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ABBREVIATIONS AND SYMBOLS 

 

➢ Experimental parameters  

wt%: weight percent  

ρbulk (g/cm3): bulk density  

ρskeletal (g/cm3): skeletal (or solid) density  

ε (%): porosity  

SBET (m²/g): specific surface area  

E (MPa): Young modulus σyield 

εyield (%): yield strain  

εd (%): densification strain  

λeffective (W.m-1.K-1): total or effective thermal conductivity  

λsolid (W.m-1.K-1): thermal conductivity of the solid phase  

λgas (W.m-1.K-1): thermal conductivity of the gaseous phase  

λradiative (W.m-1.K-1): thermal conductivity of radiative transfer  

Q(t): cumulative theophylline release over time in liquid release media 

η (Pa.s): viscosity  

[η] (mL/g): intrinsic viscosity  

G’ (Pa): elastic modulus  

G’’ (Pa): viscous modulus  

λ271 (nm): wavelength of 271 nm  

A (u.a.): Absorbance 

εmol (M
-1.cm-1): Molar extinction coefficient 
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➢ Materials  

DE (or DM) (%): Degree of Esterification (or Degree of Methylation) of pectin in % 

Gal.A: Galacturonic acid 

HM pectin: High-methylated pectin 

LM pectin: Low-methylated pectin 

P35, P56, P59, P70: Pectins with methylation degree of 35%, 56%, 59%, 70%, 

respectively. 

%P and C%: Mass fraction of pectin and cellulose within a composite, respectively. 

TEOS: Tetraethyl orthosilicate 

PEDS: Polyethoxydisiloxane 

SGF: Simulated Gastric Fluid 

SIF: Simulated Intestinal Fluid 

 

➢ Techniques  

BET: method of Brunauer-Emmett-Teller for specific surface area  

BJH: method of Barrett, Joyner and Halenda for pore size distribution   

EDS: Energy-dispersive X-ray spectroscopy  

FTIR: Fourier Transform InfraRed spectroscopy 

SEM: Scanning Electron Microscope  

Sc-drying: Supercritical drying 

UV: Ultraviolet 
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The design of new advanced materials which are versatile and multi-functional has 

become a key research focus to meet tomorrow’s engineering applications. Nowadays, polymer 

technology and material engineering fields are facing new challenges in assimilating the rapid 

technological advances coupled with a more sustainable approach. Indeed, the integration of 

environmental sustainability by the development of bio-based materials produced by “greener” 

processes is essential in future technologies to decrease environmental footprints and harmonize 

with our living environment for today and tomorrow.  

In particular, both academic and industrial research areas aim to achieve breakthroughs 

in the development of bio-based materials (i.e. materials made from natural resources) as they 

represent renewable and environmentally-friendly alternatives to “classical” materials made 

from non-renewable fossil resources. Bio-based materials are made from natural polymers such 

as polysaccharides (cellulose, starch, pectin, alginate, chitosan…), proteins (gelatin, silk 

fibroin, egg albumin, casein…), or lipids (vegetal oil, fatty acids...). Polysaccharides are natural 

sugar-based polymers extracted from various biomass sources. These bio-polymers present 

many attractive properties as they are widely available, renewable, non-toxic, biocompatible 

and can be easily functionalized due to a large amount of hydroxyl groups on polymer 

backbone. Besides, as they are part of our daily food diet and are commonly used for food & 

feed, polysaccharides thus appear as “human-friendly” polymers. Due to these characteristics, 

bio-based materials made from polysaccharides are suitable for a wide range of life science 

applications such as biomedical, pharmaceutical, biotechnological, cosmetic and food. The 

application domain of bio-based materials is vast and versatile and also includes bio-based 

plastics, textile and fabric sectors or construction and building industry.  

In the recent past, the design of new “smart” materials presenting similar or better 

functional properties than “classical” or synthetic materials has become a key research focus in 

materials science as evident from publications and patents. Aerogels, which are highly porous 

and ultra-light materials obtained by supercritical drying of wet gels, are one example of 

materials for advanced applications. Indeed, they present outstanding structural properties with 

a very fine porous structure (solid network) and numerous pores of few tens to a few hundreds 

of nanometres. Aerogels are extremely versatile materials due their wide range of textural and 

morphological properties combined to the possibility to tune and functionalize them by varying 

the process route. As a result, there are numerous potential applications of aerogels in many 

different technological fields (such as for thermal/acoustic insulations, as catalyst, adsorbents, 

filtration systems, as carrier-materials for release/adsorption of compounds, as sensor 

materials… etc.).  

In this thesis, we used pectin, a polysaccharide extracted from fruits and widely used as 

a thickening or gelling agent in food industry, to make bio-aerogels. The topic of the thesis 

concerns structure-properties correlations in pectin aerogels as advanced materials for i) 
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thermal insulation and ii) drug delivery. As it will be shown all along the manuscript, pectin 

aerogels are perfectly fitting the request of smart bio-based multifunctional material.  

Here, we first present how bio-aerogels used as thermal insulating materials can be 

promising sustainable alternatives to classical aerogels made from silica or synthetic polymers, 

and then how bio-based aerogels can present major advantages compared to hydrogels used for 

life sciences applications. 

➢ Bio-aerogels for thermal insulation 

The continuous increase of global energy consumption and its associated environmental 

side-effects have become major ecological issues. In addition to the environmental aspects, 

there is also a huge economic issue with a high potential of energy cost saving (Narbel & 

Hansen, 2014). Since the building sector is the most energy consuming sector, the building 

insulation is a main focus in order to decrease both energy consumption and CO2 emissions 

(Baetens, Jelle, & Gustavsen, 2011).  

In order to reduce energy loss, research was performed both by academia and industry 

to design and develop lower-energy-consuming buildings, mostly by applying wall insulation. 

In order to provide good insulation properties, wall insulation generally is performed by thick 

and/or multilayers of thermal insulating materials which are able to strongly reduce heat 

conduction. This can be done either by vacuum insulation panels or by “intrinsically” insulating 

materials. Thanks to their extraordinary structural and physical characteristics, aerogels present 

very low thermal conductivity, generally in the super-insulation domain (i.e. with thermal 

conductivity below that of air), which makes them suitable as very efficient thermal insulating 

materials. “Classical” aerogels are often either inorganic (e.g. silica aerogels (Kistler, 1931)) or 

organic (e.g. resorcinol-formaldehyde aerogels (Pekala, 1989)). However, they have either poor 

mechanical properties (non chemically-modified silica aerogels) or their process route includes 

toxic compounds (organic aerogels).  

One promising solution that combines high material performances and ecological aspects 

is to develop a new generation of super-insulating materials, which would be bio-based and 

obtained via a “green” process route. The development of bio-based aerogels made from natural 

polymers with thermal super-insulating properties is a “hot research topic”. Compared to silica 

aerogels which are extremely fragile, polymer-based aerogels, and bio-aerogels in particular, 

do not break under compression (Rudaz et al., 2014). Moreover, the synthesis of bio-aerogels 

does not involve any toxic compounds which is the case of many synthetic polymer aerogels 

(for example, based on resorcinol formaldehyde or polyurethanes cross-linked with isocyanate).  
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The first bio-aerogels made from cellulose and derivatives did not show super-insulating 

properties (see, for example (Rudaz, 2013)) contrary to aerogels based on pectin (Rudaz et al., 

2014), nanofibrillated cellulose (Jiménez-Saelices, Seantier, Cathala, & Grohens, 2017; 

Kobayashi, Saito, & Isogai, 2014; Seantier, Bendahou, Bendahou, Grohens, & Kaddami, 2016), 

alginate (Gurikov, Raman, Weinrich, Fricke, & Smirnova, 2015) and starch (Druel, Bardl, 

Vorwerg, & Budtova, 2017). However, the relationships between the thermal conductivity, the 

structure and the properties of bio-aerogels remain open. 

➢ Bio-aerogels for life sciences applications 

Hydrogels are self-standing water-swollen 3D-dimensional polymer networks which 

allow the diffusion of liquids and molecules (absorption and release). Their use has become 

very popular in life science applications due their many attractive properties such as high water-

content, swelling/contraction ability, easy moldability in shape, versatility in fabrication, 

flexibility and soft consistency close to physiological living tissues (Caló & Khutoryanskiy, 

2015). Moreover, hydrogels are highly valued thanks to the possibility to finely adjust their 

physico-chemical characteristics to address specific applications. Indeed, tuning of their 

nanostructures (polymer composition, functionalization, degree of crosslinking, nature of 

junction zones…) and the ability to encapsulate active compounds allow tailoring material 

macromolecular properties and thus offering the opportunity for the development of advanced 

and innovative properties. As a result, hydrogels are commonly used for different applications 

in various areas such as in food industry (food additives and viscosity modifiers), cosmetics 

(facial mask, gels …), biomedical (regenerative tissue engineering, plastic surgery, contact lens, 

wound dressing, hygienic products…), pharmaceutical (drug encapsulation and delivery 

systems), agricultural or environmental fields (water retention, pesticide delivery systems, 

pollutant adsorbents) (Popa & Volf, 2018).  

However, hydrogels have disadvantages that limit their widespread applications. As 

hydrogels are “wet” and usually mechanically weak systems, they may not be easy to handle. 

Besides, their use is limited in terms of transportation without breakage and of storage issues 

over time (microbiological stability). Due to all these limitations, it appears not easy to use 

hydrogels as already prefabricated matrices (Caló & Khutoryanskiy, 2015; Zhao et al., 2015).  

One potential solution to solve these technical drawbacks would be to dry wet gels to 

obtain dry porous materials i.e. aerogels (via supercritical drying) or cryogels (via freeze-

drying). Indeed, compared to hydrogels, porous dry materials present major advantages related 

to their manufacturing. First, thanks to enhanced mechanical properties resulting from the 

drying, they are more easily handled and transportable than soft hydrogels. Besides, as aerogels 

and cryogels are light-weight materials, transport saving can be huge, impacting industrial costs 
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and environmental aspects. Then, contrary to hydrogels that may be hard to sterilize, dry 

materials do not require antimicrobial additives to ensure their stability over time, which makes 

them suitable for long-term storage. As a result, the drying of wet gels opens the possibility to 

an upstream production (as pre-fabricated materials) at a large scale. Finally, as it will be shown 

in this manuscript, the use of supercritical drying preserves the physico-chemical and functional 

properties of the initial hydrogels, and can even lead to better controlled drug release properties 

when used as drug-carriers. 

➢ Goals of the thesis and overview of the manuscript  

Lately, pectin aerogels were found to be promising bio-based materials for high added-

values application such as thermal insulation (Demilecamps, 2015; Rudaz, 2013). As pectin has 

gastro-resistant properties, pectin aerogels might have high potential for life sciences 

applications such as used as oral drug-carriers (García-González, Alnaief, & Smirnova, 2011; 

García-González, Jin, Gerth, Alvarez-Lorenzo, & Smirnova, 2015; Gonçalves et al., 2016; 

Tkalec, Knez, & Novak, 2015; Veronovski, Tkalec, Knez, & Novak, 2014).  

Despite the importance of aerogel morphology control regarding to applications’ 

performances, very little is known about the relationships between the type of polysaccharide, 

processing conditions and aerogel structure and properties.  

The overall goal of this thesis is double:  

➢ First, we want to understand and correlate the characteristics of the initial polymer 

(pectin), the preparation conditions, the internal structure of aerogel and the final 

application properties. The open questions we ask here are first: “How can we control 

and tune the textural properties of bio-aerogels?” and then “What are the structure-

properties correlations for bio-aerogels developed for either thermal insulation or for 

drug release applications?”.  
 

➢ Second, we would like to evaluate, develop, and show the high potential of pectin 

aerogels as advanced biomaterials for the two different applications: thermal insulation 

and drug delivery. 
 

To answer these questions, pectin, a versatile polysaccharide from fruits, was selected as 

it allows numerous variations of conditions that influence solution viscosity and gelation, 

potentially leading to a wide range of aerogel morphologies and properties. We produced pectin 

aerogels with different internal structure and morphological properties and tested them for the 

two applications mentioned above. 

This manuscript is divided into six chapters and includes an annex part: 
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Chapter I gives a state of the art on bio-aerogels focusing on what is known about the 

correlations between initial polysaccharide characteristics, aerogels’ internal structure and 

application properties. The structure and physico-chemical characteristics of pectin will be 

presented in order to understand how we can tune the properties of pectin solutions/gels and 

thus of pectin aerogels. We will introduce the concept of aerogel and will review the state of 

the art on bio-aerogels, from their synthesis to their potential applications with a special focus 

on aerogels made from polysaccharides. We will detail two particular potential applications of 

aerogels: as thermal insulating materials and as matrices for drug release, and highlight the 

scientific issues and technical challenges which remain open.  

Chapter II describes the starting materials and the experimental preparation and 

characterization methods used during the thesis. We will present the main steps of preparation 

of pectin aerogels via dissolution, coagulation and supercritical drying using CO2. Rheological 

studies of pectin solutions and structural characterisation techniques of aerogels (such as 

nitrogen adsorption, scanning electron microscopy, contact angle and X-rays diffraction…) will 

be presented. The mechanical properties of pectin aerogels will be studied by uniaxial 

compression measurements and their effective thermal conductivity will be investigated via 

steady-state method using a heat flowmeter. Finally, we will present in detail the preparation 

and characterization methods of drug-loaded aerogels used as drug delivery systems. The 

process of drug incorporation into aerogel precursors prior to supercritical drying to produce 

drug loaded aerogels will be detailed, and we will describe the methods to characterise aerogels’ 

drug loading properties and their in vitro drug release properties over time in gastro-intestinal 

media. 

Chapter III investigates the correlations between the initial polymer characteristics - 

processing parameters –aerogel structural and mechanical properties in order to show why and 

how pectin aerogel morphology and properties vary as a function of pectin intrinsic parameters 

and external conditions. For this purpose, pectin aerogels will be studied in a systematic way 

by varying the type of pectin (with different degree of methylation), pectin concentration, 

solution pH, type and concentration of metal salts (CaCl2 and NaCl) and nature of non-solvent.  

Chapter IV focuses on the correlations between thermal conductivity, morphology and 

physical properties of pectin aerogels in order to understand how to obtain a thermal super-

insulating material with the lowest possible conductivity. The influence of pectin concentration, 

the type of non-solvent, pH conditions and of Ca-induced cross-linking by increasing calcium 

concentration on aerogel density and morphology, and then on the resulting thermal properties 

will be studied. 

Chapter V explores the potential use of pectin hydrogels, aerogels, cryogels and 

xerogels as oral drug delivery systems. We will study the release of a model drug (theophylline) 

from different pectin matrices in order to find out structure-properties correlations explaining 
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drug release mechanisms and kinetics. The impact of the drying methods (supercritical, 

evaporative or freeze drying) on release properties of the different pectin matrices (hydrogel, 

aerogels, cryogels, xerogels) will be investigated. Then, the influence of aeropectins’ 

preparation conditions on their drug release properties will be examined. Matrix swelling, 

erosion and drug release profiles of different aerogels matrices will be characterized and 

compared. Kinetics models based on mathematical functions will be used to identify the main 

mechanism governing the release (e.g. diffusion, dissolution, erosion, swelling…etc.). 

Chapter VI deals with the production and use of organic-organic and organic-inorganic 

pectin-based composite aerogels as drug delivery systems, with one component being pectin 

and the other either cellulose or silica. Indeed, the synergy of properties brought by the different 

components is expected to result in new physical and chemical properties of composite aerogels 

and to offer new prospects in composite aerogels used as drug carrier. First, the processes routes 

to produce theophylline-loaded pectin-cellulose and pectin-silica composite aerogels will be 

presented. Then, we will explore the influence of the “second component” on drug release 

kinetics and matrix behaviour. In this chapter, the focus will be made on the relationships 

between the intrinsic characteristics of each component of aerogel, the structural and physical 

properties of the composite network, and the properties of the composite materials used as drug 

carriers. The impact of the composition of the composite aerogels on their matrix swelling 

ability, erosion properties, drug loading characteristics and release profile will be discussed. 

The annex section contains an overview of drug release fundamentals and concepts. 

The main drug release mechanisms from polymer matrix (dissolution, diffusion, matrix erosion 

and swelling, polymer relaxation…etc.) and the most used kinetics mathematical models 

applicable for solid matrix systems (Zero-order, First-order, Higushi, Korsmeyer-Peppas, 

Hixson-Crowell, Hopfenberg, Gallagher–Corrigan release models) will be presented in details.  

Finally, conclusions are drawn and suggestions for further work are proposed.  

Part of the work on pectin aerogels for drug delivery applications (Chapter V) was 

performed within “Biogels” project in the frame of BRANCUSI program sponsored by Campus 

France and CNCS - UEFISCDI, Romania (PN-III-P3-3.1-PM-RO). We thank all the partners 

from the "Petru Poni" Institute of Macromolecular Chemistry (Iasi, Romania) that were 

involved in the project. 

We wish to thank Pierre Ilbizian (from PERSEE, Mines ParisTech, France) for 

supercritical drying with CO2. We warmly thank Laurent SCHIATTI DE MONZA (from 

PERSEE, Mines ParisTech, France) for helping in computer programming to automatically 

control the spectrophotometer device over time. We are also grateful to Cargill for providing 

pectins and their characteristics. Spectrophotometric measurements over time were 

automatically conducted   
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➢ Introduction 

La conception de nouveaux matériaux versatiles, multifonctionnels et couplée à des 

procédés de fabrication « plus verts », est devenue un axe d'innovation majeur tant pour la 

recherche académique qu’industrielle. On observe en particulier un fort intérêt pour les 

matériaux biosourcés (ou « bio-matériaux) (i.e. issus de ressources naturelles) qui offrent des 

alternatives plus respectueuses de l’environnement aux matériaux dits "classiques" issus de 

ressources non-renouvelables. Les matériaux biosourcés sont fabriqués à partir de polymères 

naturels tels que les polysaccharides (cellulose, amidon, pectine, alginate, ...), les protéines 

(gélatine, fibroïne de soie, ovalbumine, ...), ou les lipides. Les polysaccharides, en particulier, 

polymères naturels à base de sucre couramment utilisés dans l’agroalimentaire, présentent des 

propriétés particulièrement attractives dans la mesure où ils sont largement disponibles et 

accessibles, non-toxiques, biocompatibles, biodégradables et peuvent être aisément 

"fonctionnalisés" du fait de la présence de nombreux groupements hydroxyles. De ce fait, les 

matériaux à base de polysaccharides conviennent à un large éventail d'applications notamment 

à l'interface avec le vivant (e.g. biomédical, cosmétique ou alimentaire) mais inclut également 

les secteurs des bio-plastiques, du textile ou encore l’ingénierie du bâtiment.  

Dans ce contexte, une classe particulière de matériaux avancés connait un récent 

engouement, comme en attestent les nombreuses publications et dépôt de brevets sur le sujet : 

les aérogels. Les aérogels sont des matériaux hautement poreux et ultralégers obtenus par un 

type de séchage supercritique d’un gel, durant lequel la phase liquide du gel est remplacé par 

du gaz. Le séchage en conditions supercritiques permet en effet de préserver la microstructure 

du gel, conférant ainsi aux aérogels des propriétés physiques et structurales exceptionnelles. En 

effet, les aérogels sont constitués d’une fine structure poreuse, formé par un réseau polymère 

en 3-D et comportant de nombreux pores de diamètres allant de quelques dizaines à quelques 

centaines de nanomètres. Il en résulte une très forte porosité (> 90%), une faible densité 

(typiquement 0.05-0.025 g/cm3)), et une très grande surface spécifique (200-1000 m²/g). Pour 

illustration, différentes morphologies d’aérogels de pectine d’agrume sont présentées en Fig. 1.  
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Figure 1. Différentes photographies et images MEB d’aéropectines obtenues en variant le 

procédé de fabrication (pH des solutions et ajout d’ions calcium Ca2+). Leur densités ρ (g/cm3) 

ainsi que leur surface spécifiques SBET (m²/g) respectives sont précisées. 

 

En outre, les aérogels présentent une très faible conductivité thermique et propagation 

du son du fait de leur structure méso-poreuse, ce qui en fait d’excellents isolants thermiques et 

phoniques et offre de grandes perspectives dans le secteur du bâtiment, leur application la plus 

connue à ce jour (Baetens et al. 2011). En réalité, les aérogels sont extrêmement versatiles du 

fait leur large gamme en termes de propriétés structurales, combinée à la possibilité de les 

ajuster et de les fonctionnaliser "à la demande" en variant le procédé de fabrication. Les 

applications potentielles des aérogels sont donc extrêmement nombreuses et concernent de 

domaines technologiques variés (isolation thermique et acoustique, support de catalyseurs, 

adsorbants, systèmes de filtration, matrices pour la libération/adsorption de composés, 

matériaux "capteurs"... etc.). 

Les aérogels classiques à base de silice sont les plus connus (Kislter et al., 1931), 

notamment car ils font partie des super-isolants thermiques, c’est-à-dire ayant un conductivité 

thermique inférieure à celui de l’air en conditions ambiantes (< 0.025 W/(m.K)). D’autres type 

d’aérogels ont émergé dans les années 1980 à base de polymères synthétiques organiques 

comme les aérogels à base de résorcinol-formaldéhyde (Pekala et al. 1989) ou de polyuréthane. 

Cependant, les aérogels de silice (non modifiés chimiquement) sont extrêmement fragiles et 

cassants, ce qui limite leurs potentialités d’application et génère une pollution de nanoparticules 

de silice. Les aérogels de polymères organiques synthétiques, quant à eux, intègrent des 

composés toxiques ou nocifs pour l’environnement dans leurs procédés de fabrication.  
 

Plus récemment, la recherche s’est concentrée sur une nouvelle génération 

d’aérogels biosourcés : les « bio-aérogels ». Ces derniers sont généralement fabriqués à partir 

de polysaccharides via un procédé de dissolution-échange de solvant-séchage au CO2 

supercritique (voir Figure 2), comme par exemple les aérogels de cellulose, d’amidon, 

d’alginate ou de pectine pour les plus connus. 

 

Figure 2. Illustration schématique du procédé de fabrication des aérogels de polysaccharide. 
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Les aérogels de polysaccharides montrent de réels avantages comparés aux aérogels 

classiques car ils sont ductiles et compressibles (Rudaz et al. 2014) et de ce fait, présentent 

potentiellement de meilleures propriétés mécaniques que les fragiles aérogels de silice. Issus de 

ressources naturelles renouvelables, résultants de procédés de fabrication plus respectueux de 

l’environnement et n’intégrant pas de composé toxique, ils sont aussi des alternatives plus 

durables aux aérogels synthétiques. Enfin, du fait de leurs biodégradabilité, biocompatibilité et 

de la grande possibilité de fonctionnalisation inhérentes aux polysaccharides, ces aérogels 

biosourcés pourraient offrir de nouvelles perspectives pour d’autres types d’applications, 

notamment en lien avec les sciences du vivant (biomédical, alimentaire, cosmétique, 

pharmaceutique, etc.). 

 

Dans le cadre de cette thèse de doctorat, nous avons utilisé la pectine, un polysaccharide 

extrait de fruits et couramment utilisé comme agent épaississant/gélifiant dans l'agro-

alimentaire, pour fabriquer des bio-aérogels. Le sujet de cette thèse porte sur les corrélations 

structure-propriétés des aérogels de pectine utilisés en tant que matériaux de pointe pour i) 

l'isolation thermique et ii) la libération de médicaments. Dans les sections suivantes, nous 

expliquons d'abord en quoi les bio-aérogels utilisés en tant qu’isolants thermiques peuvent être 

une alternative durable et prometteuse aux aérogels "classiques" fabriqués à partir de silice ou 

de polymères synthétiques, puis dans un second temps en quoi les bio-aérogels pourraient 

présenter des avantages majeurs par rapport aux hydrogels utilisés dans les sciences du vivant. 

➢ Les bio-aérogels pour l’isolation thermique 

Afin de réduire les pertes en énergie, de nombreuses études ont été menées afin de 

concevoir des bâtiments à basse consommation d’énergie, principalement via l'isolation 

thermique des murs grâce à l'application de matériaux isolants épais et/ou multicouches. De par 

leurs caractéristiques physiques exceptionnelles, les aérogels présentent une très faible 

conductivité thermique, généralement dans le domaine de la super-isolation (c'est-à-dire avec 

une conductivité thermique inférieure à celle de l'air), et se prêtent donc parfaitement à des 

applications d'isolation thermique. Les aérogels "classiques " présentent cependant soit de 

faibles propriétés mécaniques (aérogels de silice), soit leurs procédés de fabrication intègrent 

des composés toxiques (aérogels organiques). 

Une alternative prometteuse, alliant hautes performances des matériaux et aspects 

écologiques, consiste à développer une nouvelle génération d'aérogels super-isolants, 

biosourcés et issus de procédés plus "verts ", et présentant de propriétés mécaniques 

satisfaisantes. Le développement de bio-aérogels à base de polymères naturels aux propriétés 

thermiques super-isolantes est un sujet de recherche d'actualité. (voir par exemple les travaux 

de Rudaz et al., 2014). Les premiers bio-aérogels à base de cellulose (et dérivés) n'ont pas fait 

preuve de propriétés super-isolantes (voir, par exemple (Rudaz, 2013)) contrairement aux 
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aérogels de pectine (Rudaz et al, 2014), de cellulose nano-fibrillée (Jiménez-Saelices, Seantier, 

Cathala, & Grohens, 2017 ; Kobayashi, Saito, & Isogai, 2014 ; Seantier, Bendahou, Bendahou, 

Grohens, & Kaddami, 2016), d'alginate (Gurikov, Raman, Weinrich, Fricke, & Smirnova, 

2015) et d'amidon (Druel, Bardl, Vorwerg, & Budtova, 2017). Néanmoins, les relations entre 

la conductivité thermique, les caractéristiques structurales et les propriétés des bio-aérogels 

demeurent encore largement méconnues. 

➢ Les bio-aérogels pour les sciences du vivant 

Les hydrogels sont constitués d'un réseau 3D de polymères interconnectés maintenant 

une phase aqueuse liquide en leur sein. Leur utilisation est devenue très populaire dans les 

sciences du vivant du fait de leurs multiples propriétés attractives telles que leur forte teneur en 

eau, leur capacité de gonflement/contraction, leur perméabilité permettant la diffusion de 

liquides et molécules (absorption et relargage), la capacité à encapsuler des composés actifs, ou 

enfin une flexibilité et consistance souple se rapprochant des tissus physiologiques vivants. De 

ce fait, les hydrogels sont couramment utilisés pour diverses applications et dans de nombreux 

domaines tels que les industries alimentaire (additifs alimentaires et modificateurs de viscosité), 

cosmétique (masque facial, gels...), biomédicale (ingénierie de réparation tissulaire, chirurgie 

plastique, lentilles de contact, pansements, produits d'hygiène...), pharmaceutique 

(encapsulation et distribution de médicaments), agricole ou environnementale (rétention d'eau, 

systèmes de distribution des pesticides, adsorption de polluants) (Popa et Volf, 2018). 

Cependant, les hydrogels présentent quelques inconvénients techniques qui restreignent leurs 

possibilités d'usage en tant matrices déjà préfabriquées (Caló & Khutoryanskiy, 2015 ; Zhao et 

al., 2015). Les hydrogels étant des systèmes mécaniquement faibles, ils sont généralement 

fragiles et difficiles à manipuler. De plus, leur usage est limité en termes de transport (sans 

rupture du gel) mais également en termes de stockage dans le temps (stabilité microbiologique). 

Pour pallier la fragilité intrinsèque des hydrogels, une solution envisageable serait de 

les sécher pour en obtenir des matériaux poreux secs, comme par exemple des aérogels (par 

séchage supercritique) ou des cryogels (par lyophilisation). Après séchage, il a été constaté une 

véritable amélioration des propriétés mécaniques permettant de manipuler et de transporter ces 

derniers plus facilement (et certainement à moindre coût du fait de leur grande légèreté). 

Ensuite, à la différence des hydrogels, difficiles à stériliser, les matériaux secs ne requièrent pas 

d'additifs antimicrobiens pour assurer leur stabilité en vue d'un stockage à long terme. Enfin, 

comme il sera démontré dans ce manuscrit, non seulement le recours au séchage supercritique 

préserve les propriétés physico-chimiques et fonctionnelles des hydrogels "initiaux", mais peut 

aussi permettre de mieux contrôler la libération des médicaments quand les aérogels sont 

utilisés en tant que matrices de libération de médicaments comparativement aux hydrogels. 
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➢ Objectifs de la thèse 

Récemment, les aérogels de pectine se sont révélés être des biomatériaux prometteurs 

et à haute valeur ajoutée pour l'isolation thermique (Demilecamps, 2015 ; Rudaz, 2013). Ils 

présentent également un potentiel élevé pour les applications en lien avec les sciences du vivant. 

En effet, la pectine présente des propriétés gastro-résistantes, ce qui ouvre des perspectives 

d’utilisation des aéropectines en tant que matrice de libération de médicaments pour une 

administration orale (García-González, Alnaief et Smirnova, 2011 ; García-González, Jin, 

Gerth, Alvarez-Lorenzo, et Smirnova, 2015 ; Gonçalves et al., 2016 ; Tkalec, Knez, & Novak, 

2015 ; Veronovski, Tkalec, Knez, & Novak, 2014). Toutefois, malgré l'importance du contrôle 

de la morphologie de l'aérogel au regard des performances des applications, nos connaissances 

concernant les relations entre le type de polysaccharide, les conditions de préparation et les 

propriétés structurales et d'application des aérogels sont encore très réduites. 

L'objectif global de cette thèse est double : 

➢ Tout d'abord, nous nous sommes intéressés à la compréhension des corrélations 

existantes entre les caractéristiques du polymère initial (pectine), le procédé de 

fabrication, la structure interne de l'aérogel et les propriétés d'application finale. Les 

questionnements que nous nous posons sont d'abord : " Comment contrôler et ajuster 

les propriétés texturales des bio-aérogels ", puis " Quelles sont les corrélations structure-

propriétés des bio-aérogels dédiés que ce soit pour l'isolation thermique ou pour la 

libération de médicaments " ?  

 

➢ Deuxièmement, nous avons cherché à évaluer, développer et illustrer le potentiel des 

aérogels de pectine utilisés comme biomatériaux pour les deux applications différentes 

: pour l'isolation thermique et la libération de médicaments. 

Pour répondre à ces questions, la pectine (un polysaccharide issu d'agrumes), a été 

sélectionnée car elle permet de multiples variations de formulation/procédé influençant la 

viscosité des solutions et leur gélification, et ainsi pouvant conduire à une grande diversité 

morphologique d'aérogels. Une partie des travaux sur les aérogels de pectine utilisés pour la 

libération de médicaments (Chapitre V) a été réalisée dans le cadre du projet "Biogels" dans le 

cadre du programme BRANCUSI parrainé par Campus France et CNCS - UEFISCDI, 

Roumanie (PN-III-P3-3.1-PM-RO). 

Dans ce cadre, nous avons préparé, caractérisé et étudié différents types d'aérogels de 

pectine et d'aérogels composites aux caractéristiques variées et nous les avons testés pour les 

deux applications. La variation systématique des paramètres externes (composition, pH, 

concentration en polymère, type de non-solvant, concentration d'ions métalliques mono- et 

divalents) nous a permis une modulation fine de la viscosité des solutions, des mécanismes de 
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gélification qui, en retour, ont grandement affecté les structures internes et les propriétés 

d’application finale des aérogels. 

➢ Principales conclusions et perspectives des travaux de thèse 

Tout au long de ce travail de thèse, nous avons fait la démonstration que les bio-aérogels 

de pectine (et composites) peuvent être utilisés pour des applications distinctes : comme 

matrices de libération de médicaments et pour l'isolation thermique. 

Dans le premier chapitre décrivant les résultats obtenus dans ces travaux (Chapitre III), 

nous avons réalisé une étude complète sur l'ajustement des propriétés structurales, physiques et 

morphologiques des aérogels de pectine en adaptant finement les procédés de fabrication. Plus 

précisément, nous avons expliqué pourquoi et comment les propriétés intrinsèques de la pectine 

(comme le degré de méthylation) et les paramètres extrinsèques (comme le pH, le type de non-

solvant, le type de sel et la concentration) influent sur les caractéristiques des aérogels de 

pectine. Le mécanisme de structuration du réseau, i. e. par gélification ou par séparation de 

phases, s'est avéré être la clé du contrôle de leur structure interne. Les corrélations multi-

échelles entre les aspects macromoléculaires (ionisation des polymères avec pH, sensibilité au 

calcium et liaison) et les propriétés morphologiques, structurelles et mécaniques des aérogels 

de pectine sont maintenant établies. Les résultats obtenus constituent des lignes directrices 

permettant la production d’autres aérogels matrices (notamment à partir d'autres 

polyélectrolytes) aux caractéristiques parfaitement maîtrisées.  

Dans le Chapitre IV, nous avons étudié en détail les propriétés thermiques des aérogels 

de pectine. Le procédé de fabrication a été modifié de manière systématique afin de moduler la 

densité et la morphologie des aérogels et ainsi de déterminer leur influence sur la conductivité 

thermique de l'aérogel. Pour la première fois, il a été possible d'obtenir une courbe en U entre 

la conductivité thermique et la densité pour des bio-aérogels synthétisés via dissolution-échange 

de solvants - séchage supercritique. Nous avons démontré que le type d'interactions des chaînes 

de pectine et l'état physique de la matière (solution ou gel) sont essentiels pour comprendre et 

prédire la morphologie et les propriétés finales des aérogels. Un compromis délicat entre la 

morphologie de l'aéropectine (taille des pores) et sa densité est nécessaire pour optimiser l'effet 

Knudsen tout en minimisant la conduction thermique via le squelette solide afin d’obtenir la 

plus basse conductivité thermique possible. Cette valeur minimale de 0,0147 ± 0,0002 W/(m.K) 

a été obtenue pour une aéropectine produite à partir d’une solution non-gélifiée de pectine à 

une concentration de 2 wt% et au pH = 2, ce qui très proche de la conductivité minimale reportée 

pour les aérogels de silice (~ 0.012 W/(m.K) (Baetens et al. 2011). Par conséquent, les aérogels 

de pectine présentent un potentiel élevé pour les applications d'isolation thermique dans la 

mesure où ils sont super-isolants, entièrement biosourcés et mécaniquement robustes. 
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Dans le Chapitre V, nous avons exploré et évalué le potentiel des aérogels de pectine 

comme système de libération orale de médicaments en utilisant la théophylline comme 

médicament modèle. Il a été démontré que l'efficacité et la capacité de charge de la substance 

médicamenteuse dans l'aérogel dépendaient de la structure et des propriétés de la matrice 

(surface spécifique et densité). Une fois immergée dans des milieux physiologiques artificiels, 

les aérogels de pectine ont présenté un comportement de libération prolongée du médicament, 

caractérisée par une phase de résistance à l'érosion en milieu gastrique suivie par une phase de 

dissolution rapide en milieu intestinal. Il est apparu que la libération du médicament était régie 

par des transports diffusifs à travers le système, associés à des phénomènes de relaxation induits 

par le gonflement et l'érosion de la matrice, en corrélation avec les caractéristiques de 

polyélectrolytes et hydrosolubles de la pectine. En ajustant la formulation et de la méthode de 

séchage des échantillons, nous avons pu déterminer l'impact des paramètres structuraux des 

aéropectines (surface spécifique, densité et degré de réticulation ionique avec le calcium) sur la 

cinétique de libération et de charge en médicaments. Dans l'ensemble, nos résultats mettent en 

évidence la possibilité d'adapter les propriétés de libération des médicaments des aérogels par 

la modification du procédé dans le but de cibler le plus précisément possible les indications 

thérapeutiques. Les aéropectines présentent un potentiel très prometteur pour les applications 

de libération de médicaments en tant que matrices biodégradables, biocompatibles et 

biosourcés. 

Enfin, dans le dernier chapitre (Chapitre VI), nous sommes allés encore plus loin en 

montrant que la cinétique de libération des aérogels de pectine pouvait être modifiée par la 

préparation d'aérogels composites organique-organique et organique-inorganique basés sur la 

pectine. Nous avons proposé des méthodes originales permettant d'interpénétrer les réseaux de 

pectine avec la cellulose et la silice en vue de produire des aérogels composites chargés en 

médicaments. Les aérogels de pectine-cellulose ont été fabriqués par imprégnation d'une 

solution de pectine dans une matrice de cellulose, tandis que les aérogels de pectine-silice ont 

été produits par imprégnation de particules de silice organique dans un réseau de pectine. La 

formulation et le procédé ont été modifiées afin de moduler les propriétés structurales, 

physiques et physico-chimiques des aérogels composites pectine-cellulose et pectine-silice, ce 

qui s'est répercuté sur leurs propriétés de libération de médicaments. Puis, nous avons démontré 

que la charge en médicament dans l’aérogel, les paramètres cinétiques ainsi que les mécanismes 

physiques impliqués dans la libération du médicament (diffusion et/ou érosion) pouvaient être 

contrôlés en adaptant la composition et le procédé de des composites. En particulier, nous avons 

réussi à obtenir des profils différents de libération du médicament en combinant finement les 

propriétés physico-chimiques, structurelles et physiques apportées par chaque composant du 

composite : d’un relargage immédiat, à une libération prolongée pendant plusieurs heures, et 

même, jusqu'à une libération prolongée pendant plus de 24 heures. L'ensemble des travaux 

présenté et discuté dans les chapitres V et VI contribue à la compréhension des phénomènes 
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physiques impliqués dans la libération de médicaments à partir d'aérogels, et permet de mettre 

en lumière les corrélations composition – structure-propriétés des matrices aérogels.  

 

En tant que conclusion générale, comme cela a été démontré tout au long de ces travaux 

de thèse, les aérogels de pectine peuvent être des bio-matériaux versatiles et performants à fort 

potentiel tant pour l’isolation thermique que la libération de médicaments. Ils répondent ainsi 

parfaitement aux attentes et spécificités des matériaux avancés dont les propriétés physico-

chimiques, structurelles et morphologiques peuvent être adaptées avec précision en vue de 

répondre spécifiquement à une application donnée. Cependant, l'ensemble des travaux réalisés 

au cours de ces trois années de thèse sur les aérogels de pectine ne constitue pas une "solution 

clé en main" directement applicable, le domaine des bio-aérogels étant encore très récent. C'est 

pourquoi, nous tenons à faire part de perspectives éventuelles susceptibles d'inspirer les 

recherches futures sur les aérogels de polysaccharides. 

 

➢ Perspectives en lien avec l’isolation thermique  

- Premièrement, les raisons pour lesquelles les aérogels de pectine et certains autres bio-

aérogels sont des matériaux super-isolants contrairement à d'autres (ex. aérogels de 

cellulose) demeurent inexpliquées. Nous mettons en évidence ici l'influence de la 

structure chimique des chaînes des polysaccharides sur la morphologie des aérogels et 

donc sur leurs propriétés thermiques finales. La modélisation des phénomènes 

moléculaires au cours de la coagulation serait particulièrement intéressante pour mieux 

appréhender (et piloter) la formation du réseau en milieu liquide lors de l'étape d'échange 

des solvants. 

- De plus, un défi technique particulièrement attractif serait celui de l'hydrophobisation des 

bio-aérogels (hydrophiles) afin de réduire l'adsorption d'humidité et prévenir le 

vieillissement des matériaux. En outre, afin de conserver un procédé « vert », l'utilisation 

de composés naturellement hydrophobe (cire, acide gras végétaux) constituerait une bien 

meilleure option pour les bio-aérogels que les techniques classiques d'hydrophobisation 

des aérogels de silice par silylation (e.g. au trichlorométhylsilane ou 

méthyltriméthoxysilane).  

 

➢ Perspectives pour des applications biomédicales  

- Comme nous l'avons montré dans cette thèse, les propriétés de libération de de 

médicaments des aérogels "matrices" peuvent être modifiées en fabriquant des aérogels 

composites de divers composants (organiques ou inorganiques). Le " mixage " des 
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propriétés apportés par les différents constituants de la matrice engendre de nouvelles 

caractéristiques physiques et chimiques au composite et ouvre de nouvelles perspectives 

aux aérogels polysaccharidiques utilisés comme vecteurs médicamenteux. Il peut être 

intéressant d'aller plus loin, par exemple en enrobant un "coeur" de polysaccharide peu 

soluble par d'une enveloppe externe d'un polysaccharide gastro-résistant (pectine ou 

alginate, par.ex.) (technique du « core-shell »). Cela atténuerait à la fois la forte phase de 

"burst " observée en début de cinétique, protégerait le médicament de toute dégradation 

acide dans l'estomac et différerait sa libération dans le tractus intestinal.  

- Enfin, la technologie d'impression 3D des gels ouvre la voie à la synthèse de tissus bio-

artificiels (ingénierie de réparation tissulaire) (Markstedt et al., 2015). Du fait de sa 

gélification ionique rapide avec le calcium, l'alginate (un autre polysaccharide 

polyélectrolyte) est déjà couramment utilisé comme « bio-encre » pour produire des 

hydrogels imprimés en 3-D (Axpe & Oyen, 2016 ; Song et al., 2011). Récemment, les 

gels de pectine se sont également avérés être des matériaux imprimables, citons par 

exemple les travaux de (Vancauwenberghe, Baiye Mfortaw Mbong, et al, 2017) 

concernant l’impression 3D d’une matrice de pectine encapsulant des cellules végétales 

vivantes en son sein. Le séchage supercritique d'hydrogels de pectine imprimés en 3D 

permettrait de concevoir sur mesure des aérogels hautement poreux aux structures 

spécifiques, pour produire des supports cellulaires pour la médecine régénérative. 
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Introduction 

Recently, pectin aerogels turned out to be extremely promising bio-based materials for 

high added-values application such as thermal insulation (Demilecamps, 2015; Rudaz et al., 

2014), they also present a high potential for life sciences applications. Despite the importance 

of aerogel structure control regarding to applications’ performances, very little is known about 

the relationships between the type of polysaccharide, processing conditions and aerogel texture 

and properties.  

In this work we produced pectin aerogels with different internal structure and 

morphological properties and tested them for two applications: thermal insulation and drug 

delivery. The goal of our work was to understand and correlate the characteristics of the initial 

polymer (pectin), the preparation conditions, the internal structure of aerogel and the final 

application properties. The open questions we are asking here are first: “How can we control 

and tune the textural properties of bio-aerogels?” and then “What are the structure-properties 

correlations for bio-aerogels developed for either thermal insulation or for drug release 

applications?”. To answer these questions we selected pectin, a versatile polysaccharide from 

fruits, as it allows numerous variations of conditions that influence solution viscosity and 

gelation, potentially leading to a wide range of aerogel morphologies and properties. 
 

This chapter is a review of the state of the art on bio-aerogels focusing on what is known 

about the correlations between initial polysaccharide characteristics, aerogels’ internal structure 

and application properties. 
 

• The first part is dedicated to pectin: its structure, physico-chemical characteristics and 

different gelling mechanisms either in acidic conditions or using cations. The goal is to 

understand how we can tune the properties of pectin solutions/gels (and thus of pectin 

aerogels) based on the characteristics and specificity of the starting polymer.  
 

• In the second part we introduce the concept of aerogel, a special class of highly porous 

materials obtained by supercritical drying. We review the state of the art on bio-aerogels, 

from their synthesis to their potential applications with a special focus on aerogels made 

from polysaccharides. We discuss the major advantages and drawbacks for industrial 

applications of bio-aerogels compared to classical ones taking silica aerogels as a reference. 

Finally, we present and detail two particular potential applications of aerogels: as thermal 

insulating materials and as matrices for drug release, and highlight the scientific issues and 

technical challenges which remain open. 
 

The overall goal of this chapter is first to highlight the importance in aerogel structure 

control and then to question on what is known about structure-properties correlations of bio-

aerogels.   



CHAPTER I.  

State of the art 

43 

 

1. Pectin: structure and properties 

Polysaccharides (or polyosides) are natural carbohydrate polymers composed of long 

chains of repeating units of either monosaccharides (e.g., glucose, mannose, fructose, galactose) 

or oligosaccharides (e.g., cellobiose, sucrose, lactose) bounded together by glycosidic linkages. 

Polysaccharides regroup very different polymers whose physico-chemical properties depend on 

composition, structure (conformation) and molecular weight: they can be homo- or hetero-

polysaccharides, linear or highly branched, neutral or charged (anionic or cationic), hydrophilic 

or lipophilic, etc. Polysaccharides are extracted or produced by various natural sources: from 

marine sources (agar, alginates, and carrageenans), animals (glycogen, chitin), plants cell walls 

(cellulose, pectins), tuber and roots (starch), plant seeds (guar, locust bean gum) and 

microorganisms (xanthan, gellan gum, bacterial cellulose). In nature, they perform different 

functions, such as a structural role (e.g. cellulose or chitin), energy storage (e.g. starch or 

glycogen) or water regulation (e.g. pectin), depending on their composition, chemical structure, 

and ionic character (if any). 

1.1. Sources and extraction of pectin 

Pectin is a structural polysaccharide present in the middle lamella, the primary and 

secondary cell walls of non-woody plants, allowing cell wall expansion during plant growth 

and rigidity of plant tissue (F. Voragen, Schols, & Visser, 2013). Due to their anionic nature, 

pectins also play a role in the regulation of ion transport and water holding capacity (A. G. J. 

Voragen, Coenen, Verhoef, & Schols, 2009). Pectin content and chemical structure highly 

differ depending on plant type, age and source, but commercial pectins are mainly extracted 

from citrus peel (25 – 30% of dry matter or apple pomace (15 – 18 % of dry matter) (Walter, 

2012) and are widely used in food industry as thickening and gelling agent. Sugar beets, 

sunflower heads and mango are pectin alternative sources, but with lower gelling abilities 

(BeMiller & Whistler, 2012). 

Pectin is obtained by hot acid extraction (~ pH 2.0) from the raw vegetal material (apple 

pomace, citrus peel). The liquid pectin extract is filtered to eliminate solid residues and purified. 

Pectin extracts are then concentrated under vacuum before being precipitated using alcohols or 

aluminum salts. Pectin is then pressed and washed after being dried and grounded into powder. 

These processes lead to commercial High Methylation (HM) pectins of around 70% 

esterification, additional demethylation treatments are needed to produce other types of pectin 

(May, 1990). 
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1.2. Chemical and macromolecular structures 

Pectin is a complex ramified hetero-polysaccharide composed of more than 17 different 

monosaccharides with more than 20 different linkages.  It is essentially composed of linear 

blocks of α-1,4-linked D-galacturonic acids (Gal.A) (see Figure 1) (called “smooth regions”), 

partly esterified, and blocks of highly ramified rhamnogalacturonan regions (called “hairy 

regions”) (Ridley, O’Neill, & Mohnen, 2001). The Gal.A content strongly varies with pectin 

source, but “industrial” pectins usually consist of high Gal.A content with a minimum 

requirement of 65%  to be used as gelling and thickening agent (May, 1990).  

 

Figure 1. Chemical structure of pectin D-galacturonic acids linked by α(1-4) glycosidic bonds 

As illustrated in Figure 2, the linear homogalacturonan segments are frequently 

interrupted by rhamnose insertions causing chain “elbows” on which are branched side chains  

which are mainly composed of neutral sugars such as arabinose, galactose, arabinogalactose or 

xylose (Comstock, 1986; D. G. Oakenfull, 1991). Side chains and rhamnose elbows play a role 

in molecule rigidity and chains interaction due to steric hindrance (F. Voragen et al., 2013). In 

aqueous solutions, pectin forms helixes, most probably right-handed, with three subunits per 

turn and an identity period of 1.31 nm (Walkinshaw & Arnott, 1981).  

 

Figure 2. Schematic chemical structure of pectin chain  

(a) The rhamosyl groups (Rha) induce elbows within the polygalacturonic acid chains (Gal.A) 

allowing the insertion of neutral sugars side chains (S)  
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(b) Homogalacturonans segments (smooth regions) branched by side chains (hairy regions) 

(adapted from (Axelos & Thibault, 1991)) 

Depending on pectin source and/or chemical treatments, Gal.A units are partly methyl-

esterified at C6, and can be amidated at C6 or acetylated at O2 or O4 positions, as illustrated in 

Figure 3. These chemical variations are known to strongly impact pectin physico-chemical 

properties and gelling abilities; in this chapter we will detail only the impact of methyl-

esterification of pectin (the esterification degree and distribution) as it is the most common 

variation between commercial pectins.  

 

Figure 3. Chemical structure of D-galacturonic of pectin acids which can be either methyl-

esterified, amidated or acetylated. 

Pectin Degree of Esterification (DE) defines the proportion of Gal.A units that are 

methyl-esterified, and is commonly used to classify pectin into two groups: High-Methylated 

pectin (HM) for DE > 50% and Low-Methylated pectin (LM) for DE < 50% (see a schematic 

example in Figure 4). It is commonly admitted that HM and LM pectins have different 

macromolecular properties and gelling abilities. Indeed, HM pectin chains are more likely to 

form hydrophobic interactions due to the high proportion of methyl-esterified Gal.A, while LM 

pectin are more likely to interact with divalent cations via carboxylate functions of their non–

esterified Gal.A (Sriamornsak, 2003). The impacts of pectin DE on their gelation mechanisms 

are detailed in the next Section 1.3.  

 

Figure 4. Schematic representation of the homogalacturonan segment of Low Methylated pectin 

(LM) and High Methylated pectin (HM) based on the Degree of Esterification (DE) (%) of their 

galacturonic acids (Gal.A). 

Pectins with lower DE are obtained by industrial demethylation processes and consist of 
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the replacement of methyl-ester groupes of HM pectins by carboxylic acid functions 

(hydrolysis). This is carried out using either enzymatic treatment (methyl-esterase) or more 

commonly by chemical process in alkaline or neutral conditions and low temperature. Alkaline 

treatments are known to induce pectin β-depolymerization even at low temperature, and lead to 

reduction of the neutral sugars content and molecular weight (Ilse Fraeye, Duvetter, Doungla, 

Van Loey, & Hendrickx, 2010; Garnier, Axelos, & Thibault, 1993; Thakur, Singh, Handa, & 

Rao, 1997). Using amonia hydrolysis for pectin demethylation results in conversion of some 

ester groups into amide groups, leading to amidated pectins with different gel forming ability.  

Finally, it has to be noted that large differences may exist between pectins due to natural 

polydispersity (plant source, species, tissue, and maturity), acid extraction process and 

additional demethylation treatment. This leads to highly different pectin intrinsic characteristics 

(such as the degree of esterification, of amidation or acetylation, structural distribution of 

methyl-ester group, pectin molecular weight …etc.) which in turn strongly impacts pectin 

physico-chemical properties and gelling abilities. Depending on the intrinsic properties of the 

polymer and external conditions (pH, temperature, ionic strength, presence of multivalent metal 

ions, sugars, etc.) pectin chains in aqueous solutions may associate in different ways leading to 

the formation of various types of gels. 

1.3. Physico-chemical properties of pectins 

Pectin is water-soluble polyelectrolyte polysaccharide with pKa around 2.9 – 3.5 (Ralet, 

Bonnin, & Thibault, 2002; Ralet, Dronnet, Buchholt, & Thibault, 2001) depending on pectin 

DE. Pectins are relatively stable in water at pH ~ 3 – 4, however prolonged heating in a strongly 

acidic media may lead to pectin degradation by acid hydrolysis, while neutral to alkaline 

conditions can lead to β-depolymerization and de-methoxylation (I Fraeye et al., 2007; Krall & 

McFeeters, 1998; Renard & Thibault, 1996). 

 

As a consequence of their polyelectrolyte nature, pectins present a high sensitivity to 

ionization/protonation of carboxyl functions induced by pH change. This is known to strongly 

impact their chain charge density, their water binding capacity and chains interactions abilities. 

Dissolved pectin can interact in aqueous solvent by joining their homogalacturonan domains 

into intermolecular junction zones involving successive physical bonds. These physical bonds 

can be based on different chains interactions depending on the conditions: chain entanglements, 

hydrogen bonds, hydrophobic interactions or ionic bonds with multivalent cations. If the 

number of efficient interactions is sufficient, pectin 3D-network is formed within the aqueous 

phase, resulting in a physical gel. Pectin solution viscosity and ability to gel are governed by 

chains interactions, the latter being influenced by various external parameters (e.g. temperature, 

polymer concentration, soluble solids content, pH and presence of ions, the ionic strength and 
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type of ions, etc.) as well as a large number of pectin intrinsic characteristics (e.g. chemical 

structure, molecular weight, degree of esterification / amidation / acetylation, branching degree, 

charge distribution along the chain, etc.) (Axelos & Thibault, 1991; Thakur et al., 1997). 

Depending on the main type of chains interactions involved in the gelation process, two 

different physical gelation mechanisms are reported for pectin: acid-induced gelation (or “acid 

gelation”) in acidic media (pH < 3.0) or ionic gelation in the presence of polyvalent cations. 

1.3.1. Physical acid-gelation 

It is known that dissolved pectin, being a polyelectrolyte, is very sensitive to pH. Indeed, 

pH lower than pectin pKa (~ 2.9 -3.5) favors the protonation of carboxylic acids functions of 

pectin (–COOH) while pH above pKa favors their dissociation into carboxylate (COO-). At low 

pH chains associate and are stabilized by successive hydrogen bonding between un-dissociated 

free carboxylic acids and secondary alcohol groups and by hydrophobic interactions between 

methyl esters (D. G. Oakenfull, 1991; D. Oakenfull & Scott, 1984), as illustrated in Figure 5. 

This is reflected by change of solution viscosity and may lead to acid gelation if the number of 

junction zones is sufficient, the latter depending on solution’s temperature and pectin 

concentration (Garnier et al., 1993; Kar & Arslan, 1999; F. Voragen et al., 2013).  

 

Figure 5. Schematic illustration of pectin acid gelation involving hydrogen bonding between 

un-dissociated free carboxylic acids and secondary alcohol groups and by hydrophobic 

interactions between methyl esters. (Adapted from (Basu, Shivhare, & Chakraborty, 2017)). 

Pectin acid-gelation is known to be temperature dependent as it is based on junction 

zones subject to thermal conditions: hydrogen bonds are destabilized with temperature, while 
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hydrophobic interactions are becoming more stable (F. Voragen et al., 2013).  Overall, when 

pectin solutions are heated, thermal energy of pectin molecules is augmented which lower the 

viscosity of pectin solutions, and intermolecular distances increase due to thermal expansion. 

As a result, acid gels are formed during cooling when adverse thermal effects are 

overcompensated by chains interactions and other factors that reduce molecules mobility (e.g. 

pectin concentration, pH, ionic strength, co-solute, interactions with cations…) (Garnier et al., 

1993; Kar & Arslan, 1999; D. G. Oakenfull, 1991). Hence, gelation time strongly decreases 

when interactions are favored between chain (i.e. by lowering temperature, increasing pectin 

concentration, adding cations or lowering pH). As a direct consequence of its thermal 

dependence, pectin acid gelation is thermo-reversible and pectin acid-gel becomes a solution 

by increasing temperature.  

On the opposite, the increase of pH above pKa leads to progressive dissociation of 

carboxylic acids into carboxylates. The increase of negative charges along pectin backbone 

results in chain repulsion due to coulombic repulsion and increase of the osmotic pressure of 

counterions which lead to a high hydration of pectin macromolecules. In this case, ionized 

pectin chains are hydrated, extended, and independent from each other, leading to the decrease 

of solution viscosity and preventing polymer aggregation and gelation (Paoletti, Cesaro, 

Delben, & Ciana, 1986). 

 

It is known that HM and LM pectins have different macromolecular properties impacting 

their gelling abilities. Indeed, HM pectin chains are more likely to form hydrophobic 

interactions due to the high proportion of esterified Gal.A, while LM pectin are more likely to 

create ionic bonds with divalent cations using the carboxylate functions of their non–esterified 

Gal.A. As a result, for a long time is was commonly admitted that HM and LM pectins were 

presenting opposite gelling mechanisms. Due to the high proportion of methylated groups, it 

was admitted that HM pectin was only able to acid-gel in an acidic environment (typically pH 

< 3.5) and in the presence of large amount of low molecular weight co-solutes (typically sucrose 

> 55 – 60 wt%). Indeed, the presence of a high concentration of sugar reduces water activity 

and stabilizes junction zones by promoting hydrophobic interactions between methyl-esters 

groups (Evageliou, 2000; D. G. Oakenfull, 1991).  

In contrast, LM pectin was thought to gel only by ionic gelation in the presence of 

divalent cations (Axelos & Thibault, 1991) (as it will be explained in the next paragraph). 

However, several recent works reported the ability of LM pectins to also be able to gel under 

cooling in very acidic conditions (pH < 3.0) thanks to the high proportion of non-methyl-

esterified carboxyl groups (Capel, Nicolai, Durand, Boulenguer, & Langendorff, 2006; Dobies, 

Kempka, Kuśmia, & Jurga, 2008; Fishman & Cooke, 2009; Gilsenan, Richardson, & Morris, 

2000, 2003; Lootens et al., 2003; Ström et al., 2007; Yuliarti, Hoon, & Chong, 2017). Acid 

gelation mechanism of LM pectins are not clearly identified but contemporary theories assume 

that it is attributed to the suppression of electrostatic repulsion at low pH (< pKa), which allows 
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numerous carboxyl groups to act as hydrogen bond donor (Gilsenan et al., 2000). Successive 

and stable hydrogen bonds between adjacent chains are then created between protonated 

carboxylic acid groups of the Gal.A and also between the hydroxyl groups of neighboring 

molecules (Vincent, Mansel, Kramer, Kroy, & Williams, 2013). Gilsenan et al. and Dobies et 

al. proved that decreasing pH below pKa leads to pectin chain conformation change from an 

extended two-fold to a more compact threefold helical structure (Dobies et al., 2008; Gilsenan 

et al., 2003). According to them, LM pectin chains undergo a conformational ordering that 

would allow their aggregation and possibly their gelation. Another theory is based on a 

“cooperative zipping interactions” effect from hydrogen bonding between LM pectin chains 

(Kjøniksen, Hiorth, & Nyström, 2005). 

1.3.2. Ionic gelation in presence of divalent cations (called ionic gelation)  

Pectin ionic gelation is based on electrostatic interactions involving ionized carboxylates of 

pectin galacturonic acids units and added metal ions. This gelling mechanism is generally 

attributed to LM pectin gels due to a higher proportion of non-methylated Gal.A able to interact 

with cations when dissociated, as compared to HM pectins ((Gilsenan et al., 2000; Löfgren, 

Walkenström, & Hermansson, 2002; Lootens et al., 2003; Morris, Gidley, Murray, Powell, & 

Rees, 1980). The cross-linking formed by ionic bonds between carboxylate functions and 

polyvalent cations such as calcium produce strong, brittle and less elastic pectin gels than those 

formed by hydrogen and hydrophobic interactions in acidic condition (Sriamornsak, 2003; 

Ström et al., 2007).  

The ability of pectin to form complexes with polyvalent cations is based on strong 

electrostatic interactions between the cations and the free dissociated carboxyl groups of pectin, 

i.e. at pH close to or higher than pKa (~ 2.9 -3.5). More precisely, the ionic bonding results from 

specific non-covalent electrostatic interactions between polyvalent cations and the oxygen 

atoms of the hydroxyl groups, the oxygen atoms of the glucosidic ring and the bridging oxygen 

atoms of dissociated galacturonic acids through their free-electron pairs (Rudolf Kohn, 1987) 

as shown in Figure 6a. This leads to the formation of an ionic “egg box” cavity and gives rise 

to a cross-linking of two different chains in close proximity. The lifetime of the ionic junction 

depends on the strength of the electrostatic bonds and becomes more stable in the presence of 

7 to 20 consecutive ionic cross-links (Braccini & Pérez, 2001; Powell, Morris, Gidley, & Rees, 

1982). Successive ionic bonds can form junction zones only between unbranched non-esterified 

galacturonan segments of two pectin chains in a twofold helical conformation, retaining metal 

ions in between.  

As described by the so-called “egg-box model” developed for divalent metal ions such as 

calcium, the whole gelation mechanism is a two-step process with the formation of strongly 

linked dimers associating two crosslinked pectin chains (Figure 6b), followed by weak inter-
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dimers associations governed by electrostatic interactions leading to an aggregate of several 

pectin chains (Figure 6c) (Grant, Morris, Rees, Smith, & Thom, 1973).  

 

Figure 6. Schematic representation of calcium binding to polygalacturonate segment of pectin: 

(a) an "egg-box" cavity; (b) egg-box dimer; (c) aggregation of dimers. (Adapted from (Axelos 

& Thibault, 1991)). 

This gelation mechanism depends on multiple intrinsic and extrinsic factors including 

pectin concentration and DE, type and concentration of cations, pH conditions, temperature and 

the type and concentration of soluble solid content (Axelos & Thibault, 1991). Generally, most 

of the works on LM pectins deal with their ionic gelation with calcium ions, but the affinity and 

binding capacity of LM pectin chains towards divalent cations was found to depend on the type 

and the valency of the cations. As an illustration, Dronnet et al. showed that pectin affinity 

toward cations increases as follows: Cu2+ ∼ Pb2+ << Zn2+ <Cd2+ ∼ Ni2+ ≤ Ca2+ (Dronnet, 

Renard, Axelos, & Thibault, 1996) and Guo et al. showed it increased as follows K+ < Na+ < 

Mg2+ < Ca2+ (Guo et al., 2016). 

If focusing on the ionic interactions between pectin and Ca2+ ions, it was found that pectin 

affinity towards calcium increases and pectin gelation was more pronounced by i) lowering 

pectin DE (R. Kohn & Luknár, 1975; Ström et al., 2007; Thibault & Rinaudo, 1985), ii) 

increasing calcium concentration (I Fraeye et al., 2007; Löfgren et al., 2002; Ström et al., 2007),  

iii) increasing polymer concentration (Garnier, Axelos, & Thibault, 1994), and iv) when 

solution pH is close and higher than pKa (~ 2.9 - 3.5 depending on DE) (I Fraeye et al., 2007; 

Gidley, Morris, Murray, Powell, & Rees, 1980; Guo et al., 2016; Ström et al., 2007). 

The effects of pH conditions and pectin DE on pectin gelling abilities are easily 

understood as they both influence the fraction of ionized free carboxylic groups of pectin that 

are available to interact with cations. Indeed, increasing the pH of pectin solutions above pKa 

induces ionization of pectin and promotes ions binding by dissociated acid functions 
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(carboxylate). In the same way, lowering pectin DE increases its affinity towards cations as it 

directly increases the fraction of non-methylated functions able to be dissociated to interact 

with cations (R. Kohn & Luknár, 1975; Ström et al., 2007; Thibault & Rinaudo, 1985). 

 

To reflect the impact of calcium concentration on pectins taking into account their 

respective intrinsic sensitivity toward cations due to different DE, the molar ratio R of metal 

cation (Me) is commonly used (instead of only ions concentration), as an indicator of the ratio 

of cations per pectin carboxyl group (RCOO-) (expressed in mol L−1), the later directly 

depending on pectin DE and concentration. It is calculated as follows (Equation (1.1)): 

 𝑅(𝑀𝑒) =
[𝑀𝑒]

[𝑅𝐶𝑂𝑂−]
  (1.1) 

It was shown that increasing R(Ca) ratio by increasing calcium concentration up to a 

certain value reinforces pectin network by the formation of large amount of strong ionic 

junction zones, leading to denser and firmer pectin gels (Cárdenas, Goycoolea, & Rinaudo, 

2008; I Fraeye et al., 2007; Grosso & Rao, 1998; Löfgren et al., 2002; Ström et al., 2007). 

However, there is a maximum amount of calcium which can bind pectin: it is around 

stoichiometric ratio, 0.3–0.6, depending on pectin degree of methylation (Dronnet et al., 1996; 

Garnier et al., 1994; Siew, Williams, & Young, 2005), which corresponds to molar ratio R(Ca) 

from 0.15 to 0.3. “High” calcium level promotes gel syneresis and can even lead to pectin 

precipitation (BeMiller & Whistler, 2012; May, 1990). 

 

Finally, in addition to the direct impact of pectin DE on its gelling abilities, the 

distribution pattern of methyl-esterified groups also strongly affects the rheological and gelling 

properties (BeMiller & Whistler, 2012). The distribution of methyl ester groups along the 

backbone chain can be either block-wise or random-like (Winning, Viereck, Nørgaard, Larsen, 

& Engelsen, 2007). Daas et al. introduced the term ‘Degree of Blockiness’ which is quantified 

by enzymatic digestion of the percentage of Gal.A which are distributed in blocks (i.e. 

contiguous Gal.A units ≥ 4). The higher the degree of blockiness of pectins with similar DE, 

the more block-wise the distribution of the methyl esters groups in the pectin. It is now known 

that a demethylation process via alkaline treatment or using fungus-pectin methyl esterase 

results in random distribution, while plant pectin methyl esterase results in block-wise 

distribution (Daas, Meyer-Hansen, Schols, De Ruiter, & Voragen, 1999). Like pectin DE, the 

degree of blockiness also strongly influences the functionality, the internal charge distribution 

and gelling ability of pectins. Compared to random-distributed pectins, block-wise pectins show 

stronger calcium-binding behavior with greater interchain associations in the presence of 

calcium, and are often referred to as “Ca2+
-sensitive” pectins (Powell et al., 1982; Thibault & 

Rinaudo, 1986). Several authors showed that pectins with similar DE but different internal 

distributions of methoxy groups responded completely differently to calcium addition and pH 
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changes (Löfgren, Guillotin, Evenbratt, Schols, & Hermansson, 2005; Löfgren & Hermansson, 

2007; Lutz, Aserin, Wicker, & Garti, 2009). 

1.3.3. Food and pharmaceutical uses of pectin 

Like the majority of polysaccharides, pectin is part of our daily food diet and thus 

appears as a “human-friendly” polymer. Thanks to its high-water binding capacity and gelling 

abilities, pectin is widely used as a thickening or gelling agent, or as a stabilizer additive in food 

industry. Pectin is commonly added into various food preparations such as jams, jellies, bakery 

and dessert filling, soft drinks and fruit-based preparations and dairy products. Depending on 

the formulation and final targeted “sensorial texture” of the food product, either HM or LM 

pectins can be used. HM pectins are usually chosen for sweet acid preparations (juices, jams 

and desserts) as the latter present high sucrose concentration, promoting pectin thickening or 

gelling properties. LM pectins are especially useful in low-sugar food products or when gels 

need to be thermostable (during bakery cooking step, for example). 

 

Thanks to its biodegradability and its safe toxicity profile which are required for medical 

and pharmaceuticals applications, pectin is particularly attractive for both its bio-active effects 

and/or its gelling properties.  

As bio-active compound, pectin is known to be a natural hypocholesterolemic agent 

(Keys, Grande, & Anderson, 1961), a prophylactic substance against noxious effects of toxic 

cations such as mercury (Rudolf Kohn, 1982). Pectin has been extensively used to treat 

gastrointestinal disorders, and may present a small antimicrobial effect against Escherichia 

Coli, and antiviral activity (United States Patent No. US3485920A, 1969; Thakur et al., 1997).    

The use of pectin is also interesting for wound healing preparations, as it is bio-active 

compound or for its gelling properties. Applied upon a wound, pectin can form adhesives and 

occlusive preparations with hemostatic properties (United States Patent No. US4292972A, 

1981), while when administrated intravenously pectin shortens blood coagulation time which 

may be useful to restrain hemorrhage or wound local bleeding (Sriamornsak, 2003).  

 

Besides its bioactive effects, pectin appears to be an interesting candidate for 

pharmaceutical applications, used as a binding agent, or as an excipient in pharmaceutical 

formulations. Around 1950, pectin was shown to be able to delay drug absorption, which 

reveals its high potential value for drug-controlled release (United States Patent No. 

US4199560A, 1980; Murray & Finland, 1946; Welch & Welch, 1949). Up to now, literature 

reports a large number of publications about pectin-based matrix formulations used as a 

sustained-release drug delivery system which allow a slow drug release in the body over an 

extended period of time, reducing side-effects and drug intake (see, for example, the work of 
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(Krusteva, Lambov, & Velinov, 1990)). 

Due to its low solubility when crosslinked with calcium, and because it resists to gastric 

and intestinal enzymes but not to colonic pectinolytic ones (Englyst, Hay, & Macfarlane, 1987), 

pectin presents gastro-resistant properties (Sandberg, Ahderinne, Andersson, Hallgren, & 

Hultén, 1983) which are required to protect some drugs which are sensitive to degradation in 

gastric conditions. These properties also enable specific drug delivery to the lower 

gastrointestinal tract for a local or systemic action, and are particularly suitable for colon 

targeting in case of ulcerative colitis, Crohn’s disease and colon carcinomas (Ashford, Fell, 

Attwood, Sharma, & Woodhead, 1993; Rubinstein, Radai, Ezra, Pathak, & Rokem, 1993). A 

wide range of pectin-based dosage forms are reported in literature such as hydrogel beads, 

compressed tablets, or film gel coating, and combinations with other polysaccharides (alginate 

(Pillay & Fassihi, 1999), chitosan (Macleod, Fell, Collett, Sharma, & Smith, 1999), and 

hydroxypropylmethyl cellulose (Orlu, Cevher, & Araman, 2006)). Their pharmaceutical 

properties may be tuned by adjusting formulation parameters such as the type of pectin, gelation 

conditions, addition of excipients, coating agents, or dosage forms. 

1.4. Conclusion on pectin 

As we have shown in this part, pectin is a versatile natural polymer sensitive to a wide 

range of intrinsic (molecular weight, DE, branching degree, …) and extrinsic (pH, ionic 

strength, concentration of multivalent cations, presence of co-solute) parameters. Besides its 

interesting bio-active effects and gelling abilities, pectin presents attractive properties such as 

its biodegradability, non-toxicity and renewability: a “human-friendly” image which is required 

for life sciences applications.  

 

In this PhD work we used different pectins from citrus presenting various DE (from 35% 

to 70%) to produce pectin-based aerogels, also called “aeropectins”. Pectin was selected 

because it allows numerous variations of conditions that influence solution viscosity and 

gelation, hoping this would also allow obtaining wide range of pectin aerogel morphologies and 

properties. Through their wide range of physical and textural characteristics, pectin gels and 

aerogels were used as a model system to build some preparation-structure-properties 

correlations that were missing in the field of bio-aerogel. 
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2. Aerogels 

In this second part, we mostly focus on supercritically dried aerogels. The first section is 

dedicated to the state of the art in area of aerogels and, in particular, of bio-based aerogels. Bio-

based aerogels’ properties, applications and open questions are then presented.  

2.1. Generalities on aerogels 

A gel is defined as a solid-liquid biphasic stable system, made of a solid percolating 

tridimensional network maintaining a liquid phase. The term “aerogel” was first introduced by 

Kistler to describe a gel whose liquid phase is replaced by a gas without collapsing the structure 

of the solid network (S. S. Kistler, 1931).  

2.1.1. Network formation via sol-gel route 

“Classical” aerogels are usually synthetized via sol-gel route either from inorganic (e.g. 

silica (Pajonk et al., 1995)) or synthetic organic (e.g. resorcinol-formaldehyde (R. W. Pekala, 

1989)) compounds (Pierre & Pajonk, 2002). Their general preparation takes place in three steps: 

gelation by sol gel process, aging of the gel (if needed) and supercritical drying, as schematized 

in Figure 7.  

 

The sol-gel process is a method for producing solid materials from small molecules 

(monomers or particles). It involves the conversion of a solution into a colloidal suspension (the 

“sol”) which is gradually “transformed” into a network by polymerization.  

 

Figure 7. Schematic illustration of aerogel preparation via sol-gel process route 

After sol-gel transition, an aging step may take place during which significant time-

dependent changes occur such as completion of polymerization, potentially crystallization, 

aggregation, syneresis, phase changes, network scission or formation of junction zones. All 
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these processes contribute to the chemical and/or physical structure and properties of the gel. 

After aging, the wet gels are extensively washed with fresh solvent to remove excess of catalyst 

and non-polymerized entities from the pores. Finally, the removal of the liquid phase requires 

a drying process, and supercritical drying remains the “reference” technique for making 

aerogels. Currently, three main drying methods are considered to obtain dry porous materials: 

evaporative drying, freeze drying and supercritical drying (Pierre & Pajonk, 2002).  

2.1.2. General aspects of the drying methods  

During classical evaporative drying the liquid phase contained within the pores of the 

network forms a concave meniscus inside the gel pore due to lower cohesive intermolecular 

forces between liquid-liquid molecules than between liquid-solid (pore walls), as illustrated in 

Figure 8.  

 

Figure 8. Illustration of capillary forces during evaporative drying. 

With evaporation of a liquid, the meniscus curvature increases inducing a stress applied 

to pore’s walls termed as capillary forces. The capillary pressure is defined by Young-Laplace 

equation (see equation (1.2)): 

 𝑃𝑐 =
2𝛾 cos 𝜃

𝑅
  (1.2) 

 

with Pc the capillary pressure inside the pores (Pa), γ the surface tension between the 

evaporating liquid and the gas phase (N.m-1), θ the meniscus angle formed between the solid 

(pore walls) and the liquid phase (in °), and R the characteristic pore radius (m). 

As the liquid phase evaporates, capillary pressure increases, pore walls collapse and the 

network starts to shrink. Capillary pressure can be high enough to provoke cracks, densification 

and complete destruction of the gel network structure. Thus, drying process route is a critical step 

if willing to produce low density open pores nanostructured material. To avoid capillary forces, 

it is necessary to either suppress the liquid-gas surface tension, or perform chemical treatment 

of pore surface to make meniscus angle as high as possible (close to 90°) or for pores to re-open 
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as in the case of silylated silica ambient dried aerogels. Figure 9 shows the state of the matter 

phase diagram with three main ways of drying: by evaporative drying, by freeze-drying and by 

supercritical drying.  

 

Figure 9. Schematic illustration of different drying processes: freeze-drying, evaporative drying 

and supercritical drying (above the critical temperature (Tc) and pressure (Pc)). 

Conventional evaporation, i.e. drying directly from liquid to gas, usually ends with 

dense and low-porosity materials, which we will call for simplicity “xerogels”. If using freeze-

drying technique (also known as lyophilization), the liquid phase is frozen and then sublimated 

by lowering the pressure. However, freeze-dried samples, which will be termed as “cryogels” 

for simplicity, generally suffer from strong mechanical damages and pore walls densification 

due to ice crystals growth within the material.  

 

In supercritical conditions i.e. above the critical temperature and pressure, densities of 

the liquid and vapor phases become equal leading to only one-phase supercritical fluid within 

the network. As there is no physical distinction between the liquid and vapor phases and thus, 

no vapor-liquid interface anymore, no capillary forces are exerted, which prevents from 

network collapsing, volume shrinkage and gel cracking (Brinker & Scherer, 1990). This drying 

process is termed as supercritical drying (sc-drying), and CO2 is commonly used due to its 

“mild” supercritical conditions (Tcritical ~ 31°C and Pcritical ~ 75 bars) suitable for the majority of 

polymers and also for polysaccharides.  

Supercritical drying using CO2 starts from liquid CO2 at low pressure, which is then 

compressed and heated beyond its critical point in order to mix with the liquid phase in the gel 

pores. As a consequence, the fluid in the pores of the gel has to be miscible with the supercritical 

fluid used. Finally, slow and isothermal depressurization of the supercritical phase (mostly CO2 

after supercritical extraction is complete) is performed until it is gaseous at ambient pressure. 

The gaseous CO2 is then replaced by air through simple molecular diffusion. The resulting 

aerogels are lightweight nanostructured materials composed of a solid open pores network.  
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Classical aerogels, known since the pioneering work of Kistler, are based on silica 

(Kistler, 1931) or synthetic polymers (for example, resorcinol-formaldehyde) (REF). They have 

outstanding properties such as a very low density (typically lower than 0.2 g/cm3) and a high 

specific surface area (noted SBET) which is the accessible (or detectable) area of solid surface 

per unit mass of a material, and can reach up to several hundreds of m²/g due to the internal 

structure of aerogel. 

As an illustration, a comparison of the visual aspect and microstructure of aerogel, 

cryogel and xerogel obtained in this work from the same initial pectin gel crosslinked with 

calcium is shown in Figure 10. 

 

Figure 10. Visual aspect and network morphology observed by SEM of the same “dry” pectin 

hydrogel made from 3 wt% pectin (with 35% of degree of methylation) dissolved at pH 2.0 

with calcium (R(Ca) = 0.2 see Equation (1.1)) dried in different ways: with supercritical CO2, 

by freeze-drying, or by evaporative drying (at 60°C under vacuum) of either a pectin hydrogel 

or a coagulated pectin gel in ethanol. 

2.2. Classical inorganic and synthetic polymer aerogels: a brief 

overview 

Classical aerogels are usually produced via sol-gel route either from inorganic (e.g. silica 

or metal, metal oxide, graphene, carbon nanotubes, clay) or organic (e.g. resorcinol-

formaldehyde, phenol-formaldehyde, polyurethanes, polyvinyl alcohol dialdehyde) compounds 

(Pierre & Pajonk, 2002). Silica aerogels (the “first generation” of aerogels (S. S. Kistler, 1931)) 

were extensively studied, so we will use them as an example of how classical inorganic aerogels 

are prepared and of their potential applications.  
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2.2.1. First generation of aerogels: silica aerogels 

▪ The synthesis of silica aerogels 

Silica aerogels are by far the most known and commercially most important class of 

aerogel materials. They are prepared by silica gelation via “sol-gel” route followed by 

supercritical drying. The “silica sol” is a colloidal suspension of silica alkoxides dispersed in a 

solvent (usually ethanol, methanol, isopropanol or 1- or 2-propanol). The most known examples 

are tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS) and 

polyethoxydisiloxane (PEDS), the latter being pre-polymerized silica sol developed to optimize 

aerogel properties. Using aqueous acid- or base-catalyst, the colloidal silica suspension 

undergoes sol-gel transition, leading to the formation of a 3D-networktermed as a “gel”. 

The gelation of silica by sol-gel process is actually divided into two reactions steps; the 

first one is acid-catalyzed hydrolysis step leading to the production of hydrolyzed reactive 

monomers silanol (SiOH) with hydroxyl function bound to silicon (Figure 11).  

 

Figure 11. Acid-catalyzed hydrolysis reaction. Reprinted with permission from (Buckley & 

Greenblatt, 1994). Copyright (2019) American Chemical Society. 

This step is then followed by acid- or base-catalyzed polycondensation reactions of two 

silanol (Si-OH) groups, leading to the creation of silicon-oxygen-silicon bridges (-Si-O-Si-) and 

further polymerization (Figure 12). The obtained silica gel consists of a three-dimensional solid 

network of silicon oxide (SiO2) filled with solvent.  

 

Figure 12. Base-catalyzed condensation reactions. Reprinted with permission from (Buckley & 

Greenblatt, 1994). Copyright (2019) American Chemical Society. 

In silica aerogel production, hydrolysis and condensations reactions can be performed 

simultaneously through one-step procedure, or separately via two-steps procedure. After sol-

gel transition, silica gels are usually aged (at various temperature and duration) as this leads to 

smaller pore sizes and network finer structuration. After washing steps, silica gels are 

supercritically dried to obtained aerogels. The type and concentration of silica in the sol and of 
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acid/base catalysts, temperature and time for hydrolysis, gelation and aging steps are known to 

impact the textural properties of silica gels and aerogels (Davis, Deshpande, Smith, Brinker, & 

Assink, 1994; Pierre & Pajonk, 2002; Soleimani Dorcheh & Abbasi, 2008).  

 

Silica aerogels present many outstanding properties (Aegerter, Leventis, & Koebel, 

2011); they present a high open porosity above 90% and a low bulk density (typically 0.05 - 

0.25 g/cm3). Silica aerogels display a high specific surface area (800 - 1000 m²/g and higher) 

due to a mesoporous network (average pore size from 10 to 50 nm). Examples of morphologies 

of silica aerogels are shown in Figure 13, using different types of silica sol precursors (TEOS, 

TMOS, and PEDS). To cope with the high brittleness inherent to silica aerogels, highly 

bendable silica aerogels can be obtained by chemical modifications of the network during the 

sol-gel process as described in the work of (Hayase et al., 2013; Hayase, Kanamori, & 

Nakanishi, 2011; Shimizu, Kanamori, Maeno, Kaji, & Nakanishi, 2016). Such chemically 

modified silica aerogels present significantly improved mechanical properties as compared to 

original silica aerogels and exhibit a flexible deformation behavior against compression without 

collapse. 

 

Figure 13. Visual aspects and network morphologies observed by SEM of silica aerogels made 

from different silica sources: TEOS (a), TMOS (b) and PEDS (c) (Adapted from (Wagh, Begag, 

Pajonk, Rao, & Haranath, 1999). 

▪ Hydrophobization treatment 

Due to the remaining reactive groups (such as alkoxy and hydroxyl groups), silica 

aerogels present a certain hydrophilicity and suffer from subsequent water vapour adsorption 

which limits the range of applications. Thus, hydrophobization of silica aerogels has been 

widely studied the past decades and two main approaches are reported to increase their 

hydrophobic character (Aegerter et al., 2011): 

 

- by the addition of a silylating agent during the sol-gel step. For instance, 
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Schwertfeger et al. produced hydrophobic silica aerogels by adding 

methyltrimethoxysilane (MTMS) to TMOS hydrolyzed in basic conditions, followed by 

supercritical drying (Schwertfeger, Glaubitt, & Schubert, 1992; Schwertfeger, Hüsing, 

& Schubert, 1994; Venkateswara Rao & Haranath, 1999). In this case, after TMOS 

reacted, MTMS was grafted through the silanol groups, as shown in Figure 14(ref). 

Similar results were obtained by co-gelling TMOS as silica-precursor with 

trimethylethoxysilane (TMES) (Rao, Kulkarni, Pajonk, Amalnerkar, & Seth, 2003), or 

by adding dimethyldiethoxysilane (DMDES) to TEOS (Cao & Zhu, 1999). 

 

Figure 14. The reaction of hydrophobization of silica aerogels (from TMOS) with MTMS, 

Reprinted with permission from (Pierre & Pajonk, 2002). Copyright (2019) American Chemical 

Society. 

- By surface modification after sc-drying, i.e. by post-treatment of the silica aerogels 

(two-steps procedure). The principle is to let the aerogels in contact with vapors of a 

surface modifying agent such as trimethylchlorosilane (TMCS) (United States Patent 

No. US6005012A, 1999) or hexamethyldisilazane (HMDS). In the same way, the 

modifying agent react by forming Si-O-Si bonds with the silanol groups on pores’ 

surface, which results in the formation a protective hydrophobic “layer” of methyl 

groups. 

2.2.2. Synthetic organic polymers aerogels 

Neat synthetic organic aerogels were first described by (R. W. Pekala, 1989), and they 

were based on resorcinol–formaldehyde (RF) resin. RF aerogels are the most known synthetic 

organic aerogels; a wide range of other organic aerogels were developed in the last decades, 

either based on other type of resins (e.g. phenol-formaldehyde, melamine-formaldehyde, 

cresol- formaldehyde, phenol-furfural etc.), or organic compounds (e.g. polyimides, 

polyacrylamides, polyacrylonitriles, polyacrylates, polystyrenes, polyurethanes, etc.) (Pierre & 

Pajonk, 2002).  

As an illustrative example of a synthetic organic aerogel, we detail the chemical process 

to synthetize RF aerogel. Although the mechanism of RF polycondensation via sol-gel route is 
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different from the reaction to make inorganic gels such as silica from alkoxysilanes (presented 

in the Section 2.2.1), the general approach is quite similar. Indeed, RF aerogels are synthesized 

by the aqueous polycondensation of resorcinol with formaldehyde under alkaline or acid 

conditions, with different variations of essentially the same procedure. In this case, resorcinol 

and formaldehyde serve as a trifunctional and difunctional monomers, respectively, and the RF 

polymer obtained is classified as a phenolic resin.  

• First, resorcinol reacts with formaldehyde to form hydroxymethylated resorcinol 

(substituted resorcinol derivatives).  

• Then, the hydroxymethylated groups (-CH20H) condense with each, resulting in 

the formation of a sol composed of nanometer-sized polymer “clusters”. The 

structure of a polymer crosslinked cluster resulting from the reaction of 

resorcinol with formaldehyde is shown in Figure 15. 

 

Figure 15. Polymer crosslinked cluster resulting from the reaction of resorcinol with 

formaldehyde, adapted from (R. Pekala & Kong, 1989). 

• Then, the sol is usually heated for a sufficient time allowing the "nano-clusters" 

to form covalent bridges with each other through the polycondensation of surface 

functional groups (e.g. hydroxymethyl species), leading to the production of 

stable gels with high cross-linking densities. The gelation mechanism of RF gels 

is illustrated in Figure 16. In the case of basic catalysis, the reaction is carried 

out in aqueous alkaline solution with the use of sodium carbonate as catalyst (or 

similar). Generally, the gelation reaction in alkaline conditions requires heating 

at elevated temperatures (generally 80-100°C) for prolonged time periods (few 

days to several weeks). With acid catalysts, the monomers are mixed with the 

acid catalyst (e.g. hydrochloric acid, acetic acid, and perchloric acid) in aqueous 

Crosslinked polymer cluster 

Resorcinol 

Formaldehyde 
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or non-aqueous media, leading to a much faster gelation which can even take 

place at room conditions. The size of the "clusters" and their interpenetration are 

known to be influenced by the typical sol–gel parameters such as the pH of the 

sol, temperature, concentration and ratio of reactants and type of catalyst 

(Aegerter et al., 2011; R. Pekala & Kong, 1989).  

 

Figure 16. Schematic illustration of the RF gelation mechanism, adapted from (R. Pekala & 

Kong, 1989). 

• The gels are then aged (using different organic solvent) in order to 

increase the crosslinking density. 

• Finally, the RF gels are subsequently solvent-exchanged with fresh 

suitable solvent, and then supercritically dried to obtain RF aerogels. 

 

The resulting RF aerogels are dark red in color and transparent, they present typical 

aerogels properties: lightweight and highly porous with an open mesoporosity and a high 

specific surface area (300 – 1000 m²/g). As the formation of the “nano-cluster”, and thus the 

final structural properties of RF aerogels, can be controlled by the reaction conditions, the 

physical properties of RF aerogels can be finely tuned to target specific application (Aegerter 

et al., 2011; R. Pekala & Kong, 1989; United States Patent No. US4873218A, 1989).  

2.2.3. Applications of classical aerogels 

Silica aerogels present many attractive properties such as a very low thermal 

conductivity, a low refractive index, a low sound speed, a low dielectric constant and an optical 

transparency (as shown in Figure 17). One of the most famous application properties of silica 

aerogels is their thermal conductivity in ambient conditions, which can be as low as 0.012–

Subsituted-resorcinol RF nano-clusters RF gel 
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0.015 W/(m·K), significantly lower than that of ambient air (0.025 W/m·K) (M. Koebel, 

Rigacci, & Achard, 2012).  

 

Figure 17. Example of silica aerogel monolith (from TEOS) presenting a density of 0.13 g cm-
3 and an effective thermal conductivity of 0.015 W/(m.K.). Reprinted by permission from 

[Springer Nature] [Journal of Sol-Gel Science and Technology] [from (M. Koebel et al., 2012)], 

[COPYRIGHT] (2019). 

Concerning RF aerogels, they became very popular thanks to the controllability of their 

internal structure combined to attractive physical and mechanical properties. When compared 

to silica aerogels, RF aerogels exhibit similar very low thermal conductivity of (~ 0.012 W/m 

K under ambient conditions) but with improved mechanical properties as RF aerogels are much 

stiffer and stronger than silica aerogels (Aegerter et al., 2011). Thus, RF aerogels can be used 

as performant materials for acoustic and thermal insulation, with easy machinability. In addition 

to that, RF aerogels received great attention as they can serve as precursors to produce 

electrically conductive carbon aerogels after pyrolysis (usually at 600°C–2000°C), as shown in 

Figure 18.  

 

Figure 18. RF polymer aerogels and RF-carbon aerogels (obtained after pyrolysis under inert 

atmosphere) produced by BuyAerogel.com. Picture taken from BuyAerogel.com. 

Carbon aerogels are particularly attractive for a wide variety of applications 

(filtration/adsorption support, catalysis, fuel cell applications, as electrode supercapacitors or 

anode for battery, energy storage…etc.) as they combine a high electrical conductivity with 

outstanding structural properties (low density, open mesoporosity, very high surface area) 

(Horikawa, Hayashi, & Muroyama, 2004). Figure 19 shows an example of the very fine 

structure of RF-carbon aerogels. More generally, the increasing popularity of synthetic organic 

aerogels (and their carbonized derivatives) is largely due to their unique and controllable 

properties by varying the process route.  
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Figure 19. Morphology of the RF carbon aerogel made with K2CO3 catalyst and pyrolyzed at 

1073 K for 30 min. Reprinted from (Horikawa et al., 2004), Copyright (2019), with permission 

from Elsevier. 

More generally, “classical” aerogels are extremely versatile materials due their wide 

range of textural and morphological properties combined with the possibility to tune and 

functionalize them by varying the process route. Currently, the most promising commercial 

application of classical aerogels seems to be in thermal and acoustic insulations. But other 

potential applications fields of classical aerogels include (not exhaustive): chemistry (as 

catalyst, adsorbents, extracting agents, filtration systems for gas or liquid purification, filler 

additives, as a carrier-materials for release/adsorption of compounds…), for 

electrical/electronic applications (batteries, capacitor electrodes, sensor materials, 

dielectric/piezoelectric materials), for shock absorption, for space industry (space dust particles 

collectors - “Stardust” project )…etc.(Pierre & Pajonk, 2002).  

 

However, the range of applications of non chemically-modified silica aerogels is strongly 

limited because of their poor mechanical properties and release of very small particles; the price 

of the starting material is also rather expensive for mass production applications as insulating 

materials. In addition, the organic compounds used for the production of synthetic organic 

aerogels (e.g. RF-based) or for post-gelation modifications and/or the hydrophobization 

treatments of aerogels (silylation) can be highly toxic. This has to be taken into considerations 

not only for health and safety during applications, but also as they generate toxic wastes (liquids 

and streams) with undesirable environmental properties. In the light of these limitations, the 

search for greener and human-friendly alternatives to classical aerogels has become a key 

aspect. 

2.3. Bio-aerogels: the third generation of aerogels 

A new generation of aerogels was developed during the 21st century: they are biomass-

based and thus are called “bio-aerogels”. Bio-aerogels are made of natural polymers such as 

polysaccharides and proteins (Chtchigrovsky et al., 2009; Druel, Bardl, Vorwerg, & Budtova, 
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2017; P. Gurikov, Raman, Weinrich, Fricke, & Smirnova, 2015; Gabrijela Horvat, Fajfar, 

Uzunalić, Knez, & Novak, 2017; Jiménez-Saelices, Seantier, Cathala, & Grohens, 2017; 

Kobayashi, Saito, & Isogai, 2014; Quignard, Valentin, & Di Renzo, 2008; Rudaz et al., 2014; 

Seantier, Bendahou, Bendahou, Grohens, & Kaddami, 2016; Selmer, Kleemann, Kulozik, 

Heinrich, & Smirnova, 2015; Sescousse, Gavillon, & Budtova, 2011). Kistler first reported the 

possibility of making aerogels from gelatin, cellulose, nitrocellulose, agar and egg albumin (S. 

S. Kistler, 1931), but their properties were not studied.  

 

Since the last decade and due to many attractive properties of biopolymers, we are 

observing a growing interest in bio-aerogels. The annual number of publications on 

polysaccharide-based aerogels per type of polysaccharide in Figure 20a shows a continuous 

increase starting from 2010. The most frequent polysaccharides used to make bio-aerogels are 

cellulose (both based on various types of nanocelluloses and on cellulose II.), then chitosan 

(obtained by deacetylation of chitin extracted from exoskeleton of arthropods), alginate (from 

brown algae), starch (from potato, pea, maize, rice, wheat …etc.), carrageenans (from red 

seaweeds) and pectins (from fruits such as citrus peel or apple pomace and vegetables) as 

illustrated in Figure 20b. 
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Figure 20. (a) Number of publications per year and (b) distribution percentage (%) by the type 

of polysaccharide in bio-aerogels: chitosan, starch, cellulose (I and II), carrageenans, alginate, 

and pectin. Data were taken from Web of science website (https://webofknowledge.com) - 

consulted the 03/20/2019.  

Bio-aerogels usually have densities from 0.02 to 0.25 g/cm3 and present lower specific 

surface areas than those of silica aerogels, from 200 to 700 m2/g. Bio-aerogels display a wide 

range of network morphologies and pore sizes (from a few tens of nanometers to a few microns), 

depending on the bio-polymer and the process route. Compared to extremely fragile silica 

aerogels, polysaccharide aerogels tend to display much better mechanical properties with plastic 

deformation until a strain of 60–80% before complete pore wall collapse (Kobayashi et al., 

2014; Rudaz et al., 2014; Sescousse et al., 2011). 

 

As compared to their inorganic and synthetic polymer counterparts, bio-aerogels present 

an important advantage: they are biodegradable, based on renewable polymers and with low or 

non-toxicity profile. Bio-aerogels also possess a large variety of chemical functional group 

(hydroxyl-, carboxyl-, amino groups…etc.) allowing targeted functionalization. Moreover, the 

synthesis of bio-aerogels does not involve any toxic compounds which is the case of many 

synthetic polymer aerogels (for example, based on resorcinol formaldehyde or polyurethanes 

cross-linked with isocyanate). Thus, polysaccharide aerogels are perceived as sustainable and 

“human-friendly” materials, in adequacy with the change in people “consumption 

trend/awareness”. All these attractive properties make them promising bio-based materials for 

a wide range of potential applications as of “classical” aerogels (thermal insulation, as matrices 

for catalysis when functionalized (Budarin et al., 2006; Chtchigrovsky et al., 2009), in 

electrochemical applications when pyrolyzed (Vitaliy L. Budarin, Clark, Luque, Macquarrie, 

& White, 2008; Guilminot et al., 2008), and in adsorption and/or separation (P. Gurikov et al., 

2015).  

Thanks to their bio-compatibility and biodegradability, bio-aerogels are suitable for all 

variety of life science applications (e.g. medical devices, pharmaceutics, cosmetics, food …). 

In particular, they recently have received significant attention from both academic and 

industrial researchers to be used as biodegradable solid matrices as drug delivery systems 

(Comin, Temelli, & Saldaña, 2012; De Cicco et al., 2016; C. A. García-González, Jin, Gerth, 

Alvarez-Lorenzo, & Smirnova, 2015; Lovskaya, Lebedev, & Menshutina, 2015; Mehling, 

Smirnova, Guenther, & Neubert, 2009; Tkalec, Knez, & Novak, 2015a; Veronovski, Tkalec, 

Knez, & Novak, 2014) and as 3D cellular scaffolds (Goimil et al., 2017; G. Horvat et al., 2017; 

Martins et al., 2015; Quraishi et al., 2015) for tissue engineering or wound dressing devices (De 

Cicco et al., 2016). Despite the recent increase of polysaccharide aerogels’ studies in the 

academic field, their transition to pilot and industrial applications is still pending (S. Zhao, 

Malfait, Guerrero-Alburquerque, Koebel, & Nyström, 2018). 

https://webofknowledge.com/
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2.3.1. Synthesis routes of bio-aerogels: similarities and differences with 

inorganic and synthetic polymer aerogels 

Bio-aerogels can be produced either i) from polymer solutions (e.g. cellulose, alginate, 

pectin, starch, chitosan…) or ii) from nanoparticles in suspension (cellulose, chitin, or protein 

aggregates). In this section, we will present only the case of the use of polysaccharides in 

solution to make aerogels. We will show the similarities and differences in terms of synthesis 

route between the most known bio-aerogels and classical ones (from inorganic components or 

synthetic polymers).  

 

The synthesis of bio-aerogels is inspired by that of classical aerogels: usually starting 

from polymer dissolution to solution, gelation (which can be omitted) followed by solvent 

exchange and drying with super-critical (sc) carbon dioxide, as illustrated in Figure 21.  

 

Figure 21. General process route of making bio-aerogels from polysaccharides. 

▪ Network formation by polymer gelation or by direct 

coagulation 

Like classical aerogels, the network formation is crucial as it will determine future 

properties of aerogel after supercritical drying. The “wet” bio-polymer network can be formed 

either via conventional gelation or via non-solvent phase separation during solvent-exchange 

step: 

➢ A major difference between “classical” and bio-polymer aerogels stands in their 

process routes, as the gelation bio-polymers is rather different from the sol-gel 

route and does not include a polymerization step. Indeed, bio-polymers are 

already polymers and the gel network can be formed either by physical 

interactions by chain entanglements or weak forces (e.g. hydrogen bonds, ionic 

bonds, hydrophobic interactions…) between polymeric chains which is termed 
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as “physical gelation”; or by chemical crosslinking between chains by cross-

linkers or cross-linker promoters which is termed as “chemical gelation”. 

Gelation depends on the intrinsic properties of the bio-polymer (molecular 

weight, chemical structure, functionalization…etc.) and the external processing 

conditions (polymer concentration, pH, temperature, crosslinker 

concentration…etc.). 

 

➢ However, for some polysaccharides there may even be no gelation at all or this 

step can be just omitted. Instead of conventional gelation, another way of 

forming polysaccharide network is via non-solvent induced phase separation 

(also known as “immersion precipitation”) during solvent-exchange step from 

solvent to non-solvent. During this process, the progressive addition of a non-

solvent to polysaccharide solution results in phase separation phenomena: the 

solubility of the polysaccharide decreases as non-solvent proportion increases, 

leading to polymer coagulation and contraction. The particularity of 

polysaccharides is that above the overlap concentration, the coagulated polymers 

are not precipitating even if solutions were not-gelled. Thanks to a certain chain 

rigidity of polysaccharides, the coagulated polymers keep 3D structure, forming 

the network of aerogel precursors. Literature reports few cases of bio-aerogels 

whose aerogel precursors were obtained from non-gelled solutions of cellulose, 

alginate and pectin (Buchtová & Budtova, 2016; Gurikov & Smirnova, 2018; G. 

Horvat et al., 2017; Innerlohinger, Weber, & Kraft, 2006; Pircher et al., 2016; 

Sescousse et al., 2011; Tkalec et al., 2015a). 

▪ Solvent exchange and supercritical drying 

As the polymers used to make bio-aerogels are mostly polysaccharides, the dissolution 

step often occurs in aqueous solvents. In order to dry using scCO2, water has to be replaced by 

a non-polar fluid miscible with CO2, usually acetone or ethanol, which are non-solvents for 

polysaccharides.  

 

The final properties of bio-aerogels (porosity, morphology, density) logically depend on 

the structure formation of the polymer network all along the process route. The latter are 

impacted i) by the characteristics of the starting biopolymer (e.g. functional groups, molecular 

length, chemical functionalization (Cheng, Lu, Zhang, Shi, & Cao, 2012; Takeshita, Konishi, 

Takebayashi, Yoda, & Otake, 2017)), ii) the typical gelation parameters (e.g. polymer 

concentration, pH/temperature of polymer solution, the nature and concentration of cross‐

linkers (C. A. García-González, Alnaief, & Smirnova, 2011; Tkalec, Knez, & Novak, 2016)) 

and iii) the process route (e.g. type of non-solvent, drying procedure…).  
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As an illustration, Figure 22 shows the network morphologies of various bio-aerogels 

made from different composition and concentration of polysaccharides (starch, pectin, 

alginate). 

 

Figure 22. SEM images of bio-aerogels made from: (a) 5 wt% starch (adapted from (De Marco, 

Baldino, Cardea, & Reverchon, 2015)); (b) 1 wt% alginate cross-linked by calcium (adapted 

from (Robitzer, David, Rochas, Renzo, & Quignard, 2008)); (c) 5 wt% pectin (w/w) (adapted 

from (Rudaz et al., 2014)) 

In order to target a specific application, the shape of polysaccharide aerogels can be 

customized by different processes (such as emulsion-gelation method, jet cutting, dropping, 

molding, grinding, extrusion…) to obtain aerogels as monoliths, fibers or particles (from 

macroscopic to micrometric size). An example of shaping starch aerogels into particles of 

different size (from millimeters to micrometers) is shown in Figure 23. 

 

Figure 23. Examples of shaping starch aerogels into particles of different sizes (from 

millimeters to micrometers) using emulsion-gelation method with different mixing parameters. 

Adapted from (C.A. García-González, Uy, Alnaief, & Smirnova, 2012). 

Polysaccharides used to make aerogels can be separated into two main groups depending 

on their physico-chemical characteristics: “neutral” polysaccharides (e.g. cellulose, starch, 

guar, …etc.) and polyelectrolytes (e.g. pectin, alginate, chitosan, carrageenans, xanthan… etc.). 

The polyelectrolyte nature of a polysaccharide greatly impacts the gelling abilities, structuration 

and the overall aerogel process route. 

 

In the following, we present the process routes and the general characteristics of the most 

known polysaccharide aerogels based on cellulose II, starch, alginate and pectin. A special 

attention is paid on the specificity of the initial polymer to produce bio-aerogel. 
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2.3.2. Aerogels based on neutral polysaccharides 

▪ Cellulose II aerogels 

Cellulose aerogels are the most studied bio-aerogels (Aaltonen & Jauhiainen, 2009; 

Gavillon & Budtova, 2008; Liebner, Potthast, Rosenau, Haimer, & Wendland, 2008; Rege, 

Schestakow, Karadagli, Ratke, & Itskov, 2016; Sescousse et al., 2011; Tsioptsias, Stefopoulos, 

Kokkinomalis, Papadopoulou, & Panayiotou, 2008). As mentioned above, they can be prepared 

either from a cellulose solution by dissolution of pulps or of micro-crystalline cellulose 

resulting in aerogels based on cellulose II such as in (Aaltonen & Jauhiainen, 2009; Hoepfner, 

Ratke, & Milow, 2008; Innerlohinger et al., 2006; Rege et al., 2016), or from a suspension of 

nanocellulose particles or fibers (i.e. nanofibrillated cellulose and cellulose nanocrystals such 

as in (Carlsson et al., 2012; Heath & Thielemans, 2010; Jin et al., 2011; Olsson et al., 2010; 

Sehaqui, Zhou, & Berglund, 2011)). In this section, we will only present the case of cellulose 

aerogels obtained from dissolved cellulose. 

Cellulose is the most abundant organic polymer on earth. It is a linear carbohydrate 

polymer made of repeated D-glucose bounded by β(1-4) glycosidic bounds. Its general formula 

is (C6(H10O)5)n, with n the degree of polymerization. It is a structural polysaccharide and the 

major component of cell walls of plants. Cellulose can be extracted from various lignocellulosic 

sources (such as cotton linters, wood, flax, hemp…etc.) but can be produced as well by bacteria 

(Acetobacter xylinum) and also by marine invertebrate animal tunicate. The origin of cellulose 

and the extraction mode have a strong influence on the purity of cellulose (potential presence 

of lignin and hemicellulose) and degree of polymerization and thus on its physical-chemical 

properties. Cellulose is usually organized in a semi-crystalline structure with low ordered 

amorphous region coexisting with crystalline regions, due to numerous intra- and inter-

molecular hydrogen bonds between hydroxyl groups (Itagaki, Tokai, & Kondo, 1997). This 

also impact cellulose physico-chemical properties and its solubility. 

 

Cellulose II aerogels are prepared through dissolution-solvent-exchange-supercritical 

drying route. Different solvents can be used to dissolve cellulose such as N-Methylmorpholine 

N-oxide (NMMO) monohydrate, NaOH-water (with or without additives), ionic liquids (e.g. 1-

Ethyl-3-methylimidazolium acetate (EmimAc), 1-Allyl-3-methylimidazolium chloride 

(AMIMCl), 1-Butyl-3-methylimidazolium chloride (BMIMCl) ...), molten salt hydrates such 

as zinc chloride (ZnCl2∙6H2O) and calcium thiocyanate, Ca(SCN)2∙6H2O , etc. After the 

dissolution, non-solvents are used to coagulate cellulose (sometimes called “regeneration” for 

historical reasons) including water, acids, ethanol, propanol, butanol and acetone. The type of 

solvent and non-solvent may have a strong impact on the final structural properties of the 

obtained cellulose II aerogel. In general, two types of network morphologies can be 

distinguished, either more “fibrous-like” (Figure 24a) and “globular-like” (Figure 24 b, c). 



CHAPTER I.  

State of the art 

71 

 

Cellulose II aerogels typically present bulk density varying from 0.05 to 0.2 g/cm3 and specific 

surface area from 200 to 400 m²/g depending on cellulose concentration and process route 

parameters (Druel, Niemeyer, Milow, & Budtova, 2018; Gavillon & Budtova, 2007, 2008; 

Innerlohinger et al., 2006; Sescousse, 2010; Tsioptsias et al., 2008).  

 

Figure 24. Various morphologies of cellulose aerogels from cellulose solutions in different 

solvents: (a) 8%NaOH adapted from (Sescousse et al., 2011); (b) NMMO adapted from 

(Gavillon & Budtova, 2008); and (c) ionic liquid (EMIMAc) (adapted from (Sescousse et al., 

2011)).  

▪ Starch aerogels 

Starch is an energy-storage matter extracted from green plants (potato, wheat, pea, maize, 

rice, corn, tapioca….). It consists of two polysaccharides made of D-glucose units joined by 

glycosidic bonds: linear amylose and branched amylopectin chains. The proportion of 

amylose/amylopectin is known to depend on starch source. 

 

Starch aerogels are typically made via dissolution–retrogradation-solvent exchange– sc 

CO2 drying route. The process starts with the destruction of starch granules in water under 

heating and mixing which induces so-called gelatinization of starch. The dissolution can be 

complete or partial, followed by retrogradation under cooling during which gelation and partial 

recrystallization occurs. Solvent exchange is then performed prior to sc-drying.  

Starch aerogels usually present specific surface area lower than that of cellulose II 

aerogels (typically 50 – 150 m²/g but can also reach 200 – 250 m²/g) and bulk densities from 

0.05 to 0.35 g/cm3 depending on starch source and processing route ((Druel et al., 2017; C. A. 

García-González et al., 2011; Garcia-Gonzalez & Smirnova, 2013; C.A. García-González et al., 

2012; Mehling et al., 2009; Starbird, García-González, Smirnova, Krautschneider, & Bauhofer, 

2014; Ubeyitogullari & Ciftci, 2016). More generally, intrinsic properties of starch such as the 

amylose/amylopectin ratio (which depends on starch source and treatment) (Druel et al., 2017; 

C.A. García-González et al., 2012; Kenar, Eller, Felker, Jackson, & Fanta, 2014; Ubeyitogullari 

& Ciftci, 2016) and external parameters such as cooling rate, temperature and non-solvent used 

(Druel et al., 2017; Hoover & Vasanthan, 1994) were reported to influence the final properties 
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of starch aerogels (network morphology, density and specific surface area), as well as thermal 

conductivity values (from 0.021 - 0.024 W/(m.K) (Druel et al., 2017; Glenn & Irving, 1995) 

and higher).  

 

Figure 25. SEM images of starch aerogels from different starch sources and 

amylose/amylopectin ratio: (a) waxy potato, (b) regular potato, (c) pea, and (d) high amylose 

corn starch. Reprinted with permission from (Druel et al., 2017), Copyright (2019) American 

Chemical Society. 

2.3.3. Aerogels based on polyelectrolyte polysaccharides 

Pectin, alginate, chitosan and carrageenans are polyelectrolytes, i.e. they present 

significant proportion of ionizable functions depending on pH conditions. As a consequence, 

physico-chemical properties and chains’ interactions mechanisms of these polysaccharides are 

impacted by ionization/protonation phenomena induced by pH. We present here the cases of 

aerogels made from pectin and alginate (polyanions) and chitosan (polycation). 

▪ Pectin aerogels 

The details on pectin structure and gelling properties are presented in Section 1 of this 

chapter. Pectin aerogels are usually obtained through dissolution in water – gelation (in some 

cases, this step is omitted) – solvent-exchange – sc drying using CO2. Literature reports aerogels 

made from pectins gelled in various conditions (pH, cations concentrations) and from pectins 

of different concentrations and DE.  

 

However, a systematic study of the influence of all extrinsic and intrinsic parameters on 

the final properties of pectin aerogels have not been conducted yet. For instance, pectin aerogels 

were produced from either LM pectins (Tkalec, Knez, & Novak, 2015b; Veronovski et al., 

2014; White, Budarin, & Clark, 2010) or HM pectins (C. A. García-González et al., 2015; 

Carlos A. García-González, Carenza, Zeng, Smirnova, & Roig, 2012; Rudaz et al., 2014; Tkalec 

et al., 2015b, 2015a) and through different process route: either via physical gelation in acidic 

media (Rudaz et al., 2014), via ionic gelation using different cations (calcium, zinc, strontium) 

of various concentrations (Demilecamps, 2015; C. A. García-González et al., 2015; Tkalec, 

Knez, et al., 2016; Veronovski et al., 2014) or by non-solvent phase separation (G. Horvat et 
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al., 2017; Tkalec et al., 2015b, 2015a; White, Budarin, et al., 2010; H.-B. Zhao, Chen, & Chen, 

2017).  

Figure 26 shows an example of network morphology of pectin aerogels made from the 

same starting pectin but acid-gelled (in HCl 1M) (Figure 26a) or ionic-gelled with calcium 

(Figure 26b). Besides, few studies report the preparation of pectin-based composite aerogels 

with xanthan (G. Horvat et al., 2017), alginate (Tkalec, Knez, et al., 2016), polyaniline (H.-B. 

Zhao et al., 2017), silica (Demilecamps, 2015) or with magnetic nanoparticles (TiO2) (Carlos 

A. García-González et al., 2012). 

 

Figure 26. SEM images of pectin aerogels from 3 wt% of the same starting citrus pectin (DE = 

56%). Pectin gelation was induced either (a) by physical gelation in acid media at pH = 0.5 

(HCl 1M), adapted from (Rudaz et al., 2014) and (b) by calcium-induced gelation (R(Ca) = 0.2 

at pH 6.0). adapted from (Demilecamps, 2015). 

In general, pectin aerogels have a low bulk density around 0.05-0.15 g/cm3, a quite 

homogenous fibrillar network morphology with pore size from 50 to 300 nm of diameter and a 

high specific surface area usually from 350 to 500 m²/g. Due to small pore size and low density, 

some pectin aerogels were found to be thermal super-insulating materials with thermal 

conductivity varying from 0.016 - 0.021 W/(m.K) (Gabrijela Horvat et al., 2017; Rudaz et al., 

2014; Tkalec et al., 2015b). Probably due to their polyelectrolyte nature and pH-sensitivity, 

pectin aerogels and also alginate and chitosan aerogels have received specific attention for 

biomedical applications. Indeed, they were suggested to be used as carriers for drug delivery 

via oral or mucosal administration as their release ability can be influenced by pH change within 

the body (e.g. acid gastric media and neutral intestinal media). These cases studies are detailed 

in the following Section 2.5. 

▪ Alginate aerogels 

Alginate is produced by brown algae and consists of a copolymer of 1,4-β -D-mannuronic 

acid and α-L-guluronic acid of various ratios and sequences. Similarly to pectin, alginate can 

undergo ionic gelation by crosslinking with multivalent cations following the egg-box model 

or by physical acid-gelation via hydrogen bonds at pH lower than pKa (~3.4 - 3.7) (Dumitriu, 
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2004).  

 

Alginate aerogels were widely studied the past decade due to the “easy” ionic gelation 

process which allows shaping of alginate gels and aerogels as beads (Alnaief, Alzaitoun, 

García-González, & Smirnova, 2011; Deze, Papageorgiou, Favvas, & Katsaros, 2012; Silva, 

Ribeiro, Ferreira, & Veiga, 2006) or monoliths (Mehling et al., 2009). In most of the cases, 

alginate aerogels were obtained via ionic gelation using different cations (generally Ca2+ but 

also Zn2+, Ba2+) (Escudero, Robitzer, Renzo, & Quignard, 2009; Tkalec, Knez, et al., 2016; 

Trens, Valentin, & Quignard, n.d.), or, more rarely, by physical gelation via hydrogen bonds at 

pH lower than pKa (~3.4 - 3.7) (White, Antonio, et al., 2010). The structure of alginate gel and 

aerogel was found to depend on cation concentration in alginate solution and the 

guluronate/mannuronate (C. A. García-González et al., 2011; Ingar Draget, Østgaard, & 

Smidsrød, 1990; Quignard et al., 2008; Subrahmanyam, Gurikov, Dieringer, Sun, & Smirnova, 

2015) . Alternatively, alginate aerogels were also produced via non-solvent phase separation 

process (without gelation step) (Tkalec et al., 2015b; Tkalec, Kranvogl, Uzunalić, Knez, & 

Novak, 2016). 

Alginate aerogels present very attractive structural properties close to synthetic polymer 

aerogels: homogeneous network morphology, high specific surface area (usually between 350 

to 700 m²/g) and variable bulk density (usually from 0.05 to 0.2 g/cm3) depending on alginate 

concentration and the way and parameters of wet network formation (i.e. acid gelation, ionic 

gelation, non-solvent phase separation) (Alnaief et al., 2011; Mehling et al., 2009; Quignard et 

al., 2008; Robitzer et al., 2008; Robitzer, Renzo, & Quignard, 2011; Trens et al., n.d.). Finally, 

in the work of Gurikov et al. alginate aerogels were reported to present thermal super-insulating 

properties (P. Gurikov et al., 2015). 

▪ Chitosan aerogels 

Chitosan is a linear polysaccharide composed of  β-(1→4)-linked D-

glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). It is obtained 

by deacetylation treatment of chitin (extracted from exoskeleton of arthropods such as sea 

crustaceans) with different the degree of deacetylation (usually 60-95 %). Due to the 

protonation of the amino groups on the backbone (from NH2 to NH3
+) at pH below pKa (~ 6.5), 

chitosan is a cationic polyelectrolyte in acidic medium, with charge density depending on the 

degree of deacetylation and pH conditions. As a result, chitosan is particularly soluble in acidic 

aqueous medium and can interact with negatively charged compounds by electrostatic 

interaction. Gelation of chitosan can occur either by physical gelation via hydrogen bonding at 

pH > pKa (Kadib, Molvinger, Cacciaguerra, Bousmina, & Brunel, 2011; Quignard et al., 2008; 

Valentin, Bonelli, Garrone, Di Renzo, & Quignard, 2007), or by chemical crosslinking usually 

with aldehydes (Chang, Chen, & Jiao, 2008; Takeshita & Yoda, 2015, 2015). 

https://en.wikipedia.org/wiki/Glucosamine
https://en.wikipedia.org/wiki/Glucosamine
https://en.wikipedia.org/wiki/N-Acetylglucosamine
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Chitosan is widely used in pharmaceutics as a delivery matrix with fast dissolution in 

gastric acid media, and in biomedical applications thanks to its antibacterial properties and 

ability to form polyelectrolyte complexes with other bio-based polyanions (including alginate, 

pectin, carrageenan, xanthan gum, carboxymethyl cellulose, chondroitin sulphate, hyaluronic 

acid… etc.).  

 

Chitosan aerogels typically present specific surface area of 300-550 m²/g (but can vary 

from 50 - 800 m²/g) and are often combined with cellulose, alginate or pectin (polyelectrolyte 

complex) (ref) or silica (ref) (ref) to produce composite aerogels. The structural properties of 

chitosan aerogels were found to be influenced by the viscosity of chitosan starting solutions and 

their gelling properties. The latter depends on chitosan deacetylation degree, crystallinity, 

molecular weight and chemical sequence of the polymer (which are all impacted by the chitin 

natural source and chemical treatment), as well as the type of medium to induce chitosan 

gelation (Lamarque, Viton, & Domard, 2004; Quignard et al., 2008). 

 

Figure 27. SEM images of cross-section at different magnifications of chitosan aerogel prepared 

using 4 wt% chitosan and 7.2 wt% formaldehyde solutions. Reprinted with permission from 

(Takeshita & Yoda, 2015). Copyright (2019) American Chemical Society. 

2.3.4. From bio-polymers to the diversity of bio-aerogels: 

Bio-aerogels have also been produced from other polysaccharides such as carrageenan 

(C. A. García-González et al., 2011; Hoover & Vasanthan, 1994; Quignard et al., 2008), agar 

(Brown, Fryer, Norton, & Bridson, 2010; C. A. García-González et al., 2011; Robitzer et al., 

2011), xanthan (G. Horvat et al., 2017; Gabrijela Horvat et al., 2017; Robitzer et al., 2011; L. 

Wang, Schiraldi, & Sánchez-Soto, 2014), guar (Campia et al., 2017; Ghafar et al., 2017; G. 

Horvat et al., 2017; Ponzini et al., 2019) and pullulan (Deuber, Mousavi, Federer, & Adlhart, 

2017), but they were not studied as much as those based on cellulose, starch, pectin, alginate or 

chitosan.  

In addition to polysaccharides, bio-aerogels are also produced from proteins and amino-

acids, such as bovine serum albumin (Kimmich et al., 1993), whey (Betz, García-González, 

Subrahmanyam, Smirnova, & Kulozik, 2012), soy protein (Arboleda et al., 2013) and egg white 



CHAPTER I.  

State of the art 

76 

 

protein (Selmer et al., 2015) and silk fibroin (Mallepally et al., 2015; Marin, Mallepally, & 

McHugh, 2014). The process route of protein aerogels often includes a heat treatment or pH 

change to coagulate the protein network; another possibility is the addition of crosslinkers to 

induce chemical gelation by covalent bonds.  

 

Another approach to make bio-based aerogels is the mixing different starting materials 

to produce composite aerogels either in order to reinforce the overall aerogel material 

(Demilecamps, Beauger, Hildenbrand, Rigacci, & Budtova, 2015; Markevicius, Jaxel, Budtova, 

& Rigacci, 2016; S. Zhao et al., 2016), or to combine their properties and create new 

functionalities (De Cicco et al., 2016; El Kadib & Bousmina, 2012; R. Wang et al., 2017). 

Indeed, a significant number of publications report on inorganic/organic (polysaccharide) and 

polysaccharide/polysaccharide composites aerogels. The most known examples are bio-

polymer/silica composite aerogels, which combine the ultralow thermal conductivity (0.012 – 

0.015 W/(m.K)) and very high specific surface area (800 - 1100 m²/g) of silica aerogels and 

better mechanical properties provided by polysaccharide addition (e.g. cellulose, pectin…)  in 

order to reinforce the inherent brittleness of silica network (Demilecamps, Reichenauer, 

Rigacci, & Budtova, 2014; M. M. Koebel, Huber, Zhao, & Malfait, 2016; S. Zhao et al., 2015). 

  

All these bio-polymers have specific chemical structure and different physico-chemical 

properties leading to a wide variety of gelation mechanisms (if any) and process routes. This 

results in various bio-aerogels (and their composites) with different internal structure and 

application properties. 

2.3.5. Modifications of bio-based aerogels 

Chemical modification of bio-aerogels is a way to optimize a specific property and 

extend the range of potential applications. For instance, surface functionalization of a 

polysaccharide can be performed to modify gelation mechanism by cross-linking (He, Zhang, 

& Batchelor, 2016; Pushpamalar, Veeramachineni, Owh, & Loh, 2016; Rinaudo, 2006; 

Takeshita & Yoda, 2015; Zhang, Ren, Tong, & Deng, 2016), to use bio-aerogels as catalyst 

support (Quignard et al., 2008) or as supercapacitor material (Hao et al., 2015).  

 

Examples of post-gelation surface modification of the main chemical functions of 

polysaccharides to create new chemical functionalities are presented in Figure 28. 
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Figure 28. Typical functionalization strategies for biopolymer aerogels. Reprinted from (S. 

Zhao et al., 2018), Copyright (2019), with permission from Wiley. 

The inherent hydrophilicity of polysaccharides might lower long-term stability or limit 

the range of potential applications of bio-aerogels. Thus, similarly to silica aerogels, bio-

aerogels were often hydrophobized using alkyl-siloxanes (e.g. octyl-trichlorosilane, methyl-

trimethoxysilane…) by hydrogen bonding, electrostatic interactions or covalent bonds (Hayase 

et al., 2014). Some works report non-silane based hydrophobization approaches such as the 

work of Takeshita et al. based on the reaction of alkylaldehydes with the amino groups of 

chitosan -Figure 29)  or the work of Pour et al. via trityl- groups grafting on cellulose (Pour, 

Beauger, Rigacci, & Budtova, 2015). 

 

Figure 29. Photographs of water droplets of unmodified and hexanal-modified chitosan aerogel 

samples at time 0 and after 10 s. Reprinted with permission from (Takeshita et al., 2017). 

Copyright (2019) American Chemical Society. 
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The references (Cunha & Gandini, 2010a) and (Cunha & Gandini, 2010b) report other 

strategies to hydrophobize polysaccharides (which were not tried yet in bio-aerogel 

production): either by chemical modifications (e.g. amidation with fatty acids, (trans)-

esterification, grafting of various hydrophobic groups…) or physical treatments (e.g. plasma 

treatment, polymeric coating without covalent attachment…).  

 

 Aerogels are extremely versatile materials due their wide range of textural and 

morphological properties combined to the possibility to tune and functionalize them by varying 

the process route. As a result, there are numerous potential applications of aerogels in many 

different technological fields (such as for thermal/acoustic insulations, as catalyst, adsorbents, 

filtration systems, as carrier materials for release/adsorption of compounds, as sensor 

materials… etc.). In the following, we will focus on the use of bio-aerogels for two different 

applications: i) for thermal insulation and ii) for drug delivery applications. 

2.4. Bio-aerogels for thermal insulation applications 

2.4.1. Context 

Global energy consumption is continuously increasing due to population growth and 

technological modernization of society, in particular, the major energy consuming sectors are 

building sector (including heating, ventilation and air conditioning), followed by transport and 

agriculture (Cuce, Cuce, Wood, & Riffat, 2014). Building insulation is a major ecological issue 

to consider in order to decrease both energy consumption and CO2 emissions (Baetens, Jelle, & 

Gustavsen, 2011). In addition to the ecological aspect, there is also a huge economic issue with 

a high potential of energy cost saving (Narbel & Hansen, 2014; Rühl, Appleby, Fennema, 

Naumov, & Schaffer, 2012). In order to reduce energy lost, research was performed from both 

academia and industry to design and develop lower-energy-consuming building, mostly by 

applying wall insulation. In order to provide good insulation properties, wall insulation 

generally is performed by thick and/or multilayers of thermal insulating materials.  

 

A thermally conducting material is able to easily transfer heat flow through it, while a 

thermal insulator is a material that is able to stop (or at least strongly reduce) heat flow. In order 

to describe the ability of a material to transfer heat, we use its thermal conductivity (in W/(m.K)) 

in ambient conditions which is an intrinsic property of a material that quantifies the heat flow 

passing through its area and thickness. Conventional insulating materials for house and 

buildings are usually glass wool or mineral wool (λ ≈ 0.03-0.05 W/(m.K)) and expanded 

polystyrene/extruded polystyrene (λ ≈ 0.029-0.055 W/(m.K)). For comparison, some existing 

thermal insulating materials are presented in Table 1. 
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Table 1. Thermal conductivities in ambient conditions of some existing insulating materials. 

Thermal insulating 

materials 

Range of thermal conductivity 

(λ) (W/(m.K)) 
References 

Silica aerogels 0.012-0.020 (Aegerter et al., 2011; Cuce et al., 2014) 

Silica aerogel blankets 0.010-0.023 
(“BuyAerogel.com,” n.d.) | (accessed 26 

march 2019). 

Silica aerogels 

particles/granulates 
0.012-0.015 

(“BuyAerogel.com,” n.d.) | (accessed 26 

march 2019). 

Synthetic organic aerogels 0.012-0.020 (Aegerter et al., 2011) 

Polyurethane foams 0.020-0.029 (Aegerter et al., 2011; Cuce et al., 2014) 

Expanded or extruded 

polystyrene 
0.029-0.055 (Aegerter et al., 2011; Cuce et al., 2014) 

Glass wool 0.031-0.43 (Aegerter et al., 2011; Cuce et al., 2014) 

Glass foam 0.040-0.045 (Aegerter et al., 2011; Cuce et al., 2014) 

Mineral wool 0.033-0.05 (Aegerter et al., 2011; Cuce et al., 2014) 

Vacuum glazing 0.010-0.023 (Aegerter et al., 2011; Cuce et al., 2014) 

 

2.4.2. Thermal conductivity of aerogels 

In the first approximation the thermal conductivity λ of a porous material can be 

described by a model equivalent to an additive sum of the conductions of the solid λsolid and gas 

λgas phases and of the radiative heat transfer λrad (see equation 1.3): 

  = solid + gas + rad  (1.3) 

Heat conduction via the solid backbone λsolid results from thermal transport between 

atoms by lattice vibrations through chemical bonds between them. Gas thermal conductivity 

λgas is due to thermal energy transfer from one gas molecule to the other by collision between 

them. The radiative heat transfer λrad is linked to the emittance of electromagnetic radiation in 

the infrared wavelength region from the surface of the material. λrad is not significant at room 

temperatures and for optically thick materials (which is the case of the majority of bio-aerogels). 

A schematic representation of heat conduction via the solid network and heat transfer via the 

gaseous phase within the pores of an aerogel is shown in Figure 30.  
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Figure 30. Schematic illustration of heat transfer mechanisms in an aerogel: by the solid 

backbone (red arrows) and by the gaseous phase present in the porous structure (blue arrows). 

The picture sample is a pectin aerogel made from 3 wt% of pectin of DE = 35% with calcium 

added (R(Ca) = 0.2, see Equation (1.1)), prepared in this work. 

Solid phase conduction logically increases with density increase and is decreased in a 

material of high porosity and solid skeleton of high tortuosity. To minimize the conduction of 

the gaseous phase two options are possible: either evacuation the gas (air), or decrease of pores’ 

sizes down to mesoporous region to reduce the contact between gas molecules. In the latter case 

pore size is below the mean free path of air molecules, which is around 70 nm at 25 °C and 1 

atm, leading to λgas lower than that of ambient air according to Knudsen effect. As an 

illustration, Figure 31 shows the variation of thermal conductivity of air in porous materials 

while decreasing the average pore size.  

 

Figure 31. Variation of the thermal conductivity of air contained in porous material with 

different average pore diameters and as a function of pressure, Reprinted from (Baetens et al., 

2011). Copyright (2019), with permission from Elsevier. 
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Due to the Knudsen effect and heat conduction via the solid backbone, the control of the 

aerogel pore sizes and density is extremely important to obtain super-insulating materials by 

significantly reducing both gas and solid thermal conductivities (Baetens et al., 2011). 

Intuitively it is thus clear that the lowest thermal conductivity can be reached for low-density 

mesoporous materials.  

For silica and synthetic polymer aerogels it was demonstrated that the dependence of 

thermal conductivity on density has a U-shape as shown in Figure 32 (Hüsing & Schubert, 

1998; Lu et al., 1992): higher density leads to conductivity increase because of λsolid input, and 

lower density leads to λgas increase because of the presence of large pores which do not 

contribute to Knudsen effect. 

 

Figure 32. Total thermal conductivity (1), solid conductivity (2), gaseous conductivity (3) and 

calculated radiative conductivity (4) of resorcinol-formaldehyde aerogels as a function of 

density at ambient conditions. Adapted from (Lu et al., 1992). 

Aerogels may present a very low density (0.05 - 0.1 g/cm3), meso- and small macro-

porosity, and very high specific surface area (> 500 m²/g). Thanks to these properties, both 

gaseous and solid thermal conductivity are drastically reduced allowing silica and some 

synthetic polymer aerogels to be thermal super-insulating materials, i.e. with thermal 

conductivity below that of air in ambient conditions, 0.012 – 0.015 (M. Koebel et al., 2012) vs 

0.025 W/m.K. Till now, silica aerogels are known to be materials with the lowest thermal 

conductivity.  

2.4.3. Aerogels used as thermal insulating materials: issues and open 

questions 

The extremely low thermal conductivity and good transparency of silica aerogels make 

them very promising materials for insulation of windows and buildings and other structures 
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such as cooling or heating systems, pipelines, food storage... etc. Among existing inorganic 

thermal insulating materials, silica aerogel was one of the most extensively studied the past 

years (Baetens et al., 2011). The sector of classical aerogels has now matured resulting in the 

production and commercialization of aerogels blankets and particles (Table 1).  

Despite of their extraordinary textural and thermal properties, silica aerogels are still not 

widely used because of their high mechanical brittleness, the release of silica “dust” because of 

their poor mechanical properties, and a relatively high raw materials and production costs. 

Technical solutions were proposed to improve the mechanical properties of silica aerogels, one 

possibility being making silica-based composites with another polymer or with fibers that bring 

a mechanical reinforcement. As an example, fiber reinforced composite aerogels were produced 

by adding natural fibers to silica sol (Markevicius, Ladj, Niemeyer, Budtova, & Rigacci, 2017). 

However, silica-based composite aerogels usually present higher conductivity than neat silica 

aerogels due to either material densification or higher heat conduction via the added fibers.  

 

Some synthetic polymer aerogels showed excellent thermal insulation characteristics, such 

as RF aerogels with thermal conductivity around 0.012 W/(m.K) (Lu et al., 1992). Other 

examples are polyurethane aerogels which are also super-insulating materials but with slightly 

higher conductivity, around 0.017 W/(m.K) (Biesmans, Randall, Francais, & Perrut, 1998; 

Diascorn, Calas, Sallee, Achard, & Rigacci, 2015). Taking into account the actual ecological 

and sustainability issues, there is still a need of renewable alternatives avoiding toxic chemistry 

process of synthetic polymer aerogels synthesis, in order to develop new cost-effective and 

mechanically robust aerogels with thermal super-insulating properties.  

 

In this context, bio-based materials and especially bio-aerogels had logically received 

considerable attention the past 15 years as they may combine low thermal conductivities (from 

0.016 to 0.05 W/(m.K) depending on the type of bio-polymer used), good mechanical properties 

and are environmentally friendly. It would be extremely attractive to develop bio-aerogels 

presenting similar thermal insulation properties as silica even if the processing costs of bio-

aerogels are hard to evaluate as they were never transferred to pilot scale process up to now. 

However, very few is known about the thermal conductivity of bio-aerogels as it is a very recent 

field, and practically nothing on conductivity-structure correlations.  

 

Up to date, only few and recent works on bio-aerogels with thermal super-insulating 

properties are reported: with the conductivity around 0.016−0.020 W/m.K for aerogels based 

on pectin (Rudaz et al., 2014), around 0.018 W/(m.K) based on nanofibrillated cellulose 

(cellulose I cryogels and aerogels) (Jiménez-Saelices et al., 2017; Kobayashi et al., 2014; 

Seantier et al., 2016), 0.018-0.022 W/(m.K) based on alginate (P. Gurikov et al., 2015) and 

0.021 – 0.023 W/(m.K) based on starch (Druel et al., 2017; Glenn & Irving, 1995). Although 

starch and cellulose have D-glucose as repeating units (but linked differently), up to now, no 
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cellulose II aerogels with thermal super-insulating properties were reported (with the lowest 

value of thermal conductivity being around 0.026 W/(m.K) (Rudaz, 2013)), most probably 

because of the presence of large macropores promoting thermal conduction of the gaseous 

phase within the material. Why some bio-aerogels present super-insulating properties and some 

do not? What are the correlations between polysaccharide type, aerogel preparation conditions, 

morphology and final properties? How can we control bio-aerogel structure to vary aerogel 

thermal properties?  

 

In this context, Rudaz et al. produced pectin aerogels from high-methylated pectins and 

polymer concentration was varied to modify aerogel morphology and density (from 0.05 to 0.15 

g/cm3) which led to increase conductivity from 0.018 W/(m.K) to 0.03 W/(m.K) but no U-shape 

curve was obtained (Rudaz, 2013). Similar results but with slightly higher conductivity values 

were recorded for starch aerogels (Druel et al., 2017). Seantier et al. reported a U-curve of 

conductivity vs density for freeze-dried bleached cellulose fibers “filled” with nanofibrillated 

cellulose: density was varied by sample compression and the lowest thermal conductivity was 

0.023 W/(m.K) (Seantier et al., 2016). The same approach by uniaxial densification was applied 

to nanocellulose aerogels to decrease their thermal conductivity in the super-insulation domain 

(Plappert, Nedelec, Rennhofer, Lichtenegger, & Liebner, 2017). The correlations between the 

conductivity and structure and properties of bio-aerogels made via dissolution-solvent 

exchange route remain open.  

 

Finally, as future prospects and technical challenge, hydrophobization of hydrophilic bio-

aerogels would be particularly attractive in order to decrease moisture adsorption and avoid 

aging. Classical hydrophobization techniques of silica aerogels consist in the coverage of 

surface hydrophilic functions by non-polar functions such as methyl groups during “wet steps” 

prior to drying (e.g. by silylation with trichloromethylsilane or methyltrimethoxysilane) (United 

States Patent No. US2589705A, 1952; Schwertfeger et al., 1992) or by aerogel post-treatment 

after sc-drying (e.g. using hexamethyldisilazane (HMDS) (Rao et al., 2003)). However, using 

natural compound would be a much better option for bio-aerogels in adequation with their low-

toxicity profile, environmentally-friendly and human friendly characteristics. 

 

2.5. The use of bio-aerogels and silica aerogels for drug delivery 

applications  

In this section, the case of an oral drug administration from a solid drug delivery system 

will be considered. A detailed information of the fundamental concepts and the common 

mathematical models used for drug delivery applications is presented in the Annex to the 
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manuscript. 

2.5.1. Drug delivery systems: introductive concepts and principles  

▪ Modified drug release behaviors 

After oral administration, the release of a drug occurs in the gastro-intestinal tract. In 

addition to the dose administrated and the release profile over time, the drug concentration and 

kinetics of exposure to the organism are regulated by continuous biological phenomena 

(absorption, distribution, metabolism and elimination). The equilibrium between the drug 

absorption and elimination rate determines the actual level of drug distributed in the plasma. 

 

If drug concentration in plasma is above toxic Maximum Safe Concentration (MSC), the 

patient can exhibit side effects due to over-dosage. On the contrary, a concentration below the 

Minimum Effective Concentration (MEC) conducts to under-dosage and the drug is 

therapeutically ineffective (Bruschi, 2015; Siepmann, Siegel, & Rathbone, 2012). The 

therapeutic range or window of a drug refers to the range of drug concentrations between MSC 

and MEC, which are expected to achieve therapeutic efficiency with minimal toxicity, as 

illustrated in Figure 33. 

 

Figure 33. Schematic representation of drug concentrations in blood/plasma as a function of 

time for different types of release: conventional drug intake (or immediate release), sustained 

release and controlled release. 
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An optimal Drug Delivery System (DDS) will deliver the drug at a precise rate 

determined by the therapeutic indications over a specified period of time. Ideally, the dose 

delivered in blood should be maintained constant inside the therapeutic window to be 

therapeutically effective and non-toxic, which corresponds to Zero-order kinetics (Bruschi, 

2015; Siepmann et al., 2012). 

 

An immediate-release DDS releases the drug within a short period of time, typically less 

than 30 minutes, resulting in a rapid burst of drug concentration in blood. In contrast, modified 

release dosage forms deliver the drug either with a delay after administration, during an 

extended period of time, or to specific locations in the body (targeted release) (Bruschi, 2015; 

Siepmann et al., 2012). These systems provide many benefits such as avoidance of local and 

systemic side effects due to over-dosage, maintenance of drug therapeutic concentration 

without fluctuation, allow therapeutic efficiency with diminution of the administrated dose, 

minimization of dose intake frequency and protection of the compound against degradation by 

biological fluids (Chien, 1991). The most common modified release DDS includes: 

• Delayed release DDS are designed to deliver a drug therapeutic dosage at a later time 

after administration. They are typically enteric-coated to be stable at gastric pH in order 

to prevent immediate release in the stomach. These systems are needed in order to 

protect the drug from acid degradation, to prevent gastric irritation, or to target specific 

intestinal or colonic site. 

• Sustained release or extended release DDS are expected to achieve prolonged 

therapeutic effect by releasing drug at a sufficient initial therapeutic dose then followed 

by a gradual release (possibly at variable rates) over an extended period of time after 

administration.  

• Controlled release DDS release the drug at a nearly constant rate for an extended period 

of time after administration. It corresponds to the ideal case or Zero order kinetics. 

In the design of a modified release DDS, it is necessary to know the exact mass transport 

phenomena mechanism involved in drug release, in order to provide a specific drug release 

profile. 

▪ Drug release mechanisms from polymer matrix systems  

A large variety of solid oral dosage forms exist to modify and control drug release such 

as encapsulation, reservoir, membrane or matrix systems. When studying drug delivery from a 

solid device, different mass transport phenomena are involved successively or simultaneously: 

water diffusion inside the device, system swelling, system dissolution and/or erosion, drug 

dissolution and diffusion through the hydrated system.  
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Usually, the slowest physical phenomenon is the determining step as it plays a significant 

controlling role on the release (Bruschi, 2015; Siepmann et al., 2012). The classification of 

DDS is based on their main mechanism that drives drug release including inter alia:  

• Diffusion-controlled systems 

• Matrix erosion-controlled systems 

• Swelling-controlled systems 

• Osmotic pressure-controlled systems (drug with solution core)  

• Chemically controlled systems 

• Ion-exchange systems … 
 

In the case of matrix systems, the drug is dispersed into a solid carrier, generally polymer-

based, from which it is extracted by a liquid media. Matrix systems are more prone to diffusion-

controlled release i.e. when the release rate is dependent on drug diffusion through the liquid 

media within a non-soluble and non-swellable matrix, or to matrix erosion-controlled release 

i.e. when the release rate is dependent of the progressive degradation of the matrix by chemical, 

physical or biological reactions. A schematic illustration of the most diffusion-controlled and 

matrix erosion-controlled releases of the drug are shown in Figure 34. “Matrix erosion” refers 

to all physical or chemical mechanisms that lead to matrix “degradation” with the loss of its 

structural integrity. Erosion can be due to polymer dissolution, breakage, or detachments of 

particles. It should be noted that a combination of mechanisms is often involved such as 

diffusion-erosion controlled release, or diffusion-swelling controlled release, for the most 

known systems (Bruschi, 2015; Siepmann et al., 2012). 

 

Figure 34. Most frequent drug release mechanisms from solid polymer matrix 
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Mass transport phenomena, description of drug release mechanisms from a polymeric 

matrix, and the usual mathematical models are presented in the Annex. 

2.5.2. Aerogels used as drug delivery systems 

▪ Production of drug loaded aerogels 

Biocompatible aerogels, such as polysaccharide-based, are suitable materials for a wide 

range of life science applications such as biomedical, pharmaceutical, biotechnological, 

cosmetic and food. Silica aerogels were first investigated for biomedical and pharmaceutical 

applications (I. Smirnova, Mamic, & Arlt, 2003; I. Smirnova, Suttiruengwong, & Arlt, 2004; I. 

Smirnova, 2011; I. Smirnova, Suttiruengwong, Seiler, & Arlt, 2004), however, their poor 

mechanical properties and their non-biodegradability are limiting factors for some 

requirements. The use of aerogels and especially polysaccharide-aerogels as porous DDS 

present several advantages (I. Smirnova, 2011) :  

 

i) their high inner surface area which optimizes drug loading,  

ii) their open porosity and quite homogeneous pore size distribution, 

iii) low toxicity profile and biodegradability,  

iv) avoidance of drug agglomerates as they are dispersed through the network of the 

matrix,  

v) the aerogel backbone is as chemically stable as original biopolymer,  

vi) provide physical protection of the drug from oxidation and moisture,  

vii) might allow chemical stabilization of the drug in case of interactions with the matrix,  

viii) increase of bio-availability of the drug in case of amorphous state (precipitated drug) 

and  

ix) ease for chemical modification and adjustment of release profile. To target different 

administration routes and therapeutic indications, the size and morphology of aerogels can be 

customized using different techniques (molding, dropping, emulsion-gelation, milling…) by 

shaping aerogels as monoliths, beads, spheres and particles of different size, membranes, 

powders etc. 

 

Incorporation of the drug within the aerogels depends on drug physico-chemical and 

solubility properties, and can be realized before or after sc-drying as illustrated in Figure 35:  

• Drug loading before sc-drying: by addition of the drug into the sol or polymer 

solution before gelation (Figure 35a) (United States Patent No. US6994842B2, 2006; 

Tkalec, Knez, et al., 2016) or by dissolution in polymer non-solvent and impregnation 

by diffusion into the aerogel precursor before the drying step (Figure 35b) ((Haimer et 
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al., 2010; Mehling et al., 2009; Tkalec et al., 2015a). In these cases, the drug should 

present low solubility in the supercritical fluid used for drying, to avoid drug removal. 

It was shown that impregnation during solvent-exchange step led preferentially to 

deposition of the drug by precipitation during sc-drying (Haimer et al., 2010; Mehling 

et al., 2009). Haimer et al. found that drug loading of bacterial cellulose aerogels by 

drug diffusion during solvent-exchange was directly dependent on drug concentration 

in the loading bath (Haimer et al., 2010). 

 

• Drug loading after sc-drying (post-treatment): by diffusion of the drug 

through a liquid (Buisson, Hernandez, Pierre, & Pierre, 2001), gaseous or supercritical 

fluid phase (Figure 35c) (I. Smirnova et al., 2003), leading to drug 

adsorption/precipitation in the already dried aerogel. Supercritical fluid-assisted drug 

loading leads preferentially to drug deposition in the amorphous state.  

 

Figure 35. Drug loading of aerogels: (a) during dissolution step (before gelation); (b) during 

solvent exchange step by diffusion via non-solvent; (c) in the aerogel matrix by supercritical 

impregnation post-treatment method. 

It has to be noted that the precipitation or crystallization of the drug on the walls of 

aerogel precursor or aerogel can be controlled by the incorporation method, the process 
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parameters during sc-drying (pressure, temperature) as well as the physico-chemical 

interactions with the aerogel carrier. For example, Gorle et al. pointed out strong interactions 

of the drug with the matrix which favored amorphous state of the drug which can be stabilized 

in multilayers, whereas weak interactions with matrix led preferentially to drug crystallization 

(Gorle, Smirnova, & Arlt, 2010). 

▪ Factors influencing drug loading 

When using aerogels as DDS, the most important parameters to take in account are the 

kinetics of drug release over time and the drug loading within the aerogel. The maximum drug 

loading depends on drug solubility in the medium used for drug impregnation and on the area 

of the active surface of the aerogel (Haimer et al., 2010). The latter depends on aerogel specific 

surface area, total mesopores volume and surface functionality that impact the affinity of the 

drug to a given matrix.  

 

For a given system [drug-aerogel], it was shown that loading increased with aerogel 

specific surface area and with mesopores volume which enables better diffusion than in 

micropores (Alnaief & I. Smirnova, 2010; Haimer et al., 2010; I. Smirnova et al., 2003; I. 

Smirnova, 2011; I. Smirnova, Suttiruengwong, & Arlt, 2005). Smirnova et al. observed that 

drug loading was also increased with aerogel density assuming that the explanation would be 

the increase of SBET with density, but underlined that SBET was not the only factor (I. Smirnova 

et al., 2004). Garcia et al. suggested that apart specific surface area, other parameters might play 

a significant role in drug loading such as surface chemistry and drug-matrix interactions 

(Garcia-Gonzalez & Smirnova, 2013).  

 

Mehling et al. showed that drug loading of starch aerogels (by diffusion in non-solvent) 

increased when specific surface area was higher and pore size smaller (Mehling et al., 2009). 

They assumed that smaller pore sizes led to increased drug loading due to capillary forces 

holding drug molecules inside the porous matrix.  

Finally, Tkalec et al. showed that aerogel composition (pectin, alginate, or composite 

pectin-alginate) and gelation conditions (crosslinking with Ca2+, Sr2+ or Zn2+ ions) may 

drastically change of drug entrapment efficiency (%) (i.e. the mass of drug experimentally 

extracted from the carrier toward the mass of drug that was theoretically incorporated) and drug 

loading (i.e. the mass of drug towards aerogel mass) (Tkalec, Knez, et al., 2016). Surprisingly, 

these authors found that the loading as well as the entrapment efficiency of Diclofenac into bio-

aerogels were varying from around 40 % to 80 %, and were inversely related which the variation 

of aerogel specific surface area (from 260 m²/g to 440 m²/g) resulting from different 

composition and ionic cross-linking, as shown in Figure 36. On the opposite, Veronovski et al. 

observed higher theophylline and nicotinic acid loadings (~ + 50%) within citrus pectin-
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aerogels than within apple pectin-aerogels in correlation with their inherent higher specific 

surface area (~ + 15%) (Veronovski et al., 2014). 
 

 

Figure 36. Drug loadings in wt% (mass of drug towards aerogel mass) and entrapment 

efficiency of diclofenac (or drug loading efficiency in %) and specific surface area (m²/g) of 

different bio-aerogels varying polysaccharide composition (alginate and/or pectin) and the 

nature of cation (Ca2+, Zn2+, S2+) used to induce ionic gelation. Adapted from (Tkalec, Knez, et 

al., 2016) 

▪ Case studies of silica-based and polysaccharide-based aerogels 

Aerogels can be used as carriers for different strategies: enhancing the bioavailability of 

low-soluble drugs (Hentzschel, Alnaief, Smirnova, Sakmann, & Leopold, 2012; I. Smirnova et 

al., 2004; Tkalec et al., 2015a) or prolonging their release over time (C. A. García-González et 

al., 2015; Marin et al., 2014; Mehling et al., 2009; I. Smirnova et al., 2005). In the first case, 

the use of immediate-release delivery systems is particularly desirable in case of poorly water-

soluble drugs, as their dissolution rates and bioavailability are limited. On the contrary, delayed- 

or extended-release of drug which are highly soluble and bioavailable is required to target 

therapeutic window with minimum toxic effects (Bruschi, 2015). 

 

Drug release kinetics from aerogel into a liquid media is known to be affected by several 

parameters such as the properties of the releasing media, of the drug and the aerogel carrier. 

For a given drug, the most important parameters were shown to be as follows: 
 

• The physical state of the adsorbed drug (amorphous or crystalline form) determined by 

the drug incorporation method and drug properties. Drug in the amorphous state leads to 

faster dissolution rate and faster release than that of drugs in the crystalline form ((I. 

Smirnova et al., 2004; I. Smirnova, Türk, Wischumerski, & Wahl, 2005; I. Smirnova et 

al., 2004). 
 

• Size and geometry of the aerogel carrier (United States Patent No. US6994842B2, 2006; 

I. Smirnova et al., 2005; I. Smirnova et al., 2004) as they directly determine the surface 

contact with the releasing fluid and time needed for the drug to diffuse out of the carrier 
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(Haimer et al., 2010).  
 

• Chemical and physical properties of the aerogel matrix (Mehling et al., 2009). Tuning of 

these parameters drastically changes the mechanical and structural properties of the 

porous matrix, which in turn influences the diffusion mass transport and matrix erosion 

phenomena governing drug release (Mehling 2009). Besides, chemical interactions 

between the drug and the matrix carrier and functionalization may also influence the 

release rate. 
 

Literature reports that drug release profiles from bio-aerogels are strongly influenced by 

aerogels’ composition, physico-chemical properties as well as the type of releasing medium as 

it largely affects mass transport mechanisms (diffusion, dissolution, aerogel swelling and 

erosion) and the chemical interactions with the drug (Maleki et al., 2016; Stergar & Maver, 

2016). Data fitting with the most common mathematical models such as First-order, Higushi, 

Korsmeyer–Peppas, and Gallagher–Corrigan models  are often used to identify the main release 

mechanism governing drug release from aerogels (C. A. García-González et al., 2015; Haimer 

et al., 2010; G. Horvat et al., 2017; Marin et al., 2014; Obaidat, Tashtoush, Bayan, T. Al 

Bustami, & Alnaief, 2015; R. Wang et al., 2017). 
 

Below we discuss the correlations known from literature between the physico-chemical 

properties of aerogel carrier and its release properties. Different strategies to tailor release 

properties are reported in literature such as varying aerogel matrix composition, employing 

different preparation conditions and processing parameters, varying matrix hydrophilicity by 

surface modification/functionalization or by producing composite aerogels.  

➢ Effect of aerogel composition on the release properties 

Bio-polymers and silica aerogels display different properties such as hydrophilicity, 

solubility and mechanical properties in a given releasing media. Thus, for a given drug, the 

composition of the aerogel carrier has to be set considering that it will drive matrix swelling 

and erosion and thus, drug release properties.  
 

Several comparative studies were carried out on the release properties of drugs from 

aerogels made from different substances: silica, starch, sodium alginate and pectin (C. A. 

García-González et al., 2015; Lovskaya et al., 2015; Mehling et al., 2009) Mehling et al.  

Lovskaya et al.  Garcia et al.  They showed that drug release profile from aerogel was mainly 

dependent on the physical “stability” of the aerogel matrix in the release media (i.e. the matrix 

resistance to erosion and/or dissolution by the liquid media) as well as affinity towards the drug, 

both determined by aerogel’s composition and process route (e.g. gelation method). The 

illustrations of the impact of aerogels’ composition on their release properties in vitro are shown 

in Figure 37(A and B), and in vivo Figure 38. 
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Figure 37. (A) Release of ibuprofen from polysaccharide and silica aerogels in comparison to 

the dissolution of the crystalline drug form. Release conditions: paddle method, 37°C, 0.2 M 

phosphate buffer at pH 7.2. Adapted from (Mehling et al., 2009). 

(B) In vitro release profiles of ketoprofen in phosphate buffer (pH 6.8) from, alginate (1), pectin 

(2) silica (3) and starch (4) aerogel microspheres. The dissolution of the same amount of free 

drug (5) is also plotted for comparison. Adapted from (C. A. García-González et al., 2015). 

 

Figure 38. Results of in-vivo release test of ibuprofen from various aerogels compared to the 

pure substance. Reprinted from (Lovskaya et al., 2015). Copyright (2019), with permission 

from Elsevier. 

Depending on the physico-chemical properties of the aerogel carrier (i.e. swellable, 

soluble/erodible), the drug release from polysaccharide aerogels were reported to be either 

diffusion-controlled or diffusion-erosion controlled. 

Diffusion-controlled polysaccharide aerogels:  

Haimer et al. showed that drug release from bacterial cellulose aerogels was due to pure 

Fickian diffusion as the matrix was found to be stable (no erosion) in aqueous media. Hence, 

drug release is controlled by varying the thickness of the gel as it is directly impacted by the 
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distance to be covered to diffuse out of the matrix (Haimer et al., 2010). Similarly, Marin et al. 

demonstrated the ability of silk fibroin aerogels to deliver ibuprofen for an extended period of 

time, and suggested that release was governed by slow Fickian diffusion within the system as 

it was not subjected to matrix erosion (Marin et al., 2014). 

Diffusion and erosion-controlled polysaccharide aerogels:  

Due to their slow erosion in aqueous media, drug release from chitosan (Obaidat et al., 

2015) or starch aerogels (C. A. García-González et al., 2015; Garcia-Gonzalez & Smirnova, 

2013) were found to be governed by a combined effect of both diffusion and erosion processes. 

Besides, drug release from starch aerogels is usually not complete, and suggestions were made 

about the formation of insoluble drug-amylose inclusion complexes (Garcia-Gonzalez & 

Smirnova, 2013). 

 

Aerogels made from polyelectrolyte polysaccharides such as alginate (C. A. García-

González et al., 2015; Gonçalves et al., 2016; Mehling et al., 2009), pectin (De Cicco et al., 

2016; C. A. García-González et al., 2015; Gonçalves et al., 2016; Lovskaya et al., 2015; 

Veronovski et al., 2014) and κ-carrageenan (Gonçalves et al., 2016) were found to have similar 

drug release behavior governed by diffusion-controlled strongly assisted by matrix erosion. 

This stems from polyelectrolyte sensitivity to the pH of the aqueous medium (pH 1-1.2 or close 

to neutral condition). Indeed, while release due to matrix erosion is slow in acidic conditions, 

much faster matrix erosion was observed at pH close to neutral which promoted drug release in 

buffer solution. Rapid matrix erosion by dissolution process was attributed to high 

hydrophilicity and physico-chemical “instability” of polyelectrolyte aerogels in aqueous media, 

especially with the formation of charges when pH is above pKa. 

 

In addition to the nature of the polysaccharide aerogels, the polysaccharide source was 

reported to slightly modify the physico-chemical characteristics of the polymer, impacting its 

release properties. As an illustration, Mehling et al. observed that starch source had a significant 

impact on matrix “resistance” to erosion. Indeed, aerogels based on modified starch (Eurylon7) 

disaggregated relatively fast in liquid because of poor mechanical properties, providing quite 

fast drug release.  

On the contrary, potato starch aerogels were found to be more stable in liquid media 

resulting in slower drug release (Mehling et al., 2009). In the same way, pectin aerogels were 

produced from different amidated low-methylated pectin sources (citrus and apple) by 

(Veronovski et al., 2014). Citrus pectin aerogel was found to be more stable in terms of 

dissolution in phosphate buffer (pH 6.5) than apple pectin aerogel, which resulted in slower and 

more controlled drug release behavior as shown in Figure 39. These results were attributed to 

lower degree of methylation of citrus pectin (23–28%) than of apple pectin (27–32%). 
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Figure 39. Theophylline (TF) and nicotinic acid (NA) release kinetics in phosphate buffer 

solution (pH 6.5) from spherical multi-membrane aerogels based on citrus pectin (CF) or apple 

pectin (AF) and using 0.2 M CaCl2 for cross-linking. Reprinted from (Veronovski et al., 2014). 

Copyright (2019), with permission from Elsevier. 

➢ Effect of preparation conditions on aerogels’ release properties  

Del Gaudio et al. noticed that ketoprofen-lysinate release from alginate aerogels was 

dependent on matrix structural parameters which resulted from different network formation 

processes (ionic gelation in calcium aqueous solutions or coagulation in ethanol) and drying 

methods (supercritical or evaporative drying). They assumed that high porosity and high 

specific surface area of the aerogels compared to xerogels might have induced faster release 

(Gaudio et al., 2013). Tkalec et al. produced pectin and alginate aerogels by cross-linking with 

three different ions, zinc, strontium and calcium. They assumed that the type of divalent cation 

might have impacted the strength of the ionotropic cross-linking and aerogel density. Once in 

the release media, the aerogel swelling ability and matrix erosion were different depending on 

the type of ionic junctions, which influenced drug release profile (Tkalec, Knez, et al., 2016), 

as shown in Figure 40. 

 

Figure 40. Cumulative drug release from pectin (P) aerogels cross-linked with three different 

ions Z: zinc, S: strontium, C: calcium. Reprinted from (Tkalec, Knez, et al., 2016). Copyright 

(2019), with permission from Elsevier. 
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In the work on chitosan aerogel microparticles loaded with salbutamol, (Obaidat et al., 

2015) highlighted that increasing chitosan molecular weight, polymer concentration and the 

crosslinker concentration (tripolyphosphate) decreased the swelling ability and erosion of the 

matrix, which in turn slowed down drug diffusion and release. Chang et al. studied the 

adsorption and removal kinetics of a surfactant from aqueous solutions (sodium 

dodecylbenzene-sulfonate) within different chitosan-based aerogels. Structural properties of 

chitosan aerogels were strongly varied with different cross-linkers (glutaraldehyde, glyoxal or 

formaldehyde) and water/chitosan/cross-linker ratios during gel preparation. They found that 

the adsorption capacity and rate increase as the specific surface area and pore diameter of the 

aerogels increases (Chang et al., 2008).  

 

Betz et al. carried out a comparative study of drug release properties of whey protein-

based aerogels with different physical properties due to various levels of network crosslinking 

governed by the pH of hydrogels. The differences in aerogels’ structural and mechanical 

properties were found to govern matrix swelling properties upon contact with gastric and 

intestinal release media. However, drug release behavior from different aerogels was not found 

impacted. In contrast with slow dissolution of pure ketoprofen, the release from whey protein 

aerogels was attributed to complex anomalous transport involving diffusion overlaid by gel 

relaxation due to matrix swelling, according to Korsmeyer-Peppas model (Betz et al., 2012). 

 

➢ Effect of hydrophobization on aerogels release properties 

Varying matrix hydrophilicity/hydrophobicity by changing matrix composition or by 

surface modification with hydrophobic groups is known to have a major impact on the release 

(I. Smirnova et al., 2004). Indeed, reducing aerogel hydrophilicity results in the decrease of the 

matrix wettability and solvent penetration rate within the system thus slowing down the release.  

 

As an illustration, Smirnova et.al was able to tune drug release profile from immediate 

release to prolonged release only by tuning hydrophobicity of silica aerogels by surface 

modification. Hydrophilic silica aerogels demonstrated fast matrix disintegration upon contact 

with the liquid due to capillary forces inside the pores. Because of its high hydrophilicity and 

its brittle characteristics, hydrophilic silica network was rapidly fractured and completely 

collapses into particles. As the hydrophilic silica aerogel lost its matrix integrity, drug 

molecules got surrounded by the liquid media and dissolved, leading to their rapid release, also 

confirmed by (Caputo, Scognamiglio, & De Marco, 2012) and (Mehling et al., 2009). On the 

opposite, hydrophobic silica aerogels appeared much more stable in aqueous media as 

compared to their hydrophilic counterparts. Their lower network wettability prevented from 

structure collapse and restricted liquid influx inside the system. Thus, drug prolonged release 

occurred by slow drug diffusion through the hydrophobic silica network. An example of 
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different release properties from either hydrophilic or hydrophobic silica aerogels is shown in 

Figure 41. 

 

Figure 41. Release of ketoprofen from hydrophilic and hydrophobic aerogels of different 

densities. Release conditions: 0.1 M HCl at 37 °C. Reprinted from (I. Smirnova et al., 2004). 

Copyright (2019), with permission from Elsevier. 

➢ Creation of complex matrix systems by production of composite 

aerogels  

Finally, the release properties of polysaccharide-based aerogels as drug matrix can be 

varied by creating composite aerogels from different components (organic or inorganic). The 

“mixture” of properties brought by the different components in the same matrix will result in 

new physical and chemical properties and offer new perspectives to polysaccharide-based 

aerogels used as drug carrier (Gonçalves et al., 2016; Kadib, Molvinger, Guimon, Quignard, & 

Brunel, 2008; Molvinger, Quignard, Brunel, Boissière, & Devoisselle, 2004; Tkalec, Knez, et 

al., 2016; Péter Veres et al., 2017; Peter Veres, López-Periago, Lázár, Saurina, & Domingo, 

2015; R. Wang et al., 2017).  

 

Composite aerogels can be produced either i) by making interpenetrated networks of 

different polymers (i.e. by co-gelation or by network impregnation) (Molvinger et al., 2004; 

Tkalec, Knez, et al., 2016; Péter Veres et al., 2017), ii) or by coating of a gel by another polymer 

layer, the latter acting as a barrier (skin) to drug release (Alnaief et al., 2012; De Cicco et al., 

2016; Giray, Bal, Kartal, Kızılel, & Erkey, 2012; Murillo-Cremaes, Subra-Paternault, Saurina, 

Roig, & Domingo, 2014; Peter Veres et al., 2015).  

For instance, Tkalec et al. produced diclofenac loaded pectin aerogels, alginate aerogels 

and pectin-alginate hybrid aerogels by mixing dissolved polymer in water. They observed that 

varying aerogel composition and making hybrid aerogels changed the swelling ability and 

erosion of the matrix, and thus impacted its release properties (Tkalec, Knez, et al., 2016). In 

the same way, Veres et al.  produced silica-gelatin composite aerogels by impregnation method, 



CHAPTER I.  

State of the art 

97 

 

and loaded them with low water-soluble drugs (ibuprofen, ketoprofen and triflusal). Composite 

aerogels were differently functionalized with phenyl, long hydrocarbon chain or methyl moiety 

in order to tune their surface hydrophobization and interactions with drugs (Péter Veres et al., 

2017). The authors correlated drug release profiles with the properties of the drug, aerogel 

composition and its functionalization, and thus demonstrated the possibility of tailoring drug 

release profile from immediate to semi-retarded release based on relationship between matrix 

structure and release kinetics.  

 

Applying a polymeric coating layer on aerogel surface to produce composite aerogels 

can also be performed to slow down release from immediate-release to extended-release as 

illustrated in Figure 42 for silica aerogels coated with PEG, or to delay release to avoid drug 

delivery in the stomach (Alnaief et al., 2012). 

 

Figure 42. Drug release profiles of ibuprofen-loaded silica aerogel microspheres: un-coated or 

coated with PEG and Eudragit, at different pH values. Reprinted from (Alnaief et al., 2012). 

Copyright (2019), with permission from Elsevier. 

De Cicco et al. produced core-shell composite aerogels beads by coating a core made of 

pectin hosting doxycycline with an external layer of alginate (De Cicco et al., 2016). They 

showed that drug diffusion from the core-shell aerogel matrix was mainly governed by the 

swelling properties of alginate external hydrogel layer which acted as a barrier to drug diffusion. 

As a result, drug release profile was dependent on both drug/pectin ratio and alginate 

concentration as shown in Figure 43, and governed by polymer chains relaxation during water 

diffusion into the matrix, according to Korsmeyer-Peppas model. 
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Figure 43. Doxycycline released profiles (%) in simulated wound fluid, as a function of alginate 

shell concentration (1.50 or 1.75 wt%) and pectin to drug ratio (0.1 or 0.2): alginate layer of 

1.50 wt % with pectin-drug ratio of 0.2 (1) or 0.1 (2), or alginate layer of 1.75 wt% with 

pectin/drug ratio of 0.2 (3) or 0.1 (4) in comparison with pure crystalline doxycycline (5). 

Adapted from (De Cicco et al., 2016). 

Another example is the work of Fagundes et al. on atenolol loaded collagen-silica hybrid 

aerogels; it was found that the presence of collagen in the silica matrix prevented rapid release 

by acting as a temporary barrier to drug diffusion (Fagundes, Sousa, Sousa, Silva, & Sousa, 

2006). 
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Conclusions 

In this chapter, we pointed out that the design of advanced versatile materials coupled 

with a more sustainable approach had become a key research focus to meet tomorrow’s 

engineering applications. In this context, the development of new bio-based aerogels appeared 

extremely attractive as an alternative to “classical” inorganic or synthetic organic aerogels. The 

latter are limited in terms of application because of either poor mechanical properties (silica 

aerogels) or the use of toxic compounds during their process route (e.g. RF aerogels) or 

functionalization treatments (organic modifications, hydrophobization). Thus, we suggest that 

polysaccharides such as pectin, is attractive polymer candidates to produce bio-aerogels, as they 

present many advantages: widely available and commonly used for food & feed (“human 

friendly”), renewable, non-toxic, biocompatible and easily functionalized due to a large amount 

of hydroxyl groups on polymer backbone. Thanks to these characteristics, bio-based materials 

made from polysaccharides are suitable for a wide range of life science applications such as 

biomedical, pharmaceutical, biotechnological, cosmetic and food. Recently, pectin aerogels 

turned out to be promising bio-based materials for high added-values application such as 

thermal insulation (Demilecamps, 2015; Rudaz, 2013). As pectin is a biodegradable and 

biocompatible polysaccharide with gastro-resistant properties, they also have high potential for 

life sciences applications, which opens prospects in using pectin aerogels as oral drug-carriers.  

 

It is well known that the internal structure and physical characteristics of aerogels 

determine their final application properties. Thus, the understanding of how formulation and 

external conditions (polymer ionization and concentration, solution pH, presence of ions, etc.) 

influence aerogel properties is a key issue. In this chapter, we reported in detail what is known 

(or not) on the structure-properties relationships for aerogels either used as thermal insulator 

materials, or used as drug-carriers. However, in spite of the importance of morphology control 

regarding to applications’ performances, not many systematic studies provide the correlations 

between the type of polysaccharide, processing conditions and bio-aerogel structure and final 

application properties. 
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Introduction 

In this chapter, the preparation and characterization of pectin aerogels are described in 

detail.  

• First, we present the starting raw materials including pectins, cellulose, silica-sols, and 

different solvents and chemicals used. 

• Then we describe the main steps of preparation of neat pectin aerogels: dissolution, 

coagulation and supercritical drying. It has to be noted that the process route to make 

pectin-cellulose and pectin-silica composite aerogels are directly presented in the 

Methods section of Chapter VI. “Pectin-cellulose and pectin-silica composite aerogels 

for drug release applications”. 

• The rheological properties of pectin solutions in various conditions are characterized 

using viscometry in dilute state and rheology. 

• Methods to characterize polysaccharide and silica aerogels are then presented; aerogel 

physical and morphological properties are evaluated by their skeletal and bulk densities, 

their specific surface area, by SEM observations, by contact angle and X-rays. Their 

mechanical properties are characterized by uniaxial compression measurements. 

Aerogels effective thermal conductivity is determined using heat flowmeter. 

• Finally, the last section is dedicated to the preparation and characterization of drug-

loaded aerogels used as drug delivery systems. Thus, we present the process of drug 

incorporation into aerogel precursors prior to sc drying to produce drug loaded aerogels. 

Then we describe the methods to characterize aerogels’ drug loading properties and 

their drug release properties over time in gastro-intestinal media during in vitro 

dissolution testing. Finally, we detail the in vitro method to evaluate the cytotoxicity of 

aerogels regarding to human cells culture. 

1. Starting materials: 

1.1. Pectins 

Pectins used in the work were all from citrus, with different degrees of esterification (DE, 

%): 35% (named as P35), 56 % (P56), 59 % (P59) and 70 % (P70). P35, P59 and P70 were 

kindly provided by Cargill, and P56 was purchased from Sigma Aldrich.  
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Their actual DE (%) and molecular weight were determined using FITR and viscometry 

measurements, respectively, as detailed in the following Sections 2.2.1 and 2.2.3.  

1.2. Cellulose 

Microcrystalline cellulose Avicel® PH101 was purchased from Sigma-Aldrich and will 

be called “cellulose” in the following. Avicel was obtained from wood pulps by acid treatments. 

It is a purified and partially depolymerized α-cellulose with a degree of polymerization of 180, 

given by the manufacturer.  

1.3. Silica-sols 

In order to produce silica aerogels and pectin-silica composite aerogels, we synthesized 

silica alcogels by sol-gel polymerization of two different silica-sols:  

- Tetraethylorthosilicate (TEOS) (98 wt%) from ACROS Organics. 

- Polyethoxydisiloxane (PEDS, called P75E20 by the producer), 20 w/w.% SiO2 

content in ethanol, kindly provided by ENERSENS (France). It consists of pre-

polymerized oligomers of TEOS. These partially hydrolyzed precursors are 

therefore very prone to acid- or base-catalyzed condensation reactions as described 

in Ref. (Malfait et al., 2015; Strøm et al., 2007). 

Solutions of hydrochloric acid (HCl) (32%, Analysis Grade, Certified Analytical 

Reagent) from Fisher Scientific and of ammonium hydroxide (NH4OH) (30wt%, ACS reagent 

grade) from Sigma-Aldrich were used as catalysts for hydrolysis and condensation reactions, 

respectively. 

All solvents and chemicals were used as received. TEOS and PEDS were diluted with 

ethanol when needed. 

1.4.  Solvents and other chemicals 

1.4.1. Solvents for aerogels preparation 

 

Sodium hydroxide pellets (NaOH) (certified analytical reagent), potassium hydroxide 

pellets (KOH) (>99%, certified extra pure), hydrochloric acid (HCl) (32%, analysis grade, 

certified analytical reagent) were from Fisher Scientific and used as received. Potassium 
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phosphate monobasic (KH2PO4) (> 99%, certified extra pure) and sodium chloride salt (NaCl) 

(99.5%, certified analysis grade) were from Acros Organics. Calcium chloride anhydrous 

powder (96% extra pure) from Acros Organics was used to make CaCl2 aqueous solutions. 

Water was distillated. 

Ethanol (purity > 99%, laboratory reagent grade), acetone (> 99%, laboratory reagent 

grade) were used as non-solvent for solvent-exchange steps during aerogel preparation. 

1.4.2. Chemicals and preparations specific to drug release experiments 

Theophylline anhydrous powder (≥ 99 %) was from Sigma Aldrich and used as drug 

model. Theophylline was dissolved in ethanol to make 2.5 g/L solutions or 3.4 g/L suspensions 

and used as impregnation baths of aerogel precursors.  

 

Buffer pharmacopeial solutions suitable for drug release experiments within simulated 

gastro-intestinal fluids are described in the United States Pharmacopeia (USP) following the 

guidelines of the USA Food and Drug Administration (FDA) and the Division of 

Bioequivalence of the Office of Generic Drugs (OGD) in Refs. (FDA/Center for Drug 

Evaluation and Research, 2019) and  (U.S. FDA S, Center for Drug Evaluation and Research, 

1997; U.S. FDA S, Center for Drug Evaluation and Research, 2018) 

 

- Simulated Gastric Fluid (SGF) without enzyme was made from HCl solution (0.1N, pH 

1.0)  

- Simulated Intestinal Fluid without enzyme (SIF) (pH 6.8) was made using NaOH at 

0.0112M (0.65 g/L) and KH2PO4 at 0.05M (6.8 g/L). 

2. Methods 

2.1. Preparation of pectin aerogels 

Pectin aerogels were prepared via dissolution – gelation (in some cases gelation did not 

occur) – solvent exchange with acetone or ethanol – drying with supercritical CO2 (scCO2 in 

the following) as illustrated in Figure 44. 
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Figure 44. Preparation of pectin aerogels via dissolution – gelation (in some cases gelation did 

not occur) – solvent exchange – drying with sc CO2. From (Groult & Budtova, 2018) 

In the following, each step is described and detailed. 

The preparation of pectin-cellulose and pectin-silica aerogel composite are presented in the 

Chapter VI. 

2.1.1. Pectin dissolution 

Pectin aqueous solutions were prepared by dissolution of pectin powder in distilled water 

(with different concentrations that will be specified for each case) at 65 °C under stirring at 

around 300 to 400 rpm during several hours (usually 4 to 5 h depending on pectin 

concentration). Pectin concentrations are given in weight percent (wt %) unless otherwise 

mentioned. After complete dissolution, solution pH was adjusted[1] by addition of small quantity 

of HCl or KOH. pH was varied from 0.5 to 5 because at pH ≥ 5 solutions were of so low 

viscosity that solvent exchange was not possible. Pectin solutions were then poured into plastic 

molds of 27.5 mm of diameter. Specific larger cylindrical molds of 70 mm diameter were used 

for thermal analysis measurements in order to fit the size requirement of the Heat Flow meter 

device.  

In certain cases, sodium (NaCl) or calcium solution (CaCl2) was added to pectin solution 

under stirring. The molar ratio R of metal cation (Me), Na+ or Ca2+, to pectin carboxyl groups, 

expressed in mol.L-1, was varied from 0.05 to 2 and calculated as follows (Equation (2.1)): 

 

 
[1] Some degradation may be possible at very low and high pH due to acid hydrolysis or β-

depolymerization and demethoxylation in neutral to alkaline conditions (Fraeye et al., 2007; Krall & 

McFeeters, 1998; Renard & Thibault, 1996). This resulted in aerogel poor mechanical properties, 

especially at pH 0.5, and texture deterioration, as it will be shown in the Chapter III. 
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 R =  
[𝑀𝑒] 

[𝑅𝐶𝑂𝑂−]
 (2.1) 

Pectin solutions were let gelling for 48 h at room temperature. Depending on the 

conditions (concentration, pH, presence of CaCl2 or NaCl), solutions were gelling or not as 

determined by a simple “tilting test” (solution flowing or not); the state of the matter of pectin 

samples before solvent-exchange, i.e. solution (noted “S” for the matter flowing) or gel (noted 

“G” for the matter not flowing) will be given for each aerogel studied.  

2.1.2. Solvent-exchange step 

In order to perform drying with sc CO2, water has to be replaced by a fluid which is 

miscible with CO2. Two were used; ethanol and acetone, and both are pectin non-solvents. 

Solvent exchange was performed by progressively decreasing water/non-solvent (v/v) ratio to 

50/50, 25/75 and 0/100, followed by the final extensive washing with pure non-solvent. At each 

“washing step”, pectin samples were immersed into 5 times higher volume of non-solvent than 

sample volume. In general, the solvent was changed every day (once or twice a day depending 

on sample thickness).  

 

For the case when the state of matter was “gel”, the sample was placed in water-non-

solvent baths as described above. When the state of matter was “solution”, a mixture of water-

ethanol 50/50 (v/v) was gently put on the top of the solution (see Figure 45a), the principle is 

the same when using acetone as non-solvent. This led to a non-solvent induced phase separation 

(Figure 45b) also known as “immersion precipitation” process in membranes’ preparation 

(Wijmans, Altena, & Smolders, 1984): the solubility of the polymer decreases as non-solvent 

proportion increases.  

This process had already been reported for making bio-aerogels from cellulose-ionic 

liquid (1-ethyl-3-methylimidazolium acetate (EmimAc) (Buchtová & Budtova, 2016), hot 

cellulose-N-methyl morpholine-N-oxide monohydrate (NMMO) (Innerlohinger, Weber, & 

Kraft, 2006), alginate (Gurikov & Smirnova, 2018; Horvat et al., 2017; Tkalec, Knez, & Novak, 

2015b) and pectin solutions ((Tkalec et al., 2015b; Tkalec, Knez, & Novak, 2015a)ref). 

 

 In both cases, solution or gel, pectin coagulated during solvent exchange step resulting 

in a pectin “alcogel” also called aerogel precursor: a 3D network composed of coagulated pectin 

with non-solvent in the pores. To ensure complete solvent-exchange, washing steps with non-

solvent were performed in order to obtain at least a total 1/75 000 dilution factor before sc 

drying.  
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Figure 45. Illustration of solvent exchange using ethanol for non-gelled pectin solutions. The 

principle is the same when using acetone as non-solvent. From (Groult & Budtova, 2018) 

a) pictures of non-gelled pectin P35 solution (3 wt%, pH 3), solvent exchange using ethanol, 

“alcogel” and aerogel; 

b) schematic presentation of the phase separation occurring during solvent exchange from water 

to ethanol. The 3D network coagulated samples were then dried with sc CO2. 
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2.1.3. Supercritical drying using CO2 

The aerogel precursors were then dried with supercritical CO2. The scCO2 drying was 

performed in the center PERSEE of Mines ParisTech in Sophia Antipolis. The laboratory-scale 

device is shown in Figure 46. ScCO2 was obtained with a pressure P=72.8 bar and temperature 

T=31.1°C. First, aerogel precursors coagulated in ethanol or acetone were placed in a 1L 

autoclave. The system is closed and pressurized at 50 bars and 37°C with gaseous CO2. Then 

pressure is increased to 80 bars. CO2 becomes supercritical and solubilizes the residual solvent 

inside sample porosity. A dynamic washing step at 80 bars, 37°C with an output of 5 kg CO2/h 

is carried out for 1 hour. The system is let on a static mode at the same pressure and temperature 

conditions to allow scCO2 to diffuse and solubilizes solvent even in the nanometric pores for 

1-2 hours. The dynamic washing is then starting over with the same CO2 output for 2 hours. 

Afterwards, the system is slowly depressurized overnight at 4 bar/h and 37°C and cooled down 

to room temperature. The autoclave is then opened, and samples collected. Pectin aerogels were 

placed into desiccator to protect them against moisture. 

 

Figure 46. Laboratory-scale supercritical CO2 drying device in Persée-Mines ParisTech; (1) 

CO2 alimentation, (2) feeding valve, (3) autoclave, (4) depressurization valve. Courtesy of 

Pierre Ilbizian, Persée-Mines ParisTech. 

Generally, the final shape of dried samples were disks with diameter around 15-25 mm 

and thickness around 6-10 mm depending on sample shrinkage which in turn is controlled by 

pectin concentration and state of the matter before solvent exchange (solution or gel), presence 

of CaCl2, etc. 
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Alternatively, other types of drying were performed: freeze-drying technique to produce 

pectin cryogels and evaporative drying to make pectin xerogels. 

2.1.4. Alternative drying methods 

▪ Freeze drying 

When freeze-drying procedure was chosen, pectin solutions and gels obtained after 48 h 

of resting time were directly used, and no solvent exchange with ethanol or acetone was 

performed. To freeze-dry samples, pectin hydrogels or aqueous solutions in plastic tubes were 

immersed in liquid nitrogen (-196°C) for around 5 minutes. Once completely frozen, the 

samples were placed into the freeze-dryer Cryotec Cosmos 80. First, vacuum was slowly made 

in the chamber, and then water vapor was condensed in the refrigerating unit. Samples were let 

drying for 48 hours to obtain pectin cryogels. 

▪ Evaporative drying 

When evaporative drying was chosen, pectin samples were coagulated in ethanol or 

acetone prior to drying. Pectin coagulated samples were placed in oven at 60°C under vacuum 

and let dry for at least 4 days to obtain pectin xerogels. The duration of drying can be prolonged 

until the mass of samples is constant to remove all water traces from samples. 

2.2. Characterization methods  

2.2.1. Viscometry 

Viscometry was used to determine pectins’ intrinsic viscosities and molecular weights using 

a iVisc from LAUDA and capillary Ubbelhode Dilution Viscometer Type I with capillary 

diameter 0.63 mm. Huggins method was used to determine pectin intrinsic viscosity [η] by 

measuring kinematic viscosity of diluted pectin solutions (dilutions in series from 0.15 wt% to 

0.05 wt%) in saline conditions (0.01 mol/ L of NaCl) at 26.6°C according to (Masuelli, 2014). 

These conditions were used as far as they allow the calculation of pectin molecular weight M 

according to Mark-Houwink equation (Equation (2.2)): 

 [η] = 𝐾𝑀𝛼    (2.2) 

where K = 0.0234 and α = 0.8221 (Masuelli, 2014). 
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2.2.2. Rheology 

The rheological measurements were performed on Gemini rotational rheometer with 

Peltier temperature control system, using cone-plate geometry, both of 60 mm of diameter and 

cone with an angle of 2°. Solutions were let at rest for 1 h at room temperature prior the analysis. 

A pre-shear at 20 s-1 was applied for 120 s before performing rheological measurements. 

Steady state viscosity as a function of shear rate was measured with increasing shear 

rate from 0.1 to 600 s-1 for 0.9 % pectin solutions at 20 °C and various pH. In these conditions, 

solutions are not gelling.  

2.2.3. Fourier Transformed Infrared spectroscopy (FTIR) 

FTIR spectroscopy is based on the interaction of infrared radiation with the matter. 

When excited by infrared beam, the molecules absorb at specific resonant frequencies that are 

characteristic to their own structure in relation with the mass of the atoms and the strength of 

the bond. In practice, a beam of infrared light is passing through the sample, and a then a 

transmittance or absorbance spectrum as a function of frequency is generated. The chemical 

structure of the sample can be identified by analyzing the characteristic absorption bands (in 

terms of intensity and frequency) as they are specifically related to functional groups. 

FTIR spectroscopy was carried out on a Bruker Tensor 27 spectrometer in PERSEE 

(Mines ParisTech) with OPUS 7.8 software. Pectin powders were analyzed in attenuated total 

reflectance mode (ATR) using a Pike MIRacle accessory equipped with a Ge crystal (Pike 

Technology). The spectrum has been collected 100 times with a resolution of 4 cm-1 and 

corrections for CO2 and H2O were applied to correct the background noise. A smoothing curve 

treatment and offset correction were applied. Baseline was corrected and set at 1900 cm-1
.  

2.2.4. Sample shrinkage and aerogel apparent density  

Volume shrinkage V of samples was determined before drying (i.e. at the end of solvent 

exchange) and after drying (Equation (2.3)): 

 Volume shrinkage, %  =
𝑉𝑖 − 𝑉𝑓

𝑉𝑖
 × 100 % (2.3) 

where Vi is the volume of the gel before solvent exchange and Vf is sample volume at 

the corresponding step. 

Bulk density bulk was determined as the ratio of sample mass to volume. The mass of the 

aerogel was measured with digital analytical balance with a precision of 0.01 mg. The sample 

volume was measured with digital caliper with a precision of 0.01 mm.  
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2.2.5. Porosity and pore specific volume 

Porous materials such as aerogels and foams are materials containing cavities or channels 

filled with air, called pores, and a solid backbone. The porosity of a material is defined as the 

ratio between the volume of pores and the total volume of the material (solid + pore volume). 

It can be estimated from bulk and skeletal densities as follows (Equation (2.4)): 

 𝜀, % =
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
= 1 −  

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
× 100%  (2.4) 

where the skeletal density of pectin aerogels (skeletal) is 1.5 g/cm3. Skeletal densities of 

different pectin aerogels were determined using helium pycnometry in the Charles Coulomb 

laboratory of the university of Montpellier, France.  

 Pore specific volume was estimated using bulk and skeletal densities (Equation (2.5)): 

 𝑉𝑝𝑜𝑟𝑒𝑠 =  
1

𝜌𝑏𝑢𝑙𝑘
−  

1

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
 (2.5) 

Materials with open pores and closed pores should be distinguished. Contrary to open pores, 

closed pores are not accessible from the outside by liquid or gases (see Figure 47). The total 

volume of pores is the sum of open and closed pores volumes. 

 

Figure 47. Schematic representation of a porous sample with open and closed pores. 

The properties of a porous material strongly depend on the geometry and size of pores as 

well as their size (width) distribution. IUPAC classification (“IUPAC Gold Book,” 2017) 

divides pores sizes in three groups (Sing, 1985) (Sing et al., 1985):  

- Macropores are pores with an internal width above 50 nm  

- Mesopores with an internal width between 2 and 50 nm  

- Micropores with an internal width below 2 nm  
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2.2.6. Specific surface area measurement (BET method) 

Specific surface area is an important structural characteristic for porous materials and 

corresponds to the total open pore surface per gram of matter. It is strongly related to pore 

diameters and size distribution as well as their surface rugosity.  

The Brunauer, Emmett and Teller (BET) method was developed to determine the specific 

surface area of porous solids based on multilayer gas physical and reversible adsorption, i.e. the 

accumulation of gas molecules over the available surface of a material at the gas-solid interface 

by weak physical interactions (physisorption) such as Van der Waals interactions (see Figure 

48). The BET method assumes an absence of interactions between adsorption layers, with the 

number of adsorption layers on a solid being theoretically infinite, and thus the Langmuir theory 

can be applied to each layer.  

 

Figure 48. Schematic illustration of monolayer and multilayer adsorptions of gas molecules 

over the surface of a sample (the adsorbent). 

Physisorption experiments are conducted at the boiling point of liquid nitrogen (-196 

°C) at atmospheric pressure. The nitrogen adsorption isotherm plots the adsorbed quantity of 

gas per gram of adsorbate as a function of equilibrium relative pressure p/p0, where p is the 

equilibrium pressure of adsorbate gas and p0 the vapor pressure of nitrogen at saturation. The 

adsorption/desorption isotherms are a way to evaluate the porosity of materials. 

In the range p/p0 between 0.05 and 0.3, adsorption isotherm is quasi-linear, and a 

simplified equation is known as BET equation (Equation 2.6): 

 
𝑝

𝑝0
⁄

𝑛𝑎(1−
𝑝

𝑝0
⁄ )

=
1

𝑛𝑚
𝑎 𝐶

+ [
𝐶−1

𝑛𝑚
𝑎 𝐶

] (
𝑝

𝑝0
)  (2.6) 

 

where nm is the amount of gas absorbed at the relative pressure p/p0, p/p0 is the equilibrium 

relative pressure, na
m is the monolayer capacity (i.e. the amount of adsorbate needed to cover 

the surface with a complete monolayer of molecules). 



CHAPTER II.  

Materials and methods 

136 

 

When the available surface of the material is totally covered by adsorbed molecules, 

specific surface area SBET may be determined by Equation (2.7): 

 𝑆𝐵𝐸𝑇 = (
𝑣𝑚

𝑎

𝑚𝑠
)

𝑁𝐴𝜎𝑚

𝑣𝑖
  (2.7) 

with va
m the monolayer adsorbed gas volume, ms mass of the adsorbent, NA the Avogadro 

constant, σm is the cross section occupied by each nitrogen molecule (fixed by IUPAC at σm 

= 0.162 nm²) and vl molar volume of perfect gas equals to 22 414 cm3.mol-1. 

 

Specific surface area was determined by nitrogen adsorption using Micromeritics ASAP 

2020 and BET method. Prior to analysis, samples were degassed in a high vacuum at 70 °C for 

10 h.  

 

It should be noted that standard methods for measuring pore size distribution and pore 

volume such as Barrett, Joyner and Halenda method (or BJH method) with nitrogen adsorption 

or mercury porosimetry cannot be applied to bio-aerogels. BJH method considers pores sizes 

below 200 nm, which takes in account around 10-20% of the total pore volume of the majority 

of bio-aerogels (Robitzer, Renzo, & Quignard, 2011; Rudaz et al., 2014). The classical formula 

for calculating average pore size D within the approximation of cylindrical pores is given by 

equation (2.8): 

 𝐷 =
4𝑉𝑝,𝐵𝐽𝐻

𝑆𝐵𝐸𝑇
  (2.8) 

where Vp,BJH is pore volume measured by nitrogen adsorption/desorption method. 

Equation (2.8) gives strongly underestimated values of D as far as SBET considers only 

mesopores and small macropores.  

 

If replacing Vp,BJH by Vpores calculated from skeletal and bulk densities (section 2.2.4), D 

is strongly overestimated. It may also be possible that bio-aerogel is compressed at higher 

nitrogen pressure. An example of BHJ analysis of one of aeropectins obtained in this work is 

shown in Figure 49. It shows that Vp,BJH is around 8 % of Vp, as pore volume Vp calculated using 

equation (2.5) is around 18.3 cm3/g. 
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Figure 49. Example of BJH analysis of pectin aerogel made from 3 wt% of P35 at pH 3.0 with 

calcium at R = 0.2: (a) structural parameters obtained, (b) adsorption/desorption curves (b) and 

(c) SEM image of this sample. Total pore volume calculated using equation (2.5) is around 18.3 

cm3/g. Adapted from (Groult & Budtova, 2018) 

When mercury porosimetry is used, bio-aerogels are compressed without mercury 

penetration in the pores, and thus the "value" given by the machine is an artefact (Rudaz, 2013; 

Rudaz et al., 2014). Thus, in this manuscript total pore volume will be based on bulk and skeletal 

density values, and only specific surface area will be reported from nitrogen adsorption 

measurements. 
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2.2.7. Scanning electron microscopy 

A scanning electron microscope (SEM) gives images of a sample surface (topography) by 

scanning it with a focused beam of electrons. Beam electrons interact with the electrons on the 

surface, producing various signals (electrons, photons, phonons…) that can be detected. The 

position of the electron beam is combined with the detected signal to produce a SEM image. 

 Scanning electron microscopy observations of aerogel morphology were performed on a 

ZeissSupraTM 40 FEG (Field Emission Gun) at an acceleration voltage of 3 KeV and a 

diaphragm of 10 µm or 20 μm. Prior to observations, a fine layer of about 7 nm of platinum 

was sputtered onto the sample surface with Q150T Quarum rotating metallizer. 

2.2.8. ESD analysis 

Energy diffractive spectroscopy (EDS) analyses the elemental composition of sample 

surface, by detecting X-rays emitted during the interaction with electron beam from a SEM. 

The beam excites atoms in the sample, and they release energy in the form of X-rays. The 

energy of emitted X-rays is characteristic for the atoms that produced them. Thus, a spectrum 

can be obtained, where different elements in the sample are identified by peaks at characteristic 

energy values. As the electron beam can be precisely controlled, and EDS spectrum can be 

collected from a selected area of the sample. This technique gives an elemental analysis of a 

few cubic microns of material. 

EDS analysis was carried out on a XL30 FEI Philipps ESEM (Environmental Scanning 

Electron Microscopy) in Cemef, Mines ParisTech, with an acceleration voltage of 12 keV and 

a vacuum pressure in the chamber of at low vacuum (0.1 to 1.3 mbar). Non-metallized, 

electrically insulating samples were studied with an environmental electron microscope as this 

type of SEM does not require the samples to be metallized. 

2.2.9. Contact angle 

The simplest way to assess the hydrophobicity of a material is the measurement of the 

contact angle of the material with water. When a drop of water is placed on the surface of a 

material, a thermodynamic equilibrium between the solid, liquid and gas phases is reached 

(Figure 50). 
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Figure 50. Contact angle with water drop and surface tensions at a sample surface. 

The surface tensions between the different phases are noted γSG for the solid-gas interface, 

γLG for the liquid-gas interface and γLS for the liquid-solid interface; the contact angle θH2O can 

be theoretically determined from Young-Dupré equation (Equation (2.9)) 

 

 𝛾𝑆𝐺 − 𝛾𝐿𝐺 − 𝛾𝐿𝑆. cos 𝜃𝐻2𝑂 = 0  (2.9) 

 

Samples showing contact angles with water superior to 90° are considered hydrophobic. 

Generally, the contact angle is measured directly on the surface of the sample.  

For all aerogels studied in this work, water contact angle measurements were performed with 

a Krüss DropAnalyzer DSA 100 goniometer in controlled atmosphere (20 °C, 50% RH). 

Droplets of 50 mm3 were deposited on sample flat and horizontal surface. The contact angle 

was measured from pictures of the droplets using Drop Shape Analysis software. 

 

2.2.10. Uniaxial compression measurements 

The mechanical properties of pectin aerogels were characterized by uniaxial 

compression measurements. Samples with cylindrical shape and a ratio length/diameter around 

1 were compressed up to high deformations (strain up to 90%) to obtain full stress−strain 

curves.  

A schematic illustration of stress-strain curve is shown in Figure 51. Young’s modulus 

(E) (obtained in the linear viscoelastic regime), yield stress (σyield) (beginning of plasticity), and 

densification strain εd (corresponding to the end of the plastic region with high increase of the 

stress) were determined from the compression strain-stress curves. 
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Figure 51. Schematic representation of a stress-stress curve with the three different domains: 

elastic deformation, plastic deformation and densification. 

The experiments were carried out on the Instron EM17 testing machine. The samples 

were placed between two parallel plates. Before measurements, samples were polished to make 

upper and lower surfaces planar and parallel. The measurements were performed at room 

temperature (22-24°C) and ambient conditions. A pre-loading test of 1 N was performed before 

compression. Compression was performed at a displacement rate of 1 mm/min, until 90% 

deformation, with a maximum force of 30 kN. 20 points/sec were recorded. At least three 

samples per formulation were tested to ensure reproducibility. 

2.2.11. Thermal conductivity 

Thermal conductivity () of pectin aerogels was measured at ambient pressure using 

heat flow meter Fox 150 equipped with a custom “micro flow meter cell” developed for small 

samples (see details in (Rudaz et al., 2014)) at 20 °C. Spaceloft® aerogel from Aspen (thickness 

of 3.70 mm) with thermal conductivity of 0.0133 W/(m.K) at 20 °C according to the European 

Norm EN 12667 was used as a standard for calibration.  

 

Aerogel disk is placed between two plates, one heated at Th = 25°C (called “Hot Plate”) and 

the other cooled at Tc = 15 °C (called “Cold Plate”) (see Figure 52).  
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Figure 52. Schematic presentation of Heat Flow meter device. 

Temperature of the plates is monitored until they are constant (steady state). Determination 

of the heat flow through the sample from the “Hot plate” towards the “Cold plate” is achieved 

by means of a heat flux sensor (meter). Thermal conductivity is calculated according to 

Equation (2.10): 

 𝜆 =
𝑄.𝑑

𝐴 (𝑇ℎ−𝑇𝑐)
  (2.10) 

with Q quantity of heat passing through the sample (W), A area of the sample (m²), d 

thickness of the sample (m). 

2.3. Preparation and characterization of drug-loaded pectin aerogels 

2.3.1. Drug incorporation into pectin matrices  

In this work, we prepared drug-loaded hydrogels, aerogels, cryogels and xerogels made 

from different compositions (pectin, cellulose, silica) using theophylline as drug model. The 

goal is to evaluate the potential of different solid matrices and their composites used as drug-

carriers for gastro-intestinal drug release applications. 

 

In this section, we explain the general drug incorporation method to load pectin aerogels, 

cryogels and xerogels with theophylline. Then, we explain the characterization methods 

specific to drug-loaded pectin matrices.  

▪ Loading of theophylline into aerogels, xerogels and cryogels 

Theophylline is moderately soluble in ethanol (3.5 g/L at 25 °C) allowing its impregnation 

into pectin aerogel precursor (pectin coagulated in ethanol) through diffusion. Due to its high 
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polarity and low octanol-water partition coefficient Kow from -0.02 (experimental value) (M. 

Grassi, Colombo, & Lapasin, 2001) to -0.7 (predicted value) (“ChemAxon,” n.d.; Mario Grassi 

et al., 2006) theophylline is practically insoluble in non-polar solvent such as supercritical CO2, 

with solubility lower than 0.04 g/kg at 313 K and 19.9 MPa (Johannsen & Brunner, 1994), thus 

avoiding its wash out during CO2 sc drying. To minimize the dilution effect due to the presence 

of ethanol within the aerogel precursors, the samples were immersed in theophylline solution 

25 to 30 times larger than the volume of pectin, and ethanol solution bath was changed for fresh 

one after 48 h. As shown in Figure 53, pectin aerogel precursors were immersed for 7 days into 

ethanol solution at a concentration of theophylline of either 2.5 g/L or 3.4 g/L, depending on 

the case. This duration of impregnation ensures a complete diffusion of theophylline within the 

samples in ambient conditions taking in account sample thickness, as it will be demonstrated in 

Chapter V. 

 

Figure 53. Schematic representation of the impregnation method of theophylline into pectin 

aerogel precursor by diffusion. 

To produce drug-loaded xerogels and aerogels, theophylline was impregnated into the 

coagulated samples as shown in Figure 53. To obtain theophylline loaded hydrogels and 

cryogels, the drug was added to pectin aqueous solution at 3.4 g/L which was gelled for 48 h. 

Pectin cryogel was made by freeze-drying of a drug-loaded hydrogel (without any solvent-

exchange step).  

2.3.2. Aerogels’ drug loading capacity and specific loading 

For clarity, we take the example of an aerogel to present different drug loading 

properties of a sample.  

 

A theoretical estimation of maximum drug loading can be given based on the volume of 

aerogel precursor (“alcogel”) during impregnation and theophylline concentration in ethanol 

used for impregnation. 
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Assuming that: 

- Aerogel precursor volume is mainly ethanol (pectin concentration is low): Valcogel 

~ V ethanol  

- The diffusion of theophylline into alcogel is complete, thus the theophylline 

concentration in ethanol (in the impregnation bath) is the same as in the alcogel: Calcogel = 

Cethanol 

. 

If 100% of theophylline present in the loaded alcogel volume remained after CO2 sc-

drying, a theoretical maximum drug mass (or dose inside an aerogel) can be expressed as 

follow: 

𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑟𝑢𝑔 𝑑𝑜𝑠𝑒 (𝑔) = 𝑉𝑎𝑙𝑐𝑜𝑔𝑒𝑙(𝑐𝑚3) × 𝐶𝑒𝑡ℎ𝑎𝑛𝑜𝑙 (𝑔. 𝑐𝑚−3) (2.11) 

It has to be noted that for hydrogels and cryogels, the theoretical maximum drug mass 

dose is simply given by the theophylline concentration set during sample preparation. Indeed, 

contrary to aerogels and xerogels, drug loading of hydrogels and cryogels is conducted by direct 

drug dissolution into pectin solution and not by diffusion through ethanol into a pre-existing 

sample.  

Actual theophylline doses (g) in aerogels are obtained after dissolution testing using 

spectrophotometric characterization, knowing the total theophylline released after complete 

dissolution (or after matrix destruction in case of non-soluble matrix).  

Thus, drug loading efficiency (%) can be defined as: 

 𝐷𝑟𝑢𝑔 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =
𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑟𝑢𝑔 𝑑𝑜𝑠𝑒(𝑔)

𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑟𝑢𝑔 𝑑𝑜𝑠𝑒(𝑔)
× 100 %  (2.12) 

Finally, knowing the theophylline actual dose, aerogels’ loading capacity and specific 

loading are defined as the weight percent of drug (wt% of drug) and mass of drug per specific 

surface area unit (g/ m²), respectively: 

𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑤𝑡%) =
𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑟𝑢𝑔 𝑑𝑜𝑠𝑒 (𝑔)

𝐿𝑜𝑎𝑑𝑒𝑑 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 𝑚𝑎𝑠𝑠 (𝑔)
× 100%  (2.13) 

 𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (𝑔/𝑚²) =
𝐴𝑒𝑟𝑜𝑔𝑒𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑤𝑡%)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝑚2/𝑔)
  (2.14) 
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2.3.3. Determination of the crystalline form of theophylline incorporated 

into pectin matrices by X-ray diffraction 

X-ray crystallography is a technique used for the identification of unknown crystalline 

structures by determination of the atomic and molecular structure of a crystal. Crystalline 

materials are characterized by a three-dimensional structure defined by regular and repeating 

planes of atoms that form a crystal lattice. When X-ray beam interacts with these planes of 

atoms a part is diffracted. X-rays are diffracted differently depending on the atomic organization 

and spatial arrangement in the lattice of the crystalline structure. The diffraction from crystalline 

substances are characterized by well-defined Bragg peaks as atoms are periodically arranged, 

while for amorphous materials it is characterized either by a broad peak or background hump 

due to the random orientation of atoms scattering the incident beam in all directions. 

 

To determine the crystalline form of the drug incorporated into pectin aerogels, cryogels and 

xerogels, wide-angle X-ray diffraction (XRD) analysis was conducted on the external surface 

and in the core of the drug loaded samples. XRD was performed with diffractometer “XPERT-

PRO” from PANalytical equipped with measurement program “ScanPixcel”. The patterns with 

Cu Kα radiation (λ = 1.5406 Å) were recorded in the range from 6° to 80°. Samples were dried 

overnight at 50 °C under vacuum to remove humidity. Additional X-ray diffraction analysis on 

drug-loaded aerogels, xerogels and cryogels were also carried out using a BRUKER AD8 

Advance X-ray Diffractometer.at the “Petru Poni” Institute of Macromolecular Chemistry, Iasi, 

Romania. 

2.3.4. In vitro drug release experiments 

To evaluate the potential of aerogels, cryogels, xerogels and hydrogels to be used as oral 

drug delivery systems, theophylline-loaded samples were immersed into simulated gastro-

intestinal fluids at 37.0 °C under soft stirring, in order to mimic the physiological conditions in 

case of an oral drug intake.  

 

The release of the drug out of the solid matrices was followed in time by 

spectrophotometric measurements as theophylline has a specific signal in UV. In vitro drug 

release experiments were conducted for aerogels, cryogels, xerogels and hydrogels of different 

composition (pectin, cellulose, silica). We first present the absorbance properties of 

theophylline, then we present and detail the in vitro method of drug release experiments. For 

clarity and simplicity, we detail the methods taking a drug-loaded pectin aerogel as an example. 
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▪ Determination of theophylline absorbance properties 

Every chemical compound absorbs or transmits light over a certain range of wavelength. 

Spectrophotometry is a quantitative method which measures the intensity of light absorbed by 

a chemical after it passes through sample solution. As Beer-Lambert Law states that there is a 

linear relationship between the absorbance and the concentration of a matter in solution, this 

measurement can be used to determine the amount of a known chemical substance based on its 

absorbance. In order to follow the release of the drug out of the matrices by spectrophotometry, 

the absorbing properties of theophylline dissolved in Simulated Gastric Fluid (SGF) (HCl at 

0.1N - pH1.0) and in Simulated Intestinal Fluids (SIF) (NaOH at 0.0112M, KH2PO4 at 0.05M 

- pH 6.8) were characterized. 

 

As shown in Figure 54, theophylline absorbs in the UV range (190nm – 400 nm) with 

two distinct absorption peaks at wavelengths around 204 nm and 271 nm, as reported in 

literature (Lide et al., 2005). As the peak obtained at 271 nm is better defined and not close to 

the limit of detection of the spectrophotometer compared to that at 204 nm, the wavelength of 

271 nm was chosen to detect the drug in liquid media.  

 

Figure 54. Example of theophylline’s absorbance UV-VIS spectrum as a function of 

wavelength. In this case, theophylline was dissolved at a concentration of 0.0125 g/L into 

simulated intestinal fluid (NaOH at 0.0112M, KH2PO4 at 0.05M - pH 6.8) at 37.0°C. 

Theophylline was dissolved at various concentrations (between 0.0025 g/L up to 0.0375 

g/L) in SGF (pH 1.0) and in SIF (pH 6.8), both at 37.0 °C. The absorbance at 271 nm vs 

concentration were found to be in the relationship as expressed by the Beer-Lambert’s Law. 

 𝐴 = 𝐶𝑖. 𝑙. 𝜀𝑖 (2.15) 

where A is the measured absorbance at a given wavelength; εi is the molar attenuation 

coefficient or absorptivity of the attenuating species i in the material sample; Ci the 
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concentration of the attenuating species in the material sample and l is the path length of the 

beam of light through the material sample. 

 

The molar extinction coefficients of theophylline were determined to be ~ 57.4 

L mol−1 cm−1 in SGF (pH 1.0) at 37.0°C (R2 ≥ 0.997) and ~ 59.1 L mol−1 cm−1 in SIF (pH 6.8) 

at 37.0°C (R2 ≥ 0.99). The absorbance calibrations (absorbance vs concentration) for 

theophylline in SGF and in SIF are shown in Figure 55.  

 

Figure 55. Absorbance calibration curves (at 271 nm) for theophylline dissolved in SGF (pH 

1.0) and in SIF (pH 6.8). Straight lines are linear regressions of the data and give equations y = 

57.371x + 0.0372 (R² = 0.9967) for theophylline in SGF (37.0 °C) and y = 59.058x+0.0615 (R² 

= 0.9989) for theophylline in SIF (37.0°C). 

▪ In vitro drug release experiments  

The in vitro drug release experiments followed the Food and Drug Administration (FDA) 

Dissolution Methods specific for theophylline extended-release tablets (updated 10/06/2008) 

(FDA/Center for Drug Evaluation and Research, 2019) recommended by the FDA's Division 

of Bioequivalence of the Office of Generic Drugs (OGD). Guidelines concerning the 

Dissolution Testing experiments can be found in the FDA’s guidance for industry (U.S. FDA 

S, Center for Drug Evaluation and Research, 1997; U.S. FDA S, Center for Drug Evaluation 

and Research, 2018) as well as in Refs. (Friedel et al., 2018; Siewert et al., 2003).  

The dissolution testing was conducted at 37.0 °C in 900 mL releasing bath (sink 

conditions) stirred at 100 rpm to ensure homogenization. The aerogel was put into a permeable 

metal basket (Figure 56) and immersed into Simulated Gastric Fluid (SGF) without enzymes 

(HCl 0.1N - pH1.0) (USP buffer media) during the first hour, and then into Simulated Intestinal 

Fluids without enzyme (SIF) (NaOH at 0.0112M, KH2PO4 at 0.05M - pH 6.8) (United States 

Pharmacopeia n°26 Buffer media). Buffer pharmacopeial solutions suitable for dissolution tests 

are described in the United States Pharmacopeia.  
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Figure 56. Example of aerogel sample loaded with theophylline placed in a permeable metal 

basket and maintained completely immersed during the dissolution testing experiment. 

Drug release was followed by spectrophotometric measurements at regular time 

intervals (usually every 5 to 10 minutes) at 271 nm as mentioned above (Lide et al., 2005). 

Spectrophotometric measurements over time were automatically conducted by coupling a 

Scanning Spectrophotometer UV-1800 UV/Visible (Shimadzu) to a Peristaltic Sipper Pump 

206-23790-91 (Shimadzu) and a Sipper Unit 160C (Shimadzu) with glass cell presenting an 

optical path length of 10 mm. Figure 57 shows the experimental set-up. 

 

A computer program based on a loop structure was set up with the help of Laurent 

SCHIATTI DE MONZA (from PERSEE, Mines ParisTech, France) allowing an automatic and 

continuous execution of the device during the whole experiment time: 

➢ At regular time intervals the sipper unit automatically takes sample solution (around 10 

mL) from the release bath (Figure 57 A) to the analysis cell in the spectrophotometer using 

a stepping motor-driven peristaltic pump (Figure 57 B). 

➢ After a waiting time of 30 seconds, a spectrophotometric measurement is performed.  

➢ The taken volume is then dispensed back into the release bath when a new analysis cycle 

starts.  

By coupling the spectrophotometer to an automatic sipping system, the evolution of 

theophylline concentration in time into the gastro-intestinal fluids can be followed 

automatically and continuously at precise time intervals (controlled by developed program) 

during the whole time of drug release experiment. 

 

 After reaching a stable saturation absorbance plateau for more than 30 minutes (no more 

drug released), the remaining aerogel matrix (if any) was crushed with a mortar and pestle, and 

the bulk medium was sonicated for 30 min to ensure maximum release of the drug. After 

sample crushing and sonication treatment, the absorbance of the bulk medium was measured to 

determine the total theophylline concentration. 
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Figure 57. Experimental set-up of in vitro drug release experiment: (A) Drug release from a 

sample into gastro-intestinal fluid at 37.0 °C, (B) Spectrophotometer coupled with drug release 

device using an automatic sipping system. 

Matrix mass and volume were measured in time using digital balance (precision 0.001 

g) and caliper (precision 0.1 mm) to estimate water uptake, matrix erosion/dissolution and 

matrix swelling/shrinkage.  

 

To evaluate the matrices structural and morphological parameters that may impact their 

drug release behavior, the composition (pectin, cellulose, silica), the sample preparations 

conditions (wt% of polymer, pH of polymer/starting solution, calcium concentration) and the 

type of drying (supercritical drying, freeze-drying, evaporative drying) were varied based on 

the main conclusions presented in Chapter III. Structural properties of pectin aerogels. 

2.3.5. Cytoxocity profile of different solid matrices 

The cytotoxicity tests were performed at the Intelcentru Lab of “Petru Poni” Institute of 

Macromolecular Chemistry, Iasi, Romania. 

▪ Sample preparation  

Prior to cell culture studies, compounds were sterilized by UV exposure with 

wavelength of 254 nm for 2 hours. Each compound was weighed and mixed with cell culture 

medium to reach the 1000 µg/ml concentration and allowed to completely solubilize overnight 
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with the help of a thermoshaker used to assure a thorough mixing at 50°C. Treatment 

concentrations from 0.49 to 1000 µg/ml were prepared by serial dilutions.  

▪ MTS assay method 

The cytotoxicity of the selected matrices was tested in normal human dermal fibroblasts 

(NHDF) cells using CellTiter 96®AQueousOne Solution Cell Proliferation Assay (MTS, 

Promega).  

Cells were expanded and maintained in alpha-MEM medium (Lonza) supplemented 

with 10% fetal bovine serum (FBS, Gibco) and 1% Penicillin-Streptomycin-Amphotericin B 

mixture (10K/10K/25 µg in 100 ml, Lonza) at 37 °C and 5% CO2 under humidified atmosphere. 

For the assay, NHDF cells (PromoCell) were placed in 96-well format (5 x 103 cells/well 

density in 100 µl) for 24 h to ensure cell adhesion; then the media was changed and replaced 

with the serial dilution of each compound. Control wells received only cell culture medium. A 

picture of a 96-well format plate used for the cytotoxicity assay of one aerogel sample is shown 

in Figure 58. 

 

Figure 58. Picture of a 96-well format plate used for the cytotoxicity assay of one sample of 

aerogel using MTS method. Serial dilutions of sample mixed with culture media were 

performed and put in contact with NHDF cells (lines A to E). Negative control wells received 

only untreated cells (without sample) to determine the 100% cell viability (line F), while control 

wells were filled with cell culture media (without any cell or sample) and were used as 

coloration reference (lines G and H). 

After 44 hours of incubation, a volume of 20 µL of CellTiter 96®AQueousOne Solution 

reagent was pipetted to each well and the plates were returned to incubator. After another 4 

hours the absorbance at 490 nm was recorded with a plate reader (EnSight, PerkinElmer). 
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Figure 59 shows the visual aspect of NHDF cells within the wells before incubation (Figure 59 

A) and after 44 h of incubation (Figure 59 B). 

 

Figure 59. Pictures of NHDF cells in wells observed by phase-contrast microscope (A) before 

incubation, cells are non-adherent and round-shaped (B) after 44 hours of incubation, a 

confluent monolayer of elongated adherent cells is obtained.  

GraphPad Prism software version 6.04 for Windows (GraphPad Software, San Diego, 

CA) was used to calculate the relative cell viability. At least 5 replicates were used in the 

analysis and the experiment was repeated 3 times. 
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Introduction: importance of aerogels’ structural properties 

In addition to their biodegradability and biocompatibility, bio-aerogels present very 

attractive structural properties in terms of high specific surface area, low density, network 

morphology and pore size. Thus, they are versatile promising materials for a wide range of 

“classical” aerogel potential applications (from thermal insulation (Druel, Bardl, Vorwerg, & 

Budtova, 2017; Gabrijela Horvat, Fajfar, Uzunalić, Knez, & Novak, 2017; Rudaz et al., 2014) 

to matrices for catalysis (Chtchigrovsky et al., 2009) and in electro-chemistry when pyrolyzed 

(Budarin, Clark, Luque, Macquarrie, & White, 2008; Guilminot et al., 2008)). They are also 

suitable for advanced life science applications, e.g. medical devices, biotechnology, 

pharmaceutics, cosmetics and food industry. For all these applications, it is well known that the 

internal structure and physical characteristics of aerogels are determining for their final 

application properties. The requirements towards aerogel chemical, mechanical and structural 

properties are dictated by the application. Thus, the understanding of how formulation and 

external conditions (polymer ionization and concentration, solution pH, presence of ions, etc.) 

influence aerogel properties is a key issue (Aegerter, Leventis, & Koebel, 2011). As an 

illustration, bio-aerogel density, specific surface area or pore size are critical structural 

parameters for thermal insulation application (Druel et al., 2017; Rudaz, 2013; Rudaz et al., 

2014) or for biomedical uses as drug delivery systems (De Cicco et al., 2016; García-González, 

Jin, Gerth, Alvarez-Lorenzo, & Smirnova, 2015; Lovskaya, Lebedev, & Menshutina, 2015; 

Tkalec, Knez, & Novak, 2015) and as 3D cellular scaffolds (G. Horvat et al., 2017; Martins et 

al., 2015; Quraishi et al., 2015) for tissue engineering. 

 

Despite the importance of morphology control, little is known about the correlations 

between the type of polysaccharide, processing conditions and aerogel structure and properties. 

The goal of this work was to show why and how pectin aerogel morphology and properties vary 

as a function of pectin intrinsic parameters and external conditions. Here we focused on the 

correlations between the initial polymer characteristics - processing parameters –aerogel 

structural and mechanical properties.  

 

In the present study, we used three pectins with different Degree of Esterification (DE) 

of 35%, 59% and 70%, to produce pectin aerogels obtained by polymer dissolution in water, 

exchange of water to a fluid miscible with CO2 and supercritical drying with CO2. The present 

investigation provides wide and detailed overview on how and why aerogel structure and 

mechanical properties vary as a function of external processing conditions and intrinsic pectin 

characteristics. Pectin concentration, solution pH, type and concentration of metal salts (CaCl2 

and NaCl), nature of non-solvent and pectin’s degree of esterification were varied. The role of 

solution gelation or not, and of the mechanisms of network formation in aerogel precursor are 
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suggested and discussed. This study demonstrates the ways of controlling structure formation 

in pectin-based aerogels, and presumably, in other gelling polyelectrolyte polysaccharides. The 

emphasis is made on the multiscale correlations between the properties of dissolved polymer, 

mechanisms of network formation and the final structure and properties of pectin aerogels. 

 

The chapter is organized as follows: 

 

- The first part is dedicated to the characterization of three different pectins used in 

the study. 

 

- Then we selected only the low-methylated pectin (DE = 35%) to finely and deeply 

study the impact of the external processing parameters on the structural, 

morphological and mechanical properties of pectin aerogels. 

 

- Finally, we open up the study to different pectins to investigate the influence of 

pectin DE on aerogel properties regarding to different pH and calcium conditions.  

 

Part of the results presented in the Chapter are published in (Groult & Budtova, 2018). 
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1. Characterization of pectins 

1.1. Characterization of pectins’ degree of esterification 

In native pectins, the acid functions are either in form of carboxylic acids (COOH) or are 

methyl-esterified (COOCH3). The Degree of Esterification (DE) corresponds to the molar 

proportion (%) of methoxy-groups in the pectin. In our study, we used three different citrus 

pectins, kindly donated by Cargill: a low-methylated pectin with DE of 35% (designed as 

“P35”), a high/intermediate-methylated pectin with DE of 59% (designed as “P59”) and high-

methylated pectin with DE of 70% (designed as “P70”); the values of DE were provided by 

Cargill. We checked the DE of pectin powders using FTIR technique.  

Based on FTIR spectroscopic measurements, major pectin signals can be easily attributed. 

As shown in Figure 60, a band centered at 1740-1745 cm−1 is assigned to C=O stretching of 

esterified groups −COOCH3 and the band at 1605-1610 cm−1 is assigned to carboxylate 

(carboxyl ion) COO−  (Walter, 2012). In order to completely dissociate carboxylic acid 

functions (COOH) of galacturonic units of pectin into carboxylates (COO-), pectin was 

dissolved at pH 4.5 (> pKa) and dried overnight (at 50°C under vacuum) prior to FTIR analysis. 

By using the bands height or the peaks area, the pectins’ DE can be estimated with the following 

equations: 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 DE (%) =  
Height peakCOOCH3   

(Height  peakCOOCH3+ Height peakCOO−   )
  (3.1) 

 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 DE (%) =  
Area peakCOOCH3   

(Area  peakCOOCH3+ Area peakCOO−   )
  (3.2) 
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Figure 60. Example of FTIR spectrum of pectin P70. Pectin powder was dissolved at pH 4.5 

and dried overnight prior to analysis. 

 

 

Figure 61. FTIR spectra of pectin (a) P35, (b) P59 and (c) P70. Pectin powders were dissolved 

at pH 4.5 and dried overnight prior to analysis. 

Table 2. FTIR peaks area and band height for methyl-ester and carboxylate signals used for DE 

estimations of P35, P59 and P70 based on Eq (3.1) and Eq (3.2). 
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Pectin 

code 
Peaks 

Peak 

wavelengt

hs range 

(cm-1) 

Peak 

band 

(cm-1) 

Peak 

height 

(u.a.) 

Peak 

area 

(u.a.) 

DE 

estimation 

from height 

ratio (%) 

 

Eq(3.1) 

DE 

estimation 

from area 

ratio (%) 

 

Eq(3.2) 

P35 

(pH 4.5) 

Methyl-ester 

peak 

(COOCH3) 

1795 - 

1664 
1746 0.0047 

0.238

0 
33% 31% 

Carboxylate  

peak (COO-) 

1664 - 

1566 
1606 0.0096 

0.529

0 

P59 

(pH 4.5) 

Methyl-ester 

peak 

(COOCH3) 

1798 - 

1660 
1748 0.0108 

0.481

0 
55% 53% 

Carboxylate  

peak (COO-) 

1660 - 

1571 
1607 0.0087 

0.422

0 

P70 

(pH 4.5) 

Methyl-ester 

peak 

(COOCH3) 

1790 - 

1663 
1742 0.0082 

0.348

0 

70% 68% 

Carboxylate  

peak (COO-) 
1663- 1571 1605 0.0036 

0.166

0 

 

As determined from FTIR spectra, the DE of the three citrus pectins of the study were 

around DE ~ 33-31% for pectin P35, DE ~ 55-53% for pectin P59 and DE ~ 70-68% for pectin 

P70, all being consistent with the values given by the manufacturer. 

1.2. Determination of pectin molecular weights 

Huggins method was used to determine pectin intrinsic viscosity [] in 0.01 M NaCl at 

26.6 °C (Masuelli, 2014). These conditions were used as far as they allow the calculation of 

pectin molecular weight M according to Mark-Houwink equation: 

 

 [] = 𝐾𝑀𝑎 (3.3) 

 

where K = 0.0234 and a = 0.8221 (Masuelli, 2014). The dependence of reduced viscosity 

on pectin concentration for three pectins studied is shown in Figure 62 (a). The intrinsic 

viscosities of pectins P35, P59, P70 in these conditions were 347 mL/g, 502 mL/g and 566 

mL/g, respectively. Their molecular weights were estimated around 1.15 105 g/mol, 1.86 105 

g/mol and 2.15 105 g/mol, respectively. 
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Figure 62. (a) Reduced viscosity of pectin P35, P59 and P70 dissolved in 0.01 M NaCl at 26.6 

°C. Solid line is linear approximation. The intersection with Y axis gives intrinsic viscosity. (b) 

Estimation of pectins’ molar mass as a function of their DE.  

 Figure 62b shows the molecular weight of pectin as a function of its degree of 

methylation, obtained by capillary viscometry (Masuelli, 2014).  Such differences in pectins’ 

molecular weights are known and can be attributed mainly to chemical demethylation treatment 

of native pectin to obtain low-methylated pectins, the latter are obtained by pectin β-

depolymerization with reduction of the neutral sugars, thus reducing Mw (Ilse Fraeye, Duvetter, 

Doungla, Van Loey, & Hendrickx, 2010; Garnier, Axelos, & Thibault, 1993; Thakur, Singh, 

Handa, & Rao, 1997).  

2. Tuning structure and properties of low methylated pectin 

aerogels  

Pectin is a polyelectrolyte, and thus the changes of solution pH and/or addition of ions 

influence solution viscosity and may induce gelation. Gelation mechanism, in turn, depends on 

the type of the external parameter. This is well known and described in literature. The open 

question is how pH, ions’ concentration, type of non-solvent influence pectin aerogel 

morphology and properties. As explained in Chapter II: Material and Methods (see Equation 

2.12), when metal cations (Na+ or Ca2+) were added to pectin solution, the molar ratio the molar 

ratio R between pectin carboxyl moieties and metal cations (both expressed in mol.L-1) was 

used in order to understand of the impact of ions concentration on the properties of pectin. As 

an illustration, Figure 63 shows examples of different pectin aerogels whose physical properties 

are controlled by pectin concentration and state of the matter before solvent exchange (solution 

or gel), pH conditions of the starting solution, presence of CaCl2, etc.  
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Figure 63. Photos of pectin aerogels from 3 wt% P35 solutions prepared in different conditions 

at pH 1.5, pH 2.0 and 3.0, without the addition of salts and with addition of calcium at R(Ca) = 

0.2. Without calcium at pH 1.5 the sample before solvent exchange was weak gel, at pH 2.0 it 

was high viscosity solution and at pH 3.0 low viscosity solution. At R(Ca) = 0.2 strong ionic 

gels were obtained at all pH. Non-solvent was ethanol. 

The following sections are structured as follows. We describe the effect of pectin 

concentration, solution pH, and concentrations of calcium and sodium ions, and the Degree of 

Esterification of pectin (DE) (from 35% to 70%) on aerogel morphology and properties, 

keeping one parameter varied and the other constant. Finally, we summarize all findings and 

make general suggestions on the influence of external and intrinsic parameters and state of the 

matter, solution or gel, on pectin aerogel properties. 

2.1. Influence of non-solvent type and pectin P35 concentration on 

aerogel structure and properties 

To study the influence of non-solvent type, acetone vs ethanol, and of pectin 

concentration on aerogel properties, several batches of pectin P35 solutions from 2 to 8 wt% at 

pH 3 were prepared. pH 3 was selected because pKa is around 3–3.5 for low methylated pectin 

(Plaschina, Semenova, Braudo, & Tolstoguzov, 1985; Ralet, Dronnet, Buchholt, & Thibault, 

2001). 

Sample volume shrinkage (see Equation (2.3) from Chapter II) was monitored before and 

after sc drying and volume shrinkage. As presented in Figure 64, at the end of solvent exchange, 

the shrinkage is around 10 - 20 vol%, with highest shrinkage for 2% solution (40 vol%), and it 

is similar for both non-solvents. The overall shrinkage after drying is around 50 – 80 %, it is 

slightly higher for ethanol as compared to acetone. Shrinkage decreases with the increase of 

pectin concentration. This phenomenon had already been reported for other bio-aerogels: higher 

polymer concentration makes the network more “resistant” to solvent exchange and drying 

(Buchtová & Budtova, 2016; Hoepfner, Ratke, & Milow, 2008).  
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Figure 64. Volumetric shrinkage V after solvent exchange (triangles) and after sc drying 

(circles) as a function of pectin concentration. Pectin P35 was dissolved at pH 3; non-solvent 

was either ethanol (open points) or acetone (filled points). If not visible, the errors are smaller 

or of the size of symbols. The state of the matter before solvent exchange, solution (S) or gel 

(G), is indicated for each case. Lines are given to guide the eye. From (Groult & Budtova, 2018) 

Figure 65a and b present pectin aerogel density and specific surface area as a function of 

pectin concentration and type of non-solvent at pH 3. The use of acetone resulted in lower 

density and higher specific surface area. For example, for the initial solutions of 3 wt%, aerogel 

density was around 0.11 g/cm3 and specific surface around 570 m²/g when using ethanol as the 

non-solvent, whereas while using acetone the density was 0.065 g/cm3 and specific surface 

reached the values up to 630 m²/g. Similar phenomena were recorded for aerogels made at pH 

2 (Figure 66).  
 

 

Figure 65. Density (a) and specific surface area (b) as a function of pectin concentration for 

solvent exchange performed in ethanol (open points) and acetone (filled points). Pectin P35 was 

dissolved at pH 3.0, the state of the matter before solvent exchange, solution (S) or gel (G), is 
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indicated for each case. Solid line is theoretical density for no-shrinkage case; dashed lines are 

given to guide the eye. 

 

 

Figure 66. Comparison of (a) density and (b) specific surface area of pectin aerogels made from 

3 wt% P35 solution at pH 2 and 3, using either ethanol (open) or acetone (filled) as the non-

solvent. The state of the matter before solvent exchange, solution (S) or gel (G), is indicated for 

each case. 

Some works on bio-aerogels suggest that the larger the difference in Hansen solubility 

parameters between the polymer and non-solvent, the higher is sample shrinkage (Gavillon & 

Budtova, 2007; Subrahmanyam, Gurikov, Dieringer, Sun, & Smirnova, 2015). However, pectin 

is heteroglycan and Hansen parameter(s) are not known. It may be possible that the miscibility 

of non-solvent and CO2 also pays a role: acetone is better miscible with CO2 than ethanol 

according to Hansen solubility parameters (of ethanol it is 26.5 MPa1/2, of acetone 19.9 MPa1/2 

and of CO2 17.4 MPa1/2) (Hansen, 2007). In all the cases studied density of pectin aerogels was 

from two (for acetone) to more than three (for ethanol) times higher than that of the theoretical 

no-shrinkage case (Figure 65a.). As expected, density increases with the increase of polymer 

concentration in solution.  

 

It is difficult to conclude now on the influence of pectin concentration on specific surface 

area. The reason is that at pH 3, pectin dissolved at 2, 3 and 4 % is solution, and at 6 and 8 % it 

is gel. Previous studies on cellulose aerogels (Buchtová & Budtova, 2016; Trygg, Fardim, 

Gericke, Mäkilä, & Salonen, 2013) reported the increase of specific surface area with the 

increase of polymer concentration which is also the case for pectin aerogels made from 2, 3 and 

4 % solutions. The result for cellulose aerogels was interpreted by the decrease of pore size and 

not increase of pore wall thickness with the increase of polymer concentration (Buchtová & 

Budtova, 2016). In the case of cellulose, the state of the matter before solvent exchange was the 

same through all experiments: it was a solution for cellulose dissolved in ionic liquid and in 

NaOH-urea-water (Buchtová & Budtova, 2016; Trygg et al., 2013). As it will be shown later, 
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the state of the matter before solvent exchange strongly influences pectin shrinkage and thus 

aerogel density and morphology. 

 

Pectin aerogel porosity and pore volume (see Equations 2.4 and 2.5 of Chapter II, 

respectively) of the same samples as shown in Figure 65 are shown in Figure 67. All values are 

lower for aerogels prepared with ethanol as non-solvent as compared to those prepared with 

acetone, which is expected from the values of density and specific surface area. The increase of 

pectin concentration leads to the decrease in porosity and pore volume for both types of non-

solvents used. Pore volume varies from 5.6 to 9.1 cm3/g for aerogels made with ethanol as non-

solvent and it is 30 to 80 % higher for acetone case.  

 

Figure 67. (a) Pectin aerogel porosity and (b) specific pore volume as a function of pectin 

concentration for solvent exchange performed in ethanol (open points) and acetone (filled 

points). Pectin P35 was dissolved at pH 3.0, the state of the matter before solvent exchange, 

solution (S) or gel (G), is indicated for each case. Dashed lines are given to guide the eye. 

SEM images of pectin aerogel morphology are presented in Figure 69, for two pectin 

concentrations and two non-solvents. Solvent exchange with acetone resulted in slightly larger 

pores with less agglomerated pore walls compared to ethanol. The increase of pectin 

concentration makes the network denser and with smaller pores. The thickness of pore walls is 

around 7 to 14 nm as estimated from Figure 69, with some rare chain agglomerates/packages 

from around 20 to 30 nm of thickness, see an example on Figure 68.  

 

Average fibril size D can also be roughly calculated as D = 4/(bulkSBET) assuming that 

fibrils are ideal rods of uniform thickness and the same skeletal density. With SBET varying from 

530 to 630 m2/g, D is around 4 to 5 nm, which fits well the experimental observations after 

subtracting from the latter few nanometers of sputtered platinum. 
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Figure 68. High magnification SEM image of pectin aerogel made from 3 wt% pectin P35 made 

at pH 3 using acetone as non-solvent. Fibril thicknesses D (in nm) were estimated using SEM 

software. 

 

Figure 69. SEM images of pectin aerogels made from 3 wt% and 6 wt% pectin P35 solutions 

at pH 3, with ethanol (a) or acetone (b) as non-solvent. 

2.2.  Influence of pH on low-methylated pectin aerogel structure and 

properties 

It is known that dissolved pectin, being a polyelectrolyte, is very sensitive to pH. At low 

pH chains associate and are stabilized by hydrogen bonding between un-dissociated free 

carboxylic acids and secondary alcohol groups, and by hydrophobic interactions between 
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methyl esters (Oakenfull, 1991). This is reflected by change of solution viscosity at lower 

polymer concentration, and may lead to so-called acid gelation if the number of junction zones 

is sufficient, the latter depending on solution temperature and pectin concentration (Garnier et 

al., 1993; Kar & Arslan, 1999; Paoletti, Cesaro, Delben, & Ciana, 1986; Voragen, Schols, & 

Visser, 2013). 
 

To better understand the influence of pH on pectin aerogel structure and properties, we 

illustrate the effect of pH on pectin chains’ interactions via viscosity  of semi-dilute pectin 

solutions (0.9 wt%) as a function of shear rate �̇� (Figure 70). At pH below pKa ≈ 3, solutions 

showed a strong shear-thinning behavior, and viscosity increases with decreasing pH due to 

macromolecules association. This is especially pronounced at pH below 2.5 when ionization of 

pectin chains is significantly reduced. At higher pectin concentrations and below pH 2 solutions 

may form a gel. The increase of pH above pKa leads to progressive deprotonation of carboxylic 

acids into carboxylates. The coulombic repulsion and high hydration of pectin macromolecules 

prevent polymer aggregation (Paoletti et al., 1986). Beyond pH 4 practically no evolution of 

viscosity as a function of pH was observed, as ionization of carboxylates is supposed to be 

complete. In this case, pectin solutions exhibit stable and low viscosity as each polysaccharide 

chain is hydrated, extended and independent (Paoletti et al., 1986). 

 

Figure 70. Viscosity as a function of shear rate of 0.9 wt% pectin P35 solutions at different pH 

at 20 °C. Solid lines correspond to viscosity approximated with Cross model. From (Groult & 

Budtova, 2018). 

 

The flow curves were fitted using simplified Cross model:  

 
𝜂 (�̇�)  
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=  
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where 𝜂
0
is zero shear rate viscosity,   is constant and n is flow index (or Cross 

exponent). The fitting parameters are presented in Table 3. Zero shear rate viscosity and flow 

index as a function of pH are shown in Figure 71. These results confirm what was qualitatively 

deduced from Figure 70: a strong drop of zero shear rate viscosity and of flow index with the 

increase of pH and the independence of these parameters on pH at pH > 4.  

 

Figure 71. Zero shear rate viscosity (squares) and flow index (triangles) (see Eq. (3.4)) of 0.9 

wt% pectin P35 solutions as a function of pH at 20 °C. Dashed lines are given to guide the eye. 

From (Groult & Budtova, 2018). 

Table 3. Fitting parameters for flow curves (Figure 71) according to Eq.(3.4) 

pH 1.6 2 2.5 2.7 3 3.5 4 6 8 

n 0.5824 0.5556 0.5562 0.5016 0.4519 0.3606 0.0116 0.0110 0.0100 

𝜼𝟎 (Pa s) 0.7262 0.4202 0.2240 0.0810 0.0546 0.0394 0.0226 0.0252 0.0254 

  (s) 0.2507 0.1279 0.0378 0.0046 0.0012 0.0005 0.0048 0.0043 0.0046 

 

Next pectin aerogels were made from 3 wt% solutions at various pH. Acid-induced gels 

were obtained at room temperature and pH of 0.5, 1.0, 1.5 and pH 1.8. At higher pH solutions 

were not gelling and aerogel precursors were obtained by direct solvent exchange with ethanol. 

In this case, viscosity of pectin solutions had to be sufficiently high for not deformed 3D 

network to be formed; for example, it was not possible to obtain homogenous aerogels from 

solutions at pH > 5.  

 

Figure 72a shows the shrinkage of pectin samples after solvent exchange and after drying 

and Figure 72b corresponds to density and specific surface area of the prepared pectin aerogels. 
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A very interesting trend was obtained: all parameters show a convex shape as a function of pH, 

with the highest values of density and specific surface area almost tripled in the maximum.  

 

 

Figure 72. Influence of pH on (a) volumetric shrinkage after solvent exchange (open points) 

and after sc-drying (filled points) and (b) density (open points) and specific surface area (filled 

points) of pectin aerogels made from 3 wt% P35 solutions. The state of the matter before solvent 

exchange is noted “G” for gel, the rest are solutions. Non-solvent used was ethanol. Dashed 

lines are given to guide the eye. From (Groult & Budtova, 2018). 

Shrinkage is around 10 – 20 vol% after solvent exchange and it strongly increases after 

sc drying, especially for non-gelled solutions at pH > 2. The lower pH, the stronger pectin 

network (Capel, Nicolai, Durand, Boulenguer, & Langendorff, 2006), providing better 

mechanical resistance to solvent exchange and drying. Gel state prevents shrinkage and 

preserves gel porous structure resulting in lower density and lower specific surface area (Figure 

72b.).  

 

Pectin aerogels at pH 0.5, 1 and 1.5 display large pores and thick pore walls (Figure 73). 

Porosity is around 95 – 96 % and pore volume around 13 – 17 cm3/g (Figure 74). It should be 

noted that at very low pH (pH ≤ 1) pectin acid degradation may have occurred as reported in 

Ref. (I Fraeye et al., 2007; Krall & McFeeters, 1998; Renard & Thibault, 1996), resulting in 

partly damaged morphology as observed by SEM (Figure 73). 
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Figure 73. SEM images of pectin aerogel morphology made from 3 wt% P35 solutions at 

different pH. The state of the matter before solvent exchange is indicated for each case. Non-

solvent used was ethanol. The scale is the same for all SEM images. From (Groult & Budtova, 

2018). 

 

  

Figure 74. (a) Porosity and (b) pore volume of pectin aerogels made from 3 wt% P35 solutions 

at different pH, non-solvent was ethanol. The state of the matter before solvent exchange is 

noted “G” for gel, the rest are solutions. From (Groult & Budtova, 2018). 

With the increase of pH from 1.8 to 3 – 3.5, progressive ionization of pectin chains 

occurred decreasing the probability of their association, and gelation was inhibited. This 

induced high sample shrinkage, up to 75 vol% (Figure 72a), resulting in the increase of pectin 

aerogel density (Figure 72b). As a consequence, aerogel porosity and pore volume decreased 
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to 90% and 6 cm3/g, respectively (Figure 74). High shrinkage led to denser morphology and 

decrease of pore size (Figure 73): for example, pore size varied from 50 – 300 nm at pH 1 to 

much more homogeneous sizes around 30 – 50 nm at pH 3 as estimated from SEM images. 

Because at pH 3 – 3.5 aerogel density still remained low and pore size decreased as compared 

to pH 1 - 2, specific surface area strongly increased as pH increased, from around 300 m²/g at 

pH 1.5 to almost 600 m²/g at pH 3. We assume that at pH 3 – 3.5 due to the repulsion between 

charged chains their agglomeration was inhibited which led to higher specific surface area. 

Finally, due to complete pectin ionization at pH above 4, viscosities of pectin solutions were 

too low to lead to monolithic “non-damaged” samples during solvent exchange. After sc drying, 

pectin aerogels appeared to have very heterogeneous morphology, as can be seen in Figure 73, 

with lower mean bulk density and specific surface as compared to pH 3 – 3.5. 

2.3. Effect of calcium ions on low-methylated pectin aerogel structure 

and properties  

The addition of divalent cations strongly impacts pectin gelation mecanism and thus 

potentially allows the variation of aerogel properties (Dronnet, Renard, Axelos, & Thibault, 

1996; Thibault & Rinaudo, 1986). As described by the so-called “egg-box model” (Grant, 

Morris, Rees, Smith, & Thom, 1973), the ionized groups of non-methylated galacturonic acid 

on pectin backbone can create successive ionic bonds with divalent cations such as calcium 

(Dronnet et al., 1996; Rudolf Kohn, 1987). The ionic bonding results from non-covalent 

electrostatic interactions between free divalent cations and the oxygen atoms of the hydroxyl 

groups, the oxygen atoms of the glucosidic ring and the bridging oxygen atoms of dissociated 

galacturonic acids through their free-electron pairs (Rudolf Kohn, 1987). Besides, the cross-

linking formed by ionic bonds between carboxylate functions and divalent cations, such as 

calcium, produce strong, brittle and less elastic pectin gels than those formed by hydrogen and 

hydrophobic interactions in acidic condition (Sriamornsak, 2003). The properties and 

mechanims of pectin ionic gelation are detailed in Chapter I – Section 1.3.2. 

In order to understand the influence of calcium ions on the morphology and properties of 

pectin aerogels, we varied calcium concentration (or the molar ratio of calcium to pectin, R(Ca)) 

at fixed pectin concentration 3 wt% and pH 3 which is pKa of LM pectin. The photos of the 

obtained pectin aerogels with increasing R(Ca) ratio are given in Figure 75. 
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Figure 75. Pectin aerogels made from 3 wt% P35 dissolved at pH 3, with increasing R(Ca) from 

0 to 0.6, non-solvent was ethanol. The state of the matter before solvent exchange, solution (S) 

or gel (G), is indicated for each case. From (Groult & Budtova, 2018). 

The addition of even low amount of calcium increases pectin solution viscosity; at R(Ca) 

= 0.1 a weak gel and at R(Ca) ≥ 0.2 strong gels are formed. The influence of R(Ca) on samples’ 

volumetric shrinkage is shown in Figure 76a and on aerogel density and specific surface area 

in Figure 76b. Shrinkage of pectin samples decreases with the increase of R(Ca) as calcium 

reinforces the network by the formation of large amount of strong ionic junction zones 

(Cárdenas, Goycoolea, & Rinaudo, 2008; Ilse Fraeye et al., 2009; Grosso & Rao, 1998; 

Löfgren, Walkenström, & Hermansson, 2002). As a result, density of aerogels strongly 

decreases from 0.11 g/cm3 without calcium to more than twice lower value, around 0.05 g/cm3, 

for R(Ca) above 0.2 (Figure 76b). Consequently, porosity and pore volume increase with the 

increase of calcium concentration (Figure 77).  

  

Figure 76. Influence of calcium to pectin molar ratio R(Ca) on (a) shrinkage after solvent 

exchange (open points) and after sc drying (filled points) and (b) density (open points) and 

specific surface area (filled points) of pectin aerogels made from 3 wt% P35 solutions at pH 3, 

non-solvent was ethanol. The state of the matter before solvent exchange, solution (S) or gel 

(G), is indicated for each case. Lines are given to guide the eye. From (Groult & Budtova, 

2018). 
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Figure 77. Influence of calcium to pectin molar ratio on (a) porosity and (b) pore volume for 

pectin aerogels made from 3 wt% P35 at pH 3, non-solvent was ethanol. The state of the matter 

before solvent exchange, solution (S) or gel (G), is indicated for each case. From (Groult & 

Budtova, 2018). 

Specific surface areas of pectin aerogels decreased from around 600 to around 400 m2/g 

with R(Ca) increase from 0 to 0.2, respectively (Figure 76b). The same trend for shrinkage, 

density and specific surface area was also found at pH 2 (Figure 78). It has to be noted that at 

pH 2 the addition of calcium had a smaller impact on pectin aerogel properties as far as carboxyl 

deprotonation of galacturonic groups is lower at pH 2 than at pH 3 (Gidley, Morris, Murray, 

Powell, & Rees, 1980).  

 

 

Figure 78. Density (open points) and specific surface area (filled points) of pectin aerogels made 

from 3 wt% P35 solutions at pH 2 as a function of calcium to pectin molar ratio R(Ca). The 

state of the matter before solvent exchange, solution (S) or gel (G), is indicated for each case. 

Non-solvent was ethanol. Lines are given to guide the eye. From (Groult & Budtova, 2018). 
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The addition of calcium has a strong impact on pectin aerogel morphology, as shown on 

the representative SEM images in Figure 79. The higher the R(Ca), the stronger the gels with 

less shrinkage and larger pores, from around 30-50 nm (as estimated from SEM images) without 

calcium to 100 - 150 nm at R(Ca) > 0.2. Similarly to acid gelation by lowering pH (see Section 

2.2), calcium induced gelation leads to better preservation of network morphology and of 

macropores, as observed by SEM. Beyond R(Ca) = 0.2, the morphology of aerogels is quite 

similar, except that very fast gelation at R(Ca) > 0.4 led to heterogeneities due to unevenly 

dispersed calcium ions. The reason is that the maximum amount of calcium possible to be bound 

to pectin is around stoichiometric ratio, 0.3 to 0.6 depending on pectin degree of methylation 

(Dronnet et al., 1996; Garnier, Axelos, & Thibault, 1994; Siew, Williams, & Young, 2005), 

which corresponds to molar ratio R(Ca) from 0.15 to 0.3 as used in this work. 

 

Figure 79. SEM images of pectin aerogels made from 3 wt% P35 solutions at pH 3 with calcium 

chloride at R(Ca) = 0.05, 0.2 and 0.6. The state of the matter before solvent exchange is 

indicated for each case. Non-solvent used was ethanol. From (Groult & Budtova, 2018). 

2.4.  Effect of monovalent ions (NaCl) on low-methylated pectin aerogel 

structure and properties 

Monovalent metal ions also influence pectin solution viscosity and may induce solution 

gelation (Agoda-Tandjawa, Durand, Gaillard, Garnier, & Doublier, 2012; Ström, Schuster, & 

Goh, 2014; Yoo, Fishman, Savary, & Hotchkiss, 2003). Although ions as sodium cannot create 

ionic bonds with pectin, they decrease electrostatic repulsions between dissociated carboxyl 

groups by screening (Agoda-Tandjawa et al., 2012; M. a. V. Axelos, 1990). This allows chains 

approaching each other and promotes hydrogen bonding and hydrophobic interactions 

potentially leading to a sort of acid-induced gelation (Agoda-Tandjawa et al., 2012). Here we 

demonstrate the impact of the presence of sodium ions on pectin aerogel properties and 

morphology (see photos of aerogels in Figure 80). The molar ratio of sodium to pectin R(Na) 

was varied from 0 to 2; at R(Na) ≥ 1 (NaCl concentration 0.1 M) strong turbid gels were 

obtained. 
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Figure 80. Photos of pectin aerogels made from 3 wt% P35 solutions at pH 3 with different 

amount of NaCl added. Samples were solutions at R(Na) = 0.2 and strong gels at R(Na) = 1 and 

R(Na) = 2. Non-solvent was ethanol. From (Groult & Budtova, 2018). 

Figure 81a shows samples’ shrinkage as a function of sodium to pectin molar ratio for 

solutions of 3 wt% at pH 3. As for the case of the addition of calcium (Figure 76a), the presence 

of sodium ions resulted in lower shrinkage due to solution gelation.  

As a consequence, the increase in sodium concentration led to pectin aerogel lower 

density, from of 0.114  ± 0.007 g/cm3 at R(Na) = 0 to 0.069 ± 0.001 g/cm3 at R(Na) = 2 (Figure 

81b), higher porosity and pore volume (Figure 82). Specific surface area (Figure 81b) decreased 

with the increase of R(Na), also as in the case of the addition of calcium. Similar trends were 

recorded for pectin aerogels made from higher pectin concentration, 6 wt% (Figure 83).  

  

Figure 81. Influence of sodium to pectin molar ratio R(Na) on (a) shrinkage after solvent 

exchange (open points) and after drying (filled points) and (b) density (open points) and specific 

surface area (filled points) of pectin aerogels made from 3 wt% P35 solutions at pH 3, non-

solvent was ethanol. The state of the matter before solvent exchange, solution (S) or gel (G), is 

indicated for each case. Lines are given to guide the eye. From (Groult & Budtova, 2018). 
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Figure 82. Influence of sodium to pectin molar ratio on (a) porosity and (b) pore volume for 

pectin aerogels made from 3 wt% at pH 3 (same as in Figure 81). The state of the matter before 

solvent exchange, solution (S) or gel (G), is indicated for each case. Non-solvent was ethanol. 

Lines are given to guide the eye. From (Groult & Budtova, 2018). 

 

 

Figure 83. Influence of sodium to pectin molar ratio R(Na) on (a) shrinkage after solvent 

exchange (open points) and after drying (filled points) and (b) density (open points) and specific 

surface area (filled points) of pectin aerogels made from 6 wt% P35 solutions at pH 3, non-

solvent was ethanol. The state of the matter before solvent exchange, solution (S) or gel (G), is 

indicated for each case. Lines are given to guide the eye. From (Groult & Budtova, 2018). 

The morphology of pectin aerogels depends on sodium concentration, see Figure 84. Non-

gelled aerogel, in the absence of sodium, has compact morphology with the majority of 

mesopores while at R(Na) = 2 the morphology is similar to that in the presence of calcium, with 

rather large macropores.  
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Figure 84. SEM images of pectin aerogels made from 3 wt% P35 solutions at pH 3 with NaCl 

at R(Na) = 0, 0.2, 1 and 2. The state of the matter, solution or gel, is indicated for each case. 

Non-solvent was ethanol. From (Groult & Budtova, 2018). 

2.5.  Discussion on the correlations between the processing parameters 

and the aeropectin physical properties 

The results presented above on the influence of pH and concentration of di- and 

monovalent metal ions on pectin aerogel morphology and properties show that the main factor 

governing aerogel characteristics is the mechanism of structure stabilization, or, in other words, 

the state of the matter before solvent exchange, solution or gel. Gelation, whatever is the 

mechanism, leads to lower shrinkage upon the addition of non-solvent and sc drying and thus 

to aerogels with lower density and lower specific surface area, as macropores are preserved. 

When a non-solvent is added to non-gelled pectin solution, phase separation occurs (also known 

as “immersion precipitation”) leading to a strong contraction of macromolecules. The 

particularity of polysaccharides is that above the overlap concentration coagulated pectin still 

forms porous 3D network structure. This network continues contracting during drying because 

of a huge difference in polarity of water-soluble pectin and highly apolar CO2. Due to high 

volume shrinkage the density of aerogels increases (but still remains low, below 0.2 g/cm3) and 

specific surface area increases as macropores disappear. 
 

An example of how pectin aerogel morphology and properties can be tuned by varying 

pH and calcium concentration is shown in Figure 85, where aerogel characteristics are modified 

with pH (below pKa) and with calcium at R(Ca) = 0.2 (concentration 0.020 mM). Strong gels 

were obtained either by acid-induced gelation at pH < 1.5, or by ionic gelation with addition of 

calcium at pH close to pectin pKa [43], both resulting in low-density pectin aerogels (≈ 0.05 

g/cm3) with specific surface area around 300 – 450 m2/g. At pH close to pKa ≈ 3 - 3.5 and 

without calcium, non-gelled pectin solutions consisting of dissociated chains were obtained, 

leading to aerogels with more than twice higher density (around 0.12 – 0.14 g/cm3) and high 

specific surface area (560 - 590 m²/g) as compared to low pH. The closer pH was to pKa, the 

more significant was this difference between samples with or without calcium, gels vs solutions, 

respectively.  



CHAPTER III.  

Tuning structure and properties of pectin aerogels 

179 

 

 

Figure 85. (a) Density and (b) specific surface area of pectin aerogels made from 3 wt% P35 

solution in absence (filled symbols) or with addition of calcium at R(Ca) = 0.2 (empty symbols) 

at different pH. At pH 3.5 gelation in the presence of calcium was too quick to obtain a 

homogeneous sample. The state of the matter before solvent exchange, solution (S) or gel (G), 

is indicated for each case. Dashed lines are given to guide the eye. 

The second factor governing pectin aerogel morphology (less important than the state of 

the matter but still noticeable) is the type of gelation mechanism, acid vs ionic gelation. Here 

we only compare aerogels obtained from gelled solutions. One example is shown in Figure 85 

for the case R(Ca) = 0.2: at low pH gelation is mainly acid-induced and at pH around 3 it is 

ionic. At low pH pectin chains interact by assembling their non-dissociated galacturonic acid 

domains into intermolecular junction zones involving successive physical bonds. The latter are 

formed due to hydrogen and hydrophobic interactions. At low pH pectin ionization is very low, 

and thus acid-induced gelation is relatively unaffected by the addition of calcium. Because acid-

induced gelation is a cooperative reaction, aerogel morphology is rather heterogeneous, with 

large pores and “blocks” of agglomerated chains (see SEM image in Figure 85 at pH 1.5 and 

R(Ca) = 0.2). At pH around 3 – 3.5 ionic gelation occurs: aerogel density is the same as for 

acid-induced gelation (Figure 85a) but the morphology is much more homogeneous due to 

highly dissociated separated chains (see SEM image in Figure 85b at pH 3 and R(Ca) = 0.2). In 

this case, specific surface area is higher than that at pH 1 – 1.5, 450 m2/g vs 290 m2/g, 

respectively, reflecting the larger fraction of mesopores which can also be seen on SEM images 

(Figure 85 b.). 

 

Another example illustrating the influence of the type of gelation mechanism on aerogel 

morphology is shown in Figure 86 for the case of ionic (calcium-induced) vs acid (sodium 
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induced) induced gelation. The first one results in ionic bonding between pectin chains [22], 

whereas the latter leads to screening of negative charges allowing acid gelation. The effect of 

the addition of sodium ions on gelation and pectin aerogel morphology and properties is similar 

to what was observed for calcium ions, but sodium cations had to be added in much higher 

concentration than calcium to influence the state of the matter and aerogel properties. When 

calcium is added, strong gels are formed from 3 wt% solutions at very low ion concentration, 

R(Ca) = 0.2. On the contrary, at R(Na) < 1 weak gels are formed, resulting in higher density 

(Figure 86a) and higher specific surface area (Figure 86b); this case resembles non-gelled 

solutions. However, when R(Na) is ten times higher than calcium molar concentration, R(Na ) 

=2, acid gelation occurs leading to strong gels and aerogels with low density and rather low 

specific surface area, similar to those formed via ionic gelation. 

  

Figure 86. (a) Density and (b) specific surface area of pectin aerogels made from 3 wt% P35 

solutions pH 3.0 with either calcium (filled symbols) or sodium (open symbols), as a function 

of R molar ratio. The state of the matter, solution (“S”) or gel (“G”), is given for each case. 

Dashed lines are shown to guide the eye. 

The correlation between the state of the matter and aerogel density and specific surface 

area is summarized in Figure 87. Overall, density and specific surface area increase from 

roughly 0.05 g/cm3 and 300 m2/g to 0.15 g/cm3 and 600 m2/g, respectively, with the following 

evolution of the state of the matter before solvent exchange: strong gels → weak gels → high 

viscosity solutions → low viscosity solutions. Figure 87 shows results only for aerogels made 

from 3 wt% solution with non-solvent ethanol; the properties can be tuned even more if varying 

pectin concentration and non-solvent. A schematic presentation of structure evolution from 

pectin solution to aerogel, involving either gelation or phase separation, is shown in Figure 88. 
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We hypothesize that this approach may be valid for other gelling polysaccharides such as 

carrageenans and alginate.  

 

Figure 87. Density and specific surface area of pectin aerogels made from 3 wt% P35 solutions, 

non-solvent was ethanol. From (Groult & Budtova, 2018). 

 

Figure 88. Schematic presentation of two main ways of structure formation, from solution to 

aerogel. From (Groult & Budtova, 2018). 
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2.6.  Mechanical properties of low-methylated pectin aerogels  

The mechanical properties of aeropectins were studied by uniaxial compression under 

high loads and high deformations varying the strain up to 90% to obtain full stress−strain 

curves. Young’s modulus (E) (linear viscoelastic regime), yield stress (σyield) and densification 

strain (beginning of the plastic region) were determined from the compression strain-stress 

curves. During the compression testing, no radius increases and no buckling effects were 

observed. We studied the impact of pectin concentration, pH of pectin solution during 

dissolution step, and of calcium addition (R(Ca) = 0.2) in pectin solution on aeropectins’ 

mechanical behavior.  

2.6.1. Effect of pectin concentration 

An example of the compression curves of aeropectins made from solutions of different 

pectin concentrations (from 2 wt% to 6 wt%) is presented in Figure 89. The corresponding 

mechanical parameters and network morphologies of the corresponding aeropectins are 

presented in Table 4 and in Figure 90, respectively. The stress-strain curves presented in Figure 

89 are typical for bio-aerogels such as cellulose aerogels (dissolved in NaOH or in ionic liquid) 

(Demilecamps, 2015; Gavillon, 2007; Sescousse, 2010) and pectin aerogels (acid-gelled (Rudaz 

et al., 2014) or cross-linked with calcium (Demilecamps, 2015)). All pectin aerogels of the 

study were found to be extremely compressible with no breakage up to 85% deformation, and 

present a high stress above 75 % of deformation. 

 

Figure 89. Examples of stress−strain curves for aeropectins made from pectin P35 dissolved at 

pH 2.0 with calcium added (R(Ca) = 0.2) while increasing pectin concentration of the starting 

solution from 2 wt% to 6 wt%. The corresponding densities are 0.037 g/cm3, 0.045 g/cm3, 0.060 

g/cm3, 0.074 and 0.085 g/cm3. 
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Table 4. Mechanical properties of aeropectins made from pectin P35 dissolved at pH 2.0 with 

calcium added (R(Ca) = 0.2) while increasing pectin concentration of the starting solution from 

2 wt% to 6 wt% (data are from Figure 89). 

Pectin 

concentration 

(wt%) 

Aerogel 

density after 

polishing 

(g/cm3) 

Young 

modulus E 

(MPa) 

Yield stress 

σyield (MPa) 

Yield strain 

(%) 

Stress at 85% of 

deformation 

(MPa) 

2 wt% 0.037 0.50 0.031 6.3% 0.63 

3 wt% 0.045 0.81 0.053 7.4% 1.35 

4 wt% 0.058 1.41 0.087 7.3% 1.97 

5 wt% 0.074 2.10 0.136 7.3% 3.77 

6 wt% 0.085 4.04 0.186 6.6% 6.20 
 

 

Figure 90. SEM morphologies of aeropectins made from (a) 2 wt% pectin, (b) 4 wt% pectin 

and (c) 6wt% pectin P35 dissolved at pH 2.0 with calcium added at R(Ca) =0.2. The scale is 

the same for all pictures. 

We found that the increase of pectin concentration (from 2 wt% to 6 wt%) and, as a 

consequence, the increase of aerogel density, led to the increase of Young’s moduli, yield stress 

and stress measured at 85% deformation, while yield strains remained nearly constant around 

6 – 7.5 % (Table 4). The increase of modulus with aerogel bulk density plotted in Figure 91, was 

also reported for various polysaccharides-based and silica aerogels (Gavillon, 2007; Rege, 

Schestakow, Karadagli, Ratke, & Itskov, 2016; Rudaz, 2013; Sescousse, 2010). Per analogy 

with other aerogels made from cellulose, pectin or silica, we can assume that the variation of 

modulus with bulk density follows a power law. Plotting Young’s modulus as a function of 

density, we found that pectin aerogels follow a power law trend (E ∼ ρn) using the model of 

Ashby and Gibson (Gibson & Ashby, 1999) with a n exponent around 2 in the case of pectin 

aerogels with calcium and made at pH 2.0 (Figure 91).  
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As it will be shown in the following, it appeared that the value of the n exponent seems 

to vary as a functions of the pectin aerogels’ preparation conditions (e.g. pH and calcium 

concentration) as they strongly impact the network morphology and aerogels physical 

properties. In order to compare different n values obtained depending on aerogels preparations 

conditions, the results are discussed all together at the end of the section 2.6. 

 

Figure 91. Young’s modulus as a function of density of pectin aerogel made from pectin P35 

dissolved at pH 2.0 with calcium added (R(Ca) = 0.2) while increasing pectin concentration of 

the starting solution from 2 wt% to 6 wt%. All samples were pectin ionic gels (calcium-induced) 

before solvent exchange. Solid line represents the trendline power law. 

2.6.2. Effect of pH of starting pectin solution on the mechanical properties 

As the internal structure of pectin aerogels was found to be strongly impacted by pH of 

pectin starting solution (see Section 2.2.), we found interesting to compare the mechanical 

properties of aeropectins varying the pH conditions (from 1.5 to 3.0). The examples of 

compression curves and mechanical properties of pectin aerogels made at different pH are 

presented in Figure 92 and Table 5, respectively. SEM pictures of the network morphology are 

shown in Figure 93. 
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Figure 92. Examples of stress−strain curves for aeropectins made from 6 wt% pectin P35 

dissolved without calcium at pH 1.5 (1), pH 2.0 (2) and pH 3.0 (3). The corresponding densities 

are 0.165, 0.215, and 0.260 g/cm3, respectively. All samples were pectin acid-induced gels 

before solvent exchange. 

 

Figure 93. SEM morphologies of aeropectins made from 6 wt% pectin P35 dissolved without 

calcium at pH 1.5, pH 2.0 and pH 3.0, non-solvent was ethanol. The scale is the same for all 

pictures. 

Table 5. Mechanical properties of aeropectins made from 6 wt% pectin P35 dissolved without 

calcium at pH 1.5, pH 2.0 and pH 3.0. (stress-strain curves are in Figure 92). 

pH of pectin 

solution 

Aerogel 

density after 

polishing 

(g/cm3) 

Young 

modulus E 

(MPa) 

Yield stress 

σyield (MPa) 

Yield strain 

(%) 

Stress at 85% of 

deformation 

(MPa) 

1.5 0.165 2.8 0.261 7.6% 7.2 

2.0 0.215 16.3 0.891 7.0% 72.1 

3.0 0.260 32.1 1.19 5.0% 98.6 
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As it can be seen in Table 5, the change of network morphology induced by pH of the 

starting solution of pectin strongly influences the mechanical properties of the pectin aerogels. 

Indeed, increasing pH from 1.5 to 3.0 resulted in more than 10 times higher Young’s moduli 

and stress measured at 85% of deformation in correlation with higher bulk density (Figure 94). 

Setting the pectin solution pH at 3.0 instead of 1.5 decreased pectin chains interactions due to 

coulombic repulsions, leading to weaker acid-gels at “high” pectin concentrations (≥ 5 wt%) 

and even inhibiting acid gelation at lower pectin concentration (≤ 4.5 wt%). Higher volume 

shrinkage underwent by pectin sample during the process route resulted in aeropectins with 

improved mechanical properties as they present more compact and homogenous network 

morphology, higher density and smaller pores. The exponent n obtained here is around 4. 

 

Figure 94. Young’s modulus as a function of density of pectin aerogel made from 6 wt% pectin 

P35 dissolved without calcium at pH 1.5, pH 2.0 and pH 3.0. All samples were pectin acid gels 

before solvent exchange, non-solvent was ethanol. Solid line represents the trend line power 

law. 

2.6.3. Effect of addition of calcium into pectin solution 

Finally, we studied the impact of the addition of calcium to pectin solution on the 

mechanical behavior of aeropectins as calcium addition was also found to be key-process 

parameter to tune aeropectin structural properties (see section 2.3.).  

For this purpose, we compared the mechanical properties of aeropectins made from 6 

wt% pectin dissolved at pH 1.5 or pH 2.0 without calcium or with calcium added in pectin 

solution at R(Ca) = 0.2. The examples of compression curves and mechanical properties of the 

different pectin aerogels at these pH and calcium conditions are presented in Figure 95 and 

Table 6, respectively. SEM pictures of the corresponding network morphology are shown in 

Figure 96. 
 

pH 3.0

pH 2.0

pH 1.5

y = 7378,3x4,138

R² = 0,9987

0

5

10

15

20

25

30

35

0,00 0,05 0,10 0,15 0,20 0,25 0,30

Y
o

u
n

g
's

 M
o

d
u

lu
s

 /
((

M
P

a
)

Pectin aerogel density (g/cm3)

G

G

G



CHAPTER III.  

Tuning structure and properties of pectin aerogels 

187 

 

 

Figure 95. Examples of stress−strain curves for aeropectins made from 6 wt% pectin P35 

dissolved (a) at pH 1.5 or (b) at pH 2.0 in absence of calcium or with calcium added at R(Ca) 

= 0.2. Non-solvent was ethanol. 

 

Figure 96. SEM characterization of aeropectins made from 6 wt% pectin P35 dissolved at pH 

1.5 or 2.0 in the absence of calcium or with calcium added at R(Ca) = 0.2, non-solvent was 

ethanol. The scale is the same for all pictures. 
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Table 6. Mechanical properties of aeropectins made from 6 wt% pectin P35 dissolved at pH 1.5 

or 2.0 in the absence of calcium or with calcium added at R(Ca) = 0.2 (from Figure 95). 

pH of pectin 

solution 

Calcium 

R(Ca) 

ratio 

Aerogel 

density after 

polishing 

(g/cm3) 

Young 

modulus E 

(MPa) 

Yield stress 

σyield (MPa) 

Yield strain 

(%) 

Stress at 85% 

of deformation 

(MPa) 

1.5 _ 0.165 4.7 0.261 7.6% 32.6 

1.5 0.2 0.091 2.1 0.132 7.1% 7.2 

2.0 _ 0.215 16.3 0.891 7.0% 72.1 

2.0 0.2 0.085 2.8 0.179 6.2% 6.0 

As we could expect from aerogels densities, the addition of calcium to pectin solutions 

(R(Ca) = 0.2) drastically decreased the mechanical parameters of pectin aerogels (Young’s 

modulus, yield stress, stress measured at 85 % of deformation) as it also strongly reduced 

aerogel density compared to aeropectins without calcium.  

 

Similarly to the effect of decrease of pH discussed just above, the addition of calcium 

also led to highly porous network morphologies with larger pores (Figure 96), and thus was 

actually found to significantly weaken the mechanical properties. In addition to the change in 

aeropectins structural properties, the calcium concentration of pectin solution is known to make 

pectin hydrogels more brittle due to the “stiffness” of the ionic bonds (Basak & 

Bandyopadhyay, 2014; Capel et al., 2006, p. 006; Ilse Fraeye, Colle, et al., 2010; Ilse Fraeye, 

Duvetter, et al., 2010). Thus, we can assume that it could also have an impact on the mechanical 

properties of supercritically dried pectin aerogels. This effect was also observed by Arnaud 

Demilecamps during his PhD work on calcium crosslinked aeropectins (Demilecamps, 2015). 

As it can be noticed in Figure 97 and Table 6, the effect of calcium addition on the 

mechanical properties of aeropectins is more pronounced at pH 2.0 than at 1.5. As an 

illustration, aeropectin Young’s modulus is divided by 2 when calcium was added at pH 1.5, 

and divided by 4 when calcium was added at pH 2.0. This difference is due to a much lower 

amount of deprotonated functions (carboxylates) available to interact with calcium ions at pH 

1.5 compared to pH 2.0, minimizing the effect of calcium on network formation and so on the 

mechanical properties of pectin aerogels. Without calcium, more “weaker” acid-induced pectin 

gels were obtained at “high” pectin concentration (≥ 5 wt%) via the formation of hydrogen 

bonds between protonated functions promoted by low pH (pH ≤ 3.0), while much firmer and 

more porous pectin ionic gels were obtained at “low” and “high” pectin concentrations ( from 

2 wt% to 6 wt%) due to strong ionic bonds when calcium was added (R(Ca) = 0.2). As a result, 

acid gels (without calcium) were more pronto to higher volume shrinkage during solvent 

exchange and sc-drying, which significantly increased the aerogels’ density and so their Young 

‘s Modulus. Besides, it can be noticed that even at very low pH (pH 1.5), calcium concentration 
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still had an effect on the pectin network formation as aerogels density and Young’s modules 

were much smaller than without calcium. As a conclusion, the structure formation of the pectin 

network via hydrogen interactions or ionic (by changing pH and calcium conditions) has a direct 

impact on the level of sample shrinkage, on the final textural properties of aerogels and thus on 

their mechanical properties.  

 

 

 

Figure 97. Calcium effect on Young’s modulus of aeropectins made from 6 wt% pectin P35 

dissolved at pH 1.5 or 2.0 in the absence of calcium (square) or with calcium added at R(Ca) = 

0.2 (diamonds). Non-solvent was ethanol. All samples were pectin gels (acid-induced or 

calcium-induced) before solvent exchange. 

As a conclusion, it seems that mechanical properties of pectin aerogels are mainly 

controlled by their bulk density, the latter being impacted by the process parameters (pH, 

concentration of pectin and calcium concentration, all influencing the way of network 

formation, via acid-induced gelation, ionic gelation or phase separation). As it was also 

observed with other aerogels made from polysaccharides, silica or inorganic polymers, the 

variation of modulus with bulk density seems to follow a power law trend (E ∼ ρn) as described 

using the model of Ashby and Gibson (Gibson & Ashby, 1999). An interesting thing to note is 

that the n exponent is equal to 2 (Figure 91) for pectin aerogels crosslinked with calcium (R(Ca) 

= 0.2) while it is around 4.1 for pectin aerogels without calcium (Figure 98). As a comparison, 

the exponent n is around 2.8 as reported for pectin aerogels made without calcium by acid 

gelation in strong acid (using HCl at 0.5M, pH ~ 0.3) (Rudaz et al., 2014). Those pectin aerogels 

presented lower density and Young’s modulus (between 4 to 10 MPa) for similar pectin 

concentration (3-5 wt%) (Rudaz, 2013) than the pectin aerogels without calcium of this study 

(pH varying from 1.5 to 3.0).  

Comparatively to other polysaccharide-based aerogels and cryogels, the n exponents were 

found to be around 2.8-2.9 for cellulose aerogels (Gavillon & Budtova, 2008; Sescousse, 2010; 

Sescousse, Gavillon, & Budtova, 2011), and for nanofibrillated cellulose foams (freeze-dried) 

the n values were around 2.3 and 3.1 for TEMPO-oxidized or enzymatically pre-treated 
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nanofibrillated cellulose, respectively (Martoïa et al., 2016). For aerogels made from synthetic 

polymers, n values were reported to be in general around 2 – 3: for instance, n ~ 2 for polyurea 

aerogels (Weigold & Reichenauer, 2014), n ~ 2.7 for resorcinol− formaldehyde aerogels 

(Pekala, Alviso, & LeMay, 1990) and even up to 3.7 for polyurethane aerogels (Diascorn, Calas, 

Sallee, Achard, & Rigacci, 2015). Finally, n exponents were reported around 2.9-3.0 for silica 

aerogels (Alaoui, Woignier, Scherer, & Phalippou, 2008).  

 

Contrary to other types of aerogels, calcium-crosslinked pectin aerogels present much 

lower n exponent (~ 1.7), whereas the trend for pectin aerogels without calcium was found to 

have significantly higher n exponent (~ 4.1) than for other aerogels. It should be noted that the 

interval of densities of cross-linked pectin aerogels is rather small, and thus to conclude on the 

trend for the mechanical properties is a bit delicate. Different power law trends of aeropectins 

depending on calcium conditions can be explained by the differences between the junction 

zones made from successive strong ionic bonds (pectin-Ca), as compared to the more flexible 

and weaker hydrogen bonds between pectin chains in the absence of calcium. The physico-

chemical characteristics of junction zones building the pectin network may have also modified 

chain rigidity and spatial conformation and thus influence the mechanical properties. 

 

Figure 98. Comparison of Young’s moduli and scaling exponents n as a function of bulk density 

for different aerogels using power law model E ~ ρn (Gibson & Ashby, 1999): pectin aerogels 

were either without calcium (1) or cross-linked with calcium R(Ca) = 0.2 (2),  non-crosslinked 

cellulose aerogels (data taken from (Sescousse, 2010)) (3), and silica aerogels (data taken from 

(Alaoui et al., 2008)) (4).  
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2.7. Conclusions on the properties of low-methylated pectin aerogels 

Low methylated pectin aerogels were synthesized and characterized. A systematic 

variation of the external parameters (pH, polymer concentration, type of non-solvent, 

concentration of mono- and polyvalent metal ion salts) allowed modulating solution viscosity 

and gelation mechanisms, which in turn influenced aerogel structure and mechanical properties. 

The density of pectin aerogels varied from 0.05 to 0.25 g/cm3 and specific surface area from 

270 to 600 m2/g. As expected, the aeropectin mechanical properties were strongly governed by 

their density but were also impacted by the type of junction zones and network morphology 

involved in the formation of pectin aerogel network (ionic or hydrogen interactions). 

 

Strong ionic gels formed in the presence of calcium around pectin pKa “resisted” 

shrinkage during solvent exchange and drying. As a result, aerogels with high proportion of 

macropores, low density, around 0.05 g/cm3, and rather low specific surface area, around 300 

m2/g, were formed. Aerogels with similar morphology and density were obtained at low pH: 

solutions gelled due to hydrogen bonding between protonated carboxyl groups and hydrophobic 

interactions between methylated groups. The increase of pH led to carboxylate groups’ 

ionization preventing gelation. The state of the matter before solvent exchange was solution, 

and pectin network was formed during solvent exchange, via non-solvent induced phase 

separation (or coagulation). In this case shrinkage during solvent exchange and supercritical 

drying was high as far as 3D structure was not “stabilized” by gelation. The resulting pectin 

aerogels were mesoporous, of density around 0.12 -0.25 g/cm3 and high specific surface area, 

around 600 m2/g. Weak gels were formed upon the addition of sodium salt which was screening 

the electrostatic repulsion between charged carboxylates and leading to aerogels with properties 

intermediate to those described above. The mechanism of structure stabilization, i.e. gelation 

or non-solvent induced phase separation, was shown to be the key parameter controlling aerogel 

structure and mechanical properties.  
 

3.  Effects of pectin degree of esterification on pectin aerogels 

structural properties 

In addition to the influence of extrinsic process parameters on aeropectins structural 

properties, we found interesting to also investigate the impact of intrinsic parameters. Indeed, 

pectin’s Degree of Esterification (DE) (%), of Acetylation (DAc) (%), of Amidation (DA) (%) 

as well as the distribution of the specific functions along the pectin chain (random-like or block-

wise) depends on pectin source and chemical treatments and are known to be the main factors 

dictating the gelling ability and their mechanisms. In particular, pectin DE impacts 
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intermolecular chain interactions (hydrogen/hydrophobic), the internal charge distribution 

within the backbone of the pectin, and the availability of charged groups to interact with metal 

ion cations. In the absence of ions and at pH lower than pKa, gelation of Low-Methylated 

pectins (LM) (i.e. for DE < 50%) is known to occur mostly through hydrogen bonds, while for 

High-Methylated pectins (i.e. for DE < 50%) gelation occurs via hydrophobic interactions and 

require a high co-solute content (typically, a high content (> 60%)) of low molecular weight 

sugar to reduce water activity and stabilize hydrophobic interactions between pectin chains 

(Dumitriu, 2004; Oakenfull, 1991). In this work we did not add any co-solute in pectin 

preparations which will impact the structure formation and gelling ability of HM pectin 

solutions as compared to what is known in literature. 
  

In the previous section on low-methylated pectin aerogel (Section 2) we showed that by 

varying pH conditions and cations’ concentration in low-methylated pectin solutions, we were 

able to control the build-up of pectin network and state of the matter (gel or solution) by varying 

acid dissociation/protonation of galacturonic acid. This was found, in turn, to strongly impact 

the final structural and morphological properties of aeropectins made from low methylated 

pectin (P35). Now, we open up the question of the influence of pectin DE on pectin gels and 

aerogels properties while varying the pH and calcium conditions. Are the processing-structure-

properties correlations previously observed with low-methylated pectin applicable to higher-

methylated ones? At a given preparation and process conditions, does the variation of pectin 

DE significantly impacts soft matter structuration and the final physical properties of pectin 

aerogels? 
 

To answer these questions, we used three different citrus pectins to produce aerogels from 

low- to high-methylation degree (with DE of 35%, 59% and 70%). The pH and R(Ca) ratio 

were varied in a systematic way, and the obtained pectin gels and aerogels were characterized.  

The section is organized as follows: 

- We first study the impact of pectin DE on pectin solutions or gels and aerogels 

properties at different pH conditions. 

- Then we examine the influence of pectin DE at different calcium R(ratio) coupled with 

different pH conditions. 

3.1. Impact of DE on aeropectin structural properties varying the pH 

As we already know, increasing pH close to and above pectin pKa (~ 2.9 - 3.5) (Plaschina et 

al., 1985; Ralet et al., 2001) results in progressive dissociation of acid functions on non-

methylated galacturonic acid groups (Gal.A). The appearance of negative charges is known to 

lead to coulombic repulsion between pectin chains, which reduces the interactions and may 

inhibit gelation. On the opposite, as the pH decreases, the protonation of carboxylates into 
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carboxylic acids of the non-methylated Gal.A occurs, resulting in progressive decrease of the 

number of negative charges along the pectin backbone. This not only decreases electrostatic 

repulsions between pectin molecules, but also reduces hydration of carboxylic groups with 

water molecules (low-water-activity) which allows the formation of physical junctions’ zones 

between pectin chains (Paoletti et al., 1986). Such junction zones are based on chain 

associations stabilized by hydrogen bonding between un-dissociated carboxylic acids and 

secondary alcohol groups, and by hydrophobic interactions between methyl esters groups. The 

build-up of a 3-D network can lead to acid-gelation if chain interactions are sufficient at given 

conditions of temperature and pectin concentration.  

3.1.1. Impact of pectin DE on the viscosity of pectin solutions while 

varying the pH 

To investigate the influence of pectin DE, we first study the evolution of viscosity of 

pectin solutions while varying the pH. Pectin aqueous solutions were made from 0.90 wt% of 

pectin P35, P59 or P70 with pH varying from 1.5 to 3.0. As it can be seen on Figure 99, viscosity 

of 0.90 wt% pectin solutions increased when pH was progressively decreasing from 3.0 to 1.5, 

as already demonstrated for P35 (Section 3.2). The viscosity of LM pectin solutions made from 

P35 were highly impacted by lowering pH below pKa (~ 2.9 -3.5) contrary to HM pectins P59 

and P70. Indeed, pectins sensitivity to pH seemed to be directly correlated to DE, the latter 

determining the amount of non-methylated carboxyl functions whose dissociation depends on 

pH conditions. The lower is the pectin DE, the more numerous are the carboxylic functions 

likely to be dissociated into carboxylates when pH increases, which results in a decrease of 

solution viscosity with appearance of repulsive charges between the chains. This explained why 

for HM-pectins solutions (P59 and P70) the appearance of negative charges has a minor impact 

on viscosity, as the majority of galacturonic acids are methylated, i.e. not pH-sensitive.  
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Figure 99. Viscosity as a function of shear rate of 0.9 wt.% pectin solutions of (a) P35 (b) P59 

and (c) P70 at pH 3.0 (1), pH 2.5 (2), pH 2.0 (3) and pH 1.5 (4). 

Moreover, contrary to what could be expected from the influence of pectin molecular weight 

(see Section 1.2 of this chapter) on viscosity, i.e. higher viscosity for the polymer of higher 

molecular weight, it can be noticed that viscosity of HM pectin (higher mol. weight) solutions 

was significantly lower than that of LM P35 (lower mol. weight) in the same conditions of pH 

and ionic strength. The reason is that LM pectin (P35) has much larger amount of carboxyl 

groups as compared to HM pectins, and at the same low pH LM pectin possess much larger 

number of protonated carboxyl groups involved in the formation of hydrogen bonds, which in 

turn increases solution viscosity. This effect is dominating the potential decrease of solution 

viscosity expected for polymer of lower molecular weight. We can assume that in absence of 

co-solute (which enhances hydrophobic interactions), chain-solvent interactions dominated 

over chain-chains interactions especially for pectins with high DE, resulting in lower viscosity 

solutions as DE increases. Indeed, it is well known that HM pectins require a significant co-

solute content to reduce water activity (typically, high sugar content ∼ 60%) and pH lower than 

3.5, allowing pectin chains to interact. More precisely, the presence of co-solutes enhances 

hydrophobic interactions through a solvent ordering effect (Dumitriu, 2004; Oakenfull, 1991), 

and their amount required increases with increasing DE (Hui, Sherkat, & Sherkat, 2005). 

3.1.2. Impact of pectin DE on aeropectin properties while varying the pH 

As demonstrated in Section 2.2 for LM pectin P35, pH controls the formation of the pectin 

network influencing the level of acid dissociation of Gal.A. We obtained different states of 

matter at different pH:  strong pectin gels at very low pH (≤ 1.0), weak gels (pH ~ 1.5), high 

viscosity solutions (pH ~ 2.0) and low viscosity solutions (pH ≥ 2.5). We showed that un-gelled 

solutions were resulting in sample higher volume shrinkage during solvent exchange and sc-

drying, which led to higher aeropectin density compared to the ones obtained from a 

mechanically stronger gel. Gel state was found to efficiently prevent volume shrinkage due to 

a strong network, and very low density aeropectins (~ 0.05g/cm3) were obtained after sc-drying. 

 

In this study, this observation is confirmed and generalized for all pectins with different 

DE. As shown in Figure 100a for all 3 wt% pectin-based aerogels, volume shrinkage decreased 

while lowering pH from 3.0 (~ 63% - 75% of shrinkage) to 0.5 (~ 45% - 53% of shrinkage). 

The formation of a gel at low pH prevented pectin samples from volume shrinkage during 

solvent exchange and sc drying, and lower density aeropectins were obtained at low pH for all 

pectins, as presented in Figure 100b.   
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Figure 100. (a) Volume shrinkage after solvent exchange (open symbols) and after sc-drying 

(filled symbols) and (b) density of aeropectins made from 3 wt% pectins P35 (1), P59 (2), P70 

(3) dissolved at different pH without calcium. Non-solvent was ethanol. Gel state before solvent 

exchange is indicated with “G”, otherwise samples were solutions. Lines are given to guide the 

eye. 

For especially low viscosity solutions obtained from 3 wt% of HM pectins P59 and P70 

at pH 3.0 (Figure 99), we noticed an unexpected swelling phenomenon of the samples during 

solvent exchange during the first addition of a water / ethanol mixture at ratio 50 / 50 (v). The 

swelling was observed in the longitudinal direction (around +10-20% of longitudinal swelling 

as compared to initial sample thickness) as the radial direction was maintained by the mold. 

This swelling artificially reduced the overall volume shrinkage undergone by HM pectins 

samples, as shown in Figure 100. As a result, the aeropectins made from HM pectins (P59 and 

P70) presented much lower densities after sc-drying than aeropectins made from LM pectin 

(P35) as shown in Figure 102. Thus, the viscosities of pectin solution and pectin DE were found 

to have an opposite influence on pectin aerogel properties, leading to lower aeropectin densities 

as DE was high and pH was low. Swelling was lower with increasing pectin viscosity by 

lowering pH or by adding calcium to pectin solutions. No swelling was observed once gels or 

“sufficiently high” viscosity solutions were formed. Contrary to HM pectins (P59, P70), no 

swelling was observed for from LM pectin solution (P35) thanks to their higher viscosity in the 

pH range (0.5 – 3.0) (Figure 99), resulting in higher aeropectin density than HM pectins at a 

given pH.  

 

As shown in Section 3.1.1., HM pectins are much less sensitive to pH than LM pectin 

as the latter presents a larger proportion of non-methylated galacturonic acids which are 

subjected to acid dissociation. For example, HM pectin solutions are not gelling in the pH 

conditions in which LM pectin does. This difference is also reflected by volume shrinkage and 

density increase as a function of pH (figure 41): the increase of pH leads to a much higher 
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variation in shrinkage and density as compared to LM pectin aerogels, especially if comparing 

P35 and P70. The same is valid for pore volume and porosity, as shown in Figure 101.  

 

Figure 101. (a) Pore volume and (b) porosity of aeropectins made of 3 wt% of pectins P35 (1), 

P59 (2), P70 (3) dissolved at different pH conditions and without calcium. Non-solvent was 

ethanol. Gel state before solvent exchange is indicated with “G”, otherwise samples were 

solutions. Lines are given to guide the eye. 

Finally, in the previous study on LM pectin (Section 3.2.), we observed a progressive 

decrease of aeropectin specific surface area (SBET) as the pH of the pectin starting solution was 

reduced lower than pKa (~ 3 - 3.5). The same occurs for all types of pectin aerogels prepared, 

but in a different manner (Figure 102 (a)). We explained the progressive reduction of SBET by 

the formation of non-porous junction zones between pectin chains (hydrogen bonds / 

hydrophobic interactions) which are favored at low acidic pH solutions. We assume that more 

numerous junction zones should be formed in LM pectin due to higher proportion of hydrogen 

bonding compared to HM pectins whose hydrophobic interactions were not adequately 

stabilized without a high co-solute content (e.g. sugars) within pectin solutions. Indeed, gelation 

and subsequent stability of HM pectin acidic gels depends on a complex “mixture” of hydrogen 

bonds and hydrophobic interactions (Rosenbohm, Lundt, Christensen, & Young, 2003). 

Contrary to hydrogen bonds, it is known that hydrophobic interactions require a certain co-

solute content to form stable junction zones and to induce gelation (typically > 60 wt% of sugar 

in pectin solution) (Dumitriu, 2004; Oakenfull, 1991).  

In the absence of co-solutes, we assume that aeropectins’ SBET can be used as a 

“characterization tool” to highlight the level of chain interactions that were formed in the 

aqueous state, and might reflect pectin major macromolecular properties. In (Figure 102 (b)), 

we compared the percentage of decrease of SBET with pH, starting from pH 3.0 as the “reference 

point” to pH 1. Higher is pectin degree of methylation, smaller is the variation of SBET. Indeed, 
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P35 aeropectins presents the widest variation of SBET with pH (from 570 to 290 m²/g) than P59 

and P70 (from 430 – 320 m²/g).  

 

Figure 102. (a) Specific surface area (SBET) of aeropectins made from 3 wt% of pectins P35 (1), 

P59 (2), P70 (3) dissolved at different pH and without calcium. Non-solvent was ethanol. Gel 

state before solvent exchange is indicated with “G”, otherwise samples were solutions. Lines 

are given to guide the eye.  

(b) Reduction of SBET (%) of aeropectins made from 3 wt% when pH of pectin solutions of is 

reduced from 3.0 to 1.0. 

SEM characterization, presented on Figure 103, confirms the change of aeropectins 

structural properties when pH was reduced below pH 3.0, with larger pores for all pectin studied 

at pH 1.0 than at pH 3.0, in correlation with lower density (Figure 100). The changes in network 

morphology with pH were clearly much more impacting P35 than P59, and were practically not 

noticeable for P70. 

 

Figure 103. SEM pictures of aeropectins made of 3 wt% of (a) P35, (b) P59 and (c) P70 

dissolved at pH 3.0 or pH 1.0 without calcium. Non-solvent was ethanol. The state of the matter 
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(solution or gel) before solvent exchange is indicated for each case. The scale is the same of all 

images. 

As a conclusion, not only we confirmed, but also, we generalized our previous conclusions 

about the influence of pH of pectin starting solutions on the structural properties of aeropectin 

(shrinkage, density, SBET, morphology) made from different pectins from low to high degree of 

esterification. Moreover, the impacts of pH of pectin solution on aerogel morphology and 

properties were found to be more pronounced as the DE was lower in direct correlation with 

the intrinsic physico-chemical properties of each pectin of the study. 

3.2. Impact of DE on aeropectin structural properties varying R(Ca) 

ratio 

In this part, we focus on the impact of pectin DE in the presence of calcium at given pH on 

aeropectin final properties.  

As it can be seen on Figure 104, viscosities of 0.90 wt% pectin solutions were more or less 

impacted by calcium addition depending on pectin DE and calcium R(Ca) ratio. Indeed, DE 

directly determines the proportion of non-methylated functions that can be ionized to interact 

with calcium ions. The formation of ionic bonds between pectin chains increases the viscosity 

of solutions and participates in the build-up of the pectin network. 

 

 

Figure 104. Viscosity as a function of shear rate of 0.9 wt% pectin solutions of (a) P35 (b) P59 

and (c) P70 without calcium (1), at R(Ca) = 0.01 (2) or at R(Ca) = 0.05 (3). Viscosities were 

measured 30 min after calcium addition and homogenization. 

As expected, at pH 3.0 close to pKa, LM pectin P35 showed a high sensitivity to calcium. 

In the presence of calcium, viscosity increased with a more pronounced shear-thinning behavior 
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even at a very low R(Ca) value (R(Ca) = 0.01). On the opposite, viscosity of solutions of HM 

pectin P70 was not significantly impacted by addition of small amounts of calcium (R(Ca) = 

0.01 and R(Ca) = 0.05), in correlation with its high proportion of methylated Gal.A which are 

not available to interact with cation. Due to its intermediate methylation degree, P59 showed a 

moderate but significant calcium-response similar to LM pectin P35, with solutions viscosity 

increase by around 25% - 30%. However, at the same R(Ca) ratio value and polymer 

concentration, viscosity of solutions of P35 was always higher than P59 and P70. These results 

highlight the influence of pectin DE on the affinity of pectic chains towards calcium ions and 

on pectin gel strength in the presence of calcium, in agreement with literature (Garnier et al., 

1993, 1994; R. Kohn & Luknár, 1975; Ström et al., 2007).  

 

To investigate the impact of the degree of methylation in the presence of calcium on 

pectin aerogels structural properties, we added calcium to pectin concentrated solutions made 

of P35, P59 and P70, at two pH conditions: around pKa at pH 3.0, and lower than pKa at pH 2.0 

at which acid dissociation is supposed to be low. Depending on i) the DE, ii) the pH iii) and the 

R(Ca) value, we noticed different “calcium effects” on the state of the matter of aqueous pectin 

samples (solution or gel) before solvent exchange, and on final aeropectins structural properties 

after sc-drying (density, specific surface area).  

3.2.1. Effect of DE on gel state at different R(Ca)  

At pH 3.0, no gel was obtained for P35 if R(Ca) ˂ 0.1, for P59 if R(Ca) ˂ 0.2 and for P70 

if R(Ca) ˂ 0.4. These observations underline the critical role of the DE in the ionic gelation 

mechanism (M. A. V. Axelos & Thibault, 1991, p. 6; Garnier et al., 1993). The reactivity and 

gel forming ability of pectins increase with decreasing the degree of methylation, as the 

proportion of ionized free carboxylic groups available to create electrostatic bonds with cations 

is higher (M. A. V. Axelos & Thibault, 1991; Bayarri, Oulahal, Degraeve, & Gharsallaoui, 

2014). In other words, the lower the pectin DE, the higher was the affinity of pectin chains 

towards calcium ions (Garnier et al., 1993, 1994; R. Kohn & Luknár, 1975; Ström et al., 2007). 

Moreover, this indicates that even HM pectins can interact with calcium, despite that their 

sensitivity to calcium depends on DE and calcium concentration. 

3.2.2. Effect of pH on calcium sensitivity for various DE  

Gel transition (determined by a “tilting test”) was more shifted to higher R(Ca) values 

when pH was decreased to pH 2.0, as dissociation of carboxylates is significantly reduced 

compared to pH 3.0. Besides, R(Ca) values where gelation occurred also was depending on the 

DE of each pectin. The low-methylated pectin P35 remained highly sensitive to calcium even 
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at pH 2.0, with a strong gelation induced at R(Ca) = 0.05, as under pKa hydrogen interactions 

were contributing to build up the gel network (M. A. V. Axelos & Thibault, 1991; Rudolf Kohn, 

1987; Yuliarti, Hoon, & Chong, 2017).  

On the contrary, higher calcium concentration was needed to induce gelation of HM 

pectins solutions (P59 and P70). For P59 no gel transition was observed if R(Ca) ˂ 0.4 at pH 

2.0 (in comparison to gel transition for R(Ca) = 0.2 at pH 3.0). This indicates that pectin P59, 

which presents a moderate degree of methylation, kept certain “sensitivity” to calcium even at 

pH slightly below pKa, but its gelling ability requires doubling calcium concentration to induce 

gelation. For P70 no gelation was observed within the entire range of R(Ca) tested (up to R(Ca) 

= 0.6). Due to its high degree of methylation, P70 required a major dissociation of non-

methylated carboxylic groups at higher pH, to be able to efficiently form ionic junctions with 

calcium, contrary to P59 and P35. 
 

As it was shown previously, the addition of calcium resulted in strengthening the pectin 

network, which was more pronounced at higher R(Ca) and lower DE. Consequently, increasing 

calcium concentration reduced shrinkage during solvent exchange and sc-drying, which led to 

lower aeropectin density and porosity after drying, as it is shown in Figure 105 and Figure 106. 

The higher was the sensitivity to calcium reflected by the DE, the stronger were the gels (Ström 

et al., 2007), preserving samples from shrinkage. 

  

Figure 105. (a) Volume shrinkage after solvent exchange (open symbols) and after sc-drying 

(filled symbols) and (b) density of aeropectins made from 3 wt% of pectins P35 (1), P59 (2), 

P70 (3) dissolved at pH 3.0 with addition of calcium at different R(Ca) ratio from R(Ca) = 0 

(no calcium) to R(Ca) = 0.6. Non-solvent was ethanol. Gel state before solvent exchange is 

indicated with “G”, otherwise samples were solutions.  

 

0

20

40

60

80

100

0 0,1 0,2 0,3 0,4 0,5 0,6

R(Ca) ratio

P35

P59

P70

Volume shrinkage (%) (a)

3

2

1

G

G

G
G G

G

G G

G G

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0 0,1 0,2 0,3 0,4 0,5 0,6

R(Ca) ratio

P35

P59

P70

Density (g/cm3) (b)

3

2

1



CHAPTER III.  

Tuning structure and properties of pectin aerogels 

201 

 

 

 Figure 106. (a) Pore volume and (b) porosity (%) of aeropectins made of 3 wt% of pectins P35 

(1), P59 (2), P70 (3) dissolved at pH 3.0 and with increasing calcium ratio R(Ca) from 0 to 0.6. 

Non-solvent was ethanol. Gel state before solvent exchange is indicated with “G”, otherwise 

samples were solutions. 

As shown in Figure 107 (a), we observe a progressive reduction of specific surface area 

while increasing the amount of calcium added in all pectin aerogels, as it was already observed 

in aerogels made from LM pectin P35 (see Section 2.3.). The lower was the DE and the higher 

was R(Ca), the more ionic junction zones between pectin chains were formed, resulting in the 

decrease of specific surface area as shown in Figure 107 (a). The “sensitivity” of the specific 

surface area to DE is demonstrated in Figure 107 (b) as the percentage of SBET decrease from 

R(Ca) = 0 to R(Ca) = 0.6.   

  

Figure 107. (a) Specific surface area (SBET) of aeropectins made of 3 wt% of pectins P35 (1), 

P59 (2), P70 (3) dissolved at pH 3.0 and with increasing calcium ratio R(Ca) from 0 to 0.6. 
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Non-solvent was ethanol. Gel state before solvent exchange is indicated with “G”, otherwise 

samples were solutions.  

(b) Reduction of SBET (%) of aeropectins made from 3 wt% of pectin P35, P59, P70 from no 

calcium to R(Ca) = 0.6 at pH 3.0. Non-solvent was ethanol. 

The impact of the addition of calcium on aeropectin morphologies observed by SEM 

follows the same tendency as previously explained. The lower was the DE and the higher was 

R(Ca), the stronger was pectin network with better resistance to shrinkage, and the more 

preserved network morphologies were obtained, as it is shown on Figure 108 with the example 

of addition of high R(Ca) ratio (R = 0.2) at pH 3.0. In the presence of calcium, network 

morphology of LM pectin P35 was significantly less dense, with larger macropores in 

correlation with its structural properties. On the opposite, the network morphology of pectin 

aerogels from HM pectin P70 was not found to be strongly impacted, with similar morphologies 

without or with calcium at R(Ca) = 0.2. For moderately methylated HM pectin P59, the effect 

of calcium on morphology and structural properties are in an intermediate level between P35 

and P70. 

 

Figure 108. SEM pictures of aeropectins made of 3 wt% of P35, P59 and P70 (from left to right) 

dissolved at pH 3.0 and in absence of calcium or with addition of calcium at R(Ca) = 0.2. Non-

solvent was ethanol. The scale is the same of all images. 

Finally, we compared the increase of calcium R(Ca) ratio on aeropectin structural 

properties but at pH 2.0 which is significantly lower than pKa. Indeed, as pH was decreased 

from pH 3.0 to pH 2.0, only a small proportion of non-methylated carboxyl groups were still 

dissociated and thus were chemically available to interact with calcium ions. As a result, we 

found logical that the “calcium impact” on aeropectins structural properties was significantly 
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less pronounced than at pH 3.0. Moreover, as it was found for aerogels made from all pectins 

at pH 3.0, the “calcium impact” at pH 2.0 on aeropectin properties was dependent on pectin 

DE. Structural properties of aeropectins made from P35, P59 and P70 at pH 2.0 while varying 

calcium conditions are presented on Figure 109.  

 

Figure 109. (a) Density and (b) specific surface area of aeropectins made of 3 wt% of pectins 

P35 (1), P59 (2), P70 (3) dissolved at pH 2.0 with increasing calcium ratio R(Ca) from 0 to 0.6. 

Non-solvent was ethanol. 

Logically, LM pectin P35 exhibiting the lowest degree of methylation showed a 

significant sensitivity to calcium, as revealed by the strong decrease of density and specific 

surface area as R(Ca) was increased. On the contrary, the highest methylated pectin P70 

exhibited similar properties independently of R(Ca) ratio and no significant calcium impact was 

found at pH 2.0. Finally, P59 showed an “intermediate” calcium impact on its structural 

properties in correlation with its DE. Picture of aeropectins made of 3 wt% of pectin P35, P59 

and P70 at R(Ca) = 0.4 at pH 3.0 and 2.0 are given for illustration on Figure 110. 

 

Figure 110. Aeropectins made of 3 wt% of P35, P59 and P70 dissolved at pH 3.0 or pH 2.0 

with addition of calcium at R(Ca) = 0.4. Non-solvent was ethanol. The state of the matter before 

solvent exchange, gel (“G”) or solution (“S”), is indicated in each case. 
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3.3. Conclusions on the influence of pectin DE on aeropectins 

properties 

In this study, we were able to highlight the influence of pectin DE on pectin solution 

characteristics (viscosity, gelling ability) and pectin aerogel properties (density, porosity, 

specific surface area, morphology). To our knowledge, this is the first time that the properties 

of pectin aerogels were correlated to pectin DE. As each pectin presents its “own” initial 

intrinsic properties (inter-individual variation), we found interesting to compare them by 

monitoring the evolution of properties of pectin samples (solution, gels, aerogels) while varying 

the process parameters (pH, calcium R(Ca) ratio).  

- We confirmed and generalized the influence of pH and calcium concentration in pectin 

solutions on the final properties of aeropectins made from low-, medium- and high-

methylated pectins.  

- We observed that “pH-response” and a “calcium-response” of pectin solutions have a 

direct influence on pectin aerogel properties which are directly dependent on pectin DE. 

Low methylated pectin, P35, displayed high “pH-sensitivity” and “Ca-sensitivity”, 

while high methylated pectin P70 had the lowest sensitivity, and P59 was found to be 

intermediate. “High sensitivity” was reflected by the significant change of aerogel 

density and specific surface area as a function of pH and calcium concentration. 

 

In this work, we used supercritical drying process as a tool to correlate physico-chemical 

phenomena which occurred in pectin aqueous solutions with aerogel properties. We showed 

that we can tune aeropectin properties not only by varying the process parameters, but also by 

changing the pectin type. Coupled to the first part of this chapter, we provided a complete study 

of the influence of extrinsic and intrinsic pectin parameters on pectin-based aerogels 

characteristics. 
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Conclusions 

In this chapter, we produced pectin aerogels of various structural and mechanical 

properties. For this purpose, polymer concentration, pH, concentration of mono- and divalent 

metal ions, non-solvent type and pectin degree of esterification were varied. The mechanism of 

structure formation, i.e. gelation or phase separation, is the key in aeropectins structure control. 

More precisely, we explained why and how pectin intrinsic properties (such as degree of 

methylation) and extrinsic parameters (such as pH condition, type of non-solvent, salt type and 

concentration) tune aeropectin properties. The multi-scale correlations from macromolecular 

aspects (polymer ionization with pH, calcium sensitivity and binding), to the morphological, 

structural and mechanical properties of pectin aerogels are built.  

 

The results obtained provide the guidelines for making aerogel matrices with fully 

controlled morphology and properties. Fine structure control and tuning of aerogels is critical 

to adapt them to a specific application. We assume this study provides “recipes” of controlling 

structure formation of aerogels based on other gelling polyelectrolyte polysaccharides such as 

alginates and carrageenans.  
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Introduction 

Silica aerogels are known to be materials with the lowest thermal conductivity in 

ambient conditions, i.e. with thermal conductivity below that of air, 0.013 – 0.014 vs 0.025 

W/(m.K), respectively. Some synthetic polymer aerogels, for example, based on polyurethanes, 

are also super-insulating materials but with slightly higher conductivity, around 0.017 W/(m.K) 

(Diascorn, Calas, Sallee, Achard, & Rigacci, 2015). Compared to the first silica aerogels (i.e. 

non chemicaly-modified) which are extremely fragile, polymer-based aerogels, and bio-

aerogels in particular, do not break under compression (Rudaz et al., 2014). Moreover, the 

synthesis of bio-aerogels does not involve any toxic compounds which is the case of many 

synthetic polymer aerogels (for example, based on resorcinol formaldehyde or polyurethanes 

cross-linked with isocyanate) (Pekala, 1989). Bio-aerogels from medium and high methylated 

pectins were shown to be thermal super-insulating materials with conductivity increasing from 

0.018 W/(m.K) to 0.03 W/(m.K) for densities from 0.05 to 0.15 g/cm3 (Rudaz et al., 2014). 

Very few is known about the thermal conductivity of bio-aerogels, and practically nothing on 

conductivity-structure correlations.  

The goal of this work is to correlate thermal conductivity with aerogel morphology and 

properties in order to understand how to obtain a thermal super-insulating material with the 

lowest possible conductivity. In the whole chapter, the focus will be made on the relationship 

between the characteristics of the initial polymer, the processing parameters, the structural 

properties of the pectin aerogels and their thermal conductivity.  

We finely tuned pectin aerogels properties and morphology by adjusting polymer 

concentration, non-solvent type, pH and calcium concentration, and correlated them with 

material thermal conductivity. As the relationships between the process parameters and the 

structural properties of aerogel were established and discussed in detail in the Chapter III, in 

this chapter we will rather focus on the structure-thermal properties correlations of pectin 

aerogels. The chapter is organized as follows: 

• The first part is dedicated to the influence of pectin concentration and non-solvent on 

aerogel density and morphology, and then on the resulting thermal properties. 

• As pectin is a polyelectrolyte, the influence of pH conditions on pectin aerogel 

properties was evaluated, in the presence (R(Ca) = 0.2) or in absence of calcium ions. 

• Then, we set the pH, and we studied the influence of Ca-induced cross-linking by 

increasing calcium ratio from R(Ca) = 0 to R(Ca) = 0.2. 

Most of the results presented in this Chapter were published in (Groult & Budtova, 2018). 
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1. Thermal conductivity as a function of pectin aerogel density: 

summary of all results 

As mentioned in the state of the art (Chapter I), thermal conductivity of aerogels is strongly 

impacted by network morphology and density. Guided by the main results presented in the 

previous Chapter III about aeropectins’ structure-properties correlations, polymer 

concentration, solution pH, concentration of calcium ions and the type of non-solvent used for 

solvent-exchange were varied to tune pectin gelation mechanism and the state of matter, 

solution or gel, which strongly impacted the final structural and thermal properties of pectin 

aerogels after sc-drying. All results on thermal conductivity obtained in this work are 

summarized in Figure 111 as a function of aeropectin bulk density and all characteristics of 

aerogels are in Table 7. Figure 111 shows a U-shape curve obtained for this type of bio-aerogels. 

The general trends known for thermal conductivity of classical aerogels are thus applicable to 

bio-aerogels. The minimal thermal conductivity is very low, 0.015 W/((m.K)), and comparable 

with that of silica aerogels; it corresponds to pectin aerogel density of 0.1 g/cm3 (Figure 111). 

 

Figure 111. Aeropectin thermal conductivity as a function of density. Open points correspond 

to samples cross-linked with calcium. Not-marked samples are from P35 (squares). P56 

(diamonds), P59 (circles) and P70 (triangles) were made from 3 wt% pectin solutions at pH 1. 

Solid line is conductivity of air in ambient conditions; dashed line is given to guide the eye. 
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Figure 111 shows that density is one of the key parameters controlling thermal 

conductivity, as expected. Thus, the first question to answer is what are the experimental 

conditions which control the density of aeropectin? For example, when density varies from 0.05 

to 0.10 g/cm3, thermal conductivity decreases from 0.024 to 0.015 W/(m.K). Obviously, the 

morphology of aerogels also plays a very important role.  

Thus, the second question to answer is how to control the morphology of aeropectins to 

obtain the lowest thermal conductivity? To answer these questions, we studied the influence of 

P35 concentration, pH, concentration of Ca2+ ions, the state of matter (gel or solution) before 

solvent exchange, and the type of non-solvent on aeropectin density and specific surface area 

to finally correlate with thermal conductivity. 
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Table 7. Characteristics of all aeropectins synthesised in the work. The state of matter solution before solvent-exchange “S” or gel “G” is given in 

each case. 

Pectin 

DE 

(%) 

Pectin 

wt% 
pH 

R(Ca) 

ratio 

State 

of 

matter 

Type of 

non-

solvent 

Shrinkage 

after solvent-

exchange (%) 

Total volume 

shrinkage (%) 

Bulk density 

(g/cm3) 

Porosity  

(%) 

Pore volume 

(cm3 / g) 

Specific 

surface area 

(m²/g) 

Thermal conductivity 

(W/(m.K)) 

70 3 1.0 0 S Ethanol 9.0 ± 1.7 46.0 ± 1.8 0.049 ± 0.002 96.7 ± 0.2 18.23 ± 0.52 329 ± 9 0.01920 ± 0.00015 

70 3 1.0 0.20 S Ethanol 12.0 ± 1.3 48.3 ± 2.5 0.055 ± 0.004 96.3 ± 0.3 18.18 ± 0.66 326 ± 9 0.02020 ± 0.00015 

59 3 1.0 0 S Ethanol 10.0 ± 2.3 57.8 ± 1.9 0.069 ± 0.006 95.4 ± 0.6 15.00 ± 0.30 396 ± 13 0.01890 ± 0.00020 

59 3 1.0 0.20 S Ethanol 16.0 ± 1.1 53.9 ± 1.9 0.069 ± 0.003 95.4 ± 0.4 15.37 ± 0.16 371 ± 6 0.01860 ± 0.00020 

56 3 1.0 0 S Ethanol 17.8 ± 1.2 54.5 ± 1.0 0.051 ± 0.001 96.6 ± 0.1 18.93 ± 0.24 326 ± 13 0.01970 ± 0.00015 

56 3 1.0 0.20 S Ethanol 18.7 ± 1.3 40.4 ± 1.8 0.048 ± 0.001 96.8 ± 0.1 20.02 ± 0.26 321 ± 20 0.02030 ± 0.00010 

35 3 1.0 0 G Ethanol 17.0 ± 0.8 50.8 ± 2.7 0.051 ± 0.003 96.6 ± 0.5 17.08 ± 0.53 238 ± 10 0.02470 ± 0.00020 

35 3 1.0 0.20 G Ethanol 20.2 ± 0.5 38.6 ± 1.6 0.053 ± 0.001 96.5 ± 0.2 18.73 ± 0.30 219 ± 9 0.02460 ± 0.00020 

35 3 1.5 0 G Ethanol 30.3 ± 1.2 65.4 ± 1.2 0.075 ± 0.005 95.0 ± 0.5 12.34 ± 0.81 249 ± 24 0.01690 ± 0.00015 

35 3 1.5 0.20 G Ethanol 20.1 ± 0.6 41.4 ± 1.4 0.048 ± 0.002 96.8 ± 0.1 19.60 ± 0.18 257 ± 21 0.02000 ± 0.00015 

35 2 2.0 0 S Ethanol 39.0 ± 2.9 80.6 ± 3.6 0.092 ± 0.015 93.9 ± 2.0 10.20 ± 0.27 274 ± 33 0.01570 ± 0.00020 

35 3 2.0 0 S Ethanol 28.1 ± 3.5 73.8 ± 2.5 0.127 ± 0.007 91.5 ± 1.0 9.29 ± 0.30 399 ± 6 0.01710 ± 0.00025 

35 4 2.0 0 G Ethanol 33.3 ± 1.9 69.8 ± 1.7 0.119 ± 0.005 92.1 ± 0.4 7.98 ± 0.31 416 ± 28 0.01700 ± 0.00010 

35 6 2.0 0 G Ethanol 17.4 ± 2.1 67.3 ± 1.0 0.166 ± 0.013 89.0 ± 1.2 5.77 ± 0.35 444 ± 21 0.02000 ± 0.00025 
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35 2 2.0 0.20 G Ethanol 20.9 ± 2.8 40.4 ± 2.5 0.031 ± 0.004 97.9 ± 0.3 30.01 ± 1.79 267 ±  0.02150 ± 0.00020 

35 3 2.0 0.20 G Ethanol 7.3 ± 1.2 34.5 ± 3.0 0.048 ± 0.001 96.8 ± 0.5 19.22 ± 1.08 317 ± 12 0.02000 ± 0.00015 

35 4 2.0 0.20 G Ethanol 11.0 ± 2.0 29.9 ± 0.6 0.055 ± 0.001 96.4 ± 0.9 17.12 ± 0.38 342 ± 22 0.02040 ± 0.00015 

35 6 2.0 0.20 G Ethanol 8.0 ± 1.8 32.6 ± 2.7 0.082 ± 0.006 94.5 ± 0.7 12.85 ± 0.98 357 ± 18 0.02130 ± 0.00015 

35 2 3.0 0 S Ethanol 44.2 ± 1.4 81.4 ± 2.3 0.103 ± 0.007 93.1 ± 0.3 9.15 ± 0.33 541 ± 24 0.01465 ± 0.00020 

35 3 3.0 0 S Ethanol 23.1 ± 4.8 79.7 ± 3.9 0.143 ± 0.010 90.5 ± 0.5 7.97 ± 0.60 552 ± 18 0.01770 ± 0.00020 

35 4 3.0 0 S Ethanol 20.6 ± 5.3 68.4 ± 2.8 0.127 ± 0.010 91.5 ± 0.9 7.68 ± 0.48 601 ± 16 0.01620 ± 0.00020 

35 6 3.0 0 G Ethanol 6.8 ± 1.4 71.5 ± 0.5 0.182 ± 0.015 87.9 ± 1.7 5.98 ± 0.32 529 ± 22 0.02170 ± 0.00015 

35 3 3.0 0.05 S Ethanol 40.0 ± 5.6 75.4 ± 3.4 0.127 ± 0.007 91.6 ± 0.2 8.51 ± 0.19 522 ± 23 0.01660 ± 0.00010 

35 3 3.0 0.10 G Ethanol 33.1 ± 1.0 63.9 ± 1.8 0.089 ± 0.005 94.0 ± 0.2 10.71 ± 0.37 499 ± 10 0.01570 ± 0.00010 

35 3 3.0 0.15 G Ethanol 26.9 ± 0.9 51.8 ± 1.5 0.062 ± 0.008 95.9 ± 0.1 15.48 ± 0.21 444 ± 21 0.01990 ± 0.00015 

35 3 3.0 0.20 G Ethanol 16.8 ± 2.1 39.2 ± 2.8 0.054 ± 0.005 96.4 ± 0.2 18.35 ± 0.98 455 ± 32 0.0210 ± 0.00020 

35 3 3.0 0 S Acetone 27.2 ± 4.8 62.7 ± 5.2 0.08 ± 0.018 94.7 ± 0.6 12.9 ± 0.63 614 ± 24 0.0173 ± 0.0001 

35 4 3.0 0 S Acetone 24.7 ± 3.3 57.9 ± 3.3 0.099 ± 0.007 93.4 ± 0.7 10.9 ± 0.07 621 ± 8 0.01530 ± 0.0001 

35 6 3.0 0 G Acetone 14.7 ± 1.8 50.2 ± 1.6 0.123 ± 0.003 91.8 ± 0.2 7.8 ± 0.17 594 ± 21 0.01850 ± 0.0001 
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2. Influence of pectin concentration and non-solvent type on 

aerogel thermal conductivity 

2.1. Influence of pectin concentration  

The influence of pectin concentration on samples’ shrinkage after solvent exchange and 

after drying is shown in Figure 112 for solutions at pH 2. The effect of pectin concentration on 

aerogel density and specific surface area is illustrated in Figure 113.  

 

 

Figure 112. (a) Volume shrinkage of pectin aerogels after solvent exchange (squares) and 

overall volume shrinkage after sc drying (triangles) as a function of P35 concentration at pH 2. 

Filled points correspond to non-cross-linked sample, open points – when calcium was added 

(R(Ca) = 0.2). The state of matter before solvent exchange is indicated for each case (solution 

“S” or gel “G”). Non-solvent was ethanol. Lines are given to guide the eye. From (Groult & 

Budtova, 2018). 

(b) Pictures of pectin aerogels made from pectin P35 at different pectin concentration (wt%) 

dissolved at pH 3.0 without calcium. 
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Increasing pectin concentration decreased shrinkage, as already reported for other bio-

aerogels (Buchtová & Budtova, 2016; Hoepfner, Ratke, & Milow, 2008). The values obtained 

in this work are from 65 % to 80 % for non-cross-linked samples, and from 30 % to 50 % for 

cross-linked with calcium.  

As expected from the Chapter III, despite lower shrinkage at higher polymer 

concentration, aeropectin density increased with the increase of pectin concentration in both 

cases, when pectin was cross-linked with calcium and not. It should be noted that the density 

of cross-linked aeropectins (R(Ca) = 0.2) was twice lower than that of the corresponding non-

cross-linked ones, and it was very close to the theoretical density calculated for the case of zero 

volume shrinkage (solid line in Figure 113). 

 

Figure 113. (a) Density (squares) and specific surface area (triangles) and (b) pore volume of 

aeropectins based on P35 dissolved at pH 2 as a function of polymer concentration in solution. 

Filled points correspond to non-cross-linked samples, open points – when calcium was added 

(R(Ca) = 0.2). Solid line is theoretical density corresponding to zero volume shrinkage. The 

state of matter before solvent exchange is indicated for each case (solution “S” or gel “G”). 

Dashed lines are given to guide the eye. From (Groult & Budtova, 2018). 

As shown in Figure 114, similar results and trends on pectin aerogels structural properties 

were obtained at pH 3 while varying pectin concentration. 
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Figure 114. Influence of non-crosslinked pectin concentration and state of the matter 

before solvent exchange (solution “S” or gel “G”) on bulk density (squares) and specific surface 

area (triangles) of aeropectins based on P35 dissolved at pH 3. Solid line is theoretical density 

corresponding to zero volume shrinkage. Dashed lines are given to guide the eye. From (Groult 

& Budtova, 2018). 

As it was already shown in the Chapter III, at low pH (pH = 2 which is lower that pKa = 

3) specific surface area increased with pectin concentration (Figure 113, triangles) with highest 

values being around 360 and 440 m2/g for cross-linked and non-cross-linked pectins, 

respectively. As suggested in (Buchtová & Budtova, 2016), the increase of polymer 

concentration leads to the decrease of pore size without significant evolution of pore walls’ 

thickness.  

As shown by SEM characterization of aeropectin morphologies in Figure 115, with the 

increase of pectin concentration, the network becomes denser and pores smaller, confirming the 

trend obtained on specific surface area (Figure 113).  

 

Figure 115. SEM images of P35 based aeropectins from 2 wt% (a), 4 wt% (b) and 6 wt% (c) 

solutions at pH 2 cross-linked with calcium (R(Ca) = 0.2), non-solvent was ethanol. All samples 

were gels before solvent exchange. From (Groult & Budtova, 2018). 

The results presented above show that the increase of pectin concentration leads to the 

increase in density and decrease of network pore size. The first trend, i.e. increase in aerogel 
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density, should logically result in the enhancing of heat conduction via the solid backbone, and 

thus in the overall increase in thermal conductivity. The second trend, i.e. decrease of pore size, 

leads to the increase of the amount of mesopores which contribute to Knudsen effect, and thus 

is supposed to decrease the conduction of gaseous phase. These two oppositely acting trends 

may result in different behaviour of thermal conductivity as a function of polymer concentration 

(or aerogel density) depending which input is dominating. The expected increase of thermal 

conductivity as a function of density is given as an example for pH 2 and 3 in Figure 116 (a) 

for non-cross-linked pectin. Figure 116 (b) shows that for aeropectins cross-linked with calcium 

thermal conductivity weakly depends on polymer concentration, with a small minimum 

corresponding to 3 wt%, indicating that density increase is counterbalanced by pore’s size 

decrease in their inputs in the overall conductivity.  

It is thus clear that in addition to polymer concentration, cross-linking strongly influences 

aeropectin morphology and thus thermal conductivity. The effect of pH and presence of calcium 

on aeropectin properties is presented and discussed in the Section 3. 

 

Figure 116. Thermal conductivity in ambient conditions of aeropectins from P35 as a function 

of density, with pectin concentration varying from 2 wt% to 6 wt%, non-solvent was ethanol 

  at pH 3 (squares) and pH 2 (diamonds), all without calcium. The state of matter before 

solvent exchange is indicated for each case (solution “S” or gel “G”). 

at pH 2, cross-linked with calcium (open points) at R(Ca) = 0.2, all were gels before 

solvent exchange 

. Dashed line is given to guide the eye. Solid line corresponds to the conductivity of air. 

2 wt%

4 wt%

3 wt%

6 wt%

0,014

0,016

0,018

0,020

0,022

0,024

0,00 0,05 0,10 0,15 0,20

Aeropectin density (g/cm3)

(a)

S

S

G

Thermal conductivity W/(m.K)

SG

0.025

2 wt%

3 wt%

4 wt%

6 wt%

0,014

0,016

0,018

0,020

0,022

0,024

0,00 0,02 0,04 0,06 0,08 0,10

Aeropectin density (g/cm3)

(b)

Thermal conductivity W/(m.K)

0.025

(G) 



CHAPTER IV.  

Thermal conductivity-structure properties correlations of pectin aerogels 

226 

 

2.2. Influence of non-solvent type on aerogel thermal conductivity 

As it was shown in Chapter III, the type of non-solvent used for solvent exchange is 

important for the aerogels’ structure formation. Indeed, when a non-solvent is added to non-

gelled pectin solution, phase separation occurs (also known as “immersion precipitation” 

process) (Wijmans, Altena, & Smolders, 1984; Wijmans, Baaij, & Smolders, 1983), leading to 

a strong contraction of macromolecules. When non-solvent is added to a pectin gel, this leads 

to coagulation and network contraction. In both cases, solvent exchange leads to sample 

shrinkage. We used ethanol and acetone to study the influence of non-solvent type on pectin 

aerogel structural and thermal properties.  

As we saw in the Chapter III, using acetone as the non-solvent significantly decreased the 

total volume shrinkage of pectin samples compared to ethanol (see Figure 117 (a)). As a direct 

consequence of a better-preserved network from collapsing, aeropectins present lower densities 

with higher specific surface areas when using acetone compared to ethanol as shown in Figure 

117 (b, c). This is a rather unusual trend as often a material with lower density is supposed to 

have larger pores and thus lower specific surface area.  

We hypothesize here that when coagulated in acetone, samples are not only collapsing less, 

but also chains are agglomerating less, thus creating a network with a finer structure. SEM 

characterization of aeropectins in Figure 118 shows that all aerogels exhibited a finer 

mesoporous network when acetone was used instead of ethanol, independently of the state of 

state of matter before solvent exchange or pectin concentration. 
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Figure 117. (a) Volumetric shrinkage measured after solvent exchange (crossed bars) and after 

sc-drying (full bars), (b) density and (c) specific surface area of pectin aerogels made from 

pectin P35 dissolved at pH 3 without calcium at different pectin concentration, using either 

ethanol (blue) or acetone (orange) as the non-solvent. The state of matter before solvent 

exchange is indicated for each case (solution “S” or gel “G”). 

 

Figure 118. Network morphology of aeropectins made from pectin P35 at different pectin 

concentration (wt%) dissolved a pH 3.0 without calcium, and using either ethanol or acetone as 

the non-solvent. The state of matter before solvent exchange is indicated for each case (solution 

“S” or gel “G”).  

Regardless the concentration of pectin solutions and state of matter before solvent 

exchange, we noticed lower thermal conductivity when acetone was used instead of ethanol; 

the results are presented in Figure 119. 
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As suggested above, lower density (thus lower input in solid conduction) and finer 

network morphology (higher input of Knudsen effect) after coagulation in ethanol results in 

lower thermal conductivity.  

 

Figure 119. Thermal conductivity in ambient conditions of aeropectins made from pectin P35 

at different pectin concentration dissolved at pH 3.0 without calcium and using either ethanol 

or acetone as the non-solvent. Dashed lines are given to guide the eye. 

3. Influence of Ca-induced cross-linking and pH on pectin aerogel 

properties 

It is well known that pH and presence of metal ions, especially bivalent, influence pectin 

solution viscosity and gelation (Thakur, Singh, Handa, & Rao, 1997; Walkinshaw & Arnott, 

1981). As we already studied in the Chapter III, changes in calcium concentration and solution 

pH were found to induce strong variations in terms of aeropectins’ density and morphology. 

Based on the work performed on the tuning of aeropectins structure (Chapter III), we will first, 

examine how aeropectin thermal conductivity changes with solution pH keeping pectin and 

calcium concentration constant, and then calcium content will be varied at constant pectin 

concentration and pH.  

3.1. Influence of pH at R(Ca) = 0 and 0.2 

To understand the influence of pH, presence of calcium and state of matter (solution or 

gel) on aerogel morphology and thermal conductivity we varied pH, from 1 to 3, and for each 

pH two types of samples were prepared, without and with calcium (R(Ca) = 0.2).  
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Pectin shrinkage after solvent exchange and after drying as a function of pH is presented 

in Figure 120, and aeropectin density and specific surface area in Figure 121a and Figure 121b, 

respectively. For the samples cross-linked with calcium no influence of pH on shrinkage was 

recorded (around 40 %), within the experimental errors. The total shrinkage of non-cross-linked 

samples shows a strong dependence on pH, from 50% to 80 % for pH from 1 to 3, respectively. 

For P35 3 wt% solutions when calcium was added the solutions became gels before solvent 

exchange while non-cross-linked pectins were gels only at low pH, 1 and 1.5, and solutions at 

pH 2 and 3 (Figure 121a).  

 

As mentioned in Chapter 3, the highest shrinkage upon the addition of non-solvent occurs 

for non-gelled solutions (non-solvent induced phase separation), less in physically gelled 

solutions and even less in calcium cross-linked pectin. This trend is reflected by density which 

does not vary with pH for cross-linked pectin aerogels and increases with pH in almost 3 times 

for non-crosslinked ones (Figure 121a). As it was detailed in the Chapter III, this is due to the 

strength of the bonds, ionic gelation leads to more firm and brittle gels than their physical 

counterparts (Djabourov, Nishinari, & Ross-Murphy, 2013).  
 

 

Figure 120. Influence of pH, presence of calcium (R(Ca) = 0.2) (shaded bars) and state of matter 

before solvent exchange (solution “S” or gel “G”) on P35 shrinkage after solvent exchange 

(white bars) and after sc drying (grey bars). Initial polymer concentration was 3 wt%. 
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Figure 121. Aeropectin density (a) and specific surface area (b) as a function of pH for 3 wt% 

P35 solutions cross-linked with calcium (R(Ca) = 0.2) (white bars) or not (black bars). The state 

of matter before solvent exchange is indicated for each case (solution “S” or gel “G”). 

In particular, it is well known that low methylated pectins undergo a strong ionic gelation 

in the presence of calcium due to their high sensitivity to Ca2+ ions; these pectins were also 

reported to form weak acid gels in the absence of cations at pH values below pka (Capel, 

Nicolai, Durand, Boulenguer, & Langendorff, 2006; Gilsenan, Richardson, & Morris, 2000; 

Löfgren, Walkenström, & Hermansson, 2002; Morris, Gidley, Murray, Powell, & Rees, 1980; 

Ström, Schuster, & Goh, 2014).  

 

Figure 121b represents specific surface area of pectin aerogels which density is shown in 

Figure 121a. As expected (see Chapter III), SBET significantly increases with pH for both cross-

linked and non-cross-linked aeropectins, and aerogels from non-gelled solutions at pH 2 and 3 

show SBET much higher than that from cross-linked pectins. These results are explained by the 

dissociation/protonation of pectin galacturonic acids depending on pH conditions, which in turn 

directly impacts the number, the strength and the type of pectin chains interactions (i.e. ionic 

bonds with cations, hydrogen bonds, hydrophobic interactions) (Fraeye, Duvetter, Doungla, 

Van Loey, & Hendrickx, 2010; Löfgren, Guillotin, Evenbratt, Schols, & Hermansson, 2005): 

 

The representative examples of the morphology and pore volume of aerogels from 3 

wt% P35 are demonstrated in Figure 122 and Figure 123, respectively. As expected from the 

Chapter III, in the case of non-crosslinked pectin the increase of pH led to aerogels with a denser 

morphology and lower pores’ size: from around 50-150 nm at pH 1.5 (acid gels) to around 10-

50 nm at pH 3 (solutions) (Figure 122). The difference between aerogels made from gels or 

solutions is significant: contrary to aerogels made from a solution, all aerogels made from gels 

had macropores. Aerogel from non-cross-linked solution at pH 3 looks very dense but it has 

porosity around 90 % and is mesoporous, as reflected by high specific surface area (Figure 

121b). Strong shrinkage (Figure 120) clearly induced the decrease pores’ size. Cross-linking 
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with calcium led to the presence of macropores and thus low density and moderate specific 

surface area (Figure 121a and Figure 121b). 

 

Figure 122. Morphology of aeropectins from P35 dissolved at 3 wt% at various pH, cross-linked 

with calcium (R(Ca) = 0.2) and not. From (Groult & Budtova, 2018). 

 

 

Figure 123. Pore volume of aeropectins made from 3 wt% of P35 dissolved at different pH. 

Filled points correspond to non-cross-linked samples, open points – when calcium was added 

(R(Ca) = 0.2). The state of matter before solvent exchange is indicated for each case (solution 

“S” or gel “G”). Dashed lines are given to guide the eye. From (Groult & Budtova, 2018). 

Thermal conductivity of aeropectins as a function of pH is summarized in Figure 124 for 

3 wt% pectin, cross-linked with calcium (R(Ca) = 0.2) and not. In both cases the dependences 

G

G

S S

G G G
G

0

5

10

15

20

25

0,5 1,0 1,5 2,0 2,5 3,0

pH

Vp (cm3/g)



CHAPTER IV.  

Thermal conductivity-structure properties correlations of pectin aerogels 

232 

 

have a U-shape as in Figure 111 for thermal conductivity vs density. All values are in thermal 

super-insulating region (conductivity below 0.025 W/(m.K)). When decreasing pectin 

concentration to 2 wt% at pH 3, it was possible to obtain the lowest value ever reported for bio-

aerogels, 0.0147 ± 0.0002 W/(m.K). Aeropectins cross-linked with calcium show conductivity 

higher than that of non-cross-linked ones, except at pH 1 when they are equal. The reason of 

this difference is in the microstructure of aeropectins: despite lower density of all cross-linked 

aerogels as compared to their non-cross-linked counterparts (Figure 121a), the macropores, 

clearly visible on SEM images (Figure 122), significantly contribute to heat transfer via gaseous 

phase and are thus unfavorable for the thermal conductivity. Overall, strong gels (at pH 1 and 

when cross-linked with calcium) that resist shrinkage may be highly porous but are too 

macroporous for having thermal conductivity below 0.02 W/(m.K).  
 

 

Figure 124. Thermal conductivity in ambient conditions of aeropectins from P35 as a function 

of pH at pectin concentration 3 wt% and for non-cross-linked pectin (filled points) and at R(Ca) 

= 0.2 (open points). One point at pH 3 is for 2 wt% solution. The state of matter before solvent 

exchange is indicated for each case (solution “S” or gel “G”). Dashed lines are given to guide 

the eye. Solid line corresponds to the conductivity of air. From (Groult & Budtova, 2018). 

Thermal conductivity can be thus used as a measure of structure “finesse”. U-shape curve 

for both types of aeropectins reflects a competition between solid and gaseous phases 

conductions which depend on aerogel density and morphology, which in turn are controlled by 

pectin concentration, state of matter before solvent exchange and sample shrinkage.  

 

3.2. Influence of calcium concentration at pH 3 

Next, we varied calcium concentration keeping pectin at 3 wt% and pH 3 and changing 

R(Ca) ratio from 0.05 to 0.2. As it was already demonstrated in the Chapter III, the pectin 
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network was reinforced due to higher cross-linking with the increase of calcium concentration 

(Fraeye et al., 2009; Löfgren et al., 2002) and thus it became more resistant leading to lower 

shrinkage (see Figure 125) and thus lower aeropectins’ density (Figure 126).  

 

 

Figure 125. (a) Influence of calcium concentration (R(Ca) ratio) and state of matter before 

solvent exchange (solution “S” or gel “G”) on P35 shrinkage after solvent exchange (white 

bars) and after sc drying (grey bars). Polymer concentration in solution was 3 wt% and pH was 

3. From (Groult & Budtova, 2018). (b) Pictures of the corresponding pectin aerogels. 

Specific surface area also decreased with R(Ca) (Figure 126), most probably due to 

increasing amount of ionic non-porous junction zones. It is interesting to see that at R(Ca) = 

0.05 the amount of calcium added was not sufficient to induce strong ionic gelation, however, 

calcium influence on density and specific surface area was noticeable.  
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Figure 126. (a) Density (squares) and specific surface area (triangles), (b) pore volume of 

aeropectins based on P35 dissolved at 3 wt% and pH 3 as a function calcium R(Ca) ratio. The 

state of matter before solvent exchange is indicated for each case (solution “S” or gel “G”). 

Dashed lines are given to guide the eye. From (Groult & Budtova, 2018). 

As we already know, the addition of calcium has a strong impact on pectin morphology 

as observed by SEM (Figure 127). The higher was R(Ca) value, the larger were pore sizes due 

to lower shrinkage. Aeropectin morphology and properties were thus finely tuned by varying 

calcium concentration: from very low density with macropores to higher density and compact 

morphology. 

 

Figure 127. Morphology of aeropectins from P35 dissolved at 3 wt% and pH 3, cross-linked 

with calcium at different R(Ca) ratio from R(Ca) = 0 (no calcium added) to R(Ca) = 0.2. From 

(Groult & Budtova, 2018). 
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Finally, the influence of calcium concentration on thermal conductivity of aeropectins is 

presented in Figure 128 (a). The same data but as a function of density at various R(Ca) ratio is 

shown in Figure 128 (b). As for the overall dependence of conductivity vs density (Figure 111) 

and pH (Figure 124), here also U-shape curves are recorded. The minimal value obtained was 

0.0157 ± 0.0001 W/(m.K). The U-shape for calcium cross-linked pectin aerogels shows again 

that a balance between density and morphology is needed to obtain the lowest thermal 

conductivity. 

 

Figure 128. Thermal conductivity in ambient conditions of aeropectins from P35 at pectin 

concentration 3 wt% and pH 3 

(a) as a function of R(Ca). 

(b) P35 as a function of density at various R(Ca) 

 The state of matter before solvent exchange is indicated for each case (solution “S” or gel “G”). 

Dashed line is given to guide the eye. Solid line corresponds to the conductivity of air. From 

(Groult & Budtova, 2018). 

  

S

S

G

G

G

0,014

0,016

0,018

0,020

0,022

0,024

0,00 0,05 0,10 0,15 0,20
R(Ca)

(a)

Thermal conductivity W/(m.K)
0.025

R(Ca)=0

R(Ca)=0.05

R(Ca)=0.1

R(Ca)=0.15

R(Ca)=0.2

0,014

0,016

0,018

0,020

0,022

0,024

0,00 0,05 0,10 0,15 0,20
Aeropectin density (g/cm3)

(b)

S

S

G

G

G

Thermal conductivity (W/m.K)
0.025



CHAPTER IV.  

Thermal conductivity-structure properties correlations of pectin aerogels 

236 

 

Conclusions 

Pectin aerogels with thermal superinsulating properties were synthesized. To modify 

aerogel density and morphology and thus understand their influence on aerogel thermal 

conductivity, pH, concentration of calcium, pectin concentration and type of non-solvent were 

varied in a systematic way. Aerogel density was from 0.05 to 0.2 g/cm3 and specific surface 

was from 220 to 620 m2/g.  

 

For the first time a U-shape curve of thermal conductivity vs density was obtained for 

bio-aerogels synthesized via dissolution-solvent exchange-sc drying route. It shows that the 

type of pectin chains’ interactions and physical state of matter (solution or gel) are crucial to 

understand and predict aerogel morphology and properties. More numerous and stronger pectin 

chains’ interactions (ionic vs hydrogen) led to stronger gels (at pH 1 and cross-linked with 

calcium at all pH studied) which shrank less during solvent exchange and drying.  

 

As a result, aerogels with lower density and high proportion of macropores were obtained. 

The contribution of the gaseous phase to thermal conductivity was thus higher leading to higher 

thermal conductivity. On the contrary, chains’ repulsion at higher pH prevented gelation leading 

to higher shrinkage and density but also to the reduction of pore size to the level of mesopores. 

In this case the conduction of the gaseous phase is low thanks to Knudsen effect, but the 

contribution of the solid backbone increases.  

 

A delicate compromise in aeropectin morphology and density is thus needed to get the 

lowest thermal conductivity. This minimal value of 0.0147 ± 0.0002 W/(m.K) was found for 

non-gelled solution at pH 2 and pectin concentration of 2 wt%. Thermal conductivity is a very 

sensitive parameter reflecting aerogel morphology and can be used to characterize the finesse 

bio-aerogel structure.  
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Introduction 

The goal of this work is to study the release of theophylline from different pectin aerogel 

matrices in order to find out structure-properties correlations explaining drug release 

mechanisms. In the whole chapter, the focus will be made on the relationship between the 

specificity of the initial polymer, the characteristics of the pectin aerogel carrier and its release 

properties in aqueous media. For this purpose, structural and physico-chemical properties of 

the aerogel carrier were varied by adjusting the preparation conditions and gelation mechanisms 

(pectin concentration, calcium concentration, pH of pectin solution). Matrix swelling, erosion 

and drug release profiles from different aerogels matrices were characterized and compared. 

Kinetics models based on mathematical functions will be used to identify the main physical 

mechanism governing the release (e.g. diffusion, dissolution, erosion, swelling…etc.). This 

approach will be used in the following chapter (VI) for pectin-cellulose and pectin-silica 

composite-aerogels. 

 

The chapter is organized as follows: 
 

First, the way of incorporation of theophylline, as model drug used in this work, is 

presented. Then the main correlations between aeropectin loading efficiency and loading 

capacity and aerogel density and specific surface area are demonstrated. The detailed study of 

release kinetics is discussed in two parts: 
 

a) The impact of the drying methods (supercritical, evaporative or freeze drying) on 

release properties of the different pectin matrices (hydrogel, aerogels, cryogels, 

xerogels). 

b) A step by step examination of the impacts of aeropectins’ preparation conditions on 

their release properties: 
 

In the first instance, general trends of the release properties of aeropectin will be deeply 

examined and discussed, taking one example of aeropectin.  

Then, we study the effect of aeropectin density on the release, varying the pH of pectin 

solutions. 

 

Finally, we examine the effect of cross-linking on the release, varying calcium 

concentration of pectin solutions. 
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1. Production and characterization of the drug-loaded aeropectins 

1.1. Method of incorporation of theophylline into aerogel precursors 

Theophylline (1,3-dimethylxanthine) is a bronchodilator drug widely used to treat the 

symptoms of chronic airway diseases (persistent asthma, emphysema, chronic bronchitis). In 

this study, we have selected theophylline as a model drug for both its pharmaceutical and 

chemical (solubility) properties. Indeed, theophylline is a polar and hydrophilic alkaloid drug 

well soluble in water (8.3 g/L at 25°C)  (Yalkowsky, He, Jain, He, & Jain, 2016) and presents 

a pKa around 8.81 (Kortüm, Vogel, & Andrussow, 1960) . It belongs to Class 1 drugs of the 

Biopharmaceutics Classification System (BCS), that is to say it is a highly soluble and highly 

permeable drug, subject to immediate and complete absorption after oral administration. 

 

Figure 129. Theophylline 2D-chemical structure, from National Center for Biotechnology 

Information. PubChem Database. Theophylline, CID=2153, 

https://pubchem.ncbi.nlm.nih.gov/compound/2153 (accessed on Mar. 26, 2019) 

However, theophylline has a narrow therapeutic window of 10 – 20 µg of 

theophylline/mL in serum, above which adverse effects may be observed including serious 

cardiovascular toxic effects due to over-dosage (tachycardia, circulatory failure, ventricular 

arrhythmias).  In other words, theophylline has to be chronically and constantly administrated 

in the right dosage maintained into the therapeutic window, with avoidance of both over-dosage 

(toxicity) and under-dosage (inefficiency). Thus, extending and controlling its release into 

gastro-intestinal tracks is an important issue, and that is why it must be administrated orally 

using controlled release preparations. 

 

Theophylline is moderately soluble in ethanol (3.5 g/L at 25°C) allowing its impregnation 

into pectin aerogel precursor (pectin coagulated in ethanol) through diffusion. Due to its high 

polarity and low octanol-water partition coefficient Kow from -0.02 (experimental value 

(Martin, 1996)) to -0.7 (predicted)  (calculation module developed by ChemAxon 

(« ChemAxon », s. d.) ) theophylline is practically insoluble in non-polar solvent such as 

supercritical CO2, with solubility lower than 0.04 g/kg at 313 K and 19.9 MPa (Johannsen & 

Brunner, 1994), thus avoiding its dissolution in CO2 during sc drying.  
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Theophylline dissolved in ethanol was impregnated into pectin aerogel precursor which 

itself carries ethanol. To minimize the dilution effect due to the presence of ethanol within the 

aerogel precursors, the samples were immersed in theophylline solution 25 to 30 times larger 

than the volume of pectin, and ethanol solution bath was changed for fresh one after 48 h. As 

shown in Figure 53, pectin aerogel precursors were immersed for 7 days (the reason of this 

duration is explained below) into either an ethanol solution at a concentration of theophylline 

of  2.5 g/L or in a theophylline suspension in ethanol at 3.4 g/L, depending on the case. 

 

Figure 130. Schematic representation of the impregnation method of theophylline into pectin 

aerogel-precursor by diffusion through ethanol. 

To evaluate the time needed to completely impregnate aerogel precursor samples with 

theophylline, we estimated the diffusion coefficient of theophylline in ethanol. The diffusion 

coefficient (D) of a solute through a medium in a dilute state is given by Stokes-Einstein 

Equation (5.1): 

 𝐷 =
𝑘𝐵𝑧.𝑇

6𝜋𝑅𝜂
  (5.1) 

 

Where kBz is the Boltzmann constant, T the temperature, R the hydrodynamic Stokes 

radius of the solute, and η the viscosity of the medium. As theophylline concentration in ethanol 

is lower than 0.44 wt% (3.5 g/L), we considered that it is in dilute state. 
 

Theophylline’s Stokes radius is estimated between 3.7 Å (experimental estimation) (M. 

Grassi, Colombo, & Lapasin, 2001) and 3.5 Å (numerical estimation) (Grassi et al., 2006) in 

water at 37°C. Using ηethanol = 1.20 10-3 Pa.s, theophylline diffusion coefficient in ethanol at 

25°C is estimated to be around 4.92 10-10 m²/s in the absence of pectin network. The diffusion 

of theophylline thought ethanol is expected to be slowed down in the presence of a network 

porous structure. By analogy with the previous work on diffusion of other molecules (NaOH, 

ionic liquid) through cellulose matrix as a function of cellulose concentration (Gavillon & 

Budtova, 2007; Sescousse, Gavillon, & Budtova, 2011), we divided the diffusion coefficient 
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by a factor 10 for 6 wt% pectin matrices. This roughly gives DTheophylline ~ 4.92 10-11 m²/s in 

pectin aerogel-precursor. 

 

The diffusion of theophylline in ethanol medium thought a porous matrix results from 

Brownian motion. The distance L made by theophylline molecule during time t is given by: 

 

 𝐿 = √𝐷𝑇ℎ𝑒𝑜𝑝ℎ𝑦𝑙𝑙𝑖𝑛𝑒 . 𝑡  (5.2) 

 

In 24 h, a theophylline molecule diffuses through a distance of ~ 2.1 mm in such porous 

system. Considering that half thickness of the matrix samples was 5 mm maximum, the time 

needed to diffuse to the center of the material is estimated to be around 5.9 days. Thus, we 

consider that theophylline impregnation through the pectin-precursor was complete in 7 days.  

After theophylline impregnation, the pectin aerogel precursors loaded with theophylline 

were directly sc dried using CO2 to obtain drug loaded pectin aerogels. 

1.2. Characterization of loaded aeropectins  

1.2.1. Aeropectins drug loading efficiency  

As shown in Figure 131, drug loading efficiency (%) (see Equation (2.12) from Chapter 

II) obtained for theophylline loaded aeropectins (all data for all formulations) reached variable 

values (from ~ 40 to 80%) depending on sample preparation conditions (pectin concentration, 

pH of pectin solution, addition of calcium) which were impacted by aeropectins properties 

(SBET, density, porosity, etc.). These values compare well with literature on polysaccharide 

aerogels, with loading efficiency usually from 15% to 80% (García-González, Jin, Gerth, 

Alvarez-Lorenzo, & Smirnova, 2015; Mehling, Smirnova, Guenther, & Neubert, 2009; Tkalec, 

Knez, & Novak, 2016; Veronovski, Tkalec, Knez, & Novak, 2014). Especially high loading 

efficiencies up to 70-80% were achieved for high density aeropectins (0.16 < ρ < 0.20 g/cm3) 

(Figure 131 (a)).  

 

Moreover, we noticed that drug loading efficiency (%) was positively correlated with the 

specific surface area of aeropectins for a given pectin concentration (3 wt% or 6 wt %) (Figure 

131 (b)). This confirms that the higher the specific surface area offered by the polysaccharide 

network, the higher the drug deposition onto the chains and thus the higher the aerogel loading 

efficiency, as reported in (Alnaief & Smirnova, 2010; García-González et al., 2015; Mehling et 

al., 2009; I. Smirnova, Mamic, & Arlt, 2003; I. Smirnova, Suttiruengwong, & Arlt, 2005, 

Veronovski et al., 2014). In correlation with literature, this also suggests that apart specific 

surface area other parameters might be involved in the loading efficiency, such as pectin 
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concentration and/or aerogel density. Indeed, Figure 131 (a) shows the high correlation between 

loading efficiency and aeropectin density regardless pectin concentration or addition of 

calcium.  

As it was suggested by (Mehling et al., 2009; I. Smirnova, Suttiruengwong, & Arlt, 2004), 

high aerogel density, which also reflects smaller pore size in the case of aeropectins, might be 

an important parameter for loading efficiency. One of the possible reasons is that a denser 

network with smaller pores and higher tortuosity might physically better prevent from 

theophylline wash off during sc-drying process. This assumption was confirmed by comparing 

the loading efficiency of aerogel obtained from the same sample preparation (6% pectin P35 

solution dissolved at pH 2.0 with calcium addition at R(Ca) = 0.2)), and impregnated by 

diffusion of the same solution of theophylline in ethanol (3.4g/L) but dried either by evaporation 

(xerogel) or by sc-drying (aerogel). Pectin xerogel exhibited a high loading efficiency around 

94% while aerogel showed lower loading efficiency around 62% (more detailed discussion will 

be given in Section 2.1). First, this proves that diffusion time was sufficient to completely load 

the sample to the core. However, even not being soluble in CO2, a certain portion of the drug 

can be physically washed out because of the miscibility of ethanol with CO2 and flow during 

the sc drying process. The influence of drying is detailed in the following Section 2.1 

 

Figure 131. Plot of loading efficiency (a) as a function aerogel density and (b) as a function of 

SBET for all pectin-based aerogels studied in this work. Aeropectins were made from pectin 

solutions of either 3 wt% of pectin P35 (black squares) or 6 wt% (red squares), in the absence 

of calcium (filled symbols) or cross-linked with calcium (open symbols). Pectin samples were 

impregnated in ethanol at theophylline concentration of 2.5 or 3.4 g/L. Dashed line is given to 

guide the eye.  

The drug loading capacity of aeropectins (see Equation (2.13) from Chapter II) presented 

in Figure 132 shows its increase with the specific surface area (a) but no clear trend as a function 

of density (b). Even if aerogel density was found to be strongly correlated to drug loading 
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efficiency (Figure 131 (a)), it can be seen on Figure 132 (b) that density is not sufficient to fully 

explain the loading capacity.  

 

Figure 132. Plot of aeropectins loading capacity (a) as a function of SBET and (b) of density. 

Aeropectins were made from solutions of either 3 wt% of pectin P35 (black squares) or 6 wt% 

(red squares), in the absence of calcium (filled symbols) or cross-linked with calcium (open 

symbols). Pectin samples were impregnated in ethanol at theophylline concentration of 3.4 g/L. 

Dashed line is given to guide the eye.  

The change of pH, addition of calcium at various concentrations and pectin concentration 

were found to have a major impact on loading capacity due to aerogel structure change, but 

influenced differently the specific surface area and density. Indeed, decreasing pectin 

concentration from 6 wt to 3 wt% did not decrease much specific surface area (around 550-580 

m²/g) and thus the drug deposition onto pectin chain, but artificially increase the mass 

contribution (wt%) of the drug regarding to the twice lower mass pectin carrier. Besides, the 

increase of calcium concentration or the decrease of pH progressively reduced specific surface 

area (and thus the surface of deposition) but not necessarily the density. As a result, some 6 

wt% pectin aerogels can present density in the same range of values (~ 0.9 g/cm3) but with high 

variation of the loading capacities (2 wt% - 3.4 wt%) due to wide variations of their SBET (from 

360 – 450 m²/g). 

 

The obtained theophylline loading capacities around 2 to 4.5 wt% (Figure 132) were 

much lower than what was reported for pectin aerogels (~ 10 – 40 wt%) and more generally for 

polysaccharide aerogels (García-González et al., 2015; Mehling et al., 2009; Tkalec, Knez, & 

Novak, 2015; Tkalec et al., 2016; Veronovski et al., 2014), however, in these publications, other 

drugs and/or other impregnation methods were used. Indeed, it has to be noted that the results 

of drug loading efficiency are highly dependent on the method of drug impregnation (e.g. 

impregnation before gelation, during solvent exchange or by impregnation under supercritical 

CO2) and drug properties (solubility in solvent and in scCO2). Aerogel’s loading capacity is 
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directly limited by the maximum solubility of the drug in the impregnating media and by the 

weight of the carrier. Low drug loading capacity we have obtained are in correlation with rather 

low solubility of theophylline in ethanol (~ 3.5 g/L at 25 °C) and with rather high concentration 

of pectin solutions (6 wt%) to produce the aeropectin carriers. 

1.2.2. Structural characterization of theophylline loaded aeropectins  

SEM observations presented in Figure 133 show that the external surface of the 

aeropectins was covered by particles of the micrometric scale, which is typical for theophylline. 

For comparison, pictures of pure theophylline particles precipitated from ethanol are shown in 

Figure 134.  

 

Figure 133. SEM pictures of the external surface of aeropectin matrix (white arrow) loaded 

with theophylline. Micrometric theophylline elongated particles are covering the external 

surface of aerogel. 

 

Figure 134. SEM pictures of pure theophylline elongated particles precipitated from ethanol by 

solvent evaporation. 

We suggest that solidification of theophylline on the external surface of aerogel is due to 

evaporation of ethanol during the lag time between sample removal from ethanol and the launch 

of sc-drying. This was also observed by Haimer et al. after sc-drying of cellulose aerogels which 

were loaded with a drug by diffusion in ethanol prior to drying (Haimer et al., 2010). According 

to them, this was due to the spilling out of the drug solution in ethanol out of the matrix. 
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However, none of those sharp geometrical structures were found in the core of the aerogel as 

shown in Figure 135. Even if we were not able to visually observe the presence of theophylline 

inside the materials, the fact that theophylline was released over 10 h while aeropectin matrix 

was progressively dissolved due to surface erosion confirmed its presence not only on the 

external surface but also in the core of the material. Finally, network morphology, density and 

specific surface area of aeropectins loaded with drug remained unchanged when compared with 

non-loaded aeropectins, as the mass content of drug in aeropectins was low. 

 

Figure 135. SEM pictures of the internal structure of aeropectin matrix loaded with 

theophylline.  

1.2.3. Determination of crystalline structure of theophylline incorporated 

in pectin aerogels, xerogels and cryogels by X-rays diffraction 

To determine if theophylline is in the crystalline or amorphous form within pectin 

aerogels, cryogels and xerogels, X-ray diffraction (XRD) analysis2 was conducted on the 

external surface and in the core of the drug loaded samples. We also characterized theophylline 

drug particles as the raw powder in order to compare with drug-loaded pectin samples. 

 

The X-ray diffractogram of pure theophylline as the raw powder (Figure 136 (A)) clearly 

shows the presence of sharp and intense diffraction peaks which reflects its crystalline structure. 

The diffractograms obtained from neat pectin aerogels and with theophylline inside (Figure 136 

(B) and (C), respectively) present a similar broad hump without any sharp diffraction peaks, 

which is an indication for an amorphous structure of both pectin aerogel and the theophylline-

pectin aerogel. These qualitative results suggest that initially crystalline theophylline is 

transformed into amorphous solids once incorporated into pectin aerogels. 

 

 

 
2 We thank Dr. Daniel Timpu from P. Poni Institute of Macromolecular Chemistry, Iasi, Romania, 

for performing XRD on pectin xerogels and cryogels 
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Figure 136. X-ray diffraction spectra (A) of theophylline raw powder, (B) of neat aeropectin 

and (C) of an aeropectin loaded with theophylline: on the external surface (curve 1) and in the 

core of the aerogel (curve 2). Both pectin aerogels were made from 6 wt% of pectin P35 

dissolved at pH 2.0 without calcium. Pectin samples were impregnated by theophylline-ethanol 

solution at concentration of 3.4 g/L. 

We investigated the impact (if any) of the drying method on the crystalline form of 

theophylline incorporated into pectin samples by comparing the X-ray diffractograms of drug-

loaded pectin aerogels, xerogels and cryogels. Similarly to non-drug-loaded pectin aerogels 

(Figure 136 B), the diffractograms of neat pectin xerogels (Figure 137 A) and cryogels (Figure 

137 C) present a wide hump without diffraction peaks, reflecting the amorphous form of the 

pectin dry samples. However, some sharp diffraction peaks in drug-loaded pectin xerogels 

(Figure 137 A vs B) and cryogels (Figure 137 C vs D) were recorded. In particular, specific 

diffraction peaks corresponding to crystalline theophylline located at around 7.1° and 12.7° 

(Figure 136 (A)) were found.  
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Figure 137. X-ray diffraction spectra of: 

(A) Pectin xerogels without theophylline and (B) loaded with theophylline.  

 (C) Pectin cryogels without theophylline and (D) loaded with theophylline.  

Both pectin xerogels and cryogels were made from 6 wt% of pectin P35 dissolved at pH 2.0 

without calcium. Pectin xerogels were impregnated in ethanol at theophylline concentration of 

3.4 g/L and dried by evaporation at 60°C in low vacuum conditions and pectin loaded cryogels 

were made by mixing pectin aqueous solution with theophylline at concentration of 3.4 g/L 

followed by gelation and freeze-drying. 

These qualitative results show that drying method may have an impact on the final form 

(crystalline or not) of theophylline. 
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2. Study of theophylline release from pectin, aerogels, cryogels and 

xerogels 

This part is dedicated to a detail study of the use of aeropectins as oral drug delivery 

system, with theophylline as drug model. We remind that sample was first placed in acid 

medium Simulated Gastric Fluid (SGF) (pH 1.0) for one hour, and then in neutral medium 

Simulated Intestinal Fluid (SIF) (pH 6.8) until the end of release. As an illustration, Figure 138 

shows an example of drug release curves obtained from theophylline released in vitro into 

simulated physiological fluids (37°C) as a free drug, or incorporated into a pectin hydrogel or 

pectin aerogel. Pectin hydrogel and aerogel were produced from the same initial pectin acid gel, 

based on 6 wt% pectin dissolved at pH 2.0 without calcium. The drug incorporation methods 

into the different pectin matrices are detailed in the Chapter II, Section 2. 
 

 

Figure 138. (a) Theophylline cumulative release (%) over time as free drug (anhydrous powder) 

versus release from pectin hydrogel or from pectin aerogel matrix. Pectin hydrogel and aerogel 

were made from 6 wt% of pectin P35 dissolved at pH 2.0 without calcium. 

As expected, theophylline as free drug was immediately dissolved in correlation with its 

high solubility in the releasing media. In contrast, its release was significantly slowed down 

when embedded into the polymer matrix which acted as a physical barrier to theophylline 

instant release into the bath. Indeed, full drug release occurred in 150 minutes from pectin 

hydrogel and twice longer, around 300 minutes, from pectin aerogel. The difference in release 

time between the two pectin matrices is significant and is correlated to the much slower erosion 

of the pectin aerogel than of pectin hydrogel (both in the absence of calcium). This example 

illustrates the interest for the use of aerogels as drug carriers and their potential for prolonged-

drug delivery applications.  
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Next, step by step examination of release kinetics from various pectin matrices is 

presented and discussed. 

 

First, we compare drug release from pectin matrices based on the same formulation but 

dried in different ways: non-dried (pectin hydrogel) and dried using either sc-drying (pectin 

aerogel), or freeze drying (pectin cryogel) or evaporative drying at 60°C (pectin xerogel). The 

initial solutions were the same: aqueous 6% pectin P35 dissolved at pH 2.0, and calcium was 

added at R(Ca) = 0.2 to induce ionic gelation. A strong ionic gelation induced by calcium was 

found to be necessary to prevent structure collapse during the drying of xerogels and cryogels.  

 

To obtain theophylline loaded hydrogels and cryogels, the drug was added to pectin 

aqueous solution at 3.4 g/L which was then gelled for 48 h. Pectin cryogel was made by freeze-

drying of a hydrogel. To produce xerogels and aerogels, theophylline was impregnated at the 

same dose into the coagulated samples at the very last step prior drying. The drug incorporation 

methods into the different pectin matrices are presented in the Chapter II, Section 2. 

2.1. Structural properties of pectin matrix made with different dryings 

As expected, pectin hydrogel and cryogel presented around 100% of loading efficiency. 

Pectin xerogel also exhibited a high loading efficiency around 94%, proving that diffusion time 

was sufficient to completely load the sample to the core (Figure 139). On the contrary, aerogel 

showed the lowest loading efficiency (~62%) due to theophylline being washed out because of 

the flow during sc-drying process, as previously discussed in the Section 1.2.1.   

 

Figure 139. Theophylline loading efficiency (%) depending on pectin matrix drying: hydrogel, 

cryogel, xerogel or aerogel. All samples were made from the same initial pectin solution of 6% 

pectin P35 dissolved at pH 2.0 cross-linked with calcium at R(Ca) = 0.2.  

The matrices dried in different ways presented very different internal structures, as 

expected, as shown in Figure 140 and Table 8. Cryogels were obtained by immersing pectin 

hydrogel in liquid nitrogen bath (-196°C) for 5 minutes in order to freeze water prior its removal 

by sublimation (freeze-drying). We observed very low sample shrinkage (around 10 - 13 vol 
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%) which might be due to sample contraction when they were immersed in nitrogen bath. 

During freezing, ice crystals were growing within the sample (Job et al., 2005), compressing 

the walls of pectin network and creates large pores. As a result, freeze dried samples present a 

highly porous rather damaged morphology with cracks and very large macropores in the 

micrometric scale (Figure 140). Its characteristics are shown in Table 8. 

 

Figure 140. SEM observations of pectin cryogel, aerogel and xerogel. All samples were made 

from the same initial pectin preparation of 6% pectin P35 dissolved at pH 2.0 cross-linked with 

calcium at R(Ca) = 0.2.  

 

Table 8. Structural properties of pectin hydrogel, cryogel, aerogel and xerogel matrix (the 

skeletal density of pectin is around is 1.5 g/cm3 (Groult & Budtova, 2018)). All samples were 

made from the same initial pectin preparation of 6%pectin P35 dissolved at pH 2.0 cross-linked 

with calcium at R(Ca) = 0.2. The size of pores was estimated from SEM images. 

Matrix Hydrogel Cryogel Aerogel Xerogel 

Density (g/cm3) 
1.076 ± 0.009 (wet 

material) 

0.073 ± 0.003 

(dry material) 

0.083 ± 0.005 

(dry material) 

1.057 ± 0.021 

(dry material) 

Porosity (%) _ 95.1 ± 0.2 94.6 ± 0.3 29.6 ± 1.4 

Pore volume 

(cm3/g) 
_ 13.04 ± 0.53 11.63 ± 0.75 0.28 ± 0.02 

SBET (m²/g) _ 10 to 20 362 ± 14 Non-measurable 

Network 

morphological 

aspect 

_ 

Large macropores 

of around 0.5 to 5 

µm of diameter 

Mesopores and 

small macropores of 

around 50 to 150 

nm of diameter 

Highly dense 

network 
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The evaporative drying (xerogels) performed at 60°C in low vacuum conditions induced 

massive shrinkage over 90 vol% of pectin sample. Structure collapse occurred due to important 

capillary forces and led to high density xerogels (> 1 g/cm3) displaying low porosity (~ 30%) 

and compact morphology after drying (Figure 140). 

In the supercritical state (aerogels), the supercritical fluid has properties midway between 

a liquid and a gas. As there is no meniscus, the capillary forces were avoided and the samples 

were dried without damaging the structure. However, volume shrinkage (~ 30 vol%) occurred 

due to contraction during solvent exchange step and sc-drying, as detailed in Chapter III. After 

sc-drying, low density aerogels were obtained (~ 0.080 – 0.085 g/cm3), displaying high porosity 

with mesopores and small macropores (around 50 to 150 nm of diameter as deduced from SEM 

images).  

2.2. Theophylline release profiles as a function of drying method 

Theophylline release profiles and matrix mass and volume evolution in time for hydrogel, 

cryogel, xerogel or aerogel are plotted in Figure 141 and Figure 142, respectively.  

 

As expected, we observed that the drying method of the matrix had a strong impact on its 

drug release properties, as it drastically changed the internal structure even if the initial 

composition was the same. In this work, we used kinetic mathematical models based on the 

fitting with experimental data to determine the main drug release mechanisms governing 

theophylline release (see Annex for the description of each model).  

 

The methodology to select the most accurate models to describe the release kinetics will 

be given in detail in the Section 3.2 based on one example of drug release experiment from a 

pectin aerogel. Here, we used Korsmeyer-Peppas and Peppas-Sahlin models (See equations 

(A.12) and (A.14) of the Annex, respectively) as they were found to be the most suitable models 

based on their good fitting to data with the highest R² values (R² > 0.99), and their ability to 

discriminate different release behaviour. The calculated parameters are presented in Figure 141. 
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Figure 141. Theophylline cumulative release (%) over time depending on pectin matrix system: 

hydrogel (1), cryogel (2), aerogel (3) and xerogel (4). All matrices were produced from the 

same aqueous pectin solution: 6 wt% pectin dissolved at pH 2.0 cross-linked with calcium at 

R(Ca) = 0.2. 

 

 

Figure 142. (a) Mass (g) and (b) volume (cm3) evolution over release time of each pectin matrix 

depending on the drying method: hydrogel (1), cryogel (2), aerogel (3) and xerogel (4). 
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Table 9. Estimation of the parameters from Korsmeyer-Peppas and Peppas-Sahlin models for 

theophylline release from pectin hydrogel, cryogel, aerogel, and xerogel (Peppas & Sahlin, 

1989; Ritger & Peppas, 1987a, 1987b). 

Matrix Hydrogel Cryogel Aerogel Xerogel 

Korsmeyer-

Peppas model 

n = 0.542 

Kkp = 0.743 

R² = 0.999 

n = 0.603 

Kkp = 0.778 

R² = 0.996 

n = 0.500 

Kkp = 0.756 

R² = 0.997 

n = 0.230 

Kkp = 0.758 

R² = 0.967 

Peppas-Sahlin 

model 

Diffusional  

KF = 0.362 h-0.43 

 

Relaxational  

KR = 0.151 h-0.86 

 

R² = 0.998 

Diffusional  

KF = 0.371 h-0.43 

 

Relaxational  

KR = 0.240 h-0.86 

 

R² = 0.997 

Diffusional  

KF = 0.460 h-0..43 

 

Relaxational  

KR = 0. 085 h-0.86 

 

R² = 0.998 

Diffusional  

KF = 0.979 h-0.43 

 

Relaxational  

KR < 0 

 

R² = 0.979 

 

Pectin hydrogel release profile can be considered as a “reference” to evaluate the impact 

of drying. As shown in Figure 141, full theophylline release from hydrogel occurred in around 

290 min, correlating with hydrogel erosion by dissolution as shown in Figure 142. The 

Korsmeyer-Peppas n exponent was estimated to be around 0.54 for release from hydrogel, 

which is related to anomalous transport of drug (non Fickian), governed by the coupling of 

diffusional and relaxational (polymer swelling and erosion) phenomena. 

 

Thus, Peppas-Sahlin model was used to estimate the Fickian diffusion contribution to the 

release, as shown by the Fickian release fraction over time in Figure 143. At the beginning of 

release, diffusion dominates and drug release is mainly due to drug diffusion through the first 

layers of the hydrogel. With time, polymer relaxation becomes significantly involved in the 

delivery of drug particles located deeper in the hydrogel matrix. Polymer swelling and 

dissolution occurred resulting in larger “free spaces” in the matrix, which in turn increases 

diffusivity of solvent and drug through the matrix.  
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Figure 143. Fickian release fraction (F) as a function of release time, from a flat cylinder model 

with m value of 0.430, based on Peppas-Sahlin model (Peppas & Sahlin, 1989). 

As it can be seen in Figure 13, pectin cryogel showed the fastest full release which was 

completed in about 260 min, governed by coupling of diffusional and relaxational phenomena 

as revealed by Korsmeyer n = 0.6 (between 0.45 and 0.89). This rapid release is in correlation 

with highly macroporous morphology due to water ice crystals growth during freeze-drying 

(Figure 140), which resulted in the formation of micrometric channels, poor mechanical 

properties and low-density material. We assume that this particular open structure enabled high 

solvent velocity and drug diffusivity through the system. The fast solvent penetration and low-

density network might have promoted rapid matrix erosion (Figure 142), which in turn 

accelerated drug release. Our assumptions are confirmed by the high relaxational contribution 

to the release using Peppas-Sahlin model, as shown in Figure 143.  

 

Pectin aerogel showed a full release in around 330 min, also driven by diffusion and 

polymer swelling / dissolution according to Korsmeyer n = 0.5 (between 0.45 and 0.89) Despite 

a low density similar to pectin cryogel, the microstructure of aerogel presented much smaller 

pores in the nanometric scale (Figure 140) which made the difference in matrix erosion and 

release rates as compared with cryogel. Even slightly higher density (+13-15%) coupled to 

smaller pore sizes may also limit free spaces and mass transport phenomena. Indeed, as shown 

in Figure 142, aerogel matrix erosion was more than one hour and half longer than that of 

cryogel, and one hour longer than of hydrogel. We visually noted that a dry core in aerogel was 

maintained during the first hours of release experiment, confirming low solvent velocity 

through the dry system (Figure 144). As a result, matrix erosion and drug release were slowed 

down. This is also confirmed by higher Fickian contribution to the release as compared with 

cryogel and hydrogel (Figure 143). 
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Xerogel exhibited the small initial matrix volume due to ~ 93-95% shrinkage during 

drying, which led to high density and low porosity. We assume that the compactness of the 

structure prevented both diffusion and matrix dissolution and thus the release of drug. This was 

visually confirmed by the maintenance of a dry core in the center of the matrix, as shown in 

Figure 144. As it can be seen in Figure 142, matrix volume and mass were maintained during a 

long period of time (t > 800 min) and no matrix erosion was observed until 500 min of 

experiment. According to Korsmeyer-Peppas model, we obtained n value of 0.23 which was 

lower than 0.45 (Case I Fickian diffusion) but suggested a diffusion-based mechanism. This n 

value indicates a deviation from Fick’s law, which can be due to the polydispersity of pore 

sizes, potentially presence of closed pores and overall heterogeneity within the material. It is 

known that when pores of a dried polysaccharide are closed during drying, they may not re-

open during wetting, this phenomenon known for cellulose as “hornification”. Similar 

behaviour was already reported in the work of Horvat et al. on pectin-xanthan composite 

aerogels (Horvat et al., 2017), and also in ref (Rezaei, Nasirpour, Tavanai, & Fathi, 2016; Saurí 

et al., 2014; Sengupta, 2016).  

As the xerogel matrix showed good durability and stability in the releasing media, with 

no erosion observed during 97% of total drug released (Figure 142 (a)), we assumed that the 

release of the drug occurred only due to diffusion, meaning that the soluble drug might have 

diffused out of the sample before matrix erosion occurred. This is also confirmed using Peppas-

Sahlin model (Figure 143) revealing that all drug release was due to diffusional transport. Thus, 

we assume that the extremely slow xerogel erosion coupled with slow diffusion through the 

dense and compact network resulted in extended release up to about 10 hours. For illustration, 

pictures of each matrix after 120 minutes of dissolution testing experiments are presented in 

Figure 144. 

 

Figure 144. Pictures of pectin hydrogel, cryogel, aerogel, and xerogel after 120 minutes of 

release experiment in simulated gastric fluid (SGF, pH 1.0) the first hour, then in simulated 

intestinal fluid (SIF, pH 6.8) at 37°C. All matrices were produced from the same initial aqueous 

6 wt% pectin solution dissolved at pH 2.0 cross-linked with calcium at R(Ca) = 0.2. The scale 

is the same for all pictures. 

It is interesting to see how drying of hydrogel matrix to make either xerogel (evaporation), 

or cryogel (freeze drying) or aerogel (sc-drying) results in various internal structures, leading 

to very slow (more than 10 h) to faster (5 h) drug release, respectively. The variation of network 
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morphology due to drying process was shown to balance the contribution of both diffusional 

and relaxational mechanisms, as summarized in Figure 143. 

2.3. Comparison of release properties of pectin hydrogels and aerogels 

As stated above, we noted that twice slower complete drug release time occurred from 

aerogels as compared to hydrogel (Figure 138), however, Figure 141 shows that total release 

time from hydrogel and aerogel is very similar. The reason is that release properties are strongly 

dependent on matrix formulation and, as a consequence, material properties. 

 

As shown in Figure 145, in absence of cross-linking by calcium, the difference in drug 

release behavior between the two pectin matrices is significant, with complete release of 

theophylline in around 150 minutes from pectin hydrogel, and twice longer, around 300 

minutes, from pectin aerogels. This stems from the dramatic difference in matrix “stability” and 

erosion, hydrogel vs aerogel (both without calcium) in the releasing media. As it can be seen in 

Figure 146 (a), the erosion by dissolution of pectin hydrogel was twice faster (in 160 min) than 

that of pectin aerogel (in 320 min) in absence of calcium. In contrast, when calcium was added 

to pectin solution (R(Ca) = 0.2) to produce hydrogel and aerogel samples, the two matrices 

displayed much more similar drug release profiles, with complete theophylline release in 

around 300 and 330 min, for pectin hydrogel and aerogel, respectively. This prolonged drug 

release behavior from hydrogel is in correlation with slow matrix erosion which is practically 

the same for the both matrixes when calcium was added. Pectin hydrogel was completely 

dissolved within 310 min, and the pectin aerogel within 365 min. 
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Figure 145. Theophylline cumulative release (%) over time from pectin hydrogel (1) or from 

pectin aerogel (2) based on the same formulation made from 6wt% of pectin at pH2.0, (a) in 

absence of calcium or (b) cross-linked with calcium at R(Ca) = 0.2.  

 

Figure 146. Comparison of matrix mass (g) evolution over time for hydrogels (1) and 

aeropectins (2) based on the same formulation made from 6 wt% of pectin at pH2.0, (a) in 

absence of calcium or (b) cross-linked with calcium at R(Ca) = 0.2.  

As shown above, supercritical drying has a slowing down effect on the release properties 

of pectin matrix, and this effect is much more pronounced when no cross-linking with calcium 

was used. There are two significant differences between hydrogel and aerogel matrices: 

- One is that aeropectins are dried materials in contrast to hydrogels. When aerogel is 

placed in aqueous medium, only chains on sample surface start to be hydrated and a dry 

core remained visually intact, as revealed by the floating of the aeropectin and estimated 

density lower than 1 throughout the whole dissolution test. Thus, we can assume that 

the gradient of water penetration through the dry matrix might have played a role in 

liquid diffusion and dissolutions mechanisms.  

- Another reason is that aeropectin network became denser with smaller pores due to high 

shrinkage (from 60% to 75 vol %) during the processing route. The increased tortuosity 

of the pectin network might have decreased diffusion coefficient restraining water and 

drug diffusion processes. The volume of aeropectin matrix was around three times lower 

than that of hydrogel matrix, confining mass transport into smaller free spaces offered 

by the matrix.  

In the absence of calcium, pectin acidic hydrogels were soft and fragile, made of labile 

reversible chain interactions (hydrogen bonds and hydrophobic interactions) that were easily 

destabilized. When re-hydrated, the coagulated network from pectin aerogel led to stronger and 

more stable system which was less easily dissolved than acidic hydrogel. In contrast, when 

calcium was added (R(Ca) = 0.2) into pectin solutions, both ionic hydrogels and aeropectins 
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present strong crosslinked network, resulting in more “similar” properties (shrinkage of calcium 

cross-linked pectin is around twice smaller than that of acid gel): it is slow matrix erosion which 

governs slow theophylline release. 

3. Background analysis of aeropectin behaviour and theophylline 

release  

This section is making a background for the further detailed analysis of the release of 

theophylline for pectin aerogels. Here a reference sample is considered: aeropectin based on 6 

wt% of pectin P35 at pH 3.0 without calcium. Before performing “real” tests placing aeropectin 

in simulated gastric fluids (SGF, pH 1.0) for one hour and then in the simulated intestinal fluid 

(SIF, pH 6.8) as it was described in Section 2, here we evaluate aerogel behaviour in each fluid 

separately to understand the influence of pH. Then release kinetics from this aeropectin is 

analyzed in physiological condition (one hour in SGF and then in SIF) using models to select 

the best one fitting experimental data. The main drug release mechanisms governing 

theophylline release will be determined and discussed.  

3.1. Influence of pH of release medium on aeropectin erosion, swelling 

and drug release 

To illustrate aeropectin pH sensitivity to the release bath media, the experiments of 

theophylline release were performed either in Simulated Gastric Fluid (pH 1.0) (SGF) only or 

in Simulated Intestinal Fluid (pH 6.8) (SIF) only, until full release. The results are presented in 

Figure 147. Volume and mass of aeropectin matrices as a function of time (in Figure 148) were 

systematically followed to correlate drug release profile and matrix swelling and erosion.  
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Figure 147. Theophylline cumulative release (%) from aeropectins over time in either SGF 

medium (pH 1.0) or in SIF medium (pH 6.8) at 37 °C during the whole dissolution testing. 

Aeropectins were made from 6 wt% of P35 dissolved at pH 3.0 without calcium.  

 

Figure 148. (a) Aeropectin matrix mass (g) and (b) volume (cm3) evolution when immersed 

either in SGF (pH 1.0) or SIF (pH 6.8) bath at 37 °C. Aeropectins were made from 6 wt% P35 

dissolved at pH 3.0 without calcium.  

As shown in Figure 148, aeropectins instantly contracted in contact with liquid media 

(from 20% to 30%, as compared with dry state). As also observed in the work of Marin et al., 

this initial shrinkage can be due to collapse of macropores by capillary forces exerted from fast 

water penetration into the system (Marin, Mallepally, & McHugh, 2014). During the first 10 

minutes of immersion in releasing media, aeropectin exhibited a fast mass increase, from 

+230% in SGF (pH 1.0) to +350% (as compared with dry state). This mass increase is simply 

due to water uptake by a porous matter.  

As explained in the Annex (Section 1), the velocity of diffusion of a liquid depends on 

the structural characteristics of the matrix network, the physical and chemical properties of the 

polymer, as well as the properties of liquid. As pectin is a polyelectrolyte with pKa around 3-

3.5, pectin-based aerogels were expected to be pH-sensitive materials and react in different 

ways when immersed either into SGF (pH 1.0) or SIF (pH 6.8). Indeed, it can be seen in Figure 

148 that aeropectins’ mass and volume evolution differ depending on the liquid pH. In acidic 

media (<< pKa), strong interactions between pectin chains due to hydrogen bonding are 

promoted, as Gal.A exhibited protonated acid functions and chain hydration of pectin is low. 

In SGF (pH 1.0) we observed that re-hydration of aeropectin resulted in the formation of a 

“resistant” external gel layer surrounding the dry core (as shown in Figure 150).  

The strong gelled network prevented chain relaxation, which hindered matrix swelling 

and inhibited polymer dissolution. As a consequence, pectin gel was strongly resistant to 

dissolution and the matrix did not dissolve for more than 24 hours of immersion in SGF. In the 
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absence of erosion, the matrix was slowly swelling for 24 h in SGF (+40 vol% after 24 h of 

immersion). This resistant gel layer might also have acted like a “barrier” to water and drug 

diffusion due to reduced diffusion coefficient.  

 

Figure 149. Pictures of aeropectins from 6 wt% P35 dissolved at pH 3.0 without calcium, at 

different time after immersion into SGF (pH 1.0) or in SIF (pH 6.8) at 37°C. All pictures are at 

the same scale. 

In SIF (pH 6.8) medium, ionization of carboxylate groups of pectin occurred; pectin 

chains repelled each other due to coulombic repulsion and chain hydration increased leading to 

chain disentanglements and dissolution. As a result, the hydrated network tended to dissociate 

and expand as revealed by strong matrix swelling immediately followed by dramatic erosion 

by dissolution (Figure 148). The pH sensitivity of pectin-based materials is known and widely 

used to design effective gastro-resistant drug delivery systems (Liu, Fishman, Kost, & Hicks, 

2003).  

Figure 149 presents the evolution of aeropectin macroscopic dimensions with time in SGF 

and in SIF. It can be seen that immersion in media with pH higher than pKa promotes quick 

swelling and erosion of the matrix, while erosion is inhibited when pH is lower than pKa, as 

schematized in Figure 150.  
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Figure 150. Schematic representation of the pectin network either in simulated gastric media 

(pH 1.0) or simulated intestinal media (pH 6.8) 

As a result of matrix swelling/erosion sensitivity to pH, theophylline release from 

aeropectins was directly impacted by the pH of the releasing media. As shown in Figure 147, 

full theophylline release occurred rapidly in SIF media (in 265 min) driven by fast matrix 

erosion, while the release in SGF was 4 times longer, with slow release prolonged for more 

than 1000 minutes (17.5h) in correlation with matrix resistance to dissolution. Indeed, in the 

intestinal media (SIF) pH >> pKa, the important matrix erosion promoted water penetration and 

drug diffusivity in the system, resulting in faster drug release, while in gastric media (SGF) pH 

<< pKa, matrix erosion was inhibited and drug slowly diffused out of the swollen network. 

These results confirm that aeropectins are gastro-resistant materials that can be used to 

protect drug from gastric degradation and to prevent full drug release in the stomach. The 

change of liquid media from gastric to intestinal conditions during dissolution testing 

experiments is expected to promote matrix erosion and thus drug release.  

Based on pectin polyelectrolyte property, aeropectins can be used as pH-responsive drug 

delivery systems. Similar results were found for drug-loaded bio-aerogels in the shape of 

microparticles made from polyelectrolyte polysaccharides such as alginate, pectin and 

carrageenan and cross-linked with calcium (CaCl2 or CaCO3) (Gonçalves et al., 2016; 

Veronovski et al., 2014). 

3.2. Selection of a model to describe release kinetics 

To mimic the physiological release conditions, the reference theophylline loaded pectin 

aerogel (6 wt% of pectin P35 dissolved at pH 3.0 without calcium) was first immersed into SGF 

(pH 1.0) during the first hour and then in SIF (pH 6.8) during the following hours. Drug 

cumulative release over time and matrix mass and volume erosion are presented in Figure 151.  

As it can be seen, full theophylline release occurred in around 360 min, and was correlated 

with the slow erosion of the aerogel matrix over time. Based on our previous observations, we 

could clearly notice that matrix erosion was promoted when releasing media was changed from 

SGF (pH 1.0) to SIF (pH 6.8) after 1 hour of experiment, as revealed by rapid matrix swelling 

immediately followed by a strong decrease of matrix mass and volume over time, as presented 

in Figure 151 (b) (c).  

In the following, we use these data to select the suitable mathematical model describing 

release kinetics and to better understand the physical mechanisms involved in the drug release. 
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Figure 151. (a) Theophylline cumulative release (%) over time from pectin aerogel made from 

6 wt% of pectin pH 3.0 and (b) matrix mass and (c) matrix volume evolution in time. The 

aeropectin was immersed into SGF (pH 1.0) the first hour and in SIF the following hours (pH 

6.8) at 37°C. The vertical dashed lines indicate the change of releasing media at t = 60 min.   

3.2.1. Mathematical models fitting drug release profiles 

We have tested the fitting of the several currently used mathematical models to the data 

obtained from theophylline release experiment from aeropectin. Only the models applicable for 

solid polymeric matrix were selected which include: Zero-order kinetics, First-order kinetics, 

Higuchi, Korsmeyer-Peppas, Peppas-Sahlin, Hixson-Crowell, Hopfenberg, Gallagher-Corrigan 

models. The description, equations and assumptions of each model are presented in the Annex 

(Section 2). Correlation coefficient R² was chosen to define the accuracy of each model. Release 

constants from Hopfenberg and Gallagher-Corrigan models were determined through least 

squares fitting, otherwise the release constants were obtained by linear regression. “Acceptable” 

model fitting to data are achieved when R² values > 0.970, and “high” correlations for R² > 

0.990. 
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The experimental data and the corresponding fits together with the table of correlation 

coefficient and release constants are presented in Figure 152 and Table 10, respectively. 

 

Figure 152. Experimental data and the corresponding fits for theophylline release data. 

Theophylline release occurred in SGF (pH 1.0) the first hour and in SIF (pH 6.8) during the 

following hours. Aeropectin was made from 6% of P35 dissolved at pH 3.0 without calcium. 

Q(t) is the percentage of cumulative drug released in time t. Solids lines are the model plots. 

 

Table 10. Table of correlation coefficients and release rate constants of each model: k0, k1, kH, 

KHC, KG, n, Kkp, KF, KR, ke, kb. (See the equations (A.5), (A.6), (A.8), (A.9), (A.11), (A.12), 

(A.14) and (A.17), respectively, in the Annex to the manuscript.)  

Model 

Zero 

order 

kinetics 

First 

order 

kinetics 

Higuchi 

(simplifi

ed) 

Hixson 

Crowell 

Hopfenberg 

 

Korsmeye

r Peppas 

 

For 

Qt <60% 

Peppas-

Sahlin 

 

For Qt 

<60% 

Gallagher–

Corrigan 

R² 0.1968 0.9739 0.8795 0.9879 0.9560 0.9945 0.9934 0.9912 

Release 

rate 

constant 

K0 

0.2731 

K1 

0.153 

KH 

0.477 

KHC 

0.127 

KG =
𝑘0

𝐶0𝑎0

 

 

= 0.220 

n = 0.584 

 

Kkp= 

0.328 

KF 

0.388 

 

KR 

0.223 

Fb = 0.384 

ke=3.10 

kb = 0.101 

tmax=0.350 

As expected, Zero-order kinetics did not fit the obtained data (R² ~ 0.2) as the release 

from aeropectin exhibit a strong initial burst followed by variable theophylline release rates 

over time. Indeed, a zero-order kinetics system releases the drug at a (nearly) constant release 
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rate over time independently on the remaining drug concentration. This kind of kinetics reflects 

the ideal case of controlled release and did not fit release from aeropectins matrix. 

 

Intermediate correlation (0.8 < R² < 0.9) was found for Higuchi model, which is applied 

to describe drug release based on Fickian diffusion of both solvent and the drug throughout the 

pores of the matrix. The Higuchi model assumes that dissolution and swelling of the matrix are 

negligible, maintaining drug diffusivity constant. Our results suggest that the release is due to 

non-Fickian transport, meaning that other mass transports than diffusion is involved. Indeed, 

aeropectin are soluble matrices and pectin chain relaxation and matrix swelling and erosion are 

expected to impact the drug release. 

 

Good model fitting (0.95 > R² > 0.99) were found for Hopfenberg model, Hixson-Crowell 

models and first order kinetics. Both Hopfenberg and Hixson-Crowell models are applicable 

when drug release is controlled only by the dissolution rate of the core material (matrix erosion). 

Thus, in these models only matrix erosion and time are limiting factors, excluding any diffusive 

phenomena. However, we assume that diffusion has to be taken in account, as it can occur 

through the pores and channels of the hydrated network.  

 

First order equation describes dissolution of drug particles which are not efficiently 

entrapped in polymeric matrix and are ready to be dissolved. A quite good correlation with first 

order kinetics (R² ~ 0.97) is due to the burst phase obtained just after immersing the aeropectin 

in bulk media. As explained previously, the strong initial burst stage is explained by the 

presence of theophylline particles covering the external surface of the aeropectin. However, the 

model does not perfectly determine all release processes over time.  

 

Finally, the highest correlations (R² > 0.99) were found for Korsmeyer-Peppas plot, 

Peppas-Sahlin model and Gallagher-Corrigan models, which have in common the consideration 

of several potential physical mechanisms involved in the drug release. 

 

Korsmeyer-Peppas plot shows the highest correlation with the experimental data (R² ~ 

0.993), and allows finding out the mass transport mechanisms governing the drug release using 

the n exponent value (based on the first 60% drug release data). We obtained n value around 

0.60 which is characteristic to an anomalous transport (non-Fickian diffusion) for cylindrical 

shaped matrices. This indicates that solvent diffusion and polymer relaxation have similar time 

rates. Thus, as the solvent diffuses through the matrix, polymer relaxation does not occur 

immediately which significantly influences the diffusive transport of the drug out of the matrix. 

Thereby, drug release is governed by coupling the diffusion and polymer relaxation (matrix 

swelling or erosion). To find the contribution of each of mechanisms involved in the anomalous 
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transport we used Peppas-Sahlin model to estimate the Fickian release contribution over time 

(Peppas & Sahlin, 1989).  

 

In this work, aerogels with aspect ratio (diameter to thickness ratio) from 2.3 to 2.5 were 

made, corresponding to a Fickian diffusional exponent m around 0.430, as referred in the work 

of Peppas and Sahlin (Peppas & Sahlin, 1989). 

The results are presented in Figure 153 using a Fickian diffusional exponent m of 0.430 

which corresponds to cylindrical matrix with aspect ratio around 2.5. We obtained diffusional 

and relaxational constants KF ~ 0.388 min-0.43 and KR ~ 0.223 min-0.86 respectively. As it can be 

seen, at the beginning of drug release, the diffusional mechanism predominates until t ~2.0 h, 

with drug release being mostly due to Fickian diffusion. Then, it can be seen that relaxational 

and diffusional mechanisms have similar contributions to drug release changing the drug 

diffusion to non-Fickian transport. 

  

Figure 153. (a) Peppas-Sahlin model of the first 60% release data using Fickian diffusional 

exponent m of 0.430. Solid line is the model plot. 

 (b) Fickian release fraction (F) as a function of release time, from a flat cylinder with m value 

of 0.43, when KF (diffusional) = 0.388 min-0.43, and KR (relaxational) = 0.223 min-0.86 

These findings coincide with the high correlation obtained using the Gallagher-Corrigan 

model (R² > 0.99) as presented in Figure 154. The Gallagher-Corrigan model described a two-

phase drug release profile (anomalous transport), starting with an initial burst phase and 

followed by a slower matrix erosion-controlled release phase (Gallagher & Corrigan, 2000). 

The release is highly dependent on matrix erosion as revealed by the higher value of erosion 

kinetics constant (ke ~ 3.10 h-1) as compared with the burst constant (kb ~ 0.101 h-1) of 

Gallagher-Corrigan model. The high value of the erosion kinetics constant can be explained by 

the high hydrophilicity of pectin and the rapid matrix degradation in releasing media with pH 

> pKa. These assumptions were confirmed experimentally, with significant matrix erosion 

observed especially in SIF media (pH 6.8), as previously shown in Figure 148.  
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Figure 154. (a) Plot of the Gallagher–Corrigan model for the percentage of cumulative drug 

released (%) in time t and (b) the parameters of the model with Fb being the fraction of drug 

released during the initial burst phase, tmax the time to the maximum drug release rate, and kb 

and ke the burst and erosion constants in h−1, respectively. Solid line is the model plot and points 

are experimental values. 

3.2.2. Overview of drug release from aeropectins 

Based on mathematical analysis and taking into account the correlations with 

experimental data found above, it is possible to precisely explain different steps in the release 

of theophylline from an aeropectin, characterized by variable drug release rates over time, as 

schematized in Figure 155. To illustrate the kinetics phases, release rates are given in Figure 

157 by extracting slope values from the curve plotted in Figure 151(a). In this example, 14.2 

mg of theophylline was embedded into 360 mg of aeropectin matrix. 

 

Figure 155. Schematic representation of the different phases of the release from aeropectin 

matrix over time. 

The kinetics of theophylline release from aeropectins can be explained as follows:  
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Phase I: Once the aeropectin matrix is put into contact with the liquid media, the drug 

particles that are covering the surface of aeropectin (as shown in Figure 133) are immediately 

dissolved due to theophylline high solubility. This initial burst phase is also fed by rapid release 

of the drug located close to the surface. It leads to a typical initial burst of release during which 

a high quantity of the drug is released in a short period of time. It is logically characterized by 

the highest theophylline release rate around 0.15 to 0.40 mg theophylline.min-1 (~ 1.1 to 2.8 

wt%.min-1 of total theophylline). In this example (in Figure 151), around 20% of the total 

amount of theophylline was released in the first 10 minutes of the experiment. The release of 

the accessible fraction of drug close to the surface is governed by Fickian diffusion, as the 

chemical gradient is the only driving force. Indeed, the drug particles on and close to the surface 

are freely accessible, and the impact of polymer relaxation is considered to be negligible. Thus, 

under sink conditions the diffusion/surface burst phase may be described by a first-order 

process. This burst phase is therapeutically necessary in order to quickly achieve the therapeutic 

efficiency range (Huang & Brazel, 2001). 

 

Lag time: The first step is followed by a lag time before the actual matrix erosion phase 

starts. Indeed, for drug particles that are located deeper in the matrix, the time of diffusion to 

get out of the matrix is significantly longer due to the quadratic relation between the distance 

and time, see equation 5.2. As the diffusion times of both the solvent and theophylline become 

longer due to longer distances, the release of theophylline over time is slowed down. It is 

characterized by lower theophylline release rates from 0.06 to 0.11 mg.min-1 (~ 0.5 to 0.8 

wt%.min-1 of total theophylline), which marks the end of the burst phase.  

In parallel, the impact of chain relaxation on diffusion transport becomes significant as 

the remaining drug is less accessible and requires polymer swelling and dissolution to diffuse 

out of the matrix. In SGF media, the network is poorly hydrated and slightly dissolved as a 

resistant acidic pectin gel layer is formed. But after the first hour, the matrix is put in SIF 

medium which promotes ionization of pectin chain. Pectin aerogel matrix dissolves (erosion) 

which in turn increases diffusion of liquid and drug, and thus drives the release.  

 

Phase II: This second phase concerned around 60 wt% of the total drug that is embedded 

into pectin matrix and is not freely accessible. During this step, progressive pectin chain 

relaxation, re-arrangement, swelling and dissolution occur, which may significantly impact the 

release kinetics. At the interface of the matrix and the liquid a viscous pectin gel layer is formed 

which acts as a physical “barrier” that limits mass transport of both drug and liquid, as shown 

in Figure 156. Due to lower diffusion coefficient, the release of theophylline through the viscous 

hydrated network is slowed down. In parallel, aeropectin matrix is progressively dissolved, 

starting from erosion front on the outer surface which gradually moves inward, as revealed by 

the decrease of volume and mass of aeropectins shown in Figure 151 (b) (c). 
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Usually, the slowest mechanism (i.e. diffusion, relaxation, dissolution, and swelling) 

becomes the determining step that drives the drug release. In the case of aeropectin, this phase 

is mainly characterized by simultaneous diffusion and matrix swelling followed by erosion 

(non-Fickian transport) phenomena, as confirmed by n value (0.45 > n > 0.89) used by 

Korsmeyer-Peppas model  

 

Figure 156. Picture of an aeropectin after being immersing in SGF (37 °C) for 45 min. 

Aeropectin was prepared from 6 wt% pectin P35 solution dissolved at pH 3.0 without calcium. 

After one hour, the aeropectin is transferred from SGF medium (pH 1.0) to SIF medium 

(pH 6.8). In reaction to medium pH change, liquid penetration into the aeropectin is promoted 

and the matrix instantly swells (Figure 151) resulting in a “boost” of release rate observed at 60 

minutes of experiment (Figure 157). When immersed in SIF (pH 6.8), the release of drug from 

aeropectin is significantly impacted by matrix erosion as it was observed experimentally (Figure 

151) and in adequacy with high value relaxational constant (kR ~0.223 h-0.86) of Peppas-Sahlin 

model and high erosion kinetic constants (ke ~ 3.10 h-1)  of Gallagher-Corrigan model. This can 

be explained by the high hydrophilicity of pectin and sample “instability” in releasing media 

with pH > pKa leading to rapid matrix erosion. This was experimentally confirmed by the strong 

matrix erosion by dissolution especially observed in SIF (pH 6.8), as previously presented in 

Figure 147.  

After the burst phase and a lag time, all mass transport phenomena reach an “equilibrium” 

leading to a nearly steady release phase (or controlled release phase) that lasts the major part of 

the release. Theophylline is then released at rates between 0.02 to 0.04 mg.min-1 (~ 0.11 - 0.25 

wt%.min-1 of total theophylline). This quasi controlled-release phase is especially desirable for 

pharmaceutic industry as it delivers a certain dose maintained over a prolonged period of time. 

 

Phase III: Finally, a slowing down of theophylline release rate occurs due to less amount 

of remaining drug inside the matrix, as revealed by the lowest theophylline release rate 0.003-

0.010 mg.min-1 (~ 0.02- 0.07 wt%.min-1 of total theophylline). Release then reaches a plateau 

(Phase IV) when no more accessible or free drug is remaining. For aeropectin, full theophylline 

release occurs just before the end of matrix dissolution, as dissolution and diffusion phenomena 
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are completed. As it will be shown later, for a non-soluble matrix such as cellulose or certain 

silica-based aerogels, a mechanical treatment is necessary to destroy the matrix and achieve 

100 % theophylline released. 

 

Finally, it is possible to conclude that theophylline release profile from aeropectin matrix 

is thus governed by coupling burst dissolution/diffusion and erosion mechanisms, and 

corresponds to a complex anomalous transport (non-Fickian). Similar trends and experimental 

observations on pectin aerogels crosslinked with calcium were reported in (García-González et 

al., 2015; Tkalec et al., 2015) and correlate with our results and analysis.  

 

Figure 157. Theophylline release rate (mg of theophylline released.min-1) over time from 

aeropectin made from 6 wt% pectin P35 solution dissolved at pH 3.0 without calcium. Release 

rates were estimated by calculation of the slopes from theophylline release curve (Figure 151) 

considering a linear function between two points separated by 5 or 10 minutes. Dashed line is 

given to guide the eye. 

4. Case studies: influence of various parameters on the kinetics of 

theophylline release from pectin aerogels 

In the Chapter III, we have shown that we were able to tune aeropectin structure and 

properties in a large range of network morphologies and structural parameters (density, 

porosity, SBET…). Below we demonstrate and discuss how internal structure and physical 

properties of aeropectin matrices impact their drug release properties.  

4.1. Influence of pH of pectin solutions on release kinetics of 

theophylline from aeropectin  

As explained in Chapter III Section 3.2, lowering pH below pH 3.0 (~ pKa value) results 

in reducing ionization of pectin Gal.A which reduces coulombic repulsions and promotes chains 
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interactions (hydrogen and hydrophobic interactions). By lowering pH, weak pectin gels were 

obtained at pH 3.0 and stronger acidic gel were obtained at pH lower than pH 2.0 as Gal.A 

dissociation is low. The lower the pH, the stronger the pectin network (up to certain pH when 

pectin degradation occurs), and the more resistant it is to volume shrinkage during the process 

route. Thus, strong gelation led to a lower density and more porous aeropectin after sc-drying, 

but with lower SBET.  

 

Here, we have compared 3 aerogels obtained by dissolution of 6 wt% pectin P35 at 

different pH. Weak gels were obtained at pH 3.0 and led to denser materials (ρ ~ 0.18 -0.19 

g/cm3) with small pores (< 50 nm as deduced from SEM images, Figure 158), whereas stronger 

gels at pH 2.0 and even stronger at pH 1.2 led to less dense materials (ρ ~ 0.13 -0.10 g/cm3) 

with higher porosity and larger pores (50 to 150 nm). Network morphologies of aeropectins are 

shown in Figure 158 and their structural characteristics are reported in Table 11. Aeropectins 

were loaded with 2.5 g/L theophylline. 

 

Figure 158. Network morphologies observed by SEM of theophylline-loaded aeropectins made 

from 6 wt% of pectin P35 dissolved without calcium at (a) pH 1.2, (b) pH 2.0 and (c) pH 3.0 

Table 11. Characteristics of aeropectins made from 6 wt% of pectin P35 dissolved without 

calcium at pH 3.0, pH 2.0 and pH 1.2. Aeropectins were loaded by diffusion of theophylline 

dissolved in ethanol at 2.5 g/L. 

pH of pectin solution: pH 1.2 pH 2.0 pH 3.0 

Aerogel-precursor volume 

during theophylline 

impregnation (cm3) 

5561 ± 62 5307 ± 69 5129 ± 75 

Aerogel volume after sc-drying 

(cm3) 
3487 ± 71 2660 ± 48 2052 ± 44 

Aerogel density (g/cm3) 0.105 ± 0.03 0.136 ± 0.03 0.181 ± 0.05 

Porosity (%) 93.0 ± 0.2 90.9 ± 0.2 87.9 ± 0.3 
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Aerogel SBET 

(m²/g) 
323 ± 17 421 ± 16 544 ± 19 

Drug loading efficiency (%) 56.1 59.6 71.9 

Drug loading capacity (wt%) 2.14 2.20 2.51 

Specific drug loading 

(x10-5 g/m²) 
6.63 5.21 4.59 

 

As it can be seen from Table 11, the drug loading capacity (wt%) and drug loading 

efficiency (%) were higher for the matrix with higher density, which is the consequence of 

higher initial solution pH. In the Section 1 of this Chapter, we showed a high positive correlation 

between SBET area and the loading capacity. The loading efficiency was found to be correlated 

with density but not with SBET. Thus, specific surface area determines the maximum amount of 

drug that can cover pore walls and thus drug loading, while the efficiency of impregnation is 

governed by matrix density as denser network may prevent from the drug wash out during sc 

drying. The large difference of SBET depending on pH value explains the decrease of specific 

drug loading with pH increase. 

 

Figure 159 shows how pH of pectin solutions, and as a consequence, the differences in 

aeropectin structural properties, impact their drug release properties. Lower density aerogels 

are significantly faster drug delivery systems, with a complete theophylline release in 250 min 

for pH 1.2 matrix, 290 min for pH 2.0 matrix, and 350 min for pH 3.0 matrix (Figure 159 (a)). 

These results are correlated with faster and easier matrix erosion (dissolution) over time 

presented in Figure 159 (b) and (c). We assume that denser network with smaller pores network 

slowed down the diffusion of liquid into aeropectin, which in turn slowed down matrix 

dissolution and thus the release of theophylline. On the contrary, lower density matrices were 

more “permeable” to mass transport phenomena; their large pores provided lower “resistance” 

to water penetration through the system and larger free volume increased solvent and drug 

diffusivity and promoted matrix dissolution. As an illustration, aeropectin matrices produced at 

pH 1.2 were completely dissolved in ~ 280 min compared to ~ 400 minutes when pH was 3.0. 

Pictures of pH 1.2, pH 2.0 and pH 3.0 aeropectins after 180 minutes of dissolution experiment 

are presented in Figure 160 for comparison of matrix dissolution. 
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Figure 159 (a) Theophylline cumulative release over time (%) and (b) matrix mass (g) and (c) 

volume (cm3) evolution in time for aeropectins made from 6 wt% of pectin P35 dissolved 

without calcium at pH 1.2 (1), pH 2.0 (2) and pH 3.0 (3). Aeropectins were all loaded with 

theophylline at 2.5 g/L. 

 

Figure 160. Pictures of theophylline loaded aeropectins during dissolution testing experiment 

at time t = 180 minutes. Aeropectin were made from 6 wt% pectin P35 dissolved without 

calcium at pH 1.2, pH 2.0 and pH 3.0. The scale is the same for all the pictures. 

Lower density aeropectins present a higher sample volume than higher density ones, 

around 3600 cm3 for pH 1.2 matrix vs around 2100 cm3 at pH 3.0. This resulted in a higher 

liquid intake at lower density, for instance + 500% for pH 1.2 aeropectin and + 350% for pH 

3.0 aeropectin. We assume that higher volume and mass liquid intake even more promoted 

solvent penetration, drug diffusion and pectin dissolution, and resulted in a faster drug release. 
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To conclude, by adjusting aeropectin densities by varying pH conditions of pectin 

solutions, we were able to modify the kinetics of drug release. We assume that higher density 

has a retarding effect on drug delivery kinetics, as it may prevent matrix dissolution and solvent 

and drug diffusion through the system. 
 

Our observations stated above were analyzed by mathematical models. As expected, 

release from the three matrices are due to anomalous transport, as revealed by n exponents 

values higher than 0.45 using Korsmeyer-Peppas model, with high correlation to the data (R² > 

0.995). Thus, Gallagher-Corrigan models and Peppas-Sahlin models were chosen to investigate 

the differences in the coupling of diffusion and matrix erosion/swelling between matrices. 

Figure 161 shows the experimental data and the corresponding plots of Gallagher-

Corrigan model together with fitting parameters, with high correlation R² > 0.99. As it can be 

seen, the first order constants kb slightly increased from 0.10 h-1 to 0.13 h-1, while the erosion 

constant ke clearly increases from around 3.01 h-1 to 4.61 h-1 when pectin solution pH decreased 

from 3.0 to 1.2. This confirms that diffusion rate at the beginning and matrix erosion rate are 

higher due to lower density obtained at low pH. In addition, the plot of the Fickian release 

contribution of Peppas-Sahlin model in Figure 162 illustrates the decreasing contribution of 

Fickian mechanisms to the release depending on pH.  

 

(b) 

 Estimation 

Parameter pH 1.2 pH 2.0 pH 3.0 

kb 0.129 0.121 0.104 

ke 4.612 3.907 3.005 

Fb 0.324 0.390 0.414 

tmax 0.242 0.2823 0.340 

R² 0.990 0.992 0.991 
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Figure 161. (a) Experimental release data and Gallagher-Corrigan model plot and (b) estimation 

of the corresponding Gallagher-Corrigan parameters of theophylline release experiments from 

aeropectins made from 6 wt% of pectin P35 dissolved without calcium at pH 1.2 (green), pH 

2.0 (blue) or pH 3.0 (red). Solids lines are the model plots. 

 

 

Figure 162. (a) Fickian release fraction according to Peppas-Sahlin model for the first 60% of 

released drug from aeropectins based of 6 wt% of pectin P35 dissolved without calcium at pH 

1.2 (1), pH 2.0 (2) or pH 3.0 (3) and (b) Estimation of the corresponding Peppas-Sahlin 

parameters performed using Fickian diffusional exponent m of 0.43. 

It has to be noticed that the three mathematical models used (Korsmeyer-Peppas, Peppas-

Sahlin and Gallagher-Corrigan models) led to similar and consistent conclusions on 

aeropectins’ drug release behaviour. We found out that the release was governed by the 

coupling of diffusional and relaxational phenomena whose relative contributions to the release 

could be tuned by changing the density of the matrix.  

Besides, the mathematical models allowed the quantification of release kinetics 

parameters which can be used for the comparison with other systems. In comparison with 

literature, we obtained exponent n values in the same range of values (0.45 < n < 0.89) 

(Anomalous transport case) using Korsmeyer-Peppas model, and similar values of erosion 

kinetics constants ke (~ 3 – 4.5 h -1) using Gallagher-Corrigan model as in other works on 

aerogels based on pectin or based on alginate both crosslinked with calcium (De Cicco et al., 

2016; Veronovski, Knez, & Novak, 2013a, 2013b). 
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4.2. Impact of calcium concentration on release kinetics of theophylline 

from aeropectin 

The goal of this section is to demonstrate the impact of calcium concentration on 

aeropectin drug release behaviour. As already explained in Chapter III, the addition of calcium 

into pectin solution led to the formation of strong ionic bonds resulted in ionic gelation 

following the egg-box model (Grant, Morris, Rees, Smith, & Thom, 1973). The resulting 

aeropectins have lower density and a high proportion of large macropores as they underwent 

lower volume shrinkage (~ 40 vol% to 50 vol%) compared to aeropectin obtained from a weak 

gel or un-gelled solutions (~ 60 vol% to 80 vol%). 

Increasing calcium concentration in 3 wt% pectin solutions at pH 3.0 from R(Ca) = 0 to 

R(Ca) = 0.6 promoted the formation of ionic bridges between pectin chains, leading to 

aeropectins with decreasing densities with more macroporous network morphology, as 

presented in Table 12 and Figure 163. Aeropectins were loaded with 3.4 g/L theophylline. 

 

Figure 163. Network morphologies of theophylline-loaded aeropectins made from 3 wt% of 

pectin P35 dissolved at pH 3.0 with increasing calcium R ratio R(Ca) from 0 to 0.6. Aeropectins 

were loaded with 3.4 g/L theophylline. The scale is the same on all images. 

Table 12. Characteristics of aeropectins loaded with theophylline made from 3 wt% of pectin 

P35 dissolved at pH 3.0 with increasing calcium R ratio R(Ca) from 0 to 0.6. 

R(Ca) value: 
R(Ca) = 0 

(no calcium) 
R(Ca) = 0.1 R(Ca) = 0.2 R(Ca) = 0.6 

Aerogel volume during 

theophylline 

impregnation (cm3) 

4450 5010 5540 6100 

Aerogel density (g/cm3) 0.118 0.085 0.056 0.044 

Aerogel SBET 

(m²/g) 
574 502 472 437 

Drug loading efficiency 

(%) 
48.8 47.1 45.6 39.7 
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As shown previously, release from aeropectin is governed by diffusion and polymer 

relaxation (swelling / erosion) mechanisms. Despite of lower density and much larger pores 

which enable quicker diffusion of both water inside and drug outside the matrix, the presence 

of calcium slows down theophylline release over time (Figure 164). We observed that the higher 

calcium concentration in the matrix, the slower the drug release. As an example, total 

theophylline release occurred in about 190 min without calcium and in about 440 min for R(Ca) 

= 0.6.  

 

Figure 164. (a) Theophylline cumulative release (%), (b) matrix mass (g) and (c) matrix volume 

(cm3) evolution in time for aeropectins made from 3 wt% pectin P35 dissolved at pH 3.0 and 

R(Ca) = 0, 0.1, 0.2 and 0.6. 
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The formation of ionic junctions is promoted by increasing calcium concentration as 

explained in Chapter III. As a result, pectin network is reinforced by the presence of 

intermolecular bridges between chains, making them more resistant to polymer dissolution and 

inhibiting matrix erosion as it can be seen in Figure 165.  

On the opposite, without calcium or at low R(Ca) matrix erosion occurred easier and 

faster, facilitating water penetration and drug diffusivity, and promoting drug release. Similar 

trends were found by studying the influence of calcium crosslinking on the drug release 

properties of pectin hydrogels (Dupuis, Chambin, Génelot, Champion, & Pourcelot, 2006; Liu 

et al., 2003; Rubinstein, Radai, Ezra, Pathak, & Rokem, 1993). As in the case of the influence 

of solution pH, we assume that lower matrix erosion rates inhibited solvent and drug diffusion 

through the network which led to slower drug release, as it can be seen in Figure 164 (a).  

 

Figure 165. Pictures of theophylline loaded aeropectin during dissolution testing experiment at 

time t = 180 minutes. Aeropectin was made from 3 wt% pectin P35 dissolved at pH 3.0 with 

increasing calcium R ratio from R(Ca) = 0 to R(Ca) = 0.6. The scale is the same for all the 

pictures. 

Peppas-Sahlin model showed high correlation (R² > 0.99) to the data (Figure 166) 

allowing the estimation of diffusional and relaxational coefficients KF and KR presented in 

Figure 167.  
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Figure 166. Peppas-Sahlin model of the first 60% release data from aeropectins made from 3 

wt% of pectin dissolved at pH 3.0 without calcium and with R(Ca) ratio from 0.1 to 0.6, using 

Fickian diffusional exponent m of 0.430. Solid lines are the model plots. 

As it can be seen, the value of the relaxational coefficient KR decreases with the increase 

of calcium concentration (Figure 167). The plot of the Fickian fraction over time in Figure 167 

illustrates the increasing contribution of diffusion to the release and decreasing erosion 

contribution as R(Ca) increases.  

 

 
 

Figure 167. (a) Fickian release fraction (F) from theophylline release data of aeropectins made 

from 3 wt% of pectin dissolved at pH 3.0 without calcium and with R(Ca) ratio from 0.1 to 0.6. 

(b) Estimation of the corresponding Peppas-Sahlin parameters, using Fickian diffusional 

exponent m of 0.43. 

As calcium concentration increases, matrix dissolution rate is reduced and diffusion 

mechanism predominates in the coupling diffusion-erosion release. As matrix erosion is very 

slow, liquid and drug slowly diffuse into the hydrated network which reduces drug release rate 

and prolongs release time.  

This is in correlation with data fitting with Gallagher-Corrigan model with high 

correlation (R² > 0.99) as shown in Figure 168. The estimation of parameters presented in Table 

13 clearly shows a decrease of the erosion constant value ke with the increase of calcium 

concentration. It can be noted that the burst constant kb is also reduced with calcium 

concentration, as the drug release is slowed down. 
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Figure 168. Gallagher-Corrigan model plot for theophylline release from aeropectins made 

from 3 wt% of pectin dissolved at pH 3.0 without calcium or with calcium with R(Ca) ratio 

from 0.1 to 0.6. Solid lines are the model plots. 

Table 13. Parameters from Gallagher-Corrigan model for theophylline release data for 

aeropectins made from 3 wt% of pectin dissolved at pH 3.0 without calcium or with calcium 

with R(Ca) ratio from 0.1 to 0.6. 

 Estimation 

Parameter No calcium R(Ca) = 0.1 R(Ca) = 0.2 R(Ca) = 0.6 

kb 0.1402 0.0718 0.0651 0.0241 

ke 4.1889 3.3080 2.5492 2.0625 

Fb 0.3164 0.2049 0.2286 0.1444 

tmax 0.2413 0.3169 0.4905 0.4076 

R² 0.9920 0.9911 0.9935 0.9910 

 

Once again, good data fitting with different mathematical models based on diffusion-

erosion controlled release shows that matrix erosion and drug release over time could be slowed 

down by adjusting calcium concentration in pectin solutions. In addition to matrix density 

governed by pH of pectin solution, ionic crosslinking driven by calcium concentration of pectin 

solution was found to significantly impact the release properties of aeropectins. 
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The impact of crosslinking on release properties of aerogels was also studied for chitosan 

aerogels crosslinked with salbutamol at various concentrations (Obaidat, Tashtoush, Bayan, T. 

Al Bustami, & Alnaief, 2015) or using different crosslinkers (Chang, Chen, & Jiao, 2008) to 

change matrix erosion properties.  

In the same way, drug-loaded alginate and pectin aerogels were prepared by crosslinking 

with different divalent cations (Ca2+, Sr2+, Zn2+) to tune matrix structure and stability which 

eventually impacted drug release profile (Tkalec et al., 2016). It was shown that once immersed 

in the simulating intestinal medium (pH 6.8) both alginate and pectin aerogels cross-linked with 

calcium underwent a quick bulk erosion by dissolution, leading to the fastest drug release. 

Oppositely, slower matrix degradation was observed for zinc cross-linked aerogels as a result 

of more extensive ionic bridges with Zn2+ ions, which led to more stable matrices and retarded 

the drug release from the carriers.  
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Conclusions 

In this chapter, a detailed and systematic study was performed to evaluate the potential of 

pectin aerogels to be as used as oral drug delivery system using theophylline as drug model. 

Theophylline was successfully incorporated before drying by diffusion into aerogel precursors 

via ethanol. Drug loading efficiency and loading capacity were shown to depend on aeropectin 

matrix structure (specific surface area and density). When immersed into simulated 

physiological media, aeropectin matrix showed a prolonged drug release behavior, with matrix 

resistance in gastric media followed by dissolution into intestinal media.  

 

Drug release was found to be governed by diffusive mass transports through the system 

coupled with relaxational phenomena induced by matrix swelling and erosion, in correlation 

with the polyelectrolyte and hydrosoluble characteristics of pectin. Sustained drug release from 

pectin aerogel fitted well Korsmeyer-Peppas, Peppas-Sahlin and Gallagher-Corrigan (R² > 

0.99) models, showing different contributions of erosion and diffusion mechanisms depending 

on matrix internal structure. By finely tuning the structural parameters of the aeropectins 

(specific surface, density and ionic crosslinking), adjusting sample formulation and drying 

method, we were able to determine their impacts on the drug loading and release kinetics. 

 

Overall, our results point out the possibility to tailor aeropectin drug release properties by 

adjusting the process route to target the therapeutic indications. Aeropectins show high potential 

for drug release applications as biodegradable, biocompatible and bio-based carriers. 

Depending on their chemical structure, bio-polymers and silica aerogels display different 

properties such as hydrophilicity, solubility, mechanical properties in a given release media, 

which in turn are known to impact their release properties. In contrast to hydrophilic silica 

aerogels, whose brittle matrix instantly disintegrates upon contact with the liquid due to 

capillary forces leading to immediate drug release (in several minutes) (Caputo, Scognamiglio, 

& De Marco, 2012; Mehling et al., 2009; I. Smirnova et al., 2004), aeropectins present higher 

matrix integrity, allowing release of the drug for a prolonged period of time (in several hours). 

Aeropectins were found to have similar extended drug release behaviour (diffusion-erosion 

controlled) to aerogels made from other polyelectrolyte polysaccharides such as alginate (De 

Cicco et al., 2016; García-González et al., 2015; Gonçalves et al., 2016; Mehling et al., 2009; 

Veronovski et al., 2013b) and κ-carrageenans (Gonçalves et al., 2016)  

 

As they are all highly hydrosoluble and pH-sensitive polysaccharides, strong matrix 

erosion occurred by dissolution in phosphate buffer simulating intestinal fluid (pH 6.5 to pH 

7.2) accelerating the release. Due to their “rigid” aerogel structure, higher stability in releasing 

media and stronger resistance against hydration, starch aerogels (García-González et al., 2015; 
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Garcia-Gonzalez & Smirnova, 2013) or chitosan aerogels (Mehling et al., 2009; Obaidat et al., 

2015) appeared to be more stable aerogels matrix in releasing media. In those cases, extended 

drug release profile was achieved (in several hours, depending on the matrix size and the type 

of drug), governed by diffusion and assisted by a slow erosion process. On the opposite, bio-

aerogels made from water non-soluble polymer such as bacterial cellulose (Haimer et al., 2010) 

or silk fibroin (Mallepally et al., 2015; Marin et al., 2014) release drug by pure Fickian diffusion 

as these aerogels were not subjected to matrix erosion in aqueous releasing media.  

 

As it will be shown in the following chapter, the release kinetics of pectin aerogels can 

be additionally modified by making interpenetrating networks with cellulose and silica.  
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Introduction  

The goal of this work is to produce organic-organic and organic-inorganic pectin-based 

composite aerogels, with one component being pectin and the other either cellulose or silica.  

The main question to answer is “can we modify the release kinetics from pectin aerogel 

by making composite material?”, and then, “what is the influence of the second component on 

drug release kinetics and matrix behaviour?”. The synergy of properties brought by the different 

components is expected to result in new physical and chemical properties of composite aerogels 

and to offer new prospects in composite aerogels used as drug carrier.  

Cellulose-pectin and pectin-silica composite aerogels were produced and characterized. 

Theophylline, used as drug model, was incorporated into the samples in order to study its 

release behaviour and correlate to the matrices’ composition. In this work, focus is made on the 

relationships between the intrinsic characteristics of each component of aerogel, the structural 

and physical properties of the composite network, and the properties of the composite materials 

used as drug carriers. 

First, we study “all polysaccharide” composite aerogels, based on cellulose and pectin. In 

the second part, we present our work on organic-inorganic composite aerogels, based on pectin 

and silica. 
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1. Cellulose-pectin composite aerogels 

Cellulose-pectin composite aerogels were produced by impregnation of cellulose “wet” 

matrix (cellulose coagulated in water) with pectin solution. The aerogel composition was varied 

by adjusting polymer composition (ratio cellulose/pectin) to produce different composites 

keeping 6 wt% of polysaccharides in the initial mixtures and 0.300 mg of polysaccharide (dry 

weight) in total. These two hydrophilic polysaccharides were chosen as they were expected to 

display dissimilar properties as drug-carrier. Indeed, pectin is soluble in the releasing media 

(SIF, SGF), thus pectin-based matrices are prone to erosion by dissolution as described the in 

previous chapter (Chapter V). In contrast, cellulose is known to be non-soluble polymer in the 

releasing media (SIF, SGF), thus cellulose-based matrices are expected to present different drug 

release behaviour in comparison to neat pectin. Moreover, we suppose that the “mixture” of the 

properties of each component may lead to a certain synergy in the properties of composite 

aerogels.  

 

This section is organized as follows: 

• The first part is dedicated to the production and the characterization of 

theophylline-loaded composite aerogels made from pectin and cellulose. The 

impact of the cellulose/pectin ratio on the structural properties of the composite 

aerogels is presented.  

• The second part deals with the use of cellulose-pectin composite aerogels as drug 

delivery systems, using theophylline as drug model. We start with the 

characterization and comparison of neat cellulose and neat pectin aerogel used 

as drug-carriers. The impact of the composition of the composite aerogel on their 

drug loading and release properties are presented and discussed. Matrix swelling 

ability, erosion properties, drug loading characteristics and release profile are 

compared.  

To the best of our knowledge, this is the first time that cellulose-pectin composite 

aerogels are produced and used as drug delivery matrices. Only a few works on polysaccharide 

composite aerogels for drug delivery applications are reported in literature and the large 

majority deals with composites obtained by coating of one polymer by another. Here, we 

propose an original method of making organic-organic interpenetrated aerogel network by 

impregnation of one component with another.  
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1.1. Production and characterization of cellulose-pectin composites 

We first present the process route to produce cellulose-pectin composite aerogels. Their 

structural and morphological properties are characterized and discussed regarding to 

pectin/cellulose composition. 

1.1.1. Production of cellulose-pectin composites  

▪ Production of cellulose matrix samples 

Microcrystalline cellulose was dried overnight at 50°C under vacuum and let swelling 

in water for 2 hours at 5°C prior to its dissolution. Cellulose solutions were prepared at cellulose 

concentrations from 2.5 wt% to 6 wt% by mixing swollen cellulose with NaOH-water and urea 

to reach final solvent concentration 8 wt% NaOH-12 wt% urea. The whole was pre-cooled at -

12.3°C and mixed during 3 minutes at 1000 RPM (Luo & Zhang, 2010). After dissolution, 

cellulose solutions were poured into cylindrical molds and let gelled (when possible) 24 h at 

50°C. Gelled and non-gelled cellulose samples were gently coagulated with distilled water and 

were extensively washed with water until pH neutralization.  

▪ Impregnation of cellulose matrix by pectin solution 

The coagulated cellulose samples were immersed into pectin solution at pH 3.0 of 

different concentrations depending on the desired ratio cellulose/pectin. Impregnation of 

cellulose matrix by pectin occurred by diffusion of pectin solution into the cellulose coagulated 

network, at 60 °C during 5 days. A schematic illustration of the preparation route of the 

composite matrices is given in Figure 169.  

The coagulated cellulose matrices were filled with pectin in order to obtain 6 wt% of 

polysaccharides in total and to obtain aerogels made of 0.300 mg of polysaccharides (dry 

weight). The wet concentration (wt%) of each cellulose matrix and the corresponding pectin 

concentration in the impregnation bath are shown in Table 14. The theoretical mass ratios 

cellulose/pectin are compared with the experimental ratio obtained in each case. 
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Figure 169. Process route of cellulose matrix impregnation by pectin solution to produce 

cellulose-pectin composite sample (a) without calcium or (b) cross-linked with calcium. 

Table 14. Composition of composites cellulose – pectin aerogels  

 

Initial matrix 

composition in 

solution 

(wt%) 

State of 

matter of 

cellulose 

matrix 

before 

solvent-

exchange 

Pectin 

concentration 

in the 

impregnation 

bath (wt%) 

Theoretical 

ratios 

cellulose / 

pectin 

Experimental 

Ratio of 

cellulose 

Experimental 

Ratio of 

pectin 

CaCl2 

[0.5M] 

solution 

for pectin 

gelation  

6 wt% cellulose Gel - 1 / 0 1 0  

5.5 wt% 

cellulose 
Gel 1.3 0.92 / 0.08 0.883 ±0.006 0.117 ±0.006 - 

5 wt% cellulose Gel 2.4 0.83 / 0.17 0.798 ±0.006 0.202 ±0.006 - 

4 wt% cellulose Solution 5.6 0.66 / 0.34 0.637 ±0.007 
0.363 

±0.007 
- 

3 wt% cellulose Solution 7.5 0.5 / 0.5 
0.522 

±0.010 
0.478 ±0.010 - 

2.5 wt% 

cellulose 
Solution 8.4 0.42 / 0.58 0.429 ±0.004 0.571 ±0.004 - 

6 wt% pectin Solution - 0 / 1 0 1 - 

4 wt% cellulose Solution 5.6 0.66 / 0.34 0.607 ±0.009 0.393 ±0.009 yes 
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3 wt% cellulose Solution 7.5 0.5 / 0.5 0.474 ±0.009 0.526 ±0.009 yes 

2.5 wt% 

cellulose 
Solution 8.4 0.42 / 0.58 0.407 ±0.009 0.593 ±0.009 yes 

6 wt% pectin Gel - 0 / 1 0 1 yes 

 

After pectin impregnation step, cellulose-pectin samples were taken out from pectin 

solution and let gelling in small sealed containers in ambient conditions for 48 h. To investigate 

the impact of calcium, some of the cellulose-pectin samples (after pectin impregnation) were 

directly placed into CaCl2 solution (0.5 M) during 30 seconds to induce ionic gelation of pectin. 

After 48 h of gelation time, all cellulose-pectin composites (with or without calcium) went 

through extensive solvent-exchange steps, in order to exchange water to ethanol. Finally, the 

composite aerogel precursors were loaded with theophylline by diffusion through ethanol at 3.4 

g/L during at least 7 days, as detailed in Materials and Method (Chapter II), prior to CO2 sc-

drying. 

 

In addition to cellulose-pectin composite aerogels, we produced aerogels from each 

separate component, i.e. un-filled cellulose matrices (not impregnated by pectin) and the pectin 

solutions used for impregnation, in order to be used as “references”. These aerogels will be 

referred as “cellulose-matrix references” (neat cellulose matrices from 2.5 wt% to 6 wt% of 

cellulose without pectin) and “pectin-bath references” made from pectin solutions of each 

impregnation bath (from 1.3 wt% to 8.4 wt% of pectin). These reference samples were loaded 

with theophylline in the same way as composites, by diffusion through ethanol at 3.4 g/L during 

at least 7 days, as detailed in Material and Method (Chapter II). Each sample was produced at 

least in duplicate with calcium, and in triplicate without calcium. 

 

In this work, cellulose to pectin ratios were estimated using the masses of the cellulose-

pectin composites and of the corresponding cellulose-matrix reference aerogels as follows: 

𝑅𝑎𝑡𝑖𝑜𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒/𝑝𝑒𝑐𝑡𝑖𝑛  =  
𝑚𝑎𝑠𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙

𝑚𝑎𝑠𝑠 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 
  (6.1) 

Thus, the ratio of pectin to cellulose is simply the inverse: 

 𝑅𝑎𝑡𝑖𝑜𝑃𝑒𝑐𝑡𝑖𝑛/𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 = 1 − 𝑅𝑎𝑡𝑖𝑜𝐶𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒/𝑝𝑒𝑐𝑡𝑖𝑛  (6.2) 

The theoretical mass of pectin within the aerogel composite (g) is based on the 

concentration of the pectin bath (wt%) (𝐶𝑝𝑒𝑐𝑡𝑖𝑛 𝑏𝑎𝑡ℎ) and the volume of the wet cellulose matrix 

during pectin impregnation step (𝑉𝑜𝑙𝑢𝑚𝑒𝑤𝑒𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 ), as follows: 

 𝑃𝑒𝑐𝑡𝑖𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔)  =  𝑉𝑜𝑙𝑢𝑚𝑒𝑤𝑒𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 × 𝐶𝑝𝑒𝑐𝑡𝑖𝑛 𝑏𝑎𝑡ℎ  (6.3) 
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Here we assume that 100% of the matrix volume is filled with pectin solution and that 

diffusion was complete. 

 

The actual pectin amount in composite aerogels is obtained by the mass difference 

between the cellulose-pectin aerogels and cellulose-matrix reference aerogels (not filled with 

pectin), as given by: 

𝑃𝑒𝑐𝑡𝑖𝑛 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔) 

=  𝑚𝑎𝑠𝑠𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙𝑠 −  𝑚𝑎𝑠𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙  (6.4) 

Thus, we define the pectin filling efficiency (%) as follows: 

 𝑃𝑒𝑐𝑡𝑖𝑛 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝑃𝑒𝑐𝑡𝑖𝑛 𝑎𝑐𝑡𝑢𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔)

𝑃𝑒𝑐𝑡𝑖𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔)
× (100%)  (6.5) 

Finally, we determine the theoretical density of composite aerogel (g/cm3) which is 

defined as the ratio of the theoretical mass of the composite to the volume of cellulose 

coagulated matrix (before pectin impregnation). The theoretical mass of the composite is the 

sum of cellulose amount (g) and pectin theoretical amount (g) within the system, assuming 

100% pectin filling efficiency. 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 (𝑔/𝑐𝑚3 ) 

 =  
𝑚𝑎𝑠𝑠𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙+𝑃𝑒𝑐𝑡𝑖𝑛 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔)

𝑉𝑜𝑙𝑢𝑚𝑒𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 𝑐𝑜𝑎𝑔𝑢𝑙𝑎𝑡𝑒𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 
  (6.6) 

In the same way, we define the composite theoretical specific surface area (SBET in m²/g) 

which is based on “mixing law” as follows: 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝐵𝐸𝑇𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙
 (𝑚²/𝑔 ) =

(𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑖𝑜 𝑝𝑒𝑐𝑡𝑖𝑛/𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒 × 𝑆𝐵𝐸𝑇𝑝𝑒𝑐𝑡𝑖𝑛−𝑏𝑎𝑡ℎ 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙
) +

 (𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑟𝑎𝑡𝑖𝑜 𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒/𝑝𝑒𝑐𝑡𝑖𝑛 × 𝑆𝐵𝐸𝑇𝑐𝑒𝑙𝑙𝑢𝑙𝑜𝑠𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙
)  (6.7) 

 

1.1.2. Structure and properties of cellulose-pectin composite aerogels 

▪ Formation of interpenetrated network cellulose-pectin and 

density of composite aerogels 

As shown in Figure 170, the filling efficiency (%) of cellulose matrix by pectin solution 

was around 90 – 95%, and thus the mass ratio cellulose / pectin obtained experimentally was 
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very close to the theoretical one as shown Table 14. However, it has to be noted that a 

substantial external layer of pectin was formed on the surface of cellulose matrix, which may 

have contributed to artificially increased the pectin fraction and make impregnation efficiency 

(%) slightly above 100% in a few cases. The more concentrated was the pectin solution, the 

thicker was the external layer, in correlation with pectin solution viscosity. 

 

Figure 170. Pectin filling efficiency (%) in coagulated cellulose as a function of cellulose / 

pectin ratio (%). Cellulose is noted “C” and pectin “P”.  

As mentioned in Section 1.1.1 of this chapter, pectin reference aerogels were prepared 

from solutions which had the same “history” as those which were used for the impregnation of 

cellulose matrix. The reason is that solution “history” has changed neat pectin aerogel 

properties. We remind that in order to decrease pectin solution viscosity and thus increase 

diffusion into cellulose matrix, the impregnation was performed at 60 °C for 5 days. Pectin 

solutions were taken from the oven, cooled down and used to make aerogels. Surprisingly, we 

noticed that these solutions did not gel at room temperature, as it was expected at pH 3. Except 

for the highest pectin concentrations (7.5 and 8.4 wt%), pectin solutions with concentrations 

from 1.3 wt% to 6 wt% remained viscous solutions (in the absence of calcium). Based on our 

previous work, we expected to have acidic gelation at pH 3.0 for pectin solutions above 4.5 

wt% (Groult & Budtova, 2018). We assume that some degradation of pectin occurred due the 

impregnation conditions which might have altered pectin gelling ability. However, strong 

pectin ionic gelation occurred once calcium was added.  

Pectin-impregnated cellulose samples were placed in ethanol to perform solvent 

exchange in order to “fix” pectin inside cellulose, followed by impregnation with theophylline 

and drying. We noticed the difference between the volume of neat cellulose aerogel precursors 

and those impregnated with pectin, (from ~ 6 to 17 vol%), as shown in Figure 171. We assume 

that cellulose shrinkage during pectin-impregnation step was due to osmotic pressure caused 

by pectin solution outside cellulose matrix filled with water; it may be possible that additional 

shrinkage is also caused by pectin network contraction during solvent exchange step. The 
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shrinkage was twice higher (12-17 vol%) for cellulose-matrix which was non-gelled (≤ 4 wt% 

of cellulose) as compared to that which was gelled (6 - 7 vol%).  

 

Non-gelled cellulose matrices remained fragile even after solvent exchange, and were 

mechanically less resistant to shrinkage. These matrices were contracting more when placed in 

concentrated pectin solutions (≥ 5.6 wt% of pectin) then their gelled counterparts. The 

cellulose-pectin samples which were placed into calcium solution exhibited lower shrinkage 

due to strong ionic crosslinking of pectin. Besides, pectin-cellulose aerogels with calcium were 

found to have a slightly higher pectin content inside cellulose matrix (Figure 170) as calcium 

prevented pectin mass loss during sample manipulation by strongly “fixing” it within the 

sample. 

  

Figure 171. (a) Volume additional shrinkage due to pectin impregnation (measured after solvent 

exchange) (%) and (b) Total shrinkage obtained after sc-drying of composite samples and of 

their references at the corresponding polymer concentration in composite matrix. Cellulose is 

noted “C” and pectin “P”. The state of each sample before coagulation, (‘S’) or gel (‘G’), is 

indicated. 

It has to be noted that concentrations of pectin baths were adjusted taking in account the 

levels of shrinkage of each cellulose matrix during impregnation. Indeed, the decrease of matrix 

volume directly reduces the quantity of pectin that can be incorporated, and thus pectin content 

in the composites.  

Pictures of cellulose – pectin composite aerogels and neat matrix cellulose aerogels (not 

filled with pectin) are given for illustration in Figure 172. As it can be visually seen from the 

pictures, the volume of aerogels was lower with the decrease of cellulose concentration due to 

higher volume shrinkage during coagulation and sc-drying steps. When comparing to the neat 

cellulose reference with its pectin-impregnated counterpart, the additional volume shrinkage of 

the composite aerogels due to pectin impregnation can be seen. 
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Figure 172. Pictures of neat reference cellulose and pectin aerogels and cellulose-pectin 

composite aerogels, obtained by impregnation of pectin solution into cellulose matrices, no 

calcium added. Concentration (wt%) of cellulose (‘C’) and pectin (‘P’) at the impregnation step 

and ratio (%) cellulose/pectin in aerogel corresponding to each image are also given. 

On Figure 173 and Figure 174, we can observe that composite aerogels’ density and 

porosity were highly dependent on cellulose / pectin ratio. Indeed, the density of composite 

aerogels was influenced by the additional volume shrinkage of cellulose matrices due to pectin 

impregnation. As impregnation efficiencies were similar and exceeded 90% for each composite 

(Figure 170), the differences between composite aerogels densities of different composition 

were mostly driven by different matrix shrinkages. 

 

Figure 173. (a) Composite aerogel densities without calcium (1) or with calcium (2), total 

polymer concentration in the initial solutions was 6 wt %. The theoretical composite densities 

(3) are given by Equation (4.6). 
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(b) Density of the “reference” cellulose (5) and pectin (6) aerogels plotted at concentrations 

corresponding to the ratios they are present in the composites. 

 

Figure 174. Porosity of composite aerogels (1) and their corresponding references aerogels: 

cellulose (2) and pectin (3). Porosity of cellulose and pectin reference aerogels are plotted at 

concentrations corresponding to the ratios they are present in the composites. 

As it is presented in Figure 173, composite aerogel density decreases with the increase 

of cellulose fraction in composite aerogel. The lower cellulose concentration of the initial 

matrix, the weaker is cellulose network and more it is shrinking during the impregnation of 

pectin, solvent exchange and sc-drying steps, and thus the higher is aerogel density (Figure 173) 

and lower aerogel porosity (Figure 174). We underline here the critical role of the initial wet 

cellulose matrices on the determination of the final density and porosity of composite aerogels. 

Besides, Figure 173 also shows that composite densities were significantly higher than the 

estimated theoretical densities (eq. 4.6), as a result of volume shrinkage during the impregnation 

of cellulose matrices by pectin solution, but also during solvent exchange and sc-drying steps 

(Figure 171).  

Specific surface area of composites was found to more or less follow the “mixing law”, 

i.e. additive sum of the contributions of each neat aerogel. As it can be seen in Figure 175, as 

pectin aerogels have higher SBET than cellulose ones at the same concentration, the specific 

surface of composite aerogels SBET increased with pectin content. Theoretical (additive) SBET 

was estimated for each composite with eq. 5.7. As it can be seen, experimental and theoretical 

values of SBET were similar, revealing that the pectin aerogel has a similar morphology when 

impregnated in cellulose matrix. However, we observed that neat pectin aerogels made from 

solutions stored at 60 °C presented lower specific surface by at least 20 to 30% as compared 

with pectin aerogels from our previous work (Chapter V). These results confirm our assumption 

on pectin partial degradation in hot conditions and acidic media (pH 3.0). 
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Figure 175. Specific surface areas of composite aerogels (a) without calcium (pink triangles) 

and (b) with calcium (green triangles) and their corresponding pectin and cellulose references 

aerogels. Specific surface areas of cellulose and pectin reference aerogels are plotted at the 

concentrations corresponding to the fractions they are present in the composites. Theoretical 

SBET (dashed line) were estimated using mixing law (Equation (6.7)).  

▪ Morphology of composite aerogels 

SEM observations in Figure 176 (a) confirmed the existence of an external layer of 

pectin around cellulose matrix, with thickness increasing with pectin solution concentration and 

when calcium was added to induce ionic gelation. As previously observed for neat aeropectins 

in Chapter V, the surface of composite aerogels was also covered by sharp “particles” typical 

for theophylline. 

 

Figure 176. SEM observations of (a) composite aerogel cross section and (b) surface of 

theophylline loaded composite aerogel made from 42% cellulose-58% pectin without calcium. 

The internal structure of cellulose-pectin composite aerogels shows interpenetrated 

cellulose-pectin network (Figure 177b). Reference neat pectin aerogel (Figure 177a) and 

reference neat cellulose aerogel (Figure 177c) are also presented: pectin aerogel possesses a 
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denser and more fine network with smaller pores in the range of 20 to 50 nm as compared to 

cellulose aerogel thicker pore walls and larger pores. The analysis of Figure 9b for composite 

aerogel allows assuming that pectin seems to have filled the pores offered by cellulose. 

 

Figure 177. SEM pictures of (a) 5.6 wt% pectin aerogel, (b) 66%C – 34%P composite aerogel 

sample made from 4 wt% matrix cellulose and impregnated with 5.6 wt% pectin solution 

(yellow arrows correspond to cellulose network and red to pectin), and (c) 4 wt% cellulose 

aerogel. No calcium added. 

By scanning different fields of view within the samples using SEM (from samples’ skin 

to core), we noticed that that pectin impregnation was not perfectly homogeneous within 

composites, as we observed less pectin fine network in the center of the material. These 

observations concerned samples with the highest pectin ratio, and can be explained by the 

higher viscosity of pectin solution and thus much slower diffusivity within the cellulose matrix. 

Internal morphologies of cellulose-pectin composite at the core of aerogels and of the 

corresponding neat reference cellulose aerogels are presented in Figure 178.  

As it can be seen, composites’ interpenetrated networks are becoming denser with smaller 

pores while increasing pectin fraction. Composite network tends to be more similar to the 

typical dense aspect of pectin aerogel as pectin content increases. The increased shrinkage with 

the increase of pectin concentration (Figure 171 and Figure 173) could also be the reason of a 

denser morphology.  
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Figure 178. SEM pictures at the core of composite aerogels at different cellulose (C) to pectin 

(P) ratios and their corresponding neat reference aerogels. No calcium was added 

As expected from our previous results on aeropectins (Chapter III), the addition of 

calcium to the composites “solidified” the structure by strong ionic gelation of the pectin 

fraction, which reduced volume shrinkage and density of cellulose-pectin composite aerogels 

as compared to those without calcium. The internal structures were less compact and displayed 

larger pores as shown in Figure 179. 

 

Figure 179. SEM pictures of cellulose-pectin composite aerogels with or without addition of 

calcium. 

1.2. Cellulose-pectin composites as drug delivery system 

1.2.1. Characteristics of drug-loaded composite cellulose-pectin aerogels  

Theophylline loading efficiency (%) and loading capacity (wt%) of composites and of 

reference aerogels are plotted in Figure 180, and their loading and structural properties are 

summarized in Table 15 and Table 16. All cellulose-, pectin- and cellulose-pectin aerogels were 

loaded with theophylline at 3.4 g/L. 

Table 15. Structural and drug loading properties of cellulose-pectin composite aerogels without 

calcium as a function of cellulose/pectin ratio (%). 

Ratio cellulose/pectin 

(%) 

100% 

pectin 

(reference) 

42%C 

58%P 

50%C 

50%P 

66%C 

34%P 

83%C 

17%P 

92%C 

8%P 

100% cellulose 

(reference) 
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Aerogel density 

(g/cm3) 

0.153 

± 0.002 

0.218 

± 

0.003 

0.208 

± 

0.002 

0.182 

± 

0.003 

0.145 

± 

0.003 

0.119 

± 

0.002 

0.108 

± 0.002 

Porosity (%) 
89.8 

± 0.2 

85.5 

± 0.2 

86.1 

± 0.1 

87.8 

± 0.2 

90.4 

± 0.2 

90.4 

± 0.1 

92.9 

± 0.1 

Aerogel SBET 

(m²/g) 

490 

± 10 

399 

± 11 

379 

± 12 

391 

± 11 

376 

± 8 

358 

± 14 

342 

± 9 

Pore volume 

(cm3/g) 

5.85 

± 0.10 

3.92 

± 0.07 

4.14 

± 0.04 

4.82 

± 0.07 

6.29 

± 0.08 

7.71 

± 0.14 

8.67 

± 0.13 

Drug loading 

efficiency (%) 
67.8 108.0 87.8 85.8 77.4 53.4 48.1 

Drug loading 

capacity (wt%) 
3.2 3.2 3.0 2.9 2.8 2.1 1.9 

Specific drug loading 

(× 10-5 g/m²) 
6.8 8.2 7.8 7.4 7.5 5.9 5.6 

 

Table 16. Structural and loading properties of cellulose-pectin composite aerogels with calcium 

as a function of cellulose/pectin ratio (%). 

Ratio cellulose/pectin (%) 
100% pectin +Ca  

(reference) 

42%C 

58%P+Ca 

66%C 

34%P+Ca 

100% cellulose 

(reference) 

Aerogel density (g/cm3) 
0.071 

± 0.002 

0.177 

± 0.006 

0.134 

± 0.002 

0.108 

± 0.002 

Porosity (%) 
95.3 

± 0.1 

88.2 

± 0.4 

91.1 

± 0.1 

92.9 

± 0.1 

Aerogel SBET (m²/g) 
376 

± 11 

367 

± 12 

375 

± 10 

342 

± 9 

Pore volume (cm3/g) 
13.46 

± 0.34 

4.98 

± 0.19 

6.79 

± 0.10 

8.67 

± 0.13 

Drug loading efficiency 

(%) 
59.2 102.5 97.2 48.1 

Drug loading capacity 

(wt%) 
3.6 3.2 3.1 1.9 

Specific drug loading (x10-5 

g/m²) 
9.5 8.7 7.9 5.6 
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As previously observed for theophylline loaded aeropectins (Chapter V), the loading 

efficiency of composite aerogels (Figure 180 a) was also found to be positively correlated with 

aerogel density. This figure also shows that loading efficiency is not proportional to 

cellulose/pectin composition as both reference pectin and reference cellulose aerogels had much 

lower loading efficiency than their composites.  

We assume that the higher density of composite aerogels led to the increase drug loading 

efficiency. As we have already mentioned for aeropectins (see the detailed study in Chapter V), 

we hypothesize that matrix density prevented theophylline physical wash off with the flow 

during the sc-CO2 drying, even though theophylline is not soluble in sc-CO2. Such effect of 

density was also reported by Mehling et al. and Smirnova et al. who suggested that smaller pore 

size in case of high aerogel density might be an important parameter for loading efficiency 

(Mehling, Smirnova, Guenther, & Neubert, 2009; I. Smirnova, Suttiruengwong, & Arlt, 2004).  

  

 

Figure 180. Drug loading characteristics of composite aerogels and of their reference 

counterparts. (a) Theophylline loading efficiency (%) as a function of aerogel density. A linear 

trend line was fitted to the data to correlate composite aerogel density to the loading efficiency. 
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(b) Loading capacity as a function of aerogel SBET.  

(c) Loading capacity as a function of cellulose/pectin ratio.  

(d) Specific loading as a function of cellulose/pectin ratio. Composite aerogels are either 

without calcium (squares) or with calcium (triangles). Dashed lines in (c) and (d) are given to 

guide the eye. 

As it can be seen in Figure 180a and 12b, the neat reference pectin aerogel with calcium 

presents lower drug loading efficiency (59%) than without calcium (71%), due to lower density, 

in correlation with our previous work (Chapter V). However, at the same aerogel density, 

composite aerogels with calcium have significantly higher loading efficiencies (close to 100%) 

while displaying similar loading capacities as compared to composites without calcium. This 

unexpected increase of loading efficiency of composites with calcium is actually due to a 

thicker external (around cellulose matrix) pectin layer. Indeed, the strong pectin gelation 

induced by calcium instantly fixed the entire pectin layer preventing from pectin loss. As a 

result, the addition of calcium increased pectin fraction in aerogel and thus composite aerogel 

mass by about 7 - 8%, indirectly resulting in higher amount of drug carried by aerogel around 

+7- 10% as compared to composites without calcium.  

The theophylline loading capacity of composite aerogels was found to be correlated to 

polysaccharides’ composition of the samples. Reference pectin and reference cellulose aerogels 

do not present the same drug loading properties: neat pectin aerogels had the highest loading 

capacity (~ 3.3 wt% without calcium, ~3.6 wt% with calcium) and neat cellulose aerogel the 

lowest (~ 1.9 wt%). We assume that this may be due to the combined physico-chemical effects: 

higher internal surface offered by pectin network (SBET ~ 490 m²/g) vs cellulose (SBET ~ 340 m²/g) 

(Figure 180 b) and higher aerogel density (+ 30%) for pectin as compared to cellulose (Figure 

180 a), and possibly different chemical interactions drug-polysaccharide. As a result, the drug 

loading (Figure 180 c) and specific loading (Figure 180 d) of composite aerogels depend on 

their cellulose/pectin ratio. As shown in Figure 180 b, the higher pectin proportion, the larger 

amount of drug can be loaded i) by a given unit of material mass (Figure 180 c) and ii) by a 

given unit of specific surface area (Figure 180 d).  

1.2.2. Theophylline release profiles from cellulose-pectin aerogels  

In this section, we compare the release of theophylline from aerogels characterized 

above, made of 6 wt% of polysaccharides (in the initial solutions) while varying their 

composition. The aerogel with theophylline was first placed in Simulated Gastric Fluid (SGF, 

pH 1) for 1 hour and then in Simulated Intestinal Fluid (SIF, pH 6.8) until the end of release. 

Due to the opposite solubility characteristics in the releasing media of cellulose and pectin, they 
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were expected to present dissimilar matrix erosion properties and release behaviour when used 

as drug delivery matrix.  

Thus, the emphasis will be placed on the impact of the variation of cellulose/pectin ratio 

on the release properties of the composite aerogel. 

This section is organized as follows: 

- The first part is dedicated to the comparison of reference aerogels, cellulose and pectin, 

used as matrices for drug delivery system using theophylline as drug model.  

- Then, matrix composition is varied by adjusting the ratio cellulose/pectin in the system 

keeping constant a total of 6 wt% of polysaccharide in the initial solution and 0.300 mg 

of polysaccharide dry mass. The impacts of the cellulose/pectin ratio of the composite 

aerogels on their release properties are presented and discussed. 

▪ Comparison of theophylline release from neat reference pectin-

based versus neat reference cellulose-based aerogel matrices 

As it can be seen in Figure 181 (a), pectin and cellulose aerogels displayed different 

drug release behaviour and matrix “stability” in the releasing media. Figure 181 (b) and (c) 

show the evolution of pectin and cellulose aerogel mass and volume in these conditions.  
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Figure 181. (a) Theophylline cumulative release (%) over time from the reference aerogels 

based on pectin without calcium (1), pectin with calcium (2), and cellulose (3) aerogels. All 

aerogels were made from 6% of polysaccharide. 

(b) Matrix mass and (c) matrix volume evolution in time. Vertical line shows the change of 

release medium, from SGF (pH 1.0) the first hour to SIF (pH 6.8) the following hours, both at 

37°C 

Once immersed into the SGF (pH 1.0), all aerogels presented immediate shrinkage 

(around 20 to 30 vol%) (Figure 181 c) due to surface tension induced by the surrounding liquid, 

as also reported in Haimer et al for bacterial cellulose aerogels (Haimer et al., 2010). 

Simultaneously, pectin and cellulose aerogels showed an initial burst release phase due to the 

rapid dissolution of the theophylline particles on and close to the surface (Figure 181 a). As 

shown in Figure 181 (b), the liquid rapidly penetrated into the aerogels in the first minutes of 

experiment, which dramatically increased their mass by around +350% for pectin aerogels 

without calcium, +560% for pectin aerogel with calcium, and +480% for cellulose aerogels. 

The different mass increases between the pectin and cellulose aerogels is simply due to different 

matrix volume and density. As a reminder, aerogels density was around 0.11 g/cm3 for cellulose 

aerogels, 0.15 g/cm3 for pectin aerogels without calcium and 0.07 g/cm3 with calcium. Thus, 

the volume of the pectin aerogel without calcium was 30% lower than that of cellulose matrix, 

which might have restricted the liquid content in the matrix. But with calcium, volume of pectin 

aerogel was 40 % higher than that of cellulose, leading to the highest mass increase.  

 

During the first hour in SGF (pH 1.0), as no sign of matrix erosion was observed for 

both pectin and cellulose matrices, thus we assume that drug release was mainly governed by 

diffusion. It is interesting to see that even with different properties in terms of aeropectins 

structure (density, pore size) varying the calcium condition (with/without), pectin aerogels 

delivered more rapidly the drug than cellulose aerogel. As an illustration, both pectin aerogels 

(with and without calcium) released ~ 72-73% of total theophylline after one hour in SGF, while 
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only 60% was released from cellulose aerogel. The different release properties from pectin and 

cellulose aerogels are discussed below. 

 

As expected, pectin and cellulose aerogels presented significantly different matrix 

stability in SIF medium (pH 6.8), as revealed by the evolution of matrix mass and volume with 

time (Figure 181b, c). After one hour when the aerogels were transferred from SGF media (pH 

1.0) to SIF media (6.8), both pectin and cellulose aerogels showed a small peak of mass and 

volume increase, which is attributed to osmotic pressure difference between the interior and 

exterior of the matrix caused by the change of bath salinity and pH (Grignon & Scallan, 1980). 

Once in SIF (pH 6.8), pectin aerogels (with and without calcium) started to be dissolved, as 

revealed by the continuous drop in matrix volume and mass for three hours (Figure 181b, c). 

As previously detailed in Chapter V, matrix erosion of pectin aerogels is pH-dependent, as 

pectin is a hydrosoluble polyelectrolyte polymer. We showed that in SGF pectin matrix formed 

a resistant acidic gel inhibiting its erosion, while in SIF the dissolution of pectin matrix was 

promoted as media pH exceeded pectin pKa (~3.0- 3.5), which in turn accelerated the release of 

the drug. On the contrary, cellulose aerogel matrix was found to be stable in SGF and in SIF, 

in correlation with its non-solubility in the releasing medium. Thus, no sign of erosion was 

observed and cellulose matrix volume and mass remained nearly constant for almost 11 hours. 

It has to be noted that we did not observe any swelling of the cellulose matrix. In correlation 

with their different matrix behaviour, drug release profile from pectin and cellulose aerogels 

matrices considerably differed (Figure 181 a). Full theophylline release from pectin aerogel 

without calcium occurred in 225 min, driven by fast matrix erosion (in 235 min), which is twice 

faster than the end of drug release from cellulose aerogel observed at 460 min. As we previously 

demonstrated (Chapter V), the addition of calcium to pectin aerogels delayed its matrix erosion 

thanks to network ionic crosslinking. Here, it can be seen that the complete matrix dissolution 

and full drug release from pectin aerogel with calcium were actually delayed by around 1 h as 

compared to the case without calcium. 

 

As a direct consequence of their dissimilar solubility properties, 100% of total 

theophylline was released from pectin aerogels as the matrices were completely dissolved, 

while only 92% was released from cellulose aerogels which remained physically intact at the 

end of experiment. Thus, a portion of the drug remained entrapped within the matrix even after 

30 h of immersion. We assume the existence of a closed porosity within cellulose aerogel which 

does now allow complete diffusion of theophylline from cellulose matrix. There can be several 

reasons of the presence of closed pores in cellulose aerogels: they can be formed either during 

coagulation step or during rewetting or both. The observed shrinkage of aerogels due to surface 

tension may lead to capillary contraction and pore enclosure, as reported in Refs. (Haimer et 

al., 2010; Job et al., 2005). Our assumption was supported by the density of wet cellulose 

aerogels, 0.82-0.85g/cm3, after 30 h of immersion into liquid media, which confirms the 
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presence of air within the system. Complete release of the drug from cellulose aerogel was only 

obtained by mechanical destruction of the matrix (grinding), followed by sonication treatment. 

 

The fact that cellulose aerogel displayed a more controlled release behaviour than pectin 

aerogels results from polysaccharide intrinsic properties, physico-chemical and structural 

(density, sample thickness, pore size) aspects that differ for pectin and cellulose aerogels. 

Obviously, the solubility of pectin matrices in SIF (pH 6.8) explained the faster release from 

pectin aerogels than from cellulose aerogels. But in SGF (pH 1.0), pectin matrices erosion was 

inhibited and cannot explain why we also observed faster release from pectin aerogels (with 

and without calcium) than from cellulose aerogels. One of the reasons can be pectin partial 

degradation as solutions were kept at 60 °C for five days, as mentioned in Refs. (Fraeye et al., 

2007; Krall & McFeeters, 1998; Renard & Thibault, 1996). As mentioned above (Section 2.1), 

we observed that the gelling abilities of pectin solutions and specific surface area of aerogels 

were altered by extended heating. The potential partial degradation of pectin used for the 

impregnation of cellulose (and thus used as a reference), is confirmed by the comparison of 

theophylline release from the reference aerogel with that from the standard one, the latter 

prepared as described in Chapter II (Figure 182). Reference pectin aerogels (solutions heated 

at 60 °C for 5 days) releases theophylline more than 2 hours quicker as compared to the standard 

pectin aerogels made from solution of the same concentration but without heating. This is true 

for both calcium cross-linked and not pectin aerogels. 

 

Figure 182. Comparison of theophylline release from aeropectins obtained from standard 

process route (1) and from process route used for making composite aerogels, heating step at 

60 °C for 5 days (2). Aeropectins were made from 6 wt% of pectin P35 solution dissolved at 

pH 3.0 (a) without calcium or (b) with calcium. All aeropectins were loaded with theophylline 

at 3.4 g/L. 
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Korsmeyer-Peppas models were applied (Figure 183) to characterize the release 

mechanism of drug based on the value of n exponent. We obtained n values of 0.66 and 0.62 

for both pectin aerogels without calcium and with calcium, respectively, and n around 0.43 for 

cellulose aerogel, with high fitting correlation to the data (R² > 0.99). As expected from the 

previous results (Chapter V), the n values between 0.45 < n < 0.89 for pectin matrices indicated 

that drug release was due to an anomalous transport governed by the coupling of diffusion and 

polymer relaxation mechanisms (i.e. swelling and erosion). On the opposite, the n value close 

to 0.45 for cellulose aerogel is characteristic to Fickian diffusion of the drug within a stable 

matrix. In this case, polymer relaxation rate was either negligible or much more rapid as 

compared to diffusion rate, thus cellulose chains swelling did not interfere with drug diffusivity 

within the system.  

  

Figure 183. Experimental data and the corresponding fits (Korsmeyer-Peppas plot) for 

theophylline release from (a) pectin aerogel without calcium, (b) pectin aerogel with calcium 

or (c) cellulose aerogel. Aerogels were made from 6% of polysaccharide solutions. Q(t) is the 

cumulative release in time t. Solid lines are the plots of Korsmeyer-Peppas model according to 

Equation (A.12) in the Annex. 

To conclude, as we expected, pectin and cellulose aerogels displayed distinct release 

properties. Cellulose aerogel was found to be a non-erodible matrix displaying diffusion-

controlled drug release behaviour (Fickian release). Whereas drug release from pectin aerogels 

was strongly impacted by matrix erosion due to pectin solubility in the gastro-intestinal media 

(regardless the calcium conditions), consequently release of theophylline was due to anomalous 

transport involving polymer swelling and erosion (non-Fickian release). In addition, it clearly 

appeared that structural and release properties of pectin network were affected by prolonged 

heating during the impregnation process, as compared to the previously studied pectin aerogels 

in Chapter V.  

The next intriguing question to answer is “what are the release properties of composite 

aerogels at different cellulose/pectin ratios?”. 
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▪ Influence of pectin/cellulose composition on release kinetics of 

theophylline from composite aerogels  

In this section, we analyze and compare theophylline release from cellulose-pectin 

composite aerogels while varying the ratio of cellulose and pectin. The influence of composition 

on aerogels matrix behaviour (swelling and dissolution) and release properties in time is 

discussed. We first present the composites made without calcium, and then the case when 

calcium was added. For clarity, we to refer to composite aerogels by their composition (%) 

using “C” for cellulose and “P” for pectin proportions.  

➢ Cellulose-pectin composite aerogels without calcium 

The theophylline release curves from cellulose-pectin composite aerogels with different 

cellulose/pectin ratios are plotted in Figure 184. The evolution of matrices’ mass and volume 

with time of each composite are presented in Figure 185 (a) and (b), respectively. Pictures of 

composite aerogels are presented in Figure 186. 

 

Figure 184. Theophylline cumulated release (%) in time from aerogels made from 6 wt% of 

polysaccharide solutions without calcium, at different cellulose / pectin ratio: 100%C (1), 

92%C-8%P (2) 83%C-17%P (3), 66%C-34%P (4), 50%C-50%P (5) 42%C-58%P (6) and 

100%P (7). Aerogels were loaded with theophylline at 3.4 g/L.  
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Figure 185. (a) Matrix mass (g) and (b) volume (cm3) evolution in time of aerogels made from 

6 wt% of polysaccharides without calcium while varying cellulose / pectin ratio (noted “C” and 

“P”, respectively): 100%C (1), 92%C-8%P (2), 83%C-17%P (3), 66%C-34%P (4), 50%C-

50%P (5), 42%C-58%P (6) and 100%P (7).  

 

 

Figure 186. Pictures of cellulose-pectin composite aerogels after 90 minutes of dissolution 

testing (1 hour in SGF (pH 1.0) and 30 min in SIF (pH 6.8)). Composite aerogels were made 

without calcium. The scale is the same for all the pictures. 

The difference in the initial mass and volume between the composite aerogels simply 

reflects the different level of volume shrinkage underwent during the preparation route 

0

0,5

1

1,5

2

0 60 120 180 240 300 360 420 480 540 600

M
a
s
s
 (

g
)

Time (min)

(a) Matrix mass
100%C

92%C
8%P

83%C
17%P

66%C
34%P

50%C
50%P

42%C
58%P

100%P
7

3
4
5
6

1

2

0,0

0,5

1,0

1,5

2,0

2,5

0 60 120 180 240 300 360 420 480 540 600

V
o

lu
m

e
  
(c

m
3
)

Time (min)

(b) Matrix volume

100%C

92%C
8%P

83%C
17%P

66%C
34%P

50%C
50%P

42%C
58%P

100%P

3
4
5
6

1

2

7



CHAPTER VI.  

Organic-organic and organic-inorganic pectin-based composite aerogels for drug release applications 

317 

 

depending on the formulation. As it is shown in Figure 185 (a) and (b), all composite aerogels 

presented similar trend in mass and volume evolutions over time except neat pectin aerogel. 

During the first hour of experiment in SGF (pH 1.0), they all showed an initial “water filling 

stage”, followed by mass and volume “peaks” when transferred into SIF (pH 6.8) at 60 min of 

experiment. In correlation with the non-soluble cellulose matrix which did not swell or erode 

over time, the volume and mass of composites remained nearly constant after being immersed 

into SIF. We could notice a small increase of mass for all composites before the end of drug 

release, which may indicate the liquid filling pores in cellulose matrix (“empty” space left after 

complete dissolution of pectin). As the majority of sample weight increase was due to the liquid 

filling, pectin dissolution (which corresponds to a mass loss of around 0.050 to 0.170 g) was 

hard to notice.  

 

However, we can visually follow the progressive disappearance of pectin within the 

composite with time, as the initially yellow-brown samples (typical of pectin) turned to 

completely white (cellulose) (see Figure 186). When samples were grinded to have access to 

the remaining theophylline after the experiment, we noted that composite samples were 

completely white inside, thus we could deduce that pectin was completely dissolved. Alike neat 

cellulose aerogels, we noticed that some air remained trapped into closed porosity of the 

composite (i.e. cellulose) matrices, as confirmed by a density around 0.8-0.9 g/cm3 even after 

11 h of immersion into liquid media. This was in correlation with incomplete release of 

theophylline; depending on the composite composition, from 90% to 97% of the total 

theophylline was released. 

 

Contrary to similar mass and volume evolutions over time for all composites, a wide 

range of drug release profiles was obtained at different aerogel compositions, as it can be seen 

in Figure 184. All drug release from cellulose-pectin composites was significantly longer (from 

+38% to +170%) than that from neat pectin aerogels. As cellulose is non-soluble, the “stability” 

of the composite matrices in the release media obviously improved as compared to pectin 

aerogels. Thus, mixing pectin with cellulose might have slowed down pectin dissolution within 

the composites and prolonged the release for all cases. To be able to discriminate the different 

matrices as a function of their composition, we will discuss the results from another perspective. 

We analyze the composites starting from aerogels made of 100% cellulose and progressively 

increase the proportion of pectin in order to show the impact of pectin on the release properties 

of the composites. We will show that depending on pectin content, the release of theophylline 

from composite aerogels can be either promoted or slowed down as compared to neat cellulose 

aerogels.  

As it can be seen for the composites made from 92% cellulose and 8% pectin, the 

replacement of a small proportion of cellulose by pectin led to acceleration of release, with end 

of release in around 310 min from 92%C-8%P composite aerogel versus 460 min for neat 
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cellulose aerogel (Figure 187). Logically, the partial substitution of cellulose (not soluble in the 

releasing media) by pectin (hydrosoluble especially in SIF (pH 6.8)), might have led to a less 

“stable” matrix than neat cellulose. Besides, as pectin network was based on 1.3 wt% pectin 

solution, we suppose that such small pectin content has been rapidly dissolved, leaving behind 

the “empty space” in cellulose matrix which promoted mass transports phenomena. This 

“accelerating effect” (as compared to cellulose aerogel) on the release due to the presence of 

pectin was also found when doubling the pectin proportion to make 83%cellulose-17% pectin 

composite aerogels. As it can be seen in Figure 187, drug release from 83%cellulose-17% pectin 

occurred in 410 min, which is still faster than from neat cellulose (460 min), but surprisingly 

longer than from 92%cellulos-8%pectin composite with smaller pectin proportion (310 min).  

By increasing pectin proportion within the composite, the total matrix certainly became 

more soluble, but it also led to the increase the composite density as compared to neat cellulose 

aerogels. Indeed, while composite aerogels with the smallest pectin proportion (92%C-8%P) 

presented density (~ 0.12 g/cm3) similar to that of neat cellulose aerogels, the 83%C-17%P 

composite aerogels displayed higher density (+30%), 0.145 g/cm3. This explains why even with 

a higher solubility (higher pectin proportion), the release of the drug from 83%C-17%P was 

actually longer than from 92%C-8%P composite aerogel.  

  

Figure 187. Release time needed to reach the plateau (equilibrium) in drug release experiment 

(data extracted from Figure 184) as a function of the aerogel density, no calcium added. 

Depending on sample composition (neat pectin, neat cellulose or pectin-cellulose composite 

aerogels), this time corresponds to 92% - 100% of total theophylline released. Dashed line is 

given to guide the eye. 

This observation was also found to be valid when increasing even more pectin content 

(Figure 187): 66%C-34%P, 50%C-50%P and 42%C-58%P composite aerogels were 

respectively +70%, +93% and +100% denser than neat cellulose aerogels, and the release of 

the drug was +33%, +26% and +20% longer, respectively, than from neat cellulose aerogels. 
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As we described in Section 1.1. of this chapter, the increase of pectin content in cellulose matrix 

leads to density increase (Figure 173) and also denser morphology (Figure 178) which 

decreased liquid and drug diffusivity within the system. The results obtained show that there is 

a balance between the acceleration of release due to pectin dissolution and slowing down of 

release due to the increase of aerogel density. Composite aerogels based on interpenetrated 

network cellulose-pectin do not follow “mixing rule” in what concerns the kinetics and total 

release time of theophylline. 

 

The release results were analyzed by several mathematical models. As the matrices were 

complex and partially erodible, most of the models used previously did not fit release kinetics 

from composites. The best model fittings to data were obtained by plotting Korsmeyer-Peppas 

model (Figure 188 and Table 17) and Peppas-Sahlin models (Figure 189 and Figure 190) with 

high correlation (R² ≥ 0.98). As expected, the release from the composite aerogels with low 

pectin content ≤ 17% (92%C-8%P and 83%C-17%P composites) were governed by Fickian 

diffusion as revealed by n exponent values close to 0.45 using Korsmeyer-Peppas model with 

high correlation to the data (R² ≥ 0.994). For higher pectin contents (66%C-34%P, 50%C-50%P 

and 42%C-58%P composites), the n exponents values between 0.45 and 0.89 suggest that drug 

release was due to anomalous transport, involving both diffusion and polymer relaxation. It can 

be noted that the value of n exponent continuously increases with pectin fraction. 

 

Figure 188. Korsmeyer-Peppas model for the first 60% release data of theophylline release from 

composite aerogels made from 6 wt% of polysaccharides without calcium while varying 

cellulose / pectin ratio (noted “C” and “P”, respectively): 100%C, 92%C-8%, 83%C-17%P, 

66%C-34%P , 50%C-50%P, 42%C-58%P and 100%P. Solid lines are the theoretical plots. 
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Table 17. Korsmeyer-Peppas parameters of theophylline release experiments from composite 

aerogels made from 6 wt% of polysaccharides without calcium while varying the cellulose / 

pectin ratio: 100%C, 92%C-8%, 83%C-17%P, 66%C-34%P, 50%C-50%P, 42%C-58%P and 

100%P. 

 

 

Figure 189. Peppas-Sahlin model for the first 60% release data of theophylline release from 

composite aerogels made from 6 wt% of polysaccharides without calcium while varying the 

cellulose / pectin ratio: 100%C, 92%C-8%, 83%C-17%P, 66%C-34%P, 50%C-50%P, 42%C-

58%P and 100%P, using Fickian diffusional exponent m of 0.430. Solid lines are the theoretical 

plots. 

 

Table 18. Peppas-Sahlin parameters using Fickian diffusional exponent m of 0.430 of 

theophylline release experiments from composite aerogels made from 6 wt% of polysaccharides 

without calcium while varying the cellulose / pectin ratio: 100%C, 92%C-8%, 83%C-17%P, 

66%C-34%P ,42%C-58%P and 100%P. 

Ratio (%) Cellulose / Pectin 100%C 
92%C 

8%P 

83%C 

17%P 

66%C 

34%P 

50%C 

50%P 

42%C 

58%P 
100%P 

n exponent 0.43 0.38 0.41 0.54 0.56 0.59 0.66 

R² 0.995 0.994 0.996 0.995 0.995 0.995 0.995 
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We thus demonstrated that the ratio of polysaccharides in the composite aerogels 

actually drive the main physical mechanisms involved in the release of the drug. Release 

behavior from composites is more “cellulose-like” (diffusion-controlled) if cellulose is strongly 

predominant, and turned into “pectin-like” (diffusion erosion-controlled) once pectin content 

exceeds 34% within the composite. 

Peppas-Sahlin model was applied to highlight the differences in the coupling of 

diffusion and matrix erosion in composite aerogels of various compositions. The estimations of 

Peppas-Sahlin parameters and the model plots are presented in Figure 189 and Table 18, 

respectively, with high correlation to the data (R² ≥ 0.987). The calculation of the Fickian 

contribution to the release over time based on the estimated parameters is plotted Figure 190. 

 

As it was found with Korsmeyer-Peppas plot, the value for the composites with low 

pectin content (92%C-8%P and 83%C-17%P composites) and neat cellulose aerogels present 

negative KR coefficient, meaning that relaxational phenomena (swelling or matrix erosion) had 

negligible or no effect on the release as compared to diffusional phenomena. Thus, in low 

pectin-content matrices theophylline was mainly released by diffusion mechanism. However, 

for pectin content ≥ 34%, diffusion and erosion co-exist. As presented in Figure 190, we found 

logical that the values of KR coefficient increase (from 0.089 to 0.129 h-0.86) with pectin content 

(from 34% to 58%), revealing the increase of erosion contribution to the drug release as the 

matrices are becoming more erodible. As shown in Figure 21, the release of the drug from 

composites with high pectin content (≥ 34%) start with a main diffusion-controlled phase at the 

beginning of experiment, followed by a diffusion-erosion controlled phase until the end of the 

release. 

 

Ratio (%) Cellulose / Pectin 100%C 

92%C 

8%P 

 

83%C 

17%P 

 

66%C 

34%P  

50%C 

50%P 

42%C 

58%P  

100%P 

 

Fickian coefficient 

KF (h-0.43) 
0.700 1.03 0.547 0.342 0.363 0.352 0.480 

Relaxational coefficient 

KR (h-0.86) 
< 0 < 0 < 0 0.089 0.110 0.129 0.386 

R² 0.995 0.997 0.998 0.997 0.992 0.992 0.987 
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Figure 190. Fraction of Fickian release according to Peppas-Sahlin model using Fickian 

diffusional exponent m of 0.430, for the first 60% of released drug from composite aerogels 

made from 6 wt% of polysaccharides aerogels without calcium while varying the cellulose / 

pectin ratio: 100%C (1), 92%C-8%P (2), 83%C-17%P (3), 66%C-34%P (4), 50%C-50%P (5), 

42%C-58%P (6) and 100%P (7). 

 

➢ Cellulose-pectin composite aerogels with calcium 

In this section the release of theophylline from cellulose-pectin aerogels and matrices’ 

mass and volume over time were studied in which pectin was cross-linked with calcium (Figure 

191 and Figure 192, respectively). Few release profiles for composite aerogels with non-cross-

linked pectin (open symbols) are also shown for comparison.  

 

As shown in Figure 191, we observed that the addition of calcium changed the 

theophylline release profile of cellulose-pectin composite aerogels. When calcium was added 

to cellulose-pectin composites (66%C-34%PCa and 42%C-58%PCa samples), composites 

showed a more controlled-release behaviour and a significant increase of the time needed to 

reach the plateau (release equilibrium)3 was observed compared to composites without calcium 

(compare curve 2 with 3 and 4 with 5).  

 

 

 
3 In some cases, a small portion of the drug remained “entrapped” into the matrix, and the equilibrium 

was not reached at 100% of theophylline released. 
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Figure 191. Theophylline release over time (%) from aerogels made from 6 wt% of solutions 

(pectin cross-linked with calcium) while varying the cellulose / pectin ratio (filled symbols 

correspond to pectin cross-linked with calcium and open symbols to pectin without calcium): 

100%C (1), 66%C-34%P without calcium (2) and with calcium (3), 42%C-58%P without 

calcium (4) and with calcium (5) and 100%P with calcium (6). Aerogels were loaded with 

theophylline at 3.4g/L. 

 

 

Figure 192. (a) Matrix mass (g) and (b) volume (cm3) evolution in time of aerogels made from 

6 wt% of polysaccharides with calcium while varying the cellulose / pectin ratio: 100%C (1), 
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66%C-34%P +Ca (2), 42%C-58%P +Ca (3) and 100%P +Ca (4). Aerogels were loaded with 

theophylline at 3.4g/L. 

Indeed, drug release from 66%C-34%PCa composite was prolonged up to 800 min when 

calcium was added versus 610 minutes without calcium, which correspond to a 30% longer 

release of drug. This effect of calcium was even more pronounced when the pectin content was 

higher; drug release from 42%C-58%PCa composite aerogel was prolonged up to 890 min 

instead of 550 min without calcium, which corresponds to +60% longer drug release.  

 

As stated above for neat pectin aerogels with calcium (Figure 181) and discussed in detail 

in Chapter V, we already demonstrated that pectin cross-linked with calcium led to a stronger 

and less soluble network, inhibiting polymer dissolution which delays the full release of the 

drug. Here, we similarly assume that ionic crosslinking of pectin network hindered dissolution 

within the composite. As pectin fraction in the composites was dissolved more slowly, the 

cellulose-pectin matrix remained stable longer and better prevented liquid and theophylline 

diffusion, which finally slowed down the release of drug. The increase of the release time from 

composites with calcium (from +30% to +60% as compared to without calcium) was actually 

dependent on pectin content in the composite (as ionic crosslinking only concerns pectin portion 

of the composite).  

 

As it can be observed in Figure 191 on which two examples of release from composites 

with non-crosslinked pectin are also shown, theophylline release curves from pectin-cellulose 

composites (with or without calcium) displayed an “S-shape” (sigmoidal curve), distinct from 

the typical asymptotic curves obtained from neat cellulose and neat pectin aerogels. The “S 

shape” appeared at the end of the drug release and is even more pronounced with the increase 

of pectin fraction within the composite. This change of slope is a sign of an acceleration of the 

release rate at the end of the experiment and reflects either an increase in solvent velocity within 

the system and/or a sudden increase of drug diffusivity. In our case, it can be explained by the 

complete dissolution of the pectin fraction of the composite matrix which certainly boosted all 

the diffusional phenomena of the drug and liquid within the system. 

The evolution of matrix mass and volume of the composites over time in Figure 192 

shows the same tendency as composites without calcium, except the fact than matrices with 

calcium had higher volume (and mass increase) due to lower shrinkage during aerogel 

preparation compared to the case without calcium. As composite aerogels without calcium, 

matrices mass and volume with calcium were nearly constant after the initial liquid filling step 

and during the first 60 min.  

The prediction given by the mathematical models was consistent with our interpretation 

of release data. Using Korsmeyer-Peppas plot with high correlation to the data (R² > 0.995) 

(Figure 193) we obtained smaller n exponent values when calcium was added to composites. 
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For 66%C-34%PCa composite aerogels, n value decreased from 0.54 (anomalous transport case) 

without calcium to 0.44 (Fickian diffusion case) with calcium. In the same way, n value 

obtained from release data from 42%C-58%PCa composite aerogels decreased from 0.59 

(anomalous transport case) without calcium, to 0.47 (Fickian diffusion case) with calcium. This 

suggests that the release of theophylline from composites, which was originally governed by 

the coupling diffusion and matrix erosion, turned to be mainly diffusion-controlled when 

calcium was added due to the higher pectin resistance to dissolution.  

 

Figure 193. Example of Korsmeyer-Peppas model for the first 60% release data of theophylline 

release from composite aerogels made from 6 wt% of polysaccharides with calcium while 

varying the cellulose / pectin ratio: 66%C-34%P and 42%C-58%P. Solid lines are the model 

plots. 

Peppas-Sahlin model was applied with good data fitting (R² ≥ 0.984) (Table 19) and the 

calculation of the Fickian contribution to the release over time based on the estimated 

parameters is plotted in Figure 194. In line with Korsmeyer-Peppas model, it can be clearly 

seen that the relaxational coefficient coefficients KR were drastically reduced when calcium 

was added, as pectin dissolution within the composite was prevented due to ionic crosslinking 

(lower pectin solubility). As a consequence, pectin-cellulose composites with calcium (66%C-

34%PCa and 42%C-58%PCa) even exhibit relaxational coefficients close to or equal to 0 (Table 

19), reflecting a very low contribution of erosion phenomena to the release and the 

predominance of Fickian diffusion phenomena in the release from more stable composite 

matrices. 

Table 19. Peppas-Sahlin parameters using Fickian diffusional exponent m of 0.430 of 

theophylline release experiments from composite aerogels made from 6 wt% of polysaccharides 

with and without calcium while varying cellulose / pectin ratio: 100%C, 66%C-34%P without 

and with calcium, 42%C-58%P without and with calcium and 100%P without and with calcium. 

Ratio (%)  

Cellulose / Pectin 
100%C 

66%C 

34%P 

66%C 

34%P +Ca 

42%C 

58%P 

42%C 

58%P +Ca 
100%P 100%P +Ca 
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Figure 194. Fickian release fraction according to Peppas-Sahlin model using Fickian diffusional 

exponent m of 0.430, for the first 60% of released drug from composite aerogels made from 6 

wt% of polysaccharides aerogels with and without calcium, while varying the cellulose / pectin 

ratio: 100%C (1), 66%C-34%P without calcium (2) and with calcium (3), 42%C-58%P without 

calcium (4) and with calcium (5), 100%P without (6) and with calcium (7). 

 

1.3. Conclusions on pectin-cellulose composite aerogels 

Composite cellulose-pectin aerogels are new material produced by making 

interpenetrated network of pectin and cellulose. Used as complex matrices for drug delivery, 

their physical and release properties were characterized and correlated to their composition, and 

also compared to neat cellulose and pectin reference aerogels. We found that by varying 

cellulose and pectin fractions, it was possible to vary their contributions to the structural and 

release properties of the composite aerogels. 

 

We demonstrated that depending on the fraction of pectin in the composite aerogels, the 

release can be either significantly accelerated or slowed down as compared to the case of neat 
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cellulose aerogels. The presence of pectin in the composite aerogel had two opposite impacts 

on the physico-chemical characteristics of the composites, which in turn influenced drug release 

properties. On the one hand, the addition of pectin increases matrix “instability” (in the sense 

of dissolution in the release media) which is promoting drug release. On the other hand, the 

presence of pectin increased composite density due to volume shrinkage which slowed down 

drug release. Depending on pectin fraction, it is either the physico-chemical (i.e. matrix 

dissolution) or the structural (high density) impact on the release that outweighed one the other. 

To demonstrate this phenomenon, the time needed to reach the equilibrium of drug release for 

composite aerogels is plotted as a function of their composition in Figure 195. 

 

Figure 195. Release time needed to reach the plateau (equilibrium) in drug release experiment 

(data extracted from Figure 184 and Figure 191). Depending on sample composition, this time 

corresponds to 92% - 100% of total theophylline released. Dashed lines are given to guide the 

eye. 

We showed that pectin ionic gelation within cellulose matrix drastically increased release 

time and also changed the drug release profile because of different physical mechanisms 

involved in the release. Even if the addition of calcium only impacted the pectin part of the 

composite, it finally changed the properties of the overall composite. 

Thanks to their different intrinsic properties, both cellulose and pectin parts of the 

composites contributed to obtain drug extended-release behaviour.  

- Cellulose greatly improved the stability of the matrix due to its non-solubility 

in the release media, which also slowed down pectin dissolution.  

- Cellulose aerogel presents larger pores than pectin aerogels which tends to 

facilitate diffusional phenomena.  
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- The addition of pectin increased the density of the composites and significantly 

decreased pore size (especially at high pectin content), which in turn hindered 

the diffusion of both liquid and drug through the system.  

- Pectin also increased drug loading efficiency and loading capacity probably 

due to the higher matrix density and maybe higher chemical affinity with 

theophylline.  

- Pectin also contributed to chemical “instability” of the matrix due to its 

solubility in aqueous medium, even if the latter could be attenuated by ionic 

cross-linking with calcium.  

Based on the results and trends obtained, we can now provide the “recipes” on how to 

control and tune different contributions of the two dissimilar polysaccharides on the structural 

and release properties of composite aerogels.  

 

2. Pectin-Silica composite aerogels 

The goal of this section is to prepare and characterize pectin-silica composite aerogels 

and study the kinetics of theophylline release from these samples.  

 

• The first part of this section presents the synthesis of silica aerogels by sol-gel 

method using either polyethoxydisiloxane (PEDS) or tetraethylorthosilicate 

(TEOS) as two sources of silica. Then, we describe the process route to produce 

pectin-silica composite aerogels by silica sol impregnation within pectin aerogel 

precursor (wet pectin matrix after coagulation).  

• In a second part, we present the structural and morphological characterization of 

neat silica and neat pectin aerogels, used as “reference”. Then the structural 

properties of pectin-silica aerogels are studied and discussed in correlation with 

the type of silica-precursor (TEOS vs PEDS) and with the pectin/silica 

composition. 

• Finally, the release theophylline from pectin, silica and pectin-silica aerogels are 

investigated, and correlated to the matrices’ composition and structural aspects. 
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2.1. Production and characterization of pectin-silica composites 

2.1.1. Materials 

In order to produce silica aerogels and pectin-silica composite aerogels, we synthesized 

silica alcogels by sol-gel polymerization of two different silica sols:  

- Tetraethylorthosilicate (TEOS) (98 wt%). 

- Polyethoxydisiloxane (PEDS, also called P75E20 by the provider (Enersens), 20 

w/w% SiO2 content in ethanol) was used as pre-polymerized oligomers of TEOS.  

Solutions of hydrochloric acid (HCl) (32%) and of ammonium hydroxide (NH4OH) 

(30wt%) were used as catalysts for hydrolysis and condensation reactions, respectively. TEOS 

and PEDS were diluted with ethanol when needed. 

2.1.2. Sol-gel synthesis of neat silica aerogels using either TEOS or PEDS 

▪ Production of silica aerogels made from TEOS 

TEOS gels were synthesized by sol-gel polymerization process of tetraethylorthosilicate 

(Si(OC2H5)4 using ethanol and water. As it was presented in the Chapter I (Section 2.2.1), the 

process is divided into two steps; the first is acid-catalyzed hydrolysis which leads to the 

production of reactive groups silanol (SiOH) with hydroxyl function bound to silicon. This step 

is then followed by acid or base-catalyzed polycondensation reactions leading to the creation 

of silicon-oxygen-silicon bridges and further polymerization. Depending on the chemistry of 

the reaction solution, gelation may happen rapidly, or may require additional catalyst, water, 

temperature or time.  

In this study, we used HCl and NH4OH as hydrolysis and condensation catalysts, 

respectively, to synthetize TEOS alcogel by the sol-gel polymerization. The synthesis route was 

inspired from the mix of several works on TEOS aerogels (Assifaoui, Bouyer, Chambin, & 

Cayot, 2013; Błaszczyński, Ślosarczyk, & Morawski, 2013; Błaszczyński et al., 2013; Buckley 

& Greenblatt, 1994; Laudise & Johnson, 1986). 

 

The hydrolysis of TEOS can be represented as follows: 

 Si(OC2H5)4 + 4H2O → Si(OH)4 + 4C2H5OH  (6.8) 
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In order to promote the reaction to the right, water was added in excess as compared to 

stoichiometric ratio of Equation (6.8). For the acid hydrolysis step, TEOS, water and ethanol 

were mixed together at the molar ratio 1/4/6 (TEOS/Ethanol/Water) in order to produce TEOS 

solution at 0.4 mol.L-1
, which corresponds to 8 wt% of TEOS (Assifaoui et al., 2013). Ethanol 

and water were first mixed and TEOS was added while stirring. Small quantity of HCl (32 wt%) 

was added to reduce pH to around 2. The two solutions were non-miscible at the beginning, but 

mixed up after 10 minutes of stirring. The sol was let under stirring for 2 h of hydrolysis time 

in ambient conditions. To induce polymerization by condensation reaction, small quantity of 

NH4OH catalyst solution was added to obtain 0.06 %wt of NH4OH in the mix. After 5 minutes 

of homogenization by stirring, the sol was poured into molds. We noticed an increase of the 

viscosity of the sol after few hours at room temperature. Samples were let gelled and aged for 

7 days at room conditions, and were intensively washed with ethanol (Laudise & Johnson, 

1986). Then, TEOS-alcogels were loaded with theophylline by impregnation at 3.4 g/L in 

ethanol for 2 weeks, and finally supercritically dried using CO2. 

▪ Production of silica aerogels made from PEDS 

As PEDS was already hydrolyzed precursors (silica-sol), they were are therefore very 

prone to acid- or base-catalysed condensation reactions as described by (Malfait et al., 2015; 

Pajonk et al., 1995; Strøm et al., 2007). Thus, we directly mixed 8 wt% of PEDS in ethanol and 

basic catalyst solution (NH4OH, 0.6 wt% in ethanol:water = 96:4 w/w) during 5 minutes before 

being poured the silica-sol into molds, as described in (Demilecamps, Beauger, Hildenbrand, 

Rigacci, & Budtova, 2015). Due to PEDS pre-hydrolysis, we noticed an increase of sol viscosity 

in less than 10 minutes, and transition to the gel state occurred (via tilting test) in less than three 

hours at room temperature. Samples were let gelled and aged for 3 days at room conditions, and 

were intensively washed with ethanol. Then, PEDS-alcogels were loaded with theophylline by 

impregnation at 3.4 g/L in ethanol for 2 weeks, and finally supercritically dried using CO2. 

For the sake of simplification, silica aerogel produced using PEDS (resp. TEOS) as 

silica-precursors will be called “PEDS aerogels” (resp. TEOS aerogels). 

1.1.1. Production of pectin-silica composite aerogels 

▪ Process route of pectin-silica composite aerogels 

The production of pectin-silica composites consists of impregnation and gelation of 

silica-precursors within a pre-existing “wet” coagulated pectin matrix, as illustrated in Figure 

196. 
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Figure 196. Schematic representation of the fabrication process of pectin-silica composite 

aerogels (silica here is PEDS, for TEOS the process is the same except catalyst) loaded with 

theophylline. 

Pectin matrices were made from 6 wt% of pectin P35 dissolved at pH 3.0 or at pH 2.0 

with R(Ca) varying from 0 (no calcium) to 0.6, and were then coagulated in ethanol as described 

in Chapter II. The concentration of silica and catalyst were calculated taking into account the 

volume of ethanol inside pectin “wet” matrix. Coagulated pectin in ethanol was immersed into 

twice its own volume of 16 wt% of pre-hydrolyzed silica sol in order to obtain 8 wt% silica 

after diffusion into pectin, supposing a homogeneous distribution of silica all over the system 

(which will be checked further).  

Pectin samples were let to be impregnated by silica sol by diffusion for 15 days in 

ambient conditions. Pectin-silica samples were then extracted and placed in twice their volume 

of basic catalyst solution (NH4OH, 1.3 wt% in ethanol:water = 96:4 w/w) (Demilecamps et al., 

2015), resulting in in situ silica gelation. Samples were let gelled and aged for 3 days for PEDS 

and 7 days for TEOS. After intensive washing with ethanol, the pectin-silica composite alcogels 

were loaded with theophylline at 3.4 g/L in ethanol for 2 weeks, before being supercritically 

dried using CO2. 

In parallel, non-impregnated pectin matrices were also drug-loaded and CO2 

supercritically dried to be used as a ‘reference’. The pectin matrices were loaded with 

theophylline at 3.4 g/L in ethanol for 2 weeks, prior to CO2 sc-drying. 

In each section, the type of silica-sol and the formulation of the pectin matrices will be 

specified. 
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▪ Calculation of silica diffusion time inside pectin matrix 

To evaluate the time needed to completely impregnate coagulated pectin with silica sol, 

we estimated the diffusion coefficient of silica in ethanol using the same “diffusion” approach 

as described in Chapter V, Section 1.1, Equations (5.1) and (5.2). The Stokes radius of pre-

polymerized silica (PEDS) was estimated previously to be around 1 nm (Rudaz, 2013). Using 

ηethanol = 1.20 10-3 Pa.s, silica diffusion coefficient in ethanol at 25°C is estimated to be around 

1.82 10-10 m²/s in the absence of pectin network. Being slowed down in pectin network, the 

diffusion of silica in coagulated pectin network filled with ethanol is approximately Dsilica ~ 

1.82 10-11 m²/s. The distance made by silica PEDS particle as a function of time is shown in 

Table 7.  

As TEOS is non pre-polymerized silica precursor, its Stokes radius is expected to be 

smaller as compared to PEDS (pre-polymerized). As a consequence, the time to diffuse through 

a given distance should be normally shorter for TEOS than for PEDS. 

Table 20. Distance made by silica molecules (from PEDS) by diffusion as free molecules in 

ethanol, or through a 6 wt% pectin matrix, in ambient conditions. 

Dsilica 

(m²/s) 
t (days) L (mm) 

1.82 10 -10 

(free diffusion in 

ethanol) 

1 4.0 

2 5.6 

10 12.5 

15 15.4 

1.82 10 -11 

(diffusion 

through a 6 wt% 

pectin matrix) 

1 1.2 

2 1.7 

10 4.4 

15 4.9 

 

In 24 h, silica (from PEDS) diffuses through a distance of ~ 1.2 mm in such porous 

system. Considering that half thickness of the pectin matrix samples was 5 mm maximum, and 

that diffusion is slowed down as soon as pectin is progressively filled with silica, we consider 

that silica impregnation of coagulated pectin should be completed in 15 days. 
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▪ Estimation of the silica impregnation efficiency into pectin 

matrices 

To estimate silica impregnation efficiency (%) into the pectin matrices, we compared 

the amount of silica actually present in the matrices with the theoretical maximum amount of 

100% impregnated case. For this purpose, we considered that silica impregnated the “free” 

volume offered by pectin sample, i.e. the volume of the pores (Vpores) within pectin matrices, 

which is obtained from pectin aerogel porosity (Equation (6.11)). 

 𝜖 (%) =  
𝑉𝑝𝑜𝑟𝑒𝑠

𝑉𝑡𝑜𝑡𝑎𝑙
= (1 −  

𝜌𝑏𝑢𝑙𝑘

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙
) × 100%  (6.11) 

Besides, we assume that the density of silica aerogel formed inside pectin matrix is the 

same as of neat silica aerogel.  We obtained neat silica aerogels density (𝜌𝑠𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙) around 

0.111 ± 0.002 g.cm-3 from PEDS, and around 0.124 ± 0.002 g.cm-3 from TEOS. As the skeletal 

density of silica aerogels is known to be around 2.0 g/cm3 (Phalippou & Kocon, 2004), we can 

calculate the maximum amount of silica that can impregnate pectin matrices as follows 

(Equation (6.12)): 

 𝑚𝑚𝑎𝑥 𝑠𝑖𝑙𝑖𝑐𝑎 = 𝜌𝑠𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 ×𝑉𝑝𝑜𝑟𝑒𝑠 𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙  (6.12) 

Then, we can evaluate the theoretical density of pectin-silica composite aerogel, as 

defined by: 

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  
𝑚𝑚𝑎𝑥 𝑠𝑖𝑙𝑖𝑐𝑎 

𝑉𝑡𝑜𝑡𝑎𝑙
+

𝑚𝑝𝑒𝑐𝑡𝑖𝑛 

𝑉𝑡𝑜𝑡𝑎𝑙
 

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  
𝜌𝑠𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙  ×  𝑉𝑝𝑜𝑟𝑒𝑠 𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙

𝑉𝑡𝑜𝑡𝑎𝑙
+ 𝜌𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙    

Thus, we have: 

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =  𝜌𝑠𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙  × 𝜖 (%)𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 × (
1

100%
) + 𝜌𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙  (6.13) 

We can therefore estimate silica impregnation efficiency (%) within pectin matrices as 

the ratio of the experimental bulk density of composite aerogel composite and the theoretical one 

(from Equation (6.13)): 

 %𝑆𝑖 𝑖𝑚𝑝𝑟𝑒𝑔𝑛𝑎𝑡𝑖𝑜𝑛 =
𝜌𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒

𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒
× 100%   (6.14) 

Using the mixing law, we define the composite theoretical specific surface area (SBET in 

m²/g) also according to the mixing rule: 
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𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑆𝐵𝐸𝑇𝑃𝑒𝑐𝑡𝑖𝑛−𝑠𝑖𝑙𝑖𝑎 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙
 (𝑚2

𝑔⁄ ) 

= (𝑅𝑎𝑡𝑖𝑜 𝑝𝑒𝑐𝑡𝑖𝑛
𝑠𝑖𝑙𝑖𝑐𝑎⁄

× 𝑆𝐵𝐸𝑇𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙
) + ( 𝑅𝑎𝑡𝑖𝑜 𝑆𝑖𝑙𝑖𝑐𝑎

𝑝𝑒𝑐𝑡𝑖𝑛⁄
× 𝑆𝐵𝐸𝑇𝑆𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙

)  (6.15) 

 

In the same way, we calculated the theoretical drug loading capacity (in wt%) as the 

weighted average of loading capacity of each component of the composite (mixing law): 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑃𝑒𝑐𝑡𝑖𝑛−𝑠𝑖𝑙𝑖𝑎 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑒𝑟𝑜𝑔𝑒𝑙 (𝑤𝑡%) 

= (𝑅𝑎𝑡𝑖𝑜 𝑝𝑒𝑐𝑡𝑖𝑛
𝑠𝑖𝑙𝑖𝑐𝑎⁄

× 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑝𝑒𝑐𝑡𝑖𝑛 𝑎𝑒𝑟𝑜𝑔𝑒𝑙) 

+ ( 𝑅𝑎𝑡𝑖𝑜 𝑆𝑖𝑙𝑖𝑐𝑎
𝑝𝑒𝑐𝑡𝑖𝑛⁄

× 𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑆𝑖𝑙𝑖𝑐𝑎 𝑎𝑒𝑟𝑜𝑔𝑒𝑙)  (6.16) 

2.2. Characterization of pectin-silica composite aerogels  

2.2.1. Influence of the type of silica sol on the properties of neat silica 

aerogels (TEOS vs PEDS) 

Silica aerogels made from TEOS or PEDS were produced but were extremely fragile 

(half of samples were presenting cracks after sc-drying) and mildly transparent materials. 

Pictures of PEDS and TEOS aerogels are shown in Figure 197. We noted that TEOS aerogels 

had lower mass by 6 – 8 % as compared to PEDS aerogels, which can indicate that not all silica 

from TEOS was completely polymerized and monomers/oligomers were washed out before sc-

drying.  

 

Figure 197. Picture of silica aerogels made from 8 wt% of PEDS or from 8 wt% TEOS 

The structural properties and drug loading characteristics of 8 wt% silica aerogels based 

on TEOS and PEDS are presented in Table 21, neat 6 wt% pectin aerogels (not filled with silica) 

are also given for comparison. PEDS- and TEOS- and pectin-based aerogels presented similar 

bulk density, porosity and pore volume, but silica aerogels have significantly higher specific 
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surface from +50% to +115% (depending on the pectin and silica aerogels formulations) in 

correlation with literature. 

Table 21. Structural and drug loading properties of neat pectin (with and without calcium) and 

neat silica aerogels using PEDS or TEOS as silica sol. All aerogels were loaded with 

theophylline at 3.4 g/L, as described in Chapter II. 

Aerogel 

composition 

6wt% pectin 

without calcium 

6wt% pectin 

with calcium  

RCa= 0.2 

8wt% silica 

from PEDS 

8wt% silica 

from TEOS 

Volume 

shrinkage (%) 
61.1 ± 0.6 30.5 ± 0.7 39.9 ± 0.5 50.6 ± 0.4 

Density (g/cm3) 0.157 ± 0.003 0.088 ± 0.001 0.106 ± 0.001 0.123 ± 0.001 

Porosity (%) 89.5 ± 0.2 94.1 ± 0.1 94.7 ± 0.01 93.8 ± 0.02 

Pore volume 

(cm3/g) 
5.71 ± 0.12 10.69 ± 0.19 8.75 ± 0.13 7.46 ± 0.08 

SBET (m²/g) 554 ± 16 479 ± 14 1011 ± 34 834 ± 32 

Network 

morphological 

aspect 

Mesopores and small 

macropores of 

around 30 to 70 nm 

of diameter 

Mesopores and small 

macropores of 

around 50 to 150 nm 

of diameter 

Small 

mesoporous 

network 

Small 

mesoporous 

network 

Loading 

efficiency (%) 
80.1 61.3 15.8 33.4 

Aerogel loading 

capacity (wt%) 
3.81 3.41 0.70 1.58 

Specific loading 

(x 105 g/m²) 
7.0 7.6 0.7 1.8 

 

We noticed that the source of silica-precursors (TEOS or PEDS) significantly affected 

the aerogel structural and morphological properties. Indeed, TEOS aerogels underwent a higher 

shrinkage (~ 51 vol%) than PEDS (~ 40 vol%) which led to higher density for TEOS aerogels 

(~ 0.123 g/cm3) as compared to PEDS aerogels (~ 0.106 g/cm3).  

 

In Figure 198, SEM observation of TEOS aerogel network morphology shows some 

silica aggregates and non-uniform pore size (5 – 70 nm). On the contrary, morphology of PEDS 

aerogel was found to be homogenous with smaller pore sizes (< 40 mn). Besides, PEDS 

aerogels presented +20% higher specific surface area (~ 1000 m²/g) compared to that of TEOS 

aerogels (~ 830 m²/g). This can be attributed to the pre-polymerization of silica in PEDS. These 
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dissimilar structural properties (density, pore size, SBET) between TEOS and PEDS aerogels 

were also reported (Wagh, Begag, Pajonk, Rao, & Haranath, 1999). 

 

Figure 198. SEM pictures of neat pectin aerogels (with and without calcium made from 6 wt% 

pectin P35 solutions at pH 3.0) and neat silica aerogels from PEDS and from TEOS, 8 wt% sol. 

We present two different fields of view from the core of TEOS aerogels (a) and (b) to highlight 

their morphological heterogeneity. All images are at the same scale. 

As stated above (cf. Section 1 of this chapter), cellulose- and pectin-based aerogels were 

found to display high drug loading efficiency from 50 to 80%, and their drug loading properties 

were found to be positively correlated to the structural parameters such as density and SBET. It 

is interesting to see that even if silica aerogels displayed similar density, pore volume, porosity 

and much higher SBET than pectin and cellulose aerogels, the loading of theophylline within 

silica aerogels was significantly weaker, around 15-30% (Table 21). As a direct consequence 

of a low drug loading efficiency, drug loading capacity and specific loading of both types of 

silica aerogels were significantly lower than of polysaccharides aerogels.  

Moreover, we highlight here another major difference between PEDS- and TEOS 

aerogels concerning their drug loading properties. It is interesting to see that loading efficiency, 

capacity and specific loading was twice higher in TEOS aerogels (~ 30%) than in PEDS 

aerogels (~ 15%). As their physical and structural properties were similar, we suppose that this 

is due to different physico-chemical characteristics of TEOS- and PEDS- aerogels, impacting 

drug-matrix interactions and the loading process.  

a b 
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One of the differences between TEOS and PEDS can be aerogel 

hydrophilic/hydrophobic properties. To check this, the simplest test to do is to measure the 

contact angle with water. The results are presented in Figure 199 and Figure 200.  

 

As it is well known, pectin aerogel showed extremely high hydrophilicity as revealed 

by immediate absorption of the water droplet in less than 0.4 s. As expected, due to the high 

hydrophilicity of TEOS aerogels, water contact angle values could not be measured, as the 

droplet was immediately absorbed (< 0.2 s) when placed on the surface of the aerogel. Once in 

contact with water, TEOS aerogels immediately cracked due to capillary forces inside the pores 

and lost its physical integrity, as it is commonly reported for non-hydrophobized silica aerogels 

(Caputo, Scognamiglio, & De Marco, 2012; I. Smirnova et al., 2004). However, surprisingly 

we noticed the opposite for PEDS aerogels which appeared to be rather hydrophobic, as 

revealed by the contact angle with water around 140 to 130° in the first 15 seconds of 

experiment.  

We could not continue following of the contact angle evolution longer than for 15 

seconds as evaporation of water from the droplet was becoming noticeable. But we visually 

noticed a progressive drop spreading with time, and after 15 min in contact with a water droplet, 

PEDS aerogels started to fracture due to capillary forces in the pores. This means that PEDS 

aerogels are much more hydrophobic as compared to its TEOS-based counterpart.  

 

Figure 199. Pictures of pectin (made from P35 6 wt% solution at pH 3.0), TEOS and PEDS 

aerogels during contact angle experiments at different times, and visual aspect of the surface of 

aerogels after the experiment. 
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Figure 200. Contact angle with water of the surface of pectin, TEOS and PEDS aerogels as a 

function of time. 

Non-functionalized silica aerogels usually contain some un-reacted silanol (Si-OH) 

groups on the surface of their backbone. Even if silanol groups are not numerous, water 

molecules can readily interact with the hydroxyl functions, explaining the high hydrophilicity 

of silica. We assume that the difference in hydrophilicity between PEDS and TEOS aerogels is 

due to the partial hydrolysis and pre-polymerization of silica in PEDS. We assume that in the 

case of PEDS, a higher portion of the silanol groups interacted with each other to form 

connective silicon-oxygen-silicon bridges, which led to lower amount of un-reacted silanol 

groups than in TEOS. The apparent hydrophobicity of PEDS aerogels might stem from the 

practically absence of un-reacted hydroxyl groups on the surface of their silica skeleton, 

contrary to TEOS aerogels.  

We can imagine that the hydrophobicity of PEDS network could also have increased its 

compatibility with sc-CO2 (non-polar fluid) during sc-drying resulting in lower volume 

shrinkage and aerogel density. The significantly higher specific surface area of PEDS aerogels 

may be explained by a possible higher network ramification due to silica pre-hydrolysis and by 

a better network preservation from moisture thanks to its hydrophobicity. Finally, we assume 

that this major difference in terms of surface chemistry affects theophylline loading in PEDS 

aerogels and TEOS aerogels. Indeed, theophylline is a highly polar drug due to the numerous 

number nitrogen and oxygen atoms (Yalkowsky, He, Jain, He, & Jain, 2016). Contrary to TEOS 

aerogels, higher hydrophobicity of PEDS aerogels might have prevented drug deposition within 

the silica matrix. This is in correlation with the work of Smirnova et al. who obtained higher 

ketoprofen loading into hydrophilic than into hydrophobic silica aerogels (I. Smirnova, Mamic, 

& Arlt, 2003; I. Smirnova et al., 2004). This assumption about the influence of the 

hydrophilicity of the carrier material on drug (here, theophylline) loading also explained the 

high loading efficiency (50 - 80%) obtained for polysaccharide aerogels (cellulose and pectin) 

as they present numerous polar functions (carboxyl- and hydroxyl-) promoting the loading of 
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theophylline, while less polar functions of silica aerogels (SiOH) significantly reduced drug 

loading efficiency (15%-30%). 

2.2.2. Distribution and impregnation efficiency of silica in pectin matrix 

Pectin-silica composite aerogels were obtained by impregnation of a 6 wt% pectin 

matrix by 8 wt% silica-precursors (TEOS or PEDS) (as described in Section 2.1). We studied 

pectin-silica aerogels by SEM with Energy-dispersive X-ray spectroscopy (EDS) to 

characterize the elemental composition alongside the sample thickness.  

 

The X-rays energy emitted by an element from a sample directly depends on the atomic 

number, and thus is characteristic of an element. An example of X-ray spectrum from the 

surface cross-section of pectin-silica composite obtained by EDS is given in Figure 201. The 

different peaks correspond to calcium (Kα 3.692 KeV), sodium (Kα 1.040 KeV) and silicon (Kα 

1,2 1.740 and Kβ 1.837 keV). The peak height gives the mass proportion of each element detected 

in the sample at the selected point (Figure 202). To obtain the atomic percentage (noted %atomic) 

of each element, the mass proportions are divided by the atomic mass of the corresponding 

atom. As a result, we are able to obtain the atomic composition (in %atomic) of all the elements 

present in the sample at the selected point on the surface.  

 

Figure 201. Example of EDS spectrum from a selected point on the internal cross-section of 

pectin-silica aerogel, pectin was from 6wt% pectin P35 (pH 2.0, R(Ca) = 0.2), silica was from 

8 wt% PEDS. 

 



CHAPTER VI.  

Organic-organic and organic-inorganic pectin-based composite aerogels for drug release applications 

340 

 

 

Figure 202. SEM images of EDS analysis: illustration of the EDS analysis along the internal 

cross-section of pectin-silica aerogel, pectin was from 6 wt% pectin P35 (pH 2.0, R(Ca) = 0.2), 

silica was from 8 wt% PEDS. 

Based on the method shown in Figure 201 and Figure 202 (see details in Chapter II), we 

were able to follow the atomic proportion of Si (% atomic) all over the internal cross-section of 

pectin-silica aerogel.  

 

We know that depending on the formulation of the pectin matrix (pH and calcium 

conditions), pectin aerogel density and pore size vary which impacted silica impregnation as 

shown in Figure 203. We observed that silica had penetrated within the entire thickness of 

pectin network in all cases. However, silica spatial distribution was not homogenous. Indeed, 

for pectin matrix made from 6 wt% pectin solution at pH 3.0 without calcium, we could observe 

slightly less silica in the center of the material as compared to other 6 wt% pectin matrices with 

lower density and larger pores (pH 2.0 with and without calcium). This can be attributed to the 

higher pectin network density and small pore size in the case when coagulated pectin was made 

from solutions at pH 3 without calcium, which might have slowed down silica diffusion. 
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Figure 203.  

(a) Distribution of silica (from PEDS) over the cross-section of composite pectin-silica aerogel; 

pectin was from 6 wt% solutions at (1) pH 2 and R(Ca) = 0 (without calcium), (2) pH 2 and 

R(Ca) = 0.2 and (3) pH 3 and R(Ca) = 0 (without calcium). Lines are given to guide the eye. 

(b) SEM images of the corresponding neat pectin aerogels which wet precursors were used for 

the impregnation by silica. 

Silica impregnation efficiencies (%) (eq. 6.14) obtained for different pectin matrices as 

a function of R(Ca) ratio are presented in Figure 204. As it can be seen, silica impregnation 

efficiency was high (> 75%) but lower than 100% for all composites, despite the fact that we 

have set a long impregnation time (15 days) to let silica sol diffusing into pectin matrix. As 

shown in Figure 204, we noticed an impact of calcium concentration in pectin solution (R(Ca) 

ratio) on silica impregnation efficiency. As explained in Chapter III, the structural properties of 

pectin aerogels (in particular density and pore size) are strongly influenced by calcium addition. 

We assume that larger pores and lower density obtained due to pectin cross-linking with might 

have facilitated the diffusion of silica sol into the core of pectin network. As it can be seen in 

Figure 204, impregnation efficiency of silica from PEDS increases from 82 (R(Ca) = 0) to 91% 

(R(Ca) = 0.4) due to pectin cross-linking with calcium. 
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Figure 204. (a) Silica impregnation efficiency (%) in pectin matrices and (b) actual silica 

concentration (wt%) within pectin-silica composite aerogels. Pectin matrices were made from 

6 wt% of P35 dissolved at pH 3.0 at different R(Ca). 

As a result of different impregnation efficiencies, the mass concentration of silica in 

pectin matrices was actually lower than 8 wt%. Based on aerogels’ mass without (neat pectin 

aerogels) and with silica (composite aerogels), we estimated that the actual concentrations of 

silica within pectin matrices (wt%) were varying from 6.2 to 7.5 wt% for pectin-PEDS aerogels 

and from 5.7 wt% to 6.7 wt% for pectin-TEOS aerogels (Figure 204 b). 

2.2.3. Structural properties of pectin-silica composite aerogels and loading 

with theophylline 

6wt%pectin-8wt%TEOS and 6wt%pectin-8wt%PEDS composite aerogels were 

produced while varying the R(Ca) of the pectin matrix from 0 (no calcium) to 0.6. Pictures of 

pectin-TEOS aerogels are given as an illustration in Figure 205.  

 

Figure 205. Pictures of 6 wt% pectin- 8 wt% TEOS composite aerogels. The pectin matrix was 

made from 6 wt% of pectin P35 dissolved at pH 3.0 without calcium or with calcium (R(Ca) 

0.2 and 0.4).  
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As presented in Figure 206, the presence of a rigid silica network within pectin matrices 

slightly prevented volume shrinkage during sc-drying compared to neat pectin aerogels in the 

case of low R(Ca). Cross-linking of pectin with calcium was shown to “stabilize” the network 

and thus to decrease the shrinkage, and the presence of silica did not influence shrinkage 

anymore.  

 

Figure 206. Volume shrinkage (%) of 6 wt% pectin aerogels (not impregnated with silica), and 

6 wt% pectin – 8 wt% silica composite aerogels made from PEDS or TEOS as a function of 

R(Ca) ratio. All pectin matrices were produced from 6 wt% of pectin P35 dissolved at pH 3.0. 

As expected, the addition of around 6 wt% to 7.5 wt% of silica into 6 wt% pectin 

matrices increased the density (from +30% to +100% depending on the sample) and specific 

surface area (from +24% to +115% depending on the sample) of the pectin-silica composite 

aerogels (Figure 207).  

As might be expected from the study of neat silica aerogels from TEOS or PEDS, pectin-

PEDS composite aerogels presented significantly higher specific surface area than pectin-

TEOS aerogels while their densities were the same. 
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Figure 207. (a) Aerogel density and (b) specific surface area SBET of neat 6 wt% pectin aerogels 

and 6 wt% pectin – 8 wt% silica composite aerogels made from PEDS or TEOS as a function 

of R(Ca). Dashed lines represent theoretical density (eq. 6.13) and theoretical SBET (eq. 6.15) 

of pectin-silica composite aerogels. All pectin matrices were produced from 6 wt% of pectin 

P35 dissolved at pH 3.0.  

SEM observation at high magnification allows the understanding of the organization of 

silica network within the pectin matrix. As shown in Figure 208, in the absence of silica pectin 

aerogels present a typical “smooth” fibril organized in a network, while when silica (TEOS or 

PEDS) was added pectin fibrils are covered by nanometric “granules”. We suppose that pectin-

silica composite aerogel was formed by deposition and polymerization of silica particles 

directly upon the pre-existing wet network of pectin, which led to partially covered surface of 

pectin fibrils. Once pectin fibrils are fully covered, silica filled the pores within pectin network. 

 

Figure 208. SEM observations of neat pectin aerogel and pectin-PEDS composite aerogel. 

Pectin matrix was made from 6 wt% of pectin P35 dissolved at pH 3.0 with calcium at R(Ca) 

= 0.2. The scale is the same for both pictures. 

The observation of the composite aerogels’ morphologies in Figure 209 clearly shows 

the covering of pectin fibrils and “filling” of the pectin network pores when compared to neat 

pectin aerogel. Due to the addition of silica into pectin matrices, the pores of the composite 

aerogels were systematically smaller than those in the corresponding pectin aerogel references, 

in correlation with their higher bulk densities and confirmed by higher specific surface area 

(Figure 207).  

 

In correlation with a high silica impregnation efficiency into pectin matrices (Figure 

204), the experimental values of density and SBET of pectin-TEOS and pectin-PEDS composite 

aerogels were found to be close to the theoretical ones estimated using mixing law (see eq. 

(6.13) and (6.15)) ((Figure 207). This also suggests that the structuration of the silica networks 

within pectin matrices was similar to the ones forming neat silica aerogels. However, it is clear 

that the pores of composite aerogels were not completely filled with silica which was expected 

from silica impregnation efficiency around 80 – 90 % (Figure 204 a.). In the absence of calcium, 
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composite aerogels present small mesopores in the same range as neat pectin and silica aerogels 

(< 50 nm), while increasing calcium ratio pores of the composites were progressively becoming 

larger (10-80 nm) but still smaller than in the neat corresponding pectin aerogels. 

 

Figure 209. SEM pictures of neat 6 wt% pectin aerogels and 6 wt% pectin-8 wt% silica (PEDS) 

composite aerogels. The pectin matrices were made from 6 wt% pectin P35 dissolved at pH 3.0 

without calcium or with calcium at different R(Ca) ratio from 0.1 to 0.4. All images are at the 

same scale. 

Finally, we observed that pectin-silica aerogels using either TEOS or PEDS present 

different morphology depending on the type of silica sol. As we already observed for neat silica 

aerogels using TEOS or PEDS, pectin-PEDS composite aerogels displayed more homogenous 

network and pore size distribution than pectin-TEOS aerogels.  

 

Besides, similar to what was observed for neat TEOS aerogels (Figure 198), large silica 

aggregates were formed within pectin matrix. We can correlate higher SBET of pectin-PEDS 

aerogels (Figure 207) to their finer network morphology of smaller silica particles as compared 

to pectin-TEOS aerogels. 
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Figure 210. SEM pictures of 6 wt% pectin-8 wt% silica composite aerogels using either PEDS 

or TEOS as silica sol. The pectin matrices were made from 6 wt% of pectin P35 dissolved at 

pH 3.0 without calcium or with calcium at a R(Ca) ratio of 0.4.  

2.2.4. Theophylline loading in pectin-silica composite aerogels 

The drug loading properties of the 6 wt% pectin-8 wt% silica composite aerogels, i.e. 

drug loading efficiency, drug loading capacity and specific loading, are plotted in Figure 211. 

Neat 6 wt% neat pectin aerogels “references” are shown for comparison. All aerogels were 

loaded with theophylline at 3.4g/L. 
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Figure 211. (a) Drug loading efficiency, (b) loading capacity and (c) specific loading of neat 6 

wt% pectin aerogels and 6 wt% pectin – 8 wt% silica composite aerogels made from PEDS or 

TEOS as a function of R(Ca) ratio. All pectin matrices were produced from 6 wt% of pectin 

P35 dissolved at pH 3.0 with R(Ca) ratio from 0 to 0.4.  

We found that the loading efficiency of composite aerogels was similar to that of neat 

pectin aerogels, from 60 to 80% depending on R(Ca) ratio, and thus was much higher than that 

of neat TEOS aerogels (~ 30%) and of PEDS aerogels (~15%) (Table 21). This means that the 

pectin part of the composite (which represents 40-45% of the composite mass) actually 

governed the drug loading properties of pectin-silica composite, even if pectin network was 

partially covered by silica (Figure 208, Figure 209).  

As we showed in Chapter V, the increase in specific surface area and density of aerogels 

improves their drug loading properties as higher surface area is supposed to provide larger 

surface for drug deposition and higher density prevents drug wash off during sc-drying. Thus, 

we could expect that addition of silica to pectin matrices could have improved the loading of 

the drug into composite aerogels, as their density, specific surface area and the mass of solid 

content were considerably increased compared to neat pectin aerogels. 
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However, theophylline loading capacity and specific loading were more than twice 

lower when silica was added to pectin matrices (Figure 211 b and c). We assume that silica part 

of the composites (~ 55-60% of total composite mass) practically did not contribute to 

theophylline loading properties compared to pectin part. Finally, we noticed than all drug 

loading characteristics of pectin-silica composite aerogels were slightly better when TEOS was 

used instead of PEDS, in correlation with their own drug loading properties (Table 21) and 

different hydrophilicity (Figure 200). 

 

To highlight the impact of aerogels’ composition on their drug loading properties, we 

plotted the respective drug loading capacity for neat silica (using TEOS or PEDS) aerogels, for 

neat pectin aerogel, and for pectin-silica composite aerogels (using TEOS or PEDS) in Figure 

212, all for non-crosslinked pectin. It is interesting to see how the composition influenced the 

loading of the drug while their structural properties would have suggested the opposite. We 

underline here the important influence of the physico-chemical characteristics of the matrices 

on the loading of drug, with aerogel properties being not the only controlling parameters.  

 

Figure 212. Theophylline loading capacity (wt%) of aerogels made from different formulations. 

All pectin matrices were produced from 6 wt% of pectin P35 dissolved at pH 3.0 without 

calcium. Silica was from TEOS or PEDS at 8 wt%. All aerogels were loaded with theophylline 

at 3.4 g/L. Aerogel density is indicated in each case. Dashed lines represent the theoretical 

loading capacity of pectin-silica composites, obtained using mixing law (eq (6.16)). 

2.3. Theophylline release profiles from pectin-silica aerogel matrices 

We first analyze the release kinetics from neat pectin and neat silica aerogels (from TEOS 

and from PEDS) using theophylline as drug model.  

Then, we study the drug release behaviour from pectin-silica aerogels varying the calcium 

R(Ca) ratio (from 0 to 0.4) and the type of silica sol used for impregnation (TEOS and PEDS). 
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The impact of the composition of the composite aerogels on their release properties are 

presented and discussed. 

2.3.1. Comparison of theophylline release from neat silica and pectin 

aerogels matrices 

Figure 213 (a) shows a comparison of release kinetics from TEOS, pectin and PEDS 

based reference aerogels, and Figure 213 (b) their stability into gastro-intestinal simulated 

media. As shown in Figure 214, contrary to pectin aerogel which was demonstrating 

progressive surface erosion by dissolution, both silica aerogels were prone to bulk erosion with 

matrix disintegration into small pieces in contact with releasing media, and thus the evolution 

of matrix volume over time could not be followed in this study. These different matrix erosion 

properties were found to strongly impact the release of theophylline from each aerogel: 

 

 

Figure 213. (a) Theophylline cumulative release (%) over time from 6 wt% pectin aerogel 

(without calcium at pH 3.0) (1), silica aerogel from 8 wt% TEOS (2) and silica aerogel from 8 

wt% PEDS (3). (b) Aerogel mass evolution over time. The weight of all aerogels was around 

0.380 - 400 mg. 
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- As it was already known in the previous chapters (Chapter IV and V), pectin aerogel 

presented a full and extended release of theophylline over 370 min, which was 

governed by the coupling of diffusion phenomena and matrix erosion in correlation 

with its “instability” in SIF media (pH 6.8) (Figure 213 b and Figure 214).  

- We observed that TEOS aerogel instantly burst into several pieces once put in 

contact with liquid due to its high hydrophilicity and brittle characteristics (Figure 

214). As shown in Figure 213 b, TEOS aerogel displayed a high and rapid mass 

intake (+ 1420 % in 5 min, as compared to dry mass) due to high liquid penetration 

into the matrix. Then, we observed that sample mass strongly dropped due to the 

progressive loss of physical integrity by erosion of the matrix into smaller particles 

which went out the testing permeable basket. The dramatic disintegration of the 

matrix allowed the drug to be immediately surrounded by the liquid and quickly 

dissolved due to high solubility of theophylline in aqueous media. As a result, TEOS 

aerogels showed immediate release behaviour with 95% of total theophylline 

released in around 25 min, and full drug release occurring in around 40 min. Similar 

matrix behaviour and immediate drug release profile was also reported in several 

studies on hydrophilic silica aerogels (Caputo et al., 2012; Mehling et al., 2009; 

Mohammadian, Jafarzadeh Kashi, Erfan, & Soorbaghi, 2018; I. Smirnova et al., 

2004; I. Smirnova, Suttiruengwong, & Arlt, 2005; I. Smirnova, Suttiruengwong, 

Seiler, & Arlt, 2004). 

- On the contrary, PEDS aerogels showed extended release behaviour with an 

extremely slow release of the drug over time. As an illustration, only 30% of the 

total drug was released after 16 hours of immersion into release media. We noted 

that PEDS aerogels also cracked into pieces due to its mechanical brittleness, but 

much more slowly than TEOS aerogels. Besides, we noticed that the increase of the 

mass of the PEDS matrix was low (~ + 90% of mass increase in 60 min) and it 

slowly decreased over time. Moreover, we visually observed that sample pieces 

were floating in the basket which reveals that they were not completely filled with 

liquid and air was remaining in the sample even after 10 h of immersion into the 

liquid. We assume that the low wettability of PEDS aerogel is due to its 

hydrophobicity (Figure 200) preventing water penetration into the system, which led 

to inhibited diffusion, delay of erosion and drastically slowed down the release of 

the drug. Due to its extreme fragility, we do not exclude the possibility of having 

impacted matrix erosion process by simple placing the sample in/out of liquid media 

for regular mass monitoring. An interesting observation is the correlation between 

the major cracks and fractures of the PEDS aerogel and the sudden peaks of 

theophylline release. A detailed plot of the first 150 minutes of release experiment 
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from PEDS aerogel (extracted from Figure 213 (a)) shows the correlation between 

major sample cracks and release profile (Figure 215). 

 

Figure 214. Pictures of pectin, PEDS and TEOS aerogels at different times during release 

experiment. Aerogels were immersed into SGF (pH 1.0) the first hour and in SIF (pH 6.8) the 

following hours, at 37°C. 

 

 

 

Figure 215. First two hours of release kinetics from PEDS aerogel (taken from Figure 213). The 

appearance of the major cracks is indicated by red arrows. The corresponding pictures of the 

PEDS aerogel are shown to illustrate the progressive degradation of the matrix over time. 

Mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin models consider 

both diffusional and relaxational phenomena as physical mechanisms involved in the release of 

a drug. We know that polymer relaxation does not occur in silica network like in pectin aerogels. 
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cracks and pieces detachments. Despite knowing that, we choose to keep these models as they 

were used previously (Chapters V and VI) in order to provide a comparison between different 

matrices studied in the whole work. Thus, we will compare the kinetic coefficients obtained 

from Korsmeyer-Peppas and Peppas-Sahlin models, assuming that “relaxational” phenomena 

refers to matrix physical disintegration in case of silica aerogels. 

 

Korsmeyer-Peppas mathematical models were applied with high fitting correlation to 

the data (R² ≥ 0.90) (Figure 216) to characterize the release mechanism of drug based on the 

value of n exponent (Table 22). We obtained n values of 0.54 and 0.56 for pectin aerogel and 

PEDS aerogels, respectively. As previously discussed, n values between 0.45 < n < 0.89 

indicate that drug release was due to an anomalous transport governed by the coupling of 

diffusion and erosion mechanisms. On the opposite, the n value close to 0.89 for TEOS aerogels 

is characteristic to a Case II (which can turn into Super-case II) (see the detailed description of 

the models in the Section 2 of the Annex). In this case, solvent diffusion is much faster than 

erosion process. The rapid penetration to the center of the matrix occurs when solvent has a 

high affinity to the matrix or in the case of erosion-controlled release. In the case of TEOS 

aerogels, it is explained by TEOS high hydrophilicity (Figure 199 and Figure 200) coupled with 

rapid matrix disintegration (Figure 214). 

 

Figure 216. Korsmeyer-Peppas model on the first 60% release data of theophylline release from 

pectin aerogel, TEOS aerogel and PEDS aerogel. 

Table 22. Korsmeyer-Peppas parameters of theophylline release from pectin aerogel, TEOS 

aerogel and PEDS aerogel. 

Aerogel matrix 

composition 

6wt% pectin 

aerogel 

8wt% TEOS 

aerogel 

8wt% PEDS 

aerogel 

n exponent 0.54 0.88 0.56 

R² 0.997 0.992 0.896 
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To explain different drug release behavior from pectin aerogel and PEDS aerogel, 

Peppas-Sahlin model was applied to highlight the differences in the coupling of diffusion and 

matrix erosion phenomena. The model plots and the estimations of Peppas-Sahlin parameters 

with good correlation to the data (R² ≥ 0.89) are presented in Figure 217 and Table 23, 

respectively. The calculation of the Fickian contribution to the release over time based on the 

estimated parameters is presented in Figure 218. 

 

Figure 217. Peppas-Sahlin model for the first 60% release data from pectin aerogel, TEOS 

aerogel and PEDS aerogel. 

 

Table 23. Peppas-Sahlin parameters using Fickian diffusional exponent m of 0.430 of 

theophylline release from pectin aerogel, TEOS aerogel and PEDS aerogel. 

Aerogel matrix 

composition 

6wt% pectin 

aerogel 

8wt% TEOS 

aerogel 

8wt% PEDS 

aerogel 

Fickian coefficient 

KF (h-43) 
0.404 0.077 0.068 

“Relaxational” 

coefficient 

KR (h-86) 

0.180 1.976 0.006 

R² 0.997 0.997 0.889 
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Figure 218. Fickian release fraction according to Peppas-Sahlin model using Fickian diffusional 

exponent m of 0.430, for the first 60% of released drug from pectin aerogel (1), TEOS aerogel 

(2) and PEDS aerogel (3). 

In correlation with previous characterization (Chapter IV), theophylline release from 

pectin aerogels without calcium is diffusion-dissolution controlled, according to Peppas-Sahlin 

model, with nearly equivalent contributions of diffusion and matrix dissolution phenomena to 

drug release over time. 

 

According to Peppas-Sahlin model, TEOS aerogel presents a high value of erosion 

coefficient (KR ~1.976 h-86) which is 25 times higher than diffusional coefficient (KD ~ 0.077 h-

43). As it was found with Korsmeyer-Peppas plot, drug release from TEOS aerogel is clearly 

erosion-controlled with major contribution of matrix disintegration to drug release, as is it 

shown in Figure 218. On the opposite, PEDS aerogel presents the lowest erosion (KR ~0.006 h-

86) and diffusional (KD ~ 0.068 h-43) coefficients, in relation with the extremely slow release of 

the drug observed over time (Figure 213). In addition, it has to be noted that the erosion 

coefficient (KR) is ten times lower than the diffusional one (KD), meaning that matrix erosion 

phenomena had only a small contribution to the release as compared to slow but continuous 

diffusion phenomena within the system (determining step). We assume that apart from the 

aerogel breaking which rapidly release around 20% of the drug especially in the first hours of 

experiment, the release was actually mostly governed by the slow liquid diffusion within the 

system limited by the hydrophobicity of the PEDS network. 

 

2.3.2. Theophylline release from pectin-silica composite aerogels 

This section is organized as follows: 
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- First, we investigate the release of theophylline from pectin-silica composite 

aerogels with either TEOS or PEDS. The influence of the R(Ca) ratio on release 

properties of pectin-silica composite aerogels is investigated. The release behaviour 

and matrix “stability” of pectin-silica are compared to neat pectin and neat silica 

aerogels.   

- Then, we use the same mathematical models as previously to characterize and 

compare the main physical mechanisms involved in the release of theophylline out 

of the different matrices. 

➢ Without calcium crosslinking  

The dependence of theophylline release over time from 6 wt%pectin-8 wt%TEOS and 

from 6 wt%pectin-8 wt%PEDS composite aerogels without calcium and the evolution of the 

matrix mass over time are presented in Figure 219 and Figure 220, respectively. Release from 

neat 6 wt% pectin (without calcium) and neat 8 wt% silica aerogels (TEOS and PEDS) are also 

plotted for comparison. Visual aspects of aerogels matrices during the release experiments are 

presented for illustration on Figure 221. 
 

 

Figure 219. Theophylline cumulative release (%) over time from 8 wt% TEOS aerogel (1), 6 

wt% pectin-8 wt% TEOS aerogel (2), 6 wt% pectin aerogel (3), 6 wt%pectin-8 wt% PEDS 

aerogel (4) and from 8 wt% PEDS aerogel (5). All pectin matrices were produced without 

calcium.  
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Figure 220. Matrix mass evolution over time: 8 wt% TEOS aerogel (1), 6 wt% pectin-8 wt% 

TEOS aerogel (2), 6 wt% pectin aerogel (3), 6 wt% pectin-8 wt% PEDS aerogel (4) and from 

8 wt% PEDS aerogel (5). All pectin matrices were produced without calcium. 

 

 

Figure 221. Pictures of neat pectin aerogel and 6 wt% pectin – 8 wt% silica composite aerogels 

over time during release experiment using either TEOS or PEDS as silica sol. Pectin matrices 

were produced without calcium at pH 3.0. 

Unexpectedly, both pectin-silica composite aerogels (using either TEOS or PEDS as 

silica sol) showed similar release behaviour, as shown in Figure 219. Indeed, full release 

occurred rapidly in around 235 min from pectin-TEOS aerogel and in 285 min for pectin-PEDS 

aerogel. In both cases, the release of theophylline from pectin-silica composites was 

significantly faster than from neat pectin aerogel, despite that pectin content was the same in 

the three matrices, and that the total amount of “solids” (pectin + silica) (14 wt%) in the 

composite aerogels and their density was more than doubled as compared to neat pectin aerogel 
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(6 wt%). Higher density was supposed to slow down the release. This means that the addition 

of TEOS or PEDS to pectin matrices actually promoted and accelerated the release of 

theophylline from the system. Given the opposite physico-chemical and drug release properties 

of neat TEOS and PEDS aerogels (see Figure 200 and Figure 213), we found surprising that 

their composites with pectin displayed such similar drug release profile once put in gastro-

intestinal simulated liquid media.  

By observing the visual aspects and physical integrity (Figure 221) and by following the 

matrix mass (Figure 220) over time of pectin-silica aerogels, we conclude that the release 

profile actually resulted from the same brittle characteristic of silica aerogels based on either 

PEDS or TEOS. We could observe that once in contact with release liquids, both pectin-TEOS 

and pectin-PEDS composite aerogels fractured and progressively cracked into pieces because 

of silica phase, which promoted solvent penetration, dissolution of pectin and the release of 

theophylline.  
 

The contact angle of water with composite is presented in Figure 222; it reveals that all 

pectin-silica composites were hydrophilic, explaining the wettability and fast solvent 

penetration into the system observed during release experiments. Indeed, pectin-TEOS 

composite was found to be highly hydrophilic materials (contact angle non-measurable) as both 

pectin and TEOS are highly hydrophilic components. Pectin-PEDS composite aerogels 

presented an intermediate hydrophilicity (contact angle around 75° - 60°) between the highly 

hydrophilic pectin aerogels and rather hydrophobic PEDS aerogels. We assume that the 

hydrophilicity of the pectin fraction dominates in the pectin-PEDS composite aerogels, leading 

to the overall hydrophilic composite.  

Due to the hydrophobicity of PEDS, pectin-PEDS composite aerogels were significantly 

less hydrophilic than pectin-TEOS aerogels. Finally, we noticed that the external surface of the 

pectin-PEDS aerogel was more hydrophobic than its core, which can be related to the external 

layer richer in silica than the core due to the impregnation process route.  

 

Figure 222. Contact angle with water of neat pectin aerogels, neat silica aerogels and pectin-

silica composite aerogels, using TEOS or PEDS as silica sol, as a function of time. For TEOS 

aerogel and pectin-TEOS aerogel water droplet was immediately absorbed. 
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Due to their hydrophilicity, the pectin-silica composite aerogels were all rapidly 

penetrated by the aqueous media (regardless to the type of silica sol), resulting in a strong and 

fast mass intake for both pectin-PEDS (+200 % in 5 minutes as compared to dry weight) and 

pectin-TEOS (+300 % in 5 minutes as compared to dry weight) composite aerogels (Figure 

220). The highly re-hydrated pectin-silica aerogels progressively cracked due to the brittleness 

of silica network and capillary forces due to liquid filling. It has to be noted that pectin-TEOS 

composite aerogels fractured more rapidly and eroded faster than pectin-PEDS aerogels (Figure 

221 and Figure 220) leading to an even faster drug release than from pectin-PEDS aerogels 

(Figure 219).  

To conclude, in the absence of calcium, a quite fast release of theophylline from pectin-

silica composite aerogels occurred due to the breakage of silica part, inducing breakage of the 

whole composite aerogel and inducing high solvent velocity and matrix erosion. While the 

release from pectin-TEOS is in-between the release of the corresponding neat compounds, this 

is not the case for pectin-PEDS composite aerogels which do not obey the “mixing rule”. As it 

will be shown below, theophylline release profile from pectin-silica composite and matrix 

“stability” in liquid media turned to be different when calcium was cross-linking pectin. 

➢ Pectin cross-linked with calcium  

Based on our previous results on pectin aerogels and pectin-cellulose composite aerogels, 

the addition of calcium to pectin is expected to impact theophylline release from pectin-silica 

composite aerogels. Here we first study the release kinetics from neat pectin aerogels (the same 

trends as shown in Chapter V), pectin-TEOS and pectin-PEDS composite aerogels separately, 

each type at different R(Ca) ratio, up to 0.4. Then we set a high calcium ratio R(Ca) = 0.4 and 

compare the influence of the type of silica sol (TEOS vs PEDS) on the release properties of 

pectin-silica composite aerogels in presence of calcium. 

 

Theophylline release over time from 6 wt% pectin aerogels, 6 wt% pectin – 8 wt% 

TEOS and from 6 wt% pectin – 8 wt% PEDS composite aerogels at different R ratio are 

presented in Figure 223, Figure 224 and Figure 225, respectively. The evolution of the mass of 

the corresponding matrices over time is presented in Figure 226 (A), (B), and (C), respectively, 

and their visual aspects during the release experiments on Figure 226(D).  
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Figure 223. Theophylline cumulative release (%) over time from 6 wt% pectin aerogels while 

varying R(Ca) ratio of pectin matrices from 0 (no calcium) (1), to 0.2 (2), and to 0.4 (3). All 

pectin matrices were produced from 6 wt% pectin P35 dissolved at pH 3.0. 

 

Figure 224. Theophylline cumulative release (%) over time from: 8 wt% TEOS aerogel (1), 6 

wt% pectin-8 wt% TEOS aerogel with R(Ca) = 0.2 (2), 6 wt% pectin-8 wt% TEOS aerogel with 

R(Ca) = 0.4 (3), and 6 wt% pectin aerogels with R(Ca) = 0.2 (4) and R(Ca) = 0.4 (5). All pectin 

matrices were produced from 6 wt% pectin P35 dissolved at pH 3.0. 
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Figure 225. Theophylline cumulative release (%) over time from: 8 wt% PEDS aerogel (1), 6 

wt% pectin-8 wt% PEDS aerogel with R(Ca) = 0.2 (2), 6 wt% pectin-8 wt% PEDS aerogel with 

R(Ca) = 0.4 (3), and 6 wt% pectin aerogels with R(Ca) = 0.2 (4) and R(Ca) = 0.4 (5). All pectin 

matrices were produced from 6 wt% pectin P35 dissolved at pH 3.0. 
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Figure 226. Aerogel mass evolution over time of (A) neat pectin aerogels, (B) 6 wt% pectin-8 

wt% TEOS and (C) 6 wt% pectin-8 wt% PEDS composite aerogels while varying R(Ca) ratio 

from 0 (no calcium) (curve 1), to 0.2 (curve 2), to 0.4 (curve 3). In (B) and (C), neat silica 

aerogels (using TEOS or PEDS) are plotted as reference (curve 4). 

(D) Pictures of neat pectin aerogels and 6 wt% pectin – 8 wt% silica composite aerogels after 

6 and 24 hours of release experiment, using either TEOS or PEDS as silica sol. Pectin matrices 

were produced either without calcium or with calcium at R(Ca) = 0.2 or R(Ca) = 0.4. Neat 

pectin aerogels are shown as references. 

As it was previously discussed, the addition of calcium to pectin solutions increased the 

“stability” of pectin aerogels when immersed into simulated physiological fluids (Chapter V 

and VI Section 1.), slowing down matrix erosion (Figure 226 A) and thus the release of the drug 

(Figure 223). As shown in Figure 226 (B), (C) and (D), the erosion of pectin-silica composite 

aerogels was also clearly impacted by pectin cross-linking with calcium.  

 

For comparison, we plotted the time needed to release 100% of total theophylline as a 

function of the composition of the aerogel matrix in Figure 227. As it can be seen, the duration 

of drug release out of the matrix was prolonged by increasing calcium R(Ca) ratio and was also 

strongly influenced by the matrix composition (neat pectin or pectin-silica composites, type of 

silica). Depending on matrix composition and calcium concentration, theophylline release out 

of aerogels immersed into simulated gastro-intestinal fluids at 37°C could be either immediate 

(40 min from TEOS aerogels), extended to several hours (neat pectin aerogels with and without 

calcium), or prolonged up to more than 24 hours (Pectin-PEDS composite aerogels with R(Ca) 

= 0.4.  

 

(D) 
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Figure 227. Time needed to release 100% of total theophylline from neat 8 wt% silica (from 

TEOS), neat 6 wt% pectin, and 6 wt% pectin – 8 wt% silica (from TEOS or PEDS) composite 

aerogels immersed into simulated gastro-intestinal fluids at 37°C while varying their 

composition (pectin, TEOS, PEDS) and calcium R(Ca) ratio. All pectin matrices were produced 

from 6 wt% pectin P35 dissolved at pH 3.0. 

As presented in Figure 226 (B), the highly hydrophilic pectin-TEOS composite aerogels 

were quickly filled with release medium with mass uptake up to +700% (as compared to the 

dry weight) due to liquid penetration. In the same way as neat TEOS aerogels (Figure 214) and 

pectin-TEOS aerogels without calcium (Figure 221), pectin-TEOS composite with calcium 

rapidly fractured and cracked into many pieces (Figure 226). As already known, increasing 

calcium concentration in pectin matrices leads to aerogels of lower density due to higher 

volume, which results in higher mass uptake when filled by release media. Both the addition of 

TEOS and pectin cross-linking with calcium strongly promoted liquid diffusion inside 

composite aerogel. Even if matrix erosion was slightly slowed down by pectin cross-linking 

with calcium and thus slightly delaying the complete drug release (from 240 min without 

calcium to 310 min with R(Ca) = 0.4), all pectin-TEOS aerogels rapidly lost their physical 

integrity and completely broke into pieces in less than 3 hours, independently of calcium 

concentration (Figure 226 D). As a result, whatever calcium concentration, the release of 

theophylline from pectin-TEOS composite aerogels was significantly accelerated and promoted 

as compared to that from neat cross-linked pectin aerogels. As well as in the case without 

calcium, matrix erosion properties and drug release profiles from pectin-TEOS composite with 

calcium displayed intermediate properties between neat cross-linked pectin aerogels and neat 

TEOS aerogel. 

On the opposite, the use of PEDS as silica sol was found to drastically change the release 

of theophylline from pectin-PEDS composite aerogels when pectin was cross-linked with 

calcium. As shown in Figure 226 (C), the presence of calcium in pectin-PEDS composite 

aerogels strongly stabilized the pectin-PEDS matrices and slowed down matrix bulk erosion 

process as compared to that observed for the same composites but without calcium. In the 
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absence of calcium, the pectin-PEDS composite aerogel quickly fractured and was completely 

broken into pieces in 3 hours of immersion into release medium (Figure 221), completely 

releasing theophylline in 280 min (Figure 225). When pectin was cross-linked with calcium, 

the liquid filling composite aerogels was slowed down because of hydrophobic PEDS and 

matrix erosion inhibited because of pectin cross-linking, as it is revealed by their nearly constant 

mass and low density around 1.065 to 1.07 g /cm3 over the first 11 hours of experiment, for both 

calcium concentrations. Even if pectin-PEDS aerogels with calcium presented small surface 

cracks once immersed into release medium, the physical integrity of the composite aerogels 

with calcium was maintained up to 11 h for R(Ca) = 0.2 and up to 30 h for R(Ca) = 0.4, contrary 

to composites without calcium (disintegration in less than 1 h). As a result, the complete release 

of theophylline from pectin-PEDS matrices was strongly slowed down from 280 min without 

calcium, to around 1230 min for R(Ca) = 0.2 and 1780 min for R(Ca) = 0.4, which is more than 

3 and 5 times longer, respectively, than from pectin-PEDS aerogels without calcium. 

 

As it can be seen in Figure 228, the pectin-PEDS composite silica which was initially 

yellow due to the presence of pectin at the beginning of release testing, was progressively 

turning transparent (which is typical for silica aerogel) starting from the external layer of the 

composite to its core. After 11 h of experiment, we were still able to note the maintenance of a 

denser yellowish core, most likely richer in pectin than the external layer of the composite. 

These observations suggest the progressive disappearance of pectin by dissolution within the 

pectin-silica composite while the silica network remained nearly intact during 11 h of 

immersion due to its non-solubility in the release aqueous media. When pectin concentration 

became too low after a certain time of dissolution, we assume that the remaining pectin network 

became too weak to physically maintain and stabilize the brittle silica network which started to 

erode into pieces (after at least 11 h of experiment). This assumption is in accordance with the 

gradual and very low reduction of the composite mass over time (Figure 226 (C)). 

 

Figure 228. Pictures of 6 wt%pectin-8 wt% PEDS composite aerogel with calcium at R(Ca) = 

0.2 after 10 minutes and 720 min of immersion into gastro-intestinal simulated fluids. The arrow 

shows the border between a denser and yellowish core of the composite, which is probably 

richer in pectin, and transparent external layer (typical for silica). The scale is the same for both 

pictures. 
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We assume that covering of pectin chains by PEDS (Figure 208) protected the matrix 

from liquid penetration within the system and pectin dissolution, while ionic junctions between 

pectin chains and calcium ions significantly increased i) the “stability” of pectin network 

delaying even more its dissolution and ii) mechanical resistance of the overall network to 

physical breakage once immersed into gastro-intestinal liquid. Cross-linking of pectin with 

calcium delayed pectin dissolution and improved the mechanical properties of pectin network, 

as compared to non-cross-linked case. As a result, the release properties of pectin-PEDS 

composite aerogels with calcium displayed intermediate properties to neat pectin (with calcium) 

and neat PEDS aerogels. Contrary to pectin-PEDS composite aerogels without calcium prone 

to quick physical disintegration in liquid media, the release properties of pectin-PEDS 

composite were found to follow the “mixing law” when calcium was added (R(Ca) = 0.2 and 

0.4). Indeed, the presence of calcium prevented physical breakage of composite matrix in 

gastro-intestinal liquid which delayed the release as compared to non-cross-linked composite 

aerogel. The release from composite aerogel with cross-linked pectin was governed by the slow 

dissolution of pectin which even more slowed down because of the presence of “resistant” 

PEDS part. Each component plays an important role in the release behaviour allowing 

modulating its kinetics.  

 

Figure 229 and Figure 230 perfectly illustrates the “mixing rule” followed by pectin-

TEOS and pectin-PEDS composite aerogels when calcium was added to pectin matrixes (at 

R(Ca) = 0.2 and 0.4). As it can be seen, the release kinetics and matrix erosion over time of 

pectin-silica composite (using PEDS or TEOS) appeared to be “in-between” as compared to 

neat pectin (with calcium) and the corresponding neat silica aerogels.  

 

Figure 229. Theophylline cumulative release over time from 8 wt% TEOS aerogel (1) 6 wt% 

pectin-8 wt% TEOS aerogel (2), 6 wt% pectin-8 wt% PEDS aerogel (3), 6 wt% pectin aerogel 

(4) and 8 wt% PEDS (5). All pectin matrices were produced from 6 wt% pectin P35 dissolved 

at pH 3.0 cross-linked with calcium at R(Ca) = 0.4. 
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Figure 230. Matrix mass evolution over time: 8 wt% TEOS aerogel (1) 6wt%pectin-

8wt%TEOS aerogel (2) 6wt% pectin-8wt% PEDS aerogel (3) 6wt%pectin aerogel (4), from 

6wt% pectin-8wt% PEDS aerogel from 8wt% PEDS (5). All pectin matrices were produced 

from 6wt% pectin P35 dissolved at pH 3.0 with calcium at R(Ca) = 0.4. 

The release of theophylline from pectin-silica composite aerogels with and without 

pectin cross-linked by calcium was analyzed by mathematical models. Best model fittings to 

data were obtained by plotting Korsmeyer-Peppas model (Figure 231 and Table 24) and 

Peppas-Sahlin models (Figure 232 and  

Table 25) to the data with high correlation (R² ≥ 0.99). As a reminder, we will compare 

the kinetics coefficients obtained from Korsmeyer-Peppas and Peppas-Sahlin models, assuming 

that “relaxational” phenomena from the two models also refer to matrix physical disintegration 

by pieces detachment. We know that polymer relaxation does not occur in silica network like 

in pectin aerogels.  

Table 24. Korsmeyer-Peppas parameters of theophylline release experiments from pectin 

aerogel, pectin-TEOS composite aerogels, and pectin-PEDS composite aerogels while varying 

R(Ca) ratio. 

Aerogel matrix composition Pectin aerogel 
Pectin-TEOS 

composite aerogel 

Pectin-PEDS 

composite aerogel 

Calcium ratio R(Ca) of the 

pectin matrix 
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 

n exponent 0.54 0.52 0.48 0.64 0.66 0.69 0.69 0.46 0.46 

R² 0.997 0.997 0.987 0.997 0.994 0.998 0.994 0.995 0.996 
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Table 25. Peppas-Sahlin parameters using Fickian diffusional exponent m of 0.430 of 

theophylline release from pectin aerogel, pectin-TEOS composite aerogels and pectin-PEDS 

composite aerogels while varying R(Ca) ratio. 

Aerogel matrix composition Pectin aerogel 
Pectin-TEOS 

composite aerogel 

Pectin-PEDS 

composite aerogel 

Calcium ratio R(Ca) of the 

pectin matrix 
0 0.2 0.4 0 0.2 0.4 0 0.2 0.4 

Fickian coefficient 

KF (h-43) 
0.404 0.362 0.363 0.337 0.453 0.301 0.444 0.375 0.426 

“Relaxational” coefficient 

KR (h-86) 
0.180 0.196 0.154 0.515 0.558 0.799 0.472 0.066 0.054 

R² 0.997 0.999 0.994 0.995 0.994 0.998 0.989 0.997 0.997 

 

 

Figure 231. Korsmeyer-Peppas plot of theophylline release from pectin aerogel, pectin-TEOS 

composite aerogels and pectin-PEDS composite aerogels while varying R(Ca). 
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Figure 232. Peppas-Sahlin plot of theophylline release from pectin aerogel, pectin-TEOS 

composite aerogels and pectin-PEDS composite aerogels while varying R(Ca). 

The results of the application of mathematical models are consistent with our observations 

and assumptions about the release properties of pectin-silica composite aerogels varying the 

type of silica sol and calcium concentration.  

- As already found in Chapter V, we obtained n exponent values around 0.50- 0.55 

(between 0.45 < n < 0.89) for all pectin aerogels with or without calcium added, which 

is characteristic of an anomalous transport of the drug, governed by the coupling of 

matrix erosion and diffusion phenomena. As a result of a high pectin concentration and 

a relatively “high” aerogel density, diffusional phenomena had a higher contribution to 

the release of the drug than relaxational phenomena (slow matrix dissolution), as 

revealed by the twice higher Fickian coefficient (KF ~ 0.40 h-43) than relaxational 

coefficient (KR ~ 0.18 h-86) using Peppas-Sahlin model ( 

- Table 25). 

For both pectin-TEOS and pectin-PEDS composite aerogels without calcium, we obtained 

similar n values around 0.65 - 0.7 (anomalous transport case using Korsmeyer-Peppas model) 
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despite the different type of silica sol. As we already mentioned, the strong bulk erosion 

observed over time due to the brittleness of both types of the silica networks (TEOS and PEDS) 

might have predominately governed the release of theophylline out of the matrix.  

This interpretation is also supported by the higher values of KR coefficients (erosion) than 

KF coefficients (diffusion) using Peppas-Sahlin model for both pectin-silica composite matrices 

without calcium. The plot of Fickian release fraction over time on Figure 233 clearly shows the 

predominance of the contribution of erosion phenomena in the release the drug from composite 

aerogels made from pectin-silica (from TEOS and PEDS) and in absence of calcium. The 

interpretation of this case is consistent with what is commonly reported in literature for non-

hydrophobized classical silica aerogels, whose physical degradation of the structure promotes 

the release of the drug (Caputo et al., 2012; Mehling et al., 2009; Mohammadian et al., 2018; I. 

Smirnova et al., 2004; I. Smirnova et al., 2005, 2004). 

 

Figure 233. Fickian release fraction over time from 8 wt% TEOS aerogel (1), 6 wt% pectin-8 

wt% TEOS aerogel (2), 6 wt% pectin aerogel (3), 6 wt% pectin-8 wt% PEDS aerogel (4) and 8 

wt% PEDS (5). All pectin matrices were produced from 6 wt% pectin P35 dissolved at pH 3.0 

without calcium (A) or with calcium at R(Ca) = 0.4 (B). 

Finally, when calcium was added to cross-link pectin in pectin-silica composites (with 

R(Ca) ≥ 0.2), the release of the drug from pectin-PEDS composite aerogels with calcium was 

found to be “in-between” between the release properties of neat cross-linked pectin and neat 

silica aerogels. We obtained two significantly different release behaviours depending on the 

type of silica sol: 

▪ For theophylline release from pectin-TEOS aerogels with calcium, we obtained 

the same range of n values around 0.65 - 0.7 (anomalous transport case using 

Korsmeyer-Peppas model) similar to composite without calcium and 

independent of calcium R ratio. The use of Peppas-Sahlin model shows that the 
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contribution of erosion phenomena to the release of the drug was highly 

predominant (KR > KF) and pectin-TEOS aerogels regardless the calcium 

conditions, similarly to neat TEOS aerogels (Table 22 and Table 23).  

▪ On the opposite, cross-linking of pectin by calcium in PEDS-pectin composite 

aerogels strongly reduced the n exponents values from ~ 0.69 without calcium 

(diffusion-erosion control) to around 0.46 with calcium added, which is 

characteristic to a Fickian diffusion-controlled release of the drug. This strong 

change in drug release behaviour was also obtained using Peppas-Sahlin model 

as revealed by very low erosion coefficients (KR < 0.07 h-86) and the 

predominance of diffusional contribution to the release of the drug (Figure 233) 

when calcium was added. It has to be noted that drug release profile from pectin-

PEDS with calcium with slow Fickian diffusion over time is similar to the 

release behaviour of neat PEDS aerogels (Table 22 and Table 23). Thus, we 

assume that calcium crosslinking of the pectin strengthened and maintained the 

physical integrity of the overall composite structure which counterbalanced the 

brittleness of the silica part. As a result, theophylline release was promoted by 

pectin hydrophilicity and solubility, while the hydrophobicity of the PEDS 

network slowed down all mass transport phenomena within the composite 

matrix. Overall, it led to very slow Fickian diffusion of theophylline from a 

nearly stable matrix.  

It is interesting to see that in the absence of calcium, the high brittleness of both pectin-

TEOS and pectin-PEDS composite aerogels due to silica prevailed and governed the release by 

strong bulk erosion (Figure 219). However, pectin-silica composite with calcium were perfectly 

following the “mixing rule”, with properties in between those of neat pectin aerogels (with 

calcium) and neat silica aerogels. The type of silica sol was found to drastically influence the 

erosion and release properties from the pectin-silica aerogels when calcium was used to cross-

link pectin as it completely changed the “stability” (in terms of dissolution) of the overall 

matrix.  

2.4. Conclusions on pectin-silica composite aerogels 

In this work, we investigated the impact of composition on the structural, physico-chemical 

and release properties of pectin-silica composite aerogels. We separately explored and tuned 

the properties of the silica fraction (nature of silica sol) and of the pectin fraction (calcium 

concentration) of the organic-inorganic composite. By varying the process parameters and 

composition, we obtained different aerogels with a wide range of structural, physical and 

physico-chemical properties, which in turn were strongly influencing the release properties of 
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pectin-silica composites used as drug delivery system. Interestingly, the nature of silica-

precursors turned out to be a determining factor as well as the calcium conditions of the pectin 

matrix. 

Independently of calcium concentration of the pectin, the drug release properties and matrix 

erosion behaviour of pectin-TEOS composites followed the “mixing rule” as compared to neat 

pectin and neat TEOS aerogels. The release of the drug was driven by pronounced matrix bulk 

erosion over time due to the brittleness characteristic brought by TEOS. Surprisingly, this 

mixing rule was not applicable for pectin-PEDS aerogels without calcium: PEDS brittleness 

prevailed the “strength” of pectin network leading to a quicker release that each on the neat 

aerogels. Changing the formulation and composition factors not only influenced the main 

physical mechanisms involved in the release of the drug (erosion and/or diffusion controlled) 

but also the kinetics release parameters. As an illustrative summary, different aspects of 

composition of pectin-silica aerogels impacting the time needed to completely release the drug 

are presented in Figure 234 and Table 26.  

 

Figure 234. Theophylline cumulative release over time from 8 wt% TEOS aerogel (1) 6 wt% 

pectin-8 wt% TEOS aerogel (2), 6 wt% pectin-8 wt% PEDS aerogel (3), 6 wt% pectin aerogel 

(4) and 8 wt% PEDS (5). All pectin matrices were produced from 6 wt% pectin P35 dissolved 

at pH 3.0, either (A) without calcium, or (B) cross-linked with calcium at R(Ca) = 0.4. 

Table 26. Summary of the time needed to release 100% of total theophylline from aerogel 

immersed into simulated gastro-intestinal fluids at 37°C while varying their composition and 

calcium R(Ca) ratio. 
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Time to release 100% of 

total theophylline (min) 
40 > 1500 370 490 640 240 275 315 280 1230 1780 

3. Cytoxocity profile of different aerogels and cryogels matrices 

This work was performed in collaboration with P. Poni Institute of Macromolecular 

Chemistry (Iasi, Romania) and we are very grateful to Gabriela Pricope and Dragos Peptanariu 

for their welcome and help.  

We selected different aerogels and cryogels matrices, varying their formulations (drying 

process, composition, pH of pectin solution, addition of calcium, presence of theophylline) in 

order to evaluate their cytoxocity for the purpose of being used as a matrix for oral drug 

delivery. We chose to test pectin cryogels made from pectin solutions at low pH and with 

calcium as the samples did not undergo any washing steps (solvent-exchange steps) prior to 

freeze-drying contrary to pectin aerogels. The selected samples are presented in Table 27. To 

evaluate the toxicity of aerogel/cryogel matrices, we used a metabolic assay (MTS) which 

measures the mitochondrial reductase activity in NHDF cells incubated with matrices SG1-6 at 

various concentrations from 1 mg/mL to 0.49 µg/mL.  

As shown in Figure 235, all samples, except “SG4” (cryogel made from 6 wt% pectin loaded 

with theophylline at a high dose of 8.3 g/L), and with all treatments at matrix concentrations up 

to 1000 μg/ml did not reduce cell survival after 48 h, whereas at 1000 μg/ml of SG4 caused a 

20% reduction in the cell number vs. control. The latter effect is attributed to the high content 

of theophylline loaded in the SG4 matrix. 

All pectin-based, cellulose-based and silica-based aerogel matrices did not exhibit any 

cytoxocity, regardless the composition of the matrix, pH adjustment or presence of calcium 

salts. Thanks to their ability to modify drug release over time and their low toxicity profile 

required for biocompatibility, these aerogels show promising potential to be used as biomedical 

devices. 

 

Table 27 Matrix composition and formulations parameters of the aerogel and cryogel samples 

used for cytotoxicity test. 

Sample SG1 SG2 SG3 SG4 SG5 SG6 

Matrix 

Aerogel 

 

6 wt% pectin 

Composite 

aerogel 

 

Cryogel 

 

6wt% 

pectin 

Cryogel 

 

6wt% pectin 
 

Aerogel 

 

5 wt% 

cellulose 

Microcrystalline 

cellulose 

(Avicel) 

(raw powder) 
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6wt% pectin 

+8wt% silica 

from PEDS 

pH of pectin 

solution 
2.0 2.0 2.0 2.0 NA NA 

Calcium 

R(Ca) ratio of 

pectin 

solution 

0.2 0.2 0.2 0.2 NA NA 

Theophylline 

loading 

(g/L) 

_ _ _ 8.3 g/L _ _ 

Tested factors 
 

Cytotoxicity 

of pectin 

Influence of 

low pH (pH 2) 

and of the 

presence of 

calcium 

Cytotoxicity 

of PEDS 

Influence 

of low pH 

(pH 2)  

and of the 

presence of 

calcium  

(without 

any solvent 

exchange 

steps) 

Cytotoxicity 

of 

theophylline 

(highest 

dose) 

Cytotoxicity 

of cellulose 

Cytotoxicity of 

cellulose as a 

homogeneous 

suspension of 

cellulose particles 

 

 

Figure 235. Dose-response for SG1-SG6 samples. NHDF cells were treated for 48 h with 

various concentrations of compounds as mentioned in the Materials and methods. MTS assay 

was then used to determine the relative cell viability (%).  
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Conclusions  

We have proposed original approaches of interpenetrating networks to produce organic-

organic and organic-inorganic composite aerogels based on pectin. Pectin-cellulose aerogels 

(Part 1) were made by the impregnation of pectin solution in cellulose matrix, and the second 

part of the work dealt with the impregnation of organic silica particles in pectin network (Part 

2). Making composite interpenetrated aerogels as drug delivery matrices is a new approach in 

the field. 

The process route and formulation were varied in order to modulate the structural, physical 

and physico-chemical properties of pectin-cellulose and pectin-silica composite aerogels, 

which in turn were influencing their release properties when used as drug delivery systems. It 

is interesting to note that both kinetic parameters as well as the main physical mechanisms 

involved in the drug release (diffusion and/or erosion) could be tuned by adjusting the process 

route and composition.  

We demonstrated that matrix physico-chemical and structural properties, governed by 

matrix composition and process parameters, not only influence the drug loading properties but 

also strongly impact the kinetics release characteristics. In particular, we tuned the release 

kinetics of theophylline in gastro-intestinal release media from an immediate release profile, to 

a prolonged release for several hours, up to an extended release for more than 24 h. The overall 

work presented in this chapter proves that not only by changing composition (pectin, cellulose, 

silica source) but also by finely combining different physico-chemical, structural and physical 

properties brought by each component of a composite, it is possible to tune all characteristics 

of aerogels when used as drug carrier.  

The whole study presented and discussed within the Chapters V and VI contributes to the 

understanding of the physical phenomena involved in the release of drugs from aerogels and to 

correlating them to their structural and physico-chemical properties of the matrix. Finally, the 

low toxicity profile of different aerogels based on pectin, and/or cellulose and/or silica opens 

up possibilities and offers promising potential for their use as solid matrices for 

sorption/desorption of compounds at the interface with life sciences. 
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General conclusions 

The overall goal of this PhD work was to develop versatile and multi-functional bio-based 

materials. We have demonstrated that bio-aerogels based on pectin are indeed such materials 

as they can be used for very different and not connected applications: as matrices for drug 

delivery and for thermal insulation. 

In this framework, we have prepared, characterized and studied various pectin-based 

aerogels and composite aerogels with different properties. As the structure control and fine 

tuning of aerogels are critical to adapt them to a specific application, the main question we 

asked was “How can we tune pectin aerogels properties?”. Therefore, the focus of this work 

was placed on the understanding of the relationships between the characteristics of the initial 

polymer (pectin), the preparation conditions, the internal structure of aerogel and the final 

“application properties” i.e. their thermal conductivity and drug loading/release properties.  

 

Each chapter of the manuscript is devoted to the preparation of various types of pectin 

aerogels and pectin-based composite aerogels via dissolution-solvent exchange route followed 

by supercritical drying using CO2. The systematic variation of the external parameters 

(composition, pH, polymer concentration, type of non-solvent, concentration of mono- and 

polyvalent metal ion salts) allowed fine modulating solution viscosity and gelation 

mechanisms, which in turn influenced aerogel structure and properties. 

 

In the first chapter describing the results obtained (Chapter III), we have performed a 

complete study on the fine tuning of the structural, physical and morphological properties of 

pectin aerogels by varying the process routes. More precisely, we explained why and how pectin 

intrinsic properties (such as degree of methylation) and extrinsic parameters (such as pH 

condition, type of non-solvent, salt type and concentration) tune aeropectin properties. The 

mechanism of structure formation, i.e. gelation or phase separation, was found to be the key in 

aeropectins’ control of structure. The multi-scale correlations from macromolecular aspects 

(polymer ionization with pH, calcium sensitivity and binding) to the morphological, structural 

and mechanical properties of pectin aerogels are now built and the results obtained will provide 

the guidelines for making aerogel matrices (potentially, based on other gelling polyelectrolytes) 

with fully controlled morphology and properties.  

 

In the Chapter IV, we have studied in details the thermal properties of pectin aerogels. 

The process route was varied in a systematic way in order to modify aerogel density and 

morphology and thus understand their influence on aerogel thermal conductivity. For the first 

time a U-shape curve of thermal conductivity vs density was obtained for bio-aerogels 

synthesized via dissolution-solvent exchange-sc drying route. We showed that the type of pectin 

chains’ interactions and physical state of matter (solution or gel) are crucial to understand and 
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predict aerogel morphology and properties. A delicate compromise between aeropectin 

morphology (pore size) and density is thus needed to maximize the Knudsen effect while 

minimizing heat conduction via the solid backbone in order to get the lowest thermal 

conductivity. This minimal value of 0.0147 ± 0.0002 W/(m.K) was found for non-gelled 

solution at pH 2 and pectin concentration of 2 wt%. Thus, pectin aerogels are thermal 

superinsulating materials and present a high potential for thermal insulation applications as they 

are fully bio-based and mechanically robust.  

 

In the Chapter V, we have explored and evaluated the potential of pectin aerogels to be 

used as oral drug delivery system using theophylline as drug model. Drug loading efficiency 

and loading capacity were shown to depend on aeropectin matrix structure and properties 

(specific surface area and density). When immersed into simulated physiological media, 

aeropectin matrix showed prolonged drug release behaviour, with matrix resistance in gastric 

media followed by strong dissolution in intestinal media. Drug release was found to be 

governed by diffusive mass transports through the system coupled with relaxational phenomena 

induced by matrix swelling and erosion, in correlation with the polyelectrolyte and 

hydrosoluble characteristics of pectin. By finely tuning the structural parameters of the 

aeropectins (specific surface, density and degree of ionic crosslinking with calcium), adjusting 

sample formulation and drying method, we were able to determine the impacts of these 

parameters on the drug loading and release kinetics. Overall, our results point out the possibility 

to tailor aeropectin drug release properties by adjusting the process route to target the 

therapeutic indications. Aeropectins show high potential for drug release applications as 

biodegradable, biocompatible and bio-based carriers. 

 

Finally, in the last chapter (Chapter VI) we went even further by showing that the 

release kinetics of pectin aerogels can be additionally modified by making organic-organic and 

organic-inorganic composite aerogels based on pectin. We proposed original approaches of 

interpenetrating networks of pectin with cellulose and with silica to produce pectin-based 

composite aerogels used as drug delivery matrices. Pectin-cellulose aerogels were made by the 

impregnation of pectin solution in cellulose matrix, while pectin-silica aerogels were produced 

by the impregnation of organic silica particles in pectin network. The process route and 

formulation were varied in order to modulate the structural, physical and physico-chemical 

properties of pectin-cellulose and pectin-silica composite aerogels, which in turn were 

influencing their release properties. We demonstrated that both kinetic parameters as well as 

the main physical mechanisms involved in the drug release (diffusion and/or erosion) can be 

tuned by adjusting the process route and composition. We demonstrated that matrix physico-

chemical and structural properties, governed by matrix composition and the process parameters, 

not only influence the drug loading properties but also strongly impact the kinetics release 

characteristics. In particular, we tuned the release kinetics of theophylline in gastro-intestinal 
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release media from immediate release profile to a prolonged release for several hours, up to an 

extended release for more than 24 h. The overall work presented in this chapter proves that not 

only by changing composition (pectin, cellulose, silica source) but also by finely combining 

different physico-chemical, structural and physical properties brought by each component of a 

composite, it is possible to tune all characteristics of aerogels when used as drug carrier. The 

whole study presented and discussed within the Chapters V and VI contributes to the 

understanding of the physical phenomena involved in the release of drugs from aerogels and to 

correlating them to their structural and physico-chemical properties of the matrix. 

 

As an overall conclusion, we clearly demonstrated that pectin aerogels can be advanced 

versatile bio-based materials whose physical-chemical, structural and morphological properties 

can be finely tuned to adapt to the requirement of a specific application. However, all the work 

performed during the three years of PhD on pectin aerogels is not providing a “turnkey solution” 

for a specific application as the field of bio-aerogels is quite “young”. The results obtained 

provide useful directions and guidelines for further study. Thus, in the following, we would like 

to highlight some limitations and propose perspectives for future work which could inspire the 

following research on polysaccharide-based aerogels. 

General comments and perspectives 

• In this thesis, we were rather focused on low-methylated pectin and using calcium to 

induce ionic-gelation. However, other options of pectin solution gelation exist. Pectin 

ionic gelation can also be initiated by different divalent cations (Mn, Mg, St, Zn…) as 

reported by (Tkalec, Knez, & Novak, 2016). Gelation of high-methylated pectin by 

efficiently promoting hydrophobic interactions in the proper conditions (pH < 3.5 and 

high co-solute content > 60%) may also be possible. Changing the counter-ions involved 

in junction zones or modifying pectin methylation degree may change their internal 

structure and physico-chemical characteristics (solubility, erosion/swelling ability in 

liquid) is thus worth investigating.  

 

• In order to achieve industrial feasibility and decrease the production cost, freeze-drying 

might be a good alternative to supercritical drying, provided the preservation of the 

network structure during drying. As suggested by literature (Ni, Tesconi, Tabibi, Gupta, 

& Yalkowsky, 2001; Wittaya-areekul & Nail, 1998), using tert-butanol as a solvent for 

freeze-drying (tert-butanol/water cosolvent systems) might prevent ice growth and lead 

to fine-nanostructured cryogel. The best option would be to find the conditions leading 

to aerogel-like properties but obtained with ambient pressure drying or low vacuum 
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drying. This was never demonstrated before except for cellulose (Druel & Budtova, 

n.d.). 

 

➢ Concerning the use of bio-aerogels as thermal insulating materials: 

• First, the reasons why pectin and some other bio-aerogels are super-insulating materials 

and why cellulose aerogels are not are still unknown. We point out here the influence 

of the chemical structure of the polysaccharide’s chains on the aerogels’ morphology 

and thus on their thermal properties. The modelling of molecular phenomena of the 

coagulation process would be extremely attractive to understand (and control) the 

formation of the wet network during solvent exchange step. 

 

• Besides, as future prospects and technical challenge, hydrophobization of hydrophilic 

bio-aerogels would be particularly attractive in order to decrease moisture adsorption 

and avoid aging. Classical hydrophobization techniques of silica aerogels consist in the 

replacement of hydrophilic groups by non-polar functions (e.g. by silylation with 

trichloromethylsilane or methyltrimethoxysilane). This was never tried before on pectin 

aerogels. In addition, using natural compound would be a much better option for bio-

aerogels in adequation with their low-toxicity profile, environmentally friendly and 

human friendly characteristics. 

 

➢ Concerning the use of bio-aerogels as oral drug delivery systems: 

• As a reminder, the dissolution testing experiments were conducted in vitro and at the 

laboratory scale, which might strongly differ from in vivo conditions. To be closer to 

real physiological conditions, we suggest in the first instance the addition of the 

digestive enzymes (pepsin and pancreatin) in the in vitro release baths prior to in-vivo 

tests step. 

 

• As we showed in this thesis, the release properties of polysaccharide-based aerogels as 

drug matrix can be varied by creating composite aerogels from different components 

(organic or inorganic). The “mixture” of properties brought by the different components 

in the same matrix results in new physical and chemical properties and offer new 

perspectives to polysaccharide aerogels used as drug carrier. “Core-shell” composite 

aerogels can be good perspective to go further, for example, by coating of a low-

hydrosoluble polysaccharide (core) with an external layer of a gastro-resistant 

polysaccharide (such as pectin or alginate). This would both attenuate the strong burst 
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release we observed, protect the drug from any acid degradation in the stomach, and 

delay the drug release in the intestinal tract.  

 

• With the aim of extended-drug release during the longer time possible, we suggest the 

use of non-hydrosoluble polymer such as cellulose or with lower solubility (such as 

starch) to make bio-aerogels. Indeed, decrease the solubility of the aerogel would 

strongly protect the matrix from rapid degradation by solubilization and thus might 

prolong the release over time. Another possibility could be hydrophobization of the bio-

aerogel by natural hydrophobic compounds (wax, fatty acids…).  

 

• Finally, the 3-D printing technology of complex three-dimensional structure with a 

defined shape open up the potential for innovative food manufacturing or for creating 

bio-artificial tissue (regenerative medicine) (Markstedt et al., 2015). Alginate (another 

polyelectrolyte polysaccharide) is already commonly used as bio-ink to produce 3-D 

printed hydrogels thanks to its fast gelation property with multivalent cations (Axpe & 

Oyen, 2016; Song et al., 2011). Recently, pectin gels were found to be also printable 

materials in order to encapsulate alive plant cells (Vancauwenberghe, Baiye Mfortaw 

Mbong, et al., 2017) or to produce tunable food stimulants (Vancauwenberghe, 

Katalagarianakis, et al., 2017). The supercritical drying of 3-D printed pectin gels would 

allow the design of customizable highly porous aerogels with specific structures and 

textures, in order use them as dry cellular-scaffold for tissue engineering.  
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The annex section presents an overview on drug release fundamentals and concepts. It 

is organized as follows: 

- First, we introduce and define the main physical mechanisms involved in the release of 

a drug from a polymer matrix delivery system (e.g. dissolution, diffusion, matrix erosion 

and swelling, polymer relaxation…etc.).  

 

- Then, we present in details the most used kinetics mathematical models which are 

applicable for solid matrix systems (Zero-order, First-order, Higuchi, Korsmeyer-

Peppas, Hixson-Crowell, Hopfenberg, Gallagher–Corrigan release models).  

1. Drug release mechanisms from polymer matrix systems 

When studying drug delivery from a solid matrix, different mass transport phenomena are 

involved successively or simultaneously: water diffusion inside the device, system swelling, 

system dissolution / erosion, drug dissolution and diffusion through the hydrated system. 

Usually, the slowest physical phenomenon is the determining step as it plays a significant 

controlling role on the release. Drug properties (solubility, crystallinity), polymer composition 

and properties, and system morphology and geometry are known to drive the release 

characteristics. In the following, the case of a hydrophilic erodible polymer matrix loaded with 

an instantaneously dissolving drug will be considered as the closest to the case of pectin 

aerogels.  

The case of a system of physical immobilization of the drug will be used as we assume that 

there is no covalent bonding between the drug and the matrix. Four successive phenomena 

occur when a dry hydrophilic soluble matrix is put in contact with aqueous media: water 

diffusion, polymer chain relaxation, polymer swelling and matrix erosion. 

1.1. Water diffusion and polymer relaxation (swelling) 

First water diffuses into the hydrophilic matrix driven by osmotic forces due to the 

gradient of chemical potential. Water penetration into the system occurs via pores and/or 

through continuous polymeric networks. These phenomena depend on morphological 

properties of the system as well as polymer physicochemical characteristics (hydrophilicity, 

solubility in water, nature and number of interactions between chains, chain length...) and 

temperature. As soon as a minimum of water content penetrates into the hydrophilic system, 

polymer chains relaxation occurs. Chains disentangle and reorganize into a three-dimensional 

hydrated network (gel-like structure). Once hydrated, the system locally swells leading to 
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volume expansion, which facilitates solvent diffusion and macromolecular mobility. Chain 

relaxation is a significant step for swellable or soluble system, as it is a prelude swelling or 

dissolution of the polymer. If chain relaxation is a relatively slow step compared to water 

diffusion, a narrow swelling front separates the swollen network from the non-swollen region. 

Drug release is controlled by the formation of a hydrated viscous layer around the matrix which 

acts as a barrier by opposing penetration of water and drug diffusion out of the matrix (Heller, 

Helwing, Baker, & Tutte, 1983). 

Many hydrophilic materials display a swelling behavior when they are in contact with 

water due to the interactions between water and polymer chains. However, material swelling 

might be limited in case of rigid or cross-linked polymers not able to disentangle, or in case of 

polymers with large chain length (Siegel & Rathbone, 2012). In practice, macroscopic material 

swelling is observable when diffusion of water intro the matrix is a relatively rapid step and 

polymer dissolution is comparatively slow (Juergen Siepmann, Siegel, & Rathbone, 2012). On 

the contrary, for “swellable-soluble” matrix, its swelling may not be noticeable as swelling is 

followed by polymer dissolution (Colombo, 1993).  

Once aqueous media has penetrated into the system, two phenomena occur in parallel: 

drug dissolution and polymer erosion/dissolution (in case of soluble or erodible matrix). 

1.2. Matrix erosion 

Degradation or dissolution effects are termed as the erosion of the matrix. It consists of 

the loss of structural and physical integrity of the matrix over time, such as its dimensions or 

shape. Erosion can be caused by physical, chemical or biological reactions in response to matrix 

immediate environment: such as polymer dissolution, mechanical “corrosion” or breakage, 

hydrolysis, or enzymatic biodegradation (Bruschi, 2015; Siegel & Rathbone, 2012). 

 

As the solvent diffuses into the matrix, relaxation and rearrangement of polymer chains 

take place and polymer chains start to disentangle if water content is high enough to be below 

the critical polymer concentration. In this case, the number of disentanglements exceeds the 

number of entanglements and the system erodes in the surrounding bulk fluid creating an 

“erosion front” at the interface with the liquid media. Polymer dissolution occurs according to 

reptation theory and the dissolved chains start to diffuse, which in turn increases solvent 

penetration and drug diffusion. The inner structure of the eroding matrix changes significantly 

with time, becoming more porous (aqueous channels) and less restrictive for diffusion of drug 

and solvent. Depending on erosion rate regarding to diffusion rate, matrix erosion might be 

negligible, for example, if all drug has already been released before polymer dissolution 

(Bruschi, 2015; Siegel & Rathbone, 2012). 
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Erosion of the matrix can be controlled by varying polymer characteristic (chain length, 

molecular weight, hydrophilicity, solubility, ionization, cross-linking), matrix properties 

(porosity, density, composition, wettability) and extrinsic factors (pH, ionic strength, 

temperature) (Bruschi, 2015). Depending on the velocity of water diffusion and matrix erosion, 

two main options are possible: erosion on the surface or in the bulk (see Figure 236).  

 

Figure 236. Surface or bulk erosion mechanisms from solid polymer matrix 

Surface erosion occurs when the velocity of water penetration is lower than that of matrix 

degradation, whereas bulk erosion occurs when water invades the system more rapidly 

compared to matrix dissolution/degradation. Surface erosion of a system leads to progressive 

reduction of its dimensions with time, resulting in the release of drug that is close to the surface. 

Bulk erosion starts with water diffusion into the system, causing progressive matrix 

“degradation” throughout the bulk of the material. In the last stage, it results in network 

disintegration as a whole, matrix loses its physical integrity and the drug is released (Bruschi, 

2015; Siegel & Rathbone, 2012).  

1.3. Drug dissolution 

As the drug is dispersed as solid species in the matrix, its dissolution is a fundamental 

step for diffusion to start through the system. Upon contact with diffusing liquid, drug starts to 

dissolve. The higher the solubility of the drug in the liquid media, the more rapid the dissolution 

rate. But if the local drug concentration exceeds its solubility, the solvating medium is locally 

saturated and only a portion of the drug can be dissolved. In other words, both dissolved and 

non-dissolved drugs particles may co-exist in the matrix, and only the dissolved part is able to 

diffuse outside the matrix (Bruschi, 2015; Siegel & Rathbone, 2012).  

Time of drug dissolution may depend on drug particle size and solubility, chemical 

interactions (if any) with the matrix, temperature, mechanical stirring and local viscosity of the 
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liquid media. In the case of highly soluble drug, its dissolution can be considered instantaneous 

as it is more rapid than other mass transport phenomena (water diffusion, matrix dissolution, 

drug diffusion...). In case of highly soluble drug, drug dissolution may not be the determining 

step when released from a matrix as compared to matrix dissolution/erosion and diffusion 

mechanisms (Bruschi, 2015; Siegel & Rathbone, 2012). 

1.4. Drug diffusion 

Once a portion of the drug is dissolved into the hydrated system, the dissolved part 

diffuses out through the polymer and aqueous pores towards the bulk fluid. Drug loaded matrix 

acts both as a drug storage medium and a mediator of diffusion. The process of drug diffusion 

can be defined as the spatial mass transfer of the drug through a system, driven by gradient 

concentrations forces (Bruschi, 2015; Siegel & Rathbone, 2012). During this process, 

differences in drug concentration are progressively reduced by spontaneous flux of matter, 

which are carried by random molecular motions and governed by the concentration gradient 

and the distance, as described by Fick’s first law (for dispersed drug): 

 𝐽 = −𝐷
𝑑𝐶

𝑑𝑥
  (A.1) 

where J is the rate of mass transfer per unit area of the section, D is the diffusion 

coefficient, C is the concentration of the diffusing substance, x is the distance between the two 

points, dC/dx is change in concentration. 

The diffusion coefficient D can represent molecule’s mobility in a given system. D 

depends on temperature, pressure, the rheological and chemical properties of the bulk medium, 

and the characteristics of the drug. The diffusion coefficient of a solute through a medium in a 

dilute state is given by Stokes-Einstein Equation: 

 𝐷𝑠𝑜𝑙𝑢𝑡𝑒 =
𝑘𝐵𝑧.𝑇

6𝜋𝑅𝜂
  (A.2) 

where kBz is the Boltzmann constant, T the temperature, R the hydrodynamic Stokes 

radius of the solute, and η the shear viscosity of the medium.  

The diffusion of a solute in liquid medium thought a porous matrix results from 

Brownian motion. The distance L made by a solute during a time t is given by: 

 𝐿 = √𝐷𝑠𝑜𝑙𝑢𝑡𝑒 . 𝑡  (A.3) 



ANNEX.  

Fundamentals and concepts for drug delivery applications 

 

 

391 

 

Thus, matrix geometry and its thickness play a significant role on drug release as the time 

required to diffuse over a certain distance is proportional to the square of that distance. 

In drug release experiments from soluble matrix, D is not constant as the surrounding 

system permanently evolves because of other mass transport phenomena such as matrix 

dissolution, swelling or water diffusion through the matrix. As the matrix is actually a dynamic 

fluctuating structure, D may be considered as an illustration of these fluctuations. Indeed, D 

increases with drug gradient concentration, with expansion of free volume (matrix erosion and 

swelling), and with increasing water content (solvent diffusion). On the opposite, it decreases 

with matrix density, viscosity of the liquid and drug size (Bruschi, 2015; Siegel & Rathbone, 

2012). 

A schematic illustration of drug loaded-polymeric soluble matrix upon liquid 

penetration into the system is presented in Figure 237. 

 

Figure 237. Schematic presentation of drug loaded-polymeric soluble matrix upon liquid 

penetration into the system. Illustration inspired from (Siegel & Rathbone, 2012). 

2. Mathematical models of release kinetics 

According to what has been described previously, drug release from a solid matrix is 

known to be impacted by several mass transport mechanisms including diffusion, swelling, 

dissolution or erosion. It is possible to acquire mathematical equations that describe the 

dependence of drug delivery as a function of time. Mathematical models are useful tools to 
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predict release behavior of a system and design optimal pharmaceuticals formulations and 

matrix geometry (Nicholas A. Peppas & Narasimhan, 2014). Fitting release experimental data 

with various models allows evaluating the main mass transport mechanisms governing the drug 

release (diffusion, dissolution, swelling, erosion…). Understanding the different factors 

(composition, polymer chemical structure, drug properties, matrix density …) that affect each 

mechanism and how in turn they influence the overall release behavior is a key to adjust 

therapeutic parameters (drug dose and release rate, time of release) (Juergen Siepmann et al., 

2012). 

The velocity of drug dissolution in a solvent can be described as: 

 
𝑑𝐶

𝑑𝑡
=

𝐷.𝐴

ℎ
(𝐶𝑠 − 𝐶(𝑡))  (A.4) 

where dC/dt is dissolution rate, D the diffusion coefficient of drug through the system, h 

the thickness of the diffusion layer, A the surface area of the exposed solid, Cs the saturated 

solubility of the drug, C(t) the drug concentration in the bulk solution at time t. 

 

Drug release profile can be graphically illustrated from the data obtained from 

dissolution testing experiments by plotting the drug fraction released 𝑄(𝑡) =
𝑀𝑡

𝑀∞
 as a function 

of time. The release profiles of each system can be evaluated and described by model-dependent 

methods, based on mathematical functions. To determine if the fitting of a model to 

experimental data is good or bad, statistical coefficients are used such as the higher coefficient 

of determination R² and the lower AIC (Akaike Information Criterion). The most probable 

physical mechanism(s) (e.g. diffusion, swelling and chain relaxation, dissolution, erosion) that 

predominantly govern drug release can be thus deduced from the best fit. 

Below only the most used mathematical equations and models applicable for solid 

matrix systems will be presented (J. Siepmann & Siepmann, 2008): 

• Zero order release model 

• First order release model 

• Higuchi release model 

• Korsmeyer-Peppas release model 

• Peppas-Sahlin equation 

• Hixson-Crowell model 

• Hopfenberg model  

• Gallagher–Corrigan model  
 

Equations will be given assuming the initial amount of drug dissolved at time 0 is being 0. 
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The widely used Baker and Londscale release model is not presented as it is based on 

Higuchi model for drug release from spherical matrices.  

It has to be noted that Korsmeyer–Peppas approach and Peppas-Sahlin model are 

expected to be valid for up to ∼60% of the cumulative drug released and not on the full release 

curve, so fitting with the data has to be restricted to this range. 

2.1. Zero-order kinetics 

Zero-order kinetics represents the “ideal” pharmacokinetic response curve. The drug 

release is only a function of time and the delivery rate remains constant until the device is 

exhausted from the drug, independently of the drug concentration in the system (Hsieh, Rhine, 

& Langer, 1983; Möckel & Lippold, 1993). This release can be found typically in transdermal 

or osmotic systems, and also for very slow release from a matrix that does not disaggregate in 

case of very low solubility drug, for example. 

 𝑄(𝑡) = 𝑘0𝑡𝑛, for a cylinder  𝑄(𝑡) = 𝑘0𝑡0.89 (A.5) 

where 𝑄𝑡 is the cumulative fraction of drug released at time t, k0 is a rate constant or 

apparent dissolution velocity. The value of n depends on matrix geometry; it is equal to 1.0 for 

a thin film, 0.89 for a cylinder and 0.85 for sphere (J. Siepmann & Siepmann, 2008). A graphical 

representation of the model is shown in Figure 238. 

 

 

Figure 238. Graphical representation of zero-order kinetics: plot of the cumulative fraction of 

drug released Qt (%) versus time, k0 is the zero-order rate constant. 
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2.2. First-order release kinetics 

The first order kinetics is desirable for sustained release drug delivery systems. 

This relationship is found in the cases of water-soluble drugs in porous matrix, exhibiting 

dissolution-controlled or diffusion-controlled release. The amount of drug released is directly 

proportional to amount of drug loaded in the device and leads in a constant release of the drug 

available at t time, and thus depends only on initial drug concentration (Mulye & Turco, 1995; 

Schwartz, Simonelli, & Higuchi, 1968). 

𝑄𝑡 = 1 − exp(−𝑘1𝑡)   

 And linearized as: log(1 − 𝑄𝑡) =
𝑘1.𝑡

2.303
  (A.6) 

 

where (1 – Qt) represents the remaining fraction of drug at time t in the device, and k1 is 

the first-order constant. A graphical representation of the model is shown in Figure 239. 

 

Figure 239. Graphical representation of first-order kinetics: plot of logarithm of the non-

released fraction of drug (1-Qt) (%) versus time 

2.3. Higuchi release model 

The most used mathematical model to describe release from a solid matrix is Higuchi 

model (Higuchi, 1961). It corresponds to a hydrosoluble drug dispersed in a homogeneous solid 

matrix immersed in a diffusion medium. In this model, drug release only occurs by Fickian 

diffusion of the solvent and the drug throughout the macromolecular mesh and aqueous pores 

of the matrix. 
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The model is based on Fick’s law, and considers several assumptions i) drug 

concentration in the matrix is higher than its solubility, ii) drug diffusion occurs through pores 

in the matrix based on one-dimensional diffusion, iii) drug particles are smaller than pore walls, 

iv) drug diffusivity is constant and matrix dissolution and swelling is negligible (constant 

boundaries); v) the release environment is always perfectly maintained in sink conditions 

(Brophy & Deasy, 1987; Higuchi, 1961; Juergen Siepmann & Peppas, 2011). 

Thus, the model is not theoretically valid if the diffusion coefficient or physical 

boundaries of the matrix are not constant over time, such as in cases of swellable or soluble 

delivery systems. 

The cumulative released fraction is presented as follows: 

 𝑄𝑡 = √
𝐷𝜀

𝜏
(2𝑚𝑑 − 𝜀𝑆𝑑)𝑆𝑑𝑡  (A.7) 

where ε is the porosity of matrix, τ is the capillary tortuosity factor, md is the initial amount 

of drug contained in the dosage form, Sd is the solubility of active agent in the matrix medium. 

Tortuosity is defined as the dimensions of radius and branching of the pores and canals in the 

matrix. 

In a simplified model Equation (A.7) becomes: 

 𝑄𝑡 = 𝑘𝐻√𝑡  (A.8) 

where KH is the release constant of Higuchi. With the simplified model, the amount of 

drug released is proportional to the square root of time, as expected from Fick law. It has to be 

noted that the simplified Higuchi model was initially built for matrix with thin film geometry, 

and will be used in this work. A graphical representation of the model is shown in Figure 240. 

 

 

Higuchi simplified model 
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Figure 240. Graphical representation of Higuchi simplified model: plot of the cumulative 

fraction of drug released Qt (%) versus the square root of time. 

2.4. Hixson-Crowell release model  

The Hixson-Crowell assumes that matrix erosion occurs homogeneously in such way that 

the matrix dimensions decrease keeping the initial shape. In addition, it assumes that drug 

release is limited only by drug dissolution velocity, neglecting any diffusion phenomena 

(Hixson & Crowell, 1931).  

 √𝑊0
3 − √𝑊𝑡

3 =  𝑘𝐻𝐶𝑡.  (A.9) 

where W0 is the initial amount of the drug in the system; Wt is the amount remaining in 

the system at time t; and kHC is the constant of incorporation, which relates surface and volume 

of the drug. 

It is possible to simplify Equation (A.9) dividing by √𝑊0
3

 : 

  (√1 − 𝑄𝑡
3 ) = 1 − 𝑘𝛽 . 𝑡  (A.10) 

where (1-Qt) is the non-released fraction of drug and kβ is a release constant. A graphical 

representation of the model is shown in Figure 241. 

 

 

 

Figure 241. Graphical representation of Hixson-Crowell model: plot of cubic root of fraction 

of active agent not released (1 – Qt) versus time. 
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2.5. Hopfenberg model 

Hopfenberg model correlates drug release from the surface of heterogeneously eroding 

matrix of various geometries. It is applicable where the limiting factors for drug release are 

matrix erosion and time. It is assumed that surface area is maintained constant during the 

process (HOPFENBERG, 1976). 

𝑄(𝑡) = 1 − [1 −  
𝑘0𝑡

𝐶0𝑎0
]

𝑛

 

  𝑄(𝑡) = 𝐾𝐺²𝑡² − 𝐾𝐺𝑡     with 𝐾𝐺 =
𝑘0

𝐶0𝑎0
 and n = 2  (A.11) 

where k0 is the erosion grade constant, C0 is the initial concentration of the drug in the 

matrix, and a0 is the initial radius of matrix sphere or cylinder or a half thickness of matrix film. 

According to the geometrical form of the matrix, the n value is 1, 2 or 3 for a film, a cylinder 

or a sphere, respectively. 

2.6. Ritger–Korsmeyer–Peppas (Power law) model  

The model is based on an power law relationship between the amount of drug released 

and the time; it is used to describe drug release from hydrophilic polymeric matrix (Korsmeyer, 

Gurny, Doelker, Buri, & Peppas, 1983; Ritger & Peppas, 1987a, 1987b). It is presented as 

follows: 

 𝑄(𝑡) =
𝑀𝑡

𝑀∞
= 𝐾𝐾𝑃𝑡𝑛  (A.12) 

where Kkp is the constant comprising the structural and geometrical characteristics of the 

system (also considered the release velocity constant), and n is the exponent of release (related 

to the drug release mechanism). 

When the release is characterized by an abrupt burst release, the following equation was 

proposed by (Kim & Fassihi, 1997): 

 𝑄(𝑡) = 𝐾𝐾𝑃𝑡𝑛 + 𝑏  (A.13) 

where b is the burst effect. A graphical representation of the model is shown in Figure 

242. 
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Figure 242. Graphical representation of Korsmeyer-Peppas model: plot of logarithm of the 

released fraction of drug (Log (Qt)) versus logarithm of time. 

The power law model is used to study the release when the mechanism is not known or 

when more than one mechanism is involved. By determining the value of the exponent n 

according to the best fit with experimental data (for 𝑄(𝑡) < 60%) and depending on the matrix 

geometry it is possible to estimate the dominant physical mechanism impacting drug release 

between Fickian diffusion (Case I) or non-Fickian mechanisms (Case II, anomalous transport, 

Super Case II) in which polymer relaxation (swelling) and/or matrix erosion are impacting 

diffusion. It has to be noted that the value of n for each case depends on the geometry of the 

system (e.g. thin film, sphere or cylinder) (Klech & Simonelli, 1989; Kosmidis, Argyrakis, & 

Macheras, 2003; Kuipers & Beenackers, 1993; N. A. Peppas, 1985; Ritger & Peppas, 1987a), 

Table 28 summarizes this classification for cylindrical-shaped matrix. 

 

Table 28. Interpretation of release models from polymeric matrices with cylindrical geometry 

depending on exponent n value with tdiffusion the solvent diffusion time through the matrix; 

trelaxation the polymer relaxation time (Klech & Simonelli, 1989; Kosmidis et al., 2003; Kuipers 

& Beenackers, 1993; N. A. Peppas, 1985; Ritger & Peppas, 1987a). 

Fickian 

diffusion 
Non-Fickian diffusion mechanism 

n = 0.45 n = 0.89 0.45 < n < 0.89 n > 0.89 

tdiffusion > 

trelaxation 
tdiffusion < trelaxation tdiffusion ≈  trelaxation 

High velocity of 

solvent diffusion 
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Fickian and non-Fickian mechanisms differ with the velocity of solvent diffusion: 

 

When n = 0.45, this means that the velocity of solvent diffusion is much slower than 

polymer relaxation time. In this case, polymer chains have high mobility enabling solvent 

penetration through tortuous interstitial spaces, and conformational changes in the polymer 

structure take place instantaneously. Thus, drug release is governed by drug diffusion in the 

surrounding medium from the matrix and the driving force is drug concentration gradient. It 

corresponds to Case I or Fickian diffusion as described by Higuchi model.  

 

When n = 0.89, the solvent diffusion is much faster than polymer relaxation process, 

leading to a non-Fickian solvent diffusion through the system as it is relaxation-balanced. The 

slow re-arrangement of polymer chains induces a gradient of solvent penetration to the center 

of the matrix. Thus, drug release is driven by polymer relaxation (swelling), and corresponds 

to a Case II (relaxational) transport as described by Zero order kinetics. 

 

When 0.45 < n < 0.89, solvent diffusion and polymer relaxation time have comparable 

rates, and leading to a non-Fickian diffusion. Drug release is due to the combination of diffusion 

mechanisms and polymer relaxation (or dissolution) (Singh & Fan, 1986), as opposed to simple 

Fickian diffusion. As the solvent diffuses into the matrix, relaxation and rearrangement of 

polymer chains do not occur instantaneously. The relaxed chains locally swell (or are 

dissolved), which in turn promote liquid and drug diffusion. Thus, the relaxation process 

influences the diffusive transport of the drug (Rabin & Siegel, 2012). As more than one process 

is involved, it leads to an anomalous transport case and refers to the coupling of solvent 

diffusion and polymer relaxation (swelling) or matrix erosion. 

 

Finally, the case when n > 0.89 constitutes an extreme form of transport (non-Fickian 

diffusion) and corresponds to a Super Case II transport. It is characterized by a high velocity of 

solvent diffusion through the matrix and/or an increase of solvent penetration rate at the end. 

The rapid penetration of the solvent to the center of the matrix occurs when solvent has a high 

Case I transport 

(Fickian 

diffusion) 

Case II (relaxational 

transport) 
Anomalous transport 

Super Case II 

transport 

Governed by 

solvent diffusion 

→ Higuchi 

model 

Governed by 

polymer relaxation 

(swelling) 

→ Zero order 

kinetics 

Governed by the coupling of 

diffusion and polymer 

relaxation (swelling or erosion) 

Driven by the 

acceleration of 

solvent 

penetration 
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affinity to the matrix or in the case of erosion-controlled release where channels and aqueous 

pores are formed promoting solvent penetration.  

2.7. Peppas–Sahlin model 

Peppas-Sahlin model is a power law model used in the case of anomalous drug release 

process to approximate the contribution of two physical mechanisms: diffusion and polymer 

chain relaxation (Nikolaos A. Peppas & Sahlin, 1989). 

The model considered the two mechanisms as an additive sum: 

 

 𝑄𝑡 = 𝐾F𝑡𝑚 + 𝐾R𝑡2𝑚 = 𝐹 + 𝑅  (A.14) 

 

where KF is diffusion constant, KR relaxation constant and m is purely Fickian diffusion 

exponent of a matrix of any geometrical shape. The model postulates that drug release from any 

matrix, irrespective of its geometric shape, can be written in terms of a Fickian and a 

relaxational contribution. If the Fickian contribution can be expressed as a function of tm, then 

the relaxational contribution can be expressed as a function of t2m 

As it is shown in Figure 243, the Fickian diffusional exponent m varies with the aspect 

ratio of the matrix Peppas and Sahlin ; defined as 2a/l, where 2a is the diameter and l is the 

thickness (height) (Nikolaos A. Peppas & Sahlin, 1989). 

 

 

Figure 243 Variation of the Fickian diffusional exponent m with the aspect ratio of the matrix, 

2a/l, the figure is extracted from (Nikolaos A. Peppas & Sahlin, 1989). Reprinted from 

International Journal of Pharmaceutics, Volume 57, Issue 2, Nikolaos A. Peppas, Jennifer J. 

Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and 

relaxation, Pages 169-172., Copyright (2019), with permission from Elsevier. 
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As mentioned above, the model is based on a sum of a diffusional contribution (F) and a 

Case II transport involving polymer relaxation (R). Once KF and KR coefficient are obtained, it 

is possible to estimate the percentage of drug release which is due to the Fickian mechanism, 

F, called the Fickian release fraction. 

F is calculated as follows: 

 𝐹 =
1

1+
𝐾𝑅
𝐾𝐹

𝑡𝑚
  (A.15) 

 

and the ratio of relaxational over Fickian contribution as: 

 

 
𝑅

𝐹
=

𝐾𝑅

𝐾𝐹
𝑡𝑚  (A.16) 

2.8. Gallagher–Corrigan model 

 The Gallagher-Corrigan model is used to describe release from a solid matrix which 

includes an initial burst release which results from rapid dissolution of drug close to the surface 

(first order process) followed by second drug release phase which is controlled by matrix 

erosion (Gallagher & Corrigan, 2000). Thus, the total released fraction (Qt) is given by the sum 

of drug released via surface diffusion and that released by erosion: 

 

 𝑄𝑡 = 𝐹𝑚𝑎𝑥[1 − exp ( −𝑘𝑏. 𝑡)] + (𝐹𝑚𝑎𝑥 − 𝐹𝑏) [
exp (𝑘e.𝑡−𝑘e.𝑡max)

1−exp (𝑘e.𝑡−𝑘e.𝑡max)
]  (A.17) 

 

where Fmax represents the maximum fraction of drug released during the total time period, 

Fb fraction of drug released during the initial burst phase, tmax the time to the maximum drug 

release rate, and kb and ke are the first order kinetic coefficients of the initial phase (burst phase) 

and of the second stage (erosion-controlled) in min−1, respectively. 

 

  



ANNEX.  

Fundamentals and concepts for drug delivery applications 

 

 

402 

 

References 

Brophy, M. R., & Deasy, P. B. (1987). Application of the Higuchi model for drug release from 

dispersed matrices to particles of general shape. International Journal of 

Pharmaceutics, 37(1), 41‑47. https://doi.org/10.1016/0378-5173(87)90008-1 

Bruschi, M. L. (2015). Strategies to Modify the Drug Release from Pharmaceutical Systems. 

Woodhead Publishing. 

Colombo, P. (1993). Swelling-controlled release in hydrogel matrices for oral route. Advanced 

Drug Delivery Reviews, 11(1), 37‑57. https://doi.org/10.1016/0169-409X(93)90026-Z 

Gallagher, K. M., & Corrigan, O. I. (2000). Mechanistic aspects of the release of levamisole 

hydrochloride from biodegradable polymers. Journal of Controlled Release, 69(2), 

261‑272. https://doi.org/10.1016/S0168-3659(00)00305-9 

Heller, J., Helwing, R. F., Baker, R. W., & Tutte, M. E. (1983). Controlled release of water-

soluble macromolecules from bioerodible hydrogels. Biomaterials, 4(4), 262‑266. 

https://doi.org/10.1016/0142-9612(83)90025-X 

Higuchi, T. (1961). Rate of Release of Medicaments from Ointment Bases Containing Drugs 

in Suspension. Journal of Pharmaceutical Sciences, 50(10), 874‑875. 

https://doi.org/10.1002/jps.2600501018 

Hixson, A. W., & Crowell, J. H. (1931). Dependence of Reaction Velocity upon surface and 

Agitation. Industrial & Engineering Chemistry, 23(8), 923‑931. 

https://doi.org/10.1021/ie50260a018 

HOPFENBERG, H. B. (1976). Controlled Release from Erodible Slabs, Cylinders, and 

Spheres. In ACS Symposium Series: Vol. 33. Controlled Release Polymeric 

Formulations (Vol. 33, p. 26‑32). https://doi.org/10.1021/bk-1976-0033.ch003 

Hsieh, D. S. T., Rhine, W. D., & Langer, R. (1983). Zero-Order Controlled-Release Polymer 

Matrices for Micro- and Macromolecules. Journal of Pharmaceutical Sciences, 72(1), 

17‑22. https://doi.org/10.1002/jps.2600720105 

Kim, H., & Fassihi, R. (1997). Application of binary polymer system in drug release rate 

modulation. 2. Influence of formulation variables and hydrodynamic conditions on 

release kinetics. Journal of Pharmaceutical Sciences, 86(3), 323‑328. 

https://doi.org/10.1021/js960307p 

Klech, C. M., & Simonelli, A. P. (1989). Examination of the moving boundaries associated 

with non-fickian water swelling of glassy gelatin beads: Effect of solution pH. Journal 

of Membrane Science, 43(1), 87‑101. https://doi.org/10.1016/S0376-7388(00)82355-8 



ANNEX.  

Fundamentals and concepts for drug delivery applications 

 

 

403 

 

Korsmeyer, R. W., Gurny, R., Doelker, E., Buri, P., & Peppas, N. A. (1983). Mechanisms of 

solute release from porous hydrophilic polymers. International Journal of 

Pharmaceutics, 15(1), 25‑35. https://doi.org/10.1016/0378-5173(83)90064-9 

Kosmidis, K., Argyrakis, P., & Macheras, P. (2003). Fractal kinetics in drug release from finite 

fractal matrices. The Journal of Chemical Physics, 119(12), 6373‑6377. 

https://doi.org/10.1063/1.1603731 

Kuipers, N. J. M., & Beenackers, A. A. C. M. (1993). Non-fickian diffusion with chemical 

reaction in glassy polymers with swelling induced by the penetrant: a mathematical 

model. Chemical Engineering Science, 48(16), 2957‑2971. 

https://doi.org/10.1016/0009-2509(93)80041-N 

Möckel, J. E., & Lippold, B. C. (1993). Zero-Order Drug Release from Hydrocolloid Matrices. 

Pharmaceutical Research, 10(7), 1066‑1070. 

https://doi.org/10.1023/A:1018931210396 

Mulye, N. V., & Turco, S. J. (1995). A Simple Model Based on First Order Kinetics to Explain 

Release of Highly Water Soluble Drugs from Porous Dicalcium Phosphate Dihydrate 

Matrices. Drug Development and Industrial Pharmacy, 21(8), 943‑953. 

https://doi.org/10.3109/03639049509026658 

Peppas, N. A. (1985). Analysis of Fickian and non-Fickian drug release from polymers. 

Pharmaceutica Acta Helvetiae, 60(4), 110‑111. 

Peppas, Nicholas A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How 

modeling has shaped the way we design new drug delivery systems. Journal of 

Controlled Release, 190, 75‑81. https://doi.org/10.1016/j.jconrel.2014.06.041 

Peppas, Nikolaos A., & Sahlin, J. J. (1989). A simple equation for the description of solute 

release. III. Coupling of diffusion and relaxation. International Journal of 

Pharmaceutics, 57(2), 169‑172. https://doi.org/10.1016/0378-5173(89)90306-2 

Rabin, C. R., & Siegel, S. J. (2012). Delivery systems and dosing for antipsychotics. Handbook 

of Experimental Pharmacology, (212), 267‑298. https://doi.org/10.1007/978-3-642-

25761-2_11 

Ritger, P. L., & Peppas, N. A. (1987a). A simple equation for description of solute release I. 

Fickian and non-fickian release from non-swellable devices in the form of slabs, 

spheres, cylinders or discs. Journal of Controlled Release, 5(1), 23‑36. 

https://doi.org/10.1016/0168-3659(87)90034-4 

Ritger, P. L., & Peppas, N. A. (1987b). A simple equation for description of solute release II. 

Fickian and anomalous release from swellable devices. Journal of Controlled Release, 

5(1), 37‑42. https://doi.org/10.1016/0168-3659(87)90035-6 



ANNEX.  

Fundamentals and concepts for drug delivery applications 

 

 

404 

 

Schwartz, J. B., Simonelli, A. P., & Higuchi, W. I. (1968). Drug release from wax matrices I. 

Analysis of data with first-order kinetics and with the diffusion-controlled model. 

Journal of Pharmaceutical Sciences, 57(2), 274‑277. 

https://doi.org/10.1002/jps.2600570206 

Siegel, R. A., & Rathbone, M. J. (2012). Overview of Controlled Release Mechanisms. In 

Juergen Siepmann, R. A. Siegel, & M. J. Rathbone (Éd.), Fundamentals and 

Applications of Controlled Release Drug Delivery (p. 19‑43). 

https://doi.org/10.1007/978-1-4614-0881-9_2 

Siepmann, J., & Siepmann, F. (2008). Mathematical modeling of drug delivery. International 

Journal of Pharmaceutics, 364(2), 328‑343. 

https://doi.org/10.1016/j.ijpharm.2008.09.004 

Siepmann, Juergen, & Peppas, N. A. (2011). Higuchi equation: Derivation, applications, use 

and misuse. International Journal of Pharmaceutics, 418(1), 6‑12. 

https://doi.org/10.1016/j.ijpharm.2011.03.051 

Siepmann, Juergen, Siegel, R. A., & Rathbone, M. J. (Éd.). (2012). Fundamentals and 

Applications of Controlled Release Drug Delivery. Consulté à l’adresse 

//www.springer.com/us/book/9781461408802 

Singh, S. K., & Fan, L. T. (1986). A generalized model for swelling-controlled release systems. 

Biotechnology Progress, 2(3), 145‑156. https://doi.org/10.1002/btpr.5420020309 



 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 
 

Aerogels are ultra-light, highly porous and nano-structured materials with high specific surface 

area. Bio-aerogels are a new generation of aerogels that are fully biomass-based, which opens up a 

lot of potentials in biomass valorization and life science applications.  

In this work pectin was used to produce bio- aerogels. Two main objectives were achieved: 

• The first was to understand and correlate the characteristics of pectin and the preparation 

conditions with the internal structure of aerogel and its physico-chemical properties.  

• The second was to evaluate and develop pectin aerogels as advanced bio-materials for 

the two different applications: thermal insulation and drug delivery.  

Various mechanisms of network formation, gelation and non-solvent induced phase separation, 

were demonstrated to play a very important role in aerogel morphology and properties. Thermal 

conductivity of pectin aerogels was very low, around 0.015 - 0.020 W/(m.K), and showing U-shape 

dependence on density. When used as drug delivery matrices, the kinetics of drug release was 

correlated with pectin aerogels’ structure and density. Composite cellulose-pectin and silica-pectin 

aerogels were synthesized and also used as drug carriers; a prolonged release was recorded. A high 

potential of pectin aerogels to be used as versatile bio-materials with advanced tunable 

functionalities was demonstrated. 
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RÉSUMÉ 
 

Les aérogels sont des matériaux nano-structurés ultralégers, hautement poreux et présentant une 

surface spécifique élevée. Les bio-aérogels sont une nouvelle génération d'aérogels entièrement bio-

sourcés, offrant de ce fait de grands potentiels pour des applications à l’interface avec le vivant tout 

en valorisant la biomasse.  

Dans le cadre de cette thèse, la pectine a été utilisée pour produire des bio-aérogels. Deux 

principaux objectifs ont été atteints :  

• Le premier était de déterminer et de maîtriser les corrélations existantes entre les 

caractéristiques de la pectine et les conditions de préparation d’une part, avec la structure 

interne de l'aérogel et ses propriétés physico-chimiques d’autre part. 

• Le second était d’évaluer et développer les aérogels de pectine pour deux applications 

distinctes : l'isolation thermique et la libération de médicaments.  

Il a été établi que les différents mécanismes de formation du réseau, la gélification et la 

séparation de phase, jouaient un rôle majeur sur la morphologie et les propriétés finales de l'aérogel. 

La conductivité thermique des aérogels de pectine s'est révélée très faible, de l'ordre de 0,015 à 0,020 

W/(m.K), et a présenté une courbe de dépendance en forme de U avec leurs densités. Les aérogels 

ont également été utilisés en tant que matrices supports de médicament. Les cinétiques de libération 

du médicament en milieu liquide ont été corrélées aux structures et densités des aérogels de pectine. 

Des aérogels composites, de type cellulose-pectine et silice-pectine, ont été préparés et utilisés 

comme supports de médicament menant à une libération prolongée du principe actif dans le temps. 

Dans cette thèse, nous avons mis en évidence le potentiel élevé des aérogels de pectine utilisés en 

tant que biomatériaux avancés, versatiles et aux fonctionnalités ajustables. 


