

PeΩe =
||v||2he

2a
(3.32)

Remark 2 In order to study the error of this numerical scheme, we use the VMS analysis. In fact, it
has to be noted that the SUPG scheme can be considered as a particular form of the generalized VMS
formulation. Indeed, the stabilizing term of Eq. (3.30) can also be seen as the effect of the subscales
on the coarse scales. Hughes gives more details about this concordance in [40].

3.3.4 The VMS formulation applied to the Convection-Diffusion equation

As in the previous section, the VMS formulation consists in decomposing the solution and test
functions spaces into two sub-spaces: a mesh scale subspace (or coarse scales) (S h ,V h) and an
under-mesh scale subspace (or subscales) (S ′,V ′) such that S =S

h⊕S
′ and V = V

h⊕V
′. There-

fore, we can decompose the solution and test functions as follow:

u = uh +u′, uh ∈Sh , u′ ∈S
′

w = wh +w ′, wh ∈Wh , w ′ ∈S
′ (3.33)

Thanks to the orthogonality between the coarse scales subspace and the subscales subspace,
the variational form can be split into a coarse scales sub-problem and a subscales sub-problem
[45]:

a(wh ,uh)+a(wh ,u′) = (wh , f ) ∀wh ∈ V
h

a(w ′,uh)+a(w ′,u′) = (w ′, f ) ∀w ′ ∈ V
′ (3.34)

We start by solving the subscales sub-problem (second equation). For smooth functions on the
element interior but rough across the inter-element boundaries, the integration by parts leads to
the following equation:

a(w ′,u′) =−a(w ′,uh)+ (w ′, f )
a(w ′,u′) =−(w ′,L uh − f )− (w ′, [Buh])Γ̃− (w ′,Buh)Γh ∀w ′ ∈ V

′ (3.35)
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where the jump term [·] represents the difference of the fluxes on both sides of the element bound-
aries (see [47] for more details). An analytic solution of problem (3.35) can be found. This solution
will be developed in the next chapter.

3.4 Aerothermal coupling in turbulent flows

As mentioned in the introduction of this chapter, we solve decoupled aerothermal problems in
Cimlib-CFD. Therefore, we have to implement additional numerical models in order to take into
account for the aerothermal coupling between the temperature u and the velocity/pressure cou-
ple (v, p). To do so, we compute both: (i) a modified dynamic viscosity µtot al and (ii) a modified
thermal conductivity λtot al .

Indeed, a thermal model is first used to compute the modified fluid dynamic viscosity µT

which will then be taken as input in the Navier-Stokes VMS solver. The modified fluid dynamic
viscosity µT takes into account the variations of dynamic viscosity due to the temperature’s fluc-
tuations in the fluid. To compute it, we use the well known Sutherland law introduced in [48].

Then, a sub-grid scale turbulence model is used to compute the turbulent viscosity µtur b ;
which will be then used to compute the modified thermal conductivity λtot al ; which will then be
taken as an input for the thermal convection-diffusion solver. The turbulent viscosity µtur b allows
taking into account the turbulent characteristics of the flow in the computation of the modified
thermal conductivity λtot al . To compute it, we use the well known Smagorinsky Model (SM) in-
troduced in [49].

3.4.1 Thermal model

This first numerical model is used to compute the modified fluid dynamic viscosity µT that takes
into account the dynamic viscosity variations due to temperature’s fluctuations in the fluid. In-
deed, Sutherland in [48] explicit the modification of fluid viscosity along with its temperature with
the following formula:

The Sutherland’s law [48]:

µT =µ f lui d

(
T

Ti ni t

)3/2 Ti ni t +C

T+C
(3.36)

with µ f lui d the tabulated fluid dynamic viscosity at Ti ni t and C a fixed constant equals to 110.4 K.

3.4.2 Sub-grid scale turbulence model

The second numerical model is used to compute the turbulent dynamic viscosity µtur b which
allows taking into account the turbulent characteristics of the fluid in the modified thermal con-
ductivity λtot al . To compute the turbulent dynamic viscosity µtur b , we use the well known SM
which is written as follows:

The Smagorinsky Model (SM) [49]:

µtur b = ρ f lui d (Cs∆e )2
|S̄v| = ρ f lui d (Cs∆e )2

√
2Ŝi j Ŝi j (3.37)

where ρ f lui d is the tabulated fluid density, ∆e is the length scale related to the grid size. We take
∆e as the cubic root of the cell volume. Therefore we have: ∆e = |Ωe |

1/3 with |Ωe | the volume of
the element Ωe . One can note that this definition works well on isotropic elements but can be

48



CHAPTER 3. FEM FOR TURBULENT FLOWS WITH HEAT TRANSFER

discussed in the case of anisotropic meshes. The term Sv corresponds to the symmetric part of the
velocity gradient and, Ŝi j corresponds to the symmetric part of the resolved velocity gradient on
the mesh nodes.

The Smagorinsky constant Cs needs to be specified prior to the simulation. The lack of clar-
ity concerning the optimal value of the Smagorinsky constant is one of the main drawback of this
model. Indeed, the Smagorinsky constant Cs depends on: (i) the type of flow, (ii) the filter being
used and (iii) the numerical method. In [50], Lilly et al. found a theoretical value equals to 0.18
whereas Germano et al. in [51] have introduced and developed a dynamic sub-grid scale model.
Indeed, the authors replaced the constant coefficient Cs by a parameter Cs(x, t ) which evolves dy-
namically in space and time. In this study, we choose the theoretical value of Lilly et al. and we
take Cs = 0.18.

The second drawback concerns the introduction of too much numerical diffusion in particular
in the laminar regions located near the plate. In order to reduce the turbulent viscosity near the
walls and to take into account the anisotropy of the turbulence, the SM is modified using the Van
Driest damping function introduced in [52]. We have:

µtur b = ρ f lui d (Cs∆e fµ)2
|S̄| (3.38)

with

The Van Driest damping function:

fµ = 1−e−z+/25 (3.39)

where z+ is the dimensionless wall distance. Indeed, z+ is defined by (i) the absolute distance to
the nearest wall z, (ii) the friction velocity at the nearest wall uτ and (iii) the local fluid kinematic
viscosity ν f lui d . It is written as follow:

z+
=

z uτ

ν f lui d
(3.40)

where uτ is computed thanks to the wall shear stress τw . We have:

uτ =

√
τw

ρ f lui d
(3.41)

Therefore, we get a new expression of z+ only written in terms of fluid dynamic viscosity:

z+
=

ρ f lui d z

µ f lui d

√
τw

ρ f lui d
(3.42)

In Equation 3.42, the wall shear stress τw is given by:

τw =µ f lui d (∇v ·n)α=0 (3.43)

where n is the normal direction of the walls. To compute the normal n, we use the Level-Set func-
tion α characterizing the walls. Using the Level-Set method, we can define the normal direction to
the walls as:

n =
∇α

||∇α||
(3.44)

Finally, we define a new dynamic viscosity µtot al that takes into account (i) the Sutherland law
and (ii) the turbulent sub-grid scale model. We have:

µtot al =µT +µtur b (3.45)
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3.4.3 Effects of turbulence on thermal conductivity

Now that we have computed the turbulent dynamic viscosity µtur b , we compute a modified ther-
mal conductivity λtot al that takes into account the turbulent effects of µtur b . It is written as:

λtot al = λ f lui d +λtur b (3.46)

where the first term λ f lui d is the tabulated thermal fluid conductivity.

The second term however, allows taking into account the change of conductivity due to the
flow turbulence. It is written λtur b and is expressed with the following formula:

λtur b =
cp µtur b

Pr
(3.47)

with cp the specific heat of the fluid and Pr the Prandtl number defined here with the Rayleigh
number Ra and the Grashof number Gr according to the following definition:

Pr =
Ra

Gr
(3.48)

The Rayleigh number is defined by the following formula:

Ra =
gβ

ν f lui dα f lui d
(Tw all −Tr e f )L3

c (3.49)

where g is the acceleration due to gravity, β is the thermal expansion coefficient, ν f lui d is the kine-
matic viscosity, α f lui d is the thermal diffusivity, Tw all is the temperature of the hot wall, Tr e f is the
temperature far from the wall and Lc is the characteristic length of the problem.

Using also these parameters, the Grashof number is defined by the following expression:

Gr =

gβ(Tw all −Tr e f )L3
cρ

2
f lui d

µ f lui d
(3.50)

Therefore, we can deduce the Prandtl number expression which is:

Pr =
ν f lui d

α f lui d
(3.51)

Finally, we compute the modified thermal conductivity with the following equation:

λtot al = λ f lui d +
cp µtur b

Pr
(3.52)

To conclude, we indeed achieve a strong correlation between the turbulent activity and the
fluid’s thermal properties. The proposed coupling allows to take into account: (i) the modifications
of the dynamic viscosity due to the temperature’s variations and (ii) the modifications of the fluid
thermal conductivity due to the sub-grid scale turbulence. Thus, we reinforce the aerothermal
coupling of the simulation.

3.5 Validation case: mixed convection problem of a 3D ventilated cavity

In this section, we propose to validate the numerical methods previously introduced on a well
known aerothermal benchmark called the 3D ventilated cavity. The validation case presented
here concerns the numerical simulation of an indoor airflow inside an empty room equipped with
a mechanical ventilation system. In this aerothermal problem, the airflow is moved around the
room by mixed convection. Indeed, the air distribution in the room results of two effects: (i) the
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effect due to the temperature difference inside the room (natural convection) and (ii) the effect of
a mechanical ventilation system (forced convection).

In the past years, this case has been treated with the two common approaches: the experimen-
tal approach and the numerical approach. The experimental approach requires real life measure-
ment in a full-scale environmental chamber that needs to be isolated from the external world. The
work of Nielsen et al. in [53] proposes an experimental study with measurement, models and cal-
culations of the velocity and temperature characteristics in two dimensions. This work provides
a consistent database of velocity and temperature distributions that has been largely used in the
literature and allows numerical scientists to compare their results to real-life experimental mea-
surements.

From a numerical science point of view, indoor airflows have been extensively investigated in
the past decades. In particular, they have proved to be reliable benchmarks for numerous tur-
bulence model adjustments. Therefore, several works can be found in the literature concerning
simulations of indoor airflows using RANS or LES approaches. In particular, Chen et al. use this
benchmark to asses the performance of k − ǫ models in [54]. Furthermore, Zhang et al. in [55]
investigate two LES models: a classical SM, and a Filtered Dynamic Scale Model (FDSM). Their re-
sults show that the predicted velocity, temperature and turbulence distribution agree reasonably
well with the experimental data. However, they observe that the FDSM has trouble determining
with good accuracy the turbulence distribution and therefore, the heat transfer inside the cavity.
The SM is therefore said to be preferred in this configuration.

The goal of this study is to validate the numerical methods presented in this chapter in term of
(i) airflow solution, (ii) heat transfer and (iii) aerothermal coupling. To do so, in Section 3.5.1, we
start by presenting the geometry and boundary conditions of the case along with the description
of the 3 different computations realized to validate the aerothermal coupling. Then, in Section
3.5.2.1 the results in terms of global averaged velocity and temperature fields are presented and
analyzed. Furthermore, the different resulting variables related to the aerothermal coupling are
presented and discussed in Section 3.5.2.2. Finally, a comparison between the three aerothermal
computations and the experimental data is made in Section 3.5.2.3, leading to validation of the
numerical framework.

3.5.1 Description

3.5.1.1 Geometry and boundary conditions

The geometry of the cavity is presented in Figure 3.1. The cold jet is injected through a slot of
height hi n = 0.018 m with a velocity magnitude Vi n = 0.57 m.s−1. These two parameters give a
Reynolds number value at the injection equals to 684. The temperature of the cold jet is fixed at
Tr e f = 15◦C. The two walls of normal X axis, along with the top wall are maintained at temperature
Tr e f . The wall corresponding to the heated floor is maintained at temperature Tw all = 35◦C. Fi-
nally, the two walls of normal Y axis are considered to be adiabatic. The airflow is free to evacuate
the cavity through an output slot of height hout = 0.024 m. At initialization, except on the bound-
ary conditions, the velocity field is null everywhere inside the cavity. The geometric and physical
parameters of this particular configuration are given in Table 3.1.

Except for the walls, the initial temperature in the domain is taken as the averaged value be-
tween the temperature of the heated wall Tw all and the temperature of the injected jet Tr e f . We
have:

T0 = Tmean =
Tw all +Tr e f

2
= 25◦C (3.53)

Form Eq. 3.49, and replacing by the values given in Table 3.1, we compute the Rayleigh num-
ber and we obtain Ra = 2.4e9. As well, from Eq. 3.50, we obtain the Grashof number Gr = 3e9.
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due to the temperature and by considering the flow turbulence only in the thermal conductivity.

Solver Computation A Computation B Computation C
Navier-Stokes VMS µ f lui d µtot al µT

Convection-Diffusion λ f lui d λtot al λtot al

Table 3.2 – Three types of numerical modeling for the aerothermal coupling

In the next section, we will compare the three computations A, B and C with experimental
data and we will deduce which one is the best choice to solve this kind of aerothermal problems
in Cimlib-CFD.

3.5.2 Results on the 3D ventilated cavity

In this section, we first present the results in term of temporal averaged velocity and temperature
fields to asses for the qualitative shape of the aerodynamic and thermal solutions. The presented
computation corresponds to Computation B which requires the computation of all the aerother-
mal coupling parameters. It allows us then to present the variations of the aerothermal coupling
parameters inside the 3D ventilated cavity. Finally, a comparison with experimental data and pre-
vious numerical studies is proposed to validate the results.

3.5.2.1 Resulting temporal averaged velocity and temperature fields

The results on velocity, pressure and temperature fields presented in this section are the resulting
temporal averaged fields computed over the complete simulation (i.e. during ttot al = 120 s). The
temporal averaged values are computed at each point of the mesh taking into account a data out-
put frequency of 100 increments.

As a start, we present in Figure 3.3 a slice view of the mean velocity magnitude field along with
the streamlines of the mean velocity vector inside the cavity. We can observe the characteristic
clockwise movement of the fluid due to the injection of air at the top left corner. Also, as shown by
Ezzouhri et al. in [56], we observe on the streamline figure the counter clockwise movement of the
fluid in the upper right part and the bottom left part of the cavity.

Figure 3.3 – Slice view of the mean velocity magnitude on plan XZ at Y = 0.15 (left) and streamlines of the
mean velocity vector (right).

The mean temperature field is presented in Figure 3.4. We observe that the heat from the hot
plate is well convected inside the cavity and follows the clockwise movement of the fluid.
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Figure 3.10 – Results on the temperature T at x = 0.52 m, y = 0.15 m along the Z axis direction.

therefore the one proposed in Computation B that takes into account the Sutherland law and the
turbulence sub-grid scale model to compute either the dynamic viscosity, and the thermal con-
ductivity.

3.5.3 Conclusions on the validation case

To conclude, the 3D ventilated cavity benchmark case allows us to validate the numerical methods
presented in this chapter, and used in Cimlib-CFD to solve aerothermal problems. In fact, the re-
sults presented here are in good agreement with experimental data. Furthermore, this benchmark
study makes it possible for us to validate the implemented numerical models dedicated to the
aerothermal coupling and to test three different types of coupling between the flow and its tem-
perature. The coupling corresponding to Computation B was therefore selected to solve aerother-
mal problems in Cimlib-CFD and in particular, to solve the single impingement jet cooling case
presented in the previous chapter.
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mulation VMS.

Le second système concerne la résolution de l’équation thermique de convection-diffusion
pour calculer la température du fluide. Cette résolution utilise la vitesse calculée dans le système
d’équation précédent dans le terme de convection. Les transferts thermiques convectifs sont con-
sidérés dominants pendant la simulation. Pour cette raison, nous utilisons le schéma de résolu-
tion SUPG de manière à stabiliser la formulation éléments finis du problème thermique.

Nos systèmes d’équations étant découplés, nous proposons dans ce travail l’introduction de
deux modèles numériques additionnels permettant de renforcer le couplage aérothermique de la
simulation. Ces modèles sont: (i) la loi de Sutherland (i) et le modèle de sous-maille de Smagorin-
sky.

Ces méthodes numériques sont testées et validées sur un cas de cavité ventilée en 3D. Les
résultats montrent qu’il y a une bonne corrélation entre nos résultats et les références numériques
et expérimentales. En particulier, trois couplages aérothermiques différents sont testés dans le cas
de la cavité 3D. Les résultats montrent que le meilleur couplage aérothermique est réalisé lorsque
les deux modèles additionnels sont pris en compte dans le calcul de la viscosité dynamique et de
la conductivité thermique du fluide.
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4.1 Introduction

The use of CFD for industrial applications has been in constant increase for the last decades. Re-
searchers are continuously developing new techniques to reach higher level of precision. Never-
theless, to comply with industrial expectations, a trade-off has to be found between high precision
levels and high computational costs [10]. Different strategies can be found in the literature. Most
of them are related to high order elements (see [58–60]), parallel computing (see [35, 61–63]) or, in
particular, adaptive methods (see [64–67]).

Indeed, adaptive methods make it possible to improve the accuracy and the efficiency of nu-
merical methods. In particular, anisotropic mesh adaptation has proved to be powerful in captur-
ing dynamically the heterogeneities that can appear in numerous physical applications including
those having boundary or inner layers [68, 69]. In these cases, gradients of the solution are highly
directional and can be captured with a good accuracy using fewer additional elements. These
mesh adaptation techniques are based on local modifications of an existing mesh. Usually, it con-
sists in a local stretching of the elements which is defined by a metric field. This metric field is
built from an error analysis on the mesh. In [46, 70, 71] for example, the error analysis is done on
the edges of the elements.

In fact, theories of anisotropic error estimation have been well developed, leading to some
standardization of the adaptation process. Error estimation of the discretization error and in par-
ticular, of the interpolation error have been performed in a number of works such as in [72–74].
From the interpolation error analysis, several recent results [74–78] have brought renewed focus
on metric-based mesh adaptation where the underling metric is derived from a recovered Hessian.
Indeed, the Hessian based metric mesh adaptation has several advantages from which we note: (i)
the general computation framework, (ii) the relatively easy way of implementation and above all,
(iii) the robustness.

Despite the practical construction of this kind of anisotropic error estimators, the information
derived from them is only an indicator for the mesh adaptation mechanics. Indeed, the fine scale
features related to some dynamic flow solutions are still difficult to capture without considering
the PDE-dependent approximation error. The estimation of the latter involves the development
of multiscale a posteriori error estimators that can be computationally prohibitive.

However, the VMS method that we use to stabilize our continuous finite element scheme pro-
vides, by construction, a cost free PDE-dependent a posteriori error estimator. The VMS approach,
introduced in the previous chapter, consists in the splitting of the solution into a resolved part (i.e.
coarse scales) and an unresolved part (i.e. subscales). The resolution of the unresolved part gives
a direct access to the sub-mesh scale information of the solution and allows us to compute an ap-
proximation error estimator without solving any additional equation. Recently, several works re-
lated to VMS (or subscales) error estimators in the VMS framework have been published. Granzow
et al. in [79] developed an error representation for output quantities based on a dual enrichment
technique. Also, in [80], Baiges et al. proposed a general error estimator for the finite element solu-
tion of solid mechanics problems. John et al. proposed in [81] a robust residual-based a posteriori
estimator for the SUPG finite element method applied, in particular, to stationary convection-
diffusion-reaction equations.

In this chapter, we compute the subscales error estimator using two different methods. The
first one uses stabilizing parameters derived from the VMS analysis and local norms defined on
the elements. It has been developed by Hauke et al. in [82, 83] and provides an element-wise com-
putation of the error. Referring to Irisarri et al., the second method uses a linear combination of
bubble functions to establish a pointwise computation of the error. It has been developed for one-
dimensional transport equation in [84] and for 2D transport equation in [44].
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The first contribution of this work is then to propose a new isotropic mesh adaptation tech-
nique based on the previous subscales error estimator. To do so, we define a new isotropic metric
tensor H i so and we solve an optimization problem under the constraint of a fixed number of el-
ements. Until now, the VMS error estimators were only derived for isotropic mesh adaptation. In
this work, we also propose to use the sub-mesh scale information for anisotropic mesh adaptation.

The second contribution is therefore to combine both the coarse scales interpolation error
indicator and the subscales error estimator for anisotropic mesh adaptation. To the best of our
knowledge, such strategy has never been tempted. To do so, we derive a new anisotropic met-
ric tensor H

new
ani so that allows taking into account the anisotropic variations of the solution on the

mesh and also relies upon the sub-grid information of the solution. This new anisotropic mesh
adaptation technique takes into account the finite element VMS framework used for the numeri-
cal resolution of the convection-diffusion equation. In fact, the VMS approach allows quantifying
the a posteriori subscales errors that can be used as weight to enrich the anisotropic error indi-
cator of the conventional Hessian based approach. Unlike existing anisotropic a posteriori error
estimators like in [85–87] to mention a few, this hybrid approach takes advantages from both a pri-
ori and a posteriori methods. Indeed, we build an isotropic a posteriori error estimator targeting
the subscales and we combine it with an anisotropic a priori interpolation based error indicator
targeting the coarse scales.

To begin this chapter, we refer to the VMS formulation applied to convection-diffusion prob-
lems introduced in Chapter 3, Section 3.3. From this mathematical background, we present, in
Section 4.2, the two different computation methods of the subscales error estimator. Then, mesh
adaptation is presented in Section 4.3. As a reminder, we introduce the Hessian based anisotropic
mesh adaptation in Section 4.3.1. Then, we define the isotropic metric tensor H i so , built from
the subscales error estimator in Section 4.3.2. Finally, we present the new combination of the in-
terpolation error indicator and the subscales error estimator in Section 4.3.3. This combination
is tested on 2D and 3D convection-diffusion benchmarks in Section 4.4. In this latter section, an
error analysis of the exact error is made to highlight the two contributions of this chapter. Finally,
we apply these new mesh adaptation techniques to the single impingement jet cooling in Section
4.5 in order to demonstrate the capabilities of these multiscale mesh adaptation techniques on a
realistic industrial case.

4.2 A posteriori error estimation on solution’s subscales

To begin, we can recall here that the VMS analysis introduced in Section 3.3.4 gives access to a
solution of the subscales u′. Indeed, we gave an exact expression of u′ in Eq. (3.35). Consider-
ing the relation u = uh +u′, this part of the solution can also be considered as the subscales error.
However, u′ is not explicitly computed during the simulation. To obtain it, we use an a posteriori
computation.

In this chapter, we use two different methods for the a posteriori computation of the subscales
error estimator. Both methods are residual based and rely upon convection-dominated regime
assumptions:

• The first method consists in computing the error estimator as the multiplication of the sta-
bilizing parameter’s norm and the residual’s norm. The computation is done element-wise
because of the local definition of the stabilizing parameter and the local error norms used.

• The second method does not use the stabilizing parameter. The error estimator is com-
puted thanks to the pointwise error estimation of Irisarri et al. in [44]. It uses a set of bubble
functions as a substitution of the subscales Green’s functions.
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In this section, we give the key features of these two computation methods.

4.2.1 Computation using stabilizing parameters

Going back to Section 3.3.4, we had the following sub-problem for the subscales:

a(w ′,u′) =−(w ′,L uh − f )− (w ′, [Buh])Γ̃− (w ′,Buh)Γh ∀w ′
∈ V

′

According to [45], this problem can be solved analytically using Green’s function g ′(x,y). We
have the following paradigm:

u′(x) =−

∫

Ω̃y

g ′(x,y)(L uh − f )(y)dΩy −

∫

Γ̃y

g ′(x,y)([Buh])(y)dΓy −

∫

Γhy

g ′(x,y)(Buh)(y)dΓy (4.1)

This error estimator includes:

• Interior residuals, L uh − f in Ω̃

• Inter-elements residuals, [Buh] on Γ̃

• Natural boundary condition residual Buh on Γh

From here, multiple cases can be considered. In this work, we use linear shape functions with
a piecewise constant source term f . Therefore, we can make the assumption that the residual
L uh− f is P0. Furthermore, we consider only Dirichlet boundary conditions. Thus, we neglect the
effects of the boundary condition residual. Finally, as for all convection-dominated regimes, we
will first consider the smooth case, i.e. that the discontinuity of the subscales is not preponderant
and that the inter-elements residuals can be neglected. With these assumptions, we write:

u′(x) ≈−

∫

Ω̃y

g ′(x,y)(L uh − f )(y)dΩy (4.2)

We will also make the assumption that the error has a local influence. Thus, we can replace the
subscales Green’s function by a local Green’s function that vanishes at the element boundary, i.e.,
g e (x,y) = 0 on Γe . We can write:

g ′(x,y) ≈ g e (x,y) ≈ τeδ(y−x) (4.3)

with,

τe =
1

meas(Ωe )

∫

Ωe,x

∫

Ωe,y

g e (x,y)dΩe,xdΩe,y (4.4)

In [47], the author shows that the above assumptions work well for convection-dominated
regimes. In fact, numerical experiments show that for high Peclet number flows and stabilized
solutions, the contribution of jump terms is negligible.

From here, we can therefore write a local error estimator like the following:

u′(x)|Ωe ≈−

∫

Ωe

g e (x,y)(L uh − f )(y)dΩy =−

∫

Ωe

τeδ(y−x)(L uh − f )(y)dΩy =−τe (L uh − f )(x)

(4.5)
Taking the L2 norm, we can finally write the following local error estimator for the solution

subscales:
||u′(x)||L2,Ωe

= |τe | ||L uh − f ||L2,Ωe
(4.6)

We know the expression of τe from the application of the SUPG method (see Section 3.3.3) and
we can a posteriori compute the P0 residual in our finite element computation domain. As said
in the introduction, the sub-scale information computed here is element-wise and can be used as
such in mesh adaptation.
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4.2.2 Computation using high order bubbles functions

In this section, we refer to the work of Irisarri et al. in [44]. This time, we apply a pointwise com-
putation of the error estimator. This computation method consists in decomposing the error into
two components according to the nature of the residuals:

u′(x) = u′
bub(x)+u′

pol l (x). (4.7)

The first term u′
bub is the internal residual error and it is related to the local internal residual,

f −L uh , inside the elements. As we will see later, this part of the error is modeled locally thanks
to a set of bubble functions. The second term u′

pol l is the inter-element error. It represents the
pollution error due to sources of errors outside the element. As said in the previous section, it is
negligible when considering convection-dominated regime. Consequently, in this work we will
consider only the internal residual error and suppose that:

u′(x) ≈ u′
bub(x). (4.8)

4.2.2.1 Practical aspects

As proposed by Irisarri et al. in [44], the way of obtaining a numerical solution of u′
bub is by solving

the following discrete problem:






Find u′
bub ∈S

h
bub such that

a(w ′
bub ,u′

bub) = (w ′
bub , f −L uh), ∀w ′

bub ∈S
h

bub

(4.9)

This time, the error component is expressed with a combination of bubble functions bi :

u′
bub(x) =

nbub∑

i=1
cb

i bi (x) (4.10)

Considering bubbles functions of order 3, we have:

u′
bub(x) = cb

1 b1(x)+ cb
2 b2(x)+ cb

3 b3(x) (4.11)

with cb
i unknown constant to be determined.

Referring to [42], the definition of the first bubble function b1(x) is the following:

b1(x) = (d +1)d+1
d+1∏

i=1
λ̂i (4.12)

where d is the dimension of the problem and λ̂i are the barycentric coordinates in the reference
element.

The next bubble functions b2(x) and b3(x) are built by adding the monomials of the Pascal tri-
angle with center in the barycenter ce = (ξe ,ηe ) of the element. For example, in 2D, in the reference
element: Ωr e f = {(ξ,η) : 0 ≤ ξ≤ 1;0 ≤ η≤ 1−ξ}, we choose the following bubble functions:

b1(ξ,η) = 27×ξη(1−ξ−η)
b2(ξ,η) = 27×ξη(1−ξ−η)(ξ−ξb)
b3(ξ,η) = 27×ξη(1−ξ−η)(η−ηb)

(4.13)

with ce = (ξb ,ηb), ξb = 1/3 and ηb = 1/3.
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Approximating u′
bub(x) by Taylor series and neglecting the second order terms, we have an

expression of u′
bub(x) close to the centroid ci of the element [44]:

u′
bub(x) ≈ b1(x)( f −L uh)(ci )+be

y1
(x)

d( f −L uh)

d y1
|y=ci +be

y2
(x)

d( f −L uh)

d y2
|y=ci +HO (4.14)

where:

be
y1
=

∫

Ωe

g e (x,y)(y1 − ci ,1)dΩy and be
y2
=

∫

Ωe

g e (x,y)(y2 − ci ,2)dΩy (4.15)

As said before, we make the assumption that the residual f −L uh is P0. Therefore, we have:

d( f −L uh)

d y1
|y1=ci =

d( f −L uh)

d y2
|y2=ci = 0 (4.16)

Consequently, the internal residual can be simply expressed as follows:

u′
bub(x) = b1(x)( f −L uh)(ci ) (4.17)

Developing the residual with the convection-diffusion generic operator L , we have:

u′
bub(x) = b1(x)( f (ci )+a∆uh(ci )−v ·∇uh(ci )) (4.18)

Then, uh is P1, therefore, ∇uh(ci ) is a constant inside the element and ∆uh(ci ) = 0. For this reason,
we finally get:

u′
bub(x) = b1(x)( f (ci )−v ·∇uh(ci )) (4.19)

The above computation of the error estimator is pointwise. In fact, the error estimator is given
at each point x of the domain. However, to include the error information in the mesh adaptation,
we need an information of the error inside each element. To get this information, we can compute
3 different types of norm: L1, L2 and L∞. We recall here the definition of these 3 norms:

||u′
bub ||L1 (Ωe ) = |Ωe |×

∑

16i6Ni nter p

|u′
bub(xi )| (4.20)

||u′
bub ||L2 (Ωe ) =

√
|Ωe |×

√ ∑

16i6Ni nter p

|u′
bub(xi )|2 (4.21)

||u′
bub ||L∞(Ωe ) = max

{
|u′

bub(x)| | x = (xi )16i6Ni nter p

}
(4.22)

where (xi )16i6Ni nter p are the interpolation points defined by the integration points of the bubble
function b1(x) and Ni nter p is the number of interpolation points. The consistency of this error
estimate resides in the fact that it goes to zero when the interior residual goes to zero.

4.2.2.2 Validation of computation using bubbles functions

Now that we have developed practical computation aspects, we validate the computation on a
benchmark of a convection-diffusion equation. To do so, we take the example given in [44] of an
error estimation where the FEM is stabilized by the SUPG scheme. We recall that the differential
operator is given by: L u =−a∆u+v·∇u with a = 0.03, f = 1, v = (1,1) and homogeneous Dirichlet
boundary conditions.

We compute the SUPG solution on P1 triangular elements instead of the Q2 bilinear quadrilat-
eral elements used in the referred paper. Therefore, we choose a number of elements in order to
get approximately the same SUPG solution in comparison with Irisarri et al.. We choose to divide
each square cell in 8 triangles and we obtain a mesh of 512 triangular elements. We compare our
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2. An anisotropic mesh adaptation (described in [35]): This technique uses the anisotropic
local interpolation error indicator. From the latter, we derived an anisotropic metric tensor
Hani so to adapt the mesh.

3. A new anisotropic mesh adaptation: This technique uses a new anisotropic local error indi-
cator that takes into account (i) the interpolation error indicator and (ii) the subscales error
estimator. From the latter, we derive a new metric tensor H

new
ani so .

As a reminder, we start by introducing the principles of anisotropic mesh adaptation and the
construction of the anisotropic metric tensor Hani so . Then, the isotropic tensor H i so based
on the subscales error estimator is defined in Section 4.3.2. Finally, a combination between the
anisotropic local error indicator and the subscales error estimator is proposed and the new metric
tensor H

new
ani so is defined in Section 4.3.3.

4.3.1 Principles of anisotropic mesh adaptation

To discretize our computational domain, we use anisotropic unstructured meshes. It implies that
we can stretch the elements in certain directions according to the solution features. To do so, we
start by performing an error analysis on the mesh. Then, to correlate the error with the geometry,
a metric field is defined. From this metric field, an anisotropic error indicator is defined and used
as a functional for a re-meshing optimization problem.

Let us consider a certain triangulation Ωh . We can derive an upper bound of the approxima-
tion error using an interpolation error analysis in the Lp norm. Referring to Almeida et al. in [72],
this upper bound is expressed thanks to the recovered Hessian of the approximated solution uh .
In fact, using P1 linear elements, we usually cannot compute directly the Hessian of the solution.
Instead, we compute an approximation called the recovered Hessian matrix:

||u −uh ||Lp (Ω) ≤ C′
N

−α
Ωh

||HR(uh)(x)||
p
Lp (Ωe ) (4.23)

where α≥ 0, NΩh the number of elements of the mesh for the triangulation Ωh , HR(uh)(x) the re-
covered Hessian matrix and C′ is independent of the element size.

To apply the re-meshing strategy, we build an equilateral tetrahedron in the metric space. As
in [35], it is defined at an arbitrary point P by the local metric field M :

M (P) =
1

h1(P)
e1 ⊗e1 + ...+

1

hd (P)
ed ⊗ed (4.24)

with (ei )i=1,d the eigenvectors of HR(uh(x)) and hi (P) the mesh sizes in the ei directions.

However, the recovered Hessian matrix is not a metric because it is not positive definite. There-
fore, we define the following metric tensor:

Hani so =RΛR
T (4.25)

where R is the orthogonal matrix built with the eigenvectors (ei )i=1,d of HR(uh(x)) and Λ is the
diagonal matrix of absolute value of the eigenvalues λi of HR(uh(x)). This metric tensor can also
be written as follow:

Hani so =RΛR
T
= |λ1|e1 ⊗e1 + ...+|λd |ed ⊗ed (4.26)

Here, we want to align the mesh with the solution field u. It means that we want the error to be
equi-distributed on each direction of the domain. To do so, the shape of each element have to
be such that the local error is equal in any direction. It is equivalent to say that the local error is
constant per element in the principal directions of curvature. Therefore, we have:

|λ1|h
2
1 = ... = |λd |h

2
d = cte (4.27)
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Following the work of Mesri et al. in [35], we introduce the following local error indicator ηΩe

in the Lp norm:
ηΩe = d |Ωe |

1
p |λd (x0)|h2

d (4.28)

where |λd (x0)| is the maximum eigenvalues of HR(uh(x)) corresponding to direction d , |Ωe | is the
volume of the element and hd is the length of the element in direction d .

In [35], the authors define a minimization problem where the functional is the error indicator
of Eq. (4.28). This optimization problem is expressed as follows:






Find hΩe = {h1,Ωe , ...,hd ,Ωe }, Ωe ∈Ωh that minimizes the cost function:

F(hΩe ) =
∑

Ωe∈Ωh

(ηΩe )p

under the constraint:

NΩ′

h
= C−1

0

∑

Ωe∈Ωh

∫

Ωe

d∏

i=1

1

hi ,Ωe

dΩe

where C0 is the volume of a regular tetrahedron and Ω′
h is the new triangulation.

(4.29)

Then, this multidimensional optimization problem is replaced by a one-dimensional opti-
mization problem. The unknown is no more hΩe but the mesh size corresponding to the max
of the (hi ,Ωe )16i6d . The way of dealing with anisotropy is via stretching factors (si ,Ωe )16i6d−1 de-
fined between the mesh sizes (hi ,Ωe )16i6d . The solution is given by Mesri et al. in [35]. In 3D and
Lp norm, it is expressed thanks to the following theorem:

Theorem 1 For d = 3, the optimization problem (4.29) has a unique solution and is given by:






h3,Ωe =

[
β

(2p+3)
3 C1,Ωe

∫

Ωe

C2,Ωe dΩe

] 1
2(p+3)

h2,Ωe = s2,Ωe h3,Ωe

h1,Ωe = s1,Ωe s2,Ωe h3,Ωe

with 




s1,Ωe =
h1

h2
=

(
|λ2|

|λ1|

) 1
2

s2,Ωe =
h2

h3
=

(
|λ3|

|λ2|

) 1
2

where

C1,Ωe = 3p C0s1,Ωe s2
2,Ωe

|λ3|
p , C2,Ωe = C−1

0
1

s1,Ωe s2
2,Ωe

and

β
1

2
3 (p+3) =N

−1
Ω′

h

∑

Ωe∈Ωh






(
1∫

Ωe
C2,Ωe dΩe

) 1
2
3 (p+3)

∫

Ωe

C2,Ωe

[
2p +3

3
C1,Ωe

] 1
2
3 (p+3)

dΩe






Finally, the above solution gives the mesh sizes in the 3 directions that define the metric field
on each element. These mesh sizes are computed with respect to a fixed number of elements NΩ′

h
.

4.3.2 Isotropic mesh adaptation with the subscales error estimator

The first use of the subscales error estimator computed in Section 4.2 is for an isotropic mesh
adaptation. Referring to [88] and from a theoretical convergence point of view, we know that the
error is linked to the local mesh size h according to the following relation:

||u′
||L∞(Ω) ≈ C.hk+1 (4.30)
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where C is independent of the element size. In our case, using linear elements, we have:

||u′
||L∞(Ω) ≈ C.h2 (4.31)

To control the mesh size of our adaptive process, the user has to give a tolerance value ||u′
tol ||L

∞

so that the local mesh size stays above an acceptable bound. In fact, this tolerance corresponds
to the desired error that the user wants to obtain on the mesh. For example, in a pointwise error
estimation, ||u′

tol ||L
∞ is the tolerated error at each control point inside the element. Referring to

[89], we can write the tolerated pointwise error as a scalar positive value u′
TOL:

||u′
tol ||L∞ = u′

TOL (4.32)

Starting from here, we can consider three strategies to adapt the mesh. Indeed, we can decide
to either:

1. uniformly distribute the desired local error norm over the old mesh or,

2. uniformly distribute the desired local error norm over the new mesh or,

3. uniformly distribute the desired pointwise error.

In this work, we will use the 2nd mesh adaptation strategy for the element-wise computation of
the error estimator (i.e. the one using stabilizing parameters); and the 3r d mesh adaptation strat-
egy for the pointwise computation of the error estimator (i.e. the one using bubble functions).

For the 3r d strategy, still referring to [89], we write the relationship between the error and the
tolerance in a uniform pointwise error distribution:

(
hnew

h

)2

=
u′

TOL

u′
(4.33)

where hnew is the size of the new mesh (after mesh adaptation), u′ is the estimated error.

Then, we build the isotropic metric tensor:

H i so =RΛR
T
= |λ|e1 ⊗e1 + ...+|λ|ed ⊗ed (4.34)

with

|λ| =
1

h2
new

=
||u′||L∞(Ωe )

u′
TOL

×
1

h2
(4.35)

where R is the orthogonal matrix built with the eigenvectors (ei )i=1,d of HR(uh(x)).

Here, the eigenvalues λ of the metric are equal in all directions. Therefore, the mesh will be
adapted isotropically. However, we keep the eigenvectors of HR(uh(x)) in the definition of H i so .
Thus, we keep the element’s orientation prescribed by the recovered Hessian matrix. Finally, the
re-meshing strategy is the same that the one described in Section 4.3.1. In particular, as we apply
an isotropic re-meshing, the stretching factors (si ,Ωe )16i6d−1 between the mesh sizes (hi ,Ωe )16i6d

are equal to 1.

4.3.3 Combination of subscales error estimator with anisotropic mesh adaptation

The second use of the subscales error estimator computed in Section 4.2 is for an anisotropic mesh
adaptation. In this section, we propose to combine both the coarse scales error indicator and the
subscales error estimator. To do so, we derive a new metric that allows taking into account the
anisotropic variations of the solution on the mesh but also relies on the subscales error estimator
previously computed.
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We first consider the previous anisotropic local error indicator ηΩe defined in Eq. (4.28) and
recalled here:

ηΩe = d |Ωe |
1
p |λd (x0)|h2

d

Then, going back to the previous section, we write:

h2
d ,new

h2
d

=
u′

TOL

||u′||L∞(Ωe )

Now, the unknown of the re-meshing problem is hd ,new . In fact, we want the new mesh size to
take into account the error estimator of the subscales. Thus, we propose a new anisotropic local
error indicator ηΩe ,new defined as:

ηΩe ,new = d |Ωe |
1
p ×|λd (x0)|×h2

d ,new (4.36)

From here, we can define the new anisotropic metric tensor as:

H
new
ani so =RΛR

T
=

||u′||L∞(Ωe )

u′
TOL

|λ1|e1 ⊗e1 + ...+
||u′||L∞(Ωe )

u′
TOL

|λd |ed ⊗ed (4.37)

Doing so, we keep the anisotropic effects from the solution variations but we isotropically scale
this effect by the subscales error estimator.

With this new error indicator, we solve the same optimization problem of Eq. 4.29 with the
unknown hd ,new . The optimal mesh is obtained exactly in the same way but using ηΩe ,new as
functional. Consequently, the optimization problem becomes:






Find hΩe ,new = {h1,Ωe ,new , ...,hd ,Ωe ,new }, Ωe ∈Ωh that minimizes the cost function:

F(hΩe ,new ) =
∑

Ωe∈Ωh

(ηΩe ,new )p

under the constraint:

NΩ′

h
= C−1

0

∑

Ωe∈Ωh

∫

Ωe

d∏

i=1

1

hi ,Ωe ,new
dΩe

where C0 is the volume of a regular tetrahedron and Ω′
h is the new triangulation.

(4.38)

Following the same proof that Mesri et al. in [35], the solution of this new optimization prob-
lem becomes:

Theorem 2 For d = 3, the optimization problem (4.38) has a unique solution and it is given by:






h3,Ωe ,new =

[
β

(2p+3)
3 C1,Ωe ,new

∫

Ωe

C2,Ωe dΩe

] 1
2(p+3)

h2,Ωe ,new = s2,Ωe h3,Ωe ,new

h1,Ωe ,new = s1,Ωe s2,Ωe h3,Ωe ,new

with 




s1,Ωe =
h1

h2
=

(
|λ2|

|λ1|

) 1
2

s2,Ωe =
h2

h3
=

(
|λ3|

|λ2|

) 1
2

where

C1,Ωe ,new = 3p C0s1,Ωe s2
2,Ωe

×

(
||u′||L∞ (Ωe )

u′
TOL

)p
×|λ3|

p , C2,Ωe = C−1
0

1
s1,Ωe s2

2,Ωe

and

β
1

2
3 (p+3) =N

−1
Ω′

h

∑

Ωe∈Ωh






(
1∫

Ωe
C2,Ωe dΩe

) 1
2
3 (p+3)

∫

Ωe

C2,Ωe

[
2p +3

3
C1,Ωe ,new

] 1
2
3 (p+3)

dΩe





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By re-defining the optimization problem, we integrate the effect of the subscales error estima-
tor with respect to the constraint on the fixed number of elements. This new re-meshing strategy
is tested on 2D and 3D benchmarks in the next section.

4.4 Numerical examples

In this section, we test the effectivity and the accuracy of our new local error indicator on 2D and
3D convection-diffusion benchmark cases in a convection-dominated regime. To do so, we start
by computing the FE solution uh thanks to the SUPG scheme described in this thesis. The solution
is computed on 6 different types of meshes:

• Fixed mesh: Using no mesh adaptation,

• Isotropic mesh 1: Using the isotropic metric tensor H i so computed with the subscales error
estimator using the stabilizing parameter (see Section 4.2.1),

• Isotropic mesh 2: Using the isotropic metric tensor H i so computed with the subscales error
estimator using the bubble functions (see Section 4.2.2),

• Anisotropic mesh 1: Using the anisotropic metric tensor Hani so computed without the sub-
scales error estimator,

• Anisotropic mesh 2: Using the new anisotropic metric tensor H
new
ani so computed with the

subscales error estimator using the stabilizing parameter,

• Anisotropic mesh 3: Using the new anisotropic metric tensor H
new
ani so computed with the

subscales error estimator using the bubble functions.

For the benchmark cases 4.4.1 and 4.4.3, we have a known analytic solution u. Thus, we can
compute the exact discrete error eh = u−uh on each element of the mesh. With this local discrete
error, we compute the global L2 norm of the error such that:

||eh ||L2 =

(∫

Ωh

e2
h dΩh

)1/2

(4.39)

For the case 4.4.1, we define an efficiency index Ie f f for our subscales error estimator as follow:

Ie f f =
||u′||L2

||eh ||L2
(4.40)

4.4.1 Case 1: regular boundary layers in 2D

This first case has a continuous solution and regular boundary layers. It has been studied by sev-
eral authors like Zhang et al. in [90] or Hachem et al. in [46]. We consider the domain Ω = (0,1)2

and the velocity field v(x, y) = (1,1)T. Instead of a source term f = 1 like in Section 4.2.2.2, we
choose the source term corresponding to the following analytic solution:

u(x, y) = x y
(
1−e−

1−x
a

)(
1−e−

1−y
a

)
(4.41)

Thus, we have the following source term:

f (x, y) = (x + y)
(
1−e−

1−x
a e−

1−y
a

)
+ (x − y)

(
e−

1−y
a −e−

1−x
a

)
(4.42)

We compute the FE SUPG solution uh for two different diffusion coefficients: a = {10−3;10−4}.
In addition, for practical purpose, we define the following stretching factor SΩe :

SΩe =
h2

new

h2
=

u′
TOL

||u′||L∞(Ωe )
(4.43)
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To keep an acceptable mesh even where ||u′||L∞(Ωe ) is close to zero, we have to impose a lower
bound for the stretching factor SΩe . We decide that, from an iteration to the other, the size of the
element should not increase of more than 10 times the previous one. Therefore, the condition:
SΩe > 0.01 is applied.

The effectivity index for the two ways of computation of the error estimator is given in Figure
4.3.

Figure 4.3 – Effectivity indexes for a = 10−3 and a = 10−4

The first observation that can be made concerning the efficiency index Ie f f is that for the two
different Peclet numbers and for the different mesh sizes considered, our efficiency index Ie f f

stays close to 1. Therefore, we can say that our error estimator is effective for all configurations.
Secondly, we observe that the error estimation computed with bubble functions is more effective
than the one computed with stabilizing parameters which overestimates the error. Finally, we ob-
serve that the effectivity index Ie f f gets closer to 1 when the diffusion coefficient is reduced (i.e.
when the element Peclet number increases). This finding is in accordance with the convection-
dominated regime assumption.

Now that we have confirmed the effectivity of our error estimation, we can use this estimation
in the mesh adaptation. To analyze the mesh convergence of uh , we compute uh for 6 different
mesh sizes: 2 000, 20 000, 40 000, 60 000, 80 000 and 100 000 elements.

The distributions of the discrete error eh are presented in Figure 4.4. The corresponding meshes
for each error distribution are given below. On this figure, the case corresponds to a diffusion co-
efficient of a = 10−3. Mesh adaptation is under a constraint of 20 000 elements and the figures are
respectively:

• Figure 4.4.(a) corresponding to the Fixed mesh,

• Figure 4.4.(b) corresponding to the Isotropic mesh 1,

• Figure 4.4.(c) corresponding to the Isotropic mesh 2,
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• Figure 4.4.(d) corresponding to the Anisotropic mesh 1,

• Figure 4.4.(e) corresponding to the Anisotropic mesh 2,

• Figure 4.4.(f) corresponding to the Anisotropic mesh 3.

To begin the analysis of the results on the error distributions, we compare the Figure 4.4.(a), (b)
and (c). We notice that the isotropic mesh adaptation according to our subscales error estimator
reduces the error in the boundary layer. In fact, we notice from Figure 4.4.(b) and (c) that the mesh
is isotropically adapted in the boundary layer. However, we observe that the error stays above the
prescribed tolerance u′

TOL = 0.01 when we get close to the wall. To counter this effect, anisotropic
mesh adaptation is a really efficient technique. In Figure 4.4.(d), we observe that the anisotropic
mesh adaptation makes it possible for the error to go under the tolerance. However, we still keep
an error approximately equals to the tolerance on the right top angle.

To eliminate this last part of the error, the new local error estimator proposed in Section 4.3.3
is well adapted as one can see in Figure 4.4.(f). In fact, we notice from the comparison of these
6 figures that our new local anisotropic error indicator ηΩe ,new is the best driver of mesh adap-
tation. We observe in Figure 4.4.(e) and 4.4.(f) a drastic reduction of the error in the boundary
layers compared to the other mesh adaptation techniques. Therefore, the use of the sub-scale in-
formation into the new anisotropic error indicator allows improving the locality of the mesh nodes
with respect to the equi-distribution of different error scales. Furthermore, we see that the equi-
distribution is optimal when the error estimator is computed with the bubble functions (see Figure
4.4.(f)). To finish, we notice that the constraint of a fixed number of elements is well respected with
a deviation of less than 19% with the targeted number of elements N .

The reduction of the error can also be observed on the results for the global L2 norm of the
error ||eh ||L2 . This is true for the case a = 10−3 in Figure 4.5 and the case a = 10−4 in Figure 4.6. As
expected, the isotropic mesh adaptation reduces the error for both cases of a. The error estimator
computed with bubble functions shows to be the best driver of isotropic mesh adaptation; in par-
ticular when the number of element increases.

To increase the slope of convergence, we use anisotropic mesh adaptation. In fact, it has been
shown in a number of works (for example in [35]) that the Hessian based anisotropic mesh adap-
tation leads to a convergence of order 2. This fact is highlighted in our results as we observe the
increase of the slope going from isotropic to anisotropic mesh adaptation. In Figure 4.5 and 4.6, we
observe that our new anisotropic local error indicator ηΩe ,new behaves as expected. This is the first
important result of the present work. In fact, we observe that for coarse meshes (i.e. N = 2 000
elements), the effect of the subscales error estimator is important. This reduction is even slightly
better for the case with a = 10−4. On the latter figure, we observe that, with only 20 000 elements,
we are below the error of an interpolation based anisotropic mesh adaptation of 100 000 elements.

As the number of elements increases, we notice that the effect of the subscales error estimator
becomes less important. Indeed, the slopes of the Anisotropic mesh 2 and Anisotropic mesh 3 cases
decreases. This behavior is expected when we acknowledge that the subscales error estimator can
also be considered as an estimation of the subscales error. Thus, when the number of element
increases, the local mesh size decreases and, for this reason, the modeled part of the solution be-
comes smaller.

The second important result of the present work concerns the last (Anisotropic mesh 3) case
corresponding to anisotropic mesh adaptation taking into account the error estimator computed
with bubble functions. Again, we can state that this error estimator is the best choice to drive
anisotropic mesh adaptation in comparison with the one computed with stabilizing parameters.
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Figure 4.4 – Error distributions and meshes of 2D regular boundary layers for different mesh adaptation
techniques
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In addition, we notice that the subscales error estimator computed with stabilizing terms has no
effect when we reach an important number of elements (for example: N = 100 000).

Figure 4.5 – Error in L2 norm with a = 10−3 for regular boundary layers in 2D

4.4.2 Case 2: parabolic boundary layers with recirculating convective field

For this benchmark, we consider a domain Ω = (−1,1)2 with a non-constant flow. The diffusion
coefficient is a = 0.001. We apply a zero source term inside the domain. The right side wall has a
Dirichlet boundary condition equals to 1. The other walls have a homogeneous Dirichlet bound-
ary conditions. We apply a recirculating convective field defined by v = (2y(1− x2),−2x(1− y2))
that will form boundary layers in the domain. The SUPG solution is given in Figure 4.7.

This example represents the propagation of the right wall heat inside the domain through the
convective field. For this complex problem, it is difficult to capture the structure of the boundary
layer. Our goal here is to show the efficiency of our new anisotropic error indicator in the cap-
ture of the parabolic layer. To illustrate the latter, we plot the two different error estimators (one
computed with stabilizing parameter and the other with bubble functions) in Figure 4.8. The aim
of this figure is to compare the two isotropic components of the two different error estimators.
Therefore, it is sufficient to plot only the subscales part of the error estimation. As a result, we
observe that the localization of the error is improved by the bubble functions method.

The resulting adapted meshes are presented in Figure 4.9. The cases (a), (b), (c), (d), (e) and
(f) correspond to the same mesh adaptation techniques than in the previous example (Case 1). In
Figure 4.9 (b) and (e) we observe that the isotropic and anisotropic mesh adaptation techniques
follow the localization prescribed by the error estimator based on the stabilizing parameter (see
Figure 4.8). Consequently, the mesh is adapted only on a restraint region of the parabolic bound-
ary layer. In Figure 4.9(d), we observe that the conventional Hessian based anisotropic mesh adap-
tation already capture the 4 boundary layers. However, it does not take into account the sub-grid
information that can improve the anisotropic mesh adaptation. In fact, the mesh adaptation tech-
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Figure 4.6 – Error in L2 norm with a = 10−4 for regular boundary layers in 2D

Figure 4.7 – Numerical SUPG solution for parabolic layers with a = 10−3
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Figure 4.8 – Subscales error estimator computed with stabilizing parameters (left) and bubble functions
(right)

nique using the new anisotropic local error indicator taking into account the subscales error in-
dicator based on bubble functions (see Figure 4.9(f)) shows to be the best choice to accurately
capture the 4 parabolic boundary layers.

4.4.3 Case 3: regular boundary layers in 3D

This 3D benchmark case is inspired by the one in Section 4.4.1. It takes the same configuration
concerning velocity field, source term, boundary conditions and analytic solution with an extru-
sion in the z direction. However, the convection-diffusion equation is now solved on a cubic do-
main Ω = (0,1)× (0,1)× (0,1). The analytic solution is given in Figure 4.10. We compute the FE
SUPG solution uh with the 6 mesh adaptation techniques previously describe for 9 mesh sizes:
N = 40 000, 80 000, 120 000, 160 000, 200 000, 300 000, 400 000, 500 000 and 600 000 elements.

As for the 2D benchmark, the error distribution corresponding of each mesh is given in Figure
4.11. In Figure 4.11.(a), (b) and (c), we observe the instabilities due to the highly convective regime.
Having isotropic elements, the local mesh size in the direction of the velocity field is too important.
As said in the introduction of this chapter, we observe that anisotropic mesh adaptation is a really
efficient technique to eliminate the spurious oscillations in the boundary layer. This is highlighted
in Figure 4.11.(d). However, there is still a part of the error that is not reduced on this figure. To
counter this effect, we see that our new anisotropic local error indicator ηΩe ,new is, again, efficient.
Also, we observe that the constraint of a fixed number of elements is again well respected with a
deviation of less than 6% with the targeted N . Finally, the analysis on error distribution in 2D still
holds in 3D and moreover, it seems to be enforce by adding a new dimension to the problem.

The above statements on error distribution are also to be found in the global L2 norm of the
error ||eh ||L2 in Figure 4.12. Moreover, the effects of the subscales error estimator on anisotropic
mesh adaptation is enforced in 3D. The important result here is that, with only 40 000 elements
in 3D, the error is below an interpolation based anisotropic mesh adaptation on 600 000 elements
with our new anisotropic local error estimator ηΩe ,new . Again, taking into account the sub-scale
information in mesh adaptation makes it possible to reduce drastically the error on the 3D coarse
meshes. With about 20 times less elements, we obtain the same global error ||eh ||L2 .
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Figure 4.9 – Resulting meshes for different types of mesh adaptation for the parabolic boundary layers.

Figure 4.10 – Analytic solution for 3D convection-diffusion equation with a = 10−3
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Figure 4.11 – Error distributions and meshes of 3D regular boundary layers for different mesh adaptation
techniques
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Figure 4.12 – Error in L2 norm with a = 10−3 for regular boundary layers in 3D

4.5 Application to the single impingement jet cooling

On one hand, in the previous section, the new multiscale mesh adaptation techniques were val-
idated on numerical benchmarks with analytic solutions; where an exact error analysis was fea-
sible. On the other hand, in this last section, we propose to apply these new techniques to the
industrial case of the single impingement jet cooling. In this case, we cannot compute the ex-
act error because we cannot know a priori the exact solution of the temperature u in the flow.
However, the idea here is still to test these mesh adaptation techniques on a realistic aerothermal
problem and to present some observations on the resulting meshes. These observations are based
on the flow analysis given in Chapter 2 Section 2.3.5. As we will see later, some conclusions about
the qualitative efficiency of these new multiscale mesh adaptation techniques can be made.

To realize this test, we propose to use the three types of mesh adaptation techniques corre-
sponding to the previous section and recalled here:

• Anisotropic mesh 1: Using the anisotropic metric tensor Hani so computed without the sub-
scales error estimator,

• Isotropic mesh 2: Using the isotropic metric tensor H i so computed with the subscales error
estimator using the bubble functions,

• Anisotropic mesh 3: Using the new anisotropic metric tensor H
new
ani so computed with the

subscales error estimator using the bubble functions.

In this realistic aerothermal problem, the unsteadiness of the flow has to be taken into ac-
count. Therefore, the mesh adaptation techniques need to be dynamic methods. It means that
the mesh is dynamically adapted over time during the simulation. We choose a mesh adaptation
step of 10 increments. Referring to Chapter 2, we have 5000 simulation increments. Therefore, we
realize 500 mesh adaptations steps for the total simulation time. Doing so, we allow the mesh to
follow the flow dynamics over time. The mesh adaptation techniques are tested on a 2D and a 3D
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configuration of the problem.

The results of the 2D configuration are given in Figure 4.13. In this figure, we observe that the

proposed subscales error estimator
||u′||L∞ (Ωe )

u′
TOL

allow us to locate with good accuracy the unresolved

part of the thermal solution. Then, thanks to our new anisotropic mesh adaptation technique, the
mesh is adapted anisotropically according to this sub-scale information. Doing so, it allows cap-
turing accurately the turbulent vortex structures in the flow. Indeed, as we can see on the right
part of Figure 4.13, this dynamic multiscale mesh adaptation technique allows us to follow the
secondary vortices over time during the unsteady simulation.

In Figure 4.14, we compare the different mesh adaptation techniques for a fixed number of
elements N equals to 400 000. In this figure, we observe that the two new multiscale techniques
(Isotropic 2 and Anisotropic 3) show important differences with the standard one (Anisotropic 1).
In fact, we observe that the mesh follows more closely the thermal solution and in particular, it fol-
lows the convective heat exchanges due to the appearance of the secondary vortices. Furthermore,
we observe on the zoom view of Figure 4.14 that the new multiscale anisotropic mesh adaptation
(using the metric tensor H

new
ani so) is, again, the choice that gives us the most suitable mesh regard-

ing the complexity of the flow behavior.

We can also observe in this figure that the mesh sizes are slightly different between the three
meshes. In fact, the re-meshing tool is based on an optimization procedure on unstructured
meshes. The solution is thus not unique and therefore, the targeted number of elements can be
different from an iteration to the other. However, the difference between the meshes represents
less than 15% of the total mesh sized. Therefore, we consider that the comparison between meshes
still holds.

The results for the 3D configuration are given on Figure 4.15. We start the mesh adaptation
procedure from an initial isotropic mesh of 800 000 P1 elements. A constrain of 4 000 000 P1 el-
ements is imposed to the optimization problem. The resulting adapted meshes are presented in
Figure 4.15. They corresponds to the meshes at increment I = 900 i.e. when the secondary vortices
just start forming. They counts 4 263 472 P1 elements for the Anisotropic mesh 1 and 4 340 428 P1
elements for Anisotropic mesh 3. It gives us a gap of less than 10% of the targeted value and we
consider that the two meshes are comparable in terms of numerical results.

In Figure 4.15 (top left), we observe that the anisotropic hessian based adapted mesh (Anisotropic
mesh 1) is indeed refined according to the anisotropic variations of temperature. We also observe
that the temperature is well convected by the velocity field as we recognize the specific turbulent
vortex structures, highlighted in Chapter 2. However, in Figure 4.15 (top right), we observe that the
multiscale isotropic mesh adaptation (Isotropic mesh 2) captures the flow structures but require
an important amount of elements on the plate to do so. This is due to the fact that we have a highly
directional flow and that isotropic mesh adaptation is, in any case, not adapted in this situation.

Finally, it is clearly visible that the hessian based mesh adaptation (Anisotropic mesh 1) does
not fully capture the complex vortex structures near the plate. It is apparent when we compare
the two adapted meshes on the plate plane (see Figure 4.15 (top left and bottom left)). In fact,
we observe that the new multiscale mesh adaptation (Anisotropic mesh 3) allows capturing more
in details the complex flow behavior on the plate. We recognize the kind of structure that we ob-
tained before for the velocity field in Figure 2.14.

Furthermore, we add in Figure 4.16, a slice view of the meshes on the plate supporting the
velocity magnitude field. In this figure, we observe that the new multiscale anisotropic adapted
mesh (Anisotropic mesh 3) is the one that is best fitted to the velocity field. Therefore, from these
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Secondary vortexes over time: 

Figure 4.13 – Localization of the subscales error and new multiscale anisotropic mesh adaptation
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Figure 4.14 – Resulting meshes for different mesh adaptation techniques in 2D. (top) Anisotropic mesh 1:
anisotropic Hessian based mesh adaptation; (middle) Isotropic mesh 2: new isotropic mesh adaptation
based on the subscales error estimator; (bottom) Anisotropic mesh 3: new anisotropic mesh adaptation
based on the subscales error estimator.
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observations, we can expect the new multiscale anisotropic mesh adaptation to be better suited
to capture the complex convective heat transfer on the plate. Furthermore, we observe on this
view that the mesh is well adapted on the plate. Therefore, the thermal gradient and thus the heat
transfer should be well captured by our new anisotropic multiscale mesh adaptation technique.

Figure 4.15 – Resulting meshes for different mesh adaptation techniques in 3D. (top left) Anisotropic mesh
1: anisotropic Hessian based mesh adaptation; (top right) Isotropic mesh 2: new isotropic mesh adaptation
based on the subscales error estimator; (bottom left) Anisotropic mesh 3: new anisotropic mesh adaptation
based on the subscales error estimator; (bottom right) Zoom view of Anisotropic mesh 3.

Figure 4.16 – Slice view of resulting meshes for different mesh adaptation techniques in 3D: (left)
Anisotropic mesh 1; (middle) Isotropic mesh 2; (right) Anisotropic mesh 3.

4.6 Conclusion

In this chapter, we proposed a new a posteriori error estimator based on the VMS method for
anisotropic adaptive fluid mechanics problems. This new error estimator was defined by the com-
bination of both (i) an interpolation based anisotropic error indicator and (ii) a subscales error
estimator. The subscales error estimator was computed using two different methods. The defini-
tion of a new re-meshing optimization problem allowed us to include this sub-grid information in
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mesh adaptation with respect to the constraint of a fixed number of elements.

We first validated these multiscale mesh adaptation techniques on 2D and 3D numerical bench-
marks, where an exact error analysis was feasible. The results showed that, for the subscales er-
ror estimator, the method using bubble functions was better suited to drive both isotropic and
anisotropic mesh adaptation. In fact, the localization of the residual subscales error was better
established with this method. Then, the results showed that the proposed multiscale mesh adap-
tation technique allowed us to compute highly precise solutions with much less elements in com-
parison with other mesh adaptation techniques. Finally, this work showed that this new multiscale
anisotropic mesh adaptation strategy was capable of dealing with boundary layers of convection-
diffusion problems associated with high Peclet number flows in 2D and 3D.

We then tested these multiscale mesh adaptation techniques on the realistic industrial case of
the single impingement jet cooling. This time an exact error analysis was not possible, but some
qualitative conclusions could be made. Indeed, the results showed that the combination of the
VMS error estimator with anisotropic mesh adaptation allowed getting relevant anisotropically
adapted meshes that captured the complex flow structures, which are the secondary vortices gen-
erated by the impinging jet. Indeed, the new multiscale anisotropic adapted mesh was better fitted
to the solution. It is therefore a promising idea to simulate complex CFD aerothermal problems.

The next steps of this work is first to demonstrate quantitatively the efficiency of this new mul-
tiscale mesh adaptation method on the realistic industrial case of the impinging jet cooling. To do
so, we propose as a perspective, a comparison of the obtained heat transfer distribution on a large
fixed mesh, a hessian based adapted mesh, and a multiscale adapted mesh. In fact, as soon as the
physical modeling issues on the impingement jet cooling are dealt with, it will be interesting to
compare the heat transfer distributions obtained on both (i) a multiscale adapted mesh and (ii) a
large isotropic reference mesh.

Another possible perspective is also to apply this new multiscale mesh adaptation technique to
other equations. Indeed, the subscales error estimator is PDE-dependent and in this work, we ap-
plied it to the thermal convection-diffusion equation. However, it also possible to apply this error
estimate to the incompressible Navier-Stokes equations. This time, the error estimator is com-
puted on the vector variable v in order to have an estimation of ||v′||. The same was also tested on
the variable p in order to have an estimation of ||p ′||. The computation of the error estimate using
the residual free bubble matrix have yet to be undertaken for these equations.

In the next chapter, we will present the parallel computational framework in which these nu-
merical mesh adaptation methods were developed. Indeed, the efficiency of these numerical
methods is closely linked to the parallel performance of the mesh partitioning and load balancing
algorithms used on different parallel computational systems.

Résumé du chapitre en français

Nous proposons dans ce chapitre un nouvel estimateur d’erreur a posteriori basé sur la formu-
lation VMS pour l’adaptation de maillages non-structurés. Ce nouvel estimateur d’erreur est ap-
pliqué à l’équation thermique de convection-diffusion associée aux problèmes de Mécanique des
Fluides. Dans un premier temps, nous proposons deux méthodes permettant de le calculer. La
première méthode se base sur le calcul des termes stabilisants dérivés de l’analyse VMS et la déf-
inition de normes locales définies sur les éléments. La seconde méthode en revanche, est basée
sur l’utilisation d’une combinaison linéaire de fonctions bulles pour établir un calcul de l’erreur
en tous points de l’élément.
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La première contribution de ce travail est ensuite de proposer une nouvelle méthode d’adaptation
de maillage isotrope basée sur ce nouvel estimateur d’erreur. Pour ce faire, nous définissons un
tenseur métrique isotrope appelé H i so et nous résolvons un problème d’optimisation sur les
tailles de mailles permettant de contraindre le maillage à un nombre fixe d’éléments. Jusqu’à
maintenant, les estimateurs d’erreur VMS étaient surtout utilisés pour l’adaptation isotrope de
maillages. Dans ce travail, nous proposons également d’utiliser cette information de sous-maille
dans l’adaptation anisotrope du maillage.

La seconde contribution est donc de combiner à la fois (i) l’indicateur d’erreur d’interpolation
et (ii) l’estimateur d’erreur sous-échelle dans le but de réaliser une adaptation anisotrope du mail-
lage. D’après ce que nous avons pu lire dans la littérature, cette stratégie n’a jamais été tentée
par le passé. Pour réaliser cela, nous définissons un nouveau tenseur métrique anisotrope ap-
pelé H

new
ani so qui permet de prendre en compte (i) les variations anisotropes de la solution mais

également (ii) l’information de sous maille. En effet, l’approche VMS nous permet de quantifier
a posteriori l’erreur de sous maille que nous pouvons ensuite utiliser pour enrichir l’indicateur
d’erreur anisotrope des approches hessiennes conventionnelles. Cette nouvelle méthode nous
permet donc de tirer partie (i) des méthodes d’adaptation de maillage construites a priori, et (ii)
de l’analyse VMS réalisée a posteriori.

Ces deux nouvelles méthodes d’adaptation de maillage multi-échelles sont d’abord testées sur
des cas analytiques 2D et 3D où une analyse de l’erreur exacte est faisable. Les résultats montrent
que, pour l’estimateur d’erreur sous-échelle, la méthode de calcul utilisant les fonction bulles est
la mieux adaptée pour piloter l’adaptation isotrope et anisotrope du maillage. En effet, la localisa-
tion de l’erreur de sous-maille est mieux établie avec cette dernière. De plus, les résultats montrent
que ces deux nouvelles méthodes d’adaptation de maillage multi-échelles permettent d’obtenir
des solutions numériques hautement précises avec bien moins d’éléments en comparaison avec
les méthodes conventionnelles. Finalement, ce travail montre que ces méthodes d’adaptation
de maillage multi-échelles sont capables de gérer les couches limites associées aux problèmes de
convection-diffusion à hauts nombre de Péclet en 2D et en 3D.

Ensuite, ces nouvelles méthodes d’adaptation de maillage sont appliquées à un cas industriel
plus réaliste qui est le cas du refroidissement par jet impactant. Cette fois, une analyse exacte de
l’erreur n’est bien sûr pas possible mais certaines conclusions qualitatives peuvent quand même
être énoncées. En effet, les résultats montrent que la combinaison d’un estimateur d’erreur VMS
avec l’adaptation anisotrope de maillage nous permet de capturer les échanges thermiques com-
plexes générés par les structures turbulentes de l’écoulement. En effet, nous montrons que ces
nouveaux maillages permettent notamment de suivre les tourbillons secondaires générés par le
jet impactant et que le maillage semble être mieux aligné pour capturer les échanges thermiques
dans la couche limite. C’est donc une idée prometteuse pour améliorer la simulation de ce cas
aérothermique complexe.

Les perspectives de ce travail sont d’abord de démontrer quantitativement les effets de ces
nouvelles méthodes d’adaptation de maillage multi-échelles sur des cas industriels plus réalistes
tel que celui du refroidissement par impact de jet. Cela sera rendu possible par une comparai-
son avec des références numériques et expérimentales des résultats de transferts thermiques cal-
culés en utilisant ce type de méthode. Une autre perspective possible de ce travail est également
d’appliquer ces nouvelles méthodes multi-échelles à d’autres équations. En effet, l’estimateur
d’erreur sous-échelle que nous développons est dépendant de la PDE. Dans ce travail, nous pro-
posons de l’appliquer à l’équation thermique de convection-diffusion mais d’autres équations
peuvent être envisagées. Pendant cette thèse, nous avons commencé à nous intéresser à l’application
de cette méthode aux équation de Navier-Stokes incompressibles.
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Dans le chapitre suivant, nous présentons le contexte numérique parallèle dans lequel ces
méthodes numériques d’adaptation de maillage sont développées. En effet, l’efficacité de ces
méthodes numériques est intimement liée à la performance en parallèle des algorithmes de repar-
titionnement de maillage et de répartition de la charge de calcul utilisés sur des systèmes de calcul
parallèle.
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5.1 Introduction

In order to produce reliable aerothermal simulations in modern aircraft engines, the future com-
putational systems will have to break out from the existing ones. Indeed, referring to NASA report
by Slotnick et al. in [10], considering the actual evolution of technologies, scientists predict that
the future systems will reach a computational peak capacity of 30 ExaFLOPS in 2030.

However, several factors show that these exascale systems won’t be a simple evolution of the
existing petascale systems. In fact, from an energetic stand-point, the existing petascale systems
require between 10 to 20 MW, corresponding approximately to 1MW per PetaFLOPS. Following
this trend, the theoretical energy consumption of an exascale system will be around 1 GW. For
environmental reasons, it is of course not feasible to build such systems. Indeed, the targeted en-
ergy consumption for these systems is between 20 to 60 MW. Consequently, it is primordial for
computer scientists to find new hardware systems capable to sustain this computational power
without prohibitive energy consumption.

Furthermore, to improve the performances of the existing systems, computer scientists cannot
rely on increasing the performance of a single core as they used to. For this reason, as mentioned
in [91], in the last years, the number of cores per chip and per node have increased quite fast
but this aggregation necessitates research work on more complex memory hierarchies, networks
topologies and partitioning algorithms.

Finally, these new hardware systems will have to be robust and in particular, more fault tol-
erant than the existing ones in order to anticipate any kind of failure from a system’s component.
In fact, by increasing the number of components like the Central Processing Unit (CPU)s for ex-
ample, the risk to get a failure from one of them is increased. In this case, it is necessary for the
computation to continue and for the computational loads to be redistributed efficiently on the
other working components.

In this chapter, we present the parallel computational framework in which this PhD work
was realized. To do so, we first present the parallel software capabilities of the finite element
code Cimlib-CFD and then, the two different hardware systems on which our developments were
tested. In Section 5.2, we present the FE framework and the mesh partitioning principles. Then,
the algorithm behind parallel mesh adaptation is introduced as well as important notions on the
particular treatment of the partitions interfaces. Additionally, we present the method used in
Cimlib-CFD to realize load balancing during the mesh adaptation process. To finalize the def-
inition of our parallel framework, a mention of the parallel visualization tools used during this
thesis is proposed.

In Section 5.3, we present the two different hardware systems tested during this PhD thesis. In
particular, we introduce the first trials on running Cimlib-CFD on a massively parallel supercom-
puter allowing simulations over a thousand cores. Taking into account the characteristics of the
supercomputer, a fault tolerant checkpoint-restart procedure, implemented during this work, is
presented. In the last section, applications of the parallel components are proposed. In particular,
parallel mesh adaptation is applied to the single impingement jet cooling. Finally, we present the
massively parallel computation of a turbine vane composed by 39 holes, launched on the super-
computer along with preliminary results on this geometry.
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5.2 Parallel software components in Cimlib-CFD

5.2.1 Finite elements computations

The FE method is used to solve numerically a PDE defined on a domain for a set of boundary
and initial conditions. For time-dependent equations, the different techniques used to solve the
problem are classified in three categories: (i) explicit, (ii) semi-implicit and (iii) implicit. For in-
compressible fluid mechanic problems, we usually prefer to use an implicit time discretization for
the Navier-Stokes equations due to the following reasons:

• for explicit methods, when the diffusive term is important, the stability criteria on the time
step can be very restrictive,

• by using the FE method, even if an explicit time discretization is used, there is still a mass
matrix to inverse in order to solve the problem.

The implicit resolution of a PDE using the FE method leads to the solving of large linear or non-
linear systems. For a non-linear system, the application of the Newton-Raphson method leads
itself to the resolution of several large linear systems. A linear system can be written in matrix
form as follows:

Ax = b (5.1)

where A is a matrix supposedly invertible, x is a vector of unknowns and b the second term.

In most involving finite element codes, solving the linear system is done by using iterative pro-
cedures. For elliptic problems, the preconditioned Conjugate Gradient (CG) algorithm can be used
for example. For non-symmetric problems, the Generalized Minimal RESidual (GMRES) method
introduced by Saad et al. in [92] is more suitable. The GMRES method gives an approximation xn

of the exact solution x which minimizes the norm of the residual ||Axn −b||. In our finite element
code, we use the Portable Extensible Toolkit for Scientific computation (PETSc) library to store
and solve large systems in parallel. PETSc is an open-source suite of data structures and routines
to solve scientific applications modeled by PDEs.

It has been noted in the past like in [10, 11, 93] that, for most implicit simulations, 80% of the
computational time is dedicated to the solving linear systems. Furthermore, the size of a linear
system grows linearly with the size of the spatial and time dependent domain. This is therefore a
critical problematic in FEM and foundational mathematical research in highly scalable linear and
nonlinear solvers is still required. In the past, important research work aiming at improving the
convergence of iterative solvers using a posteriori error estimates was undertaken, starting with
Babuska and Rheinboldt in [94, 95], followed by other authors like in [96–99] for example.

According to Houzeaux et al. in [91], the algebraic solvers are mainly responsible for the limi-
tation of the parallel scalability of finite element codes. The solving of the linear systems is done
in parallel using mesh partitioning techniques.

5.2.2 Mesh partitioning

Mesh partitioning is a commonly used technique for parallelization of numerical methods. For
several years now, parallelisms by domain decomposition have been well developed for FE meth-
ods like in [100–105]. For distributed memory machines, which are currently the most used archi-
tecture for large parallel machines, mesh partitioning is used to distribute the workload over the
computational domain. From the FE point of view, the problem to solve is subdivided into sub-
problems and the computational domain into sub-domains. Each sub-domain is thus assigned
to a parallel process which carried out the operations on the different fields corresponding to this
part of the mesh. An example is given in Figure 5.1. In this figure, each color corresponds to a
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particular parallel process.

Figure 5.1 – Mesh partitioning on complex 3D geometries: a North American P-51, a Dassault Falcon 7x and
a Tyrix Aerospace Albadrone

Different types of operations are then possible on a partitioned mesh. On one hand, some
of them require no communications between the processes. For example, the unique value of a
norm can be calculated by adding the contributions from all the parallel processes via data recol-
lection. On the other hand, operations like the Sparse Matrix Vector product (SpMV), occupying a
central place in iterative solvers, require communications with the neighboring sub-domains. In-
deed, they are related to the coupling at the partitions borders and the data need to be exchanged
in order to include the interfaces in the computation of the new vector.

Thus, in CFD codes, different types of operations coexist and a unique partition suitable for
all of them needs to be generated. This partition have to provide a good balance of the resulting
workload, while minimizing the communication requirements. In general, the communication
costs are proportional to the size of the subdomains interfaces and therefore, it is necessary to
generate partitions that minimize them.

To evaluate the parallel performances of CFD codes, especially for large computations, the
notion of scalability is primordial. The scalability of a system is its capacity to handle a growing
amount of work, when allocated resources are added. For example, in CFD, a code will be consid-
ered scalable if, by adding an increasingly large number of computational resources, like CPUs, the
code is capable of dealing with increasingly large problems in terms Degrees Of Freedom (DOF) or
number of elements. In the context of HPC there are two common ways to define the scalability of
a code:

• the strong scalability: it is defined by how the computational time vary with the number of
processors for a fixed total problem size,

• the weak scalability: it is defined by how the computational time vary with the number of
processors for a fixed problem size per processor.

The weak scalability is most interesting for O(N ) algorithms. In this case, perfect weak scaling
shows a constant time, independent of processor count, to compute the solution. Deviations from
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under the constraint of a given number of elements in the new adapted mesh, an optimal mesh is
generated. The constraint could be considered as local to each subdomain. In this case, solving
the error estimate problem is straightforward. Indeed, all computations are local and there is no
need to exchange data between the processors. The local constraint on the number of elements
implies the generation of a new mesh with the same number of elements per processor. This al-
lows avoiding heavy load balancing cost after each mesh adaptation.

However, this approach tends towards an overestimate of the mesh density on subdomains
where flow activity is almost neglected. From a scaling point of view, this approach leads to a weak
scalability model for which the problem size grows linearly with respect to the number of proces-
sors. To derive a strong scalability model, which refers in general to parallel performance for a
fixed problem size, the constraint on the number of elements for the new generated mesh should
be global. The global number of elements over the entire domain is distributed with respect to the
mesh density prescribed by the error estimator. This is a hard scalability model that leads to good
parallel performances. However, reload balancing is needed after each mesh adaptation stage.
The parallel behavior of the mesh adaptation is very close to the serial one and the error analysis
is still the same. For these reasons, this model is more relevant than the former one.

Update: The solution computed on the previous mesh then needs to be updated on the new
mesh. At this step, we use interpolation methods to transport the variables from the previous mesh
to the new one. In the context of anisotropic mesh adaptation with highly stretched elements, this
interpolation step is crucial and often leads to some difficulties. Indeed, interpolation methods
can reduce the conservation of important physical quantities and leads to errors that spoil the
solution accuracy. In the past years, important research work has been done on this subject like
in [107–111] for example. In particular, in [112], Bahbah et al. propose a globally conservative
methods suitable for both interpolations on unstructured fixed and adaptive anisotropic meshes.
It consists in combining an a posteriori error estimator that minimizes the interpolation error of
the finite element solution followed by an interpolation with restrictions method that conserves
physical properties of the field being interpolated.

Figure 5.3 – Iterative parallel remeshing steps on a 2D distributed mesh

Repartition: Finally, the new mesh is repartitioned over the allocated CPUs to take into ac-
count for the changes of mesh topology in the computational loads distribution. Indeed, mesh
repartitioning is the key process of parallel mesh adaptation methods [103, 105]. The effective-
ness of the parallel mesh adaptation method depends on the repartitioning algorithms used and
on how the interfaces between subdomains are managed. Starting from a partitioned mesh into
multiple sub-domains, remeshing operations are performed using a sequential mesh adaptator
on each subdomain with an extra treatment of the interfaces. Two main approaches are then con-
sidered in the literature:

1. An iterative one: At the first iteration, remeshing is performed concurrently on each proces-
sor while the interfaces between sub-domains are locked to avoid any modification in the
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sequential remeshing kernel. Then, a new partitioning is calculated to move the interfaces
and remesh them at the next iteration. As illustrated in Figure 5.3, the algorithm iterates
until all items have been re-meshed.

2. The second approach consists in handling the interfaces by considering a complementary
data structure to manage remeshing on remote mesh entities.

The first approach is preferred because of its high efficiency and fully code reusing capability for
sequential remeshing kernels. However, the unstructured and dynamic nature of mesh adaptation
algorithms leads to imbalance the initial workload. Therefore, an efficient dynamic load balancing
procedure is needed after each mesh adaptation step.

5.2.4 Dynamic load balancing

The load balance is one of the principal measurements to quantify the parallel performances of
a HPC system. It quantifies the workload distribution between the computational resources in-
volved in a computational task. Referring to [91], if t i mei denotes the time spent by process i ,
out of np processes, on the execution of a parallel task, the load balance can be expressed as the
averaged time avei (t i mei ), divided by the maximum time, maxi (t i mei ). This value represents
the ratio between the resources effectively used with respect to the resources engaged to carry out
the task. It is defined by the following formula:

load bal ance :=
avei (t i mei )

maxi (t i mei
(5.2)

In this work, we follow the same load balancing strategy than Mesri et al. in [103]. A cost
function is defined and takes into account the theoretical computation and communication time
of the allocated resources. Then, the load balancing process is realized using two major steps:

• Forming disjoint pairs of processors that are susceptible to minimize the cost function,

• Optimizing the cartography on each pair. This optimization is done by transferring mesh
nodes or mesh cells from a processor to the other using the notion of strip migration.

These two steps are repeated as long as the global cost of the partition can be optimized. The
results from [103] show that the use of this method on various system architectures allows acceler-
ating the mesh partitioning process. In terms of scalability, a linear behavior is observed. Indeed,
the mesh partitioning time evolves linearly with the number of processors and mesh nodes which
is a proof of good scalability performances.

An example of load balancing is given in Figure 5.4. It is the same example that the one in
Figure 5.3 after the parallel remeshing procedure. On the left side of Figure 5.4, it is trivial to ob-
serve that the partition is not optimal. In particular, as mention before, the size of the interfaces
is too large and this could have a damaging impact on the communication costs. Therefore, the
cost function is optimized using the previously described load balancing procedure by transfer-
ring nodes from one processor to the other in order to obtain the final optimal partition presented
on the right side of Figure 5.4.

5.2.5 Parallel visualization component

In this PhD work, the meshes used can reach several millions of points on which solution data and
simulation parameters have to be stored. The file format used to store these results is the Visual-
ization Toolkit Unstructured points data (VTU) format. Because of the large number of data, these
files can exceed several gigabytes and they can be challenging to load using a single local machine.
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Figure 5.4 – Before (left) and after (right) load balancing

Therefore, parallel visualization tools are necessary in order to reduce the post-treatment compu-
tational times required by the visualization program. To realize this, we use the visualization tool
ParaView, and we launch it in parallel on the cluster.

ParaView is an open-source, multi-platform data analysis and visualization application. It
allows building visualizations to analyze resulting data using qualitative and quantitative tech-
niques. The data exploration can be done interactively in 3D or programmatically using ParaView’s
batch processing capabilities, implemented using the python language. In particular, ParaView
was developed to run on supercomputers in order to analyze extremely large datasets using dis-
tributed memory computing resources. To do so, it uses the client-server environment. In this
mode, ParaView is launched on a local machine, named client, but all the computations necessary
for the visualization are done on the server, i.e. on the cluster.

Doing so, we manage opening the results and realizing the post-treatment analysis in parallel,
directly on the Cluster Intel. Furthermore, by visualizing the results in parallel, it allows complet-
ing the parallel computational framework of Cimlib-CFD. Indeed, from the mesh partitioning to
the post-treatment analysis, we ensure the full parallel capability of our numerical tools.

Note: in this PhD thesis, the client-server strategy have been set up only on the Cluster Intel.
As perspective, it would be optimal to set it up on the Occigen II supercomputer. Indeed, it will
allow users to use the capabilities of the latter for visualization.

5.3 Hardware systems dedicated to High Performance Computing

Parallelization techniques have been broadly studied on homogeneous hardware architectures
where all the CPUs are identical and connected to one another with a fast communication net-
work. However, with the evolution of HPC, hardware architectures are more and more diversified.
Indeed, today’s supercomputers are usually an agglomeration of clusters, CPUs and communica-
tion networks that have their own specific characteristics. Mesri et al. give an example in [103]
where the focus is put on Grids. In fact, the Grid concept allows furnishing coordinate compu-
tational resources coming from different institutions or organizations for one same simulation.
This concept has been studied for several years and have caught the interest of numerical scien-
tists, especially in the domain of CFD. In particular, the authors in [103] show how the architecture
characteristics can affect the efficiency of parallel mesh partitioning. For this reason, it is neces-
sary to complete the traditional parallelization schemes to take into account for the diversity of
hardware architectures encountered in the numerical scientific world.

In this work, we manage to test our developments and to produce numerical results on two
different systems. The first one is an intern system from the CEMEF research center. It is ad-
ministrated by CEMEF MINES-Paristech and develops a theoretical computational power of 25.8
TeraFLOPS. The second one however, is the GENCI Occigen II supercomputer administrated by
the Centre Informatique National de l’Enseignement Supérieur (CINES) in Montpellier. It has
a theoretical computational power of 3.5 PetaFLOPS and was ranked 26th on the Top500 list in
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November 2014.

The goal of this section is to present the characteristics of these two different systems in terms
of hardware environment and scheduler characteristics. Then, we present the work done in the
scope of the ARTEMIS project that allowed us to get access to the GENCI Occigen II supercom-
puter. Finally, we present the implementation of the checkpoint-restart shell scripts used to adapt
Cimlib-CFD to the scheduling constrains of the supercomputer.

5.3.1 Parallel computations on the lab’s Cluster Intel

In this work, the computations have first been performed on our lab’s cluster. It consists of 2000
heterogeneous cores interconnected with infiniband network. The CEMEF’s cluster is a linux sys-
tem with two Intel Xeon generations E5-2670 and E5-2680 chips. The main node characteristics of
this platform are described in Table 5.1.

Name Processor Family # of cores Core frequency (Ghz) Cache Memory (MB) Memory (GB)
CEMEF 1 Xeon-E5-2670 20 2.6 25 64
CEMEF 2 Xeon-E5-2680 24 2.5 30 64
CEMEF 3 Xeon-E5-2680 28 2.4 30 128

Table 5.1 – Characteristics of the SMP nodes on the Cluster Intel

The jobs are scheduled using the OAR environment presented by Capit et al. in [113]. OAR is
a versatile resource and task manager, also called a batch scheduler. It allows managing comput-
ing resources on a multi-users and multi-tasks system. Indeed, in this environment, the user can:
(i) choose the computational resources needed, (ii) plan his jobs by choosing starting dates and
wall-times, (iii) reserve computational resources in order to have exclusivity on them for a certain
amount of time. Using this information, the OAR environment schedules the different jobs com-
ing from the different users. The lab’s policy allows the user to choose a maximum wall time of
3000 hours (i.e. 125 days, i.e. 4 months) which is largely sufficient for this work’s computations.
However, the resources requests exceeding 200 cores have to be on nodes reserved in advance to
ensure a proper distribution of the computing resources between users.

To choose the computational resources needed for a job, two important things have to be taken
into account. First, a trade-off has to be found between using a large number of CPUs and limit-
ing the communications between them. Indeed, for a fixed size problem, a large number of cores
may also implies a large number of communication between them. Therefore, an optimum has
to be found on a multi-objective cost function taking into account (i) the CPU time and (ii) the
communication time. This optimum depends mostly on the operations that are computed during
the simulation. As mentioned before, some operations, like the SpMV, require a large amount of
communications between the processes. Consequently, if the simulation requires computing a
large number of SpMV, it will not be appropriate to allocate a large number of CPUs because the
communications costs will be penalizing. On the contrary, if most of the operations are norms,
the parallelization will be more efficient and thus, a large number of CPUs can be assigned to the
simulation.

The second thing to consider is the memory capacity of the CPUs. In the FE framework, a large
number of tables need to be allocated at the beginning of the simulation in order to store the en-
tities on the mesh. Furthermore, in our case, as we solve the Navier-Stokes equations implicitly,
we need to store the global sparse matrix of the linear system. To do so, we use advanced nu-
merical storage formats. Indeed, in the case of a sparse matrix, substantial memory requirement
reductions can be realized by storing only the non-zero entries. Depending on the number and
distribution of the non-zero entries, different data structures can be used but they all yield to huge
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savings in memory when compared to the basic approach. In our case, the Compress Sparse Row
(CSR) format allows obtaining a fast access to the matrix entities and thus facilitates the matrix
operations required. This format uses three arrays that respectively contain: (i) the non zero val-
ues, (ii) the compressed rows indexes (i.e. only the indexes where non-zero values appears) and
(iii) the column indexes.

In our case, as we solve two solvers which are (i) the Navier-Stokes VMS solver and (ii) ther-
mal convection-diffusion solver, operations, like matrix-vector multiplications, requiring a large
amount of communication are realized during the simulation. Therefore, after some experiments
it was observed that the optimum way to choose the computational resources was to allocate be-
tween 50 000 to 100 000 mesh elements per cores.

5.3.2 The GENCI Occigen II supercomputer

To obtain resources on the GENCI Occigen II supercomputer, we had to answer one of the two
campaigns launched by CINES in Autumn and Spring following the Demande d’Attribution de
Ressources Informatiques (DARI) procedure. This procedure was realized in the scope of the
ARTEMIS project carried out by Dr. Y. Mesri. Before presenting the hardware system character-
istics of the GENCI Occigen II supercomputer, we propose here to give the main outlines of the
ARTEMIS project.

5.3.2.1 The ARTEMIS project

The goal of the ARTEMIS project is twofold. Indeed, it aims at both (i) driving architectural deci-
sions and (ii) adapting algorithms to the next generation of HPC computer architectures. ARTEMIS’s
particular focus is put on the algorithms that underlie the high-fidelity analysis of aerothermal
computations implying heat transfer in turbulent flows. Thus, the ARTEMIS co-design process in-
volves to continually evaluates complex architectural and algorithmic trade-offs aiming ultimately
at the design of exascale algorithms that can efficiently leverage them.

Indeed, many important thermal transport questions are accessible only through detailed sim-
ulations that span the full range of turbulent scales set by the geometry and the high Reynolds
numbers involved. Such simulations require extreme-scale computing resources and highly accu-
rate numerical discretizations to capture the scale interactions that govern the aerothermal behav-
ior of the targeted problem. Indeed, the multiscale nature of these simulations requires very huge
isotropic meshes to capture the small scales. The classical use in the literature is to build a static
huge mesh at the beginning of the simulation. On the contrary, the approach of the ARTEMIS
project focuses on the design of energy-aware algorithms which are dynamic and adaptive to the
multi-scale solutions.

However, as mentioned before, combining these mesh adaptation techniques with unsteady
Navier Stokes solvers remains a challenge in the literature. Moreover, designing an efficient paral-
lel adaptive mesh and solver tools is still also a tough HPC challenge. In this project, we try to meet
these challenges and bring some answers in the context of aerothermal simulations. Therefore, we
propose in this project to launch massively parallel aerothermal computations using Cimlib-CFD
on the GENCI Occigen II supercomputer in order to assess for the parallel capabilities of our code.

5.3.2.2 Presentation of the Occigen supercomputer

The GENCI Occigen supercomputer counts 34 racks where 27 racks are dedicated to computation
and 7 racks ensure connections, user services and data management. The cluster is split into two
different slices called Haswell and Broadwell:
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• Haswell counts 50 544 cores distributed over 2 106 nodes of 2 processors Intel with 12 cores
each. The processors Intel 12-Core E5-2690 V3 allows a nominal computation power of 124
GigaFLOPS.

• Broadwell counts 35 280 cores distributed over 1 260 nodes of 2 processors Intel with 14
cores each. The processors Intel 14-Core E5-2690 V4 allows a nominal computation power
of 145 GigaFLOPS.

These characteristics are summarized in Table 5.2. Haswell is split into two parts. Half of the nodes
have a memory capacity of 64 Go whereas the other half has a memory capacity of 128 Go. Within
these two different memory capacities, between 6 and 13 Go are used for system operations. The
connection network is also an infiniband network.

Name Processor Family # of cores Core frequency (Ghz) Cache Memory (MB) Memory (GB)
Haswell (part 1) Xeon-E5-2690V3 24 2.6 30 64
Haswell (part 2) Xeon-E5-2690V3 24 2.6 30 128
Broadwell Xeon-E5-2690V4 28 2.6 35 64

Table 5.2 – Characteristics of the SMP nodes on the GENCI Occigen II supercomputer

Concerning job management, the GENCI Occigen II supercomputer uses the Simple Linux
Utility for Resource Management (SLURM) workload manager introduced by Yoo et al. in [114].
It has globally the same functions than the OAR environment. First, it allocates exclusive and/or
non-exclusive access to resources to users for some duration of time so they can perform work.
Then, it provides a framework for starting, executing, and monitoring work on the set of allocated
nodes. Finally, it arbitrates contention for resources by managing a queue of pending work.

For scheduling reason and in order to handle as best as possible the queue of pending works,
the GENCI Occigen II supercomputer does not allow jobs with a wall-time superior to 24 hours.
In our case, it causes a major problem because most of our unsteady aerothermal simulations re-
quire a total running time of more than 24 hours, even by using the large computing resources
of the supercomputer. Therefore, it was necessary for us to implement a checkpoint-restart pro-
cess, using the SLURM environment, in order to allow for our simulations to exceed 24 hours of
computational time. This process is described in the next section.

5.3.2.3 Checkpoint-restart process

The checkpoint-restart process designed during this PhD allows launching successive jobs for one
same simulation. It was implemented following a certain number of constrains:

• the simulation have to run from the start to the end without any intervention from the user,

• for the reasons explained in the previous section, each job require a running time inferior to
24 hours,

• if an hardware component fails, in order to be fault tolerant, the successive jobs have to be
relaunched on the other working components,

• it is not possible to use a shell daemon to schedule the different jobs because the machine
does not allow to have background daemons running for more than 30 minutes on the front
nodes.
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A schematic representation of the designed checkpoint-restart process is given in Figure 5.5.
The Launcher is a shell script that needs to be executed only at the beginning of the simulation. It
first (i) initializes the simulation parameters, (ii) cleans the result and restart folders and (iii) con-
figures the initial job. Then, a SLURM script is executed and the initial job starts. At the end of the
execution of the mpirun command, the Checkpoint-Restart script is executed. It first initializes
the variable for the next checkpoint. Then, it reads the error file (.err) in order to check if hard-
ware component errors have appeared. Then, the next checkpoint time of the next job is updated
allowing the simulation to keep advancing in time. Also, the last result file from the previous job
is copied in the restart folder in order to keep the data from the restarting increment. Finally, the
MTC files (piloting the software), the job interface and the next .log and .err files are updated in
order to start the new job.

Depending on the errors, the simulation either continues or stops. Indeed, if the job has not
succeeded but the error is an hardware error, independent from a software failure, a new job is
launched from the last result file on the other working components and the simulation continues.
This way, our procedure is fault tolerant in case a failure from an hardware component occurs. On
the contrary, if the error is due to a software problem (like memory leak, segment fault or others...),
the simulation crashes and the checkpoint-restart process stops automatically.

The proposed checkpoint-restart process has been tested and validated on the GENCI Occigen
II supercomputer. It works well and with this process, the simulation can reach the end even if
hardware errors occurs. However, the main drawback of this process is that it necessitates from the
user to know approximately how much increments will be computed in 24 hours. In fact, the user
has to acknowledge an intermediate number of increment for the successive jobs. In particular, if
no hardware error occurs, the mpirun command will stops only if the intermediate increment is
reached and it is only then that the checkpoint-restart process will be able to start.

5.4 Applications

In this section, we present different applications that illustrate the parallel computational frame-
work introduced in this chapter. The first application concerns the well known benchmark of the
3D ventilated cavity studied in Chapter 3 and we propose a strong scalability analysis on the two
solvers used during this PhD work. The second application is the single impingement jet cooling
studied in Chapter 2. On the latter, we propose an application of the parallel mesh adaptation
procedure and, in particular, we apply this procedure on the two hardware systems previously in-
troduced. Finally, the last application concerns the industrial application of a complete turbine
vane and aims at demonstrating the parallel capabilities of Cimlib-CFD on the GENCI Occigen II
supercomputer.

5.4.1 3D ventilated cavity

This first application refers to the 3D ventilated cavity presented in Chapter 3. For this case, we
propose a strong scalability analysis. Therefore, we use the fixed mesh presented in the former
chapter but we realize four computations over 28, 56, 84 and 112 processors. Indeed, these com-
putations are launched on the Cluster Intel over 1, 2, 3, or 4 nodes of 28 processors. Doing so, as
required by the strong scalability analysis, we keep a fixed problem size but we vary the number
of processors. The obtained partitions are given in Figure 5.6. In this figure, we observe that the
partitions respect our expectations in terms of distribution on the geometry. In particular, for the
last computation, the interfaces are well minimized.

The computational time of each computation is given in Table 5.3. For this case, we focus the
analysis on the two linear systems solved during the simulation, i.e. the Navier-Stokes VMS solver
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Figure 5.6 – Mesh partitioning over 28, 56, 84 and 112 processors

and the convection-diffusion solver. The computational time data are extracted over 1000 incre-
ments, from the beginning of the permanent regime. Indeed, the results presented in the table are
the mean computational time required to solve each system, averaged over 1000 increments. The
first observable result is that the Navier-Stokes VMS solver requires more computational time than
the convection-diffusion solver. This is due to the fact that, for each point of the mesh, the Navier-
Stokes solver has 4 DOF (vx , vy , vz , p) to solve, instead of 1 DOF (T) for the thermal convection-
diffusion solver.

Name Nb processors Navier-Stokes VMS Speed-up Convection-Diffusion Speed-up
Computation 1 28 17.93 1 0.232 1
Computation 2 56 8.39 2.14 0.102 2.28
Computation 3 84 5.16 3.47 0.060 3.86
Computation 4 112 3.61 4.97 0.043 5.40

Table 5.3 – Mean computational time (in seconds) and speed-up on the Cluster Intel

Along this table, we present in Figure 5.7, the scalability charts of the two solvers. In particu-
lar, we plot the speed-up realized by doubling, tripling and quadrupling the allocated resources.
The time reference to compute these speed-ups is the computational time corresponding to one
node, i.e. to 28 processors. These speed-up charts both show linear behaviors with a determina-
tion coefficient close to one. This information give us confidence on the predictability and the
scalability of the algorithm used to solve the two linear systems in Cimlib-CFD. We notice that the
speed-up values exceeds the perfect scalability expectations. Indeed, a perfect strong scalability
should give theoretical values of 2, 3 and 4 for the different computations. However, this anal-
ysis would not take into account the time’s overhead due to communications. In particular, we
notice that the communications between the processor represent a more important part of the
resolution time when there are less DOF in the linear solver. For this reason, the speed-up of the
convection-diffusion solver is depreciated in comparison with the one for the Navier-Stokes VMS
solver. However, comparing the proportionality coefficient of these speed-up charts, we observe
that the convection-diffusion solver show a better scalability behavior that the Navier-Stokes VMS
solver.

5.4.2 Single impingement jet cooling

This second application allows testing the parallel mesh adaptation procedure presented in this
chapter. In particular, we test it on the two hardware systems presented previously. To do so,
we launch two distinct computations: Computation 1 on the Cluster Intel and Computation 2 on
the GENCI Occigen II supercomputer. The details of these two computations are given in Table
5.4. Referring to Chapter 4, in order to follow the flow dynamics during the unsteady simulation,
the parallel mesh adaptation procedure is done every 10 increments over the 5 000 increments.
Therefore, for this simulation, 500 remeshing, repartitioning and load balancing procedures are
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Figure 5.8 – Dynamic mesh partitioning over 28 processors: partition at different increments

presented in Chapter 4. Indeed, if we look closely at the plate, the processors distribution seems to
follow closely the mesh density in the area of interest. In fact, the mesh partitioning algorithm fol-
lows dynamically the capture of the turbulent structures on the plate and allocates a larger number
of resources where these structures are developing.

Finally, these two computations show our ability to launch the parallel mesh adaptation pro-
cedure on two different systems and at two different scales.

5.4.3 Turbine vane cooling

The close proximity between our research work and the industrial world represented by SAE con-
tinuously obliges us to deal with more and more complex simulations. The present study aims
at characterizing the flow field in a schematic but realistic turbine vane. In fact, this work aims
at simulating the turbine vane cooling induced by 39 holes in interaction with themselves in a
complex geometry. In the literature, numerical and experimental references of the investigated
configuration can be found in the research works of Fenot et al. and Laroche et al. in [115] and
[116] respectively.

5.4.3.1 Geometry and time discretization

The test section of the geometry is presented in Figure 5.10. In this figure, we can see that the air is
injected through a central cavity section of length 12 mm and of height 20 mm. Then, the air goes
into the 39 holes distributed in 3 rows of 5 holes on the extrados, 1 row of 9 holes at the leading
edge and 3 rows of 5 holes on the intrados. The central cavity is a closed space except for the
inlet section and the trailing edges of the intrados and the extrados. Therefore, the air is inevitably
evacuated through the trailing edges of the intrados and the extrados.

From this test section, SAE generated a fluid geometry given in Figure 5.11. Indeed, in this
study, we do not need to consider the material characteristics of the turbine vane itself. Therefore,
only the fluid is considered. The entry of the fluid into the domain is realized along the Z axis,
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through a convergent rectangular nozzle, visible in Figure 5.11. Then, the fluid heterogeneously
feeds the 39 injection holes and impacts the leading edge and the intrados/extrados planes. Fi-
nally, the flow exits the geometry along the X axis through the trailing edges of the intrados and
extrados.

Leading edge 

Convergent 
rectangular 

nozzle 

Extrados trailing edge Central cavity Intrados trailing edge 

Figure 5.11 – Fluid geometry of the turbine vane

5.4.3.2 Numerical models and boundary conditions

In this work, we propose to compute velocity and the pressure fields (v, p) using the implicit iter-
ative VMS solver for the unsteady incompressible Navier-Stokes equations. Concerning the aero-
dynamic boundary conditions, an input velocity corresponding to the mass flow rate (60 g /s) pre-
scribed by the experimental study of Fenot et al. in [115] is imposed at the convergent nozzle
entry section. Then, an atmospheric static pressure and output velocities are imposed on the in-
trados/extrados trailing edges sections. These output velocities are chosen with respect to the
mass flow rate equilibrium inside the overall geometry. In the middle part, corresponding to the
central cavity, the output section is a solid wall with a null Dirichlet boundary condition. For the
reader understanding, a representation of these boundary conditions is given in Figure 5.12. For
all the other borders of the domain, null Dirichlet boundary conditions are imposed. At the begin-
ning of the simulation, the velocity is null everywhere except on the boundary conditions.

To solve the partial differential equation associated to the thermal problem, we use a stabi-
lized finite element method defined by the SUPG scheme introduced in Chapter 3. Concerning
the thermal boundary conditions, as recommended in [116], the initial temperature and the air
temperature Tr e f , injected into the convergent nozzle is equal to 296K. Then, we consider mainly
two impinged plate corresponding, in the Y axis direction, to the top (extrados) and the lower
(intrados) part of the geometry. On these two plates a constant heat flux Φconv = 1600W/m2 is
imposed. In this study, we look for the local convective heat transfer coefficient hconv on the in-
trados/extrados planes defined by the following formula:

hconv =
Φconv

Tw all −Tr e f
(5.3)

with Tw all the wall temperature. Therefore, the resulting variable of interest is Tw all on the two
impinging plates.
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The two additional numerical models implemented in Chapter 3 to ensure a strong aerother-
mal coupling are also used here. Indeed, the modified dynamic viscosity µtot al is used as an entry
in the Navier-Stokes VMS solver; and the modified thermal conductivity λtot al is used as an entry
in the convection-diffusion SUPG solver.

Output Velocity 

Wall 

Output Velocity 

Heat Flux 
(same at the bottom) 

Input Velocity 

Figure 5.12 – Illustration of the boundary conditions of the turbine vane

Finally, the time discretization is chosen by taking into consideration the velocity boundary
conditions and the size of the geometry. After some experiments on the geometry, the simulation
time step is taken as ∆t = 0.01 s and the total simulation duration is taken as ttot al = 50 s giving a
total of 5 000 simulation increments.

5.4.3.3 Incremental space discretization

From the fluid geometry, we generate unstructured isotropic tetrahedral 3D meshes. In order to
test our parallel numerical tools, we propose in this work, an incremental space discretization. In
fact, 3 meshes M1, M2 and M3 counting respectively 500 000, 7 000 000 and 25 000 000 elements
are generated. These meshes are presented in Figure 5.13. In this figure, we observe that, in order
to obtain a homogeneous distribution of the cells inside the geometry, at least 25 millions ele-
ments are necessary. Concerning M3, if we look inside the holes, we can count around 15 cells
along the hole’s diameter corresponding to the coarse mesh of Laroche et al. in [116].
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5.4.3.4 Allocated resources

The three computations corresponding to the three meshes previously described are launched
on the GENCI Occigen II supercomputer. We adapt the requested resources to the size of the
mesh. After numerical experiments, it was decided to allocated one CPU for 25 000 elements of
the meshes. The allocated resources for each mesh are given in Table 5.5.

Mesh name Nb elements Nb cores/nodes Nb nodes Nb cores
M1 500 000 20 1 20
M2 7 000 000 24 12 288
M3 25 000 000 24 42 1008

Table 5.5 – Allocated resources for each case on the GENCI Occigen II supercomputer

As we do not apply parallel mesh adaptation in these cases, the mesh is partitioned only at the
beginning of the simulation. The partitioned meshes are presented on Figure 5.14. In this figure,
we observe that the different processors are homogeneously distributed over the meshes, even if
the geometry is relatively complex. In particular, the partitions’ interfaces are well minimized.

Figure 5.14 – Partitioned meshes of the turbine vane for: (top left) M1: 500 000 elements on 20 cores, (top
right) M2: 7 000 000 on 288 cores and (bottom) M3: 25 000 000 elements on 1008 cores

For these simulations, the checkpoint-restart procedure needs to be applied because their to-
tal computational times exceed 24 hours. After some numerical experiments on the supercom-
puter, it was decided to put a checkpoint-restart procedure every 400 increments. Therefore, 13
checkpoint-restart procedures were needed to reach the end of the simulation.

5.4.3.5 Computational time

In this section, we propose an analysis of the weak scalability of our finite element code. Indeed,
the allocated resources are adapted to the three computations allowing to keep a constant number
of elements per cores. The data concerning the computational time of each of the three compu-
tations are presented in Table 5.6. This computational time is given over 100 increments, 1000
increments and over the total simulation duration. It has to be noted that this computational time
takes into account the total computation time of our code. In particular, it takes into account:
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• the initial mesh partitioning time,

• the execution times of the Cimlib-CFD models (solvers etc.),

• the writing time of the results on the disk,

• the execution of the checkpoint-restart procedure,

• the queuing time of the successive jobs,

• the reading and repartitioning time of the last result file.

Taking this global metric to measure the computational time does not allow to do a fair scala-
bility analysis of our finite element code. In fact, too many variables, like the queuing time of the
successive jobs, are out of our control reach. However, it has the advantage to show, at a global
and practical scale, the behavior of Cimlib-CFD on the massively parallel supercomputer. In par-
ticular, looking at the results concerning M3, we observe that the total computational time for the
simulation represents 277 704 CPU hours which is expensive in comparison to the other cases
presented in the PhD work.

Mesh name 100 increments 1000 increments Total
M1 1 h 02 min 0 days 14 h 49 min 2 days 12 h 00 min
M2 1 h 55 min 1 days 04 h 33 min 4 days 05 h 28 min
M3 4 h 11 min 2 days 01 h 19 min 11 days 11 h 31 min

Table 5.6 – Computational times on the GENCI Occigen II supercomputer

Along Table 5.6, we draw in Figure 5.15 the charts of the computational times on the GENCI
Occigen II supercomputer in function of the number of elements for the three meshes M1, M2 and
M3. These charts are given over the different ranges of increments. They allow to assess for the
weak scalability performances of Cimlib-CFD on the supercomputer. Keeping a constant number
of element, a perfect scalability should show the same computational times for the three compu-
tations. However, this analysis does not work if we consider the additional overhead times.

On the first chart, corresponding to the computational time over 100 increments, a linear be-
havior is observed. Indeed, the determination coefficient of the linear approximation is equals
to 0.9997 which is a proof of a proper linear behavior. This shows that the overhead time behave
as expected and varies linearly with the number of elements. When we consider the computa-
tional times exceeding 400 increments, a linear behavior is still observed but the determination
coefficient is depreciated. This is caused by the effect of the checkpoint restart procedure and
the successive jobs’ queuing times previously mentioned. However, looking at the total compu-
tational times and the fairly good linear behavior of the chart, we can say that our finite element
library shows good scalability performances on the machine.

5.4.3.6 Results and discussions

In this section we present the results in terms of aerothermal coupling parameters and velocity
fields obtained on the three meshes previously presented. An analysis of these results is proposed
along with some perspectives for future works.

5.4.3.6.1 Resulting aerothermal coupling parameters In the turbine vane cooling simulation,
the hypothesis of highly convective heat transfer in turbulent flows is still valid. Indeed, referring
to previous studies [116], the Reynolds number inside the holes can be estimated like follows:

Re =
VbD

ν f lui d
≈

22×0.01

15e−6
≈ 14 000 (5.4)
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Figure 5.15 – Computational times for M1, M2 and M3 over diverse increment ranges
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Therefore, the hypothesis of highly convective heat transfer in a turbulent flows is still valid. For
this reason, we propose to use the two additional numerical models implemented in Chapter 3
to couple the Navier-Stokes VMS solver and the thermal convection-diffusion solver. We refer to
this chapter for the theoretical aspects of the aerothermal coupling parameters computation. In
particular, we propose here to use the Sutherland law and the Smagorinsky model to compute the
modified dynamic viscosity µtot al . Doing so, the chosen aerothermal coupling configuration for
the turbine vane cooling corresponds to Computation B of Table 3.2, which has shown to be the
best choice in previous cases.

A snapshot of the resulting modified dynamic viscosity µtot al is given in Figure 5.16. In this
figure, we observe that the turbulent dynamic viscosity is increased mainly in the holes where
important velocity gradients are expected. Also, the variations of this modified dynamic viscosity
is also important at the outlet of the geometry due to the imposed boundary condition. The use of
a sub-grid scale turbulence model in these area has a smoothing effect on the solution and helps
the convergence of the Navier-Stokes VMS solver.

Figure 5.16 – Snapshot of the modified dynamic viscosity µtot al in plan YZ at x =−45mm and in plan XY at
z = 0mm

5.4.3.6.2 Resulting velocity fields The resulting instantaneous velocity field inside the turbine
vane is presented in Figure 5.17. In this figure, we observe the flow, coming from the rectangular
convergent nozzle, feeding progressively the 39 holes. In particular, we observe on each picture the
flow acceleration caused by the convergence of the nozzle. The first columns of holes are rapidly
fed but we need to wait until increment I = 1250 to see the flow going through all the holes.

From this point, the flow motion inside the central cavity continues to evolve until the per-
manent regime is reached (around increment I = 5000). Following this evolution, we clearly see
the formation of a main vortex structure creating a massive flow re-circulation inside the central
cavity. This re-circulation seems to find its origins at the crossing of the rectangular nozzle with
the central cavity, but it also seems to be caused by the closed wall on the other side of the cavity.

114



C
H

A
P

T
E

R
5

.
M

A
S

S
IV

E
L

Y
P

A
R

A
L

L
E

L
C

O
M

P
U

T
A

T
IO

N
A

L
F

R
A

M
E

W
O

R
K

� = 50 � = ʹ50 � = 500 

� = 750 � = ͳ000 � = ͳʹ50 

� = ʹ500 � = ͵750 � = 5000 

Permanent regime 

Row 2 

Row 1 

Row 3 

Row 4 

Figure 5.17 – Resulting instantaneous velocity field inside the turbine vane115
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a) 

b) 

c) 

d) 

Figure 5.19 – Visualization of the averaged velocity field in plan YZ at x = −45mm (i.e. the slice going
through row 2). a) CEDRE k −ω SST from Laroche et al. in [116]; b) Results on M1; c) Results on M2; d)
Results on M3

magnitudes in the flow. However, the fact that we use an unsteady simulation imply that our res-
olution of the flow turbulent behavior is better established. Indeed, in our results, we can observe
the full flow turbulence of the jet arriving on the leading edge of the geometry. The complexity of
our simulation is therefore increase but our understanding of the flow physic can be improved by
these observations.

To finish, in order to illustrate our parallel mesh adaptation capabilities on such a complex
industrial case, we apply the parallel mesh adaptation procedure presented in this chapter. This
time, the criteria is based on the velocity field but we use the same metric construction that the
one presented in Chapter 4. We start from the initial mesh M2, we wait for the pseudo-permanent
regime to be established. Then, we activate anisotropic mesh adaptation with a targeted number
of element of 7 000 000. This way, we only redistribute the elements inside the geometry, without
increasing the size of the problem. The resulting mesh is presented in Figure 5.21. In this figure, we
observe the possibilities that offers our parallel mesh adaptation framework. In fact, the mesh is
able to follow the flow complexity inside the entire domain. In particular, we observe areas where
the mesh follow the turbulent structures created by the rebound of the jets on the intrados and
extrados. Furthermore, in this geometry, a quite important number of boundary layers appear
and we can see that our mesh adaptation tool allows capturing several of them.

To conclude, we can say that, as we saw in Chapter 2 on the single impingement jet cooling and
as pointed by the previous numerical studies, the accurate capture of highly convective heat trans-
fer of impinging jets remains very challenging, and moreover in this kind of complex geometries.
Indeed, we showed that it is first important to have a highly accurate solution of the velocity field
inside the geometry, before even considering capturing the convective heat transfer. Our study
brings an answer to this first difficulty but future works will have to focus more in details on the
computation of the heat transfer.

In fact, the next steps of this work will be to obtain the convective heat transfer coefficient on
the intrados, extrados and leading edge of the geometry. Achieving this is a real challenge. During
this work, we tried to obtain this heat transfer but the meshes used were not sufficiently refined
on the intrados and extrados area to hopefully obtain anything concerning them. In fact, if we link
these results on 39 jets to the ones obtain in Chapter 2 on a single jet, we realize that we won’t be
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a) 

b) 

c) 

d) 

e) 

Figure 5.20 – Visualization of the averaged velocity field in plan XY at z = 0mm. a) PIV measurements; b)
CEDRE ZDES from Laroche et al. in [116]; c) Results on M1; d) Results on M2; e) Results on M3

Figure 5.21 – Adapted mesh following of the complete turbine vane
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able to capture this highly convective heat transfer using numerical simulation at this scale. This
shows that, in order to obtain accurate results, we still need to increase the problem size and thus,
the allocated computational resources. It shows the need to do computations at a larger scale and
this work opens the way for future works on the turbine vane cooling with Cimlib-CFD.

5.5 Conclusion

To conclude, we proposed in this chapter a description of the parallel capabilities of Cimlib-CFD.
First of all, we presented the FE framework, the mesh partitioning principles and the load balanc-
ing algorithms used in this PhD work. In particular, the parallel mesh adaptation procedure was
presented and each step was detailed.

Second of all, we proposed a presentation of the two hardware systems used to develop nu-
merical tools and to produce numerical results during the thesis. The first one was the lab’s cluster,
called Cluster Intel, allowing the development of numerical methods. The second one however,
was the GENCI Occigen II supercomputer on which we executed Cimlib-CFD for the first time
during this PhD work. This system allowed us to produce numerical results using massively par-
allel computations. However, the adaptation of Cimlib-CFD on this new system required, among
others, the development of a checkpoint-restart procedure that we designed following a certain
number of constrains imposed by the user policy and hardware restrictions of the supercomputer.

Then, we proposed application cases for parallel computations. The first one was dedicated
to a strong scalability analysis of our finite element code on a well known benchmark. The results
showed a linear increase of the speed-up with the allocated resources allowing us to conclude on
the hard strong scalability of the numerical methods used to solve linear systems in Cimlib-CFD.
Then, parallel mesh adaptation was tested on the two hardware systems for the case of the single
impingement jet cooling. In this work, we showed the parallel capabilities of the software at two
different scales by presenting dynamic parallel mesh adaptation over 28 cores on the Cluster Intel
and then, over 504 cores on the GENCI Occigen II supercomputer. Our results showed that we
obtained relevant partitions in both cases.

Finally, we presented in this chapter a more complex but realistic industrial case which con-
cerned the cooling of a complete turbine vane composed by 39 holes. To study this geometry,
an incremental space discretization was chosen along with adapted allocated resources allowing,
in a certain way, to do a weak scalability analysis of our computations. The computational time
on these incremental meshes showed a linear tendency which illustrated the good behavior of
Cimlib-CFD on the supercomputer. Furthermore, the results showed our ability to obtain the un-
steady turbulent velocity field inside this geometry but future works are still needed to obtain the
heat transfer coefficients on the turbine vane. In particular, these future works will have to in-
crease the size of the problem and to launch computations at an even larger scale.

Résumé du chapitre en français

Ce chapitre s’attache à décrire les techniques de parallélisation de calcul utilisées dans Cimlib-
CFD. En effet, nous proposons d’abord une description détaillée des algorithmes de partition-
nement et de répartition de la charge de calcul au niveau software. Également, la procédure
d’adaptation parallèle de maillage est introduite et chacune des étapes clés de cette dernière est
expliquée.
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Nous proposons ensuite une présentation générale des deux systèmes de calcul utilisés lors
de ce doctorat. Le premier est un système de calcul interne au laboratoire appelé Cluster Intel qui
a plus particulièrement servi au développement des méthodes numériques introduites dans ce
manuscrit. Le second système, en revanche, est un super-calculateur national appelé GENCI Oc-
cigen II sur lequel nous avons exécuté Cimlib-CFD pour la première fois pendant cette thèse. Ce
super-calculateur nous a permit de produire des résultats numériques utilisant des calculs mas-
sivement parallèles. Cependant, l’adaptation de Cimlib-CFD à ce nouvel environnement de cal-
cul a nécessité, entre autres, le développement d’une procédure d’arrêt et de reprise du calcul que
nous avons conçu en respectant un certain nombre de contraintes imposées par la politique util-
isateur du système.

Des cas d’application des techniques de parallélisation sont ensuite proposés. Le premier cas
est dédié à l’étude de la scalabilité forte des solvers linéaires utilisés pendant la thèse et reprend le
fameux cas de la cavité ventilée 3D. Les résultats montrent une augmentation linéaire du speed-up
réalisé en augmentant les ressources de calcul. Cela nous permet de conclure sur la bonne scala-
bilité de nos méthodes de résolution de systèmes linéaires dans Cimlib-CFD. Ensuite, l’adaptation
parallèle de maillage est testée sur les deux systèmes de calcul pour le cas du jet unique impactant.
Dans ce travail, nous montrons les capacités parallèles du programme à deux échelles différentes,
présentant d’abord une adaptation dynamique et parallèle du maillage sur 28 cœurs avec le Clus-
ter Intel, puis sur 504 cœurs avec le super-calculateur GENCI Occigen II. Nos résultats montrent
que l’on peut obtenir des partitions appropriées dans les deux cas.

Enfin, nous présentons dans ce chapitre un cas industriel plus réaliste qui concerne le re-
froidissement d’une aube de turbine complète composée de 39 trous. Pour étudier cette géométrie,
nous proposons d’utiliser une discrétisation spatiale incrémentale en adaptant les ressources de
calcul demandées à la taille du problème. Cela nous permet, dans une certaine mesure, de faire
une analyse sur la scalabilité faible de notre code. Les temps de calcul sur ces maillages incré-
mentaux montrent une progression linéaire qui illustre le bon comportement de Cimlib-CFD
sur le super-calculateur. De plus, les résultats montrent que nous sommes capable d’obtenir le
champ de vitesse au sein de la géométrie. Cependant, des travaux futurs doivent être envisagés
pour capture les coefficient de transferts thermiques. Pour cela, par comparaison avec les études
numériques menées sur le cas du jet unique et plus largement, par les études numériques réal-
isées dans d’autres laboratoire, il sera nécessaire d’augmenter la taille du problème et de lancer
des calculs à plus grande échelle.
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6.1 Conclusion

This PhD work was devoted to the development of a variational adaptive finite element method
allowing to improve the aerothermal simulations related to the cooling of aircraft engines. More
precisely, our goal was to develop a new multiscale mesh adaptation technique, well suited to the
resolution of highly convective aerothermal problems encountered in particular in the turbine
blade cooling. To study this complex aerothermal problems, it was necessary to focus our interest
on a benchmark configuration of the single impinging jet cooling bringing into play highly con-
vective heat transfer in turbulent flows.

The single impingement jet cooling problem was presented in Chapter 2. This chapter made
it possible for us to better understand the complexity of the physical phenomenon occurring dur-
ing the cooling. We proposed in this chapter two different numerical frameworks to solve this
aerothermal problem. The first one used ANSYS CFX/Fluent and the second one used Cimlib-
CFD. The preliminary study using the ANSYS framework clearly showed the need to have a fully
3D turbulent and unsteady resolution of the problem in order to capture the very specific heat
transfer distribution of the impingement jet cooling on the impact plate. To do so, we then pro-
posed numerical investigations using Cimlib-CFD. To our knowledge, this was the first attempt
to solve the single impingement jet cooling problem using the numerical methods developed in
Cimlib-CFD. The overall observations on the results showed our ability to capture the specific tur-
bulent flow behavior of the studied configuration. Indeed, the instantaneous velocity and pressure
fields clearly showed the rebound of primary vortices on the plate creating secondary vortices in
the opposite direction. With this analysis, we managed to explain the re-injection of cold fluid air
on the plate and thus, the appearance of a secondary peak in the radial Nusselt number distribu-
tion.

Then, we proposed in Chapter 3 a set of numerical tools to solve aerothermal problems in
Cimlib-CFD. These numerical tools made it possible for us to simulate highly convective heat
transfer in turbulent flows. However, additional numerical models were needed to reinforce aerother-
mal coupling in the simulation. We thus proposed to implement two additional numerical models
in our finite element library which are: (i) the Sutherland law and (ii) the Smagorinsky Model. A
numerical benchmark study of a 3D ventilated cavity was then made in order to validate our set of
numerical tools. The results were in good agreement with experimental and numerical references.
In particular, they gave us the best way to couple the unsteady incompressible Navier-Stokes solver
with the thermal convection-diffusion solver using a modified dynamic viscosity and a modified
thermal conductivity.

In Chapter 4, we proposed an innovative adaptive multiscale method that allowed dealing
with highly convective aerothermal computations in Cimlib-CFD. Indeed, this chapter aimed at
proposing a new multiscale mesh adaptation technique that was well suited for the type of aerother-
mal problems developed in the first two chapters. To do so, we proposed a new a posteriori error
estimate based on the VMS method for anisotropic adaptive fluid mechanic problems. This new
error estimator was defined by the combination of both (i) an interpolation based anisotropic
error indicator and (ii) a subscales error estimator. The subscales error estimator was computed
using two different methods. The first one used stabilizing parameters derived from the VMS anal-
ysis and local norms defined on the elements. The second method used a linear combination of
bubble functions to establish a pointwise computation of the error. The results showed that the
method using bubble functions was better suited to drive both isotropic and anisotropic mesh
adaptation. Then, the results on analytic 2D and 3D benchmarks also showed that the proposed
multiscale mesh adaptation technique allowed to obtain highly precise solutions with much less
elements in comparison with other mesh adaptation techniques. This multiscale mesh adaptation
technique was then applied to the realistic industrial case of the single impingement jet cooling.
On this complex industrial case, the new multiscale mesh adaptation technique showed promis-
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ing qualitative results.

Finally, in Chapter 5, we proposed a description of the parallel software capabilities in Cimlib-
CFD. To do so, we presented the mesh partitioning principles in the FE framework. Then, the
algorithm behind parallel mesh adaptation was introduced as well as important notions on the
particular treatment of the partitions’ interfaces. Finally, we presented the two different hard-
ware systems used during this PhD thesis. The first one was the lab’s cluster, called Cluster In-
tel, allowing the development of numerical methods. The second one however, was the GENCI
Occigen II supercomputer on which we executed Cimlib-CFD for the first time during this PhD
work. This system allowed us to produce numerical results using massively parallel computations.
The adaptation of Cimlib-CFD on this new system required, among others, the development of a
checkpoint-restart procedure that we designed following a certain number of constrains imposed
by the supercomputer user policy. Then, we proposed application cases for parallel computa-
tions. The first one was dedicated to a strong scalability analysis of our finite element code on a
well known benchmark. The results showed a linear increase of the speed-up with the allocated
resources allowing us to conclude on the hard strong scalability of the numerical methods used
to solve linear systems in Cimlib-CFD. Parallel mesh adaptation was tested on the two hardware
systems for the case of the single impingement jet cooling. In this work, we showed the paral-
lel capabilities of the software by presenting dynamic parallel mesh adaptation over 28 cores on
the Cluster Intel and then, over 504 cores on the GENCI Occigen II supercomputer. Our results
showed that we obtained relevant partitions in both cases. Finally, we presented in this chapter
a more complex but realistic industrial case. The latter concerned the cooling of a complete tur-
bine vane composed by 39 holes. To study this geometry, an incremental space discretization was
chosen along with adapted allocated resources. The computational times on these incremental
meshes showed a linear behavior which demonstrated the good scalability of Cimlib-CFD on the
supercomputer.

6.2 Perspectives

Along this work, several perspective were proposed. In this section, we propose to summarize the
main improvement axis highlighted in this PhD work. There are mainly two axis: one concerning
physical modeling, and the other on a more general numerical problematic.

6.2.1 Physical modeling of the single impinging jet cooling

Concerning the physical modeling of the single impingement jet cooling several perspectives were
proposed for future works. In fact, the influence of the outlet boundary condition still seems to
play a crucial role on the flow motion in the boundary layer. The location of this boundary condi-
tion and the way to impose it in the finite element framework is still an open question. Further-
more, the mesh in the boundary layer can still be improved in order to capture more precisely both
(i) the velocity profiles in the boundary layer and (ii) the thermal gradient on the plate.

Furthermore, even if we are confident that the proposed synthetic perturbations model for the
turbulent inlet boundary condition is, indeed, well suited for our simulation, other solutions can
be explored. Among others, we propose for future works a preliminary computation of the flow
inside a long inlet tube in order to provide the turbulent inlet boundary condition of a fully devel-
oped jet. It will then be interesting to analyze the effects of this inlet boundary condition on the
Nusselt number distribution.

In addition, the works of Dairay et al. in [23] and Aillaud et al. in [19] propose to use a statis-
tical analysis of the heat transfer events on the plate. Indeed, in order to deepened the analysis of
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the flow turbulence, it can be interesting to apply their method using Probability Density Function
(PDF) to decompose the heat transfer and to analyze at which scale our results are correlated to
theirs. Going even further, the use of conditional averaging procedure aiming at dissociating some
heat transfer events in the computation of the mean radial Nusselt number distribution can also
be a solution to look on.

Finally, from an industrial point of view, other types of cooling can be studied with Cimlib-
CFD. In particular, important works on film cooling have already started and can be found in the
literature. Studying the film cooling can, in fact, enable us to understand the other physical phe-
nomenon occurring during the turbine blade cooling. In particular, it will allow us, in the future,
to propose a complete modeling of the flow inside the turbine blade.

Related to this, on the complete turbine vane geometry and multi-jets simulation, a number of
improvements can be drawn from this work. Indeed, there is still a need to improve this aerother-
mal simulation in order to capture the convective heat transfers inside the geometry. To do so,
future works will have to answer questions related to the size of the mesh and control of errors in
the aerothermal context. In particular, our numerical tools will have to demonstrate their capabil-
ities on such complex 3D geometry and at a computation scale never achieved before. Achieving
this performance will require performing aerothermal error estimates allowing to target directly
the turbulent features of the flow motion but also, the distribution of the heat transfer inside the
cavity. This will be done by associating error estimates from different PDE equations. We will
developed this idea in the next section.

6.2.2 VMS error estimates for anisotropic adaptive simulations

Indeed, from a numerical point of view, the proposed multiscale mesh adaptation method showed
promising results on analytic benchmarks in 2D and 3D. Thus, the next step of this work is to
demonstrate the efficiency of this new mesh adaptation method on more realistic industrial cases.
To do so, we will have to demonstrate quantitatively the capabilities of this new method. For in-
stance, as soon as the physical modeling issues on the impingement jet cooling are dealt with,
it will be interesting to compare the heat transfer distributions obtained on both (i) a multiscale
adapted mesh and (ii) a large isotropic reference mesh. Doing so, as for analytic benchmarks, we
will hopefully be able to show that, with our new multiscale mesh adaptation method, we manage
to obtain equivalent aerothermal solutions using much less elements and thus, much less com-
putational resources compared to standard mesh adaptation methods.

Secondly, the combination between the anisotropic local error indicator and the subscales er-
ror estimator could be done differently. Indeed, the proposition made in this thesis consisting of
scaling the hessian’s eigenvalues using a scale factor based on the subscale error was the first idea
that came to our minds when addressing the problem. Furthermore, it showed very promising
results and thus, it was interesting to follow this direction. However, one could combine these two
information differently by doing another type of error analysis. For example, one could consider
intersecting the two metric tensors H i so and Hani so and obtain a different mesh, comparable to
the one we obtained.

Thirdly, as mentioned in Chapter 4 and in the previous section, the subscales error estimate
can be applied to other types of equations. Important works on this subject can be found in the
literature. In fact, the PDE dependency of the subscales error estimate implies that we need to de-
velop a new error estimate when we change the problem’s equation. As an example, it is possible
to apply this error estimate to the incompressible Navier-Stokes equations. This time, the error
estimator is computed on the vector variable v in order to have an estimation of ||v′||. The same
was also tested on the variable p in order to have an estimation of ||p ′||. The computation of the
error estimate using the residual free bubble matrix have yet to be undertaken for these equations,
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and the way to combine this error estimate with mesh adaptation will also be challenging.

Finally, this PhD work is really the first step into developing a complete aerothermal error es-
timate. Indeed, as mention in the previous section, the objective is then to control the errors si-
multaneously from the different PDEs solved during the turbine vane cooling (mainly the Navier-
Stokes equations and the convection-diffusion equation). Indeed, a complete aerothermal error
estimate will make it possible for us to control all the errors of the problem and to correlate them
to one another in order to obtain the best mesh possible in these complex aerothermal simula-
tions. This will require to decline subscales error estimates for all the equations, and to create an
aerothermal module that will associate these error estimates. With these advanced possible com-
binations, we will hopefully be able to solve this kind of complex aerothermal problems at reduced
computational costs.

Résumé du chapitre en français

Cette thèse de doctorat a été consacrée au développement d’une méthode élément finis adapta-
tive permettant d’améliorer la simulation aérothermique du refroidissement des moteurs d’avion.
Plus précisément, notre but a été de développer une méthode d’adaptation de maillage multi-
échelle dédiée à la résolution des problèmes aérothermiques rencontrés, en particulier, dans le
refroidissement des aubes de turbines. Pour étudier ce problème aérothermique complexe, il a
été nécessaire de focaliser notre étude sur une configuration benchmark du refroidissement par
jet impactant mettant en jeu des transferts thermiques hautement convectifs dans des écoule-
ments turbulents.

Ce travail nous a permit de mieux comprendre les phénomènes physiques complexes inter-
venant lors du refroidissement par impact. A notre connaissance, il s’agit de la première ten-
tative de résoudre ce problème aérothermique en utilisant les méthodes numériques dévelop-
pées au sein du CEMEF MINES-Paristech. L’analyse de nos résultats a montré notre capacité
à capturer le comportement turbulent spécifique de cette configuration. En effet, l’analyse des
champs macroscopiques de vitesse et pression a clairement montré le rebond des structures pri-
maires sur la plaque, générant ainsi des tourbillons secondaires dans la direction opposée de
l’écoulement. Avec cette analyse, nous avons pu expliquer la ré-injection d’air froid sur la plaque
et donc, l’apparition d’un pique secondaire dans la distribution radiale du nombre de Nusselt.

Dans ce manuscrit, nous avons ensuite décrit plus particulièrement les outils numériques
nous permettant de réaliser des simulations aérothermiques turbulentes avec Cimlib-CFD. De
plus, nous avons proposé deux modèles additionnels permettant de renforcer le couplage aérother-
mique de la simulation. Ainsi, nous avons présenté l’implémentation (i) d’une loi de Sutherland et
(ii) d’un modèle de Smagorinsky. Une étude de validation de ces deux modèles a été proposée sur
un cas de cavité 3D ventilée. Les résultats sur ce cas de validation sont très proches des références
expérimentales et numériques auquel nous nous comparons. En particulier, cette étude de vali-
dation nous a permit de choisir la meilleure manière de coupler le solver Navier-Stokes VMS in-
compressible et le solver thermique de convection-diffusion en utilisant une viscosité dynamique
modifiée, ainsi qu’une conductivité thermique modifiée.

Dans le Chapitre 4, nous avons proposé une méthode d’adaptation de maillage innovante per-
mettant de gérer des simulations aérothermiques hautement convectives avec Cimlib-CFD. En
effet, le but de ce chapitre a été de proposer une nouvelle méthode d’adaptation de maillage,
bien adaptée aux cas aérothermiques développés dans les deux premiers chapitres. Pour réaliser
cela, nous avons proposé un nouvel estimateur d’erreur à posteriori basé sur la méthode VMS
pour les problèmes de Mécanique des Fluides. Ce nouvel estimateur d’erreur a été défini par
(i) un estimateur d’erreur d’interpolation anisotrope et (ii) un estimateur d’erreur sous-échelle.
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Les résultats sur des cas analytiques 2D et 3D ont montré que la méthode d’adaptation de mail-
lage multi-échelle permettait d’obtenir des solutions hautement précises avec un nombre réduit
d’éléments en comparaison aux autres techniques d’adaptation de maillage. De plus, cette méth-
ode d’adaptation de maillage multi-échelle a également été appliquée au cas plus réaliste du re-
froidissement par jet impactant et nous avons pu montré des résultats qualitatifs prometteurs sur
cette configuration.

Enfin, nous proposons dans ce manuscrit une description des possibilités de calcul parallèle
offertes par Cimlib-CFD. Nous présentons les principes de partitionnement de maillage par dé-
composition de domaine dans le contexte numérique des éléments finis. Ensuite, l’algorithme
permettant une adaptation de maillage parallèle est introduit ainsi que le traitement particulier
des interfaces entre les partitions. Les deux systèmes de calcul utilisés pendant ce doctorat sont
également présentés. Le premier est un cluster interne au laboratoire, appelé Cluster Intel, qui
a plus particulièrement été utilisé pour le développement des méthodes numériques présentées
dans ce manuscrit. Le second en revanche, est le super-calculateur national GENCI Occigen II
sur lequel nous avons pu exécuter Cimlib-CFD pour la première fois pendant cette thèse de doc-
torat. Ce système nous a permit de réaliser des calculs massivement parallèles mais a nécessité
une adaptation de Cimlib-CFD à ce nouvel environnement de calcul. En particulier, une procé-
dure d’arrêt et de reprise du calcul a été implémentée pour s’adapter aux contraintes imposées par
la politique utilisateur de ce nouveau système. Des cas d’application des techniques de paralléli-
sation sont ensuite proposés. Le premier cas est dédié à l’étude de la scalabilité forte des solvers
linéaires utilisés pendant la thèse et reprend le fameux cas de la cavité ventilée 3D. Les résultats
montrent une augmentation linéaire du speed-up avec l’augmentation des ressources de calcul.
Ensuite, l’adaptation parallèle de maillage est testée sur les deux systèmes de calcul pour le cas
du jet unique impactant. Dans ce travail, nous montrons les capacités parallèles du programme à
deux échelles différentes.

Enfin, nous présentons dans ce chapitre un cas industriel plus réaliste qui concerne le re-
froidissement d’une aube de turbine complète composée de 39 trous. Pour étudier cette géométrie,
nous proposons d’utiliser une discrétisation spatiale incrémentale en adaptant les ressources de
calcul demandées à la taille du problème. Cela nous permet, dans une certaine mesure, de faire
une analyse sur la scalabilité faible de notre code. Les temps de calcul sur ces maillages incrémen-
taux montrent une progression linéaire qui illustre le bon comportement de Cimlib-CFD sur le
super-calculateur. De plus, les résultats montrent que nous sommes capable d’obtenir le champ
de vitesse au sein de la géométrie. Cependant, des travaux futurs doivent être envisagés pour cap-
ture les coefficient de transferts thermiques. Pour cela, en comparant cette étude avec l’étude
numériques menée sur le cas du jet unique et plus largement, par les études numériques réalisées
dans d’autres laboratoire, il sera nécessaire d’augmenter la taille du problème et de lancer des cal-
culs à plus grande échelle.

Nous proposons dans ce travail un certain nombre de perspectives concernant la modélisation
physique du refroidissement par impact. En effet, l’influence de la condition aux limites de sortie
semble toujours jouer un rôle crucial dans le déplacement du fluide, en particulier dans la couche
limite. La localisation de cette condition aux limites et la manière de l’imposer dans Cimlib-CFD
est toujours une question ouverte à ce jour. Ensuite, bien que nous soyons confiant sur le fait
que la solution retenue pour imposer des perturbations synthétiques turbulentes à l’entrée du jet
est la plus adaptée à notre contexte numérique, d’autres solutions peuvent être explorées. Parmi
d’autres, il serait intéressant d’effectuer un calcul dans un long tube, de manière à fournir une
condition aux limites turbulente et instationnaire en entrée de la simulation du refroidissement
par jet impactant.

Un certain nombre de perspectives ont également été apportées aux travaux sur les estimateur
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d’erreur sous-échelle. En effet, la prochaine étape de ce travail sera de faire une étude quantitative
sur les capacités de cette nouvelle méthode. Par exemple, dès lors que les problèmes liés à la mod-
élisation physique du jet impactant seront réglés, il sera intéressant de pouvoir comparer les dis-
tribution de coefficient de transferts thermiques calculés sur (i) un maillage adaptés multi-échelle
et (ii) un maillage isotrope de référence. Faisant cela, nous seront capables de montrer qu’il est
possible d’obtenir des solutions aérothermiques équivalentes avec un nombre réduit d’éléments
et donc, un nombre réduit de ressources de calcul.

Ensuite, comme mentionné dans le chapitre, l’estimateur d’erreur sous-échelle peut être ap-
pliqué à d’autres type d’équations. En effet, la dépendance de ce dernier à la PDE implique que
nous devons développer un nouveau modèle pour chaque équation. Un travail sur l’application
de cet estimateur d’erreur aux équations de Navier-Stokes incompressible a été engagé pendant
ce doctorat. Cependant, le calcul de l’estimateur d’erreur utilisant des fonctions bulles doit encore
être entrepris et la manière de la combiner à l’adaptation anisotrope de maillage peut s’avérer par-
ticulièrement difficile.

Finalement, ce travail de thèse est en réalité le premier pas vers le développement d’un es-
timateur aérothermique complet. En effet, l’objectif final serait de pouvoir contrôler les erreurs
des différentes PDEs simultanément. Cela permettrait de corréler les erreurs du problème et de
les contrôler en générant des maillages adaptés aux simulations aérothermiques de ce niveau de
complexité.
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List of Acronyms

2D two dimensional. 17, 25, 60, 64, 65, 67, 74, 80, 83, 84, 88, 89, 122, 124, 126
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DNS Direct Numerical Simulation. 16

DOF Degrees Of Freedom. 94, 104

ERCOFTAC European Research Community on Flow, Turbulence and Combustion. 17, 28, 35

FDSM Filtered Dynamic Scale Model. 51

FE Finite Element. 11, 46, 74, 80, 92, 93, 99, 119, 123

FEM Finite Element Method. 46, 68, 93
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FLOPS FLoating-point Operations Per Second. 9, 92, 98, 101

FPR Fan Pressure Ratio. 3, 12

GMRES Generalized Minimal RESidual. 93

HPC High Performance Computing. 2, 9, 16, 94, 97, 98, 100

LES Large Eddy Simulation. 7, 16, 51
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NASA National Aeronautics and Space Administration. 7, 9, 13, 92

NEO New Engine Option. 3

ONERA Office National d’Etudes et de Recherche Aérospatiales. 6, 16

PDE Partial-Differential Equation. 10, 27, 42, 46, 64, 88, 89, 93, 124, 125, 127

PDF Probability Density Function. 124

PETSc Portable Extensible Toolkit for Scientific computation. 93

PIV Particle Image Velocimetry. 116

RANS Reynolds-Averaged Navier-Stokes. 5, 7, 18, 19, 21, 24, 51

RST Reynolds Stress Transport. 7

SAE Safran Aircraft Engines. 2, 3, 4, 5, 6, 12, 106

SLURM Simple Linux Utility for Resource Management. 101, 103

SM Smagorinsky Model. 10, 48, 49, 51, 59

SPMD Single Program Multiple Data. 95

SpMV Sparse Matrix Vector product. 94, 99

SST Shear Stress Transport. 19, 21, 24

SUPG Streamline Upwind Petrov/Galerkin. 10, 32, 42, 46, 47, 61, 64, 66, 68, 69, 74, 78, 80, 108, 109

TET Turbine Entry Temperature. 4, 12

TRL Technology Readiness Level. 7, 9

URANS Unsteady Reynolds-Averaged Navier-Stokes. 5

VMS Variational Multi-Scale. 10, 32, 42, 43, 44, 47, 48, 53, 60, 61, 64, 65, 87, 88, 89, 95, 100, 103,
104, 108, 109, 114, 122, 125

VTU Visualization Toolkit Unstructured points data. 97

WALE Wall Adapting Local Eddy-viscosity. 59

ZDES Zonal Detached Eddy Simulation. 6

II



Appendix B

List of Symbols

Symbol Description Units Page List

(·, ·) scalar product on the space L2(Ω) 43, 46, 47
(·, ·)Ω scalar product on the whole domain 44
(·, ·)Ωe scalar product on the whole domain 44
[·] jump term 48
a generic diffusion coefficient m2.s−1 46, 68
A constant in the modulation function m−1 27
a(·, ·) bilinear form 46, 47
a1 constant of proportionality between the shear

stress and the turbulent kinetic energy
20

a f lui d fluid (air) thermal diffusivity m2.s−1 42
Am amplitude of the excited azimuthal mode m.s−1 27
aτ(·, ·) stabilized bi-linear form 47
α Level-Set function m 49, 55
avei average time of process i out of np processes s 97
B operator acting on the boundary that defines the

natural boundary condition
46

bi bubble functions 67
β thermal expansion coefficient K−1 26, 50, 52
C Sutherland’s law constant K 48
c1 algorithmic constant in the continuity stabilizing

parameter
45

c2 algorithmic constant in the continuity stabilizing
parameter

45

ce barycenter of the element 67
ci centroid of the element 68
cb

i constant in the bubble functions combination 67
cp fluid (air) specific heat J.kg−1.K−1 26, 50, 52
C′ constant from Almeida et al. 70
C constant of proportionality independent of the

element size
72

Cs Smagorinsky constant 49
d space dimension of the problem 42, 43, 67,

71
D jet nozzle diameter (for a round jet) m 16, 17, 18,

21, 24, 26,
27, 28, 30,
34, 35, 36,
39
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∇ gradient operator 42, 46
∆ Laplacian operator 46
Ŝi j symmetric part of the resolved velocity gradient

on the mesh nodes
s−1 49

∆e length scale related to the grid size m 48
eh exact discrete error 74, 75
ei eigenvectors of HR 70, 72
ǫ turbulent dissipation J.kg−1.s−1 5, 19, 51
ε the strain rate tensor m.s−2 43
ηΩe anisotropic local error indicator 71, 73
ηΩe ,new new anisotropic local error indicator 73, 76, 80,

105
exp exponential function 27
f source term 66, 68, 74
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F2 second blending function of the k−ω turbulence
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fmod modulation function 27
fµ Van Driest damping function 55
g gravitational acceleration constant m.s−2 26, 50, 52
g value of the Dirichlet boundary condition 46
g ′ Green’s function 66
Gr Grashof number 50, 51
h local mesh size 71
H impact distance of the jet m 16, 17, 18,

24, 26, 28,
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Hani so anisotropic metric tensor 70, 74, 83,
124

H
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ani so new anisotropic metric tensor 10, 13, 65,

70, 74, 83,
84, 89

Hc height of the conic shape in ANSYS CFX m 18
hconv convective heat transfer coefficient W.m−2.K−1 30, 108
hd unknown of the re-meshing problem 71
hd ,new new unknown of the re-meshing problem 73
he characteristic length of the element m 45, 47
hi mesh sizes in the ei directions 70
hi n height of the inlet slot m 51
H i so new isotropic metric tensor 10, 13, 65,

69, 70, 72,
74, 83, 89,
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h Neumann boundary condition 46
hnew size of the new mesh (after mesh adaptation) 72
hout height of the outlet slot m 51
HR recovered Hessian matrix 70, 71, 72
I increment 32, 34
Id d-dimensional identity tensor 43
Ie f f efficiency index 74, 75
k turbulent kinetic energy J.kg−1 5, 19, 21,

24, 51
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Lc characteristic length of the problem m 30, 50, 52
L generic differential operator 68
Lp Lebesgue space of degree p 70, 71
Lpl ate plate length m 26
Ltube tube length m 26
α f lui d fluid (air) thermal diffusivity m2.s−1 26, 50, 52
λ eigenvalue of the isotropic metric tensor 72
Λ diagonal matrix of absolute value of the eigenval-
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λd diagonal matrix of absolute value of the eigenval-
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λ f lui d tabulated fluid (air) thermal conductivity W.m1.K1 26, 30, 50,
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λi eigenvalues of HR(uh(x)) 70
λtot al calculated fluid thermal conductivity W.m1.K1 30, 48, 50,
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λtur b turbulent fluid thermal conductivity W.m1.K1 50
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M metric field 70
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µ generic dynamic viscosity Pa.s 43
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Ni nter p number of interpolation points 68
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h 71
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νt eddy viscosity m2.s−1 19
ω flow vorticity s−1 34
Ω spatial domain of the fluid 42, 43, 74
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Ωe finite element 43, 44, 46,
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