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Chapter 1

Introduction/ Résumeé substantiel en
francais

Quelle est la connexion entre ce manuscrit de theése et des problématiques économiques concrétes?
Une telle question semble Iégitime au vu du titre quelque peu technique du travail présenté ici. Le
paragraphe introductif qui suit aborde principalement ce sujet.

Comment est-ce que les ménages a bas revenus répartissent leur budget entre des biens luxueux
- tels que les vétements de marque - et les dépenses plus fondamentales comme la nourriture? Les
employés au chdmage ont-ils de plus grandes chances de retrouver un emploi quand ils participent a
une formation auprés de Péle Emploi? Ces deux questions sont des exemples de sujets qui intéressent
les économistes ([46, 47]). Dans le premier exemple, le but est de comprendre les mécanismes derriére
les décisions économiques au niveau individuel. Dans le second cas, l'intérét réside principalement
dans I'évaluation de I'impact d’'une politique publique, ici de retour a I'emploi. Pour répondre a ces
questions, la théorie économique fournit des prédictions qui doivent étre testées a partir de données
réelles. Pour tester des prédictions économiques, des restrictions doivent étre imposées sur la fagon
dont les données sont engendrées. Ces contraintes forment un modele des comportements observés. I
est peu plausible d’affirmer que nous pouvons expliquer parfaitement la consommation (respectivement
le retour a 'emploi) en fonction du revenu alloué par les ménages (respectivement des dépenses de
formation). Il est plus raisonnable de supposer que la consommation ou le retour a 'emploi dépendent
également de facteurs inobservables dans les données qui capturent des mécanismes complexes et
indicibles. Quand les composantes observées et inobservées du modele sont traitées comme aléatoires,
nous obtenons un modeéle statistique. Dans la veine du chapitre introductif de [60], les statistiques peuvent
étre décrites comme l'interface générique entre des théories que nous cherchons a tester et des données.
Notre travail se rattache a une discipline appelée économétrie. Cette derniere est un sous-champ de
I’économie qui utilise des outils statistiques pour répondre a des questions socio-économiques. Dans
cette introduction, nous cherchons a comparer I'économétrie avec plusieurs sous-champs des statistiques
et en particulier 'apprentissage statistique. Lapprentissage statistique est une discipline qui étudie les
propriétés théoriques d’algorithmes d’apprentissage automatique (machine learning en anglais) quand
les données sont supposées étre générées selon un modele statistique. Comme nous le soulignons
plus bas, 'économétrie et I'apprentissage statistique different dans leur définition d’'un modéle statistique.
Remarquons par ailleurs que selon le niveau de généralité du modeéle statistique considéré, celui-ci sera
appelé paramétrique, semiparamétrique ou nonparamétrique. Nous donnons des définitions précises de
ces notions dans le reste de I'introduction.
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Notions clés en statistiques semi- et nonparamétriques

Ce manuscrit se concentre sur les modeéles statistiques dits semi- et nonparamétriques. Pour expliquer
précisément ces notions et mieux les comprendre, quelques définitions sont de rigueur. Nous considérons
un vecteur aléatoire W qui va d’'un espace probabilisé sous-jacent (2, .4, P) vers un espace mesurable
(E, ). W fait référence a toutes les composantes aléatoires du modele, quelles soient observables
ou non. Nous supposons que E peut étre muni d’une structure d’espace métrique gréce a la norme
Il - llg- @ correspond a I'ensemble des lois de probabilité définies sur (E, ). Dans ce travail, nous
considérons toujours que la loi de W dénotée Qv appartient a un sous-ensemble strict de @ que nous
appelons Q*. Un exemple classique est Q* := {Q € Q:Eg {HWHQE] < +oo} , ou Eq désigne I'opérateur
d’espérance sous la loi Q. Cet exemple est un sous-ensemble nonparamétrique de Q car les éléments
dans Q* ne sont pas pleinement caractérisés par un parametre fini-dimensionnel. Nous allons en fait
nous intéresser uniquement a des sous-ensembles nonparamétriques de Q ici. Un modéle statistique est
construit en: i) choisissant un ensemble © appelé I'ensemble des paramétres; ii) en associant a chaque
# € © une distribution Qy € Q*. Pour fixer les idées, nous donnons I'exemple du modéle canonique
de régression linéaire en nous inspirant du chapitre introductif de [60]: Z, = Z.3 + ¢, avec Z. € RP.
Les notations inhabituelles Z, pour la variable expliquée et Z, pour le vecteur de variables explicatives
sont introduites par souci de cohérence avec les chapitres suivants. Nous écrivons Z = (Z,,Z.)".
Dans cet exemple, le paramétre est § = (5, Qz. ). Lensemble des paramétres est © = R” x D avec
D := {Q:Eqg[Zece] = 0,Eq[Z. 2]t < +oo} et O* = {Q:Eq[Z.Z.]7" < +oo}. Dans le modéle de
régression linéaire, nous nous intéressons uniquement a 8 qui peut s’écrire formellement 5 = T(6)
pour T une projection. Il est fréquent que le parametre d’intérét ne soit pas 6 lui-méme mais une
transformation de celui-ci. Lorsque 7'(9) est une quantité fini-dimensionnelle, nous appelons le modele
semiparamétrique, sinon nous parlons de modéle nonparamétrique.

La question de l'identification d’'un modéle statistique est fondamentale: un modéle est dit identifié si
tout Q € Q* peut étre généré par au plus un 6 € ©. Dans ce qui suit, nous faisons I’hypothése que le
modele est identifié. Donner des conditions suffisantes d’identification n’est pas chose facile en général
et sort du cadre de ce manuscrit. Il faut néanmoins garder a I'esprit que nous nous focalisons sur
des modéles pour lesquels la question de I'identification est (plut6t) bien comprise. Dans le cas du
modeéle linéaire, les restrictions Eq[Z.Z!]~! < +oc et Eg[Z.€] = 0 sont nécessaires et suffisantes pour
l'identification par exemple.

Quand un modéle est identifié, ses parametres peuvent étre exprimés en fonction de la distribution des
variables aléatoires observées ([60]). Etant donnée l'identification du modéle, la principale tache d’un
économetre est d’utiliser des observations pour estimer T'(9) et faire de l'inférence sur cette quantité.
A partir de maintenant, nous supposons que nous avons a notre disposition n observations (Z;)?_,
de la loi jointe @,,. Nous imposons aussi que les observations aient toutes la méme loi marginale, i.e
soient identiquement distribuées. Nous restreignons aussi le domaine de définition de T'(0): ce-dernier
appartient & un espace métrique (7, || - ||). Un estimateur est une fonction mesurable de (Z;)?_; qui
prend ses valeurs dans 7. La qualité d’'un estimateur est mesurée par H:F(e) - T(@)HT . Un estimateur

~

est convergent si HT(G) - T(G)HT tend vers 0 lorsque n augmente. En général, le choix de la norme
Il - |lr n’est pas unique. Quand T est fini-dimensionnel, ce choix n’est pas crucial vu que toutes les
normes sont alors équivalentes. D’un autre c6té, lorsque 7 est de dimension infinie, les normes ne sont
plus toutes équivalentes. |l se peut qu’alors un estimateur soit convergent pour une norme mais pas
pour une autre. En dimension infinie, la différence entre différentes normes peut s’avérer trés utile: il
est parfois possible d’utiliser une norme comme un outil de régularisation pour faciliter la convergence
d’'un estimateur par rapport a une autre norme. La notion de régularisation statistique est expliquée
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plus en détails aprés. Linférence regroupe deux sujets étroitement liés: les intervalles de confiance
et les tests d’hypothéses. Comme nous ne nous intéressons qu’aux intervalles de confiance dans les
chapitres ultérieurs, nous laissons de c6té la définition des tests d’hypothéses ici. Ce qui suit s’appuie
essentiellement sur le chapitre 6 de [79]. En quelques mots, un ensemble de confiance (EC) est un
sous-ensemble aléatoire C,, de 7 qui dépend de (Z;)?_, mais pas de T'(d). Nous présentons maintenant
les criteres asymptotiques qui sont communément admis pour évaluer la qualité d’'un EC. Etant donné
0 € (0,1), un EC est de niveau asymptotique 1 — § ponctuellement sur O si

U . _
Inf lim infPq, ,(Cn > T(6)) 21 -4, (1.1)

et il est de niveau asymptotique 1 — 0 uniformément sur © si

o 15 _
lim inf inf P, ,(Cn 3 T(6)) 21 -9 (1.2)

Le deuxiéme critére ([104, 29]), qui est parfois appelé le critere d’honnéteté, est de toute évidence plus
exigeant que le premier et il a été beaucoup étudié, en particulier en statistiques nonparamétriques. Ces
deux premiers criteres assurent que I'EC est fiable asymptotiquement. lls ne sont cependant pas suff-
isants car ils n’excluent pas des EC triviaux: rien n’empéche avec les deux précédents critéres de prendre
C, = T pour tout n. Nous exigeons donc également d’'un EC qu’il soit optimal dans un certain sens.
Loptimalité peut étre définie de plusieurs maniéres. Un EC peut étre dit ponctuellement/uniformément
optimal si l'inégalité dans (1.1)/(1.2) devient une égalité. Une autre régle communément employée
requiert que le diamétre de 'EC décroisse vers zéro en probabilité suffisamment vite quand n tend vers
l'infini. Pour choisir entre deux ECs qui vérifient les critéres d’optimalité ci-avant, il est possible d’étudier
la limite du ratio des diameétres des deux ECs.

Le paradigme de la minimisation du risque empirique régularisé (MRER) en apprentissage

statistique
Pour discerner les connexions et les différences entre I'économétrie et I'apprentissage statistique, nous
devons tout d’abord comprendre le but général de I'apprentissage statistique et le cadre théorique qui en
découle. Nous nous concentrons sur le cas ou les données observées peuvent étre divisées en deux: une
variable a prédire Z, € Z, C R et un ensemble de prédicteurs potentiels Z, € Z,., avec une distribution
jointe @z, .. Nous gardons la notation Z = (Z,, Z)'. Le but est de prédire Z, aussi précisément que
possible a I'aide d’une fonction de Z., selon une regle qui définit la qualité de la prédiction. La regle
de prédiction (également appelée perte) et la classe de fonctions sont choisies par le statisticien et
ces choix sont grandement motivés par des considérations computationnelles. De facon formalisée, le
probleme théorique est: étant données une classe de fonctions # allant de Z. dans V, et une perte
l: Z,x Z. x H— R*, nous faisons I'nypothése qu’il existe h* € H non nécessairement unique tel que
h* € argminEq, [((Z,, Ze, h)] . (1.3)

heH

Par exemple, nous pourrions prendre £(z,, z., h) = (z, — h(z.))?, i.e la perte des moindres carrés, et H :=
{h:sup, ¢z |h(z)| < M} . Celarevient a résoudre un probléme de moindres carrés nonparamétriques.
Remarquons qu’en économétrie, nous ne nous intéressons aux moindres carrés nonparamétriques que
si nous faisons I'hypothése que les données sont générées selon le modéle Z, = h**(Z.) + ¢, sous la
contrainte Eq_ , [e | Z.] = 0. En effet, un résultat classique montre que si h** € H, alors h** satisfait (1.3).
Que se passe-t-il quand h** ¢ H? Le probléme (1.3) est toujours bien défini et admet une solution mais
cette solution n’est pas h** et est sous-optimale: nous avons Eq, [((Z,, Ze, h**)| < Eq,[l(Z,, Z., h")].
En termes économétriques, résoudre (1.3) quand h** ¢ H est équivalent a s’intéresser a un modele
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mal spécifié. Dans le cadre de I'apprentissage statistique, les modeles mal spécifiés sont généralement
autorisés. Le paradigme de I'apprentissage statistique a d’autres particularités: I'intérét est principalement
porté sur des modeéles dits de grande dimension dans lesquels la classe de fonctions H peut croitre
avec n. Dans un modéle typique de grande dimension, h(Z.) prend la forme Z.5 ou 5 € R? et p est
potentiellement beaucoup plus grand que n. Pour rendre le probléme solvable, une hypothése classique
est celle de sparsité, i.e seulement s entrées (avec s petit par rapport a n) sont non-nulles dans le vecteur
B. Une généralisation de la sparsité appelée sparsité approximative est aussi courante: elle impose que
B soit bien approximé (et non plus exactement déterminé) par un faible nombre d’entrées. La sparsité
approximative entretient des liens étroits avec les modeéles nonparamétriques classiques et est proche
de la notion de régularité d’'une fonction. Nous renvoyons le lecteur vers [15], [16] et [17] pour des
discussions éclairantes sur le sujet. Comment h* peut-elle étre reconstruite a partir d’observations? Les
n observations dans I'échantillon (Z;)?_, sont supposées indépendantes et identiquement distribuées
(i.i.d) et une approche naive consisterait a prendre directement la contrepartie empirique de (1.3):
hy, € argming, ¢4, % Z;L:I UZ,4, Ze i, h). Ceci nest cependant pas satisfaisant dans un cadre de grande
dimension. En fait, le probléme de minimisation empirique que nous venons de définir ne tire aucunement
parti de 'hypothése de sparsité. Pour y remédier, il faut doter # d’'une norme || - ||z qui capte bien la
notion de sparsité et utiliser cette norme pour régulariser la procédure de minimisation empirique. Le
probleme devient

1 — ,
hy € argmin{ — > U Zyi, Zes h) +o||b]|h 3, (1.4)
i {31200 4l

et est appelé la procédure de minimisation du risque empirique régularisé (MRER). La quantité « est
le poids associé au terme de régularisation et son choix est clé pour obtenir des garanties théoriques
sur h,,. Lexposant p est le plus souvent choisi égal a 1 ou 2. La procédure la plus connue qui s’inscrit
dans ce cadre général est le Lasso ([133]) pour la régression linéaire: ((Z, ;, Z. i, h) = (Zo: — Zg,iﬁ)Q,
H={(,B),8 R}, p=1et]h||p =||5]|, avec ||-||, la norme ¢; dans R”. La qualité du minimiseur
estimé h,, est mesurée par le critére dit de I'excés de risque R(h,) = Eq, [{(Zs, Ze, hy) | (Z:)1-4] —
Eq, [{(Z,,Z.,h*)]. Dans la définition précédente, (Z,,Z.) est une copie indépendante de la suite
(Zoi, Ze,i)7—1 - En apprentissage statistique, le but est de contrdler la probabilité que I'excés de risque soit
plus grand qu’un seuil explicite pour un nombre donné d’observations. Ceci s’appelle une inégalité oracle
et sa forme générale est la suivante: pour tout 6 € (0,1) et toutn > 1, PQizn (R(hyn) > 7v(n,d)) <d.La
fonction ~ peut dépendre de ¢, H, @~ et de constantes universelles, et pour § fixé, v(n, §) décroit avec
n. Parfois les résultats sont plus faibles au sens ou ils peuvent ne pas étre vrais pour tout § € (0,1) et
peuvent nécessiter que n soit plus grand qu’un certain seuil. Méme si la question de la prédiction est
importante, un pan de la recherche en apprentissage statistique s’intéresse également aux qualités de h,,
en termes d’estimation. Le critére retenu pour évaluer la qualité de I'estimation est la distance ||h,, — h*|| g
pour une norme qui differe en général de celle utilisée pour la régularisation (de nombreux exemples de
Il - |lzr et || - || r sont donnés dans [5]). Pour établir un résultat d’estimation, notons que h* doit étre unique
ou il doit @ minima étre possible de choisir de maniére unique un des minimiseurs de (1.3). Au cours des
20 derniéres années, plusieurs conditions ont été proposées pour relier ||k, — h*||z et R(h,,) et ainsi
directement obtenir une inégalité oracle d’estimation a partir de celle de prédiction ([106, 134, 5, 45])

Posy (hn = Bl > 7(n,0)) <8, ¥(d,n) € (0,1) x N*, (1.5)
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Linterprétation économétrique de la MRER et le besoin d’outils supplémentaires pour traiter
la question de ’endogénéité

De nombreux modéles économétriques peuvent s’écrire en utilisant le cadre de la MRER présentée
dans le paragraphe précédent mais les raisons pour utiliser la MRER en économétrie se distinguent de
celles mises en avant en apprentissage statistique. Nous illustrons cela en nous intéressant aux modéles
de régression a la moyenne et a la médiane, i.e nous supposons que les données sont engendrées
selon I'équation Z, = h**(Z.) + € soit sous la contrainte Eq, , [e¢ | Z.] = 0, soit sous la contrainte
med(Q|z.) = 0. Sous la premiére contrainte, h** est la vraie espérance conditionnelle de Z, sachant Z. et
elle vérifie h** = argminh:EQZe (h(Ze)?]<+o0 EQz [(Zo —h(Z.))?]. Sous la seconde contrainte, h** est la vraie
médiane conditionnelle de Z, sachant Z, et elle satisfait h** = argminh:]EQZe (1h(Z) 1< +00 BQz 1 Zo—h(Ze)]]-
La théorie économique fournit souvent des contraintes naturelles sur L** telles que la monotonie, la
convexité/concavité ou la régularité. Définissons C 'ensemble de toutes les fonctions mesurables de
Z. vers Z, qui satisfont des contraintes dictées par la théorie économique. La classe de fonctions peut
alors étre choisie égale & # = {h : Eq,_[h(Z.)?] < 400} NC dans le cas de la régression & la moyenne
ouH = {h:Eq, [[h(Z.)|] < +oc} NC dans le cas de la régression a la médiane. La régression a
la moyenne s'inscrit dans le cadre de la MRER en choisissant ¢(Z,, Z.,h) = (Z, — h(Z.))%. Il en va
de méme de la régression a la médiane en choisissant ¢(Z,, Z.,h) = |Z, — h(Z.)|. Ce qui distingue
I'’économétrie de I'apprentissage statistique est le fait que ¢ est imposée par le parameétre d’intérét en
économétrie et n’est donc pas choisie: si nous nous intéressons a la fonction de régression a la moyenne,
¢ est nécessairement la perte des moindres carrés. De plus, H est choisie pour refléter des contraintes
justifiées d’un point de vue économique plutdét que pour des raisons computationnelles. Pour rendre
le lien entre économétrie et apprentissage statistique encore plus clair, il est utile de remarquer que
(1.3) et (1.4) sont formellement équivalents a la classe des M-estimateurs régularisés, un nom qui est
vraisembablement plus familier en économétrie.

La MRER est un cadre tres général qui n’est toutefois pas trés adapté pour traiter d’'une question
fondamentale en économétrie: I'endogénéité. Ce concept saisit I'idée que certaines variables qui
influencent a la fois la variable expliquée Z, et les variables explicatives observées Z. peuvent ne pas
étre observables par 'économeétre. Dans ce cas, utiliser seulement Z. pour expliquer Z, ne permet
pas a priori d’'identifier et donc d’estimer les parametres d’intérét du modéle. Pour outrepasser cette
difficulté, une approche standard revient a trouver des variables additionnelles appelées instruments qui
ont un impact sur Z, seulement a travers Z.. Nous ne détaillons pas ici les raisons formelles derriére
le manque de compatibilité entre 'endogénéité et la M-estimation. Intuitivement, nous pouvons quand
méme dire que la M-estimation est basée sur un argument de projection qui ne se lie pas bien aux
techniques permettant de corriger 'endogénéité (en dehors des modeles linéaires tout du moins; voir
[62] pour plus d’éléments). En présence d’endogénéité, il est en fait plus naturel de caractériser les
paramétres d’intérét en cherchant le zéro d’'un ensembile judicieux de conditions de moments ([37]). Pour
le voir, attardons-nous sur le modéle de régression a la médiane. Nous supposons désormais que le
modele prend la forme Z, = h**(Z.) + € avec med(Q.|z,) # 0 mais med(Q x) = 0. Dans ce modele, au
moins une composante de Z. est liée a e ce qui explique pourquoi la restriction med(Q. |z, ) = 0 ne tient
plus. Le vecteur X contient tous les instruments plus les éléments de Z. qui ne violent pas I'hypothése
initiale sur la médiane de Q.. . Il est possible de montrer que le modele de régression a la moyenne
peut s’exprimer comme

Eq,x [1{Zo <h(Z)} | X] =0 Qx —a.s <= h=h"
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Cet example justifie de s’intéresser a une classe de modeles alternative a la M-estimation
g, [P(Z,h) | X] =0 Qx —a.s <= h=h" (1.6)

ou p est un vecteur fini-dimensionnel de fonctions connues. La relation (1.6) peut encore se réécrire
h** = argming,cy Eqy [[[Eq, « [0(Z,h) | X]|?], avec || - || la norme euclidienne. Si des contraintes
naturelles peuvent étre imposées sur h**, il est utile de doter 7 d’'une norme de régularisation || - ||z qui
rend ces contraintes saillantes. La contrepartie empirique du probleme devient

hn € argmm{ ZHEn (Z,h) | X = Xi] ||2+a||h||p} (1.7)

La quantité E,, [p(Z,h) | X = -] correspond a un estimateur de la fonction Eq , , [0(Z,h) | X =]. La
procédure d’estimation (1.7) est appelée de maniére peu élégante la méthode des moments généralisée
régularisée (MMGR). Quand la classe de fonctions # est paramétrique, il est en général inutile d’ajouter
un terme de régularisation. Quand # est paramétrique, h** peut méme étre identifié a I'aide d’'un
nombre fini de moments inconditionnels dans certains cas, i.e Eg, [p(Z,h)] =0 <= h = h**. Dans
ce cadre particulier, il existe une connexion naturelle entre la M-estimation et la méthode des moments
généralisée. Pour expliquer cette connexion, nous supposons pour simplifier que h(Z.) = Z.53. Sous
certaines conditions sur Eq, [¢(Z,, Ze, (-, 8))] incluant la différentiabilité en 3, (1.3) est équivalent a

0
%EQZ [g(ZOVZEa <7ﬁ>)] =0 < pB=p""

S'il existe une fonction p : (z,,z,8) — p(z, (-, B)) telle que pour tout 3 2 g5z [U(Zo, Ze, (-, B))) =
Eq, [p(Z,(-,5))], alors le probleme de M-estimation a été traduit dans le cadre de la méthode des
moments généralisée. Les estimateurs de la méthode des moments généralisée qui sont obtenus a partir
d'un M-estimateur sont appelés Z-estimateurs (ceci est expliqué dans le chapitre 5 de [136]).

La procédure (1.7) a été étudiée dans de nombreuses contributions dans la littérature économétrique,
[37] étant une pierre angulaire. Contrairement a I'approche de I'apprentissage statistique, les propriétés
de prédiction de h,, ne sont pas d’'une importance centrale. La plupart des résultats reviennent a
prouver que ||h,, — h**|| gz converge vers zéro a une vitesse suffisamment rapide, pour une norme || - | g
possiblement différente de || - ||r. Les résultats sont asymptotiques la plupart du temps au sens ou il
existe peu d’articles proposant des inégalités oracles d’estimation.

La construction d’ensembles de confiance en économétrie et en statistique nonparamétrique

En principe, des ensembles de confiance peuvent étre construits sans se baser sur un estimateur du
parameétre d’intérét. En pratique cependant, les ECs sont pratiquement toujours construits a partir d’'un
estimateur et il y a de facto un lien fort entre I'estimation et la construction d’ECs. Pour comprendre ce
lien, nous regardons deux cas: la construction d’un EC pour 2** dans le modéle (2.3) (avec h* = h**) et
la construction d’un EC pour une fonctionnelle de h** notée p(h**).

Le premier exemple est typiquement ce qui intéresse les chercheurs en statistique nonparamétrique
([79]). Si une inégalité oracle du méme type que (1.5) existe et +(-, -) ne dépend pas de 1**, un EC de
niveau 1 — ¢ valide pour chaque n uniformément sur H peut étre construit en identifiant tous les h € H
tels que ||k, — h|lg < v(n,d). C’est un résultat théorique attrayant car il s’applique a une large classe de
problémes statistiques mais son implémentation directe est souvent difficile: la norme | - ||z peut étre
pénible a calculer et la recherche de tous les hs qui appartiennent a I'EC peut étre computationnellement
treés lourde; la fonction ~(-, -) dépend en général de constantes qui sont soit inconnues, soit trés grandes
ou doivent étre estimées; quand bien méme les deux difficultés précédentes n’apparaissent pas, les ECs
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fondés sur des inégalités oracles peuvent avoir un diamétre qui est trop large asymptotiguement dans un
sens que nous explicitons plus bas. Pour rendre ces questions plus parlantes, nous nous ramenons main-
tenant a un probléme tres simple. Nous souhaitons construire un intervalle de confiance pour Eq, [Z,] en
utilisant n tirages i.i.d de loi @ z,. Nous supposons que la variance de @)z, est finie et connue, fixée égale
a V. Une application de l'inégalité de Bienaymé-Chebyshev (voir chapitre 2 dans [136]) permet d’obtenir

I'inégalité oracle suivante: pour toutn > 1 et d € (0,1), Pogn (|% Sy Zoi —Eq,, 1Z,]| > ,/%) < 0.

Lintervalle 13! := [}L S Zoi— V06, L0 Z, i+ \/V/né] satisfait pour chaque n > 1

EQiZfGRPQ% (I3 5 Eq, [Z,)) >1—0.
Lhypothése que la variance est connue égale a V est malheureusement trop restrictive en pratique.
Une solution serait de: i) supposer que la vraie variance est inconnue mais bornée supérieurement
par V' connu ce qui ne changerait pas le résultat, ii) remplacer V' par la variance empirique mais la
validité nonasymptotique de %! ne tiendrait plus. Notons que i) n’est intéressant en pratique que s'il
existe une borne naturelle et assez petite sur la variance. Nous insistons cependant sur le fait qu’une
borne supérieure sur la variance (ou sur des moments plus élevés) est nécessaire pour construire des
intervalles de confiance valides de maniére strictement nonasymptotique.

Le second exemple est central en économétrie ou le parameétre d’intérét est souvent non pas h**
mais une fonctionnelle de ce dernier (voir l'introduction du chapitre 3 pour de nombreuses références
et des exemples de fonctionnelles intéressantes en économie). En économétrie, I'approche pour
construire des intervalles de confiance est principalement asymptotique: la méthode usuelle con-
siste a trouver une suite (aléatoire) r,, telle que la loi de r,(p(h,) — ¢(h**)) converge vers une loi
N(0,1). Soit gur0,1)(1 — 0/2) le quantile 1 — §/2 de la loi M'(0, 1). Nous pouvons montrer que l'intervalle
192 = [p(hn) — an(0,1) (1 = 6/2) /rp, o(hn) + an(0,1) (1 — 8/2) /ry, ] est asymptotiquement de niveau 1 — &
ponctuellement sur ©. 122 satisfait les critéres d’optimalité présentés plus haut, en particulier la probabilité
que ¢(h**) appartienne & I>2 tend vers 1 — ¢ pour tout § € (0,1) et h** € H. Le principal défaut de 122
est que son comportement est incontr6lé pour tout n fini et qu’il n’est pas honnéte au sens donné plus
haut sans restriction supplémentaire (voir [97]).

Revenons au premier exemple. En utilisant les mémes arguments que pour 122, nous pouvons
construire un intervalle de confiance ponctuellement valide asymptotiquement de la maniére suiv-
ante 1% = | L300 Zoi — ano,) (1 = 8/2)3/V/n, 5 32001 Zoi + a0y (1 — 5/2)\/‘/7/”} - Si nous calcu-
lons le ratio des longueurs de 12! et 192 et étudions sa limite en probabilité, nous remarquons que
diam(I31) /diam(13%) — 1/(qn0,1)(1 — §/2)8). Nous pouvons montrer que cette limite est plus grande
que 1 pour tout § € (0,1/2), ce qui implique que 2! est de niveau asymptotique strictement plus grand
que 1 — ¢ et est donc conservateur.

La discussion précédente souligne le fait qu’il est difficile de combiner optimalité asymptotique et
honnéteté. Ces deux notions ne sont toutefois pas incompatibles et une littérature traitant de cette
question a éclos ([87, 123, 122]). Dans les années récentes, plusieurs économeétres ont été prolifiques
dans ce champ de recherche et ont proposé des méthodes intéressantes tant sur le plan théorique que
pratique.

Relacher I'hypotheése i.i.d a de 'importance en économétrie

Il'y a de nombreuses raisons naturelles d’aller au-dela de I'’hypothese i.i.d. La dimension temporelle
d’'un probléme est vraisemblablement la premiére raison: quand le temps joue un r6le dans I'analyse,
ce qui est le cas avec les données de panel, il est trés plausible que les données soient dépendantes
au cours du temps (du fait de phénomenes de persistance) et que la loi des observations se modifie a
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plus ou moins long terme. De ce fait, les observations ne sont plus ni indépendantes ni identiquement
distribuées. Nous ne traitons pas plus avant la question du temps dans la modélisation statistique car
dans les chapitres qui suivent notre attention se porte sur des modeles ou le temps n’est pas un élément
clé.

Méme dans le cas de données en coupe (i.e des données qui ne sont pas indicées par le temps),
I'hypothése i.i.d est souvent considérée peu crédible en pratique. Prenons un exemple simple: nous
observons un échantillon de n travailleurs et nous disposons d’informations sur leur zone d’emploi et leur
secteur d’activité. En économétrie appliquée, il est courant d’autoriser des chocs agrégés au niveau de
la zone géographique et du secteur d’activité ([1, 27, 110]). Le but est de construire des ECs qui sont
robustes a la présence de tels chocs. Des ECs sont dits robustes s’ils ont le bon niveau (asymptotique)
que les données soient i.i.d ou pas. Lhypothése i.i.d est également peu crédible avec des données
d’interaction, c’est-a-dire des données qui proviennent des interactions entre les individus d’'une méme
population. Dans ce cadre, un jeu de données prend typiquement la forme d’une suite doublement indicée
(Wi j)i<izi<n OU W; ; est 'observation relative a la paire formée par les individus i et j. Ces notions de
dépendance en coupe existent dans d’autres domaines comme la statistique spatiale ou I'analyse des
réseaux. Néanmoins, dans ces deux derniers champs, la dépendance est le principal sujet d’intérét,
ce qui signifie qu’'un modele est stipulé quant a la structure de dépendance et le but est d’estimer les
parameétres dudit modéle. En économétrie (tout du moins pour les questions qui nous intéressent) le
but est assez différent: la dépendance est principalement vue comme un terme de nuisance dont il doit
étre tenu compte pour faire de I'inférence de maniére valide sur d’autres parameétres. La dépendance en
coupe est au coeur du chapitre 4.

Dans le paragraphe précédent, nous n’avons pas relaché I'’hypothése que les observations sont
identiquement distribuées. Nous ne levons jamais cette contrainte dans les chapitres qui suivent et nous
la considérons méme comme assez fondamentale (a I'exception du cas des données indexées par le
temps): il semble en effet assez naturel de supposer que deux individus issus d’'un méme échantillon -
aussi différents soient-ils en termes de niveau d’éducation et de salaire par exemple - sont simplement
deux réalisations distinctes issues d’'une méme loi. Certains économetres et statisticiens ont une
approche différente: ils prennent les variables explicatives observées (Z. ;)_, comme déterministes ce
qui conduit a considérer un échantillon non identiquement distribué (voir le chapitre 2.8 dans [136]).

Causalité et machine learning

La causalité est un des piliers de la discipline économétrique. Cette notion a été popularisée en
économétrie a la suite d’un article de Donald Rubin ([124]). Elle repose sur une expérience de pensée:
il existe deux états de la nature (notés O et 1) et chaque individu est placé dans un de ces états.
Les individus se voient attribuer une variable expliquée Z,(0) ou Z,(1) selon I'état dans lequel ils se
trouvent. Au niveau individuel, I'effet causal du passage d’'un état a un autre est simplement la différence
Z,(1) — Z,(0). Pourquoi est-ce que la causalité est intéressante en économétrie? C’est un cadre pratique
pour modéliser I'impact d’'une politique publique au niveau agrégé. Si le gouvernement pouvait observer
Z,(1) — Z,(0) pour tout le monde, ce gouvernement pourrait mesurer I'effet de faire changer les individus
d’état selon une régle donnée. Dans ce contexte, mettre en place une politique publique est équivalent a
I'action de faire changer les individus d’état.

En réalité, le gouvernement observe soit Z,(1) soit Z,(0) mais jamais les deux: le cadre causal est
un exemple d’un probléme statistique dit de données manquantes ([121]). En notant D I'état dans
lequel se trouve un individu, le gouvernement observe seulement Z, = DZ,(1) 4+ (1 — D)Z,(0). Sans
restriction supplémentaire, il est seulement possible d’identifier @, 1yp=1 €t Qz, () p—o. La restriction
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supplémentaire (Z,(1), Z,(0)) 1L D nous assure que Qz, (1yjp=1 = @z,(1) €t Qz, ) p=0 = @z, 0)- Nous
nous référons a [81] pour une présentation détaillée de la question de l'identification dans le cadre causal
de Rubin. Lidentification de Qz, o) et Qz, (1) permet de calculer 'impact moyen associé au traitement
D:Eq,. 0).2.01Zo(1) = Z,(0)], ou le changement au niveau du é-eme quantile: g, ,,(6) — 9@, ,(9)- A
linverse, l'identification de Qz,_ (o) et @z, (1) n'est pas suffisante pour obtenir le 5-eme quantile de I'effet
de traitement qq,_,,_,. ., (9). Pour avoir 'égalité qq, () — 90, (8) = 9Q,, 1) -2, (), NOUS devons
imposer que le rang d’un individu sous la loi @ z_ (o) est le méme que sous la loi Q1) (C’est la propriéteé
d’invariance des rangs, cf [65]).

Dans le reste de ce paragraphe, nous nous concentrons sur le paramétre Eq, . , . [Zo(1) —
Z,(0)] que nous notons 7. Un des désavantages de I'hypothése (Z,(1),Z,(0)) 1L D est sa non-
testabilité. Elle est souvent remplacée par (Z,(1),Z,(0)) 1L D | Z. qui n'est pas testable non
plus mais strictement plus faible. Sous cette derniére condition, il est possible de montrer ([81])
que 7 = Eq, [E[Z,|D=1,Z]—-E[Z,| D=0,Z]]. Le terme de droite dépend seulement de vari-
ables observées. Les deux taches qui intéressent principalement un économetre sont: i) I'estimation
de et l'inférence sur 7, ii) tester I'hétérogénéité des effets de traitement pour différents profils in-
dividuels z.. Ce deuxieme objectif revient a tester si Eq , o ,. 2. [Z0(1) = Zo(0) | Ze = 2] =
EQ 2. 0. 200012, [Z,(1) — Z,(0) | Z. = 23] quand z; # z,. Pour chacune des deux taches précédentes, il
faut estimer dans un premier temps les fonctions E[Z, | D =1,Z. = ‘| etE[Z, | D =0, Z, = -] (évaluées
seulement aux points z; et z; pour le deuxieme objectif). Comment estimer ces fonctions de maniere
flexible? Une possibilité est d’avoir recours aux outils classiques de statistique nonparamétrique tels
que la régression de Nadaraya-Watson ou la régression linéaire locale ([135]). Les garanties théoriques
de ces méthodes ont été établies depuis plusieurs décennies ([59, 70]). Leur principale limite est leur
mauvaise performance en pratique quand la dimension de Z, est grande. En revanche, les techniques
plus récentes issues du machine learning, telles les foréts aléatoires ou les réseaux de neurones profonds,
sont trés performantes sur simulations et en pratique quand la dimension de Z. est grande, mais leurs
propriétés théoriques sont bien moins connues. Des efforts récents de recherche tant en économétrie
qu’en apprentissage statistique ont permis des avancées théoriques sur les algorithmes de machine
learning: le théoréme 3 dans [71] montre la normalité asymptotique d'un estimateur de 7 basé sur un
réseau de neurones profond, [138] prouve la normalité asymptotique d’'une méthode utilisant les foréts
(09,20 (19)) Ze [Zo(1) — Z,(0) | Ze = z] pour un z. fixé. Il est intéressant de
constater que les propriétés théoriques ne sont pas tres différentes de celles d’outils de statistique
nonparamétrique plus anciens: les résultats actuels pour les réseaux de neurones profonds sont valides

aléatoires pour estimer Eq

pour les mémes classes de fonctions que pour des outils plus classiques et la performance théorique de
ces réseaux est elle-aussi sensiblement impactée par la dimension de Z.; les foréts aléatoires peuvent
approcher des fonctions qui sont moins réguliéres mais leur performance théorique se dégrade malgré
tout avec la dimension de Z..

Résumé du chapitre 3

Dans ce chapitre, nous nous concentrons sur le probléme générique donné par (1.6). Comme expliqué
plus haut, de nombreux articles de recherche (et méme la majorité) qui traitent de ce probléme proposent
des procédures d’estimation basées sur (1.7) ([3], [112], [20], and [37] pour n’en citer que quelques-uns).
Il existe d’autres fagons de construire des estimateurs pour cette classe de problémes et nous nous
intéressons a la famille d’estimateurs dits de vraisemblance empirique généralisée que nous appelons
GEL par la suite ([113], [99]). Pour présenter les estimateurs GEL, il est commode de partir d’'une version
simplifiée de (1.6): nous supposons que h est remplacée par un parametre fini-dimensionnel 8 € B et la
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vraie valeur du parameétre 5** est telle que Eg, [p(Z, 8)] =0 < 8 = **.[113, 99] expliquent que 5**
est également identifié par

B =argmin  sup  Eq, [¢,(Np(Z, B))], (1.8)
BEB  XeA(B,Qz)
. Jiio AN
avec A(8,Qz) = N.csupp(@y) 1A+ Uy (N'p(2, B)) existe} et iy u s 2 [—(y 4+ 1) 4] 7 — #ﬂ) En

prenant la contrepartie empirique du probleme de point-selle précédent, nous obtenons un estimateur
pour chaqgue fonction .. Nous pouvons définir ainsi la famille des estimateurs GEL. Les membres les
plus connus de cette famille sont: I'estimateur associé a I' Empirical Likelihood (EL) qui fut popularisée
par [117], I Exponential Tilting ([100]) et I'estimateur dit continuously updating (CUE) de [88]. Les idées
ci-dessus s’appliquent aux problemes de la forme (1.6). [93] montre que (1.6) peut étre reformulé sous
la forme (1.8) avec un nombre d’égalités de moment qui diverge avec n: h** est 'unique valeur du
paramétre qui satisfait pour tout n > 1

h** = argmin sup Eq, x [y (N p(Z, 1)) @ qk,, (X)], (1.9)
heH XeA(h,Qz.x)
avec ® le produit de Kroneker et ¢k, () un vecteur de dimension croissante K,, composé de fonctions
bien choisies. [101, 99] proposent une adaptation plus directe: ils montrent que h** vérifie

h'* = argminEq, | sup B, [, (Np(Z.0) | X] (1.10)
heH AEA(h,Qz x)
ou A(h, Qz1x=z) = ﬂzesupp(QZ‘X:” {A ¢y (Np(z, 1)) existe} . Remarquons que méme lorsque h se
réduit a un parametre fini-dimensionnel (comme dans [101, 99]), Eq,, , [- | X = -] est nonparamétrique
sans plus de restriction. Pour construire des estimateurs GEL, les articles cités plus haut se basent sur
la contrepartie empirique de (1.9) ou (1.10) et utilisent un estimateur nonparamétrique pour approximer
EQ ix [ [ X =]

Il existe trés peu de contributions ou h est autorisée a étre de dimension infinie, les deux principales
étant [116] et [40]. La classe de fonctions # est toujours choisie comme un sous-ensemble d’'un espace
métrique doté d’une norme || - |- Cet espace métrique est le plus souvent 'espace des fonctions de
carré intégrable par rapport a la mesure de Lebesgue ou I'espace des fonctions uniformément bornées
par rapport a la méme mesure. Dans [116], 'auteur se concentre sur des modéles ou p dépend de
maniere réguliere de h et il étudie le comportement de I'estimateur EL construit a partir de (1.10). |l
utilise une méthode de Nadaraya-Watson pour estimer Eq,, . [- | X = -] . Ses principaux résultats sont la
convergence de son estimateur en norme || - ||z et la normalité asymptotique d’'une certaine fonctionnelle
de son estimateur. Des restrictions assez fortes sont imposées sur la classe H pour contourner le
besoin de régulariser la procédure d’estimation ce qui est une limite de cet article. Dans [40], les auteurs
étudient le comportement de I'ensemble des estimateurs GEL construits a partir de (1.9) pour un modéle
particulier, & savoir la régression quantile instrumentale nonparamétrique (NPQIV) ([41]). Dans le NPQIV,
p ne dépend pas de h de fagon réguliére et n’est donc pas traité dans [116]. Dans [40], des classes de
fonctions H plus larges que dans [116] sont par ailleurs considérées grace a un terme de régularisation
qui est introduit dans la procédure d’estimation. Les principaux résultats dans [40] sont la convergence
des estimateurs GEL en norme || - ||z avec une vitesse explicite ainsi que la normalité asymptotique
d’'une large classe de fonctionnelles de ces estimateurs.

Dans le chapitre 3, nous étudions les propriétés de 'ensemble des estimateurs GEL pour une classe
de fonctions p, et donc de modeéles, qui englobe ceux couverts par [116] et [40]. Tout comme [40],
nous proposons une procédure d’estimation régularisée et considérons des classes de fonctions H
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plus générales que [116]. Notre approche se distingue de celles de [116] et [40] car nous utilisons une
version un peu modifiée de (1.10) pour construire nos estimateurs. Comme souligné précédemment, le
recours a la régularisation ne signifie pas que # peut étre choisie arbitrairement grande: nous supposons
que H contient des fonctions de carré intégrable, différentiables jusqu’a un certain ordre avec des
derivées partielles de carré intégrable elles aussi. Soit | - ||, s la norme associée a I'ensemble des
fonctions de carré intégrable par rapport a la mesure de Lebesgue. Dans notre travail, nous prouvons
la convergence des estimateurs GEL en norme || - ||, e €t Nous établissons une borne supérieure
sur la vitesse a laquelle Eq [”EQZ‘X [p(Z, hy,)]||?] converge vers 0. Nous obtenons une vitesse lente
de convergence qui requiert I'existence d’'un nombre limité de moments de p et nous montrons que la
vitesse peut étre améliorée a condition que les moments de p existent jusqu’a un ordre plus élevé. Nous
expliquons comment ces résultats peuvent étre utilisés pour obtenir la vitesse de convergence de nos
estimateurs en norme || - ||, ). Dans le chapitre 3, nous rappelons notamment que pour arriver a ce
dernier résultat, la clé est de contréler le ratio || — h**| 1, es) /Eqx [IIEq, x [2(Z, k)] ||?] uniformément
en h dans un voisinage bien choisi de h**. Ce ratio mesure I'écart entre une norme au numérateur et
ce qui s’apparente a une norme plus faible au dénominateur. Le supremum de ce ratio caractérise a
quel point le probléme est mal-conditionné. Nous parlons d’'un probléme ill-posed en anglais ([37]). Une
littérature trés riche et encore active a proposé des conditions suffisantes pour contréler le degré de
ill-posedness du modele statistique d’intérét (voir [39, 33] qui dressent des revues de littérature tres
completes). Comme expliqué a la fin du chapitre 3, nous pensons gqu’il y a encore matiere a améliorer les
conditions existantes proposées pour controler le degré de ill-posedness. Ceci est clairement un axe de
recherche futur que nous souhaitons explorer et dont I'intérét dépasse le cadre des modeéles statistiques
vérifiant (2.6).Nous pouvons citer d’autres extensions possibles de nos résultats actuels: i) montrer la
normalité asymptotique pour la méme classe de fonctionnelles que [40]; ii) dans un esprit plus purement
statistique, construire des inégalités oracles sur la performance de nos estimateurs.

Résumé du chapitre 4

Méme dans le cas de données en coupe, I'hypothése i.i.d peut étre trop restrictive. En pratique,
il est souvent plausible que les données soient affectées par plusieurs chocs agrégés inobserveés:
supposons que nous observions plusieurs variables au niveau secteur d’activité-zone géographique. Les
données peuvent s'écrire (Z;, i, )1<i, <n1,1<i»<ns,» QVEC N1 (resp. nq) le nombre de secteurs (resp. zones
géographiques). Les observations correspondent a des cellules secteur-zone géographique et elles sont
a priori liées entre elles dés qu’elles partagent le méme secteur ou la méme zone géographique du fait de
chocs économiques potentiellement inobservés a ces niveaux. Nous parlons en général de données avec
une structure en grappe dans les dimensions secteur et zone. C’est donc un exemple de ce qui s’appelle
la dépendance multiple en grappe. Les données polyadiques sont un autre type de données qui présente
naturellement une structure de dépendance: ces données proviennent des interactions entre les individus
d’'une méme population les uns avec les autres. Les données sur les relations entre des paires d’individus
sont appelées dyadiques et sont les plus courantes. Les données dyadiques peuvent étre représentées
sous la forme (Z;, ;,)1<i,i.<n- INtuitivement, la dépendence polyadique devrait étre plus forte que celle
en grappe multiple: dans le premier cas, les observations sont liees du fait de chocs issus d’'une unique
population alors que dans le deuxieme cas, les chocs proviennent de deux sources distinctes. Pour
modéliser ces idées, nous faisons I'hypothése que les données sont jointement échangeables dans le
cas polyadique et séparablement échangeables dans le cas de dépendance multiple en grappe. Ces
deux notions d’échangeabilité sont présentées de maniere détaillée dans [96]. Ces hypothéses sont
puissantes car elles permettent d'utiliser des résultats probabilistes trés profonds et utiles ([89, 4, 95]) qui
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assurent que les données puissent étre représentées en fonction d’'un ensemble de chocs inobservés
indépendants dans les différentes dimensions de dépendance. Bien que I'échangeabilité séparable
soit un sous-cas de I'échangeabilité jointe, nous devons quand méme traiter la dépendance multiple en
grappe a part: le nombre différent de grappes dans chague dimension rend le probléme plus compliqué.
Il est a noter que I'échangeabilité implique que les données demeurent identiquement distribuées: la
dépendance que nous introduisons est donc trés différente de celle qui surgit dans les séries temporelles.

Quand I'hypothése d’échangeabilité remplace celle que les données sont i.i.d, la construction des
estimateurs n’est pas affectée. Cependant, il faut quand méme modifier les arguments employés pour
prouver la convergence et la normalité asymptotique des estimateurs. Les résultats existants con-
cernent essentiellement les moyennes empiriques et le modéle de régression linéaire: dans le cas
jointement échangeable, la normalité asymptotique pour les moyennes empiriques remonte a [66] et
celle des t-statistiques dans le modele de régression linéaire est établie dans [131]; en présence de
dépendance multiple en grappe, [109] étudie la limite en loi des moyennes simples quand le nombre
de dimensions de dépendance n’est pas connu et il montre la validité asymptotique d’une procédure
de bootstrap (nous définissons ce qu’est une procédure de bootstrap un peu plus loin dans ce para-
graphe). Plusieurs articles proposent également des estimateurs de la variance asymptotique pour
une grande classe de modeles sans prouver leur convergence ([69, 30]). Lorsque nous nous intéres-
sons a des modéles autres que le modeéle de régression linéaire, les résultats sur les moyennes
empiriques ne sont en général pas suffisants. Dans le cas i.i.d, une approche qui a fait ses preuves
consiste a contréler le comportement asymptotique du processus empirique associé au modele (voir
[137] pour plus de détails et une définition d’'un processus empirique). Nous étendons des résultats
classiques sur les processus empiriques pour des données i.i.d aux cas de la dépendance multiple
en grappe et des données polyadiques. Pour étendre ces résultats, nous devons adapter la défini-
tion d’'un processus empirique. A titre d’exemple, en présence de données doublement dépendantes
en grappes, le processus empirique associé a une classe de fonctions F est I'application aléatoire
Grymy : f €EF — 7”“’21{:2”2} 2?1121 ?22:1 (f(Zi, 4,) —Eg,1f(Z1,1)]) . Avec des données dyadiques,
le processus empirique prend la forme G,, : f € F — n(T\/Z) Di<ivzinen ([(Zirin) —Equ[f(Z12)]) -
La classe de fonctions F dépend du modeéle d’intérét. Par exemple, si nous étudions le modéle
Eq,p(Z,h)] =0 <= h = h**, nous avons F := {p(-,h) : h € H}. Remarquons que pour chaque
feF, G n,fetG,f sont asymptotiguement normaux grace aux résultats présentés plus haut pour
les moyennes empiriques. Létude de la limite en loi du processus empirique est ainsi plus difficile
que la simple vérification de la normalité asymptotique du processus pour un f fixé. Notre résultat
principal est le suivant: nous montrons que les processus empiriques avec des données multiplement
dépendantes en grappes ou polyadiques convergent en loi vers un processus gaussien sous les mémes
hypothéses que dans le cadre i.i.d mais la variance asymptotique est différente de celle obtenue dans
ce dernier cas. Le processus gaussien a les propriétés suivantes: c’est une fonction aléatoire qui
associe a chaque f € F une variable normale centrée et de variance donnée par la formule de vari-
ance asymptotique. Ce résultat n’est pas directement utilisable pour faire de I'inférence sur un modéle
statistique puisque la variance asymptotique est inconnue et doit étre estimée. Au lieu de proposer un
estimateur de variance, nous montrons la validité asymptotique de deux versions modifiées du bootstrap
nonparamétrique ([67]) adaptées a nos schémas de dépendance. Nous expliquons a présent comment
sont construites nos procédures de bootstrap dans les cas simples de la double dépendance en grappe
et des données dyadiques. En présence de double dépendance en grappe, pour chaque dimension de
dépendance j nous tirons n; indices avec remise et la version bootstrap du processus empirique s’écrit

Gy f € Fry Yt o S cieny (ViV2 = 1)f(Zi, 1,), avec V! (resp. V2) le nombre

ning il i2
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de fois ou I'indice i; (resp. i2) est rééchantillonné. Avec des données dyadiques, nous tirons n indices
avec remise et le processus bootstrap devient G}, : f € F — W\@l) Zlgmﬂzgn(v,»lVi2 — 1) f(Ziy iy)-
Dans le cadre i.i.d, le bootstrap nonparamétrique de base fonctionne car les observations utilisées
pour le rééchantillonnage sont indépendantes. Pour nos procédures modifiées, nous ne pouvons pas
rééchantillonner au niveau des observations car celles-ci ne sont pas du tout indépendantes. Nous
trouvons donc un autre niveau auquel de I'indépendance apparait: le niveau des individus qui généerent
les paires avec des données dyadiques et les deux dimensions de dépendance avec des données
doublement dépendantes en grappes. La deuxiéme contribution de notre travail est la preuve de la
validité asymptotique de nos deux procédures de bootstrap modifiées. Nous utilisons nos deux résultats
principaux pour montrer la normalité asymptotique et la validité de I'inférence basée sur le bootstrap
pour une grande classe de modeles nonlinéaires. Nous revisitons également la célébre contribution
empirique de [126]. Les auteurs estiment les déterminants des volumes d’échange entre pays a 'aide de
variables explicatives aux niveaux pays et paire de pays telles que le produit intérieur brut ou la distance
entre deux pays. lIs utilisent un modele de pseudo maximum de vraisemblance de Poisson (PPML en
anglais) et supposent que les données sont indépendantes entre paires de pays conditionnellement aux
variables explicatives. Nous réestimons leur modéle et montrons qu’une fois la dépendance dyadique
prise en compte, la longueur des intervalles de confiance et les p-valeurs des tests de significativité des
coefficients du modéle augmentent sensiblement.

Résumé du chapitre 5

En économétrie, de nombreux parametres d’intérét peuvent s’écrire comme des fonctions de un
ou plusieurs ratios d’espérances et/ou de covariances. Les coefficients dans une régression linéaire
univariée avec ou sans endogénéité, les espérances conditionnelles et I'estimand des différences de
différences avec un traitement endogene ([53]) en sont des exemples phares. Pour faire de l'inférence
sur ces parametres, I'approche économétrique standard repose sur la normalité asymptotique des
moyennes empririques combinée a la méthode delta (voir le chapitre 3 de [136] pour une définition de la
méthode delta). Dans notre travail, nous nous concentrons sur le cas simple d’un ratio d’espérances
Eq, [X]/Eq, [Y] et regardons I'impact sur l'inférence d’avoir un dénominateur Eq, [Y] "proche de zéro".
Des résultats profonds ont déja été montrés sur ce sujet: si le modéle n'impose pas que Eg, [Y] soit
séparé de zéro, il a été prouvé dans [63] que pour tout niveau de confiance un intervalle de confiance
honnéte au sens de (2.2) doit étre de longueur infinie avec probabilité positive. Les théorémes énoncés
dans [63] s’appliquent méme pour n’importe quel nombre fini d’observations n en supprimant la limite
inférieure dans (2.2). La question qui nous intéresse est proche dans I'esprit du probléeme bien connu des
variables instrumentales faibles: ce probléme apparait quand les instruments ont une corrélation presque
nulle avec la variable endogéne dans un modéle de régression linéaire avec endogénéité (voir [8] pour
une revue de littérature récente). La littérature sur les variables instrumentales faibles a suggéré de
construire des intervalles de confiance qui sont robustes a I'absence de corrélation entre les instruments
et les variables endogenes en se basant sur les idées initiées dans [6]. Cette littérature a également
étudié la limite en loi de plusieurs estimateurs pour le modéle linéaire en présence d’endogénéité
lorsque la corrélation entre les variables endogenes et les instruments est autorisée a décroitre vers
zéro quand le nombre d’observations n augmente ([129]). Nous utilisons cette derniere approche
pour définir la "proximité & zéro" de Eq, [Y]: nous autorisons Eq, [Y] a dépendre de n et & décroitre
lorsque n augmente. Nous autorisons également Vg, [Y], Eg, [X] and V, [X] @ dépendre de n et a
potentiellement décroitre vers zéro. Dans ce cadre, nous établissons le comportement asymptotique de la
loide X,,/Y,, —Eq, [X]/Eq, [Y] en fonction de la vitesse a laquelle Eq, [Y], Vo, [Y], Egy [X] et Vo [X]
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sont autorisées a tendre vers zéro. Nous montrons ensuite que lorsque Eq, [Y] (resp. Vg, [Y]) tend
vers zéro suffisamment lentement (resp. rapidement), les intervalles de confiance basés sur le bootstrap
nonparameétrique d’Efron ([67]) sont valides asymptotiquement au sens de (1.1). Ces résultats sont de
nature asymptotique et nous les complétons a I'aide d’'une approche complétement nonasymptotique.
Pour ce faire, nous nous appuyons sur des résultats provenant de la littérature statistique tels que les
inégalités de concentration (voir [25] pour une introduction) et les théoremes d’impossibilité de [34]. Nous
imposons des bornes supérieures sur les moments d’ordre 2 de ) x y ainsi qu'une borne inférieure sur
|Eq, [Y]] strictement positive si bien que |Eq, [X]/Eq, [Y]| est borné par au-dessus uniformément sur le
modele et nous ne tombons donc pas dans le cadre de [63]. Etant données ces bornes, nous montrons
comment construire des intervalles de confiance non asymptotiques pour chaque niveau de confiance
en-dessous d’un seuil ¢, et qui ont les propriétés suivantes: ils sont presque sGrement de longueur
bornée et ils atteignent le niveau de confiance requis uniformément sur le modéle pour tout » fini. Les
intervalles de confiance et ¢,, dépendent de n et des bornes sur les moments de Q) x y. Nous exhibons
par ailleurs un niveau de confiance ¢,, au-dessus duguel il est impossible de construire un intervalle de
confiance qui contienne X,,/Y,, presque strement et qui est a la fois du niveau requis uniformément
sur le modeéle et presque slirement de longueur bornée. Par conséquent, méme en dehors du cadre de
[63], une large classe d'intervalles de confiance incluant ceux basés sur la méthode delta ne peuvent pas
étre presque srement bornés et avoir un niveau de confiance garanti lorsque le niveau de confiance
est trop proche de 1 pour un nombre d’observations » fini. Nous proposons un critére pour évaluer la
fiabilité de la méthode delta en échantillon fini: quand il existe des bornes naturelles sur les moments de
Qx.v, elles peuvent étre utilisées pour calculer ¢,, pour avoir une idée du niveau de confiance maximum
(qui dépend de n) auquel la méthode delta peut étre employée de maniére crédible pour construire des
intervalles de confiance. Quand il n’existe pas de bornes naturelles, nous suggérons une régle du pouce:
nous remplacons les bornes par les moments empiriques correspondants. A I'aide de plusieurs exercices
de simulation, nous recommandons de se baser sur ¢, plutét que sur t,, qui est trop conservateur. Nous
présentons un autre résultat d’impossibilité quant a la longueur minimale qu’un intervalle de confiance
uniformément valide peut avoir. Nous illustrons nos résultats asymptotiques et non asymptotiques a 'aide
d’'une application sur les disparités salariales liées au genre en France.

Résumé du chapitre 6

Ce chapitre propose un programme Stata qui implémente les différents outils statistiques introduits dans
[53]. [53] part du cadre causal de Rubin et fait I'hypothése que Z, peut s’écrire Z, = DZ,(1)+(1—D)Z,(0).
Une paire aléatoire (G, T) est également attribuée a chaque individu: T est la période ou la cohorte
aléatoire a laquelle un individu appartient et G indique si un individu appartient a un groupe avec une
intensité de traitement stable ou croissante entre périodes/cohortes. G identifie donc les groupes de
traitement (G = 1) et de contréle (G = 0) dans [53]. En notant S 'ensemble des individus du groupe de
traitement qui passeraient de non-traités a traités s'ils étaient observés a plusieurs périodes, [53] donne
plusieurs jeux d’hypotheses qui permettent d'identifier la quantité A =Eq , ., ;. o s.0-11Z0(1) = Zo(0) |
S, T = 1] avec trois estimands différents. Le parameétre A est appelé un effet local de traitement moyen
(LATE en anglais) et a été introduit dans [92]. Un des estimands appelé Wp;p n'est pas nouveau et
est trés répandu en pratique tandis que les deux autres dénommés Wrc and Wg ¢ sont nouveaux.
Sous les hypothéses d’identification qui sous-tendent le W, les auteurs montrent un résultat plus fort,
a savoir que Qz, (1)s,r=1 €t Qz_(0)s,r=1 Sont identifites de méme que les effets locaux de traitement
quantile (LQTEs en anglais) 7 = 4q,, 1) s.0—1 (6) = 4Q ., o) s.0— (§)- En sus de ces résultats d'identification,
[53] propose des estimateurs pour les 4 estimands et prouvent leur normalité asymptotique. Un des
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principaux enseignements de [53] est de montrer que les conditions requises pour identifier I'estimand
trés populaire qu’est le Wpp peuvent étre assez peu vraisemblables dans certains cas. Le W ainsi
que le W e peuvent alors étre des alternatives utiles. Notre contribution revient a rendre les procédures
d’estimation proposées par [53] disponibles sur le logiciel Stata qui est trés utilisé en économétrie
appliquée. En plus du calcul des estimateurs, nous construisons dans notre programme des intervalles
de confiance a 95% sur A et 75 basés sur le bootstrap de méme que des tests statistiques pour voir si les
estimands de A sont significativement différents. Linférence peut étre rendue robuste a la dépendance
en grappe unidimensionnelle. Dans [53] et [54], plusieurs extensions sont considérées: des versions
modifiées de A sont définies pour traiter les cas ou il y a plus de deux groupes, deux périodes et
deux niveaux de traitement et des conditions suffisantes d’identification sont données; les résultats sont
également étendus aux cas ou les hypotheses d’identification ne sont valides que conditionnellement a
un ensemble de covariables Z.; des estimateurs adaptés sont proposés. Quand des covariables sont
introduites dans le modele, les estimateurs de Wprp, Wre et Were requiérent 'estimation de quantités
dutype Eq, rxZo | G,T,X] et Eq, .« [D | G,T,X]. [54] prouve la normalité asymptotique des
estimateurs de Wp;p, Wrc et Wi quand les espérances conditionnelles précédentes sont estimées
nonparamétriquement a 'aide de régression polynomiales. Notre commande Stata propose aussi ces
estimateurs. Les espérances conditionnelles Eq, . . [Z, | G, T, X] etEq, . .« [D | G,T, X] peuvent
étre estimées par moindres carrés ordinaires, Probit ou Logit (lorsque Z, ou D est binaire) ou régression
polynomiale nonparamétrique. Lordre de la régression polynomiale peut étre spécifié par I'utilisateur
ou choisi automatiquement par validation croisée basée sur le critére de I'erreur quadratique moyenne
(voir [135] pour des définitions). De la méme maniére que [54], nous revisitons I'article empirique de
[76] pour montrer comment utiliser notre commande Stata et pour mettre en exergue les différences
qui apparaissent lorsque I'on estime le Wp;p plutdt que le W par exemple. Nous concluons avec un
exercice de simulation substantiel pour vérifier la performance de nos estimateurs dans des échantillons
de taille modérée. Pour chaque modéle choisi pour simuler les données, nous langons 1000 réplications
de ce modele, a chaque fois pour 3 tailles d’échantillon différentes, a savoir 400, 800 et 1600. Nous
évaluons la qualité de nos estimateurs a I'aide du biais moyen, de la moyenne de I'erreur quadratique
moyenne et du taux de couverture estimé. Les moyennes et le taux de couverture sont calculés sur les
1000 réplications.
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Chapter 2

Introduction in English

What is the connection between this PhD dissertation and real-life economic problems? This concern
seems supported by the somewhat technical title of the here-presented work. These introductory words
are mainly devoted to addressing this topic.

How do low-income people allocate their budget between luxury goods such as branded clothing
and food? Do unemployed workers have higher chances of returning to work when they get trained
by job centers? These are two examples of questions economists are interested in ([46, 47]). In the
first example, the goal is to understand the mechanisms behind individual economic decisions. In
the second case, interest lies in measuring the impact of a public policy. To answer these questions,
economic theory provides predictions that have to be tested against observational data. To test economic
predictions, some restrictions have to be imposed on how observations are generated. These constraints
form a model of observed behaviours. It is implausible to assert we can explain perfectly consumption
(resp. return to work) in terms of budget allocation (resp. training expenditures). It is more sensible to
assume that consumption or return to work depend also on unobserved factors that capture complex and
indescribable phenomena. When the observed and unobserved components of the problem are treated
as random, we are left with a statistical model. As discussed in the introductory chapter of [60], statistics
is the generic interface between theories we want to test and data. Our work lies in a discipline called
econometrics. The latter is a subfield of economics that uses statistical tools to adress socio-economic
questions. In this introduction, we aim at comparing econometrics with different subfields of statistics
and in particular statistical learning. Statistical learning is a discipline that studies theoretical properties
of machine learning algorithms when the data is supposed to be generated according to a statistical
model. As will be emphasized, econometrics and statistical learning somehow differ in their definition
of a statistical model. Note further that depending on how general a statistical model is, it will be called
parametric, semiparametric or nonparametric. We give precise definitions of the latter notions in the rest
of this introduction.

Key notions in semi- and nonparametric statistics

This dissertation is concerned with semi- and nonparametric statistical models. To explain accurately
those notions and understand them better, a few definitions are in order. We consider a random vector
W mapping an underlying probability space (€2, .A, P) to a measurable space (E, ). W refer to all the
random components of the model, be they observed or not. We assume that F can be given a metric
space structure thanks to the norm ||| ;. Q corresponds to the set of all probability distributions defined
on (E, ). In this work, we always consider that the distribution of W denoted by Q- belongs to a strict
subset of Q that we call 9*. A prominent example is Q* := {Q € Q:Eq [||W||2E} < +oo} , where Eg is
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the expectation operator under Q. This example is a nonparametric subset of Q since elements in Q*
are not fully characterized by a finite-dimensional parameter. We actually only consider nonparametric
subsets of Q here. A statistical model is constructed by: i) choosing a set © called the parameter set; ii)
associating to each 0 € © a distribution Q4 € O*. To fix ideas we give the example of the canonical linear
regression model inspired by the introductory chapter of [60]: Z, = Z.3 + €, where Z. € RP. The unusual
notations Z, for the outcome variable and Z. for the explanatory vector are introduced to be consistent
with latter chapters. We let Z = (Z,, Z!)'. In this example, the parameter is § = (5, Qz, ). The parameter
setis © =R? x D with D := {Q : Eg[Zc€e] = 0,Eq[Z.Z] 7! < 400} and Q* = {Q : Eg[Z.Z!]7' < +o0}.
In the linear regression model, we are only interested in 5 which can be formally written 5 = T'(9) for T a
projection map. It is often the case that the parameter of interest is not ¢ itself but some transformation
of it. When T'(0) is a finite-dimensional quantity we call the model semiparametric, otherwise we call it
nonparametric.

A fundamental question amounts to asking whether a statistical model is identified: a model is called
identified if every @ € Q* can be generated by at most one § € ©. In what follows, we assume that
model identification holds. Exhibiting primitive identification conditions is in general far from trivial but
lies outside the scope of this manuscript. Readers should keep in mind that we focus mostly on models
for which identification is (relatively) well-understood. In the linear regression case, the restrictions
Eq[Z.Z!]7! < 400 and Eg[Z.€] = 0 are necessary and sufficient for identification for instance.

When a model is identified, its parameters can be expressed in terms of the distribution of observable
random variables ([60]). Given identification, the main task of an econometrician is to use observations to
estimate T'(#) and conduct inference on this quantity. From now on, we assume we have at our disposal
n observations (Z;)_, with joint distribution @,,. We impose that all observations have the same marginal
distribution @z, i.e be identically distributed. We further restrict 7'() to live in a metric space (7, ||-||). An
estimator 7'() is a measurable function of (Z;)7, that takes its values in 7. The quality of an estimator is
measured by Hf(@) - T(H)HT. An estimator is consistent when HT‘(@) - T(H)HT goes to 0 in probability
as n increases. In general, the choice of the norm ||-|| is not unique. When T is finite-dimensional,
this choice is not crucial as all norms are equivalent. On the other hand, when 7T is infinite-dimensional,
norms are not all equivalent anymore. It can then be the case that an estimator is consistent for one
norm and not for another one. In infinite-dimensional problems, the discrepancy between different norms
can in fact be very useful: it is sometimes possible to use one norm as a regularization tool to help
obtain consistency of an estimator with respect to the other one. The notion of statistical regularization
is explained in more details below. Inference covers two closely connected topics: confidence intervals
and hypothesis tests. Since we only focus on confidence sets in the next chapters, we omit the definition
of hypothesis tests here. What follows is largely based on Chapter 6 in [79]. A confidence set (CS) is
loosely speaking a random subset C,, of T that depends on (Z;)_, but not on T'(9). We present the
asymptotic criteria that are used to assess the quality of a CS. Given § € (0, 1), a confidence set has
asymptotic level 1 — ¢ pointwise over © if

Inf liminf Pg, (G 3 T(6)) 21 -6, (2.1)

and it has asymptotic level 1 — ¢ uniformly over © if

o s |
lim inf inf Poy, (C 3 7(6) 21 -6 (2.2)

The second criterion ([104, 29]) that is sometimes called the honesty criterion is obviously more de-
manding than the first one and has raised a lot of attention especially in the nonparametric statistics
community. Those first two criteria ensure that the CS is in some sense asymptotically “reliable". They
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are not sufficient though as they do not throw away noninformative CS such as picking C,, = T for every
n. A second requirement is thus that the CS satisfies some optimality rule. Optimality can de defined in
several ways. A CS can be said pointwise/uniformly optimal if the inequality in (2.1)/(2.2) becomes an
equality. Another popular rule asks for the diameter of the CS to shrink to zero in probability sufficiently
fast as n goes to infinity. To discriminate between confidence sets that verify the previous optimality
criteria, one can for instance study the limit of the ratio of their diameters.

The statistical learning paradigm of Regularized Empirical Risk Minimization (RERM)

To see the connections and differences between econometrics and statistical learning, we first need
to understand the general goal of statistical learning and the theoretical framework that results from
this goal. We stick to the case where the observed data can be divided into two parts: an outcome
Z, € Z, and a set of potential predictors Z. € Z., with joint distribution Q) z, ~.. We still use the notation
Z =(Z,,Z). The aim is to predict Z, as accurately as possible using a function of Z. according to a
rule that captures the quality of the prediction performance. The prediction rule (also called loss) and
class of functions are chosen by the researcher and those choices are largely driven by computational
considerations. Put formally, the theoretical problem is: given a class of functions # mapping 2. to V,
andaloss ¢: Z, x Z, x H +— RT, it is assumed that there exists h* € H not necessarily unique such that

h* € argminEq, [((Z,, Ze, h)] . (2.3)
heH

For instance, we could take £(z,, 2., h) = (2, — h(2¢))?, i.e the least-squares loss, and
H:={h:Z. - Rstsup, ¢z |h(z)] < M}. This amounts to solving a nonparametric least-squares
problem. Note that in econometrics, the nonparametric least-squares problem is only of interest if we
assume that the data are generated according to the model Z, = h**(Z,) +¢, subjectto Eq_ , [e | Z¢] = 0.
As a matter of fact, if h** € H, it is a standard fact that h** satisfies (2.3). What happens when h** ¢ H?
The problem in (2.3) is still well-defined and admits a solution but this solution is not ~** and is suboptimal:
we have Eq, [((Z,, Z., h**)| < Eq, [¢(Z,, Z., h*)]. In econometrics terms, solving (2.3) when h** ¢ 7 is
equivalent to focusing on a misspecified model. In the statistical learning framework, this misspecification
is in general allowed. The statistical learning paradigm has other particularities: interest lies mostly in
high-dimensional models in which the class of functions H is allowed to grow larger with n. In a typical
high-dimensional model, h(Z.) takes the form Z.5 where g € RP and p is potentially much larger than
n. To make the problem solvable, a common assumption is that of sparsity, i.e only s entries (with s
small relative to n) are nonzero in the vector 5. A generalization of sparsity called approximate sparsity is
also popular: it imposes that 5 can be well approximated (but not necessarily fully recovered) by a small
number of its entries. Approximate sparsity bears strong ties with classical nonparametric models and is
close to the notion of smoothness of a function. We refer to [15], [16] and [17] for enlightening discussions
on this question. How can h* be recovered from observations? The n observations in the sample (Z;)7,
are assumed to be independent and identically distributed (i.i.d) and a naive approach would consider
the direct empirical counterpart of (2.3): h,, € argmin,cy 2 31" | €(Z,, Ze i, h). This is however not
satisfactory in a high-dimensional setup. As a matter of fact, the previous empirical minimization problem
does not take advantage of the sparsity assumption at all. To circumvent this, what matters is to endow A
with a norm [|-|| , which captures well sparsity and use this norm to regularize the empirical minimization
procedure. The problem becomes

1 n
h, € argmin{ — U Zyis Zeis h) +allb|b 2.4
thH {n; (Zojis Zeinh) I ||R} (2.4)
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and is called the Regularized Empirical Risk Minimization procedure (RERM). The quantity « is the weight
put on the regularization term and its choice is key to get theoretical results on h,,. The exponent p is
chosen equal to 1 or 2 most of the time. The most famous procedure that fits in this general framework is
the Lasso ([133]) for linear regression: £(Z,,i, Ze,i,h) = (Zoi — Z};8)%, H = {(-,8),8 € R’} ,p=1and
[|h||z = ||B]|, where ||-||; is the ¢; norm in RP. The quality of the estimated minimizer h,, is measured
by the so-called excess risk criterion R(h,,) :=Eq, [((Z,, Ze, hn) | (Z:)71]) — Eq, 6(Zo, Ze, h*)] . In the
previous definition, (Z,, Z.) is an independent copy of the sequence (Z,;, Z.,;)i-, . In statistical learning,
the goal is to control the probability that the excess risk is larger than an explicit threshold for a fixed
number of observations. This is called an oracle prediction inequality and its general form is: for every
0 € (0,1) and every n > 1, PQzpyn . (R(hy) > v(n,d)) < 6. The function v may depend on ¢, H, Q4
and some universal constants ahcﬁor a fixed ¢ v(n, d) is decreasing in n. Sometimes, the results are
weaker in that they may not hold for every § € (0, 1) and may require n to be larger than some threshold.
Even though prediction is of particular importance, a strand of the statistical learning community is also
interested in the estimation properties of h,,. The chosen criterion is ||k, — h*||; for a norm that usually
differs from the regularization norm (many examples of ||-||,, and ||-||; are given in [5]). To derive an
estimation result, we note that h* should be unique or at least it should be possible to uniquely select
one of the minimizers of the problem (2.3). Over the past twenty years, several conditions have been
proposed to relate ||k, — h*||; and R(h,) and thus directly obtain an estimation oracle inequality from
the prediction oracle ([106, 134, 5, 45])

Po sy (lhn = Bl > 7(n,6)) <8, ¥(8.n) € (0,1) x N*, (2.5)

The econometric interpretation of RERM and the need for other tools to handle endogeneity

Many econometric models can actually be written using the RERM framework discussed in the previ-
ous paragraph but the motivation for using RERM differs from that in statistical learning. We illustrate
this point focusing on mean and median regression models, i.e we assume that the data are gener-
ated according to Z, = h**(Z.) + € with either the restriction Eq, , [¢ | Zc] = 0 or med(Q.z,.) = 0.
Under the first restriction, h** is the true mean regression function of Z, given Z. and satisfies
h** = argminh:EQze (h(Z.)2] <400 BQz [(Zo — h(Z.))?]. Under the second restriction, h** is the true me-
dian regression function of Z, given Z, and satisfies h** = argminh:EQze (h(Z) 1 <+00 BQz[1Z0 — N(Z)|].
Economic theory often provides natural constraints on A** such as monotonicity, convexity/concavity or
smoothness. Let C denote the set of all measurable functions from Z, to Z, that satisfy the economic-
related constraints. The class of functions can then be chosen as H = {h : Eq,_ [h(Z.)?] < +oc}NCin
the mean regression case or H = {h: Eq, [|h(Z.)|] < 400} NC in the median regression case. The
mean regression case fits the RERM framework with ¢(Z,, Z., h) = (Z, — h(Z.))? and the median regres-
sion boils down to choosing ¢(Z,, Z., h) = |Z, — h(Z.)|. What differs between econometrics and statistical
learning is the fact that / is dictated by the parameter of interest in econometrics and is not chosen: if one
wants to recover the true mean regression function, ¢(-, -, -) is necessarily the least-squares loss. What is
more, H is chosen to capture some economically justified restrictions, not only on computational grounds.
To make the connection even clearer, it is useful to remark that (2.3) and (2.4) are equivalent to the class
of regularized M-estimators, a name that is perhaps more familiar in econometrics.

The RERM is a very general setting which is however not very well-suited to deal with one notion
that is central in econometrics: endogeneity. This concept captures the idea that certain variables that
influence both the outcome Z, and the observed explanatory variables Z. may not be observable by the
econometrician. In that case, using solely Z, to explain Z, does not allow to recover the parameters of
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interest in general. To overcome this issue, a standard approach is to find additional variables called
instruments that have an impact on Z, only through the explanatory vector Z.. We do not explain here
the formal reasons behind the lack of compatibility between endogeneity and M-estimation. Intuitively, the
M-estimator formulation is based on a projection argument that does not combine well with techniques
to remove endogeneity (outside of linear models at least, see [62]). Under endogeneity, it is in fact
more natural to obtain the parameters of interest by finding the zero of an appropriate set of moment
conditions ([37]). To see this, we focus on the median regression case. We now assume that the model is
Zo = h**(Z.) + e with med(Q|z,) # 0 but med(Q x) = 0. In this model, at least one of the components
of Z. is linked to ¢ which is why the quantile restriction med(Q.|z,) = 0 breaks down. The vector X
consists of all the extra instruments plus the variables in Z, that do not violate the quantile restriction. It is
possible to show that the median regression model can be expressed as

Eq,x [1{Zo <h(Z)} | X] =0 Qx —a.s <= h=h*"

This example motivates the following general class of problems as an alternative to the M-estimator
framework:

EQZ\X [p(Z, h) | X} =0 Qx —as < h="1", (26)

where p is a known finite-dimensional vector of functions. The relation in (2.6) can be equivalently
written as h** = argmin, ¢y Eq [[|Eq, « [0(Z, k) | X]||?] , with || - || the Euclidean norm. If some natural
constraints can be imposed on h**, it is useful to endow H with a regularization norm || - || g that magnifies
these constraints. The empirical analogue of the problem becomes

hy, € argmln{ Z IE. [p(Z,h) | X = Xi]|1* + a||h|R} (2.7)

The quantity E,, [p(Z, h) | X = -] stands for any estimator of the function Eq, , [0(Z,h) | X = -]. The esti-
mation procedure in (2.7) is called the Regularized Generalized Method of Moments (RGMM) approach.
When the class of functions H is parametric, it is in general useless to add a regularization term. When
H is parametric, h** can even be identified using a finite number of unconditional moment conditions in
some cases, i.e Eg, [p(Z,h)] =0 < h = h**. In this simplified setup, there is a natural connection
between M-estimators and GMMs. To explain this connection, we assume for simplicity that h(Z.) = Z.5.
Under some conditions on Eq, [¢(Z,, Z, (-, 8))] including differentiability in 3, (2.3) is equivalent to

0

%EQZ [E(ZO>Z€7 <56>>] =0 <= p=p3""

If there exists a function p : (2o, 2, 8) = p(z, (-, 8)) such that for every 8 ZEq, [((Z, Z, (-, 8))] =
Eq, [p(Z, (-, 5))], then the M-estimation problem has been turned into a GMM one. GMMs that are
obtained from the first-order condition of a M-estimator are called Z-estimators (this is explained in
Chapter 5 of [136]).

The general framework of (2.7) has been investigated in many contributions in the econometric literature,
a landmark being [37]. Unlike the statistical learning approach, the prediction properties of h,, are not of
central importance. Most results consist in proving that ||k, — h**|| i converges to 0 at a fast enough rate,
for a norm || - ||z possibly different from | - || z. Results are asymptotic most of the time, in the sense that
estimation oracles valid for every n are usually not exhibited.
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The construction of confidence sets in econometrics and nonparametric statistics

In principle, confidence sets could be computed without resorting to an estimator of the parameter
of interest. In practice however, CSs are almost systematically built based on an estimator and there
is de facto a strong connection between estimation and the construction of CSs. To understand this
connection, we discuss two cases: the construction of a CS for A** in the model (2.3) (with * = h**) and
the construction of a CS for a functional of »** denoted p(h**).

The first example is typically what would be of interest in nonparametric statistics ([79]). If an oracle
inequality similar to (2.5) exists and ~(-,-) does not depend on h**, a CS of level 1 — ¢ valid for every
n uniformly over H can be constructed by collecting every h € H such that ||k, — hl|lg < ~v(n,d).
This is an appealing theoretical finding since it applies to a wide range of statistical problems but its
direct implementation is often difficult: the norm || - ||z can be cumbersome to compute and the search
for all the hs that fall in the CS may be computationally demanding; the function ~(-,-) depends in
general on constants that are either unkown, very large or must be estimated; even when the two
previous difficulties do not arise, CSs based on an oracle inequality may have a diameter that is
asymptotically too large in a sense made precise below. To underline those challenges, we discuss
a very simple problem. We want to construct a confidence interval for Eq, [Z,] based on n iid
draws (Z,;), ~ Qz,. We assume that the variance of @), is finite and known equal to V. An
application of the Bienaymé-Chebyshev inequality (see Chapter 2 in [136]) yields the following oracle
inequality: for every n > 1and ¢ € (0,1), Pye- (|% St Zoi —Eq,, 12| > %) < 4. The interval

Il = LN Z, =/ Ve, L Z, i+ \/V/mi} verifies for every n > 1

on (10! 3 Eqy, [Z,]) 21 -4.

Assuming that the variance is known equal to V' is unfortunately simplistic and applied statisticians would
not be ready to impose this. A solution would be to: i) assume that the true variance is unknown but
upper bounded by V' which would yield the same result as before, ii) replace V' by an estimator of the
variance but the nonasymptotic guarantees associated with 79! would collapse. Note that i) is often not
appealing in practice as it is hard to come up with a sensible value for the upper bound V. This restriction
(or bounds on higher-order moments) is however unavoidable to conduct nonasymptotic inference.

The second example is central to econometrics where the parameter of interest is often not 4** as de-
fined in (2.6) but a scalar transformation thereof (see the introduction of Chapter 3 and references therein
for several concrete illustrations). In econometrics, the approach to constructing CSs is mainly asymptotic:
the standard approach relies on exhibiting a suitable (random) sequence r,, such that the distribution of
(@ (hn) — p(h**)) converges to a N (0, 1) distribution. Let gn-o,1)(1 — ¢/2) stand for the 1 — §/2 quantile
of the NV(0, 1) distribution. The interval 132 := [p(hy) — qnr(0,1)(1 = 6/2) /T, ©(hn) + aaro,1) (1 — 6/2) /1]
can be shown to be pointwise of level 1 — § asymptotically. It satisfies the optimality criteria introduced
earlier, in particular the probability that ¢(h**) belongs to 132 tends to 1 — § for every § € (0,1) and
h** € H. The main drawback of 12 is that its behaviour is uncontrolled for every finite n and it is not
honest as defined previously without further restrictions (see [97]).

Coming back to the construction of a confidence interval for Eq, with a known variance V, we can
build a pointwise asymptotically valid confidence interval as
153 = [% S Zoi — anvony (1= 6/2)\/ VI, 250 Zo i + oy (1 — 5/2)%} . If we compute the
ratio of the lengths of 73! and I2:* and study its limit in probability, we remark that diam(13:1) /diam(I3?) —
1/(qnr(0,1)(1 — 6/2)8) which can be shown to be larger than 1 for every § € (0,1/2). This implies that 13!
is asymptotically of level strictly larger than 1 — § and is therefore conservative.



Chapter 2. Introduction in English 31

The previous discussion highlights the fact that it is difficult to combine asymptotic optimality and
honesty. Optimality and honesty are not incompatible though and a vast literature tackling this question
has blossomed ([87, 123, 122]). In recent years, several econometricians have been active in this field
and proposed methods both theoretically appealing and practical ([11, 10]).

Relaxing the i.i.d assumption matters in econometrics

There are many natural reasons to go beyond the i.i.d assumption. Perhaps the most pervasive
one is time: when time plays a role, which is the case in time series or panel data, data is allowed to
be dependent over time and to have a time-varying distribution. As a result, observations are neither
independent nor identically distributed anymore. We do not discuss the issue of time in statistical
modelling any longer since time is never a core element of the models we study in this dissertation.

Even in the context of cross-sectional data (data that is not indexed by time), i.i.d-ness is often deemed
implausible by applied econometricians. Let us take a simple example: we observe a sample of n workers
and we have information on their commuter zone and industry. It is quite standard to allow for unobserved
aggregate economic shocks at the geographical area and industry levels ([1, 27, 110]). The goal is to
build CSs that are robust to the presence of such shocks. CSs are called robust if they have (asymptotic)
coverage at the desired level should the data be i.i.d or not. The i.i.d assumption is also not very credible
with interaction data, that is data that stems from the interactions of the individuals of one population
among themselves. In this setting, datasets have the form (W, ;)1<.»j<» Where W; ; is an observation
relative to the pair formed by individuals i and j. Those notions of cross-sectional dependence exist in
other statistical fields such as spatial statistics or network analysis. In those fields however, dependence
tends to be the main topic of interest, i.e a model on the dependence structure is formed and the goal is
to recover the parameters of the former. In econometrics (or part of it at least), the aim is quite different:
dependence is mainly seen as a nuisance term that has to be accounted for to conduct valid inference on
some other quantity. Cross-sectional dependence is at the heart of Chapter 4.

In the preceding paragraph we do not relax the assumption that observations are identically distributed.
We never give up on that assumption in that dissertation and we view it as quite fundamental (except
in the case of data that exhibit a time dimension): as a matter of fact, it seems farily natural to assume
that two individuals from the same sample - no matter how different they may be in terms of education
and wage for instance - are simply two distinct draws from the same distribution. Some researchers
have a different view on the matter: they take the observed explanatory variables (Z. ;)}_, as fixed and
nonrandom which leads to a non identically distributed sample (see Chapter 2.8 in [136]).

Causality and machine learning

Causality is one of the pillars of the econometric discipline. This notion became popular in econometrics
following an article by Donal Rubin ([124]). It relies on a thought experiment: there exist two states of the
nature (labelled 0 and 1) and each individual is placed in one of the two. Individuals are given an outcome
variable Z,(0) or Z,(1) depending on which state they are in. At the individual level, the causal impact of
changing states simply is the difference Z,(1) — Z,(0). Why is causality interesting in econometrics? It is
a convenient framework to model the impact of a public policy at the aggregate level. If the government
could observe Z,(1) — Z,(0) for everybody, this government could measure the consequence of making
people switch states according to some predefined criterion. In this context, enforcing a public policy is
equivalent to making individuals switch states.

In reality, the government observes either Z,(1) or Z,(0) but never both: the causal framework is
an example of a missing data statistical problem ([121]). Denoting D the state individuals are in, the
government only observes Z, = DZ,(1) + (1 — D)Z,(0). Without further restrictions, it is only possible
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to recover Q7 (1yp=1 and Qz, (o) p—o- Imposing further (Z,(1), Z,(0)) 1L D ensures that Qz, (1)jp=1 =
Qz,1) and Qz, (o) p=o0 = Qz,(0)- We refer to [81] for a thorough presentation of the identification question
in Rubin’s causal framework. Identifying @z, ) and @ (1) allows to compute the average change
associated with the treatment D: Eq, ., [Z,(1)—Z,(0)], or the change in the -th quantile: qq, ., (6)—
9Q2, 0, (0)- On the other hand, it does not allow to recover the ¢-th quantile of the treatment effect
4Qz, 01— z,0)(0)- TOGEL G0, 1, (6) — 4Q 4, 0)(0) = 4@, 1) 2,0 (0), ONE has to assume that the rank of an
individual under @z, (o) is the same under Q1) (rank invariance property, cf [65]).

In the remaining of this paragraph, we focus on the parameter Eq, , . ,,[Z,(1) — Z,(0)] which we
denote by 7. One drawback of the assumption (Z,(1), Z,(0)) 1 D is its non-testability. It is often
replaced with (Z,(1),Z,(0)) 1L D | Z. which is not testable either but strictly weaker. Under this
last assumption, one can show ([81]) 7 = Eq,_ [E[Z, | D =1, Z.] —E[Z, | D =0, Z.]] . The right-hand
side depends only on observable variables. The two tasks researchers are mainly interested in are
i) estimation of and inference on T, ii) testing for heterogeneity of the treatment effect for different
(1) Ze [Zo(l) - ZO(O) | Ze =
21) = EQ 40y 200012 [Zo(1) — Zo(0) | Ze = 2z2] when z; # z. In both cases, a first step consists in
estimating the functions E[Z, | D = 1,Z, = -] and E[Z, | D = 0,Z. = -] (only evaluated at points z;
and z, in the second case). How to estimate those functions in a flexible fashion? One possibility is

individual profiles z.. This second goal consists in testing whether Eq , ., .

to use classical nonparametric tools such as Nadaraya-Watson or local linear regressions ([135]). The
theoretical guarantees of these methods have been long established ([59, 70]). Their main limitation is
their poor performance in practice when the dimension of Z, is large. On the other hand, machine learning
techniques such as random forests or deep neural networks perform well on simulations even when the
dimension of Z_ is large but their theoretical properties are much less known. Recent efforts both from the
econometrics and statistical learning communities have led to theoretical advances on machine learning
algorithms: Theorem 3 in [71] shows the asymptotic normality of an estimator of 7 based on a deep
neural network architecture, [138] prove the asymptotic normality of a random forest method to estimate
EQ 2. 0. 20012. [Zo(1) = Zo(0) | Ze = 2] for a fixed z.. Quite interestingly, the theoretical properties are
not very different from those of more classical honparametric tools: deep neural networks have been
shown to work for exactly the same functions as more classical nonparametric tools and suffer from the
same curse of dimensionality in the Z, vector; random forests can approximate functions that are less
smooth than standard methods but are still subject to the curse of dimensionality.

Summary of Chapter 3
In this chapter, we focus on the generic problem (2.6). As was explained before, many research articles
(actually most) interested in this problem build an estimator based on (2.7) ([3], [112], [20], and [37] to
name a few). There are actually other possibilities to construct an estimator for this class of problems
and we look at the family of Generalized Empirical Likelihood (GEL) estimators ([113], [99]). To present
GEL estimators, it is easier to start with a simplified version of (2.6): we assume that 4 is replaced with a
finite-dimensional parameter 5 € B and the true value g** is such that Eq, [p(Z, 8)] =0 < B8 = **.
As explained in [113, 99], 5** can equivalently be identified by
B =argmin  sup  Eq, [¥5(Np(Z, )], (2.8)
BEB  AeA(B,Qz)
where A(8,Qz) = N.couppiay) (A ¥y (Np(2,8)) exists} and v, « u s 2 [~(y + 18] 7 — 2
Taking the sample analogue of the previous saddle point problem yields one estimator for each function
. We thus have a family of estimators called the GEL family. The most popular estimators in this class
are: the Empirical Likelihood (EL) estimator which was popularized by [117], the Exponential Tilting (ET)
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estimator of [100] and the Continuously Updating Estimator (CUE) of [88]. The previous ideas extend to
problems of the form (2.6). [93] shows that (2.6) can be reformulated in the form of (2.8) with a number of
moment equalities that diverges with n: h** is the unique parameter value that satisfies for every n > 1

P =argmin - sup  Eg, , [, (Np(Z.h) @ qx, (X)), (2.9)
heEH AEA(h,Qz x)

with @ the Kroneker product and ¢k, (-) a vector of growing dimension K,, made of well-chosen functions.

[101, 99] propose a more straightforward adaptation: they show that »** verifies

h** = argminEg, sup  Eq,, [(Np(Z,h)) | X]|, (2.10)
heH AeA(h,Qz)x)
where A(h, Qzx—z) = nstupp(Qz\xzz) {A ¥y (Np(z, 1)) exists} . Note that even when © reduces to
a finite-dimensional parameter (as is the case in [101, 99]), Eq,,, [- | X = -] is nonparametric without
further constraints. To construct GEL estimators, the previously cited articles take the sample analogue
of (2.9) or (2.10) and use some nonparametric estimator to approximate Eq, . [- | X =-].

Very few contributions that allow & to be infinite-dimensional exist. The main ones are [116] and [40].
The class of functions H is always chosen as a subset of a metric space endowed with a norm || - || .
This metric space is usually taken equal to the space of square-integrable functions with respect to the
Lebesgue measure or the space of uniformly bounded functions with respect to the same measure. In
[116], the author focuses on models where p is a smooth function of h and studies the behaviour of the
EL estimator based on (2.10). He uses a Nadaraya-Watson method to estimate Eq,, [ | X = ]. His
main results are the consistency of his estimator in || - || z-norm and the asymptotic normality of a specific
functional of his estimator. The main limitation of this article is that unnecessary restrictions are placed on
the parameter space H to avoid the use of regularization. In [40], the authors study the behaviour of the
whole family of GEL estimators based on (2.9) in one specific model, namely the Nonparametric Quantile
Instrumental Variables (NPQIV) ([41]). The NPQIV does not verify the smoothness property on the p
function and is not covered by [116]. Larger classes of functions # are considered than in [116] thanks to
a regularization term that is added to the estimation procedure. Their main results are the consistency
with rate in || - || z-norm and the asymptotic normality of a large class of functionals of the estimator.

In Chapter 3, we study the properties of the whole GEL family of estimators for a class of p functions,
and therefore of models, that encompasses both those studied in [116] and the NPQIV. Similar to [40],
we consider a regularized estimation procedure and consider larger classes H than those in [116]. One
specificity of our approach is that we rely on a slightly modified version of (2.10) to build our estimation
method. As explained earlier, the use of regularization does not mean that # can be taken arbitrarily large:
we assume that # is a subset of the space of square-integrable functions with respect to the Lebesgue
measure that contains functions that are differentiable up to a certain order with all partial derivatives
square-integrable. Let us denote | - ||, s the norm on the space of square-integrable functions with
respect to the Lebesgue measure. In our work, we prove the consistency without rate of our estimators in
| - | L, zesy-NOrm and we derive an upper bound on the rate at which Eq [HIEQZ‘X [p(Z, hy)] |1?] converges
to 0. We prove a generic slow rate that requires weak moment assumptions and we show that the rate
can be improved under more stringent moment conditions. We also discuss how those results could
be used to derive consistency with rate of our estimators in || - ||, es-norm. As we recall in Chapter
3, to obtain the latter the key is to control the ratio || — h**|| ., ety /By [I[Bq, « [2(Z; h)]11] uniformly
over h in a suitable neighbourhood of 4**. This ratio measures the discrepancy between a norm in the
numerator and another quantity in the denominator that can be seen loosely speaking as a weaker norm.
The supremum of the ratio is sometimes called the degree of ill-posedness of the model ([37]). A large
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body of work has investigated and is still actively looking for general sufficient conditions to control the
degree of ill-posedness (see [39, 33] for extensive reviews). As we explain at the end of Chapter 3,
we believe there is still room to find more transparent conditions to control the degree of ill-posedness.
This is definitely an avenue for future research that has implications beyond the models we consider in
this chapter. Other relevant extensions of our results are: i) to derive the asymptotic normality for the
same class of functionals as in [40]; ii) in a more statistics-oriented way, build oracle inequalities on the
estimation performance of our estimator.

Summary of Chapter 4

Even with cross-sectional data, the i.i.d assumption can be too restrictive. In applied econometrics, it is
often plausible that the data is affected by several sources of aggregate shocks: suppose you observe
several economic variables at the industry-area level. The data can be written (Z;, i, )1<ii<ni,1<is<na>
where n; (resp. n) is the number of industries (resp. areas). Observations correspond to industry-area
cells and they are likely to be correlated whenever they share the same industry or area because of
shocks at the industry or area level. One usually says that the data is clustered at the industry and area
levels. This is an instance of multiway clustering. Polyadic data are another data type that naturally
exhibit dependence: polyadic data stem from the interactions of several individuals from the same
population together. Data on interactions between pairs of individuals are called dyadic for instance and
are the most common. Dyadic data can be written (Z;, ;,)1<i,#i,<n- Intuitively, polyadic data should
exhibit more dependence than multiway-clustered data: in the first case, observations are dependent
because of shocks that stem from a unique population while in the second case, shocks come from two
distinct sources. To capture these ideas, we impose the data be jointly exchangeable in the polyadic
case and separately exchangeable under multiway clustering. The two notions of exchangeability are
presented in great detail in [96]. Those assumptions are powerful as they allow us to use deep and very
useful probabilistic results ([89, 4, 95]) that ensure the data can be represented in terms of a series of
independent shocks in the different dimensions. While separate exchangeability is a subcase of joint
exchangeability, we still have to handle multiway clustering on its own: the unbalanced number of clusters
in each dimension makes the problem more complicated. Quite importantly, exchangeability implies that
observations remain identically distributed: the dependence we introduce is therefore very different from
times series dependence.

When exchangeability is assumed instead of the i.i.d assumption, the construction of estimators is
not affected. However, one has to show that estimators are still consistent and asymptotically normal.
Existing results are mostly concerned with sample means and linear regression models: in the joint
exchangeable case, asymptotic normality for sample means can be traced back to [66] and asymptotic
normality for t-statistic in linear regression models is studied in [131]; under multiway clustering, [109]
studies the limit in distribution of sample means when the number of relevant clustering dimensions is
unknown and he shows the consistency of a bootstrap procedure (we define what a bootstrap procedure
is in a few lines). A number of articles also propose estimators of the asymptotic variance for a large
class of models without proving their consistency ([69, 30]). When one is interested in more models
beyond the linear regression case, theoretical results for sample means are in general not enough.
In the i.i.d case, a powerful generic approach consists in controlling the asymptotic behaviour of the
empirical process associated to the model (see [137] for more details). We extend well-known results
on empirical processes in the i.i.d case to multiway-clustered and polyadic data. To extend results,
the definition of an empirical process has to be modified. As an example, under two-way clustering,
the empirical process associated with the class of functions F is the random map G,,, , : f € F —
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7”“21{:;””} Yo > (f(Ziy ) — Eq,[f(Z1,1)]) - With dyadic data, the empirical process takes the
formG, : f € F — %2191#29 (f(Ziyiy) —Eg,[f(Z12)]) - The class of functions F depends
on the model of interest. For instance, if we study the model Eq,[p(Z,h)] = 0 < h = h**, we
have F := {p(-,h) : h € H}. Observe that for every fixed f € F, G,, »,f and G, f are asymptotically
normal thanks to results on sample means. Studying the limit in distribution of the empirical process
is therefore more challenging than simply requiring that the empirical process be convergent at each
function f. Our main result consists in proving that empirical processes with multiway-clustered or
polyadic data converge in distribution to a Gaussian process under the same assumptions as in the
i.i.d case but the asymptotic variance formula differs from the one in the i.i.d setup. The Gaussian
process has the following properties: this is a random function which associates to every f € F a
centered normal random variable with variance given by the asymptotic variance formula. This result is
not directly useful to conduct inference since the asymptotic variance is unknown and has to be estimated.
Instead of proposing a variance estimator, we prove the consistency of two modified version of the
nonparametric bootstrap ([67]) adapted to multiway clustering and dyadic data. We explain how our
bootstrap schemes are constructed with twoway clustering and dyadic data. With twoway clustering,
for each dimension of clustering j we draw n; indexes with replacement and the bootstrap process

takes the form G, ., : f € F — 7““1:;{;27”} S i<t cm Dor<izeny Vit V2 = 1) f(Zi, 4,), with Vi (resp.
Vii) the number of times the index i (resp. i-) is resampled. With dyadic data, we draw n indexes with
replacement and the bootstrap process writes G, : f € F — W@ Yoi<istinen (Vs Vie = 1) f(Ziy i,)- In
the i.i.d setup, standard nonparametric bootstrap works because resampling is carried out based on
independent observations. In our modified bootstrap schemes, we cannot resample at the observations’
level since they are not independent at all. We thus find another level at which independence is present:
the individual level that generates pairs with dyadic data and the two cluster dimensions in twoway
clustering. The second main contribution of our work is the proof that the two modified bootstrap schemes
are consistent asymptotically. We use our two main results to prove the asymptotic normality and validity
of bootstrap-based inference for a wide class of nonlinear estimators. We also revisit the influential
empirical work of [126]. The authors estimate the determinants of trade volumes between countries
using explanatory variables at the country and pair-of-countries level such as a country’s gross domestic
product or the distance between two countries. They use a Poisson pseudo maximum likelihood (PPML)
model and assume that the data is independent across pairs of countries conditional on the explanatory
variables. We rerun their main specification and show that once dyadic dependence is allowed, the length
of confidence intervals and p-values increase substantially.

Summary of Chapter 5

In econometrics, many parameters of interest are functions of one or several ratios of expectations
and/or covariances. Leading examples are the parameters in a univariate linear regression with or without
endogeneity, conditional expectations and the difference-in-difference estimand when the treatment
variable is endogenous ([53]). To conduct inference on those parameters, the standard econometric
approach relies on the asymptotic normality of sample means combined with the delta method (see
Chapter 3 in [136]). In our work, we focus on the simple case of a ratio of expectations Eq, [X]/Eq, [Y]
and look at the consequences of having Eq, [Y] “close to zero" in terms of inference. Some deep results
have already been proved on this topic: if the model does not bound Eq, [Y] away from 0, it has been
shown in [63] that at any confidence level an honest confidence interval in the sense of (2.2) must
have infinite length with positive probability. The theorems in [63] in fact apply for any given number of
observations n by dropping the limit inferior in (2.2). The question we address is also close in spirit to the
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widely studied issue of weak instrumental variables: this problem shows up when the instruments have
(almost) zero correlation with the endogenous variable in a linear model with endogeneity (see [8] for
a recent review). The weak IV literature has proposed to build CSs that are robust to zero correlation
between instruments and endogenous variables following ideas initiated in [6]. This literature has also
studied the limit distribution of several estimators for the linear model under endogeneity when the
correlation between endogenous variables and instruments is allowed to go to zero when the number of
observations n increases ([129]). We use the latter approach to define “closeness to zero" of Eq, [Y]:
we allow Eg, [Y] to depend on n the number of observations and to go to zero as n increases. We
actually allow not only Eq, [Y] but also Vg, [Y], Eg, [X] and Vg, [X] to depend on n and possibly go to
zero. In this setting, we derive the asymptotic behaviour of the distribution of X,,/Y,, — Eq [X]/Eq, [Y]
depending on the speed at which Eq, [X], Eq, [Y], Vo, [X] and Vg, [Y] go to zero. We then show
that when Eq, [Y] (resp. Vg, [Y]) goes to zero slow enough (resp. fast enough), confidence intervals
based on Efron’s nonparametric bootstrap are asymptotically valid in the sense of (2.1). These results
are of asymptotic nature and we complement them using a completely nonasymptotic approach. To do
so, we build on results from the statistics literature such as concentration inequalities (see [25] for an
introduction) and the impossibility theorems of [34]. We place bounds on the second moments of Qx v
as well as a lower bound on |Eq, [Y]] strictly larger than zero so that |[Eg, [X]/Eq, [Y]| is bounded away
from infinity uniformly over the model and we are not in the setup of [63]. Given theses restrictions, we
show how to construct nonasymptotic confidence intervals for every confidence level below a threshold
t,, with the following properties: they are almost-surely of finite length and they have the required level
uniformly over the model for every finite n. The confidence intervals and ¢,, depend on n and the moment
bounds. We further derive a confidence level ¢,, above which it is impossible to construct a confidence
interval that contains X,,/Y,, almost surely and that is both of required level uniformly over the model
and almost surely of finite length. As a consequence, even outside the framework of [63], a large class
of confidence intervals including those based on the delta method cannot be both almost surely finite
and have guaranteed coverage for confidence levels too close to 1 when n is finite. We propose a
criterion to appraise the reliability of the delta method in finite samples: when there exist natural upper
and lower bounds on the moments of Q) x y, researchers can compute ¢,, to have an idea of the maximum
confidence level (that depends on n) at which the delta method can be safely used to build confidence
intervals. When no meaningful bounds can be found, we suggest a rule-of-thum criterion: simply replace
these bounds by empirical moments based on the data. We advocate the use of ¢, rather than ¢,
based on several simulation experiments. We present another impossibility result that gives a minimal
confidence interval’s length below which the said confidence interval cannot have uniform coverage. We
illustrate our asymptotic and nonasymptotic findings on a simple application to gender wage disparities
using French administrative data.

Summary of Chapter 6

This chapter proposes a Stata package implementing the different statistical tools introduced in [53].
[53] starts from Rubin’s causal framework and assume Z, = DZ,(1) + (1 — D)Z,(0). Each individual
is also attributed a random pair (G,T): T is the random time period or cohort of that individual and G
indicates whether that individual belongs to a group with a stable or increasing intensity of treatment
between time periods/cohorts. G identifies treatment (G = 1) and control groups (G = 0) in [53]. Letting
S identify all the individuals in the treatment group that would switch from non-treatment to treatment
should they be observed at different time periods/cohorts, [53] gives non-nested sets of assumptions

that allow to recover the quantity A = E Z,(1) — Z,(0) | S,T = 1] with three different
Q(z,

(1),Zo(0))\S,T:1[
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estimands. The parameter A is called a local average treatment effect (LATE) and was introduced in
[92]. One of the estimands denoted Wp;p is not new and is widely used in practice while the other two
coined Wre and Were are new. Under the identification conditions that motivate the W ¢ estimand, the
authors prove the stronger fact that Q, (1ys,7—1 and Qz,(0)s,r=1 are identified as well as local quantile
treatment effects (LQTES) 75 = 9,y s.0-1 (0) = 4Q 2, (05,01 (§)- O top of these identification results,
[53] proposes estimators for the four estimands and show their asymptotic normality. One major takeaway
of [53] is to show that the conditions required to identify the popular Wp;p estimand may be implausible
in certain settings in which case W and W¢c can be useful alternatives. Our contribution is to make
the proposed estimation procedures available on the statistical software Stata that is widely used in
applied econometrics. On top of computing the estimators, we build in the package 95% confidence
intervals on A and 75 based on the bootstrap as well as statistical tests to see whether the estimands of
A are significantly different. Inference can be made robust to one-way clustering. In [53] and [54], several
extensions are considered: analogues of A are defined with multiple time periods/cohorts, treatment
levels and groups and their identification is proved under adapted conditions; the results are also extended
to setups where assumptions are valid conditional on additional covariates Z.; corresponding estimators
are proposed. When additional covariates are included, estimators of Wp;p, Wre and Were require
to estimate quantities of the form Eq, .. [Z | G,T,X] and Eq, . . «[D | G, T, X]. [54] shows the
asymptotic normality of estimators of Wp;p, Wre and Were when conditional expectations are estimated
nonparametrically using polynomial regressions. Our Stata package supports these extensions as well.
The conditional expectations Eq, ., x[Zo | G,T,X] and Eq,, . . «[D | G, T, X] can be estimated by
ordinary least squares, Probit or Logit (when Z, or D is binary) or polynomial nonparametric regression.
The order of the polynomial regression can be specified by the user or automatically chosen via 5-fold
cross-validation based on a mean squared error criterion (see [135] for definitions). Similar to [54], we
revisit the empirical work of [76] to show how to use our Stata command and to emphasize differences that
can be found when using the Wp;p estimand rather than the Wz one for instance. We conclude with
a substantial simulation study to check the performance of our estimators in moderately large samples.
For the data generating process that we select, we run 1,000 replications of it for each of three different
sample sizes, namely 400, 800 and 1,600. We assess the quality of our estimators based on average
bias, average mean squared error and coverage rate, where the average and coverage rate are computed
with the 1,000 replications.
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Chapter 3

Nonparametric estimation in
conditional moment restricted models
via Generalized Empirical Likelihood

Abstract

In this paper we address the issue of estimating a functional parameter h identified by a set of
conditional moment restrictions. In particular the arguments of h, are allowed to be endogenous,
a situation we refer to as nonparametric endogeneity. The models we consider can be written
as inverse problems of the form ||Th|| = 0 <= h = hg for some (nonlinear) integral operator T’
with || - || the norm on the codomain of 7. What is more T is unknown and has to be estimated.
To recover hg, we propose an estimator 1., based on a penalized kernel Generalized Empirical
Likelihood (GEL) procedure. For a class of models that encompasses both the Nonparametric
Instrumental Variables mean (NPIV) and quantile (NPQIV) regressions, we derive the consistency
of our estimator in Ly(P) norm where P is the unknown distribution of the data. We also obtain an
upper bound on the rate of decrease of ||Tﬁn|| to 0. We discuss how this last result can be used
to control the convergence rate of &, in Ly (P) norm. Our results notably complement [116] and
[40]: the former propose a GEL estimator for a class of models that includes the NPIV but not the
NPQIV while the latter focus on the NPQIV only.

Keywords: NPIV, NPQIV, penalized nonparametric regression, statistical inverse problems.
Based on [85] : Guyonvarch Y., Nonparametric estimation in conditional moment restricted models
via Generalized Empirical Likelihood.

3.1 Introduction

Our goal in this article is to estimate infinite-dimensional parameters in models subject to endogeneity, a
situation we refer to as “nonparametric endogeneity”. More specifically, we want to study the performance
of the family of Generalized Empirical Likelihood (GEL) estimators in this context.

The issue of nonparametric endogeneity in structural estimation has received growing attention over
the past 15 years. The challenges put forward by this question are well-exemplified by the classical
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problem of estimating budget share Engel curves.! Budget share Engel curves capture how budget
shares devoted to a specific good vary with total consumption expenditures of households for a given
system of relative prices, potentially controlling for additional households’ characteristics. It has been
well documented ([21, 23, 22]) that: (i) for consumer maximization theory to hold, total expenditure and
additional households’ characteristics can enter linearly or additively in the regression function only if
strong restrictions are imposed on the utility function; (ii) total expenditure is likely to be endogenous.

Point (i) illustrates that reduced form estimation may come at odds with economic theory when it does
not allow for enough flexibility. Point (ii) underlines the general fact that accounting for endogeneity is
often a key ingredient when estimating structural economic relations. In that respect, nonparametric
econometric tools that allow for the presence of endogeneity are crucial.

Continuing with the Engel curves example, let Z, stand for the budget share spent on food for instance,
Zy, stand for the log of total consumption expenditures (a priori endogenous) and X be a vector of
excluded instruments. We omit the presence of additional household characteristics for simplicity. We
further let P stand for the distribution of (Z,, Z,, X) and PV be the marginal distribution of any subset V of
(Z,, Zn, X). If one is interested in studying the average impact of Z;, on Z,, the canonical nonparametric
instrumental mean regression model (NPIV) writes

E[Z, — ho(Zy) | X] =0 PX — almost surely (P* —a.s).

If one is willing to recover the effect of Z;, on the 7-th quantile of the (conditional) distribution of Z,, we
are left with the nonparametric instrumental quantile regression model (NPQIV)

E[1{Z, <ho(Zy)}—7|X]=0 P*X —as.

The NPIV and NPQIV are in fact two instances of a broader class of models we are interested in and that
we now introduce. Let (Z¢, Z!, X*)! be a random vector with distribution P and support Z, x R%x x [0, 1]
where Z, C R%.. We denote (7%, Z})! by Z.? Define the parameter space H := {h: Z, — R : ||h]]2 <
oo} C Ly(P) where Ly(P) is the space of square integrable functions of Z;, with respect to P and its
norm is denoted by || - ||2. The true parameter h, is assumed to belong to H and is characterized via the
following restriction

E[p(Z,h)|X] =0 PX —as <= h=hy, (3.1)

where “h = hy” means ||h — ho||2 is null, p : R%=o+4=1 x H — R? is a vector of known functions and E[/]
denotes the expectation with respect to P. In the following we denote E[p(Z, h)| X = z]| by m(z, h). We
can verify that the NPIV model corresponds to the choice p(z, h) = z, — h(z;,) while the NPQIV model is
obtained by setting p(z,h) = 1{z, < h(zx)} — 7. Our goal is to estimate h, consistently in || - |[|o-norm.
Providing primitive conditions that ensure existence and unicity of hq is not trivial at all and lies beyond
the scope of this article. [61] and [7] provide exhaustive discussions on the topic.

The difficulty of estimating h in (3.1) is now well-understood: as explained in [32], the operator
T : h — m(X,h) that maps Ls(P%") into Ly(PX) is not continuously invertible in general when H
is not a compact subset of Lo(P). T is also unknown here since P is not specified and has to be
estimated. Consequently, estimating T consistently and inverting it is not enough in general to estimate
ho consistently in || - |2-norm when 7 is not a compact subset of Ly (P). Estimating hy consistently in

See e.g [2] for other interesting examples such as estimation of production functions or multiple-period choice models.

2Note that we restrict ourselves to cases where Z and X do not have elements in common so that we do not allow for
exogenous regressors in the NPIV or NPQIV models. Allowing for some overlap between X and Z would increase the technicality
of several steps in the proofs. We leave this task for future research.



Chapter 3. Nonparametric estimation in conditional moment restricted models via Generalized Empirical
Likelihood 41

this framework is called an ill-posed statistical inverse problem. For clear and concise introductions to
ill-posed statistical inverse problems with many motivating examples, we refer the reader to [32] and [35].

To have a chance to recover hy, we need to regularize T when inverting it. We start by presenting a
method which does not lead to GEL-type estimators but that is a very natural way to tackle this problem.
We observe that for every strictly positive weight function w(-) independent of h, (3.1) is equivalent
to hy = argmin, ey E [||m(X, h)|?w(X)]. Intuitively, solving minpeq, E [[[m(X, h)|?w(X)] + o, Pen(h)
where #,, grows dense in H with n and «,, — 0 may help if some restrictions are placed on #,,, o, and
Pen(-). Replacing E [[[m(X, h)||?w(X)] with an estimator based on a sample (Z;, X;), 7% pyields the
empirical regularized version of (3.1):

b, € argmin > (X, b)|[PB(X;) + an Pen(h). (3.2)
heH, T

We call (3.2) a Generalized-Method-of-Moments (GMM) approach. A vast literature has studied the
performance of h,, defined in (8.2) to recover hy for different choices of H,,, m(-), w(-) and Pen(-). [86],
[48], [36], [44], [91] and [13] focused on the NPIV, [41] and [90] on the NPQIV, [3], [112], [20], [37] and
[64] studied classes of models satisfying (3.1).

It is important to note that the choice of Pen(-) may put additional restrictions on the model # to which
ho belongs. Let leb stand for the Lebesgue measure. Choosing e.g the squared Ly(leb)-norm of the m-th
derivative of h is a classical choice which imposes that hy is at least m times differentiable (otherwise the
penalty is not informative about h). As explained below we will make this smoothness assumption on hg.
Imposing shape constraints on hg on top of smoothness ones is a method that is gaining popularity due
to its natural connection with economic theory and its finite-sample performances ([44], [91]). We do not
investigate here the advantages of imposing additional shape restrictions on the function to retrieve but
we acknowledge it could be a promising line of research for future work.

We focus on the GEL family of estimators which offers an alternative to (3.2). The construction of those
estimators is less straightforward than for GMMs and we postpone a full description of the method to
Section 3.2. In the simpler case where h is replaced with a finite-dimensional parameter 6, GEL-type
estimators have been studied extensively ([100], [93], [101], [119]). They have also been shown to
exhibit nice theoretical properties ([113]). However the properties of these estimators are much less
known for models that display nonparametric endogeneity. [116] proposed an early contribution using
kernel-regression techniques for a class of models that nests the NPIV but not the NPQIV, under the
assumption that  is a compact subset of Ly (P). In a very recent contribution, [40] prove the consistency
with rate in || - ||z, iep)-norm in the NPQIV model without a compactness assumption on # for estimators
based on sieve estimation techniques. They also show the asymptotic normality of an estimator of
0o := E[u(Z1)0;ho(Z1,)] for some weight () based on estimating k.2 They finally discuss the impact of
the degree of ill-posedness of (3.1) (i.e how difficult it is to regularize the problem) on the semi-parametric
efficiency bound in estimating 6,. Our goal is to provide a unifying framework to prove consistency in
both the NP1V and NPQIV and more generally for all models that satisfy (3.1) using a kernel-regression
approach similar to [116].

[40] emphasize that the parameter they are mainly interested in is 6. As a matter of fact, parameters
of interest for economists are often functionals of hq rather than hy itself. This is nicely presented in [49]
in the NPIV setting: the author gives the example of the average marginal effect with respect to the j-th
argument of Z,,: 6y = E[0;h(Z})]. Assuming Z,, is continuously distributed with Lebesg)tcjce (dZer)1sity fz,

%, (Zn

he also mentions the expectation of Z, under a counterfactual distribution f7 , 6o = E [mho(zh) .
h

38, ho stands for the partial derivative with respect to the j-th argument of hq.
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[38] provide additional examples of functionals of hy that are of interest in economics, notably to test
whether hyq is linear or not. They further derive asymptotic normality results when estimating a functional
of hy in a large class of models that are subject to (3.1). Their results rely on a GMM approach.

While plugging-in a consistent estimator of hq is not the only way to estimate 6, consistently ([125]), this
remains a natural approach. In this article we focus on the first step, namely estimating hq. Unlike [40],
we do not derive the consistency and asymptotic normality of functionals of 4y based on estimating hg
with GELs. The next big step for us is therefore to take advantage of the consistency results we derive for
GELs to prove the asymptotic normality of functionals of hy not only in the NPQIV but also in all models
that satisfy (3.1).

In Section 3.2 we introduce the theoretical background that justifies the use of GELs to estimate
hg in (3.1) and we detail the construction of our estimation procedure. In Section 3.3 we present and
discuss the assumptions that we impose, we prove the consistency of our estimator 2SZZ in || - ||,-norm
and we give an explicit rate at which E [||m(X EGEL)HQ} goes to zero. We also explain how this last

’ '

result can be used to derive an explicit consistency rate for ESEL in || - [|2-norm. Section 5.7 concludes.
The results from Section 3.3 are proved in Section 3.5. Section 3.6 gathers all the lemmas and their proofs.

Notation. We denote by IP the probability taken with respect to P®"™. For any probability measure p, we
denote supp(p) its support. We use a.s (resp. w.p.a.1) to denote with probability 1 (resp. with probability
approaching one). For two measures p; and uso, p1 < e means that p; is absolutely continuous with
respect to p». For all z € R?, we let (z(2))P_, denote its p components. For all (3,z) € N? x R? and

. 181
a function f of z, let [5| = f1 + -+ + B, & = (M) x - x (z™)P and VI f = Gemyat -
We denote by || - || the Euclidean norm and the matrix norm induced by the Euclidean norm and by

Il - ||z the norm in Ly(P). For every p € [1,+o00] and for functions with domain Z;, that are m times
differentiable, we let | 4|,,, , stand for (Zoélgm Hvth’;p(leb)) v (when p = +o00, we simply have a sup-
norm). For a square matrix A, o,,:»(A) stands for the smallest eigenvalue of A. For every [ € {1,...,d},
my(z,h) = E[pi(Z,h) | X = z]. Let H be a class of functions mapping Z, to R and # C S where (S, q) is
a metric space. H € S is called an envelope for # if for every z;, € Z5, sup ey |h(21)| < H(z). For every
€ > 0, the g-bracketing number N(¢,H, q) is (when it exists) the smallest number m of pairs of functions
in (S,q), {(I;,u;)}™,, such that for every i € {1,...,m}, l; < w;, q(u;,1;) < e and for every h € (H,q),
there exists i € {1, ...,m} that satisfies I; < h < u;. For every ¢ > 0, the g-covering number N (e, H, q) is
(when it exists) the smallest number of closed balls of radius e with centers in 7 needed to cover (, q).
For every y € Rand & : zy + h(zy), ||kl = sup., c z, [h(z1){z4) | With (z,) = (1 + \|zh\|2)1/2. For
every My > 0, let HMo := {h € H : Pen(h) < My} with Pen(h) some positive functional defined later. We
sometimes use a V b (resp. a A b) instead of max {a, b} (resp. min {a,b}). [-] is the ceiling function, i.e
[x] is the smallest integer larger than or equal to z.

3.2 A general presentation of GEL estimators

In this section, we show that the problem in (3.1) can be rewritten as a constrained minimization problem
over sets of probability measures. We denote this reformulation as a Generalized Minimum Contrast
(GMC) version of (3.1). There are actually a collection of GMCs depending on how the distance between
probability measures is computed. We then show that each GMC problem admits a dual expression
which leads to the population counterpart of a GEL criterion. Finally we present the empirical version
of each GEL procedure. This presentation is an extension of Section 3 in [99] to conditional moment
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restrictions and infinite-dimensional parameter spaces.

3.2.1 From GMCs to GELs

Let

__4Q Z|X=x i 21X =2
Dy (Q | lexzx) = Jz¢ (dPZ\X:w) apr ifQ < P
+o00 otherwise

where ¢ is a discrepancy, i.e a convex function such that D, (. | P#1X==) is uniquely minimized at
PZ|X:.'1:_

Let Q(h) := {Q € M : [ p(z,h)dQ = 0}, where M is the set of all probability measures on Z. When
ho satisfies (3.1), it is the unique minimizer of the following optimization problem for every x in a set of
measure 1 under P~

inf i ZIxX=e) :
it ol Do (@1 P7) 33

This optimization problem is called the primal GMC problem. It is the first step towards constructing GEL
estimators. Note though that this primal problem is not directly useful to build an estimation procedure.

First, even though ho minimizes the problem for every z in a set of PX- measure 1, the empirical
counterpart of (3.3) evaluated at different x’s would yield different minimizers. There is a priori no clear
rule to choose between different empirical minimizers. A solution is to turn the identifying equation
(3.1) into a continuum of unconditional moment restrictions (cf. [93], [31], [40]). Since a continuum of
moment restrictions cannot be handled in practice, one has to consider a finite but growing number of
unconditional moment restrictions, which introduces a regularization bias that does not arise when one
directly works with the conditional moment restriction given in (3.1).

The second issue is that for every x, the problem amounts to solving two nested infinite-dimensional
minimization problems. This problem can be addressed since the program (3.3) is a convex constrained
program. It is indeed an established fact in convex functional analysis ([24]) that for every z in a set of
measure 1 under PX, hy is the solution of the so-called Minimum Contrast dual optimization problem

ho = argmin sup {/\1 - /¢* (A1 + Asa(z, h))dPZX_m} (3.4)

REH  (A1,A2)EA1 2(h,PZIX=2)

where ¢* is the convex conjugate of ¢ ([26]) and

Ay o(h, PPIX=7Y = N {(M1,A2) € R¥TE: 9" (A + Abap(z, b)) exists }.
zE€supp(PZIX==)
We can see that for every z, the infinite-dimensional minimization over conditional probability distribu-
tions is replaced with a minimization over a subset of R4*1.
We now restrict ourselves to the Cressie-Read family of discrepancies, for which the dual problem (3.4)
can be further simplified. In the Cressie-Read family, discrepancies are indexed by a parameter ~ and for

every v, ¢, takes the form )

=——— (" -1).
b+ (u) P 1)(u )
For any ¢., following [113] and [99] we can write (3.4) as
hO = argmin sup /qu’y (Atp(Z, h))dPZ\X:x
heH XeA(h,PZIX=z)CRd
= ho=agmin sup By, (Np(Z,h) | X =a], (3.5)

heH XeA(h,PZIX=2)CR4
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where A(h, PZIX=7) i= (\_p(pzix=sy 1A € RY 1 90s, (N p(2, h)) exists } and 4, is the GEL criterion
associated with ¢,. v, satisfies

u+1}”11 2
ol

2
o 0 =2 [—(w 0 i

As detailed in [113], those GEL criteria are concave functions defined on an open interval V. containing
0. This implies that for every z and h, the set A(h, PZ1X=%) contains 0,4, the null element in R%. For v =0
ory = —1, it can be checked that 14 is well-defined as well. For every v € R, 1_ is twice-continuously
differentiable on V., with Lipschitz second derivative on any compact subinterval of V,, that contains strictly
0. In [113], the authors argue that it is relevant to focus on GEL criteria that satisfy 45 (0) # 0 and
zb;w(o) < 0. As a matter of fact, the most popular GEL criteria satisfy this constraint: when v = 0, we
obtain the Empirical Likelihood (EL) criterion with 14, (u) = log(1 + u) ([117]); when v = —1, we have the
Exponential Tilting (ET) function v _, (u) = —e™ ([100]); when v = 1, we get the Continuous Updating
Estimator (CUE) function v, (-) which is quadratic in u ([88]). For GEL criteria that satisfy 1/);57 (0) # 0 and
1’[}‘;"{ (0) < 0, itis without loss of generality to assume that up to a renormalization %w (0) = w;v (0) =-1.
In the sequel, we only focus on GEL criteria that satisfy %w (0) = w;w (0) = —1.

We drop the dependence of ¢, on ¢, for notational convenience. The expression in (3.5) is still not
very convenient from an estimation perspective: in finite samples, the empirical counterpart of (3.5) would
likely give different solutions when evaluated at different = values. It is actually possible to get round that
issue. We remark that for every h € H

E| sw  E[p(\o(Zh)]|X]
AEA(h,PZIX)

>E

inf sup  E [(AN'p(Z,h) | X]|,
he€H \cA(h,PZIX)

with equality only at hg. Combining this with (3.5) and the fact that o € H allows us to rewrite (3.5) as

ho = argminE l sup  E [¢(AN'p(Z,h)) | X}] .
heH AEA(h,PZ1X)

This new way to define h is a version of (3.5) integrated over the distribution PX. With this new
expression, we can clearly see the link with the other existing GEL approach which turns the initial
problem (3.1) into a continuum of unconditional moment restrictions.

A final modification of the GEL procedure is in order before building its empirical counterpart. Let w(-)
be a weight function that satisfies w(X) > 0 PX-a.s. As w(X) does not depend on )\ and h, we can see
that hg is uniquely determined as follows

hg = argminE sup  E[Y(MNp(Z, h) | X]w(X)]. (3.6)
heH AEA(h,PZIX)

As explained below, this last trick is only useful from an estimation point of view.

3.2.2 Construction of the estimation procedure

We assume from now on that PX has a Lebesgue density fx. By definition fx(X) > 0 PX-a.s and
fx(X) does not depend on X and h so that we can take w(-) = fx(-) in (3.6). In (3.6) we want to
estimate: (i) the outside expectation with respect to PX as an average over the empirical distribution
LS L 6¢x.ys (i) the quantity E [(Mp(Z,h)) | X =] fx(-) with a Nadaraya-Watson approach. Let
fx(+) be a Nadaraya-Watson estimator of fx(-). Multiplying E [v/(Aip(Z,h)) | X =] by fx(-) avoids
handling the quantity 1/fX(-) which appears in the kernel estimator of E [¢»(A\p(Z, 1)) | X = -] ([135]). ltis
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appealing in practice since 1/fx(-) can be quite unstable, in particular close to the boundary of the support
of PX. This trick has been employed in many articles in which estimating E [ (A p(Z, h)) | X =] fx(*)
suffices ([90], [103], [13]).

Let A, (h) :={X e R%: ¢ (Np(Z;,h)) well-defined Vj € {1,...,n}}. Given the discussion in the previ-
ous paragraph, for every h € H we estimate
E [supsean.pzix) B[N p(Z, 1)) | X] fx(X)] as

n

%Z sip —— S K(Xi, X;, b (\p(Z;, b)), (3.7)

d,
D3 AeAn(n) nb” S

where K (-, -, ) is a nonparametric kernel function specified later and b,, is the bandwidth parameter that is
strictly positive and decreases to 0 as n goes to infinity. Subsequently K;; is a shortcut for K (X;, X;, by).

As mentioned in the introduction, in order to regularize the estimation of g, we can restrict # to be a
subspace of L?(P) of m-times differentiable functions. We take # equal to

H:={h € L*(P): ||hllm2 < +00}.

The choice p = 2 corresponds to choosing # as a L? Sobolev space of smoothness m. Another popular
choice corresponds to p = +oco and yields so-called Hélder spaces. Our analysis would go through with
only minor changes if we picked p = +o0o0. Remark that Sobolev and Hélder spaces are well-defined for
non-integer degrees of smoothness m but the definition of the norm || - ||, , has to be adapted ([114]).
The results we will present in subsequent sections apply to cases where m € R, \ N as well. The space
‘H we choose consists of bounded functions. We do not allow for unbounded functions (the weighted
Sobolev/Hélder case) to keep the exposition simple.

Another crucial remark is in order: the restriction we place on # is only useful to regularize the
estimation problem if there exists some constant C' > 0 such that for every h € H: ||h||2 < C||h]|2,m- This
is verified whenever P#» admits a bounded Lebesgue density for instance.

When ||h|2 < C||hl|2,m for every h € H, we can combine (3.6) and (3.7) and add a penalty term
Pen(h) = ||h|3,, to the objective function to define h;, as any element in 7 that satisfies

Ly (hy) + anPen(hy,) < }32% {,Cn(h) + oznPen(h)} + R,

where L,(h) == L7  supyen, ) e 51 Kig(N'p(Z;, h), Ry = Op(n~") and a, is a second
tuning parameter that goes to 0 as n goes to infinity. We need to define k!, as an approximate minimizer
as we allow for functions p(-, -) that are nonsmooth in i ([111], [119]). We impose R,, goes to zero fast
enough which ensures that this term does not have an impact on the theoretical analysis.

Unfortunately, i} is infeasible in practice: it is computationally impossible to optimize an objective over
an infinite-dimensional space. A solution is to replace H with a sequence of finite-dimensional spaces
{#.,}n>1 with the following property: for every h € H, there exists a sequence (h,,),>1 such that for every
n>1h, € Hy,and [|h — hy| ,qer) = o(1). Such a sequence of spaces (H,),,-, is said to grow dense in
‘H as n goes to infinity and is called a sequence of finite-dimensional sieve spaces. We choose

(b, ")
Mo = h() = > bege(-) : (b, by,,))" € REC)
k=1

where () is integer-valued, increasing, ¢(1) > 1, lim, 10 @(u) = 400 and (gx(-))x>1 is a known
family of functions that are square-integrable over Z;, with respect to the Lebesgue measure. (gx(-))x>1
can be chosen as an orthonormal basis of Ls(leb) but this is not necessary. We only introduce sieve



Chapter 3. Nonparametric estimation in conditional moment restricted models via Generalized Empirical
Likelihood 46

spaces for a computational reason. Our theoretical results apply directly to ). This implies that from
a theoretical point of view, the regularization power of the sieve dimension (b, 1) does not really play
a role here. In particular regularization cannot be obtained without the use of a penalty function Pen(:)
except if additional restrictions are placed on #H.# In practice this leads to choosing (b !) as large as
possible subject to numerical tractability. Finally note that the spaces #,, we use have two other very nice
computational properties: they are linear and unconstrained.

We eventually define our estimator hy, @s any element in #,, which satisfies

PO AN N
Lu(hn) + anPen(ha) < inf {Cn(h) + anpen(h)} + R,. (3.8)
The penalty functional Pen(-) is known here since it depends on the || - ||1,e5)-norm. However

this penalty must still be approximated in practice (only a discretized version of it can be computed
numerically). We do not introduce this additional difficulty in the analysis for the sake of simplicity.

3.3 Results

3.3.1 Consistency

We present the set of assumptions that we use to prove the consistency of h,, in || - |l,-norm. We notably
compare those assumptions with what would be needed to ensure consistency of %, in | - [|o-norm with
the GMM approach recalled in (3.2).

Assumption 3.1. {Z;, X}, are i.id. copies of (Z,X) ~ P. P has support Z, x Z, x [0,1]% C
R0 x Ren x [0,1]% and is absolutely continuous with respect to Lebesgue’s measure.

Assumption 3.2. (i) inf,,>1 inf,co,1)4 Tmin(E [p(Z, Hnho)p(Z, 11, ho)" | X = x]) > 0. (i) For some p > 4
and for every My > 0

sup E| sup [[p(Z,h)|P| X =z| <400 and supE | max sup |[p(Z;,h)||"| < +oc.
z€[0,1]4z  LheHMo n>1  [1SiSnpeqng

Assumption 3.1 rules out time-series framework and places restrictions on the support of P. We do
not restrict the support of P?» which means that we can accommodate both cases where P#» has
unbounded support or where P?» has bounded support with a Lebesgue density bounded away from
zero or not. In the context of GMM estimation, Assumption 3.2 would be replaced by
SUDe(0,1)4: E [SUDpepno [[0(Z, h)|IP | X = 2] < +oo for every My > 0 and some p > 2. We need stronger
conditions for our GEL procedure in order to perform a linear expansion of £,,(k) with explicit remainder
and control this remainder uniformly over h € H™Mo for every M, > 0. As will be apparent in the proofs,
the objective we minimize for GEL estimators is actually similar to the objective in (3.2) up to a residual
term that proves challenging to control.

Let Iaho(-) = 520 ) (ho, qi)ienan(-) With (ho, gi)ies = [, ho(zn)ai(zn)dzy. Remark that for every
n > 1, I,ho € H, and by construction ||hg — I, hol|z,qesy = o(1). The next assumption recalls the
definition of # and the identification condition (3.1) and places a restriction on (II,,h¢),,>1 and PZ»:

Assumption 3.3. (i) H := {h € Ly(P) : ||h||m2 < +o0}. (i) Forevery h € H,
E[p(Z,h) | X] =0 PX-as <= |h— hollz = 0. (iii) Pen(-) := || - |2, 2, Pen(ho) < +oo and |Pen(ho —

I,,ho)| = O(1). (iv) P?» has Lebesgue density fz, uniformly bounded from above, m — d, /2 > 0 and
either E [(Z1,)7] < +oc for some v > 0 or Z;, = [0,1]%n.

41f we choose H := {h € La(P) : ||h|l2,m < M} for some fixed M < oo, then it is possible to achieve regularization via the
sieve dimension only.
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The last condition of Assumption 3.3(iii) requires that I1,,hy be within controlled distance of hg in
| - |lm,2-norm. Observe that [|hg — 1,k ||z, 1ery = o(1) is not enough to ensure |Pen(ho — I, ho)| = O(1)
since [|ho — 1. ho| £, (1eb) < [[ho —I1nho||m,2. Assumption 3.3(iii) also has a simple but useful consequence:
for every M > 0, there exists N, > 1 such that for every n > Ny,

Pen (I, hg) < 2(Pen (ho — I ho) + Pen (hg)) < M + 2Pen (hg) < +00.
This implies that for every n > 1

Pen (I1,ho) < max  Pen (IL,ho) + M + 2Pen (hg) < +o0.
1<m< N

As a result, we can assume without loss of generality that for every n > 1, I1,, hy belongs to %o for some
My > 0 independent from n.

We explained in Section 3.2.2 that it is essential to have ||| < C|h||2,» for some C > 0 and every
h € M to ensure that the choice Pen(h) = ||hl|3,, is helpful to regularize the estimation problem. As
shown in Lemma 3.9, Assumption 3.3(iv) entails that the penalty function Pen(-) is precompact, i.e for
every M, > 0 the closure of Ho for the || - ||o-norm (that we denote ﬂMO) is a compact subset of Ly(P).
This property is key at the end of the consistency proof to bound E [||m (X, )||?] away from zero whenever
h is bounded away from hg in || - ||2-norm. Note also that the last condition displayed in Assumption 3.3(iv)
is very mild (it does not even impose a moment of order 1 on P4»).

Precompact penalties are a generalization of lower semicompact penalties which have been used, e.g.,
in [37]. Lower semicompact penalties require #° rather than #' to be a compact subset of Ly(P)
for every M, > 0. [72, Theorems 1 and 2] give sufficient conditions for || - |2, to be precompact/lower
semicompact in Lo (leb). They notably impose v > d., /2. Interestingly we only need ~ > 0 to obtain that
| - l|2,m be precompact in Ly (P). We emphasize that what really matters is precompactness rather that
lower semicompactness.

Let K and K be two functions that map R to itself. We define the nonparametric regression kernel as

da

_/y®  5® /O _ )
K(z,y.b,) =] (]1 {o <z < bn}K (yb”“> 1 {bn <z® <1- bn}K (H)

t=1 by,

() ()
+1 {x(t) > l—bn}K(xby)>.

We need this somewhat complicated kernel to overcome what is called the boundary effect of kernel
regression ([75]): when the support of PX is [0, 1]¢=, the kernel estimator of m(x, h) fx (z) is in general
not consistent when z lies in what is called the boundary region of [0, 1]%

I, = {9: € [0,1)% : 3t € {1, ...,d,} such that 2 < b, or z(® > 1 — b}
We present additional restrictions on K (-) and P under which our kernel estimator has good properties:

Assumption 3.4. (i) PX has Lebesgue density fx € C*([0,1]%) with uniformly bounded partial
derivatives of order s and 0 < f . < fx(x) < fx < 4o0.

(i) Foreveryl € {1,....q}, every My > 0 and every h € HMo, m;(-,h) € C*([0,1]¢=) and for every
B8] =s, SUP (3, 1) €[0,1] 4 x H Mo ’D/Bml(x,h)| < +00.

(i) K(-) is bounded, has support [~1,1] and satisfies [, K (u)du =1 and [*, v/ K(u)du = 0 for every
je{l,..,s—1}.

(iv) K(-) is bounded, has support [0,1] and satisfies fol K(u)du = 1 and fol WK (u)du = 0 for every
jed{l,...,s—1}
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(v) The classes of functions {IN{ (%) : (2,b) € 0,1] x Ri} and
{IA( (%) : (z,b) € [0,1] x Rj} are VC-type for constants that do not depend on n.

To show consistency of a kernel estimator, we need to take care of two terms: a variance part and a
bias part ([135]). Assumptions 3.4(i) to (iv) are made to control the bias induced by kernel regression.
Assumptions 3.4(i)-(ii) allow to make a Taylor-Lagrange expansion of m(-, h) fx (-) with explicit remainder
of order s at every point = € [0,1]% and to control this remainder uniformly in (z,h) € [0, 1]% x HMo,
Similar restrictions can be found in [101]. A more primitive version of Assumption 3.4(ii) would require
additional smoothness of the Lebesgue density of the distribution PZ/X. Under Assumptions 3.4(iii) and
(iv), I~<(~) (resp. f{(~)) is a univariate kernel of order s (resp. a univariate boundary kernel of order s) so
that all bias terms that converge to 0 slower than b: disappear. Assumptions 3.4¢(iii) and (iv) can be found
in [86], [125] and [48].

Assumption 3.4(v) helps to control the “variance” part uniformly in = € [0,1]% when estimating
m(z, L, ho) fx (z). This is specific to our GEL estimator and would not be needed in the GMM approach.
A class of functions F with envelope function F is called VC-type for positive constants A and v if for every
€, supg N (€l|F[|,0), F, || - l2.(q@)) < (A/€)” where the supremum is taken over all finitely supported
probability mesures (see [43] for more details). A and v are in general allowed to depend on n but we
rule this out with our assumption. The advantage of Assumption 3.4(v) is that it does not require K (-) and
f((~) to be continuous. Following discussions in [115], [77] and [78], the following popular kernels exhibit
the VC-type property: uniform, triangular, Epanechnikov, biweight, triweight and (truncated) Gaussian.
This assumption could be replaced with a smoothness assumption on the kernel (as in [107]).

Assumption 3.5. (i) Forevery M, > 0 the maph — E [||m(X , h)||2} is lower semicontinuous on HMo with
respect to the Lo(P) norm. (i) v > m—d,, /2 > 0 if Z;, is unbounded. (iii) For every M, > 0, there exists a
constant L such that for every (hy, ha) € HMo xHMo ||m(X, hy) — m(X, ho)|| < L||hy — holl, ., P* —a.s.

Assumption 3.5 is useful in combination with Assumption 3.3(iv) to prove thatthe map  — E “\m(X, h) HQ}
is bounded away from zero whenever h is bounded away from kg in || - ||2-norm. We show that Assump-
tions 3.5(i) and (iii) are satisfied in the NPIV and NPQIV cases under simple low-level conditions.

Example 3.1 (NPIV). Inthe NPIV we have p(Z,h) = Z, — h(Z},), d, = 2 and d = 1. Hence,

|E [lm(X, h1)|I?] = E [[[m(X, h)[?] |
<VE [([[m(X, ha)|| + [[m(X, ho)[)2VE [([[m(X, ha)[| — [[m(X, ho)[])?]
<V/E[8Z2 + 4hy(Z1)? + 4ho(Z1)?]||h1 — hal2

<(v/8E[Y?] + K)||h1 — ha||2,

where K = 2max {1, \/sup,, c z, [z, (2n) } vV Mo. What is more

(
)

[m(X, ha) —m(X, ho)l| <E[|ha(Zn) — ha(Zn)] | X]

<llhe = hllocy sup E[(Zp)" | X = z].
z€[0,1]%=

lfsup,, ¢z, fz,(zn) < +oo andsup,c(o1ja. E[(Zn)" | X = 2] < 400, Assumptions 3.5(i) and (iii) are true
(we can pick L = sup,co,1)a. E[(Zn)7 | X = a] in (iii)). O

Example 3.2 (NPQIV). Inthe NPQIV we have p(Z,h) = 1{Z, < h(Zy)} — 7 forsome T € (0,1). Hence,
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by using the Law of lterated Expectations

[m(X, k1) —m(X, ha)|| = [E[1{Z, < h1(Zp)} — 1{Z, < ha(Z1)} | X]|
=E[E[1{Z, < hi1(Zn)} — 1{Z, < ha(Zn)} | X, Zn] 1{h1(Zn) > h2(Zn)} | X]
+EE[1{Z, < ha(Zp)} = 1{Z, < hi(Zn)} | X, Zp] 1 {h2(Z1) > h1(Z1)} | X]

< sup f2,1x,2, (20 | ©, 20)E[|h1(Zn) — ho(Z1)] | X]
(z,x)€Zx]0,1]%=

< sup frxz (%0l ®z) sup E[(Zp)7 | X = 2] [|h — hallco,y-
(z,x)€Zx]0,1]%= z€[0,1]d=
If sup,cp,1)a. E[(Zn)7 | X = 2] < 400 and sup, ,yezxjo,1)4 f2,1x.2, (%0 | T, 2n) < 400, we can pick
L = sup(, pyezx(o,1)4 [2,1x.2, (%0 | T, 20) SUDP,co,1)4. E[(Zn)Y | X = x] in Assumption 3.5(iii). Following
the NPIV example and the previous proof, we can claim that
SUD(».2)e2x[0,1]4 J2,|X.2, (20 | T,2n) < +00 is enough to verify Assumption 3.5(i). O

It is convenient to introduce several classes of functions:
1 Fp = {( )'—>K(“ “‘)pz(z h): he’HMO}.

2. FLU = {( )HK(“ m)pl(z h)pu (2, 1) : heHMo}.

For every (x1,1) € [0,1]% x {1,...,d}, Fi
(suppenno ||p(2z, h)|| + 1). Similarly, ffllwl

| K (x1,2,b,)| X (supheHMO p(z, h)||? +1). In the following assumption, we let G, .., (resp. G, ) stand
for 74, or FLb. (resp. F. , or FLL ).

n,ri

!+, admits an envelope F} , : (z,2) — |K (z1,2,b,)| x
admits an envelope FLL : (x,z) —

Assumption 3.6. For every My > 0°

sup / \/1—|—1og]\7 ( Gy (X 2|l 1, (px .2y s Gnaen s L (PXZ)>de<—|—oo
1 €[0,1]4

Assumption 3.6 is a high-level condition which imposes that for every [ € {1,...,d} (resp. every
(I,I') € {1,...,d}?) the class F}, ,, (resp. FL' ) is not too complex in terms of entropy.

The NPIV model is nested in what can be called the class of “Lipschitz-in-parameter” models, namely
models in which |p;(Z, h1) — pi(Z, h2)| < L(Z) |h1(Z1) — he(Z),)| for every | € {1,...,d} and (hy, ha) €
H x H. In Lemma 3.13, we show that Assumption 3.6 is verified in the NPQIV model and in the class of
Lipschitz models under the following condition

Assumption 3.7. (i) Lipschitz case: sup,.c(o 1ja. E [L(Z)*(Z1)" | X = x| < +oo for every M, > 0 and
some ~y such that v > m — d;" > 0, supgepo,1)a- E [suppepo |p(Z, W)[|* | X = 2] < +o0. (i) NPQIV

case: sup,cp,1je. E[(Zn)7 | X = 2] < +oo for some v > 0 such that v > m — d% > 0, m/d,, > 1;

SUP(z,z)e Zx[0,1]dx onlvah (ZO | T, Zh) < +00.
We are now in a position to prove the consistency of T

Theorem 3.1. Under Assumptions 3.1 to 3.6 and max {, / “Oib"' be [T, o — h0||oo,7} = O(\/a) =

de YN
O(n_l/p)

7en — Boll2 = op(1).

5Note that the bound cannot be uniform in Mq. The bound diverges when My — +oo.
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This theorem is the equivalent of Theorem 3.2 in [37]. The restriction
max{ Logbul ps 1T, hg — h0||oo,7} = O(y/a,) is equivalent to the condition (13) in the statement of

nbde UM
Theorem 3.2 in [37]. The terms , /% and b?, stem from controlling the variance and bias terms when
estimating the weighted conditional expectation operator ¢ — E [¢(Z) | X =] fx () and ||IL,ho — hol|co.~
is the approximation error due to the use of #,, instead of . With the GMM procedure, ||I1,29 — ho||oo,y
would be replaced with ||TT,,h — ho||2. We impose an additional condition, namely O(y/a,,) = o(n~1/P)
which is not needed in [37]. This condition is introduced to get a sharp upper bound on the GEL criterion
at I1,,hg. When will this condition be satisfied? To start with, we can use the fact that

log b, log b,
ax{ 'Oid”,bz,||nnho—ho||m,v}Smax{ fog L|abszmv|th0—ho|oov}’
non® s

and take ,/a;, of the order of the upper bound. Secondly b,, must be chosen to balance the terms /“Ziidb;'

n

and b3"™ to minimize max {,/“:%7”"‘ bsAm} ([135]). Since |logb,| < Clogn here (as can be seen from

dz 1 Yn
the assumption % = o(n~'/?) = o(1)), we can pick b, = (Clogn/n)'/@EAm)+dz)  This choice

implies max{, /“%;;', b;Am} < (Clogn/n)s m/(2(sAm)+d.) which goes to zero faster than n~'/? as long
as s Am > d,/(p — 2). In the case where Z;, = [0,1]%x, v can be chosen equal to zero and we get
[T, ko — hollooy = O(p(bn) ™™/ 4=1) when (gi(-))x>1 is @ tensor polynomial basis of L (leb) ([37]). Any
©(-) > [-]%n satisfies for some ¢, @(b,)~™/%n < G < ™.

As mentioned in Section 3.2.2 we could formulate a consistency result for the estimator % (which is
found by optimizing the GEL criterion over the whole of ). In all our assumptions, 11,4, would have to
be replaced with iy and the term ||II,,hg — hol|,, in the statement of Theorem 3.1 would vanish.

3.3.2 Rate

We want to derive (an upper bound on) the consistency rate of E [||m(X,ﬁn)||2} to 0. As detailed after
the statement of the theorem, this result is crucial in order to derive a rate of convergence of ﬁn to hg in
|| - [lo-norm. This last result however is beyond the scope of this article.

Under exactly the same assumptions as those of Theorem 3.1, we obtain the first result of Theorem 3.2,
namely a sub-optimal upper bound on E |||m(X, ﬁn)||2]. To improve upon this sub-optimal result, we
impose more stringent moment conditions:

Assumption 3.8. Forevery e > 0 and M, > 0, E [exp (esup,cyno ||p(Z, h)]])] < 4o00.

This assumption is automatically satisfied if p(-) is uniformly bounded from above which is true in
the NPQIV model. In the NPIV model, the assumption is valid if Z, is sub-Gaussian and (Z,)" is
sub-Gaussian are almost-surely bounded. For a definition of sub-Gaussian random variables, we refer the
reader to [25]. Broadly speaking, any continuous distribution that has tails of the order of a Gaussian one
is sub-Gaussian. Our assumption would also allow for distributions with tails slightly fatter than Gaussian
ones.

Theorem 3.2. Letv, = max{ E;ff;jh b3 ([ Tho — holl o, 7}. Under Assumptions 3.1 to 3.6 and
vn = O(\/ay) = o(n=1/P)

E[Im(X, ) I2] = Op (va v Va)
If Assumption 3.2(ii) is replaced with Assumption 3.8

E [||m(X, En)\ﬂ = Op (V2 V an) logn) .
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We denote the first part of the theorem as a slow rate result and the second one as a fast rate result.
To obtain the slow rate of convergence, the proof is very close to that of Theorem 3.1. To obtain the
fast rate, we use an iterative argument that bears similarities with Lemma 3 in [127]. Picking «,, <

max {, /'bligif;jh, bsA™ ([T, ho — hooo,'y} and assuming [T,k — holl, , = O(b}") (see the discussion
after Theorem 3.1 for an example where this holds), we obtain by balancing terms that

= ] FeRmIFda vz, o eAm
\/IE [Hm(X, hn)HQ} =0 (x/logn ( ogn> ! ) =0 (n 2eamitdavdzy Jog n) .
n

We also used (logn) oA+ VT, < +/logn. This rate is up to a log term the minimax rate of estimation
in Lo (leb) risk in nonparametric regression when the dimension of the regressors is d,; V d., and the
smoothness of the regression function is s A m. This is not surprising since: (i) we estimate a weighted
conditional expectation operator ¢ — E [p(Z) | X = -] fx(-) with smoothness s and where the dimension
of the conditioning variable is d; (i) » has smoothness m and its domain is a subset of R%=. It is not
obvious to compare our rate results with those of [40] as those authors derive directly a consistency rate
of T, 10 ho in | - Iz, evy-nOrm. Their result is stronger than ours but limited to the NPQIV model. Note

though that their rate involves the quantity max { L, a,l/“} where J,, is the equivalent of b, ™" " . We

can see that the condition

VT = o(1) is stronger than , [ 18Pl — o(1).

4 nbszVth
With the GMM approach, we could obtain directly the fast rate without additional moment assumptions

and as explained earlier p in Assumption 3.2 could be chosen equal to 2. We could even get rid of |log b,,|

in the term “L?fv";ﬂh . It remains an open question whether moment conditions could be weakened with
b ,

GEL estima?o?s to obtain fast rates of convergence.

The rate result for \/E [||m(X,ﬁn)||2} is not directly useful. However it is one of the two components

to derive consistency of h,, to h in || - ||l.-norm and then asymptotic normality of plug-in estimates of

functionals of hy. We explain how \/E {||m(X,ﬁ")||2} impacts the convergence rate in || - ||». To do so,

we follow the general exposition in [37]. The first requirement is to find a norm || - || such that for every
Mo, there exists ¢ such that ||h — ho||?, < ¢ min {E [||m(X,R)||?],|h — hol|3} uniformly over %o, As

explained in [37], this norm can be chosen equal to \/IE {IE [h(Zy) | X]Q} in the NPIV. Then we can write

17en = holl2 <|[n — oholl2 + [ Tnho — holl2
hy — I,k -
e ln = Tttolla o\ Lol + [T — olla:
||hn - thOHW
It is shown in Section 3.6 that &, € Ho for some M, > 0 w,p.a.1. As a result, the following inequality is
valid w.p.a.1

~ h—11,h
B — holls < sup h = Tafolla

x|, — Wahollw + ko — holl2
REHMO || h—T1,, ho |l w0 ([ — yho|lw

=Ty

<t (I = ollw + Wb = hollw ) + [Tuho = holl:

<Ver, (\/IE {Hm(X,ﬁn)Hﬂ + [T ho — ho||2> + [[Tnho — hol|2-

The quantity 7, is called the sieve measure of local ill-posedness in [37]. As the authors explain, 7,, goes
to infinity in general in models that satisfy (3.1). The speed at which 7,, explodes depends on ¢ (b, !) so
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that (b, 1) cannot be chosen arbitrarily large. Criteria similar to 7,, but that still allow to select (b, 1) very
large exist ([37]). A vast literature has studied generic conditions to control 7,, or equivalent criteria: the
most popular conditions are the source and Hilbert scale conditions (see [39] and [33] for an extensive
treatment of this question).

3.4 Conclusion

Allowing for endogenous regressors in the nonparametric mean or quantile regression models is a
challenging issue that has initiated a vast literature in theoretical econometrics. The NPIV and NPQIV are
two instances of econometric problems that turn out to be ill-posed statistical inverse problems. Unlike
most articles we resort to a GEL estimation procedure. We show the consistency of our estimator in Ly (P)
norm for a wide class of econometric problems that encompasses the NPIV and NPQIV. Our results
could be directly combined with well-known arguments that measure the degree of ill-posedness of the
problem to obtain the consistency rate of our estimator in Ly(P) norm ([37], [33]). However, we believe
that this approach has a major drawback: to the best of our knowledge, only very few parametric families
of distributions have been shown to satisfy the so-called source and Hilbert scale conditions which are
the two most popular conditions imposed in the literature to control the degree of ill-posedness. One
avenue for future research would be to see how much source and Hilbert scale conditions are impacted
when we depart “slightly” from the parametric families for which those conditions are verified.

3.5 Proofs of the main results

In this section, we use D(X;, k) as a shortcut for i Y1 Kipl(Z;,h).

3.5.1 Proof of Theorem 3.1

Throughout the proof, let 3,, := max { \/nlb?, b;} and

nbff

log by,
Cn:—max{ [log ,b;,||th0h0||00,7,1ﬁan,\/Rn}.

We start by finding a measurable set of large probability on which it is possible to lower bound En(h).
As a matter of fact, Z,,(h) is difficult to control since its definition involves a maximisation step based on
the entire sample and that does not have a closed form solution. To build the desired set, it is useful to
note that by Lemmas 3.3 and 3.11, for every ¢ > 0 there exists M, and Ny > 1 such that

P ({Pen(ﬁn) < MO} N { max sup ||D(Xi,h)| < Mo}> >1—¢/16 (3.9)

1<i<n heH Mo

for every n > Ny. As explained after Assumption 3.3, there exists A1, > 0 such that sup,,>; Pen(Il,hg) <
M. Without loss of generality, we pick My > M; for every e > 0.
Let -Al,n stand for {Pen(//{n) < Mo} n {Il’laXlSign SUPp e Mo HZA)(X“ h)H < Mo} and

Az =1 max sup  [P(Np(Z;,h))| < +oop,
jG{l,...,n} (}\,h)GAnXHJWO

where A,, .= {)\ cR?: A < (nMO}. By Lemma 3.2 (u,, = ¢, and C' = M), we can claim that the set
As , has probability larger than 1 — ¢/16 for every n > N; for some N; > N,. We deduce from this and
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(3.9) that for every n > Ny

1—€/16 <P (A1) < P(Arn NAzn) + %
— P (A NAsy) > 1— =

8
Let
A1 = ma Kyl sup llp(Z Jh)[? max sup v (o' p(Z5, b)) +1
<z<n nbd Z / 1<TSn (7 0,h)€[0,1] x Ap x HMo ’

and Aj;,, := {A; < X2} for some M, that depends on M, (and therefore on e).
Using Lemmas 3.6 (with u,, = ¢, and C = M) and 3.11, we see that for every ¢ > 0, there exists
Ny > N such that for every n > N, A5, has probability at most /8. Thus

P (-Al,n N A2,n N -/43,n) >1-

(3.10)

IS e

Recall now that
An(h) :=={X € R?: ¢ (Np(Z;,h)) well-defined Vj € {1,...,n}},
and for every n > 1, every h € H and every (\;)7—; € A, (h)"

n n

> Ki(\p(Z;, h)).

j=1

1

d;
bn

R n 1
L,(h = — sup K w(\Np(Z;, h > —
(%) ;AeAn(h) nbi: ; PN 1) ni4

Let LL(h) = L5 | i gy Kigt(=¢aD D(X;,h)'p(Z;,h)). We can see that on A; , N Ay, N As.,

i C. > L, (h hy) > i L . @
Jinf {L‘n(h) + anPen (h)} 4 Ry > Ln(h) + anPen (hn) > nf {L (h) + anPen (h)} (3.11)

Consequently, A; ,, N Az, N A3, is a set of probability at least 1 — /4 for every n > N, on which En(h)
is lower bounded by a quantity that will prove easier to handle. On the same set, we also have

inf {En(h) + anPen (h)} + Ry < Ly(Tho) + anPen (Inho) + R (3.12)

We know that around ¢ = 0 the function ¢(£) admits a Mean Value (MV) expansion of the form: there
exists a T € (0,1) such that ¢(¢) = z/J( )— &+ %w”(rg). Since on Ay, N Az, N A3y,
Max(; j)e{1,...,n}> SUPpep Mo ‘1/)( ¢nD(X;, h)t p(Z;, h))’ < +00, We can use this MV expansion to write for
every h € HMo,

~ P(0) o= 1 1 1
Lh(h) = ;)Z o DL K D e 3 K D(Xe h)'0l(Z,h)
i—1 MOn 5 i=1 1On" 5
I = 1 &
o> S Ky (DO (Z3,1)) 4 (6 DX 1) (23, 1)
i=1 nooj=1
>7(0>n1n[( DXhQCanXhA
-—an%ZzﬁfZH I = 5 3 IDK W)
i=1 """ =1
2 n
,ﬁZHD(X“h bd ZKwp p(Z;,h)t
=1
w(o) n 1 n CnM2 Cn .
i=1 """ j=1 i=1
Cwamn dme )p(Z;, B! (3.13)
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For every e > 0, there exists N3 > N, such that for every n > Nj, (1 - %) > L1 Let £E(n) :=

N 2 n i n :
S S 1D )2 = 2 0y DX W | b 25y Kigp(Zg, h)p(Z, )| We can infer from our

last remark, (3.10), (3.11), (3.12), (3.13) and the fact that Pen(h) > 0 for every h € H, that for every
e >0, everyn > Nsandeveryn >0

P (I = hollz = ) <P ({Ifon = hollo = n} N ALw N Ao N As ) + 5

<P(Asn)+ 7 (3.14)

where

n

_ v~ 1 .
.A4,n ~—{ n Z ZK1j+h6HkTo;\l|I}1f;ho

4,
= nbn =1

l2>n

LE(h) < L, (Wpho) + o P (I, ko) + Rn} .

By Assumption 3.5(i), & — E [||m(X, h)||?] is lower semicontinuous on X for the L(P) norm. The set
{h € Ly(P) : ||h — holl2 > n} is closed in Ly(P) and the set H' is compact in Ly(P) as can be seen
from Lemma 3.9. As a result, the set {h SETALE |h — holl2 > 71} is itself compact in L,(P) and the map
h — E [||m(X, h)|?] attains its lower bound on this set. The identification condition further ensures that
this lower bound is strictly positive for every n > 0. This implies that for every M, and n, there exists n* > 0
such that the set {h eH ™ |h = holls > n} is included in {h e’ E [|m(X,h)|?] > n*} and then
{heHMo :||h—hol2 >n} C {heHM :E[|m(X,h)|*] >n*}. We can therefore apply Lemma 3.4
with p, = ¢, L8 (h) = Zﬁ(h), 01, = 1" and dz , = +oo. From this, Assumption 3.2 and Lemma 3.5, we
can claim that for every ¢ > 0 and n > 0, there exists N, > N3 such that for every n > N, and some
positive constants M,, M3, M4 and My independent from n and n

P (A47n) + i

<P (Aup N A5 N Ag ) + P (AS) + P (AS,) + 5

4
€ My — Msnden/(dzy +2m)
S]P) (A4,n N AS,n N AG,n) + 5 + We )

(8.15)

f ~
Asn i =2C | =X inf E X, 0% = M3B2 | < inf LEM) S,
> {C (32 HeHMO E[|lm(X.h) |2 20" [m(X, mI] 3 | < heHMOE[[[m(X.h) 2] 20 ()

N 0 n 1 n
-AG n = {£7L(th0) + anP(thO) S M d Ki_j + M3§721
’ n — nby® £
=1 Jj=1
The discussion in the previous paragraph enables us to write that
inf Lhn) < inf LEn).
heHMo:E[[|m(X,h)||2]>n* heHMo: || h—ho||>n

This, (3.14), (3.15), the definition of A4 ,,, As », and Ag ,, and the fact that 5,, v VR, < ¢, and

—Mgnn /2 1) allow us to claim that for every € > 0 and i > 0, there exist M, > 0,

ndzn [z, T2m)

Mg > 0 and N5 > N, such that for every n > N5
P (Jon = hollz = 1) <P (Ain N Asn N Asn) + €

E [[lm(X,1)]*] < Mﬁén} +e

I = 2
Ix

IN

{ inf
heHMo E[||m(X,h)||2]>n*

M
X
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Since n* is strictly positive and does not depend on n, there exists N > N5 such that for every n > N

Mg
14 < 8¢ b .
{"‘fif}

We conclude that for every ¢ > 0 and n > 0, there exists N > 1 such that for every n > N

P ([ = holl2 > 1) <e.

3.5.2 Proof of Theorem 3.2

In a first step, we derive a slow rate of convergence of E {||m(Xﬁn)||2 to zero. This first step closely
follows the proof of Theorem 3.1. In a second step, we improve on the slow rate by adapting an it-
erative argument presented in Lemma 3 in [127]: in their Lemma 3, the authors show that for a wide
class of estimation problems that amount to minimizing an empirical criterion, it is possible to improve
the convergence rate of the estimator iteratively under some conditions on the statistical problem at hands.

First step: slow rate of convergence
Let Cn = max{ nlljiof’vbgz‘h 7bf7,/\m7 ||th0 - hOHoo,’y » vV Onsy V Rn} and ﬁn ‘= max {\/73{]?7 bfl} By as-
sumption, ¢,, = o(n~'/?). As a result, the start of the proof of Theorem 3.1 is valid with the new definition

of {,,. This ensures that for every ¢ > 0, there exist Ny > 1 and M, > 0 such that for every n > N, and
every ri, >0

P(E [lm(X,h)l?] 2 03,.) <P ({E [Im(Xh)l?] 273, } 0 A, 0 e 0 As) + -
€
17

where A, ,,, Az, and As ,, are the same as in the proof of Theorem 3.1 and

<P (i) + (3.16)

-A4,n
n

¥(0) 1 . ~L R
=] == K + f Ly (h) < L, ho) + anPen (I, he) + Ry
n Z ; / hEHMO:]E[H%I(lX,h)”z]z 2 ( ) ( O) o 677,( 0)

d:
=3 nbn” %

n

We assume for now that rf, > M;n~2m/(m+d=.) where M; > 1 corresponds to the constant C;
in Lemma 3.4. We can therefore apply Lemma 3.4 with , = C,, £ (h) = LE(h), 61, = 77, and
d2,n, = +00. From this, Assumption 3.2, Lemma 3.5 and the fact that 5,, < ¢,,, we can claim that for every
€ > 0, there exist positive constants (M;)%_, such that for every n > N,

~ €
P(Ain) +5

<P(Asn A5, NA ¢ Ms = Manten /a2 3.17

= ( 4,n 5,n 6,n)+§+We ) (8.17)

where
-’2(5,71
=< Cn & inf ]E[Hm(X,h)HQ‘} —My(C? )| < inf EL(h) ,
32 heHMo:E[|m(X,h)|2]>r2,, "] T henMo:E[|m(X b2,

and Ag ,, is the same as in the proof of Theorem 3.1 with M3 relabelled M. As stated in Lemma 3.4, M3
and M, depend on M, only. Since the latter depends on ¢ itself, we deduce that M3 and M, ultimately
depend on ¢ as well.
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We observe that
P <A4,7L n -/2{5,77, N AG,H)

E [[lm(X, h)|]?] < %54}

<1 in
ReHMoE[|m(X,h)|I2]2rF ,, x

<1 {rin < (;425 % 1) gn} , (3.18)
X

where we used R,, < ¢ and we let M5 = 32(3Ms + 2).
To conclude, we want to pick 1, as small as possible such that r}, > Min=2m/(2m+d=) and
1 {rin < (M5 Y 1) Cn} =0. Let Mg := (}”ﬁf’ v 1) If we pick r1,,, = 2¢/M; Ms(,, we have 1 {rf, < Mg(,}

= 0. We now check that 4M; Mg(,, > Myn~2m/(2m+d=,) Notice that max {dllvdh, bi(‘“m)} =0(¢3) =

o(¢n) because b, = o(1) and ¢, = o(1). What is more

max %’bi(s/\m) > max (11 ,b%m Znf2m/(2m+dzh)7
nb," " nby"

where the second inequality can be recovered by choosing b,, to balanc

W . This implies
that for n large enough, 4M; MgC, > 4M.¢2 > 4Myn=2m™/Cmtd=) > £y n‘2m/(2m+d2h We choose
1.0 = 2+/My Mg(,, and combine (3.16), (3.17) and (3.18) to claim that for every e > 0 there exists N > 1
and M > 0 such that for every n > N

i (E [||m(X,ﬁn)||2} > M(n) <e (3.19)

Second step: improved convergence rate

Let v, = max{ /n‘;gff:;j} B3 Mo — holl g o+ v/ \/Rn}, K, = [ylogn],

Kn

—1
Ton = z/é =52 v/1Iogn and C be a constant greater than 1 to be chosen later. Under Assumption 3.8,
the start of the proof of Theorem 3.1 with ¢,, = logn remains valid. Consequently, we can claim that for
every € > 0 there exist My > 0 and Ny > 1 such that for every n > Ny and every C > 0

P (E [Im(X, ha)l2] = €213,,) < P ({E[Ilm(XRa)I?] 2 €23, } 0 Avn 0 Asin 1 Asn ) + 5.

What is more, (3.19) ensures E {||m(X,Bn)||2} = Op(v,) = op(v, logn). This and Lemma 3.5 imply
that for every e > 0 and C' > 1, there exists N; > Ny and positive constants My and M; independent
from C such that for every n > N;

P (E [Im(X, 7n)?2] = €413,
€

P ({c%n logn > E [||m(X, hn)ﬂ > c%gm} N ALn N Az 1 Az O A@,n) + < (3.20)

[\]

k=1 o— —~ -
Let HMo .= {h e HMo . C2p2i=0 2 llogn > E |||m(X, h,)|?] > C’QVRZ;C:O2 llogn . Since
k

{C’Qyn logn > E {Hm(X, Bn)HQ} > C*r3, n}
Ky

U {02 Tiso logn S>E [Hm(Xﬁn)HQ} > 021/712;6:0 27 log n} )
k=1
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we obtain (using also the definition of (A; ,,)}_;)

P ({c%n logn > E {||m(x,ﬁn)||2} > c%g}n} A Arn N Az 1 Az O Ae,n)

Ky
k—1o—1 —~ k —1
= P ({CQV%I’ZO 2 logn > E [Hm(X, hn)HZ} > CQM;l:Oz log n} NA N Az, N A, N .AG,n)
k=1
Ky
<N P inf LF(h)<M2+R,|. (3.21)
D1 \heno

Let 5, = max{\/bT,bfL} and M, > 1 be the constant labelled C; in Lemma 3.4. There exists
non
Ny > Nj such that for every n > Ny logn > M,. As a result, we can claim that for every n > N, and

every k > 1, C?vg Yio? logn > Mayvi = R = M,12. The last paragraph in the first step of the proof is
enough to check that 12 > n=2m/(2m+d=,)  Ag a result, we can apply Lemma 3.4 for every k € {1, ..., K,,}
with u, = (logn)™!, 61, = 021/712;;024 logn and 6, = 021/7127;012_1 log n to claim that for every M
(therefore for every e > 0) there exist positive constants M3, M, and M; (independent from k) such that

for every n > N, and every n > 0

~ 1 f2
¥ (helgi”o (h) 2 logn (32 N 1;1[ fo [”m( h)| ] 1))

n My — Mgnd=n/ (= +2m)

>1-5 - T T T © (3.22)
where A; := M3ﬂ§ max {n~%/2,n71} + logn%ﬂn Suphe,szIO E []m(X, h)|2]. By construction 3, < v,

and 2% logn < E [Im(X,h)|?] < C?v 21202 g for every h e H2o. We combine this last
remark with (3.20), (3.21) and (3.22) and pick n = ¢/(4K,,) to claim that for every e > 0 and C' > 1, there
exists N3 > N, and positive constants M,, M, My, M5 and Mg independent from C such that for every
n > N3

P (IE [||m(X, En)\ﬂ > C%r3 n)

K, 2
g;z@ andZ 10%(? inf E [[lm(X, 0)]*] - )

n n

< in 24 < PO > ! S H M+ I )+

hG’HMO nbd“” 4
My — Mgnten/zy t2m) €
+ K e /(= +2m) © )
< 1 fX 2 Zl 02 2
<>1 C?v Tlogn— As | < M2+ R, S+
— logn \ 32
My — Mgnden /=y, +2m> €
+Knnd2h/(d +72m)€ 5
o 1 fX 2 Zz 02
S 1 C logn — AQ M1 =+ 1 + —
— logn \ 32 4
My — Mgn®en /=y +zm) €
« l
where Ay = M6y2K3/2 + A\I/‘Ln Cvn,vi 2 iso = M@V%Ki/Q + Ai[/GT Vg Cup, =02 .
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Let M7 = fz max {M; + 1, Mg}. Forevery k € {1,..., K, }

1
]l{logn <j;)2(02 o 1ogn—A2> < (M1+1)V72L}

_ K2/2 /K
<1 C’QV,IZf:02 L < M- Vflmax 1, + Cuvj i 2
logn (logn)3/2

K22
<1 C—u,;l ° <maX{M7,1}V72lmaX 1,
2 logn
K32
+1 {g% =o? <max{M7,1} Ko —Cvi S0 } (3.24)

where we used the fact that for positive a, = and y
a a
. > e > = >
letyza} = {max{a:,y}_Q} {1_2} {y 2}

We imposed at the beginning of the proof that K,=o0 ((log n)2/3) As a result, for every € > 0, there
exists N > Ns such that for every n > N,, £ bgn < 2maX{M 17 < landforevery k € {1,... K.}

2 k 1 K%/Q
1 C—VnZ’:”Q < max {M7,1} v2 max{ 1,
2 logn

. 3/2 _
+1 {C;ng;o < max { M7, K Zf:o ? l}

2 _ _ X _
S]I {O2Vg:;c02 l < maX{M% 1} V721} +1 {02 Z;C:o2 ! < CVnZ?:U2 l} . (325)

We pick C' = \/2max {M7,1} > 1. As K,, = o((logn)?/?), Knﬁe_ﬂdsn%/(%ﬂm < gforn
large enough. Combining (3.23), (3.24) and (3.25), we can finally write that for every ¢ > 0, there exists
N >1and M > 0 such that for every n > N

P (IEI [Hm(x,ﬁn)ﬂ > Mrg’n> <e
This is equivalent to E [||m(X,En)H2} = Op(r3,,). To conclude, we note that for every n

To.n —1/26“0g”"|/2 log n.

We know that 12 > n=2™/(2m+d=,) g0 that |log v,| = O(logn). By definition of K,,, we conclude that
Ton ~ V2 logn.
3.6 Appendix

In this appendix we use the following additional notations. We let
D(X;,h) = ﬁ Z?Zl Ki;p(Z;,h) and K := max {supue[_m]dac K(u)‘ ; SUPyc[0,1)de

f(@)]}.

We also let for every p,, = o(1)

Ly (h) ZHD X, h)|” — ZIID (X, h)|* b ZKUPZ h)p(Zj,h)' |,
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and H}'o = {he MM 6 <E[|m(X,h)|?] <&} for 0 < & < 6 < +oc. Finally, recalling the
and F! , (z,2) (resp. Fi%, and FLY (z,2)) before Assumption 3.6, we let

n,ry

definitions of F!

n,ry

Ji(n,z1, My, P / \/1+logN H Lo ( )HLQ(PX-,Z)"Frli,wwL2 (PXvZ))de

1
Jip(n, 21, Mo, P) 12/ \/1 +log N <€’
0

3.6.1 Lemmas

and

JFLE Lo (PXZ)) de.
Ly(PX.%) ’

il (X, 2)]

Assumption 3.9. Let p(u) = uP for some positive p or o(u) = e“. For every e > 0 and every M, > 0,
E [(p (supheHMo up(z,hmﬂ < 4oo.

€

Lemma 3.1. Let Assumptions 3.1 (i) and 3.9 hold. Then for every My > 0

max  sup ||p(Z“h)|| = Oq.s (‘1071(71)) .
1<:i< <1 e Mo

The proof of this lemma follows directly from [101, Lemma D2] and so it is omitted.

Lemma 3.2. Assume Assumptions 3.1 (i) and 3.9 hold. Let A,, := {\X € R?: ||]\|| < Cp,, } where C' is a
positive constant and 1., is a positive sequence such that i, 1(n) = O(1). Then, for every i(-) in the
GEL family we restrict to and every positive My, C and e, there exists N > 1 such that for every n > N

P | max sup |1/J (/\tp(Zj,h))| <40 | >1-¢
LSTST (A h) €A, x HMo

Lemma 3.3. Letﬁ be the Pen-EL estimator defined in (3.8). Suppose that nbds — +oc,

max{ /222l b5 [T ko = holl,} = o(n™1/7) and Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 (ii) hold. If
max { llofdb:‘ 9 bisa ||th0 hOHoo Y ? } = O(an)7 then Pen(/h\”ﬂ) = Op(l)

Lemma 3.4. Let 3, = max{ /18l s L Suppose that 8, = o(1) and Assumptions 3.1, 3.2(ii), 3.3
b x n

and 3.4 hold. Then, we get that for every M, > 0, there exist N > 1 and positive constants Cy, > 1, Cs,
Cs and Cy such that for every n > N and every ¢ > 0

2
Pl i w2 E[mOOm)? - Al
heHyo, 16 newniho

02,n

o1 _ € Cs —Cgndan /@2y +2m)
- € .
=" 9 de, /(dz, t2m)

where A := C182 max {e3/2 71} + un%ﬁn SUDy, Mo E[[|m(X, h)||?] and 6 ,, and és ,, are two
1,n:02,n

positive sequences that satisfy Cyn=2m/m+d=,) < 5, < §,,, < +oo.

Lemma 3.5. Suppose that nbis — +oco, max{y /€22l b3 |[T1,ho — holl ., } = o(n=1/?) for some p > 4,

de b) n7

Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 (iii) hold. Then uniformly ini € {1,...,n}

sup ZK”w (Ap(Z;,11,ho))

AEA(TL,, ho) by

log by, | 2 )
< E K;;+ O + 027 + ||l ho — b ,
< (0 nb it P( nb | o OH

whenever i(-) belongs to the GEL family we consider.
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Lemma 3.6. Suppose that Assumptions 3.1 and 3.9 hold. Let A,, := {\ € R? : |\|| < Cpu, } where C is a
positive constant and ., is a positive sequence such that ji.,,o~1(n) = O(1). Then for every v (-) in the
GEL family we consider and every positive My, C and ¢, there exists N such that for every n > N

1-—e<P| max sup
LIS (7 0 h)€[0,1] x A x HMo

& (Tvtp(Ziy b)) + 1\ < 1) .

Lemma 3.7. Suppose that nbd= — +oo and Assumptions 3.1, 3.2(ii), 3.3, 3.4 and 3.6 hold. Then there
exists N > 1 such that for every n > N and every M, > 0

n N 2

= sup |[D(X;,h) —m(Xy, h) fx(X)
n i—1 heH}VIO

E

for some constant C that depends on K (-), p(-), My, P and d.

Lemma 3.8. Letr,(z) stand for p(z,11,,ho) or p(z,I,,ho)p(z, I, ho)t and
My x— Era(Z) | X = z]. Suppose that nbl — +oco, max{ “ngﬂ ,b5} = o (1) and Assumptions 3.1,

3.2(ii), 3.3 and 3.4 hold. Then
[log b, | s

max
1<i<n

nbldm ZKijrn(Zj) —my (X;) fx (X5)
n’ =1

,,,,,

~ >0 and PZh has a bounded Lebesgue denSIty fz,(-), then for every M, > 0, 7o (i.e the closure of
HMo in Ly(P)) is compact in Ly (P).

Lemma 3.10. Let f, : z — f.(z) be some real-valued function. Suppose that nb% — +oo and
Assumptions 3.1 and 3.4 (i)-(ii) hold. If sup,, >, sup,e(o, 1)2. Bl fo(Z2)[" | X = 2] < +o00 and

sup,, > E[maxi<i<n | fn(Zi)|"] < 400 for some p > 2, then there exists N > 1 such that for every n > N

E sup
z€[0,1]d
for some constant C that depends on d,, K(-), P and (f,)n>1. The result remains valid if K (-) is replaced
with | K (+)|.

Lemma 3.11. Let f(z) = sup,eqmo [[p(, )| for some g < 2. Suppose that /15321 = o(1) and
Assumptions 3.1, 3.2(ii) and 3.4 (i)-(ii) hold. Then there exists N > 1 such that for every n > N and every
My >0

[log by, |
nbds

ZK (2, Xj,bn) fu(Z;) —E (bdlzK(a:,X,bn)fn(Z)>

n

<C
nbd=

<C,

1 n
o Sl
j:
for some constant C' that depends on d,,, K(-), P and f.

Lemma 3.12. Letr(z, k) stand for either p(z, h) or p(z, h)p(z, h)t. Suppose that nbd — +oo, the kernel
function is bounded with support [—1,1]% and Assumptions 3.1, 3.2(ii), 3.4(i) and 3.6 hold. Then, there
exists N > 1 such that for everyn > N and every My > 0

Z sup

i—1 he#HMo

2

R 1
— > Kijr(Z;,h) —E (bdK (X, X, bp)7(Z, 1) | Xi)
noj—1 n

C
<_—
- nbfﬁ
for some constant C that depends on K (-), r(-,-), My, P and d.

bl
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Lemma 3.13. Under Assumption 3.7, we have for every M, > 0 and every (1,1') € {1,...,d}?

sup Ji(n,z1, Mo, P) < +ooand sup Jyi(n,z1, My, P) < +o0.
z1 €[0,1]d= x1€[0,1]4=

Lemma 3.14. Let Assumptions 3.2(ii), 3.3(i) and (iii), and 3.5(ii) and (iii) hold. For every M, > 0, there
exist positive constants C; > 1, Cy and C5 that depend on My, d., , m and L(-) such that for every n > 1

1 Tl— Xiah 2
. . LS I
B0 (X 1) P 2Cin 2 i) | [[[m(X B

< Cy o—Canen /(dz;, +2m)
_ndz}L/(dz}L+2m) '

3.6.2 Proofs

3.6.2.1 Proof of Lemma 3.2

Remark that for every My > 0

max su N < Cu, max su = 04.5(1) = 0p(1),
1<J<n(M)EApXWO| P(Z; W) < Cpin max sup [lp(Zg, W] = 0a.s(1) = 0p(1)

where to get the first inequality we have used the Cauchy-Schwarz inequality and the definition of A,,, and
to get the equality we have used p,¢o~!(n) = O(1) and Lemma 3.1, which is valid under Assumptions
(3.1) (i) and 3.9. Let

Ain = {w: Y(\N'p(Z;(w), h)) exists V(j, A\, h) € {1,...,n} x A, x HMo}

and let V,;, be the domain of 1.
Since V,, is an open interval that contains 0 and maxi <<, SUp(\ pyea, xwMo [A'p(Zj, h)| = op(1), there
exists for every ¢ > 0 an integer N > 1 such that forevery n > N, P(A;,) > 1 —e.

3.6.2.2 Proof of Lemma 3.3

By definition of %,

o~

L(hn) + anPen(hn) < Ln(pho) + oy Pen(I,ho) + R

What is more for every h € H, 04 € A,,(h), so that

n

Bl =537 swp = S Kyt (o7, )

dm
S Aehn (k) nbn” S

> %Z > Ki(04p(Z;, h) = @ > nbld > Kij.

x
i=1 j=1 i=1 j=1

Combining the two previous inequalities, we get that for every ¢ > 0 there exists N; > 0 such that for
every n > N;

¥(0) "1 & ~ —~
— K; P < II Pen(I1 . 2
( p ZE=1 bl jgzl ij T anPen(hy,) < L, ho) + o Pen(Il,ho) + Rn) (3.26)

l\D\”\
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Let £, := / ‘lolgdb;” + b3. Lemma 3.5 yields that for every ¢ > 0, there exist K; and N, > N; such that
for every n > Ny

~ 0 LR P €
2
P En(thO) > Kl( n + ||H"h0 hg” " E E KU < 5 (327)

=:A;
Moreover, the discussion after Assumption 3.3 implies that

Pen (I, ho) < M, (3.28)

for some M; > 0.
With (3.27)-(3.28), we can show that for every n > N,

n

-~

P @ Z : ZK’LJ + anPen( n) < Lyn(nho) + o Pen (11, ho) + Rn)

nbd

<P Z nbd ZK” + anPen(hy) < L (uho) + o My +Rn)

<P {wflo)z ! 3" Kij + anPen(hy) < L, (Tuho) + 0, My + R, }ﬂAf) +P(A)

d(t
= nbn j=1

<P (anpen(ﬁn) < 3max {Ky, My, 1} {vn + an + Rn}) + (3.29)

€
2’
where v,, = 82 + ||, ho — h0||io,7- Combine now (3.26) and (3.29) to obtain that for every € > 0, there
exists M = 3max {K1, M;,1} and N := N,, such that for every n > N

P (oznPen(?Ln) < M{v, +a, + Rn}> >1—e

By assumption, (v, + R,)/an = O(1), i.e sup, Y < B, for some B, > 0. As a result, we can say
that for every e > 0, there exists M = M (B, + 1) such that for every n > N

P(Pen(ﬁ) )>17€

This is equivalent to boundedness of Pen( ») in probability.

3.6.2.3 Proof of Lemma 3.4

Throughout this proof, let 5,, := max{ b: } We recall that

/d’n
nb.

Lhn(h) = ZHD(th)IIZ ZHD Xi DI || — Z (25 1) p(Z;, 1)
2n n —

=1

Thanks to the inequality ||a||*> > 3||b]|>—||b—al|* as well as the Cauchy-Schwarz and triangle inequalities,
we have for every h € 7—[51 "

Ly (h) Z% {2171 Z [m(X, h) fx (X3)||* = %Z ID(Xi, h) — m(X, h) fx (X3)]|?
i=1 i=1

1 ~ 1 &
—ttn = Y DX BP0 S Kijp(Z;, h)p(Z;, h)!
[t nbn”

=Ao
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Taking the infimum over 7;7° ; on both sides

. Hn . 1 - 2
inf LEn(h) > inf — [l (X5, k) fx (X))l
hEHSO s, 2 hems® s, {2" ;

LS UIB(X h) — (X, ) fx (X
i=1

1~ ~ 1 &

—pin = D NDXi WP | — D Kijp(Z5, h)p(Z;,h)'|| 6. (3.30)
et nbn”
=Ao

By Lemma 3.7 and Markov’s inequality, we know that there exists N; > 1 (independent of ¢) such that
for every n > Ny

n

1 ~ C
P> sup ID(Xi,h) —m(Xo ) fx(X)|? < 282 | > 15, (3.31)
n o1 heH Mo € 6
::Al.n
where (| is a constant that depends neither on n nor e.
We now construct an upper bound on A,. Let V(-,h) = E|[p(Z,h)p(Z,h)" | X =]. The triangle

inequality first yields uniformly over ;" ;

1< ~ -
Ay <= CIDX )P xS sup || — > Kiip(Z, h)p(Z;,h)' =V (X;, h) fx (Xi)
i herMo || nbn” T

+ sup |V(Xivh)fX(Xi)|}
heHMo

1 n N 1 n
<= IDXL WP < + sup (| — > Kijp(Z;, h)p(Z5, h)' =V (X, k) fx (Xo)
n hewMo || nbn” T3

i=1
+ C2}a

where Cp = fx SUD (4 h)e[0,1]d= x 2o ||V (25 h)][-

The inequality (Ja|] + |b])? < 2(a? + b?) and repeated use of the Cauchy-Schwarz inequality imply
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uniformly over H;™

2,n

n

20 20, < ~
Ay <223 (ot (KO + 22 S sup DX )~ m(Xe ) f (X0
i—1 i—1 h€HMo

+ 2\] % Z [m(Xs, h) fx (Xa)||*
i—1

2

1 1 <
< =37 sup (= ST Kup(Z5, (25, b — V (X, ) fx(X0)
—1 heMMo || nby” i

+2\llz sup ||B(Xz,h)—m(X“h)fX(Xq)Hzl

2

1 n
X =0 s (= S Kiip(Z, hp(Z, byt =V (X, h) fx (X)) (3.32)
T henMo || mby” T

By Lemma 3.12, we can claim that there exists N, > N; such that for every n > N,, every e > 0 and a
constant C5 that does not depend on e and n

2

1o R
1--<P| |= — SN K;ip(Zi, h)p(Z;, )t —V (X, h) fx(X3)|| <
5 5P |\ 2, S | 2 Fap(Zos P23 0" =V (Xish) (X0

CSﬁn
Je

(3.33)

=Azn

We note that

DX h) — m (X h) fx(X0)||

J;i

i—1 heHMo

1 n
g\@J max sup Z|Kij|||p(Zj,h)||2+C’f
1

1<i<n p ey Mo nb{rilx j=

2
n

1 1 «
X | = sup Kiip(Z;,h) —m (X;, h) fx (X9
R;H nbdg Jo(Z;,h) — m (Xi. h) fx (X3)

where Cy 1= sup(, p)e(0,1]ds x2Mo [|M2(2, B) || fx. By Lemmas 3.11 (with p = 2) and 3.12, and (3.31), we
can claim there exists N3 > N, such that for every n > N3, every e > 0 and a constant C; that does not
depend on e and n

<P 1 sup ||E(X,, h) —m(X;, h) fx(X)|* < V2 G +C?% gﬂn . (3.34)
n i—1 heHMo € €

:=A3,n

Let Ay == L S0, [lm(X;, 1) and

C
Ay = C’6A5+—7ﬂn sup \/A5+C’8max{e_3/2,e_1} Z,
Ve e

81,n:02 n

where Cs := 2C5f ., Cr := 2f xC5Cy and Cy := 4v/2/C5Cs max {/C5, Cy }.
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We can now gather (3.30), (3.31), (3.32), (3.33) and (3.34) and use the fact that f, < fx(X;) < fxto
claim that for every n > N3 and every € > 0

1— % <P (A1, N Az, N AsL)

. n Hn s 1 2 016721
<P (h inf  LEr(h) > — inf {4fXA5 - — —unAsp |-
eH s

Mo Mo €
81,n:92n hGH‘Sl,nv 2,n

Since u,, = o(1), we can claim that there exists N, > N3 such that for every n > Ny, every ¢ > 0 and
some Cy independent of n and e

P ( inf  Lhn(h)
S

81,n:02,n

. I . 2 -3/2 _—1 Cy /
> _ _ _ i
n, E})f { 16 fXA5 Cgﬂn max {e , € } U, ﬁﬂn e ?\E)p As

heH 5
91,n:92,m 61,02 n

>1- (3.35)

N

Let O, be as in the statement of Lemma 3.14. We impose 8, ,, > Cyn~2m/(2m+d=,) g0 that Lemma 3.14
holds and allows us to conclude that for every n > 1

P (Vh € Hfgvffmm :0.5E [||m(X, h)|*] < 4 < 2E [||Im(X, h)||2])

>1 Ol() _Cllndzh/(dzh +2m)
— =55~ € .
- n‘iz}L/(dZ}L+27rL)

(3.36)

Let Ag := Cy% max {6’3/2,6*1} + 2#71%@1 SuthHfs\’f?n,sg_,n VE[||m(X, h)||?]. Combining (3.35) and
(3.36), we obtain that for every n > N, and every ¢ > 0

f2
P inf [,%n (h) > pin =X inf E [||m(X, h 2] _ 4
(hEHMO 32 hEHé\iOﬂ,Jz . [H ( )” ] 6

61,m:02 n
€ C1o _Cyynden /ey F2m)

>1 - 10
>1 2 ndzh,/(dzh +2m)

3.6.2.4 Proof of Lemma 3.5

From the discussion following Assumption 3.3, we know that there exists some M, € R* such that
for every n > 1, I,hy € HMo w.p.1. Assumption 3.2 implies that Lemma 3.2 is applicable. This
yields that w.p.a.1., ¥ (\'p(Z;,11,,ho)) is well-defined for every 1 < j < n uniformly in A\ € A,, where
Ap = {XeRT: A <n~1/P}.

By continuity of the function ¢ — (&) and compactness of A,,, for every i € {1,...,n},

SUPyen, nb%ﬁ Z;;l Kij (Mp(Z;,11,ho)) is attained at some X\ € A,, that we denote ;. By a Mean Value
expansion of ¥(§) around ¢ = 0 and the fact that ¢/'(0) = —1, for every ¢ € {1, ...,n}, there exists 7 € (0,1)
such that

1 O ~
b > Ky (Aﬁp(Zj,tho))
n J:1
1 Y D 1 = N " ~
—0(0) - 3" Ky = ND(CX Maho) + g > Kig(Np(Zy, ko) P4 (FALp( 23, Tluha). (3.37)
o= n

Jj=1
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What is more, 0, € A,, by construction which implies

1 < 1 <
V(0)— > Kij =—4 Y Kijtp (04p(Z;, o))
nb nby =

noj=1

< nbld, > Kt (Mp(Z5, Thaho) ) (3.38)

Let V,, : x = E[p(Z,11,ho)p(Z, 1, ho)t | X = z]. Combining (3.37), (3.38) and the Cauchy-Schwarz
and triangle inequalities, we get for every i € {1,...,n}

0 < — N'D(X;, Hpho) + — Z Z;, Who))*y” (TALp(Z;, L ko))
” =1
- 1 —~
<[5 [Pt mao) |+ 5§ o ZK”( (Xp(Z;, ko)) + 1) (Xp(Z;, o))

bn ZKWP (Zj, W ho)p(Z, L ho )t — Vi (X3) fx (X3) by
_van(Xi)fX(Xi)X;}
<[%
+ % \ A # iKijp(Zjvnnho)P(Zj, Maho)t — Vi(X:) fx (X;)
n i1

Y

where on the last line, we used Assumption 3.2(i) and Assumption 3.4(i).
We first control 4;. We remark

‘ﬁ(Xi,tho)HJr bd ZKU< (PAp(Z5, Thaho)) + 1) (Mp(Z5, o))

2
, (3.39)

’f)(Xi,tho)H FA 4 As— % ‘ )

max
1<i,j<n

i (TXﬁp(Zj,tho)) + 1’ < max sup Y (rv'p(Z;, h)) + 1

LSISN (7 0,h)€[0,1] X Ap x HMo

For every (), we know there exists a compact interval I that strictly includes 0 and over which
¢ (-) is Lipschitz. Under Assumption 3.2, Lemma 3.1 is applicable. Thanks to this lemma and
the definition of A,, we can claim that Tv'p(Z;, h) belongs to I wp.a.? uniformly in (j,7,v,h) €
{1,...,n} x [0,1] x Ay, x HM and maxi<j<n SUD(r,, nye(o,1)x A, x 1Mo [TV 0(Zj, h)] = op(1). As result
maxy<; j<n | (TALp(Z;, Tho)) + 1‘ = op(1) by continuous mapping and

1 N ", 1 n )
Ay 5 ‘ A lrél]ag)ib Y (TAip(Z;,11ho)) + 1’ 11;1%}% @ Zl \Kij| 11p(Z;, Taho) |
j=
_‘X' 2 Ly \Kij|[1p(Z5, ko) ||
— 1] or 112%)(71 nb‘erL ; ij | 1P\43, Linll0 .

We observe that

2
max bd Z\Kmulp j» aho)|* < <<nnbd Z|K”| sup (23, W)l = O (1)

by Lemma 3.11 with f(z) = sup, ey || (2, h)||> and Markov’s inequality. We can thus write

2
op(1),

~

A< X
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where the op(1) termis uniformin i € {1, ..., n}.
The term A; can be controlled thanks to Lemma 3.8
HA H 1<1<n nbd ZKUIO 7th0)ﬂ(zjaﬂnh0) ‘/IL(XL)fX(Xl)
~ |2 log b,
op< 1og b | +b8> *op(1),
nble
where once again the op(1) termis uniformini € {1,...,n}.
Based on (3.39), we can therefore claim that w.p.a. 7 uniformly ini € {1,...,n},
iy +din H - ‘X
= ‘ Cl<z<n D(X“th())H
Lemma 3.8, Assumptions 3.4(i) and 3.5(iii) and
max{,/ “Ofdbr Lbs [T, ho — h’OHoo,'y} = o(n~'/?) induce that w.p.a.7 uniformly in i € {1,...,n},
N < 0p (1080 e g - holl | = (n7)
if| = Up bl 0= M0lloo,y | = 0P\ :
Following the final steps of [113, Lemma A2], we can conclude that w.p.a. uniformly ini € {1,...,n},

N = ArgMAXy\c A (I, ho) T dl Zj  Kij (M p(Z;,11,ho)) and

R ~
K (Np(Z;, 11,k = K; )\ Lk
b z_: 71/)( ir(Z; 0)) AeASl(lrII) ho) nbn Z Jw p(Z; 0))

10 brL s
<$(0 ZKU+0P(' el L +||th0_h0”ioﬁ>'

n

3.6.2.5 Proof of Lemma 3.6

Lemma 3.1 is valid so that for every My > 0

max sup [|o(Zi, h)l| = oas (971 () -

1<i<n peqyMo

This implies that for every positive M, € and 4, there exists N > 1 such that for every n > N

P(max sup lo(Zi W) < o 1<n)5) >1-

1<i<n heH Mo
When max;<; <y, Suppepuo [|p(Zi, h)|| < ¢~ (n)d, we have

"o(Zi, h)| < punC Zi,h)|| < C16
121%)(”(T,’L},h)G[O?HEAnXHJWO ’T’U P( v )| = Hin 1%1%)(”“[)( v )H =

where C) := C x sup,,> ungp~ ' (n) is finite by assumption.

By construction, for every v (-) function we consider there exists a compact interval I such that 0 is a strict

subset of 7 and 4" (-) is Lipschitz over I. The «(-) functions we are interested in also satisfy ¢ (0) =
Zi,h)|| <

As a result, for every C and ¢ (-) we can find ¢ such that whenever max;<;<, supjcy o ||o(
0~ (n)d, we get

max sup Tﬂ” (rv'p(Zi,h)) +1] <1
SIS (7,0,h)€[0,1]x Ay x HMo

—1.
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Those findings allow us to conclude that for every ¢ (-) in the GEL family we consider, and every positive
My, C and ¢, there exist N and § such that for every n > N

1—e<P ( max sup ||p(Z;,h)]| <o 1(n)5>

1<i<n heH Mo

<P | max sup
LIS (24, h)€[0,1) % Ay x HM0

o (r'p(Zi b)) + 1] < 1) .

3.6.2.6 Proof of Lemma 3.7

Let (X,Z) ~ Pand (X,Z) L (X;,Z;)",. By the triangle inequality, a convexity argument and
Assumption 3.1

E

1 < ~ 2
> sup ([ D(Xi,h) —m(Xi, h) fx (X;) 1
N7 heHMo

1

n

1 n
<2E | — sup
[n ; heH Mo

D(X;,h) IE(

(bl K (X0 X,b) p(Z.h) | XZ-) (X, ) ()

n 2
1 ~ 1
<E =S sup ||D(X;,h) —E (K X, X, b, Z,h>
[n Zf sup DX )~ E (S K (X X, ) (2,1 ]

T

n

2
+2 sup

(z1,h)€[0,1]4 x HMo
::Al +A2

(LK (0 X0 p20)) = s W) o)

n

Thanks to Lemma 3.12, we can claim that there exists N; > 1 such that for every n > N;

As (3.40)
for some C that depends on K(-), p(+), My, P and d.

We now control term A,. Recall that

I, = {.73 € [0,1)% : 3t € {1,...,d,} such that z® < b, or 2V > 1 — bn}

and let I :=[0,1]% \ I,,. We first control

2
sup

(z1,h)€Ig xHMo

E ((f‘lllK (z1,X,by) p(Z, h)> —m(x1,h) fx(z1)

n

Let Uy, 5, = {u ER% y= 1= 4 e [0,1]¢ } Note that for every «; € I , K (21, X, by) is actually

(f) t
equal to []%, ( an()) ::K(:chX,bn) and

EHK (21, X, bn) p1(Z, hﬂ i / K (z1,2,b,) E[pi(Z,h) | X = 2] fx (x)dx
by® ba® Jio. 1][11

/ HK( <t>) E[p(Z,h) | X = 21 — bt fx (21 — bpu)du. (3.41)

Uy by =1
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As the support of f((-) is [-1, 1], there exists N > N, such that for every n > N, and every z; € Iy

dy
/ [1% (u(t)> E[pi(Z,h) | X = z1 — bpui] fx (21 — bpu)du
Uz by t—

t=1
dy _
:/ [1& (u(t)) E[pi(Z,h) | X = a1 — bput] fx (21 — bpu)du.
(-1, 32
For every z; € Ij , Assumption 3.4(i)-(ii) allows us to do a Taylor-Lagrange expansion of order s — 1
around 0 of u — E[p;(Z,h) | X = 21 — byu] fx(z1 — byu): there exists a 7 € (0, 1) (possibly depending on
u) such that

dy
/ RIE (u(t)) E[pi(Z,h) | X = x1 — bputl fx (21 — bpu)du
[—1,1)% 3

da
:/[ ] Hf{ (U(t)) { Z DY {E[pi(Z,h) | X = a1 fx (1)} b}’
LA 0y

B:181€{0,...,s—1}

+ Z DP{E[p)(Z,h) | X = 21 — Thyu] fx(x1 — Tbyu)} bfluﬁ} du. (3.42)
B:|B|=s

Since the K(-) is gf order s, we have [, ., 1%, K (u®) du =1 and

Ji1ae WP TI%, K (u®) du = 0 for every §: |8] € {1,...,s — 1}. This and (3.42) imply

t=1 B:18l€{0,...,s—1}

/[_1 1]d= 1_7j[jE (u(t)) { Z DA {E[pl(z, h) | X = xl]fX(le)}bl,?"u,ﬂ

+ Z DP{E[p)(Z,h) | X = 21 — Thpu]fx(x1 — Tbnu)}bfluﬁ} du
B:|B|=s

=E[p(Z,h) | X = x1] fx(z1)

ds
+/ Hf( <u(t)) Z DP{R[p)(Z,h) | X = 21 — Thpu] fx (21 — Thyu)} bEu’du.  (3.43)
[1,1]% ;4 B:|B|=s

Under Assumption 3.4(i)-(ii), for every j such that |3| € {1, ..., s} and for every [ € {1,...,d}, it holds
sup |DP{E[pi(Z,h) | X = z]fx(2)}| < +o0. (3.44)
(w,h)€[0,1]dz x HMo

We combine (3.41)-(3.44) and we use Assumption 3.4(iii) to conclude that

2

sup
(x1,h)€I, xHMo

E (bclin (z1, X, b,) p(Z, h)) —m(z1,h)fx(z1)

n

2

<d max sup
le{l,‘“,d} ($17h)61§, x HMo

(K (010 (Z.)) ~Elp(Z.A) | X = ] (o)

n

<d max sup (3.45)
e{lnd} (z,n)eIp xHMo

2

2
du)

=Cpb2s, (3.46)

dy
|/ [1& (u(t)) 3" DYE[n(Z.h) | X =2 — 7byul fx (x — Thyu)} biu’du
[7171]d7;t 1 B:|B|=s

de

K (u(t)) u?

t=1

<d s s (DU | X =dn@f X[
le{l?"”d}(I,h)eflanHMO’ ‘ ﬁ;|ﬁz|_s [_171]dz
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An analogous reasoning allows us to claim
2
< Csb?e. (3.47)

sup
(1,h) €Iy, x HMo

Finally, (3.40), (3.45) and (3.47) ensure that there exists N > 1 such that for every

1 2s
S C4 (nb‘f; + bn > ’

E (b’iK (z1, X, by) p(Z, h)> —m(x1,h) fx(z1)

n

Ellz sup |[D(X;, h) — m(Xi, h) fx (X;) :

n y
i—1 he#HMo

where Cy = 2maX{Cl, CQ, Cg}

3.6.2.7 Proof of Lemma 3.8

The proof is very similar to that of Lemma 3.7. Recall that m,, :  — E[r,(Z) | X = z]. Starting as in
the proof of the latter lemma, we can write

1
1<i<n || phie

ZK (Xi, Xj,bn) (Z5) — mn(X;) fx (X3)

1
bd

1
T 1<i<n nbgf

K (X5, X,b) ra(Z >Xz]

S K (X0, X, ba) () -E|

1
+ sup E |: d K(an7bn)rn(Z):| _mn(m)fX(m)
z€[0,1]d= b”
=:A1 + As.

We first observe that A; can be further bounded by

—d,
K (max Ira(20)] +E[rn<Z>m)

nbde \1<i<

+ max

max nflbd > K (X, X, ba) (Zj)—]E{

J#i
ZIA3 + A4.

Given the assumptions of the lemma, A3 = Op(1/nb%) by Markov's inequality. When r,(z) =
p(z, 11, hg), we can apply Lemma 3.10 with f,,(z) = pi(z,I1,,ho) for I € {1,...,d} to control A4,. When
rn(2) = p(z,,ho)p(2, I, he)t, we can also use Lemma 3.10 with f,,(z) = pi(z, 1L, ho)pr (2, I, ko) for
every (I,1) € {1,...,d}? to control A4. In both cases, we obtain A, = Op (,/'1;’%7;‘:‘) The control of A is
similar to the control of A, in the proof of Lemma 3.7 and is thus omitted. We can claim that A, = O(b;).

Gathering all the intermediary results, we conclude

max ax
1<i<n || nby®

nbgf

ZK (Xiy X, bn) n(Z;) — mn(X:) Fx (X2) 0p< |1°gb"|+b;>.

3.6.2.8 Proof of Lemma 3.9

Let f,, :=sup.,cz, fz,(z). First we observe that for every M, > 0, H*° is a bounded subset of
max { f, ,1} Mo. This, m —d., /2 > 0 and [|(Z;)"]|2 < 4o for some v > 0 ensure that Corollary 4 in
[114] is applicable (with 8 = 0). This corollary states that for every M, > 0 the following holds

H: since f,, < +oo, we can claim that for every h € HMo, we have ||h||3 < max {f, ,1} [|hll1,0e0) <

Ny (e, HM°, Ly(P)) < +oo for every e > 0.
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Using the fact that bracketing numbers are larger than covering numbers, we obtain
N (e, HMo, Ly(P)) < 4oc for every € > 0,

i.e HMo is a totally bounded subset of Ly(P) for every My > 0. The closure of a totally bounded set is
itself totally bounded,® which is enough to claim that for every M, > 0, #" is a close and totally bounded
subset of Ly (P), that is to say a compact subset of Lay(P).

3.6.2.9 Proof of Lemma 3.10

To avoid notational burden, we give the result in the simplified case where
K (z,y,b,) = Ht 1 (y) =: K( ) To handle the actual K («, y, b, ) function we consider, the
steps are the same.

Let f: z — 1and F, := {f} U {f}. We remark that

| . )5 (g (55 )|

1 (5 s (s () )| e

<—E sup
b [(x,f)e[o,l]dw X Fo

The class of functions G,, := {K (””*) fC) i (x, f) €[0,1]% x ]-‘n} admits an envelope G,, : z —

a2k (5,

by
K" max{ f,(z),1} which verifies sup,,», E [Gn(Z)?] < 400 by assumption. The class G, can also be
viewed as the product between ,, := {K (Ib—;) cx €0, 1}d1} (with envelope K,, : z — Fd”’) and 7,
(with envelope F), : z — max{f,(z),1}). Corollary 7(i) in [98] ensures that for every ¢ > 0

sup N (261Gl 1 gy - G L2(@))

<g 5
<5 N (el gy Kons L2(Q)) 5D N (€1Full )+ P L2(@))

where the supremum is taken over all discrete probability measures.
Let K, := {f( (%) cx €0, 1]}. Assumption 3.4(v) and the definition of a VC-type class of functions

imply there exist positive constants A and v independent of n such that for every e > 0

SlclgpN (EF, I%n,Lg(Q)) < (f)v

Applying Proposition 5 in [98] with ¢ : z € R% Ht 2W, k = d, and (F );'iil replaced with
- . dy .
({K (”(;—') cz® e o, 1]}) » We can write for every € > 0
n i

dz A
sup N (€ 1Kl e + Koms La(Q) g( )
Q ( L2(Q) 2 ) Kdze

We let 4, = %d’j and v; = d,v. Using the last inequality and the fact that the cardinal of F,, is 2, we
get for every e > 0

2A
sup ¥ (€[l 0 G 12(@) <2 (221)

€

81t is not difficult to see that for every positive My and e: N (e,ﬂMO, LQ(P)> < N (e/2,HMo, Ly(P)).
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which combined with Corollary 5.1 in [43] enables us to write

E K
[(z,ﬁ [0 1]d¢xf ”Z (

c 21/m124; sup,,»1 E [Gn(Z)?]
<= vB, log ~
Jn VB,

+’U1 suanl E [ma‘xlfjf’” G"(ZJ')Q} lo Zl/vl 2A1 Suanl E [G’VL(Z)Q} (3 49)
\/ﬁ g ﬁBn ) :

2
where B, is any number between sup(, (.14 x 7, E {K (z;nx> f(Z)Q} and E [G,(X, Z)?].

We remark that

sup E
(z,£)€[0,1]4= x Fp

k(52 sar

n

<bl>sup sup R [max{f,(2)*1} | X =z fX/ K(u)?du = b=y,
[7171](“'

n>1ze(0,1]de

which is smaller than E [G,,(X, Z)?] for n large enough since b — 0 as n goes to +oo while
inf,>1 E [Gn(X, Z)?] > 0 by construction. We can therefore pick B,, = b%=C; in (3.49).
Combining (3.48) and (3.49)

1 2 I—Xj N i r— X
| S (52 s (o (55) 50) |

1

_;;d {\/m@ log (Cybn ™) + 34,1og (Car- /2)},

E

21/V1/2 A sup,,>; ]E[G,I(Zl)Q]

where C5 = = and 04 =0 supn21 E [maxi<;<, Gn(Z;)?]. We can simplify the
upper bound even further using the fact that -1 < 2 and for n large enough log (Cgb;df/Q) < d, |logb,|

UOg bn| |10g by ‘
and nbie = nble

1 rz—X
E sup K( )fn Z; —]E(K()fnZ>
|:x€[0,1]'iz nb - Z (Z;) bfﬁ b, (2)
SCS |10g(5)n| ,
nbp®

with C5 = 2Cy max {\/d,v1C2,d,Cy4}. This is enough to conclude.

To see that the result is still true when IC,, refers to {‘K (Ib—:) cx €0, 1}dw}, we observe that K%

remains a valid envelope and for every (z,z5) € [0,1]% x [0, 1]% and every probability measure Q on
[0,1]¢= (endowed with its Borel sigma-algebra)

2
r1 —Uu T2 —U
Joe e (252 = e (552
2
% xl—u>_K<x2—u>‘ p .
S/[O,l]dl ( bn by @)
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3.6.2.10 Proof of Lemma 3.11

Let (X,Z) ~ Pand (X,Z) L (X;,Z;)j—, and f(z) = sup,cg [|lp(2, h)||?. We first note

1<z<n bd Z|sz|f

Z\Kuwf [1 K (X:, X,b,)| /(2 )X}

Tl

|

o Z\K 0 X0 F2) B o K(a:,x,bn>|f<zj>}u

n

1<z<n nbd

+ sup E [d |K (z, X, bn)|f(ZJ)]
z€[0,1])4= bn”

<E sup
z€[0,1]d=

1
+ sup FE |: |K(x7X7bn)|f(ZJ):| )
nbnz z€([0,1]de b"

_|_

with €y == 2K E[f(2)).

Using Lemma 3.10 with f,,(z) = f(z), we can claim that there exists N; > 1 such that for every n > N;

E sup
z€[0,1]4=

s Z|K 7 X, bn) (Zj)—E(bimIK(x7X7bn)|f(Z)>|]

n

for some constant C, that depends on d,., K(-), P and f(-).

By a change of variable and Assumption 3.4¢(iii)-(iv), we also get
SUP,c(0,1)ds E (bd% |K (z, X, by)| f(Z)) < Cj3. Those two results and max {%, nb1d$ } = o(1) imply that
there exists N > N; such that for every n > N

|log b,L|

— 4+

n nn

+C3 < 3maX{Cl,Cg, 03}

max

1<i<n nb x Z |KU| f

3.6.2.11 Proof of Lemma 3.12

We only give the proof in the case r(z, h) = p(z, h). The proof for r(z,h) = p(z, h)p(z, h)! is exactly the
same, up to notational changes.
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By the triangle inequality, a convexity argument and Assumption 3.1

n

1

2
ZK (Xi, X, by) (Zj,h)E(WK(XZ-,X,bn)p(Z,h)Xi>

1
E |- sup
n ; heH Mo bd

2

- 1
Z Xla n pl(Zjvh)_]E(bde(XlaXabn)pl(Zah) |X1>

<d max E | sup
1<ISd | ey | b

2d 2
< I E | s [KO) ()~ E K (X3, X.b,) m(Z) | 500

2d =
o 2, B sup ;K(Xl,Xj,bn)pl(Zj,h> —E (K (X1, X,b,) pi(Z, 1) | X1)

Control of A,
Under Assumptions 3.1, 3.2 and 3.4(i)-(iii) and a convexity argument

8d —d, Cid
A < —-KE [ sup |p(Z, h)||2 = %
n2by" heHMo n2by"

(3.51)

with € = 8K E [supy, a0 [|0(Z, h)||2].
Control of A,
The term A; is upper bounded by
2d(n —1)?
n2b2%

2
n

1
X fgftSXdE h:;ﬁjg m;K(XhXj»bn)ﬂl(Zj»h) —E (K (X1, X,b,) pi(Z, h) | X1)

2d 1 n
E| s —— N K (X1, X:,ba)pi(Z:, R
S 2| 2 (n_l); (X1, X5,bn) p1(Z;,h)

“E(K (X1, X,b0) pi(Z, 1) | Xl)ﬂ . (3.52)

Note that under the conditional distribution P(Xi:Z5)j=2X1=21

— DK (w1, X5, b0) pr(Zs, h) = E(K (21, X,ba) pi(Z,h) | X1 = a1)

is a sum of (n — 1) centered and i.i.d random variables, indexed by the class of functions 7. , :=

{(z,2) = K (x1,2,b,) pi(2,h) : h € HMo}. This class of functions depends on n, is parametenzed by 1
and My, and has an envelope F), , (z,2) =

|K (21,2, bn)| (5uppepo ||p(2, R)|| + 1) with finite L, (P(ZX)1X1=21) norm (here (Z, X) stands for an i.i.d
copy of (Z1, X1)).

Let P'IX1 stand for P(Z-X)IX1_QObserve that by a change of variable and Assumption 3.4(iii)-(iv)
]E[ nzl( ) |X1—’I’1]

<Fx_sw B sw oz | X =o| [ Ko
z€[0,1]z  LheHMo [0,1]

<HETy sup E[ sup <||p<z,h>||+1>2|X—z] a,
z€[0,1]4x heHMo
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where C depends on K (-).
The upper bound is finite under Assumptions 3.2. This implies that for some C3 > 0

sup < Oybde/2, (3.53)

z1€[0,1]% H nleL2(P'\X1:ﬂcl)

As a result, we can apply Remark 3.5.14 and Equation (3.214) that follows in [79] plus Theorem 3.1.22
from the same book to upper bound the expectation of

1 n
sup N K (X1, X5, ba) pu(Zs, h) — E (K (X1, X,by) pu(Z, h) | X1)
heHMo n—1 =2

conditionally on X;. We obtain (using also that P(X:2)IX1=21 — p(X,2))

E| sup ZK(Xl,Xj,bn)pl(Zj,h)—E(K(Xl,X,bn)pl(Z7h) | X1)| | X1
heHMo [TV — 1 =

Cs 1 ,
< E K (X1, X;,b 7 M X
—n—l{n—l Legﬁ’fn} (X1, X;,b,)° S 1p(Z;, 0)|” | 1]

n

+——E | sup |> K (X1,X;,bn)pi(Z,h) — E (K (X1,X,by) pi(Z,h) | X1)| | X3
n — hGHIWO j=2

C

< {AEL+]E{K(X1,X,bn)2 sup |p(z,h)||2X1H
n—1 heHMo
Cy )

<Ot me 1Ll |

where C3 and C, are universal constants, 4, = ||F}, x, (X, Z)||, La(PX1) Ji(n, X1, My, P)” and

Ji(n, 1, My, P / \/1+logN[ (e 11Bh o, (X D)1 sy Py Lz (PX7) ) e

The upper bound is valid PX1-a.s and we can integrate on each side of the inequality with respect to PX:
to obtain

2
n

1
E| sup |— > K (X1,X;,bn) pi(Z;,h) — E (K (X1, X,by) pi(Z,h) | X)
heHMo | TV =2
04 2
< ) :
< {E [An] + o | MlllLQ(P.le)} (3.54)
Assumption 3.6 and (3.53) further ensure that for some C5 > 0
s[up {H b e (X1, X, Z)HLQ(P_‘XFH) Jl(n,xl,MO,P)} < Csbe/?, (3.55)
x1€[0,1]4

Combine (3.52), (3.53), (3.54), (3.55) and n/(n — 1) < 2 whenever n > 2 to claim that for every n > 2

dCs

Ay < ——
nbd=

, (3.56)

"Note that if the random quantity J(n, X1, Mo, P) is not Borel-measurable, then E [A2] has to be replaced with an outer
expectation.
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Conclusion
Let N > 1 be such that nbldw < 1forevery n > N. This N exists since nb% — +o0o. Combine (3.50),

(3.51) and (3.56) to conclude that for every n > N

2

1 n
E EZ sup

= 1
ZK(Xianvbn)p(Zjah) -E < d K(Xi,Xabn)P(Zh) | Xi)
i—1 heHMo b

dy @
nby =1 n

S 2d max{Cl, C(,}

nb%’

3.6.2.12 Proof of Lemma 3.13

Show that sup,, ¢(o,1j¢= Ji(1, 1, Mo, P) < +oo in the Lipschitz case

We focus on the case: |p;(z,h1) — pi(z, ha)| < L(Z) |h1(Z1) — ha(Zy)| for every My > 0, (hi,hs) €
HMo x HMo and [ € {1, ..., d}.

For every pair (hy, hy) € HMo x HMo

|K (1, 2,b,) X pi(2,h1) — K (21,2,b,) X pi1(2, ha)
<K (z1,2,bn)] X L(2) [h1(21) — ha(zn)| < |K (21, 2,bn)] X L(2)(z0)" |[h1 — ha|, ,

where ]|, ., = sup,, ¢z, [h(2n) x (2r) 7| acts as a weighted sup-norm on # and (z;,) = (1 + ||zn )22

Following steps in the proofs of Theorem 1 and Corollary 4 in [114] and in particular Equation (3) on

page 184, for every positive M, and ¢ and every ~ such that v > m — d;h > 0, we can build a finite

number of ¢ balls under |||, . to cover #*" such that
N(e) = N (e HY0, ||l ) < K(Mo)exp {etn/m

where K (M) is some positive constant that depends on M.
Denote {hi}f\;(f) the centers of each e ball. By construction of those balls, for every ¢ > 0 and h € HMo,
there exists h; such that [|h — R[], , < e. This implies that for every e > 0 and & € HMo, there exists h;

such that uniformly in z € [0, 1]¢=

K (z1,2,0n) X pi(2, hi) — €|K (21, 2,bn)] x L(2)(zn)"
<K (x1,2,bn) X pi(z,h) < K (z1,2,b,) X pi(z,hi) + €| K (21, 2,b,)| X L(2){zp)7. (8.57)

The relation in (3.57) shows that

{K (21,2, bn) X pu(z, hi) — €| K (x1,2,b,)| % L(2){z1)7,

N(e)
K (1, 2,bn) % pi(2, hi) + € | K (21,2, bn)| X L(z)<zh>7}

i=1

n,xr

2
is a valid set of brackets of 7. with L, (PX-7) size 26\/19: [(K (z1,X,by) L(Z)<zh>w) ] . This implies

N (26\/1E {(K (21, X, bn)L(Z)<Zh>v)2] JFho Lo (PX’Z)> <N (eﬂMO, \|.|\m) :
and

N[] (€||Fylz7x1||L2(Px,z) a‘F7lL7_7;1’L2 (PX’Z)) S N <€K(I13M07ry)aHMov ||||oc7~/> )
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l
‘|F"=11||L2(pX,Z)

where K(x1, My,7) =

—.
2.|E (K(rl,x,bn)L(zxzhw) }

Since F! s essentially bounded from below by |K (x1,x,b,)| and Assumption 3.7(i) entails

n,ri

SUP e (o 1jir B [(L(Z)(ZhW)Q X = x] < 400, we arrive at

E[IK (21, X, b))
K(Jih Mo, ’)/) 205

E[JK (@1, X,5,) P E [(L(2)(Z0)")? | X]|

—1/2
zo.5< sup E[(L(Z)(ZW)QIX:E]) = K(v)
z€[0,1]4=

which does not depend on z; anymore.
We conclude that uniformly in z;

\/IOg N[] (6 HF7l7/7$1HL2(PXTZ) "Frlz,aclvl? (PX’Z)) = K(MO)(GK(V))_dzh/2m~
We can thus see that in the Lipschitz case, whenever m/d,, > 1/2,
sup  Ji(n,z1, My, P) < +00.
Ile[(),l]dz
Show that sup,, ¢(o,1j¢= J1,ir (7, T1, Mo, P) < +oo in the Lipschitz case

We follow the same lines as those that enabled us to conclude sup,,, ¢(o 1. Ji(n, 71, Mo, P) < +oc.
For every My > 0, (I,I') € {1,...,d}?, z; € [0,1]% and (hy, hy) € HMo x HMo

‘K (m17x7bn) X pl(z7h1)pl’(27h1) - K(ml7xubn) X pl(zth)pl'(Zu h2)|
S2|K (21, 2,b,)[ X sup |[|p(z, h)[|[L(2)(zn)" [|h1 = hall -
he#HMo

For every € > 0, let {hi}f;(f) be as defined in the previous subsection. We infer from the last inequality
that

{K(xlvx’b’rb) X pl(Z, hi)pl'(zv hl) —€2 |K(l‘1,$,bn)| X sup Hp(z,h)HL(z)(zh)”,
heHMo
N(e)

K (z1,2,bn) X pi(z,hi)pr (2, hy) + €2| K (21,2, b,)] X suIIJW p(z,h)L(z)(th}
heHMo

i=1

is a valid set of brackets of 7.4, with L, (PX-Z) size

46\/E{<K(x1,X,bn) sup ||p(Z,h)||L(Z)(Zh>7>2].

heH Mo

Still following the steps in the last subsection, we conclude that as long as m/d., > 1/2,

sup E [ sup ||p(Z,h)||* | X = x} < 400 VM >0
z€[0,1]d heHMo

and sup, co 1]« E [(L(szhm‘* | X = x} < +o0, the result holds.

Show that sup,, ¢(o,1j¢= Ji(1, 1, Mo, P) < +oo in the NPQIV case
We now let p(z,h) = 1{z, < h(z,)} — 7 for some 7 €]0, 1[. The method of proof is borrowed from Babii

& Florens (2017). Note that here there is a single moment condition so that we can drop the dependence
of Ji(n,z1, My, P) and F. . onl.

n,ry
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We build a minimal ¢ covering of #"° under the |||, , norm and denote {h:}N the family of
centers of balls. As explained in [114], for every h € HMo, there exists h; such that for every z, € Z,,
hi(zn) — €(zn)” < h(zn) < h;i(zn) + €(z5)". For those h and h; observe that for every z = (z,, 2}) € Z

1{zo < hi(zn) — (zn)7} — 7 < L{20 < h(2n)} — 7 < 1{zo < hi(zn) + €(z)7} — 7.
From this follows that for every h € H™o, there exists h; such that for every (z,2) € X x Z
K (21,,b0) x {1{K > 0}1 {2, < hi(zn) — ()7}
+ 1K <0} {z < hilzn) + ()} = 7}
<K (z1,3,0n) x {1{20 < h(zn)} — 7}

<K (21,2, bn) X {1 (K <0} 1{z < hi(z1) — elzn)?}

+1{K > 0} 1 {2, < hi(zn) + €(2n)"} — T}

where 1 {K < 0} (resp. 1 {K > 0}) is a shortcut for 1 {K (x1,z,b,) < 0}
(resp. 1{K (z1,z,b,) > 0} )
We deduce that

{K(xl,:c,bn) x {]1 (K >0} 1 {2 < hi(zn) — elzn)7}

FL{K <0} 1 {2 < hi(zn) + €lzn)} — T},

K (21,2, by) X {]1 (K < 0}1 {20 < hi(z) — e(z) 7}

N(e)
+ 1{K > 0} 1 {2, < hi(zn) + €(zn)" } — T}}

=1
is a valid bracket of 7, ,, with L, (PX-%) size

\/]E K (01, X,60)" % (1{Zo < ha(Zn) + €(Zn)7} = 1{Z, < hilZn) — e(Z0)7})

= B [ o1 X007 B [Py, (ul20) + 200 B, (i) — ) | X))

§\/26 sup fz,x,2, (%0 | @, 21)E [K (x1, X, bn)2 (Zh>7}
(z,2)€Zx[0,1])4=

where the last inequality is due to Assumption 3.7(ii).
This implies

N (Bl P Lz (PX2)) < N (&K, Mo 1), HY o)

|Fuelly px 2

- \/2sup(z‘x)62><[0‘1]dm on\X:Zh(ZO‘z’zh)]E[K(‘m’X’b")2<Zh>w] -
Since F, ., is essentially bounded from below by | K (z1, z,b,)| and

SUP,eo,174- I [(Zn)7 | X = 2] < +00 under Assumption 3.7.(ii),

where K (x1, My, 7)

~1/2
K(x1, Mo,v) > (2 sup fz,x.2, (20 | T, 2n) sup E[(Zp)" [ X = x]) =K(v)
(z,z)€Zx]0,1]%= z€[0,1]%=

which does not depend on z; anymore.
We conclude that uniformly in x;

\/IOgN[] (6 HFn’fL’IHLQ(PX‘Z) 7Fn7x1,L2 (P"Xlle)) S K(MO)(62K<P)/))_dz;L/2m'
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We can see than in the NPQIV model, whenever m/d,, > 1

sup J(n,z1, Moy, P) < +o0.
z1€[0,1]4=
Show that SUpP,, co0,1]d= JL,1/ (n, 21, Mo, P) < 4+oc in the NPQIV case
As there is a single moment condition, we only have to consider the case | =1’ = 1, i.e we focus on
p(z,h)? = (1 {2, < h(zp)} — 7). We remark that

(1{zo < h(zn)} —7)> = (1 = 27)1 {2, < h(zn)} + 7°.

When 7 = 1/2, p(z, h)? = 72 and the result is immediate. Otherwise, the result follows under exactly the
same conditions as in the previous subsection. The only technicality arises when 7 > 1/2: in that case,
1 — 27 < 0 and we have to exchange the roles of the upper and lower bracketing functions constructed in
the previous subsection.

3.6.2.13 Proof of Lemma 3.14

This lemma is a consequence of Corollary 1 in [80]. We check that the conditions of that corollary
are verified here for the class of functions F := {|m(-, h)||* : h € H*°}. Under Assumptions 3.2(ii) and
3.5(iii), remark that for every (hy, ho) € HMe x HMo the reverse triangle inequality implies

1 — 2
- > llm(Xi, ha)[1? = Im(Xs, ko) [IP|” < Callha = hall%
=1

where C; := 4sup(m1h)€[0’1]dw «HMo Hm(:z:, h)||2L2
This implies that for every € > 0

€
N (e, F,Lso(P,)) < N SHMO N ooy |
(P La(P) < N (S s

with P, = % Z?:l 6{X1}
We explained in the proof of Lemma 3.13 that under Assumptions 3.3(i) and (i) and v > m —d., /2 > 0,
we have for every € > 0

€ M —d,, /m
H 0 . < K(Mg) ex L
N(«(Jl’ 7H HOO’A/) - ( 0) p{e ! }’

for some positive K (M) that is finite for every M, > 0. Since C; can be chosen larger than 1 without
loss of generality, we obtain N (¢/\/Ct, F, Lo(P,)) < K(Mj)exp {(e//Ci)~%n/™}. By assumption,
m > d,, /2 so that d,, /m € (0,2). What is more, remark that the constant C in Corollary 1 in [80] can
be taken larger than 1 without loss of generality as well. As a result, we can apply this corollary with
A=K(My),a=d,,/m,q=2,¢=(05/C)?and § = (ne)~2/(>+2) to claim that for every n > 1

£ S [Im (X, )| 1’ . 005)

P su
<h€?—LMo:E[|m(X,h)|2]21.16 E[|lm (X, h)[?]

£ S [Im(X, )| 1‘ 0 5)

<P su
<hE7—LMO:E[|m(X,h)|2]>6 E[[[m(X, h)[?]

16 1

4 4 B Lo \d. /(d., +2m)
S*@ exp {—ned/4} = 3 (en)don /(=) F2m) exp {—4(6n) RETER ‘

Pick C} = 1.1e=2m/(d=,+2m) 5 1 O, = M% and C3 = Le=n/(d=,+2m) to conclude.
e
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Chapter 4

Empirical Process Results for
Exchangeable Arrays

Abstract

Exchangeable arrays are natural ways to model common forms of dependence between units of
a sample. Jointly exchangeable arrays are well suited to dyadic data, where observed random
variables are indexed by two units from the same population. Examples include trade flows
between countries or relationships in a network. Separately exchangeable arrays are well suited
to multiway clustering, where units sharing the same cluster (e.g. geographical areas or sectors of
activity when considering individual wages) may be dependent in an unrestricted way. We prove
uniform laws of large numbers and central limit theorems for such exchangeable arrays. We obtain
these results under the same moment restrictions and conditions on the class of functions as
with i.i.d. data. As a result, convergence and asymptotic normality of nonlinear estimators can be
obtained under the same regularity conditions as with i.i.d. data. We also show the convergence
of bootstrap processes adapted to such arrays.

Keywords: exchangeable arrays, empirical processes, bootstrap.
Based on [51] : Davezies, L., D’Haultfceuille, X. & Guyonvarch Y., Empirical Process Results for
Exchangeable Arrays. Arxiv preprint, arXiv:1906.11293, 2019.

4.1 Introduction

Taking into account dependence between observations is crucial for making correct inference. For
instance, different observations may face common shocks, tending to correlate them positively and thus
leading to overly optimistic inference when ignored [19]. A growing reason for the presence of such
common shocks is that the data are polyadic (e.g., dyadic), namely they involve interactions between
several units of a given population. An example is international trade, where each observation corresponds
to a pair of countries, one exporting and the other importing. We can then expect that two such pairs
may be dependent whenever they share at least one country, because of that country’s specificities in
terms of international trade. Another reason for common shocks is one-way or multiway clustering. In
such cases, common shocks appear in one or several dimensions. For instance, wages of two individuals
may be correlated either because they live in the same geographical area, or because they work in the
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same sector.

[69] and [30] derived variance formulas for linear regressions with dyadic data and multiway clustering,
respectively. The Stata command ivreg2 and the R package multiwaycov are now used routinely to
report standard errors accounting for multiway clustering. Perhaps surprisingly however, theory has
lagged behind this practice. To our knowledge, the only paper showing the asymptotic validity of inference
based on Fafchamps and Gubert’s suggestion for dyadic data is [131]. Moreover, his result is restricted
to OLS estimators only. Regarding multiway clustering, the only papers we are aware of are the recent
works of [109] and [105]." Again, they focus on linear parameters.?

In this paper, we establish uniform laws of large numbers (LLN) and central limit theorems (CLT) for
such type of data. Uniform LLNs and CLTs are key for showing consistency and asymptotic normality of
nonlinear estimators under weak regularity conditions. As such, they have been studied extensively with
i.i.d. but also dependent data. We refer to, e.g., [137] and [57] for overviews with respectively i.i.d. and
time series data [see also, e.g., 18, for recent results on sampling designs]. Noteworthy, we obtain these
uniform LLNs and CLTs under the same moment restrictions and conditions on the class of functions as
with i.i.d. data. Thus, the results already obtained with i.i.d. data directly extend to the exchangeable
arrays we consider. As a proof of concept, we consider such extensions for Z-estimators and smooth
functionals of the empirical cumulative distribution function (cdf).

We also study consistency of the bootstrap. Specifically, we consider a direct generalization of the
standard bootstrap for i.i.d. data to polyadic data. A related bootstrap scheme for multiway clustering is
the so-called pigeonhole bootstrap, suggested by [108] and studied by [118], but for which no uniform
result has been established so far. For both, we establish weak convergence of the corresponding
process. These results imply the validity of the corresponding bootstrap schemes in a wide range of
setting, including the Z-estimators and smooth functionals of the empirical cdf.

To prove these results, we first argue that polyadic data correspond to dissociated, jointly exchangeable
arrays. Similarly, multiway clustering corresponds to dissociated separately exchangeable arrays. We
then rely extensively on the so-called Aldous-Hoover-Kallenberg representation [89, 4, 95] for such arrays.
This representation allows us in particular to prove a symmetrization lemma, which is very useful to
derive the uniform LLNs and CLTs. This lemma generalizes a similar result for i.i.d. data, but also for
U-processes [see, e.g. 56, Theorem 3.5.3]. Note that simple LLNs and CLTs have been already proved,
or are direct consequences of known results on dissociated, jointly exchangeable arrays. For LLNs, we
refer to [66] and Lemma 7.35 in [96]. For CLTs, see [128]. But to our knowledge, no abstract uniform
LLNs and CLTs have been proved so far for such arrays. We therefore also contribute to this literature.

Finally, we illustrate our results with simulations and an application to international trade. A very popular
model for explaining trade between countries is the so-called gravity equation, whose name is due to its
similarities with the usual Newtonian gravity equation. Since [126], this equation has often been estimated
with Poisson pseudo maximum likelihood, to deal in particular with the absence of trade between many
countries. Our results apply to this nonlinear estimator. Using the same data and specification as [126],
we show that much fewer explanatory variables are significant at usual levels when assuming dissociation
and joint exchangeability rather than, e.g., i.i.d. observations [as in 126] or clustering along exporters or
importers only, as is often done in the literature.

The paper is organized as follows. Section 4.2 describes the set-up and gives our main results. In
addition to uniform LLNs and CLTs, we prove weak convergence of our bootstrap scheme. We also show

See also our previous working paper [50], which is now superseded by this one.
20n the other hand and interestingly, [109] studies inference both with and without asymptotically normality. He also shows that
refinements in asymptotic approximations are possible using the wild bootstrap.
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results for Z-estimators and smooth functionals of the empirical cdf. In this section, we focus on jointly
exchangeable arrays, as separately exchangeable arrays are more restrictive and thus can be essentially
obtained as corollaries of these main results. In Section 4.3, we extend these findings to cases where
the number of observations for each k—tuple (e.g., the number of matches between two sport players)
varies. We also study separately exchangeable arrays. An important difference for such arrays is that
the multiple dimensions, corresponding to different sources of clustering, may not grow at the same rate.
We show that our results still hold in this case. Finally, the application to international trade is developed
in Section 4.4.2. The proof of the symmetrization lemma is given in Appendix A. All other proofs are
gathered in Appendix B.

4.2 The set up and main results

421 Setup

Before defining formally our data generating process, we introduce some notation. For any A C R and
B C R* for some k > 2, we let At = AN (0, +00) and

B={b=(b1,..by) € B: ¥(i,5) € {1,....k}*,i # j.b; #b;}.

We then let I, = N+* denote the set of k-tuples of N* without repetition. Similarly, for any n € N*, we let
Loy = {1,..,n}*. Forany i = (iy,...,ix) and j = (j1, ..., jx) in N¥, we let s ©® j = (i1 X j, ..., ix X ji). With
a slight abuse of notation, we also let, for any i = (i1, ..., i;) € N¥, {i} denote the set of distinct elements
of (i1,...ix). Forany r € {1, ..., k}, we let

k
& = {(61,...,€k) € {0,1}%: Zej = r} .

Jj=1

Finally, for any A ¢ N*, we let G(A) denote the set of permutations on A. For any i = (iy, ..., i) € NT*
and 7 € S(N1), we let 7(2) = (7 (1), ..., m(ix)).

We are interested in polyadic data, that is to say random variables Y; (whose support is denoted by )))
indexed by ¢ € 1. Dyadic data, which are the most common case, correspond to £ = 2. For instance,

when considering trade data, Y;, ;, corresponds to export flows from country i; to country i5. In network

152
data, Y;, i, could be a dummy for whether there is a link from 4, to i-. In directed networks, Y;, ;, # Yi, 4,,
while Y;, ;, =Y, s, in undirected networks. Similarly, Y;, i, ., could capture whether (i1, i2,43) forms a
triad or not [see, e.g. 139, for a motivation on triad counts]. Y; could also correspond to data subject to
multiway clustering. Then i.,..., i, are the indexes corresponding to the different dimensions of clustering,
for instance geographical areas and sectors of activity. In such cases, however, adaptations of our set-up
are needed, and we postpone this discussion to Section 4.3.2 below.

We assume that the random variables are generated according to a jointly exchangeable and dissoci-

ated array, defined formally as follows:

Assumption 4.1. Forany = € S(NT), (Y;)ier, < (Yz(3))ier, - Moreover, for any A, B disjoint subsets of
N* with min(|A[, |B|) > k, (Yz),. 4% is independent of (Y;), gr-

The first part imposes that the labelling conveys no information: the joint distribution of the data remains
identical under any possible permutation of the labels. The second part states that the array is dissociated:
the variables are independent if they share no unit in common. For instance, Y{;, ;,y must be independent

of Y(;, j,) if {i1,42} N {j1,72} = 0. On the other hand, Assumption 4.1 does not impose independence
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otherwise. This is important in many applications. In the international trade example, Y;, ;, and Y;
are likely to be dependent because if i; is open to international trade, it tends to export more than the
average to any other country. It may also import more from other countries, meaning that ¥;, ;, and Y7, ;,
could also be dependent.

Lemma 4.1 below is very helpful to better understand the dependence structure imposed by joint
exchangeability and dissociation. It may be seen as an extension of de Finetti’s theorem to arrays

satisfying such restrictions. It is also key for establishing our asymptotic results below.

1,82 1,13

Lemma 4.1. Assumption 4.1 holds if and only if there exist i.i.d. variables (Uj)jcn+1<|s<k @and a
measurable function T such that almost surely,

Yi=7 ((U{i@e}+)eeu,,k;=ls,,.> Vi € I (4.1)

This result is due to [95] but a weaker version, where the equality only holds in distribution, is known as
Aldous-Hoover representation [4, 89]. Accordingly, we refer to (4.1) as the AHK representation hereafter.
To illustrate it, let us consider dyadic data (k = 2). Then, according to Lemma 4.1, we have, for every
11 < 92,

Yiiio = T(Uiy, Uiy, Ugsy iny)- (4.2)

Thus, in the example of trade flows, the volume of exports from i, to i, depends on factors specific to i,

and i, such as their own GDP, but also on factors relating both, such as the distance between the two

countries. Note also the link between (4.2) and U-statistics: Y;
did not depend on its third argument.

Under Assumption 4.1, the (Y;);c1, have a common marginal probability distribution, which we denote

would correspond to such a statistic if 7

1,82

by P. We are interested in estimating and making inference on features of this distribution, such as its
expectation or a quantile, based on observing the first n units only, namely the sample (Y;);c1, ,, with
n > k.

4.2.2 Uniform laws of large numbers and central limit theorems

Let F denote a class of real-valued functions admitting a first moment with respect to the distribution P
and let Pf denote the corresponding moment E [f(Y7)]. To avoid measurability issues and the use of
outer expectations subsequently, we maintain the following assumption:

Assumption 4.2. There exists a countable subclass G C F such that elements of F are pointwise limits
of elements of G.

Assumption 4.2 is not necessary but often imposed [see, e.g. 43, 98]. We refer to Kosorok (20086,
pp.137-140) for further discussion.
In this section, we study the empirical measure P,, and the empirical process G,, defined on F by

paf= S ),

i€l

an: \/E(Pnf_Pf)'

We prove below that under restrictions on F, P, f converges almost surely to Pf uniformly over f € F,

while G,, converges weakly to a Gaussian process as n tends to infinity. We refer to, e.g., [137] for a

8In this formula, the (Uy;¢e3+)
no importance hereafter.

ecuUk_, ¢, appear according to a precise ordering, which we let nonetheless implicit as it bears
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formal definition of weak convergence of empirical processes. These results, which are stronger than
pointwise convergence of P, f and G,, f, are key in establishing the consistency and asymptotic normality
of, e.g., smooth functionals of the empirical cdf or Z- and M-estimators. We consider briefly applications in
Section 4.2.4 below, and refer to Part 3 of [137] for a more comprehensive review of statistical applications
of empirical process results.

We use the rate /n to normalize P,,f — P f, though we have n!/(n — k)! different random variables. In
general, we cannot expect a better rate of convergence. To see this, let (X;);cn+ be i.i.d. random variables
and letY; = -, ;; Xj. Then (Y;);er, satisfies Assumption 4.1, and P,, f boils down to an average over
n i.i.d. terms only. In some cases, however, for instance if the (Y;);<, are i.i.d., the convergence rate is
faster than y/n. Theorem 4.1 below remains valid in such cases, but the limit Gaussian process is then
degenerate.

To establish uniform LLNs and CLTs with i.i.d. data (X;);en+, @ natural way to proceed is to show a
symmetrization lemma [see, e.g., Lemma 2.3.1 in 137]. Such a lemma states that for any non-decreasing
convex function ® from R to R and i.i.d. Rademacher variables (¢4, ..., ¢, ) independent of (X1, ..., X,,),

(;1611; n;f X1)> (2 sup | Zng )] (4.3)

This inequality is useful for proving uniform LLNs and CLTs because conditional on (Xj, ..., X,,), the
process f — > -, & f(X;) is subgaussian, implying that we can apply maximal inequalities to it. Our
main insight is that (4.3) generalizes to jointly exchangeable and dissociated arrays. Let (¢ 4) 4cn+ denote
Rademacher independent variables, independent of (Y;),.;, . Then:

<E|®

Lemma 4.2. If Assumptions 4.1-4.2 hold and P|f| < +oo for all f € F, there exist real numbers
Ci ky -, Ci.r. depending only on k and (Y);cr, -, (YF)ier, jointly exchangeable and dissociated arrays

(2

with marginal distribution P such that

E {@ (sup |]P)nf_Pf>:|
< Z Z T Cri sup > etivey+ F Y]]
=1 cE,

'I:EHnTk
Though the inequality is more complicated than (4.3), it serves the exact same purpose as with i.i.d.
data: conditional on the (Y;),; , the process f — > ;1 | cricery+ f (Y7) is still subgaussian. In view of

1

the AHK representation, the terms ¢,y + could be expected. Given the aforementioned link with U-
statistics, Lemma 4.2 can also be seen as a generalization of the symmetrization lemma for U-processes,
see in particular Theorem 3.5.3 in [56].

The proof of Lemma 4.2, given in the appendix (Section 4.6.1), relies extensively on Lemma 4.1 and a
decoupling inequality that may be of independent interest (see Lemma 4.3). The latter result generalizes
a similar inequality for U-processes [see 55]. In the proofs of both lemmas, we follow similar strategies as
with U-processes, with two complications. First, even with k£ = 2, Y; does not only depend on U;, and U,,,
but also on Uy, ;,1. Second, when k > 3, dependence between observations arises not only because of
single-unit terms such as U;, or U;,, but also because of multiple-unit terms such as Uy;, ;,;. Related to
that, it is unclear to us whether one can always replace (up to adjusting C,. i) ¥ by Y; in Lemma 4.2.
Such a result holds true for k& < 3, using a reverse decoupling inequality, but this inequality may not be
valid for all (r, k). See Appendix A (Section 4.6.1.1) for more details on the matter.

Lemma 4.2 allows us to extend the uniform LLNs and CLTs for i.i.d. data to jointly exchangeable and
dissociated arrays, under the same restrictions on the class F. Subsequently, an envelope of F is a
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measurable function F satisfying F'(u) > sup ;. » | f(u)|. For any n > 0 and any seminorm ||.|| on a space
containing F, N(n, F,||.||) denotes the minimal number of ||.||-closed balls of radius n with centers in F
needed to cover F. The seminorms we consider hereafter are || f||,.., = ([ |f|"du)'/" for any r > 1 and
probability measure or cdf function .

Assumption 4.3. The class F admits an envelope F with

v > O,SgpN(UIIFIIQ,l»J'? Q1) < o0,

where the supremum is taken over the set of probability measures with finite support on ).

Assumption 4.4. The class F admits an envelope F with

+oo
/ Sup \/10gN ([ F|
0

where the supremum is taken over the set of probability measures with finite support on ).

Q,27]:>H‘|

Q,2)dn < +0o0,

Assumptions 4.3 and 4.4 are exactly the same as the conditions often imposed with i.i.d. data to
show uniform LLNs and CLTs [see, e.g., Theorems 19.13 and 19.14 in 136].# In particular, Assumption
4.4 imposes a condition on what is usually referred to as the uniform entropy integral, see, e.g., [137].
Finiteness of the uniform entropy integral is satisfied by any VC-type class of functions [see 43, for
a definition], or by the convex hull of such classes under some restrictions. The following theorem
establishes uniform LLNs and CLTs under these two conditions. As of now, we denote by 1 and 1’ the
k—tuples (1,....,k) and (1,k + 1,...,2k — 1), respectively.

Theorem 4.1. Suppose that Assumptions 4.1-4.2 hold. Then:

1. If Assumption 4.3 holds with F' also satisfying PF < +oo,
supscr [Pnf — Pf| tends to 0 almost surely and in L.

2. If Assumption 4.4 holds with F also satisfying PF? < +oc, the process G,, converges weakly to a
centered Gaussian process G on F as n tends to infinity. Moreover, the covariance kernel K of G
satisfies:

1
K(fi, f2) = Go1e Z Cov (f1(Yr1)), fo(Yar(1r))) -
©(mr)eS({1h)xS({1'})

When F is finite, Part 1 can be proved by combining Theorem 3 in [66] and Lemma 7.35 in [96]. The
result for an infinite class, however, does not follow from these results, whereas it does follow from Lemma
4.2 coupled with standard tools from empirical process theory. Similarly, Part 2 was proved for a finite 7
by [128]. However, the asymptotic equicontinuity of G,,, which is necessary when F is infinite, is difficult
to prove. Again Lemma 4.2 is a core ingredient in this respect.

4.2.3 Convergence of the bootstrap process
In this section, we study the properties of the following bootstrap sampling scheme:

1. n units are sampled independently in {1, ..., n} with replacement and equal probability. W; denotes
the number of times unit i is sampled.

4In [136], the supremum in Assumptions 4.3 and 4.4 is taken over the set of probability measures @ with finite support on
and such that || F||g,2 > 0. This additional restriction is simply due to a different convention in constructing covering numbers, as
van der Vaart considers open balls while we use closed balls, following, e.g., [98].
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2. the k—tuple ¢ = (i1, ...,4x) € I, 1 is then selected W; = H;i“:l W;, times in the bootstrap sample.

Then we consider P}, and G}, defined on F by

nI

_ |
B =" S W),

i€l,

Ghf=Vn(PLf —Pnf).
Asymptotic validity of the bootstrap amounts to showing that conditional on the data (Y;);cr, , G}, converges
weakly to the process G defined in Theorem 4.1. As discussed in, e.g., van der Vaart and Wellner (19986,
Chapter 3.6), the almost-sure conditional weak convergence boils down to proving

Sup |E ((G})|(Ya)ien,) — E ((G))| £ 0, (4.4)

where BL; is the set of bounded and Lipschitz functions from ¢>°(F) to [0, 1].

Theorem 4.2. Suppose that Assumptions 4.1-4.2 and 4.4 hold, with F also satisfying PF? < +oo. Then,
conditional on (Y;)ic1, and almost surely, the process G, converges weakly to G.

This theorem ensures the asymptotic validity of the bootstrap above not only for sample means, but
also for smooth functionals of the empirical cdf and nonlinear estimators, as we shall see below. The
proof of Theorem 4.2 follows the same lines as that of Theorem 4.1, though some of the corresponding
steps are more involved, as often with the bootstrap. In particular, to prove pointwise convergence,
we use arguments in Lindeberg’s proof of the CLT for triangular arrays, Theorem 4.1.1 and Urysohn’s
subsequence principle, combined with Prohorov’s theorem.

Note that in contrast with the standard bootstrap for i.i.d. data,

E (P, ()] (Yo)ier,) = nik > F(Yi) £ Puf.

€L, &

However, the difference between P,, and P/

ni

as n — oo. Accordingly, we also show in the proof of Theorem 4.2 the almost-sure conditional convergence
of v/n (P f — P, f), in addition to that of G.

the empirical measure with weights 1/n*, becomes negligible

4.2.4 Application to nonlinear estimators

Theorem 4.1 ensures the root-n consistency and asymptotic normality of a large class of estimators. In
turn, Theorem 4.2 shows that using the bootstrap for such estimators is asymptotically valid. To illustrate
these points, we consider here two popular classes of estimators, namely Z-estimators and smooth
functionals of the empirical cdf. Similar results could be obtained for, e.g., M- or GMM estimators.

Let us first consider Z-estimators. Let © denote a normed space, endowed with the norm ||.||e and let
(Yo,1n)(0,ncoxn denote a class of real, measurable functions. Let W(0)(h) = Pyg n, ¥, (0)(h) = Pnyon
and U (0)(h) = Phee,n. We let, for any real function g on H, ||g|[x = sup,cy |g(h)|. The parameter
of interest 6y, which satisfies ¥ (6y) = 0, is estimated by 0, = argmingeo 1P, (0)|l%. We also define
f: = argmingce IP% 2o 1 || @s the bootstrap counterpart of 8,,. The following theorem extends Theorem
13.4 in [102] to jointly exchangeable and dissociated arrays.

Theorem 4.3. Suppose that Assumption 4.1 holds and:

1. H\Ij(am)HH -0 /mplles Hem - 90“9 — 0 for every (em)mEN in©;
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2. The class {yg,, : (0,h) € © x H} satisfies Assumptions 4.2-4.3, with the envelope function F
satisfying PF < +o0;

3. There exists § > 0 such that the class {1y, : ||0 — 6o]le < 6, h € H} satisfies Assumptions 4.2 and
4.4, with an envelope function Fs satisfying PF? < +00;

4. limg_,g, Suppey P (Vo1 — Poon)° = 0;
5. 11 @)l = 0p(n=Y/2) and P (|| VaW; (6 |l > nl(Vi)ier, ) = op(1) for every y > 0;
6. 0 — U(0) is Fréchet-differentiable at 6, with continuously invertible derivative W, .

Then ﬁ(@n — 0y) converges in distribution to a centered Gaussian process G. Moreover, conditional on
(Yi)ier, and almost surely, /n(6% — 6) converges in distribution to G.

Next, we consider smooth functionals of Fy, the cdf of Y;. Specifically, suppose that Y C RP for some
p € Nt and 0y = g(Fy ), where g is Hadamard differentiable [for a definition, see, e.g., 137, Section 3.9.1].
We estimate 6, with 0= g(F/’;), where ﬁ/ denotes the empirical cdf of (Y5):c1,, , . Finally, we let 0" denote
the bootstrap counterpart of 6.

Theorem 4.4. Suppose that g is Hadamard differentiable at Fy tangentially to a set Dy, with derivative
equal to g} . Suppose also that Assumption 4.1 holds. Then:

1. V/n (F} — Fy) converges weakly, as a process indexed by y, to a Gaussian process G with kernel
K satisfying

1
K(y1,92) B Z (DO“(]I{YWmSyl}y]l{YW/(l/)Syz})'
| (ma)es({1})x6({1'})

2. If G € Dy with probability one,
~ d
Vi (0= 60) —=— N(0, V(gh, (G))):

Moreover, conditional on (Y;);e1, and almost surely, \/n(6; — 8,) converges in distribution to the
same limit.

In practice, Dy often corresponds to the set of functions that are continuous everywhere or at a certain
point y,. This is the case for instance with g : Fy — F, ! () for 7 € (0,1). In such cases, one can show
that G € Dy under the same condition as for i.i.d. data, namely that Fy is continuous everywhere or at
the point Fy ' (7).

4.3 Extensions

4.3.1 Heterogeneous number of observations

In some cases, we observe multiple observations for the same k—tuple <. For instance, in the case
of exchanges in a network, we may observe multiple or no such exchanges between i; and i,. In sport
competitions, we may observe N;, ;, matches between players i; and i,, with possibly N;, ;, = 0. To deal
with this issue, we consider that for each ¢ € I, there exists a random variable N; € N and a sequence
Y: = (Yi)e>1, With Y5, having support ), such that we only observe (N, (Y ¢)i1<i<n;). To allow for
N; =0, we assume in the following that for any sequence (a¢)¢>1, 22:1 ap = 0.



Chapter 4. Empirical Process Results for Exchangeable Arrays 89

In this set-up, it is often natural to redefine the parameters of interest: if the relevant units of observation
are the N; units within each k—tuple, then parameters of interest are defined with respect to P rather
than P, with

Ny
Pf=E [Z F(¥e)

{=1

In the example of sport matches, this expectation weights equally each match rather than each pair of
players and is therefore often more relevant. For instance, the sample average

N;
Zieﬂyl,k 25:1 Yie
Eieﬂn,k Ni

is an estimator of 6, = P(Id)/P(1), where Id denotes the identity function. This parameter also satisfies
0o = [ ydFy (y), with Fy (y) = P(1 <,y)/P(1). Similarly, quantiles would be defined as 6, = F ' (r) for
some 7 € (0,1). More generally, any parameter related to the units within each k—tuple is defined with

é\:

respect to P rather than P.
Accordingly, we study the behavior of P,,, G,, and G* defined on F by:

~ (n — k)! i
Bof =" > D f(Yie),
: i€, £=1
@nf:\/ﬁ(ﬁbn(f)_ﬁf)a
N;

G = v S )Y s

i€l 1

o~
Il

The following theorem shows that the previous results extend to this set-up with random N;, only up to
adaptations of the moment conditions.

Theorem 4.5. Suppose that Assumption 4.1 holds with (N;,Y;) in place of Y3, P1>0and Assumption
4.2 holds. Then:

1. If Assumption 4.3 holds with F also satisfying PF < +oc, then
P,f — Pf ’ tends to 0 almost surely and in L.

SUp e

2. IfE(N}) < +oo and Assumption 4.4 holds with F also satisfying
E <N1 zf;l F2(Y4, z)) < 400, the process Gn converges weakly to a centered Gaussian process

G on F asn tends to infinity. Moreover, the covariance kernel K of G satisfies:

Nz Norany

K(f1, fo) = ﬁ Z ®0U< ; f1(Yr),e), ; f2(Yw’(1’),z))~

C(mr)es({1)xS({1'})

3. Under the same condition as in 2., the process ((N};‘L converges weakly to G, conditional on (Yi)ier,
and almost surely.

We assume that (V;, Y;);er, , rather than just (Y;);er, , satisfies Assumption 4.1. Importantly, however,
this does not restrict the dependence between N; and Y;, or between the (Y;,),. Hence, conditional
on N;, the correlation between Y; , and Y; »» may vary with N;, for instance. Note also that even if we
focus on P rather than P here, the conditions on F remain nearly unchanged, with only modifications
of the moment conditions. For uniform LLNs, we simply replace PF < +oc by PF < +oc. For uniform
CLTs, instead of replacing PF? < +oo by PF2 < 400, we require the slightly stronger conditions
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that E(N7) < +oo and E <N1 é\’:ll F2(Y1,g)) < +o0. These conditions are nonetheless equivalent to
PF? < +00 when N is bounded. Note also that with a finite F, our proof would only require PF? < +oco.

The proof of Theorem 4.5 is very similar to those of Theorems 4.1 and 4.2, with one difference. In
those theorems, we use the symmetrization lemma to bound the fluctuations of G,, by a function of the
entropy of the class F. Here, similarly, we bound the fluctuations of G,, by a function of the entropy of the
class

F= {f(myl, ey Yn) = Zf(yg) :n €N, (y1, ., yn) €V f € f} .
(=1

The additional point to prove is that we can control the complexity of F under Assumption 4.4 and the
moment conditions above, even if Assumption 4.4 imposes conditions on F rather than on F directly.

4.3.2 Separately exchangeable arrays

Up to now, we have considered cases where the n units that interact stem from the same population. In
some cases, however, they do not, because the & populations differ. For instance, we may be interested
only in relationships between men and women. In that case, the symmetry condition in Assumption 4.1
has to be strengthened: both the labelling of men and the labelling of women should be irrelevant. This
corresponds to so-called separately exchangeable arrays, defined formally in Assumption 4.5 below.
Another important motivation for considering separately exchangeable arrays is multiway clustering,
namely dependence arising through different dimensions of clustering. For instance, wages of workers
may be affected by local shocks or sector-of-activity shocks. In such cases, we observe Y, ;, ,, the wage
of worker ¢ in geographical area i; and sector of activity is.

More generally, we consider in this section random variables Y; = (Y; ¢)¢>1, Where ¢ = (iy, ..., i) € Nt
implying that repetitions (e.g. ¢ = (1, ..., 1)) are allowed. As above, we only observe, for each k—tuple 4,
(Yia,-., Yin, ). We impose the following condition on these random variables.

Assumption 4.5. For any (wq,...,m,) € G(N1T)F,

d
(Ni7}/ti)i€N+k = (Nﬂl(il),...,ﬂk,(’ik)7Yﬁl(il) ,,,,, Wk(ik))i€N+k'
Moreover, for any A, B, disjoint subsets of N*, (N;,Y;);c 4+ is independent of (N;,Y;);cpx -

This condition is stronger than Assumption 4.1 since it implies in particular equality in distribution for
T = ... = Tk

Let us redefine 1 here as (1,...,1) and let n = (n4,...,n;), where n; > 1 denotes the number of units
observed in population or cluster j. Note that in general, n; # n;, for j # j’. The sample at hand is then
(N3, (Yi¢)i<e<nN;)1<i<n, Where 2 > i’ means that ¢; > L; forallj =1,...,k. Let n = min(nq,...,nx). The
empirical measure and empirical process that we consider for separately exchangeable arrays are:

~ 1 N
Ppf=—— >, > f(Yip)

Hj:l Nj 1<i<n =1
Gnf = Vi (Baf - Pf).

We also consider the “pigeonhole bootstrap”, suggested by [108] and studied, in the case of the sample
mean and for particular models, by [118]. This bootstrap scheme is very close to the one we considered
in Section 4.2 for jointly exchangeable arrays, except that the weights are now independent from one
coordinate to another:
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1. Foreach j € {1,..., k}, n; elements are sampled with replacement and equal probability in the set
{1,...,n;}. For each i; in this set, let ij denote the number of times i; is selected this way.

2. The k-tuple i = (41, ...,4%) is then selected W; = H?Zl Wj; times in the bootstrap sample.
The bootstrap process @i} is thus defined on F by

@:fzx/ﬁ<n,f — Y <wi—1>zif<m>).

=1

Henceforth, we consider the convergence of P,, G,, and @Z as n tends to infinity. More precisely, as
with multisample U-statistics [see, e.g. 136, Section 12.2], we assume that there is an index m € N, left
implicit hereafter, and increasing functions g1, ..., gx such that for all j, n; = g;(m) — co as m — oo (we
also assume without loss of generality that for all m € N*, g;(m + 1) > g;(m) for some j). The following
theorem extends Theorems 4.1 and 4.2 to this set-up.

Theorem 4.6. Suppose that Assumptions 4.2 and 4.5 hold and that for every j = 1, ..., k, there exists
Aj > 0 such thatn/n; — \; > 0. Then:

1. If Assumption 4.3 holds with F also satisfying PF < 4o,
SUp e r ‘@n f—Pf ‘ tends to 0 almost surely and in L.

2. IfE(N}) < +oco and Assumption 4.4 holds with F also satisfying
E (Nl évzll FQ(YM)) < +00, the process G,, converges weakly to a centered Gaussian process
G, on F asn tends to infinity. Moreover, the covariance kernel K of G, satisfies:

K(f1, f2) ZA Cov (Zfl Y1), ng (Y, e), (4.5)

where 2; is the k-tuple with 2 in each entry but 1 in entry j.

3. Under the same condition as in 2., the process G converges weakly to G, conditional on (Y;);cx+»
and almost surely.

Theorem 4.6 includes the case where A\; = 0 for some j, corresponding to “strongly unbalanced”
designs with different rates of convergence to +oo along the different dimensions of the array. In that
case, only the dimensions with the slowest rate of convergence contribute to the asymptotic distribution,
as can be seenin (4.5).

Because the (n;);=1..., are not all equal in general, Theorem 4.6 does not follow directly from Theorem
4.1, even if Assumption 4.5 is stronger than Assumption 4.1. We prove the result by showing a simpler
and convenient version of the symmetrization lemma in this setting. We refer to Lemma S2 in Appendix B
for more details.

4.4 Simulations and real data example

4.4.1 Monte Carlo simulations

We investigate in this section the finite sample properties of the bootstrap scheme considered above,
by studying the coverage rate of confidence intervals based on this bootstrap. We consider dyadic data
satisfying Assumption 4.1, with N; = 1 for all ¢ € I, and the following dependence structure:

Yi1,i2 =1 +M(51i1 +€2i2) ++0.5 — .u ( €i1,in 2- V2€i17i2) ;
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where the (e1i,, 2, )i ents (€2 ;)61 .in)el, @NA (€405 )(iy.40)el1, are mutually independent and all standard
1 1)i1€ 41,42/ (i1,92) €l 1,82 ) (i1,i2) €l
=7 The parameter 1 € [0,1//2]

12,91"

normal variables. We impose Corr(c1;,,2;,) = 0.8 and &}
represents the importance of individual versus pair factors, whereas v < [0, v/2] represents the importance
of symmetric versus asymmetric shocks. In the baseline scenario, we let (u1,v) = (1/0.2,1). We also
consider two other scenarios, where respectively (i, v) = (1/0.05,1) and (i, v) = (1/0.2,0). Our parameter
of interest 6, is the median of Y; », which is thus equal to 1. Hereafter, we study inference on 6, based on
the empirical median , for n € {10, 20, 40, 80}.

We inspect the performance of two different confidence intervals. The first is the symmetric interval
[0 £ qo.05(|0* — 8])], where 6* denotes the bootstrap counterpart of 8 and ¢, (U) denotes the quantile
of order « of U, conditional on the data (Y;);:c1, ,. The second is the percentile bootstrap interval
[q0,025(§*), qo_975(§*)}. Given Theorem 4.4, both intervals are asymptotically valid.

Our results are displayed in Table 4.1. Our two confidence intervals have very good properties, overall,
even for very small sample sizes. They appear to be slightly conservative for small n, but their coverage
rate is already close to the nominal level for n = 80. The two confidence intervals are also very close to

each other.

Symmetric Percentile

Scenario n  bootstrap Cl bootstrap Cl
Baseline: 10 0.984 0.986
uw=+0.2 20 0.977 0.979
v=1 40 0.969 0.971
80 0.961 0.961
baseline 10 0.984 0.986
but 1 =+1/0.05 20 0.977 0.979
40 0.969 0.971
80 0.961 0.961
baseline 10 0.98 0.983
butvy =0 20 0.971 0.972
40 0.965 0.968
80 0.962 0.961

Notes: 5,000 simulations, 200 bootstrap samples for each.

Table 4.1 — Coverage rates on the true median (nominal coverage: 95%)

4.4.2 Application to international trade data

Finally, we illustrate in this section the importance of accounting for dependence in real dyadic data.
We revisit for that purpose [126], who estimate the so-called gravity equation for international trade. This
gravity equation states that the trade volume T;, ;, from country ¢; to country i, satisfies

T;, in = exp(ao) G G2 DY, exp (Aiy iy B) i in (4.6)

11,12

where G; denotes country i’s GDP, which would correspond to the mass of i in a traditional gravity
equation, D;, ;, denotes the distance between i, and i», A;, ;, are additional control variables and 7;, ;,
is an unobserved term.

We wish to estimate 0y = («y, ..., @3, 8’)’. The usual way to do so is to take the log in (4.6) and use the
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OLS estimator. An issue, however, is that many trade volumes are equal to zero. This is the case for
instance in 47.6% of the data used by [126]. Thus, one would either have to discard the corresponding
data, resulting in a sample selection, or take an ad hoc transform such as log(n + =) for some > 0
instead of the log. In both cases, the corresponding OLS estimator is no longer consistent.

Instead, [126] suggest to use the Poisson pseudo maximum likelihood (PPML for short) estimator 9.
The idea, formalized in [82], is that with i.i.d data, the PPML estimator is consistent and asymptotically
normal for 6, even if T; does not follow a Poisson model, provided that E [n;|X;] = 1, with X; =
(1,In(G4y), In(G4,), In(D;), A;). This is because the PPML estimator is based on the empirical counterpart
of

E[X] (T; — exp(X;i6p))] = 0, (4.7)

and this equality holds true if E [n;| X;] = 1. Now, assuming as in [126] that the variables (Y;);c1, are i.i.d.
(with Y; = (T3, X;)) is restrictive. We suppose instead that Assumption 4.1 holds. Then Theorem 4.3
applies to this setting, implying that g is still consistent and asymptotically normal in this case.® The rate
of convergence and asymptotic variance are nonetheless different in the two cases, resulting in a different
inference on 6.

We use the same dataset as [126], which covers 136 countries for year 1990, and consider the exact
same specification as the one they use in their Table 3. In this specification, the additional control variables
A; include exporter- and importer-level variables, namely their GDP per capita, a dummy variable equal
to one if countries are landlocked and a remoteness index, which is the log of GDP-weighted average
distance to all other countries. It also includes variables at the pair level, namely dummy variables for
contiguity, common language, colonial tie, free-trade agreement and openness. This openness dummy
is equal to one if at least one country is part of a preferential trade agreement. We refer to [126] for
additional details.

Table 4.2 below presents the results. The first column displays the point estimates, which, as expected,
are identical to those in [126]. The other columns display the p-values for the null hypothesis that 6,
the j-th component of 6y, is equal to 0. In Column 2, these p-values are obtained assuming that the
(Yi)ier, are i.i.d. Asin [126], the p-values are computed using asymptotic normality and estimators of the
asymptotic variance. In Column 6, we report the p-values based on our bootstrap, hence supposing that
Assumption 4.1 holds. We compute the p-value p, for 6y; = 0 using p;, =P <|§j - §j| > |§j\|(}ﬁ)ieﬂn,k).

We consider in the other columns alternative forms of dependence that have been considered in

applied work on similar data. Column 3 corresponds to pairwise clustering, where Y;, ;, and Y;, ;, may
be dependent, but Y; and Y; are independent if j is not a permutation of <. Column 4 corresponds to
one-way clustering according to i, whereas Column 5 corresponds to one-way clustering according to
iz. In the former case, Y;, ;, and Y;, ;, may be dependent, but Y;, ;, and Y}, ;, are independent as soon
andy;
as soon as iy # i4. In Columns 3 to 5, we follow the usual practice of computing the p-values using the
asymptotic normality of 5] and estimators of the asymptotic variance under these various dependence

structures.

as i; # i}. In the latter case, Y}, ;, s,i May be dependent, but Y3, ;, and Y;, ;; are independent

5In this case, H = {1, ...,dim(X;)} and Po,n(Ys) = Xp,s (T —exp(X;60)). Then the key conditions 2 and 3 in Theorem 4.3
are satisfied as soon as © is bounded, see e.g. Example 19.7 in [136].

6The same application has been considered by [83], who shows, assuming convergence of a certain sample average, the
asymptotic normality of the PPML estimator under the same dependence structure as ours. On the other hand, he neither considers
bootstrap-based inference nor proves the consistency of his (asymptotic) variance estimator.
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p-values under different assumptions

Variable Estimator ii.d PW cl. E cl. | dyadic
Log(E’s GDP) 0.732 <107 <1073 <107® <107% <1073
Log(I's GDP) 0.741 <107® <107® <1073 <107* <1073
Log(E’s PCGDP) 0.157 0.003 <1073 0.04 0.001 0.078
Log(I's PCGDP) 0.135 0.003 <1073 0.004 0.055 0.076
Log of distance -0.784 <1073 <107® <1073 <107® <1073
Contiguity 0.193 0.064 0.16 0.112 0.077 0.461
Common-language 0.746 <107 <107% <1073 <10~% 0.056
Colonial-tie 0.025 0.867 0.902 0.891 0.882 0.952
Landlocked E -0.863 <1073 <107* <1073 <107* 0.004
Landlocked | 0696 <107% <107* <107 <1073® 0.011
E’s remoteness 0.66 <107% <107® <107® <10~% 0.036
I's remoteness 0.562 <107%® <10~ 0.003 0.004 0.105
P-T agreement 0.181 0.041 0.117 0.054 0.122 0.456
Openness -0.107 0.416 0.522 0.498 0.453 0.771
Notes: data from [126], same specification as in their Table 3. “E”, “I”, “PCGDP”, “P-T”, “PW” and “cl.” stand for

exporter, importer, per capita GPD, preferential-trade, pairwise and clustering, respectively. The p-values for

the last column were obtained with 1,000 bootstrap samples.

Table 4.2 — Point estimates of 6, and p-values of 6,; = 0 under different dependence assumptions

Using our bootstrap leads to much larger p-values than under the i.i.d. assumption. Only the log of
GDP of the exporter and the importer and distance appear to be significant at the 10~2 levels, whereas
five additional control variables are significant at that level under the i.i.d. assumption. In particular,
common language and importer’s remoteness are not even significant at the usual 5% level. Interestingly,
there is also a gap between assuming one-way clustering, either at the exporter or at the importer level,
and assuming to have a jointly exchangeable and dissociated array. In the former case, we still have
seven variables that are significant at the 103 levels. Confidence intervals, not displayed here, lead to
similar conclusions. In particular, compared to the average length of i.i.d.-based 95% confidence intervals,
those based on pairwise clustering are only 8% wider. Those based on one-way clustering on exporters
(resp. importers) are 20% (resp. 17%) larger. On the other hand, those based on Assumption 4.1 are
136% wider.

Finally, note that [126] also consider a model with country fixed effects. In such a case, and even if the
data are i.i.d., the PPML estimator has a non-negligible bias compared to its standard error [94], thus
leading to distorted inference if not accounted for. [94] considers an alternative estimator and shows that
it is asymptotically normal and unbiased if the error terms are i.i.d. Theorem 4.3 above does not apply
directly to this non-standard estimator, but we conjecture that it is still asymptotically normal, and the
bootstrap valid, if the data are jointly exchangeable and dissociated.

4.5 Conclusion

While polyadic data are increasingly used in applied work, and empirical researchers routinely account
for multiway clustering when computing standard errors, the statistical theory behind these forms of
dependence has lagged behind. We first contribute to this literature by linking these dependence
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structures to jointly and separately exchangeable arrays. Using representation results for such arrays, we
then prove uniform laws of large numbers and central limit theorems. These results imply consistency
and asymptotic normality of various nonlinear estimators under such dependence. We also establish
the general validity of natural extensions of the standard nonparametric bootstrap to such arrays. Our
application shows that using those bootstrap schemes may make a large difference compared to assuming
i.i.d. data or clustering along a single dimension, as has often been done.

One caveat is that for the bootstrap confidence intervals to be valid, the asymptotic variance of the
estimator should be positive. This may not be the case, for instance if the data (Y;)ic;, are actually
i.i.d. Inference based on the wild bootstrap without this positivity condition has been studied for sample
averages under multiway clustering by [109]. How to conduct inference for jointly exchangeable arrays
or nonlinear estimators under multiway clustering without this positivity condition remains an avenue for
future research.
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4.6 Appendix A

4.6.1 Proof of Lemma 2.2

The general idea of the proof of (4.3) in the i.i.d. case is first to bound the initial expectation by another
one involving a sum of independent differences of identically distributed variables. By symmetry, these
differences can be multiplied by Rademacher variables without affecting the expectation. We follow this
general strategy here, but complications arise because of dependence in the (Y;)cr, ,. -

Specifically, we proceed in four steps. In the first step, we obtain an upper bound with a sum of
differences that are identically distributed but not independent. Roughly speaking, they are nonetheless
“less dependent”, as we “decouple” the random variables appearing in the AHK representation (4.1)
by introducing independent copies of them (see inequality (4.11) below). In the second step, using a
telescopic sum, we further bound our expectation of interest by another one involving sums of differences
that are independent, conditional on a suitable o-algebra. The third step is the symmetrisation step
itself, where Rademacher variables are introduced. The fourth step concludes by combining the previous
steps. Note that the key decoupling inequality (4.11) is given separately in Lemma 4.3, as it may be of
independent interest.

First step: decoupling

For any j € N, let (Uﬁ{)) and (ij)) denote some independent copies of

ACN+:1<|AI<r ACN+:1<|AI<r

the (UA)ACN+11S‘A|§T' Let }/,L(k) =T ((U(O) and

D)
{i0e} ecUk_ &,

(iber+) (Vier+) o ) '
eGU;zl & ecU” &;

j=r+1

Because E[f (v1)] = E [/ (v,*)) [¥}”] and (¥i)ier, < (Y'(O))ienk’ we obtain, by Jensen’s inequality

)

<E _<I> (sup (n;i'k‘)' Z f (Yi(O)) _f (Yi(k))

and Lemma S1,

K| (sup BB S p ) -l )]

fer 1€L,

fer i€l

)

E (n —k)! (r—1) )
o e O 5 /0070) s o)

fer ic€ln k

<

T =

)] | 9

Fori e R and 7 € Sy, let ix = (ir(1); -, in())- FOrany f € 7, let also

T (Whoer)een_e.) =27 32 70V,

TES

Note that >~  f ((U{i@e}+) cUk £ ) =Y ier, , f(Yi) and if the components of i’ are a permutation
n,k e r=1¢r n,
of those of ¢ we have

f ((U{iGe}+)eeu§:1g,,.) =f ((U{i’Ge}+)eeU§:15,,,) : (4.9)

Forr =1,...k, let &, = U§=r+15j and &, = U?;%ET. Let 4" be the o-algebra generated by the
variables (U{(%eﬁ)(i’e)eﬁn‘kxér and (V{(%eﬁ)(iﬁe)eﬂn’kXgr. ForanyjeN,iel,,ande € Ué?,:lé’j,, let

G _ (1) (%)
Wiioey+ = (U{Z@e}+ﬂf{f@e}+)-
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As we will reason conditional on ¢/", let us use f,. ; (w) as a shortcut for

f ((Uff(i)gaeﬁ)ee& 1 (V{(%E}*)ee&) ’

for any vector w € RI®-I. Let us also define
3 (0)
Afr,i ((W{zQe}+> 657«)
=R (0) + (0)
=k n! Jri (U{i®e}+)eesr ~Jra (V{i@e“)ee& .

Then, by definition of ;" and A¥

T,

_ (n — F)! (r=1) 6] r
o (ks mieﬂsz(n ) - (v) ‘u
=E _ ;telg ;ﬂ:k Afyi (( {z@e}+) e&«) ui. (4.10)

Remark that the first result in Lemma 4.3 applies conditional on Z{". Then, letting K , = (3|£,.||5T‘)‘5"'|71
and ¢ be an arbitrary bijection from &, to {1, ..., |€,|}, we obtain

E sup Afm< w0 ) ur
fer ’Leﬂzk ( {ZGEH) ecé,
<E |® | K, AT, (((wlie) > ur 4.11
+ (L DRI o
Second step: telescoping sum
Let < be a total orderon &,. We note e < €’ if e < €’ or e = €'. For every (e, e') € £ let
(e(e) i
( {z@e’}+’ U{z@e’}Jr) if e/ <e
- e £(e')) i
W{z@e N+ = ( {iGe'}+? {'LQE’}+) if e - e
(e( (e") i —
(U{'LGee Gsx {z@e }+> ife’ =e.
Then, for any e € &,,
(4e) _ (i) (e(e))
(W) o, = (Ve tiesey + Vi) Lo,
(e(e) (e")
Uliseh L) + Viisays Liezar),_, (4.12)
(L) _ (e(e) e i :
and (W{@e,}+) s, = (W{me,}+) Af (( {z@a/w) g) can be decomposed into the follow
ing telescoping sum:
- (L(e (¢,e)
Bfni ((W{’Qe’}+) e'eE, ) Z Afn <<W{Z®e }+)e’€€r) .
By Lemma S1, we obtain, with K5, = |€,| K71+,
E|® | K,sup Z Af”<< {i(g’i/ﬁ) ) ur
FEF e, e'€Ey
(¢,e) r
T Z E|® (KQTSUP Z Afrz <<W{l®t2’}+) /€£T> ) ‘u ] . (413)
ecé, 1€l x




Chapter 4. Empirical Process Results for Exchangeable Arrays 98

Third step: symmetrization

Forany e € &,, letU; , be the o-algebra generated by the same variables as U/",
(U Nixenetpxe,er<e A0 (VD) ) enen, e eme: LetTng = {(i1, iz, woit) € {1, in}¥ 2 <
iy < ... < i} C L, and &y be the set of permutations of {1,...,k}. Forany i = (iy,...,ix) € N*¥ and
7 € &y, let i, denote (ir(1),...,i-(x)). FOrany i € I, and e € &,, let i® be the k-dimensional vector with
component ¢; in the first non-null entry of e, i5 in the second non-null entry of e and so on. Similarly, for
anyiel,_,and e € &, let i1—¢ be the k-dimensional vector with component i, at the first null entry of
e, iy at the second null entry of e and so on. For instance, if k =5, r =3,¢ = (6,9,2), ¢ = (7,3) and
e=(0,1,1,0,1), we obtain i¢ = (0,6,9,0,2) and i'*~¢) = (7,0,0,3,0).

For every e € &,., we have

—
L= {ig+909 i el e 6.4 € (Lo NG ). @14)

Thus,

> o7, .. )

i€l k

T 7(876)
-Y Y Y e (T o), )
i€l , i/ €({1,..,n}\{a})F— 7 T€Sr

With this new indexation of the sum on 7 and reasoning conditional on ¢/ ., the triple sum above can be
rewritten as a sum of n!/[(n — r)!r!] symmetric and independent terms. Hence, it is equal in distribution to

_ —(£,e)
Z £} Z Z Af,,,ﬂi,er+i/(1fe) <(W{(igr+i/(1e))®e/}+)e,€5 > )

icl,,  #e({L..n}\{sp)F T TEG,

,,,,,

{3} = {(3¢ + 1= e e} ™. Hence, using (4.14) again,

Z (i) Z Z A?r,i;ﬂ,—s-i/(l—e) ((W({Z(;)Jri"l_e))@e/w)e/e&)

iel,,  #e{Tn\{ihF " "ESr
— —(l,e)
— Z €{i®e}+Afr7i ((W{iQel}+)e/E€ ) .
ieH'rL,k "

Furthermore, for every e € &,., by (4.12),
n! — —(¢,e)
k(n — k)!Af i ((W{@E’“)e/e&)
_7 (e(e) (e(e)
s ((U{@e%ﬂ{e’fe} + V{z‘@e'ﬁﬂ{e%})eesr)

= (e(e") ()
_ fr,i ((U{iee/}+]l{e/-<e} + V{iGEI}Jr]l{e/te})eegT) .

,,,,,

and (Uﬁ{))Ang,n} uin (UX/))AQ{LW”} whenever j # j', we obtain, conditional on U,

(£(e") (e(e”)
((U{i@e/}+]].{e/je} + V{i®e/}+]l{el>_e})e/eg >

iEHn,k

) (e))
(U{icaef}Jr Tier<ey + V{i®e/}+n{elte}) e’efr)

4 ( (€(e")) ) )
= U, .
< {1@6 }+ e’'cé, ’l:E]Imk

[l
7N

iGHn,k
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Then, by independence between (c4) acn+:.1<|aj<x and (Uﬁlj), ij))jeN,AcN+:1§‘A|§k and the triangle and
Jensen inequalities

1 [ — e
A Z E|® (Kz,r sup Z Eioe}+Af s ((Wﬁ@l }+) ,657) )

i€,k

u?"

, (4.15)

1 =z (t(e) )
P (K3 o] & cucer T <(U{"®€’}*)e/ea u

i€,k

where K3, = Qk%Kg -

)

Fourth step: conclusion
Combining Equations (4.8), (4.10), (4.11), (4.13), (4.15) and using the expressions of K; ,, K5 , and
Ks ., we finally obtain

E [@ (;gg oS ro Rl “”“)”D]

1< n—k)!

G X" ( S Y E{z’@efwf(i?))r
and

i€l .
|Er—1
r_ (0) (¢(e)) 0)
Y; =T <(U{i®e}+)e€£T ’ (U{iQe}Jr)eegr ’ (V{i©6}+)e687.) .
A

By construction of the (U ©
y uct ( A )ACN+:1§|A\§k ( )AcN+:r+1§|A\Sk’
and dissociated, with marginal distribution P. This concludes the proof.

with C,., = 2k, | (3&,|5")

(Y);er, is jointly exchangeable

(2

4.6.1.1 A decoupling inequality

The proof of Lemma 4.2 crucially hinges upon the following decoupling inequality, which may be of
independent interest. Hereafter, we let A, = {A C {1,..n}: |A4| =r}.

Lemma4.3. Letr <k, (Wa),c 4 be afamily of ii.d. random variables with values in a Polish space S
and (ng ))A R j=1,..,|&| be some independent copies of this family. Let ® be a non-decreasing
convex functioen fromR* toR and ¢ be a bijection from £, to {1, ..., |&,|}. Let’H be a pointwise measurable
class of functions from S'¢-| x 1, ;, to R such that E (supheH )h ((W{i@e}+)e€gr ,i) D < oo. Finally, let

L, = (3|&|' )\5,,|—1_ Then
E® h((W ,
(222 7«§k ( {1®e}+)eeg ) )
<E® | L, h( (we) , ) .
( " hen z§k (( {z@e}+)e€& ’

The proof is given in Appendix B. This result generalizes the decoupling inequality for U-statistics of
[55] to our setting. As with U-statistics, it is possible to obtain a reverse inequality if » € {1,k — 1,k}
and 7 — h ((W{iﬂgeﬁ)eegr ,i,r) is constant on &, for all h € H. With such a reverse inequality, it is
possible to replace Y, by Y; in Lemma 4.2. It is unclear to us, however, whether this reverse inequality
still holds if r ¢ {1,k — 1, k} (implying & > 4). The key argument for the reverse inequality in [55] is that
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by the symmetry condition above, we can replace h ((W{iw@e}ﬁ)eeg_ ,iﬂ) by an average over k! terms.
However, for the proof to extend to our setting, one would need an average over |€,|! terms. This is not
possible in general when |€,.| > k, which is the case when r ¢ {1,k — 1, k}.

4.7 Appendix B

We prove in this appendix all the results presented in the paper, except the symmetrization lemma
(Lemma 4.2). The first section gathers the proofs of the results in the jointly exchangeable case with one
unit per cell (Section 4.2 of the paper), while the second section focuses on the proofs of the extensions.
Section 3 collects all the technical lemmas.

To ease the reading, we first summarize the notation we use throughout the proofs. Objects introduced
in a single proof are defined therein directly and not reported here. We recall that £ denotes the dimension
of the array of data. Also, bootstrap counterparts appear with a star.

Subsets or elements of N*

AT AN (0,400), forany A C R.

A {ie Avij#iyifj+#j'}, forany A C NtF,
A {ieA:ij<ijifj<j'}forany A C Ntk
| A the cardinal of A ¢ N*k,

G(A) The set of permutations on A.
S, S({1,...,7})

i NT,

]In,k {1,...,TL}k.
&, {ec{0;1}F: % e;=r}forr=1,. k.

=1

i element of I, orJN+k, with component (iy, ..., ix).

{i} the set of distinct elements of i = (iy, ..., i) € N*.

e element of {0, 1}*.

1€ fori eI, , and e € &,, the k-dimensional vector with component ¢; at the first non-null
entry of e, iy at the second non-null entry of e and so on.”
(0,...,0)

1 (1,...,k) except in Section 4.7.2.3 and Lemmas S4.5, S4.7 and S4.9, where 1 =
(1,...,1).

2, element of N* with 2 at each component but 1 at its »th component.

ir (x(1)s s in(r)), forany i e N"and v € 6,.

® the Hadamard product, i.e. ¢ ® e = (i1e1, ..., ixer)-

Sample and random variables

n Number of units in the population.

n (n1,...ng), with n; the number of clusters in the j-th dimension in Section 4.7.2.3.
k

Hn Hj:l n;.

Y; (Niy (Yae)e=1..N;)-

(ea)aca Mutually independent Rademacher random variables (i.e., with values 1 or —1 with
probability 1/2), for any set A.
(Y] )ien, jointly exchangeable array defined in Lemma 4.2 with marginal distribution P.

“Forinstance if k = 5,7 = 3,4 = (6,9,2) and e = (0,1,1,0, 1), we obtain i¢ = (0,6, 9,0, 2).
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(iﬂieﬂk same as (Y] );er, , but when applying Lemma 4.2 to F and (E)ieﬂk instead of 7 and
(Y3)ier, -
(Y™ )ier, sameas (Y] )ier,-

Functions and classes of functions

Id The identity function.

D Unen ({n} x Y™).

f for any function f from Y to R, the function from D to R defined by f(n, Yly ooy Yn) =
22;1 f(ye)-

F {f fe ]-"}.

F? {f?: f € F}, for any class of functions F.

Fxg {(f,.9): feF,geg}

Fs {h =fi—f2:(f1,f2) EF X F,E [(f1(Ye,1) - fz(Ye,1))2] < 52}-

Foo {h=fi—fa:(f1,f2) € F x F}.

N(n,F,||.|l) the minimal number of ||.||-closed balls of radius n with centers in F needed to cover
F.

Jr(u) Iy supg v/log N(n[[F[lq,2, F. ||.Ilg,2)dn, where the supremum is taken over the set of

probability measures with finite support.

Probability measures and norms
Note that we sometimes need to evaluate random variables at some specific value of the probability
space. We denote by w elements of this probability space (2.

Qf | fdQ, for any probability measure Q.
P the probability distribution of Y;.
P,, P, (n—k)! Yicr, . Ov; and - 3. dy,, respectively.
P (n=k)! Yicr, . Wif(Yi), where W; is the bootstrap weight of 4.

T n—=k)!
Py ( nl : Zie]lmk 5Y{'
1191],0.r (f lgl"du)"" for ;1 a measure and r > 1

(n—k)!

[fllearn o Yiei | 2omes, Lvemngipi— (Y(iw)eﬂ"“’e’) 1{F<

yr <M "

(iﬂ_)e+i/(1—e))— }
with f € F, F an envelope for 7 and M > 0.

4.7.1 Proofs of the main results

4.71.1 Lemma4.3

Forany j € {1,...,1&}, let L, ; = (3|5,»|‘5T|)|57“_j. We will prove by reverse induction on j that for
every function b from &, to {1, ...,|&,|} with |R(D)| = 4,

> (W), 1)

i€l x

> (e i)

i€l x

E® | sup
heH

<E® (Lm' sup
heH

) . (4.16)
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The result follows by considering j = 1. (4.16) is in fact an equality when j = |&,|, so the result holds for
the base case. Next, when b is not a bijection, both sides of (4.16) are left unchanged when b is replaced
by o o b for o a permutation of {1, ..., || }. As a consequence, we can assume without loss of generality
that [b=1(1)| > 2and b= 1(2) = ... = b=1(|b=1(1)|) = 0 in the induction step. This induction step is divided
into two parts. In the first part, we build an array of random variables (Wﬁf))eeg,,,AeA,,. This array is such
that

TR0 we
<(W{i®e}+>e€b1(1) 5 (W{i®€}+>e¢bl(1)>ieﬂn &
d (¢'(e)) (5(e)
a ( (e -t 4.17
(( {z@e}+)e€b_1(l) ) ( {z@E}Jr)egEb—l(l))ie]ln & 7 ( )

with ¢" a bijection from b=1(1) to {1, ...,|6=(1)|}. Moreover, it satisfies, for all ¢ € I,, 4,

) : _ 1 (' (e)) :
E (h ((W%e}*)eea ,1) ‘W) = B0 Y o ((Wmeﬁ)ee& ,2) : (4.18)

v €B(b)

where W denotes the o-algebra generated by the (ng‘j))A Aot 6] and
€A, =1,..,1Er

B(b) ={b :V(e)=ble)ifed b= (1), V(e) € {1,...,|b~ (1)} ife € b 1(1)}.

In the second part of the induction step, we combine (4.17) and (4.18) with the Jensen, convexity and
triangle inequalities to get upper bounds on the left-hand side of (4.16).

First part: construction of the ij).

Let ¢’ be a bijection from b~'(1) to {1,...,[b~"(1)[} and let (r%}) ,_ , be some independent uniform
random variables on {1, ..., [b=%(1)|}. For (j,1) € N x N*, rem(j, ) denotes the remainder of the division
of j by . For any (e, A) € & x A,, let &) — (oM@l 0) 4o o o1y and 7 — pprtbeed
otherwise. Similarly, let W = W{" @) if e € b=1(1) and W = W) otherwise.

Conditional on r%, the function e — 1 + rem (¢ (e)+ %, [b='(1)]) is a bijection from »=1(1) to
{1,...,[b=1(1)|}. It follows that conditional on rY%, we have

(7)...  (7)

Because the right-hand side does not depend on 74, the previous equality also holds unconditionally.
Independence of the Wéj)s across A ensures

W) 4 (e
( A Jece, AcA, A

ecé, ece,

)ees,.,AeA,, ’
or equivalently

d

77

(Wizzer+) (Wiszer+)
o = o, .
{ioe/}t ec&, i€l k,e €E, {ioe/}+ ec&, i€l k,e' €E,

Considering elements such that e’ = e in the previous equality yields (4.17).
Next, if (Ae)ece, is a family of distinct elements of A, then uniform distribution and independence of
the 7%, _s induces that for every i € I,

E (h ((Nﬁg)eegr 1,) ‘w) - ﬁ b’ezB:(b) h ((ng’ef(e)))ee& z) .

Forevery i € I, x, ({i ©® e}), . is afamily of distinct subsets of {1, ..., n} of cardinal r, so (4.18) follows.
Second part: upper bound on the LHS of (4.16)
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As {2,....|b=1(1)|} N R(b) = 0, B(b)\{b} can be partitioned into two subsets B;(b) and By(b), with
By (b) = {b' € B(b) : [R(V) > j = [R(D)[},

Ba(b) = {b € B(b) : b/ (e) =m € {2, ..., b (1)[} Ve € b~1(1)}.

Moreover, | By(b)| = |[b~1(1)|—1. Let W; and W be the o-algebra generated by {Wf{), Ac A, ,je R(b)}
and {Wf,j),A € A.,j€E R(b)\{l}}, respectively. The ngj)s are i.i.d. across j. Consequently, for every

b € By(b),
(b'(e)) . _ (b'(e)) . /
E (h ((W{@e}*)eeg,, ,z) ’m) =E (h (<W{i®e}*)ees,. 71) ‘Wl)

As a result, using the partition B(b) = {b} U B1(b) U Ba(b), we obtain

(00,0, 9) 2 | 5 (00,0, )

| beB(b)

E| Y h<(W{%2L)e€gr,z’) ‘Wl}

| b€ B (b)

— (b W) -1 E [h ((Wff@@)ee& 1,) ‘W{} . (4.19)

|

= #((), ) )

b €B(b)

5w [n (). i) ]

iGHn)k

Then, by Lemma S1.
(b(e)) :
Z h ((W{iQe}+)eegr ’Z)

3E® | sup
heM e
>l

< E|®|3sup
heH i€l x

+E (I)(Ssup 3 ]E[ 3 h((W{(fggL)eeg z> 'Wl

heH lier, x| beBi(b)

heH

+E |® (3 ([p~'(1)] = 1) sup

ﬂ e

Denote by Ty, T, and T the three terms on the RHS and let b(e) = ¢(e) if e € b=2(1) and b(e) = b(e)
otherwise. Then

i | (ap0ls | Y E (1 (W), ) ‘W)m

)
| e

T <E [® | 3sup
heH

> (). e )

i€l 1, b €B(b)

<E |® | 3B n( (i) )
< |BO)] sup 2 (( {z@eﬁ)eesr ’

<E |{® | 3|B(b)|Lr,j+1 sup

p (W), )

1€l x
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The first inequality follows by Jensen'’s inequality. The first equality is due to (4.18). The second inequality
uses Jensen'’s inequality and (4.17). Finally, (4.21) relies on the induction hypothesis and |R(b )| > j.
Similarly,

<, 3 E{q’ (S'Bl(“i‘é% > n((wiies), s>)]

i€l k

@(3|Bl< Nnsesup | 3w (WESL) i) )] (4.22)

<E
heH i€l g

where the first inequality follows by Jensen’s inequality and the second by the induction hypothesis, since
|R(b')| > j for all &’ € By(b). Finally, note that for each i, all the {7 ® e}*s are disjoint so, conditional on

Wi, i
(W‘{(fé‘ji+)ee£7v < <W{(Sée‘3])’+)ees,,. '

As a result,

T, —E o (3(|b1(1)|1)}§1€15 > E [ <(W{(f<(ae£+> ’) ‘Wi} )]

i€l k
-1 (€(e)) ;
<E |® (3 (b7 (1) = 1) Ly j41 sup ZGHZM <<W{z@e}+> ce. a@> )] ; (4.23)

where the inequality follows by Jensen’s inequality and the induction hypothesis again. We finally get
(4.16) by combining (4.20)-(4.23) with monotonicity of ®, the expression of L, ;; and

max (|B(b)],|B1(b)|, b~ (1) — 1)) <

This concludes the induction step, and thus the proof of the lemma.

4.7.1.2 Theorem 4.1

4.7.1.2.1 Uniform law of large numbers

Convergence in L'. Let M be some arbitrary positive constant. The symmetrization Lemma 4.2
applied to the class G = { f1{r<y, f € F} and ® =Id ensures that

E {bgp P f — Pf@ <2E [F (Y1) Lipvy)>my)

—I—Z Z K, E |:sup

r=1ecé&,

(k)

> etivey+ £ ) Lipam<ary
i€l
with K, ;, some non negative number depending on r and k only.

For every (a;j)i=1..n,j=1..m € R™ and independent Rademacher random variables (&;)i=1...., we
have [see for instance Lemma 2.3.4 in 79]

1/2
] [2 log(2m) max }Zaul . (4.24)

j€1

Next, reasoning conditionally on the data, we can consider for every n; > 0 a minimal n;-covering of F for
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the seminorm || - ||, a,1 With closed balls centered in . This implies

n—k)! , "
E sup ( " ) > oy (V7)) Lippry<mn ‘(Yi )ieﬂn,k]
’ i€l

=E |sup (n ;!k)! Z €03} Z Z f(nzr)eﬂlufe)) ]l{F<YT )SM} ’(Yir)ieﬂn,k

F ~ - . (11—
icl, .  TESr ({1l n\GDE T (Em)eti/(1me)

— e 172
o (PR 0T o) oz
n:

To obtain the inequality, we apply (4.24) with m = N (1, F, |[.[|e,n,1) and
(n — k)' r
@i = 2 ) fi <Y<iw)e+i'<1—e>> Lrery e puame)=ny
TE€Gr i e({1,. n\{EhF T

where f; is one of the N (1, F,||.||le,am,1) centers of balls needed to cover F. Inequality then (4.25)
follows by remarking that

<éa3j>”2 < M(?:)W (n ;!k)!rl(n_in__(;)i e ((n—nf)!rl)l/f

Observe that ||g]|e. a1 < ||9g]
we have, for every n > 0,

Qr,1- Thus, considering 7, = n||F|

or 1 and using Point 2 of Lemma S4.11,

n—k)! - ,
E [Sgp ( ] ) > etivey+ f ) Lirm<ay ‘(Yi Jiel,

iGHnwk

0l Fllag 1

2log 2supg N (]| Fllg.1, . [[-llg.1) (n — r)tri\ V2
<M ,
n.

For any r and any 4 € I, we have E(F(Y;")) = E(F(Y1)), and next E (|| F|

or.1) = E(F(Y1)). Integration

with respect to the distribution of (Y;");c1, , ensures
n —k)!
E [sup ' n! ) > egoert S () Lipevp<on
7 T el
21og 2supg, N (0| F g1, F, ||- — )ty 2
_M< o525up N (2, 7 1 lga) (r r)r) -

It follows that there exists a constant K, such that
E {SI}P Pnf — Pf@ <K, (E [F (Y1) Lipvy)>y)

2log2supy N (n||F F - v
M< g2supg (UIL o ||||Q71)> +E(F(Yh)) .

Picking M and n such that E [F (Y1) L{r(vy)>m1] + 7E(F(Y1)) is small and letting » tend to infinity, we
conclude that E [sup  |P,, f — Pf|] = o(1).

Almost-sure convergence. Let X, the o-algebra generated by #,,, the set of functions ¢ from !
to R that are invariant by the action of any permutation = on N* such that =(j) = j for j > n:

g ((Yi)ieﬂk) =g (()/'(F(il),‘..,ﬂ(ik)))ieﬂk) :
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Let h ((Yi)ieﬂm) =supr |P,f — Pflandfori=1,...,n+1, let IP}L{ﬁf — (n=k)! Zieﬂn+1,k F(Y3) Lpggayy-

n!

Let 7 denote the transposition on N* exchanging n + 1 and I. Exchangeability and the definition of #,
ensure that

((Yz)zem’ (9 ((}/":)’I:E]Ik))gEHn+l)
4 ((Yﬂ(i))iewl}\{l})ka (9 ((Yﬂ(i))ieh))geﬂm—l)
s ((Yi)ieﬂn,w (g ((Y;:)iéﬂk))ge’}-[n+1) ’

For every | < n + 1, the above implies that conditional on ¥, 11,

d
(Yi)iem = (Ya)iet, .-

.

As a result,

]}D}l{l]if - Pf’ \EnH) =E (h((Yi%m)}E”“)
=E (M(Y3)ier, )| Zn+1)

=E <stj1__p |P.f — Pf| |2,,,+1) :

E <sup
].-

n l n—k)! n n+1—k)!
Because S/ P f = By S (V)L gayy = S e, L f(Y2), we have

1 S
T 2 B =Pa ],
=1

The triangle inequality ensures

n+1
1 \{1}
sup |P,, Pf| < E sup |P P ‘
p[Pni1f 1l S 2 p n+1f /

Combining the last inequality with E (supr [Pr41f — Pf||Sn+1) = supz [Puir f — Pf|, we finally obtain

1 n+1
sup |P,, —Pfl<— E ( su
fp| +1f f\_n+1l:1 (fp

RS - Pf| i )
=E <S1]1__p |P.f — Pf| |z,,,+1) .

This means that sup » [P, f — Pf] is a reverse submartingale with respect to the decreasing filtration %,,.
Hence, by the convergence theorem for backwards submartingale [see, e.g., Theorem 22 of Chapter 24
in 73] and its convergence to 0 in L', supr |P,, f — Pf| converges almost surely to 0.

4.7.1.2.2 Uniform central limit theorem

To prove this result, we follow a usual strategy which consists in showing the pointwise convergence,
asymptotic equicontinuity and total boundedness of F [see for instance, 137].

First step: pointwise convergence
Let (f1,..., fm) € F x...xF. The Cramer-Wold device ensures the joint asymptotic normality of (f1, ..., fim)
if the asymptotic normality holds for f = "7 | \; f; for every (A1, ..., \,,) € R™ suchthat Y77 | || < +oo.
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For f € L*(P), 6 = “-P'S". . f(Yi) denotes the estimator of 6, = E (f(Y3)). Theorem A in [128]
ensures that

Vi (8= 00) —— N(0.K(1.f).

Second step: asymptotic equicontinuity
We have to show that, for every ¢ > 0

lim limsupP | sup |G, f| >€¢| =0. (4.26)
620 n—too fEFs
By Markov’s inequality, it is sufficient to show
lim lim sup E {sup an@ (4.27)
=0 n—s+oo F

A weighted Rademacher empirical process is sub-Gaussian with respect to the Euclidean norm of the
vector of weights. As a result, conditionally on the original data, we can apply Theorem 2.3.6 in [79]. This
observation implies that for every »r = 1,...,k and e € &,,

E |sup 07) |0 e
_]:5 i€l x
(n—k)! - -
=E |sup , Z €44} Z Z f(Y( etira- e)) (Y )ier, .
Fs n: LT TE€ES, 1c(f1 A W\Ji0\k—1
i€l » ri’e({1,...,n}\{i})

4/2(n — r)lrl [
<V )T .
< /0 \/log2N (= F5. 11l ) e

with

2
( — )" r
17122 = =7 >0 (n_r =D N DI ¢ (A e>)>

icl,,,, €S 411, I\ {a)F T

and o2 = supz, || f||2 »- A convexity argument ensures ||f||Z, < |[f|]3. ,- As aresult, N (e,]-"g, H-Hez) <

N (s,]—"(;, |\-\|@;72> and o7 < o7, with 07 = supg, [|f|[3, .- Nextforevery r =1....kand e € &,:

i€l k

Vi [sgo RS e £ ’(Ym]

§4\/27k!/ \/10g2N (57-7:67 RIS 2)d5
; n

Lemma 4.2 applied to the class F; then implies

k oy
E |:S}:16p|an:| = ;O (IE (/0 \/logQN (5,.75, ||'|@272)d5>> .

Since va+b < /a+ vb and Q7, is a (random) probability measure on ) with finite support for any
r=1,...,k, we obtain

/ \/10g2N (5,]{;,”-\ @’,‘_2>da
0

o/ Fllgg, 2
fog 2o, +[|Flos 2 |
0 Q

Fssl-lg.2)dn
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Let Jr, (u) = [, supg /log N(n[[Flq.2: Fs, |[-[[@.2)dn. The functions & — /z and (z,y) — /i (VT /\/7)
are both concave (the latter in view of Point 2 of Lemma S4.10) and E (|\F||§,;’2) =E(||F?|lpr 1) =
E(F2(Y1)). Then, by Jensen’s inequality,

E G i O ]E 2 1/2 E F2 Y 1/2J E(Uz)1/2
|:S;:15p nf|:| = ; < (Ur) + ( ( 1)) Fs <E(F2(Yl))1/2>) :
Thanks to Points 3 and 4 of Lemmas S4.11, we further get

E s G, 1] = Zo (Bto2) 7 + B(F 1)) 20 (M}) |

As lim, o Jx(x) = 0 and Jr and x — +/x are non-decreasing, it is sufficient to show that

lim limsup E(o?) = 0, forevery r = 1,...,k (4.28)

010 n—+oo

By the triangle inequality and the definition of 75 and F,

2 _
0, =sup

Fs

BRSSP

1€l &

<sup| =B S vy ppef 42
Fs .

n .
1€l

n—k)!
SSfp % Z A7) — P2+ 62
o : €L,k

Noting that 42 is an envelope for F2 , Point 5 of Lemma S4.11 yields

sgpN (n]|4F?|

Applying Theorem 4.1 to the class F2 for the array (Y;")ier, , we get

= BES ) - pr

1€l &

a1 F2, || lg1) < +oc for every n > 0.
lim E (sup
n—oo ]:oo

and then (4.28) holds.

) ) 0,
Third step: total boundedness
Fix £ > 0. The reasoning previously used to control o, ensures lim,_,« E (supy_ |Pnf? — Pf?|) = 0.
Then we have with probability approaching one and for every (f1, f2) € F x F

2 2
P2 te

fr = follBo < |If1 = fol

As a consequence,

3

\/i’

< Lypi, 2=0} + SgPN (

N(e, F, I

ra) < (S5, Zlllea) + 0p(0)

el FllQ.2

Ve
V2||Fll, 2

Q,2> L)i7(le, 2>0y +0p(1) = Op(1),
because ||F||, 2 converges almost-surely to E(F?(Y;))!/? and then N (e, F,||.||p2) < +oc.

4.71.3 Theorem 4.2

We only have to prove the pointwise convergence and the asymptotic equicontinuity, since the total
boundedness of F is already proved in Theorem 4.1.
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For the boostrap, we sample n units independently in {1, ..., n} with replacement and equal probability.
Fori =1,...,n, i* denotes the i-th sampled unit and for ¢ € I,, x, ¢* denotes (i7, ..., ;). We then have:
PLf= (n;!k)! Yier, , SV )Lgi-er, ,}-

First step: pointwise convergence
Let (f1,..., fm) € F x ... x F. To prove convergence of the bootstrap for the finite subclass (f1, ..., fm),
the Cramer-Wold device ensures it is sufficient to prove the asymptotic normality for f =3, \; f; and
every (A1, ..., A\m) € R™,

Substep 1: asymptotic equivalence

Let § = E(f(Y1)) the parameter of interest, 0" = =75,  f(Yi-)l{-er, ) its estimator and 6 =
(";,k)’ i1, , f(Ys) the corresponding bootstrap estimator. For i € {1, .,n}F let

h(i) = Liser, 1} Lo, £(Yi,). Wehave 0 = Gl 57, h(e), 0= G Yy i)

= O i,y PE) and E (0°|(Yiier,) = mrpig0- Let

nlk!

(n—k)!

(=) .
o= S W)
v je{l,...,n}k

We have E (67](Y;)ic1,) = 8. For (i,5) € Lyx x {1,...,n}*, observe that

E (h(E*)h(57, j2s o di) | (YirJirern,. )

b6 ¢ 2570 B oo k) if ju ¢ {in, ik}
A ot (i ity () X hir, 2, i) otherwise.

Consequently,

n — .2 n. n:k: ~
W (0510, ) =n o = (n —'k)! (nk(n']i' i 2 hw)

J€lnn

(n — k)1? nl 1 )
e e 2 2. h()
11=1 \ (da,...,ix)€{1,...,n}F—1

n—k nl 72
nk (n—k)!

Enkfn—k)! 1 < )
T n2k—1 Z Z h(?)

11=1 \(22,...,i5)E€{1,...,n} k-1

Focusing on the last sum, Lemma S4.8 allows us to conclude that

> ( > hw)
[}k

i1=1 \ (iz,...,ix) €{1,...

= Z h(jlv“'?jk)h(jl?jk-‘rl,"'7j2k—1)
Jje{l,...,n}2k-1

k—1 2
— Z (k B 1) (TR AL, k)AL, e L+ ek 4+ 1,0, 2k — ¢ — 1)] + 04,5 (n2179))
C
c=0

nfn—k)! 1 n

2
As "Bl converges to 1, the quantity -0kl _1 s (Z(iz7,,,,ik)e{17,,,,n}k—1 h(i)) converges

n!

almost surely to E (R(1)h(1")).
Combining the exchangeability assumption, symmetry of A and a combinatorial argument [see the




Chapter 4. Empirical Process Results for Exchangeable Arrays 110

proof of Theorem 12.3 in 136], we obtain
nlE (9*2\( i/)i/eﬂn )

O Y Y B

1€l k JELL k

| (Yir)ier,.,.)

=n- e B (kP Vo), )

 (n—k)P? "\ (K (n—k . . . .

_nnﬂ;(k> (l)(k—l)E[h(l 7"'7k )h(l ""vl 7(k+1) (Qk_l) )( 1)1 E]Ink]'
Wheni =0

”(nﬁ# (Z) @ (Tzi_bﬂz (1o KRR T (k4 1), s (2K = )| (Yir)iren, o]

2
~ n(n—k)?n! 1 . B n! ~
T nl2k12(n — 2k)! (nk Z e h(z)) N nn%(n - 2k)!0 '

ie{l,...,n
Foreveryl =1,....k,

E [h(l*, vy (K=" E5)R(1*, 1 (B+ 1), ., (2k — l)*)|(Yi/)i/€HM]
2

1 1 . . . .
Tl Z nk—1 Z h(zla”-;llv]lw“a]k—l)

ie{l,.n}! jell,ony"

1 . . . . )
:anJ—l Z h(,]h"'7]k)h(.]17"'7.]l7.]k’+17"'7J2k—l)
je{l,...,n}2k=t

=1 2 —l—c —l—c
:WE :( . ) (n* TR [R(L, oo K)R(L, ooyl + ek + 1,0, 2k — ¢ — 1)] + 04,5 (n*7179))
c=0

“E (A1, e k)A(L, s L K+ 1, ey 2k — 1)] + 04.5(1),

using Lemma S4.8 once more. As n (k) (my (K) (1K) = O(ni=k+k=1) = o(1) for every | > 2 and

DAV
”(nn!];y (%) (]f) (5o ]f) w +o(1), we get

n]E(e*2|( R r— ’n})

n! k2
—n———0 + 753 1. 1, ..., 2k — 1)] + 04.5(1).
netn g0+ ERE AL DAL e bk + 1, 2k — 1]+ 00.4(1)

We also have

— k)2 - , v .
(GT ‘ %/ zGHW k) :n% Z Z E(h(zhl%"'aZk)h(JlaJQa"'7jk)|(Yvi’)i’€]I,,,y;€)

G€{L o}t GE{L o}t

1 < , i
- (nwk'? oy (( 3 }“h(z))

ig,...,0k)E{1,...,

n—k)"2nn-1 . i
+”(n!2k!l (nz )( > h(’)>

ie{l,...,n}k

n — .2 ~ ’
:”(nwj)?' Z( 3 h(i)) +(n—1)62

11=1 \(i2,...,ix)E{L,...,n} k-1
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It follows
* M * M 2
E (n (-0 - 10 -0) (050, )
i (0°2(Ve)wer, ) + KB (072 (ViJw, )+l — 126

|
— 2knE (007 |(Ya)wrer, ) + 2n(k — 1) —————07 — 2n(k — 1)kf>

nk(n —k)!
—nb” (n%(n”!_ T ("; Dy k-1 + <2(k 1) - 2k k) nk(n”!_ 20k 1)k)
+ (1 1 2 ) B DR + R
with R % 0 and 62 “ 63. Moreover a2y = 1— £ (k(2k — 1)) +0(n™2), ety = 1-2 (@)*_
O(n=2). Next
<n2k(nn!_ TR ("; Do <2(k ~1) -2k k) nk(n”’_ 20— 1)k)

:(n%(nn!_ o] +(k—1)2+2<];2—1> nk(nn!_k)!—Q(k—l)k>

1
=1+k +(k—1)2—-2-2k> +2k+ — (k—2k* —k* + 2> + k(k — 1)) + O(n™?)
n

(n—1)

+ k2

=0(n"?).

We have proved that /n(6* — ) converges in L2 conditional on the data to \/nk(6% — 6):

(0 (07~ 9) - k67 - 9) Vo), ) 250,

Characterization of the convergence in distribution for the bootstrap using the bounded-Lipschitz metric

ensures that it is sufficient to prove the asymptotic normality of \/nk(6; — 5). Indeed if L is a random

variable whose distribution is the limit distribution of \/nk(6* — 0) we have:

sup [E (h(v(0" = 0)| (Yi)wer, . ) —E(h(L))|
heBL;(R)

~

< sup(R) ‘E (h(\/ﬁk’(ﬁq — 9))|(Yz")z"eﬂn,k) - E(h(L))’

heBLy
+E (‘\/ﬁ((o* —8) — k(0 — 5))‘ |(Yi')i'eﬂn,k) :

Equivalence of the bounded-Lipschitz and Levy criteria to metrize weak convergence entails it is sufficient
to prove for every t € R

B (exp (itw/mk(67 = 0)) [(Ya)ier, . ) = B (exp (L)) = o0.0(1), (4.29)

to conclude. The next two substeps are devoted to proving the latter result.
Substep 2: lim,, E (’E (exp (itﬁk!(&; - 5)) \(Y,-/)i/eﬂn,k) _ e*tQVMh(l)IUm)mD —0.
Let us define

and

n—k)! . )
Ani = (n ) Z h(l,lg,...,lk).

" (i24eeeyin) Elnp—1
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Given the sampling procedure in the bootstrap we have E(g(a;; ;)|(Yir)wcr, ) = = 211 9(an,i). Further-
more, (a;, ;)i=1,...» forms an i.i.d. sequence conditional on (Y;/)icr, . Let Z,, = /nk!(07 — 6). Remark
that Z,, can be expressed as a sum over a triangular array (reasoning conditionally on the data):

iz for z,,; = a, -—fZa,”/

=1 i'=1
We have for every e > 0and t € R
zn,; itz,; 2, 32,42 20,
3 _ 1 i S < LRSS A B
eXp(\/ﬁ> <+\/ﬁ on < min \/ﬁ3 —
|t323 t%gJ
< e dcevm U sevm)

NG
2

3 2 Z'n,i
S (€|t| +t ]l{|2n,i\>€\/ﬁ}) n .

=1 "n,t n

the fact that (h(4)),;;, is k jointly exchangeable and dissociated allow us to claim that

Let Vi, = E(22 ;| (Yir)irer, ) = & >oig 02 — (% 20y an,i)2 and V = VE(h(1)|Uyy;). Lemma S4.8 and

-

v, A B[R, .. k)Rh(1)] — E[A(L, ..., k)]?
=E [E [h(1,.. (V) | Uyy]] = E[E [h(1, ... k) | Upyy])”
—E []E [h(1, .. k) | U{l}ﬂ —E[E[h(1,..k) | Uyy]]* =V,

where the last equality can be recovered thanks to Assumption 4.1 and the almost sure representation of

(h(3))icr, -

As E(zn,|(Ysr)irer, ) = 0, we deduce from the triangle inequality that

(oo () o) (- 59)

v,
‘3 —|— ]E ( Zn 1]1{|Zn l|>5\/ﬁ}|( %’ )‘L rel,, k) )

<elt
and then
itzn. A%
2 (oo () [0 )= (- 50))
Vv, t2 2
et 4+ B (R e ey (Fdien ) + 5oV =V

Because | H?:l a; — H?:l b1| < Z;L:l \ai — b2| if max;—1
are i.i.d. conditional on the data, we obtain

»max(|a;|, |b;]) <1 and since the (z,;)i=1..n

.....

2V

<tV + t°E (Zi,lﬂ{m,lpeﬁ}|(Yi')i'eﬂn,k)
% 2vV\"

ep\ =5 )= \1m 5 ) |

A convexity argument and the Cauchy-Schwarz inequality ensure 22, < 2a3% + 2 (>0, an,i’)2 <

n,

+ 2|V, = V| +
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2032 + 20BN ST h(i)%. This implies

E <272L,1]1{|zn,1|>e\/ﬁ}) <2E _E (a:fﬂl{a 1 >e? 71/4}|( @’ )‘L '€l k>:|

28 B (@l (a)ven) Yogo s, h<i>2>ezn/4}]

+2E ( {a*2 >e n/4}| 2/ 1€]Ink>
L 1€L,
+2E Z h(i <” L Y h(i)2>52n/4}
i€l '

<2E _agl,l]l{ai71>52n/4}:|

2
+2E 1R (1)]1{—“‘;,’““ Tien, h2(i)>e2n/4}]

k 2
2 (1 - n) E 12,3,k 4 Dl (s i
kol 2
+ 2EE [h (1)]1{ai'1>€2n/4}}

+ 2K {h2(1)]1 [ g (4.30)

Sien, h2(i)>e2n/4}] :

Conditional on Uyyy, (h(1, 12, ..., ik))(iz.,...,ik)eW is a jointly exchangeable and dissociated array of
dimension k — 1. Hence a,,1 <% E (h(1)|Uy1y) . Furthermore, ("T’L!’“)’ Yier,, PP(E) == 5 R(R3(1, ..., k). As
a result, all the indicator functions on the right-hand side of the last inequality in (4.30) tend to 0 almost
surely. The dominated convergence theorem also ensures that E (Zi,1]1{|zn,1|>eﬁ}) — 0 for every e > 0.

Further, E(|V,, — V|) — 0 and ‘exp( tV) (1_ﬂ>n

2n

converges almost surely to 0 and is bounded.
As a consequence,

limsup E (‘E(exp(ith)|(Yi/)i/€1[nyk) — e_tzv/QD < elt|?.

n

Since ¢ could be chosen arbitrarily small, we finally get
lim E (| E(exp(itZ,)| (Yir)wrer, ) — eV/2|) = 0.

Substep 3: conclusion on the almost-sure weak convergence of the bootstrap mean

We finally prove the almost-sure convergence of E(exp(itZ,)|(Yi )i c1, , ), Not only its convergence in
L' as above. Recall that V' = VE(h(1)|Uyy3) with U stemming from the AHK representation of & (z). We
have

E(Z2|(Yi)ier,) ZV ay, | (Ya)ier,) = Vo <5 V.

Given (Y;);er,, Z» is bounded in probability: for every ¢ € (0, 1), considering

sup, E (Z;|(Y3:)s
n(¥ier,) = 0B €| L3

we have P (Z2 > n((Y;)ier, )| (Ya)ier,) < € by Markov’s inequality. Given (Y;);cr,, every subsequence
Z,n) admits a further subsequence Z,..,(,) that converges in distribution to L,/.,, by Prohorov’s
Theorem. By Levy’s criterion for weak convergence, this means that there is a set Q' of probability one,
independent of ¢’ and o, such that for every w € ', E ( L) (Yi)iern, = (Yi(w))ieﬂk) converges to
E(ettloror|(V;)ier, = (Yi(w))sien, ) for every t € R. Note that L., could depend on (Y;);cr, - We can now




Chapter 4. Empirical Process Results for Exchangeable Arrays 114

write

E [|E[e"F"o|(Y)ier,] — exp(~*V/2)]]
<E [[Ele’""> |(Yi)ier,] — Ele" 7~ oe |(Vy)ier,]|] + E [|E[e"Z7"eocm

(Ya)icr,] — exp(—t?V/2)|] .

The first term on the right-hand side converges to 0 by dominated convergence. The second term
converges to 0 by the result proved in the second substep. We finally have that almost surely,

E [e/Foo0|(Y;)ien, | = exp(—t?V/2) for every t € R, every subsequence o and some subsequence o’
From Urysohn’s subsequence principle [see 132, Section 2.1.17, Pages 185-186], this means that almost
surely, Z,, converges in distribution conditionally on (Y;);c1, to A'(0, V). We conclude that (4.29) holds
with L ~ N (0, T V)

Second step: Asymptotic equicontinuity
Let Fs = {f = f1 — fo: (1, f2) € F x F,E(f?(Y1)) < 6*}. We have to show the following almost sure
convergence when § — 0

limsupE (sup|G*( )| | (Yi)ieﬂk) 250,

n— oo

Let N* = Bt S~ A(i-c1, .} Note that E [P} f|(Yi)ier,) = P f = & 3ic;, f(¥i). By indepen-
dence of the i* with (Y );c1, , we have:

E sup |G*f|' 2 1E]Ik
_fE 5

<E | sup vA|PLf — P, ] |<Y>
_fe]:a

<E | sup vn |P.f — P, f| ’(Yi)ielk
_fE]:s

n! n—k)!
+\/ﬁ<1_nk(nk)!>( n! : Z FYi)

B S Pv) < o)

iEHn,k

+

Because "' S, F(Y;) “% E(F(Y1)), we only have to show that

limsupE 2% 0asd — 0.

n— oo

sup VA [PLf — P f] \(Y)

fE€Fs

Using the symmetrization step of Lemma S4.6, we can write that for some constant Cj, that depends on &
only

sup f”P f P, f| ’ [3 zGHk

feFs

—k)! . .
<kCpv/nE | sup fz {“} ) > F Vi) Lgeer, ’(Yi)idk,N >0 P(N*>0).

fEFs i1=1 ) (i2y.eey ik ):t€L, &
We have
k,‘ o *
sup |~ Z {21} Yoo fi) Lpeen, | |(Yien, ()i, . N* >0
feFs i1= (1‘27...,ik):i6]ln,,k

42 [
(V2 / 082N (e, F [l 2)de
n Jo

2
n n—k)!
for [IfI1F2 =+ >h o (En DT 2= (igs.nnyin) i€l f(“*)ﬂ{i*eﬂn,k}) and o7, = supz, || f]|3 . We now reason
conditional on N* > 0. The Cauchy-Schwarz inequality ensures ||f[|7, < N*[|f][3. 5 for ||f]

2 _
Pr2 —
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n!

Nt s (Ve )lggeer, - Itfollows that (see Point 1 of Lemma S4.11)

‘7%.2 < 022 = sup N*||f]| ]%;,27
Fs

and N(e, F5,|]-||1,2) < N(a,fg,N*1/2||.||p:“2) < N(eN*Y2 Fs .

P;,2)-

n?

Monotonicity of the integral, Points 3 and 4 of Lemma S4.11 and the inequality v/a + b < \/a + v/b entail

(Yi)ieﬂk

E | sup |G, f]
fEFs

<K,E

]ijQ)dE (Y:i)iE]th* > 0] ]P)(N* > O),

ot + / " \Jlog N (4sN=-1/2, F |
0

for some constant K, depending only on k. Furthermore, when N* > 0 the following holds:

/ ! \/logN(4£N*—1/2,]:,||.
0

= [\ N EllF s o/ (481211
0

o /(AN"Y2|| F|lps )
IP;;,2/
0

[P:L,Q)dn?

P 2), F, || |ps 2) de

no

\/logN (ellF

]P:NQ)dg

PZ,727-F7 ||

*2

* 2 On
<4\ /NFIR, o5 | —AEe
4 /NIIFIR, ,

This, Lemma S4.10, the fact that E (¢;2|(Y;)sicr,,, N* > 0) = E (072((Y3)ier, ) /P (N* > 0) and
E (N*||F 2 ol(Ya)ier,, N* > 0) = 4 Y e, F2(Ys)/P(N* > 0) and Jensen’s inequality thus ensure

E lsup |G £ ’(Yi)ieﬂk
fEFs

1/2

1 E (032|(Yi)ier,

<Kj, E(J:LQ‘(Yi)ie]Ik)l/Q-i- v Z F2(Y;) Jr (Un I )eﬂk)
i€l 1 4 (n% Yier FQ(Yi))

Since = >, | F2(Y:) = E (F%(Y1)), we only have to show that

1/2
P(N*>0)

172

limsupE (07%|(Y;)ier,) =2 0as 4 | 0.

n— oo

We have

0?2 = sup [P f2| < sup | P} £2 —Pnf2| + sup |IP’nf2 — Pf2’ +6°
Fs Fs Fs
< sup [P f? — Py f?| + sup [P f? — Pf?| +6°.
Foo Foo
Point 5 of Lemma S4.11 entails

0.1, Feos ||-l@,1) < +oco for every n > 0.

sup N (77|\4F2|
Q
Theorem 4.1 and Lemma S4.6 imply

E (sup
FOQ

which finally leads to

oo

P:f? =P f?] | (Y;)ieﬂk> 250 and  sup|P.f* — Pf?| £ 0,
_F

limlimsup E (2 | (Y;); =0 a.s.
310 n—>+o£) ( w1 ( z)zeﬂk)
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4.7.1.4 Theorem 4.3

The proof is the same as that of Theorem 13.4 in [102], with one change only: we have to check that G,
the limit of 8 — /n(V,,(8) — ¥(9)), is continuous. Given the kernel of G, it suffices to check that for all

(m, ') € ({1}) x 6({1}),

sup |Cov ([Yo,n — Poo.n)(Yr(r)), [Yo.n — Voo,n)(Yar 1)) | = 0. (4.31)

By Cauchy-Schwarz’s inequality and joint exchangeability, this covariance is smaller than

{[L/Ja n— Vo) ( n(1))} P(on — boo.n)*

Therefore, Condition 4 ensures that (4.31) holds. The result follows.

4.71.5 Theorem 4.4

The first result follows by Theorem 4.1.2 because the class {u — 1{u < y} : y € RP} is pointwise
measurable and satisfies Assumption 4.4. The second point follows directly from Point 1 and the functional
delta method, see e.g. Theorem 20.8 in [136]. Finally, Point 3 follows from Theorem 4.2 and the functional
delta method for the bootstrap, see e.g. Theorem 23.9 in [136].

4.7.2 Proofs of the extensions

4.7.21 Theorem 4.5
4.7.2.1.1 Uniform law of large nhumbers

We remark that sup ;e » \ﬁ’nf — 15f| = supj_z |IP’nff Pﬂ. Following the same reasoning as in the
proof of Theorem 4.1, for every positive M and 7; (with n; possibly random) and some constants
K.k, there exists a jointly exchangeable and dissociated array (i’")ienk = (N, (Y{y)e=1)ien, such that

Y7 L (N;, (Yig)es1)ier, foralli € I, , and

sup Py, f— Pf|
fe}'

<E [F(Y1)]l{ﬁ(171)>M}}

k
+Z Z K, xE |sup

r=1e€&, F

N >0

Z 8{1®e}+f L mwry<my P (N{ > 0)

i€l &

<E [15(171)]1{15(?1»1\4}}

k [ — Tl -
+ZZKT'J¢]E \/210g2N(771a 5 ,)MM+T’1 NT>O]P(NI>O)a
r=1e€&, L \/’IT
where Ny = (=1 Dier,  (N]P. -1 With

ro_ T 5T'
Qn E’LEan( 12 ZN Z v

1€, &

Letting 771 = N7 ||F||qr 1 for an arbitrary n > 0, we have N(nl,
N(NT Y, F |I.llgr 1) whenever N7 > 0.

1) < N, F, NI

Q1) =
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Combining this insight with the fact that E {||ﬁ||@;}1 | NT > 0} —E {ﬁ(ﬁ)} /P (NT > 0), we get

E |sup Pnf— Pﬂ
-
E|F(Vi)1 y K, [2log2sup N(9l|Fllo 1, F VA =it
< 1a% + r 0] su s 1@, -
<E [F()1 7501} 3. ¥ o, frlos2ann NlFlan 7. 1l M=
k
‘*‘772 Z K, xE [F(Yl)} :
r=1e€cé,

Considering M sufficiently large and n sufficiently small and next »n tending to co we deduce that
E [Sup]} B, f — P}ﬂ tends to 0 as n — oco.

Let 3, be the o-algebra generated by #,, the set of functions g from D' to R that are invariant by the
action of any permutation = on N* such that #(j) = j for j > n:

g ((f/i)ieﬂk) =g ((ffw(i))ieﬂk> :

Following the same reasoning as in the proof of Theorem 4.1, we conclude that <sup}~. \Pnf— PfL Zn) .

n7

is a backwards submartingale ensuring the almost sure convergence of sup = |Pnf— Pf|.

4.7.2.1.2 Uniform central limit theorem

The pointwise weak convergence is ensured by the first step of the proof of Theorem 4.1.2 applied to

~ 2
the class F because for every f € F we have E [(25;1 f(Yu)) } < +o0. We just have to show the

asymptotic equicontinuity and total boundedness of F.
Reasoning as in the proof of Theorem 4.1, we get

y @n = > G’L = @ I 7~a lpr d )
2 s 6] = s ] <o (& ([ oean e sc)e
(n—k)!

with p” = Yiet, . (NP7 )psesn)) @ND (G5,)% = supgz, |\ﬂ|i;/72. If NJ = 0, we remark that

n!

fo‘}z \/log 2N (s,ﬁg, |\.\|H2,2)d5 = 0. As a result, we can write

k & -
— ;10 <]E (/O \/log2N (g,fé, ||_‘|M”2)d<E

Reasoning conditional on N3 > 0, we let Q) = s—— x5z Yier, , N/ SN Syyr,y- Forevery f € Fs
iel, , Ve n, %,

E | sup @nf
fEFs

1\75“>0>P(N5>0)>.

and fthe corresponding element in Fs, we have by the Cauchy-Schwarz inequality

1]

w2 < N3l f]

2
Q.2

and next N (g, Fs, ||.||ur 2) < N(a,}'g,Nigl/QH.H@;’g). Moreover, Points 1, 3 and 4 of Lemma S4.11 ensure
that N (e, Fs, |||l ur 2) < N2(a/4N51/2,J-‘, I/l 2)- The inequality v/a + b < v/a + Vb, Lemma S4.10, the
fact that E [57, | N > 0] = E[57] /P (V] > 0), E [N{ MFYy,) | NG > 0}

—E [Nl o FQ(YM)] /P (N3 > 0) and Jensen’s inequality imply

_ s N1 1/2 E [(gr)ﬂl/z
E|sw [Cuf|| <SO[E[@E)] 7 +E NS FP(Vag)|  Jr n —
fEFs r=1 =1 AR <N1 Eé\’:ll FQ(Y1/)>
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To prove asymptotic equicontinuity, it is sufficient to show that lims o lim sup,, , ., E [(5;;)2] = 0 for every
r=1,...,k. We have:

E[(5)%] <E|sup |unf*— Pf*|| +6> <E + 62

fEFs

sup |up,f* — Pf?|
feFw

For ' =1,..., k, we define (Y;"" )ier, = (N}, (Yif’[l)€21)ie[[k to be a jointly exchangeable and dissoci-
ated array such that ;""" £ (N;, (Yi¢)e>1)ier, forall i € I, . We finally let Nj™" = (k! it k(Ni”/)Q.

Following the same reasoning as in the proof of Theorem 4.1, we have, for every positive M and n; (with
n possibly random) and some constants K., j,

E [ sup |11}, f> — PJ?|
fEF

<E [(ﬁ 7)) “WWW}}

: J—
A 2 ] Tt Y o (F @m/))zﬂ{(ﬁo?;‘"’))ng} ‘Né”’“ >0

r'=1e€&,, o ’ i€l &
xP (N7 > 0)
~ o~ 2
<E [(F(Yl)) ]1{(}7“(171))2>M}:|
k
+ Z Z Kr,r’,kE

r'=1ecé&,

(n —7r")lr

V210828 (. P e )M

+m

N;“’T'>01]P’(N§”'>O>,

with }~‘§O = {g 29y Y1, e un) = Dopey f(yg)]Q,f S }‘oo} and the seminorm || - ||e,as,1 defined by

S DD R <A RPN %

Yy
i€l v |TES e ({1, n\ sk (ém)

for g € F2 and its corresponding f € Fu.. When Ny™' > 0, we have [[gllenr1 < Ny [/ s
1 o N !
2 Mgy = S Dier, N Xk fAY) and
Ny, oo Ml leprn) < N, Fo, Nellfl g )-

Letn, = 877N§”'\|F2||Qr,w , for an arbitrary 5 > 0. Point 4 of Lemma S4.11 ensures N (n1, 72, ||-||e.n1) <
NQ(n||F||QT,T/ 2T |l gr ). Combining this insight with the fact that

Ny N
(’rl, — k)' 7‘,7“/ . r’r/ r,r! rr! -
]E T Z N’L Z FQ(Y;:.[ ) ‘NQ > 0 IED<N2 >0) :E N]‘ZFQ(Y]' Z) ’
i€l k (=1 =1
we get
— 2
E |sup | f2 — Pf? <4E[(FY)]1 . }
ffmnf £l < (Y1) {(F(r)*>m}
43S Koo [2log2oup V2 Pl 7o gm0
+ ror!k 0g 2 sup n 2> 2 T
r'=1e€&, \/ Q ¢ ¢ \/m

k
+ 877 Z Z Kr,r’,kE

r'=1ecé&,

Ny
N1 Y F?(Yay)
(=1
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Note that supy, N2(n||F||q.2, F, ||lq.2) = (supg N(n||F|q,2, F, ||.\|Q’2))2 < +oo for every 7. Considering
M sufficiently large and 7 sufficiently small and next n tending to co we deduce that E {supfm ]u;fQ — Pf? ”
tendsto 0 asn — oo forevery r =1, ... k.

To conclude the proof of weak convergence, we have to verify total boundedness. By the Markov
inequality, we have just shown supz |7, 2 — Pf?| = o0,(1) for r = 1,..., k. Fixing r, this entails that for
every ¢ > 0 there exists R. = 0,(1) such that for every pair (f1, f2) € F x F

B | (A7) - 2(w) | <11f - 2l

r,2 + RE‘
For every ¢ > 1, by definition of covering numbers

N(ce, F, I|llp2) <N (Eaf7 1Y

H272> + op(1).

It NEIIFI; o > 0,16t U = ¢/(2N5 || Fllq; 2). We have NE||FI3, , “% E (Na 3207 F2(1,)) > 0 by
the almost sure convergence of the mean of jointly exchangeable arrays [66] and ergodicity for dissociated
arrays [96]. Starting from the last inequality, we obtain for every ¢ > 0

~ 8 ~
N(57F7|H|P,2) <N 77}-7||'| M2 +OP(1)
2
€ —=1/2
< N (5,787l lgy 2) + 0p(1)

Qr 27]:7||'|

n?

= N (U||F]

@.2) Ly rii, 500 + Lewgiirpz, =0y +0op(1)
< SgPN(U||F||Q,27f7 l@.2) Limgyepz, ,>0y +0p(1)

< +00,

where the second inequality is a consequence of the Cauchy-Schwarz inequality and the equality on the
third line is a consequence of Point 1 of Lemma S4.11. Hence, total boundedness holds.

4,7.2.2 Convergence of the bootstrap process

The triangle inequality ensures that for every f € F, we have E <(f(}71))2> <E ((ﬁ(fﬁ))Q) < +o0.
The pointwise weak convergence thus follows from Theorem 4.2 applied to a finite class. The total
boundedness of (F, [|.||p,2) has already been proved (see the proof of Theorem 4.5.2). As a result, to
prove weak convergence we only have to prove asymptotic equicontinuity.

Applying the symmetrization argument used in the proof of Lemma S4.6, we have the following
inequality for some number C}, depending only on &

E G f

sup
fE€Fs

‘(i}i)i@lk

1 & n—k)! ~ =
<kCiV/nE | sup |~ Zs{h}(nfl), Y JE)eer, | |(Vien,

SN .
feFs i1=1 ( ) [CET i) i€,

If Ny = (=R >iet, , NiLgizer, ,y is null, f(Y;-) is null for every i € I, and

n!

1 & (n—k)! ey
sup |— E E{u}(nfl)' E: F(Yi)lgirer, 3| = 0.
=1

fers i1 (32, ik ) Elp —1
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Otherwise N3 > 0 and

k o - .
SUP - Z {11} Z JYe)lgieer, 3 ’(Yi)ie]lka("f )i€L,
Q1=

Fs | T . ;
FeFs (12 ~~~~~ ig) €Ly k-1

4\/5 072 ~
<— log 2N (e, Fs, ||- d
_ﬁfo Vo 2N (e, Zs. 1112

2
n n—k)! T % Y
for ||f”1 2= 1, D=1 (gn ]f)u Z(w, i )€L, f(Yi*)]l{i*en,,hk}) and 01?2 = supz, HfoQ The Cauchy-
Schwarz mequality ensures that for every f € 75, || f[[7 2 < N5 |3, , and

||f| Q:,2 Z o, N2 Zzeﬂn & Ni- Ze ( )]l{i*EHn,k}'
It follows from Pomt 1 of Lemma S4.11 that

~ —1/2 —_—1/2
N(e, Fs, 1 112) < N(e, Fs, N5 /%)) lgg2) < N(eNg 2, Fo, |

Qs,2)-

The Cauchy-Schwarz inequality also implies

* ~x% n— k)' Ty 2 * pe
0% <5 = sup ( " Z <f(Y,)) Liicer, .3 = sup |P* £2].
fE€Fs ’ i€l ) fE€Fs

Monotonicity of the integral, Points 3 and 4 of Lemma S4.11 and the inequality v/a + b < \/a + /b entail

— ) - _ .
VnE | sup *Z {“} ) > f(Ye)Lginen, o ‘(Yi)ieﬂk’(z Jicl,

feFs /n’,h ) (227 lk)eﬂn,k—l
<8 (554 [\l (+/ 4N, 7 2| Tt (i, | 10 >0}
0
Furthermore when N3 > 0 the following holds:
on ~51/2
[l (/W5 7, o)
0
In —=1/2
= [ \Jloa ¥ (l1Flles o/ (NF Pl 2), 7, 2)
0
&5/ (4N3 2| Fllgz 2)
7*1/2 n’
~i%5 1P los.2 [ e N (El1F gy 2 7. 1z 2) de

T2
<4y [NFIIFI3e oTF | ——— | . (4.32)
P\ 4 /MEIEIR,

LetA, =P (V; >0 | (f@-)ieﬂk). Relation (4.32), Lemma S4.10, Jensen’s inequality and the fact that
E (5721 (Va)icr,» N5 > 0) An = E (577 (Vidier, ) and E (N*||FI3, |(Vi)ier, N > 0) A, =
X Yict,, Vi Zéﬁl F?%(Y; ¢) thus ensure for some constant K, that depends on & only

E Gy f| |(Ya)ie,

sup
fEFs

/ ~x2((\/ 1/2
<KGE (57(YVi)ien, )

1/2 1/2

E (5:2/(Vi)ier, )
+ K}, Z Z F2(Y; Yie) JF ~ 1/2
zEH,L k 4 (ﬁ Zieﬂn,k Ni Zé:‘bl FQ(Yi7g))

A
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Since & Yier,  Ni Xl F2(Yig) “S E (Nl Sy FZ(YM)) and 4,, < 1, we only have to show that

limsupE (5:2|(l~/i)ieﬂk) 2% 0asd 0.

n—oo

We have:

52 = sup [P} f?|

fE€Fs
. ! . I . -
< sup PZfZ_ki.,Pan +kL, sup Pnfz—sz“f‘(SQ
FeFs nk(n —k)! nk(n —k)! FeFs
- ! - . -
< sup IP’;;fQ—kn"IP’an’—l— sup ]P’nfz—PfQ‘—l—52
Feru nt(n = k) FeFu

In the proof of Theorem 4.5.2, we have shown that supz, 7 |ur f2 — Pf2| converges in L' to 0 for every
r =1,...k. A similar proof can be used to claim that sup;_z [P, f? — Pf?| converges in L' to 0. A
backwards submartingale argument used in the proof of Theorem 4.1.1 ensures that this convergence is

almost sure. Because —;

% tends to 1, it is sufficient to show that

7 n! ~ _
]E 3 P* 2 7?)” 5 Y . e O
<f§elgx & nk(n —k)! P I 1)16Hk> —
Note that E (Hﬁ\(ﬁ)ieh) = W!_k)lﬂ%f% The symmetrization step in Lemma S4.6 ensures

E l sup
feFu

. n! ~ ~
P f? — nk(n_k)!P"fQ’ | (Y3)ier,

§4% Z (ﬁ(i’)fﬂ{(ﬁ(fq))%M}

i€l

(Yi)ier, | »

(n — k)! = N2
FROE | ap |52 30 st (0] B et
2Clin i

for some positive constant Cj that depends on & only.

If N3 = o,

] (n—k)! ~ = \2 > .

E S ez]l: Efir} (f(Yz'*)> ]1{(15(;,1*))zSM}]l{i*eHn,k} (Yi)ien, (i%)ier, .
1Clin Kk

is null. Otherwise N > 0 and conditional on ((ﬁ-)ieﬂk, (i*)ieﬂnyk), we can consider for every n; > 0 a

minimal 7;-covering of F2 = {g = (fi — f2)%: (f1, f2) € F x F} for the seminorm

n

— k) ~
ol =SS () (5 <ar) M€t

11=1 |(i2,...,i):2€lL &

with balls centered in F. This implies

(n—k)! (Yi)ien,, (27 )ier, .

n! D Em) (f(z*»Q]l{(ﬁ(?i*))%M}]l{i*e“n"«}

(S

E | sup
feEFx

~ 1
§4\/210g2N (771>~7E307 H-H*MJ)M% + .
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0:.1 where |[gllo: 1 =

> ien, , Nix Zé\g |9(Yi< ¢)| L{4+cr, .y~ Then, for every n > 0, using Points 1, 2 and 4

Remark that for f € F., with corresponding f € Fuo, [I/%/li, < N3lIf?|
1

Zieumk Niz*ﬂ{i*eﬂmk}

of Lemma S4.11 and letting n; = 8y N3 || F?|

0,1, We obtain

— k)! SENE "
B s . n! ) > e (F(¥e)) G IV RGO ’(Yi%euk,(z iet, .

o i€l k
. 1 (n— k)! 3L
§4\/210g2815pN (UHFHQ,%]:aH-HQQ)M% +8n— > N> FPP(Ye o)liver, -
’ i€l =1

Integration with respect to (i*):cr, . [(Yi)ier, leads to

(Y3)icr,

E [ sup (n ;!k)! Z Efir} (f(ﬁ‘*))z]l{(ﬁ(ﬁ*))%M}]l{i*eLb,k}

feFs i€l ;

N;

1 1 .
<4, [2log2sup N2 (1| Fllgz2, F. [ lg2)M—= + 81— >~ Nid> F*(Yi).

Q \/H n i€l =1
~ ~\2 )
We observe - Dict (F(Y;-)) ]l{(ﬁ(%))%M} and - > Ni S F2(Y;,) converge a.s. to
~ ~ 2

E ((F(Yl)) ]1{(5(91))2>M}> and E (Nl éV:ll FQ(YM)> by almost sure convergence of the sample
mean of jointly exchangeable arrays [66] and ergodicity of dissociated arrays [96] or Theorem 4.1 for a
class F reduced to a singleton. Choosing M and n arbitrarily small, we deduce that for n — oo

~ | ~
E<sup Pof? — P f?
fe€Fw :

nk(n — k)

‘ (2)16]&) % 0.

4.7.2.3 Theorem 4.6

We recall that under multiway clustering, n1, ..., n are all indexed by an index m, though we most often
leave this dependence implicit hereafter. They also satisfy, as m — oo, n = min(ng,...,nx) — oo and

n/ng — Aj.

4.7.2.3.1 Uniform law of large numbers
We show hereafter that
Sl]l:p ‘Iﬁ’nf — ﬁf‘ Li;" 0. (4.33)
First, we have sup c » |[Pn f — Pf| = sup;, 7 [Pnf — Pf]. Next, the triangle inequality and the symmetriza-

tion Lemma S4.5 for the class G = {f]l{ﬁ<M} fe f} and ®=Id ensure that for every M > 0

E

sup ‘]P’nf— Pﬂ

feF

<2k |:F(Y1>]l{ﬁ‘(§71)>M}}

1 ~

+2 Y, Elsup | Y cicef (Yi>]1{ﬁ(‘?i>szw} :
ecUk_ €, fEF | ™ 1<i<n

For every e € U_ &, let

~ 1 ~
[[fllearr = . Z Z f (Yz) ]l{ﬁ(fq-)gM} :

" e<d<nOe |1-e<d'<n®(l-e)
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Using the same steps as in Part 1 of the proof of Theorem 4.5, we get for every e € U;?:lé’j, every
M > 0 and every possibly random 7; > 0,

1 ~ ~
E |sup | Z Eioelf (Yz) L g9 <any
_fe]-' ™ 1<i<n

1
<E \/210g2N (1, F |[-lle,n,0) M ’
_ \/szlnjll{ej =1}

with N7 = 1= Y, ;. Ni. Observe that [|lleast < Nil[llans = t S cicn S0 |£ (Vi) where

I fllgn1 = Zl<z<n > Zlf it)

1<1,<n /=1

+m|Ny > 0| P (N, >0),

Letting 1 = nN1||F||q.,.1, we can follow the proof of Point 1 in Theorem 4.5 to conclude that E sup z |Pnf— Pﬂ
tends to 0 as m — oo.

We now turn to proving almost sure convergence. Let ¥, be the o-algebra generated by H.,, the set of
functions g from DN to R that are invariant by the action of any (1, ..., m), with 7. any permutation on
Nt suchthatn.(j)=jifj >n.forr=1,... k:

g ((Yi)iel\ﬁk> —7 <(Yﬂl(il)"“m’“(i’f)>ieN”) .

Foreveryn’' > n,n' # n,let Jnn = Ly ny—n, X ... X Lot nf — - Then, for every ¢ = (q1, ..., qr) € Jn.n’»
let

n"' Z f ]l{lﬁz{fh} ie@{ar}}-

1<z<'n,’

We observe that for every n,n’, q,
(sup ‘]P’n n/f Pﬂ |En/> =K (sup ’Pnff Pﬂ ’En/> .
feF feF
Moreover,

~ 1 -
> Ponf =0 S0 FOD) Y Vigtay i iad)

q€L 1<i<n’ (S

P? . f. Furthermore,

ra k ;! rs
and neXt, Pn’f = (HJ:1 %) qujn.n’ Pgl’n/f = |Jnln/‘ quj

n,n’

Sup’]P’ - Pﬂ (sup‘ﬂ” - Pﬂ|2n/>.

feF feF

This last equality, combined with those just above and the triangle inequality give

sup ‘IP’ - Pﬂ < \Jm/ q%E <sup ’Pnn = Pﬂ |2n/>

feFr
~E <s~u13 Pof - PJ] |En/> .

feFr
Then considering n = (n1(m), ...,nk(m)) and n’ = (ny(m+1), ..., nx(m + 1)), we deduce from the almost
sure convergence of backwards submartingales that Sup 5. 7 ‘Pn/f— Pﬂ converges almost surely to 0
when m tends to infinity.
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4.7.2.3.2 Uniform central limit theorem

First step: pointwise weak convergence

To prove the pointwise weak convergence, the line of reasoning is the same as what we resorted
to in the first step of the proof of Theorem 4.1.2: for every f € F, we need to find a suitable Lo-
approximation of G,, f, denoted H, f, i.e as m — +oo H; f must satisfy E [\an — Hif’| = o(1) and

Hyf —>nj+oo N(0,K(f, f)). We pick H, f = Zeesl Z1§ignE (Grnf | |Uice], Where (Uipe)1<i<n,ece, are
i.i.d terms that appear in the AHK representation of (Z)lgign. Let 2" be a vector with all its entries equal
to one except the r-th one, which is equal to i.. The AHK representation ensures

H(f)=>Y > EGnf|Uice

ec&; 1<i<n

Ny

:z:f > (B[F () 10.] - = [700))

ip=1

—L N0, K(f, 1))

n—+o00
The convergence in distribution comes from the standard central limit theorem applied for each e € &;
separately, the mutual independence of terms across e € &; in the previous expression and the fact that
Vi ne — VA

To conclude that G,, f ﬁ N(0,K(f, f)) as m — +oo, we rely on the weak convergence of H; f
and Section C.2.1 in [50]. The main step there amounts to showing that lim,,,, 1 oo V(H1 f)/V(G, f) = 1.

Second step: asymptotic equicontinuity

Following the same reasoning as in the proof of Part 2 of Theorem 4.5, with the symmetrization lemma

S4.5 instead of Lemma 4.2, we have
—0 (E (/ \/logQN (e,fé, |.||“m2)ds>> ,
0

where ji,, = i Di<icn 0N, (Vi) n, ses)- \|ﬂ|/2,,m2 and 52 are defined in the same way as in the proof of
Part 2 of Theorem 4.5 (with u., instead of p,,). Still following this proof, we obtain

E =E

@nf) sup ’Gnﬂ

fE€Fs

sup
fEFs

~ 1/2 aE i E (52)1/2
E | sup an‘ <0 IE(ETQL) / +E (leFQ(YLg)> Jr n 7z
feFs =1 4K <N1 Zévzll FQ(YLE))

Recalling that E (62) < E [supfefw ‘}P’an — ]P’fQH + 6%, we can follow the end of the asymptotic
equicontinuity proof of Part 2 of Theorem 4.5 with obvious minor changes to conclude.

Third step: total boundedness

The proof of the total boundedness follows the same lines as in the proof of Theorem 4.5.2 with ji,,, No
and Q,, replaced respectively by p,, i di<icn N and Q, = %NQ D1<i<n Ni Zé\’:"l Y, -

Yic<i<n

4.7.2.3.3 Convergence of the bootstrap process

As previously, we only have to prove the pointwise convergence and the asymptotic equicontinuity.
First step: pointwise convergence
Let i* = (if,...,7}) denote the cell obtained by sampling i} with replacement in 1,...,n; for every
j=1,..k.
We have the almost-sure representation

it = (F;]l[U&l,o,...,o)]v R [U.....0i0D):
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with (U}) 4 @ family of i.i.d. uniform random variables and F—1 the quantile function of the discrete uni-
form distribution on {1, ..., n,}. Conditional on the data (Y; ),6N+k we can thus follow an approach similar
to the one we used in the jointly exchangeable case. Let Hy f =" o > 1cic,, E [G FI(Ya)iener, U,Qe}
and h(i) = f(Y;). H; f can also be written

E E h Zl?" 7i7‘—13i:ai’r+1a"'7ik)_Pnf

1<z<n

~ 2 ~
We first show that E {(G;f - Hff) \ ()’i)ieN+k] = 0,.5(1). Expanding the square in the previous

formula gives
~ " 2
E [(Gi@f - Hif) |<Yi>z-ew}

{ [(Z > hzl7..7ir172':,1'”1,...,1';@))2|(1~/i)i€N+k}

1<1,<n

{(Z D it g )) B f | (Y, )z@w]
+E|(#ar)| <E>iew} - (6= 1 (Bar)”}

Let A, = 3F_ | b S1<i.<n h(3)A(i'). We can show

- 7
i =1,

h(ila"'57;7'—177":71.7”-{-17"-aik) | (}/i)ieN-Hﬂ

1
1,
2 (En. —
:(fbnf) (Z( Tn 1)+k(k1)>+An7
1
1,

k

and E {(@;f)Q | (Z)iewk] — % (ﬁnf)z + B,,, where

n

1<j<kie;=o(j — 1 Ny e
Z 3 Higjcpee,=o ) S h@h().

2
r=leet [[ ;<. e;=1" <H1<]<ke —0”]) 1<ii’<n
15=1;Vje;=1

For every e € UX_,&,, we can write the following decomposition

Y. k@)= Y Y. h@R3E),

1<ii'<n e'eUt_ &, (4,1)€L, o
ij=i}Vjie;=1 ef=1ife;=1

with Z,, o = {(¢,4') : 1 <14, <mn, i, =i, ife, =1andi, # i, otherwise}. Applying Lemma S4.9, we
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conclude that for every e € UF_,¢&,,

> h(@)h(I) = Oas (Hn 1T (nj1)),

1<i,i'<n 1<5<k:e;=0
ij=1;Vjie;=1

LA | ,( —1) 1
Z 1<J<kﬁé HT Z h()h(i') + Oas(n™?).
r—1 1<zz<n

By combining all those elements, we obtain

e [(@ar - 1) | Foienes] =nf g 3 (Pt y)

r=1

h(3)h(i')

IA
L.
IA M

A
3

S

3

7
(2

+ (Jﬁnf)z (ngjg’“:ﬁ:(nj — —1+Z ) +Oas (n7?) }

Noting tha telbssmpra T g (1), hmmnge 7D g 570 L 0 (n2) and
H2 Zl<z<n h(i)h(i') = Oas(n™1), again by Lemma S4.9, we conclude that

1<’ <n
ip=i.

1
1

SN

(607 - H11) [Fhscwss | = 00

To prove the asymptotic normality of H; f conditional on (N;, (Y;.¢)1<e<n; )sen++, We remark that

Hlf_rz\/“Z Zhurie

=1
1 ; ; e : i _
where 27, .. WZ”?L g T (h(zl,.. U1y Gy ULy ooy ) — nf) For every r =
1.k, (szir)i,=1...n,‘ is an i.i.d. sequence of centered random variables conditional on (V;);cx+x

with a distribution that depends on m. Since

1

n2
Ny H1<J<k e 1Y 1<id/<n

in=i.

A CAI nh() ~ (Faf)

a

we can conclude thanks to Point 1 of Theorem 4.6 and Lemma S4.9 that V( 2y | (Vi ),ENM) =3
E [h(1)h(2,)] — E[h(1)]* = Cov (h(1), h(2,)) = V,. Itis not difficult to see that arguments similar to those
of substeps 2 and 3 of Section 4.7.1.3 apply. Then, for every r =1, ...,k and every ¢t € R,

m7zT a.s, tQ‘/T-
exp u,‘z Yi)iensr | 5 exp | — 5 )

Gr=1

The continuous mapping theorem, the fact that ;= — A, and the mutual independence between the &

sequences (z,,; ), _, . (r=1,...k) conditional on the data imply that

E[exp(ttHlfﬂ zGNJrk} ﬁ [exp( TELT: mmr) ~)zeN+k1

ir=1

a.s t2 — /\r‘/tr
— exp (—ZT—; ) .
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The result follows.
Second step: asymptotic equicontinuity
First, we have

(i*)1§i§n = (Fn_ll [U(*il,() ,,,,, 0)], e Fn_kl [U(*o,.“,o,ik)])

This representation ensures that the symmetrization Lemma S4.5 for the class F5 and ®=Id is valid. We
notice that the representation is "simplified" as only terms associated with e € &, appear. This implies that
the telescoping argument in the proof of Lemma S4.5 only has to be undertaken over &;. The following

1<i<n

symmetrization inequality thus holds:

E | sup @*f‘ | (37/) <2 E | sup €io f(ff) | (17/)
FeFs n 1 i’>1 g‘;l FeFs ‘/Hn lglz-;n 10e i 1 i>1
Let N3 = 5 >"1<;<n V- We can see
1 e ~
2ZE sup |——= > eioef (Vir )| | (V).
ece, | [T I, 1<i<n ¢'21
1 — ~ - . -
=23 B |sup |—— 3 oS (Vi )| | (Vo) NF >0 1P><N5>o| (V). )
ecs, _}'6]7-5 \/Hn 1<i<n >1 i'>1

For every e € &1, let r. be the position of the unique non-null element of e. This allows us to define

2
Nre N«

i

M= 3 |5 > DI

. - n
e ipg=1 | 11#Te " (i1, ivg 1 irg 410 ninil<i<n) (=1

and 5}, . = supc 7, || fIl o- Then, by Theorem 2.3.6 in [79], we obtain

ap 6] (%),
fEFs '>1
<52 %) V1og 207, o + / \/logN (. sl lz2)de | (Vo) NG > O]
ecé& Te 0 vz

< (N=01(%), ).

By a convexity argument, we have, for every e € & ||]7|\;2 < N751/2|\f|
F;_li Scicn Nie S0y £(Yi )2 We also have 072, < 572, with

Q;,Ql

2
Tl = SUDjer, o 2o1<i<m (Zé\’:ﬁ f(Yi*,g)) . As a result (using also Points 1 to 4 of Lemma S4.11),
sup

(B (%), 1]~
) ~x

<8fk—E [\/lo? \/logN (57]__57N—2*1/2H |

Q;’Q)dg | (E,)i’>1 N > O]

(N*>O

<8\fk—E l\/@a + a5.2)de | (E/)i/>1,N7§> o]

/>1)
/ \/2logN<5/4N2*1/2,]:,|~|
0

>/ 1)

><IP>(NQ*>O|(YZ/) .
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The same arguments as in (4.32) and in the paragraph that follows this equation lead us to
E | sup

FeFs @;‘f‘ | (E/)i’>1]

<8v2k {\/@\/E [5;2 | (g)zzl}

%ﬁW|@%%}

N;
4\/ﬁ Zlgign N 218:1 Fz(YM)

N.
1 7
+4¢ o E Ny ;_1 F2(Y;0)JF

™ 1<i<n

Since th 1 cicn Ni SN F2(Yig) “S E (N1 P F2(YM)) > 0, we only have to show that

limsup £ [522 | (ﬁ/) . >1] % 0asé 0.
>

n—oo
We have:

~%2

oy’ = sup |P;f2| < sup ]P’;‘l]?2 —Pnfz‘ + sup )Pan —sz + 62,
feFs feFu feFu

In the proof of Point 2 of Theorem 4.6, we have shown sup;_z IPnf2 — Pf2| £% 0. It is therefore

E ( sup
feFu

The symmetrization argument we used to control E {supfeﬁ

sufficient to show

MF—MF\ﬁbQﬂio

@;f’ | (Q)DJ still applies and gives

. ~ ~ 1 JUURN
E|sup [P5f? = Puf?| | (F)iz | <4 F(Y2)) T 55yan,
L@E& 21 1, z;n( ) {(F(v2))*>n}
2B s g Y e (f (’7”*>)21{<ﬁ<9.*))2<M} (Vi)iz1
ecé feFs n 1<ien * -
If Vg = 0,

(o (g 3 st (F) g | [ @i

refo |Un 22

is null. Otherwise N3 > 0 and conditional on ((171-)1-21, (i*)lgign), we can consider for every n; > 0 and
e € & a minimal n;-covering of F2 = {g = (f1 — f2) : (f1, f2) € F x F} for the seminorm

* 1 <
l9llenr, = o Z Z 9(Y(d+an-)

™ e<d<nOe [1—e<d'<nO(1—e)

with balls centered in F. This implies

E[S“p HL > cioe (f(ﬁ*)>2ﬂ{(ﬁ'(ﬁ*))2§N[} (E)izlv(i*)lgign}

feFs n 1<i<n

~ 1
§4\/210g2N (7717]:020, HH}:\I,I)Mﬁ + m-
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Remark that for f € F.. with corresponding f € Fuo, [If2ll5001 < N3llf?]

Qz,,1 where Hg| Q1
NT 21<i<n Nix Zz |g(Yi- ¢)|. Then, for every n > 0, using Points 1, 2 and 4 of Lemma S4.11

Zl<z<n i*

and letting 11 = 873 || F?|

0,1, We obtain

, N2
ZE Sup |3 Z £i0e (f(ﬁ)) ]l{(ﬁ(?"*))%M}

ecg, |f€F= | 1ci<n

N
S4k\/210g2sgpN2(77|FIQ,27JT7|-IQ,z) f+8k77fz Ni» Y F?(Yie ).
=1

1<i<n

Integration with respect to (i*)1§i§n|(}~2~)i21 leads to

(Ya)i>1, () 1<i<n

1 N2
Z]E o Z Eide (f(Yz*)) 1{(ﬁ(;7i*))2g1\4}

ece, |T€F= T 1li<n

§4k\/2 log 2sup N2 (1| F||q,2,
Q

2)M \F+8k— > NZF

1<i<n

~ ~ \2
Observe that - Zl<z€n< (Yi)) 1{(?(%))%1\4} and - >y ;0 Ni ST F2(Y;,) converge a.s. to

E ((ﬁ(ﬁ)) ]l{(ﬁ(?l))2>M}> and E (Nl o FQ(YM)), by application of Point 1 of Theorem 4.6 for a
class F reduced to a singleton. Choosing M and n arbitrarily small, we obtain, as m — oo,

E( :,fNZ an“ 1,1,>1>ﬂ>0~
feFu

4.7.3 Technical lemmas

4.7.3.1 Results related to the symmetrisation lemma
Below, ® denotes a non-decreasing convex function ® from R* to R.

Lemma 4.4 (A useful inequality). Letm € N* and (X1, ..., X,,,) be any random variables with values in
X and H be a pointwise measurable class of functions from X to R. Then

E® | sup h(X;

<= ZE(ID [m sup |h(X )@
J 1 he
Lemma 4.5 (Symmetrization, separately exchangeable, unbalanced and dissociated arrays).
Letk € Nt,n = (ny,...,n;) € N** and (}71-)1<.< a family of random variables with values in a Polish
space, such that B

(371) 1<i<n = (T ((U@e)eeulegr))lgign

for (Ua) aenx a family of i.i.d. real random variables and some measurable function v. Let G a pointwise
measurable class of integrable functions of Y,. We have

ofo (sl g@)E{g(ﬁ)})

1<i<n

ngl_l 3 E[@ (2(2 ~Dswp|— > sl@eg( ))

9€g 1<z<n

with (e a) aen+ are i.i.d. Rademacher variables, independent of (ﬁ) e
(2SS
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4.7.3.1.1 Proof of Lemma S4.4

By the triangle inequality and properties of the supremum,

m

sup Z X;) <—stup|h

her | o hen

The result follows by monotonicity and convexity of ®.

4.7.3.1.2 Proof of Lemma S4.5

The proof is much simpler than that of Lemma 4.2 because there is much more invariance in separately
exchangeable arrays than in jointly exchangeable ones. Consequently the decoupling and recoupling

steps used in the proof of Lemma 4.2 are not necessary.

To get the result, we introduce (US))A . which is an independent copy of (U4) 4. We assume
S

without loss of generality that the last argument of  is U;1 = U;. On the set UF_, &, < is the strict total
order used (implicitly) to enumerate the arguments of 7 in the statement of the Lemma. We extend this
order to UF_,&, considering that 0 < e < 1 for every e € Uf_, &,. For every (e, €’) € (Ufzogl)z, we write

e<ecife<e ore=e. Wealsolet V) =7 ((Ui%)e)o . ,(U,-@e/)e<e,<1> for every e € UF_, &
<e'<e -

(hence Y; = 171.(0)). Convexity of ® then implies

B (sl 3 o (F) 2o ()]
L sisn J
<E -(13 zlélg) Hin 1§igng (}71'(0)) g (}71_(1)) -
1 (eprec (e
=E -<I> 228 e 1; O;ﬁlg (Yz( )) —g (Yz( ))

i<n
gﬁ S E|e ((2k ~1)sup Hi S (f/i(epm)) _yg (571.(&))

geg " 1<i<n

st T ol a5 o)) )

ecUr_ & 9EG | N 1 i<n

with e, the element that precedes e for the strict total order <. For every e € UF_, &, note that

Z g (i/;(eprec)) g (i}i(e))

1<i<n

- YT () e()

e<d<n@®e 1-—e<d'<n@®(l—e)

Furthermore,

(eprec) v (e)
Z (Yd-&-z:i’ ) -9 (Ydid’)
1-e<d'<n®(l—e) e<d<nOe

is an array of independent and symmetric random variables conditional on ((Uz%)e) 0
<e’'<e

: (Ui@e)e<e/<1)-
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Standard symmetrization arguments [see for instance 137, Lemma 2.3.1 in the i.i.d. case] entail

efof@-null ¥ % g(?;iw)—g(m))]

9EG | N ocd<noe 1-e<d'<no(l—e)

<E |® | 2(2¥ — 1)sup HL Z €d Z g(f/curd/) )]
(1-e)

9€G |11 ccd<noe  1-e<d'<nO

9€g | M oy

=E _<I> 2(2% — 1) sup HL Z €ioed (}N’,) )] .

4.7.3.2 Results related to laws of large numbers

Lemma 4.6. Under Assumptions 4.1-4.3, E (sup [P}, f — P, f||(Yi)icr,) tends to O almost surely as

n — oQ.

Lemma 4.7. Suppose that Assumptions 4.2, 4.3 and 4.5 hold and n = (ny(m),...,ni(m)) satisfies
n;(m) — +oo asm — +oo forevery j =1,....k. ThenE (sup}- ’Iﬁj‘lf - ]Tbnf' |(Ni7 (Y; [)Ni2£21)1§i§n>

tends to 0 almost surely as m — cc.

Lemma 4.8 (Control of sums of quadratic terms).
If Assumption 4.1 holds and E [Y{] < +oo, then for h(i) = lyier, .} Yo ree, Yi. We have for every
i=0,...k

Lemma 4.9 (Control of sums of quadratic terms under separate exchangeability).
Let h(i) = S, Yi .. Suppose Assumption 4.5 holds, E [Y2] < +oc andn = (ni(m), ..., ni(m)) € Ntk
satisfies nj(m) — +oo whenm — +oo forevery j = 1,....k. Then for every e € UF_,E,
1 1
H]::1 nrle, =1} Hl::l ny(ny — 1)11{67:0} (4,4)E€Tn. e

h(@)h(i") = E [h(1)h(be)] + 0a.5(1),

where b, is a k-dimensional vector such that its j-th entry is equal to 1 ife; = 1 and 2 otherwise and
Ine={(,1):1<4,4 <n,i. =i ife, =1 andi, # i, otherwise}.

4.7.3.2.1 Proof of Lemma S4.6

Let i* the ith index sampled with replacement in {1, ..., n}. The i*s are distributed as i* i Ug,...ny- For
every ¢ = (i1, ..., 1) € L, &, ¢* stands for (i], ..., ¢}). Conditional on the data and for every f € F, P; f =
(n;gk)! Zieﬂm f(Yi) Lgieer, . y- We remark E (f (¥3-) Tgser, .y | (Yi)ier,) = P,f=E[Pif | (Vi)ien,])-
Note that conditionally on (¥;)ier,, " 57,00 f(Yi)L(s-en, ) is @ U-statistics since f(Yi-)Li-er, ,)

admits a representation f(r(Uil,...,Uik))Il{(U Uiy )€l i} for i.id. U; = i*. We also have that

(n;gk)! Zieﬂn‘k f(Yi*)]l{i*eﬂn,k} = (n;!k)! Zieﬂw h(i*) with h @ @ — % Zﬂeek f(Yiﬂ)]l{iWGHn‘k}' As a
result, the inequality proved on page 1508 in [9] is valid with their f replaced with i (in particular, the

sixth inequality on the latter page is true as & is symmetric in its arguments and A (-) does not depend on
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) and we can write for some constant C, that depends on & only

(n—k)!
ol ) > ey Vi) Lggeer, oy || (Yi)ien,

i€l

< kCLE | sup
feFs

E lsup P f — Py f] ‘(Yi)ieﬂk
fEFs

Let N* = (=Bt S {iver, - If N* = 0, we sample fewer than F different units in the bootstrap.
In that case, the supremum of the Rademacher process is always equal to 0. As a result,

—k)!
E |sup (n )

pid Z ey f (Y ) Lpv,o<any Lgier, o) ‘(Yi)ieﬂk

L i€l

=E |sup '
fer n:

= > e V) Lipio<an Lger, ) ’(Yi)ier,N* >0|P(N*>0).

€L, &

We now adapt the steps of the proof of Theorem 4.1. Conditional on ((Y;)scr,, (¢*)scr, . ) and N* > 0,
we can consider for every n; > 0 and every e € £; a minimal n;-covering of F for the seminorm

n

. (n —k)!
gl = 1 Z Z 9 (Yi-) Lirpp<nnyLiiver, 4}

11=1 |(i2,...,05):2€L,

with balls centered in F. This implies

n—k)! o «
E |sup (n—k)! , ) E erioeytf (Yi) Lipv,y<mylgszer, 3| |(Ya)ien,, (3%)ser, N7 >0
F n: ’

i€l x

1
S\/210g2N (7717]:7 H-H’M@)Mﬁ + .

x—1 (n—k)!
Remark that [|g|[3,, < N*[|gl[5, ., where [lgll5, , = N7 ORS00 1Y)l Lisee, 3. for
Q, = N**lw > ien, . Otvi-yLiizer, .y @ (random) probability measure with finite support on ) that is

well-defined when N* > 0. Then, for every n > 0, letting 1 = nN*||F[|5, , and using Point 2 of Lemma
S4.11 and Point 1 of Lemma S4.11,

(n

" Z ety S (Yor) Lipvioy<mnLiiren, oy | | (Yi)ien (87) e, » V" >0

E [sup
7 icl, p

NG

Integration with respect to (¢*);cr, , |(Yi)ier,, N* > 0 combined with the fact that

1 * *
gflogmgpzv(nnFHQ,l,f,||.|Q,oM+nN IF[[5, 1

E [N*HF\ Q1 | (Vi)ier,, N* > 0] =F [N*||F||[§in | (n)ieﬂk} /P(N* > 0) leads to
n—k)!
E sup ( py ) Z eqinyf Yo ) Lpevyoy<any Lgiver, 4y ’(Yi)ieﬂk
’ ieHvL,k
1 (n—k)!
< [2log2sup N (n[|F |1, F, [l [|@)M—= + n-——= > E[F(Yi)liecr, o3| (Va)icr,]
Q@ \/ﬁ n' 1€l K
1 1
= [2log2sup N (n||F||lg1,F, ||-llg1)M—= +n— F(Y3).
\/ Q @ @ vn nk 1%; ¢

We observe = 3, F(Yi)liv;>ay and oz 3,c;  F(Y;) converge a.s. to E (F(Y1)1(y,>a) and

E (F(Y1)) by almost sure convergence of the sample mean of jointly exchangeable arrays [66] and
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ergodicity of dissociated arrays [96] or Theorem 4.1 for a class F reduced to a singleton. Choosing M
and n such that E (F(Y1)1{y, >y ) + nE (F(Y1)) is arbitrarily small, we deduce that for n — oo

E 2% 0.

sup
fer

Py, (Ya)ier,

Finally, the triangle inequality enables us to write
|J§up |]P)*f P f| | i ’LEHk

<E [SUP ((n_ ) Z f(Y;

fer iel, 1

n! n—=k)!
S(17”Lk(7z—/7c)!)( n!) ZF( i) +E

’L'G]Inyk

sup (P, (Yi)icr,

’ [ zEHk] +E
fer

Prf— IP’nf

sup

‘( Yi)ien,

— 1, we conclude

Because "3, F(Y:) “% E(F(Yh)) and b

a.s.,

E — 0.

;up UP) f Pnf| | 2 zE]Ik

4.7.3.2.2 Proof of Lemma S4.7

Forevery j = 1,...,k, let i} the i;-th index sampled with replacement in [1;n;]. The i}s are distributed
as i; % Upiin,) and the k sequences (i1);_;, ..., (i), are also mutually independent. For every
1 < i <, i* denotes (i%, ..., i}). Conditional on the data and for every f € F, Pi,f = T ~ > 1<i<n t f (i)
with £ (3%) = 00 f (Yie s ) We have: E[P:f | (N, (Yi)es1)ien+r] = Pnf. Note that conditional on
(N3, (Yie)e>1)ien+e, (%)ser, , 18 a family of random vectors that admit a representation ¢* = 7((Us;oe)ece, )
with (U;)o<i<n i.i.d. random variables (consider 7 : (uy,...,ux) € [0,1]* = ([n1 x u1], ..., [nx x ug])
where [-] denotes the ceiling function and U; ~ Uy 17). As a result, conditionally on the data, Lemma
S4.5 applies to V; = i*, G = {f [ = Zévz’"{ fYi-0), f € }"} and ® = Id. Moreover, because only
terms involving e € & appear in the representation of ¢*, a simplification of the proof of Lemma S4.5
leads to the following inequality

E |sup Py - PfH A M)mnewl

feF
n N;
2 K2
m Z F(Y; Ly, pevio>any
=1 /¢=1
+2 Z E Sup | —=— Z E'LQEZf {Z % F(Y* e)<M} ‘(Ni7(yr7:’e)z>1)i€N+k . (434)
ece, |I€7 I 1<i<n

The rest of the proof is similar to that of sup » ‘@nf - ?f‘ L4 00 in fact, with ||f||e7M71 redefined

1 N«
as ||f‘|€’M’1 = ﬁ Zeﬁdﬁn@e Zlfegd’SnQ(lfe) Ef:l f (Y;:*,f) ]1{22\] * F(Y* [)<M}‘ , we have for every
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ec &, M >0andmn; >0 (possibly random)

Ny-

1 i

E[sup | > €ice ) f (Ve ) Lishee piy hcny ‘(Ni’(n’f)le)ieN*k
feFr|tn 1 icn =1 ’

1 : 7
T EiGerm*xf)]l{zf;‘I F(Yie () <M} ‘(Ni’(n’f)f>1)i€N*k’Nf >0

1<i<n =1

(s (Y:i’e)e>1)i€N+k>

<E [sup
feF IL,

xIP’(Nl*>O

1
<E {\/2 log 2N (m1, F, H'He,M,l)Mﬁ +

x P (Nl* > 0‘(1\&'7 (Yi,z)ezl)iewk) ;

(Ne, (Vi) )icsvoe, NF > 0]

with N = =371 ;cp, Ni-

4.7.3.2.3 Proof of Lemma S4.8

By definition of h(-), we have

S bl e in)h(in, iy ik ok )

i€{l,...,n}2k—i

= > > > h(i, i )h(i,i")

i€{L,..n} &' €({L,..,nI\{i})F—7 i’ €({L,..,n}\{i})F—7

_ % <’“ - j)2 3 3 3 h(i, i3, i").
c=0

S Sy E R L F O AN 1) Lo e S (PR AN C (3 02 (D)L

Since K is invariant by permutation of its entries, the last equality holds by distinguishing between cases
depending on the number of common values in the vectors (ij41, ..., %) and (ig41, ..., t26—;)-
As (h(%))ier, , is a k-dimensional jointly exchangeable array,

(h(i,i’)h(i,z‘”))

(T, e {1\ a7 -4 ({1, on N{@HU{ )7 -
is a (2k — j — c)-dimensional jointly exchangeable array. Moreover E(Y;?) < +oo ensures that
E(h(1,....,k)h(1,....5+c, k+1,...,2k — j — ¢)|) < 400 so that Theorem 4.1 can be applied to a class F

reduced to the identity function. The equivalence m ~ n?k=i=¢ concludes the proof.

4.7.3.2.4 Proof of Lemma S4.9

Let Y; stand for (Ns, (Yie)i<e<n,). Let 3, . the o-algebra generated by the set of functions g from
DN x DV to R such that:

(Y, Yir)sinezn ) = 9((YVay(in)omnGin) s Yoo (85),ecos i () (5,8) €T e )

for every set of permutations 7y, ...., 7, such that for every r = 1, ...k, 7.(¢) = i if i > n,. Let W,,, =
1 1
I, rlie, =13 H’f:gdrl nr(nr =11 ge, =0}

> (i,inez, . M(E)h(i"). By construction, we have for every n € N*
Wm =E [Wm ‘ E’m,e] =E [h(l)h(be) | Em,e]
Furthermore, ¥,, ¢ 2 ¥,,+1. SO that

E [Wm | Em+1,e] =E [E [h(l)h(be) ‘ Zm,tﬂ] | Eerl,e] =E [h(l)h(be) ‘ Eerl,E] = Wint1.
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As a result, we can conclude that (W,,,%,,e),,~, iS a reverse martingale. From this follows that
Wi 25 E[h(1)h(be) | Yoo Where Lo o = ﬂmZIEme (see for instance Theorem 22 of Chapter 24
in [73]). By the dissociation assumption, this sigma-algebra is trivial (see Lemma 7.35 in [96]), hence
W 225 E [R(1)R(be)].

4.7.3.3 Covering and entropic integrals

Lemma 4.10 (Properties of entropic integrals).
Let F a class of functions with envelope F such that [, ((¢)de < +oc, with

) = sup (N el|Fllg.2, F | lo:2)

1. u Jr(u) = [, ((e)de is positive, non-decreasing, concave, larger than u((u) for every u > 0 and
SUPy, >0 JJ—‘( ) = JF(2).

2. Forevery K >0, (z,y) € [0,00) x (0,00) — /7] r (

&

) is concave.

Lemma 4.11 (Covering numbers inequalities).
Foreverye > 0:

1. for every class H, every norm ||.|| and every A > 0: N(e,H, \||.]])) = N(e/A\,H, ||-1])-
2. for every class H, every pair of norms ||.|| < ||.|I': N(e, H,||-|]) < N(g, H,]|-l|")-
3. forevery H C H' and every norm ||.||: N (g, 1, ||.]|) < N(g/2,H', ||.]|)-

4. for every norm ||.||, every class F and for Foo ={f : f = f1 — fo, (f1, f2) € F x F}:
N(e, Foos |I-I) < N2(e/2, F, ILII).

5. forevery class F and for F2, = {f : f = (f1 — f2)%,(f1, f2) € F x F}:
supg N (8¢l 2|1, F2, [Illg.1) < supg N2(el|Fllg.. F, |l .2)
where the supremum is taken over the set of all finite probability measures on the domain of the
functions in F.

4.7.3.3.1 Proof of Lemma S4.10

1. (¢ is nonnegative and nonincreasing. It follows that v — Jx(u) is positive, non-decreasing
and concave. Furthermore, Jz(u) > fo u)de = uC(u) for every v > 0. For e > 2, we have
N( 2) = 1 for every probability measure Q. As a result, ((¢) =

2. J is concave on [0, co) which implies for A € (0;1), (x,2') € [0,00)?, (y,') € (0, 00)?

Az + (1 — N
Ay + (1 A)y’)

oo Kr o (1-Ny Kx/)
=(\ 1-M)Jr | v —
Ay + ( )Y') f(/\y+(1_>\)y/ Yy Ay+(1-=Ny ¢

x , x’
2XgTp (K )+ (L= Ny (K5 )

We can therefore claim that f(z,y) = yJr(K7) is concave on [0,00) x (0 oo) Moreover f(z,y) is

Ay + (1 =Ny)Jr (K

non-decreasing in z as Jr is non-decreasing. We also have f(z,y) = yfo v C(e)de =z fO ( ) de.



Chapter 4. Empirical Process Results for Exchangeable Arrays 136

Since (¢ in nonincreasing, f is non-decreasing in y. Finally, because u — /u is concave, we have

T i (K Az (1 —A);y)

Ay + (L= ANy
—f (\/)\x Y N PN Vi )\)y’)
> ()\\/54—(1 — AWM+ (1 —A)\/J)
>0 f (Vs i) + (=N (Val, V)

=\yJF (K‘\E) + (1 =My Jr <K g) :

4.7.3.3.2 Proof of Lemma S4.11

1. A ball of radius ¢ for the norm \||.|| is a ball of radius ¢/ for the norm ||.||.

2. A minimal e-covering for ||.||" is also an e-covering for ||.||.

3. Consider a minimal /2-covering of #’. This is not an ¢/2-covering of # in general because the
centers of the covering balls need not be in #. However, in each ball that intersects #, we can select an
element of H as a center of a new ball of radius . We thus obtain a new family of balls which forms an
e-covering of H.

4. Let f1,..., fn(es2,7,.1) the centers of balls of a minimal ¢/2-covering of F. Consider balls of center
fi — f; and of radius ¢ for 1 < 4,5 < N(e/2,F,||.||). The latter constitute an e-covering of 7., because for
(g91,92) € F x F we have

I[(fi = £3) = (g1 — g2l < M fi = aall + (I f5 — g2l

which is smaller than ¢ for at least one pair (3, j).

5. Let fi,..., fn(e||Fllg..7.1.) the centers of balls of a minimal ¢|[F|[q 2-covering of F for [.|[q2-
Consider balls of center f; — f; and radius 8¢||F?||g 1 for the norm ||.||,1. For every pair (g1, g2) € F x F,
the Cauchy-Schwarz inequality implies

Q1 < |fi = fi+ 91— g2llo2 < |[(fi = f) — (91 — 92)ll@.2
<A[Fllg2 x (Ilfi = gillg.2 + fi — 92ll@.2) »

1(fi = £3)% = (91 — 92)°|

which is smaller than 8¢||F|[3, , = 8¢||F?||q.1 for at least one pair (i, ).



Chapter 5

On the construction of confidence
intervals for ratios of expectations’

Abstract

In econometrics, many parameters of interest can be written as ratios of expectations. The main
approach to construct confidence intervals for such parameters is the delta method. However, this
asymptotic procedure yields intervals that may not be relevant for small sample sizes or, more
generally, in a sequence-of-model framework that allows the expectation in the denominator to
decrease to 0 with the sample size. In this setting, we prove a generalization of the delta method
for ratios of expectations and the consistency of the nonparametric percentile bootstrap. We also
investigate finite-sample inference and show a partial impossibility result: nonasymptotic uniform
confidence intervals can be built for ratios of expectations but not at every level. Based on this, we
propose an easy-to-compute index to appraise the reliability of the intervals based on the delta
method. Simulations and an application illustrate our results and the practical usefulness of our
rule of thumb.

Keywords: delta method, confidence regions, uniformly valid inference, sequence of models,
nonparametric percentile bootstrap.

Based on [58] : Derumigny, A., Girard, L., & Guyonvarch Y., On the construction of confidence
intervals for ratios of expectations. Arxiv preprint, arXiv:1904.07111, 2019.

5.1 Introduction

In applied econometrics, the prevalent method for constructing confidence intervals (Cls) is asymptotic:
the theoretical guarantees for most Cls used in practice hold only when the number of observations
tends to infinity. For a large class of parameters, the construction of asymptotic Cls also relies on the
delta method. In this paper, we focus on parameters that can be expressed as ratios of expectations for
which the delta method is a standard procedure to conduct inference. The objective is twofold: study the
behavior of the delta method and other confidence intervals in some difficult settings and provide tools to
detect cases in which the delta method may behave poorly.

"Note to the referees: This chapter is based on an arxiv working paper that is still preliminary. It has only been presented
internally at CREST.
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Many popular parameters in economics take the form of ratios of expectations. Typical examples are
conditional expectations since any conditional expectation with a discrete conditioning variable, or a
conditioning event, can be written as a ratio of unconditional expectations. For instance, assume that we
observe an independent and identically distributed (i.i.d.) sample of individuals indexed by i € {1,...,n}
with W; the wage of an individual and D; an indicator equal to 1 whenever individual i belongs to some
treatment group, say a training program; 0 otherwise. Suppose you are interested in the average wage of
participants in the program. We have E[W | D = 1] = E[W D] /E [D] as D is binary.

Most confidence intervals used in practice are based on asymptotic justifications, hence possible
concerns as regards their finite-sample reliability. For ratios of expectations, we document this issue on
simulations (see Section 5.3.1). One of our findings is that the coverage of the Cls based on the delta
method happens to be far below their nominal level, even for large sample sizes, when the expectation
in the denominator is close to 0.2 For some scenarios, these asymptotic Cls require above 100,000
observations to get reasonably close to their nominal level. Yet, denominators close to 0 are not unusual
in practice. Coming back to the treatment/wage example, a small denominator would correspond to a
binary treatment with a low participation rate.

In order to deal with that issue, we consider sequences of models, namely we authorize the distribution
of the observations to change with the sample size. This framework enables to formalize in an asymptotic
way the idea of a denominator close to 0. Indeed, in a standard asymptotic viewpoint, with the expectation
in the denominator different from 0, all parameters are fixed and well-defined. Hence, n always grows
large enough so that empirical means are close to their expectations and the Cls based on the delta
method are valid. In other words, the signal that we want to estimate is constant while the noise goes to 0,
and therefore the problem vanishes in this asymptotic perspective. We would like to model more difficult
cases, in which the signal can go to 0 as well. This is precisely what the sequence-of-model set-up
allows.? This is similar to some frameworks that have been developed for weak instrumental variables
(IV), see notably [129, 130, 8].

In this literature, another approach does not consider sequences of models but designs “robust”
procedures that allow to be exactly in the problematic case, namely a null covariance between the
instrument and the endogenous regressor (see [6]). In this case, the parameter of interest is unidentified.
In contrast with the weak IV framework, it is worth noting that for ratios in general the parameter of interest
is not even defined when the denominator is exactly equal to 0. As a consequence, such an approach
seems difficult to extend to our problem.

In our setting, it is unclear, even asymptotically, what the properties of the Cls based on the delta
method are when the expectation in the denominator tends to 0. We show that usual Cls can fail and the
limiting law of 0, — 0, may not be Gaussian anymore, denoting by 6,, the ratio of expectations and 0, its
empirical counterpart. In some cases, the difference 5,1, — 6,, may actually have a Cauchy limit, as can be
found in the weak |V literature.

We show in this sequence-of-model framework that confidence intervals provided by the nonparametric
percentile bootstrap have the same asymptotic properties as the ones obtained with the delta method.
Simulations support that claim and even suggest the former have better coverage than the latter in finite
samples.

Even in standard settings with a fixed but small denominator, simulations document that asymptotic-

2The definitions of coverage and other fundamental properties of confidence intervals are recalled in Section 5.8 with the
conventions that we use.

3This can also rationalize the practice of applied social researchers (see Example 5.1). The heuristic idea is that researchers
can consider narrower effects as the data gets richer.
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based Cls may require very large sample sizes to attain their nominal level. This suggests to study
more in details nonasymptotic inference. More precisely, we construct finite-sample Cls, extending
old-established concentration inequalities for means to ratios of means. Concentration inequalities for the
mean refer to upper bounds on the probability that an empirical mean departs from its expectation more
than a given threshold. Such inequalities permit to construct confidence intervals valid for any sample
size and for large classes of probability distributions (see in particular [25]). To our knowledge, there is no
such result for ratios. We consider distributions within a class characterized by a lower bound on the first
moment for the denominator variable, and an upper bound on the second moment for both the numerator
and denominator variables.*

One additional result highlights there exists a critical confidence level, above which it is not possible to
construct nonasymptotic Cls, uniformly valid on such classes, and that are almost surely of finite length
under every distribution of those classes. More precisely, we exhibit explicit upper and lower bounds on
this critical confidence level: the former is a threshold above which we show it is impossible to construct
such Cls; the latter is a threshold below which we show how to construct them.

These ideas closely relate to some impossibility results as regards the construction of confidence
intervals. A large share of the research effort has concentrated on the problem of constructing confidence
intervals for expectations. In an early contribution, [14] show that, when P is the set of all distributions on
the real line with finite expectation, the parameter of interest 6(P) is the expectation with respect to a
distribution P € P and © = R, a confidence interval built from an i.i.d. sample of n € N* observations that
has uniform coverage 1 — « over P must contain any real number with probability at least 1 — «. Broadly
speaking, any confidence interval must have infinite length with positive probability for every P € P to
ensure a coverage of 1 — a.

Stronger results can be derived when one further restricts P or ©. When P is taken to be the set of all
distributions on the real line with variance uniformly bounded by a finite constant, it is possible to show
(using the Bienaymé-Chebyshev inequality) that for every n € N* and every « € (0, 1), there exists a
confidence interval that is almost surely of bounded length under every P € P and has coverage 1 — . In
this case, the obtained Cls have the advantage that their length shrinks to 0 at the optimal rate 1/,/n. But
on the downside, they are not of size 1 — «, even asymptotically, except for some extreme distributions.
This means that they tend to be conservative in practice.

A strand of the literature has also investigated more complex problems in which 6(P) is not restricted
to being an expectation. For general parameters, [63] derives a generalization of [14]. An implication
of the results in [63] is the existence of an impossibility theorem for ratios of expectations. Let P be a
distribution on R? with marginals Px and Py. If §(P) = Ep, [X]/Ep, [Y], then for every a € (0,1), itis
impossible to build nontrivial Cls of coverage 1 — o when P is the set of all distributions on R? with finite
second moments and © = {§ = Ep, [X]/Ep, [Y]: (Ep, [X],Ep, [Y]) € R x R*}. As will be explained
below, this impossibility result disappears as soon as P is chosen such that |Ep,. [Y]| is bounded away
from 0 uniformly over P. Interestingly, the impossibility breaks down only partly in the sense that there
remains an upper bound on confidence levels (that depends on n) above which it is impossible to build
nontrivial Cls.

Other interesting results can be found in [123] and [120]. [123] construct nonasymptotic valid confidence
intervals that happen to be also asymptotically optimal. However, they only consider expectations. [120]
study smooth functions of a vector of means and give bounds on the distance between the distribution of
the normalized and centered estimator and its Gaussian limiting distribution. Nonetheless, the authors do

4We refer to this setting as the “Bienaymé-Chebyshev” (BC) case. In Section 5.10, we present similar results for distributions
whose supports are bounded (“Hoeffding” case).
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not link their results to the construction of confidence intervals.

In the light of that existing literature, our nonasymptotic findings can be interpreted as a partial
impossibility result. Indeed, even if we assume a known positive lower bound on the expectation in the
denominator, the limitation on the attainable coverage of our nonasymptotic Cls remains. That point
complements [63]: for a given sample size n, interesting Cls can be built but not at every confidence level.
By contrast, provided the expectation in the denominator is not null, the delta method gives Cls at every
confidence level, but their coverage is only asymptotic.

To bridge this gap, we suggest a rule of thumb to assess the reliability of the delta method for ratios of
expectations in finite samples. The heuristic idea is simply, for a given sample, to compute an estimator
of the lower bound on the above-mentioned critical confidence level. This lower bound can be seen as a
conservative value for the unknown critical level, which is a necessary criterion to conduct valid inference
in finite samples uniformly over a given class of distributions. Hence, for any desired level higher than this
bound, the Cls based on the delta method cannot reach this desired uniform level in finite samples. We
illustrate the empirical usefulness of that rule of thumb on simulations and with an application to gender
wage disparities in France for the years 2010-2017.

The rest of the paper is organized as follows. Section 5.2 details our framework and assumptions. In
Section 5.3, we illustrate the weaknesses of the Cls based on the delta method with a denominator “close
to 0” on simulations and detail the asymptotic behavior of the delta method and of the nonparametric
percentile bootstrap in our sequence-of-model setting. Section 5.4 is devoted to the construction of
nonasymptotic confidence intervals and presents a lower bound on the aforementioned critical confidence
level. In Section 5.5, we derive an upper bound on the critical confidence level as well as a lower bound
on the length of nonasymptotic Cls. This section also includes the description of a practical index to
gauge the soundness of the Cls based on the delta method in finite samples. Section 5.6 present
simulations and an application to a real dataset to illustrate our methods. Section 5.7 concludes. General
definitions about confidence intervals are recalled in Section 5.8. The proofs of all results are postponed
to Section 5.9. Additional results under an alternative set of assumptions (“Hoeffding” case) are detailed
in Section 5.10. Section 5.11 presents supplementary simulations.

5.2 Our framework

Throughout the paper, for any random variable U and n i.i.d. replications (Ui, ..., Uy n), We denote
by U,, the empirical mean of U, thatis n=*>_"_, U; ,. Assumption 5.1 defines our sequence-of-model
framework and provides the basic requirements to state our asymptotic results.

. j.i.d. .
Assumption 5.1. For every n € N*, we observe a sample (X; n,Yin)i=1...n ~ Px.yn, where Pxy., is

a given distribution on R* that satisfies E [Y1,,] > 0, E [X2] < +o0, and E [V;?] < +cc.

n

Remark that n indexes both the distribution Px y.,, of the observations in this model and the number of
observations n. This encompasses the standard i.i.d. set-up if the distribution does not change with n: for
every n € N*, Px vy, = Px,y for some given distribution Px y. As we assume the existence of a finite
expectation, we can consider E [Y; ,,] > 0 without loss of generality.® In order to have properly defined
ratios of interest, we need to assume away a null denominator, namely suppose that for every n € N*,
E[Y1,,] > 0.

Example 5.1 (Sequences of models and the practice of applied researchers).
Researcher may look at the average value of a variable A, ,, of interest in a subgroup of the data.

50therwise, we simply replace Y; » by its opposite —Y; .
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Subgroups could be defined as the intersections of, say, time, geographical area, gender, age, income
brackets and so on. As the number of observations n grows, it is possible to consider subgroups g, that
become thinner and thinner (intersection of more and more variables for instance). This practice could
be modelled as estimating 0,, :=E [A;,, | Gin = 1] =E[A; ,Gin] /P (G = 1) where G, ,, is a binary
variable that is equal to 1 if an individual i belongs to the subgroup g,,. This corresponds to our framework
denoting X; p := A; n X G, @ndy; ,, .= G; .

To derive our nonasymptotic results, Assumption 5.1 has to be strengthened.

Assumption 5.2. For every n € N*, there exist positive finite constants ly ,,, ux », and uy,,, such that (i)
E [Yl,n] > lY,n > O, (II) E [Xg] < UX n and E [Yrﬂ < Uy n-

Note that in practice, the value of the constants Iy, ux », and uy,, may not be available for practitioners.
This is the reason why, in Section 5.5.3, we propose heuristic methods that palliate the lack of knowledge
of those constants.

The first part of the assumption bounds the expectation of Y; ,, away from 0 while the second states that
the second moments of X, ,, and Y; ,, are bounded. These are necessary to derive nonasymptotic Cls with
maintained coverage uniformly over a class of distributions and that are not trivial. Otherwise, if ly,,, = 0 or
in the absence of the upper bounds ux ,, and uy,, the impossibility theorem of [63] applies and prevents
from constructing nontrivial Cls for any confidence level. In a way, given this result, Assumption 5.2
can be seen as close to the minimal hypothesis that allows for the possibility of nontrivial confidence
intervals with finite-sample guarantees for ratios of expectations. Furthermore, the sequence-of-model
framework allows Iy ,, to decrease to 0, which enables us to study limiting cases close to but different
from the problematic case Iy, = 0.

This set-up, where Assumptions 5.1 and 5.2 hold, is named the BC case since it is possible under these
assumptions to construct nonasymptotic Cls using the Bienaymé-Chebyshev inequality. In Section 5.10,
we present an adapted version of our results under the assumption that X; ,, and Y3 ,, have a bounded
support instead of bounded second moments; a setting we call the Hoeffding case.

To sum up, Assumptions 5.1 and 5.2 define a set P of distributions for some constants Iy, ux »
and uy,,,. For a distribution Px vy, in P, the parameter of interest 6( Px v,,,) is denoted
0, = E[X1,]/E[Y1,] with values in R. To estimate this parameter, we consider its empirical counter-
part 0, := X,/ Y ,.. We seek to construct confidence intervals Cy« for 6, with nominal level 1 — o based
on this estimator.

In practice, it is possible that Y, = 0 and it may even happen with a strictly positive probability for
non-continuous distributions of Y. The estimator 8, is not well-defined for such samples. How can we
construct a confidence interval C,, ,, using §n in that context? We could choose to define C,, , = R. This
entails that 8,, belongs to C,, ,, by construction. We believe that such a choice would artificially improve
the coverage of C,, ,, as it induces that the higher P(Y,, = 0), the better the interval in terms of coverage.
As a result, we adopt the convention that 6, = +oo and Ch.o. = 0 meaning that we reject the hypothesis
0., = 6, for every 6, € R using the duality between tests and confidence intervals.

5.3 Limitations of the delta method: when are asymptotic confi-
dence intervals valid?

In practice, for a sample of size n, the coverage of asymptotic Cls may be well below their nominal
level 1 — a. Intuitively, this phenomenon should be driven by “problematic” distributions in P in the
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following sense: when the true distribution P is close to the boundary of the class P, the probability
c(n, P) := Ppon (Cno 2 0(P)) may be much smaller than 1 — «.8

In Section 5.3.1, with C,, ., the confidence interval based on the delta method, we illustrate on simula-
tions that ¢(n, P) can fail to match 1 — a when the expectation in the denominator is fixed close to 0. In
other words, it may require a very large number of observations to make reasonable the asymptotic ap-
proximation. In Section 5.3.2, we investigate a more serious issue: in the sequence-of-model framework,
we let the expectation in the denominator not only be small but converge to 0 as n increases. We show on
simulations that depending on the speed at which the denominator goes to 0, ¢(n, P) can either converge
to the nominal level (more or less quickly) or even not converge at all to this target. This sheds light on a
partial failure of the delta method when the denominator goes to 0 that we derive formally in Section 5.3.3.
Finally, in Section 5.3.4, we show the asymptotic consistency of the nonparametric percentile bootstrap
(also known as Efron’s percentile bootstrap) in this sequence-of-model framework.

5.3.1 Asymptotic approximation takes time to hold

In this subsection, we consider the i.i.d. case.” Under Assumption 5.1, asymptotic confidence intervals
are easily obtained combining the multivariate central limit theorem (CLT) and the delta method:

ﬂ(i:-%) ﬁN(QZ), (5.1)
where ¥ = V[X]/E[Y]? + E[X]*V[Y]/E[Y]* — 2Cov [X, Y] E[X]/E[Y]? and in practice is replaced by
a consistent estimate (Slutsky’s lemma).

To assess the quality of the Cl based on (5.1), we compute its ¢(n, P) using simulations for different
sample sizes n and distributions P and compare it to the nominal level. By definition, the pointwise
coverage c(n, P) forms an upper bound on the uniform coverage. In our simulations, we choose the level
1 — a = 95%. For different sample sizes n and values of E[Y], we draw M = 5,000 i.i.d. samples of size
n following N'(1,1) @ N (E[Y], 1). We compute ¢(n, P) for the interval based on the delta method for every
pair (n, E[Y]) using the 5,000 replications. The expectation E[Y] ranges from 0.01 (the denominator is
close to 0) to 0.75 (the denominator is far from 0). Figure 5.1 sums up the results. For every n, it turns out
that the closer E[Y] to 0, the smaller the c¢(n, P) of the delta method. When E[Y] = 0.01, we observe that
¢(n, P) gets close to the nominal level only for n above 300,000. Additional simulations indicate that the
phenomenon is robust across different choices of the distribution Px y- (see Section 5.11).

5.3.2 Asymptotic results may not hold in the sequence-of-model framework

Unlike the result displayed in (5.1), itis unclear how \/n (X, /Y, — E[X]/E[Y]) behaves asymptotically
when we consider sequences of models such that the expectation in the denominator tends to 0 as
n increases. For a given specification, Figure 5.2 shows the c(n, P) of the Cls based on the delta method
when E[Y;,,] = Cn~" where C is set to 0.025 and b varies. For a speed b > 1/2 (i.e. faster than the
usual rate of the CLT), the pointwise coverage c(n, P) of the asymptotic Cls obtained by (5.1) is not good
in the sense that it is far lower than the nominal level 1 — « and it does not converge to the latter. Our
simulations even suggest that the coverage tends to 0 for b > 1/2. For b < 1/2, the upper bound ¢(n, P)

6Recall that in the nonasymptotic approach, the coverage of any given confidence interval C,  is defined as the infimum of
¢(n, P) for P ranging over the studied class P of distributions.

7For every n € N*, Px y,n is identical, hence denoted Px y . To simplify notations, we also denote by (X, Y") a random vector
following Px y .
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Figure 5.1 — ¢(n, P) of the asymptotic Cls based on the delta method as a function of the sample size n.
Specification: Vn € N*, Px v,» = N(1,1) ® N(E[Y], 1). The nominal pointwise asymptotic level is set to 0.95. For
each pair (E[Y], n), the coverage is obtained as the mean over 5,000 repetitions.

on the coverage of the delta method seems to tend to 1 — «.. Yet, in line with Figure 5.1, the validity of the
asymptotic approximation requires very large sample sizes.

At this stage, Figure 5.2 presents some evidence that the Cls based on the delta method need to
be adapted for sequences of models and that the rate of decrease toward 0 of the expectation E [Y7 ]
matters. The next subsection details formal results in this set-up.

5.3.3 Extension of the delta method for ratios of expectations in the sequence-
of-model framework

We are interested in the asymptotic distribution, as n tends to infinity, of the real random variable
Sy == n(X,/Y, —E[X;,]/E[Y1,]). The following theorem states the asymptotic behavior of 5,
according to the comparison of V[Y7 ,,] /+/n and E [Y7 ,,] under a multivariate Lyapunov condition. It is
proved in Section 5.9.1.

We show that in some cases |S,| % +oco. It is then impossible to state the limiting distribution S,, in
the traditional sense. Despite that, we can still get a more precise result looking at the subsequent terms
in the asymptotic expansion of S,,. Such an asymptotic expansion is complicated to state, especially in
our sequence-of-model framework, since the distributions Px y,, change with »n without any link from
one to the next. To overcome this problem, we consider equivalents in distribution of S,, in the following
sense. We say that two sequences of random variables S,, and T,, are equivalent in distribution if there
exist a probability space Q and two sequences of random variables S, 7}, such that Vo € N*, S,, < S,
and T, 4 T,, and S, is equivalent to 7,, almost surely as n — oo. This means that for almost every
@ e Q, S, (@) is equivalent to T;, (&) (considered as deterministic sequences of real numbers). This notion
enables to formalize the link between S,, and a simpler expression T,.

Theorem 5.1. Let Assumption 5.1 hold and (i) V[(vx nX1.n, YvnY1.n)] = V asn — oo for some positive
sequences {vx n tnen+ and {vy.}nen+ whereV is a definite positive 2 x 2 matrix,
(ii) sup,,cn- E [|X1,n|37§’<,n + |Y1,n|3713/,n} < +o0, and (iif) P(Y,, =0) — 0 asn — oo.



Chapter 5. On the construction of confidence intervals for ratios of expectations 144

e
Y
al

= 0.1

== 0.25

== 0.5
0.75

I
o
o

—2

c(n,P) (upper bound on the coverage)

0.00 —

0 10,000 20,000 30,000 40,000
Sample size n

Figure 5.2 — ¢(n, P) of the asymptotic Cls based on the delta method as a function of the sample size n.
Specification: Vn € N*, Px.y., = N (1,1) ® N (Cn~° 1), with C = 0.025. The nominal pointwise asymptotic level is
set to 0.95. For each pair (b, n), the coverage is obtained as the mean over 5,000 repetitions.

Denote the signal-to-noise-ratio by SNR,, := E[Y1,,] /(Vy 5 n~ /243 L),
Then, the sequence of random variables S,, := \/n (Yn /Y, —E[X1,]/E [Yl,n]) satisfies as n — oo!

1. If SNR,, — +oc, then S,, is equivalent in distribution to:

\/H'YXJL(Yn —E [Xl,n]) _ \/EVY,n(?n —E [Yl,n])E [Xl,n]
E [Yl,n] TXn E [Yl,n}Q YY,n

2. If there exists a finite constant C' # 0 such that SNR,, — C, then S,, is equivalent in distribution to:

1 1
nIE X n Y - C
nyyRlE [ X, ]<C+\/my7n(Yn—E[Y1,n]) C)

n’YXm(Yn —E[X1.]) X vy

T Ot Vv (@n —EX) % 7

3. If SNR,, — 0, then S,, is equivalent in distribution to:
\/ﬁ (\/FFL’YX,n(Xn *E[Xl,n]) « ’YY,n E[Xl,n]) )

Viryn(Yn —E[Yi,])  Yxn ~ E[Yi.]

Theorem 5.1 can thus be interpreted as a generalization of the result given by the CLT and the delta
method for ratios of expectations. The sequence-of-model framework allows both the expectation and the
variance in the denominator to tend to 0. In particular, this happens whenever Y; ,, follows a Bernoulli
distribution with a parameter p,, tending to 0, as detailed in Example 5.2. For instance, when we estimate
a conditional expectation with a discrete conditioning variable or a conditioning event, the denominator is
an average of indicator variables that follow a Bernoulli distribution. Figure 5.3 and its companion table
highlight the different asymptotic regimes depending on the behaviors of {IE [X1 ] }nen*s {E [Y1,n]}nen+,
{P)’X,n}nGIN* and {’VY,n}nEIN*-

The main takeaway of Theorem 5.1 is that when E [ X, ,,| = Cy /n®, B[V} ,] = Co/n? and V[Y] = Cs/n”
for some constants Cy,C>,C3 # 0,and b < 1/2 + ¥, S,, properly renormalized by n to some power still
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Figure 5.3 — Separation between the different asymptotic regimes as a function of (a,b) for fixed

(a/,') = (0,0), in the case where E [X, ,,] = C;/n%, V[X] = 1/n%, E[Y,] = Ca/n’, and V[Y] = 1/n",
(a,d,b,b) € Ri.

a+b <b+ad a+b =b+a a+b >b+a

b>1/24b pl/2+b'—a’ Wy /Wo pl/2+b —d’ (W1/W2 - Cl/Cz) —n1/2+b7aCl/C2

b=1/2+V | nt-ott <C1/(CQ + W) — C1/CQ) pl/2Ht —a’ (Cl/(C2 +Ws) pl/2Hb —a’ (W1/(02 + Wzn“’))

—C1/Cy + W1 /(Cy + Wzn"/))

b < 1/2 + b ngb_a_b/01W2/CQ2 le—a/(Wl/Cl — 01W2/022) TLb_a/Wl/Cl

Table 5.1 — Limiting law of S,, := \/n (X,,/Y, — E[X1,]/E[Y1,]) in the nine different regimes. The
couple of variables (1, W5) follow the distribution A/(0, V'), where V = lim,,_, 4 oo V [(n“'XLn, nb'YLn)]
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converges in distribution to a Normal random variable. This can be explained using the signal-to-noise
ratio (SNR) defined in Theorem 5.1. Indeed, in this first case, the SNR,, tends to +oo: the signal in the
denominator (that is the expectation of Y ,,) is asymptotically bigger than the noise (which is 1/(yy.,n'/?)
up to a constant factor). Asymptotic inference based on the Normal approximation remains valid, even if
the length of such confidence intervals may not decrease with the sample size n.

In all other cases, when the noise dominates in the denominator, S,, converges weakly to a non-
Gaussian distribution, in some cases to a generalized Cauchy distribution with parameters that depend on
the data generating process (up to a normalization of some power of n). By construction, when the noise
dominates, we do not have much information and thus may not be able to conduct inference in these
settings. This echoes the impossibility results presented in Section 5.5. In the next section, we provide
another method for constructing confidence intervals using the nonparametric percentile bootstrap.

Example 5.2. When Y ,, follows a Bernoulli distribution with parameter p,, in (0,1), we are always in the
first case of Theorem 5.1, meaning that its expectation p,, is always larger than the noise /p,(1 — p,)/n.
This latter formula is obtained by remarking that the standard deviation of Y; ,, is \/pn(1 — p,) so that

= 1/+/pn(1 — p,). However, in order to satisfy the constraint P(Y,, = 0) — 0, we have to impose
that np, — +o0o. Therefore, when p, = n~?, confidence intervals based on the delta method will be
pointwise consistent ifb < 1.

5.3.4 \Validity of the nonparametric bootstrap for sequences of models

In this part, we construct confidence intervals for ratios of expectations using Efron’s percentile bootstrap.
This technique relies on the nonparametric bootstrap resampling scheme that we now recall. We fix a
number B > 0 of bootstrap replications. For a given initial sample (X, ,,,Y; »),¢ =1,...,n, and a given
integer b smaller than B, we define the bootstrapped sample (X f’;?, YL(f’L)) i=1,...,n, which is obtained
by n i.i.d. resampling from the initial sample, i.e. with replacement. Let XEI = n‘1 Yo Xz(brz be the
empirical mean of the numerator in the b-th bootstrapped sample (resp. ?1(11)) for the denominator).

Then, Efron’s percentile bootstrap, also known as the nonparametric percentile bootstrap, consists in
using the quantiles of the bootstrapped distribution conditional on the data to conduct inference. More
precisely, for every 7 € (0,1), let ¢®°°* denote the quantile at level T of Y () /7 ) , which is estimated in

(b)) . For a given

practice by the empirical quantile at level T of the bootstrapped statistics ( /Y —
nominal level 1 — a € (0,1), the confidence interval we consider is deflned as Chost .= [qgf;f;t, q7%% 1)

The following theorem states the consistency of this interval. It is proved in Section 5.9.2.

Theorem 5.2. Let Assumption 5.1 hold and (i) V[(vxnX1,n, Yv,nY1,n)] = V @sn — oo for some positive
sequences {vx n tnen+ and {vy.,}nen+ WhereV is a definite positive 2 x 2 matrix,
(i) Sup,, e~ IE{(VXWXL,L)‘“"S + (7y7,,LY17,L)4+5] < +o0 forsome § > 0, (i) P(Y,, = 0) — 0 asn — oo, and
(iv) ]P(?S) =0)— 0asn — oo.
Denote the signal-to-noise-ratio by SNR,, := T [Y1,,] /(Vy 5 121/ Vom)-

If SNR,, — +oc, then for every a € (0,1), the confidence interval C}°3' is pointwise consistent at
level 1 — a, viz. P(CL% S E[X1,n] /E[Y1,n]) =1 —aasn— occ.

The assumption ]P(Y( )

Y, are continuous or when they follow a Bernoulli distribution with a parameter decreasing to 0 not too
fast (see Example 5.3 below).
Note that the moment condition of order 4 + ¢ is nearly sharp. Indeed, the proofs require the strong

= 0) — 0 is satisfied for a large set of cases, for instance when the variables

law of large numbers for n=!' 327" | X7 andn~' 7" | Y7, . As we are dealing with a triangular array of
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Figure 5.4 — ¢(n, P) of the asymptotic Cls based on the delta method (blue) and of the Cls constructed with Efron’s
percentile bootstrap using 2,000 bootstrap replications (red).

Specification: Vn € N*, Px y,n = N(1,1) @ N(Cn~% 1), with C = 0.1 and b € {0,0.25,0.5,0.75}. The nominal
pointwise asymptotic level is set to 0.95. For each pair (b,n), the coverage is obtained as the mean over 5,000
repetitions.

random variables, Theorem 3.1 of [84] shows that moments of order at least 4 are necessary, even in the
simpler case where the distribution Px y,, does not depend on n.

Example 5.3 (Example 5.2 continued). When Y ,, follows a Bernoulli distribution with parameter p,, =
1/nb for a given b > 0, the condition lP(?f,,l) = 0) — 0 is satisfied when b < 1. We refer the reader to
Section 5.9.3 for a proof of this claim.

In practice, even if the theoretical results of the delta method and of the bootstrap are valid under nearly
the same set of assumptions, we observe in the simulations in Figure 5.4 a gap between their pointwise
coverage.® This fact appears even when Px y,, does not depend on n (i.e. b = 0). Nonetheless, the
coverage gap between these two methods shrinks as n increases provided b < 0.5. In the sequence of
models where the denominator decreases slowly (i.e. b = 0.25) in Figure 5.4, the bootstrap’s coverage is
much higher than the one of the delta method. Therefore, the Cl provided by the nonparametric percentile
bootstrap may be an interesting alternative compared to the delta method when conducting inference
with a given sample. This is all the more so as the mean in the denominator is close to 0 (in Figure 5.4, of
the size of n=0-25/10 for a variance normalized to 1) and the number of observations is moderately large
(a few thousands here).

8 Additional simulations comparing the two types of asymptotic confidence intervals are presented in Section 5.11.7.
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5.4 Construction of nonasymptotic confidence intervals for ratios
of expectations

To construct nonasymptotic confidence intervals, we rely on the possibility to ensure that with large
probability (i) X,, is close to E[X; ,], and (ii) Y,, is both close to E [Y; ,,] and bounded away from 0.
Under Assumptions 5.1 and 5.2, the Bienaymé-Chebyshev inequality can be applied to obtain (i) and (ii).
On the other hand, without further restrictions, we are only able to build nonasymptotic Cls at nominal
levels that are not too close to 1 (see Section 5.4.2).

This limitation does not arise with nonasymptotic confidence intervals for expectations. In that sense,
we can say that building nonasymptotic Cls for ratios of expectations is more demanding. Intuitively,
the extra difficulty of the latter task comes from the need to ensure (ii). To stress that point, we show
in the next subsection that when Y, is bounded away from 0 and positive almost surely, we can build
nonasymptotic Cls at every nominal level.

5.4.1 An easy case: the support of the denominator is well-separated from 0

We present a simple framework in which it is possible to build nonasymptotic Cls, valid for every
n € IN*, and with coverage 1 — « for every « € (0, 1). To do so, we restrict further the set P of admissible
distributions with the following assumption.

Assumption 5.3. For every n € N*, there exists a positive finite constant ay,,, such thatY:, > ayy
almost surely.

Under Assumption 5.3, for every n € N*,Y,, > ay,, > 0 almost surely under every distribution in P and
?;1 is bounded from above. This assumption obviously rules out binary {0, 1} random variables in the
denominator of the ratio, which can be quite restrictive in practice. Under this assumption, the following
theorem gives a concentration inequality for our ratio of expectations. It is proved in Section 5.9.4.

Theorem 5.3. Let Assumptions 5.1, 5.2 and 5.3 hold. For every n € N*, ¢ > 0, we have

X € € y., — 13
sup IPp®n ‘)(n B E [Xl,n] > ( + \/W) + i < UX72n 4 Y,n _ Yn .
PeP Y" B [Yl,n] aY,nlY,n lY,n ne ne

As a consequence, infpep P pon (IE (X1 /EN1,) € [ X0/ Y, £t ) > 1 — «, with the choice

2
Yn
t: + VUX n )

ly_’n no ay n

2
1 UX,n + Uy,n — Zym 1 UX,n + Uy,n — l
no

for every a € (0,1).

The theorem shows that it is possible to construct nonasymptotic Cls for ratios of expectations, with
guaranteed coverage at every confidence level, that are almost surely of bounded length under every
distribution in P characterized by Assumptions 5.1, 5.2 and 5.3. In Section 5.4.2, we give an analogous
result that only requires Assumptions 5.1 and 5.2 to hold, so that it encompasses the case of {0, 1}-valued
denominators. However, the cost to pay will be an upper bound on the achievable coverage of the
confidence intervals.
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5.4.2 General case: no assumption on the support of the denominator

We seek to build nontrivial nonasymptotic Cls under Assumptions 5.1 and 5.2 only. Under Assumption
5.1, E[Y1,,] # 0, so that there is no issue in considering the fraction E [X; ,,] / E [Y7 ,]. However, without
Assumption 5.3, {Y,, = 0} has positive probability in general so that | X, /Y| < +oco with probability
less than one. Note that when Py, is continuous with respect to Lebesgue’s measure, X,/ Y, is finite
with probability one anymore since the event {Y,, = 0} has probability zero. This is not an easier case
from a theoretical point of view though since, without more restrictions, Y,, can still be arbitrarily close
to 0 with positive probability.

Theorem 5.4. Let Assumptions 5.1 and 5.2 hold. For everyn € N*, ¢ > 0,¢ € (0, 1), we have

sup IP ’X" — E [Xl’"}
1:’617)3 pen ?n E [YL"]

((1 /UX n —|—5)§ +E> 1 ) < UXon N Uy,n — l%,’n

(1—-¢)? lyn ) = ne? né%ls

As a consequence, infpep P pen (IE (X1 /EYip) € [ X0/ Y, £ ) > 1 — «, with the choice

1 (\/W—&- 2ux,n/(na)) \/2(UY,n —15,,)/(nals ) N 2ux
_ 2
lY,n (1 — \/2(UY77), - l%’,n)/(nal%’,n)) "

2(“Yﬁn_l%’,n) 9

pJ
nly

for every a > @, :=

This theorem is proved in Section 5.9.5. It states that when ly,, > 0, it is possible to build valid
nonasymptotic Cls with finite length up to the confidence level 1 — @,,. This is a more positive result than
[63] which states that it is not possible to build nontrivial nonasymptotic Cls when Iy ,, is taken equal to
0, no matter the confidence level. Note that Theorem 5.4 is not an impossibility theorem since it only
claims that considering confidence levels smaller than 1 — @, is sufficient to build nontrivial Cls under
Assumptions 5.1 and 5.2. The remaining question is to find out whether it is necessary to focus on
confidence levels that do not exceed a certain threshold under Assumptions 5.1 and 5.2. We answer this
in Section 5.5.1.

Theorem 5.4 has two other interesting consequences: for every confidence level up to 1 — @, a
nonasymptotic interval of the form [X,,/Y,, +¢] with { > ¢ has coverage 1 — « but is unnecessarily
conservative. Moreover, if the data generating process does not depend on n (i.e. in the standard i.i.d.
set-up), the length of the confidence interval shrinks at the optimal rate 1/./n for every fixed «. Note
that the coefficient 2 in the definition of @,, defined above can be reduced to any number w > 1, at the
expense of increasing the length of the confidence interval (this length actually tends to infinity when w
tends to 1).

5.5 Nonasymptotic Cls: impossibility results and practical guide-
lines

In this section, we prove two impossibility results: a maximum confidence level above which it is impos-
sible to build nontrivial nonasymptotic Cls and a necessary lower bound on the length of nonasymptotic
Cls.

9Equivalently, it means that for a given a, the above choice of ¢ is valid for every integer n > T = 2(uy,, — l%/,n)/(al%,n)'
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5.5.1 An upper bound on testable confidence levels

Theorem 5.5. Let P be the class of all distributions satisfying Assumptions 5.1 and 5.2 and «,, :=
(1 -1, /uy,)". Letn € N*, and a random set I,, that satisfies I,, = () whenever Y, = 0. Then
suppep Ppon (I, =0) > a,,.

This theorem is proved in Section 5.9.6. Combining the latter result and Theorem 5.4, we conclude that
there exists some critical level 1 — a¢ belonging to the interval [1 — @,,,1 — a,,] such that it is impossible
to build nontrivial nonasymptotic confidence intervals based on X,,/Y,, if and only if their nominal level
is above 1 — af . It is worth remarking that with a sample of size n, the Cls based on the delta method
with a nominal level 1 — a > 1 — ¢ cannot have coverage 1 — « uniformly over P as such Cls verify
the conditions of Theorem 5.5. Finally remark that when uy.,,/I5.,, = 1, there is no impossibility result
anymore: assume that uy.,, /I3, = 1 and let Q be a distribution on R? that satisfies Assumptions 5.1 and
5.2. Let (X, n,Yin) Hg- Q. We have that V[Y; ,,] = 0, which implies that Y7 ,, = E [Y7,,] almost surely.
Assumption 5.1 further ensures that Y; ,, # 0 almost surely. Consequently, the results of Section 5.4.1
apply and allow us to conclude that under Assumptions 5.1, 5.2 and UY77,/Z§/7,,L = 1, it is possible to build
nontrivial nonasymptotic Cls at every confidence level. Indeed, in that case, we are in fact only estimating

a simple mean, and therefore there is no constraint on a.

Figure 5.5 below shows the critical level and its bounds obtained in our nonasymptotic results.

> O 1 <O <
a=0 =0y, a=af o=y, a=1
Theorem 5.5 ensures Critical level 1 — & under We can construct
that no nontrivial which nontrivial uniform such confidence
confidence interval can confidence intervals of the form intervals using
have uniform coverage 1 — «. [Xn/ Vo + 1] exist. Theorem 5.4.

Figure 5.5 — The critical level and its bounds.

In the same spirit as in Theorem 5.1, we could consider a modified version of the signal-to-noise
ratio defined by SNR,, = lym/(u%,/’fbn‘m). When we have enough information (S/N\ﬁn — +o0), the
critical level 1 — o€ tends to 1. Therefore, for every « € (0, 1), nonasymptotic confidence intervals can be
constructed at every level for n large enough. On the contrary, when S/I\Tﬁn — 0, the critical level 1 — af,
tends to 0, which means that it is impossible to construct uniformly valid Cls for n large enough. Finally,
when S/N\ﬁn — C for a positive constant C, a critical level remains as in the nonasymptotic case since
a,, — exp(—C).

5.5.2 A lower bound on the length of nonasymptotic confidence intervals
The following theorem is an extension of [34][Proposition 6.2] to ratios. It is proved in Section 5.9.7.
Theorem 5.6. For every integern > 7, a € (0,1 A n/(lyn + \/ty,n — l%,n)Q), and ¢ < 1 there exists a

i.4.d
~Y

distribution Q on R? that satisfies Assumptions 5.1 and 5.2 such that for (Xin: Yin)i,

Un
o f\/ 3na) >

Q, we have

P (’ X, E[X14]
Qen ?n E [Yl,n}

2
where vy, == ux n/(ly,;n + /Uy — l%n) .
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With this theorem, we can claim that Cls of the form [X,,/Y,, & t] cannot have uniform coverage 1 — o,
forevery a € (0,1 An/(lyn + \/uyn — l%,ﬁn)Q), under Assumptions 5.1 and 5.2 if they are shorter than
V/vn/(3na). By a careful inspection of the proof (see Lemma 5.8), we can in fact replace the value 3 in
the theorem by any number strictly larger than e = exp(1), at the price of assuming n > n, for ng large
enough. It is interesting to note that the distributions @ that are built in the proof of the theorem are on
the boundary of P in the sense that they satisfy E [X2] = ux ,, E[Y1,n] = ly,, and E [V,Z] = uy .

5.5.3 Practical methods and plug-in estimators

Nonasymptotic confidence intervals and the thresholds @, and 7, based on Theorem 5.4 rely on
Assumptions 5.1 and 5.2. In practice, building such Cls or computing those thresholds require the
knowledge of the constants ly,,, ux , and uy,, that determine the class of distributions we consider.10
Therefore, we need to state some values for those constants. Note that constructing nontrivial and
nonasymptotic Cls that overcome the limitations of having to choose some a priori class of distributions is
not possible. Indeed, we would get back to [14] and [63] type impossibility results.

How to choose ly,,, ux », and uy,, depends on the specific application. Sometimes, stating values can
be sensible if researchers do have control or expert knowledge of the variables. Resuming an example
started in the introduction, if the variable in the denominator is an indicator of being treated in the setting
of a Randomized Controlled Trial, researchers can have intuitions about reasonable values for the lower
and upper bounds of the probability of being treated.

The unknown constants are upper and lower bounds on moments that characterize the class P. As
such, they can never be recovered from the data since observations are by construction drawn from a
single distribution P € P. Under i.i.d. sampling, sample means converge to their corresponding theoretical
moments, provided the latter are finite. Hence, without prior information, a plug-in strategy has to be used
which consists in: (i) using the moments of a single distribution instead of the bounds on the class, (ii)
estimating those moments with their empirical counterparts. As a consequence, this approach is valid
pointwise only and not uniformly over P anymore. Furthermore, it is only asymptotically justified. On the
other hand, for any sample provided Y,, # 0, this plug-in strategy enables us to construct our Cls and the
quantity 7z, (or @,), which can be a useful rule of thumb as explained below. We stick to that principle in
our simulations and application.

For a given level 1 — « and a class of distributions satisfying Assumptions 5.1 and 5.2, n, is the minimal
sample size required to construct our nonasymptotic Cls. In other words, for a sample size n < 71, the
data is not rich enough to construct the nonasymptotic Cls of Theorem 5.4 at this level. Heuristically, the
comparison of 7, and n can be used as a rule of thumb to assess whether the coverage of the Cls based
on the delta method matches their nominal level.'" Several simulations tend to confirm the practical
interest of that rule of thumb as 7, turns out to be very close to the sample size above which the gap
between the coverage of the asymptotic Cls based on the delta method and their nominal level becomes
negligible. (see Section 5.6.1 and Section 5.11).

10Actually, the computation of @,, and 7, only require the knowledge of Iy, and uy.,.
" Equivalently, we could compare @, and «. As a rule of thumb, @,, can be seen as the lowest « (hence the highest nominal
level 1 — «) for which the asymptotic Cls based on the delta method are reliable given the sample size n.
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5.6 Numerical applications

5.6.1 Simulations

This section presents simulations that support the use of 71, or equivalently @,,, as a rule of thumb to
inspect the reliability of the asymptotic confidence intervals from the delta method.

In Figure 5.6, a nominal level 1 — « is fixed and we show the ¢(n, P) of the Cls based on the delta
method as a function of the sample size n, as well as 7, derived in Theorem 5.4. It happens that the
coverage converges toward its nominal level for sample sizes around 7,,, which supports 7, as a rule
of thumb of interest in practice.'? In Figure 5.7, a sample size is fixed and we show the coverage for
different nominal levels, as well as the quantity @,,. It is the converse of Figure 5.6 in that sense. In this
simulation, @,, turns out to fall close to the lowest o (hence highest 1 — «) for which the coverage of the
Cls based on the delta method attains their nominal level.

o
©

o
3

o
=)

c(n,P) (upper bound on the coverage)
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Sample size n
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Figure 5.6 — c(n, P) of the asymptotic Cls based on the delta method as a function of the sample size n and 7.
Specification: Vn € N*, Px y,, = N> (bivariate Gaussian) with E[X] = 0.5, E[Y] = 0.1, V[X] = 1, V[Y] = 2,
Corr(X,Y) = 0.5. The nominal pointwise asymptotic level is set to 0.90. For a sample size n, the coverage is
obtained as the mean over 5,000 repetitions. The dashed vertical line shows 7a := 2 (uy,n — ly,n”) /(d3,,), setting
here a = 0.1, ly,, = E[Y], uy,,» = E[Y]* + V[Y].

All'in all, Figures 5.6 and 5.7 and additional simulations advocate the use of ©,, derived in Theorem 5.4
(or conversely @,,) as a rule of thumb to appraise the dependability of the Cls obtained with the delta
method for ratios of expectations.

5.6.2 Application to real data

We illustrate our methods with an application related to gender wage disparities. The application
resumes our canonical example of conditional expectations since we estimate the proportion of women
within wage brackets that are defined as having a wage higher than a given threshold. We use n =
204,246 observations from the French Labor Survey data between 2010 and 2017.13

2Thjs fact holds across various specifications (see additional simulations in Section 5.11).
8Enquéte Emploi en continu (version FPR) — 2010-2017, INSEE [producteur], ADISP [diffuseur].
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Figure 5.7 — c(n, P) of the asymptotic Cls based on the delta method as a function of the sample size n and @,
Specification: Vn € N*, Px,y,» = N2 (bivariate Gaussian) with E[X] = 0.5, E[Y] = 0.25, V[X] = 2, V[Y] = 1,
Corr(X,Y) = 0.5. The sample size is n = 1,000. For each nominal level 1 — « in the x-axis, we draw 10, 000
samples, compute the asymptotic Cls and see whether it covers or not the ratio of interest; we report the mean
over the 10, 000 repetitions in the y-axis. The solid line is the first bisector y = x. The dashed vertical line shows
Tn =2 (uy,n — ly,n?) /(nly,n?), setting here ly, = B[Y], uy,, = E[Y]> + V[Y].

Let W be a real random variable that indicates the wage of an employee (expressed in euros per month)
and F' an indicator variable equal to 1 if the employee is a woman and 0 otherwise. For a given threshold
wage wo, the parameter of interest is E[F' | W > wy]. It can be written as a ratio of expectations with
X =FI{W >wp} =1{F =1,W > wg} in the numerator and Y = 1{W > wy} in the denominator. As
we consider higher thresholds wg, the expectation in the denominator gets closer to 0. As an illustration,
out of n = 204,246 observations, 355 individuals have monthly wages higher than 10,000 euros (which
corresponds to a mean in the denominator equal to 0.0017); 44 individuals above 20,000 (Y, = 2.2x107%);
and only 17 above 30,000 (Y,, = 8.3 x 107°)."*

For various thresholds wy, Figure 5.8 presents the estimate 6., and two 95%-nominal-level confidence
intervals for the parameter E[F' | W > wy]: the one based on the delta method (see Section 5.3.1) and
the one using Efron’s percentile bootstrap (see Section 5.3.4). With higher thresholds, the expectation in
the denominator is closer to 0 which results in wider confidence intervals. For very high thresholds, the
Cls become hardly informative. In particular, the lower end of the interval based on the delta method is
negative whereas the parameter of interest belongs to [0, 1] by construction.

The dashed vertical line relates to our rule of thumb introduced in Section 5.5.3. More precisely,
given the level 1 — « = 0.95, for each threshold w,, we compute the plug-in counterpart of 7., defined
in Theorem 5.4: 2 (n_l S Y- YZ) /(oz?i). Given that Y is a binary variable, the latter quantity is
increasing with wy and exceeds n at some threshold represented by the dashed vertical line (here a
little above 20,000). Consequently, for higher thresholds, our rule of thumb suggests that the confidence
intervals obtained with the delta method might undercover as the expectation in the denominator is “too
close to 0” relative to the number of observations. Actually, in the application, it is around this vertical
line that the two Cls start to differ. In particular, the upper end of Efron’s percentile confidence interval

4To give a sense of the wage distribution, note that the empirical quantiles of W at orders 90%; 95%; 99%; and 99.99% are
respectively: 2,989; 3,728; 6,000; and 26,024.
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Figure 5.8 — Point estimate and confidence intervals for the parameter E[F | W > wy] as a function of the wage
threshold wo. The parameter is the proportion of women within the wage bracket [wo, +00). The nominal level of
the Cls is set to 95%. Efron’s percentile bootstrap Cls are obtained using 2,000 bootstrap replications. The dashed
vertical line represents the lowest wage threshold such that the plug-in counterpart of 7, exceeds n.

becomes larger than the upper end of the interval based on the delta method.

5.7 Conclusion

This paper studies the construction of confidence intervals for ratios of expectations, which are frequent
parameters of interest in applied econometrics.

The most common method to do so is asymptotic and yields Cls based on the asymptotic normality of
the empirical means that estimate the numerator and the denominator combined with the delta method.
We document on simulations that the coverage of the confidence intervals based on the delta method
may fall short of their nominal level when the expectation in the denominator is close to 0, even with fairly
large sample size.

To further study the reliability of those Cls, we use a sequence-of-model framework, analogous to
what a strand of the weak |V literature does. Indeed, it enables to consider limiting cases, namely here
denominators tending to 0. In the weak IV case, the equivalent is to move closer to a null covariance
between the endogenous regressor and the instrument. At the limit, the coefficient of interest is not
identified. Our problem differs since the parameter is not even defined in the problematic case of a null
denominator. This issue underlies the impossibility type results presented in the paper.

First, in an asymptotic perspective, the possibility of a denominator arbitrarily close to 0 explains why
we need a sufficiently slow rate of convergence of the expectation in the denominator to 0 to conduct
meaningful inference. More precisely, our main asymptotic results basically show that the Cls based on
the delta method are valid, as well as those obtained by Efron’s percentile bootstrap, when this speed
is lower than 1/./n (the standard speed of the CLT). Furthermore, on simulations, Efron’s percentile
bootstrap Cls reach their nominal level sooner (namely for smaller sample sizes) than the Cls based
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on the delta method. It suggests that beyond the sequence-of-model rationalization, when confronted
in practice to a mean in the denominator close to 0 relative to the size of the sample at hand, Efron’s
percentile bootstrap Cls may be more trustworthy than the delta method’s ones.

Obviously, those cases where the coverage of the Cls based on the delta method can be well below
their nominal level do not self-signal to practitioners. This is why the second part of the paper proposes a
rule of thumb to detect those cases and thus assess the dependability of the asymptotic Cls based on
the delta method on finite samples. This index is based on the construction of nonasymptotic confidence
intervals and on impossibility results that stem from the problematic null denominator case.

In substance, even if we bound away from 0 the expectation in the denominator, there remains a partial
impossibility result. Indeed, we show that there exists a critical nominal level above which the coverage of
any nonasymptotic confidence interval that is undefined when Y,, = 0 cannot uniformly attain its target
level. More precisely, we derive explicit upper and lower bounds on this critical level as a function of the
characteristics of the considered class of distributions. Then, the heuristic of our rule of thumb consists
in estimating by plug-in a lower bound on this critical level (or equivalently, for a given level, an upper
bound on the minimal required sample size). The resulting index can thus be computed immediately on
any sample. In addition to its theoretical foundations, various simulations and an application to real data
attest the practical usefulness of this rule of thumb.

This paper can be seen as a first step towards nonasymptotic inference in econometric models where
the issue of close-to-zero denominators arises. Notable examples may include weak IV, Wald ratios, and
difference-in-difference estimands.
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5.8 General definitions about confidence intervals

A standard situation in statistics or econometrics can be modelled as the observation of a sample of
n € N* i.i.d. observations valued in some measurable space (2, B (Z)). The statistical model is therefore
(Z,B(2),P)®" with P some specified set of distributions on (Z, 8 (Z)). For every distribution P € P, let
0(P) be a parameter of interest and the map 6 : P — 6(P) be valued in a metric space (0, d).

We denote by C,, a confidence set for (P). Formally, a confidence set C,, can be defined as a
measurable map from (2,8 (2))®" to the measurable space (Fo L {undefined}, B (Fe) U {undefined}),
where Fgo is the family of all closed subsets of © and B (Fe) is the sigma-algebra generated by
{F € Fo : FN K # (0} for K running through the family of compact subsets of ©.

As the vocabulary may somewhat fluctuate between authors, we define below classical objects to fix
the notations and terminology used in this paper. The goal is to build confidence sets for a targeted
confidence level 1 — « (also termed nominal level of the confidence set). For n € N*, for « € (0, 1), we
say that a confidence set C,, or a sequence of sets (C,,),en+ has:

i. coverage 1 — « over P if: ;IgDIPP@n (€ 50(P)>1—a
ii. sizel— a over P if the inequality is an equality:
grel%IPp@n (Ch,30(P)=1-q.

iii. asymptotic coverage 1 — o pointwise over P if:!®
VP € P, liminf Ppon (Cy 3 0(P)) 21~ a.
n—-+0oo

iv. asymptotic coverage 1 — o uniformly over P if:'6

it it B (€ o
W fh Pren (Cn 5 0P 21 —a

A confidence set with coverage 1 — « but size different from 1 — « over P is said to be conservative
over P'7. We further define a nontrivial confidence set as a confidence set that is almost surely strictly
included in © (whenever it is defined) under every distribution in P. For instance, if 8(P) is the expectation
under P, © = R and P is the set of all distributions that admit a finite expectation, a nontrivial Cl is any ClI
that is almost surely of finite length under every distribution in P. For ratios of expectations, © = R too
and we will use the term almost surely of finite length as a synonym of nontrivial, without stating “under
every distribution in P” when there is no ambiguity as regards the class P considered.

A family of confidence intervals (C o )nen+, ac(0,1) IS Said to be pointwise (resp. uniformly) consistent
if for every a € (0,1), the sequence (C,, o )nen+ has pointwise (resp. uniformly) asymptotic coverage at
level 1 — a.

5.9 Proofs of the results in Sections 5.3, 5.4 and 5.5

5.9.1 Proof of Theorem 5.1

Let GX,n =E [Xl,n]y GY,n =E [Yl,n]- Let hX,n = ﬁ7X7n(Y7l —-E [Xl,n]) and hYm, = \/E’YY,H(?W, -
E[Y1.,]) be the centered and normalized versions of X,, and Y,,. We first rewrite Theorem 5.1 using this
notation.

SRespectively pointwise asymptotic size when the inequality is replaced by an equality.

6Respectively uniform asymptotic size when the inequality is replaced by an equality.

7Similarly, a confidence set is said to be asymptotically conservative pointwise over P (respectively uniformly over P) if property
iii. (resp. property iv.) holds with a strict inequality.
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Theorem 5.7. Let Assumption 5.1 hold. Assume that V[(vxnX1n, 7vnY1,n)] — V for some positive

sequences vx ,, and vy, where V' is a definite positive 2 x 2 matrix, that P(Y,, = 0) — 0, asn — oo and
that
Then the sequence of random variables A,, := X,,/Y ,, — 0x /0y, satisfies asn — cc:

1. Ifn=Y2 = o(yy.0v.), then A, is equivalent to
hxn hyn0x.n
pov/a [ foen vl )
eY,n'yX,n ny,ney)n

2. Ifthere exists a finite constant C # 0 such that \/n~yy 0y, — C asn — oo, then A,, is equivalent to

1 1 hx nYyvn
ne = R M
\/E'YY, X, (C + hY,n C) + (C + hY,n)’YX,n

3. If vy .0y = o(n~1/2), then A, is equivalent to

hX;rL’YY,n 9X7n

hY,nryX,n eY,n

Let us define W, := 1{0y.,, + hy../(v/nyy.n) = 0} and remark that W,, = 1 whenever Y,, = 0. By
assumption P(Y,, = 0) — 0, therefore W, ~dT+ d0. Moreover, by Lyapunov’s central limit theorem
n—-+0oo
applied to

n

1
(hX,na hY,n) = \/ﬁ(g Z(Xi,nfyX,na }/i,n’YY,n) - (IE[X]'YX,na ]E[Y]'YY,TL)),

i=1

using V # 0 and the boundedness of E[| X ,,|*|v% ,, and E[|Y1,n[*]73,,, we obtain (hx n,hy.n) ﬁ

N(0,V). We also obtain (hx ., hyn, W) Z&;ﬁ N(0,V) ® &y by Slutsky’s Lemma. We can therefore
apply Skorokhods’s almost sure representation theorem, see [136, Theorem 2.19]. It means that
there exists a probability space (Q,, P), a sequence of random vectors (hx.,, by, W,,) such that for
every n > 1, (hxn, by, W) 2 (hx.n, hy.n, Wy), and a random vector (fix. o, hy oo, W) following the
distribution A/(0, V') ® & such that (hx .., hy.n, W) 23 (hx .0, Py.co, Wao ), Where the convergence is to
be seen as of a sequence of random vectors defined on (2, 2/, P). Let us define

e 9Y,n + By}n/(\/ﬁ’}/y)n) 0Y,n eY,n + hY,n/(\/ﬁ'YY,n) 9Y,n

X, 0
= on 2N Y,
Yn GY,n

1o Oxa i/ (Vx)  Oxin d Oxn + B/ (Viyxn) _ Oxn

Moreover, we have W,, = 1{fy.,, + hy../(v/nyy.n) = 0} and W, = 0 almost surely. We can define
O ={0eQ:W,(@) —0and IN > 0,Yn > N, hy (@) # 0}.

By the almost sure convergence of (hy.,,, W,,), we get P(Q*) = 1, and for every & € Q*, W,,(©) = 0 and
hy (@) # 0 for every n large enough. This means that for every given & € Q*, and for every n large
enough, 4, is well-defined. In the rest of the proof, we will fix such a @ € Q*, so that all random variables
may be considered as deterministic. By the almost sure representation theorem, this means that the
equivalents and limits that will be obtained will still be valid in law in the original spaces (2,,.
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First case: We have

A _ & . 9X,n _ eX,n + iLX,n/(\/ﬁA/X,n) _ eX,n
" Yn GY,n 0Y,n + hyﬁn/(\/ﬁ’)/y’n) GY,n
HX n T+ ]iLX n/(\/ﬁ'YX n) iLYn ) GX n
=X : S : 0 0 _ X
9Y,n \/ﬁ'yY,neY,n * ((\/E’YY,H Y,YL) ) 9Y,n
*QX,niLY,n iLX,n

\/ﬁvyynﬁf,’n \/ﬁ'YX,nQY,’n ’

as claimed.
Second case: We have

A~ 9X,n+}~lX,n~/(\/ﬁ’YX,n) B Oxn
" O/ (Vrvn) + by /(Vavys)  Cl(Vvvin)

_ VM nOxn Xy /Y0 VI Ynxn
C+ hy_’n C ’

We factorize by 6x , in the latter expression, which completes the proof.
Third case: We have

A _ 9X7n + BXJL/(\/E'VXJL) . eX,n _ GX,n + iLX,n/(\/ﬁ’YX,n) . 9X,n

" 9Y,n + BY}n/(\/ﬁ’YY,n) QYJL (;LY,n + 0(1))/(\/7;7)/,71) 0Y7"
N VNOxX n Yy n hxnYym  Oxon

hY,n BY,n’YX,n oyvn
0 (\/HVX,n 1 > hx nYymn
~UXn = - 0 + = )
Yon Y,n hynVxn

and the result follows from the fact that \/nyx../hy . is negligible compared to 1/6y.,,.

5.9.2 Proof of Theorem 5.2
Forb = 1,2, let hix := viyx,n(Xn — Ox,n) (resp. 1Y), Sy, := (hxn, hy,n) and S = (hQ), B2,

where hg’;)n = \/EVX,H(YS’) — X,,) is the b-th bootstrap replication of hx ,, (resp. hggil).

Lemma 5.4. We have dg/, (Psw ¥ N, V)) as

Xin,Yin)iy’

By the Central Limit Theorem, we have S, % S with S ~ N(0,V) and by Lemma 5.4 (proved

in Section 5.9.2.1) and the triangle inequality, we get dpr (PS
results, Lemma 2.2 in [28] gives us

p .
él’l(XzXz,)Ll’Psn) — 0. Combining both

dou (Pis, 0,50 PE7) 20

Let us define W, := 1{0y., + hy.n/(v/nyy.n) = 0} and remark that W,, = 1 whenever Y,, = 0. By
assumption P(Y,, = 0) — 0, therefore we have W, % 8o. We define also W) := ]l{?ﬁ?} =
n—-+0o0

{Y, + hﬁ’}n/(\/my,n) = 0}, so that WY = 1 whenever ?flb)

Wr(f’) % do holds by assumption. Let Z,, = (S, Wh, Sr(f), él), Sr(ll), Wf)) be a random vector of

= 0. In the same way as previously,

size 9, and let Z be a random vector of size 9 following (Ps ® do)®3.
By Slutsky’s lemma, we have dg;, (Pz, , Pz) — 0 with our new notation. Using Skorokhods’s almost
sure representation theorem [136, Theorem 2.19], there exists a probability space 2T, a sequence of
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random vectors Z; € R and a vector Z+ defined on Q+ such that Z %% 7+, 7, £ Z+ and Z £ Z+.
Let us use the notation
Z5 = (SE W, st Wit st wipt)
D+ 5 (1)+ 2)+ , (2)+
- (hj(,rm h;n’ W;LL’ h’g(,)n ’ hgf,)n ? W7(z1)+’ hg(,)n ’ hY,n ’ W7(12)+)
and Zz* = (Z, zf, Z3),

where S+, SV 5T are random vectors of dimension 2 and Zf,z3$, Z5 are random vectors of

n

dimension 3. We define
Y'n 9X,TL _ QX,n + hX,n/(\/ﬁrYX,n) 9X,n

Y, Oy Oyt hya/(Vave) Oy

o X R (k) X

Y+ /(Vvyw) Y

_ Oxn + e/ (V) + 1Y/ (Vx8) B+ B/ (ViTyxn)
Oy + hyn ) (Vvyn) + B [ (Viyn)  Ovin+ v/ (Viyya)

and respectively their counterparts A+ and A" defined on Q*. The following lemma, proved in
Section 5.9.2.2, ensures the existence of an event of probability 1 on which every quantity is well-defined.

Lemma 5.5. There exists an event Q) C Qt such that P(Q) = 1 and such that for every w € Q, and
for all n large enough, b ,(w) # 0, K} 1F(w) # 0, KL (w) # 0 and A (w), AV (w) and AP (w) are
well-defined.

In the next step, we fix w € Q and let C := lim,_, 4 o Ox nYx.n/0vnYv.n and

On = \/HGY,TL ('YX,n]l{CeR} =+ ’YY,TLQY,H/QX,TLIL{‘C|:+OO}) .
We restrict ourselves to the case n1/2’}/y7n0ym — +o00. Theorem 5.1 therefore yields

~Chy (W) + b (W) +o(1) if C €R

—hi (W) + o(1) else. (5.2)

UnArt(w) = {
Furthermore, the same tools as those used in the proof of Theorem 5.1 plus the fact that 6y, +
hy o W)/ (v/17y.0) ~ Oy, imply
UnAgsz(W)
_ +
(00 + 18, )/ VTx0) o

Vit (O + 1)/ i)

NO’n

1
+ BT (w)
VI (Bvn + 5, @)/ (VArx0))
- 8 n h+ n
~o ( Xim + W l0)/ (0 )) R (w) + . RO (w)
n \/ﬁ"/Y,nG%/A’n Y,n \/E’YX,neY,n X,n .

We can also remark that when 6x ,, + h;)n@.})/(\/ﬁ’}/)(m) ~0x

(5.3)

n

o AP (w) = *Chgf,);r(w) + hE??,T(w) +o(1)ifCeR
" —hF(w) + o(1) else.
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When 0x , + h . (w)/(vVnyxn) = O(hX ,(w)/(v/nyx.n)), we have C = 0 and we find again that
o AP (W) = K (@) + o(1). (5.4)

Let D)} := (—Ch,tn + h% n) L{c1<toc} — My I jC|=+oc} (rESP. D, DY and DP'T), which corre-
sponds to the dominant terms in Equations (5.2), (5.3) and (5.4) above. By construction of Z; and Z,,,
we have Z; “% 77+, so that the continuous mapping theorem ensures that (D D H,fo”) &3
(U1,U2,Us), where for every i € {1,2,3}, we define U;" := (~CZ}, + Z}1) Loy — Z51{101=100)
where Zl.fl (resp. Zj_Q) is the first (resp. second) component of the vector Z;*. Combining the triangle

inequality, Equations (5.2), (5.3) and (5.4), we get

(UHA;, POLS o—,,AgEH) “2 (U, UF, U).

Using the fact that for all n € N (A",Aﬁf),An ) (A+ AL+ Aﬁ?”) , we obtain

n?

(O—nAnaO—nAgll)vo—nAg)) —> (UlJr? U2 7U3 )

n—-+oo

P®

U+) —~0asn — +ooand o, A, —> U;t. Applying Lemma

Therefore, dgr, (P(U A onAD) o A§3>) ,
2.2 of [28], we can conclude that

p
dBL<P A;1>|(xi,n,m,n)?:1’PU?) > 0.

On

The conclusion follows from Lemma 23.3 in [136].

5.9.2.1 Proof of Lemma 5.4

Lett = (tx,ty) € R?, and denote Tin =txvxnXin+tyvyynYinfori=1,...,nand T( its bootstrap
counterpart. Let also Vz, , := t'V[(vx,n X1n, 7v,nY1,n)]t and Vr := t'Vt. We start by showing that for
2 N .
every t € R7, P\/E(T;”—Tn) (Ko Yom)s converges weakly to Pr = A (0, V) almost surely conditionally
on (X, »,Y: ), in the sense of the Lévy criterion for weak convergence, i.e.

. (1) _ a.s.
‘]E {ew\/ﬁ(T” )| (Xz-,n,Y;,n)?_l] — e Vr/2] 25wy e R. (5.5)

To do so, we have to check the steps of the proof of Theorem 23.4 in [136]. We have

E TS) | (Xim,Yin)iy =T, and

E

(12 -7) | (o Ve ] Ly,

The first requirement is to ensure almost sure convergence to 0 of both quantities \Tn —-E [Tl,n]| and
LN T, T - VT‘ Under the assumption that sup,,cn- E [|T17n|4+‘1 < +o0, observe that all the

cond|t|ons of Theorem 2.2 in [84] are satisfied with p = 1. We can thus conclude that |T',, — E [T ,,]| <5 0
and |1 57" T2, —E[T%,]| “* 0. Now using the fact that

Z in T721_VT = Z zn_ Tln

+2|E[Ty 0] (Tn — ETy0])| + [E [T2,] ~ E[T1a)° - Vi,

+|T _E[TlnH
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aswell as |E T3 ,,]| = O(1) and ||V [(vx,nX1,n, YvnY1,n)] — V]| = o(1), to conclude that
Ly, T2, - T, - Vi 2550,
The second requirement is to check the Lindeberg condition for the bootstrap which writes

9 9 1 n
E |:‘T1(,172 1 {‘Tl(,lg’ > 6\/5} | (Xi,7L7)/;,n)?_1:| = E Z |Ti,n|2 1 {‘Ti,n‘z > 6\/5}
i=1

2% 0 Ve>0.

Let M : e — M(e) be some function of e to be defined later that does not depend on n and satisfies
0 < M(e) < +o0 Ve > 0. For such a function, there exists for every e > 0, a n. such that for every n > n.,

1 Z" 9 ) 1 , )

n . ‘ < 72 : i i O

nia Tinl 1 {|Tl’n| - 6\/7;} SN Tin|™ 1 {|Tzn| > M(E)} a.s
By the triangle inequality,

1 n
o 2 [T
s

P1{T > M(9)} <

% é T30l 1 {|Ti,n|2 > M(e)} -E |:|T1,n|2 1 {‘T17n|2 S M(G)H ‘

+E [|T1,n\2 1 {|T17n|2 > M(E)H .

The first term in the upper bound converges to 0 almost surely for every ¢ > 0 under the assumption
SUpP,cn+ B {|T177,,\4+‘1 < +oo thanks to Theorem 2.2 in [84]. The second term in the upper bound can be
bounded with the Cauchy-Schwarz and Markov inequalities

suppce \[E [ITinl'] EITL-
M (e)

E [|T1’n|2 1 {|T1,n

25 M(e)H <

Picking M (e) = ¢ ! sup,,cn+ E [|T17n|4} E [|T1,,]], we get that for every € > 0

. 1 ¢ > >
1 — Tinl” 15T 0" > < .S.
gfifn;‘ nl {| nl e\/ﬁ} € a.s
Letting € go to 0, we see that the Lindeberg condition is satisfied. This entails that (5.5) is satisfied.

Arguments underpinning the Cramer-Wold device are valid as well so that we can claim that for every

t € R?

(B [e57 | (Xin, Vi), | — V2] 2550, (5.6)

where S = v | yx (X, =X ) v (V2 = V)
Let Q2 be the set of probability one on which (5.6) occurs. For every w € €,

P . .
( SSN(Xa i, Yin) T = (X (@), Y, (@))]
neN*

is a sequence of nonrandom probability measures for which all weak convergence criteria are equivalent.
In particular, for every w € €, the validity of the Lévy criterion due to (5.6) ensures that

dp1 (Ps53>|<xz-,n,Yi,nxle:(xi,nw),yi,n(w))y:l’N(OvV)) — o(1).

This is enough to conclude.
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5.9.2.2 Proof of Lemma 5.5

The vector (W,j, £1)+, W,(f”) converges almost surely to (0,0, 0). As a consequence, there exists
an event Q! of probability 1 such that Vw € O, (W,F(w), WiV (w), Wi (w)) = (0,0,0) for n large
enough. As (h;n, h%}f’, h(2)+) converges almost surely to a continuous vector, there exists an event Q2
of probability 1 such that Vw € 02, the components of (hy.,, (w), {17 (w), hi?)F (w)) are all non-zero for n
large enough. We finally define 2 := Q' N 2, which is of probability 1 and satisfies the stated conditions.

O

5.9.3 Proof of Example 5.3

We have
BT, =0) =E[P(7, = 0| (Vi)
:E[IP(Y&) —0,...,Y, ) = 0] (Vi)r 1)]
- E[]P(Yﬁj —0] (Yi,n)?:l)"} = E[(Sn/n))”},

where S, :=>""" (1 —-Y;,) ~ Bin(n,1 — p,). Therefore, for any = > 0,

n

P, =0)=3 (k/n)"P[S, = K]

k=1
[n(1=pa)+a)
< 3 (k/n)"P[Su=k] +P[S, = n(l —p,) +a]
k=1
< <”(15")+x) +P[S, > n(l —pp) + 7]

<(1—pp+z/n)" +P[S, —n(l—p,) >z].
Let S, := (Sn — n(1 — pn))//npu(l — pn) = Op(1) be the renormalized version of S,, and choose

x =n"/np,(1 —p,) fora=(1-15)/3 > 0. Then

IP(?S) =0) < (]- —pn + 1%/ pa(l *pn)/n)n +]P[gn > na]

< exp (nln (1= pu +nv/pa(1 = pa) /0 + olpa)) ) +o(1)

< exp (n(n 22— 4 o(n ")) +0(1)

<e (nl/S b/3=b/2+1/2 _ [ —b+1 o(n—b“)) +o(1)
< exp (nu D5/6 1= 4 o(n"*1)) + o(1)

<exp (—n'"") +o(1) = o(1),

which completes the proof. O

5.9.4 Proof of Theorem 5.3

We fix arbitrary n € N* and e € R%. Combining the triangle inequality, the bound | X, | < |X,, —
E [X1,,] |+ |E[X1,,] | and Assumptions 5.1 to 5.3, we get

1
E [Yl,n}

& _ E [Xl,n] + 1
?n E [Yln] E [Yl,n]

X, — E[X1,]

— 1

n
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< (’yn -E [Xl,n] ! + \/UX,n) |?n - [le,n] | + |Yn -E [Xl,n] ’
- aY,nlY,n lY,n )

Consequently, the event considered in Theorem 5.3 is included in the event

(‘Yn —-E [Xl,n} | + \/UX,’VL> |?n —-E [Yl,n} | + ’yn —-E [Xl,n] ‘

aY,nlY,n lY,n
N (e+ Vixn)e L& (5.7)
aY,nlY,n lY,n

If both |X,, — E[X;,]| and |Y,, — E[Y7,]]| are inferior or equal to ¢, event (5.7) cannot happen. By
contraposition, we obtain:

P (|yn -E [Xl,n] | + \/UX,n) |?n —E [Yl,n] | + |Yn -E [Xl,n} ‘
aY,nlY,n lY’n

_ (et vuxa)e +l€>
Y,n

aY,nlY,n
<P ({|Xn—E[X1,]| >} U{|Yn —EM]|>¢})
<SP (| X0 —E[X1n]|>e) +P(|Yn —EMn]|>¢),

where we use the union bound for the last inequality. The first conclusion follows from using twice
Bienaymé-Chebyshev’s inequality applied to the variables X,, and Y,, and the fact that under Assump-
tions 5.1 and 5.2 and Jensen’s inequality, V [X; ,,] < ux, and V [¥1,] < uy,, — l%,n. The second
conclusion follows from solving (ux . + uy.n — 13.,,)/(ne?) = a.

5.9.5 Proof of Theorem 5.4

We start by introducing and proving an intermediate lemma that is also used to prove Theorem 5.9.
For a random variable U, ¢ > 0, and € € (0, 1) we define the following events:

AV = {|U, - EU]| <}, and Y = {|T, - E[V]| < Z[E[U]|}.

Lemma 5.6. Assume that Assumption 5.1 holds. Then for everyn € N*, e > 0 and ¢ € (0,1), we have

X, E [X1,n] (E[Xin]l+e)é 1
P(’ > (s “)umyl,nn)

<1-P (AN ") +1-TP (AYL") .

7n E [Yl,n}
é

We fix arbitrary n € N*, e > 0 and € € (0,1). By Lemma 5.6, we have

& _ E [qu,n] (‘E [Xl,n] | + 5)
P(‘ > (PR m )
<&

§1—IP(|Yn—IE[X1,nH §5)+1— (\Y —E[Y1,.]|

Yn E [Yl-,n]
| [v3,0] ).

Using Jensen’s inequality and Assumption 5.2, we have |E [X; ]| < (ux.,)'/?, and Assumption 5.1
entails 1/|E [Y1 ,,]| < 1/ly,,. Consequently, we get

o[- S (502 1)

Y, EYi,]
<1- 1P(|Yn ~EBX.]] < a) +1- IP<|7,L —E[Yi)| <&[E[Yi] |).
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Using Bienaymé-Chebyshev’s inequality twice gives the bounds

V[ X1 ,,]
ne2
W [Yl,n}

né2 (E[Y1.,])°

1-P(|X0 - E[Xia]| <¢) <

1- ]P(|?" —E [Yl,n] | < E~‘|]E D/l,n] ’) <

For the numerator, V [X,] = E [X?,,] — (E[X1,,))® < E[X2,] < ux,, using Assumption 5.2. For the
denominator, Assumption 5.1 immediately entails that 1/13.,, is an upper bound on 1/ (I [Y1.,])° and 15
a lower bound on (E [Y; ,])*. Therefore

)

\% D/ln] < E [le,njl - lY n2 < Uy,n — lY,n2
ne2 (E[Yi,])° =~ n&8ly,” = nfly,’

)

where the second inequality uses Assumption 5.2.
Combining the two bounds yields the following upper bound on the probability considered in Theo-

rem 5.4
2
U Uy, — |
X,Qn Y,7i Y,2n 7 (58)
ne nszlY,n

as claimed.
For the second part of Theorem 5.4, for a fixed «, we equalize each of the two terms in (5.8) to «/2
and solve for € and ¢, which yields:

82 _ 2UX,n and 52 _ 2 (UY,n - lY,nQ)

2
no nalx n

The bound @,, comes from the fact that £ needs to be smaller than 1.

5.9.5.1 Proof of Lemma 5.6

We fix arbitrary ¢ > 0 and € € (0, 1). Without loss of generality, we can assume that IE [Y; ,,] > 0 and
E[X;.,] > 0.

First, using the union bound, note that the event AXrn Azﬁ*"’ holds with a probability bigger than
P (Afl'") +P (/12:1’") — 1. Hence, its complement is of probability lower than 1 — P (Af“) +1 -

P (A5).
Second, we show that the event considered in Lemma 5.6 is included in the complement of A2 A?‘”,
which concludes the proof. To do so, we reason by contraposition and do the following computations on

the event AX*™ n AL,
By the triangle inequality, we get
X, E[Xi,]

Y, E [Yl,n]

1
< X, - E[X1.,]|.

— 1
Xn.j_
<| ‘Yn E[Vin]

L1
E[Yi,]

We now bound the first term using the mean value theorem applied to the function f(z) := 1/(z +E [Y1,,])

< |?n - E [Ylyn] |

T (1-82EV,)°
EE Y1 1)

T (1-8)2E Vi)Y

‘ 1 1
?n E [Yl,n]

= |F7 ~B L) - FO)
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where the first inequality uses the following observation: on the event fl?’", alowerboundon |z + E[Y ]|
with z varying between 0 and Y,, — E [Y7 ,,] is (1 — €)|E[Y1,,] |. Therefore, on AXm A A?*",

X0 Bl FED ¢
V. ENLIT T 0-eEW? B
<(E[Xin] |+ X0 —E[X14]]) € +_F

(1-€PE[Y1,] E[Y1,]
(E[X1n]|+e)é £
(1 - 5)2E [YLn] B [Yl,n] ’
where we use the triangle inequality to get the second line. It is indeed the complement of the event

considered in the statement of Lemma 5.6.

5.9.6 Proof of Theorem 5.5

This theorem relies crucially on the following lemma.
Lemma 5.7. For each ¢ in the interval (0, LA (uyn /i3, — 1)) there exists a distribution P,, ¢ € P such
that P (Y, = 0) > an(€), where an(§) == (1 — (1 + &%, [uyn)".

Note that the interval (O, 1A (qu/l%/m — 1)) is not empty since we have assumed Uym/l%/m > 1.
By Lemma 5.7, for every & < 1A (uy,»/I3.,, — 1), there exists a distribution P, ¢ such that P (Y, = 0)
G, (§). Taking the supremum over £, we deduce that

Y]

sup P (?n = O) > sup &, (§) = a,.
P,.cP 3

Using the assumption that I, is undefined whenever Y,, = 0, we deduce that P (I,, unde fined) > a,,.

5.9.6.1 Proof of Lemma 5.7

We consider the following distribution on R

Prty iy o€ 7= (%)Un Jo +% (1 - (Z)l/n> Ofy.-} +% <1 - (;)1/n> Ofyer}s

where ¢ € (0,n) is some constant to be chosen later, y._ := Iy, (1 — v&)/(1 — (¢/n)"/™) and y.y =
lyn(L+VE)/(1 = (¢/n)Y/™). Let Vi, ~ Py, uyncc,. Observe that E[Y;,] = ly, and E [V?2] =
13 ,(14&)/(1 - (¢/n)/™). With the choice

13 !
c=cn::n<1—y’"(1—|—£)> ,

Uy,n

2

we have E [Y;2] = uy,,. Note that C,, , is strictly positive, because 1 — iYT (1+¢&,) is positive. This is
equivalent to uy., /I3, > 1+ &,, which is true by assumption.

Consider now the following product measure on R* defined by P, := 5{%} ®@ Prly oy pené- L€
(Xin, Yin), 19 p.. These random vectors satisfy E [X2] = ux,,, E[Y1,,] = ly,n and E [V.2] = uy .
The next step is to build a lower bound on the event {Y,, = 0}.

The assumption that (X .., Y; )7, "¢ p, and the construction of Pty wypien ¢ IMply that

n Uy,n

2 n
Mmm%ﬁwﬂua)m@-
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5.9.7 Proof of Theorem 5.6

To prove Theorem 5.6, we need the following lemma.
Lemma 5.8. For every integern > 7 and every z € (0,1), z (1 — z/n)" " > /3.

We start using arguments developed in the proof of [34][Proposition 6.2]. We detail those for the sake
of clarity. For every n € N* and n > , /ux . /n, let us define the following distribution on R, which will be
used for the variable in the numerator'®:

Ux n UX,n UX,n
Prjux i = 2n2n2 O—nn}y + (1 - nznz) Ofoy + 2 25{?171}-

This distribution is symmetric, centered and has variance ux ,,. As shown in [34], every i.i.d. sample
(Xi )i, drawn from P, ., ., satisfies

IP(Yng—n):IP(YnZU)Z]P(yn:n)

n n—1
. . UX,n UX n
> Z]P (Xim — n’thjm = O7 Vj 7& Z) = 27,”}2 (1 — 772”2) .
=1

Note further that for every integer n > 2, P (X,, > n) > P (X,, = n) becomes a strict inequality strict
and for every ¢ € (0,1) {|X,.| = n} C {|X.| > &n}. As aresult, if (X ;)7 e Py . for every n >0,

we have

n—1
P (|X,| > &) > "X (1 - “X’") . (5.9)
nn

n2n2

The following steps do not show up in [34] since they are specific to controlling ratios of expectations
and sample averages. For every n € N*, let us define the following distribution on R, which will be used
for the variable in the denominator

1 1
Pnle,'ruuY,n = 55{ly.n—\/uy,n—l§/,n} + §§{lym+ uY.n_l%’,n}.

Let (X0, Vi)t & Py = Poux i © Paty oy, Observe that E[Y: ] = Iy, and E [V2] = uy,.

Furthermore, ]?n| <lyn+ Juyn,— l?n almost surely. This implies that for every n > 0and ¢ € (0,1),

the following holds
(%ol > (tvn + fora - B) en} < {[ 52 > en}

2
For fixed n > 7 and o € <0,1/\n/ (lyyn + 4\ /uyn — l%n) ), we choose n = n(a) = /v, /3na.
Combining the above inclusion with (5.9), and Lemma 5.8 (with the choice © = 3«a), we conclude that
there exists a distribution on R?, namely P,,, that fulfills Assumptions 5.1 and 5.2 such that

S

n
n

~I

?n E [Yiﬂ’b]

<‘Xn E [X1,]

Un,
>E6 ) — ) >a,
¢ 3no > “

which completes the proof.

8The notation & denotes the Dirac distribution.
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5.9.7.1 Proof of Lemma 5.8

Under our assumptions on n and z, In (1 — z/n) is well-defined. Using Taylor-Lagrange formula on the
function [0,z] 5 ¢ — In (1 — t/n) yields:

(-5 = (- 1m(1-2)

for some 7 € (0,1). Using the fact that 21 < 1, z < 1 and ;,1)2, we get that under

1
2(1—7z/n)? = 2(1—

our assumptions (1 — %)"_1 > exp (— (1 + m)) This bound is actually valid for every = € (0, 1)

1
2n(1-n—1)2
whenever n > 3 and larger than 1/3 whenever n > 7.

and every n € N*. The computation of exp (f (1 + ) shows that the latter is larger than 1/4

5.10 Adapted results for “Hoeffding” framework

Assumption 5.4. For every n € N*, there exist finite constants ax ., bx n, ayn, by, @andly, such
that X, ,, (respectively Y1 ,,) lies Px y ,-almost surely in the interval [ax ,,,bx ] (resp. [ay.n,byn]) and
|IE [Yl,n” 2 lY,n-

The support of X, , and Y7, is allowed to change with n, even though in many examples of interest,
the former can be chosen independent from n. Assumptions 5.1 and 5.4 together correspond to the
Hoeffding case because under these two assumptions, we can use the Hoeffding inequality to build
nonasymptotic Cls.

5.10.1 Concentration inequality in an easy case: the support of the denomina-
tor is well-separated from 0

Assumption 5.5. For every n € N*, the lower bound ay, is strictly positive.

Theorem 5.8. Letux., := (bx.n — axn)’ anduy., = (by, — ay.)>. Under Assumptions 5.1, 5.4 and
5.5, we have for everyn € N* and e € R’
+ 6)} )

3

sup P 'Xn E [X1 5]
u n — —
PEI; Pe Y, E I:Y17n}

1
{1 o Gexal Vi
Yn ay n

-4 2ne?
ex Il N
o P UX,n \ Uy,n

As a consequence, inf pcp P pan (IE [Xin]/EY1n] € [ X0/ Y, £ ) > 1 — «, with the following choice

fort:
(ux.n V uy, )21n(4/a) - ax,n|v|bx,n+\/(ux’ Vuy ) In (4/a) ’
2nly ay,n 2n

for every a € (0,1).

The theorem shows that it is possible to construct nonasymptotic Cls for ratios of expectations at
every confidence level that are almost surely bounded. However, it requires the additional Assumption
5.5, that in particular does not allow for binary {0, 1} random variables in the denominator which may
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limit its applicability for various applications. In Section 5.10.2, we give an analogous result that only
requires Assumptions 5.1 and 5.4 to hold, so that it encompasses the case of {0, 1}-valued denominators.
However, the cost to pay will be an upper bound on the achievable coverage of the confidence intervals.

5.10.2 Concentration inequality in the general case

We seek to build nontrivial nonasymptotic Cls under Assumptions 5.1 and 5.4 only. Under Assumption
5.1, E[Y1,] # 0, so that there is no issue in considering the fraction E [X; ,] /E[Y1,,]. However,
without Assumption 5.5, {Y,, = 0} has positive probability in general so that X,, /Y, is well-defined
with probability less than one and undefined else. Note that when Py, is continuous wrt to Lebesgue’s
measure, there is no issue in defining X,,/Y",, anymore since the event {Y,, = 0} has probability zero.
This is not an easier case to establish concentration inequalities though, since without more restrictions,
Y ,, can still be arbitrarily close to 0 with positive probability.

Theorem 5.9. Assume that Assumptions 5.1 and 5.4 hold. For everyn € N*, ¢ > 0,¢ € (0,1), we have

X, E[X 5 1
sup P pon An [ Ln] > (‘aX’n| v |b)f,n| +¢)é +e)—
(1—¢)2 lyn

PeP Yn E D/l,n]
<2 exp(—nazv (X1n))+2 exp(—né?y (Y1),

where v (X1 ) = 2/(bxn — axn)? andy (Y1) = 213,/ (by.n — ayn)®.
As a consequence, infpep P pon (IE (X1 /EYi,] € [ Xn/ Y, £t ) > 1 — «, with the choice

)

. \/ In(4/0) (ax,n|v|bx,n|+¢1n<4/a>/<m<xl,n>>H)1
R A (RN ey T )

ZYn

)

for every a > @, g = 4e™"7(Y1.n) 19

This theorem is proved in Section 5.10.4. It states that when ly,, > 0, it is possible to build valid
nonasymptotic Cls with finite length up to the confidence level 1 — @, x. This is a more positive result
than [63] which claims that it is not possible to build nontrivial nonasymptotic Cls when Iy, is taken
equal to 0, no matter the confidence level. Note that Theorem 5.9 is not an impossibility theorem since it
only claims that considering confidence levels smaller than 1 — @, z is sufficient to build nontrivial Cls
under Assumptions 5.1 and 5.4. The remaining question is to find out whether it is necessary to focus on
confidence levels that do not exceed a certain threshold under Assumptions 5.1 and 5.4. We answer this
in Section 5.10.3.

Theorem 5.9 has two other interesting consequences: for every confidence level up to 1 — @, i, a
nonasymptotic Cl of the form [Yn/?n iﬂ with £ > ¢ has good coverage but is too conservative. What is
more, if the DGP does not depend on n (i.e in the standard i.i.d. set-up), for every fixed o > @, i, the
length of the confidence interval shrinks at the optimal rate 1//n.

5.10.3 An upper bound on testable confidence levels

Theorem 5.10. For every n € N*, and every o € (0,c,, ;1) , where o, = (1 — ly,n/(byn — ayn))",
if (by,n, —ay,n)/ly,n, > 1, there is no finite t > 0 such that [Yn /Y, £ t] has coverage 1 — o over Py, where
Pu is the class of all distributions satisfying Assumptions 5.1 and 5.4 for a fixed lower bound ly,, and
fixed lengths bx , — ax n, and by, — ay .

19Equivalently, it means that for a given level a, the choice of ¢ is valid for every integer n > 7o i := In(4/a) /v (Yi,n).
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This theorem asserts that confidence intervals of the form Wn/Yn + t} with coverage higher than
1 —a,, ; under Assumptions 5.1 and 5.4 are not defined (or are of infinite length) with positive probability
for at least one distribution in Py . The additional restriction (by,, —ay,»)/ly,» > 1 is rather mild in practice:
it is equivalent to by, — ay,, > ly, and is satisfied as soon as ay,, < 0 and by, > ly,, > 0. This
encompasses all DGPs where the denominator is {0, 1}-valued and the probability that the denominator
equals 1 is bounded from below by Iy, € (0,1).

Note that for Theorems 5.8 and 5.9, it is required to know not only the length bx ,, — ax ., but also the
actual endpoints of the support, ax ,, and bx ,. On the contrary, Theorem 5.10 does not require the latter.
In that respect, the class of Theorem 5.10 is larger than the one of the two preceding theorems.

5.10.4 Proof of Theorems 5.8 and 5.9

The proofs are identical to those of Theorems 5.3 and 5.4, except for the Bienaymé-Chebyshev inequal-
ity that has to be replaced with the Hoeffding inequality. The latter can be used under Assumption 5.4.
Note also that IE [ X} ,,] is now bounded by |ax |V |bx |-

5.10.5 Proof of Theorem 5.10

We need the subsequent lemma.

Lemma 5.9. Foreach¢ in the interval (0, IA((byn—ayn)/ly,n— 1)) there exists a distribution P,, ¢ € Pg
such that P (Y, = 0) > &, (£), where a1 (€) == (1 — (1+ &lyn/(bym — ayn))"

Note that the interval (0, 1A ((by,n —ayn)/lyn — 1)) is not empty since we have assumed (by,, —
ayn)/lyn > 1.

By Lemma 5.9, for every & < 1A ((by,n — ay,n)/ly,n — 1), there exists a distribution P, ¢ € Py satisfying
Assumptions 5.1 and 5.4 such that P (?n = O) > &y, (§)- Denote its marginal distributions by Py ,, ¢
and Py, ¢. Therefore, P, ¢ satisfies Assumptions 5.1 and 5.4, and X,,/Y,, is undefined with probability
greater than &, i (§). Taking the supremum over &, we deduce that

sup P (?n = O) > sup @, (€) = Q, g
P,.€Py 13
This means that the random interval I} := WH/VH + t] cannot have coverage higher than 1 —a,,  since
it may be undefined with a probability higher than o, .

5.10.5.1 Proof of Lemma 5.9

We consider the following distribution on R

o= () oo+ 5 (1= ()" Yo o5 (1= ()" B

where ¢ € (0,n) is some constant to be chosen later, y. := ly,,(1 — &)/(1 — (¢/n)/") and y., =
lyn(L4+€)/(1 = (¢/n)Y/™). Let Yy, ~ Poiy., ce.- Observe that E Yy ,] = ly,,. With the choice

c:cn::n<1—ly’n(1+§)> ,
bY,n

— ay,n

)
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we have y.4+ = by, — ay,». Note that C,, ,, is strictly positive, because 1 — bylyin (1+&,)>0. Thisis

n—aY,n

equivalent to by, — ay.n/ly,n > 1+ &,, which is true by assumption.

Consider now the following product measure on R* defined by P, := (0.50;y + 0.50(bx —ax.}) @
Poiycne Lot (Xin, Yin)ie, "' p,. These random vectors satisfy E [Y1,,] = ly,n, (max —min)[Y7 ,,] =
by, — ay, and (max —min)[X; ,| = bx , —ax,. The next step is to build a lower bound on the event

(Y. =0}

The assumption that (X; »,Y; )" "¢ P, and the construction of Pty cn.e iMply that

- cn Ly n "
P(Fa=0) === (1 149) —ann(©)

5.11 Additional simulations

This section complements the simulations presented in the main body of the article using different
distributions for the variables in the numerator and in the denominator.

In this setting of simulations, we use the best bounds by setting the constants [y, and uy,,, that define
our class of distributions equal to the actual corresponding moments (respectively the expectation for Iy,
and the second moment for uy,,). That is we use n, = 2V[Y]/(aE[Y]?) or @, = 2V[Y]/(rE[Y]?). In
practice, our rule-of-thumb uses the plug-in version of those quantities replacing the theoretical unknown
moments by their empirical counterparts as explained in Section 5.5.3.

The following Figures are similar to Figures 5.6 and 5.7. They show the ¢(n, P) of the asymp-
totic Cls based on the delta method as a function of the sample size n and also reports 7, =
2 (uy,n — lyn”) / (ed%.,,), with « chosen according to the desired nominal level (equal to 1 — a) and
lyn = E[Y], uy,, = E[Y]* + V[Y]. Consequently, the titles of the figures only indicate the specification
used for Px y ., the nominal pointwise asymptotic level 1 — «, and the number of repetitions used to
approximate the probability c(n, P).

With discrete distributions for the variable in the denominator, it may happen that Y,, = 0, all the more
so as the expectation and the sample size are low typically. As discussed at the end of Section 5.2,
confidence intervals are said to be undefined when Y, = 0. In such cases, for any value a € R, it is
undefined whether a belongs or not to the Cls. Consequently, whenever the sample drawn is such
that Y,, = 0 in the simulations, we count the draw as a no coverage occurrence in the Monte Carlo
estimation of ¢(n, P). In other words, this quantity is approximated as an average over M repetitions and
the repetitions for which Y/, = 0 account for 0 in this average.?®
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¢(n,P) (upper bound on the coverage)

0 5,000 10,000 15,000 20,000
Sample size n

Figure 5.9 — Specification: ¥n € N*, Px,y» = N (1,1) ® N(0.05,1); 1 — a = 0.95; 5,000 repetitions used.

5.11.1 Gaussian distributions

c(n,P) (upper bound on the coverage)

0 250 500 750
Sample size n

Figure 5.10 — Specification: Vn € N*, Px vy, = N (1,1) ® N(0.25,1); 1 — a = 0.95; 5,000 repetitions used.

5.11.2 Student distributions

The specification here is two Student distributions, both in the numerator and in the denominator.
Standard Student distributions are centered. We use therefore translated versions by simply adding the
expectations in order to avoid a null denominator for the ratio of expectations of interest. Below, 7 (u, v)
denotes the distribution of a translated standard Student variable: 1 + 7" where T' is distributed according
to a Student distribution with v degrees of freedom. To satisfy Assumption 5.1, we need finite variance:
we use degrees of freedom strictly higher than 2 for this purpose.

5.11.3 Exponential distributions

The specification here is two exponential distributions, both in the numerator and in the denominator.
The case of the exponential is specific as a unique parameter determines both the expectation and the
variance of the distribution.

20Note that in some specifications, a substantial part of the repetitions yield Y,, = 0. For instance, with Bernoulli distributions,
for n smaller than 10 and the expectation at the denominator equal to 0.01, around 10% only of the repetitions display Y, # 0.
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0.93

0.89

c(n,P) (upper bound on the coverage)
e

Sample size n

Figure 5.11 — Specification: Vn € N*, Px vy, = N (1,1) ® N(0.75,1); 1 — a = 0.95; 5,000 repetitions used.

3
©
N

c(n,P) (upper bound on the coverage)
o o
8 &

0.91

0 500 1,000 1,500
Sample size n
Figure 5.12 — Specification: Vn € N*, Px y,, = N> bivariate Gaussian with E[X] = 0.5, E[Y] = 0.5, V[X] = 2,
VY] =1, Corr(X,Y) = —0.3; 1 — o = 0.99; 5,000 repetitions used.

More precisely, the variance is equal to the square of the expectation. Consequently, whatever the
parameter of the exponential distribution in the denominator, we have 7, = 4/a. Previous simulations
suggest that the closer the expectation in the denominator to 0, the larger the sample size required
for the asymptotic approximation to hold. At first sight, we might thus be worried for the usefulness of
our rule-of-thumb to obtain 7,, independent of E[Y]. Yet, with exponential distributions, the lower the
expectation, the lower is the variance too. Intuitively, the lower variance will compensate having an
expectation closer to 0. The previous statement that links the closeness to 0 of the expectation in the
denominator and the sample size required to reach the asymptotic approximation presupposes keeping
fixed the variance. It cannot be anymore for exponential distributions.

The simulations reveal that the convergence of the coverage of the asymptotic confidence intervals
toward their nominal level happens for n around one hundred fifty and has the same pattern whatever the
expectation of the exponential distribution in the denominator. Our rule-of-thumb 72, appears to be a bit
small. Nonetheless, it is coherent that it is constant across the value of E[Y].
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1.0

0.9

0.8

c(n,P) (upper bound on the coverage)

0.6

0.6 0.7 0.8 0.9 1.0
Nominal level (1 - alpha)

Figure 5.13 — Specification: Vn € N*, Px y,, = N(1,1) @ N(0.1,1); n = 2,000; 5,000 repetitions used.
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c(n,P) (upper bound on the coverage)

0 250 500 750
Sample size n

Figure 5.14 — Specification: Vn € N*, Px,y,, = 7(0.5,3) ® 7(0.5,3); 1 — o = 0.95; 5,000 repetitions used.

5.11.4 Pareto distributions

The specification here is two Pareto distributions, both in the numerator and in the denominator. Pareto
distributions have support in R* . They would fall in the easier case when the support of the denominator
is well separated from 0. To assess the dependability of our rule-of-thumb in the general case, we use
translated Pareto distributions. In what follows, the notation Pareto(IEE[Y], 7,~) denotes the distribution
of a random variable that follows a Pareto distribution with shape parameter equal to ~ translated
such that its support is (7, +00) and its expectation is E[Y]. A variable that is distributed according to
Pareto(E[Y], ,7) is equal in distribution to P + (E[Y] —~ty)/(v — 1) with ty = (E[Y] —7) x (y—1) and
P a usual Pareto distribution with support or scale parameter ty and shape parameter v, that is P has
the density = — 1{z > ty } x vtJ./27*! with respect to Lebesgue measure.

5.11.5 Bernoulli distributions

Figure 5.20 is the equivalent of Figure 5.1 with Bernoulli distributions. The following graphs illustrate the
use of 71, to appraise the reliability of the asymptotic confidence based on the delta method. In practice a
plug-in strategy has to be used to compute 7., and, in the setting of simulations, we simply use the known
moments and bounds of the DGP used in the simulation. With two Bernoulli variables in the numerator
and the denominator, we are both in the BC and the “Hoeffding” cases. Thus, we show both the one
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0.85

0.75

c(n,P) (upper bound on the coverage)

0.65

0 1,000 2,000 3,000
Sample size n

Figure 5.15 — Specification: Vn € IN*, the marginal distributions of X and Y are 7(1,3) and 7(0.25, 3) respectively
and are simulated using a Gaussian copula to have Corr(X,Y) =~ 0.5.; 1 — a = 0.95; 5,000 repetitions used.

c(n,P) (upper bound on the coverage)

0 50 100 150 200
Sample size n

Figure 5.16 — Specification: ¥n € N*, Pxy,, = £ ® £ with E[X] =1 and E[Y] =0.01; 1 — a = 0.95; 5,000
repetitions used.

obtained in the BC case M, := 2 (uy,n — lyn”) / (al3.,,) with a dashed vertical line (Theorem 5.4) and
the one obtained in the “Hoeffding” case 7, n := In(4/a)/v(Y1.,), setting here ay,, = 0, by, = 1 and
ly,, = E[Y], with a dotted vertical line (Theorem 5.9).
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Figure 5.17 — Specification: Vn € IN*, the marginal distributions of X and Y are two exponentials with IE[X] = 1 and
E[Y] = 0.5 and are simulated using a Gaussian copula to have Corr(X,Y) ~ 0.75.; 1 — a = 0.95; 5,000 repetitions
used.
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Figure 5.18 — Specification: Vn € N*, Px,y,n, = Pareto(l,—1.5,5) ® Pareto(E[Y], —1.5,5), with E[Y] = 0.5;
1 — a = 0.95; 5,000 repetitions used.
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Figure 5.21 — Specification: Vn € N*, Px.y,, = B(0.5) ® B(0.25); 1 — a = 0.95; 5,000 repetitions used.
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Figure 5.19 — Specification: Vn € N*, Px,y,, = Pareto(l,—1.5,5) ® Pareto(E[Y], —1.5,5), with E[Y] = 0.1;
1 — a = 0.95; 5,000 repetitions used.
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Figure 5.20 — ¢(n, P) of the Cls based on the delta method as a function of n.
Specification: Vn € N*, Px v,» = B(0.5) ® B(E[Y]). The nominal pointwise asymptotic level is set to 0.95. 10,000
repetitions used.
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Figure 5.22 — Specification: Vn € N*, Px.y,, = B(0.5) ® B(0.1); 1 — o = 0.95; 5,000 repetitions used.
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5.11.6 Poisson distributions

The specification here considers two variables distributed according to a Poisson distribution, both in
the numerator and in the denominator.

o
©
o

¢(n,P) (upper bound on the coverage)
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o
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o

0 100 200 300 400 500
Sample size n

Figure 5.23 — Specification: ¥n € N*, Px y,, = Poisson(0.5,2) ® Poisson(0.5,2); 1 — o = 0.95; 5,000 repetitions
used.
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Figure 5.24 — Specification: Vn € IN*, the marginal distributions of X and Y are respectively Poisson(0.5,2) and
Poisson(0.1,1) and are simulated using a Gaussian copula to have Corr(X,Y) ~ 0.6; 1 —a = 0.9; 5,000 repetitions
used.

A Poisson distribution is entirely defined by its positive real parameter, which is equal to both its
expectation and its variance. Consequently, to have denominator close to 0, we would need small
variance too, as in the exponential specification (see Section 5.11.3). In order to disentangle expectation
and variance, we use below translated Poisson variables. More precisely, the notation Poisson(u, o?),
1 € R, 02 € R*, denotes a distribution alike to a Poisson, with parameter and variance equal to o2 but
translated such that its expectation is x. That is a variable distributed according to Poisson(u,0?) is
equal in distribution to P + (1 — o?) with P a standard Poisson distribution with parameter o2 - that is
with density with respect to the counting measure equal to (¢2)* exp(—o?)/(k!) for every k € N. Thus, a
Poisson(u, 0?) has expectation y and variance o2.
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5.11.7 Delta method and nonparametric percentile bootstrap confidence inter-
vals

The two following figures are the equivalent to Figure 5.4 with different values of C. They illustrate
that the lower C, the lower the signal-to-noise ratio in the denominator, hence the more difficult in some
sense is the estimation of 6,,. This is illustrated by the fact that, all other things equal, larger C basically
translates c¢(n, P) upward as revealed by the series of Figures 5.4, 5.25, and 5.26.

These three figures all report the ¢(n, P) of the Cls based on the delta method (in blue) and of the Cls
constructed with Efron’s non parametric bootstrap using 2,000 bootstrap replications (in red) with the
specification Vn € N*, Py y.,, = N(1,1) ® N(Cn~",1), with b € {0,0.25,0.5,0.75}. For the three of them,
the nominal pointwise asymptotic level is set to 0.95 and for each pair (b, n), the coverage is obtained as
the mean over 5,000 repetitions.
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Figure 5.25 — delta method in blue; Efron’s percentile bootstrap in red; C' = 0.2.
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Figure 5.26 — delta method in blue; Efron’s percentile bootstrap in red; C' = 0.3.
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Chapter 6

Fuzzy Differences-in-Differences with
Stata

Abstract

Differences-in-differences (DID) is a method to evaluate the effect of a treatment. In its basic
version, a “control group” is untreated at two dates, whereas a “treatment group” becomes fully
treated at the second date. However, in many applications of this method, the treatment rate only
increases more in the treatment group. In such fuzzy designs, [53] propose various estimands
that identify local average and quantile treatment effects under different assumptions. They also
propose estimands that can be used in applications with a non-binary treatment, multiple periods
and groups and covariates. This paper presents the Stata command fuzzydid, which computes
the various corresponding estimators. We illustrate the use of the command by revisiting [76].

Keywords: differences-in-differences, fuzzy designs, local average treatment effects, local quan-
tile treatment effects.

Based on [58] : de Chaisemartin, C., D’Haultfceuille, X. & Guyonvarch Y., Fuzzy Differences-in-
Differences with Stata.

6.1 Introduction

Differences-in-differences (DID) is a method to evaluate the effect of a treatment when experimental
data are not available. In its basic version, a “control group” is untreated at two dates, whereas a
“treatment group” becomes fully treated at the second date. However, in many applications of the DID
method the treatment rate increases more in some groups than in others, but there is no group that goes
from fully untreated to fully treated, and there is also no group that remains fully untreated. In such fuzzy
designs, a popular estimator of treatment effects is the DID of the outcome divided by the DID of the
treatment, the so-called Wald-DID.

As shown by [53], the Wald-DID identifies a local average treatment effect (LATE) if two assumptions
on treatment effects are satisfied. First, the effect of the treatment should not vary over time. Second,
when the treatment increases both in the treatment and in the control group, treatment effects should
be equal in these two groups. [53] also propose two alternative estimands of the same LATE. These
estimands do not rely on any assumption on treatment effects, and they can be used when the share of
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treated units is stable in the control group. The first one, the time-corrected Wald ratio (Wald-TC), relies
on common trends assumptions within subgroups of units sharing the same treatment at the first date.
The second one, the changes-in-changes Wald ratio (Wald-CIC), generalizes the changes-in-changes
estimand introduced by [12] to fuzzy designs. Finally, under the same assumptions as those used for the
Wald-CIC, local quantile treatment effects (LQTE) are also identified.

In this paper, we describe the fuzzydid Stata command, which computes the estimators corresponding
to these estimands and performs inference on the LATE and LQTE using the bootstrap. In the computation
of standard errors and confidence intervals, clustering along one dimension can be allowed for. Equality
tests between the Wald-DID, Wald-TC, and Wald-CIC and placebo tests can also be performed. This
turns out to be important for choosing between these different estimands, as they identify the LATE under
different sets of assumptions.

The identification results mentioned above hold with a control group where the share of treated
units does not change over time, a binary treatment, no covariates, and two groups and two periods.
Nonetheless, they can be extended in several directions. First, under the same assumptions as those
underlying the Wald-TC estimand, the LATE of treatment group switchers can be bounded when the
share of treated units changes over time in the control group. Second, non-binary treatments can be
easily handled by just modifying the parameter of interest. Third, when the assumptions are more credible
conditional on some controls, it is possible to modify the Wald-DID, Wald-TC, and Wald-CIC estimands to
incorporate such controls. The fuzzydid command handles all these extensions.

Finally, results can be extended to applications with multiple periods and groups. Those are very
prevalent in applied work, and researchers then estimate treatment effects through linear regressions
including time and group fixed effects. [52] show that around 19% of all empirical papers published by the
American Economic Review between 2010 and 2012 make use of this research design. This paper also
shows that these regressions are extensions of the Wald-DID to multiple periods and groups, and that
they identify weighted averages of LATE, with possibly many negative weights.! As a result, they do not
satisfy the no-sign reversal property: the coefficient of the treatment variable in those regressions may be
negative even if the treatment effect is positive for every unit in the population. On the other hand, the
Wald-DID, Wald-TC, and Wald-CIC estimands can be extended to applications with multiple groups and
periods, and they then identify a LATE under the same assumptions as in the two groups and two periods
case. Again, the fuzzydid command computes the corresponding estimators.

The remainder of the paper is organized as follows. Section 6.2 presents the estimands and estimators
considerered by [53] in the simplest set-up with two groups and periods, a binary treatment and no
covariates. Section 6.3 discusses the various extensions covered by the command. Section 6.4 presents
the fuzzydid Stata command. Section 6.5 illustrates the command by revisiting [76], who estimate the
effect of newspapers on electoral participation. Section 6.6 presents the finite sample performances of
the various estimators through Monte Carlo simulations. Section 6.7 concludes.

A Stata command computing these weights is available on the authors’ webpages.
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6.2 Set-up

6.2.1 Parameters of interest, assumptions, and estimands

We seek to identify the effect of a treatment D on some outcome. In this section, we assume that D
is binary.2 Y (1) and Y (0) denote the two potential outcomes of the same individual with and without
treatment, while Y = Y'(D) denotes the observed outcome. We assume the data can be divided into
time periods represented by a random variable T € {0, ..., t}, and into groups represented by a random
variable G € {0, ...,g}. We start by considering the simple case where ¢ = g = 1, thus implying that there
are two groups and two periods. In such a case, G = 1 (resp. G = 0) for units in the treatment (resp.
control) group.

We use the following notation hereafter. For any random variable R, Supp(R) denotes its support. Ry
and Ry, are two other random variables such that Ry, ~ R|G = g, T =t and Ry ~ R|D = d,G =
g,T = t, where ~ denotes equality in distribution. For any event or random variable A, Fr and Fgr|4
denote respectively the cumulative distribution function (cdf) of R and its cdf conditional on A. Finally, for
any increasing function F' on the real line, we let F~'(g) = inf {x € R: F(z) > ¢}. In particular, F' is
the quantile function of R.

We maintain Assumptions 6.1-6.3 below in most of the paper.

Assumption 6.1. (Fuzzy design)
E(Dll) > E(DIO): andE(D11> — E(Dlo) > E(D()l) — E(Doo)

Assumption 6.2. (Stable percentage of treated units in the control group)
For all d € Supp(D), P(Dg1 = d) = P(Dgg = d) € (0,1).

Assumption 6.3. (Treatment participation equation)
There exist D(0), ..., D(t) such that D = D(T), D(t) 1L TG (t € {0, ...,t}) and for all t € {1, ...,t},

P(D(t) > D(t—1)|G) =1 or P(D(t) < D(t — 1)|G) = 1.

In standard “sharp” designs, we have D = G x T, meaning that only observations in the treatment
group and in period 1 get treated. With Assumption 6.1, we consider instead “fuzzy” settings where
D # G x T in general, but where the treatment group experiences a higher increase of its treatment
rate between period 0 and 1. Assumption 6.2 requires that the treatment rate remain constant in the
control group, and be strictly included between 0 and 1. This assumption is testable. Assumption 6.3 is
equivalent to the latent index model D = 1{V > vgr} (with V' 1L T'|G) considered in [53]. In repeated
cross sections, D(t) denotes the treatment status of a unit at period ¢, and only D = D(T') is observed.
In single cross sections where cohort of birth plays the role of time, D(¢) denotes instead the potential
treatment of a unit had she been born at T' = ¢. Here again, only D = D(T) is observed.

We consider the subpopulation S = {D(0) < D(1),G = 1}, called hereafter the treatment group
switchers. Our parameters of interest are their Local Average Treatment Effect (LATE) and Local Quantile
Treatment Effects (LQTE), which are respectively defined by

A E(Y(1)—Y(0)S,T=1),

—1 —1
Tq = Fy(1)|s7T:1(Q) - Fy(o)|s7T:1(Q)7 q € (0,1).

2We still define our assumptions and estimands for any scalar treatment, to avoid redefining them when we will extend our
results to non-binary treatments.
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We now introduce the main estimands considered in [53]. We start by considering the three estimands
of A. The first is the Wald-DID defined by

E(Y11) — E(Yio) — (E(Yo1) — E(Yoo))
E(D11) — E(D1o) — (E(Do1) — E(Doo))

Wprp =

Wpip is the coefficient of D in a 2SLS regression of Y on D with G and T as included instruments, and
G x T as the excluded instrument.
The second estimand of A is the time-corrected Wald ratio (Wald-TC) defined by

Wre = :
To E(D1,) — E(D1o)

where §; = E(Ya01) — E(Ya00), for d € Supp(D). Without the 6p,, term, Wz would correspond to the
coefficient of D in a 2SLS regression of Y on D using T as the excluded instrument, within the treatment
group. do (resp. d;) measures the evolution of the outcome among untreated (resp. treated) units in
the control group. Under the assumption that these evolutions are the same in the two groups (see
Assumption 6.4’ below), the dp,, term accounts for the effect of time on the outcome in the treatment
group.

The third estimand of A is the change-in-change Wald ratio (Wald-CIC) defined by

E(Y11) — E(Qp,,(Y10))
E(D11) — E(Dyo)

Were =

where Q,(y) = F;d}n o Fy,,, (y) is the quantile-quantile transform of ¥ from period 0 to 1 in the control
group conditional on D = d. W is similar to Wr¢, except that it accounts for the effect of time on the
outcome through the quantile-quantile transform instead of the additive term o, .

Finally, we consider an estimand of 7. Let

P(Dll = d)FYdu - P(Dlo = d)FQd(de)
P(Dy1 =d) — P(D1g =d)

Ferca =

and
0100 = Forea (@) = Foleo(a)-

The estimands above identify A or 7, under combinations of the following assumptions.

Assumption 6.4. (Common trends)
Forallt € {1,...,t}, E(Y(0)|G,T =t) — E(Y(0)|G,T =t — 1) does not depend on G.

Assumption 6.4. (Conditional common trends)
Foralld € Supp(D) andallt € {1, ...,t}, E(Y(d)|G,T =t,D(t—1) =d)—E(Y(d)|G, T =t—1,D(t—1) =
d) does not depend on G.

Assumption 6.5. (Stable treatment effect over time)
Foralld € Supp(D) andallt € {1,...,t}, E(Y(d)-Y (0)|G, T =t,D(t—1) =d) = E(Y(d)-Y(0)|G,T =
t—1,D(t—1)=d).

Assumption 6.6. (Monotonicity and time invariance of unobservables)
Y (d) = hqg(Uy,T), withU, € R and hy(u,t) strictly increasing in w for all (d,t) € Supp(D) x Supp(T).
Moreover, U, 1L TG, D(0).

Assumption 6.7. (Data restrictions)

1. Supp(Yag) = Supp(Y') = [y, 7] with —co <y <7 < +o0, for (d, g, t) € Supp((D, G, T)).
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2. Fy,,, Is continuous on R and strictly increasing on Supp(Y'), for (d, g,t) € Supp((D,G,T)).

Assumption 6.4 is the usual common trends condition, under which the DID estimand identifies the
average treatment effect on the treated in sharp designs where D = G x T. Assumption 6.4’ is a
conditional version of this common trend condition, which requires that the mean of Y (0) (resp. Y (1))
among untreated (resp. treated) units at period 0 follow the same evolution in both groups. Assumption
6.5 requires that in each group, the average treatment effect among units treated in period 0 remain
stable between periods 0 and 1. Assumption 6.6 requires that potential outcomes be strictly increasing
functions of a scalar and stationary unobserved term, as in [12]. Assumption 6.7 is a testable restriction
on the distribution of Y that is necessary only for the Wald-CIC and 7, ¢;¢ estimands.

Theorem 6.1. [53] Suppose that Assumptions 6.1-6.3 hold.
1. If Assumptions 6.4 and 6.5 also hold, then Wprp = A.
2. If Assumptions 6.4 ° also hold, then Wrc = A.
3. If Assumptions 6.6-6.7 also hold, then Werc = A and 7 cro = 4.

Theorem 6.1 gives several sets of conditions under which we can identify A, using one of the three
estimands above. It also shows that 7, can be identified under the same conditions as those under which
the Wald-CIC identifies A. Compared to the Wald-DID, the Wald-TC and Wald-CIC do not rely on the
stable treatment effect assumption, which may be implausible. The choice between the Wald-TC and the
Wald-CIC estimands should be based on the suitability of Assumption 6.4’ and 6.6 in the application
under consideration. Assumption 6.4 ’ is not invariant to the scaling of the outcome, but it only restricts
its mean. Assumption 6.6 is invariant to the scaling of the outcome, but it restricts its entire distribution.
When the treatment and control groups have different outcome distributions conditional on D in the first
period, the scaling of the outcome might have a large effect on the Wald-TC. The Wald-CIC is much less
sensitive to the scaling of the outcome, so using this estimand might be preferable. On the other hand,
when the two groups have similar outcome distributions conditional on D in the first period, using the
Wald-TC might be preferable.

To test the assumptions underlying those estimands, one can test whether they are equal. If they are
not, at least one of those assumptions must be violated. An alternative approach is to perform placebo
tests. For instance, if three time periods are available (T" =-1, 0, or 1), and if the treatment rate remains
stable in both groups between T' =-1 and 0, the numerators of the Wald-DID, Wald-TC, and Wald-CIC
estimands for those two periods should be equal to zero.

6.2.2 Estimators

We now turn to the estimation of A and 7, crc using plug-in estimators of the estimands above.
Let (Y;, D;,G;,T;)i=1.., denote an i.i.d. sample of (Y,D,G,T) and define Z,, = {i : G; = ¢,T; = t}
and Zyy = {i : D; = d,G; = ¢,T; = t}. Let ng and ngy denote the size of Z,, and Z,y,, for all
(d,g,t) € S(D) x {0,1}>.

First, let
n%l Zz‘eIn Y — n%o Ziezw Y - n%n Ziezm Y+ n%o Ziezoo Y;

1 R 1 AT )
nii ZiEIH ‘Dl n1o ZiGIw Dl no1 2716101 DZ + noo ZiEIoo Dl

be the estimator of the Wald-DID. Second, for any d € Supp(D) let 64 = (1/na01) D iz, Yi —

Wpip =
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(1/nd00) D iez,,, Yi- Then, let

/W %11 Ziezu Y; - ﬁ ZiEZw |:Y; + 6D1:|
TC —

%11 ZiEIn Dl - %10 ZiGIlo DZ

be the estimator of the Wald-TC. Third, for all (d, g,t) € S(D) x {0,1}2, let F\ydgt (y) = ﬁgt ez, HYi <
y} denote the empirical cdf of Y. Let

@d(y) = max (F\;d:n o ﬁYdOO (y)7 mln{}/z S IdOl})
be the estimator of the quantile-quantile transform @4, and let

%11 ZiGIn Y; B an ZiGIm QDi (1/1)
1 1
L Ziel'u D; — 10 ZiGIlo D;

be the estimator of the Wald-CIC. Finally, let P(Dy; = d) = nag:/ng: and

Were =

~ ~

P(Dll = d)FYdll - P(D10 = d)F@d(Ydlo)

P(Dyy =d) — P(Dyo = d)

fpi —
Forca=

The function ﬁg‘,c,d is the plug-in estimator of Forc 4 but it has the drawback of not being necessarily a
proper cdf. It may not be nondecreasing and may not belong to [0, 1]. To avoid these issues, we consider
a rearranged version F27 .. , of FP;, ,, following [42]. Moreover, we let

Ferc.aly) = max (min(F&c (y),1),0) -

With this proper cdf at hand, let
Tq = ﬁE}C,d(q) - ﬁC_IlC,d(q)
be the estimator of 7.

[53] show that me, I//V\Tc, I//V\CIC, and 7, are root-n consistent and asymptotically hormal under
standard regularity conditions.® [53] also establish the validity of the bootstrap to draw inference on A
and 7, based on these estimators. The fuzzydid command uses the bootstrap to compute the standard
errors of all estimators, and the percentile bootstrap to compute confidence intervals.

6.3 Extensions

6.3.1 Including covariates

The basic set-up can be extended to include covariates. Let X denote a vector of covariates, and for
any random variable R, let m[(z) = E(Ry|X = ). Letalso 64(x) = E(Yao1|X = 2) — E(Yaoo| X = )

and é(x) = E (6p,,(X10)|X = z]. Then define

X _
Vb1 = 5D,y ~ BmB(X1) — (BB (K1) — E(md (X))’
W, E(Yn)-E [m1o(X11)+5(X11)}

3[53] consider an estimator of 7, based on ﬁgm.d rather than ﬁC]C,d- However, these two estimators are equal on any
compact set with probability tending to one whenever Fo 1 q is strictly increasing. Thus, the two estimators of 74 also coincide with
probability tending to one, and their result also applies to the estimator considered here.
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[54] show that W, (resp. W3%,) identifies A under the common support condition Supp(X,;) =
Supp(X) for all (g,t) (resp. Supp(Xay:) = Supp(X) for all (d, g,t)) and conditional versions of Assump-
tions 6.1-6.3 and 6.4-6.5 (resp. 6.4 ").4

Let us turn to estimators of W3,, and W;.. We first consider non-parametric estimators. Let
us assume that X € R" is a vector of continuous covariates. Adding discrete covariates is easy
by reasoning conditional on each corresponding cell. We take an approach similar to, e.g., [74] by
estimating in a first step conditional expectations by series estimators. For any positive integer K, let
p"(z) = (mk(2),....,prk(x)) be a vector of basis functions and Pj; = (p*(X),...,p" (X,,)). For any
random variable R, we estimate m®(z) = E(R|X = x) by the series estimator

mf(z) = pXr(z) (PK»PE")" PE»(Ry, ... R,),

where (.)~ denotes the generalized inverse and K, is an integer. We then estimate m % (x) = E(Ry|X =
) by the series estimator above on the subsample {i : G; = g, T; = t}. m[,(x) = E(Rag|X = ) is
estimated similarly. Then our non-parametric estimators of W, ,, and WX are defined as

WX nln > et [V — Mo (Xa) — My (Xs) + Mgy (X)]
DID,NP = ,
7 nil dieT [DZ miy(Xi) — ) (Xi) + migh( z)]

~ o~

. e Yz, [V Al (X0) — b (X061 (X2) — (1= iy (X2)30(X2)
reNe = %11 ZiGIn [Dl - m%(Xl)] ,

where S\d(z) = mYy, (z) — MYy (z). Under regularity conditions, these estimators are root-n consistent
and asymptotically normal [see 54, Section 2.3].

Second, we consider semi-parametric estimators of W3, ,, and W;.. Assume for instance that
for (d,g,t) € {0,1}%, E(Yu|X) = X'8Y, E(Yag:|X) = X'B),,, and E(Dy|X) = X'BL. Under this
assumption, we have

X _ B0 - B(XLAL) - (B(XLE0) - B (X1165))
PP B(Dn) - E (X(,88) — (B (X1,88) - E (X1,6R))

E(Yi1) — E[X{, (B + X1188 (Bio1 — Bloo) + (1 — X1188) (B3 — Bioo))]
E(D11) — E(X{188) '

Then, semi-parametric estimators of W5, , and WX, can be defined as

X _
WTC_

. Sien Y~ XiBl - XiB% + X!B)
WDID,OLS = 2D D Sk
YieTi, {Di — X{Bip — XiBn + Xzﬂoo}
X diery, Yi— {X//y + X (X/ﬁlo(ﬁml @1:)0) +(1— Xgﬁ%)(%n - @060))}
TC,OLS — ,

Sien, |Di = XiBR)

where for (d, g,t) € {0,1}?, B, (resp. ﬁdgt) denotes the coefficient of X in an OLS regression of Y on X
in the subsample Z; (resp. Idgt), and Bgt denotes the coefficient of X in an OLS regression of D on X in
the subsample Z,,. When either Y or D is binary, one might prefer to posit a probit or a logit model for its
conditional expectation functions in the various subsamples. Other semi-parametric estimators can be
defined accordingly.

Finally, researchers may sometimes wish to include a large set of controls in their estimation, which
may lead to violations of the common support assumptions Supp(X,:) = Supp(X) and Supp(Xg4.) =

4[54] also propose a Wald-CIC estimand with covariates, but the corresponding estimator is not computed by the fuzzydid
command.
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Supp(X).® For instance, when the researcher wants to estimate the Wald-DID, there might be values
of X for which all units belong to the treatment group, thus implying that for those values there are no
control units to which the trends experienced by treatment group units can be compared. Let 2y denote
one such problematic value, i.e. xy € Supp(X11) but E(Yo:|X = z0) and E(Dy:|X = x¢) are not defined
for some t € {0,1}. To avoid dropping treatment group units with X = z,, we use all control units to
predict their counterfactual trends. Namely, in W3, , we replace E(Yy|X = zo) — E(Yoo|X = x0) and
E(Do1|X = z9) — E(Dgo| X = o) by E(Yo1) — E(Yoo) and E(Dy;1) — E(Dyp). If instead, the researcher
wants to estimate the Wald-TC, the same principle applies.

6.3.2 Multiple periods and groups

We now extend our initial setting to multiple periods and groups. We first define, at each period
t € {1, ...,t}, the following “supergroup” variable

GZ‘ = 1{E(Dgt) > E(Dgt—l)} - 1{E(Dgt) < E(Dgt—l)}-

Let T = {t € {1,...,} : P(G; = 0) > 0} denote the subset of periods ¢ for which there exists at least
one group with stable treatment rate between ¢t — 1 and t. We let S = {D(T) # D(T —1),T € T}
denote the population of units switching between 7" — 1 and T" € 7 and define A in this set-up as
A = E[Y (1) —Y(0)|S]. For any random variable R and any (d, g,t) € {0,1} x {—1,1} x T, we also define
the following quantities:

DIDj(g.t) =E(R|G} = .7 = t) — B(RIG} = g, T =t —1)
— (E(RIG} =0,T = 1) - B(RIG} =0,T =t — 1)),
5% =E(Y|D=d,Gi=0,T=t)—E(Y|D=d,G} =0,T=t—1),

Qar () ZF;\ID:d,(;;:O,T:t o Fy|p=da,a;=0,r=t—1(¥);
DID3 (g,t)
" DID (g, 1)
Wio(o )~ EOIGE = 0T =) = B(Y +0,/Gi =9, T =t — 1)
’ ED|Gf =g, T=1t)-ED|G; =g, T=t—-1)
EY|G; =9, T=¢t) - EQp,(Y)|Gf =9, T=t-1)
E(D\G,’{ =g, T = t) — E(D|GZ =g, T=t-1)

Whip(g:t)

Wéic(g,t) =

When P(G; = g) = 0, the three ratios above are not defined. Then, we simply let W}, ,(g,t) =
W;:C(gat) = Wé‘[c(gvt) = 0.
Let us then introduce the following weights:

DID%(1,)P(Gf =1,T =t) — DID}(—1,6)P(G; = —1,T = 1t)

wy = = )
Sy_, DID%(1,t)P(G = 1,T = t) — DID}(~1,t)P(Gf = —1,T = t)
B DID%(1,8)P(G: =1,T = t)
0l = DIDE (L) P(G; =1,T =t) — DID,(—L ) P(G; = —1,T = 1)’

where again, we set DIDj,(g,t) = 0 when P(G; = g) = 0. The extensions of the Wald-DID, Wald-TC

5Using a recategorized treatment D = h(D) may help alleviating this issue, by weakening the support condition to
Supp(X z,,) = Supp(X) for all d € Supp(D).
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and Wald-CIC to multiple groups and periods are defined as

Whip = Z wy [wiopWhrp(1,t) + (1 — wio ) Whrp(—1,1)]

teT
Wic =Y wi [wioeWic(1,t) + (1 — wio) Wie(—1,8)] ,
teT
Weéie = Z wy [wiopWere(1,t) + (1 — wig) Were(—1,1)] -
teT

Finally, we consider the following assumption, which replaces Assumption 6.2.

Assumption 6.8. (Existence of “stable” groups and independence between groups and time)
T # 0, Supp(D|G; #0,T =t —1) C Supp(D|G; =0,T=t—1) forallt e T,andG 1. T.

Theorem 6.2 below shows that under our previous conditions plus Assumption 6.8, the three estimands
point identify A. This theorem is proved for the Wald-DID and Wald-TC in [52], and can be proved along
the same lines for the Wald-CIC.8

Theorem 6.2. Suppose that Assumptions 6.3 and 6.8 hold.
1. If Assumptions 6.4 and 6.5 are satisfied, W},;, = A.
2. If Assumption 6.4’ is satisfied, Wi = A.
3. If Assumptions 6.6 and 6.7 are satisfied, W} = A.

To estimate W}, 5, Wi, and W, we suppose that the (G} ),—,. ; are known. This is the case in
applications where the treatment is constant at the group x period level, as is for instance the case in the
example we revisit in Section 6.5. When the (G}),_; 7 are unknown, it is also possible to estimate them
consistently, without affecting the asymptotic distribution of the estimators of W}, 5, Wi and W ;.. We
refer to Section 2.1 in [54] for details.

Let us focus on the estimator of W}, ,. The estimators of W and W, are constructed following
exactly the same logic. For any random variable R and any (g,t) € {—1,0,1} x T, let

Ao~ ¥ ne e s ae [y et sl
Mgt t i€Ty, Mgt 11 ieTy, . Nt,t i€Ts, , nOt =1 ers,,
where 7, ., = {i: G}; = g, T; = t'} and n}, ,, is the size of I}, ,,. We let, for g € {~1,0,1}, P(G} = ¢, T =

t) = n_f]t,t/n. We estimate w; and W)t by

_ DIDy(1,0)P(G; =1,T =t) — DID}(—1,0)P(Gf = —1,T = t)

S DIDY(1L,H)P(G; =1,T =t) — DID%(—1,)P(G; = —1,T =)
DID%(1,6)P(Gr =1,T =1t)

DID%(1,t)P(Gf =1,T =t) — DID%(—-1,6)P(Gf = —1,T =t)

Wiolt =

We then estimate W3, ,(g.t) by W, (g,t) = DID% (g,t)/DID% (g, ), and we let

Whin = 3 @0 [@10aWhrp(1,8) + (1 = Brop) Whin(~1,8)]
teT

6[52] obtain the same result on slightly different estimands and without assuming G' L T'. Under this additional condition, their
estimands are equal to the Wald-DID and Wald-TC considered here. Theorem 6.2 is also similar to Theorem S1 in [54], but they
consider slightly different weights and prove the result under stronger conditions.
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6.3.3 Other extensions

We now briefly review some other extensions, for which more details can be found in [53] and its
supplement.

6.3.3.1 Special cases

When P(Dyg = d) = P(D¢p1 = d) = 0 for d € {0,1}, Wre (resp. Were and t¢rc,q) is not defined
because ¢4 (resp. Qg) is not defined. In such cases, we can simply suppose that §, = 91 (resp.
Qo = Q1) and modify the estimators accordingly. Then, the Wald-TC becomes equal to the Wald-DID,
while the modified CIC estimands identify A and 7, under the same assumptions as above, and if
ho(hg ' (y,1),0) = hy(hy*(y,1),0) for every y € Supp(Y).

6.3.3.2 No “stable” control group

In some applications [see e.g. 68], the treatment rate increases in all groups, thus violating Assumption
6.2. Then, we can still express the Wald-DID as a linear combination of the LATEs of treatment and
control group switchers. Specifically, let S = {D(0) # D(1), G = 0} be the control group switchers, and
A'=FE(Y(1) =Y (0)|S’,T = 1) be their local average treatment effect. Under Assumptions 6.1, 6.3, 6.4
and 6.5, we have

Wpip = aA + (1 — a)A’,

where a = (E(D11) — E(D10))/[E(D11) — E(D1o) — (E(Do1) — E(Dgp))]. Hence, the Wald-DID identifies
a weighted sum of A and A’. Note however that if the treatment rate increases in the control group,
E(Do1) > E(Dg) and « > 1, so A’ enters with a negative weight. In such a case, we may have A > 0
and A’ > 0 and yet Wprp < 0. We will only have Wpp = Aif A = A.

We can also bound A under Assumption 6.4’ if Assumption 6.2 fails. We refer to [53] for such bounds,
and to [54] for their corresponding estimators.

6.3.3.3 Non-binary treatment

The Wald-DID, Wald-TC and Wald-CIC still identify a causal parameter if D is not binary but is ordered
and takes a finite number of values, as shown in [53]. When the treatment takes a large number of values,
its support may differ in the treatment and control groups, and there may be values of D in the treatment
group for which ¢4 or Q4 are not defined because no unit in the control group has that value of D. This
situation includes in particular the special cases discussed above. We can then modify slightly W< and
Were. Namely, let us consider a recategorized treatment D = h(D) grouping together some values of D
and let

04 = E[Yor| D = d] — E[Yoo| D = d].

We then replace 6p,, by 3501 in the definition of Wp¢. Then, Wy still identifies A provided that
d — E[Y11(d) — Y10(d)|D(0) = d] only depends on h(d). The same applies to W¢ ¢, by using D instead
of D in Qq(.). Using this recategorized treatment also avoids estimating §; and Q4 on a small number of
units, thus often lowering the standard errors of the estimators.

Finally, there may also be instances where the treatment has the same support in the treatment and
in the control groups, but where bootstrap samples do not satisfy this requirement. For such bootstrap
samples, Wr¢ and W e cannot be estimated, and the fuzzydid command therefore sets them to 1015
or —10*® with probability 1/2. To avoid distorting inference, these bootstrap samples are not discarded in
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the computation of the percentile-bootstrap confidence intervals, thus enlarging these intervals.” This
situation is likely to arise when the treatment takes a large number of values. Here again, it may be useful
to recategorize the treatment to avoid this issue.

6.4 The fuzzydid command

The fuzzydid command is compatible with Stata 13.1 and later versions. It uses the moremata Stata
command to compute estimators with covariates. If this command is not already installed, one must type
ssc install moremata in Stata’s command line.

6.4.1 Syntax
The syntax of fuzzydid is as follows:

fuzzydid Y G T D [if] [in] [, did tc cic lgte newcateg(numlist) numerator partial nose

cluster(varname) breps(#) eqtest continuous(varlist) qualitative(varlist) modelx(reg?

reg2 reg3) sieves sieveorder (#) ‘uﬁobs]

6.4.2 Description

fuzzydid estimates A or 7, using one or several of the estimators defined in Sections 6.2 and 6.3
above. It also computes their standard errors and confidence intervals.

Y is the outcome variable.

G is the group variable(s). When the data only bears two groups and two periods, G merely corresponds
to the variable G defined in Section 6.2, an indicator for units in the treatment group. Outside of
this special case, G should list the variables G- and G-, defined in Section 6.3.2. We now give an
example of a few lines of code that users can follow to create these two variables:
sort G T
by G T: egen mean_D = mean(D)
by G: g lag_mean_D = mean_D[_n-1] if G==G[_n-1]&T-1==T[_n-1]

g G_T = sign(mean_D - lag_mean_D)

g G_Tplusl = G_T[_n+1] if G==G[_n+1]&T+1==T[_n+1]

Sometimes, there may not be groups where the treatment is perfectly stable between consecutive
periods, thus implying that the Wald-DID, Wald-TC, and Wald-CIC estimators cannot be computed with
the G_T and G_Tplus1 variables defined above. Then, the user may replace the 4th line of code above
by:

g G_T = (mean_D - lag mean D> ¢)-(mean_D - lag_mean D< —¢),

where ¢ is a positive number small enough to consider that the mean treatment did not really change in
groups where it changed by less than . See Section 2.1 in [54] for one possible method to choose ¢.

T is the time period variable, with values in {0, ..., t}.

D is the treatment variable. It can be any ordered variable.

"They are discarded, on the other hand, in the computation of the bootstrap standard errors.
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6.4.3 Options

General options

did computes Whpip if no covariates are included in the estimation. If some covariates are included,
it computes I7V\§ID7NP, I7V\§ID7OLS, or another estimator with covariates depending on the options
specified by the user.

tc computes WTC if no covariates are included in the estimation. In the special case where D is
binary and P(Dyg = 0) = P(Dg; = 0) € {0, 1}, the command actually computes Wpip, following the
discussion in Section 6.3.3.1. If some covariates are included, it computes /W%‘C,NP, /W%‘C,OLS, or
another estimator with covariates depending on the options specified by the user.

cic computes Wmc- In the special case where D is binary and P(Dgy = 0) = P(Dy; = 0) € {0, 1}, the
command actually computes Were, following the discussion in Section 6.3.3.1. The cic option can
only be specified when no covariates are included in the estimation.

lqte computes 7, for ¢ € {0.05,0.10, ...,0.95}. This option can only be specified when D, G, and T are
binary, and no covariates are included in the estimation. When P(Dyg = 0) = P(Dy; = 0) € {0,1}, the
command computes 7, ¢1¢, following the discussion in Section 6.3.3.1.

At least one of the four options above must be specified. If several of these options are specified, the
command computes all the estimators requested by the user.

newcateg(numlist) groups some values of the treatment together when estimating J, and Q4. This option
may be useful when the treatment takes a large number of values, as explained in Section 6.3.3.3.
The user needs to specify the upper bound of each set of values of the treatment she wants to group.
For instance, if D takes the values {0,1,2,3,4.5,7,8}, and she wants to group together units with
D =1{0,1,2}, {3,4.5}, and {7,8} when estimating J; and @4, she needs to write newcateg(2 4.5 8).

numerator computes only the numerators of the WDID, /WTC and /chc estimators. As explained in
Section 3.3.3 in [53], this option is useful to conduct placebo tests of the assumptions underlying each
estimator.

partial computes the bounds of A defined in Section 6.3.3.2, ETC and %Tc. This option can only be
specified when no covariates are included in the estimation.

nose computes only the estimators, not their standard errors.

cluster (varname) computes the standard errors of the estimators using a block bootstrap at the varname
level. Only one clustering variable is allowed.

breps (#) specifies the number of bootstrap replications. The default is 50.

eqtest performs an equality test between the estimands, when the user specifies at least two of the diq,
tc, and cic options.

tagobs creates a new variable named tagobs which identifies the observations used by fuzzydid.

Options specific to estimators with covariates

continuous (varlist) specifies the names of all the continuous covariates that need to be included in the
estimation.

qualitative (varlist) specifies the names of all the qualitative covariates that need to be included in the
estimation. For each variable, indicator variables are created for each value except one, and included
as controls in the estimation.

modelx (reg1 reg2 reg3) specifies which parametric method should be used to estimate the conditional
expectations in W3, or Wi.. reg1 specifies which method should be used to estimate E(Y|X) and
E (Y44 X). reg2 specifies which method should be used to estimate E(D,|X). When D is not binary,
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reg3 specifies which method should be used to estimate {P(D,, = d|X)}de{1,...,a}- The possible
methods are: ols, logit, and probit. For instance, if the user writes modelx(ols logit logit), the
command estimates E(Yy|X) and E(Yge|X) by OLS, and E(Dg:|X) and {P(Dg; = d|X)} ;3 0y
a logistic regession. The logit and probit options can only be used with binary variables.

sieves indicates that the conditional expectations in W5, ,, and WX, should be estimated nonparametri-
cally (see Section 6.3.1 above).
When covariates are included in the estimation, and neither modelx nor sieves is specified, the

command estimates by default all conditional expectations by OLS.

sieveorder (#) specifies the order of the sieve basis, when the option sieves is used. It must be greater
than or equal to 2. For a given order L, the number of basis functions is given by (”CZFL) where p. is the
number of continuous covariates. The command does not allow for more than min {4800, n/5} basis
functions, where n is the number of observations. If this option is not specified, the choice of the sieve
order is done via 5-fold cross-validation with a mean squared error loss function.

6.4.4 Saved results
The fuzzydid command saves the following in e ():
1. e(N), a scalar containing the number of observations used in the estimation.

2. If the user specifies at least one of the did, tc, and cic options, fuzzydid saves e(b_LATE), a k x 1
matrix, where k is equal to the number of options specified. The lines of the matrix correspond
to each of the requested estimators. If nose is not specified, fuzzydid also saves e(se_LATE)
and e(ci_LATE), a k x 1 and a k x 2 matrix respectively. The lines of e(se_LATE) correspond
to the bootstrap standard error associated to each of the requested estimators. The columns of
e(ci_LATE) respectively store the lower and upper bounds of the 95% confidence interval computed
by percentile bootstrap for each requested estimator.

3. If the user specifies the eqtest option together with at least two of the did, tc, and cic options,
fuzzydid saves three matrices e (b_LATE_eqtest), e(se_LATE_eqtest) and e(ci_LATE_eqtest).
The first two matrices have dimension (%) x 1 while the third has dimension (%) x 2, where k is
equal to the number of the did, tc, and cic options specified. The matrices e (b_LATE_eqtest) and
e(se_LATE_eqtest) store respectively the value of the difference between each pair of estimators,
and the associated bootstrap standard error. The columns of e(ci_LATE_eqtest) respectively
store the lower and upper bounds of the 95% confidence interval computed by percentile bootstrap
associated to each difference.

4. If the user specifies the 1qte option, the command saves e (b_LQTE), a 19 x 1 matrix. The lines
of the matrix store the value of 7, for ¢ € {0.05,0.10,...,0.95}. If nose is not specified, fuzzydid
also saves e(se_LQTE) and e(ci_LQTE), a 19 x 1 and a 19 x 2 matrix respectively. The lines of
e(se_LQTE) correspond to the bootstrap standard error associated to 7, for ¢ € {0.05,0.10, ...,0.95}.
The columns of e (ci_LQTE) respectively store the lower and upper bounds of the 95% confidence
interval computed by percentile bootstrap for each of the 19 LQTE estimators.

6.5 Example

To illustrate the use of fuzzydid, we use the same dataset as [76] to study the effect of newspapers on
electoral participation.
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turnout_dailies_1868-1928.dta is a county-level data set. It contains two variables of interest,
pres_turnout and numdailies, that respectively represent the turnout (Y') and the number of newspapers
available (D) in each US county and at each presidential election from 1868 and 1928. First, we load the
dataset and present summary statistics:

. sum pres_turnout numdailies

Variable Obs Mean Std. Dev. Min Max
pres_turnout 16,872 .65014 .2210102 .0017981 2.518
numdailies 16,872 1.463134 2.210448 0 45

The average turnout in the 1868 to 1928 presidential elections across counties is 65.01%. The number of
newspapers ranges from 0 to 45, and is on average equal to 1.46.

Second, we use fuzzydid to compute WBID, W;C, and ngc using the first two time periods in the
data set, the 1868 and 1872 elections. We then define the G1872 variable, which is equal to 1 (resp. 0) in
counties whose number of newspapers increased (resp. remained stable) between the 1868 and 1872
elections. For now, counties where that number decreased are excluded from the analysis. numdailies
takes many values, so there are values taken by counties with G1872=1 that are not taken by any county
with G1872=0. Therefore, we use newcateg to recategorize numdailies into four categories: 0, 1, 2, and
3 or more newspapers.® Finally, we cluster the bootstrap at the county level, to allow for county-level
correlation over time.

. gen G1872=(fd_numdailies>0) if (year==1872)&fd_numdailies!=.&fd_numdailies>=0&
> sample==

. sort cnty90 year

. replace G1872=G1872[_n+1] if cnty90==cnty90[_n+1]&year==1868

. fuzzydid pres_turnout G1872 year numdailies, did tc cic newcateg(O 1 2 45) bre
> ps(200) cluster(cnty90)

Estimator(s) of the local average treatment effect with bootstrapped standard

errors. Cluster variable: cnty90. Number of observations: 1424 .

LATE Std_Err t p_value lower_ic  upper_ic
W_DID .0047699 .0160903 .2964428 .766892 -.0230387 .0377381
W_TC .0266618 .0164816  1.617671 .1057335 -.0021458 .0586236
W_CIC .0133223 .0132744  1.003613 .3155653 -.0116416 .0348834

The columns of the output table respectively show the value of each estimator, its bootstrap standard
error, its t-statistic, its p-value, and the lower and upper bounds of its 95% confidence interval. All
point estimates are positive, but none are statistically significant, presumably because this restricted
sample with two time periods is too small. In this simple example with two periods and no controls, the
computation of the estimators and of 200 bootstrap replications only takes about 3 seconds on a Dell
Optiplex 9020 with an Intel Core i7-4790 CPU 3.60 GHz processor and 16GB of RAM, using Stata-MP
with four cores.

Third, we compute estimators of the LQTEs, using again the 1868 and 1872 elections. We use a binary
treatment variable numdailies_bin (0O newspaper, 1 or more), because LQTEs can only be estimated
with a binary treatment.

. fuzzydid pres_turnout G1872 year numdailies_bin, lqte breps(200) cluster(cnty9
> 0)

80nly 17.8% of observations have 3 or more newspapers. Results do not change much if instead we recategorize numdailies
into five categories: 0, 1, 2, 3, and 4 or more newspapers.
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Estimators of local quantile treatment effects with bootstrapped standard

errors. Cluster variable: cnty90. Number of observations: 1424 .

LQTE Std_Err t p_value lower_ic  upper_ic
q_20 .005 .063113 .0792229 .9368553 -.0825 .1655
q_40 -.052 .0493409 -1.053894 .2919316 -.1244999 .0675
q_60 .011 .0482445 .2280046 .8196427 -.0995 .08
q_80 .02 .0355669 .5623207 .5738975 -.087 .077

To preserve space, we only report 7.2, 70.4, 70.6, and 7y.s, but the command computes 7, for ¢ €
{0.05,0.10, ...,0.95}. 7y 4 is negative while the other estimates are positive, thus suggesting that numdailies_bin
may have heterogeneous effects along the distribution of the outcome. However, none of the point esti-

mates are statistically significant.

Fourth, we compute W5, ,, Wi, and Wg,c on the full sample. On that purpose, we define the
G_T and G_Tplus1 variables described in Section 6.4.2. G_T is equal to 1 (resp. 0, -1) for county ¢ x
election-year t observations such that the number of newspapers increased (resp. remained stable,
decreased) between election-years ¢t — 1 and ¢ in that county. G_Tplus1 is the lead of G_T. We add the
eqtest option, to test whether the estimators are significantly different.

. sort cnty90 year

. by cnty90 year: egen mean_D = mean(numdailies)

. by cnty90: g lag_mean D = mean_D[_n-1] if cnty90==cnty90[_n-1]&year-4==year[_n
> -1]

. 8 G_T = sign(mean_D - lag_mean_D) if sample==

. g G_Tplusl = G_T[_n+1] if cnty90==cnty90[_n+1l&year+d4==year[_n+1]

. fuzzydid pres_turnout G_T G_Tplusl year numdailies, did tc cic newcateg(0 1 2
> 45) breps(200) cluster(cnty90) eqtest

Estimator(s) of the local average treatment effect with bootstrapped standard

errors. Cluster variable: cnty90. Number of observations: 16872 .

LATE Std_Err t p_value lower_ic  upper_ic
W_DID .0037507 .0012813  2.927357 .0034186 .0009971 .0057828
W_TC .0053305 .0013276  4.015155 .0000594 .0023461 .0075914
W_CIC .004215 .001477  2.853841 .0043194 .0009549 .0067769

Estimators equality test

Delta Std_Err t p_value lower_ic  upper_ic
DID_TC | -.0015798 .0003504 -4.507975 6.54e-06 -.0023752 -.0009441
DID_CIC | -.0004643 .0007151 -.6492892 .5161515 -.0018629 .0008515
TC_CIC .0011155 .0006505 1.71487 .086369 -.0002291 .0023088

The Wald-DID is equal to 0.0038. According to that estimator, increasing the number of newspapers
available in a county by one increases voters’ turnout in presidential elections by 0.38 percentage points.
This estimator is significantly different from 0 at the 5% level. The Wald-TC is larger (0.0053), and
significantly different from the Wald-DID (t-stat=-4.51). The Wald-CIC lies in between (0.0042), and this
estimator is not significantly different from the other two. In this more complicated example with 16 periods
and almost 17 000 observations, the computation of the estimators and of 200 bootstrap replications still
only takes around two minutes.

[76] allow for state-specific trends in their specification, so we compute I//V\BID and /VV;:C with state
indicators as controls, which is equivalent to allowing for state-specific trends.®

. fuzzydid pres_turnout G_T G_Tplusl year numdailies, did tc newcateg(0 1 2 45)
> qualitative(st1l-st48) breps(200) cluster(cnty90) eqtest

90n the other hand, fuzzydid does not compute W ;. with controls.
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Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 16872 . Controls
included in the estimation: stl st2 st3 st4 stb st6 st7 st8 st9 stl0 still
st12 st13 stl14 stl15 st16 stl17 st18 stl19 st20 st21 st22 st23 st24 st25 st26
st27 st28 st29 st30 st31 st32 st33 st34 st35 st36 st37 st38 st39 std0 st4l
st42 st43 st44 st45 std6 st47 st4s .

LATE Std_Err t p_value lower_ic  upper_ic
W_DID .0026383 .0012213  2.160195 .0307575 .0002316 .0048236
W_TC .0043428 .0014116  3.076507 .0020944 .0015519 .0066773

Estimators equality test

Delta Std_Err t p_value lower_ic upper_ic

DID_TC -.0017046 .0009193  -1.85417 .0637148 -.0034308 .0000123

With those controls, WBID = 0.0026 and /W;C = 0.0043, and the two estimators are significantly different
at the 10% level (t-stat=-1.85). Adding the control variables substantially increases the computation time,
to 79 minutes.

Finally, we compute a placebo Wald-DID (resp. Wald-TC) estimator, to assess if Assumptions 6.4 and
6.5 (resp. Assumption 6.4 °) are plausible in this application. Instead of using the turnout in county g and
election-year t as the outcome variable, our placebo estimators use the turnout in the same county in the
previous election. Moreover, only counties where the number of newspapers did not change between
t—2andt — 1 are included in the estimation. Therefore, our placebo estimators compare the evolution of
turnout from ¢t — 2 to ¢ — 1, between counties where the number of newspapers increased or decreased
between ¢t — 1 and ¢ and counties where that number remained stable, restricting the sample to counties
where the number of newspapers remained stable from ¢ —2to ¢ — 1.

. xtset cnty90 year

. gen fd_numdailies_11=14.fd_numdailies

. gen pres_turnout_11=14.pres_turnout

. sort cnty90 year

. g G_T_placebo = sign(mean_D - lag_mean_D) if sample==1&fd_numdailies_l1==

. g G_Tplusi_placebo = G_T_placebo[_n+1] if cnty90==cnty90[_n+1]&year+d==year[_n
> +1]

. fuzzydid pres_turnout_1l1 G_T_placebo G_Tplusl_placebo year numdailies, did tc
> newcateg(0 1 2 45) qualitative(st1-st48) breps(200) cluster(cnty90)
Estimator(s) of the local average treatment effect with bootstrapped standard
errors. Cluster variable: cnty90. Number of observations: 13221 . Controls
included in the estimation: stl st2 st3 st4 stb st6 st7 st8 st9 stl10 stil

st12 st13 stld stl15 st16 stl7 stl8 stl9 st20 st21 st22 st23 st24 st25 st26

st27 st28 st29 st30 st31 st32 st33 st34 st35 st36 st37 st38 st39 st40 st4l

st42 st43 st44 stdb5 st46 std7 st48 .

LATE Std_Err t p_value lower_ic  upper_ic
W_DID -.00183 .0016594 -1.102842 .2700959 -.0051247 .0013008
W_TC | -.0008691 .0018412 -.4720226 .6369107 -.0041261 .0025142

The placebo Wald-DID is negative, indicating that the actual Wald-DID may be downward biased due
to a violation of Assumptions 6.4 and 6.5. However, this placebo estimator is not statistically significant.
The placebo Wald-TC is also negative and not statistically significant. It is twice smaller than the placebo
Wald-DID, thus indicating that Assumption 6.4’ may be more plausible than Assumptions 6.4 and 6.5 in
this application.
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6.6 Monte Carlo Simulations

This section exhibits the finite sample performance of the estimators of Wprp, Wre, Were and mcore q.
We consider for that purpose the folllowing DGP. Let (G, T) be uniform on {0, 1}2. Let (U(0),U(1),V) ~
N(0,%), with¥;; = 1fori € {1,3}, Xo2 = 1.2, 315 = 0, 313 = .5 and Xo3 = —.5, and with (U(0),U(1),V) L
1 (G,T). Then we let

Y(d)=d+G+T+U(d),
D) =1{V>1-G x t}.

In this DGP, all the assumptions in Section 6.2 hold. Therefore, Wp;p, Wre, and W all identify A,
while 7¢ ¢, identifies 7,. We focus on the bias, mean square error, and coverage rate of estimators of A
and 7, for ¢ € {.25, .5,.75}, and for sample sizes equal to 400, 800, and 1,600. In this DGP, A ~ .540,
Tos ~ 481, 75 ~ .536 and 775 ~ .595.

The results are displayed in Table 6.1. Even with small samples, the Wald-DID and Wald-TC estimators
do not exhibit any systematic bias. Their RMSE are also very similar. The Wald-CIC, on the other hand,
is more biased and has a RMSE which is 5 to 15% larger. This is probably due to the estimator of
the nonlinear transform Q4. This estimator is likely biased and imprecise in the tails, which may also
explain the bias and high RMSE of 7, for n = 400. Note however that the bias of Weic, Tas, 75, and 775
decreases quickly with the sample size. For n = 1,600, the bias of these estimators is already negligible
compared to their RMSE. Finally, the percentile bootstrap confidence intervals of all estimators are quite
accurate, with all coverage rates lying between .92 and .97 when the nominal level is .95. The levels are
slightly more distorted for the Wald-CIC and the 7, but again, they become closer to 95% as the sample
size increases.

Table 6.1 — Results of the Monte Carlo simulations

Estimators of A Estimators of 7,
n Statistic /WDID /WTC WC’]C 7/:.25 ?_.5 7/:.75
400 Bias 0,005 -0,002 0,174 0,002 -0,154 -0,497

RMSE 0,651 0,613 0,682 0,712 0,867 1,223
Cov.rate 0,948 0,948 0,921 0,971 0,967 0,917
800 Bias 0,015 0,01 0,088 -0,056 -0,029 -0,235
RMSE 0,422 0414 0,472 0,539 0,555 0,922
Cov.rate 0,953 0,951 0,929 0,964 0,961 0,934
1600 Bias -0,005 -0,005 0,034 -0,054 -0,013 -0,077
RMSE 0,286 0,284 0,329 0,394 0,382 0,58
Cov.rate 0,948 0,946 0943 0,964 0,966 0,955

Notes: “Cov. rate” stands for coverage rates of (percentile bootstrap) confidence intervals,
with a nominal level of 95%. The results are based on 1,000 samples and for each, 500
bootstrap samples are drawn to construct the confidence intervals. With our DGP, A ~ .540,

T.95 ~ 481, 7.5 ~ .536 and 7.75 ~ .595.
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6.7 Conclusion

We have discussed how to use fuzzydid to estimate local average and quantile treatment effects
in fuzzy differences-in-differences designs, following de Chaisemartin and D’Haultfceuille [53]. In such
designs, the popular Wald-DID estimand relies on a stable treatment effect assumption, which may not
be plausible. Then, the Wald-TC and Wald-CIC estimands may be valuable alternatives, as they do not
hinge upon this assumption. Similarly, when the data bears multiple groups and periods, the Wald-TC
and Wald-CIC estimands may be valuable alternatives to commonly used two-way linear regressions.
The fuzzydid command makes it easy to estimate those estimands.
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Titre: Contributions a I'estimation et a I'inférence robuste en économétrie semi- et nonparamétrique
Mots clés: variables instrumentales, processus empiriques, échangeabilité

Résumé: Dans le chapitre introductif, nous dressons
une étude comparée des approches en économétrie
et en apprentissage statistique sur les questions de
I'estimation et de l'inférence en statistique.

Dans le deuxiéme chapitre, nous nous intéressons
a une classe générale de modéles de variables in-
strumentales nonparamétriques. Nous généralisons la
procédure d’estimation de [116] en y ajoutant un terme
de régularisation. Nous prouvons la convergence de
notre estimateur pour la norme L, de Lebesgue.
Dans le troisieme chapitre, nous montrons que lorsque
les données ne sont pas indépendantes et identique-
ment distribuées (i.i.d) mais simplement jointement
échangeables, une version modifiée du processus
empirique converge faiblement vers un processus
gaussien sous les mémes conditions que dans le cas
i.i.d. Nous obtenons un résultat similaire pour une
version adaptée du processus empirique bootstrap.
Nous déduisons de nos résultats la normalité asympto-

tique de plusieurs estimateurs non-linéaires ainsi que
la validité de I'inférence basée sur le bootstrap. Nous
revisitons enfin I'article empirique de [126].

Dans le quatrieme chapitre, nous abordons la ques-
tion de l'inférence pour des ratios d’espérances. Nous
trouvons que lorsque le dénominateur ne tend pas
trop vite vers zéro quand le nombre d’observations
n augmente, le bootstrap nonparamétrique est valide
pour faire de I'inférence asymptotique. Dans un sec-
ond temps, nous complétons un résultat d’'impossibilité
de [63] en montrant que quand n est fini, il est possi-
ble de construire des intervalles de confiance qui ne
sont pas pathologiques sont certaines conditions sur
le dénominateur.

Dans le cinquieme chapitre, nous présentons une com-
mande Stata qui implémente les estimateurs proposés
par [53] pour mesurer plusieurs types d’effets de traite-
ment trés étudiés en pratique.

Title: Essays in robust estimation and inference in semi- and nonparametric econometrics
Keywords: instrumental variables, empirical processes, exchangeability

Abstract: In the introductory chapter, we compare
views on estimation and inference in the econometric
and statistical learning disciplines.

In the second chapter, our interest lies in a generic
class of nonparametric instrumental models. We ex-
tend the estimation procedure in [116] by adding a
regularisation term to it. We prove the consistency of
our estimator under Lebesgue’s L, norm.

In the third chapter, we show that when observations
are jointly exchangeable rather than independent and
identically distributed (i.i.d), a modified version of the
empirical process converges weakly towards a Gaus-
sian process under the same conditions as in the i.i.d
case. We obtain a similar result for a modified version
of the bootstrapped empirical process. We apply our
results to get the asymptotic normality of several non-

linear estimators and the validity of bootstrap-based
inference. Finally, we revisit the empirical work of [126].
In the fourth chapter, we address the issue of con-
We
find that when the denominator tends to zero slowly
enough when the number of observations n increases,

ducting inference on ratios of expectations.

bootstrap-based inference is asymptotically valid. Sec-
ondly, we complement an impossibility result of [63] by
showing that whenever n is finite it is possible to con-
struct confidence intervals which are not pathological
under some conditions on the denominator.

In the fifth chapter, we present a Stata command which
implements estimators proposed in [53] to measure
several types of treatment effects widely studied in
practice.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
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